sched: clean up calc_weighted()
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
2bd8e6d4
IM
23/*
24 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
25 */
26#ifdef CONFIG_SCHED_DEBUG
27# define const_debug __read_mostly
28#else
29# define const_debug static const
30#endif
31
bf0f6f24 32/*
21805085
PZ
33 * Targeted preemption latency for CPU-bound tasks:
34 * (default: 20ms, units: nanoseconds)
bf0f6f24 35 *
21805085
PZ
36 * NOTE: this latency value is not the same as the concept of
37 * 'timeslice length' - timeslices in CFS are of variable length.
38 * (to see the precise effective timeslice length of your workload,
39 * run vmstat and monitor the context-switches field)
bf0f6f24
IM
40 *
41 * On SMP systems the value of this is multiplied by the log2 of the
42 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
43 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
21805085 44 * Targeted preemption latency for CPU-bound tasks:
bf0f6f24 45 */
2bd8e6d4
IM
46const_debug unsigned int sysctl_sched_latency = 20000000ULL;
47
48/*
49 * After fork, child runs first. (default) If set to 0 then
50 * parent will (try to) run first.
51 */
52const_debug unsigned int sysctl_sched_child_runs_first = 1;
21805085
PZ
53
54/*
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 2 msec, units: nanoseconds)
57 */
172ac3db 58unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
bf0f6f24 59
1799e35d
IM
60/*
61 * sys_sched_yield() compat mode
62 *
63 * This option switches the agressive yield implementation of the
64 * old scheduler back on.
65 */
66unsigned int __read_mostly sysctl_sched_compat_yield;
67
bf0f6f24
IM
68/*
69 * SCHED_BATCH wake-up granularity.
71fd3714 70 * (default: 25 msec, units: nanoseconds)
bf0f6f24
IM
71 *
72 * This option delays the preemption effects of decoupled workloads
73 * and reduces their over-scheduling. Synchronous workloads will still
74 * have immediate wakeup/sleep latencies.
75 */
2bd8e6d4 76const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
bf0f6f24
IM
77
78/*
79 * SCHED_OTHER wake-up granularity.
80 * (default: 1 msec, units: nanoseconds)
81 *
82 * This option delays the preemption effects of decoupled workloads
83 * and reduces their over-scheduling. Synchronous workloads will still
84 * have immediate wakeup/sleep latencies.
85 */
2bd8e6d4 86const_debug unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 87
bf0f6f24
IM
88unsigned int sysctl_sched_runtime_limit __read_mostly;
89
90/*
91 * Debugging: various feature bits
92 */
93enum {
94 SCHED_FEAT_FAIR_SLEEPERS = 1,
95 SCHED_FEAT_SLEEPER_AVG = 2,
96 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
a25707f3
IM
97 SCHED_FEAT_START_DEBIT = 8,
98 SCHED_FEAT_SKIP_INITIAL = 16,
bf0f6f24
IM
99};
100
2bd8e6d4 101const_debug unsigned int sysctl_sched_features =
bf0f6f24 102 SCHED_FEAT_FAIR_SLEEPERS *1 |
5d2b3d36 103 SCHED_FEAT_SLEEPER_AVG *0 |
bf0f6f24 104 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
bf0f6f24
IM
105 SCHED_FEAT_START_DEBIT *1 |
106 SCHED_FEAT_SKIP_INITIAL *0;
107
e59c80c5
PZ
108#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
109
bf0f6f24
IM
110extern struct sched_class fair_sched_class;
111
112/**************************************************************
113 * CFS operations on generic schedulable entities:
114 */
115
62160e3f 116#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 117
62160e3f 118/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
119static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
120{
62160e3f 121 return cfs_rq->rq;
bf0f6f24
IM
122}
123
62160e3f
IM
124/* An entity is a task if it doesn't "own" a runqueue */
125#define entity_is_task(se) (!se->my_q)
bf0f6f24 126
62160e3f 127#else /* CONFIG_FAIR_GROUP_SCHED */
bf0f6f24 128
62160e3f
IM
129static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
130{
131 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
132}
133
134#define entity_is_task(se) 1
135
bf0f6f24
IM
136#endif /* CONFIG_FAIR_GROUP_SCHED */
137
138static inline struct task_struct *task_of(struct sched_entity *se)
139{
140 return container_of(se, struct task_struct, se);
141}
142
143
144/**************************************************************
145 * Scheduling class tree data structure manipulation methods:
146 */
147
148/*
149 * Enqueue an entity into the rb-tree:
150 */
19ccd97a 151static void
bf0f6f24
IM
152__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
153{
154 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
155 struct rb_node *parent = NULL;
156 struct sched_entity *entry;
157 s64 key = se->fair_key;
158 int leftmost = 1;
159
160 /*
161 * Find the right place in the rbtree:
162 */
163 while (*link) {
164 parent = *link;
165 entry = rb_entry(parent, struct sched_entity, run_node);
166 /*
167 * We dont care about collisions. Nodes with
168 * the same key stay together.
169 */
170 if (key - entry->fair_key < 0) {
171 link = &parent->rb_left;
172 } else {
173 link = &parent->rb_right;
174 leftmost = 0;
175 }
176 }
177
178 /*
179 * Maintain a cache of leftmost tree entries (it is frequently
180 * used):
181 */
182 if (leftmost)
183 cfs_rq->rb_leftmost = &se->run_node;
184
185 rb_link_node(&se->run_node, parent, link);
186 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
187 update_load_add(&cfs_rq->load, se->load.weight);
188 cfs_rq->nr_running++;
189 se->on_rq = 1;
a206c072
IM
190
191 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
bf0f6f24
IM
192}
193
19ccd97a 194static void
bf0f6f24
IM
195__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
196{
197 if (cfs_rq->rb_leftmost == &se->run_node)
198 cfs_rq->rb_leftmost = rb_next(&se->run_node);
199 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
200 update_load_sub(&cfs_rq->load, se->load.weight);
201 cfs_rq->nr_running--;
202 se->on_rq = 0;
a206c072
IM
203
204 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
bf0f6f24
IM
205}
206
207static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
208{
209 return cfs_rq->rb_leftmost;
210}
211
212static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
213{
214 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
215}
216
217/**************************************************************
218 * Scheduling class statistics methods:
219 */
220
21805085
PZ
221/*
222 * Calculate the preemption granularity needed to schedule every
223 * runnable task once per sysctl_sched_latency amount of time.
224 * (down to a sensible low limit on granularity)
225 *
226 * For example, if there are 2 tasks running and latency is 10 msecs,
227 * we switch tasks every 5 msecs. If we have 3 tasks running, we have
228 * to switch tasks every 3.33 msecs to get a 10 msecs observed latency
229 * for each task. We do finer and finer scheduling up to until we
230 * reach the minimum granularity value.
231 *
232 * To achieve this we use the following dynamic-granularity rule:
233 *
234 * gran = lat/nr - lat/nr/nr
235 *
236 * This comes out of the following equations:
237 *
238 * kA1 + gran = kB1
239 * kB2 + gran = kA2
240 * kA2 = kA1
241 * kB2 = kB1 - d + d/nr
242 * lat = d * nr
243 *
244 * Where 'k' is key, 'A' is task A (waiting), 'B' is task B (running),
245 * '1' is start of time, '2' is end of time, 'd' is delay between
246 * 1 and 2 (during which task B was running), 'nr' is number of tasks
247 * running, 'lat' is the the period of each task. ('lat' is the
248 * sched_latency that we aim for.)
249 */
250static long
251sched_granularity(struct cfs_rq *cfs_rq)
252{
253 unsigned int gran = sysctl_sched_latency;
254 unsigned int nr = cfs_rq->nr_running;
255
256 if (nr > 1) {
257 gran = gran/nr - gran/nr/nr;
172ac3db 258 gran = max(gran, sysctl_sched_min_granularity);
21805085
PZ
259 }
260
261 return gran;
262}
263
bf0f6f24
IM
264/*
265 * We rescale the rescheduling granularity of tasks according to their
266 * nice level, but only linearly, not exponentially:
267 */
268static long
269niced_granularity(struct sched_entity *curr, unsigned long granularity)
270{
271 u64 tmp;
272
7cff8cf6
IM
273 if (likely(curr->load.weight == NICE_0_LOAD))
274 return granularity;
bf0f6f24 275 /*
7cff8cf6 276 * Positive nice levels get the same granularity as nice-0:
bf0f6f24 277 */
7cff8cf6
IM
278 if (likely(curr->load.weight < NICE_0_LOAD)) {
279 tmp = curr->load.weight * (u64)granularity;
280 return (long) (tmp >> NICE_0_SHIFT);
281 }
bf0f6f24 282 /*
7cff8cf6 283 * Negative nice level tasks get linearly finer
bf0f6f24
IM
284 * granularity:
285 */
7cff8cf6 286 tmp = curr->load.inv_weight * (u64)granularity;
bf0f6f24
IM
287
288 /*
289 * It will always fit into 'long':
290 */
a0dc7260 291 return (long) (tmp >> (WMULT_SHIFT-NICE_0_SHIFT));
bf0f6f24
IM
292}
293
294static inline void
295limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
296{
297 long limit = sysctl_sched_runtime_limit;
298
299 /*
300 * Niced tasks have the same history dynamic range as
301 * non-niced tasks:
302 */
303 if (unlikely(se->wait_runtime > limit)) {
304 se->wait_runtime = limit;
305 schedstat_inc(se, wait_runtime_overruns);
306 schedstat_inc(cfs_rq, wait_runtime_overruns);
307 }
308 if (unlikely(se->wait_runtime < -limit)) {
309 se->wait_runtime = -limit;
310 schedstat_inc(se, wait_runtime_underruns);
311 schedstat_inc(cfs_rq, wait_runtime_underruns);
312 }
313}
314
315static inline void
316__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
317{
318 se->wait_runtime += delta;
319 schedstat_add(se, sum_wait_runtime, delta);
320 limit_wait_runtime(cfs_rq, se);
321}
322
323static void
324add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
325{
326 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
327 __add_wait_runtime(cfs_rq, se, delta);
328 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
329}
330
331/*
332 * Update the current task's runtime statistics. Skip current tasks that
333 * are not in our scheduling class.
334 */
335static inline void
8ebc91d9
IM
336__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
337 unsigned long delta_exec)
bf0f6f24 338{
8ebc91d9 339 unsigned long delta, delta_fair, delta_mine;
bf0f6f24
IM
340 struct load_weight *lw = &cfs_rq->load;
341 unsigned long load = lw->weight;
342
8179ca23 343 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
bf0f6f24
IM
344
345 curr->sum_exec_runtime += delta_exec;
346 cfs_rq->exec_clock += delta_exec;
347
fd8bb43e
IM
348 if (unlikely(!load))
349 return;
350
bf0f6f24
IM
351 delta_fair = calc_delta_fair(delta_exec, lw);
352 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
353
5f01d519 354 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
ea0aa3b2 355 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
b2133c8b
IM
356 delta = min(delta, (unsigned long)(
357 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
bf0f6f24
IM
358 cfs_rq->sleeper_bonus -= delta;
359 delta_mine -= delta;
360 }
361
362 cfs_rq->fair_clock += delta_fair;
363 /*
364 * We executed delta_exec amount of time on the CPU,
365 * but we were only entitled to delta_mine amount of
366 * time during that period (if nr_running == 1 then
367 * the two values are equal)
368 * [Note: delta_mine - delta_exec is negative]:
369 */
370 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
371}
372
b7cc0896 373static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 374{
429d43bc 375 struct sched_entity *curr = cfs_rq->curr;
8ebc91d9 376 u64 now = rq_of(cfs_rq)->clock;
bf0f6f24
IM
377 unsigned long delta_exec;
378
379 if (unlikely(!curr))
380 return;
381
382 /*
383 * Get the amount of time the current task was running
384 * since the last time we changed load (this cannot
385 * overflow on 32 bits):
386 */
8ebc91d9 387 delta_exec = (unsigned long)(now - curr->exec_start);
bf0f6f24 388
8ebc91d9
IM
389 __update_curr(cfs_rq, curr, delta_exec);
390 curr->exec_start = now;
bf0f6f24
IM
391}
392
393static inline void
5870db5b 394update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
395{
396 se->wait_start_fair = cfs_rq->fair_clock;
d281918d 397 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
398}
399
bf0f6f24 400static inline unsigned long
08e2388a 401calc_weighted(unsigned long delta, struct sched_entity *se)
bf0f6f24 402{
08e2388a 403 unsigned long weight = se->load.weight;
bf0f6f24 404
08e2388a
IM
405 if (unlikely(weight != NICE_0_LOAD))
406 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
407 else
408 return delta;
bf0f6f24 409}
bf0f6f24
IM
410
411/*
412 * Task is being enqueued - update stats:
413 */
d2417e5a 414static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
415{
416 s64 key;
417
418 /*
419 * Are we enqueueing a waiting task? (for current tasks
420 * a dequeue/enqueue event is a NOP)
421 */
429d43bc 422 if (se != cfs_rq->curr)
5870db5b 423 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
424 /*
425 * Update the key:
426 */
427 key = cfs_rq->fair_clock;
428
429 /*
430 * Optimize the common nice 0 case:
431 */
432 if (likely(se->load.weight == NICE_0_LOAD)) {
433 key -= se->wait_runtime;
434 } else {
435 u64 tmp;
436
437 if (se->wait_runtime < 0) {
438 tmp = -se->wait_runtime;
439 key += (tmp * se->load.inv_weight) >>
440 (WMULT_SHIFT - NICE_0_SHIFT);
441 } else {
442 tmp = se->wait_runtime;
a69edb55
IM
443 key -= (tmp * se->load.inv_weight) >>
444 (WMULT_SHIFT - NICE_0_SHIFT);
bf0f6f24
IM
445 }
446 }
447
448 se->fair_key = key;
449}
450
451/*
452 * Note: must be called with a freshly updated rq->fair_clock.
453 */
454static inline void
8ebc91d9
IM
455__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
456 unsigned long delta_fair)
bf0f6f24 457{
d281918d
IM
458 schedstat_set(se->wait_max, max(se->wait_max,
459 rq_of(cfs_rq)->clock - se->wait_start));
bf0f6f24 460
08e2388a 461 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
462
463 add_wait_runtime(cfs_rq, se, delta_fair);
464}
465
466static void
9ef0a961 467update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
468{
469 unsigned long delta_fair;
470
b77d69db
IM
471 if (unlikely(!se->wait_start_fair))
472 return;
473
bf0f6f24
IM
474 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
475 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
476
8ebc91d9 477 __update_stats_wait_end(cfs_rq, se, delta_fair);
bf0f6f24
IM
478
479 se->wait_start_fair = 0;
6cfb0d5d 480 schedstat_set(se->wait_start, 0);
bf0f6f24
IM
481}
482
483static inline void
19b6a2e3 484update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 485{
b7cc0896 486 update_curr(cfs_rq);
bf0f6f24
IM
487 /*
488 * Mark the end of the wait period if dequeueing a
489 * waiting task:
490 */
429d43bc 491 if (se != cfs_rq->curr)
9ef0a961 492 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
493}
494
495/*
496 * We are picking a new current task - update its stats:
497 */
498static inline void
79303e9e 499update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
500{
501 /*
502 * We are starting a new run period:
503 */
d281918d 504 se->exec_start = rq_of(cfs_rq)->clock;
bf0f6f24
IM
505}
506
507/*
508 * We are descheduling a task - update its stats:
509 */
510static inline void
c7e9b5b2 511update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
512{
513 se->exec_start = 0;
514}
515
516/**************************************************
517 * Scheduling class queueing methods:
518 */
519
8ebc91d9
IM
520static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
521 unsigned long delta_fair)
bf0f6f24 522{
8ebc91d9 523 unsigned long load = cfs_rq->load.weight;
bf0f6f24
IM
524 long prev_runtime;
525
b2133c8b
IM
526 /*
527 * Do not boost sleepers if there's too much bonus 'in flight'
528 * already:
529 */
530 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
531 return;
532
e59c80c5 533 if (sched_feat(SLEEPER_LOAD_AVG))
bf0f6f24
IM
534 load = rq_of(cfs_rq)->cpu_load[2];
535
bf0f6f24
IM
536 /*
537 * Fix up delta_fair with the effect of us running
538 * during the whole sleep period:
539 */
e59c80c5 540 if (sched_feat(SLEEPER_AVG))
bf0f6f24
IM
541 delta_fair = div64_likely32((u64)delta_fair * load,
542 load + se->load.weight);
543
08e2388a 544 delta_fair = calc_weighted(delta_fair, se);
bf0f6f24
IM
545
546 prev_runtime = se->wait_runtime;
547 __add_wait_runtime(cfs_rq, se, delta_fair);
548 delta_fair = se->wait_runtime - prev_runtime;
549
550 /*
551 * Track the amount of bonus we've given to sleepers:
552 */
553 cfs_rq->sleeper_bonus += delta_fair;
bf0f6f24
IM
554}
555
2396af69 556static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
557{
558 struct task_struct *tsk = task_of(se);
559 unsigned long delta_fair;
560
561 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
e59c80c5 562 !sched_feat(FAIR_SLEEPERS))
bf0f6f24
IM
563 return;
564
565 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
566 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
567
8ebc91d9 568 __enqueue_sleeper(cfs_rq, se, delta_fair);
bf0f6f24
IM
569
570 se->sleep_start_fair = 0;
571
572#ifdef CONFIG_SCHEDSTATS
573 if (se->sleep_start) {
d281918d 574 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
bf0f6f24
IM
575
576 if ((s64)delta < 0)
577 delta = 0;
578
579 if (unlikely(delta > se->sleep_max))
580 se->sleep_max = delta;
581
582 se->sleep_start = 0;
583 se->sum_sleep_runtime += delta;
584 }
585 if (se->block_start) {
d281918d 586 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
bf0f6f24
IM
587
588 if ((s64)delta < 0)
589 delta = 0;
590
591 if (unlikely(delta > se->block_max))
592 se->block_max = delta;
593
594 se->block_start = 0;
595 se->sum_sleep_runtime += delta;
30084fbd
IM
596
597 /*
598 * Blocking time is in units of nanosecs, so shift by 20 to
599 * get a milliseconds-range estimation of the amount of
600 * time that the task spent sleeping:
601 */
602 if (unlikely(prof_on == SLEEP_PROFILING)) {
603 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
604 delta >> 20);
605 }
bf0f6f24
IM
606 }
607#endif
608}
609
610static void
668031ca 611enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
bf0f6f24
IM
612{
613 /*
614 * Update the fair clock.
615 */
b7cc0896 616 update_curr(cfs_rq);
bf0f6f24
IM
617
618 if (wakeup)
2396af69 619 enqueue_sleeper(cfs_rq, se);
bf0f6f24 620
d2417e5a 621 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
622 __enqueue_entity(cfs_rq, se);
623}
624
625static void
525c2716 626dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
bf0f6f24 627{
19b6a2e3 628 update_stats_dequeue(cfs_rq, se);
bf0f6f24
IM
629 if (sleep) {
630 se->sleep_start_fair = cfs_rq->fair_clock;
631#ifdef CONFIG_SCHEDSTATS
632 if (entity_is_task(se)) {
633 struct task_struct *tsk = task_of(se);
634
635 if (tsk->state & TASK_INTERRUPTIBLE)
d281918d 636 se->sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 637 if (tsk->state & TASK_UNINTERRUPTIBLE)
d281918d 638 se->block_start = rq_of(cfs_rq)->clock;
bf0f6f24 639 }
bf0f6f24
IM
640#endif
641 }
642 __dequeue_entity(cfs_rq, se);
643}
644
645/*
646 * Preempt the current task with a newly woken task if needed:
647 */
7c92e54f 648static void
bf0f6f24
IM
649__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
650 struct sched_entity *curr, unsigned long granularity)
651{
652 s64 __delta = curr->fair_key - se->fair_key;
11697830
PZ
653 unsigned long ideal_runtime, delta_exec;
654
655 /*
656 * ideal_runtime is compared against sum_exec_runtime, which is
657 * walltime, hence do not scale.
658 */
659 ideal_runtime = max(sysctl_sched_latency / cfs_rq->nr_running,
660 (unsigned long)sysctl_sched_min_granularity);
661
662 /*
663 * If we executed more than what the latency constraint suggests,
664 * reduce the rescheduling granularity. This way the total latency
665 * of how much a task is not scheduled converges to
666 * sysctl_sched_latency:
667 */
668 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
669 if (delta_exec > ideal_runtime)
670 granularity = 0;
bf0f6f24
IM
671
672 /*
673 * Take scheduling granularity into account - do not
674 * preempt the current task unless the best task has
675 * a larger than sched_granularity fairness advantage:
11697830
PZ
676 *
677 * scale granularity as key space is in fair_clock.
bf0f6f24 678 */
4a55b450 679 if (__delta > niced_granularity(curr, granularity))
bf0f6f24
IM
680 resched_task(rq_of(cfs_rq)->curr);
681}
682
683static inline void
8494f412 684set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
685{
686 /*
687 * Any task has to be enqueued before it get to execute on
688 * a CPU. So account for the time it spent waiting on the
689 * runqueue. (note, here we rely on pick_next_task() having
690 * done a put_prev_task_fair() shortly before this, which
691 * updated rq->fair_clock - used by update_stats_wait_end())
692 */
9ef0a961 693 update_stats_wait_end(cfs_rq, se);
79303e9e 694 update_stats_curr_start(cfs_rq, se);
429d43bc 695 cfs_rq->curr = se;
eba1ed4b
IM
696#ifdef CONFIG_SCHEDSTATS
697 /*
698 * Track our maximum slice length, if the CPU's load is at
699 * least twice that of our own weight (i.e. dont track it
700 * when there are only lesser-weight tasks around):
701 */
702 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
703 se->slice_max = max(se->slice_max,
704 se->sum_exec_runtime - se->prev_sum_exec_runtime);
705 }
706#endif
4a55b450 707 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
708}
709
9948f4b2 710static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
bf0f6f24
IM
711{
712 struct sched_entity *se = __pick_next_entity(cfs_rq);
713
8494f412 714 set_next_entity(cfs_rq, se);
bf0f6f24
IM
715
716 return se;
717}
718
ab6cde26 719static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
720{
721 /*
722 * If still on the runqueue then deactivate_task()
723 * was not called and update_curr() has to be done:
724 */
725 if (prev->on_rq)
b7cc0896 726 update_curr(cfs_rq);
bf0f6f24 727
c7e9b5b2 728 update_stats_curr_end(cfs_rq, prev);
bf0f6f24
IM
729
730 if (prev->on_rq)
5870db5b 731 update_stats_wait_start(cfs_rq, prev);
429d43bc 732 cfs_rq->curr = NULL;
bf0f6f24
IM
733}
734
735static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
736{
bf0f6f24 737 struct sched_entity *next;
c1b3da3e 738
bf0f6f24
IM
739 /*
740 * Dequeue and enqueue the task to update its
741 * position within the tree:
742 */
525c2716 743 dequeue_entity(cfs_rq, curr, 0);
668031ca 744 enqueue_entity(cfs_rq, curr, 0);
bf0f6f24
IM
745
746 /*
747 * Reschedule if another task tops the current one.
748 */
749 next = __pick_next_entity(cfs_rq);
750 if (next == curr)
751 return;
752
11697830
PZ
753 __check_preempt_curr_fair(cfs_rq, next, curr,
754 sched_granularity(cfs_rq));
bf0f6f24
IM
755}
756
757/**************************************************
758 * CFS operations on tasks:
759 */
760
761#ifdef CONFIG_FAIR_GROUP_SCHED
762
763/* Walk up scheduling entities hierarchy */
764#define for_each_sched_entity(se) \
765 for (; se; se = se->parent)
766
767static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
768{
769 return p->se.cfs_rq;
770}
771
772/* runqueue on which this entity is (to be) queued */
773static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
774{
775 return se->cfs_rq;
776}
777
778/* runqueue "owned" by this group */
779static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
780{
781 return grp->my_q;
782}
783
784/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
785 * another cpu ('this_cpu')
786 */
787static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
788{
789 /* A later patch will take group into account */
790 return &cpu_rq(this_cpu)->cfs;
791}
792
793/* Iterate thr' all leaf cfs_rq's on a runqueue */
794#define for_each_leaf_cfs_rq(rq, cfs_rq) \
795 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
796
797/* Do the two (enqueued) tasks belong to the same group ? */
798static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
799{
800 if (curr->se.cfs_rq == p->se.cfs_rq)
801 return 1;
802
803 return 0;
804}
805
806#else /* CONFIG_FAIR_GROUP_SCHED */
807
808#define for_each_sched_entity(se) \
809 for (; se; se = NULL)
810
811static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
812{
813 return &task_rq(p)->cfs;
814}
815
816static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
817{
818 struct task_struct *p = task_of(se);
819 struct rq *rq = task_rq(p);
820
821 return &rq->cfs;
822}
823
824/* runqueue "owned" by this group */
825static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
826{
827 return NULL;
828}
829
830static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
831{
832 return &cpu_rq(this_cpu)->cfs;
833}
834
835#define for_each_leaf_cfs_rq(rq, cfs_rq) \
836 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
837
838static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
839{
840 return 1;
841}
842
843#endif /* CONFIG_FAIR_GROUP_SCHED */
844
845/*
846 * The enqueue_task method is called before nr_running is
847 * increased. Here we update the fair scheduling stats and
848 * then put the task into the rbtree:
849 */
fd390f6a 850static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
bf0f6f24
IM
851{
852 struct cfs_rq *cfs_rq;
853 struct sched_entity *se = &p->se;
854
855 for_each_sched_entity(se) {
856 if (se->on_rq)
857 break;
858 cfs_rq = cfs_rq_of(se);
668031ca 859 enqueue_entity(cfs_rq, se, wakeup);
bf0f6f24
IM
860 }
861}
862
863/*
864 * The dequeue_task method is called before nr_running is
865 * decreased. We remove the task from the rbtree and
866 * update the fair scheduling stats:
867 */
f02231e5 868static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
bf0f6f24
IM
869{
870 struct cfs_rq *cfs_rq;
871 struct sched_entity *se = &p->se;
872
873 for_each_sched_entity(se) {
874 cfs_rq = cfs_rq_of(se);
525c2716 875 dequeue_entity(cfs_rq, se, sleep);
bf0f6f24
IM
876 /* Don't dequeue parent if it has other entities besides us */
877 if (cfs_rq->load.weight)
878 break;
879 }
880}
881
882/*
1799e35d
IM
883 * sched_yield() support is very simple - we dequeue and enqueue.
884 *
885 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24
IM
886 */
887static void yield_task_fair(struct rq *rq, struct task_struct *p)
888{
889 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1799e35d
IM
890 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
891 struct sched_entity *rightmost, *se = &p->se;
892 struct rb_node *parent;
bf0f6f24
IM
893
894 /*
1799e35d
IM
895 * Are we the only task in the tree?
896 */
897 if (unlikely(cfs_rq->nr_running == 1))
898 return;
899
900 if (likely(!sysctl_sched_compat_yield)) {
901 __update_rq_clock(rq);
902 /*
903 * Dequeue and enqueue the task to update its
904 * position within the tree:
905 */
906 dequeue_entity(cfs_rq, &p->se, 0);
907 enqueue_entity(cfs_rq, &p->se, 0);
908
909 return;
910 }
911 /*
912 * Find the rightmost entry in the rbtree:
bf0f6f24 913 */
1799e35d
IM
914 do {
915 parent = *link;
916 link = &parent->rb_right;
917 } while (*link);
918
919 rightmost = rb_entry(parent, struct sched_entity, run_node);
920 /*
921 * Already in the rightmost position?
922 */
923 if (unlikely(rightmost == se))
924 return;
925
926 /*
927 * Minimally necessary key value to be last in the tree:
928 */
929 se->fair_key = rightmost->fair_key + 1;
930
931 if (cfs_rq->rb_leftmost == &se->run_node)
932 cfs_rq->rb_leftmost = rb_next(&se->run_node);
933 /*
934 * Relink the task to the rightmost position:
935 */
936 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
937 rb_link_node(&se->run_node, parent, link);
938 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
939}
940
941/*
942 * Preempt the current task with a newly woken task if needed:
943 */
944static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
945{
946 struct task_struct *curr = rq->curr;
947 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
948 unsigned long gran;
949
950 if (unlikely(rt_prio(p->prio))) {
a8e504d2 951 update_rq_clock(rq);
b7cc0896 952 update_curr(cfs_rq);
bf0f6f24
IM
953 resched_task(curr);
954 return;
955 }
956
957 gran = sysctl_sched_wakeup_granularity;
958 /*
959 * Batch tasks prefer throughput over latency:
960 */
961 if (unlikely(p->policy == SCHED_BATCH))
962 gran = sysctl_sched_batch_wakeup_granularity;
963
964 if (is_same_group(curr, p))
965 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
966}
967
fb8d4724 968static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24
IM
969{
970 struct cfs_rq *cfs_rq = &rq->cfs;
971 struct sched_entity *se;
972
973 if (unlikely(!cfs_rq->nr_running))
974 return NULL;
975
976 do {
9948f4b2 977 se = pick_next_entity(cfs_rq);
bf0f6f24
IM
978 cfs_rq = group_cfs_rq(se);
979 } while (cfs_rq);
980
981 return task_of(se);
982}
983
984/*
985 * Account for a descheduled task:
986 */
31ee529c 987static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
988{
989 struct sched_entity *se = &prev->se;
990 struct cfs_rq *cfs_rq;
991
992 for_each_sched_entity(se) {
993 cfs_rq = cfs_rq_of(se);
ab6cde26 994 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
995 }
996}
997
998/**************************************************
999 * Fair scheduling class load-balancing methods:
1000 */
1001
1002/*
1003 * Load-balancing iterator. Note: while the runqueue stays locked
1004 * during the whole iteration, the current task might be
1005 * dequeued so the iterator has to be dequeue-safe. Here we
1006 * achieve that by always pre-iterating before returning
1007 * the current task:
1008 */
1009static inline struct task_struct *
1010__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1011{
1012 struct task_struct *p;
1013
1014 if (!curr)
1015 return NULL;
1016
1017 p = rb_entry(curr, struct task_struct, se.run_node);
1018 cfs_rq->rb_load_balance_curr = rb_next(curr);
1019
1020 return p;
1021}
1022
1023static struct task_struct *load_balance_start_fair(void *arg)
1024{
1025 struct cfs_rq *cfs_rq = arg;
1026
1027 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1028}
1029
1030static struct task_struct *load_balance_next_fair(void *arg)
1031{
1032 struct cfs_rq *cfs_rq = arg;
1033
1034 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1035}
1036
a4ac01c3 1037#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24
IM
1038static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1039{
1040 struct sched_entity *curr;
1041 struct task_struct *p;
1042
1043 if (!cfs_rq->nr_running)
1044 return MAX_PRIO;
1045
1046 curr = __pick_next_entity(cfs_rq);
1047 p = task_of(curr);
1048
1049 return p->prio;
1050}
a4ac01c3 1051#endif
bf0f6f24 1052
43010659 1053static unsigned long
bf0f6f24 1054load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
a4ac01c3
PW
1055 unsigned long max_nr_move, unsigned long max_load_move,
1056 struct sched_domain *sd, enum cpu_idle_type idle,
1057 int *all_pinned, int *this_best_prio)
bf0f6f24
IM
1058{
1059 struct cfs_rq *busy_cfs_rq;
1060 unsigned long load_moved, total_nr_moved = 0, nr_moved;
1061 long rem_load_move = max_load_move;
1062 struct rq_iterator cfs_rq_iterator;
1063
1064 cfs_rq_iterator.start = load_balance_start_fair;
1065 cfs_rq_iterator.next = load_balance_next_fair;
1066
1067 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
a4ac01c3 1068#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 1069 struct cfs_rq *this_cfs_rq;
e56f31aa 1070 long imbalance;
bf0f6f24 1071 unsigned long maxload;
bf0f6f24
IM
1072
1073 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1074
e56f31aa 1075 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
bf0f6f24
IM
1076 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1077 if (imbalance <= 0)
1078 continue;
1079
1080 /* Don't pull more than imbalance/2 */
1081 imbalance /= 2;
1082 maxload = min(rem_load_move, imbalance);
1083
a4ac01c3
PW
1084 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1085#else
e56f31aa 1086# define maxload rem_load_move
a4ac01c3 1087#endif
bf0f6f24
IM
1088 /* pass busy_cfs_rq argument into
1089 * load_balance_[start|next]_fair iterators
1090 */
1091 cfs_rq_iterator.arg = busy_cfs_rq;
1092 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
1093 max_nr_move, maxload, sd, idle, all_pinned,
a4ac01c3 1094 &load_moved, this_best_prio, &cfs_rq_iterator);
bf0f6f24
IM
1095
1096 total_nr_moved += nr_moved;
1097 max_nr_move -= nr_moved;
1098 rem_load_move -= load_moved;
1099
1100 if (max_nr_move <= 0 || rem_load_move <= 0)
1101 break;
1102 }
1103
43010659 1104 return max_load_move - rem_load_move;
bf0f6f24
IM
1105}
1106
1107/*
1108 * scheduler tick hitting a task of our scheduling class:
1109 */
1110static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1111{
1112 struct cfs_rq *cfs_rq;
1113 struct sched_entity *se = &curr->se;
1114
1115 for_each_sched_entity(se) {
1116 cfs_rq = cfs_rq_of(se);
1117 entity_tick(cfs_rq, se);
1118 }
1119}
1120
1121/*
1122 * Share the fairness runtime between parent and child, thus the
1123 * total amount of pressure for CPU stays equal - new tasks
1124 * get a chance to run but frequent forkers are not allowed to
1125 * monopolize the CPU. Note: the parent runqueue is locked,
1126 * the child is not running yet.
1127 */
ee0827d8 1128static void task_new_fair(struct rq *rq, struct task_struct *p)
bf0f6f24
IM
1129{
1130 struct cfs_rq *cfs_rq = task_cfs_rq(p);
429d43bc 1131 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
bf0f6f24
IM
1132
1133 sched_info_queued(p);
1134
7109c442 1135 update_curr(cfs_rq);
d2417e5a 1136 update_stats_enqueue(cfs_rq, se);
bf0f6f24
IM
1137 /*
1138 * Child runs first: we let it run before the parent
1139 * until it reschedules once. We set up the key so that
1140 * it will preempt the parent:
1141 */
9f508f82 1142 se->fair_key = curr->fair_key -
7109c442 1143 niced_granularity(curr, sched_granularity(cfs_rq)) - 1;
bf0f6f24
IM
1144 /*
1145 * The first wait is dominated by the child-runs-first logic,
1146 * so do not credit it with that waiting time yet:
1147 */
e59c80c5 1148 if (sched_feat(SKIP_INITIAL))
9f508f82 1149 se->wait_start_fair = 0;
bf0f6f24
IM
1150
1151 /*
1152 * The statistical average of wait_runtime is about
1153 * -granularity/2, so initialize the task with that:
1154 */
e59c80c5 1155 if (sched_feat(START_DEBIT))
9f508f82 1156 se->wait_runtime = -(sched_granularity(cfs_rq) / 2);
bf0f6f24
IM
1157
1158 __enqueue_entity(cfs_rq, se);
bb61c210 1159 resched_task(rq->curr);
bf0f6f24
IM
1160}
1161
1162#ifdef CONFIG_FAIR_GROUP_SCHED
1163/* Account for a task changing its policy or group.
1164 *
1165 * This routine is mostly called to set cfs_rq->curr field when a task
1166 * migrates between groups/classes.
1167 */
1168static void set_curr_task_fair(struct rq *rq)
1169{
7c6c16f3 1170 struct sched_entity *se = &rq->curr->se;
a8e504d2 1171
c3b64f1e
IM
1172 for_each_sched_entity(se)
1173 set_next_entity(cfs_rq_of(se), se);
bf0f6f24
IM
1174}
1175#else
1176static void set_curr_task_fair(struct rq *rq)
1177{
1178}
1179#endif
1180
1181/*
1182 * All the scheduling class methods:
1183 */
1184struct sched_class fair_sched_class __read_mostly = {
1185 .enqueue_task = enqueue_task_fair,
1186 .dequeue_task = dequeue_task_fair,
1187 .yield_task = yield_task_fair,
1188
1189 .check_preempt_curr = check_preempt_curr_fair,
1190
1191 .pick_next_task = pick_next_task_fair,
1192 .put_prev_task = put_prev_task_fair,
1193
1194 .load_balance = load_balance_fair,
1195
1196 .set_curr_task = set_curr_task_fair,
1197 .task_tick = task_tick_fair,
1198 .task_new = task_new_fair,
1199};
1200
1201#ifdef CONFIG_SCHED_DEBUG
5cef9eca 1202static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 1203{
bf0f6f24
IM
1204 struct cfs_rq *cfs_rq;
1205
c3b64f1e 1206 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 1207 print_cfs_rq(m, cpu, cfs_rq);
bf0f6f24
IM
1208}
1209#endif