ARM: 6739/1: update .gitignore for boot/compressed
[linux-2.6-block.git] / kernel / sched_fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
bf0f6f24
IM
21 */
22
9745512c 23#include <linux/latencytop.h>
1983a922 24#include <linux/sched.h>
9745512c 25
bf0f6f24 26/*
21805085 27 * Targeted preemption latency for CPU-bound tasks:
864616ee 28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 29 *
21805085 30 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
bf0f6f24 34 *
d274a4ce
IM
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 37 */
21406928
MG
38unsigned int sysctl_sched_latency = 6000000ULL;
39unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 40
1983a922
CE
41/*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
2bd8e6d4 53/*
b2be5e96 54 * Minimal preemption granularity for CPU-bound tasks:
864616ee 55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 56 */
0bf377bb
IM
57unsigned int sysctl_sched_min_granularity = 750000ULL;
58unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
59
60/*
b2be5e96
PZ
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
0bf377bb 63static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
64
65/*
2bba22c5 66 * After fork, child runs first. If set to 0 (default) then
b2be5e96 67 * parent will (try to) run first.
21805085 68 */
2bba22c5 69unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 70
1799e35d
IM
71/*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77unsigned int __read_mostly sysctl_sched_compat_yield;
78
bf0f6f24
IM
79/*
80 * SCHED_OTHER wake-up granularity.
172e082a 81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
172e082a 87unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 88unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 89
da84d961
IM
90const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
a7a4f8a7
PT
92/*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
a4c2f00f
PZ
99static const struct sched_class fair_sched_class;
100
bf0f6f24
IM
101/**************************************************************
102 * CFS operations on generic schedulable entities:
103 */
104
62160e3f 105#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 106
62160e3f 107/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
109{
62160e3f 110 return cfs_rq->rq;
bf0f6f24
IM
111}
112
62160e3f
IM
113/* An entity is a task if it doesn't "own" a runqueue */
114#define entity_is_task(se) (!se->my_q)
bf0f6f24 115
8f48894f
PZ
116static inline struct task_struct *task_of(struct sched_entity *se)
117{
118#ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120#endif
121 return container_of(se, struct task_struct, se);
122}
123
b758149c
PZ
124/* Walk up scheduling entities hierarchy */
125#define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
127
128static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
129{
130 return p->se.cfs_rq;
131}
132
133/* runqueue on which this entity is (to be) queued */
134static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
135{
136 return se->cfs_rq;
137}
138
139/* runqueue "owned" by this group */
140static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
141{
142 return grp->my_q;
143}
144
145/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
147 */
148static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
149{
150 return cfs_rq->tg->cfs_rq[this_cpu];
151}
152
3d4b47b4
PZ
153static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
154{
155 if (!cfs_rq->on_list) {
67e86250
PT
156 /*
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
161 */
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 169 }
3d4b47b4
PZ
170
171 cfs_rq->on_list = 1;
172 }
173}
174
175static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
176{
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
180 }
181}
182
b758149c
PZ
183/* Iterate thr' all leaf cfs_rq's on a runqueue */
184#define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
186
187/* Do the two (enqueued) entities belong to the same group ? */
188static inline int
189is_same_group(struct sched_entity *se, struct sched_entity *pse)
190{
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
193
194 return 0;
195}
196
197static inline struct sched_entity *parent_entity(struct sched_entity *se)
198{
199 return se->parent;
200}
201
464b7527
PZ
202/* return depth at which a sched entity is present in the hierarchy */
203static inline int depth_se(struct sched_entity *se)
204{
205 int depth = 0;
206
207 for_each_sched_entity(se)
208 depth++;
209
210 return depth;
211}
212
213static void
214find_matching_se(struct sched_entity **se, struct sched_entity **pse)
215{
216 int se_depth, pse_depth;
217
218 /*
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
223 */
224
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
228
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
232 }
233
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
237 }
238
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
242 }
243}
244
8f48894f
PZ
245#else /* !CONFIG_FAIR_GROUP_SCHED */
246
247static inline struct task_struct *task_of(struct sched_entity *se)
248{
249 return container_of(se, struct task_struct, se);
250}
bf0f6f24 251
62160e3f
IM
252static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
253{
254 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
255}
256
257#define entity_is_task(se) 1
258
b758149c
PZ
259#define for_each_sched_entity(se) \
260 for (; se; se = NULL)
bf0f6f24 261
b758149c 262static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 263{
b758149c 264 return &task_rq(p)->cfs;
bf0f6f24
IM
265}
266
b758149c
PZ
267static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
268{
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
271
272 return &rq->cfs;
273}
274
275/* runqueue "owned" by this group */
276static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
277{
278 return NULL;
279}
280
281static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
282{
283 return &cpu_rq(this_cpu)->cfs;
284}
285
3d4b47b4
PZ
286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288}
289
290static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291{
292}
293
b758149c
PZ
294#define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
296
297static inline int
298is_same_group(struct sched_entity *se, struct sched_entity *pse)
299{
300 return 1;
301}
302
303static inline struct sched_entity *parent_entity(struct sched_entity *se)
304{
305 return NULL;
306}
307
464b7527
PZ
308static inline void
309find_matching_se(struct sched_entity **se, struct sched_entity **pse)
310{
311}
312
b758149c
PZ
313#endif /* CONFIG_FAIR_GROUP_SCHED */
314
bf0f6f24
IM
315
316/**************************************************************
317 * Scheduling class tree data structure manipulation methods:
318 */
319
0702e3eb 320static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
02e0431a 321{
368059a9
PZ
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
02e0431a
PZ
324 min_vruntime = vruntime;
325
326 return min_vruntime;
327}
328
0702e3eb 329static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
330{
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
334
335 return min_vruntime;
336}
337
54fdc581
FC
338static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
340{
341 return (s64)(a->vruntime - b->vruntime) < 0;
342}
343
0702e3eb 344static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
9014623c 345{
30cfdcfc 346 return se->vruntime - cfs_rq->min_vruntime;
9014623c
PZ
347}
348
1af5f730
PZ
349static void update_min_vruntime(struct cfs_rq *cfs_rq)
350{
351 u64 vruntime = cfs_rq->min_vruntime;
352
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
355
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
360
e17036da 361 if (!cfs_rq->curr)
1af5f730
PZ
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
365 }
366
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
368}
369
bf0f6f24
IM
370/*
371 * Enqueue an entity into the rb-tree:
372 */
0702e3eb 373static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
374{
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
9014623c 378 s64 key = entity_key(cfs_rq, se);
bf0f6f24
IM
379 int leftmost = 1;
380
381 /*
382 * Find the right place in the rbtree:
383 */
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
387 /*
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
390 */
9014623c 391 if (key < entity_key(cfs_rq, entry)) {
bf0f6f24
IM
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
396 }
397 }
398
399 /*
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
402 */
1af5f730 403 if (leftmost)
57cb499d 404 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
405
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
408}
409
0702e3eb 410static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 411{
3fe69747
PZ
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
3fe69747
PZ
414
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
3fe69747 417 }
e9acbff6 418
bf0f6f24 419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
420}
421
bf0f6f24
IM
422static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
423{
f4b6755f
PZ
424 struct rb_node *left = cfs_rq->rb_leftmost;
425
426 if (!left)
427 return NULL;
428
429 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
430}
431
f4b6755f 432static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 433{
7eee3e67 434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 435
70eee74b
BS
436 if (!last)
437 return NULL;
7eee3e67
IM
438
439 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
440}
441
bf0f6f24
IM
442/**************************************************************
443 * Scheduling class statistics methods:
444 */
445
b2be5e96 446#ifdef CONFIG_SCHED_DEBUG
acb4a848 447int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 448 void __user *buffer, size_t *lenp,
b2be5e96
PZ
449 loff_t *ppos)
450{
8d65af78 451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
acb4a848 452 int factor = get_update_sysctl_factor();
b2be5e96
PZ
453
454 if (ret || !write)
455 return ret;
456
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
459
acb4a848
CE
460#define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
465#undef WRT_SYSCTL
466
b2be5e96
PZ
467 return 0;
468}
469#endif
647e7cac 470
a7be37ac 471/*
f9c0b095 472 * delta /= w
a7be37ac
PZ
473 */
474static inline unsigned long
475calc_delta_fair(unsigned long delta, struct sched_entity *se)
476{
f9c0b095
PZ
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
479
480 return delta;
481}
482
647e7cac
IM
483/*
484 * The idea is to set a period in which each task runs once.
485 *
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
488 *
489 * p = (nr <= nl) ? l : l*nr/nl
490 */
4d78e7b6
PZ
491static u64 __sched_period(unsigned long nr_running)
492{
493 u64 period = sysctl_sched_latency;
b2be5e96 494 unsigned long nr_latency = sched_nr_latency;
4d78e7b6
PZ
495
496 if (unlikely(nr_running > nr_latency)) {
4bf0b771 497 period = sysctl_sched_min_granularity;
4d78e7b6 498 period *= nr_running;
4d78e7b6
PZ
499 }
500
501 return period;
502}
503
647e7cac
IM
504/*
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
507 *
f9c0b095 508 * s = p*P[w/rw]
647e7cac 509 */
6d0f0ebd 510static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 511{
0a582440 512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 513
0a582440 514 for_each_sched_entity(se) {
6272d68c 515 struct load_weight *load;
3104bf03 516 struct load_weight lw;
6272d68c
LM
517
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
f9c0b095 520
0a582440 521 if (unlikely(!se->on_rq)) {
3104bf03 522 lw = cfs_rq->load;
0a582440
MG
523
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
526 }
527 slice = calc_delta_mine(slice, se->load.weight, load);
528 }
529 return slice;
bf0f6f24
IM
530}
531
647e7cac 532/*
ac884dec 533 * We calculate the vruntime slice of a to be inserted task
647e7cac 534 *
f9c0b095 535 * vs = s/w
647e7cac 536 */
f9c0b095 537static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 538{
f9c0b095 539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
540}
541
d6b55918 542static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
3b3d190e
PT
543static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
544
bf0f6f24
IM
545/*
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
548 */
549static inline void
8ebc91d9
IM
550__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
bf0f6f24 552{
bbdba7c0 553 unsigned long delta_exec_weighted;
bf0f6f24 554
41acab88
LDM
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
bf0f6f24
IM
557
558 curr->sum_exec_runtime += delta_exec;
7a62eabc 559 schedstat_add(cfs_rq, exec_clock, delta_exec);
a7be37ac 560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
88ec22d3 561
e9acbff6 562 curr->vruntime += delta_exec_weighted;
1af5f730 563 update_min_vruntime(cfs_rq);
3b3d190e 564
70caf8a6 565#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
3b3d190e 566 cfs_rq->load_unacc_exec_time += delta_exec;
3b3d190e 567#endif
bf0f6f24
IM
568}
569
b7cc0896 570static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 571{
429d43bc 572 struct sched_entity *curr = cfs_rq->curr;
305e6835 573 u64 now = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
574 unsigned long delta_exec;
575
576 if (unlikely(!curr))
577 return;
578
579 /*
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
583 */
8ebc91d9 584 delta_exec = (unsigned long)(now - curr->exec_start);
34f28ecd
PZ
585 if (!delta_exec)
586 return;
bf0f6f24 587
8ebc91d9
IM
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
d842de87
SV
590
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
593
f977bb49 594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 595 cpuacct_charge(curtask, delta_exec);
f06febc9 596 account_group_exec_runtime(curtask, delta_exec);
d842de87 597 }
bf0f6f24
IM
598}
599
600static inline void
5870db5b 601update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 602{
41acab88 603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
bf0f6f24
IM
604}
605
bf0f6f24
IM
606/*
607 * Task is being enqueued - update stats:
608 */
d2417e5a 609static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 610{
bf0f6f24
IM
611 /*
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
614 */
429d43bc 615 if (se != cfs_rq->curr)
5870db5b 616 update_stats_wait_start(cfs_rq, se);
bf0f6f24
IM
617}
618
bf0f6f24 619static void
9ef0a961 620update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 621{
41acab88
LDM
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
627#ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
41acab88 630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
768d0c27
PZ
631 }
632#endif
41acab88 633 schedstat_set(se->statistics.wait_start, 0);
bf0f6f24
IM
634}
635
636static inline void
19b6a2e3 637update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 638{
bf0f6f24
IM
639 /*
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
642 */
429d43bc 643 if (se != cfs_rq->curr)
9ef0a961 644 update_stats_wait_end(cfs_rq, se);
bf0f6f24
IM
645}
646
647/*
648 * We are picking a new current task - update its stats:
649 */
650static inline void
79303e9e 651update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
652{
653 /*
654 * We are starting a new run period:
655 */
305e6835 656 se->exec_start = rq_of(cfs_rq)->clock_task;
bf0f6f24
IM
657}
658
bf0f6f24
IM
659/**************************************************
660 * Scheduling class queueing methods:
661 */
662
c09595f6
PZ
663#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664static void
665add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
666{
667 cfs_rq->task_weight += weight;
668}
669#else
670static inline void
671add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
672{
673}
674#endif
675
30cfdcfc
DA
676static void
677account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
678{
679 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6
PZ
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 682 if (entity_is_task(se)) {
c09595f6 683 add_cfs_task_weight(cfs_rq, se->load.weight);
b87f1724
BR
684 list_add(&se->group_node, &cfs_rq->tasks);
685 }
30cfdcfc 686 cfs_rq->nr_running++;
30cfdcfc
DA
687}
688
689static void
690account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
691{
692 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6
PZ
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
b87f1724 695 if (entity_is_task(se)) {
c09595f6 696 add_cfs_task_weight(cfs_rq, -se->load.weight);
b87f1724
BR
697 list_del_init(&se->group_node);
698 }
30cfdcfc 699 cfs_rq->nr_running--;
30cfdcfc
DA
700}
701
3ff6dcac
YZ
702#ifdef CONFIG_FAIR_GROUP_SCHED
703# ifdef CONFIG_SMP
d6b55918
PT
704static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
705 int global_update)
706{
707 struct task_group *tg = cfs_rq->tg;
708 long load_avg;
709
710 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
711 load_avg -= cfs_rq->load_contribution;
712
713 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
714 atomic_add(load_avg, &tg->load_weight);
715 cfs_rq->load_contribution += load_avg;
716 }
717}
718
719static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75 720{
a7a4f8a7 721 u64 period = sysctl_sched_shares_window;
2069dd75 722 u64 now, delta;
e33078ba 723 unsigned long load = cfs_rq->load.weight;
2069dd75 724
b815f196 725 if (cfs_rq->tg == &root_task_group)
2069dd75
PZ
726 return;
727
05ca62c6 728 now = rq_of(cfs_rq)->clock_task;
2069dd75
PZ
729 delta = now - cfs_rq->load_stamp;
730
e33078ba
PT
731 /* truncate load history at 4 idle periods */
732 if (cfs_rq->load_stamp > cfs_rq->load_last &&
733 now - cfs_rq->load_last > 4 * period) {
734 cfs_rq->load_period = 0;
735 cfs_rq->load_avg = 0;
736 }
737
2069dd75 738 cfs_rq->load_stamp = now;
3b3d190e 739 cfs_rq->load_unacc_exec_time = 0;
2069dd75 740 cfs_rq->load_period += delta;
e33078ba
PT
741 if (load) {
742 cfs_rq->load_last = now;
743 cfs_rq->load_avg += delta * load;
744 }
2069dd75 745
d6b55918
PT
746 /* consider updating load contribution on each fold or truncate */
747 if (global_update || cfs_rq->load_period > period
748 || !cfs_rq->load_period)
749 update_cfs_rq_load_contribution(cfs_rq, global_update);
750
2069dd75
PZ
751 while (cfs_rq->load_period > period) {
752 /*
753 * Inline assembly required to prevent the compiler
754 * optimising this loop into a divmod call.
755 * See __iter_div_u64_rem() for another example of this.
756 */
757 asm("" : "+rm" (cfs_rq->load_period));
758 cfs_rq->load_period /= 2;
759 cfs_rq->load_avg /= 2;
760 }
3d4b47b4 761
e33078ba
PT
762 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
763 list_del_leaf_cfs_rq(cfs_rq);
2069dd75
PZ
764}
765
3ff6dcac
YZ
766static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
767 long weight_delta)
768{
769 long load_weight, load, shares;
770
771 load = cfs_rq->load.weight + weight_delta;
772
773 load_weight = atomic_read(&tg->load_weight);
774 load_weight -= cfs_rq->load_contribution;
775 load_weight += load;
776
777 shares = (tg->shares * load);
778 if (load_weight)
779 shares /= load_weight;
780
781 if (shares < MIN_SHARES)
782 shares = MIN_SHARES;
783 if (shares > tg->shares)
784 shares = tg->shares;
785
786 return shares;
787}
788
789static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
790{
791 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
792 update_cfs_load(cfs_rq, 0);
793 update_cfs_shares(cfs_rq, 0);
794 }
795}
796# else /* CONFIG_SMP */
797static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
798{
799}
800
801static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg,
802 long weight_delta)
803{
804 return tg->shares;
805}
806
807static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
808{
809}
810# endif /* CONFIG_SMP */
2069dd75
PZ
811static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
812 unsigned long weight)
813{
19e5eebb
PT
814 if (se->on_rq) {
815 /* commit outstanding execution time */
816 if (cfs_rq->curr == se)
817 update_curr(cfs_rq);
2069dd75 818 account_entity_dequeue(cfs_rq, se);
19e5eebb 819 }
2069dd75
PZ
820
821 update_load_set(&se->load, weight);
822
823 if (se->on_rq)
824 account_entity_enqueue(cfs_rq, se);
825}
826
f0d7442a 827static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
828{
829 struct task_group *tg;
830 struct sched_entity *se;
3ff6dcac 831 long shares;
2069dd75 832
2069dd75
PZ
833 tg = cfs_rq->tg;
834 se = tg->se[cpu_of(rq_of(cfs_rq))];
835 if (!se)
836 return;
3ff6dcac
YZ
837#ifndef CONFIG_SMP
838 if (likely(se->load.weight == tg->shares))
839 return;
840#endif
841 shares = calc_cfs_shares(cfs_rq, tg, weight_delta);
2069dd75
PZ
842
843 reweight_entity(cfs_rq_of(se), se, shares);
844}
845#else /* CONFIG_FAIR_GROUP_SCHED */
d6b55918 846static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
2069dd75
PZ
847{
848}
849
f0d7442a 850static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
2069dd75
PZ
851{
852}
43365bd7
PT
853
854static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
855{
856}
2069dd75
PZ
857#endif /* CONFIG_FAIR_GROUP_SCHED */
858
2396af69 859static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 860{
bf0f6f24 861#ifdef CONFIG_SCHEDSTATS
e414314c
PZ
862 struct task_struct *tsk = NULL;
863
864 if (entity_is_task(se))
865 tsk = task_of(se);
866
41acab88
LDM
867 if (se->statistics.sleep_start) {
868 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
bf0f6f24
IM
869
870 if ((s64)delta < 0)
871 delta = 0;
872
41acab88
LDM
873 if (unlikely(delta > se->statistics.sleep_max))
874 se->statistics.sleep_max = delta;
bf0f6f24 875
41acab88
LDM
876 se->statistics.sleep_start = 0;
877 se->statistics.sum_sleep_runtime += delta;
9745512c 878
768d0c27 879 if (tsk) {
e414314c 880 account_scheduler_latency(tsk, delta >> 10, 1);
768d0c27
PZ
881 trace_sched_stat_sleep(tsk, delta);
882 }
bf0f6f24 883 }
41acab88
LDM
884 if (se->statistics.block_start) {
885 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
bf0f6f24
IM
886
887 if ((s64)delta < 0)
888 delta = 0;
889
41acab88
LDM
890 if (unlikely(delta > se->statistics.block_max))
891 se->statistics.block_max = delta;
bf0f6f24 892
41acab88
LDM
893 se->statistics.block_start = 0;
894 se->statistics.sum_sleep_runtime += delta;
30084fbd 895
e414314c 896 if (tsk) {
8f0dfc34 897 if (tsk->in_iowait) {
41acab88
LDM
898 se->statistics.iowait_sum += delta;
899 se->statistics.iowait_count++;
768d0c27 900 trace_sched_stat_iowait(tsk, delta);
8f0dfc34
AV
901 }
902
e414314c
PZ
903 /*
904 * Blocking time is in units of nanosecs, so shift by
905 * 20 to get a milliseconds-range estimation of the
906 * amount of time that the task spent sleeping:
907 */
908 if (unlikely(prof_on == SLEEP_PROFILING)) {
909 profile_hits(SLEEP_PROFILING,
910 (void *)get_wchan(tsk),
911 delta >> 20);
912 }
913 account_scheduler_latency(tsk, delta >> 10, 0);
30084fbd 914 }
bf0f6f24
IM
915 }
916#endif
917}
918
ddc97297
PZ
919static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
920{
921#ifdef CONFIG_SCHED_DEBUG
922 s64 d = se->vruntime - cfs_rq->min_vruntime;
923
924 if (d < 0)
925 d = -d;
926
927 if (d > 3*sysctl_sched_latency)
928 schedstat_inc(cfs_rq, nr_spread_over);
929#endif
930}
931
aeb73b04
PZ
932static void
933place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
934{
1af5f730 935 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 936
2cb8600e
PZ
937 /*
938 * The 'current' period is already promised to the current tasks,
939 * however the extra weight of the new task will slow them down a
940 * little, place the new task so that it fits in the slot that
941 * stays open at the end.
942 */
94dfb5e7 943 if (initial && sched_feat(START_DEBIT))
f9c0b095 944 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 945
a2e7a7eb 946 /* sleeps up to a single latency don't count. */
5ca9880c 947 if (!initial) {
a2e7a7eb 948 unsigned long thresh = sysctl_sched_latency;
a7be37ac 949
a2e7a7eb
MG
950 /*
951 * Halve their sleep time's effect, to allow
952 * for a gentler effect of sleepers:
953 */
954 if (sched_feat(GENTLE_FAIR_SLEEPERS))
955 thresh >>= 1;
51e0304c 956
a2e7a7eb 957 vruntime -= thresh;
aeb73b04
PZ
958 }
959
b5d9d734
MG
960 /* ensure we never gain time by being placed backwards. */
961 vruntime = max_vruntime(se->vruntime, vruntime);
962
67e9fb2a 963 se->vruntime = vruntime;
aeb73b04
PZ
964}
965
bf0f6f24 966static void
88ec22d3 967enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 968{
88ec22d3
PZ
969 /*
970 * Update the normalized vruntime before updating min_vruntime
971 * through callig update_curr().
972 */
371fd7e7 973 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
88ec22d3
PZ
974 se->vruntime += cfs_rq->min_vruntime;
975
bf0f6f24 976 /*
a2a2d680 977 * Update run-time statistics of the 'current'.
bf0f6f24 978 */
b7cc0896 979 update_curr(cfs_rq);
d6b55918 980 update_cfs_load(cfs_rq, 0);
f0d7442a 981 update_cfs_shares(cfs_rq, se->load.weight);
a992241d 982 account_entity_enqueue(cfs_rq, se);
bf0f6f24 983
88ec22d3 984 if (flags & ENQUEUE_WAKEUP) {
aeb73b04 985 place_entity(cfs_rq, se, 0);
2396af69 986 enqueue_sleeper(cfs_rq, se);
e9acbff6 987 }
bf0f6f24 988
d2417e5a 989 update_stats_enqueue(cfs_rq, se);
ddc97297 990 check_spread(cfs_rq, se);
83b699ed
SV
991 if (se != cfs_rq->curr)
992 __enqueue_entity(cfs_rq, se);
2069dd75 993 se->on_rq = 1;
3d4b47b4
PZ
994
995 if (cfs_rq->nr_running == 1)
996 list_add_leaf_cfs_rq(cfs_rq);
bf0f6f24
IM
997}
998
a571bbea 999static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2002c695 1000{
de69a80b 1001 if (!se || cfs_rq->last == se)
2002c695
PZ
1002 cfs_rq->last = NULL;
1003
de69a80b 1004 if (!se || cfs_rq->next == se)
2002c695
PZ
1005 cfs_rq->next = NULL;
1006}
1007
a571bbea
PZ
1008static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009{
1010 for_each_sched_entity(se)
1011 __clear_buddies(cfs_rq_of(se), se);
1012}
1013
bf0f6f24 1014static void
371fd7e7 1015dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 1016{
a2a2d680
DA
1017 /*
1018 * Update run-time statistics of the 'current'.
1019 */
1020 update_curr(cfs_rq);
1021
19b6a2e3 1022 update_stats_dequeue(cfs_rq, se);
371fd7e7 1023 if (flags & DEQUEUE_SLEEP) {
67e9fb2a 1024#ifdef CONFIG_SCHEDSTATS
bf0f6f24
IM
1025 if (entity_is_task(se)) {
1026 struct task_struct *tsk = task_of(se);
1027
1028 if (tsk->state & TASK_INTERRUPTIBLE)
41acab88 1029 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
bf0f6f24 1030 if (tsk->state & TASK_UNINTERRUPTIBLE)
41acab88 1031 se->statistics.block_start = rq_of(cfs_rq)->clock;
bf0f6f24 1032 }
db36cc7d 1033#endif
67e9fb2a
PZ
1034 }
1035
2002c695 1036 clear_buddies(cfs_rq, se);
4793241b 1037
83b699ed 1038 if (se != cfs_rq->curr)
30cfdcfc 1039 __dequeue_entity(cfs_rq, se);
2069dd75 1040 se->on_rq = 0;
d6b55918 1041 update_cfs_load(cfs_rq, 0);
30cfdcfc 1042 account_entity_dequeue(cfs_rq, se);
1af5f730 1043 update_min_vruntime(cfs_rq);
f0d7442a 1044 update_cfs_shares(cfs_rq, 0);
88ec22d3
PZ
1045
1046 /*
1047 * Normalize the entity after updating the min_vruntime because the
1048 * update can refer to the ->curr item and we need to reflect this
1049 * movement in our normalized position.
1050 */
371fd7e7 1051 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 1052 se->vruntime -= cfs_rq->min_vruntime;
bf0f6f24
IM
1053}
1054
1055/*
1056 * Preempt the current task with a newly woken task if needed:
1057 */
7c92e54f 1058static void
2e09bf55 1059check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 1060{
11697830
PZ
1061 unsigned long ideal_runtime, delta_exec;
1062
6d0f0ebd 1063 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 1064 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 1065 if (delta_exec > ideal_runtime) {
bf0f6f24 1066 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5
MG
1067 /*
1068 * The current task ran long enough, ensure it doesn't get
1069 * re-elected due to buddy favours.
1070 */
1071 clear_buddies(cfs_rq, curr);
f685ceac
MG
1072 return;
1073 }
1074
1075 /*
1076 * Ensure that a task that missed wakeup preemption by a
1077 * narrow margin doesn't have to wait for a full slice.
1078 * This also mitigates buddy induced latencies under load.
1079 */
1080 if (!sched_feat(WAKEUP_PREEMPT))
1081 return;
1082
1083 if (delta_exec < sysctl_sched_min_granularity)
1084 return;
1085
1086 if (cfs_rq->nr_running > 1) {
1087 struct sched_entity *se = __pick_next_entity(cfs_rq);
1088 s64 delta = curr->vruntime - se->vruntime;
1089
d7d82944
MG
1090 if (delta < 0)
1091 return;
1092
f685ceac
MG
1093 if (delta > ideal_runtime)
1094 resched_task(rq_of(cfs_rq)->curr);
a9f3e2b5 1095 }
bf0f6f24
IM
1096}
1097
83b699ed 1098static void
8494f412 1099set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 1100{
83b699ed
SV
1101 /* 'current' is not kept within the tree. */
1102 if (se->on_rq) {
1103 /*
1104 * Any task has to be enqueued before it get to execute on
1105 * a CPU. So account for the time it spent waiting on the
1106 * runqueue.
1107 */
1108 update_stats_wait_end(cfs_rq, se);
1109 __dequeue_entity(cfs_rq, se);
1110 }
1111
79303e9e 1112 update_stats_curr_start(cfs_rq, se);
429d43bc 1113 cfs_rq->curr = se;
eba1ed4b
IM
1114#ifdef CONFIG_SCHEDSTATS
1115 /*
1116 * Track our maximum slice length, if the CPU's load is at
1117 * least twice that of our own weight (i.e. dont track it
1118 * when there are only lesser-weight tasks around):
1119 */
495eca49 1120 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
41acab88 1121 se->statistics.slice_max = max(se->statistics.slice_max,
eba1ed4b
IM
1122 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1123 }
1124#endif
4a55b450 1125 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
1126}
1127
3f3a4904
PZ
1128static int
1129wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1130
f4b6755f 1131static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
aa2ac252 1132{
f4b6755f 1133 struct sched_entity *se = __pick_next_entity(cfs_rq);
f685ceac 1134 struct sched_entity *left = se;
f4b6755f 1135
f685ceac
MG
1136 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1137 se = cfs_rq->next;
aa2ac252 1138
f685ceac
MG
1139 /*
1140 * Prefer last buddy, try to return the CPU to a preempted task.
1141 */
1142 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1143 se = cfs_rq->last;
1144
1145 clear_buddies(cfs_rq, se);
4793241b
PZ
1146
1147 return se;
aa2ac252
PZ
1148}
1149
ab6cde26 1150static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
1151{
1152 /*
1153 * If still on the runqueue then deactivate_task()
1154 * was not called and update_curr() has to be done:
1155 */
1156 if (prev->on_rq)
b7cc0896 1157 update_curr(cfs_rq);
bf0f6f24 1158
ddc97297 1159 check_spread(cfs_rq, prev);
30cfdcfc 1160 if (prev->on_rq) {
5870db5b 1161 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
1162 /* Put 'current' back into the tree. */
1163 __enqueue_entity(cfs_rq, prev);
1164 }
429d43bc 1165 cfs_rq->curr = NULL;
bf0f6f24
IM
1166}
1167
8f4d37ec
PZ
1168static void
1169entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 1170{
bf0f6f24 1171 /*
30cfdcfc 1172 * Update run-time statistics of the 'current'.
bf0f6f24 1173 */
30cfdcfc 1174 update_curr(cfs_rq);
bf0f6f24 1175
43365bd7
PT
1176 /*
1177 * Update share accounting for long-running entities.
1178 */
1179 update_entity_shares_tick(cfs_rq);
1180
8f4d37ec
PZ
1181#ifdef CONFIG_SCHED_HRTICK
1182 /*
1183 * queued ticks are scheduled to match the slice, so don't bother
1184 * validating it and just reschedule.
1185 */
983ed7a6
HH
1186 if (queued) {
1187 resched_task(rq_of(cfs_rq)->curr);
1188 return;
1189 }
8f4d37ec
PZ
1190 /*
1191 * don't let the period tick interfere with the hrtick preemption
1192 */
1193 if (!sched_feat(DOUBLE_TICK) &&
1194 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1195 return;
1196#endif
1197
ce6c1311 1198 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
2e09bf55 1199 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
1200}
1201
1202/**************************************************
1203 * CFS operations on tasks:
1204 */
1205
8f4d37ec
PZ
1206#ifdef CONFIG_SCHED_HRTICK
1207static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1208{
8f4d37ec
PZ
1209 struct sched_entity *se = &p->se;
1210 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1211
1212 WARN_ON(task_rq(p) != rq);
1213
1214 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1215 u64 slice = sched_slice(cfs_rq, se);
1216 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1217 s64 delta = slice - ran;
1218
1219 if (delta < 0) {
1220 if (rq->curr == p)
1221 resched_task(p);
1222 return;
1223 }
1224
1225 /*
1226 * Don't schedule slices shorter than 10000ns, that just
1227 * doesn't make sense. Rely on vruntime for fairness.
1228 */
31656519 1229 if (rq->curr != p)
157124c1 1230 delta = max_t(s64, 10000LL, delta);
8f4d37ec 1231
31656519 1232 hrtick_start(rq, delta);
8f4d37ec
PZ
1233 }
1234}
a4c2f00f
PZ
1235
1236/*
1237 * called from enqueue/dequeue and updates the hrtick when the
1238 * current task is from our class and nr_running is low enough
1239 * to matter.
1240 */
1241static void hrtick_update(struct rq *rq)
1242{
1243 struct task_struct *curr = rq->curr;
1244
1245 if (curr->sched_class != &fair_sched_class)
1246 return;
1247
1248 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1249 hrtick_start_fair(rq, curr);
1250}
55e12e5e 1251#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1252static inline void
1253hrtick_start_fair(struct rq *rq, struct task_struct *p)
1254{
1255}
a4c2f00f
PZ
1256
1257static inline void hrtick_update(struct rq *rq)
1258{
1259}
8f4d37ec
PZ
1260#endif
1261
bf0f6f24
IM
1262/*
1263 * The enqueue_task method is called before nr_running is
1264 * increased. Here we update the fair scheduling stats and
1265 * then put the task into the rbtree:
1266 */
ea87bb78 1267static void
371fd7e7 1268enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1269{
1270 struct cfs_rq *cfs_rq;
62fb1851 1271 struct sched_entity *se = &p->se;
bf0f6f24
IM
1272
1273 for_each_sched_entity(se) {
62fb1851 1274 if (se->on_rq)
bf0f6f24
IM
1275 break;
1276 cfs_rq = cfs_rq_of(se);
88ec22d3
PZ
1277 enqueue_entity(cfs_rq, se, flags);
1278 flags = ENQUEUE_WAKEUP;
bf0f6f24 1279 }
8f4d37ec 1280
2069dd75
PZ
1281 for_each_sched_entity(se) {
1282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1283
d6b55918 1284 update_cfs_load(cfs_rq, 0);
f0d7442a 1285 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1286 }
1287
a4c2f00f 1288 hrtick_update(rq);
bf0f6f24
IM
1289}
1290
1291/*
1292 * The dequeue_task method is called before nr_running is
1293 * decreased. We remove the task from the rbtree and
1294 * update the fair scheduling stats:
1295 */
371fd7e7 1296static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
1297{
1298 struct cfs_rq *cfs_rq;
62fb1851 1299 struct sched_entity *se = &p->se;
bf0f6f24
IM
1300
1301 for_each_sched_entity(se) {
1302 cfs_rq = cfs_rq_of(se);
371fd7e7 1303 dequeue_entity(cfs_rq, se, flags);
2069dd75 1304
bf0f6f24 1305 /* Don't dequeue parent if it has other entities besides us */
62fb1851 1306 if (cfs_rq->load.weight)
bf0f6f24 1307 break;
371fd7e7 1308 flags |= DEQUEUE_SLEEP;
bf0f6f24 1309 }
8f4d37ec 1310
2069dd75
PZ
1311 for_each_sched_entity(se) {
1312 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1313
d6b55918 1314 update_cfs_load(cfs_rq, 0);
f0d7442a 1315 update_cfs_shares(cfs_rq, 0);
2069dd75
PZ
1316 }
1317
a4c2f00f 1318 hrtick_update(rq);
bf0f6f24
IM
1319}
1320
1321/*
1799e35d
IM
1322 * sched_yield() support is very simple - we dequeue and enqueue.
1323 *
1324 * If compat_yield is turned on then we requeue to the end of the tree.
bf0f6f24 1325 */
4530d7ab 1326static void yield_task_fair(struct rq *rq)
bf0f6f24 1327{
db292ca3
IM
1328 struct task_struct *curr = rq->curr;
1329 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1330 struct sched_entity *rightmost, *se = &curr->se;
bf0f6f24
IM
1331
1332 /*
1799e35d
IM
1333 * Are we the only task in the tree?
1334 */
1335 if (unlikely(cfs_rq->nr_running == 1))
1336 return;
1337
2002c695
PZ
1338 clear_buddies(cfs_rq, se);
1339
db292ca3 1340 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
3e51f33f 1341 update_rq_clock(rq);
1799e35d 1342 /*
a2a2d680 1343 * Update run-time statistics of the 'current'.
1799e35d 1344 */
2b1e315d 1345 update_curr(cfs_rq);
1799e35d
IM
1346
1347 return;
1348 }
1349 /*
1350 * Find the rightmost entry in the rbtree:
bf0f6f24 1351 */
2b1e315d 1352 rightmost = __pick_last_entity(cfs_rq);
1799e35d
IM
1353 /*
1354 * Already in the rightmost position?
1355 */
54fdc581 1356 if (unlikely(!rightmost || entity_before(rightmost, se)))
1799e35d
IM
1357 return;
1358
1359 /*
1360 * Minimally necessary key value to be last in the tree:
2b1e315d
DA
1361 * Upon rescheduling, sched_class::put_prev_task() will place
1362 * 'current' within the tree based on its new key value.
1799e35d 1363 */
30cfdcfc 1364 se->vruntime = rightmost->vruntime + 1;
bf0f6f24
IM
1365}
1366
e7693a36 1367#ifdef CONFIG_SMP
098fb9db 1368
88ec22d3
PZ
1369static void task_waking_fair(struct rq *rq, struct task_struct *p)
1370{
1371 struct sched_entity *se = &p->se;
1372 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1373
1374 se->vruntime -= cfs_rq->min_vruntime;
1375}
1376
bb3469ac 1377#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
1378/*
1379 * effective_load() calculates the load change as seen from the root_task_group
1380 *
1381 * Adding load to a group doesn't make a group heavier, but can cause movement
1382 * of group shares between cpus. Assuming the shares were perfectly aligned one
1383 * can calculate the shift in shares.
f5bfb7d9 1384 */
2069dd75 1385static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 1386{
4be9daaa 1387 struct sched_entity *se = tg->se[cpu];
f1d239f7
PZ
1388
1389 if (!tg->parent)
1390 return wl;
1391
4be9daaa 1392 for_each_sched_entity(se) {
977dda7c 1393 long lw, w;
4be9daaa 1394
977dda7c
PT
1395 tg = se->my_q->tg;
1396 w = se->my_q->load.weight;
bb3469ac 1397
977dda7c
PT
1398 /* use this cpu's instantaneous contribution */
1399 lw = atomic_read(&tg->load_weight);
1400 lw -= se->my_q->load_contribution;
1401 lw += w + wg;
4be9daaa 1402
977dda7c 1403 wl += w;
940959e9 1404
977dda7c
PT
1405 if (lw > 0 && wl < lw)
1406 wl = (wl * tg->shares) / lw;
1407 else
1408 wl = tg->shares;
940959e9 1409
977dda7c
PT
1410 /* zero point is MIN_SHARES */
1411 if (wl < MIN_SHARES)
1412 wl = MIN_SHARES;
1413 wl -= se->load.weight;
4be9daaa 1414 wg = 0;
4be9daaa 1415 }
bb3469ac 1416
4be9daaa 1417 return wl;
bb3469ac 1418}
4be9daaa 1419
bb3469ac 1420#else
4be9daaa 1421
83378269
PZ
1422static inline unsigned long effective_load(struct task_group *tg, int cpu,
1423 unsigned long wl, unsigned long wg)
4be9daaa 1424{
83378269 1425 return wl;
bb3469ac 1426}
4be9daaa 1427
bb3469ac
PZ
1428#endif
1429
c88d5910 1430static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
098fb9db 1431{
e37b6a7b 1432 s64 this_load, load;
c88d5910 1433 int idx, this_cpu, prev_cpu;
098fb9db 1434 unsigned long tl_per_task;
c88d5910 1435 struct task_group *tg;
83378269 1436 unsigned long weight;
b3137bc8 1437 int balanced;
098fb9db 1438
c88d5910
PZ
1439 idx = sd->wake_idx;
1440 this_cpu = smp_processor_id();
1441 prev_cpu = task_cpu(p);
1442 load = source_load(prev_cpu, idx);
1443 this_load = target_load(this_cpu, idx);
098fb9db 1444
b3137bc8
MG
1445 /*
1446 * If sync wakeup then subtract the (maximum possible)
1447 * effect of the currently running task from the load
1448 * of the current CPU:
1449 */
f3b577de 1450 rcu_read_lock();
83378269
PZ
1451 if (sync) {
1452 tg = task_group(current);
1453 weight = current->se.load.weight;
1454
c88d5910 1455 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
1456 load += effective_load(tg, prev_cpu, 0, -weight);
1457 }
b3137bc8 1458
83378269
PZ
1459 tg = task_group(p);
1460 weight = p->se.load.weight;
b3137bc8 1461
71a29aa7
PZ
1462 /*
1463 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
1464 * due to the sync cause above having dropped this_load to 0, we'll
1465 * always have an imbalance, but there's really nothing you can do
1466 * about that, so that's good too.
71a29aa7
PZ
1467 *
1468 * Otherwise check if either cpus are near enough in load to allow this
1469 * task to be woken on this_cpu.
1470 */
e37b6a7b
PT
1471 if (this_load > 0) {
1472 s64 this_eff_load, prev_eff_load;
e51fd5e2
PZ
1473
1474 this_eff_load = 100;
1475 this_eff_load *= power_of(prev_cpu);
1476 this_eff_load *= this_load +
1477 effective_load(tg, this_cpu, weight, weight);
1478
1479 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1480 prev_eff_load *= power_of(this_cpu);
1481 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1482
1483 balanced = this_eff_load <= prev_eff_load;
1484 } else
1485 balanced = true;
f3b577de 1486 rcu_read_unlock();
b3137bc8 1487
098fb9db 1488 /*
4ae7d5ce
IM
1489 * If the currently running task will sleep within
1490 * a reasonable amount of time then attract this newly
1491 * woken task:
098fb9db 1492 */
2fb7635c
PZ
1493 if (sync && balanced)
1494 return 1;
098fb9db 1495
41acab88 1496 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
098fb9db
IM
1497 tl_per_task = cpu_avg_load_per_task(this_cpu);
1498
c88d5910
PZ
1499 if (balanced ||
1500 (this_load <= load &&
1501 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
098fb9db
IM
1502 /*
1503 * This domain has SD_WAKE_AFFINE and
1504 * p is cache cold in this domain, and
1505 * there is no bad imbalance.
1506 */
c88d5910 1507 schedstat_inc(sd, ttwu_move_affine);
41acab88 1508 schedstat_inc(p, se.statistics.nr_wakeups_affine);
098fb9db
IM
1509
1510 return 1;
1511 }
1512 return 0;
1513}
1514
aaee1203
PZ
1515/*
1516 * find_idlest_group finds and returns the least busy CPU group within the
1517 * domain.
1518 */
1519static struct sched_group *
78e7ed53 1520find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5158f4e4 1521 int this_cpu, int load_idx)
e7693a36 1522{
b3bd3de6 1523 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 1524 unsigned long min_load = ULONG_MAX, this_load = 0;
aaee1203 1525 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 1526
aaee1203
PZ
1527 do {
1528 unsigned long load, avg_load;
1529 int local_group;
1530 int i;
e7693a36 1531
aaee1203
PZ
1532 /* Skip over this group if it has no CPUs allowed */
1533 if (!cpumask_intersects(sched_group_cpus(group),
1534 &p->cpus_allowed))
1535 continue;
1536
1537 local_group = cpumask_test_cpu(this_cpu,
1538 sched_group_cpus(group));
1539
1540 /* Tally up the load of all CPUs in the group */
1541 avg_load = 0;
1542
1543 for_each_cpu(i, sched_group_cpus(group)) {
1544 /* Bias balancing toward cpus of our domain */
1545 if (local_group)
1546 load = source_load(i, load_idx);
1547 else
1548 load = target_load(i, load_idx);
1549
1550 avg_load += load;
1551 }
1552
1553 /* Adjust by relative CPU power of the group */
1554 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1555
1556 if (local_group) {
1557 this_load = avg_load;
aaee1203
PZ
1558 } else if (avg_load < min_load) {
1559 min_load = avg_load;
1560 idlest = group;
1561 }
1562 } while (group = group->next, group != sd->groups);
1563
1564 if (!idlest || 100*this_load < imbalance*min_load)
1565 return NULL;
1566 return idlest;
1567}
1568
1569/*
1570 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1571 */
1572static int
1573find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1574{
1575 unsigned long load, min_load = ULONG_MAX;
1576 int idlest = -1;
1577 int i;
1578
1579 /* Traverse only the allowed CPUs */
1580 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1581 load = weighted_cpuload(i);
1582
1583 if (load < min_load || (load == min_load && i == this_cpu)) {
1584 min_load = load;
1585 idlest = i;
e7693a36
GH
1586 }
1587 }
1588
aaee1203
PZ
1589 return idlest;
1590}
e7693a36 1591
a50bde51
PZ
1592/*
1593 * Try and locate an idle CPU in the sched_domain.
1594 */
99bd5e2f 1595static int select_idle_sibling(struct task_struct *p, int target)
a50bde51
PZ
1596{
1597 int cpu = smp_processor_id();
1598 int prev_cpu = task_cpu(p);
99bd5e2f 1599 struct sched_domain *sd;
a50bde51
PZ
1600 int i;
1601
1602 /*
99bd5e2f
SS
1603 * If the task is going to be woken-up on this cpu and if it is
1604 * already idle, then it is the right target.
a50bde51 1605 */
99bd5e2f
SS
1606 if (target == cpu && idle_cpu(cpu))
1607 return cpu;
1608
1609 /*
1610 * If the task is going to be woken-up on the cpu where it previously
1611 * ran and if it is currently idle, then it the right target.
1612 */
1613 if (target == prev_cpu && idle_cpu(prev_cpu))
fe3bcfe1 1614 return prev_cpu;
a50bde51
PZ
1615
1616 /*
99bd5e2f 1617 * Otherwise, iterate the domains and find an elegible idle cpu.
a50bde51 1618 */
99bd5e2f
SS
1619 for_each_domain(target, sd) {
1620 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
fe3bcfe1 1621 break;
99bd5e2f
SS
1622
1623 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1624 if (idle_cpu(i)) {
1625 target = i;
1626 break;
1627 }
a50bde51 1628 }
99bd5e2f
SS
1629
1630 /*
1631 * Lets stop looking for an idle sibling when we reached
1632 * the domain that spans the current cpu and prev_cpu.
1633 */
1634 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1635 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1636 break;
a50bde51
PZ
1637 }
1638
1639 return target;
1640}
1641
aaee1203
PZ
1642/*
1643 * sched_balance_self: balance the current task (running on cpu) in domains
1644 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1645 * SD_BALANCE_EXEC.
1646 *
1647 * Balance, ie. select the least loaded group.
1648 *
1649 * Returns the target CPU number, or the same CPU if no balancing is needed.
1650 *
1651 * preempt must be disabled.
1652 */
0017d735
PZ
1653static int
1654select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
aaee1203 1655{
29cd8bae 1656 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910
PZ
1657 int cpu = smp_processor_id();
1658 int prev_cpu = task_cpu(p);
1659 int new_cpu = cpu;
99bd5e2f 1660 int want_affine = 0;
29cd8bae 1661 int want_sd = 1;
5158f4e4 1662 int sync = wake_flags & WF_SYNC;
c88d5910 1663
0763a660 1664 if (sd_flag & SD_BALANCE_WAKE) {
beac4c7e 1665 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
c88d5910
PZ
1666 want_affine = 1;
1667 new_cpu = prev_cpu;
1668 }
aaee1203
PZ
1669
1670 for_each_domain(cpu, tmp) {
e4f42888
PZ
1671 if (!(tmp->flags & SD_LOAD_BALANCE))
1672 continue;
1673
aaee1203 1674 /*
ae154be1
PZ
1675 * If power savings logic is enabled for a domain, see if we
1676 * are not overloaded, if so, don't balance wider.
aaee1203 1677 */
59abf026 1678 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
ae154be1
PZ
1679 unsigned long power = 0;
1680 unsigned long nr_running = 0;
1681 unsigned long capacity;
1682 int i;
1683
1684 for_each_cpu(i, sched_domain_span(tmp)) {
1685 power += power_of(i);
1686 nr_running += cpu_rq(i)->cfs.nr_running;
1687 }
1688
1689 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1690
59abf026
PZ
1691 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1692 nr_running /= 2;
1693
1694 if (nr_running < capacity)
29cd8bae 1695 want_sd = 0;
ae154be1 1696 }
aaee1203 1697
fe3bcfe1 1698 /*
99bd5e2f
SS
1699 * If both cpu and prev_cpu are part of this domain,
1700 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 1701 */
99bd5e2f
SS
1702 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1703 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1704 affine_sd = tmp;
1705 want_affine = 0;
c88d5910
PZ
1706 }
1707
29cd8bae
PZ
1708 if (!want_sd && !want_affine)
1709 break;
1710
0763a660 1711 if (!(tmp->flags & sd_flag))
c88d5910
PZ
1712 continue;
1713
29cd8bae
PZ
1714 if (want_sd)
1715 sd = tmp;
1716 }
1717
8b911acd 1718 if (affine_sd) {
99bd5e2f
SS
1719 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1720 return select_idle_sibling(p, cpu);
1721 else
1722 return select_idle_sibling(p, prev_cpu);
8b911acd 1723 }
e7693a36 1724
aaee1203 1725 while (sd) {
5158f4e4 1726 int load_idx = sd->forkexec_idx;
aaee1203 1727 struct sched_group *group;
c88d5910 1728 int weight;
098fb9db 1729
0763a660 1730 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
1731 sd = sd->child;
1732 continue;
1733 }
098fb9db 1734
5158f4e4
PZ
1735 if (sd_flag & SD_BALANCE_WAKE)
1736 load_idx = sd->wake_idx;
098fb9db 1737
5158f4e4 1738 group = find_idlest_group(sd, p, cpu, load_idx);
aaee1203
PZ
1739 if (!group) {
1740 sd = sd->child;
1741 continue;
1742 }
4ae7d5ce 1743
d7c33c49 1744 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
1745 if (new_cpu == -1 || new_cpu == cpu) {
1746 /* Now try balancing at a lower domain level of cpu */
1747 sd = sd->child;
1748 continue;
e7693a36 1749 }
aaee1203
PZ
1750
1751 /* Now try balancing at a lower domain level of new_cpu */
1752 cpu = new_cpu;
669c55e9 1753 weight = sd->span_weight;
aaee1203
PZ
1754 sd = NULL;
1755 for_each_domain(cpu, tmp) {
669c55e9 1756 if (weight <= tmp->span_weight)
aaee1203 1757 break;
0763a660 1758 if (tmp->flags & sd_flag)
aaee1203
PZ
1759 sd = tmp;
1760 }
1761 /* while loop will break here if sd == NULL */
e7693a36
GH
1762 }
1763
c88d5910 1764 return new_cpu;
e7693a36
GH
1765}
1766#endif /* CONFIG_SMP */
1767
e52fb7c0
PZ
1768static unsigned long
1769wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
1770{
1771 unsigned long gran = sysctl_sched_wakeup_granularity;
1772
1773 /*
e52fb7c0
PZ
1774 * Since its curr running now, convert the gran from real-time
1775 * to virtual-time in his units.
13814d42
MG
1776 *
1777 * By using 'se' instead of 'curr' we penalize light tasks, so
1778 * they get preempted easier. That is, if 'se' < 'curr' then
1779 * the resulting gran will be larger, therefore penalizing the
1780 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1781 * be smaller, again penalizing the lighter task.
1782 *
1783 * This is especially important for buddies when the leftmost
1784 * task is higher priority than the buddy.
0bbd3336 1785 */
13814d42
MG
1786 if (unlikely(se->load.weight != NICE_0_LOAD))
1787 gran = calc_delta_fair(gran, se);
0bbd3336
PZ
1788
1789 return gran;
1790}
1791
464b7527
PZ
1792/*
1793 * Should 'se' preempt 'curr'.
1794 *
1795 * |s1
1796 * |s2
1797 * |s3
1798 * g
1799 * |<--->|c
1800 *
1801 * w(c, s1) = -1
1802 * w(c, s2) = 0
1803 * w(c, s3) = 1
1804 *
1805 */
1806static int
1807wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1808{
1809 s64 gran, vdiff = curr->vruntime - se->vruntime;
1810
1811 if (vdiff <= 0)
1812 return -1;
1813
e52fb7c0 1814 gran = wakeup_gran(curr, se);
464b7527
PZ
1815 if (vdiff > gran)
1816 return 1;
1817
1818 return 0;
1819}
1820
02479099
PZ
1821static void set_last_buddy(struct sched_entity *se)
1822{
6bc912b7
PZ
1823 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1824 for_each_sched_entity(se)
1825 cfs_rq_of(se)->last = se;
1826 }
02479099
PZ
1827}
1828
1829static void set_next_buddy(struct sched_entity *se)
1830{
6bc912b7
PZ
1831 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1832 for_each_sched_entity(se)
1833 cfs_rq_of(se)->next = se;
1834 }
02479099
PZ
1835}
1836
bf0f6f24
IM
1837/*
1838 * Preempt the current task with a newly woken task if needed:
1839 */
5a9b86f6 1840static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
1841{
1842 struct task_struct *curr = rq->curr;
8651a86c 1843 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 1844 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 1845 int scale = cfs_rq->nr_running >= sched_nr_latency;
bf0f6f24 1846
4ae7d5ce
IM
1847 if (unlikely(se == pse))
1848 return;
1849
f685ceac 1850 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
3cb63d52 1851 set_next_buddy(pse);
57fdc26d 1852
aec0a514
BR
1853 /*
1854 * We can come here with TIF_NEED_RESCHED already set from new task
1855 * wake up path.
1856 */
1857 if (test_tsk_need_resched(curr))
1858 return;
1859
91c234b4 1860 /*
6bc912b7 1861 * Batch and idle tasks do not preempt (their preemption is driven by
91c234b4
IM
1862 * the tick):
1863 */
6bc912b7 1864 if (unlikely(p->policy != SCHED_NORMAL))
91c234b4 1865 return;
bf0f6f24 1866
6bc912b7 1867 /* Idle tasks are by definition preempted by everybody. */
3a7e73a2
PZ
1868 if (unlikely(curr->policy == SCHED_IDLE))
1869 goto preempt;
bf0f6f24 1870
ad4b78bb
PZ
1871 if (!sched_feat(WAKEUP_PREEMPT))
1872 return;
1873
3a7e73a2 1874 update_curr(cfs_rq);
464b7527 1875 find_matching_se(&se, &pse);
002f128b 1876 BUG_ON(!pse);
3a7e73a2
PZ
1877 if (wakeup_preempt_entity(se, pse) == 1)
1878 goto preempt;
464b7527 1879
3a7e73a2 1880 return;
a65ac745 1881
3a7e73a2
PZ
1882preempt:
1883 resched_task(curr);
1884 /*
1885 * Only set the backward buddy when the current task is still
1886 * on the rq. This can happen when a wakeup gets interleaved
1887 * with schedule on the ->pre_schedule() or idle_balance()
1888 * point, either of which can * drop the rq lock.
1889 *
1890 * Also, during early boot the idle thread is in the fair class,
1891 * for obvious reasons its a bad idea to schedule back to it.
1892 */
1893 if (unlikely(!se->on_rq || curr == rq->idle))
1894 return;
1895
1896 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1897 set_last_buddy(se);
bf0f6f24
IM
1898}
1899
fb8d4724 1900static struct task_struct *pick_next_task_fair(struct rq *rq)
bf0f6f24 1901{
8f4d37ec 1902 struct task_struct *p;
bf0f6f24
IM
1903 struct cfs_rq *cfs_rq = &rq->cfs;
1904 struct sched_entity *se;
1905
36ace27e 1906 if (!cfs_rq->nr_running)
bf0f6f24
IM
1907 return NULL;
1908
1909 do {
9948f4b2 1910 se = pick_next_entity(cfs_rq);
f4b6755f 1911 set_next_entity(cfs_rq, se);
bf0f6f24
IM
1912 cfs_rq = group_cfs_rq(se);
1913 } while (cfs_rq);
1914
8f4d37ec
PZ
1915 p = task_of(se);
1916 hrtick_start_fair(rq, p);
1917
1918 return p;
bf0f6f24
IM
1919}
1920
1921/*
1922 * Account for a descheduled task:
1923 */
31ee529c 1924static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
1925{
1926 struct sched_entity *se = &prev->se;
1927 struct cfs_rq *cfs_rq;
1928
1929 for_each_sched_entity(se) {
1930 cfs_rq = cfs_rq_of(se);
ab6cde26 1931 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
1932 }
1933}
1934
681f3e68 1935#ifdef CONFIG_SMP
bf0f6f24
IM
1936/**************************************************
1937 * Fair scheduling class load-balancing methods:
1938 */
1939
1e3c88bd
PZ
1940/*
1941 * pull_task - move a task from a remote runqueue to the local runqueue.
1942 * Both runqueues must be locked.
1943 */
1944static void pull_task(struct rq *src_rq, struct task_struct *p,
1945 struct rq *this_rq, int this_cpu)
1946{
1947 deactivate_task(src_rq, p, 0);
1948 set_task_cpu(p, this_cpu);
1949 activate_task(this_rq, p, 0);
1950 check_preempt_curr(this_rq, p, 0);
1951}
1952
1953/*
1954 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1955 */
1956static
1957int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1958 struct sched_domain *sd, enum cpu_idle_type idle,
1959 int *all_pinned)
1960{
1961 int tsk_cache_hot = 0;
1962 /*
1963 * We do not migrate tasks that are:
1964 * 1) running (obviously), or
1965 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1966 * 3) are cache-hot on their current CPU.
1967 */
1968 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
41acab88 1969 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1e3c88bd
PZ
1970 return 0;
1971 }
1972 *all_pinned = 0;
1973
1974 if (task_running(rq, p)) {
41acab88 1975 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
1976 return 0;
1977 }
1978
1979 /*
1980 * Aggressive migration if:
1981 * 1) task is cache cold, or
1982 * 2) too many balance attempts have failed.
1983 */
1984
305e6835 1985 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1e3c88bd
PZ
1986 if (!tsk_cache_hot ||
1987 sd->nr_balance_failed > sd->cache_nice_tries) {
1988#ifdef CONFIG_SCHEDSTATS
1989 if (tsk_cache_hot) {
1990 schedstat_inc(sd, lb_hot_gained[idle]);
41acab88 1991 schedstat_inc(p, se.statistics.nr_forced_migrations);
1e3c88bd
PZ
1992 }
1993#endif
1994 return 1;
1995 }
1996
1997 if (tsk_cache_hot) {
41acab88 1998 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1e3c88bd
PZ
1999 return 0;
2000 }
2001 return 1;
2002}
2003
897c395f
PZ
2004/*
2005 * move_one_task tries to move exactly one task from busiest to this_rq, as
2006 * part of active balancing operations within "domain".
2007 * Returns 1 if successful and 0 otherwise.
2008 *
2009 * Called with both runqueues locked.
2010 */
2011static int
2012move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2013 struct sched_domain *sd, enum cpu_idle_type idle)
2014{
2015 struct task_struct *p, *n;
2016 struct cfs_rq *cfs_rq;
2017 int pinned = 0;
2018
2019 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2020 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2021
2022 if (!can_migrate_task(p, busiest, this_cpu,
2023 sd, idle, &pinned))
2024 continue;
2025
2026 pull_task(busiest, p, this_rq, this_cpu);
2027 /*
2028 * Right now, this is only the second place pull_task()
2029 * is called, so we can safely collect pull_task()
2030 * stats here rather than inside pull_task().
2031 */
2032 schedstat_inc(sd, lb_gained[idle]);
2033 return 1;
2034 }
2035 }
2036
2037 return 0;
2038}
2039
1e3c88bd
PZ
2040static unsigned long
2041balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2042 unsigned long max_load_move, struct sched_domain *sd,
2043 enum cpu_idle_type idle, int *all_pinned,
ee00e66f 2044 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1e3c88bd
PZ
2045{
2046 int loops = 0, pulled = 0, pinned = 0;
1e3c88bd 2047 long rem_load_move = max_load_move;
ee00e66f 2048 struct task_struct *p, *n;
1e3c88bd
PZ
2049
2050 if (max_load_move == 0)
2051 goto out;
2052
2053 pinned = 1;
2054
ee00e66f
PZ
2055 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2056 if (loops++ > sysctl_sched_nr_migrate)
2057 break;
1e3c88bd 2058
ee00e66f
PZ
2059 if ((p->se.load.weight >> 1) > rem_load_move ||
2060 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2061 continue;
1e3c88bd 2062
ee00e66f
PZ
2063 pull_task(busiest, p, this_rq, this_cpu);
2064 pulled++;
2065 rem_load_move -= p->se.load.weight;
1e3c88bd
PZ
2066
2067#ifdef CONFIG_PREEMPT
ee00e66f
PZ
2068 /*
2069 * NEWIDLE balancing is a source of latency, so preemptible
2070 * kernels will stop after the first task is pulled to minimize
2071 * the critical section.
2072 */
2073 if (idle == CPU_NEWLY_IDLE)
2074 break;
1e3c88bd
PZ
2075#endif
2076
ee00e66f
PZ
2077 /*
2078 * We only want to steal up to the prescribed amount of
2079 * weighted load.
2080 */
2081 if (rem_load_move <= 0)
2082 break;
2083
1e3c88bd
PZ
2084 if (p->prio < *this_best_prio)
2085 *this_best_prio = p->prio;
1e3c88bd
PZ
2086 }
2087out:
2088 /*
2089 * Right now, this is one of only two places pull_task() is called,
2090 * so we can safely collect pull_task() stats here rather than
2091 * inside pull_task().
2092 */
2093 schedstat_add(sd, lb_gained[idle], pulled);
2094
2095 if (all_pinned)
2096 *all_pinned = pinned;
2097
2098 return max_load_move - rem_load_move;
2099}
2100
230059de 2101#ifdef CONFIG_FAIR_GROUP_SCHED
9e3081ca
PZ
2102/*
2103 * update tg->load_weight by folding this cpu's load_avg
2104 */
67e86250 2105static int update_shares_cpu(struct task_group *tg, int cpu)
9e3081ca
PZ
2106{
2107 struct cfs_rq *cfs_rq;
2108 unsigned long flags;
2109 struct rq *rq;
9e3081ca
PZ
2110
2111 if (!tg->se[cpu])
2112 return 0;
2113
2114 rq = cpu_rq(cpu);
2115 cfs_rq = tg->cfs_rq[cpu];
2116
2117 raw_spin_lock_irqsave(&rq->lock, flags);
2118
2119 update_rq_clock(rq);
d6b55918 2120 update_cfs_load(cfs_rq, 1);
9e3081ca
PZ
2121
2122 /*
2123 * We need to update shares after updating tg->load_weight in
2124 * order to adjust the weight of groups with long running tasks.
2125 */
f0d7442a 2126 update_cfs_shares(cfs_rq, 0);
9e3081ca
PZ
2127
2128 raw_spin_unlock_irqrestore(&rq->lock, flags);
2129
2130 return 0;
2131}
2132
2133static void update_shares(int cpu)
2134{
2135 struct cfs_rq *cfs_rq;
2136 struct rq *rq = cpu_rq(cpu);
2137
2138 rcu_read_lock();
67e86250
PT
2139 for_each_leaf_cfs_rq(rq, cfs_rq)
2140 update_shares_cpu(cfs_rq->tg, cpu);
9e3081ca
PZ
2141 rcu_read_unlock();
2142}
2143
230059de
PZ
2144static unsigned long
2145load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146 unsigned long max_load_move,
2147 struct sched_domain *sd, enum cpu_idle_type idle,
2148 int *all_pinned, int *this_best_prio)
2149{
2150 long rem_load_move = max_load_move;
2151 int busiest_cpu = cpu_of(busiest);
2152 struct task_group *tg;
2153
2154 rcu_read_lock();
2155 update_h_load(busiest_cpu);
2156
2157 list_for_each_entry_rcu(tg, &task_groups, list) {
2158 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2159 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2160 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2161 u64 rem_load, moved_load;
2162
2163 /*
2164 * empty group
2165 */
2166 if (!busiest_cfs_rq->task_weight)
2167 continue;
2168
2169 rem_load = (u64)rem_load_move * busiest_weight;
2170 rem_load = div_u64(rem_load, busiest_h_load + 1);
2171
2172 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2173 rem_load, sd, idle, all_pinned, this_best_prio,
2174 busiest_cfs_rq);
2175
2176 if (!moved_load)
2177 continue;
2178
2179 moved_load *= busiest_h_load;
2180 moved_load = div_u64(moved_load, busiest_weight + 1);
2181
2182 rem_load_move -= moved_load;
2183 if (rem_load_move < 0)
2184 break;
2185 }
2186 rcu_read_unlock();
2187
2188 return max_load_move - rem_load_move;
2189}
2190#else
9e3081ca
PZ
2191static inline void update_shares(int cpu)
2192{
2193}
2194
230059de
PZ
2195static unsigned long
2196load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2197 unsigned long max_load_move,
2198 struct sched_domain *sd, enum cpu_idle_type idle,
2199 int *all_pinned, int *this_best_prio)
2200{
2201 return balance_tasks(this_rq, this_cpu, busiest,
2202 max_load_move, sd, idle, all_pinned,
2203 this_best_prio, &busiest->cfs);
2204}
2205#endif
2206
1e3c88bd
PZ
2207/*
2208 * move_tasks tries to move up to max_load_move weighted load from busiest to
2209 * this_rq, as part of a balancing operation within domain "sd".
2210 * Returns 1 if successful and 0 otherwise.
2211 *
2212 * Called with both runqueues locked.
2213 */
2214static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2215 unsigned long max_load_move,
2216 struct sched_domain *sd, enum cpu_idle_type idle,
2217 int *all_pinned)
2218{
3d45fd80 2219 unsigned long total_load_moved = 0, load_moved;
1e3c88bd
PZ
2220 int this_best_prio = this_rq->curr->prio;
2221
2222 do {
3d45fd80 2223 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1e3c88bd
PZ
2224 max_load_move - total_load_moved,
2225 sd, idle, all_pinned, &this_best_prio);
3d45fd80
PZ
2226
2227 total_load_moved += load_moved;
1e3c88bd
PZ
2228
2229#ifdef CONFIG_PREEMPT
2230 /*
2231 * NEWIDLE balancing is a source of latency, so preemptible
2232 * kernels will stop after the first task is pulled to minimize
2233 * the critical section.
2234 */
2235 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2236 break;
baa8c110
PZ
2237
2238 if (raw_spin_is_contended(&this_rq->lock) ||
2239 raw_spin_is_contended(&busiest->lock))
2240 break;
1e3c88bd 2241#endif
3d45fd80 2242 } while (load_moved && max_load_move > total_load_moved);
1e3c88bd
PZ
2243
2244 return total_load_moved > 0;
2245}
2246
1e3c88bd
PZ
2247/********** Helpers for find_busiest_group ************************/
2248/*
2249 * sd_lb_stats - Structure to store the statistics of a sched_domain
2250 * during load balancing.
2251 */
2252struct sd_lb_stats {
2253 struct sched_group *busiest; /* Busiest group in this sd */
2254 struct sched_group *this; /* Local group in this sd */
2255 unsigned long total_load; /* Total load of all groups in sd */
2256 unsigned long total_pwr; /* Total power of all groups in sd */
2257 unsigned long avg_load; /* Average load across all groups in sd */
2258
2259 /** Statistics of this group */
2260 unsigned long this_load;
2261 unsigned long this_load_per_task;
2262 unsigned long this_nr_running;
fab47622 2263 unsigned long this_has_capacity;
aae6d3dd 2264 unsigned int this_idle_cpus;
1e3c88bd
PZ
2265
2266 /* Statistics of the busiest group */
aae6d3dd 2267 unsigned int busiest_idle_cpus;
1e3c88bd
PZ
2268 unsigned long max_load;
2269 unsigned long busiest_load_per_task;
2270 unsigned long busiest_nr_running;
dd5feea1 2271 unsigned long busiest_group_capacity;
fab47622 2272 unsigned long busiest_has_capacity;
aae6d3dd 2273 unsigned int busiest_group_weight;
1e3c88bd
PZ
2274
2275 int group_imb; /* Is there imbalance in this sd */
2276#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2277 int power_savings_balance; /* Is powersave balance needed for this sd */
2278 struct sched_group *group_min; /* Least loaded group in sd */
2279 struct sched_group *group_leader; /* Group which relieves group_min */
2280 unsigned long min_load_per_task; /* load_per_task in group_min */
2281 unsigned long leader_nr_running; /* Nr running of group_leader */
2282 unsigned long min_nr_running; /* Nr running of group_min */
2283#endif
2284};
2285
2286/*
2287 * sg_lb_stats - stats of a sched_group required for load_balancing
2288 */
2289struct sg_lb_stats {
2290 unsigned long avg_load; /*Avg load across the CPUs of the group */
2291 unsigned long group_load; /* Total load over the CPUs of the group */
2292 unsigned long sum_nr_running; /* Nr tasks running in the group */
2293 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2294 unsigned long group_capacity;
aae6d3dd
SS
2295 unsigned long idle_cpus;
2296 unsigned long group_weight;
1e3c88bd 2297 int group_imb; /* Is there an imbalance in the group ? */
fab47622 2298 int group_has_capacity; /* Is there extra capacity in the group? */
1e3c88bd
PZ
2299};
2300
2301/**
2302 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2303 * @group: The group whose first cpu is to be returned.
2304 */
2305static inline unsigned int group_first_cpu(struct sched_group *group)
2306{
2307 return cpumask_first(sched_group_cpus(group));
2308}
2309
2310/**
2311 * get_sd_load_idx - Obtain the load index for a given sched domain.
2312 * @sd: The sched_domain whose load_idx is to be obtained.
2313 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2314 */
2315static inline int get_sd_load_idx(struct sched_domain *sd,
2316 enum cpu_idle_type idle)
2317{
2318 int load_idx;
2319
2320 switch (idle) {
2321 case CPU_NOT_IDLE:
2322 load_idx = sd->busy_idx;
2323 break;
2324
2325 case CPU_NEWLY_IDLE:
2326 load_idx = sd->newidle_idx;
2327 break;
2328 default:
2329 load_idx = sd->idle_idx;
2330 break;
2331 }
2332
2333 return load_idx;
2334}
2335
2336
2337#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2338/**
2339 * init_sd_power_savings_stats - Initialize power savings statistics for
2340 * the given sched_domain, during load balancing.
2341 *
2342 * @sd: Sched domain whose power-savings statistics are to be initialized.
2343 * @sds: Variable containing the statistics for sd.
2344 * @idle: Idle status of the CPU at which we're performing load-balancing.
2345 */
2346static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2347 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2348{
2349 /*
2350 * Busy processors will not participate in power savings
2351 * balance.
2352 */
2353 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2354 sds->power_savings_balance = 0;
2355 else {
2356 sds->power_savings_balance = 1;
2357 sds->min_nr_running = ULONG_MAX;
2358 sds->leader_nr_running = 0;
2359 }
2360}
2361
2362/**
2363 * update_sd_power_savings_stats - Update the power saving stats for a
2364 * sched_domain while performing load balancing.
2365 *
2366 * @group: sched_group belonging to the sched_domain under consideration.
2367 * @sds: Variable containing the statistics of the sched_domain
2368 * @local_group: Does group contain the CPU for which we're performing
2369 * load balancing ?
2370 * @sgs: Variable containing the statistics of the group.
2371 */
2372static inline void update_sd_power_savings_stats(struct sched_group *group,
2373 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2374{
2375
2376 if (!sds->power_savings_balance)
2377 return;
2378
2379 /*
2380 * If the local group is idle or completely loaded
2381 * no need to do power savings balance at this domain
2382 */
2383 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2384 !sds->this_nr_running))
2385 sds->power_savings_balance = 0;
2386
2387 /*
2388 * If a group is already running at full capacity or idle,
2389 * don't include that group in power savings calculations
2390 */
2391 if (!sds->power_savings_balance ||
2392 sgs->sum_nr_running >= sgs->group_capacity ||
2393 !sgs->sum_nr_running)
2394 return;
2395
2396 /*
2397 * Calculate the group which has the least non-idle load.
2398 * This is the group from where we need to pick up the load
2399 * for saving power
2400 */
2401 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2402 (sgs->sum_nr_running == sds->min_nr_running &&
2403 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2404 sds->group_min = group;
2405 sds->min_nr_running = sgs->sum_nr_running;
2406 sds->min_load_per_task = sgs->sum_weighted_load /
2407 sgs->sum_nr_running;
2408 }
2409
2410 /*
2411 * Calculate the group which is almost near its
2412 * capacity but still has some space to pick up some load
2413 * from other group and save more power
2414 */
2415 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2416 return;
2417
2418 if (sgs->sum_nr_running > sds->leader_nr_running ||
2419 (sgs->sum_nr_running == sds->leader_nr_running &&
2420 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2421 sds->group_leader = group;
2422 sds->leader_nr_running = sgs->sum_nr_running;
2423 }
2424}
2425
2426/**
2427 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2428 * @sds: Variable containing the statistics of the sched_domain
2429 * under consideration.
2430 * @this_cpu: Cpu at which we're currently performing load-balancing.
2431 * @imbalance: Variable to store the imbalance.
2432 *
2433 * Description:
2434 * Check if we have potential to perform some power-savings balance.
2435 * If yes, set the busiest group to be the least loaded group in the
2436 * sched_domain, so that it's CPUs can be put to idle.
2437 *
2438 * Returns 1 if there is potential to perform power-savings balance.
2439 * Else returns 0.
2440 */
2441static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2442 int this_cpu, unsigned long *imbalance)
2443{
2444 if (!sds->power_savings_balance)
2445 return 0;
2446
2447 if (sds->this != sds->group_leader ||
2448 sds->group_leader == sds->group_min)
2449 return 0;
2450
2451 *imbalance = sds->min_load_per_task;
2452 sds->busiest = sds->group_min;
2453
2454 return 1;
2455
2456}
2457#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2458static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2459 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2460{
2461 return;
2462}
2463
2464static inline void update_sd_power_savings_stats(struct sched_group *group,
2465 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2466{
2467 return;
2468}
2469
2470static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2471 int this_cpu, unsigned long *imbalance)
2472{
2473 return 0;
2474}
2475#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2476
2477
2478unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2479{
2480 return SCHED_LOAD_SCALE;
2481}
2482
2483unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2484{
2485 return default_scale_freq_power(sd, cpu);
2486}
2487
2488unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2489{
669c55e9 2490 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2491 unsigned long smt_gain = sd->smt_gain;
2492
2493 smt_gain /= weight;
2494
2495 return smt_gain;
2496}
2497
2498unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2499{
2500 return default_scale_smt_power(sd, cpu);
2501}
2502
2503unsigned long scale_rt_power(int cpu)
2504{
2505 struct rq *rq = cpu_rq(cpu);
2506 u64 total, available;
2507
1e3c88bd 2508 total = sched_avg_period() + (rq->clock - rq->age_stamp);
aa483808
VP
2509
2510 if (unlikely(total < rq->rt_avg)) {
2511 /* Ensures that power won't end up being negative */
2512 available = 0;
2513 } else {
2514 available = total - rq->rt_avg;
2515 }
1e3c88bd
PZ
2516
2517 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2518 total = SCHED_LOAD_SCALE;
2519
2520 total >>= SCHED_LOAD_SHIFT;
2521
2522 return div_u64(available, total);
2523}
2524
2525static void update_cpu_power(struct sched_domain *sd, int cpu)
2526{
669c55e9 2527 unsigned long weight = sd->span_weight;
1e3c88bd
PZ
2528 unsigned long power = SCHED_LOAD_SCALE;
2529 struct sched_group *sdg = sd->groups;
2530
1e3c88bd
PZ
2531 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2532 if (sched_feat(ARCH_POWER))
2533 power *= arch_scale_smt_power(sd, cpu);
2534 else
2535 power *= default_scale_smt_power(sd, cpu);
2536
2537 power >>= SCHED_LOAD_SHIFT;
2538 }
2539
9d5efe05
SV
2540 sdg->cpu_power_orig = power;
2541
2542 if (sched_feat(ARCH_POWER))
2543 power *= arch_scale_freq_power(sd, cpu);
2544 else
2545 power *= default_scale_freq_power(sd, cpu);
2546
2547 power >>= SCHED_LOAD_SHIFT;
2548
1e3c88bd
PZ
2549 power *= scale_rt_power(cpu);
2550 power >>= SCHED_LOAD_SHIFT;
2551
2552 if (!power)
2553 power = 1;
2554
e51fd5e2 2555 cpu_rq(cpu)->cpu_power = power;
1e3c88bd
PZ
2556 sdg->cpu_power = power;
2557}
2558
2559static void update_group_power(struct sched_domain *sd, int cpu)
2560{
2561 struct sched_domain *child = sd->child;
2562 struct sched_group *group, *sdg = sd->groups;
2563 unsigned long power;
2564
2565 if (!child) {
2566 update_cpu_power(sd, cpu);
2567 return;
2568 }
2569
2570 power = 0;
2571
2572 group = child->groups;
2573 do {
2574 power += group->cpu_power;
2575 group = group->next;
2576 } while (group != child->groups);
2577
2578 sdg->cpu_power = power;
2579}
2580
9d5efe05
SV
2581/*
2582 * Try and fix up capacity for tiny siblings, this is needed when
2583 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2584 * which on its own isn't powerful enough.
2585 *
2586 * See update_sd_pick_busiest() and check_asym_packing().
2587 */
2588static inline int
2589fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2590{
2591 /*
2592 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2593 */
2594 if (sd->level != SD_LV_SIBLING)
2595 return 0;
2596
2597 /*
2598 * If ~90% of the cpu_power is still there, we're good.
2599 */
694f5a11 2600 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
9d5efe05
SV
2601 return 1;
2602
2603 return 0;
2604}
2605
1e3c88bd
PZ
2606/**
2607 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2608 * @sd: The sched_domain whose statistics are to be updated.
2609 * @group: sched_group whose statistics are to be updated.
2610 * @this_cpu: Cpu for which load balance is currently performed.
2611 * @idle: Idle status of this_cpu
2612 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2613 * @sd_idle: Idle status of the sched_domain containing group.
2614 * @local_group: Does group contain this_cpu.
2615 * @cpus: Set of cpus considered for load balancing.
2616 * @balance: Should we balance.
2617 * @sgs: variable to hold the statistics for this group.
2618 */
2619static inline void update_sg_lb_stats(struct sched_domain *sd,
2620 struct sched_group *group, int this_cpu,
2621 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2622 int local_group, const struct cpumask *cpus,
2623 int *balance, struct sg_lb_stats *sgs)
2624{
2582f0eb 2625 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
1e3c88bd
PZ
2626 int i;
2627 unsigned int balance_cpu = -1, first_idle_cpu = 0;
dd5feea1 2628 unsigned long avg_load_per_task = 0;
1e3c88bd 2629
871e35bc 2630 if (local_group)
1e3c88bd 2631 balance_cpu = group_first_cpu(group);
1e3c88bd
PZ
2632
2633 /* Tally up the load of all CPUs in the group */
1e3c88bd
PZ
2634 max_cpu_load = 0;
2635 min_cpu_load = ~0UL;
2582f0eb 2636 max_nr_running = 0;
1e3c88bd
PZ
2637
2638 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2639 struct rq *rq = cpu_rq(i);
2640
2641 if (*sd_idle && rq->nr_running)
2642 *sd_idle = 0;
2643
2644 /* Bias balancing toward cpus of our domain */
2645 if (local_group) {
2646 if (idle_cpu(i) && !first_idle_cpu) {
2647 first_idle_cpu = 1;
2648 balance_cpu = i;
2649 }
2650
2651 load = target_load(i, load_idx);
2652 } else {
2653 load = source_load(i, load_idx);
2582f0eb 2654 if (load > max_cpu_load) {
1e3c88bd 2655 max_cpu_load = load;
2582f0eb
NR
2656 max_nr_running = rq->nr_running;
2657 }
1e3c88bd
PZ
2658 if (min_cpu_load > load)
2659 min_cpu_load = load;
2660 }
2661
2662 sgs->group_load += load;
2663 sgs->sum_nr_running += rq->nr_running;
2664 sgs->sum_weighted_load += weighted_cpuload(i);
aae6d3dd
SS
2665 if (idle_cpu(i))
2666 sgs->idle_cpus++;
1e3c88bd
PZ
2667 }
2668
2669 /*
2670 * First idle cpu or the first cpu(busiest) in this sched group
2671 * is eligible for doing load balancing at this and above
2672 * domains. In the newly idle case, we will allow all the cpu's
2673 * to do the newly idle load balance.
2674 */
bbc8cb5b
PZ
2675 if (idle != CPU_NEWLY_IDLE && local_group) {
2676 if (balance_cpu != this_cpu) {
2677 *balance = 0;
2678 return;
2679 }
2680 update_group_power(sd, this_cpu);
1e3c88bd
PZ
2681 }
2682
2683 /* Adjust by relative CPU power of the group */
2684 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2685
1e3c88bd
PZ
2686 /*
2687 * Consider the group unbalanced when the imbalance is larger
2688 * than the average weight of two tasks.
2689 *
2690 * APZ: with cgroup the avg task weight can vary wildly and
2691 * might not be a suitable number - should we keep a
2692 * normalized nr_running number somewhere that negates
2693 * the hierarchy?
2694 */
dd5feea1
SS
2695 if (sgs->sum_nr_running)
2696 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 2697
2582f0eb 2698 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
1e3c88bd
PZ
2699 sgs->group_imb = 1;
2700
2582f0eb 2701 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
9d5efe05
SV
2702 if (!sgs->group_capacity)
2703 sgs->group_capacity = fix_small_capacity(sd, group);
aae6d3dd 2704 sgs->group_weight = group->group_weight;
fab47622
NR
2705
2706 if (sgs->group_capacity > sgs->sum_nr_running)
2707 sgs->group_has_capacity = 1;
1e3c88bd
PZ
2708}
2709
532cb4c4
MN
2710/**
2711 * update_sd_pick_busiest - return 1 on busiest group
2712 * @sd: sched_domain whose statistics are to be checked
2713 * @sds: sched_domain statistics
2714 * @sg: sched_group candidate to be checked for being the busiest
b6b12294
MN
2715 * @sgs: sched_group statistics
2716 * @this_cpu: the current cpu
532cb4c4
MN
2717 *
2718 * Determine if @sg is a busier group than the previously selected
2719 * busiest group.
2720 */
2721static bool update_sd_pick_busiest(struct sched_domain *sd,
2722 struct sd_lb_stats *sds,
2723 struct sched_group *sg,
2724 struct sg_lb_stats *sgs,
2725 int this_cpu)
2726{
2727 if (sgs->avg_load <= sds->max_load)
2728 return false;
2729
2730 if (sgs->sum_nr_running > sgs->group_capacity)
2731 return true;
2732
2733 if (sgs->group_imb)
2734 return true;
2735
2736 /*
2737 * ASYM_PACKING needs to move all the work to the lowest
2738 * numbered CPUs in the group, therefore mark all groups
2739 * higher than ourself as busy.
2740 */
2741 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2742 this_cpu < group_first_cpu(sg)) {
2743 if (!sds->busiest)
2744 return true;
2745
2746 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2747 return true;
2748 }
2749
2750 return false;
2751}
2752
1e3c88bd
PZ
2753/**
2754 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2755 * @sd: sched_domain whose statistics are to be updated.
2756 * @this_cpu: Cpu for which load balance is currently performed.
2757 * @idle: Idle status of this_cpu
532cb4c4 2758 * @sd_idle: Idle status of the sched_domain containing sg.
1e3c88bd
PZ
2759 * @cpus: Set of cpus considered for load balancing.
2760 * @balance: Should we balance.
2761 * @sds: variable to hold the statistics for this sched_domain.
2762 */
2763static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2764 enum cpu_idle_type idle, int *sd_idle,
2765 const struct cpumask *cpus, int *balance,
2766 struct sd_lb_stats *sds)
2767{
2768 struct sched_domain *child = sd->child;
532cb4c4 2769 struct sched_group *sg = sd->groups;
1e3c88bd
PZ
2770 struct sg_lb_stats sgs;
2771 int load_idx, prefer_sibling = 0;
2772
2773 if (child && child->flags & SD_PREFER_SIBLING)
2774 prefer_sibling = 1;
2775
2776 init_sd_power_savings_stats(sd, sds, idle);
2777 load_idx = get_sd_load_idx(sd, idle);
2778
2779 do {
2780 int local_group;
2781
532cb4c4 2782 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
1e3c88bd 2783 memset(&sgs, 0, sizeof(sgs));
532cb4c4 2784 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
1e3c88bd
PZ
2785 local_group, cpus, balance, &sgs);
2786
8f190fb3 2787 if (local_group && !(*balance))
1e3c88bd
PZ
2788 return;
2789
2790 sds->total_load += sgs.group_load;
532cb4c4 2791 sds->total_pwr += sg->cpu_power;
1e3c88bd
PZ
2792
2793 /*
2794 * In case the child domain prefers tasks go to siblings
532cb4c4 2795 * first, lower the sg capacity to one so that we'll try
75dd321d
NR
2796 * and move all the excess tasks away. We lower the capacity
2797 * of a group only if the local group has the capacity to fit
2798 * these excess tasks, i.e. nr_running < group_capacity. The
2799 * extra check prevents the case where you always pull from the
2800 * heaviest group when it is already under-utilized (possible
2801 * with a large weight task outweighs the tasks on the system).
1e3c88bd 2802 */
75dd321d 2803 if (prefer_sibling && !local_group && sds->this_has_capacity)
1e3c88bd
PZ
2804 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2805
2806 if (local_group) {
2807 sds->this_load = sgs.avg_load;
532cb4c4 2808 sds->this = sg;
1e3c88bd
PZ
2809 sds->this_nr_running = sgs.sum_nr_running;
2810 sds->this_load_per_task = sgs.sum_weighted_load;
fab47622 2811 sds->this_has_capacity = sgs.group_has_capacity;
aae6d3dd 2812 sds->this_idle_cpus = sgs.idle_cpus;
532cb4c4 2813 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
1e3c88bd 2814 sds->max_load = sgs.avg_load;
532cb4c4 2815 sds->busiest = sg;
1e3c88bd 2816 sds->busiest_nr_running = sgs.sum_nr_running;
aae6d3dd 2817 sds->busiest_idle_cpus = sgs.idle_cpus;
dd5feea1 2818 sds->busiest_group_capacity = sgs.group_capacity;
1e3c88bd 2819 sds->busiest_load_per_task = sgs.sum_weighted_load;
fab47622 2820 sds->busiest_has_capacity = sgs.group_has_capacity;
aae6d3dd 2821 sds->busiest_group_weight = sgs.group_weight;
1e3c88bd
PZ
2822 sds->group_imb = sgs.group_imb;
2823 }
2824
532cb4c4
MN
2825 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2826 sg = sg->next;
2827 } while (sg != sd->groups);
2828}
2829
2ec57d44 2830int __weak arch_sd_sibling_asym_packing(void)
532cb4c4
MN
2831{
2832 return 0*SD_ASYM_PACKING;
2833}
2834
2835/**
2836 * check_asym_packing - Check to see if the group is packed into the
2837 * sched doman.
2838 *
2839 * This is primarily intended to used at the sibling level. Some
2840 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2841 * case of POWER7, it can move to lower SMT modes only when higher
2842 * threads are idle. When in lower SMT modes, the threads will
2843 * perform better since they share less core resources. Hence when we
2844 * have idle threads, we want them to be the higher ones.
2845 *
2846 * This packing function is run on idle threads. It checks to see if
2847 * the busiest CPU in this domain (core in the P7 case) has a higher
2848 * CPU number than the packing function is being run on. Here we are
2849 * assuming lower CPU number will be equivalent to lower a SMT thread
2850 * number.
2851 *
b6b12294
MN
2852 * Returns 1 when packing is required and a task should be moved to
2853 * this CPU. The amount of the imbalance is returned in *imbalance.
2854 *
532cb4c4
MN
2855 * @sd: The sched_domain whose packing is to be checked.
2856 * @sds: Statistics of the sched_domain which is to be packed
2857 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2858 * @imbalance: returns amount of imbalanced due to packing.
532cb4c4
MN
2859 */
2860static int check_asym_packing(struct sched_domain *sd,
2861 struct sd_lb_stats *sds,
2862 int this_cpu, unsigned long *imbalance)
2863{
2864 int busiest_cpu;
2865
2866 if (!(sd->flags & SD_ASYM_PACKING))
2867 return 0;
2868
2869 if (!sds->busiest)
2870 return 0;
2871
2872 busiest_cpu = group_first_cpu(sds->busiest);
2873 if (this_cpu > busiest_cpu)
2874 return 0;
2875
2876 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2877 SCHED_LOAD_SCALE);
2878 return 1;
1e3c88bd
PZ
2879}
2880
2881/**
2882 * fix_small_imbalance - Calculate the minor imbalance that exists
2883 * amongst the groups of a sched_domain, during
2884 * load balancing.
2885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2887 * @imbalance: Variable to store the imbalance.
2888 */
2889static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2890 int this_cpu, unsigned long *imbalance)
2891{
2892 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2893 unsigned int imbn = 2;
dd5feea1 2894 unsigned long scaled_busy_load_per_task;
1e3c88bd
PZ
2895
2896 if (sds->this_nr_running) {
2897 sds->this_load_per_task /= sds->this_nr_running;
2898 if (sds->busiest_load_per_task >
2899 sds->this_load_per_task)
2900 imbn = 1;
2901 } else
2902 sds->this_load_per_task =
2903 cpu_avg_load_per_task(this_cpu);
2904
dd5feea1
SS
2905 scaled_busy_load_per_task = sds->busiest_load_per_task
2906 * SCHED_LOAD_SCALE;
2907 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2908
2909 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2910 (scaled_busy_load_per_task * imbn)) {
1e3c88bd
PZ
2911 *imbalance = sds->busiest_load_per_task;
2912 return;
2913 }
2914
2915 /*
2916 * OK, we don't have enough imbalance to justify moving tasks,
2917 * however we may be able to increase total CPU power used by
2918 * moving them.
2919 */
2920
2921 pwr_now += sds->busiest->cpu_power *
2922 min(sds->busiest_load_per_task, sds->max_load);
2923 pwr_now += sds->this->cpu_power *
2924 min(sds->this_load_per_task, sds->this_load);
2925 pwr_now /= SCHED_LOAD_SCALE;
2926
2927 /* Amount of load we'd subtract */
2928 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2929 sds->busiest->cpu_power;
2930 if (sds->max_load > tmp)
2931 pwr_move += sds->busiest->cpu_power *
2932 min(sds->busiest_load_per_task, sds->max_load - tmp);
2933
2934 /* Amount of load we'd add */
2935 if (sds->max_load * sds->busiest->cpu_power <
2936 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2937 tmp = (sds->max_load * sds->busiest->cpu_power) /
2938 sds->this->cpu_power;
2939 else
2940 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2941 sds->this->cpu_power;
2942 pwr_move += sds->this->cpu_power *
2943 min(sds->this_load_per_task, sds->this_load + tmp);
2944 pwr_move /= SCHED_LOAD_SCALE;
2945
2946 /* Move if we gain throughput */
2947 if (pwr_move > pwr_now)
2948 *imbalance = sds->busiest_load_per_task;
2949}
2950
2951/**
2952 * calculate_imbalance - Calculate the amount of imbalance present within the
2953 * groups of a given sched_domain during load balance.
2954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2955 * @this_cpu: Cpu for which currently load balance is being performed.
2956 * @imbalance: The variable to store the imbalance.
2957 */
2958static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2959 unsigned long *imbalance)
2960{
dd5feea1
SS
2961 unsigned long max_pull, load_above_capacity = ~0UL;
2962
2963 sds->busiest_load_per_task /= sds->busiest_nr_running;
2964 if (sds->group_imb) {
2965 sds->busiest_load_per_task =
2966 min(sds->busiest_load_per_task, sds->avg_load);
2967 }
2968
1e3c88bd
PZ
2969 /*
2970 * In the presence of smp nice balancing, certain scenarios can have
2971 * max load less than avg load(as we skip the groups at or below
2972 * its cpu_power, while calculating max_load..)
2973 */
2974 if (sds->max_load < sds->avg_load) {
2975 *imbalance = 0;
2976 return fix_small_imbalance(sds, this_cpu, imbalance);
2977 }
2978
dd5feea1
SS
2979 if (!sds->group_imb) {
2980 /*
2981 * Don't want to pull so many tasks that a group would go idle.
2982 */
2983 load_above_capacity = (sds->busiest_nr_running -
2984 sds->busiest_group_capacity);
2985
2986 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2987
2988 load_above_capacity /= sds->busiest->cpu_power;
2989 }
2990
2991 /*
2992 * We're trying to get all the cpus to the average_load, so we don't
2993 * want to push ourselves above the average load, nor do we wish to
2994 * reduce the max loaded cpu below the average load. At the same time,
2995 * we also don't want to reduce the group load below the group capacity
2996 * (so that we can implement power-savings policies etc). Thus we look
2997 * for the minimum possible imbalance.
2998 * Be careful of negative numbers as they'll appear as very large values
2999 * with unsigned longs.
3000 */
3001 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
3002
3003 /* How much load to actually move to equalise the imbalance */
3004 *imbalance = min(max_pull * sds->busiest->cpu_power,
3005 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3006 / SCHED_LOAD_SCALE;
3007
3008 /*
3009 * if *imbalance is less than the average load per runnable task
3010 * there is no gaurantee that any tasks will be moved so we'll have
3011 * a think about bumping its value to force at least one task to be
3012 * moved
3013 */
3014 if (*imbalance < sds->busiest_load_per_task)
3015 return fix_small_imbalance(sds, this_cpu, imbalance);
3016
3017}
fab47622 3018
1e3c88bd
PZ
3019/******* find_busiest_group() helpers end here *********************/
3020
3021/**
3022 * find_busiest_group - Returns the busiest group within the sched_domain
3023 * if there is an imbalance. If there isn't an imbalance, and
3024 * the user has opted for power-savings, it returns a group whose
3025 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3026 * such a group exists.
3027 *
3028 * Also calculates the amount of weighted load which should be moved
3029 * to restore balance.
3030 *
3031 * @sd: The sched_domain whose busiest group is to be returned.
3032 * @this_cpu: The cpu for which load balancing is currently being performed.
3033 * @imbalance: Variable which stores amount of weighted load which should
3034 * be moved to restore balance/put a group to idle.
3035 * @idle: The idle status of this_cpu.
3036 * @sd_idle: The idleness of sd
3037 * @cpus: The set of CPUs under consideration for load-balancing.
3038 * @balance: Pointer to a variable indicating if this_cpu
3039 * is the appropriate cpu to perform load balancing at this_level.
3040 *
3041 * Returns: - the busiest group if imbalance exists.
3042 * - If no imbalance and user has opted for power-savings balance,
3043 * return the least loaded group whose CPUs can be
3044 * put to idle by rebalancing its tasks onto our group.
3045 */
3046static struct sched_group *
3047find_busiest_group(struct sched_domain *sd, int this_cpu,
3048 unsigned long *imbalance, enum cpu_idle_type idle,
3049 int *sd_idle, const struct cpumask *cpus, int *balance)
3050{
3051 struct sd_lb_stats sds;
3052
3053 memset(&sds, 0, sizeof(sds));
3054
3055 /*
3056 * Compute the various statistics relavent for load balancing at
3057 * this level.
3058 */
3059 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3060 balance, &sds);
3061
3062 /* Cases where imbalance does not exist from POV of this_cpu */
3063 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3064 * at this level.
3065 * 2) There is no busy sibling group to pull from.
3066 * 3) This group is the busiest group.
3067 * 4) This group is more busy than the avg busieness at this
3068 * sched_domain.
3069 * 5) The imbalance is within the specified limit.
fab47622
NR
3070 *
3071 * Note: when doing newidle balance, if the local group has excess
3072 * capacity (i.e. nr_running < group_capacity) and the busiest group
3073 * does not have any capacity, we force a load balance to pull tasks
3074 * to the local group. In this case, we skip past checks 3, 4 and 5.
1e3c88bd 3075 */
8f190fb3 3076 if (!(*balance))
1e3c88bd
PZ
3077 goto ret;
3078
532cb4c4
MN
3079 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3080 check_asym_packing(sd, &sds, this_cpu, imbalance))
3081 return sds.busiest;
3082
1e3c88bd
PZ
3083 if (!sds.busiest || sds.busiest_nr_running == 0)
3084 goto out_balanced;
3085
fab47622
NR
3086 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3087 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3088 !sds.busiest_has_capacity)
3089 goto force_balance;
3090
1e3c88bd
PZ
3091 if (sds.this_load >= sds.max_load)
3092 goto out_balanced;
3093
3094 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3095
3096 if (sds.this_load >= sds.avg_load)
3097 goto out_balanced;
3098
aae6d3dd
SS
3099 /*
3100 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3101 * And to check for busy balance use !idle_cpu instead of
3102 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3103 * even when they are idle.
3104 */
3105 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3106 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3107 goto out_balanced;
3108 } else {
3109 /*
3110 * This cpu is idle. If the busiest group load doesn't
3111 * have more tasks than the number of available cpu's and
3112 * there is no imbalance between this and busiest group
3113 * wrt to idle cpu's, it is balanced.
3114 */
3115 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3116 sds.busiest_nr_running <= sds.busiest_group_weight)
3117 goto out_balanced;
3118 }
1e3c88bd 3119
fab47622 3120force_balance:
1e3c88bd
PZ
3121 /* Looks like there is an imbalance. Compute it */
3122 calculate_imbalance(&sds, this_cpu, imbalance);
3123 return sds.busiest;
3124
3125out_balanced:
3126 /*
3127 * There is no obvious imbalance. But check if we can do some balancing
3128 * to save power.
3129 */
3130 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3131 return sds.busiest;
3132ret:
3133 *imbalance = 0;
3134 return NULL;
3135}
3136
3137/*
3138 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3139 */
3140static struct rq *
9d5efe05
SV
3141find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3142 enum cpu_idle_type idle, unsigned long imbalance,
3143 const struct cpumask *cpus)
1e3c88bd
PZ
3144{
3145 struct rq *busiest = NULL, *rq;
3146 unsigned long max_load = 0;
3147 int i;
3148
3149 for_each_cpu(i, sched_group_cpus(group)) {
3150 unsigned long power = power_of(i);
3151 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3152 unsigned long wl;
3153
9d5efe05
SV
3154 if (!capacity)
3155 capacity = fix_small_capacity(sd, group);
3156
1e3c88bd
PZ
3157 if (!cpumask_test_cpu(i, cpus))
3158 continue;
3159
3160 rq = cpu_rq(i);
6e40f5bb 3161 wl = weighted_cpuload(i);
1e3c88bd 3162
6e40f5bb
TG
3163 /*
3164 * When comparing with imbalance, use weighted_cpuload()
3165 * which is not scaled with the cpu power.
3166 */
1e3c88bd
PZ
3167 if (capacity && rq->nr_running == 1 && wl > imbalance)
3168 continue;
3169
6e40f5bb
TG
3170 /*
3171 * For the load comparisons with the other cpu's, consider
3172 * the weighted_cpuload() scaled with the cpu power, so that
3173 * the load can be moved away from the cpu that is potentially
3174 * running at a lower capacity.
3175 */
3176 wl = (wl * SCHED_LOAD_SCALE) / power;
3177
1e3c88bd
PZ
3178 if (wl > max_load) {
3179 max_load = wl;
3180 busiest = rq;
3181 }
3182 }
3183
3184 return busiest;
3185}
3186
3187/*
3188 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3189 * so long as it is large enough.
3190 */
3191#define MAX_PINNED_INTERVAL 512
3192
3193/* Working cpumask for load_balance and load_balance_newidle. */
3194static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3195
532cb4c4
MN
3196static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3197 int busiest_cpu, int this_cpu)
1af3ed3d
PZ
3198{
3199 if (idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
3200
3201 /*
3202 * ASYM_PACKING needs to force migrate tasks from busy but
3203 * higher numbered CPUs in order to pack all tasks in the
3204 * lowest numbered CPUs.
3205 */
3206 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3207 return 1;
3208
1af3ed3d
PZ
3209 /*
3210 * The only task running in a non-idle cpu can be moved to this
3211 * cpu in an attempt to completely freeup the other CPU
3212 * package.
3213 *
3214 * The package power saving logic comes from
3215 * find_busiest_group(). If there are no imbalance, then
3216 * f_b_g() will return NULL. However when sched_mc={1,2} then
3217 * f_b_g() will select a group from which a running task may be
3218 * pulled to this cpu in order to make the other package idle.
3219 * If there is no opportunity to make a package idle and if
3220 * there are no imbalance, then f_b_g() will return NULL and no
3221 * action will be taken in load_balance_newidle().
3222 *
3223 * Under normal task pull operation due to imbalance, there
3224 * will be more than one task in the source run queue and
3225 * move_tasks() will succeed. ld_moved will be true and this
3226 * active balance code will not be triggered.
3227 */
3228 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3229 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3230 return 0;
3231
3232 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3233 return 0;
3234 }
3235
3236 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3237}
3238
969c7921
TH
3239static int active_load_balance_cpu_stop(void *data);
3240
1e3c88bd
PZ
3241/*
3242 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3243 * tasks if there is an imbalance.
3244 */
3245static int load_balance(int this_cpu, struct rq *this_rq,
3246 struct sched_domain *sd, enum cpu_idle_type idle,
3247 int *balance)
3248{
3249 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3250 struct sched_group *group;
3251 unsigned long imbalance;
3252 struct rq *busiest;
3253 unsigned long flags;
3254 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3255
3256 cpumask_copy(cpus, cpu_active_mask);
3257
3258 /*
3259 * When power savings policy is enabled for the parent domain, idle
3260 * sibling can pick up load irrespective of busy siblings. In this case,
3261 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3262 * portraying it as CPU_NOT_IDLE.
3263 */
3264 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3265 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3266 sd_idle = 1;
3267
3268 schedstat_inc(sd, lb_count[idle]);
3269
3270redo:
1e3c88bd
PZ
3271 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3272 cpus, balance);
3273
3274 if (*balance == 0)
3275 goto out_balanced;
3276
3277 if (!group) {
3278 schedstat_inc(sd, lb_nobusyg[idle]);
3279 goto out_balanced;
3280 }
3281
9d5efe05 3282 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
1e3c88bd
PZ
3283 if (!busiest) {
3284 schedstat_inc(sd, lb_nobusyq[idle]);
3285 goto out_balanced;
3286 }
3287
3288 BUG_ON(busiest == this_rq);
3289
3290 schedstat_add(sd, lb_imbalance[idle], imbalance);
3291
3292 ld_moved = 0;
3293 if (busiest->nr_running > 1) {
3294 /*
3295 * Attempt to move tasks. If find_busiest_group has found
3296 * an imbalance but busiest->nr_running <= 1, the group is
3297 * still unbalanced. ld_moved simply stays zero, so it is
3298 * correctly treated as an imbalance.
3299 */
3300 local_irq_save(flags);
3301 double_rq_lock(this_rq, busiest);
3302 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3303 imbalance, sd, idle, &all_pinned);
3304 double_rq_unlock(this_rq, busiest);
3305 local_irq_restore(flags);
3306
3307 /*
3308 * some other cpu did the load balance for us.
3309 */
3310 if (ld_moved && this_cpu != smp_processor_id())
3311 resched_cpu(this_cpu);
3312
3313 /* All tasks on this runqueue were pinned by CPU affinity */
3314 if (unlikely(all_pinned)) {
3315 cpumask_clear_cpu(cpu_of(busiest), cpus);
3316 if (!cpumask_empty(cpus))
3317 goto redo;
3318 goto out_balanced;
3319 }
3320 }
3321
3322 if (!ld_moved) {
3323 schedstat_inc(sd, lb_failed[idle]);
58b26c4c
VP
3324 /*
3325 * Increment the failure counter only on periodic balance.
3326 * We do not want newidle balance, which can be very
3327 * frequent, pollute the failure counter causing
3328 * excessive cache_hot migrations and active balances.
3329 */
3330 if (idle != CPU_NEWLY_IDLE)
3331 sd->nr_balance_failed++;
1e3c88bd 3332
532cb4c4
MN
3333 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3334 this_cpu)) {
1e3c88bd
PZ
3335 raw_spin_lock_irqsave(&busiest->lock, flags);
3336
969c7921
TH
3337 /* don't kick the active_load_balance_cpu_stop,
3338 * if the curr task on busiest cpu can't be
3339 * moved to this_cpu
1e3c88bd
PZ
3340 */
3341 if (!cpumask_test_cpu(this_cpu,
3342 &busiest->curr->cpus_allowed)) {
3343 raw_spin_unlock_irqrestore(&busiest->lock,
3344 flags);
3345 all_pinned = 1;
3346 goto out_one_pinned;
3347 }
3348
969c7921
TH
3349 /*
3350 * ->active_balance synchronizes accesses to
3351 * ->active_balance_work. Once set, it's cleared
3352 * only after active load balance is finished.
3353 */
1e3c88bd
PZ
3354 if (!busiest->active_balance) {
3355 busiest->active_balance = 1;
3356 busiest->push_cpu = this_cpu;
3357 active_balance = 1;
3358 }
3359 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 3360
1e3c88bd 3361 if (active_balance)
969c7921
TH
3362 stop_one_cpu_nowait(cpu_of(busiest),
3363 active_load_balance_cpu_stop, busiest,
3364 &busiest->active_balance_work);
1e3c88bd
PZ
3365
3366 /*
3367 * We've kicked active balancing, reset the failure
3368 * counter.
3369 */
3370 sd->nr_balance_failed = sd->cache_nice_tries+1;
3371 }
3372 } else
3373 sd->nr_balance_failed = 0;
3374
3375 if (likely(!active_balance)) {
3376 /* We were unbalanced, so reset the balancing interval */
3377 sd->balance_interval = sd->min_interval;
3378 } else {
3379 /*
3380 * If we've begun active balancing, start to back off. This
3381 * case may not be covered by the all_pinned logic if there
3382 * is only 1 task on the busy runqueue (because we don't call
3383 * move_tasks).
3384 */
3385 if (sd->balance_interval < sd->max_interval)
3386 sd->balance_interval *= 2;
3387 }
3388
3389 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3390 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3391 ld_moved = -1;
3392
3393 goto out;
3394
3395out_balanced:
3396 schedstat_inc(sd, lb_balanced[idle]);
3397
3398 sd->nr_balance_failed = 0;
3399
3400out_one_pinned:
3401 /* tune up the balancing interval */
3402 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3403 (sd->balance_interval < sd->max_interval))
3404 sd->balance_interval *= 2;
3405
3406 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3407 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3408 ld_moved = -1;
3409 else
3410 ld_moved = 0;
3411out:
1e3c88bd
PZ
3412 return ld_moved;
3413}
3414
1e3c88bd
PZ
3415/*
3416 * idle_balance is called by schedule() if this_cpu is about to become
3417 * idle. Attempts to pull tasks from other CPUs.
3418 */
3419static void idle_balance(int this_cpu, struct rq *this_rq)
3420{
3421 struct sched_domain *sd;
3422 int pulled_task = 0;
3423 unsigned long next_balance = jiffies + HZ;
3424
3425 this_rq->idle_stamp = this_rq->clock;
3426
3427 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3428 return;
3429
f492e12e
PZ
3430 /*
3431 * Drop the rq->lock, but keep IRQ/preempt disabled.
3432 */
3433 raw_spin_unlock(&this_rq->lock);
3434
c66eaf61 3435 update_shares(this_cpu);
1e3c88bd
PZ
3436 for_each_domain(this_cpu, sd) {
3437 unsigned long interval;
f492e12e 3438 int balance = 1;
1e3c88bd
PZ
3439
3440 if (!(sd->flags & SD_LOAD_BALANCE))
3441 continue;
3442
f492e12e 3443 if (sd->flags & SD_BALANCE_NEWIDLE) {
1e3c88bd 3444 /* If we've pulled tasks over stop searching: */
f492e12e
PZ
3445 pulled_task = load_balance(this_cpu, this_rq,
3446 sd, CPU_NEWLY_IDLE, &balance);
3447 }
1e3c88bd
PZ
3448
3449 interval = msecs_to_jiffies(sd->balance_interval);
3450 if (time_after(next_balance, sd->last_balance + interval))
3451 next_balance = sd->last_balance + interval;
d5ad140b
NR
3452 if (pulled_task) {
3453 this_rq->idle_stamp = 0;
1e3c88bd 3454 break;
d5ad140b 3455 }
1e3c88bd 3456 }
f492e12e
PZ
3457
3458 raw_spin_lock(&this_rq->lock);
3459
1e3c88bd
PZ
3460 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3461 /*
3462 * We are going idle. next_balance may be set based on
3463 * a busy processor. So reset next_balance.
3464 */
3465 this_rq->next_balance = next_balance;
3466 }
3467}
3468
3469/*
969c7921
TH
3470 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3471 * running tasks off the busiest CPU onto idle CPUs. It requires at
3472 * least 1 task to be running on each physical CPU where possible, and
3473 * avoids physical / logical imbalances.
1e3c88bd 3474 */
969c7921 3475static int active_load_balance_cpu_stop(void *data)
1e3c88bd 3476{
969c7921
TH
3477 struct rq *busiest_rq = data;
3478 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 3479 int target_cpu = busiest_rq->push_cpu;
969c7921 3480 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 3481 struct sched_domain *sd;
969c7921
TH
3482
3483 raw_spin_lock_irq(&busiest_rq->lock);
3484
3485 /* make sure the requested cpu hasn't gone down in the meantime */
3486 if (unlikely(busiest_cpu != smp_processor_id() ||
3487 !busiest_rq->active_balance))
3488 goto out_unlock;
1e3c88bd
PZ
3489
3490 /* Is there any task to move? */
3491 if (busiest_rq->nr_running <= 1)
969c7921 3492 goto out_unlock;
1e3c88bd
PZ
3493
3494 /*
3495 * This condition is "impossible", if it occurs
3496 * we need to fix it. Originally reported by
3497 * Bjorn Helgaas on a 128-cpu setup.
3498 */
3499 BUG_ON(busiest_rq == target_rq);
3500
3501 /* move a task from busiest_rq to target_rq */
3502 double_lock_balance(busiest_rq, target_rq);
1e3c88bd
PZ
3503
3504 /* Search for an sd spanning us and the target CPU. */
3505 for_each_domain(target_cpu, sd) {
3506 if ((sd->flags & SD_LOAD_BALANCE) &&
3507 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3508 break;
3509 }
3510
3511 if (likely(sd)) {
3512 schedstat_inc(sd, alb_count);
3513
3514 if (move_one_task(target_rq, target_cpu, busiest_rq,
3515 sd, CPU_IDLE))
3516 schedstat_inc(sd, alb_pushed);
3517 else
3518 schedstat_inc(sd, alb_failed);
3519 }
3520 double_unlock_balance(busiest_rq, target_rq);
969c7921
TH
3521out_unlock:
3522 busiest_rq->active_balance = 0;
3523 raw_spin_unlock_irq(&busiest_rq->lock);
3524 return 0;
1e3c88bd
PZ
3525}
3526
3527#ifdef CONFIG_NO_HZ
83cd4fe2
VP
3528
3529static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3530
3531static void trigger_sched_softirq(void *data)
3532{
3533 raise_softirq_irqoff(SCHED_SOFTIRQ);
3534}
3535
3536static inline void init_sched_softirq_csd(struct call_single_data *csd)
3537{
3538 csd->func = trigger_sched_softirq;
3539 csd->info = NULL;
3540 csd->flags = 0;
3541 csd->priv = 0;
3542}
3543
3544/*
3545 * idle load balancing details
3546 * - One of the idle CPUs nominates itself as idle load_balancer, while
3547 * entering idle.
3548 * - This idle load balancer CPU will also go into tickless mode when
3549 * it is idle, just like all other idle CPUs
3550 * - When one of the busy CPUs notice that there may be an idle rebalancing
3551 * needed, they will kick the idle load balancer, which then does idle
3552 * load balancing for all the idle CPUs.
3553 */
1e3c88bd
PZ
3554static struct {
3555 atomic_t load_balancer;
83cd4fe2
VP
3556 atomic_t first_pick_cpu;
3557 atomic_t second_pick_cpu;
3558 cpumask_var_t idle_cpus_mask;
3559 cpumask_var_t grp_idle_mask;
3560 unsigned long next_balance; /* in jiffy units */
3561} nohz ____cacheline_aligned;
1e3c88bd
PZ
3562
3563int get_nohz_load_balancer(void)
3564{
3565 return atomic_read(&nohz.load_balancer);
3566}
3567
3568#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3569/**
3570 * lowest_flag_domain - Return lowest sched_domain containing flag.
3571 * @cpu: The cpu whose lowest level of sched domain is to
3572 * be returned.
3573 * @flag: The flag to check for the lowest sched_domain
3574 * for the given cpu.
3575 *
3576 * Returns the lowest sched_domain of a cpu which contains the given flag.
3577 */
3578static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3579{
3580 struct sched_domain *sd;
3581
3582 for_each_domain(cpu, sd)
3583 if (sd && (sd->flags & flag))
3584 break;
3585
3586 return sd;
3587}
3588
3589/**
3590 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3591 * @cpu: The cpu whose domains we're iterating over.
3592 * @sd: variable holding the value of the power_savings_sd
3593 * for cpu.
3594 * @flag: The flag to filter the sched_domains to be iterated.
3595 *
3596 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3597 * set, starting from the lowest sched_domain to the highest.
3598 */
3599#define for_each_flag_domain(cpu, sd, flag) \
3600 for (sd = lowest_flag_domain(cpu, flag); \
3601 (sd && (sd->flags & flag)); sd = sd->parent)
3602
3603/**
3604 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3605 * @ilb_group: group to be checked for semi-idleness
3606 *
3607 * Returns: 1 if the group is semi-idle. 0 otherwise.
3608 *
3609 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3610 * and atleast one non-idle CPU. This helper function checks if the given
3611 * sched_group is semi-idle or not.
3612 */
3613static inline int is_semi_idle_group(struct sched_group *ilb_group)
3614{
83cd4fe2 3615 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
1e3c88bd
PZ
3616 sched_group_cpus(ilb_group));
3617
3618 /*
3619 * A sched_group is semi-idle when it has atleast one busy cpu
3620 * and atleast one idle cpu.
3621 */
83cd4fe2 3622 if (cpumask_empty(nohz.grp_idle_mask))
1e3c88bd
PZ
3623 return 0;
3624
83cd4fe2 3625 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
1e3c88bd
PZ
3626 return 0;
3627
3628 return 1;
3629}
3630/**
3631 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3632 * @cpu: The cpu which is nominating a new idle_load_balancer.
3633 *
3634 * Returns: Returns the id of the idle load balancer if it exists,
3635 * Else, returns >= nr_cpu_ids.
3636 *
3637 * This algorithm picks the idle load balancer such that it belongs to a
3638 * semi-idle powersavings sched_domain. The idea is to try and avoid
3639 * completely idle packages/cores just for the purpose of idle load balancing
3640 * when there are other idle cpu's which are better suited for that job.
3641 */
3642static int find_new_ilb(int cpu)
3643{
3644 struct sched_domain *sd;
3645 struct sched_group *ilb_group;
3646
3647 /*
3648 * Have idle load balancer selection from semi-idle packages only
3649 * when power-aware load balancing is enabled
3650 */
3651 if (!(sched_smt_power_savings || sched_mc_power_savings))
3652 goto out_done;
3653
3654 /*
3655 * Optimize for the case when we have no idle CPUs or only one
3656 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3657 */
83cd4fe2 3658 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
1e3c88bd
PZ
3659 goto out_done;
3660
3661 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3662 ilb_group = sd->groups;
3663
3664 do {
3665 if (is_semi_idle_group(ilb_group))
83cd4fe2 3666 return cpumask_first(nohz.grp_idle_mask);
1e3c88bd
PZ
3667
3668 ilb_group = ilb_group->next;
3669
3670 } while (ilb_group != sd->groups);
3671 }
3672
3673out_done:
83cd4fe2 3674 return nr_cpu_ids;
1e3c88bd
PZ
3675}
3676#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3677static inline int find_new_ilb(int call_cpu)
3678{
83cd4fe2 3679 return nr_cpu_ids;
1e3c88bd
PZ
3680}
3681#endif
3682
83cd4fe2
VP
3683/*
3684 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3685 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3686 * CPU (if there is one).
3687 */
3688static void nohz_balancer_kick(int cpu)
3689{
3690 int ilb_cpu;
3691
3692 nohz.next_balance++;
3693
3694 ilb_cpu = get_nohz_load_balancer();
3695
3696 if (ilb_cpu >= nr_cpu_ids) {
3697 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3698 if (ilb_cpu >= nr_cpu_ids)
3699 return;
3700 }
3701
3702 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3703 struct call_single_data *cp;
3704
3705 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3706 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3707 __smp_call_function_single(ilb_cpu, cp, 0);
3708 }
3709 return;
3710}
3711
1e3c88bd
PZ
3712/*
3713 * This routine will try to nominate the ilb (idle load balancing)
3714 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
83cd4fe2 3715 * load balancing on behalf of all those cpus.
1e3c88bd 3716 *
83cd4fe2
VP
3717 * When the ilb owner becomes busy, we will not have new ilb owner until some
3718 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3719 * idle load balancing by kicking one of the idle CPUs.
1e3c88bd 3720 *
83cd4fe2
VP
3721 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3722 * ilb owner CPU in future (when there is a need for idle load balancing on
3723 * behalf of all idle CPUs).
1e3c88bd 3724 */
83cd4fe2 3725void select_nohz_load_balancer(int stop_tick)
1e3c88bd
PZ
3726{
3727 int cpu = smp_processor_id();
3728
3729 if (stop_tick) {
1e3c88bd
PZ
3730 if (!cpu_active(cpu)) {
3731 if (atomic_read(&nohz.load_balancer) != cpu)
83cd4fe2 3732 return;
1e3c88bd
PZ
3733
3734 /*
3735 * If we are going offline and still the leader,
3736 * give up!
3737 */
83cd4fe2
VP
3738 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3739 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3740 BUG();
3741
83cd4fe2 3742 return;
1e3c88bd
PZ
3743 }
3744
83cd4fe2 3745 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd 3746
83cd4fe2
VP
3747 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3748 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3749 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3750 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
1e3c88bd 3751
83cd4fe2 3752 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
1e3c88bd
PZ
3753 int new_ilb;
3754
83cd4fe2
VP
3755 /* make me the ilb owner */
3756 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3757 cpu) != nr_cpu_ids)
3758 return;
3759
1e3c88bd
PZ
3760 /*
3761 * Check to see if there is a more power-efficient
3762 * ilb.
3763 */
3764 new_ilb = find_new_ilb(cpu);
3765 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
83cd4fe2 3766 atomic_set(&nohz.load_balancer, nr_cpu_ids);
1e3c88bd 3767 resched_cpu(new_ilb);
83cd4fe2 3768 return;
1e3c88bd 3769 }
83cd4fe2 3770 return;
1e3c88bd
PZ
3771 }
3772 } else {
83cd4fe2
VP
3773 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3774 return;
1e3c88bd 3775
83cd4fe2 3776 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
1e3c88bd
PZ
3777
3778 if (atomic_read(&nohz.load_balancer) == cpu)
83cd4fe2
VP
3779 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3780 nr_cpu_ids) != cpu)
1e3c88bd
PZ
3781 BUG();
3782 }
83cd4fe2 3783 return;
1e3c88bd
PZ
3784}
3785#endif
3786
3787static DEFINE_SPINLOCK(balancing);
3788
3789/*
3790 * It checks each scheduling domain to see if it is due to be balanced,
3791 * and initiates a balancing operation if so.
3792 *
3793 * Balancing parameters are set up in arch_init_sched_domains.
3794 */
3795static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3796{
3797 int balance = 1;
3798 struct rq *rq = cpu_rq(cpu);
3799 unsigned long interval;
3800 struct sched_domain *sd;
3801 /* Earliest time when we have to do rebalance again */
3802 unsigned long next_balance = jiffies + 60*HZ;
3803 int update_next_balance = 0;
3804 int need_serialize;
3805
2069dd75
PZ
3806 update_shares(cpu);
3807
1e3c88bd
PZ
3808 for_each_domain(cpu, sd) {
3809 if (!(sd->flags & SD_LOAD_BALANCE))
3810 continue;
3811
3812 interval = sd->balance_interval;
3813 if (idle != CPU_IDLE)
3814 interval *= sd->busy_factor;
3815
3816 /* scale ms to jiffies */
3817 interval = msecs_to_jiffies(interval);
3818 if (unlikely(!interval))
3819 interval = 1;
3820 if (interval > HZ*NR_CPUS/10)
3821 interval = HZ*NR_CPUS/10;
3822
3823 need_serialize = sd->flags & SD_SERIALIZE;
3824
3825 if (need_serialize) {
3826 if (!spin_trylock(&balancing))
3827 goto out;
3828 }
3829
3830 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3831 if (load_balance(cpu, rq, sd, idle, &balance)) {
3832 /*
3833 * We've pulled tasks over so either we're no
3834 * longer idle, or one of our SMT siblings is
3835 * not idle.
3836 */
3837 idle = CPU_NOT_IDLE;
3838 }
3839 sd->last_balance = jiffies;
3840 }
3841 if (need_serialize)
3842 spin_unlock(&balancing);
3843out:
3844 if (time_after(next_balance, sd->last_balance + interval)) {
3845 next_balance = sd->last_balance + interval;
3846 update_next_balance = 1;
3847 }
3848
3849 /*
3850 * Stop the load balance at this level. There is another
3851 * CPU in our sched group which is doing load balancing more
3852 * actively.
3853 */
3854 if (!balance)
3855 break;
3856 }
3857
3858 /*
3859 * next_balance will be updated only when there is a need.
3860 * When the cpu is attached to null domain for ex, it will not be
3861 * updated.
3862 */
3863 if (likely(update_next_balance))
3864 rq->next_balance = next_balance;
3865}
3866
83cd4fe2 3867#ifdef CONFIG_NO_HZ
1e3c88bd 3868/*
83cd4fe2 3869 * In CONFIG_NO_HZ case, the idle balance kickee will do the
1e3c88bd
PZ
3870 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3871 */
83cd4fe2
VP
3872static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3873{
3874 struct rq *this_rq = cpu_rq(this_cpu);
3875 struct rq *rq;
3876 int balance_cpu;
3877
3878 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3879 return;
3880
3881 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3882 if (balance_cpu == this_cpu)
3883 continue;
3884
3885 /*
3886 * If this cpu gets work to do, stop the load balancing
3887 * work being done for other cpus. Next load
3888 * balancing owner will pick it up.
3889 */
3890 if (need_resched()) {
3891 this_rq->nohz_balance_kick = 0;
3892 break;
3893 }
3894
3895 raw_spin_lock_irq(&this_rq->lock);
5343bdb8 3896 update_rq_clock(this_rq);
83cd4fe2
VP
3897 update_cpu_load(this_rq);
3898 raw_spin_unlock_irq(&this_rq->lock);
3899
3900 rebalance_domains(balance_cpu, CPU_IDLE);
3901
3902 rq = cpu_rq(balance_cpu);
3903 if (time_after(this_rq->next_balance, rq->next_balance))
3904 this_rq->next_balance = rq->next_balance;
3905 }
3906 nohz.next_balance = this_rq->next_balance;
3907 this_rq->nohz_balance_kick = 0;
3908}
3909
3910/*
3911 * Current heuristic for kicking the idle load balancer
3912 * - first_pick_cpu is the one of the busy CPUs. It will kick
3913 * idle load balancer when it has more than one process active. This
3914 * eliminates the need for idle load balancing altogether when we have
3915 * only one running process in the system (common case).
3916 * - If there are more than one busy CPU, idle load balancer may have
3917 * to run for active_load_balance to happen (i.e., two busy CPUs are
3918 * SMT or core siblings and can run better if they move to different
3919 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3920 * which will kick idle load balancer as soon as it has any load.
3921 */
3922static inline int nohz_kick_needed(struct rq *rq, int cpu)
3923{
3924 unsigned long now = jiffies;
3925 int ret;
3926 int first_pick_cpu, second_pick_cpu;
3927
3928 if (time_before(now, nohz.next_balance))
3929 return 0;
3930
f6c3f168 3931 if (rq->idle_at_tick)
83cd4fe2
VP
3932 return 0;
3933
3934 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3935 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3936
3937 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3938 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3939 return 0;
3940
3941 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3942 if (ret == nr_cpu_ids || ret == cpu) {
3943 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3944 if (rq->nr_running > 1)
3945 return 1;
3946 } else {
3947 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3948 if (ret == nr_cpu_ids || ret == cpu) {
3949 if (rq->nr_running)
3950 return 1;
3951 }
3952 }
3953 return 0;
3954}
3955#else
3956static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3957#endif
3958
3959/*
3960 * run_rebalance_domains is triggered when needed from the scheduler tick.
3961 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3962 */
1e3c88bd
PZ
3963static void run_rebalance_domains(struct softirq_action *h)
3964{
3965 int this_cpu = smp_processor_id();
3966 struct rq *this_rq = cpu_rq(this_cpu);
3967 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3968 CPU_IDLE : CPU_NOT_IDLE;
3969
3970 rebalance_domains(this_cpu, idle);
3971
1e3c88bd 3972 /*
83cd4fe2 3973 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd
PZ
3974 * balancing on behalf of the other idle cpus whose ticks are
3975 * stopped.
3976 */
83cd4fe2 3977 nohz_idle_balance(this_cpu, idle);
1e3c88bd
PZ
3978}
3979
3980static inline int on_null_domain(int cpu)
3981{
90a6501f 3982 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
1e3c88bd
PZ
3983}
3984
3985/*
3986 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd
PZ
3987 */
3988static inline void trigger_load_balance(struct rq *rq, int cpu)
3989{
1e3c88bd
PZ
3990 /* Don't need to rebalance while attached to NULL domain */
3991 if (time_after_eq(jiffies, rq->next_balance) &&
3992 likely(!on_null_domain(cpu)))
3993 raise_softirq(SCHED_SOFTIRQ);
83cd4fe2
VP
3994#ifdef CONFIG_NO_HZ
3995 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3996 nohz_balancer_kick(cpu);
3997#endif
1e3c88bd
PZ
3998}
3999
0bcdcf28
CE
4000static void rq_online_fair(struct rq *rq)
4001{
4002 update_sysctl();
4003}
4004
4005static void rq_offline_fair(struct rq *rq)
4006{
4007 update_sysctl();
4008}
4009
1e3c88bd
PZ
4010#else /* CONFIG_SMP */
4011
4012/*
4013 * on UP we do not need to balance between CPUs:
4014 */
4015static inline void idle_balance(int cpu, struct rq *rq)
4016{
4017}
4018
55e12e5e 4019#endif /* CONFIG_SMP */
e1d1484f 4020
bf0f6f24
IM
4021/*
4022 * scheduler tick hitting a task of our scheduling class:
4023 */
8f4d37ec 4024static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
4025{
4026 struct cfs_rq *cfs_rq;
4027 struct sched_entity *se = &curr->se;
4028
4029 for_each_sched_entity(se) {
4030 cfs_rq = cfs_rq_of(se);
8f4d37ec 4031 entity_tick(cfs_rq, se, queued);
bf0f6f24
IM
4032 }
4033}
4034
4035/*
cd29fe6f
PZ
4036 * called on fork with the child task as argument from the parent's context
4037 * - child not yet on the tasklist
4038 * - preemption disabled
bf0f6f24 4039 */
cd29fe6f 4040static void task_fork_fair(struct task_struct *p)
bf0f6f24 4041{
cd29fe6f 4042 struct cfs_rq *cfs_rq = task_cfs_rq(current);
429d43bc 4043 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
00bf7bfc 4044 int this_cpu = smp_processor_id();
cd29fe6f
PZ
4045 struct rq *rq = this_rq();
4046 unsigned long flags;
4047
05fa785c 4048 raw_spin_lock_irqsave(&rq->lock, flags);
bf0f6f24 4049
861d034e
PZ
4050 update_rq_clock(rq);
4051
b0a0f667
PM
4052 if (unlikely(task_cpu(p) != this_cpu)) {
4053 rcu_read_lock();
cd29fe6f 4054 __set_task_cpu(p, this_cpu);
b0a0f667
PM
4055 rcu_read_unlock();
4056 }
bf0f6f24 4057
7109c442 4058 update_curr(cfs_rq);
cd29fe6f 4059
b5d9d734
MG
4060 if (curr)
4061 se->vruntime = curr->vruntime;
aeb73b04 4062 place_entity(cfs_rq, se, 1);
4d78e7b6 4063
cd29fe6f 4064 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 4065 /*
edcb60a3
IM
4066 * Upon rescheduling, sched_class::put_prev_task() will place
4067 * 'current' within the tree based on its new key value.
4068 */
4d78e7b6 4069 swap(curr->vruntime, se->vruntime);
aec0a514 4070 resched_task(rq->curr);
4d78e7b6 4071 }
bf0f6f24 4072
88ec22d3
PZ
4073 se->vruntime -= cfs_rq->min_vruntime;
4074
05fa785c 4075 raw_spin_unlock_irqrestore(&rq->lock, flags);
bf0f6f24
IM
4076}
4077
cb469845
SR
4078/*
4079 * Priority of the task has changed. Check to see if we preempt
4080 * the current task.
4081 */
4082static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4083 int oldprio, int running)
4084{
4085 /*
4086 * Reschedule if we are currently running on this runqueue and
4087 * our priority decreased, or if we are not currently running on
4088 * this runqueue and our priority is higher than the current's
4089 */
4090 if (running) {
4091 if (p->prio > oldprio)
4092 resched_task(rq->curr);
4093 } else
15afe09b 4094 check_preempt_curr(rq, p, 0);
cb469845
SR
4095}
4096
4097/*
4098 * We switched to the sched_fair class.
4099 */
4100static void switched_to_fair(struct rq *rq, struct task_struct *p,
4101 int running)
4102{
4103 /*
4104 * We were most likely switched from sched_rt, so
4105 * kick off the schedule if running, otherwise just see
4106 * if we can still preempt the current task.
4107 */
4108 if (running)
4109 resched_task(rq->curr);
4110 else
15afe09b 4111 check_preempt_curr(rq, p, 0);
cb469845
SR
4112}
4113
83b699ed
SV
4114/* Account for a task changing its policy or group.
4115 *
4116 * This routine is mostly called to set cfs_rq->curr field when a task
4117 * migrates between groups/classes.
4118 */
4119static void set_curr_task_fair(struct rq *rq)
4120{
4121 struct sched_entity *se = &rq->curr->se;
4122
4123 for_each_sched_entity(se)
4124 set_next_entity(cfs_rq_of(se), se);
4125}
4126
810b3817 4127#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4128static void task_move_group_fair(struct task_struct *p, int on_rq)
810b3817 4129{
b2b5ce02
PZ
4130 /*
4131 * If the task was not on the rq at the time of this cgroup movement
4132 * it must have been asleep, sleeping tasks keep their ->vruntime
4133 * absolute on their old rq until wakeup (needed for the fair sleeper
4134 * bonus in place_entity()).
4135 *
4136 * If it was on the rq, we've just 'preempted' it, which does convert
4137 * ->vruntime to a relative base.
4138 *
4139 * Make sure both cases convert their relative position when migrating
4140 * to another cgroup's rq. This does somewhat interfere with the
4141 * fair sleeper stuff for the first placement, but who cares.
4142 */
4143 if (!on_rq)
4144 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4145 set_task_rq(p, task_cpu(p));
88ec22d3 4146 if (!on_rq)
b2b5ce02 4147 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
810b3817
PZ
4148}
4149#endif
4150
6d686f45 4151static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
4152{
4153 struct sched_entity *se = &task->se;
0d721cea
PW
4154 unsigned int rr_interval = 0;
4155
4156 /*
4157 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4158 * idle runqueue:
4159 */
0d721cea
PW
4160 if (rq->cfs.load.weight)
4161 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
0d721cea
PW
4162
4163 return rr_interval;
4164}
4165
bf0f6f24
IM
4166/*
4167 * All the scheduling class methods:
4168 */
5522d5d5
IM
4169static const struct sched_class fair_sched_class = {
4170 .next = &idle_sched_class,
bf0f6f24
IM
4171 .enqueue_task = enqueue_task_fair,
4172 .dequeue_task = dequeue_task_fair,
4173 .yield_task = yield_task_fair,
4174
2e09bf55 4175 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
4176
4177 .pick_next_task = pick_next_task_fair,
4178 .put_prev_task = put_prev_task_fair,
4179
681f3e68 4180#ifdef CONFIG_SMP
4ce72a2c
LZ
4181 .select_task_rq = select_task_rq_fair,
4182
0bcdcf28
CE
4183 .rq_online = rq_online_fair,
4184 .rq_offline = rq_offline_fair,
88ec22d3
PZ
4185
4186 .task_waking = task_waking_fair,
681f3e68 4187#endif
bf0f6f24 4188
83b699ed 4189 .set_curr_task = set_curr_task_fair,
bf0f6f24 4190 .task_tick = task_tick_fair,
cd29fe6f 4191 .task_fork = task_fork_fair,
cb469845
SR
4192
4193 .prio_changed = prio_changed_fair,
4194 .switched_to = switched_to_fair,
810b3817 4195
0d721cea
PW
4196 .get_rr_interval = get_rr_interval_fair,
4197
810b3817 4198#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 4199 .task_move_group = task_move_group_fair,
810b3817 4200#endif
bf0f6f24
IM
4201};
4202
4203#ifdef CONFIG_SCHED_DEBUG
5cef9eca 4204static void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 4205{
bf0f6f24
IM
4206 struct cfs_rq *cfs_rq;
4207
5973e5b9 4208 rcu_read_lock();
c3b64f1e 4209 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 4210 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 4211 rcu_read_unlock();
bf0f6f24
IM
4212}
4213#endif