sched: Make sure task has correct sched_class after policy change
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5
IM
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
ac086bc2
PZ
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
b9bf3121 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
57310a98
PZ
312#ifdef CONFIG_SMP
313static int root_task_group_empty(void)
314{
315 return list_empty(&root_task_group.children);
316}
317#endif
318
052f1dc7 319#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
320#ifdef CONFIG_USER_SCHED
321# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 322#else /* !CONFIG_USER_SCHED */
052f1dc7 323# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 324#endif /* CONFIG_USER_SCHED */
052f1dc7 325
cb4ad1ff 326/*
2e084786
LJ
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
cb4ad1ff
MX
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
18d95a28 334#define MIN_SHARES 2
2e084786 335#define MAX_SHARES (1UL << 18)
18d95a28 336
052f1dc7
PZ
337static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338#endif
339
29f59db3 340/* Default task group.
3a252015 341 * Every task in system belong to this group at bootup.
29f59db3 342 */
434d53b0 343struct task_group init_task_group;
29f59db3
SV
344
345/* return group to which a task belongs */
4cf86d77 346static inline struct task_group *task_group(struct task_struct *p)
29f59db3 347{
4cf86d77 348 struct task_group *tg;
9b5b7751 349
052f1dc7 350#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
052f1dc7 354#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
24e377a8 357#else
41a2d6cf 358 tg = &init_task_group;
24e377a8 359#endif
9b5b7751 360 return tg;
29f59db3
SV
361}
362
363/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 364static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 365{
052f1dc7 366#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
052f1dc7 369#endif
6f505b16 370
052f1dc7 371#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 374#endif
29f59db3
SV
375}
376
377#else
378
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
380static inline struct task_group *task_group(struct task_struct *p)
381{
382 return NULL;
383}
29f59db3 384
052f1dc7 385#endif /* CONFIG_GROUP_SCHED */
29f59db3 386
6aa645ea
IM
387/* CFS-related fields in a runqueue */
388struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
6aa645ea 392 u64 exec_clock;
e9acbff6 393 u64 min_vruntime;
6aa645ea
IM
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
4a55bd5e
PZ
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
4793241b 405 struct sched_entity *curr, *next, *last;
ddc97297 406
5ac5c4d6 407 unsigned int nr_spread_over;
ddc97297 408
62160e3f 409#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
41a2d6cf
IM
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
41a2d6cf
IM
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
422
423#ifdef CONFIG_SMP
c09595f6 424 /*
c8cba857 425 * the part of load.weight contributed by tasks
c09595f6 426 */
c8cba857 427 unsigned long task_weight;
c09595f6 428
c8cba857
PZ
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
c09595f6 436
c8cba857
PZ
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
f1d239f7
PZ
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
c09595f6 446#endif
6aa645ea
IM
447#endif
448};
1da177e4 449
6aa645ea
IM
450/* Real-Time classes' related field in a runqueue: */
451struct rt_rq {
452 struct rt_prio_array active;
63489e45 453 unsigned long rt_nr_running;
052f1dc7 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
455 struct {
456 int curr; /* highest queued rt task prio */
398a153b 457#ifdef CONFIG_SMP
e864c499 458 int next; /* next highest */
398a153b 459#endif
e864c499 460 } highest_prio;
6f505b16 461#endif
fa85ae24 462#ifdef CONFIG_SMP
73fe6aae 463 unsigned long rt_nr_migratory;
a1ba4d8b 464 unsigned long rt_nr_total;
a22d7fc1 465 int overloaded;
917b627d 466 struct plist_head pushable_tasks;
fa85ae24 467#endif
6f505b16 468 int rt_throttled;
fa85ae24 469 u64 rt_time;
ac086bc2 470 u64 rt_runtime;
ea736ed5 471 /* Nests inside the rq lock: */
ac086bc2 472 spinlock_t rt_runtime_lock;
6f505b16 473
052f1dc7 474#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
475 unsigned long rt_nr_boosted;
476
6f505b16
PZ
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481#endif
6aa645ea
IM
482};
483
57d885fe
GH
484#ifdef CONFIG_SMP
485
486/*
487 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
57d885fe
GH
493 */
494struct root_domain {
495 atomic_t refcount;
c6c4927b
RR
496 cpumask_var_t span;
497 cpumask_var_t online;
637f5085 498
0eab9146 499 /*
637f5085
GH
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
c6c4927b 503 cpumask_var_t rto_mask;
0eab9146 504 atomic_t rto_count;
6e0534f2
GH
505#ifdef CONFIG_SMP
506 struct cpupri cpupri;
507#endif
57d885fe
GH
508};
509
dc938520
GH
510/*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
57d885fe
GH
514static struct root_domain def_root_domain;
515
516#endif
517
1da177e4
LT
518/*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
70b97a7f 525struct rq {
d8016491
IM
526 /* runqueue lock: */
527 spinlock_t lock;
1da177e4
LT
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
6aa645ea
IM
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
536#ifdef CONFIG_NO_HZ
537 unsigned char in_nohz_recently;
538#endif
d8016491
IM
539 /* capture load from *all* tasks on this cpu: */
540 struct load_weight load;
6aa645ea
IM
541 unsigned long nr_load_updates;
542 u64 nr_switches;
543
544 struct cfs_rq cfs;
6f505b16 545 struct rt_rq rt;
6f505b16 546
6aa645ea 547#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
548 /* list of leaf cfs_rq on this cpu: */
549 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
550#endif
551#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 552 struct list_head leaf_rt_rq_list;
1da177e4 553#endif
1da177e4
LT
554
555 /*
556 * This is part of a global counter where only the total sum
557 * over all CPUs matters. A task can increase this counter on
558 * one CPU and if it got migrated afterwards it may decrease
559 * it on another CPU. Always updated under the runqueue lock:
560 */
561 unsigned long nr_uninterruptible;
562
36c8b586 563 struct task_struct *curr, *idle;
c9819f45 564 unsigned long next_balance;
1da177e4 565 struct mm_struct *prev_mm;
6aa645ea 566
3e51f33f 567 u64 clock;
6aa645ea 568
1da177e4
LT
569 atomic_t nr_iowait;
570
571#ifdef CONFIG_SMP
0eab9146 572 struct root_domain *rd;
1da177e4
LT
573 struct sched_domain *sd;
574
a0a522ce 575 unsigned char idle_at_tick;
1da177e4 576 /* For active balancing */
3f029d3c 577 int post_schedule;
1da177e4
LT
578 int active_balance;
579 int push_cpu;
d8016491
IM
580 /* cpu of this runqueue: */
581 int cpu;
1f11eb6a 582 int online;
1da177e4 583
a8a51d5e 584 unsigned long avg_load_per_task;
1da177e4 585
36c8b586 586 struct task_struct *migration_thread;
1da177e4 587 struct list_head migration_queue;
e9e9250b
PZ
588
589 u64 rt_avg;
590 u64 age_stamp;
1b9508f6
MG
591 u64 idle_stamp;
592 u64 avg_idle;
1da177e4
LT
593#endif
594
dce48a84
TG
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
8f4d37ec 599#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
600#ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603#endif
8f4d37ec
PZ
604 struct hrtimer hrtick_timer;
605#endif
606
1da177e4
LT
607#ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
9c2c4802
KC
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
612
613 /* sys_sched_yield() stats */
480b9434 614 unsigned int yld_count;
1da177e4
LT
615
616 /* schedule() stats */
480b9434
KC
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
1da177e4
LT
620
621 /* try_to_wake_up() stats */
480b9434
KC
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
b8efb561
IM
624
625 /* BKL stats */
480b9434 626 unsigned int bkl_count;
1da177e4
LT
627#endif
628};
629
f34e3b61 630static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 631
7d478721
PZ
632static inline
633void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 634{
7d478721 635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
636}
637
0a2966b4
CL
638static inline int cpu_of(struct rq *rq)
639{
640#ifdef CONFIG_SMP
641 return rq->cpu;
642#else
643 return 0;
644#endif
645}
646
674311d5
NP
647/*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 649 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
48f24c4d
IM
654#define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
656
657#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658#define this_rq() (&__get_cpu_var(runqueues))
659#define task_rq(p) cpu_rq(task_cpu(p))
660#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 661#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 662
aa9c4c0f 663inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
664{
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666}
667
bf5c91ba
IM
668/*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671#ifdef CONFIG_SCHED_DEBUG
672# define const_debug __read_mostly
673#else
674# define const_debug static const
675#endif
676
017730c1
IM
677/**
678 * runqueue_is_locked
e17b38bf 679 * @cpu: the processor in question.
017730c1
IM
680 *
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
684 */
89f19f04 685int runqueue_is_locked(int cpu)
017730c1 686{
89f19f04 687 return spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
688}
689
bf5c91ba
IM
690/*
691 * Debugging: various feature bits
692 */
f00b45c1
PZ
693
694#define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
696
bf5c91ba 697enum {
f00b45c1 698#include "sched_features.h"
bf5c91ba
IM
699};
700
f00b45c1
PZ
701#undef SCHED_FEAT
702
703#define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
705
bf5c91ba 706const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
707#include "sched_features.h"
708 0;
709
710#undef SCHED_FEAT
711
712#ifdef CONFIG_SCHED_DEBUG
713#define SCHED_FEAT(name, enabled) \
714 #name ,
715
983ed7a6 716static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
717#include "sched_features.h"
718 NULL
719};
720
721#undef SCHED_FEAT
722
34f3a814 723static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 724{
f00b45c1
PZ
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 731 }
34f3a814 732 seq_puts(m, "\n");
f00b45c1 733
34f3a814 734 return 0;
f00b45c1
PZ
735}
736
737static ssize_t
738sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
740{
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
745
746 if (cnt > 63)
747 cnt = 63;
748
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
751
752 buf[cnt] = 0;
753
c24b7c52 754 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
761
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
774 filp->f_pos += cnt;
775
776 return cnt;
777}
778
34f3a814
LZ
779static int sched_feat_open(struct inode *inode, struct file *filp)
780{
781 return single_open(filp, sched_feat_show, NULL);
782}
783
828c0950 784static const struct file_operations sched_feat_fops = {
34f3a814
LZ
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
f00b45c1
PZ
790};
791
792static __init int sched_init_debug(void)
793{
f00b45c1
PZ
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798}
799late_initcall(sched_init_debug);
800
801#endif
802
803#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 804
b82d9fdd
PZ
805/*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
2398f2c6
PZ
811/*
812 * ratelimit for updating the group shares.
55cd5340 813 * default: 0.25ms
2398f2c6 814 */
55cd5340 815unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 816
ffda12a1
PZ
817/*
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
821 */
822unsigned int sysctl_sched_shares_thresh = 4;
823
e9e9250b
PZ
824/*
825 * period over which we average the RT time consumption, measured
826 * in ms.
827 *
828 * default: 1s
829 */
830const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
831
fa85ae24 832/*
9f0c1e56 833 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
834 * default: 1s
835 */
9f0c1e56 836unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 837
6892b75e
IM
838static __read_mostly int scheduler_running;
839
9f0c1e56
PZ
840/*
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
843 */
844int sysctl_sched_rt_runtime = 950000;
fa85ae24 845
d0b27fa7
PZ
846static inline u64 global_rt_period(void)
847{
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
849}
850
851static inline u64 global_rt_runtime(void)
852{
e26873bb 853 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
854 return RUNTIME_INF;
855
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
857}
fa85ae24 858
1da177e4 859#ifndef prepare_arch_switch
4866cde0
NP
860# define prepare_arch_switch(next) do { } while (0)
861#endif
862#ifndef finish_arch_switch
863# define finish_arch_switch(prev) do { } while (0)
864#endif
865
051a1d1a
DA
866static inline int task_current(struct rq *rq, struct task_struct *p)
867{
868 return rq->curr == p;
869}
870
4866cde0 871#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 872static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 873{
051a1d1a 874 return task_current(rq, p);
4866cde0
NP
875}
876
70b97a7f 877static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
878{
879}
880
70b97a7f 881static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 882{
da04c035
IM
883#ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886#endif
8a25d5de
IM
887 /*
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
891 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893
4866cde0
NP
894 spin_unlock_irq(&rq->lock);
895}
896
897#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 898static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
899{
900#ifdef CONFIG_SMP
901 return p->oncpu;
902#else
051a1d1a 903 return task_current(rq, p);
4866cde0
NP
904#endif
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
914 */
915 next->oncpu = 1;
916#endif
917#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919#else
920 spin_unlock(&rq->lock);
921#endif
922}
923
70b97a7f 924static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
925{
926#ifdef CONFIG_SMP
927 /*
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
931 */
932 smp_wmb();
933 prev->oncpu = 0;
934#endif
935#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
1da177e4 937#endif
4866cde0
NP
938}
939#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 940
b29739f9
IM
941/*
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
944 */
70b97a7f 945static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
946 __acquires(rq->lock)
947{
3a5c359a
AK
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
b29739f9 953 spin_unlock(&rq->lock);
b29739f9 954 }
b29739f9
IM
955}
956
1da177e4
LT
957/*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 959 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
960 * explicitly disabling preemption.
961 */
70b97a7f 962static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
963 __acquires(rq->lock)
964{
70b97a7f 965 struct rq *rq;
1da177e4 966
3a5c359a
AK
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
1da177e4 973 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 974 }
1da177e4
LT
975}
976
ad474cac
ON
977void task_rq_unlock_wait(struct task_struct *p)
978{
979 struct rq *rq = task_rq(p);
980
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
983}
984
a9957449 985static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
986 __releases(rq->lock)
987{
988 spin_unlock(&rq->lock);
989}
990
70b97a7f 991static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
992 __releases(rq->lock)
993{
994 spin_unlock_irqrestore(&rq->lock, *flags);
995}
996
1da177e4 997/*
cc2a73b5 998 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 999 */
a9957449 1000static struct rq *this_rq_lock(void)
1da177e4
LT
1001 __acquires(rq->lock)
1002{
70b97a7f 1003 struct rq *rq;
1da177e4
LT
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1008
1009 return rq;
1010}
1011
8f4d37ec
PZ
1012#ifdef CONFIG_SCHED_HRTICK
1013/*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
8f4d37ec
PZ
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
ba42059f 1033 if (!cpu_active(cpu_of(rq)))
b328ca18 1034 return 0;
8f4d37ec
PZ
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038static void hrtick_clear(struct rq *rq)
1039{
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042}
1043
8f4d37ec
PZ
1044/*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049{
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 spin_lock(&rq->lock);
3e51f33f 1055 update_rq_clock(rq);
8f4d37ec
PZ
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060}
1061
95e904c7 1062#ifdef CONFIG_SMP
31656519
PZ
1063/*
1064 * called from hardirq (IPI) context
1065 */
1066static void __hrtick_start(void *arg)
b328ca18 1067{
31656519 1068 struct rq *rq = arg;
b328ca18 1069
31656519
PZ
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
b328ca18
PZ
1074}
1075
31656519
PZ
1076/*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1082{
31656519
PZ
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1085
cc584b21 1086 hrtimer_set_expires(timer, time);
31656519
PZ
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
6e275637 1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1092 rq->hrtick_csd_pending = 1;
1093 }
b328ca18
PZ
1094}
1095
1096static int
1097hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098{
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
31656519 1108 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113}
1114
fa748203 1115static __init void init_hrtick(void)
b328ca18
PZ
1116{
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118}
31656519
PZ
1119#else
1120/*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125static void hrtick_start(struct rq *rq, u64 delay)
1126{
7f1e2ca9 1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1128 HRTIMER_MODE_REL_PINNED, 0);
31656519 1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
8f4d37ec 1148}
006c75f1 1149#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1150static inline void hrtick_clear(struct rq *rq)
1151{
1152}
1153
8f4d37ec
PZ
1154static inline void init_rq_hrtick(struct rq *rq)
1155{
1156}
1157
b328ca18
PZ
1158static inline void init_hrtick(void)
1159{
1160}
006c75f1 1161#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1162
c24d20db
IM
1163/*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170#ifdef CONFIG_SMP
1171
1172#ifndef tsk_is_polling
1173#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174#endif
1175
31656519 1176static void resched_task(struct task_struct *p)
c24d20db
IM
1177{
1178 int cpu;
1179
1180 assert_spin_locked(&task_rq(p)->lock);
1181
5ed0cec0 1182 if (test_tsk_need_resched(p))
c24d20db
IM
1183 return;
1184
5ed0cec0 1185 set_tsk_need_resched(p);
c24d20db
IM
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195}
1196
1197static void resched_cpu(int cpu)
1198{
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1206}
06d8308c
TG
1207
1208#ifdef CONFIG_NO_HZ
1209/*
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1218 */
1219void wake_up_idle_cpu(int cpu)
1220{
1221 struct rq *rq = cpu_rq(cpu);
1222
1223 if (cpu == smp_processor_id())
1224 return;
1225
1226 /*
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1232 */
1233 if (rq->curr != rq->idle)
1234 return;
1235
1236 /*
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1240 */
5ed0cec0 1241 set_tsk_need_resched(rq->idle);
06d8308c
TG
1242
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1247}
6d6bc0ad 1248#endif /* CONFIG_NO_HZ */
06d8308c 1249
e9e9250b
PZ
1250static u64 sched_avg_period(void)
1251{
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253}
1254
1255static void sched_avg_update(struct rq *rq)
1256{
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263}
1264
1265static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266{
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269}
1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
31656519 1272static void resched_task(struct task_struct *p)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
31656519 1275 set_tsk_need_resched(p);
c24d20db 1276}
e9e9250b
PZ
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280}
6d6bc0ad 1281#endif /* CONFIG_SMP */
c24d20db 1282
45bf76df
IM
1283#if BITS_PER_LONG == 32
1284# define WMULT_CONST (~0UL)
1285#else
1286# define WMULT_CONST (1UL << 32)
1287#endif
1288
1289#define WMULT_SHIFT 32
1290
194081eb
IM
1291/*
1292 * Shift right and round:
1293 */
cf2ab469 1294#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1295
a7be37ac
PZ
1296/*
1297 * delta *= weight / lw
1298 */
cb1c4fc9 1299static unsigned long
45bf76df
IM
1300calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302{
1303 u64 tmp;
1304
7a232e03
LJ
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
45bf76df
IM
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
194081eb 1317 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1319 WMULT_SHIFT/2);
1320 else
cf2ab469 1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1322
ecf691da 1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1327{
1328 lw->weight += inc;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1333{
1334 lw->weight -= dec;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
2dd73a4f
PW
1338/*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
cce7ade8
PZ
1347#define WEIGHT_IDLEPRIO 3
1348#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1349
1350/*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
dd41f596
IM
1361 */
1362static const int prio_to_weight[40] = {
254753dc
IM
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1371};
1372
5714d2de
IM
1373/*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
dd41f596 1380static const u32 prio_to_wmult[40] = {
254753dc
IM
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1389};
2dd73a4f 1390
dd41f596
IM
1391static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393/*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402};
1403
e1d1484f
PW
1404#ifdef CONFIG_SMP
1405static unsigned long
1406balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411static int
1412iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
e1d1484f 1415#endif
dd41f596 1416
ef12fefa
BR
1417/* Time spent by the tasks of the cpu accounting group executing in ... */
1418enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423};
1424
d842de87
SV
1425#ifdef CONFIG_CGROUP_CPUACCT
1426static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1427static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1429#else
1430static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1431static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1433#endif
1434
18d95a28
PZ
1435static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436{
1437 update_load_add(&rq->load, load);
1438}
1439
1440static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_sub(&rq->load, load);
1443}
1444
7940ca36 1445#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1446typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
eb755805 1452static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1453{
1454 struct task_group *parent, *child;
eb755805 1455 int ret;
c09595f6
PZ
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
eb755805
PZ
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
c09595f6
PZ
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467up:
1468 continue;
1469 }
eb755805
PZ
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
c09595f6
PZ
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
eb755805 1478out_unlock:
c09595f6 1479 rcu_read_unlock();
eb755805
PZ
1480
1481 return ret;
c09595f6
PZ
1482}
1483
eb755805
PZ
1484static int tg_nop(struct task_group *tg, void *data)
1485{
1486 return 0;
c09595f6 1487}
eb755805
PZ
1488#endif
1489
1490#ifdef CONFIG_SMP
f5f08f39
PZ
1491/* Used instead of source_load when we know the type == 0 */
1492static unsigned long weighted_cpuload(const int cpu)
1493{
1494 return cpu_rq(cpu)->load.weight;
1495}
1496
1497/*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504static unsigned long source_load(int cpu, int type)
1505{
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513}
1514
1515/*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519static unsigned long target_load(int cpu, int type)
1520{
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528}
1529
ae154be1
PZ
1530static struct sched_group *group_of(int cpu)
1531{
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533
1534 if (!sd)
1535 return NULL;
1536
1537 return sd->groups;
1538}
1539
1540static unsigned long power_of(int cpu)
1541{
1542 struct sched_group *group = group_of(cpu);
1543
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1546
1547 return group->cpu_power;
1548}
1549
eb755805
PZ
1550static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551
1552static unsigned long cpu_avg_load_per_task(int cpu)
1553{
1554 struct rq *rq = cpu_rq(cpu);
af6d596f 1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1556
4cd42620
SR
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1559 else
1560 rq->avg_load_per_task = 0;
eb755805
PZ
1561
1562 return rq->avg_load_per_task;
1563}
1564
1565#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1566
34d76c41
PZ
1567struct update_shares_data {
1568 unsigned long rq_weight[NR_CPUS];
1569};
1570
1571static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1572
c09595f6
PZ
1573static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575/*
1576 * Calculate and set the cpu's group shares.
1577 */
34d76c41
PZ
1578static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 struct update_shares_data *usd)
18d95a28 1582{
34d76c41 1583 unsigned long shares, rq_weight;
a5004278 1584 int boost = 0;
c09595f6 1585
34d76c41 1586 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
c8cba857 1591
c09595f6 1592 /*
a8af7246
PZ
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
c09595f6 1596 */
ec4e0e2f 1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1599
ffda12a1
PZ
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
c09595f6 1604
ffda12a1 1605 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1610 }
18d95a28 1611}
c09595f6
PZ
1612
1613/*
c8cba857
PZ
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
c09595f6 1617 */
eb755805 1618static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1619{
34d76c41
PZ
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 struct update_shares_data *usd;
eb755805 1622 struct sched_domain *sd = data;
34d76c41 1623 unsigned long flags;
c8cba857 1624 int i;
c09595f6 1625
34d76c41
PZ
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd = &__get_cpu_var(update_shares_data);
1631
758b2cdc 1632 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd->rq_weight[i] = weight;
1635
ec4e0e2f
KC
1636 /*
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1640 */
ec4e0e2f
KC
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1643
ec4e0e2f 1644 rq_weight += weight;
c8cba857 1645 shares += tg->cfs_rq[i]->shares;
c09595f6 1646 }
c09595f6 1647
c8cba857
PZ
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1650
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
c09595f6 1653
758b2cdc 1654 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1656
1657 local_irq_restore(flags);
eb755805
PZ
1658
1659 return 0;
c09595f6
PZ
1660}
1661
1662/*
c8cba857
PZ
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
c09595f6 1666 */
eb755805 1667static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1668{
c8cba857 1669 unsigned long load;
eb755805 1670 long cpu = (long)data;
c09595f6 1671
c8cba857
PZ
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1678 }
c09595f6 1679
c8cba857 1680 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1681
eb755805 1682 return 0;
c09595f6
PZ
1683}
1684
c8cba857 1685static void update_shares(struct sched_domain *sd)
4d8d595d 1686{
e7097159
PZ
1687 s64 elapsed;
1688 u64 now;
1689
1690 if (root_task_group_empty())
1691 return;
1692
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
2398f2c6
PZ
1695
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
eb755805 1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1699 }
4d8d595d
PZ
1700}
1701
3e5459b4
PZ
1702static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703{
e7097159
PZ
1704 if (root_task_group_empty())
1705 return;
1706
3e5459b4
PZ
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1710}
1711
eb755805 1712static void update_h_load(long cpu)
c09595f6 1713{
e7097159
PZ
1714 if (root_task_group_empty())
1715 return;
1716
eb755805 1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1718}
1719
c09595f6
PZ
1720#else
1721
c8cba857 1722static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1723{
1724}
1725
3e5459b4
PZ
1726static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1727{
1728}
1729
18d95a28
PZ
1730#endif
1731
8f45e2b5
GH
1732#ifdef CONFIG_PREEMPT
1733
b78bb868
PZ
1734static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1735
70574a99 1736/*
8f45e2b5
GH
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
70574a99 1743 */
8f45e2b5
GH
1744static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1748{
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1751
1752 return 1;
1753}
1754
1755#else
1756/*
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1762 */
1763static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1767{
1768 int ret = 0;
1769
70574a99
AD
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 }
1779 return ret;
1780}
1781
8f45e2b5
GH
1782#endif /* CONFIG_PREEMPT */
1783
1784/*
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 */
1787static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788{
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1793 }
1794
1795 return _double_lock_balance(this_rq, busiest);
1796}
1797
70574a99
AD
1798static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1800{
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803}
18d95a28
PZ
1804#endif
1805
30432094 1806#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1807static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808{
30432094 1809#ifdef CONFIG_SMP
34e83e85
IM
1810 cfs_rq->shares = shares;
1811#endif
1812}
30432094 1813#endif
e7693a36 1814
dce48a84
TG
1815static void calc_load_account_active(struct rq *this_rq);
1816
dd41f596 1817#include "sched_stats.h"
dd41f596 1818#include "sched_idletask.c"
5522d5d5
IM
1819#include "sched_fair.c"
1820#include "sched_rt.c"
dd41f596
IM
1821#ifdef CONFIG_SCHED_DEBUG
1822# include "sched_debug.c"
1823#endif
1824
1825#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1826#define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
dd41f596 1828
c09595f6 1829static void inc_nr_running(struct rq *rq)
9c217245
IM
1830{
1831 rq->nr_running++;
9c217245
IM
1832}
1833
c09595f6 1834static void dec_nr_running(struct rq *rq)
9c217245
IM
1835{
1836 rq->nr_running--;
9c217245
IM
1837}
1838
45bf76df
IM
1839static void set_load_weight(struct task_struct *p)
1840{
1841 if (task_has_rt_policy(p)) {
dd41f596
IM
1842 p->se.load.weight = prio_to_weight[0] * 2;
1843 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1844 return;
1845 }
45bf76df 1846
dd41f596
IM
1847 /*
1848 * SCHED_IDLE tasks get minimal weight:
1849 */
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1854 }
71f8bd46 1855
dd41f596
IM
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1858}
1859
2087a1ad
GH
1860static void update_avg(u64 *avg, u64 sample)
1861{
1862 s64 diff = sample - *avg;
1863 *avg += diff >> 3;
1864}
1865
8159f87e 1866static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1867{
831451ac
PZ
1868 if (wakeup)
1869 p->se.start_runtime = p->se.sum_exec_runtime;
1870
dd41f596 1871 sched_info_queued(p);
fd390f6a 1872 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1873 p->se.on_rq = 1;
71f8bd46
IM
1874}
1875
69be72c1 1876static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1877{
831451ac
PZ
1878 if (sleep) {
1879 if (p->se.last_wakeup) {
1880 update_avg(&p->se.avg_overlap,
1881 p->se.sum_exec_runtime - p->se.last_wakeup);
1882 p->se.last_wakeup = 0;
1883 } else {
1884 update_avg(&p->se.avg_wakeup,
1885 sysctl_sched_wakeup_granularity);
1886 }
2087a1ad
GH
1887 }
1888
46ac22ba 1889 sched_info_dequeued(p);
f02231e5 1890 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1891 p->se.on_rq = 0;
71f8bd46
IM
1892}
1893
14531189 1894/*
dd41f596 1895 * __normal_prio - return the priority that is based on the static prio
14531189 1896 */
14531189
IM
1897static inline int __normal_prio(struct task_struct *p)
1898{
dd41f596 1899 return p->static_prio;
14531189
IM
1900}
1901
b29739f9
IM
1902/*
1903 * Calculate the expected normal priority: i.e. priority
1904 * without taking RT-inheritance into account. Might be
1905 * boosted by interactivity modifiers. Changes upon fork,
1906 * setprio syscalls, and whenever the interactivity
1907 * estimator recalculates.
1908 */
36c8b586 1909static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1910{
1911 int prio;
1912
e05606d3 1913 if (task_has_rt_policy(p))
b29739f9
IM
1914 prio = MAX_RT_PRIO-1 - p->rt_priority;
1915 else
1916 prio = __normal_prio(p);
1917 return prio;
1918}
1919
1920/*
1921 * Calculate the current priority, i.e. the priority
1922 * taken into account by the scheduler. This value might
1923 * be boosted by RT tasks, or might be boosted by
1924 * interactivity modifiers. Will be RT if the task got
1925 * RT-boosted. If not then it returns p->normal_prio.
1926 */
36c8b586 1927static int effective_prio(struct task_struct *p)
b29739f9
IM
1928{
1929 p->normal_prio = normal_prio(p);
1930 /*
1931 * If we are RT tasks or we were boosted to RT priority,
1932 * keep the priority unchanged. Otherwise, update priority
1933 * to the normal priority:
1934 */
1935 if (!rt_prio(p->prio))
1936 return p->normal_prio;
1937 return p->prio;
1938}
1939
1da177e4 1940/*
dd41f596 1941 * activate_task - move a task to the runqueue.
1da177e4 1942 */
dd41f596 1943static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1944{
d9514f6c 1945 if (task_contributes_to_load(p))
dd41f596 1946 rq->nr_uninterruptible--;
1da177e4 1947
8159f87e 1948 enqueue_task(rq, p, wakeup);
c09595f6 1949 inc_nr_running(rq);
1da177e4
LT
1950}
1951
1da177e4
LT
1952/*
1953 * deactivate_task - remove a task from the runqueue.
1954 */
2e1cb74a 1955static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1956{
d9514f6c 1957 if (task_contributes_to_load(p))
dd41f596
IM
1958 rq->nr_uninterruptible++;
1959
69be72c1 1960 dequeue_task(rq, p, sleep);
c09595f6 1961 dec_nr_running(rq);
1da177e4
LT
1962}
1963
1da177e4
LT
1964/**
1965 * task_curr - is this task currently executing on a CPU?
1966 * @p: the task in question.
1967 */
36c8b586 1968inline int task_curr(const struct task_struct *p)
1da177e4
LT
1969{
1970 return cpu_curr(task_cpu(p)) == p;
1971}
1972
dd41f596
IM
1973static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974{
6f505b16 1975 set_task_rq(p, cpu);
dd41f596 1976#ifdef CONFIG_SMP
ce96b5ac
DA
1977 /*
1978 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1979 * successfuly executed on another CPU. We must ensure that updates of
1980 * per-task data have been completed by this moment.
1981 */
1982 smp_wmb();
dd41f596 1983 task_thread_info(p)->cpu = cpu;
dd41f596 1984#endif
2dd73a4f
PW
1985}
1986
cb469845
SR
1987static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1990{
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1997}
1998
1da177e4 1999#ifdef CONFIG_SMP
cc367732
IM
2000/*
2001 * Is this task likely cache-hot:
2002 */
e7693a36 2003static int
cc367732
IM
2004task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005{
2006 s64 delta;
2007
f540a608
IM
2008 /*
2009 * Buddy candidates are cache hot:
2010 */
4793241b
PZ
2011 if (sched_feat(CACHE_HOT_BUDDY) &&
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2014 return 1;
2015
cc367732
IM
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
6bc1665b
IM
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2023
cc367732
IM
2024 delta = now - p->se.exec_start;
2025
2026 return delta < (s64)sysctl_sched_migration_cost;
2027}
2028
2029
dd41f596 2030void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2031{
dd41f596
IM
2032 int old_cpu = task_cpu(p);
2033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2036 u64 clock_offset;
dd41f596
IM
2037
2038 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 2039
de1d7286 2040 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2041
6cfb0d5d
IM
2042#ifdef CONFIG_SCHEDSTATS
2043 if (p->se.wait_start)
2044 p->se.wait_start -= clock_offset;
dd41f596
IM
2045 if (p->se.sleep_start)
2046 p->se.sleep_start -= clock_offset;
2047 if (p->se.block_start)
2048 p->se.block_start -= clock_offset;
6c594c21 2049#endif
cc367732 2050 if (old_cpu != new_cpu) {
6c594c21
IM
2051 p->se.nr_migrations++;
2052#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2055#endif
cdd6c482 2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
e5289d4a 2057 1, 1, NULL, 0);
6c594c21 2058 }
2830cf8c
SV
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
dd41f596
IM
2061
2062 __set_task_cpu(p, new_cpu);
c65cc870
IM
2063}
2064
70b97a7f 2065struct migration_req {
1da177e4 2066 struct list_head list;
1da177e4 2067
36c8b586 2068 struct task_struct *task;
1da177e4
LT
2069 int dest_cpu;
2070
1da177e4 2071 struct completion done;
70b97a7f 2072};
1da177e4
LT
2073
2074/*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
36c8b586 2078static int
70b97a7f 2079migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2080{
70b97a7f 2081 struct rq *rq = task_rq(p);
1da177e4
LT
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
dd41f596 2087 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
1da177e4
LT
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
48f24c4d 2096
1da177e4
LT
2097 return 1;
2098}
2099
a26b89f0
MM
2100/*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106void wait_task_context_switch(struct task_struct *p)
2107{
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141}
2142
1da177e4
LT
2143/*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
85ba2d86
RM
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
1da177e4
LT
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
85ba2d86 2159unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2160{
2161 unsigned long flags;
dd41f596 2162 int running, on_rq;
85ba2d86 2163 unsigned long ncsw;
70b97a7f 2164 struct rq *rq;
1da177e4 2165
3a5c359a
AK
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
85ba2d86
RM
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
3a5c359a 2189 cpu_relax();
85ba2d86 2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
0a16b607 2198 trace_sched_wait_task(rq, p);
3a5c359a
AK
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
85ba2d86 2201 ncsw = 0;
f31e11d8 2202 if (!match_state || p->state == match_state)
93dcf55f 2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2204 task_rq_unlock(rq, &flags);
fa490cfd 2205
85ba2d86
RM
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
3a5c359a
AK
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
fa490cfd 2222
3a5c359a
AK
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
80dd99b3 2228 * So if it was still runnable (but just not actively
3a5c359a
AK
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
fa490cfd 2236
3a5c359a
AK
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
85ba2d86
RM
2244
2245 return ncsw;
1da177e4
LT
2246}
2247
2248/***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
36c8b586 2261void kick_process(struct task_struct *p)
1da177e4
LT
2262{
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270}
b43e3521 2271EXPORT_SYMBOL_GPL(kick_process);
476d139c 2272#endif /* CONFIG_SMP */
1da177e4 2273
0793a61d
TG
2274/**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285{
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293}
2294
1da177e4
LT
2295/***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
7d478721
PZ
2309static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
1da177e4 2311{
cc367732 2312 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2313 unsigned long flags;
f5dc3753 2314 struct rq *rq, *orig_rq;
1da177e4 2315
b85d0667 2316 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2317 wake_flags &= ~WF_SYNC;
2398f2c6 2318
e9c84311 2319 this_cpu = get_cpu();
2398f2c6 2320
04e2f174 2321 smp_wmb();
f5dc3753 2322 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2323 update_rq_clock(rq);
e9c84311 2324 if (!(p->state & state))
1da177e4
LT
2325 goto out;
2326
dd41f596 2327 if (p->se.on_rq)
1da177e4
LT
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
cc367732 2331 orig_cpu = cpu;
1da177e4
LT
2332
2333#ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
e9c84311
PZ
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
eb24073b
IM
2340 *
2341 * First fix up the nr_uninterruptible count:
e9c84311 2342 */
eb24073b
IM
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
e9c84311
PZ
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
7d478721 2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
e9c84311 2349 if (cpu != orig_cpu)
5d2f5a61 2350 set_task_cpu(p, cpu);
1da177e4 2351
e9c84311 2352 rq = task_rq_lock(p, &flags);
f5dc3753
MG
2353
2354 if (rq != orig_rq)
2355 update_rq_clock(rq);
2356
e9c84311
PZ
2357 WARN_ON(p->state != TASK_WAKING);
2358 cpu = task_cpu(p);
1da177e4 2359
e7693a36
GH
2360#ifdef CONFIG_SCHEDSTATS
2361 schedstat_inc(rq, ttwu_count);
2362 if (cpu == this_cpu)
2363 schedstat_inc(rq, ttwu_local);
2364 else {
2365 struct sched_domain *sd;
2366 for_each_domain(this_cpu, sd) {
758b2cdc 2367 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2368 schedstat_inc(sd, ttwu_wake_remote);
2369 break;
2370 }
2371 }
2372 }
6d6bc0ad 2373#endif /* CONFIG_SCHEDSTATS */
e7693a36 2374
1da177e4
LT
2375out_activate:
2376#endif /* CONFIG_SMP */
cc367732 2377 schedstat_inc(p, se.nr_wakeups);
7d478721 2378 if (wake_flags & WF_SYNC)
cc367732
IM
2379 schedstat_inc(p, se.nr_wakeups_sync);
2380 if (orig_cpu != cpu)
2381 schedstat_inc(p, se.nr_wakeups_migrate);
2382 if (cpu == this_cpu)
2383 schedstat_inc(p, se.nr_wakeups_local);
2384 else
2385 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2386 activate_task(rq, p, 1);
1da177e4
LT
2387 success = 1;
2388
831451ac
PZ
2389 /*
2390 * Only attribute actual wakeups done by this task.
2391 */
2392 if (!in_interrupt()) {
2393 struct sched_entity *se = &current->se;
2394 u64 sample = se->sum_exec_runtime;
2395
2396 if (se->last_wakeup)
2397 sample -= se->last_wakeup;
2398 else
2399 sample -= se->start_runtime;
2400 update_avg(&se->avg_wakeup, sample);
2401
2402 se->last_wakeup = se->sum_exec_runtime;
2403 }
2404
1da177e4 2405out_running:
468a15bb 2406 trace_sched_wakeup(rq, p, success);
7d478721 2407 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2408
1da177e4 2409 p->state = TASK_RUNNING;
9a897c5a
SR
2410#ifdef CONFIG_SMP
2411 if (p->sched_class->task_wake_up)
2412 p->sched_class->task_wake_up(rq, p);
eae0c9df
MG
2413
2414 if (unlikely(rq->idle_stamp)) {
2415 u64 delta = rq->clock - rq->idle_stamp;
2416 u64 max = 2*sysctl_sched_migration_cost;
2417
2418 if (delta > max)
2419 rq->avg_idle = max;
2420 else
2421 update_avg(&rq->avg_idle, delta);
2422 rq->idle_stamp = 0;
2423 }
9a897c5a 2424#endif
1da177e4
LT
2425out:
2426 task_rq_unlock(rq, &flags);
e9c84311 2427 put_cpu();
1da177e4
LT
2428
2429 return success;
2430}
2431
50fa610a
DH
2432/**
2433 * wake_up_process - Wake up a specific process
2434 * @p: The process to be woken up.
2435 *
2436 * Attempt to wake up the nominated process and move it to the set of runnable
2437 * processes. Returns 1 if the process was woken up, 0 if it was already
2438 * running.
2439 *
2440 * It may be assumed that this function implies a write memory barrier before
2441 * changing the task state if and only if any tasks are woken up.
2442 */
7ad5b3a5 2443int wake_up_process(struct task_struct *p)
1da177e4 2444{
d9514f6c 2445 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2446}
1da177e4
LT
2447EXPORT_SYMBOL(wake_up_process);
2448
7ad5b3a5 2449int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2450{
2451 return try_to_wake_up(p, state, 0);
2452}
2453
1da177e4
LT
2454/*
2455 * Perform scheduler related setup for a newly forked process p.
2456 * p is forked by current.
dd41f596
IM
2457 *
2458 * __sched_fork() is basic setup used by init_idle() too:
2459 */
2460static void __sched_fork(struct task_struct *p)
2461{
dd41f596
IM
2462 p->se.exec_start = 0;
2463 p->se.sum_exec_runtime = 0;
f6cf891c 2464 p->se.prev_sum_exec_runtime = 0;
6c594c21 2465 p->se.nr_migrations = 0;
4ae7d5ce
IM
2466 p->se.last_wakeup = 0;
2467 p->se.avg_overlap = 0;
831451ac
PZ
2468 p->se.start_runtime = 0;
2469 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
ad4b78bb 2470 p->se.avg_running = 0;
6cfb0d5d
IM
2471
2472#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2473 p->se.wait_start = 0;
2474 p->se.wait_max = 0;
2475 p->se.wait_count = 0;
2476 p->se.wait_sum = 0;
2477
2478 p->se.sleep_start = 0;
2479 p->se.sleep_max = 0;
2480 p->se.sum_sleep_runtime = 0;
2481
2482 p->se.block_start = 0;
2483 p->se.block_max = 0;
2484 p->se.exec_max = 0;
2485 p->se.slice_max = 0;
2486
2487 p->se.nr_migrations_cold = 0;
2488 p->se.nr_failed_migrations_affine = 0;
2489 p->se.nr_failed_migrations_running = 0;
2490 p->se.nr_failed_migrations_hot = 0;
2491 p->se.nr_forced_migrations = 0;
2492 p->se.nr_forced2_migrations = 0;
2493
2494 p->se.nr_wakeups = 0;
2495 p->se.nr_wakeups_sync = 0;
2496 p->se.nr_wakeups_migrate = 0;
2497 p->se.nr_wakeups_local = 0;
2498 p->se.nr_wakeups_remote = 0;
2499 p->se.nr_wakeups_affine = 0;
2500 p->se.nr_wakeups_affine_attempts = 0;
2501 p->se.nr_wakeups_passive = 0;
2502 p->se.nr_wakeups_idle = 0;
2503
6cfb0d5d 2504#endif
476d139c 2505
fa717060 2506 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2507 p->se.on_rq = 0;
4a55bd5e 2508 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2509
e107be36
AK
2510#ifdef CONFIG_PREEMPT_NOTIFIERS
2511 INIT_HLIST_HEAD(&p->preempt_notifiers);
2512#endif
2513
1da177e4
LT
2514 /*
2515 * We mark the process as running here, but have not actually
2516 * inserted it onto the runqueue yet. This guarantees that
2517 * nobody will actually run it, and a signal or other external
2518 * event cannot wake it up and insert it on the runqueue either.
2519 */
2520 p->state = TASK_RUNNING;
dd41f596
IM
2521}
2522
2523/*
2524 * fork()/clone()-time setup:
2525 */
2526void sched_fork(struct task_struct *p, int clone_flags)
2527{
2528 int cpu = get_cpu();
2529
2530 __sched_fork(p);
2531
b9dc29e7
MG
2532 /*
2533 * Revert to default priority/policy on fork if requested.
2534 */
2535 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2536 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2537 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2538 p->normal_prio = p->static_prio;
2539 }
b9dc29e7 2540
6c697bdf
MG
2541 if (PRIO_TO_NICE(p->static_prio) < 0) {
2542 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2543 p->normal_prio = p->static_prio;
6c697bdf
MG
2544 set_load_weight(p);
2545 }
2546
b9dc29e7
MG
2547 /*
2548 * We don't need the reset flag anymore after the fork. It has
2549 * fulfilled its duty:
2550 */
2551 p->sched_reset_on_fork = 0;
2552 }
ca94c442 2553
f83f9ac2
PW
2554 /*
2555 * Make sure we do not leak PI boosting priority to the child.
2556 */
2557 p->prio = current->normal_prio;
2558
2ddbf952
HS
2559 if (!rt_prio(p->prio))
2560 p->sched_class = &fair_sched_class;
b29739f9 2561
5f3edc1b
PZ
2562#ifdef CONFIG_SMP
2563 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2564#endif
2565 set_task_cpu(p, cpu);
2566
52f17b6c 2567#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2568 if (likely(sched_info_on()))
52f17b6c 2569 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2570#endif
d6077cb8 2571#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2572 p->oncpu = 0;
2573#endif
1da177e4 2574#ifdef CONFIG_PREEMPT
4866cde0 2575 /* Want to start with kernel preemption disabled. */
a1261f54 2576 task_thread_info(p)->preempt_count = 1;
1da177e4 2577#endif
917b627d
GH
2578 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2579
476d139c 2580 put_cpu();
1da177e4
LT
2581}
2582
2583/*
2584 * wake_up_new_task - wake up a newly created task for the first time.
2585 *
2586 * This function will do some initial scheduler statistics housekeeping
2587 * that must be done for every newly created context, then puts the task
2588 * on the runqueue and wakes it.
2589 */
7ad5b3a5 2590void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2591{
2592 unsigned long flags;
dd41f596 2593 struct rq *rq;
1da177e4
LT
2594
2595 rq = task_rq_lock(p, &flags);
147cbb4b 2596 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2597 update_rq_clock(rq);
1da177e4 2598
b9dca1e0 2599 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2600 activate_task(rq, p, 0);
1da177e4 2601 } else {
1da177e4 2602 /*
dd41f596
IM
2603 * Let the scheduling class do new task startup
2604 * management (if any):
1da177e4 2605 */
ee0827d8 2606 p->sched_class->task_new(rq, p);
c09595f6 2607 inc_nr_running(rq);
1da177e4 2608 }
c71dd42d 2609 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2610 check_preempt_curr(rq, p, WF_FORK);
9a897c5a
SR
2611#ifdef CONFIG_SMP
2612 if (p->sched_class->task_wake_up)
2613 p->sched_class->task_wake_up(rq, p);
2614#endif
dd41f596 2615 task_rq_unlock(rq, &flags);
1da177e4
LT
2616}
2617
e107be36
AK
2618#ifdef CONFIG_PREEMPT_NOTIFIERS
2619
2620/**
80dd99b3 2621 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2622 * @notifier: notifier struct to register
e107be36
AK
2623 */
2624void preempt_notifier_register(struct preempt_notifier *notifier)
2625{
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2632 * @notifier: notifier struct to unregister
e107be36
AK
2633 *
2634 * This is safe to call from within a preemption notifier.
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638 hlist_del(&notifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644 struct preempt_notifier *notifier;
2645 struct hlist_node *node;
2646
2647 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2649}
2650
2651static void
2652fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654{
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_out(notifier, next);
2660}
2661
6d6bc0ad 2662#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2663
2664static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665{
2666}
2667
2668static void
2669fire_sched_out_preempt_notifiers(struct task_struct *curr,
2670 struct task_struct *next)
2671{
2672}
2673
6d6bc0ad 2674#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2675
4866cde0
NP
2676/**
2677 * prepare_task_switch - prepare to switch tasks
2678 * @rq: the runqueue preparing to switch
421cee29 2679 * @prev: the current task that is being switched out
4866cde0
NP
2680 * @next: the task we are going to switch to.
2681 *
2682 * This is called with the rq lock held and interrupts off. It must
2683 * be paired with a subsequent finish_task_switch after the context
2684 * switch.
2685 *
2686 * prepare_task_switch sets up locking and calls architecture specific
2687 * hooks.
2688 */
e107be36
AK
2689static inline void
2690prepare_task_switch(struct rq *rq, struct task_struct *prev,
2691 struct task_struct *next)
4866cde0 2692{
e107be36 2693 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2694 prepare_lock_switch(rq, next);
2695 prepare_arch_switch(next);
2696}
2697
1da177e4
LT
2698/**
2699 * finish_task_switch - clean up after a task-switch
344babaa 2700 * @rq: runqueue associated with task-switch
1da177e4
LT
2701 * @prev: the thread we just switched away from.
2702 *
4866cde0
NP
2703 * finish_task_switch must be called after the context switch, paired
2704 * with a prepare_task_switch call before the context switch.
2705 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2706 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2707 *
2708 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2709 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2710 * with the lock held can cause deadlocks; see schedule() for
2711 * details.)
2712 */
a9957449 2713static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2714 __releases(rq->lock)
2715{
1da177e4 2716 struct mm_struct *mm = rq->prev_mm;
55a101f8 2717 long prev_state;
1da177e4
LT
2718
2719 rq->prev_mm = NULL;
2720
2721 /*
2722 * A task struct has one reference for the use as "current".
c394cc9f 2723 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2724 * schedule one last time. The schedule call will never return, and
2725 * the scheduled task must drop that reference.
c394cc9f 2726 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2727 * still held, otherwise prev could be scheduled on another cpu, die
2728 * there before we look at prev->state, and then the reference would
2729 * be dropped twice.
2730 * Manfred Spraul <manfred@colorfullife.com>
2731 */
55a101f8 2732 prev_state = prev->state;
4866cde0 2733 finish_arch_switch(prev);
cdd6c482 2734 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2735 finish_lock_switch(rq, prev);
e8fa1362 2736
e107be36 2737 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2738 if (mm)
2739 mmdrop(mm);
c394cc9f 2740 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2741 /*
2742 * Remove function-return probe instances associated with this
2743 * task and put them back on the free list.
9761eea8 2744 */
c6fd91f0 2745 kprobe_flush_task(prev);
1da177e4 2746 put_task_struct(prev);
c6fd91f0 2747 }
1da177e4
LT
2748}
2749
3f029d3c
GH
2750#ifdef CONFIG_SMP
2751
2752/* assumes rq->lock is held */
2753static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2754{
2755 if (prev->sched_class->pre_schedule)
2756 prev->sched_class->pre_schedule(rq, prev);
2757}
2758
2759/* rq->lock is NOT held, but preemption is disabled */
2760static inline void post_schedule(struct rq *rq)
2761{
2762 if (rq->post_schedule) {
2763 unsigned long flags;
2764
2765 spin_lock_irqsave(&rq->lock, flags);
2766 if (rq->curr->sched_class->post_schedule)
2767 rq->curr->sched_class->post_schedule(rq);
2768 spin_unlock_irqrestore(&rq->lock, flags);
2769
2770 rq->post_schedule = 0;
2771 }
2772}
2773
2774#else
da19ab51 2775
3f029d3c
GH
2776static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2777{
2778}
2779
2780static inline void post_schedule(struct rq *rq)
2781{
1da177e4
LT
2782}
2783
3f029d3c
GH
2784#endif
2785
1da177e4
LT
2786/**
2787 * schedule_tail - first thing a freshly forked thread must call.
2788 * @prev: the thread we just switched away from.
2789 */
36c8b586 2790asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2791 __releases(rq->lock)
2792{
70b97a7f
IM
2793 struct rq *rq = this_rq();
2794
4866cde0 2795 finish_task_switch(rq, prev);
da19ab51 2796
3f029d3c
GH
2797 /*
2798 * FIXME: do we need to worry about rq being invalidated by the
2799 * task_switch?
2800 */
2801 post_schedule(rq);
70b97a7f 2802
4866cde0
NP
2803#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2804 /* In this case, finish_task_switch does not reenable preemption */
2805 preempt_enable();
2806#endif
1da177e4 2807 if (current->set_child_tid)
b488893a 2808 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2809}
2810
2811/*
2812 * context_switch - switch to the new MM and the new
2813 * thread's register state.
2814 */
dd41f596 2815static inline void
70b97a7f 2816context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2817 struct task_struct *next)
1da177e4 2818{
dd41f596 2819 struct mm_struct *mm, *oldmm;
1da177e4 2820
e107be36 2821 prepare_task_switch(rq, prev, next);
0a16b607 2822 trace_sched_switch(rq, prev, next);
dd41f596
IM
2823 mm = next->mm;
2824 oldmm = prev->active_mm;
9226d125
ZA
2825 /*
2826 * For paravirt, this is coupled with an exit in switch_to to
2827 * combine the page table reload and the switch backend into
2828 * one hypercall.
2829 */
224101ed 2830 arch_start_context_switch(prev);
9226d125 2831
dd41f596 2832 if (unlikely(!mm)) {
1da177e4
LT
2833 next->active_mm = oldmm;
2834 atomic_inc(&oldmm->mm_count);
2835 enter_lazy_tlb(oldmm, next);
2836 } else
2837 switch_mm(oldmm, mm, next);
2838
dd41f596 2839 if (unlikely(!prev->mm)) {
1da177e4 2840 prev->active_mm = NULL;
1da177e4
LT
2841 rq->prev_mm = oldmm;
2842 }
3a5f5e48
IM
2843 /*
2844 * Since the runqueue lock will be released by the next
2845 * task (which is an invalid locking op but in the case
2846 * of the scheduler it's an obvious special-case), so we
2847 * do an early lockdep release here:
2848 */
2849#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2851#endif
1da177e4
LT
2852
2853 /* Here we just switch the register state and the stack. */
2854 switch_to(prev, next, prev);
2855
dd41f596
IM
2856 barrier();
2857 /*
2858 * this_rq must be evaluated again because prev may have moved
2859 * CPUs since it called schedule(), thus the 'rq' on its stack
2860 * frame will be invalid.
2861 */
2862 finish_task_switch(this_rq(), prev);
1da177e4
LT
2863}
2864
2865/*
2866 * nr_running, nr_uninterruptible and nr_context_switches:
2867 *
2868 * externally visible scheduler statistics: current number of runnable
2869 * threads, current number of uninterruptible-sleeping threads, total
2870 * number of context switches performed since bootup.
2871 */
2872unsigned long nr_running(void)
2873{
2874 unsigned long i, sum = 0;
2875
2876 for_each_online_cpu(i)
2877 sum += cpu_rq(i)->nr_running;
2878
2879 return sum;
2880}
2881
2882unsigned long nr_uninterruptible(void)
2883{
2884 unsigned long i, sum = 0;
2885
0a945022 2886 for_each_possible_cpu(i)
1da177e4
LT
2887 sum += cpu_rq(i)->nr_uninterruptible;
2888
2889 /*
2890 * Since we read the counters lockless, it might be slightly
2891 * inaccurate. Do not allow it to go below zero though:
2892 */
2893 if (unlikely((long)sum < 0))
2894 sum = 0;
2895
2896 return sum;
2897}
2898
2899unsigned long long nr_context_switches(void)
2900{
cc94abfc
SR
2901 int i;
2902 unsigned long long sum = 0;
1da177e4 2903
0a945022 2904 for_each_possible_cpu(i)
1da177e4
LT
2905 sum += cpu_rq(i)->nr_switches;
2906
2907 return sum;
2908}
2909
2910unsigned long nr_iowait(void)
2911{
2912 unsigned long i, sum = 0;
2913
0a945022 2914 for_each_possible_cpu(i)
1da177e4
LT
2915 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2916
2917 return sum;
2918}
2919
69d25870
AV
2920unsigned long nr_iowait_cpu(void)
2921{
2922 struct rq *this = this_rq();
2923 return atomic_read(&this->nr_iowait);
2924}
2925
2926unsigned long this_cpu_load(void)
2927{
2928 struct rq *this = this_rq();
2929 return this->cpu_load[0];
2930}
2931
2932
dce48a84
TG
2933/* Variables and functions for calc_load */
2934static atomic_long_t calc_load_tasks;
2935static unsigned long calc_load_update;
2936unsigned long avenrun[3];
2937EXPORT_SYMBOL(avenrun);
2938
2d02494f
TG
2939/**
2940 * get_avenrun - get the load average array
2941 * @loads: pointer to dest load array
2942 * @offset: offset to add
2943 * @shift: shift count to shift the result left
2944 *
2945 * These values are estimates at best, so no need for locking.
2946 */
2947void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2948{
2949 loads[0] = (avenrun[0] + offset) << shift;
2950 loads[1] = (avenrun[1] + offset) << shift;
2951 loads[2] = (avenrun[2] + offset) << shift;
2952}
2953
dce48a84
TG
2954static unsigned long
2955calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2956{
dce48a84
TG
2957 load *= exp;
2958 load += active * (FIXED_1 - exp);
2959 return load >> FSHIFT;
2960}
db1b1fef 2961
dce48a84
TG
2962/*
2963 * calc_load - update the avenrun load estimates 10 ticks after the
2964 * CPUs have updated calc_load_tasks.
2965 */
2966void calc_global_load(void)
2967{
2968 unsigned long upd = calc_load_update + 10;
2969 long active;
2970
2971 if (time_before(jiffies, upd))
2972 return;
db1b1fef 2973
dce48a84
TG
2974 active = atomic_long_read(&calc_load_tasks);
2975 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2976
dce48a84
TG
2977 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2978 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2979 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2980
2981 calc_load_update += LOAD_FREQ;
2982}
2983
2984/*
2985 * Either called from update_cpu_load() or from a cpu going idle
2986 */
2987static void calc_load_account_active(struct rq *this_rq)
2988{
2989 long nr_active, delta;
2990
2991 nr_active = this_rq->nr_running;
2992 nr_active += (long) this_rq->nr_uninterruptible;
2993
2994 if (nr_active != this_rq->calc_load_active) {
2995 delta = nr_active - this_rq->calc_load_active;
2996 this_rq->calc_load_active = nr_active;
2997 atomic_long_add(delta, &calc_load_tasks);
2998 }
db1b1fef
JS
2999}
3000
48f24c4d 3001/*
dd41f596
IM
3002 * Update rq->cpu_load[] statistics. This function is usually called every
3003 * scheduler tick (TICK_NSEC).
48f24c4d 3004 */
dd41f596 3005static void update_cpu_load(struct rq *this_rq)
48f24c4d 3006{
495eca49 3007 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3008 int i, scale;
3009
3010 this_rq->nr_load_updates++;
dd41f596
IM
3011
3012 /* Update our load: */
3013 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3014 unsigned long old_load, new_load;
3015
3016 /* scale is effectively 1 << i now, and >> i divides by scale */
3017
3018 old_load = this_rq->cpu_load[i];
3019 new_load = this_load;
a25707f3
IM
3020 /*
3021 * Round up the averaging division if load is increasing. This
3022 * prevents us from getting stuck on 9 if the load is 10, for
3023 * example.
3024 */
3025 if (new_load > old_load)
3026 new_load += scale-1;
dd41f596
IM
3027 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3028 }
dce48a84
TG
3029
3030 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3031 this_rq->calc_load_update += LOAD_FREQ;
3032 calc_load_account_active(this_rq);
3033 }
48f24c4d
IM
3034}
3035
dd41f596
IM
3036#ifdef CONFIG_SMP
3037
1da177e4
LT
3038/*
3039 * double_rq_lock - safely lock two runqueues
3040 *
3041 * Note this does not disable interrupts like task_rq_lock,
3042 * you need to do so manually before calling.
3043 */
70b97a7f 3044static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3045 __acquires(rq1->lock)
3046 __acquires(rq2->lock)
3047{
054b9108 3048 BUG_ON(!irqs_disabled());
1da177e4
LT
3049 if (rq1 == rq2) {
3050 spin_lock(&rq1->lock);
3051 __acquire(rq2->lock); /* Fake it out ;) */
3052 } else {
c96d145e 3053 if (rq1 < rq2) {
1da177e4 3054 spin_lock(&rq1->lock);
5e710e37 3055 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3056 } else {
3057 spin_lock(&rq2->lock);
5e710e37 3058 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3059 }
3060 }
6e82a3be
IM
3061 update_rq_clock(rq1);
3062 update_rq_clock(rq2);
1da177e4
LT
3063}
3064
3065/*
3066 * double_rq_unlock - safely unlock two runqueues
3067 *
3068 * Note this does not restore interrupts like task_rq_unlock,
3069 * you need to do so manually after calling.
3070 */
70b97a7f 3071static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3072 __releases(rq1->lock)
3073 __releases(rq2->lock)
3074{
3075 spin_unlock(&rq1->lock);
3076 if (rq1 != rq2)
3077 spin_unlock(&rq2->lock);
3078 else
3079 __release(rq2->lock);
3080}
3081
1da177e4
LT
3082/*
3083 * If dest_cpu is allowed for this process, migrate the task to it.
3084 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3085 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3086 * the cpu_allowed mask is restored.
3087 */
36c8b586 3088static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3089{
70b97a7f 3090 struct migration_req req;
1da177e4 3091 unsigned long flags;
70b97a7f 3092 struct rq *rq;
1da177e4
LT
3093
3094 rq = task_rq_lock(p, &flags);
96f874e2 3095 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3096 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3097 goto out;
3098
3099 /* force the process onto the specified CPU */
3100 if (migrate_task(p, dest_cpu, &req)) {
3101 /* Need to wait for migration thread (might exit: take ref). */
3102 struct task_struct *mt = rq->migration_thread;
36c8b586 3103
1da177e4
LT
3104 get_task_struct(mt);
3105 task_rq_unlock(rq, &flags);
3106 wake_up_process(mt);
3107 put_task_struct(mt);
3108 wait_for_completion(&req.done);
36c8b586 3109
1da177e4
LT
3110 return;
3111 }
3112out:
3113 task_rq_unlock(rq, &flags);
3114}
3115
3116/*
476d139c
NP
3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3119 */
3120void sched_exec(void)
3121{
1da177e4 3122 int new_cpu, this_cpu = get_cpu();
5f3edc1b 3123 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
1da177e4 3124 put_cpu();
476d139c
NP
3125 if (new_cpu != this_cpu)
3126 sched_migrate_task(current, new_cpu);
1da177e4
LT
3127}
3128
3129/*
3130 * pull_task - move a task from a remote runqueue to the local runqueue.
3131 * Both runqueues must be locked.
3132 */
dd41f596
IM
3133static void pull_task(struct rq *src_rq, struct task_struct *p,
3134 struct rq *this_rq, int this_cpu)
1da177e4 3135{
2e1cb74a 3136 deactivate_task(src_rq, p, 0);
1da177e4 3137 set_task_cpu(p, this_cpu);
dd41f596 3138 activate_task(this_rq, p, 0);
1da177e4
LT
3139 /*
3140 * Note that idle threads have a prio of MAX_PRIO, for this test
3141 * to be always true for them.
3142 */
15afe09b 3143 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3144}
3145
3146/*
3147 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3148 */
858119e1 3149static
70b97a7f 3150int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3151 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3152 int *all_pinned)
1da177e4 3153{
708dc512 3154 int tsk_cache_hot = 0;
1da177e4
LT
3155 /*
3156 * We do not migrate tasks that are:
3157 * 1) running (obviously), or
3158 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3159 * 3) are cache-hot on their current CPU.
3160 */
96f874e2 3161 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3162 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3163 return 0;
cc367732 3164 }
81026794
NP
3165 *all_pinned = 0;
3166
cc367732
IM
3167 if (task_running(rq, p)) {
3168 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3169 return 0;
cc367732 3170 }
1da177e4 3171
da84d961
IM
3172 /*
3173 * Aggressive migration if:
3174 * 1) task is cache cold, or
3175 * 2) too many balance attempts have failed.
3176 */
3177
708dc512
LH
3178 tsk_cache_hot = task_hot(p, rq->clock, sd);
3179 if (!tsk_cache_hot ||
3180 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3181#ifdef CONFIG_SCHEDSTATS
708dc512 3182 if (tsk_cache_hot) {
da84d961 3183 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3184 schedstat_inc(p, se.nr_forced_migrations);
3185 }
da84d961
IM
3186#endif
3187 return 1;
3188 }
3189
708dc512 3190 if (tsk_cache_hot) {
cc367732 3191 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3192 return 0;
cc367732 3193 }
1da177e4
LT
3194 return 1;
3195}
3196
e1d1484f
PW
3197static unsigned long
3198balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3199 unsigned long max_load_move, struct sched_domain *sd,
3200 enum cpu_idle_type idle, int *all_pinned,
3201 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3202{
051c6764 3203 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3204 struct task_struct *p;
3205 long rem_load_move = max_load_move;
1da177e4 3206
e1d1484f 3207 if (max_load_move == 0)
1da177e4
LT
3208 goto out;
3209
81026794
NP
3210 pinned = 1;
3211
1da177e4 3212 /*
dd41f596 3213 * Start the load-balancing iterator:
1da177e4 3214 */
dd41f596
IM
3215 p = iterator->start(iterator->arg);
3216next:
b82d9fdd 3217 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3218 goto out;
051c6764
PZ
3219
3220 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3221 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3222 p = iterator->next(iterator->arg);
3223 goto next;
1da177e4
LT
3224 }
3225
dd41f596 3226 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3227 pulled++;
dd41f596 3228 rem_load_move -= p->se.load.weight;
1da177e4 3229
7e96fa58
GH
3230#ifdef CONFIG_PREEMPT
3231 /*
3232 * NEWIDLE balancing is a source of latency, so preemptible kernels
3233 * will stop after the first task is pulled to minimize the critical
3234 * section.
3235 */
3236 if (idle == CPU_NEWLY_IDLE)
3237 goto out;
3238#endif
3239
2dd73a4f 3240 /*
b82d9fdd 3241 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3242 */
e1d1484f 3243 if (rem_load_move > 0) {
a4ac01c3
PW
3244 if (p->prio < *this_best_prio)
3245 *this_best_prio = p->prio;
dd41f596
IM
3246 p = iterator->next(iterator->arg);
3247 goto next;
1da177e4
LT
3248 }
3249out:
3250 /*
e1d1484f 3251 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3252 * so we can safely collect pull_task() stats here rather than
3253 * inside pull_task().
3254 */
3255 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3256
3257 if (all_pinned)
3258 *all_pinned = pinned;
e1d1484f
PW
3259
3260 return max_load_move - rem_load_move;
1da177e4
LT
3261}
3262
dd41f596 3263/*
43010659
PW
3264 * move_tasks tries to move up to max_load_move weighted load from busiest to
3265 * this_rq, as part of a balancing operation within domain "sd".
3266 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3267 *
3268 * Called with both runqueues locked.
3269 */
3270static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3271 unsigned long max_load_move,
dd41f596
IM
3272 struct sched_domain *sd, enum cpu_idle_type idle,
3273 int *all_pinned)
3274{
5522d5d5 3275 const struct sched_class *class = sched_class_highest;
43010659 3276 unsigned long total_load_moved = 0;
a4ac01c3 3277 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3278
3279 do {
43010659
PW
3280 total_load_moved +=
3281 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3282 max_load_move - total_load_moved,
a4ac01c3 3283 sd, idle, all_pinned, &this_best_prio);
dd41f596 3284 class = class->next;
c4acb2c0 3285
7e96fa58
GH
3286#ifdef CONFIG_PREEMPT
3287 /*
3288 * NEWIDLE balancing is a source of latency, so preemptible
3289 * kernels will stop after the first task is pulled to minimize
3290 * the critical section.
3291 */
c4acb2c0
GH
3292 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3293 break;
7e96fa58 3294#endif
43010659 3295 } while (class && max_load_move > total_load_moved);
dd41f596 3296
43010659
PW
3297 return total_load_moved > 0;
3298}
3299
e1d1484f
PW
3300static int
3301iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3302 struct sched_domain *sd, enum cpu_idle_type idle,
3303 struct rq_iterator *iterator)
3304{
3305 struct task_struct *p = iterator->start(iterator->arg);
3306 int pinned = 0;
3307
3308 while (p) {
3309 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3310 pull_task(busiest, p, this_rq, this_cpu);
3311 /*
3312 * Right now, this is only the second place pull_task()
3313 * is called, so we can safely collect pull_task()
3314 * stats here rather than inside pull_task().
3315 */
3316 schedstat_inc(sd, lb_gained[idle]);
3317
3318 return 1;
3319 }
3320 p = iterator->next(iterator->arg);
3321 }
3322
3323 return 0;
3324}
3325
43010659
PW
3326/*
3327 * move_one_task tries to move exactly one task from busiest to this_rq, as
3328 * part of active balancing operations within "domain".
3329 * Returns 1 if successful and 0 otherwise.
3330 *
3331 * Called with both runqueues locked.
3332 */
3333static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3334 struct sched_domain *sd, enum cpu_idle_type idle)
3335{
5522d5d5 3336 const struct sched_class *class;
43010659 3337
cde7e5ca 3338 for_each_class(class) {
e1d1484f 3339 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3340 return 1;
cde7e5ca 3341 }
43010659
PW
3342
3343 return 0;
dd41f596 3344}
67bb6c03 3345/********** Helpers for find_busiest_group ************************/
1da177e4 3346/*
222d656d
GS
3347 * sd_lb_stats - Structure to store the statistics of a sched_domain
3348 * during load balancing.
1da177e4 3349 */
222d656d
GS
3350struct sd_lb_stats {
3351 struct sched_group *busiest; /* Busiest group in this sd */
3352 struct sched_group *this; /* Local group in this sd */
3353 unsigned long total_load; /* Total load of all groups in sd */
3354 unsigned long total_pwr; /* Total power of all groups in sd */
3355 unsigned long avg_load; /* Average load across all groups in sd */
3356
3357 /** Statistics of this group */
3358 unsigned long this_load;
3359 unsigned long this_load_per_task;
3360 unsigned long this_nr_running;
3361
3362 /* Statistics of the busiest group */
3363 unsigned long max_load;
3364 unsigned long busiest_load_per_task;
3365 unsigned long busiest_nr_running;
3366
3367 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3368#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3369 int power_savings_balance; /* Is powersave balance needed for this sd */
3370 struct sched_group *group_min; /* Least loaded group in sd */
3371 struct sched_group *group_leader; /* Group which relieves group_min */
3372 unsigned long min_load_per_task; /* load_per_task in group_min */
3373 unsigned long leader_nr_running; /* Nr running of group_leader */
3374 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3375#endif
222d656d 3376};
1da177e4 3377
d5ac537e 3378/*
381be78f
GS
3379 * sg_lb_stats - stats of a sched_group required for load_balancing
3380 */
3381struct sg_lb_stats {
3382 unsigned long avg_load; /*Avg load across the CPUs of the group */
3383 unsigned long group_load; /* Total load over the CPUs of the group */
3384 unsigned long sum_nr_running; /* Nr tasks running in the group */
3385 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3386 unsigned long group_capacity;
3387 int group_imb; /* Is there an imbalance in the group ? */
3388};
408ed066 3389
67bb6c03
GS
3390/**
3391 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3392 * @group: The group whose first cpu is to be returned.
3393 */
3394static inline unsigned int group_first_cpu(struct sched_group *group)
3395{
3396 return cpumask_first(sched_group_cpus(group));
3397}
3398
3399/**
3400 * get_sd_load_idx - Obtain the load index for a given sched domain.
3401 * @sd: The sched_domain whose load_idx is to be obtained.
3402 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3403 */
3404static inline int get_sd_load_idx(struct sched_domain *sd,
3405 enum cpu_idle_type idle)
3406{
3407 int load_idx;
3408
3409 switch (idle) {
3410 case CPU_NOT_IDLE:
7897986b 3411 load_idx = sd->busy_idx;
67bb6c03
GS
3412 break;
3413
3414 case CPU_NEWLY_IDLE:
7897986b 3415 load_idx = sd->newidle_idx;
67bb6c03
GS
3416 break;
3417 default:
7897986b 3418 load_idx = sd->idle_idx;
67bb6c03
GS
3419 break;
3420 }
1da177e4 3421
67bb6c03
GS
3422 return load_idx;
3423}
1da177e4 3424
1da177e4 3425
c071df18
GS
3426#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3427/**
3428 * init_sd_power_savings_stats - Initialize power savings statistics for
3429 * the given sched_domain, during load balancing.
3430 *
3431 * @sd: Sched domain whose power-savings statistics are to be initialized.
3432 * @sds: Variable containing the statistics for sd.
3433 * @idle: Idle status of the CPU at which we're performing load-balancing.
3434 */
3435static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3436 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3437{
3438 /*
3439 * Busy processors will not participate in power savings
3440 * balance.
3441 */
3442 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3443 sds->power_savings_balance = 0;
3444 else {
3445 sds->power_savings_balance = 1;
3446 sds->min_nr_running = ULONG_MAX;
3447 sds->leader_nr_running = 0;
3448 }
3449}
783609c6 3450
c071df18
GS
3451/**
3452 * update_sd_power_savings_stats - Update the power saving stats for a
3453 * sched_domain while performing load balancing.
3454 *
3455 * @group: sched_group belonging to the sched_domain under consideration.
3456 * @sds: Variable containing the statistics of the sched_domain
3457 * @local_group: Does group contain the CPU for which we're performing
3458 * load balancing ?
3459 * @sgs: Variable containing the statistics of the group.
3460 */
3461static inline void update_sd_power_savings_stats(struct sched_group *group,
3462 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3463{
408ed066 3464
c071df18
GS
3465 if (!sds->power_savings_balance)
3466 return;
1da177e4 3467
c071df18
GS
3468 /*
3469 * If the local group is idle or completely loaded
3470 * no need to do power savings balance at this domain
3471 */
3472 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3473 !sds->this_nr_running))
3474 sds->power_savings_balance = 0;
2dd73a4f 3475
c071df18
GS
3476 /*
3477 * If a group is already running at full capacity or idle,
3478 * don't include that group in power savings calculations
3479 */
3480 if (!sds->power_savings_balance ||
3481 sgs->sum_nr_running >= sgs->group_capacity ||
3482 !sgs->sum_nr_running)
3483 return;
5969fe06 3484
c071df18
GS
3485 /*
3486 * Calculate the group which has the least non-idle load.
3487 * This is the group from where we need to pick up the load
3488 * for saving power
3489 */
3490 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3491 (sgs->sum_nr_running == sds->min_nr_running &&
3492 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3493 sds->group_min = group;
3494 sds->min_nr_running = sgs->sum_nr_running;
3495 sds->min_load_per_task = sgs->sum_weighted_load /
3496 sgs->sum_nr_running;
3497 }
783609c6 3498
c071df18
GS
3499 /*
3500 * Calculate the group which is almost near its
3501 * capacity but still has some space to pick up some load
3502 * from other group and save more power
3503 */
d899a789 3504 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3505 return;
1da177e4 3506
c071df18
GS
3507 if (sgs->sum_nr_running > sds->leader_nr_running ||
3508 (sgs->sum_nr_running == sds->leader_nr_running &&
3509 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3510 sds->group_leader = group;
3511 sds->leader_nr_running = sgs->sum_nr_running;
3512 }
3513}
408ed066 3514
c071df18 3515/**
d5ac537e 3516 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3517 * @sds: Variable containing the statistics of the sched_domain
3518 * under consideration.
3519 * @this_cpu: Cpu at which we're currently performing load-balancing.
3520 * @imbalance: Variable to store the imbalance.
3521 *
d5ac537e
RD
3522 * Description:
3523 * Check if we have potential to perform some power-savings balance.
3524 * If yes, set the busiest group to be the least loaded group in the
3525 * sched_domain, so that it's CPUs can be put to idle.
3526 *
c071df18
GS
3527 * Returns 1 if there is potential to perform power-savings balance.
3528 * Else returns 0.
3529 */
3530static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3531 int this_cpu, unsigned long *imbalance)
3532{
3533 if (!sds->power_savings_balance)
3534 return 0;
1da177e4 3535
c071df18
GS
3536 if (sds->this != sds->group_leader ||
3537 sds->group_leader == sds->group_min)
3538 return 0;
783609c6 3539
c071df18
GS
3540 *imbalance = sds->min_load_per_task;
3541 sds->busiest = sds->group_min;
1da177e4 3542
c071df18 3543 return 1;
1da177e4 3544
c071df18
GS
3545}
3546#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3547static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3548 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3549{
3550 return;
3551}
408ed066 3552
c071df18
GS
3553static inline void update_sd_power_savings_stats(struct sched_group *group,
3554 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3555{
3556 return;
3557}
3558
3559static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3560 int this_cpu, unsigned long *imbalance)
3561{
3562 return 0;
3563}
3564#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3565
d6a59aa3
PZ
3566
3567unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3568{
3569 return SCHED_LOAD_SCALE;
3570}
3571
3572unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3573{
3574 return default_scale_freq_power(sd, cpu);
3575}
3576
3577unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3578{
3579 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3580 unsigned long smt_gain = sd->smt_gain;
3581
3582 smt_gain /= weight;
3583
3584 return smt_gain;
3585}
3586
d6a59aa3
PZ
3587unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3588{
3589 return default_scale_smt_power(sd, cpu);
3590}
3591
e9e9250b
PZ
3592unsigned long scale_rt_power(int cpu)
3593{
3594 struct rq *rq = cpu_rq(cpu);
3595 u64 total, available;
3596
3597 sched_avg_update(rq);
3598
3599 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3600 available = total - rq->rt_avg;
3601
3602 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3603 total = SCHED_LOAD_SCALE;
3604
3605 total >>= SCHED_LOAD_SHIFT;
3606
3607 return div_u64(available, total);
3608}
3609
ab29230e
PZ
3610static void update_cpu_power(struct sched_domain *sd, int cpu)
3611{
3612 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3613 unsigned long power = SCHED_LOAD_SCALE;
3614 struct sched_group *sdg = sd->groups;
ab29230e 3615
8e6598af
PZ
3616 if (sched_feat(ARCH_POWER))
3617 power *= arch_scale_freq_power(sd, cpu);
3618 else
3619 power *= default_scale_freq_power(sd, cpu);
3620
d6a59aa3 3621 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3622
3623 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3624 if (sched_feat(ARCH_POWER))
3625 power *= arch_scale_smt_power(sd, cpu);
3626 else
3627 power *= default_scale_smt_power(sd, cpu);
3628
ab29230e
PZ
3629 power >>= SCHED_LOAD_SHIFT;
3630 }
3631
e9e9250b
PZ
3632 power *= scale_rt_power(cpu);
3633 power >>= SCHED_LOAD_SHIFT;
3634
3635 if (!power)
3636 power = 1;
ab29230e 3637
18a3885f 3638 sdg->cpu_power = power;
ab29230e
PZ
3639}
3640
3641static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3642{
3643 struct sched_domain *child = sd->child;
3644 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3645 unsigned long power;
cc9fba7d
PZ
3646
3647 if (!child) {
ab29230e 3648 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3649 return;
3650 }
3651
d7ea17a7 3652 power = 0;
cc9fba7d
PZ
3653
3654 group = child->groups;
3655 do {
d7ea17a7 3656 power += group->cpu_power;
cc9fba7d
PZ
3657 group = group->next;
3658 } while (group != child->groups);
d7ea17a7
IM
3659
3660 sdg->cpu_power = power;
cc9fba7d 3661}
c071df18 3662
1f8c553d
GS
3663/**
3664 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3665 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3666 * @group: sched_group whose statistics are to be updated.
3667 * @this_cpu: Cpu for which load balance is currently performed.
3668 * @idle: Idle status of this_cpu
3669 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3670 * @sd_idle: Idle status of the sched_domain containing group.
3671 * @local_group: Does group contain this_cpu.
3672 * @cpus: Set of cpus considered for load balancing.
3673 * @balance: Should we balance.
3674 * @sgs: variable to hold the statistics for this group.
3675 */
cc9fba7d
PZ
3676static inline void update_sg_lb_stats(struct sched_domain *sd,
3677 struct sched_group *group, int this_cpu,
1f8c553d
GS
3678 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3679 int local_group, const struct cpumask *cpus,
3680 int *balance, struct sg_lb_stats *sgs)
3681{
3682 unsigned long load, max_cpu_load, min_cpu_load;
3683 int i;
3684 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3685 unsigned long sum_avg_load_per_task;
3686 unsigned long avg_load_per_task;
3687
cc9fba7d 3688 if (local_group) {
1f8c553d 3689 balance_cpu = group_first_cpu(group);
cc9fba7d 3690 if (balance_cpu == this_cpu)
ab29230e 3691 update_group_power(sd, this_cpu);
cc9fba7d 3692 }
1f8c553d
GS
3693
3694 /* Tally up the load of all CPUs in the group */
3695 sum_avg_load_per_task = avg_load_per_task = 0;
3696 max_cpu_load = 0;
3697 min_cpu_load = ~0UL;
408ed066 3698
1f8c553d
GS
3699 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3700 struct rq *rq = cpu_rq(i);
908a7c1b 3701
1f8c553d
GS
3702 if (*sd_idle && rq->nr_running)
3703 *sd_idle = 0;
5c45bf27 3704
1f8c553d 3705 /* Bias balancing toward cpus of our domain */
1da177e4 3706 if (local_group) {
1f8c553d
GS
3707 if (idle_cpu(i) && !first_idle_cpu) {
3708 first_idle_cpu = 1;
3709 balance_cpu = i;
3710 }
3711
3712 load = target_load(i, load_idx);
3713 } else {
3714 load = source_load(i, load_idx);
3715 if (load > max_cpu_load)
3716 max_cpu_load = load;
3717 if (min_cpu_load > load)
3718 min_cpu_load = load;
1da177e4 3719 }
5c45bf27 3720
1f8c553d
GS
3721 sgs->group_load += load;
3722 sgs->sum_nr_running += rq->nr_running;
3723 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3724
1f8c553d
GS
3725 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3726 }
5c45bf27 3727
1f8c553d
GS
3728 /*
3729 * First idle cpu or the first cpu(busiest) in this sched group
3730 * is eligible for doing load balancing at this and above
3731 * domains. In the newly idle case, we will allow all the cpu's
3732 * to do the newly idle load balance.
3733 */
3734 if (idle != CPU_NEWLY_IDLE && local_group &&
3735 balance_cpu != this_cpu && balance) {
3736 *balance = 0;
3737 return;
3738 }
5c45bf27 3739
1f8c553d 3740 /* Adjust by relative CPU power of the group */
18a3885f 3741 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3742
1f8c553d
GS
3743
3744 /*
3745 * Consider the group unbalanced when the imbalance is larger
3746 * than the average weight of two tasks.
3747 *
3748 * APZ: with cgroup the avg task weight can vary wildly and
3749 * might not be a suitable number - should we keep a
3750 * normalized nr_running number somewhere that negates
3751 * the hierarchy?
3752 */
18a3885f
PZ
3753 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3754 group->cpu_power;
1f8c553d
GS
3755
3756 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3757 sgs->group_imb = 1;
3758
bdb94aa5 3759 sgs->group_capacity =
18a3885f 3760 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3761}
dd41f596 3762
37abe198
GS
3763/**
3764 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3765 * @sd: sched_domain whose statistics are to be updated.
3766 * @this_cpu: Cpu for which load balance is currently performed.
3767 * @idle: Idle status of this_cpu
3768 * @sd_idle: Idle status of the sched_domain containing group.
3769 * @cpus: Set of cpus considered for load balancing.
3770 * @balance: Should we balance.
3771 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3772 */
37abe198
GS
3773static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3774 enum cpu_idle_type idle, int *sd_idle,
3775 const struct cpumask *cpus, int *balance,
3776 struct sd_lb_stats *sds)
1da177e4 3777{
b5d978e0 3778 struct sched_domain *child = sd->child;
222d656d 3779 struct sched_group *group = sd->groups;
37abe198 3780 struct sg_lb_stats sgs;
b5d978e0
PZ
3781 int load_idx, prefer_sibling = 0;
3782
3783 if (child && child->flags & SD_PREFER_SIBLING)
3784 prefer_sibling = 1;
222d656d 3785
c071df18 3786 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3787 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3788
3789 do {
1da177e4 3790 int local_group;
1da177e4 3791
758b2cdc
RR
3792 local_group = cpumask_test_cpu(this_cpu,
3793 sched_group_cpus(group));
381be78f 3794 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3795 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3796 local_group, cpus, balance, &sgs);
1da177e4 3797
37abe198
GS
3798 if (local_group && balance && !(*balance))
3799 return;
783609c6 3800
37abe198 3801 sds->total_load += sgs.group_load;
18a3885f 3802 sds->total_pwr += group->cpu_power;
1da177e4 3803
b5d978e0
PZ
3804 /*
3805 * In case the child domain prefers tasks go to siblings
3806 * first, lower the group capacity to one so that we'll try
3807 * and move all the excess tasks away.
3808 */
3809 if (prefer_sibling)
bdb94aa5 3810 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3811
1da177e4 3812 if (local_group) {
37abe198
GS
3813 sds->this_load = sgs.avg_load;
3814 sds->this = group;
3815 sds->this_nr_running = sgs.sum_nr_running;
3816 sds->this_load_per_task = sgs.sum_weighted_load;
3817 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3818 (sgs.sum_nr_running > sgs.group_capacity ||
3819 sgs.group_imb)) {
37abe198
GS
3820 sds->max_load = sgs.avg_load;
3821 sds->busiest = group;
3822 sds->busiest_nr_running = sgs.sum_nr_running;
3823 sds->busiest_load_per_task = sgs.sum_weighted_load;
3824 sds->group_imb = sgs.group_imb;
48f24c4d 3825 }
5c45bf27 3826
c071df18 3827 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3828 group = group->next;
3829 } while (group != sd->groups);
37abe198 3830}
1da177e4 3831
2e6f44ae
GS
3832/**
3833 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3834 * amongst the groups of a sched_domain, during
3835 * load balancing.
2e6f44ae
GS
3836 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3837 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3838 * @imbalance: Variable to store the imbalance.
3839 */
3840static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3841 int this_cpu, unsigned long *imbalance)
3842{
3843 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3844 unsigned int imbn = 2;
3845
3846 if (sds->this_nr_running) {
3847 sds->this_load_per_task /= sds->this_nr_running;
3848 if (sds->busiest_load_per_task >
3849 sds->this_load_per_task)
3850 imbn = 1;
3851 } else
3852 sds->this_load_per_task =
3853 cpu_avg_load_per_task(this_cpu);
1da177e4 3854
2e6f44ae
GS
3855 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3856 sds->busiest_load_per_task * imbn) {
3857 *imbalance = sds->busiest_load_per_task;
3858 return;
3859 }
908a7c1b 3860
1da177e4 3861 /*
2e6f44ae
GS
3862 * OK, we don't have enough imbalance to justify moving tasks,
3863 * however we may be able to increase total CPU power used by
3864 * moving them.
1da177e4 3865 */
2dd73a4f 3866
18a3885f 3867 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3868 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3869 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3870 min(sds->this_load_per_task, sds->this_load);
3871 pwr_now /= SCHED_LOAD_SCALE;
3872
3873 /* Amount of load we'd subtract */
18a3885f
PZ
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->busiest->cpu_power;
2e6f44ae 3876 if (sds->max_load > tmp)
18a3885f 3877 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3878 min(sds->busiest_load_per_task, sds->max_load - tmp);
3879
3880 /* Amount of load we'd add */
18a3885f 3881 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3882 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3883 tmp = (sds->max_load * sds->busiest->cpu_power) /
3884 sds->this->cpu_power;
2e6f44ae 3885 else
18a3885f
PZ
3886 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3887 sds->this->cpu_power;
3888 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3889 min(sds->this_load_per_task, sds->this_load + tmp);
3890 pwr_move /= SCHED_LOAD_SCALE;
3891
3892 /* Move if we gain throughput */
3893 if (pwr_move > pwr_now)
3894 *imbalance = sds->busiest_load_per_task;
3895}
dbc523a3
GS
3896
3897/**
3898 * calculate_imbalance - Calculate the amount of imbalance present within the
3899 * groups of a given sched_domain during load balance.
3900 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3901 * @this_cpu: Cpu for which currently load balance is being performed.
3902 * @imbalance: The variable to store the imbalance.
3903 */
3904static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3905 unsigned long *imbalance)
3906{
3907 unsigned long max_pull;
2dd73a4f
PW
3908 /*
3909 * In the presence of smp nice balancing, certain scenarios can have
3910 * max load less than avg load(as we skip the groups at or below
3911 * its cpu_power, while calculating max_load..)
3912 */
dbc523a3 3913 if (sds->max_load < sds->avg_load) {
2dd73a4f 3914 *imbalance = 0;
dbc523a3 3915 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3916 }
0c117f1b
SS
3917
3918 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3919 max_pull = min(sds->max_load - sds->avg_load,
3920 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3921
1da177e4 3922 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3923 *imbalance = min(max_pull * sds->busiest->cpu_power,
3924 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3925 / SCHED_LOAD_SCALE;
3926
2dd73a4f
PW
3927 /*
3928 * if *imbalance is less than the average load per runnable task
3929 * there is no gaurantee that any tasks will be moved so we'll have
3930 * a think about bumping its value to force at least one task to be
3931 * moved
3932 */
dbc523a3
GS
3933 if (*imbalance < sds->busiest_load_per_task)
3934 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3935
dbc523a3 3936}
37abe198 3937/******* find_busiest_group() helpers end here *********************/
1da177e4 3938
b7bb4c9b
GS
3939/**
3940 * find_busiest_group - Returns the busiest group within the sched_domain
3941 * if there is an imbalance. If there isn't an imbalance, and
3942 * the user has opted for power-savings, it returns a group whose
3943 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3944 * such a group exists.
3945 *
3946 * Also calculates the amount of weighted load which should be moved
3947 * to restore balance.
3948 *
3949 * @sd: The sched_domain whose busiest group is to be returned.
3950 * @this_cpu: The cpu for which load balancing is currently being performed.
3951 * @imbalance: Variable which stores amount of weighted load which should
3952 * be moved to restore balance/put a group to idle.
3953 * @idle: The idle status of this_cpu.
3954 * @sd_idle: The idleness of sd
3955 * @cpus: The set of CPUs under consideration for load-balancing.
3956 * @balance: Pointer to a variable indicating if this_cpu
3957 * is the appropriate cpu to perform load balancing at this_level.
3958 *
3959 * Returns: - the busiest group if imbalance exists.
3960 * - If no imbalance and user has opted for power-savings balance,
3961 * return the least loaded group whose CPUs can be
3962 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3963 */
3964static struct sched_group *
3965find_busiest_group(struct sched_domain *sd, int this_cpu,
3966 unsigned long *imbalance, enum cpu_idle_type idle,
3967 int *sd_idle, const struct cpumask *cpus, int *balance)
3968{
3969 struct sd_lb_stats sds;
1da177e4 3970
37abe198 3971 memset(&sds, 0, sizeof(sds));
1da177e4 3972
37abe198
GS
3973 /*
3974 * Compute the various statistics relavent for load balancing at
3975 * this level.
3976 */
3977 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3978 balance, &sds);
3979
b7bb4c9b
GS
3980 /* Cases where imbalance does not exist from POV of this_cpu */
3981 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3982 * at this level.
3983 * 2) There is no busy sibling group to pull from.
3984 * 3) This group is the busiest group.
3985 * 4) This group is more busy than the avg busieness at this
3986 * sched_domain.
3987 * 5) The imbalance is within the specified limit.
3988 * 6) Any rebalance would lead to ping-pong
3989 */
37abe198
GS
3990 if (balance && !(*balance))
3991 goto ret;
1da177e4 3992
b7bb4c9b
GS
3993 if (!sds.busiest || sds.busiest_nr_running == 0)
3994 goto out_balanced;
1da177e4 3995
b7bb4c9b 3996 if (sds.this_load >= sds.max_load)
1da177e4 3997 goto out_balanced;
1da177e4 3998
222d656d 3999 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4000
b7bb4c9b
GS
4001 if (sds.this_load >= sds.avg_load)
4002 goto out_balanced;
4003
4004 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4005 goto out_balanced;
4006
222d656d
GS
4007 sds.busiest_load_per_task /= sds.busiest_nr_running;
4008 if (sds.group_imb)
4009 sds.busiest_load_per_task =
4010 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4011
1da177e4
LT
4012 /*
4013 * We're trying to get all the cpus to the average_load, so we don't
4014 * want to push ourselves above the average load, nor do we wish to
4015 * reduce the max loaded cpu below the average load, as either of these
4016 * actions would just result in more rebalancing later, and ping-pong
4017 * tasks around. Thus we look for the minimum possible imbalance.
4018 * Negative imbalances (*we* are more loaded than anyone else) will
4019 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4020 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4021 * appear as very large values with unsigned longs.
4022 */
222d656d 4023 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4024 goto out_balanced;
4025
dbc523a3
GS
4026 /* Looks like there is an imbalance. Compute it */
4027 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4028 return sds.busiest;
1da177e4
LT
4029
4030out_balanced:
c071df18
GS
4031 /*
4032 * There is no obvious imbalance. But check if we can do some balancing
4033 * to save power.
4034 */
4035 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4036 return sds.busiest;
783609c6 4037ret:
1da177e4
LT
4038 *imbalance = 0;
4039 return NULL;
4040}
4041
4042/*
4043 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4044 */
70b97a7f 4045static struct rq *
d15bcfdb 4046find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4047 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4048{
70b97a7f 4049 struct rq *busiest = NULL, *rq;
2dd73a4f 4050 unsigned long max_load = 0;
1da177e4
LT
4051 int i;
4052
758b2cdc 4053 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4054 unsigned long power = power_of(i);
4055 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4056 unsigned long wl;
0a2966b4 4057
96f874e2 4058 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4059 continue;
4060
48f24c4d 4061 rq = cpu_rq(i);
bdb94aa5
PZ
4062 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4063 wl /= power;
2dd73a4f 4064
bdb94aa5 4065 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4066 continue;
1da177e4 4067
dd41f596
IM
4068 if (wl > max_load) {
4069 max_load = wl;
48f24c4d 4070 busiest = rq;
1da177e4
LT
4071 }
4072 }
4073
4074 return busiest;
4075}
4076
77391d71
NP
4077/*
4078 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4079 * so long as it is large enough.
4080 */
4081#define MAX_PINNED_INTERVAL 512
4082
df7c8e84
RR
4083/* Working cpumask for load_balance and load_balance_newidle. */
4084static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4085
1da177e4
LT
4086/*
4087 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4088 * tasks if there is an imbalance.
1da177e4 4089 */
70b97a7f 4090static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4091 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4092 int *balance)
1da177e4 4093{
43010659 4094 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4095 struct sched_group *group;
1da177e4 4096 unsigned long imbalance;
70b97a7f 4097 struct rq *busiest;
fe2eea3f 4098 unsigned long flags;
df7c8e84 4099 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4100
eae0c9df 4101 cpumask_copy(cpus, cpu_online_mask);
7c16ec58 4102
89c4710e
SS
4103 /*
4104 * When power savings policy is enabled for the parent domain, idle
4105 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4106 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4107 * portraying it as CPU_NOT_IDLE.
89c4710e 4108 */
d15bcfdb 4109 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4110 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4111 sd_idle = 1;
1da177e4 4112
2d72376b 4113 schedstat_inc(sd, lb_count[idle]);
1da177e4 4114
0a2966b4 4115redo:
c8cba857 4116 update_shares(sd);
0a2966b4 4117 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4118 cpus, balance);
783609c6 4119
06066714 4120 if (*balance == 0)
783609c6 4121 goto out_balanced;
783609c6 4122
1da177e4
LT
4123 if (!group) {
4124 schedstat_inc(sd, lb_nobusyg[idle]);
4125 goto out_balanced;
4126 }
4127
7c16ec58 4128 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4129 if (!busiest) {
4130 schedstat_inc(sd, lb_nobusyq[idle]);
4131 goto out_balanced;
4132 }
4133
db935dbd 4134 BUG_ON(busiest == this_rq);
1da177e4
LT
4135
4136 schedstat_add(sd, lb_imbalance[idle], imbalance);
4137
43010659 4138 ld_moved = 0;
1da177e4
LT
4139 if (busiest->nr_running > 1) {
4140 /*
4141 * Attempt to move tasks. If find_busiest_group has found
4142 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4143 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4144 * correctly treated as an imbalance.
4145 */
fe2eea3f 4146 local_irq_save(flags);
e17224bf 4147 double_rq_lock(this_rq, busiest);
43010659 4148 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4149 imbalance, sd, idle, &all_pinned);
e17224bf 4150 double_rq_unlock(this_rq, busiest);
fe2eea3f 4151 local_irq_restore(flags);
81026794 4152
46cb4b7c
SS
4153 /*
4154 * some other cpu did the load balance for us.
4155 */
43010659 4156 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4157 resched_cpu(this_cpu);
4158
81026794 4159 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4160 if (unlikely(all_pinned)) {
96f874e2
RR
4161 cpumask_clear_cpu(cpu_of(busiest), cpus);
4162 if (!cpumask_empty(cpus))
0a2966b4 4163 goto redo;
81026794 4164 goto out_balanced;
0a2966b4 4165 }
1da177e4 4166 }
81026794 4167
43010659 4168 if (!ld_moved) {
1da177e4
LT
4169 schedstat_inc(sd, lb_failed[idle]);
4170 sd->nr_balance_failed++;
4171
4172 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4173
fe2eea3f 4174 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4175
4176 /* don't kick the migration_thread, if the curr
4177 * task on busiest cpu can't be moved to this_cpu
4178 */
96f874e2
RR
4179 if (!cpumask_test_cpu(this_cpu,
4180 &busiest->curr->cpus_allowed)) {
fe2eea3f 4181 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4182 all_pinned = 1;
4183 goto out_one_pinned;
4184 }
4185
1da177e4
LT
4186 if (!busiest->active_balance) {
4187 busiest->active_balance = 1;
4188 busiest->push_cpu = this_cpu;
81026794 4189 active_balance = 1;
1da177e4 4190 }
fe2eea3f 4191 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4192 if (active_balance)
1da177e4
LT
4193 wake_up_process(busiest->migration_thread);
4194
4195 /*
4196 * We've kicked active balancing, reset the failure
4197 * counter.
4198 */
39507451 4199 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4200 }
81026794 4201 } else
1da177e4
LT
4202 sd->nr_balance_failed = 0;
4203
81026794 4204 if (likely(!active_balance)) {
1da177e4
LT
4205 /* We were unbalanced, so reset the balancing interval */
4206 sd->balance_interval = sd->min_interval;
81026794
NP
4207 } else {
4208 /*
4209 * If we've begun active balancing, start to back off. This
4210 * case may not be covered by the all_pinned logic if there
4211 * is only 1 task on the busy runqueue (because we don't call
4212 * move_tasks).
4213 */
4214 if (sd->balance_interval < sd->max_interval)
4215 sd->balance_interval *= 2;
1da177e4
LT
4216 }
4217
43010659 4218 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4219 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4220 ld_moved = -1;
4221
4222 goto out;
1da177e4
LT
4223
4224out_balanced:
1da177e4
LT
4225 schedstat_inc(sd, lb_balanced[idle]);
4226
16cfb1c0 4227 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4228
4229out_one_pinned:
1da177e4 4230 /* tune up the balancing interval */
77391d71
NP
4231 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4232 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4233 sd->balance_interval *= 2;
4234
48f24c4d 4235 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4237 ld_moved = -1;
4238 else
4239 ld_moved = 0;
4240out:
c8cba857
PZ
4241 if (ld_moved)
4242 update_shares(sd);
c09595f6 4243 return ld_moved;
1da177e4
LT
4244}
4245
4246/*
4247 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4248 * tasks if there is an imbalance.
4249 *
d15bcfdb 4250 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4251 * this_rq is locked.
4252 */
48f24c4d 4253static int
df7c8e84 4254load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4255{
4256 struct sched_group *group;
70b97a7f 4257 struct rq *busiest = NULL;
1da177e4 4258 unsigned long imbalance;
43010659 4259 int ld_moved = 0;
5969fe06 4260 int sd_idle = 0;
969bb4e4 4261 int all_pinned = 0;
df7c8e84 4262 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4263
eae0c9df 4264 cpumask_copy(cpus, cpu_online_mask);
5969fe06 4265
89c4710e
SS
4266 /*
4267 * When power savings policy is enabled for the parent domain, idle
4268 * sibling can pick up load irrespective of busy siblings. In this case,
4269 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4270 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4271 */
4272 if (sd->flags & SD_SHARE_CPUPOWER &&
4273 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4274 sd_idle = 1;
1da177e4 4275
2d72376b 4276 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4277redo:
3e5459b4 4278 update_shares_locked(this_rq, sd);
d15bcfdb 4279 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4280 &sd_idle, cpus, NULL);
1da177e4 4281 if (!group) {
d15bcfdb 4282 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4283 goto out_balanced;
1da177e4
LT
4284 }
4285
7c16ec58 4286 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4287 if (!busiest) {
d15bcfdb 4288 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4289 goto out_balanced;
1da177e4
LT
4290 }
4291
db935dbd
NP
4292 BUG_ON(busiest == this_rq);
4293
d15bcfdb 4294 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4295
43010659 4296 ld_moved = 0;
d6d5cfaf
NP
4297 if (busiest->nr_running > 1) {
4298 /* Attempt to move tasks */
4299 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4300 /* this_rq->clock is already updated */
4301 update_rq_clock(busiest);
43010659 4302 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4303 imbalance, sd, CPU_NEWLY_IDLE,
4304 &all_pinned);
1b12bbc7 4305 double_unlock_balance(this_rq, busiest);
0a2966b4 4306
969bb4e4 4307 if (unlikely(all_pinned)) {
96f874e2
RR
4308 cpumask_clear_cpu(cpu_of(busiest), cpus);
4309 if (!cpumask_empty(cpus))
0a2966b4
CL
4310 goto redo;
4311 }
d6d5cfaf
NP
4312 }
4313
43010659 4314 if (!ld_moved) {
36dffab6 4315 int active_balance = 0;
ad273b32 4316
d15bcfdb 4317 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4318 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4319 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4320 return -1;
ad273b32
VS
4321
4322 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4323 return -1;
4324
4325 if (sd->nr_balance_failed++ < 2)
4326 return -1;
4327
4328 /*
4329 * The only task running in a non-idle cpu can be moved to this
4330 * cpu in an attempt to completely freeup the other CPU
4331 * package. The same method used to move task in load_balance()
4332 * have been extended for load_balance_newidle() to speedup
4333 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4334 *
4335 * The package power saving logic comes from
4336 * find_busiest_group(). If there are no imbalance, then
4337 * f_b_g() will return NULL. However when sched_mc={1,2} then
4338 * f_b_g() will select a group from which a running task may be
4339 * pulled to this cpu in order to make the other package idle.
4340 * If there is no opportunity to make a package idle and if
4341 * there are no imbalance, then f_b_g() will return NULL and no
4342 * action will be taken in load_balance_newidle().
4343 *
4344 * Under normal task pull operation due to imbalance, there
4345 * will be more than one task in the source run queue and
4346 * move_tasks() will succeed. ld_moved will be true and this
4347 * active balance code will not be triggered.
4348 */
4349
4350 /* Lock busiest in correct order while this_rq is held */
4351 double_lock_balance(this_rq, busiest);
4352
4353 /*
4354 * don't kick the migration_thread, if the curr
4355 * task on busiest cpu can't be moved to this_cpu
4356 */
6ca09dfc 4357 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4358 double_unlock_balance(this_rq, busiest);
4359 all_pinned = 1;
4360 return ld_moved;
4361 }
4362
4363 if (!busiest->active_balance) {
4364 busiest->active_balance = 1;
4365 busiest->push_cpu = this_cpu;
4366 active_balance = 1;
4367 }
4368
4369 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4370 /*
4371 * Should not call ttwu while holding a rq->lock
4372 */
4373 spin_unlock(&this_rq->lock);
ad273b32
VS
4374 if (active_balance)
4375 wake_up_process(busiest->migration_thread);
da8d5089 4376 spin_lock(&this_rq->lock);
ad273b32 4377
5969fe06 4378 } else
16cfb1c0 4379 sd->nr_balance_failed = 0;
1da177e4 4380
3e5459b4 4381 update_shares_locked(this_rq, sd);
43010659 4382 return ld_moved;
16cfb1c0
NP
4383
4384out_balanced:
d15bcfdb 4385 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4386 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4387 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4388 return -1;
16cfb1c0 4389 sd->nr_balance_failed = 0;
48f24c4d 4390
16cfb1c0 4391 return 0;
1da177e4
LT
4392}
4393
4394/*
4395 * idle_balance is called by schedule() if this_cpu is about to become
4396 * idle. Attempts to pull tasks from other CPUs.
4397 */
70b97a7f 4398static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4399{
4400 struct sched_domain *sd;
efbe027e 4401 int pulled_task = 0;
dd41f596 4402 unsigned long next_balance = jiffies + HZ;
1da177e4 4403
1b9508f6
MG
4404 this_rq->idle_stamp = this_rq->clock;
4405
4406 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4407 return;
4408
1da177e4 4409 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4410 unsigned long interval;
4411
4412 if (!(sd->flags & SD_LOAD_BALANCE))
4413 continue;
4414
4415 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4416 /* If we've pulled tasks over stop searching: */
7c16ec58 4417 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4418 sd);
92c4ca5c
CL
4419
4420 interval = msecs_to_jiffies(sd->balance_interval);
4421 if (time_after(next_balance, sd->last_balance + interval))
4422 next_balance = sd->last_balance + interval;
1b9508f6
MG
4423 if (pulled_task) {
4424 this_rq->idle_stamp = 0;
92c4ca5c 4425 break;
1b9508f6 4426 }
1da177e4 4427 }
dd41f596 4428 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4429 /*
4430 * We are going idle. next_balance may be set based on
4431 * a busy processor. So reset next_balance.
4432 */
4433 this_rq->next_balance = next_balance;
dd41f596 4434 }
1da177e4
LT
4435}
4436
4437/*
4438 * active_load_balance is run by migration threads. It pushes running tasks
4439 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4440 * running on each physical CPU where possible, and avoids physical /
4441 * logical imbalances.
4442 *
4443 * Called with busiest_rq locked.
4444 */
70b97a7f 4445static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4446{
39507451 4447 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4448 struct sched_domain *sd;
4449 struct rq *target_rq;
39507451 4450
48f24c4d 4451 /* Is there any task to move? */
39507451 4452 if (busiest_rq->nr_running <= 1)
39507451
NP
4453 return;
4454
4455 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4456
4457 /*
39507451 4458 * This condition is "impossible", if it occurs
41a2d6cf 4459 * we need to fix it. Originally reported by
39507451 4460 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4461 */
39507451 4462 BUG_ON(busiest_rq == target_rq);
1da177e4 4463
39507451
NP
4464 /* move a task from busiest_rq to target_rq */
4465 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4466 update_rq_clock(busiest_rq);
4467 update_rq_clock(target_rq);
39507451
NP
4468
4469 /* Search for an sd spanning us and the target CPU. */
c96d145e 4470 for_each_domain(target_cpu, sd) {
39507451 4471 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4472 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4473 break;
c96d145e 4474 }
39507451 4475
48f24c4d 4476 if (likely(sd)) {
2d72376b 4477 schedstat_inc(sd, alb_count);
39507451 4478
43010659
PW
4479 if (move_one_task(target_rq, target_cpu, busiest_rq,
4480 sd, CPU_IDLE))
48f24c4d
IM
4481 schedstat_inc(sd, alb_pushed);
4482 else
4483 schedstat_inc(sd, alb_failed);
4484 }
1b12bbc7 4485 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4486}
4487
46cb4b7c
SS
4488#ifdef CONFIG_NO_HZ
4489static struct {
4490 atomic_t load_balancer;
7d1e6a9b 4491 cpumask_var_t cpu_mask;
f711f609 4492 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4493} nohz ____cacheline_aligned = {
4494 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4495};
4496
eea08f32
AB
4497int get_nohz_load_balancer(void)
4498{
4499 return atomic_read(&nohz.load_balancer);
4500}
4501
f711f609
GS
4502#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4503/**
4504 * lowest_flag_domain - Return lowest sched_domain containing flag.
4505 * @cpu: The cpu whose lowest level of sched domain is to
4506 * be returned.
4507 * @flag: The flag to check for the lowest sched_domain
4508 * for the given cpu.
4509 *
4510 * Returns the lowest sched_domain of a cpu which contains the given flag.
4511 */
4512static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4513{
4514 struct sched_domain *sd;
4515
4516 for_each_domain(cpu, sd)
4517 if (sd && (sd->flags & flag))
4518 break;
4519
4520 return sd;
4521}
4522
4523/**
4524 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4525 * @cpu: The cpu whose domains we're iterating over.
4526 * @sd: variable holding the value of the power_savings_sd
4527 * for cpu.
4528 * @flag: The flag to filter the sched_domains to be iterated.
4529 *
4530 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4531 * set, starting from the lowest sched_domain to the highest.
4532 */
4533#define for_each_flag_domain(cpu, sd, flag) \
4534 for (sd = lowest_flag_domain(cpu, flag); \
4535 (sd && (sd->flags & flag)); sd = sd->parent)
4536
4537/**
4538 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4539 * @ilb_group: group to be checked for semi-idleness
4540 *
4541 * Returns: 1 if the group is semi-idle. 0 otherwise.
4542 *
4543 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4544 * and atleast one non-idle CPU. This helper function checks if the given
4545 * sched_group is semi-idle or not.
4546 */
4547static inline int is_semi_idle_group(struct sched_group *ilb_group)
4548{
4549 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4550 sched_group_cpus(ilb_group));
4551
4552 /*
4553 * A sched_group is semi-idle when it has atleast one busy cpu
4554 * and atleast one idle cpu.
4555 */
4556 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4557 return 0;
4558
4559 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4560 return 0;
4561
4562 return 1;
4563}
4564/**
4565 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4566 * @cpu: The cpu which is nominating a new idle_load_balancer.
4567 *
4568 * Returns: Returns the id of the idle load balancer if it exists,
4569 * Else, returns >= nr_cpu_ids.
4570 *
4571 * This algorithm picks the idle load balancer such that it belongs to a
4572 * semi-idle powersavings sched_domain. The idea is to try and avoid
4573 * completely idle packages/cores just for the purpose of idle load balancing
4574 * when there are other idle cpu's which are better suited for that job.
4575 */
4576static int find_new_ilb(int cpu)
4577{
4578 struct sched_domain *sd;
4579 struct sched_group *ilb_group;
4580
4581 /*
4582 * Have idle load balancer selection from semi-idle packages only
4583 * when power-aware load balancing is enabled
4584 */
4585 if (!(sched_smt_power_savings || sched_mc_power_savings))
4586 goto out_done;
4587
4588 /*
4589 * Optimize for the case when we have no idle CPUs or only one
4590 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4591 */
4592 if (cpumask_weight(nohz.cpu_mask) < 2)
4593 goto out_done;
4594
4595 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4596 ilb_group = sd->groups;
4597
4598 do {
4599 if (is_semi_idle_group(ilb_group))
4600 return cpumask_first(nohz.ilb_grp_nohz_mask);
4601
4602 ilb_group = ilb_group->next;
4603
4604 } while (ilb_group != sd->groups);
4605 }
4606
4607out_done:
4608 return cpumask_first(nohz.cpu_mask);
4609}
4610#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4611static inline int find_new_ilb(int call_cpu)
4612{
6e29ec57 4613 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4614}
4615#endif
4616
7835b98b 4617/*
46cb4b7c
SS
4618 * This routine will try to nominate the ilb (idle load balancing)
4619 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4620 * load balancing on behalf of all those cpus. If all the cpus in the system
4621 * go into this tickless mode, then there will be no ilb owner (as there is
4622 * no need for one) and all the cpus will sleep till the next wakeup event
4623 * arrives...
4624 *
4625 * For the ilb owner, tick is not stopped. And this tick will be used
4626 * for idle load balancing. ilb owner will still be part of
4627 * nohz.cpu_mask..
7835b98b 4628 *
46cb4b7c
SS
4629 * While stopping the tick, this cpu will become the ilb owner if there
4630 * is no other owner. And will be the owner till that cpu becomes busy
4631 * or if all cpus in the system stop their ticks at which point
4632 * there is no need for ilb owner.
4633 *
4634 * When the ilb owner becomes busy, it nominates another owner, during the
4635 * next busy scheduler_tick()
4636 */
4637int select_nohz_load_balancer(int stop_tick)
4638{
4639 int cpu = smp_processor_id();
4640
4641 if (stop_tick) {
46cb4b7c
SS
4642 cpu_rq(cpu)->in_nohz_recently = 1;
4643
483b4ee6
SS
4644 if (!cpu_active(cpu)) {
4645 if (atomic_read(&nohz.load_balancer) != cpu)
4646 return 0;
4647
4648 /*
4649 * If we are going offline and still the leader,
4650 * give up!
4651 */
46cb4b7c
SS
4652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4653 BUG();
483b4ee6 4654
46cb4b7c
SS
4655 return 0;
4656 }
4657
483b4ee6
SS
4658 cpumask_set_cpu(cpu, nohz.cpu_mask);
4659
46cb4b7c 4660 /* time for ilb owner also to sleep */
7d1e6a9b 4661 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4662 if (atomic_read(&nohz.load_balancer) == cpu)
4663 atomic_set(&nohz.load_balancer, -1);
4664 return 0;
4665 }
4666
4667 if (atomic_read(&nohz.load_balancer) == -1) {
4668 /* make me the ilb owner */
4669 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4670 return 1;
e790fb0b
GS
4671 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4672 int new_ilb;
4673
4674 if (!(sched_smt_power_savings ||
4675 sched_mc_power_savings))
4676 return 1;
4677 /*
4678 * Check to see if there is a more power-efficient
4679 * ilb.
4680 */
4681 new_ilb = find_new_ilb(cpu);
4682 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4683 atomic_set(&nohz.load_balancer, -1);
4684 resched_cpu(new_ilb);
4685 return 0;
4686 }
46cb4b7c 4687 return 1;
e790fb0b 4688 }
46cb4b7c 4689 } else {
7d1e6a9b 4690 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4691 return 0;
4692
7d1e6a9b 4693 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4694
4695 if (atomic_read(&nohz.load_balancer) == cpu)
4696 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4697 BUG();
4698 }
4699 return 0;
4700}
4701#endif
4702
4703static DEFINE_SPINLOCK(balancing);
4704
4705/*
7835b98b
CL
4706 * It checks each scheduling domain to see if it is due to be balanced,
4707 * and initiates a balancing operation if so.
4708 *
4709 * Balancing parameters are set up in arch_init_sched_domains.
4710 */
a9957449 4711static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4712{
46cb4b7c
SS
4713 int balance = 1;
4714 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4715 unsigned long interval;
4716 struct sched_domain *sd;
46cb4b7c 4717 /* Earliest time when we have to do rebalance again */
c9819f45 4718 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4719 int update_next_balance = 0;
d07355f5 4720 int need_serialize;
1da177e4 4721
46cb4b7c 4722 for_each_domain(cpu, sd) {
1da177e4
LT
4723 if (!(sd->flags & SD_LOAD_BALANCE))
4724 continue;
4725
4726 interval = sd->balance_interval;
d15bcfdb 4727 if (idle != CPU_IDLE)
1da177e4
LT
4728 interval *= sd->busy_factor;
4729
4730 /* scale ms to jiffies */
4731 interval = msecs_to_jiffies(interval);
4732 if (unlikely(!interval))
4733 interval = 1;
dd41f596
IM
4734 if (interval > HZ*NR_CPUS/10)
4735 interval = HZ*NR_CPUS/10;
4736
d07355f5 4737 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4738
d07355f5 4739 if (need_serialize) {
08c183f3
CL
4740 if (!spin_trylock(&balancing))
4741 goto out;
4742 }
4743
c9819f45 4744 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4745 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4746 /*
4747 * We've pulled tasks over so either we're no
5969fe06
NP
4748 * longer idle, or one of our SMT siblings is
4749 * not idle.
4750 */
d15bcfdb 4751 idle = CPU_NOT_IDLE;
1da177e4 4752 }
1bd77f2d 4753 sd->last_balance = jiffies;
1da177e4 4754 }
d07355f5 4755 if (need_serialize)
08c183f3
CL
4756 spin_unlock(&balancing);
4757out:
f549da84 4758 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4759 next_balance = sd->last_balance + interval;
f549da84
SS
4760 update_next_balance = 1;
4761 }
783609c6
SS
4762
4763 /*
4764 * Stop the load balance at this level. There is another
4765 * CPU in our sched group which is doing load balancing more
4766 * actively.
4767 */
4768 if (!balance)
4769 break;
1da177e4 4770 }
f549da84
SS
4771
4772 /*
4773 * next_balance will be updated only when there is a need.
4774 * When the cpu is attached to null domain for ex, it will not be
4775 * updated.
4776 */
4777 if (likely(update_next_balance))
4778 rq->next_balance = next_balance;
46cb4b7c
SS
4779}
4780
4781/*
4782 * run_rebalance_domains is triggered when needed from the scheduler tick.
4783 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4784 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4785 */
4786static void run_rebalance_domains(struct softirq_action *h)
4787{
dd41f596
IM
4788 int this_cpu = smp_processor_id();
4789 struct rq *this_rq = cpu_rq(this_cpu);
4790 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4791 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4792
dd41f596 4793 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4794
4795#ifdef CONFIG_NO_HZ
4796 /*
4797 * If this cpu is the owner for idle load balancing, then do the
4798 * balancing on behalf of the other idle cpus whose ticks are
4799 * stopped.
4800 */
dd41f596
IM
4801 if (this_rq->idle_at_tick &&
4802 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4803 struct rq *rq;
4804 int balance_cpu;
4805
7d1e6a9b
RR
4806 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4807 if (balance_cpu == this_cpu)
4808 continue;
4809
46cb4b7c
SS
4810 /*
4811 * If this cpu gets work to do, stop the load balancing
4812 * work being done for other cpus. Next load
4813 * balancing owner will pick it up.
4814 */
4815 if (need_resched())
4816 break;
4817
de0cf899 4818 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4819
4820 rq = cpu_rq(balance_cpu);
dd41f596
IM
4821 if (time_after(this_rq->next_balance, rq->next_balance))
4822 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4823 }
4824 }
4825#endif
4826}
4827
8a0be9ef
FW
4828static inline int on_null_domain(int cpu)
4829{
4830 return !rcu_dereference(cpu_rq(cpu)->sd);
4831}
4832
46cb4b7c
SS
4833/*
4834 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4835 *
4836 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4837 * idle load balancing owner or decide to stop the periodic load balancing,
4838 * if the whole system is idle.
4839 */
dd41f596 4840static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4841{
46cb4b7c
SS
4842#ifdef CONFIG_NO_HZ
4843 /*
4844 * If we were in the nohz mode recently and busy at the current
4845 * scheduler tick, then check if we need to nominate new idle
4846 * load balancer.
4847 */
4848 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4849 rq->in_nohz_recently = 0;
4850
4851 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4852 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4853 atomic_set(&nohz.load_balancer, -1);
4854 }
4855
4856 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4857 int ilb = find_new_ilb(cpu);
46cb4b7c 4858
434d53b0 4859 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4860 resched_cpu(ilb);
4861 }
4862 }
4863
4864 /*
4865 * If this cpu is idle and doing idle load balancing for all the
4866 * cpus with ticks stopped, is it time for that to stop?
4867 */
4868 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4869 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4870 resched_cpu(cpu);
4871 return;
4872 }
4873
4874 /*
4875 * If this cpu is idle and the idle load balancing is done by
4876 * someone else, then no need raise the SCHED_SOFTIRQ
4877 */
4878 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4879 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4880 return;
4881#endif
8a0be9ef
FW
4882 /* Don't need to rebalance while attached to NULL domain */
4883 if (time_after_eq(jiffies, rq->next_balance) &&
4884 likely(!on_null_domain(cpu)))
46cb4b7c 4885 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4886}
dd41f596
IM
4887
4888#else /* CONFIG_SMP */
4889
1da177e4
LT
4890/*
4891 * on UP we do not need to balance between CPUs:
4892 */
70b97a7f 4893static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4894{
4895}
dd41f596 4896
1da177e4
LT
4897#endif
4898
1da177e4
LT
4899DEFINE_PER_CPU(struct kernel_stat, kstat);
4900
4901EXPORT_PER_CPU_SYMBOL(kstat);
4902
4903/*
c5f8d995 4904 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4905 * @p in case that task is currently running.
c5f8d995
HS
4906 *
4907 * Called with task_rq_lock() held on @rq.
1da177e4 4908 */
c5f8d995
HS
4909static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4910{
4911 u64 ns = 0;
4912
4913 if (task_current(rq, p)) {
4914 update_rq_clock(rq);
4915 ns = rq->clock - p->se.exec_start;
4916 if ((s64)ns < 0)
4917 ns = 0;
4918 }
4919
4920 return ns;
4921}
4922
bb34d92f 4923unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4924{
1da177e4 4925 unsigned long flags;
41b86e9c 4926 struct rq *rq;
bb34d92f 4927 u64 ns = 0;
48f24c4d 4928
41b86e9c 4929 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4930 ns = do_task_delta_exec(p, rq);
4931 task_rq_unlock(rq, &flags);
1508487e 4932
c5f8d995
HS
4933 return ns;
4934}
f06febc9 4935
c5f8d995
HS
4936/*
4937 * Return accounted runtime for the task.
4938 * In case the task is currently running, return the runtime plus current's
4939 * pending runtime that have not been accounted yet.
4940 */
4941unsigned long long task_sched_runtime(struct task_struct *p)
4942{
4943 unsigned long flags;
4944 struct rq *rq;
4945 u64 ns = 0;
4946
4947 rq = task_rq_lock(p, &flags);
4948 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4949 task_rq_unlock(rq, &flags);
4950
4951 return ns;
4952}
48f24c4d 4953
c5f8d995
HS
4954/*
4955 * Return sum_exec_runtime for the thread group.
4956 * In case the task is currently running, return the sum plus current's
4957 * pending runtime that have not been accounted yet.
4958 *
4959 * Note that the thread group might have other running tasks as well,
4960 * so the return value not includes other pending runtime that other
4961 * running tasks might have.
4962 */
4963unsigned long long thread_group_sched_runtime(struct task_struct *p)
4964{
4965 struct task_cputime totals;
4966 unsigned long flags;
4967 struct rq *rq;
4968 u64 ns;
4969
4970 rq = task_rq_lock(p, &flags);
4971 thread_group_cputime(p, &totals);
4972 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4973 task_rq_unlock(rq, &flags);
48f24c4d 4974
1da177e4
LT
4975 return ns;
4976}
4977
1da177e4
LT
4978/*
4979 * Account user cpu time to a process.
4980 * @p: the process that the cpu time gets accounted to
1da177e4 4981 * @cputime: the cpu time spent in user space since the last update
457533a7 4982 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4983 */
457533a7
MS
4984void account_user_time(struct task_struct *p, cputime_t cputime,
4985 cputime_t cputime_scaled)
1da177e4
LT
4986{
4987 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4988 cputime64_t tmp;
4989
457533a7 4990 /* Add user time to process. */
1da177e4 4991 p->utime = cputime_add(p->utime, cputime);
457533a7 4992 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4993 account_group_user_time(p, cputime);
1da177e4
LT
4994
4995 /* Add user time to cpustat. */
4996 tmp = cputime_to_cputime64(cputime);
4997 if (TASK_NICE(p) > 0)
4998 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4999 else
5000 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5001
5002 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5003 /* Account for user time used */
5004 acct_update_integrals(p);
1da177e4
LT
5005}
5006
94886b84
LV
5007/*
5008 * Account guest cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5011 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5012 */
457533a7
MS
5013static void account_guest_time(struct task_struct *p, cputime_t cputime,
5014 cputime_t cputime_scaled)
94886b84
LV
5015{
5016 cputime64_t tmp;
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5018
5019 tmp = cputime_to_cputime64(cputime);
5020
457533a7 5021 /* Add guest time to process. */
94886b84 5022 p->utime = cputime_add(p->utime, cputime);
457533a7 5023 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5024 account_group_user_time(p, cputime);
94886b84
LV
5025 p->gtime = cputime_add(p->gtime, cputime);
5026
457533a7 5027 /* Add guest time to cpustat. */
ce0e7b28
RO
5028 if (TASK_NICE(p) > 0) {
5029 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5030 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5031 } else {
5032 cpustat->user = cputime64_add(cpustat->user, tmp);
5033 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5034 }
94886b84
LV
5035}
5036
1da177e4
LT
5037/*
5038 * Account system cpu time to a process.
5039 * @p: the process that the cpu time gets accounted to
5040 * @hardirq_offset: the offset to subtract from hardirq_count()
5041 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5042 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5043 */
5044void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5045 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5046{
5047 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5048 cputime64_t tmp;
5049
983ed7a6 5050 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5051 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5052 return;
5053 }
94886b84 5054
457533a7 5055 /* Add system time to process. */
1da177e4 5056 p->stime = cputime_add(p->stime, cputime);
457533a7 5057 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5058 account_group_system_time(p, cputime);
1da177e4
LT
5059
5060 /* Add system time to cpustat. */
5061 tmp = cputime_to_cputime64(cputime);
5062 if (hardirq_count() - hardirq_offset)
5063 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5064 else if (softirq_count())
5065 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5066 else
79741dd3
MS
5067 cpustat->system = cputime64_add(cpustat->system, tmp);
5068
ef12fefa
BR
5069 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5070
1da177e4
LT
5071 /* Account for system time used */
5072 acct_update_integrals(p);
1da177e4
LT
5073}
5074
c66f08be 5075/*
1da177e4 5076 * Account for involuntary wait time.
1da177e4 5077 * @steal: the cpu time spent in involuntary wait
c66f08be 5078 */
79741dd3 5079void account_steal_time(cputime_t cputime)
c66f08be 5080{
79741dd3
MS
5081 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5082 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5083
5084 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5085}
5086
1da177e4 5087/*
79741dd3
MS
5088 * Account for idle time.
5089 * @cputime: the cpu time spent in idle wait
1da177e4 5090 */
79741dd3 5091void account_idle_time(cputime_t cputime)
1da177e4
LT
5092{
5093 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5094 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5095 struct rq *rq = this_rq();
1da177e4 5096
79741dd3
MS
5097 if (atomic_read(&rq->nr_iowait) > 0)
5098 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5099 else
5100 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5101}
5102
79741dd3
MS
5103#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5104
5105/*
5106 * Account a single tick of cpu time.
5107 * @p: the process that the cpu time gets accounted to
5108 * @user_tick: indicates if the tick is a user or a system tick
5109 */
5110void account_process_tick(struct task_struct *p, int user_tick)
5111{
a42548a1 5112 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5113 struct rq *rq = this_rq();
5114
5115 if (user_tick)
a42548a1 5116 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5117 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5118 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5119 one_jiffy_scaled);
5120 else
a42548a1 5121 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5122}
5123
5124/*
5125 * Account multiple ticks of steal time.
5126 * @p: the process from which the cpu time has been stolen
5127 * @ticks: number of stolen ticks
5128 */
5129void account_steal_ticks(unsigned long ticks)
5130{
5131 account_steal_time(jiffies_to_cputime(ticks));
5132}
5133
5134/*
5135 * Account multiple ticks of idle time.
5136 * @ticks: number of stolen ticks
5137 */
5138void account_idle_ticks(unsigned long ticks)
5139{
5140 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5141}
5142
79741dd3
MS
5143#endif
5144
49048622
BS
5145/*
5146 * Use precise platform statistics if available:
5147 */
5148#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5149cputime_t task_utime(struct task_struct *p)
5150{
5151 return p->utime;
5152}
5153
5154cputime_t task_stime(struct task_struct *p)
5155{
5156 return p->stime;
5157}
5158#else
5159cputime_t task_utime(struct task_struct *p)
5160{
5161 clock_t utime = cputime_to_clock_t(p->utime),
5162 total = utime + cputime_to_clock_t(p->stime);
5163 u64 temp;
5164
5165 /*
5166 * Use CFS's precise accounting:
5167 */
5168 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5169
5170 if (total) {
5171 temp *= utime;
5172 do_div(temp, total);
5173 }
5174 utime = (clock_t)temp;
5175
5176 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5177 return p->prev_utime;
5178}
5179
5180cputime_t task_stime(struct task_struct *p)
5181{
5182 clock_t stime;
5183
5184 /*
5185 * Use CFS's precise accounting. (we subtract utime from
5186 * the total, to make sure the total observed by userspace
5187 * grows monotonically - apps rely on that):
5188 */
5189 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5190 cputime_to_clock_t(task_utime(p));
5191
5192 if (stime >= 0)
5193 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5194
5195 return p->prev_stime;
5196}
5197#endif
5198
5199inline cputime_t task_gtime(struct task_struct *p)
5200{
5201 return p->gtime;
5202}
5203
7835b98b
CL
5204/*
5205 * This function gets called by the timer code, with HZ frequency.
5206 * We call it with interrupts disabled.
5207 *
5208 * It also gets called by the fork code, when changing the parent's
5209 * timeslices.
5210 */
5211void scheduler_tick(void)
5212{
7835b98b
CL
5213 int cpu = smp_processor_id();
5214 struct rq *rq = cpu_rq(cpu);
dd41f596 5215 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5216
5217 sched_clock_tick();
dd41f596
IM
5218
5219 spin_lock(&rq->lock);
3e51f33f 5220 update_rq_clock(rq);
f1a438d8 5221 update_cpu_load(rq);
fa85ae24 5222 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5223 spin_unlock(&rq->lock);
7835b98b 5224
cdd6c482 5225 perf_event_task_tick(curr, cpu);
e220d2dc 5226
e418e1c2 5227#ifdef CONFIG_SMP
dd41f596
IM
5228 rq->idle_at_tick = idle_cpu(cpu);
5229 trigger_load_balance(rq, cpu);
e418e1c2 5230#endif
1da177e4
LT
5231}
5232
132380a0 5233notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5234{
5235 if (in_lock_functions(addr)) {
5236 addr = CALLER_ADDR2;
5237 if (in_lock_functions(addr))
5238 addr = CALLER_ADDR3;
5239 }
5240 return addr;
5241}
1da177e4 5242
7e49fcce
SR
5243#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5244 defined(CONFIG_PREEMPT_TRACER))
5245
43627582 5246void __kprobes add_preempt_count(int val)
1da177e4 5247{
6cd8a4bb 5248#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5249 /*
5250 * Underflow?
5251 */
9a11b49a
IM
5252 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5253 return;
6cd8a4bb 5254#endif
1da177e4 5255 preempt_count() += val;
6cd8a4bb 5256#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5257 /*
5258 * Spinlock count overflowing soon?
5259 */
33859f7f
MOS
5260 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5261 PREEMPT_MASK - 10);
6cd8a4bb
SR
5262#endif
5263 if (preempt_count() == val)
5264 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5265}
5266EXPORT_SYMBOL(add_preempt_count);
5267
43627582 5268void __kprobes sub_preempt_count(int val)
1da177e4 5269{
6cd8a4bb 5270#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5271 /*
5272 * Underflow?
5273 */
01e3eb82 5274 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5275 return;
1da177e4
LT
5276 /*
5277 * Is the spinlock portion underflowing?
5278 */
9a11b49a
IM
5279 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5280 !(preempt_count() & PREEMPT_MASK)))
5281 return;
6cd8a4bb 5282#endif
9a11b49a 5283
6cd8a4bb
SR
5284 if (preempt_count() == val)
5285 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5286 preempt_count() -= val;
5287}
5288EXPORT_SYMBOL(sub_preempt_count);
5289
5290#endif
5291
5292/*
dd41f596 5293 * Print scheduling while atomic bug:
1da177e4 5294 */
dd41f596 5295static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5296{
838225b4
SS
5297 struct pt_regs *regs = get_irq_regs();
5298
5299 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5300 prev->comm, prev->pid, preempt_count());
5301
dd41f596 5302 debug_show_held_locks(prev);
e21f5b15 5303 print_modules();
dd41f596
IM
5304 if (irqs_disabled())
5305 print_irqtrace_events(prev);
838225b4
SS
5306
5307 if (regs)
5308 show_regs(regs);
5309 else
5310 dump_stack();
dd41f596 5311}
1da177e4 5312
dd41f596
IM
5313/*
5314 * Various schedule()-time debugging checks and statistics:
5315 */
5316static inline void schedule_debug(struct task_struct *prev)
5317{
1da177e4 5318 /*
41a2d6cf 5319 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5320 * schedule() atomically, we ignore that path for now.
5321 * Otherwise, whine if we are scheduling when we should not be.
5322 */
3f33a7ce 5323 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5324 __schedule_bug(prev);
5325
1da177e4
LT
5326 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5327
2d72376b 5328 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5329#ifdef CONFIG_SCHEDSTATS
5330 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5331 schedstat_inc(this_rq(), bkl_count);
5332 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5333 }
5334#endif
dd41f596
IM
5335}
5336
ad4b78bb 5337static void put_prev_task(struct rq *rq, struct task_struct *p)
df1c99d4 5338{
ad4b78bb 5339 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
df1c99d4 5340
ad4b78bb 5341 update_avg(&p->se.avg_running, runtime);
df1c99d4 5342
ad4b78bb 5343 if (p->state == TASK_RUNNING) {
df1c99d4
MG
5344 /*
5345 * In order to avoid avg_overlap growing stale when we are
5346 * indeed overlapping and hence not getting put to sleep, grow
5347 * the avg_overlap on preemption.
5348 *
5349 * We use the average preemption runtime because that
5350 * correlates to the amount of cache footprint a task can
5351 * build up.
5352 */
ad4b78bb
PZ
5353 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5354 update_avg(&p->se.avg_overlap, runtime);
5355 } else {
5356 update_avg(&p->se.avg_running, 0);
df1c99d4 5357 }
ad4b78bb 5358 p->sched_class->put_prev_task(rq, p);
df1c99d4
MG
5359}
5360
dd41f596
IM
5361/*
5362 * Pick up the highest-prio task:
5363 */
5364static inline struct task_struct *
b67802ea 5365pick_next_task(struct rq *rq)
dd41f596 5366{
5522d5d5 5367 const struct sched_class *class;
dd41f596 5368 struct task_struct *p;
1da177e4
LT
5369
5370 /*
dd41f596
IM
5371 * Optimization: we know that if all tasks are in
5372 * the fair class we can call that function directly:
1da177e4 5373 */
dd41f596 5374 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5375 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5376 if (likely(p))
5377 return p;
1da177e4
LT
5378 }
5379
dd41f596
IM
5380 class = sched_class_highest;
5381 for ( ; ; ) {
fb8d4724 5382 p = class->pick_next_task(rq);
dd41f596
IM
5383 if (p)
5384 return p;
5385 /*
5386 * Will never be NULL as the idle class always
5387 * returns a non-NULL p:
5388 */
5389 class = class->next;
5390 }
5391}
1da177e4 5392
dd41f596
IM
5393/*
5394 * schedule() is the main scheduler function.
5395 */
ff743345 5396asmlinkage void __sched schedule(void)
dd41f596
IM
5397{
5398 struct task_struct *prev, *next;
67ca7bde 5399 unsigned long *switch_count;
dd41f596 5400 struct rq *rq;
31656519 5401 int cpu;
dd41f596 5402
ff743345
PZ
5403need_resched:
5404 preempt_disable();
dd41f596
IM
5405 cpu = smp_processor_id();
5406 rq = cpu_rq(cpu);
d6714c22 5407 rcu_sched_qs(cpu);
dd41f596
IM
5408 prev = rq->curr;
5409 switch_count = &prev->nivcsw;
5410
5411 release_kernel_lock(prev);
5412need_resched_nonpreemptible:
5413
5414 schedule_debug(prev);
1da177e4 5415
31656519 5416 if (sched_feat(HRTICK))
f333fdc9 5417 hrtick_clear(rq);
8f4d37ec 5418
8cd162ce 5419 spin_lock_irq(&rq->lock);
3e51f33f 5420 update_rq_clock(rq);
1e819950 5421 clear_tsk_need_resched(prev);
1da177e4 5422
1da177e4 5423 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5424 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5425 prev->state = TASK_RUNNING;
16882c1e 5426 else
2e1cb74a 5427 deactivate_task(rq, prev, 1);
dd41f596 5428 switch_count = &prev->nvcsw;
1da177e4
LT
5429 }
5430
3f029d3c 5431 pre_schedule(rq, prev);
f65eda4f 5432
dd41f596 5433 if (unlikely(!rq->nr_running))
1da177e4 5434 idle_balance(cpu, rq);
1da177e4 5435
df1c99d4 5436 put_prev_task(rq, prev);
b67802ea 5437 next = pick_next_task(rq);
1da177e4 5438
1da177e4 5439 if (likely(prev != next)) {
673a90a1 5440 sched_info_switch(prev, next);
cdd6c482 5441 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5442
1da177e4
LT
5443 rq->nr_switches++;
5444 rq->curr = next;
5445 ++*switch_count;
5446
dd41f596 5447 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5448 /*
5449 * the context switch might have flipped the stack from under
5450 * us, hence refresh the local variables.
5451 */
5452 cpu = smp_processor_id();
5453 rq = cpu_rq(cpu);
1da177e4
LT
5454 } else
5455 spin_unlock_irq(&rq->lock);
5456
3f029d3c 5457 post_schedule(rq);
1da177e4 5458
8f4d37ec 5459 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5460 goto need_resched_nonpreemptible;
8f4d37ec 5461
1da177e4 5462 preempt_enable_no_resched();
ff743345 5463 if (need_resched())
1da177e4
LT
5464 goto need_resched;
5465}
1da177e4
LT
5466EXPORT_SYMBOL(schedule);
5467
0d66bf6d
PZ
5468#ifdef CONFIG_SMP
5469/*
5470 * Look out! "owner" is an entirely speculative pointer
5471 * access and not reliable.
5472 */
5473int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5474{
5475 unsigned int cpu;
5476 struct rq *rq;
5477
5478 if (!sched_feat(OWNER_SPIN))
5479 return 0;
5480
5481#ifdef CONFIG_DEBUG_PAGEALLOC
5482 /*
5483 * Need to access the cpu field knowing that
5484 * DEBUG_PAGEALLOC could have unmapped it if
5485 * the mutex owner just released it and exited.
5486 */
5487 if (probe_kernel_address(&owner->cpu, cpu))
5488 goto out;
5489#else
5490 cpu = owner->cpu;
5491#endif
5492
5493 /*
5494 * Even if the access succeeded (likely case),
5495 * the cpu field may no longer be valid.
5496 */
5497 if (cpu >= nr_cpumask_bits)
5498 goto out;
5499
5500 /*
5501 * We need to validate that we can do a
5502 * get_cpu() and that we have the percpu area.
5503 */
5504 if (!cpu_online(cpu))
5505 goto out;
5506
5507 rq = cpu_rq(cpu);
5508
5509 for (;;) {
5510 /*
5511 * Owner changed, break to re-assess state.
5512 */
5513 if (lock->owner != owner)
5514 break;
5515
5516 /*
5517 * Is that owner really running on that cpu?
5518 */
5519 if (task_thread_info(rq->curr) != owner || need_resched())
5520 return 0;
5521
5522 cpu_relax();
5523 }
5524out:
5525 return 1;
5526}
5527#endif
5528
1da177e4
LT
5529#ifdef CONFIG_PREEMPT
5530/*
2ed6e34f 5531 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5532 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5533 * occur there and call schedule directly.
5534 */
5535asmlinkage void __sched preempt_schedule(void)
5536{
5537 struct thread_info *ti = current_thread_info();
6478d880 5538
1da177e4
LT
5539 /*
5540 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5541 * we do not want to preempt the current task. Just return..
1da177e4 5542 */
beed33a8 5543 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5544 return;
5545
3a5c359a
AK
5546 do {
5547 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5548 schedule();
3a5c359a 5549 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5550
3a5c359a
AK
5551 /*
5552 * Check again in case we missed a preemption opportunity
5553 * between schedule and now.
5554 */
5555 barrier();
5ed0cec0 5556 } while (need_resched());
1da177e4 5557}
1da177e4
LT
5558EXPORT_SYMBOL(preempt_schedule);
5559
5560/*
2ed6e34f 5561 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5562 * off of irq context.
5563 * Note, that this is called and return with irqs disabled. This will
5564 * protect us against recursive calling from irq.
5565 */
5566asmlinkage void __sched preempt_schedule_irq(void)
5567{
5568 struct thread_info *ti = current_thread_info();
6478d880 5569
2ed6e34f 5570 /* Catch callers which need to be fixed */
1da177e4
LT
5571 BUG_ON(ti->preempt_count || !irqs_disabled());
5572
3a5c359a
AK
5573 do {
5574 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5575 local_irq_enable();
5576 schedule();
5577 local_irq_disable();
3a5c359a 5578 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5579
3a5c359a
AK
5580 /*
5581 * Check again in case we missed a preemption opportunity
5582 * between schedule and now.
5583 */
5584 barrier();
5ed0cec0 5585 } while (need_resched());
1da177e4
LT
5586}
5587
5588#endif /* CONFIG_PREEMPT */
5589
63859d4f 5590int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5591 void *key)
1da177e4 5592{
63859d4f 5593 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5594}
1da177e4
LT
5595EXPORT_SYMBOL(default_wake_function);
5596
5597/*
41a2d6cf
IM
5598 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5599 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5600 * number) then we wake all the non-exclusive tasks and one exclusive task.
5601 *
5602 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5603 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5604 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5605 */
78ddb08f 5606static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5607 int nr_exclusive, int wake_flags, void *key)
1da177e4 5608{
2e45874c 5609 wait_queue_t *curr, *next;
1da177e4 5610
2e45874c 5611 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5612 unsigned flags = curr->flags;
5613
63859d4f 5614 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5615 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5616 break;
5617 }
5618}
5619
5620/**
5621 * __wake_up - wake up threads blocked on a waitqueue.
5622 * @q: the waitqueue
5623 * @mode: which threads
5624 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5625 * @key: is directly passed to the wakeup function
50fa610a
DH
5626 *
5627 * It may be assumed that this function implies a write memory barrier before
5628 * changing the task state if and only if any tasks are woken up.
1da177e4 5629 */
7ad5b3a5 5630void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5631 int nr_exclusive, void *key)
1da177e4
LT
5632{
5633 unsigned long flags;
5634
5635 spin_lock_irqsave(&q->lock, flags);
5636 __wake_up_common(q, mode, nr_exclusive, 0, key);
5637 spin_unlock_irqrestore(&q->lock, flags);
5638}
1da177e4
LT
5639EXPORT_SYMBOL(__wake_up);
5640
5641/*
5642 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5643 */
7ad5b3a5 5644void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5645{
5646 __wake_up_common(q, mode, 1, 0, NULL);
5647}
5648
4ede816a
DL
5649void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5650{
5651 __wake_up_common(q, mode, 1, 0, key);
5652}
5653
1da177e4 5654/**
4ede816a 5655 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5656 * @q: the waitqueue
5657 * @mode: which threads
5658 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5659 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5660 *
5661 * The sync wakeup differs that the waker knows that it will schedule
5662 * away soon, so while the target thread will be woken up, it will not
5663 * be migrated to another CPU - ie. the two threads are 'synchronized'
5664 * with each other. This can prevent needless bouncing between CPUs.
5665 *
5666 * On UP it can prevent extra preemption.
50fa610a
DH
5667 *
5668 * It may be assumed that this function implies a write memory barrier before
5669 * changing the task state if and only if any tasks are woken up.
1da177e4 5670 */
4ede816a
DL
5671void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5672 int nr_exclusive, void *key)
1da177e4
LT
5673{
5674 unsigned long flags;
7d478721 5675 int wake_flags = WF_SYNC;
1da177e4
LT
5676
5677 if (unlikely(!q))
5678 return;
5679
5680 if (unlikely(!nr_exclusive))
7d478721 5681 wake_flags = 0;
1da177e4
LT
5682
5683 spin_lock_irqsave(&q->lock, flags);
7d478721 5684 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5685 spin_unlock_irqrestore(&q->lock, flags);
5686}
4ede816a
DL
5687EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5688
5689/*
5690 * __wake_up_sync - see __wake_up_sync_key()
5691 */
5692void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5693{
5694 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5695}
1da177e4
LT
5696EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5697
65eb3dc6
KD
5698/**
5699 * complete: - signals a single thread waiting on this completion
5700 * @x: holds the state of this particular completion
5701 *
5702 * This will wake up a single thread waiting on this completion. Threads will be
5703 * awakened in the same order in which they were queued.
5704 *
5705 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5706 *
5707 * It may be assumed that this function implies a write memory barrier before
5708 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5709 */
b15136e9 5710void complete(struct completion *x)
1da177e4
LT
5711{
5712 unsigned long flags;
5713
5714 spin_lock_irqsave(&x->wait.lock, flags);
5715 x->done++;
d9514f6c 5716 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5717 spin_unlock_irqrestore(&x->wait.lock, flags);
5718}
5719EXPORT_SYMBOL(complete);
5720
65eb3dc6
KD
5721/**
5722 * complete_all: - signals all threads waiting on this completion
5723 * @x: holds the state of this particular completion
5724 *
5725 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5726 *
5727 * It may be assumed that this function implies a write memory barrier before
5728 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5729 */
b15136e9 5730void complete_all(struct completion *x)
1da177e4
LT
5731{
5732 unsigned long flags;
5733
5734 spin_lock_irqsave(&x->wait.lock, flags);
5735 x->done += UINT_MAX/2;
d9514f6c 5736 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5737 spin_unlock_irqrestore(&x->wait.lock, flags);
5738}
5739EXPORT_SYMBOL(complete_all);
5740
8cbbe86d
AK
5741static inline long __sched
5742do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5743{
1da177e4
LT
5744 if (!x->done) {
5745 DECLARE_WAITQUEUE(wait, current);
5746
5747 wait.flags |= WQ_FLAG_EXCLUSIVE;
5748 __add_wait_queue_tail(&x->wait, &wait);
5749 do {
94d3d824 5750 if (signal_pending_state(state, current)) {
ea71a546
ON
5751 timeout = -ERESTARTSYS;
5752 break;
8cbbe86d
AK
5753 }
5754 __set_current_state(state);
1da177e4
LT
5755 spin_unlock_irq(&x->wait.lock);
5756 timeout = schedule_timeout(timeout);
5757 spin_lock_irq(&x->wait.lock);
ea71a546 5758 } while (!x->done && timeout);
1da177e4 5759 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5760 if (!x->done)
5761 return timeout;
1da177e4
LT
5762 }
5763 x->done--;
ea71a546 5764 return timeout ?: 1;
1da177e4 5765}
1da177e4 5766
8cbbe86d
AK
5767static long __sched
5768wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5769{
1da177e4
LT
5770 might_sleep();
5771
5772 spin_lock_irq(&x->wait.lock);
8cbbe86d 5773 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5774 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5775 return timeout;
5776}
1da177e4 5777
65eb3dc6
KD
5778/**
5779 * wait_for_completion: - waits for completion of a task
5780 * @x: holds the state of this particular completion
5781 *
5782 * This waits to be signaled for completion of a specific task. It is NOT
5783 * interruptible and there is no timeout.
5784 *
5785 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5786 * and interrupt capability. Also see complete().
5787 */
b15136e9 5788void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5789{
5790 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5791}
8cbbe86d 5792EXPORT_SYMBOL(wait_for_completion);
1da177e4 5793
65eb3dc6
KD
5794/**
5795 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5796 * @x: holds the state of this particular completion
5797 * @timeout: timeout value in jiffies
5798 *
5799 * This waits for either a completion of a specific task to be signaled or for a
5800 * specified timeout to expire. The timeout is in jiffies. It is not
5801 * interruptible.
5802 */
b15136e9 5803unsigned long __sched
8cbbe86d 5804wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5805{
8cbbe86d 5806 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5807}
8cbbe86d 5808EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5809
65eb3dc6
KD
5810/**
5811 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5812 * @x: holds the state of this particular completion
5813 *
5814 * This waits for completion of a specific task to be signaled. It is
5815 * interruptible.
5816 */
8cbbe86d 5817int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5818{
51e97990
AK
5819 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5820 if (t == -ERESTARTSYS)
5821 return t;
5822 return 0;
0fec171c 5823}
8cbbe86d 5824EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5825
65eb3dc6
KD
5826/**
5827 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5828 * @x: holds the state of this particular completion
5829 * @timeout: timeout value in jiffies
5830 *
5831 * This waits for either a completion of a specific task to be signaled or for a
5832 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5833 */
b15136e9 5834unsigned long __sched
8cbbe86d
AK
5835wait_for_completion_interruptible_timeout(struct completion *x,
5836 unsigned long timeout)
0fec171c 5837{
8cbbe86d 5838 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5839}
8cbbe86d 5840EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5841
65eb3dc6
KD
5842/**
5843 * wait_for_completion_killable: - waits for completion of a task (killable)
5844 * @x: holds the state of this particular completion
5845 *
5846 * This waits to be signaled for completion of a specific task. It can be
5847 * interrupted by a kill signal.
5848 */
009e577e
MW
5849int __sched wait_for_completion_killable(struct completion *x)
5850{
5851 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5852 if (t == -ERESTARTSYS)
5853 return t;
5854 return 0;
5855}
5856EXPORT_SYMBOL(wait_for_completion_killable);
5857
be4de352
DC
5858/**
5859 * try_wait_for_completion - try to decrement a completion without blocking
5860 * @x: completion structure
5861 *
5862 * Returns: 0 if a decrement cannot be done without blocking
5863 * 1 if a decrement succeeded.
5864 *
5865 * If a completion is being used as a counting completion,
5866 * attempt to decrement the counter without blocking. This
5867 * enables us to avoid waiting if the resource the completion
5868 * is protecting is not available.
5869 */
5870bool try_wait_for_completion(struct completion *x)
5871{
5872 int ret = 1;
5873
5874 spin_lock_irq(&x->wait.lock);
5875 if (!x->done)
5876 ret = 0;
5877 else
5878 x->done--;
5879 spin_unlock_irq(&x->wait.lock);
5880 return ret;
5881}
5882EXPORT_SYMBOL(try_wait_for_completion);
5883
5884/**
5885 * completion_done - Test to see if a completion has any waiters
5886 * @x: completion structure
5887 *
5888 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5889 * 1 if there are no waiters.
5890 *
5891 */
5892bool completion_done(struct completion *x)
5893{
5894 int ret = 1;
5895
5896 spin_lock_irq(&x->wait.lock);
5897 if (!x->done)
5898 ret = 0;
5899 spin_unlock_irq(&x->wait.lock);
5900 return ret;
5901}
5902EXPORT_SYMBOL(completion_done);
5903
8cbbe86d
AK
5904static long __sched
5905sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5906{
0fec171c
IM
5907 unsigned long flags;
5908 wait_queue_t wait;
5909
5910 init_waitqueue_entry(&wait, current);
1da177e4 5911
8cbbe86d 5912 __set_current_state(state);
1da177e4 5913
8cbbe86d
AK
5914 spin_lock_irqsave(&q->lock, flags);
5915 __add_wait_queue(q, &wait);
5916 spin_unlock(&q->lock);
5917 timeout = schedule_timeout(timeout);
5918 spin_lock_irq(&q->lock);
5919 __remove_wait_queue(q, &wait);
5920 spin_unlock_irqrestore(&q->lock, flags);
5921
5922 return timeout;
5923}
5924
5925void __sched interruptible_sleep_on(wait_queue_head_t *q)
5926{
5927 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5928}
1da177e4
LT
5929EXPORT_SYMBOL(interruptible_sleep_on);
5930
0fec171c 5931long __sched
95cdf3b7 5932interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5933{
8cbbe86d 5934 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5935}
1da177e4
LT
5936EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5937
0fec171c 5938void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5939{
8cbbe86d 5940 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5941}
1da177e4
LT
5942EXPORT_SYMBOL(sleep_on);
5943
0fec171c 5944long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5945{
8cbbe86d 5946 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5947}
1da177e4
LT
5948EXPORT_SYMBOL(sleep_on_timeout);
5949
b29739f9
IM
5950#ifdef CONFIG_RT_MUTEXES
5951
5952/*
5953 * rt_mutex_setprio - set the current priority of a task
5954 * @p: task
5955 * @prio: prio value (kernel-internal form)
5956 *
5957 * This function changes the 'effective' priority of a task. It does
5958 * not touch ->normal_prio like __setscheduler().
5959 *
5960 * Used by the rt_mutex code to implement priority inheritance logic.
5961 */
36c8b586 5962void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5963{
5964 unsigned long flags;
83b699ed 5965 int oldprio, on_rq, running;
70b97a7f 5966 struct rq *rq;
cb469845 5967 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5968
5969 BUG_ON(prio < 0 || prio > MAX_PRIO);
5970
5971 rq = task_rq_lock(p, &flags);
a8e504d2 5972 update_rq_clock(rq);
b29739f9 5973
d5f9f942 5974 oldprio = p->prio;
dd41f596 5975 on_rq = p->se.on_rq;
051a1d1a 5976 running = task_current(rq, p);
0e1f3483 5977 if (on_rq)
69be72c1 5978 dequeue_task(rq, p, 0);
0e1f3483
HS
5979 if (running)
5980 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5981
5982 if (rt_prio(prio))
5983 p->sched_class = &rt_sched_class;
5984 else
5985 p->sched_class = &fair_sched_class;
5986
b29739f9
IM
5987 p->prio = prio;
5988
0e1f3483
HS
5989 if (running)
5990 p->sched_class->set_curr_task(rq);
dd41f596 5991 if (on_rq) {
8159f87e 5992 enqueue_task(rq, p, 0);
cb469845
SR
5993
5994 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5995 }
5996 task_rq_unlock(rq, &flags);
5997}
5998
5999#endif
6000
36c8b586 6001void set_user_nice(struct task_struct *p, long nice)
1da177e4 6002{
dd41f596 6003 int old_prio, delta, on_rq;
1da177e4 6004 unsigned long flags;
70b97a7f 6005 struct rq *rq;
1da177e4
LT
6006
6007 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6008 return;
6009 /*
6010 * We have to be careful, if called from sys_setpriority(),
6011 * the task might be in the middle of scheduling on another CPU.
6012 */
6013 rq = task_rq_lock(p, &flags);
a8e504d2 6014 update_rq_clock(rq);
1da177e4
LT
6015 /*
6016 * The RT priorities are set via sched_setscheduler(), but we still
6017 * allow the 'normal' nice value to be set - but as expected
6018 * it wont have any effect on scheduling until the task is
dd41f596 6019 * SCHED_FIFO/SCHED_RR:
1da177e4 6020 */
e05606d3 6021 if (task_has_rt_policy(p)) {
1da177e4
LT
6022 p->static_prio = NICE_TO_PRIO(nice);
6023 goto out_unlock;
6024 }
dd41f596 6025 on_rq = p->se.on_rq;
c09595f6 6026 if (on_rq)
69be72c1 6027 dequeue_task(rq, p, 0);
1da177e4 6028
1da177e4 6029 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6030 set_load_weight(p);
b29739f9
IM
6031 old_prio = p->prio;
6032 p->prio = effective_prio(p);
6033 delta = p->prio - old_prio;
1da177e4 6034
dd41f596 6035 if (on_rq) {
8159f87e 6036 enqueue_task(rq, p, 0);
1da177e4 6037 /*
d5f9f942
AM
6038 * If the task increased its priority or is running and
6039 * lowered its priority, then reschedule its CPU:
1da177e4 6040 */
d5f9f942 6041 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6042 resched_task(rq->curr);
6043 }
6044out_unlock:
6045 task_rq_unlock(rq, &flags);
6046}
1da177e4
LT
6047EXPORT_SYMBOL(set_user_nice);
6048
e43379f1
MM
6049/*
6050 * can_nice - check if a task can reduce its nice value
6051 * @p: task
6052 * @nice: nice value
6053 */
36c8b586 6054int can_nice(const struct task_struct *p, const int nice)
e43379f1 6055{
024f4747
MM
6056 /* convert nice value [19,-20] to rlimit style value [1,40] */
6057 int nice_rlim = 20 - nice;
48f24c4d 6058
e43379f1
MM
6059 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6060 capable(CAP_SYS_NICE));
6061}
6062
1da177e4
LT
6063#ifdef __ARCH_WANT_SYS_NICE
6064
6065/*
6066 * sys_nice - change the priority of the current process.
6067 * @increment: priority increment
6068 *
6069 * sys_setpriority is a more generic, but much slower function that
6070 * does similar things.
6071 */
5add95d4 6072SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6073{
48f24c4d 6074 long nice, retval;
1da177e4
LT
6075
6076 /*
6077 * Setpriority might change our priority at the same moment.
6078 * We don't have to worry. Conceptually one call occurs first
6079 * and we have a single winner.
6080 */
e43379f1
MM
6081 if (increment < -40)
6082 increment = -40;
1da177e4
LT
6083 if (increment > 40)
6084 increment = 40;
6085
2b8f836f 6086 nice = TASK_NICE(current) + increment;
1da177e4
LT
6087 if (nice < -20)
6088 nice = -20;
6089 if (nice > 19)
6090 nice = 19;
6091
e43379f1
MM
6092 if (increment < 0 && !can_nice(current, nice))
6093 return -EPERM;
6094
1da177e4
LT
6095 retval = security_task_setnice(current, nice);
6096 if (retval)
6097 return retval;
6098
6099 set_user_nice(current, nice);
6100 return 0;
6101}
6102
6103#endif
6104
6105/**
6106 * task_prio - return the priority value of a given task.
6107 * @p: the task in question.
6108 *
6109 * This is the priority value as seen by users in /proc.
6110 * RT tasks are offset by -200. Normal tasks are centered
6111 * around 0, value goes from -16 to +15.
6112 */
36c8b586 6113int task_prio(const struct task_struct *p)
1da177e4
LT
6114{
6115 return p->prio - MAX_RT_PRIO;
6116}
6117
6118/**
6119 * task_nice - return the nice value of a given task.
6120 * @p: the task in question.
6121 */
36c8b586 6122int task_nice(const struct task_struct *p)
1da177e4
LT
6123{
6124 return TASK_NICE(p);
6125}
150d8bed 6126EXPORT_SYMBOL(task_nice);
1da177e4
LT
6127
6128/**
6129 * idle_cpu - is a given cpu idle currently?
6130 * @cpu: the processor in question.
6131 */
6132int idle_cpu(int cpu)
6133{
6134 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6135}
6136
1da177e4
LT
6137/**
6138 * idle_task - return the idle task for a given cpu.
6139 * @cpu: the processor in question.
6140 */
36c8b586 6141struct task_struct *idle_task(int cpu)
1da177e4
LT
6142{
6143 return cpu_rq(cpu)->idle;
6144}
6145
6146/**
6147 * find_process_by_pid - find a process with a matching PID value.
6148 * @pid: the pid in question.
6149 */
a9957449 6150static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6151{
228ebcbe 6152 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6153}
6154
6155/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6156static void
6157__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6158{
dd41f596 6159 BUG_ON(p->se.on_rq);
48f24c4d 6160
1da177e4
LT
6161 p->policy = policy;
6162 p->rt_priority = prio;
b29739f9
IM
6163 p->normal_prio = normal_prio(p);
6164 /* we are holding p->pi_lock already */
6165 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6166 if (rt_prio(p->prio))
6167 p->sched_class = &rt_sched_class;
6168 else
6169 p->sched_class = &fair_sched_class;
2dd73a4f 6170 set_load_weight(p);
1da177e4
LT
6171}
6172
c69e8d9c
DH
6173/*
6174 * check the target process has a UID that matches the current process's
6175 */
6176static bool check_same_owner(struct task_struct *p)
6177{
6178 const struct cred *cred = current_cred(), *pcred;
6179 bool match;
6180
6181 rcu_read_lock();
6182 pcred = __task_cred(p);
6183 match = (cred->euid == pcred->euid ||
6184 cred->euid == pcred->uid);
6185 rcu_read_unlock();
6186 return match;
6187}
6188
961ccddd
RR
6189static int __sched_setscheduler(struct task_struct *p, int policy,
6190 struct sched_param *param, bool user)
1da177e4 6191{
83b699ed 6192 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6193 unsigned long flags;
cb469845 6194 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6195 struct rq *rq;
ca94c442 6196 int reset_on_fork;
1da177e4 6197
66e5393a
SR
6198 /* may grab non-irq protected spin_locks */
6199 BUG_ON(in_interrupt());
1da177e4
LT
6200recheck:
6201 /* double check policy once rq lock held */
ca94c442
LP
6202 if (policy < 0) {
6203 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6204 policy = oldpolicy = p->policy;
ca94c442
LP
6205 } else {
6206 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6207 policy &= ~SCHED_RESET_ON_FORK;
6208
6209 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6210 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6211 policy != SCHED_IDLE)
6212 return -EINVAL;
6213 }
6214
1da177e4
LT
6215 /*
6216 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6217 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6218 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6219 */
6220 if (param->sched_priority < 0 ||
95cdf3b7 6221 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6222 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6223 return -EINVAL;
e05606d3 6224 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6225 return -EINVAL;
6226
37e4ab3f
OC
6227 /*
6228 * Allow unprivileged RT tasks to decrease priority:
6229 */
961ccddd 6230 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6231 if (rt_policy(policy)) {
8dc3e909 6232 unsigned long rlim_rtprio;
8dc3e909
ON
6233
6234 if (!lock_task_sighand(p, &flags))
6235 return -ESRCH;
6236 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6237 unlock_task_sighand(p, &flags);
6238
6239 /* can't set/change the rt policy */
6240 if (policy != p->policy && !rlim_rtprio)
6241 return -EPERM;
6242
6243 /* can't increase priority */
6244 if (param->sched_priority > p->rt_priority &&
6245 param->sched_priority > rlim_rtprio)
6246 return -EPERM;
6247 }
dd41f596
IM
6248 /*
6249 * Like positive nice levels, dont allow tasks to
6250 * move out of SCHED_IDLE either:
6251 */
6252 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6253 return -EPERM;
5fe1d75f 6254
37e4ab3f 6255 /* can't change other user's priorities */
c69e8d9c 6256 if (!check_same_owner(p))
37e4ab3f 6257 return -EPERM;
ca94c442
LP
6258
6259 /* Normal users shall not reset the sched_reset_on_fork flag */
6260 if (p->sched_reset_on_fork && !reset_on_fork)
6261 return -EPERM;
37e4ab3f 6262 }
1da177e4 6263
725aad24 6264 if (user) {
b68aa230 6265#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6266 /*
6267 * Do not allow realtime tasks into groups that have no runtime
6268 * assigned.
6269 */
9a7e0b18
PZ
6270 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6271 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6272 return -EPERM;
b68aa230
PZ
6273#endif
6274
725aad24
JF
6275 retval = security_task_setscheduler(p, policy, param);
6276 if (retval)
6277 return retval;
6278 }
6279
b29739f9
IM
6280 /*
6281 * make sure no PI-waiters arrive (or leave) while we are
6282 * changing the priority of the task:
6283 */
6284 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6285 /*
6286 * To be able to change p->policy safely, the apropriate
6287 * runqueue lock must be held.
6288 */
b29739f9 6289 rq = __task_rq_lock(p);
1da177e4
LT
6290 /* recheck policy now with rq lock held */
6291 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6292 policy = oldpolicy = -1;
b29739f9
IM
6293 __task_rq_unlock(rq);
6294 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6295 goto recheck;
6296 }
2daa3577 6297 update_rq_clock(rq);
dd41f596 6298 on_rq = p->se.on_rq;
051a1d1a 6299 running = task_current(rq, p);
0e1f3483 6300 if (on_rq)
2e1cb74a 6301 deactivate_task(rq, p, 0);
0e1f3483
HS
6302 if (running)
6303 p->sched_class->put_prev_task(rq, p);
f6b53205 6304
ca94c442
LP
6305 p->sched_reset_on_fork = reset_on_fork;
6306
1da177e4 6307 oldprio = p->prio;
dd41f596 6308 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6309
0e1f3483
HS
6310 if (running)
6311 p->sched_class->set_curr_task(rq);
dd41f596
IM
6312 if (on_rq) {
6313 activate_task(rq, p, 0);
cb469845
SR
6314
6315 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6316 }
b29739f9
IM
6317 __task_rq_unlock(rq);
6318 spin_unlock_irqrestore(&p->pi_lock, flags);
6319
95e02ca9
TG
6320 rt_mutex_adjust_pi(p);
6321
1da177e4
LT
6322 return 0;
6323}
961ccddd
RR
6324
6325/**
6326 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6327 * @p: the task in question.
6328 * @policy: new policy.
6329 * @param: structure containing the new RT priority.
6330 *
6331 * NOTE that the task may be already dead.
6332 */
6333int sched_setscheduler(struct task_struct *p, int policy,
6334 struct sched_param *param)
6335{
6336 return __sched_setscheduler(p, policy, param, true);
6337}
1da177e4
LT
6338EXPORT_SYMBOL_GPL(sched_setscheduler);
6339
961ccddd
RR
6340/**
6341 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6342 * @p: the task in question.
6343 * @policy: new policy.
6344 * @param: structure containing the new RT priority.
6345 *
6346 * Just like sched_setscheduler, only don't bother checking if the
6347 * current context has permission. For example, this is needed in
6348 * stop_machine(): we create temporary high priority worker threads,
6349 * but our caller might not have that capability.
6350 */
6351int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6352 struct sched_param *param)
6353{
6354 return __sched_setscheduler(p, policy, param, false);
6355}
6356
95cdf3b7
IM
6357static int
6358do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6359{
1da177e4
LT
6360 struct sched_param lparam;
6361 struct task_struct *p;
36c8b586 6362 int retval;
1da177e4
LT
6363
6364 if (!param || pid < 0)
6365 return -EINVAL;
6366 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6367 return -EFAULT;
5fe1d75f
ON
6368
6369 rcu_read_lock();
6370 retval = -ESRCH;
1da177e4 6371 p = find_process_by_pid(pid);
5fe1d75f
ON
6372 if (p != NULL)
6373 retval = sched_setscheduler(p, policy, &lparam);
6374 rcu_read_unlock();
36c8b586 6375
1da177e4
LT
6376 return retval;
6377}
6378
6379/**
6380 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6381 * @pid: the pid in question.
6382 * @policy: new policy.
6383 * @param: structure containing the new RT priority.
6384 */
5add95d4
HC
6385SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6386 struct sched_param __user *, param)
1da177e4 6387{
c21761f1
JB
6388 /* negative values for policy are not valid */
6389 if (policy < 0)
6390 return -EINVAL;
6391
1da177e4
LT
6392 return do_sched_setscheduler(pid, policy, param);
6393}
6394
6395/**
6396 * sys_sched_setparam - set/change the RT priority of a thread
6397 * @pid: the pid in question.
6398 * @param: structure containing the new RT priority.
6399 */
5add95d4 6400SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6401{
6402 return do_sched_setscheduler(pid, -1, param);
6403}
6404
6405/**
6406 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6407 * @pid: the pid in question.
6408 */
5add95d4 6409SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6410{
36c8b586 6411 struct task_struct *p;
3a5c359a 6412 int retval;
1da177e4
LT
6413
6414 if (pid < 0)
3a5c359a 6415 return -EINVAL;
1da177e4
LT
6416
6417 retval = -ESRCH;
6418 read_lock(&tasklist_lock);
6419 p = find_process_by_pid(pid);
6420 if (p) {
6421 retval = security_task_getscheduler(p);
6422 if (!retval)
ca94c442
LP
6423 retval = p->policy
6424 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6425 }
6426 read_unlock(&tasklist_lock);
1da177e4
LT
6427 return retval;
6428}
6429
6430/**
ca94c442 6431 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6432 * @pid: the pid in question.
6433 * @param: structure containing the RT priority.
6434 */
5add95d4 6435SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6436{
6437 struct sched_param lp;
36c8b586 6438 struct task_struct *p;
3a5c359a 6439 int retval;
1da177e4
LT
6440
6441 if (!param || pid < 0)
3a5c359a 6442 return -EINVAL;
1da177e4
LT
6443
6444 read_lock(&tasklist_lock);
6445 p = find_process_by_pid(pid);
6446 retval = -ESRCH;
6447 if (!p)
6448 goto out_unlock;
6449
6450 retval = security_task_getscheduler(p);
6451 if (retval)
6452 goto out_unlock;
6453
6454 lp.sched_priority = p->rt_priority;
6455 read_unlock(&tasklist_lock);
6456
6457 /*
6458 * This one might sleep, we cannot do it with a spinlock held ...
6459 */
6460 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6461
1da177e4
LT
6462 return retval;
6463
6464out_unlock:
6465 read_unlock(&tasklist_lock);
6466 return retval;
6467}
6468
96f874e2 6469long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6470{
5a16f3d3 6471 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6472 struct task_struct *p;
6473 int retval;
1da177e4 6474
95402b38 6475 get_online_cpus();
1da177e4
LT
6476 read_lock(&tasklist_lock);
6477
6478 p = find_process_by_pid(pid);
6479 if (!p) {
6480 read_unlock(&tasklist_lock);
95402b38 6481 put_online_cpus();
1da177e4
LT
6482 return -ESRCH;
6483 }
6484
6485 /*
6486 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6487 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6488 * usage count and then drop tasklist_lock.
6489 */
6490 get_task_struct(p);
6491 read_unlock(&tasklist_lock);
6492
5a16f3d3
RR
6493 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6494 retval = -ENOMEM;
6495 goto out_put_task;
6496 }
6497 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6498 retval = -ENOMEM;
6499 goto out_free_cpus_allowed;
6500 }
1da177e4 6501 retval = -EPERM;
c69e8d9c 6502 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6503 goto out_unlock;
6504
e7834f8f
DQ
6505 retval = security_task_setscheduler(p, 0, NULL);
6506 if (retval)
6507 goto out_unlock;
6508
5a16f3d3
RR
6509 cpuset_cpus_allowed(p, cpus_allowed);
6510 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6511 again:
5a16f3d3 6512 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6513
8707d8b8 6514 if (!retval) {
5a16f3d3
RR
6515 cpuset_cpus_allowed(p, cpus_allowed);
6516 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6517 /*
6518 * We must have raced with a concurrent cpuset
6519 * update. Just reset the cpus_allowed to the
6520 * cpuset's cpus_allowed
6521 */
5a16f3d3 6522 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6523 goto again;
6524 }
6525 }
1da177e4 6526out_unlock:
5a16f3d3
RR
6527 free_cpumask_var(new_mask);
6528out_free_cpus_allowed:
6529 free_cpumask_var(cpus_allowed);
6530out_put_task:
1da177e4 6531 put_task_struct(p);
95402b38 6532 put_online_cpus();
1da177e4
LT
6533 return retval;
6534}
6535
6536static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6537 struct cpumask *new_mask)
1da177e4 6538{
96f874e2
RR
6539 if (len < cpumask_size())
6540 cpumask_clear(new_mask);
6541 else if (len > cpumask_size())
6542 len = cpumask_size();
6543
1da177e4
LT
6544 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6545}
6546
6547/**
6548 * sys_sched_setaffinity - set the cpu affinity of a process
6549 * @pid: pid of the process
6550 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6551 * @user_mask_ptr: user-space pointer to the new cpu mask
6552 */
5add95d4
HC
6553SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6554 unsigned long __user *, user_mask_ptr)
1da177e4 6555{
5a16f3d3 6556 cpumask_var_t new_mask;
1da177e4
LT
6557 int retval;
6558
5a16f3d3
RR
6559 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6560 return -ENOMEM;
1da177e4 6561
5a16f3d3
RR
6562 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6563 if (retval == 0)
6564 retval = sched_setaffinity(pid, new_mask);
6565 free_cpumask_var(new_mask);
6566 return retval;
1da177e4
LT
6567}
6568
96f874e2 6569long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6570{
36c8b586 6571 struct task_struct *p;
1da177e4 6572 int retval;
1da177e4 6573
95402b38 6574 get_online_cpus();
1da177e4
LT
6575 read_lock(&tasklist_lock);
6576
6577 retval = -ESRCH;
6578 p = find_process_by_pid(pid);
6579 if (!p)
6580 goto out_unlock;
6581
e7834f8f
DQ
6582 retval = security_task_getscheduler(p);
6583 if (retval)
6584 goto out_unlock;
6585
96f874e2 6586 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6587
6588out_unlock:
6589 read_unlock(&tasklist_lock);
95402b38 6590 put_online_cpus();
1da177e4 6591
9531b62f 6592 return retval;
1da177e4
LT
6593}
6594
6595/**
6596 * sys_sched_getaffinity - get the cpu affinity of a process
6597 * @pid: pid of the process
6598 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6599 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6600 */
5add95d4
HC
6601SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6602 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6603{
6604 int ret;
f17c8607 6605 cpumask_var_t mask;
1da177e4 6606
f17c8607 6607 if (len < cpumask_size())
1da177e4
LT
6608 return -EINVAL;
6609
f17c8607
RR
6610 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6611 return -ENOMEM;
1da177e4 6612
f17c8607
RR
6613 ret = sched_getaffinity(pid, mask);
6614 if (ret == 0) {
6615 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6616 ret = -EFAULT;
6617 else
6618 ret = cpumask_size();
6619 }
6620 free_cpumask_var(mask);
1da177e4 6621
f17c8607 6622 return ret;
1da177e4
LT
6623}
6624
6625/**
6626 * sys_sched_yield - yield the current processor to other threads.
6627 *
dd41f596
IM
6628 * This function yields the current CPU to other tasks. If there are no
6629 * other threads running on this CPU then this function will return.
1da177e4 6630 */
5add95d4 6631SYSCALL_DEFINE0(sched_yield)
1da177e4 6632{
70b97a7f 6633 struct rq *rq = this_rq_lock();
1da177e4 6634
2d72376b 6635 schedstat_inc(rq, yld_count);
4530d7ab 6636 current->sched_class->yield_task(rq);
1da177e4
LT
6637
6638 /*
6639 * Since we are going to call schedule() anyway, there's
6640 * no need to preempt or enable interrupts:
6641 */
6642 __release(rq->lock);
8a25d5de 6643 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6644 _raw_spin_unlock(&rq->lock);
6645 preempt_enable_no_resched();
6646
6647 schedule();
6648
6649 return 0;
6650}
6651
d86ee480
PZ
6652static inline int should_resched(void)
6653{
6654 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6655}
6656
e7b38404 6657static void __cond_resched(void)
1da177e4 6658{
e7aaaa69
FW
6659 add_preempt_count(PREEMPT_ACTIVE);
6660 schedule();
6661 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6662}
6663
02b67cc3 6664int __sched _cond_resched(void)
1da177e4 6665{
d86ee480 6666 if (should_resched()) {
1da177e4
LT
6667 __cond_resched();
6668 return 1;
6669 }
6670 return 0;
6671}
02b67cc3 6672EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6673
6674/*
613afbf8 6675 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6676 * call schedule, and on return reacquire the lock.
6677 *
41a2d6cf 6678 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6679 * operations here to prevent schedule() from being called twice (once via
6680 * spin_unlock(), once by hand).
6681 */
613afbf8 6682int __cond_resched_lock(spinlock_t *lock)
1da177e4 6683{
d86ee480 6684 int resched = should_resched();
6df3cecb
JK
6685 int ret = 0;
6686
f607c668
PZ
6687 lockdep_assert_held(lock);
6688
95c354fe 6689 if (spin_needbreak(lock) || resched) {
1da177e4 6690 spin_unlock(lock);
d86ee480 6691 if (resched)
95c354fe
NP
6692 __cond_resched();
6693 else
6694 cpu_relax();
6df3cecb 6695 ret = 1;
1da177e4 6696 spin_lock(lock);
1da177e4 6697 }
6df3cecb 6698 return ret;
1da177e4 6699}
613afbf8 6700EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6701
613afbf8 6702int __sched __cond_resched_softirq(void)
1da177e4
LT
6703{
6704 BUG_ON(!in_softirq());
6705
d86ee480 6706 if (should_resched()) {
98d82567 6707 local_bh_enable();
1da177e4
LT
6708 __cond_resched();
6709 local_bh_disable();
6710 return 1;
6711 }
6712 return 0;
6713}
613afbf8 6714EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6715
1da177e4
LT
6716/**
6717 * yield - yield the current processor to other threads.
6718 *
72fd4a35 6719 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6720 * thread runnable and calls sys_sched_yield().
6721 */
6722void __sched yield(void)
6723{
6724 set_current_state(TASK_RUNNING);
6725 sys_sched_yield();
6726}
1da177e4
LT
6727EXPORT_SYMBOL(yield);
6728
6729/*
41a2d6cf 6730 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6731 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6732 */
6733void __sched io_schedule(void)
6734{
54d35f29 6735 struct rq *rq = raw_rq();
1da177e4 6736
0ff92245 6737 delayacct_blkio_start();
1da177e4 6738 atomic_inc(&rq->nr_iowait);
8f0dfc34 6739 current->in_iowait = 1;
1da177e4 6740 schedule();
8f0dfc34 6741 current->in_iowait = 0;
1da177e4 6742 atomic_dec(&rq->nr_iowait);
0ff92245 6743 delayacct_blkio_end();
1da177e4 6744}
1da177e4
LT
6745EXPORT_SYMBOL(io_schedule);
6746
6747long __sched io_schedule_timeout(long timeout)
6748{
54d35f29 6749 struct rq *rq = raw_rq();
1da177e4
LT
6750 long ret;
6751
0ff92245 6752 delayacct_blkio_start();
1da177e4 6753 atomic_inc(&rq->nr_iowait);
8f0dfc34 6754 current->in_iowait = 1;
1da177e4 6755 ret = schedule_timeout(timeout);
8f0dfc34 6756 current->in_iowait = 0;
1da177e4 6757 atomic_dec(&rq->nr_iowait);
0ff92245 6758 delayacct_blkio_end();
1da177e4
LT
6759 return ret;
6760}
6761
6762/**
6763 * sys_sched_get_priority_max - return maximum RT priority.
6764 * @policy: scheduling class.
6765 *
6766 * this syscall returns the maximum rt_priority that can be used
6767 * by a given scheduling class.
6768 */
5add95d4 6769SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6770{
6771 int ret = -EINVAL;
6772
6773 switch (policy) {
6774 case SCHED_FIFO:
6775 case SCHED_RR:
6776 ret = MAX_USER_RT_PRIO-1;
6777 break;
6778 case SCHED_NORMAL:
b0a9499c 6779 case SCHED_BATCH:
dd41f596 6780 case SCHED_IDLE:
1da177e4
LT
6781 ret = 0;
6782 break;
6783 }
6784 return ret;
6785}
6786
6787/**
6788 * sys_sched_get_priority_min - return minimum RT priority.
6789 * @policy: scheduling class.
6790 *
6791 * this syscall returns the minimum rt_priority that can be used
6792 * by a given scheduling class.
6793 */
5add95d4 6794SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6795{
6796 int ret = -EINVAL;
6797
6798 switch (policy) {
6799 case SCHED_FIFO:
6800 case SCHED_RR:
6801 ret = 1;
6802 break;
6803 case SCHED_NORMAL:
b0a9499c 6804 case SCHED_BATCH:
dd41f596 6805 case SCHED_IDLE:
1da177e4
LT
6806 ret = 0;
6807 }
6808 return ret;
6809}
6810
6811/**
6812 * sys_sched_rr_get_interval - return the default timeslice of a process.
6813 * @pid: pid of the process.
6814 * @interval: userspace pointer to the timeslice value.
6815 *
6816 * this syscall writes the default timeslice value of a given process
6817 * into the user-space timespec buffer. A value of '0' means infinity.
6818 */
17da2bd9 6819SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6820 struct timespec __user *, interval)
1da177e4 6821{
36c8b586 6822 struct task_struct *p;
a4ec24b4 6823 unsigned int time_slice;
3a5c359a 6824 int retval;
1da177e4 6825 struct timespec t;
1da177e4
LT
6826
6827 if (pid < 0)
3a5c359a 6828 return -EINVAL;
1da177e4
LT
6829
6830 retval = -ESRCH;
6831 read_lock(&tasklist_lock);
6832 p = find_process_by_pid(pid);
6833 if (!p)
6834 goto out_unlock;
6835
6836 retval = security_task_getscheduler(p);
6837 if (retval)
6838 goto out_unlock;
6839
0d721cea 6840 time_slice = p->sched_class->get_rr_interval(p);
a4ec24b4 6841
1da177e4 6842 read_unlock(&tasklist_lock);
a4ec24b4 6843 jiffies_to_timespec(time_slice, &t);
1da177e4 6844 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6845 return retval;
3a5c359a 6846
1da177e4
LT
6847out_unlock:
6848 read_unlock(&tasklist_lock);
6849 return retval;
6850}
6851
7c731e0a 6852static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6853
82a1fcb9 6854void sched_show_task(struct task_struct *p)
1da177e4 6855{
1da177e4 6856 unsigned long free = 0;
36c8b586 6857 unsigned state;
1da177e4 6858
1da177e4 6859 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6860 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6861 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6862#if BITS_PER_LONG == 32
1da177e4 6863 if (state == TASK_RUNNING)
cc4ea795 6864 printk(KERN_CONT " running ");
1da177e4 6865 else
cc4ea795 6866 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6867#else
6868 if (state == TASK_RUNNING)
cc4ea795 6869 printk(KERN_CONT " running task ");
1da177e4 6870 else
cc4ea795 6871 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6872#endif
6873#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6874 free = stack_not_used(p);
1da177e4 6875#endif
aa47b7e0
DR
6876 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6877 task_pid_nr(p), task_pid_nr(p->real_parent),
6878 (unsigned long)task_thread_info(p)->flags);
1da177e4 6879
5fb5e6de 6880 show_stack(p, NULL);
1da177e4
LT
6881}
6882
e59e2ae2 6883void show_state_filter(unsigned long state_filter)
1da177e4 6884{
36c8b586 6885 struct task_struct *g, *p;
1da177e4 6886
4bd77321
IM
6887#if BITS_PER_LONG == 32
6888 printk(KERN_INFO
6889 " task PC stack pid father\n");
1da177e4 6890#else
4bd77321
IM
6891 printk(KERN_INFO
6892 " task PC stack pid father\n");
1da177e4
LT
6893#endif
6894 read_lock(&tasklist_lock);
6895 do_each_thread(g, p) {
6896 /*
6897 * reset the NMI-timeout, listing all files on a slow
6898 * console might take alot of time:
6899 */
6900 touch_nmi_watchdog();
39bc89fd 6901 if (!state_filter || (p->state & state_filter))
82a1fcb9 6902 sched_show_task(p);
1da177e4
LT
6903 } while_each_thread(g, p);
6904
04c9167f
JF
6905 touch_all_softlockup_watchdogs();
6906
dd41f596
IM
6907#ifdef CONFIG_SCHED_DEBUG
6908 sysrq_sched_debug_show();
6909#endif
1da177e4 6910 read_unlock(&tasklist_lock);
e59e2ae2
IM
6911 /*
6912 * Only show locks if all tasks are dumped:
6913 */
6914 if (state_filter == -1)
6915 debug_show_all_locks();
1da177e4
LT
6916}
6917
1df21055
IM
6918void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6919{
dd41f596 6920 idle->sched_class = &idle_sched_class;
1df21055
IM
6921}
6922
f340c0d1
IM
6923/**
6924 * init_idle - set up an idle thread for a given CPU
6925 * @idle: task in question
6926 * @cpu: cpu the idle task belongs to
6927 *
6928 * NOTE: this function does not set the idle thread's NEED_RESCHED
6929 * flag, to make booting more robust.
6930 */
5c1e1767 6931void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6932{
70b97a7f 6933 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6934 unsigned long flags;
6935
5cbd54ef
IM
6936 spin_lock_irqsave(&rq->lock, flags);
6937
dd41f596
IM
6938 __sched_fork(idle);
6939 idle->se.exec_start = sched_clock();
6940
b29739f9 6941 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6942 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6943 __set_task_cpu(idle, cpu);
1da177e4 6944
1da177e4 6945 rq->curr = rq->idle = idle;
4866cde0
NP
6946#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6947 idle->oncpu = 1;
6948#endif
1da177e4
LT
6949 spin_unlock_irqrestore(&rq->lock, flags);
6950
6951 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6952#if defined(CONFIG_PREEMPT)
6953 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6954#else
a1261f54 6955 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6956#endif
dd41f596
IM
6957 /*
6958 * The idle tasks have their own, simple scheduling class:
6959 */
6960 idle->sched_class = &idle_sched_class;
fb52607a 6961 ftrace_graph_init_task(idle);
1da177e4
LT
6962}
6963
6964/*
6965 * In a system that switches off the HZ timer nohz_cpu_mask
6966 * indicates which cpus entered this state. This is used
6967 * in the rcu update to wait only for active cpus. For system
6968 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6969 * always be CPU_BITS_NONE.
1da177e4 6970 */
6a7b3dc3 6971cpumask_var_t nohz_cpu_mask;
1da177e4 6972
19978ca6
IM
6973/*
6974 * Increase the granularity value when there are more CPUs,
6975 * because with more CPUs the 'effective latency' as visible
6976 * to users decreases. But the relationship is not linear,
6977 * so pick a second-best guess by going with the log2 of the
6978 * number of CPUs.
6979 *
6980 * This idea comes from the SD scheduler of Con Kolivas:
6981 */
6982static inline void sched_init_granularity(void)
6983{
6984 unsigned int factor = 1 + ilog2(num_online_cpus());
6985 const unsigned long limit = 200000000;
6986
6987 sysctl_sched_min_granularity *= factor;
6988 if (sysctl_sched_min_granularity > limit)
6989 sysctl_sched_min_granularity = limit;
6990
6991 sysctl_sched_latency *= factor;
6992 if (sysctl_sched_latency > limit)
6993 sysctl_sched_latency = limit;
6994
6995 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6996
6997 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6998}
6999
1da177e4
LT
7000#ifdef CONFIG_SMP
7001/*
7002 * This is how migration works:
7003 *
70b97a7f 7004 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7005 * runqueue and wake up that CPU's migration thread.
7006 * 2) we down() the locked semaphore => thread blocks.
7007 * 3) migration thread wakes up (implicitly it forces the migrated
7008 * thread off the CPU)
7009 * 4) it gets the migration request and checks whether the migrated
7010 * task is still in the wrong runqueue.
7011 * 5) if it's in the wrong runqueue then the migration thread removes
7012 * it and puts it into the right queue.
7013 * 6) migration thread up()s the semaphore.
7014 * 7) we wake up and the migration is done.
7015 */
7016
7017/*
7018 * Change a given task's CPU affinity. Migrate the thread to a
7019 * proper CPU and schedule it away if the CPU it's executing on
7020 * is removed from the allowed bitmask.
7021 *
7022 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7023 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7024 * call is not atomic; no spinlocks may be held.
7025 */
96f874e2 7026int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7027{
70b97a7f 7028 struct migration_req req;
1da177e4 7029 unsigned long flags;
70b97a7f 7030 struct rq *rq;
48f24c4d 7031 int ret = 0;
1da177e4
LT
7032
7033 rq = task_rq_lock(p, &flags);
96f874e2 7034 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7035 ret = -EINVAL;
7036 goto out;
7037 }
7038
9985b0ba 7039 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7040 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7041 ret = -EINVAL;
7042 goto out;
7043 }
7044
73fe6aae 7045 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7046 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7047 else {
96f874e2
RR
7048 cpumask_copy(&p->cpus_allowed, new_mask);
7049 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7050 }
7051
1da177e4 7052 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7053 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7054 goto out;
7055
1e5ce4f4 7056 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7057 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7058 struct task_struct *mt = rq->migration_thread;
7059
7060 get_task_struct(mt);
1da177e4
LT
7061 task_rq_unlock(rq, &flags);
7062 wake_up_process(rq->migration_thread);
693525e3 7063 put_task_struct(mt);
1da177e4
LT
7064 wait_for_completion(&req.done);
7065 tlb_migrate_finish(p->mm);
7066 return 0;
7067 }
7068out:
7069 task_rq_unlock(rq, &flags);
48f24c4d 7070
1da177e4
LT
7071 return ret;
7072}
cd8ba7cd 7073EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7074
7075/*
41a2d6cf 7076 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7077 * this because either it can't run here any more (set_cpus_allowed()
7078 * away from this CPU, or CPU going down), or because we're
7079 * attempting to rebalance this task on exec (sched_exec).
7080 *
7081 * So we race with normal scheduler movements, but that's OK, as long
7082 * as the task is no longer on this CPU.
efc30814
KK
7083 *
7084 * Returns non-zero if task was successfully migrated.
1da177e4 7085 */
efc30814 7086static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7087{
70b97a7f 7088 struct rq *rq_dest, *rq_src;
dd41f596 7089 int ret = 0, on_rq;
1da177e4 7090
e761b772 7091 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7092 return ret;
1da177e4
LT
7093
7094 rq_src = cpu_rq(src_cpu);
7095 rq_dest = cpu_rq(dest_cpu);
7096
7097 double_rq_lock(rq_src, rq_dest);
7098 /* Already moved. */
7099 if (task_cpu(p) != src_cpu)
b1e38734 7100 goto done;
1da177e4 7101 /* Affinity changed (again). */
96f874e2 7102 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7103 goto fail;
1da177e4 7104
dd41f596 7105 on_rq = p->se.on_rq;
6e82a3be 7106 if (on_rq)
2e1cb74a 7107 deactivate_task(rq_src, p, 0);
6e82a3be 7108
1da177e4 7109 set_task_cpu(p, dest_cpu);
dd41f596
IM
7110 if (on_rq) {
7111 activate_task(rq_dest, p, 0);
15afe09b 7112 check_preempt_curr(rq_dest, p, 0);
1da177e4 7113 }
b1e38734 7114done:
efc30814 7115 ret = 1;
b1e38734 7116fail:
1da177e4 7117 double_rq_unlock(rq_src, rq_dest);
efc30814 7118 return ret;
1da177e4
LT
7119}
7120
03b042bf
PM
7121#define RCU_MIGRATION_IDLE 0
7122#define RCU_MIGRATION_NEED_QS 1
7123#define RCU_MIGRATION_GOT_QS 2
7124#define RCU_MIGRATION_MUST_SYNC 3
7125
1da177e4
LT
7126/*
7127 * migration_thread - this is a highprio system thread that performs
7128 * thread migration by bumping thread off CPU then 'pushing' onto
7129 * another runqueue.
7130 */
95cdf3b7 7131static int migration_thread(void *data)
1da177e4 7132{
03b042bf 7133 int badcpu;
1da177e4 7134 int cpu = (long)data;
70b97a7f 7135 struct rq *rq;
1da177e4
LT
7136
7137 rq = cpu_rq(cpu);
7138 BUG_ON(rq->migration_thread != current);
7139
7140 set_current_state(TASK_INTERRUPTIBLE);
7141 while (!kthread_should_stop()) {
70b97a7f 7142 struct migration_req *req;
1da177e4 7143 struct list_head *head;
1da177e4 7144
1da177e4
LT
7145 spin_lock_irq(&rq->lock);
7146
7147 if (cpu_is_offline(cpu)) {
7148 spin_unlock_irq(&rq->lock);
371cbb38 7149 break;
1da177e4
LT
7150 }
7151
7152 if (rq->active_balance) {
7153 active_load_balance(rq, cpu);
7154 rq->active_balance = 0;
7155 }
7156
7157 head = &rq->migration_queue;
7158
7159 if (list_empty(head)) {
7160 spin_unlock_irq(&rq->lock);
7161 schedule();
7162 set_current_state(TASK_INTERRUPTIBLE);
7163 continue;
7164 }
70b97a7f 7165 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7166 list_del_init(head->next);
7167
03b042bf
PM
7168 if (req->task != NULL) {
7169 spin_unlock(&rq->lock);
7170 __migrate_task(req->task, cpu, req->dest_cpu);
7171 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7172 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7173 spin_unlock(&rq->lock);
7174 } else {
7175 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7176 spin_unlock(&rq->lock);
7177 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7178 }
674311d5 7179 local_irq_enable();
1da177e4
LT
7180
7181 complete(&req->done);
7182 }
7183 __set_current_state(TASK_RUNNING);
1da177e4 7184
1da177e4
LT
7185 return 0;
7186}
7187
7188#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7189
7190static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7191{
7192 int ret;
7193
7194 local_irq_disable();
7195 ret = __migrate_task(p, src_cpu, dest_cpu);
7196 local_irq_enable();
7197 return ret;
7198}
7199
054b9108 7200/*
3a4fa0a2 7201 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7202 */
48f24c4d 7203static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7204{
70b97a7f 7205 int dest_cpu;
6ca09dfc 7206 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7207
7208again:
7209 /* Look for allowed, online CPU in same node. */
7210 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7211 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7212 goto move;
7213
7214 /* Any allowed, online CPU? */
7215 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7216 if (dest_cpu < nr_cpu_ids)
7217 goto move;
7218
7219 /* No more Mr. Nice Guy. */
7220 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7221 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7222 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7223
e76bd8d9
RR
7224 /*
7225 * Don't tell them about moving exiting tasks or
7226 * kernel threads (both mm NULL), since they never
7227 * leave kernel.
7228 */
7229 if (p->mm && printk_ratelimit()) {
7230 printk(KERN_INFO "process %d (%s) no "
7231 "longer affine to cpu%d\n",
7232 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7233 }
e76bd8d9
RR
7234 }
7235
7236move:
7237 /* It can have affinity changed while we were choosing. */
7238 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7239 goto again;
1da177e4
LT
7240}
7241
7242/*
7243 * While a dead CPU has no uninterruptible tasks queued at this point,
7244 * it might still have a nonzero ->nr_uninterruptible counter, because
7245 * for performance reasons the counter is not stricly tracking tasks to
7246 * their home CPUs. So we just add the counter to another CPU's counter,
7247 * to keep the global sum constant after CPU-down:
7248 */
70b97a7f 7249static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7250{
1e5ce4f4 7251 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7252 unsigned long flags;
7253
7254 local_irq_save(flags);
7255 double_rq_lock(rq_src, rq_dest);
7256 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7257 rq_src->nr_uninterruptible = 0;
7258 double_rq_unlock(rq_src, rq_dest);
7259 local_irq_restore(flags);
7260}
7261
7262/* Run through task list and migrate tasks from the dead cpu. */
7263static void migrate_live_tasks(int src_cpu)
7264{
48f24c4d 7265 struct task_struct *p, *t;
1da177e4 7266
f7b4cddc 7267 read_lock(&tasklist_lock);
1da177e4 7268
48f24c4d
IM
7269 do_each_thread(t, p) {
7270 if (p == current)
1da177e4
LT
7271 continue;
7272
48f24c4d
IM
7273 if (task_cpu(p) == src_cpu)
7274 move_task_off_dead_cpu(src_cpu, p);
7275 } while_each_thread(t, p);
1da177e4 7276
f7b4cddc 7277 read_unlock(&tasklist_lock);
1da177e4
LT
7278}
7279
dd41f596
IM
7280/*
7281 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7282 * It does so by boosting its priority to highest possible.
7283 * Used by CPU offline code.
1da177e4
LT
7284 */
7285void sched_idle_next(void)
7286{
48f24c4d 7287 int this_cpu = smp_processor_id();
70b97a7f 7288 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7289 struct task_struct *p = rq->idle;
7290 unsigned long flags;
7291
7292 /* cpu has to be offline */
48f24c4d 7293 BUG_ON(cpu_online(this_cpu));
1da177e4 7294
48f24c4d
IM
7295 /*
7296 * Strictly not necessary since rest of the CPUs are stopped by now
7297 * and interrupts disabled on the current cpu.
1da177e4
LT
7298 */
7299 spin_lock_irqsave(&rq->lock, flags);
7300
dd41f596 7301 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7302
94bc9a7b
DA
7303 update_rq_clock(rq);
7304 activate_task(rq, p, 0);
1da177e4
LT
7305
7306 spin_unlock_irqrestore(&rq->lock, flags);
7307}
7308
48f24c4d
IM
7309/*
7310 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7311 * offline.
7312 */
7313void idle_task_exit(void)
7314{
7315 struct mm_struct *mm = current->active_mm;
7316
7317 BUG_ON(cpu_online(smp_processor_id()));
7318
7319 if (mm != &init_mm)
7320 switch_mm(mm, &init_mm, current);
7321 mmdrop(mm);
7322}
7323
054b9108 7324/* called under rq->lock with disabled interrupts */
36c8b586 7325static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7326{
70b97a7f 7327 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7328
7329 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7330 BUG_ON(!p->exit_state);
1da177e4
LT
7331
7332 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7333 BUG_ON(p->state == TASK_DEAD);
1da177e4 7334
48f24c4d 7335 get_task_struct(p);
1da177e4
LT
7336
7337 /*
7338 * Drop lock around migration; if someone else moves it,
41a2d6cf 7339 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7340 * fine.
7341 */
f7b4cddc 7342 spin_unlock_irq(&rq->lock);
48f24c4d 7343 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7344 spin_lock_irq(&rq->lock);
1da177e4 7345
48f24c4d 7346 put_task_struct(p);
1da177e4
LT
7347}
7348
7349/* release_task() removes task from tasklist, so we won't find dead tasks. */
7350static void migrate_dead_tasks(unsigned int dead_cpu)
7351{
70b97a7f 7352 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7353 struct task_struct *next;
48f24c4d 7354
dd41f596
IM
7355 for ( ; ; ) {
7356 if (!rq->nr_running)
7357 break;
a8e504d2 7358 update_rq_clock(rq);
b67802ea 7359 next = pick_next_task(rq);
dd41f596
IM
7360 if (!next)
7361 break;
79c53799 7362 next->sched_class->put_prev_task(rq, next);
dd41f596 7363 migrate_dead(dead_cpu, next);
e692ab53 7364
1da177e4
LT
7365 }
7366}
dce48a84
TG
7367
7368/*
7369 * remove the tasks which were accounted by rq from calc_load_tasks.
7370 */
7371static void calc_global_load_remove(struct rq *rq)
7372{
7373 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7374 rq->calc_load_active = 0;
dce48a84 7375}
1da177e4
LT
7376#endif /* CONFIG_HOTPLUG_CPU */
7377
e692ab53
NP
7378#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7379
7380static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7381 {
7382 .procname = "sched_domain",
c57baf1e 7383 .mode = 0555,
e0361851 7384 },
38605cae 7385 {0, },
e692ab53
NP
7386};
7387
7388static struct ctl_table sd_ctl_root[] = {
e0361851 7389 {
c57baf1e 7390 .ctl_name = CTL_KERN,
e0361851 7391 .procname = "kernel",
c57baf1e 7392 .mode = 0555,
e0361851
AD
7393 .child = sd_ctl_dir,
7394 },
38605cae 7395 {0, },
e692ab53
NP
7396};
7397
7398static struct ctl_table *sd_alloc_ctl_entry(int n)
7399{
7400 struct ctl_table *entry =
5cf9f062 7401 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7402
e692ab53
NP
7403 return entry;
7404}
7405
6382bc90
MM
7406static void sd_free_ctl_entry(struct ctl_table **tablep)
7407{
cd790076 7408 struct ctl_table *entry;
6382bc90 7409
cd790076
MM
7410 /*
7411 * In the intermediate directories, both the child directory and
7412 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7413 * will always be set. In the lowest directory the names are
cd790076
MM
7414 * static strings and all have proc handlers.
7415 */
7416 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7417 if (entry->child)
7418 sd_free_ctl_entry(&entry->child);
cd790076
MM
7419 if (entry->proc_handler == NULL)
7420 kfree(entry->procname);
7421 }
6382bc90
MM
7422
7423 kfree(*tablep);
7424 *tablep = NULL;
7425}
7426
e692ab53 7427static void
e0361851 7428set_table_entry(struct ctl_table *entry,
e692ab53
NP
7429 const char *procname, void *data, int maxlen,
7430 mode_t mode, proc_handler *proc_handler)
7431{
e692ab53
NP
7432 entry->procname = procname;
7433 entry->data = data;
7434 entry->maxlen = maxlen;
7435 entry->mode = mode;
7436 entry->proc_handler = proc_handler;
7437}
7438
7439static struct ctl_table *
7440sd_alloc_ctl_domain_table(struct sched_domain *sd)
7441{
a5d8c348 7442 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7443
ad1cdc1d
MM
7444 if (table == NULL)
7445 return NULL;
7446
e0361851 7447 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7448 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7449 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7450 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7451 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7452 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7453 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7454 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7455 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7457 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7459 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7461 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7463 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7464 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7465 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7466 &sd->cache_nice_tries,
7467 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7468 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7469 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7470 set_table_entry(&table[11], "name", sd->name,
7471 CORENAME_MAX_SIZE, 0444, proc_dostring);
7472 /* &table[12] is terminator */
e692ab53
NP
7473
7474 return table;
7475}
7476
9a4e7159 7477static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7478{
7479 struct ctl_table *entry, *table;
7480 struct sched_domain *sd;
7481 int domain_num = 0, i;
7482 char buf[32];
7483
7484 for_each_domain(cpu, sd)
7485 domain_num++;
7486 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7487 if (table == NULL)
7488 return NULL;
e692ab53
NP
7489
7490 i = 0;
7491 for_each_domain(cpu, sd) {
7492 snprintf(buf, 32, "domain%d", i);
e692ab53 7493 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7494 entry->mode = 0555;
e692ab53
NP
7495 entry->child = sd_alloc_ctl_domain_table(sd);
7496 entry++;
7497 i++;
7498 }
7499 return table;
7500}
7501
7502static struct ctl_table_header *sd_sysctl_header;
6382bc90 7503static void register_sched_domain_sysctl(void)
e692ab53
NP
7504{
7505 int i, cpu_num = num_online_cpus();
7506 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7507 char buf[32];
7508
7378547f
MM
7509 WARN_ON(sd_ctl_dir[0].child);
7510 sd_ctl_dir[0].child = entry;
7511
ad1cdc1d
MM
7512 if (entry == NULL)
7513 return;
7514
97b6ea7b 7515 for_each_online_cpu(i) {
e692ab53 7516 snprintf(buf, 32, "cpu%d", i);
e692ab53 7517 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7518 entry->mode = 0555;
e692ab53 7519 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7520 entry++;
e692ab53 7521 }
7378547f
MM
7522
7523 WARN_ON(sd_sysctl_header);
e692ab53
NP
7524 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7525}
6382bc90 7526
7378547f 7527/* may be called multiple times per register */
6382bc90
MM
7528static void unregister_sched_domain_sysctl(void)
7529{
7378547f
MM
7530 if (sd_sysctl_header)
7531 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7532 sd_sysctl_header = NULL;
7378547f
MM
7533 if (sd_ctl_dir[0].child)
7534 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7535}
e692ab53 7536#else
6382bc90
MM
7537static void register_sched_domain_sysctl(void)
7538{
7539}
7540static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7541{
7542}
7543#endif
7544
1f11eb6a
GH
7545static void set_rq_online(struct rq *rq)
7546{
7547 if (!rq->online) {
7548 const struct sched_class *class;
7549
c6c4927b 7550 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7551 rq->online = 1;
7552
7553 for_each_class(class) {
7554 if (class->rq_online)
7555 class->rq_online(rq);
7556 }
7557 }
7558}
7559
7560static void set_rq_offline(struct rq *rq)
7561{
7562 if (rq->online) {
7563 const struct sched_class *class;
7564
7565 for_each_class(class) {
7566 if (class->rq_offline)
7567 class->rq_offline(rq);
7568 }
7569
c6c4927b 7570 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7571 rq->online = 0;
7572 }
7573}
7574
1da177e4
LT
7575/*
7576 * migration_call - callback that gets triggered when a CPU is added.
7577 * Here we can start up the necessary migration thread for the new CPU.
7578 */
48f24c4d
IM
7579static int __cpuinit
7580migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7581{
1da177e4 7582 struct task_struct *p;
48f24c4d 7583 int cpu = (long)hcpu;
1da177e4 7584 unsigned long flags;
70b97a7f 7585 struct rq *rq;
1da177e4
LT
7586
7587 switch (action) {
5be9361c 7588
1da177e4 7589 case CPU_UP_PREPARE:
8bb78442 7590 case CPU_UP_PREPARE_FROZEN:
dd41f596 7591 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7592 if (IS_ERR(p))
7593 return NOTIFY_BAD;
1da177e4
LT
7594 kthread_bind(p, cpu);
7595 /* Must be high prio: stop_machine expects to yield to it. */
7596 rq = task_rq_lock(p, &flags);
dd41f596 7597 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7598 task_rq_unlock(rq, &flags);
371cbb38 7599 get_task_struct(p);
1da177e4 7600 cpu_rq(cpu)->migration_thread = p;
a468d389 7601 rq->calc_load_update = calc_load_update;
1da177e4 7602 break;
48f24c4d 7603
1da177e4 7604 case CPU_ONLINE:
8bb78442 7605 case CPU_ONLINE_FROZEN:
3a4fa0a2 7606 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7607 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7608
7609 /* Update our root-domain */
7610 rq = cpu_rq(cpu);
7611 spin_lock_irqsave(&rq->lock, flags);
7612 if (rq->rd) {
c6c4927b 7613 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7614
7615 set_rq_online(rq);
1f94ef59
GH
7616 }
7617 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7618 break;
48f24c4d 7619
1da177e4
LT
7620#ifdef CONFIG_HOTPLUG_CPU
7621 case CPU_UP_CANCELED:
8bb78442 7622 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7623 if (!cpu_rq(cpu)->migration_thread)
7624 break;
41a2d6cf 7625 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7626 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7627 cpumask_any(cpu_online_mask));
1da177e4 7628 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7629 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7630 cpu_rq(cpu)->migration_thread = NULL;
7631 break;
48f24c4d 7632
1da177e4 7633 case CPU_DEAD:
8bb78442 7634 case CPU_DEAD_FROZEN:
470fd646 7635 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7636 migrate_live_tasks(cpu);
7637 rq = cpu_rq(cpu);
7638 kthread_stop(rq->migration_thread);
371cbb38 7639 put_task_struct(rq->migration_thread);
1da177e4
LT
7640 rq->migration_thread = NULL;
7641 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7642 spin_lock_irq(&rq->lock);
a8e504d2 7643 update_rq_clock(rq);
2e1cb74a 7644 deactivate_task(rq, rq->idle, 0);
1da177e4 7645 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7646 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7647 rq->idle->sched_class = &idle_sched_class;
1da177e4 7648 migrate_dead_tasks(cpu);
d2da272a 7649 spin_unlock_irq(&rq->lock);
470fd646 7650 cpuset_unlock();
1da177e4
LT
7651 migrate_nr_uninterruptible(rq);
7652 BUG_ON(rq->nr_running != 0);
dce48a84 7653 calc_global_load_remove(rq);
41a2d6cf
IM
7654 /*
7655 * No need to migrate the tasks: it was best-effort if
7656 * they didn't take sched_hotcpu_mutex. Just wake up
7657 * the requestors.
7658 */
1da177e4
LT
7659 spin_lock_irq(&rq->lock);
7660 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7661 struct migration_req *req;
7662
1da177e4 7663 req = list_entry(rq->migration_queue.next,
70b97a7f 7664 struct migration_req, list);
1da177e4 7665 list_del_init(&req->list);
9a2bd244 7666 spin_unlock_irq(&rq->lock);
1da177e4 7667 complete(&req->done);
9a2bd244 7668 spin_lock_irq(&rq->lock);
1da177e4
LT
7669 }
7670 spin_unlock_irq(&rq->lock);
7671 break;
57d885fe 7672
08f503b0
GH
7673 case CPU_DYING:
7674 case CPU_DYING_FROZEN:
57d885fe
GH
7675 /* Update our root-domain */
7676 rq = cpu_rq(cpu);
7677 spin_lock_irqsave(&rq->lock, flags);
7678 if (rq->rd) {
c6c4927b 7679 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7680 set_rq_offline(rq);
57d885fe
GH
7681 }
7682 spin_unlock_irqrestore(&rq->lock, flags);
7683 break;
1da177e4
LT
7684#endif
7685 }
7686 return NOTIFY_OK;
7687}
7688
f38b0820
PM
7689/*
7690 * Register at high priority so that task migration (migrate_all_tasks)
7691 * happens before everything else. This has to be lower priority than
cdd6c482 7692 * the notifier in the perf_event subsystem, though.
1da177e4 7693 */
26c2143b 7694static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7695 .notifier_call = migration_call,
7696 .priority = 10
7697};
7698
7babe8db 7699static int __init migration_init(void)
1da177e4
LT
7700{
7701 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7702 int err;
48f24c4d
IM
7703
7704 /* Start one for the boot CPU: */
07dccf33
AM
7705 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7706 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7707 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7708 register_cpu_notifier(&migration_notifier);
7babe8db 7709
a004cd42 7710 return 0;
1da177e4 7711}
7babe8db 7712early_initcall(migration_init);
1da177e4
LT
7713#endif
7714
7715#ifdef CONFIG_SMP
476f3534 7716
3e9830dc 7717#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7718
7c16ec58 7719static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7720 struct cpumask *groupmask)
1da177e4 7721{
4dcf6aff 7722 struct sched_group *group = sd->groups;
434d53b0 7723 char str[256];
1da177e4 7724
968ea6d8 7725 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7726 cpumask_clear(groupmask);
4dcf6aff
IM
7727
7728 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7729
7730 if (!(sd->flags & SD_LOAD_BALANCE)) {
7731 printk("does not load-balance\n");
7732 if (sd->parent)
7733 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7734 " has parent");
7735 return -1;
41c7ce9a
NP
7736 }
7737
eefd796a 7738 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7739
758b2cdc 7740 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7741 printk(KERN_ERR "ERROR: domain->span does not contain "
7742 "CPU%d\n", cpu);
7743 }
758b2cdc 7744 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7745 printk(KERN_ERR "ERROR: domain->groups does not contain"
7746 " CPU%d\n", cpu);
7747 }
1da177e4 7748
4dcf6aff 7749 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7750 do {
4dcf6aff
IM
7751 if (!group) {
7752 printk("\n");
7753 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7754 break;
7755 }
7756
18a3885f 7757 if (!group->cpu_power) {
4dcf6aff
IM
7758 printk(KERN_CONT "\n");
7759 printk(KERN_ERR "ERROR: domain->cpu_power not "
7760 "set\n");
7761 break;
7762 }
1da177e4 7763
758b2cdc 7764 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7765 printk(KERN_CONT "\n");
7766 printk(KERN_ERR "ERROR: empty group\n");
7767 break;
7768 }
1da177e4 7769
758b2cdc 7770 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7771 printk(KERN_CONT "\n");
7772 printk(KERN_ERR "ERROR: repeated CPUs\n");
7773 break;
7774 }
1da177e4 7775
758b2cdc 7776 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7777
968ea6d8 7778 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7779
7780 printk(KERN_CONT " %s", str);
18a3885f
PZ
7781 if (group->cpu_power != SCHED_LOAD_SCALE) {
7782 printk(KERN_CONT " (cpu_power = %d)",
7783 group->cpu_power);
381512cf 7784 }
1da177e4 7785
4dcf6aff
IM
7786 group = group->next;
7787 } while (group != sd->groups);
7788 printk(KERN_CONT "\n");
1da177e4 7789
758b2cdc 7790 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7791 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7792
758b2cdc
RR
7793 if (sd->parent &&
7794 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7795 printk(KERN_ERR "ERROR: parent span is not a superset "
7796 "of domain->span\n");
7797 return 0;
7798}
1da177e4 7799
4dcf6aff
IM
7800static void sched_domain_debug(struct sched_domain *sd, int cpu)
7801{
d5dd3db1 7802 cpumask_var_t groupmask;
4dcf6aff 7803 int level = 0;
1da177e4 7804
4dcf6aff
IM
7805 if (!sd) {
7806 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7807 return;
7808 }
1da177e4 7809
4dcf6aff
IM
7810 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7811
d5dd3db1 7812 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7813 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7814 return;
7815 }
7816
4dcf6aff 7817 for (;;) {
7c16ec58 7818 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7819 break;
1da177e4
LT
7820 level++;
7821 sd = sd->parent;
33859f7f 7822 if (!sd)
4dcf6aff
IM
7823 break;
7824 }
d5dd3db1 7825 free_cpumask_var(groupmask);
1da177e4 7826}
6d6bc0ad 7827#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7828# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7829#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7830
1a20ff27 7831static int sd_degenerate(struct sched_domain *sd)
245af2c7 7832{
758b2cdc 7833 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7834 return 1;
7835
7836 /* Following flags need at least 2 groups */
7837 if (sd->flags & (SD_LOAD_BALANCE |
7838 SD_BALANCE_NEWIDLE |
7839 SD_BALANCE_FORK |
89c4710e
SS
7840 SD_BALANCE_EXEC |
7841 SD_SHARE_CPUPOWER |
7842 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7843 if (sd->groups != sd->groups->next)
7844 return 0;
7845 }
7846
7847 /* Following flags don't use groups */
c88d5910 7848 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7849 return 0;
7850
7851 return 1;
7852}
7853
48f24c4d
IM
7854static int
7855sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7856{
7857 unsigned long cflags = sd->flags, pflags = parent->flags;
7858
7859 if (sd_degenerate(parent))
7860 return 1;
7861
758b2cdc 7862 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7863 return 0;
7864
245af2c7
SS
7865 /* Flags needing groups don't count if only 1 group in parent */
7866 if (parent->groups == parent->groups->next) {
7867 pflags &= ~(SD_LOAD_BALANCE |
7868 SD_BALANCE_NEWIDLE |
7869 SD_BALANCE_FORK |
89c4710e
SS
7870 SD_BALANCE_EXEC |
7871 SD_SHARE_CPUPOWER |
7872 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7873 if (nr_node_ids == 1)
7874 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7875 }
7876 if (~cflags & pflags)
7877 return 0;
7878
7879 return 1;
7880}
7881
c6c4927b
RR
7882static void free_rootdomain(struct root_domain *rd)
7883{
68e74568
RR
7884 cpupri_cleanup(&rd->cpupri);
7885
c6c4927b
RR
7886 free_cpumask_var(rd->rto_mask);
7887 free_cpumask_var(rd->online);
7888 free_cpumask_var(rd->span);
7889 kfree(rd);
7890}
7891
57d885fe
GH
7892static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7893{
a0490fa3 7894 struct root_domain *old_rd = NULL;
57d885fe 7895 unsigned long flags;
57d885fe
GH
7896
7897 spin_lock_irqsave(&rq->lock, flags);
7898
7899 if (rq->rd) {
a0490fa3 7900 old_rd = rq->rd;
57d885fe 7901
c6c4927b 7902 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7903 set_rq_offline(rq);
57d885fe 7904
c6c4927b 7905 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7906
a0490fa3
IM
7907 /*
7908 * If we dont want to free the old_rt yet then
7909 * set old_rd to NULL to skip the freeing later
7910 * in this function:
7911 */
7912 if (!atomic_dec_and_test(&old_rd->refcount))
7913 old_rd = NULL;
57d885fe
GH
7914 }
7915
7916 atomic_inc(&rd->refcount);
7917 rq->rd = rd;
7918
c6c4927b 7919 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7920 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7921 set_rq_online(rq);
57d885fe
GH
7922
7923 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7924
7925 if (old_rd)
7926 free_rootdomain(old_rd);
57d885fe
GH
7927}
7928
fd5e1b5d 7929static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7930{
36b7b6d4
PE
7931 gfp_t gfp = GFP_KERNEL;
7932
57d885fe
GH
7933 memset(rd, 0, sizeof(*rd));
7934
36b7b6d4
PE
7935 if (bootmem)
7936 gfp = GFP_NOWAIT;
c6c4927b 7937
36b7b6d4 7938 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7939 goto out;
36b7b6d4 7940 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7941 goto free_span;
36b7b6d4 7942 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7943 goto free_online;
6e0534f2 7944
0fb53029 7945 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7946 goto free_rto_mask;
c6c4927b 7947 return 0;
6e0534f2 7948
68e74568
RR
7949free_rto_mask:
7950 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7951free_online:
7952 free_cpumask_var(rd->online);
7953free_span:
7954 free_cpumask_var(rd->span);
0c910d28 7955out:
c6c4927b 7956 return -ENOMEM;
57d885fe
GH
7957}
7958
7959static void init_defrootdomain(void)
7960{
c6c4927b
RR
7961 init_rootdomain(&def_root_domain, true);
7962
57d885fe
GH
7963 atomic_set(&def_root_domain.refcount, 1);
7964}
7965
dc938520 7966static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7967{
7968 struct root_domain *rd;
7969
7970 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7971 if (!rd)
7972 return NULL;
7973
c6c4927b
RR
7974 if (init_rootdomain(rd, false) != 0) {
7975 kfree(rd);
7976 return NULL;
7977 }
57d885fe
GH
7978
7979 return rd;
7980}
7981
1da177e4 7982/*
0eab9146 7983 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7984 * hold the hotplug lock.
7985 */
0eab9146
IM
7986static void
7987cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7988{
70b97a7f 7989 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7990 struct sched_domain *tmp;
7991
7992 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7993 for (tmp = sd; tmp; ) {
245af2c7
SS
7994 struct sched_domain *parent = tmp->parent;
7995 if (!parent)
7996 break;
f29c9b1c 7997
1a848870 7998 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7999 tmp->parent = parent->parent;
1a848870
SS
8000 if (parent->parent)
8001 parent->parent->child = tmp;
f29c9b1c
LZ
8002 } else
8003 tmp = tmp->parent;
245af2c7
SS
8004 }
8005
1a848870 8006 if (sd && sd_degenerate(sd)) {
245af2c7 8007 sd = sd->parent;
1a848870
SS
8008 if (sd)
8009 sd->child = NULL;
8010 }
1da177e4
LT
8011
8012 sched_domain_debug(sd, cpu);
8013
57d885fe 8014 rq_attach_root(rq, rd);
674311d5 8015 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8016}
8017
8018/* cpus with isolated domains */
dcc30a35 8019static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8020
8021/* Setup the mask of cpus configured for isolated domains */
8022static int __init isolated_cpu_setup(char *str)
8023{
968ea6d8 8024 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8025 return 1;
8026}
8027
8927f494 8028__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8029
8030/*
6711cab4
SS
8031 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8032 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8033 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8034 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8035 *
8036 * init_sched_build_groups will build a circular linked list of the groups
8037 * covered by the given span, and will set each group's ->cpumask correctly,
8038 * and ->cpu_power to 0.
8039 */
a616058b 8040static void
96f874e2
RR
8041init_sched_build_groups(const struct cpumask *span,
8042 const struct cpumask *cpu_map,
8043 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8044 struct sched_group **sg,
96f874e2
RR
8045 struct cpumask *tmpmask),
8046 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8047{
8048 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8049 int i;
8050
96f874e2 8051 cpumask_clear(covered);
7c16ec58 8052
abcd083a 8053 for_each_cpu(i, span) {
6711cab4 8054 struct sched_group *sg;
7c16ec58 8055 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8056 int j;
8057
758b2cdc 8058 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8059 continue;
8060
758b2cdc 8061 cpumask_clear(sched_group_cpus(sg));
18a3885f 8062 sg->cpu_power = 0;
1da177e4 8063
abcd083a 8064 for_each_cpu(j, span) {
7c16ec58 8065 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8066 continue;
8067
96f874e2 8068 cpumask_set_cpu(j, covered);
758b2cdc 8069 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8070 }
8071 if (!first)
8072 first = sg;
8073 if (last)
8074 last->next = sg;
8075 last = sg;
8076 }
8077 last->next = first;
8078}
8079
9c1cfda2 8080#define SD_NODES_PER_DOMAIN 16
1da177e4 8081
9c1cfda2 8082#ifdef CONFIG_NUMA
198e2f18 8083
9c1cfda2
JH
8084/**
8085 * find_next_best_node - find the next node to include in a sched_domain
8086 * @node: node whose sched_domain we're building
8087 * @used_nodes: nodes already in the sched_domain
8088 *
41a2d6cf 8089 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8090 * finds the closest node not already in the @used_nodes map.
8091 *
8092 * Should use nodemask_t.
8093 */
c5f59f08 8094static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8095{
8096 int i, n, val, min_val, best_node = 0;
8097
8098 min_val = INT_MAX;
8099
076ac2af 8100 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8101 /* Start at @node */
076ac2af 8102 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8103
8104 if (!nr_cpus_node(n))
8105 continue;
8106
8107 /* Skip already used nodes */
c5f59f08 8108 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8109 continue;
8110
8111 /* Simple min distance search */
8112 val = node_distance(node, n);
8113
8114 if (val < min_val) {
8115 min_val = val;
8116 best_node = n;
8117 }
8118 }
8119
c5f59f08 8120 node_set(best_node, *used_nodes);
9c1cfda2
JH
8121 return best_node;
8122}
8123
8124/**
8125 * sched_domain_node_span - get a cpumask for a node's sched_domain
8126 * @node: node whose cpumask we're constructing
73486722 8127 * @span: resulting cpumask
9c1cfda2 8128 *
41a2d6cf 8129 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8130 * should be one that prevents unnecessary balancing, but also spreads tasks
8131 * out optimally.
8132 */
96f874e2 8133static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8134{
c5f59f08 8135 nodemask_t used_nodes;
48f24c4d 8136 int i;
9c1cfda2 8137
6ca09dfc 8138 cpumask_clear(span);
c5f59f08 8139 nodes_clear(used_nodes);
9c1cfda2 8140
6ca09dfc 8141 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8142 node_set(node, used_nodes);
9c1cfda2
JH
8143
8144 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8145 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8146
6ca09dfc 8147 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8148 }
9c1cfda2 8149}
6d6bc0ad 8150#endif /* CONFIG_NUMA */
9c1cfda2 8151
5c45bf27 8152int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8153
6c99e9ad
RR
8154/*
8155 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8156 *
8157 * ( See the the comments in include/linux/sched.h:struct sched_group
8158 * and struct sched_domain. )
6c99e9ad
RR
8159 */
8160struct static_sched_group {
8161 struct sched_group sg;
8162 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8163};
8164
8165struct static_sched_domain {
8166 struct sched_domain sd;
8167 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8168};
8169
49a02c51
AH
8170struct s_data {
8171#ifdef CONFIG_NUMA
8172 int sd_allnodes;
8173 cpumask_var_t domainspan;
8174 cpumask_var_t covered;
8175 cpumask_var_t notcovered;
8176#endif
8177 cpumask_var_t nodemask;
8178 cpumask_var_t this_sibling_map;
8179 cpumask_var_t this_core_map;
8180 cpumask_var_t send_covered;
8181 cpumask_var_t tmpmask;
8182 struct sched_group **sched_group_nodes;
8183 struct root_domain *rd;
8184};
8185
2109b99e
AH
8186enum s_alloc {
8187 sa_sched_groups = 0,
8188 sa_rootdomain,
8189 sa_tmpmask,
8190 sa_send_covered,
8191 sa_this_core_map,
8192 sa_this_sibling_map,
8193 sa_nodemask,
8194 sa_sched_group_nodes,
8195#ifdef CONFIG_NUMA
8196 sa_notcovered,
8197 sa_covered,
8198 sa_domainspan,
8199#endif
8200 sa_none,
8201};
8202
9c1cfda2 8203/*
48f24c4d 8204 * SMT sched-domains:
9c1cfda2 8205 */
1da177e4 8206#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8207static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8208static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8209
41a2d6cf 8210static int
96f874e2
RR
8211cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8212 struct sched_group **sg, struct cpumask *unused)
1da177e4 8213{
6711cab4 8214 if (sg)
6c99e9ad 8215 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8216 return cpu;
8217}
6d6bc0ad 8218#endif /* CONFIG_SCHED_SMT */
1da177e4 8219
48f24c4d
IM
8220/*
8221 * multi-core sched-domains:
8222 */
1e9f28fa 8223#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8224static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8225static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8226#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8227
8228#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8229static int
96f874e2
RR
8230cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8231 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8232{
6711cab4 8233 int group;
7c16ec58 8234
c69fc56d 8235 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8236 group = cpumask_first(mask);
6711cab4 8237 if (sg)
6c99e9ad 8238 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8239 return group;
1e9f28fa
SS
8240}
8241#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8242static int
96f874e2
RR
8243cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8244 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8245{
6711cab4 8246 if (sg)
6c99e9ad 8247 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8248 return cpu;
8249}
8250#endif
8251
6c99e9ad
RR
8252static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8253static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8254
41a2d6cf 8255static int
96f874e2
RR
8256cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8257 struct sched_group **sg, struct cpumask *mask)
1da177e4 8258{
6711cab4 8259 int group;
48f24c4d 8260#ifdef CONFIG_SCHED_MC
6ca09dfc 8261 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8262 group = cpumask_first(mask);
1e9f28fa 8263#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8264 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8265 group = cpumask_first(mask);
1da177e4 8266#else
6711cab4 8267 group = cpu;
1da177e4 8268#endif
6711cab4 8269 if (sg)
6c99e9ad 8270 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8271 return group;
1da177e4
LT
8272}
8273
8274#ifdef CONFIG_NUMA
1da177e4 8275/*
9c1cfda2
JH
8276 * The init_sched_build_groups can't handle what we want to do with node
8277 * groups, so roll our own. Now each node has its own list of groups which
8278 * gets dynamically allocated.
1da177e4 8279 */
62ea9ceb 8280static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8281static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8282
62ea9ceb 8283static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8284static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8285
96f874e2
RR
8286static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8287 struct sched_group **sg,
8288 struct cpumask *nodemask)
9c1cfda2 8289{
6711cab4
SS
8290 int group;
8291
6ca09dfc 8292 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8293 group = cpumask_first(nodemask);
6711cab4
SS
8294
8295 if (sg)
6c99e9ad 8296 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8297 return group;
1da177e4 8298}
6711cab4 8299
08069033
SS
8300static void init_numa_sched_groups_power(struct sched_group *group_head)
8301{
8302 struct sched_group *sg = group_head;
8303 int j;
8304
8305 if (!sg)
8306 return;
3a5c359a 8307 do {
758b2cdc 8308 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8309 struct sched_domain *sd;
08069033 8310
6c99e9ad 8311 sd = &per_cpu(phys_domains, j).sd;
13318a71 8312 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8313 /*
8314 * Only add "power" once for each
8315 * physical package.
8316 */
8317 continue;
8318 }
08069033 8319
18a3885f 8320 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8321 }
8322 sg = sg->next;
8323 } while (sg != group_head);
08069033 8324}
0601a88d
AH
8325
8326static int build_numa_sched_groups(struct s_data *d,
8327 const struct cpumask *cpu_map, int num)
8328{
8329 struct sched_domain *sd;
8330 struct sched_group *sg, *prev;
8331 int n, j;
8332
8333 cpumask_clear(d->covered);
8334 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8335 if (cpumask_empty(d->nodemask)) {
8336 d->sched_group_nodes[num] = NULL;
8337 goto out;
8338 }
8339
8340 sched_domain_node_span(num, d->domainspan);
8341 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8342
8343 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8344 GFP_KERNEL, num);
8345 if (!sg) {
8346 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8347 num);
8348 return -ENOMEM;
8349 }
8350 d->sched_group_nodes[num] = sg;
8351
8352 for_each_cpu(j, d->nodemask) {
8353 sd = &per_cpu(node_domains, j).sd;
8354 sd->groups = sg;
8355 }
8356
18a3885f 8357 sg->cpu_power = 0;
0601a88d
AH
8358 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8359 sg->next = sg;
8360 cpumask_or(d->covered, d->covered, d->nodemask);
8361
8362 prev = sg;
8363 for (j = 0; j < nr_node_ids; j++) {
8364 n = (num + j) % nr_node_ids;
8365 cpumask_complement(d->notcovered, d->covered);
8366 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8367 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8368 if (cpumask_empty(d->tmpmask))
8369 break;
8370 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8371 if (cpumask_empty(d->tmpmask))
8372 continue;
8373 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8374 GFP_KERNEL, num);
8375 if (!sg) {
8376 printk(KERN_WARNING
8377 "Can not alloc domain group for node %d\n", j);
8378 return -ENOMEM;
8379 }
18a3885f 8380 sg->cpu_power = 0;
0601a88d
AH
8381 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8382 sg->next = prev->next;
8383 cpumask_or(d->covered, d->covered, d->tmpmask);
8384 prev->next = sg;
8385 prev = sg;
8386 }
8387out:
8388 return 0;
8389}
6d6bc0ad 8390#endif /* CONFIG_NUMA */
1da177e4 8391
a616058b 8392#ifdef CONFIG_NUMA
51888ca2 8393/* Free memory allocated for various sched_group structures */
96f874e2
RR
8394static void free_sched_groups(const struct cpumask *cpu_map,
8395 struct cpumask *nodemask)
51888ca2 8396{
a616058b 8397 int cpu, i;
51888ca2 8398
abcd083a 8399 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8400 struct sched_group **sched_group_nodes
8401 = sched_group_nodes_bycpu[cpu];
8402
51888ca2
SV
8403 if (!sched_group_nodes)
8404 continue;
8405
076ac2af 8406 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8407 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8408
6ca09dfc 8409 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8410 if (cpumask_empty(nodemask))
51888ca2
SV
8411 continue;
8412
8413 if (sg == NULL)
8414 continue;
8415 sg = sg->next;
8416next_sg:
8417 oldsg = sg;
8418 sg = sg->next;
8419 kfree(oldsg);
8420 if (oldsg != sched_group_nodes[i])
8421 goto next_sg;
8422 }
8423 kfree(sched_group_nodes);
8424 sched_group_nodes_bycpu[cpu] = NULL;
8425 }
51888ca2 8426}
6d6bc0ad 8427#else /* !CONFIG_NUMA */
96f874e2
RR
8428static void free_sched_groups(const struct cpumask *cpu_map,
8429 struct cpumask *nodemask)
a616058b
SS
8430{
8431}
6d6bc0ad 8432#endif /* CONFIG_NUMA */
51888ca2 8433
89c4710e
SS
8434/*
8435 * Initialize sched groups cpu_power.
8436 *
8437 * cpu_power indicates the capacity of sched group, which is used while
8438 * distributing the load between different sched groups in a sched domain.
8439 * Typically cpu_power for all the groups in a sched domain will be same unless
8440 * there are asymmetries in the topology. If there are asymmetries, group
8441 * having more cpu_power will pickup more load compared to the group having
8442 * less cpu_power.
89c4710e
SS
8443 */
8444static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8445{
8446 struct sched_domain *child;
8447 struct sched_group *group;
f93e65c1
PZ
8448 long power;
8449 int weight;
89c4710e
SS
8450
8451 WARN_ON(!sd || !sd->groups);
8452
13318a71 8453 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8454 return;
8455
8456 child = sd->child;
8457
18a3885f 8458 sd->groups->cpu_power = 0;
5517d86b 8459
f93e65c1
PZ
8460 if (!child) {
8461 power = SCHED_LOAD_SCALE;
8462 weight = cpumask_weight(sched_domain_span(sd));
8463 /*
8464 * SMT siblings share the power of a single core.
a52bfd73
PZ
8465 * Usually multiple threads get a better yield out of
8466 * that one core than a single thread would have,
8467 * reflect that in sd->smt_gain.
f93e65c1 8468 */
a52bfd73
PZ
8469 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8470 power *= sd->smt_gain;
f93e65c1 8471 power /= weight;
a52bfd73
PZ
8472 power >>= SCHED_LOAD_SHIFT;
8473 }
18a3885f 8474 sd->groups->cpu_power += power;
89c4710e
SS
8475 return;
8476 }
8477
89c4710e 8478 /*
f93e65c1 8479 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8480 */
8481 group = child->groups;
8482 do {
18a3885f 8483 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8484 group = group->next;
8485 } while (group != child->groups);
8486}
8487
7c16ec58
MT
8488/*
8489 * Initializers for schedule domains
8490 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8491 */
8492
a5d8c348
IM
8493#ifdef CONFIG_SCHED_DEBUG
8494# define SD_INIT_NAME(sd, type) sd->name = #type
8495#else
8496# define SD_INIT_NAME(sd, type) do { } while (0)
8497#endif
8498
7c16ec58 8499#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8500
7c16ec58
MT
8501#define SD_INIT_FUNC(type) \
8502static noinline void sd_init_##type(struct sched_domain *sd) \
8503{ \
8504 memset(sd, 0, sizeof(*sd)); \
8505 *sd = SD_##type##_INIT; \
1d3504fc 8506 sd->level = SD_LV_##type; \
a5d8c348 8507 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8508}
8509
8510SD_INIT_FUNC(CPU)
8511#ifdef CONFIG_NUMA
8512 SD_INIT_FUNC(ALLNODES)
8513 SD_INIT_FUNC(NODE)
8514#endif
8515#ifdef CONFIG_SCHED_SMT
8516 SD_INIT_FUNC(SIBLING)
8517#endif
8518#ifdef CONFIG_SCHED_MC
8519 SD_INIT_FUNC(MC)
8520#endif
8521
1d3504fc
HS
8522static int default_relax_domain_level = -1;
8523
8524static int __init setup_relax_domain_level(char *str)
8525{
30e0e178
LZ
8526 unsigned long val;
8527
8528 val = simple_strtoul(str, NULL, 0);
8529 if (val < SD_LV_MAX)
8530 default_relax_domain_level = val;
8531
1d3504fc
HS
8532 return 1;
8533}
8534__setup("relax_domain_level=", setup_relax_domain_level);
8535
8536static void set_domain_attribute(struct sched_domain *sd,
8537 struct sched_domain_attr *attr)
8538{
8539 int request;
8540
8541 if (!attr || attr->relax_domain_level < 0) {
8542 if (default_relax_domain_level < 0)
8543 return;
8544 else
8545 request = default_relax_domain_level;
8546 } else
8547 request = attr->relax_domain_level;
8548 if (request < sd->level) {
8549 /* turn off idle balance on this domain */
c88d5910 8550 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8551 } else {
8552 /* turn on idle balance on this domain */
c88d5910 8553 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8554 }
8555}
8556
2109b99e
AH
8557static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8558 const struct cpumask *cpu_map)
8559{
8560 switch (what) {
8561 case sa_sched_groups:
8562 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8563 d->sched_group_nodes = NULL;
8564 case sa_rootdomain:
8565 free_rootdomain(d->rd); /* fall through */
8566 case sa_tmpmask:
8567 free_cpumask_var(d->tmpmask); /* fall through */
8568 case sa_send_covered:
8569 free_cpumask_var(d->send_covered); /* fall through */
8570 case sa_this_core_map:
8571 free_cpumask_var(d->this_core_map); /* fall through */
8572 case sa_this_sibling_map:
8573 free_cpumask_var(d->this_sibling_map); /* fall through */
8574 case sa_nodemask:
8575 free_cpumask_var(d->nodemask); /* fall through */
8576 case sa_sched_group_nodes:
d1b55138 8577#ifdef CONFIG_NUMA
2109b99e
AH
8578 kfree(d->sched_group_nodes); /* fall through */
8579 case sa_notcovered:
8580 free_cpumask_var(d->notcovered); /* fall through */
8581 case sa_covered:
8582 free_cpumask_var(d->covered); /* fall through */
8583 case sa_domainspan:
8584 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8585#endif
2109b99e
AH
8586 case sa_none:
8587 break;
8588 }
8589}
3404c8d9 8590
2109b99e
AH
8591static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8592 const struct cpumask *cpu_map)
8593{
3404c8d9 8594#ifdef CONFIG_NUMA
2109b99e
AH
8595 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8596 return sa_none;
8597 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8598 return sa_domainspan;
8599 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8600 return sa_covered;
8601 /* Allocate the per-node list of sched groups */
8602 d->sched_group_nodes = kcalloc(nr_node_ids,
8603 sizeof(struct sched_group *), GFP_KERNEL);
8604 if (!d->sched_group_nodes) {
d1b55138 8605 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8606 return sa_notcovered;
d1b55138 8607 }
2109b99e 8608 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8609#endif
2109b99e
AH
8610 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8611 return sa_sched_group_nodes;
8612 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8613 return sa_nodemask;
8614 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8615 return sa_this_sibling_map;
8616 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8617 return sa_this_core_map;
8618 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8619 return sa_send_covered;
8620 d->rd = alloc_rootdomain();
8621 if (!d->rd) {
57d885fe 8622 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8623 return sa_tmpmask;
57d885fe 8624 }
2109b99e
AH
8625 return sa_rootdomain;
8626}
57d885fe 8627
7f4588f3
AH
8628static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8629 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8630{
8631 struct sched_domain *sd = NULL;
7c16ec58 8632#ifdef CONFIG_NUMA
7f4588f3 8633 struct sched_domain *parent;
1da177e4 8634
7f4588f3
AH
8635 d->sd_allnodes = 0;
8636 if (cpumask_weight(cpu_map) >
8637 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8638 sd = &per_cpu(allnodes_domains, i).sd;
8639 SD_INIT(sd, ALLNODES);
1d3504fc 8640 set_domain_attribute(sd, attr);
7f4588f3
AH
8641 cpumask_copy(sched_domain_span(sd), cpu_map);
8642 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8643 d->sd_allnodes = 1;
8644 }
8645 parent = sd;
8646
8647 sd = &per_cpu(node_domains, i).sd;
8648 SD_INIT(sd, NODE);
8649 set_domain_attribute(sd, attr);
8650 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8651 sd->parent = parent;
8652 if (parent)
8653 parent->child = sd;
8654 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8655#endif
7f4588f3
AH
8656 return sd;
8657}
1da177e4 8658
87cce662
AH
8659static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8660 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8661 struct sched_domain *parent, int i)
8662{
8663 struct sched_domain *sd;
8664 sd = &per_cpu(phys_domains, i).sd;
8665 SD_INIT(sd, CPU);
8666 set_domain_attribute(sd, attr);
8667 cpumask_copy(sched_domain_span(sd), d->nodemask);
8668 sd->parent = parent;
8669 if (parent)
8670 parent->child = sd;
8671 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8672 return sd;
8673}
1da177e4 8674
410c4081
AH
8675static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8676 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8677 struct sched_domain *parent, int i)
8678{
8679 struct sched_domain *sd = parent;
1e9f28fa 8680#ifdef CONFIG_SCHED_MC
410c4081
AH
8681 sd = &per_cpu(core_domains, i).sd;
8682 SD_INIT(sd, MC);
8683 set_domain_attribute(sd, attr);
8684 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8685 sd->parent = parent;
8686 parent->child = sd;
8687 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8688#endif
410c4081
AH
8689 return sd;
8690}
1e9f28fa 8691
d8173535
AH
8692static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8693 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8694 struct sched_domain *parent, int i)
8695{
8696 struct sched_domain *sd = parent;
1da177e4 8697#ifdef CONFIG_SCHED_SMT
d8173535
AH
8698 sd = &per_cpu(cpu_domains, i).sd;
8699 SD_INIT(sd, SIBLING);
8700 set_domain_attribute(sd, attr);
8701 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8702 sd->parent = parent;
8703 parent->child = sd;
8704 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8705#endif
d8173535
AH
8706 return sd;
8707}
1da177e4 8708
0e8e85c9
AH
8709static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8710 const struct cpumask *cpu_map, int cpu)
8711{
8712 switch (l) {
1da177e4 8713#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8714 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8715 cpumask_and(d->this_sibling_map, cpu_map,
8716 topology_thread_cpumask(cpu));
8717 if (cpu == cpumask_first(d->this_sibling_map))
8718 init_sched_build_groups(d->this_sibling_map, cpu_map,
8719 &cpu_to_cpu_group,
8720 d->send_covered, d->tmpmask);
8721 break;
1da177e4 8722#endif
1e9f28fa 8723#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8724 case SD_LV_MC: /* set up multi-core groups */
8725 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8726 if (cpu == cpumask_first(d->this_core_map))
8727 init_sched_build_groups(d->this_core_map, cpu_map,
8728 &cpu_to_core_group,
8729 d->send_covered, d->tmpmask);
8730 break;
1e9f28fa 8731#endif
86548096
AH
8732 case SD_LV_CPU: /* set up physical groups */
8733 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8734 if (!cpumask_empty(d->nodemask))
8735 init_sched_build_groups(d->nodemask, cpu_map,
8736 &cpu_to_phys_group,
8737 d->send_covered, d->tmpmask);
8738 break;
1da177e4 8739#ifdef CONFIG_NUMA
de616e36
AH
8740 case SD_LV_ALLNODES:
8741 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8742 d->send_covered, d->tmpmask);
8743 break;
8744#endif
0e8e85c9
AH
8745 default:
8746 break;
7c16ec58 8747 }
0e8e85c9 8748}
9c1cfda2 8749
2109b99e
AH
8750/*
8751 * Build sched domains for a given set of cpus and attach the sched domains
8752 * to the individual cpus
8753 */
8754static int __build_sched_domains(const struct cpumask *cpu_map,
8755 struct sched_domain_attr *attr)
8756{
8757 enum s_alloc alloc_state = sa_none;
8758 struct s_data d;
294b0c96 8759 struct sched_domain *sd;
2109b99e 8760 int i;
7c16ec58 8761#ifdef CONFIG_NUMA
2109b99e 8762 d.sd_allnodes = 0;
7c16ec58 8763#endif
9c1cfda2 8764
2109b99e
AH
8765 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8766 if (alloc_state != sa_rootdomain)
8767 goto error;
8768 alloc_state = sa_sched_groups;
9c1cfda2 8769
1da177e4 8770 /*
1a20ff27 8771 * Set up domains for cpus specified by the cpu_map.
1da177e4 8772 */
abcd083a 8773 for_each_cpu(i, cpu_map) {
49a02c51
AH
8774 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8775 cpu_map);
9761eea8 8776
7f4588f3 8777 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8778 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8779 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8780 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8781 }
9c1cfda2 8782
abcd083a 8783 for_each_cpu(i, cpu_map) {
0e8e85c9 8784 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8785 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8786 }
9c1cfda2 8787
1da177e4 8788 /* Set up physical groups */
86548096
AH
8789 for (i = 0; i < nr_node_ids; i++)
8790 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8791
1da177e4
LT
8792#ifdef CONFIG_NUMA
8793 /* Set up node groups */
de616e36
AH
8794 if (d.sd_allnodes)
8795 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8796
0601a88d
AH
8797 for (i = 0; i < nr_node_ids; i++)
8798 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8799 goto error;
1da177e4
LT
8800#endif
8801
8802 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8803#ifdef CONFIG_SCHED_SMT
abcd083a 8804 for_each_cpu(i, cpu_map) {
294b0c96 8805 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8806 init_sched_groups_power(i, sd);
5c45bf27 8807 }
1da177e4 8808#endif
1e9f28fa 8809#ifdef CONFIG_SCHED_MC
abcd083a 8810 for_each_cpu(i, cpu_map) {
294b0c96 8811 sd = &per_cpu(core_domains, i).sd;
89c4710e 8812 init_sched_groups_power(i, sd);
5c45bf27
SS
8813 }
8814#endif
1e9f28fa 8815
abcd083a 8816 for_each_cpu(i, cpu_map) {
294b0c96 8817 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8818 init_sched_groups_power(i, sd);
1da177e4
LT
8819 }
8820
9c1cfda2 8821#ifdef CONFIG_NUMA
076ac2af 8822 for (i = 0; i < nr_node_ids; i++)
49a02c51 8823 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8824
49a02c51 8825 if (d.sd_allnodes) {
6711cab4 8826 struct sched_group *sg;
f712c0c7 8827
96f874e2 8828 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8829 d.tmpmask);
f712c0c7
SS
8830 init_numa_sched_groups_power(sg);
8831 }
9c1cfda2
JH
8832#endif
8833
1da177e4 8834 /* Attach the domains */
abcd083a 8835 for_each_cpu(i, cpu_map) {
1da177e4 8836#ifdef CONFIG_SCHED_SMT
6c99e9ad 8837 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8838#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8839 sd = &per_cpu(core_domains, i).sd;
1da177e4 8840#else
6c99e9ad 8841 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8842#endif
49a02c51 8843 cpu_attach_domain(sd, d.rd, i);
1da177e4 8844 }
51888ca2 8845
2109b99e
AH
8846 d.sched_group_nodes = NULL; /* don't free this we still need it */
8847 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8848 return 0;
51888ca2 8849
51888ca2 8850error:
2109b99e
AH
8851 __free_domain_allocs(&d, alloc_state, cpu_map);
8852 return -ENOMEM;
1da177e4 8853}
029190c5 8854
96f874e2 8855static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8856{
8857 return __build_sched_domains(cpu_map, NULL);
8858}
8859
acc3f5d7 8860static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8861static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8862static struct sched_domain_attr *dattr_cur;
8863 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8864
8865/*
8866 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8867 * cpumask) fails, then fallback to a single sched domain,
8868 * as determined by the single cpumask fallback_doms.
029190c5 8869 */
4212823f 8870static cpumask_var_t fallback_doms;
029190c5 8871
ee79d1bd
HC
8872/*
8873 * arch_update_cpu_topology lets virtualized architectures update the
8874 * cpu core maps. It is supposed to return 1 if the topology changed
8875 * or 0 if it stayed the same.
8876 */
8877int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8878{
ee79d1bd 8879 return 0;
22e52b07
HC
8880}
8881
acc3f5d7
RR
8882cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8883{
8884 int i;
8885 cpumask_var_t *doms;
8886
8887 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8888 if (!doms)
8889 return NULL;
8890 for (i = 0; i < ndoms; i++) {
8891 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8892 free_sched_domains(doms, i);
8893 return NULL;
8894 }
8895 }
8896 return doms;
8897}
8898
8899void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8900{
8901 unsigned int i;
8902 for (i = 0; i < ndoms; i++)
8903 free_cpumask_var(doms[i]);
8904 kfree(doms);
8905}
8906
1a20ff27 8907/*
41a2d6cf 8908 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8909 * For now this just excludes isolated cpus, but could be used to
8910 * exclude other special cases in the future.
1a20ff27 8911 */
96f874e2 8912static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8913{
7378547f
MM
8914 int err;
8915
22e52b07 8916 arch_update_cpu_topology();
029190c5 8917 ndoms_cur = 1;
acc3f5d7 8918 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 8919 if (!doms_cur)
acc3f5d7
RR
8920 doms_cur = &fallback_doms;
8921 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 8922 dattr_cur = NULL;
acc3f5d7 8923 err = build_sched_domains(doms_cur[0]);
6382bc90 8924 register_sched_domain_sysctl();
7378547f
MM
8925
8926 return err;
1a20ff27
DG
8927}
8928
96f874e2
RR
8929static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8930 struct cpumask *tmpmask)
1da177e4 8931{
7c16ec58 8932 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8933}
1da177e4 8934
1a20ff27
DG
8935/*
8936 * Detach sched domains from a group of cpus specified in cpu_map
8937 * These cpus will now be attached to the NULL domain
8938 */
96f874e2 8939static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8940{
96f874e2
RR
8941 /* Save because hotplug lock held. */
8942 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8943 int i;
8944
abcd083a 8945 for_each_cpu(i, cpu_map)
57d885fe 8946 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8947 synchronize_sched();
96f874e2 8948 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8949}
8950
1d3504fc
HS
8951/* handle null as "default" */
8952static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8953 struct sched_domain_attr *new, int idx_new)
8954{
8955 struct sched_domain_attr tmp;
8956
8957 /* fast path */
8958 if (!new && !cur)
8959 return 1;
8960
8961 tmp = SD_ATTR_INIT;
8962 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8963 new ? (new + idx_new) : &tmp,
8964 sizeof(struct sched_domain_attr));
8965}
8966
029190c5
PJ
8967/*
8968 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8969 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8970 * doms_new[] to the current sched domain partitioning, doms_cur[].
8971 * It destroys each deleted domain and builds each new domain.
8972 *
acc3f5d7 8973 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
8974 * The masks don't intersect (don't overlap.) We should setup one
8975 * sched domain for each mask. CPUs not in any of the cpumasks will
8976 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8977 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8978 * it as it is.
8979 *
acc3f5d7
RR
8980 * The passed in 'doms_new' should be allocated using
8981 * alloc_sched_domains. This routine takes ownership of it and will
8982 * free_sched_domains it when done with it. If the caller failed the
8983 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
8984 * and partition_sched_domains() will fallback to the single partition
8985 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 8986 *
96f874e2 8987 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8988 * ndoms_new == 0 is a special case for destroying existing domains,
8989 * and it will not create the default domain.
dfb512ec 8990 *
029190c5
PJ
8991 * Call with hotplug lock held
8992 */
acc3f5d7 8993void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 8994 struct sched_domain_attr *dattr_new)
029190c5 8995{
dfb512ec 8996 int i, j, n;
d65bd5ec 8997 int new_topology;
029190c5 8998
712555ee 8999 mutex_lock(&sched_domains_mutex);
a1835615 9000
7378547f
MM
9001 /* always unregister in case we don't destroy any domains */
9002 unregister_sched_domain_sysctl();
9003
d65bd5ec
HC
9004 /* Let architecture update cpu core mappings. */
9005 new_topology = arch_update_cpu_topology();
9006
dfb512ec 9007 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9008
9009 /* Destroy deleted domains */
9010 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9011 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9012 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9013 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9014 goto match1;
9015 }
9016 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9017 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9018match1:
9019 ;
9020 }
9021
e761b772
MK
9022 if (doms_new == NULL) {
9023 ndoms_cur = 0;
acc3f5d7
RR
9024 doms_new = &fallback_doms;
9025 cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9026 WARN_ON_ONCE(dattr_new);
e761b772
MK
9027 }
9028
029190c5
PJ
9029 /* Build new domains */
9030 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9031 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9032 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9033 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9034 goto match2;
9035 }
9036 /* no match - add a new doms_new */
acc3f5d7 9037 __build_sched_domains(doms_new[i],
1d3504fc 9038 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9039match2:
9040 ;
9041 }
9042
9043 /* Remember the new sched domains */
acc3f5d7
RR
9044 if (doms_cur != &fallback_doms)
9045 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9046 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9047 doms_cur = doms_new;
1d3504fc 9048 dattr_cur = dattr_new;
029190c5 9049 ndoms_cur = ndoms_new;
7378547f
MM
9050
9051 register_sched_domain_sysctl();
a1835615 9052
712555ee 9053 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9054}
9055
5c45bf27 9056#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9057static void arch_reinit_sched_domains(void)
5c45bf27 9058{
95402b38 9059 get_online_cpus();
dfb512ec
MK
9060
9061 /* Destroy domains first to force the rebuild */
9062 partition_sched_domains(0, NULL, NULL);
9063
e761b772 9064 rebuild_sched_domains();
95402b38 9065 put_online_cpus();
5c45bf27
SS
9066}
9067
9068static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9069{
afb8a9b7 9070 unsigned int level = 0;
5c45bf27 9071
afb8a9b7
GS
9072 if (sscanf(buf, "%u", &level) != 1)
9073 return -EINVAL;
9074
9075 /*
9076 * level is always be positive so don't check for
9077 * level < POWERSAVINGS_BALANCE_NONE which is 0
9078 * What happens on 0 or 1 byte write,
9079 * need to check for count as well?
9080 */
9081
9082 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9083 return -EINVAL;
9084
9085 if (smt)
afb8a9b7 9086 sched_smt_power_savings = level;
5c45bf27 9087 else
afb8a9b7 9088 sched_mc_power_savings = level;
5c45bf27 9089
c70f22d2 9090 arch_reinit_sched_domains();
5c45bf27 9091
c70f22d2 9092 return count;
5c45bf27
SS
9093}
9094
5c45bf27 9095#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9096static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9097 char *page)
5c45bf27
SS
9098{
9099 return sprintf(page, "%u\n", sched_mc_power_savings);
9100}
f718cd4a 9101static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9102 const char *buf, size_t count)
5c45bf27
SS
9103{
9104 return sched_power_savings_store(buf, count, 0);
9105}
f718cd4a
AK
9106static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9107 sched_mc_power_savings_show,
9108 sched_mc_power_savings_store);
5c45bf27
SS
9109#endif
9110
9111#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9112static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9113 char *page)
5c45bf27
SS
9114{
9115 return sprintf(page, "%u\n", sched_smt_power_savings);
9116}
f718cd4a 9117static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9118 const char *buf, size_t count)
5c45bf27
SS
9119{
9120 return sched_power_savings_store(buf, count, 1);
9121}
f718cd4a
AK
9122static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9123 sched_smt_power_savings_show,
6707de00
AB
9124 sched_smt_power_savings_store);
9125#endif
9126
39aac648 9127int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9128{
9129 int err = 0;
9130
9131#ifdef CONFIG_SCHED_SMT
9132 if (smt_capable())
9133 err = sysfs_create_file(&cls->kset.kobj,
9134 &attr_sched_smt_power_savings.attr);
9135#endif
9136#ifdef CONFIG_SCHED_MC
9137 if (!err && mc_capable())
9138 err = sysfs_create_file(&cls->kset.kobj,
9139 &attr_sched_mc_power_savings.attr);
9140#endif
9141 return err;
9142}
6d6bc0ad 9143#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9144
e761b772 9145#ifndef CONFIG_CPUSETS
1da177e4 9146/*
e761b772
MK
9147 * Add online and remove offline CPUs from the scheduler domains.
9148 * When cpusets are enabled they take over this function.
1da177e4
LT
9149 */
9150static int update_sched_domains(struct notifier_block *nfb,
9151 unsigned long action, void *hcpu)
e761b772
MK
9152{
9153 switch (action) {
9154 case CPU_ONLINE:
9155 case CPU_ONLINE_FROZEN:
9156 case CPU_DEAD:
9157 case CPU_DEAD_FROZEN:
dfb512ec 9158 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9159 return NOTIFY_OK;
9160
9161 default:
9162 return NOTIFY_DONE;
9163 }
9164}
9165#endif
9166
9167static int update_runtime(struct notifier_block *nfb,
9168 unsigned long action, void *hcpu)
1da177e4 9169{
7def2be1
PZ
9170 int cpu = (int)(long)hcpu;
9171
1da177e4 9172 switch (action) {
1da177e4 9173 case CPU_DOWN_PREPARE:
8bb78442 9174 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9175 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9176 return NOTIFY_OK;
9177
1da177e4 9178 case CPU_DOWN_FAILED:
8bb78442 9179 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9180 case CPU_ONLINE:
8bb78442 9181 case CPU_ONLINE_FROZEN:
7def2be1 9182 enable_runtime(cpu_rq(cpu));
e761b772
MK
9183 return NOTIFY_OK;
9184
1da177e4
LT
9185 default:
9186 return NOTIFY_DONE;
9187 }
1da177e4 9188}
1da177e4
LT
9189
9190void __init sched_init_smp(void)
9191{
dcc30a35
RR
9192 cpumask_var_t non_isolated_cpus;
9193
9194 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9195 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9196
434d53b0
MT
9197#if defined(CONFIG_NUMA)
9198 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9199 GFP_KERNEL);
9200 BUG_ON(sched_group_nodes_bycpu == NULL);
9201#endif
95402b38 9202 get_online_cpus();
712555ee 9203 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9204 arch_init_sched_domains(cpu_online_mask);
9205 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9206 if (cpumask_empty(non_isolated_cpus))
9207 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9208 mutex_unlock(&sched_domains_mutex);
95402b38 9209 put_online_cpus();
e761b772
MK
9210
9211#ifndef CONFIG_CPUSETS
1da177e4
LT
9212 /* XXX: Theoretical race here - CPU may be hotplugged now */
9213 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9214#endif
9215
9216 /* RT runtime code needs to handle some hotplug events */
9217 hotcpu_notifier(update_runtime, 0);
9218
b328ca18 9219 init_hrtick();
5c1e1767
NP
9220
9221 /* Move init over to a non-isolated CPU */
dcc30a35 9222 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9223 BUG();
19978ca6 9224 sched_init_granularity();
dcc30a35 9225 free_cpumask_var(non_isolated_cpus);
4212823f 9226
0e3900e6 9227 init_sched_rt_class();
1da177e4
LT
9228}
9229#else
9230void __init sched_init_smp(void)
9231{
19978ca6 9232 sched_init_granularity();
1da177e4
LT
9233}
9234#endif /* CONFIG_SMP */
9235
cd1bb94b
AB
9236const_debug unsigned int sysctl_timer_migration = 1;
9237
1da177e4
LT
9238int in_sched_functions(unsigned long addr)
9239{
1da177e4
LT
9240 return in_lock_functions(addr) ||
9241 (addr >= (unsigned long)__sched_text_start
9242 && addr < (unsigned long)__sched_text_end);
9243}
9244
a9957449 9245static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9246{
9247 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9248 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9249#ifdef CONFIG_FAIR_GROUP_SCHED
9250 cfs_rq->rq = rq;
9251#endif
67e9fb2a 9252 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9253}
9254
fa85ae24
PZ
9255static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9256{
9257 struct rt_prio_array *array;
9258 int i;
9259
9260 array = &rt_rq->active;
9261 for (i = 0; i < MAX_RT_PRIO; i++) {
9262 INIT_LIST_HEAD(array->queue + i);
9263 __clear_bit(i, array->bitmap);
9264 }
9265 /* delimiter for bitsearch: */
9266 __set_bit(MAX_RT_PRIO, array->bitmap);
9267
052f1dc7 9268#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9269 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9270#ifdef CONFIG_SMP
e864c499 9271 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9272#endif
48d5e258 9273#endif
fa85ae24
PZ
9274#ifdef CONFIG_SMP
9275 rt_rq->rt_nr_migratory = 0;
fa85ae24 9276 rt_rq->overloaded = 0;
c20b08e3 9277 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9278#endif
9279
9280 rt_rq->rt_time = 0;
9281 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9282 rt_rq->rt_runtime = 0;
9283 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9284
052f1dc7 9285#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9286 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9287 rt_rq->rq = rq;
9288#endif
fa85ae24
PZ
9289}
9290
6f505b16 9291#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9292static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9293 struct sched_entity *se, int cpu, int add,
9294 struct sched_entity *parent)
6f505b16 9295{
ec7dc8ac 9296 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9297 tg->cfs_rq[cpu] = cfs_rq;
9298 init_cfs_rq(cfs_rq, rq);
9299 cfs_rq->tg = tg;
9300 if (add)
9301 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9302
9303 tg->se[cpu] = se;
354d60c2
DG
9304 /* se could be NULL for init_task_group */
9305 if (!se)
9306 return;
9307
ec7dc8ac
DG
9308 if (!parent)
9309 se->cfs_rq = &rq->cfs;
9310 else
9311 se->cfs_rq = parent->my_q;
9312
6f505b16
PZ
9313 se->my_q = cfs_rq;
9314 se->load.weight = tg->shares;
e05510d0 9315 se->load.inv_weight = 0;
ec7dc8ac 9316 se->parent = parent;
6f505b16 9317}
052f1dc7 9318#endif
6f505b16 9319
052f1dc7 9320#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9321static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9322 struct sched_rt_entity *rt_se, int cpu, int add,
9323 struct sched_rt_entity *parent)
6f505b16 9324{
ec7dc8ac
DG
9325 struct rq *rq = cpu_rq(cpu);
9326
6f505b16
PZ
9327 tg->rt_rq[cpu] = rt_rq;
9328 init_rt_rq(rt_rq, rq);
9329 rt_rq->tg = tg;
9330 rt_rq->rt_se = rt_se;
ac086bc2 9331 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9332 if (add)
9333 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9334
9335 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9336 if (!rt_se)
9337 return;
9338
ec7dc8ac
DG
9339 if (!parent)
9340 rt_se->rt_rq = &rq->rt;
9341 else
9342 rt_se->rt_rq = parent->my_q;
9343
6f505b16 9344 rt_se->my_q = rt_rq;
ec7dc8ac 9345 rt_se->parent = parent;
6f505b16
PZ
9346 INIT_LIST_HEAD(&rt_se->run_list);
9347}
9348#endif
9349
1da177e4
LT
9350void __init sched_init(void)
9351{
dd41f596 9352 int i, j;
434d53b0
MT
9353 unsigned long alloc_size = 0, ptr;
9354
9355#ifdef CONFIG_FAIR_GROUP_SCHED
9356 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9357#endif
9358#ifdef CONFIG_RT_GROUP_SCHED
9359 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9360#endif
9361#ifdef CONFIG_USER_SCHED
9362 alloc_size *= 2;
df7c8e84
RR
9363#endif
9364#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9365 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9366#endif
434d53b0 9367 if (alloc_size) {
36b7b6d4 9368 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9369
9370#ifdef CONFIG_FAIR_GROUP_SCHED
9371 init_task_group.se = (struct sched_entity **)ptr;
9372 ptr += nr_cpu_ids * sizeof(void **);
9373
9374 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9375 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9376
9377#ifdef CONFIG_USER_SCHED
9378 root_task_group.se = (struct sched_entity **)ptr;
9379 ptr += nr_cpu_ids * sizeof(void **);
9380
9381 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9382 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9383#endif /* CONFIG_USER_SCHED */
9384#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9385#ifdef CONFIG_RT_GROUP_SCHED
9386 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9387 ptr += nr_cpu_ids * sizeof(void **);
9388
9389 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9390 ptr += nr_cpu_ids * sizeof(void **);
9391
9392#ifdef CONFIG_USER_SCHED
9393 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9394 ptr += nr_cpu_ids * sizeof(void **);
9395
9396 root_task_group.rt_rq = (struct rt_rq **)ptr;
9397 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9398#endif /* CONFIG_USER_SCHED */
9399#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9400#ifdef CONFIG_CPUMASK_OFFSTACK
9401 for_each_possible_cpu(i) {
9402 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9403 ptr += cpumask_size();
9404 }
9405#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9406 }
dd41f596 9407
57d885fe
GH
9408#ifdef CONFIG_SMP
9409 init_defrootdomain();
9410#endif
9411
d0b27fa7
PZ
9412 init_rt_bandwidth(&def_rt_bandwidth,
9413 global_rt_period(), global_rt_runtime());
9414
9415#ifdef CONFIG_RT_GROUP_SCHED
9416 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9417 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9418#ifdef CONFIG_USER_SCHED
9419 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9420 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9421#endif /* CONFIG_USER_SCHED */
9422#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9423
052f1dc7 9424#ifdef CONFIG_GROUP_SCHED
6f505b16 9425 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9426 INIT_LIST_HEAD(&init_task_group.children);
9427
9428#ifdef CONFIG_USER_SCHED
9429 INIT_LIST_HEAD(&root_task_group.children);
9430 init_task_group.parent = &root_task_group;
9431 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9432#endif /* CONFIG_USER_SCHED */
9433#endif /* CONFIG_GROUP_SCHED */
6f505b16 9434
0a945022 9435 for_each_possible_cpu(i) {
70b97a7f 9436 struct rq *rq;
1da177e4
LT
9437
9438 rq = cpu_rq(i);
9439 spin_lock_init(&rq->lock);
7897986b 9440 rq->nr_running = 0;
dce48a84
TG
9441 rq->calc_load_active = 0;
9442 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9443 init_cfs_rq(&rq->cfs, rq);
6f505b16 9444 init_rt_rq(&rq->rt, rq);
dd41f596 9445#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9446 init_task_group.shares = init_task_group_load;
6f505b16 9447 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9448#ifdef CONFIG_CGROUP_SCHED
9449 /*
9450 * How much cpu bandwidth does init_task_group get?
9451 *
9452 * In case of task-groups formed thr' the cgroup filesystem, it
9453 * gets 100% of the cpu resources in the system. This overall
9454 * system cpu resource is divided among the tasks of
9455 * init_task_group and its child task-groups in a fair manner,
9456 * based on each entity's (task or task-group's) weight
9457 * (se->load.weight).
9458 *
9459 * In other words, if init_task_group has 10 tasks of weight
9460 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9461 * then A0's share of the cpu resource is:
9462 *
0d905bca 9463 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9464 *
9465 * We achieve this by letting init_task_group's tasks sit
9466 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9467 */
ec7dc8ac 9468 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9469#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9470 root_task_group.shares = NICE_0_LOAD;
9471 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9472 /*
9473 * In case of task-groups formed thr' the user id of tasks,
9474 * init_task_group represents tasks belonging to root user.
9475 * Hence it forms a sibling of all subsequent groups formed.
9476 * In this case, init_task_group gets only a fraction of overall
9477 * system cpu resource, based on the weight assigned to root
9478 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9479 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9480 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9481 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9482 */
ec7dc8ac 9483 init_tg_cfs_entry(&init_task_group,
84e9dabf 9484 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9485 &per_cpu(init_sched_entity, i), i, 1,
9486 root_task_group.se[i]);
6f505b16 9487
052f1dc7 9488#endif
354d60c2
DG
9489#endif /* CONFIG_FAIR_GROUP_SCHED */
9490
9491 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9492#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9493 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9494#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9495 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9496#elif defined CONFIG_USER_SCHED
eff766a6 9497 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9498 init_tg_rt_entry(&init_task_group,
6f505b16 9499 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9500 &per_cpu(init_sched_rt_entity, i), i, 1,
9501 root_task_group.rt_se[i]);
354d60c2 9502#endif
dd41f596 9503#endif
1da177e4 9504
dd41f596
IM
9505 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9506 rq->cpu_load[j] = 0;
1da177e4 9507#ifdef CONFIG_SMP
41c7ce9a 9508 rq->sd = NULL;
57d885fe 9509 rq->rd = NULL;
3f029d3c 9510 rq->post_schedule = 0;
1da177e4 9511 rq->active_balance = 0;
dd41f596 9512 rq->next_balance = jiffies;
1da177e4 9513 rq->push_cpu = 0;
0a2966b4 9514 rq->cpu = i;
1f11eb6a 9515 rq->online = 0;
1da177e4 9516 rq->migration_thread = NULL;
eae0c9df
MG
9517 rq->idle_stamp = 0;
9518 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9519 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9520 rq_attach_root(rq, &def_root_domain);
1da177e4 9521#endif
8f4d37ec 9522 init_rq_hrtick(rq);
1da177e4 9523 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9524 }
9525
2dd73a4f 9526 set_load_weight(&init_task);
b50f60ce 9527
e107be36
AK
9528#ifdef CONFIG_PREEMPT_NOTIFIERS
9529 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9530#endif
9531
c9819f45 9532#ifdef CONFIG_SMP
962cf36c 9533 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9534#endif
9535
b50f60ce
HC
9536#ifdef CONFIG_RT_MUTEXES
9537 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9538#endif
9539
1da177e4
LT
9540 /*
9541 * The boot idle thread does lazy MMU switching as well:
9542 */
9543 atomic_inc(&init_mm.mm_count);
9544 enter_lazy_tlb(&init_mm, current);
9545
9546 /*
9547 * Make us the idle thread. Technically, schedule() should not be
9548 * called from this thread, however somewhere below it might be,
9549 * but because we are the idle thread, we just pick up running again
9550 * when this runqueue becomes "idle".
9551 */
9552 init_idle(current, smp_processor_id());
dce48a84
TG
9553
9554 calc_load_update = jiffies + LOAD_FREQ;
9555
dd41f596
IM
9556 /*
9557 * During early bootup we pretend to be a normal task:
9558 */
9559 current->sched_class = &fair_sched_class;
6892b75e 9560
6a7b3dc3 9561 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9562 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9563#ifdef CONFIG_SMP
7d1e6a9b 9564#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9565 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9566 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9567#endif
4bdddf8f 9568 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9569#endif /* SMP */
6a7b3dc3 9570
cdd6c482 9571 perf_event_init();
0d905bca 9572
6892b75e 9573 scheduler_running = 1;
1da177e4
LT
9574}
9575
9576#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9577static inline int preempt_count_equals(int preempt_offset)
9578{
9579 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9580
9581 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9582}
9583
9584void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9585{
48f24c4d 9586#ifdef in_atomic
1da177e4
LT
9587 static unsigned long prev_jiffy; /* ratelimiting */
9588
e4aafea2
FW
9589 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9590 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9591 return;
9592 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9593 return;
9594 prev_jiffy = jiffies;
9595
9596 printk(KERN_ERR
9597 "BUG: sleeping function called from invalid context at %s:%d\n",
9598 file, line);
9599 printk(KERN_ERR
9600 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9601 in_atomic(), irqs_disabled(),
9602 current->pid, current->comm);
9603
9604 debug_show_held_locks(current);
9605 if (irqs_disabled())
9606 print_irqtrace_events(current);
9607 dump_stack();
1da177e4
LT
9608#endif
9609}
9610EXPORT_SYMBOL(__might_sleep);
9611#endif
9612
9613#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9614static void normalize_task(struct rq *rq, struct task_struct *p)
9615{
9616 int on_rq;
3e51f33f 9617
3a5e4dc1
AK
9618 update_rq_clock(rq);
9619 on_rq = p->se.on_rq;
9620 if (on_rq)
9621 deactivate_task(rq, p, 0);
9622 __setscheduler(rq, p, SCHED_NORMAL, 0);
9623 if (on_rq) {
9624 activate_task(rq, p, 0);
9625 resched_task(rq->curr);
9626 }
9627}
9628
1da177e4
LT
9629void normalize_rt_tasks(void)
9630{
a0f98a1c 9631 struct task_struct *g, *p;
1da177e4 9632 unsigned long flags;
70b97a7f 9633 struct rq *rq;
1da177e4 9634
4cf5d77a 9635 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9636 do_each_thread(g, p) {
178be793
IM
9637 /*
9638 * Only normalize user tasks:
9639 */
9640 if (!p->mm)
9641 continue;
9642
6cfb0d5d 9643 p->se.exec_start = 0;
6cfb0d5d 9644#ifdef CONFIG_SCHEDSTATS
dd41f596 9645 p->se.wait_start = 0;
dd41f596 9646 p->se.sleep_start = 0;
dd41f596 9647 p->se.block_start = 0;
6cfb0d5d 9648#endif
dd41f596
IM
9649
9650 if (!rt_task(p)) {
9651 /*
9652 * Renice negative nice level userspace
9653 * tasks back to 0:
9654 */
9655 if (TASK_NICE(p) < 0 && p->mm)
9656 set_user_nice(p, 0);
1da177e4 9657 continue;
dd41f596 9658 }
1da177e4 9659
4cf5d77a 9660 spin_lock(&p->pi_lock);
b29739f9 9661 rq = __task_rq_lock(p);
1da177e4 9662
178be793 9663 normalize_task(rq, p);
3a5e4dc1 9664
b29739f9 9665 __task_rq_unlock(rq);
4cf5d77a 9666 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9667 } while_each_thread(g, p);
9668
4cf5d77a 9669 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9670}
9671
9672#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9673
9674#ifdef CONFIG_IA64
9675/*
9676 * These functions are only useful for the IA64 MCA handling.
9677 *
9678 * They can only be called when the whole system has been
9679 * stopped - every CPU needs to be quiescent, and no scheduling
9680 * activity can take place. Using them for anything else would
9681 * be a serious bug, and as a result, they aren't even visible
9682 * under any other configuration.
9683 */
9684
9685/**
9686 * curr_task - return the current task for a given cpu.
9687 * @cpu: the processor in question.
9688 *
9689 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9690 */
36c8b586 9691struct task_struct *curr_task(int cpu)
1df5c10a
LT
9692{
9693 return cpu_curr(cpu);
9694}
9695
9696/**
9697 * set_curr_task - set the current task for a given cpu.
9698 * @cpu: the processor in question.
9699 * @p: the task pointer to set.
9700 *
9701 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9702 * are serviced on a separate stack. It allows the architecture to switch the
9703 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9704 * must be called with all CPU's synchronized, and interrupts disabled, the
9705 * and caller must save the original value of the current task (see
9706 * curr_task() above) and restore that value before reenabling interrupts and
9707 * re-starting the system.
9708 *
9709 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9710 */
36c8b586 9711void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9712{
9713 cpu_curr(cpu) = p;
9714}
9715
9716#endif
29f59db3 9717
bccbe08a
PZ
9718#ifdef CONFIG_FAIR_GROUP_SCHED
9719static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9720{
9721 int i;
9722
9723 for_each_possible_cpu(i) {
9724 if (tg->cfs_rq)
9725 kfree(tg->cfs_rq[i]);
9726 if (tg->se)
9727 kfree(tg->se[i]);
6f505b16
PZ
9728 }
9729
9730 kfree(tg->cfs_rq);
9731 kfree(tg->se);
6f505b16
PZ
9732}
9733
ec7dc8ac
DG
9734static
9735int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9736{
29f59db3 9737 struct cfs_rq *cfs_rq;
eab17229 9738 struct sched_entity *se;
9b5b7751 9739 struct rq *rq;
29f59db3
SV
9740 int i;
9741
434d53b0 9742 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9743 if (!tg->cfs_rq)
9744 goto err;
434d53b0 9745 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9746 if (!tg->se)
9747 goto err;
052f1dc7
PZ
9748
9749 tg->shares = NICE_0_LOAD;
29f59db3
SV
9750
9751 for_each_possible_cpu(i) {
9b5b7751 9752 rq = cpu_rq(i);
29f59db3 9753
eab17229
LZ
9754 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9755 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9756 if (!cfs_rq)
9757 goto err;
9758
eab17229
LZ
9759 se = kzalloc_node(sizeof(struct sched_entity),
9760 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9761 if (!se)
9762 goto err;
9763
eab17229 9764 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9765 }
9766
9767 return 1;
9768
9769 err:
9770 return 0;
9771}
9772
9773static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9774{
9775 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9776 &cpu_rq(cpu)->leaf_cfs_rq_list);
9777}
9778
9779static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9780{
9781 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9782}
6d6bc0ad 9783#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9784static inline void free_fair_sched_group(struct task_group *tg)
9785{
9786}
9787
ec7dc8ac
DG
9788static inline
9789int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9790{
9791 return 1;
9792}
9793
9794static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9795{
9796}
9797
9798static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9799{
9800}
6d6bc0ad 9801#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9802
9803#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9804static void free_rt_sched_group(struct task_group *tg)
9805{
9806 int i;
9807
d0b27fa7
PZ
9808 destroy_rt_bandwidth(&tg->rt_bandwidth);
9809
bccbe08a
PZ
9810 for_each_possible_cpu(i) {
9811 if (tg->rt_rq)
9812 kfree(tg->rt_rq[i]);
9813 if (tg->rt_se)
9814 kfree(tg->rt_se[i]);
9815 }
9816
9817 kfree(tg->rt_rq);
9818 kfree(tg->rt_se);
9819}
9820
ec7dc8ac
DG
9821static
9822int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9823{
9824 struct rt_rq *rt_rq;
eab17229 9825 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9826 struct rq *rq;
9827 int i;
9828
434d53b0 9829 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9830 if (!tg->rt_rq)
9831 goto err;
434d53b0 9832 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9833 if (!tg->rt_se)
9834 goto err;
9835
d0b27fa7
PZ
9836 init_rt_bandwidth(&tg->rt_bandwidth,
9837 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9838
9839 for_each_possible_cpu(i) {
9840 rq = cpu_rq(i);
9841
eab17229
LZ
9842 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9843 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9844 if (!rt_rq)
9845 goto err;
29f59db3 9846
eab17229
LZ
9847 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9848 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9849 if (!rt_se)
9850 goto err;
29f59db3 9851
eab17229 9852 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9853 }
9854
bccbe08a
PZ
9855 return 1;
9856
9857 err:
9858 return 0;
9859}
9860
9861static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9862{
9863 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9864 &cpu_rq(cpu)->leaf_rt_rq_list);
9865}
9866
9867static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9868{
9869 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9870}
6d6bc0ad 9871#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9872static inline void free_rt_sched_group(struct task_group *tg)
9873{
9874}
9875
ec7dc8ac
DG
9876static inline
9877int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9878{
9879 return 1;
9880}
9881
9882static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9883{
9884}
9885
9886static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9887{
9888}
6d6bc0ad 9889#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9890
d0b27fa7 9891#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9892static void free_sched_group(struct task_group *tg)
9893{
9894 free_fair_sched_group(tg);
9895 free_rt_sched_group(tg);
9896 kfree(tg);
9897}
9898
9899/* allocate runqueue etc for a new task group */
ec7dc8ac 9900struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9901{
9902 struct task_group *tg;
9903 unsigned long flags;
9904 int i;
9905
9906 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9907 if (!tg)
9908 return ERR_PTR(-ENOMEM);
9909
ec7dc8ac 9910 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9911 goto err;
9912
ec7dc8ac 9913 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9914 goto err;
9915
8ed36996 9916 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9917 for_each_possible_cpu(i) {
bccbe08a
PZ
9918 register_fair_sched_group(tg, i);
9919 register_rt_sched_group(tg, i);
9b5b7751 9920 }
6f505b16 9921 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9922
9923 WARN_ON(!parent); /* root should already exist */
9924
9925 tg->parent = parent;
f473aa5e 9926 INIT_LIST_HEAD(&tg->children);
09f2724a 9927 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9928 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9929
9b5b7751 9930 return tg;
29f59db3
SV
9931
9932err:
6f505b16 9933 free_sched_group(tg);
29f59db3
SV
9934 return ERR_PTR(-ENOMEM);
9935}
9936
9b5b7751 9937/* rcu callback to free various structures associated with a task group */
6f505b16 9938static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9939{
29f59db3 9940 /* now it should be safe to free those cfs_rqs */
6f505b16 9941 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9942}
9943
9b5b7751 9944/* Destroy runqueue etc associated with a task group */
4cf86d77 9945void sched_destroy_group(struct task_group *tg)
29f59db3 9946{
8ed36996 9947 unsigned long flags;
9b5b7751 9948 int i;
29f59db3 9949
8ed36996 9950 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9951 for_each_possible_cpu(i) {
bccbe08a
PZ
9952 unregister_fair_sched_group(tg, i);
9953 unregister_rt_sched_group(tg, i);
9b5b7751 9954 }
6f505b16 9955 list_del_rcu(&tg->list);
f473aa5e 9956 list_del_rcu(&tg->siblings);
8ed36996 9957 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9958
9b5b7751 9959 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9960 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9961}
9962
9b5b7751 9963/* change task's runqueue when it moves between groups.
3a252015
IM
9964 * The caller of this function should have put the task in its new group
9965 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9966 * reflect its new group.
9b5b7751
SV
9967 */
9968void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9969{
9970 int on_rq, running;
9971 unsigned long flags;
9972 struct rq *rq;
9973
9974 rq = task_rq_lock(tsk, &flags);
9975
29f59db3
SV
9976 update_rq_clock(rq);
9977
051a1d1a 9978 running = task_current(rq, tsk);
29f59db3
SV
9979 on_rq = tsk->se.on_rq;
9980
0e1f3483 9981 if (on_rq)
29f59db3 9982 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9983 if (unlikely(running))
9984 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9985
6f505b16 9986 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9987
810b3817
PZ
9988#ifdef CONFIG_FAIR_GROUP_SCHED
9989 if (tsk->sched_class->moved_group)
9990 tsk->sched_class->moved_group(tsk);
9991#endif
9992
0e1f3483
HS
9993 if (unlikely(running))
9994 tsk->sched_class->set_curr_task(rq);
9995 if (on_rq)
7074badb 9996 enqueue_task(rq, tsk, 0);
29f59db3 9997
29f59db3
SV
9998 task_rq_unlock(rq, &flags);
9999}
6d6bc0ad 10000#endif /* CONFIG_GROUP_SCHED */
29f59db3 10001
052f1dc7 10002#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10003static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10004{
10005 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10006 int on_rq;
10007
29f59db3 10008 on_rq = se->on_rq;
62fb1851 10009 if (on_rq)
29f59db3
SV
10010 dequeue_entity(cfs_rq, se, 0);
10011
10012 se->load.weight = shares;
e05510d0 10013 se->load.inv_weight = 0;
29f59db3 10014
62fb1851 10015 if (on_rq)
29f59db3 10016 enqueue_entity(cfs_rq, se, 0);
c09595f6 10017}
62fb1851 10018
c09595f6
PZ
10019static void set_se_shares(struct sched_entity *se, unsigned long shares)
10020{
10021 struct cfs_rq *cfs_rq = se->cfs_rq;
10022 struct rq *rq = cfs_rq->rq;
10023 unsigned long flags;
10024
10025 spin_lock_irqsave(&rq->lock, flags);
10026 __set_se_shares(se, shares);
10027 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10028}
10029
8ed36996
PZ
10030static DEFINE_MUTEX(shares_mutex);
10031
4cf86d77 10032int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10033{
10034 int i;
8ed36996 10035 unsigned long flags;
c61935fd 10036
ec7dc8ac
DG
10037 /*
10038 * We can't change the weight of the root cgroup.
10039 */
10040 if (!tg->se[0])
10041 return -EINVAL;
10042
18d95a28
PZ
10043 if (shares < MIN_SHARES)
10044 shares = MIN_SHARES;
cb4ad1ff
MX
10045 else if (shares > MAX_SHARES)
10046 shares = MAX_SHARES;
62fb1851 10047
8ed36996 10048 mutex_lock(&shares_mutex);
9b5b7751 10049 if (tg->shares == shares)
5cb350ba 10050 goto done;
29f59db3 10051
8ed36996 10052 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10053 for_each_possible_cpu(i)
10054 unregister_fair_sched_group(tg, i);
f473aa5e 10055 list_del_rcu(&tg->siblings);
8ed36996 10056 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10057
10058 /* wait for any ongoing reference to this group to finish */
10059 synchronize_sched();
10060
10061 /*
10062 * Now we are free to modify the group's share on each cpu
10063 * w/o tripping rebalance_share or load_balance_fair.
10064 */
9b5b7751 10065 tg->shares = shares;
c09595f6
PZ
10066 for_each_possible_cpu(i) {
10067 /*
10068 * force a rebalance
10069 */
10070 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10071 set_se_shares(tg->se[i], shares);
c09595f6 10072 }
29f59db3 10073
6b2d7700
SV
10074 /*
10075 * Enable load balance activity on this group, by inserting it back on
10076 * each cpu's rq->leaf_cfs_rq_list.
10077 */
8ed36996 10078 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10079 for_each_possible_cpu(i)
10080 register_fair_sched_group(tg, i);
f473aa5e 10081 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10082 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10083done:
8ed36996 10084 mutex_unlock(&shares_mutex);
9b5b7751 10085 return 0;
29f59db3
SV
10086}
10087
5cb350ba
DG
10088unsigned long sched_group_shares(struct task_group *tg)
10089{
10090 return tg->shares;
10091}
052f1dc7 10092#endif
5cb350ba 10093
052f1dc7 10094#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10095/*
9f0c1e56 10096 * Ensure that the real time constraints are schedulable.
6f505b16 10097 */
9f0c1e56
PZ
10098static DEFINE_MUTEX(rt_constraints_mutex);
10099
10100static unsigned long to_ratio(u64 period, u64 runtime)
10101{
10102 if (runtime == RUNTIME_INF)
9a7e0b18 10103 return 1ULL << 20;
9f0c1e56 10104
9a7e0b18 10105 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10106}
10107
9a7e0b18
PZ
10108/* Must be called with tasklist_lock held */
10109static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10110{
9a7e0b18 10111 struct task_struct *g, *p;
b40b2e8e 10112
9a7e0b18
PZ
10113 do_each_thread(g, p) {
10114 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10115 return 1;
10116 } while_each_thread(g, p);
b40b2e8e 10117
9a7e0b18
PZ
10118 return 0;
10119}
b40b2e8e 10120
9a7e0b18
PZ
10121struct rt_schedulable_data {
10122 struct task_group *tg;
10123 u64 rt_period;
10124 u64 rt_runtime;
10125};
b40b2e8e 10126
9a7e0b18
PZ
10127static int tg_schedulable(struct task_group *tg, void *data)
10128{
10129 struct rt_schedulable_data *d = data;
10130 struct task_group *child;
10131 unsigned long total, sum = 0;
10132 u64 period, runtime;
b40b2e8e 10133
9a7e0b18
PZ
10134 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10135 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10136
9a7e0b18
PZ
10137 if (tg == d->tg) {
10138 period = d->rt_period;
10139 runtime = d->rt_runtime;
b40b2e8e 10140 }
b40b2e8e 10141
98a4826b
PZ
10142#ifdef CONFIG_USER_SCHED
10143 if (tg == &root_task_group) {
10144 period = global_rt_period();
10145 runtime = global_rt_runtime();
10146 }
10147#endif
10148
4653f803
PZ
10149 /*
10150 * Cannot have more runtime than the period.
10151 */
10152 if (runtime > period && runtime != RUNTIME_INF)
10153 return -EINVAL;
6f505b16 10154
4653f803
PZ
10155 /*
10156 * Ensure we don't starve existing RT tasks.
10157 */
9a7e0b18
PZ
10158 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10159 return -EBUSY;
6f505b16 10160
9a7e0b18 10161 total = to_ratio(period, runtime);
6f505b16 10162
4653f803
PZ
10163 /*
10164 * Nobody can have more than the global setting allows.
10165 */
10166 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10167 return -EINVAL;
6f505b16 10168
4653f803
PZ
10169 /*
10170 * The sum of our children's runtime should not exceed our own.
10171 */
9a7e0b18
PZ
10172 list_for_each_entry_rcu(child, &tg->children, siblings) {
10173 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10174 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10175
9a7e0b18
PZ
10176 if (child == d->tg) {
10177 period = d->rt_period;
10178 runtime = d->rt_runtime;
10179 }
6f505b16 10180
9a7e0b18 10181 sum += to_ratio(period, runtime);
9f0c1e56 10182 }
6f505b16 10183
9a7e0b18
PZ
10184 if (sum > total)
10185 return -EINVAL;
10186
10187 return 0;
6f505b16
PZ
10188}
10189
9a7e0b18 10190static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10191{
9a7e0b18
PZ
10192 struct rt_schedulable_data data = {
10193 .tg = tg,
10194 .rt_period = period,
10195 .rt_runtime = runtime,
10196 };
10197
10198 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10199}
10200
d0b27fa7
PZ
10201static int tg_set_bandwidth(struct task_group *tg,
10202 u64 rt_period, u64 rt_runtime)
6f505b16 10203{
ac086bc2 10204 int i, err = 0;
9f0c1e56 10205
9f0c1e56 10206 mutex_lock(&rt_constraints_mutex);
521f1a24 10207 read_lock(&tasklist_lock);
9a7e0b18
PZ
10208 err = __rt_schedulable(tg, rt_period, rt_runtime);
10209 if (err)
9f0c1e56 10210 goto unlock;
ac086bc2
PZ
10211
10212 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10213 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10214 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10215
10216 for_each_possible_cpu(i) {
10217 struct rt_rq *rt_rq = tg->rt_rq[i];
10218
10219 spin_lock(&rt_rq->rt_runtime_lock);
10220 rt_rq->rt_runtime = rt_runtime;
10221 spin_unlock(&rt_rq->rt_runtime_lock);
10222 }
10223 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10224 unlock:
521f1a24 10225 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10226 mutex_unlock(&rt_constraints_mutex);
10227
10228 return err;
6f505b16
PZ
10229}
10230
d0b27fa7
PZ
10231int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10232{
10233 u64 rt_runtime, rt_period;
10234
10235 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10236 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10237 if (rt_runtime_us < 0)
10238 rt_runtime = RUNTIME_INF;
10239
10240 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10241}
10242
9f0c1e56
PZ
10243long sched_group_rt_runtime(struct task_group *tg)
10244{
10245 u64 rt_runtime_us;
10246
d0b27fa7 10247 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10248 return -1;
10249
d0b27fa7 10250 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10251 do_div(rt_runtime_us, NSEC_PER_USEC);
10252 return rt_runtime_us;
10253}
d0b27fa7
PZ
10254
10255int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10256{
10257 u64 rt_runtime, rt_period;
10258
10259 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10260 rt_runtime = tg->rt_bandwidth.rt_runtime;
10261
619b0488
R
10262 if (rt_period == 0)
10263 return -EINVAL;
10264
d0b27fa7
PZ
10265 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10266}
10267
10268long sched_group_rt_period(struct task_group *tg)
10269{
10270 u64 rt_period_us;
10271
10272 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10273 do_div(rt_period_us, NSEC_PER_USEC);
10274 return rt_period_us;
10275}
10276
10277static int sched_rt_global_constraints(void)
10278{
4653f803 10279 u64 runtime, period;
d0b27fa7
PZ
10280 int ret = 0;
10281
ec5d4989
HS
10282 if (sysctl_sched_rt_period <= 0)
10283 return -EINVAL;
10284
4653f803
PZ
10285 runtime = global_rt_runtime();
10286 period = global_rt_period();
10287
10288 /*
10289 * Sanity check on the sysctl variables.
10290 */
10291 if (runtime > period && runtime != RUNTIME_INF)
10292 return -EINVAL;
10b612f4 10293
d0b27fa7 10294 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10295 read_lock(&tasklist_lock);
4653f803 10296 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10297 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10298 mutex_unlock(&rt_constraints_mutex);
10299
10300 return ret;
10301}
54e99124
DG
10302
10303int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10304{
10305 /* Don't accept realtime tasks when there is no way for them to run */
10306 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10307 return 0;
10308
10309 return 1;
10310}
10311
6d6bc0ad 10312#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10313static int sched_rt_global_constraints(void)
10314{
ac086bc2
PZ
10315 unsigned long flags;
10316 int i;
10317
ec5d4989
HS
10318 if (sysctl_sched_rt_period <= 0)
10319 return -EINVAL;
10320
60aa605d
PZ
10321 /*
10322 * There's always some RT tasks in the root group
10323 * -- migration, kstopmachine etc..
10324 */
10325 if (sysctl_sched_rt_runtime == 0)
10326 return -EBUSY;
10327
ac086bc2
PZ
10328 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10329 for_each_possible_cpu(i) {
10330 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10331
10332 spin_lock(&rt_rq->rt_runtime_lock);
10333 rt_rq->rt_runtime = global_rt_runtime();
10334 spin_unlock(&rt_rq->rt_runtime_lock);
10335 }
10336 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10337
d0b27fa7
PZ
10338 return 0;
10339}
6d6bc0ad 10340#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10341
10342int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10343 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10344 loff_t *ppos)
10345{
10346 int ret;
10347 int old_period, old_runtime;
10348 static DEFINE_MUTEX(mutex);
10349
10350 mutex_lock(&mutex);
10351 old_period = sysctl_sched_rt_period;
10352 old_runtime = sysctl_sched_rt_runtime;
10353
8d65af78 10354 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10355
10356 if (!ret && write) {
10357 ret = sched_rt_global_constraints();
10358 if (ret) {
10359 sysctl_sched_rt_period = old_period;
10360 sysctl_sched_rt_runtime = old_runtime;
10361 } else {
10362 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10363 def_rt_bandwidth.rt_period =
10364 ns_to_ktime(global_rt_period());
10365 }
10366 }
10367 mutex_unlock(&mutex);
10368
10369 return ret;
10370}
68318b8e 10371
052f1dc7 10372#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10373
10374/* return corresponding task_group object of a cgroup */
2b01dfe3 10375static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10376{
2b01dfe3
PM
10377 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10378 struct task_group, css);
68318b8e
SV
10379}
10380
10381static struct cgroup_subsys_state *
2b01dfe3 10382cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10383{
ec7dc8ac 10384 struct task_group *tg, *parent;
68318b8e 10385
2b01dfe3 10386 if (!cgrp->parent) {
68318b8e 10387 /* This is early initialization for the top cgroup */
68318b8e
SV
10388 return &init_task_group.css;
10389 }
10390
ec7dc8ac
DG
10391 parent = cgroup_tg(cgrp->parent);
10392 tg = sched_create_group(parent);
68318b8e
SV
10393 if (IS_ERR(tg))
10394 return ERR_PTR(-ENOMEM);
10395
68318b8e
SV
10396 return &tg->css;
10397}
10398
41a2d6cf
IM
10399static void
10400cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10401{
2b01dfe3 10402 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10403
10404 sched_destroy_group(tg);
10405}
10406
41a2d6cf 10407static int
be367d09 10408cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10409{
b68aa230 10410#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10411 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10412 return -EINVAL;
10413#else
68318b8e
SV
10414 /* We don't support RT-tasks being in separate groups */
10415 if (tsk->sched_class != &fair_sched_class)
10416 return -EINVAL;
b68aa230 10417#endif
be367d09
BB
10418 return 0;
10419}
68318b8e 10420
be367d09
BB
10421static int
10422cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10423 struct task_struct *tsk, bool threadgroup)
10424{
10425 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10426 if (retval)
10427 return retval;
10428 if (threadgroup) {
10429 struct task_struct *c;
10430 rcu_read_lock();
10431 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10432 retval = cpu_cgroup_can_attach_task(cgrp, c);
10433 if (retval) {
10434 rcu_read_unlock();
10435 return retval;
10436 }
10437 }
10438 rcu_read_unlock();
10439 }
68318b8e
SV
10440 return 0;
10441}
10442
10443static void
2b01dfe3 10444cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10445 struct cgroup *old_cont, struct task_struct *tsk,
10446 bool threadgroup)
68318b8e
SV
10447{
10448 sched_move_task(tsk);
be367d09
BB
10449 if (threadgroup) {
10450 struct task_struct *c;
10451 rcu_read_lock();
10452 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10453 sched_move_task(c);
10454 }
10455 rcu_read_unlock();
10456 }
68318b8e
SV
10457}
10458
052f1dc7 10459#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10460static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10461 u64 shareval)
68318b8e 10462{
2b01dfe3 10463 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10464}
10465
f4c753b7 10466static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10467{
2b01dfe3 10468 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10469
10470 return (u64) tg->shares;
10471}
6d6bc0ad 10472#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10473
052f1dc7 10474#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10475static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10476 s64 val)
6f505b16 10477{
06ecb27c 10478 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10479}
10480
06ecb27c 10481static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10482{
06ecb27c 10483 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10484}
d0b27fa7
PZ
10485
10486static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10487 u64 rt_period_us)
10488{
10489 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10490}
10491
10492static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10493{
10494 return sched_group_rt_period(cgroup_tg(cgrp));
10495}
6d6bc0ad 10496#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10497
fe5c7cc2 10498static struct cftype cpu_files[] = {
052f1dc7 10499#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10500 {
10501 .name = "shares",
f4c753b7
PM
10502 .read_u64 = cpu_shares_read_u64,
10503 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10504 },
052f1dc7
PZ
10505#endif
10506#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10507 {
9f0c1e56 10508 .name = "rt_runtime_us",
06ecb27c
PM
10509 .read_s64 = cpu_rt_runtime_read,
10510 .write_s64 = cpu_rt_runtime_write,
6f505b16 10511 },
d0b27fa7
PZ
10512 {
10513 .name = "rt_period_us",
f4c753b7
PM
10514 .read_u64 = cpu_rt_period_read_uint,
10515 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10516 },
052f1dc7 10517#endif
68318b8e
SV
10518};
10519
10520static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10521{
fe5c7cc2 10522 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10523}
10524
10525struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10526 .name = "cpu",
10527 .create = cpu_cgroup_create,
10528 .destroy = cpu_cgroup_destroy,
10529 .can_attach = cpu_cgroup_can_attach,
10530 .attach = cpu_cgroup_attach,
10531 .populate = cpu_cgroup_populate,
10532 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10533 .early_init = 1,
10534};
10535
052f1dc7 10536#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10537
10538#ifdef CONFIG_CGROUP_CPUACCT
10539
10540/*
10541 * CPU accounting code for task groups.
10542 *
10543 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10544 * (balbir@in.ibm.com).
10545 */
10546
934352f2 10547/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10548struct cpuacct {
10549 struct cgroup_subsys_state css;
10550 /* cpuusage holds pointer to a u64-type object on every cpu */
10551 u64 *cpuusage;
ef12fefa 10552 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10553 struct cpuacct *parent;
d842de87
SV
10554};
10555
10556struct cgroup_subsys cpuacct_subsys;
10557
10558/* return cpu accounting group corresponding to this container */
32cd756a 10559static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10560{
32cd756a 10561 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10562 struct cpuacct, css);
10563}
10564
10565/* return cpu accounting group to which this task belongs */
10566static inline struct cpuacct *task_ca(struct task_struct *tsk)
10567{
10568 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10569 struct cpuacct, css);
10570}
10571
10572/* create a new cpu accounting group */
10573static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10574 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10575{
10576 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10577 int i;
d842de87
SV
10578
10579 if (!ca)
ef12fefa 10580 goto out;
d842de87
SV
10581
10582 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10583 if (!ca->cpuusage)
10584 goto out_free_ca;
10585
10586 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10587 if (percpu_counter_init(&ca->cpustat[i], 0))
10588 goto out_free_counters;
d842de87 10589
934352f2
BR
10590 if (cgrp->parent)
10591 ca->parent = cgroup_ca(cgrp->parent);
10592
d842de87 10593 return &ca->css;
ef12fefa
BR
10594
10595out_free_counters:
10596 while (--i >= 0)
10597 percpu_counter_destroy(&ca->cpustat[i]);
10598 free_percpu(ca->cpuusage);
10599out_free_ca:
10600 kfree(ca);
10601out:
10602 return ERR_PTR(-ENOMEM);
d842de87
SV
10603}
10604
10605/* destroy an existing cpu accounting group */
41a2d6cf 10606static void
32cd756a 10607cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10608{
32cd756a 10609 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10610 int i;
d842de87 10611
ef12fefa
BR
10612 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10613 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10614 free_percpu(ca->cpuusage);
10615 kfree(ca);
10616}
10617
720f5498
KC
10618static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10619{
b36128c8 10620 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10621 u64 data;
10622
10623#ifndef CONFIG_64BIT
10624 /*
10625 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10626 */
10627 spin_lock_irq(&cpu_rq(cpu)->lock);
10628 data = *cpuusage;
10629 spin_unlock_irq(&cpu_rq(cpu)->lock);
10630#else
10631 data = *cpuusage;
10632#endif
10633
10634 return data;
10635}
10636
10637static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10638{
b36128c8 10639 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10640
10641#ifndef CONFIG_64BIT
10642 /*
10643 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10644 */
10645 spin_lock_irq(&cpu_rq(cpu)->lock);
10646 *cpuusage = val;
10647 spin_unlock_irq(&cpu_rq(cpu)->lock);
10648#else
10649 *cpuusage = val;
10650#endif
10651}
10652
d842de87 10653/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10654static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10655{
32cd756a 10656 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10657 u64 totalcpuusage = 0;
10658 int i;
10659
720f5498
KC
10660 for_each_present_cpu(i)
10661 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10662
10663 return totalcpuusage;
10664}
10665
0297b803
DG
10666static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10667 u64 reset)
10668{
10669 struct cpuacct *ca = cgroup_ca(cgrp);
10670 int err = 0;
10671 int i;
10672
10673 if (reset) {
10674 err = -EINVAL;
10675 goto out;
10676 }
10677
720f5498
KC
10678 for_each_present_cpu(i)
10679 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10680
0297b803
DG
10681out:
10682 return err;
10683}
10684
e9515c3c
KC
10685static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10686 struct seq_file *m)
10687{
10688 struct cpuacct *ca = cgroup_ca(cgroup);
10689 u64 percpu;
10690 int i;
10691
10692 for_each_present_cpu(i) {
10693 percpu = cpuacct_cpuusage_read(ca, i);
10694 seq_printf(m, "%llu ", (unsigned long long) percpu);
10695 }
10696 seq_printf(m, "\n");
10697 return 0;
10698}
10699
ef12fefa
BR
10700static const char *cpuacct_stat_desc[] = {
10701 [CPUACCT_STAT_USER] = "user",
10702 [CPUACCT_STAT_SYSTEM] = "system",
10703};
10704
10705static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10706 struct cgroup_map_cb *cb)
10707{
10708 struct cpuacct *ca = cgroup_ca(cgrp);
10709 int i;
10710
10711 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10712 s64 val = percpu_counter_read(&ca->cpustat[i]);
10713 val = cputime64_to_clock_t(val);
10714 cb->fill(cb, cpuacct_stat_desc[i], val);
10715 }
10716 return 0;
10717}
10718
d842de87
SV
10719static struct cftype files[] = {
10720 {
10721 .name = "usage",
f4c753b7
PM
10722 .read_u64 = cpuusage_read,
10723 .write_u64 = cpuusage_write,
d842de87 10724 },
e9515c3c
KC
10725 {
10726 .name = "usage_percpu",
10727 .read_seq_string = cpuacct_percpu_seq_read,
10728 },
ef12fefa
BR
10729 {
10730 .name = "stat",
10731 .read_map = cpuacct_stats_show,
10732 },
d842de87
SV
10733};
10734
32cd756a 10735static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10736{
32cd756a 10737 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10738}
10739
10740/*
10741 * charge this task's execution time to its accounting group.
10742 *
10743 * called with rq->lock held.
10744 */
10745static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10746{
10747 struct cpuacct *ca;
934352f2 10748 int cpu;
d842de87 10749
c40c6f85 10750 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10751 return;
10752
934352f2 10753 cpu = task_cpu(tsk);
a18b83b7
BR
10754
10755 rcu_read_lock();
10756
d842de87 10757 ca = task_ca(tsk);
d842de87 10758
934352f2 10759 for (; ca; ca = ca->parent) {
b36128c8 10760 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10761 *cpuusage += cputime;
10762 }
a18b83b7
BR
10763
10764 rcu_read_unlock();
d842de87
SV
10765}
10766
ef12fefa
BR
10767/*
10768 * Charge the system/user time to the task's accounting group.
10769 */
10770static void cpuacct_update_stats(struct task_struct *tsk,
10771 enum cpuacct_stat_index idx, cputime_t val)
10772{
10773 struct cpuacct *ca;
10774
10775 if (unlikely(!cpuacct_subsys.active))
10776 return;
10777
10778 rcu_read_lock();
10779 ca = task_ca(tsk);
10780
10781 do {
10782 percpu_counter_add(&ca->cpustat[idx], val);
10783 ca = ca->parent;
10784 } while (ca);
10785 rcu_read_unlock();
10786}
10787
d842de87
SV
10788struct cgroup_subsys cpuacct_subsys = {
10789 .name = "cpuacct",
10790 .create = cpuacct_create,
10791 .destroy = cpuacct_destroy,
10792 .populate = cpuacct_populate,
10793 .subsys_id = cpuacct_subsys_id,
10794};
10795#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10796
10797#ifndef CONFIG_SMP
10798
10799int rcu_expedited_torture_stats(char *page)
10800{
10801 return 0;
10802}
10803EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10804
10805void synchronize_sched_expedited(void)
10806{
10807}
10808EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10809
10810#else /* #ifndef CONFIG_SMP */
10811
10812static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10813static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10814
10815#define RCU_EXPEDITED_STATE_POST -2
10816#define RCU_EXPEDITED_STATE_IDLE -1
10817
10818static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10819
10820int rcu_expedited_torture_stats(char *page)
10821{
10822 int cnt = 0;
10823 int cpu;
10824
10825 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10826 for_each_online_cpu(cpu) {
10827 cnt += sprintf(&page[cnt], " %d:%d",
10828 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10829 }
10830 cnt += sprintf(&page[cnt], "\n");
10831 return cnt;
10832}
10833EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10834
10835static long synchronize_sched_expedited_count;
10836
10837/*
10838 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10839 * approach to force grace period to end quickly. This consumes
10840 * significant time on all CPUs, and is thus not recommended for
10841 * any sort of common-case code.
10842 *
10843 * Note that it is illegal to call this function while holding any
10844 * lock that is acquired by a CPU-hotplug notifier. Failing to
10845 * observe this restriction will result in deadlock.
10846 */
10847void synchronize_sched_expedited(void)
10848{
10849 int cpu;
10850 unsigned long flags;
10851 bool need_full_sync = 0;
10852 struct rq *rq;
10853 struct migration_req *req;
10854 long snap;
10855 int trycount = 0;
10856
10857 smp_mb(); /* ensure prior mod happens before capturing snap. */
10858 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10859 get_online_cpus();
10860 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10861 put_online_cpus();
10862 if (trycount++ < 10)
10863 udelay(trycount * num_online_cpus());
10864 else {
10865 synchronize_sched();
10866 return;
10867 }
10868 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10869 smp_mb(); /* ensure test happens before caller kfree */
10870 return;
10871 }
10872 get_online_cpus();
10873 }
10874 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10875 for_each_online_cpu(cpu) {
10876 rq = cpu_rq(cpu);
10877 req = &per_cpu(rcu_migration_req, cpu);
10878 init_completion(&req->done);
10879 req->task = NULL;
10880 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10881 spin_lock_irqsave(&rq->lock, flags);
10882 list_add(&req->list, &rq->migration_queue);
10883 spin_unlock_irqrestore(&rq->lock, flags);
10884 wake_up_process(rq->migration_thread);
10885 }
10886 for_each_online_cpu(cpu) {
10887 rcu_expedited_state = cpu;
10888 req = &per_cpu(rcu_migration_req, cpu);
10889 rq = cpu_rq(cpu);
10890 wait_for_completion(&req->done);
10891 spin_lock_irqsave(&rq->lock, flags);
10892 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10893 need_full_sync = 1;
10894 req->dest_cpu = RCU_MIGRATION_IDLE;
10895 spin_unlock_irqrestore(&rq->lock, flags);
10896 }
10897 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10898 mutex_unlock(&rcu_sched_expedited_mutex);
10899 put_online_cpus();
10900 if (need_full_sync)
10901 synchronize_sched();
10902}
10903EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10904
10905#endif /* #else #ifndef CONFIG_SMP */