sched: include group statistics in /proc/sched_debug
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
4793241b 400 struct sched_entity *curr, *next, *last;
ddc97297
PZ
401
402 unsigned long nr_spread_over;
403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
34f3a814 706static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 707{
f00b45c1
PZ
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 714 }
34f3a814 715 seq_puts(m, "\n");
f00b45c1 716
34f3a814 717 return 0;
f00b45c1
PZ
718}
719
720static ssize_t
721sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723{
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 filp->f_pos += cnt;
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
f00b45c1 767static struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
2398f2c6
PZ
794/*
795 * ratelimit for updating the group shares.
55cd5340 796 * default: 0.25ms
2398f2c6 797 */
55cd5340 798unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
4866cde0
NP
869 spin_unlock_irq(&rq->lock);
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 spin_unlock_irq(&rq->lock);
894#else
895 spin_unlock(&rq->lock);
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
b29739f9
IM
916/*
917 * __task_rq_lock - lock the runqueue a given task resides on.
918 * Must be called interrupts disabled.
919 */
70b97a7f 920static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
921 __acquires(rq->lock)
922{
3a5c359a
AK
923 for (;;) {
924 struct rq *rq = task_rq(p);
925 spin_lock(&rq->lock);
926 if (likely(rq == task_rq(p)))
927 return rq;
b29739f9 928 spin_unlock(&rq->lock);
b29739f9 929 }
b29739f9
IM
930}
931
1da177e4
LT
932/*
933 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 934 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
935 * explicitly disabling preemption.
936 */
70b97a7f 937static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
938 __acquires(rq->lock)
939{
70b97a7f 940 struct rq *rq;
1da177e4 941
3a5c359a
AK
942 for (;;) {
943 local_irq_save(*flags);
944 rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
1da177e4 948 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 949 }
1da177e4
LT
950}
951
a9957449 952static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
953 __releases(rq->lock)
954{
955 spin_unlock(&rq->lock);
956}
957
70b97a7f 958static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
959 __releases(rq->lock)
960{
961 spin_unlock_irqrestore(&rq->lock, *flags);
962}
963
1da177e4 964/*
cc2a73b5 965 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 966 */
a9957449 967static struct rq *this_rq_lock(void)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4
LT
971
972 local_irq_disable();
973 rq = this_rq();
974 spin_lock(&rq->lock);
975
976 return rq;
977}
978
8f4d37ec
PZ
979#ifdef CONFIG_SCHED_HRTICK
980/*
981 * Use HR-timers to deliver accurate preemption points.
982 *
983 * Its all a bit involved since we cannot program an hrt while holding the
984 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
985 * reschedule event.
986 *
987 * When we get rescheduled we reprogram the hrtick_timer outside of the
988 * rq->lock.
989 */
8f4d37ec
PZ
990
991/*
992 * Use hrtick when:
993 * - enabled by features
994 * - hrtimer is actually high res
995 */
996static inline int hrtick_enabled(struct rq *rq)
997{
998 if (!sched_feat(HRTICK))
999 return 0;
ba42059f 1000 if (!cpu_active(cpu_of(rq)))
b328ca18 1001 return 0;
8f4d37ec
PZ
1002 return hrtimer_is_hres_active(&rq->hrtick_timer);
1003}
1004
8f4d37ec
PZ
1005static void hrtick_clear(struct rq *rq)
1006{
1007 if (hrtimer_active(&rq->hrtick_timer))
1008 hrtimer_cancel(&rq->hrtick_timer);
1009}
1010
8f4d37ec
PZ
1011/*
1012 * High-resolution timer tick.
1013 * Runs from hardirq context with interrupts disabled.
1014 */
1015static enum hrtimer_restart hrtick(struct hrtimer *timer)
1016{
1017 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1018
1019 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1020
1021 spin_lock(&rq->lock);
3e51f33f 1022 update_rq_clock(rq);
8f4d37ec
PZ
1023 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1024 spin_unlock(&rq->lock);
1025
1026 return HRTIMER_NORESTART;
1027}
1028
95e904c7 1029#ifdef CONFIG_SMP
31656519
PZ
1030/*
1031 * called from hardirq (IPI) context
1032 */
1033static void __hrtick_start(void *arg)
b328ca18 1034{
31656519 1035 struct rq *rq = arg;
b328ca18 1036
31656519
PZ
1037 spin_lock(&rq->lock);
1038 hrtimer_restart(&rq->hrtick_timer);
1039 rq->hrtick_csd_pending = 0;
1040 spin_unlock(&rq->lock);
b328ca18
PZ
1041}
1042
31656519
PZ
1043/*
1044 * Called to set the hrtick timer state.
1045 *
1046 * called with rq->lock held and irqs disabled
1047 */
1048static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1049{
31656519
PZ
1050 struct hrtimer *timer = &rq->hrtick_timer;
1051 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1052
cc584b21 1053 hrtimer_set_expires(timer, time);
31656519
PZ
1054
1055 if (rq == this_rq()) {
1056 hrtimer_restart(timer);
1057 } else if (!rq->hrtick_csd_pending) {
1058 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1059 rq->hrtick_csd_pending = 1;
1060 }
b328ca18
PZ
1061}
1062
1063static int
1064hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1065{
1066 int cpu = (int)(long)hcpu;
1067
1068 switch (action) {
1069 case CPU_UP_CANCELED:
1070 case CPU_UP_CANCELED_FROZEN:
1071 case CPU_DOWN_PREPARE:
1072 case CPU_DOWN_PREPARE_FROZEN:
1073 case CPU_DEAD:
1074 case CPU_DEAD_FROZEN:
31656519 1075 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1076 return NOTIFY_OK;
1077 }
1078
1079 return NOTIFY_DONE;
1080}
1081
fa748203 1082static __init void init_hrtick(void)
b328ca18
PZ
1083{
1084 hotcpu_notifier(hotplug_hrtick, 0);
1085}
31656519
PZ
1086#else
1087/*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092static void hrtick_start(struct rq *rq, u64 delay)
1093{
1094 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1095}
b328ca18 1096
006c75f1 1097static inline void init_hrtick(void)
8f4d37ec 1098{
8f4d37ec 1099}
31656519 1100#endif /* CONFIG_SMP */
8f4d37ec 1101
31656519 1102static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1103{
31656519
PZ
1104#ifdef CONFIG_SMP
1105 rq->hrtick_csd_pending = 0;
8f4d37ec 1106
31656519
PZ
1107 rq->hrtick_csd.flags = 0;
1108 rq->hrtick_csd.func = __hrtick_start;
1109 rq->hrtick_csd.info = rq;
1110#endif
8f4d37ec 1111
31656519
PZ
1112 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1113 rq->hrtick_timer.function = hrtick;
ccc7dadf 1114 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1115}
006c75f1 1116#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1117static inline void hrtick_clear(struct rq *rq)
1118{
1119}
1120
8f4d37ec
PZ
1121static inline void init_rq_hrtick(struct rq *rq)
1122{
1123}
1124
b328ca18
PZ
1125static inline void init_hrtick(void)
1126{
1127}
006c75f1 1128#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1129
c24d20db
IM
1130/*
1131 * resched_task - mark a task 'to be rescheduled now'.
1132 *
1133 * On UP this means the setting of the need_resched flag, on SMP it
1134 * might also involve a cross-CPU call to trigger the scheduler on
1135 * the target CPU.
1136 */
1137#ifdef CONFIG_SMP
1138
1139#ifndef tsk_is_polling
1140#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1141#endif
1142
31656519 1143static void resched_task(struct task_struct *p)
c24d20db
IM
1144{
1145 int cpu;
1146
1147 assert_spin_locked(&task_rq(p)->lock);
1148
31656519 1149 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1150 return;
1151
31656519 1152 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1153
1154 cpu = task_cpu(p);
1155 if (cpu == smp_processor_id())
1156 return;
1157
1158 /* NEED_RESCHED must be visible before we test polling */
1159 smp_mb();
1160 if (!tsk_is_polling(p))
1161 smp_send_reschedule(cpu);
1162}
1163
1164static void resched_cpu(int cpu)
1165{
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long flags;
1168
1169 if (!spin_trylock_irqsave(&rq->lock, flags))
1170 return;
1171 resched_task(cpu_curr(cpu));
1172 spin_unlock_irqrestore(&rq->lock, flags);
1173}
06d8308c
TG
1174
1175#ifdef CONFIG_NO_HZ
1176/*
1177 * When add_timer_on() enqueues a timer into the timer wheel of an
1178 * idle CPU then this timer might expire before the next timer event
1179 * which is scheduled to wake up that CPU. In case of a completely
1180 * idle system the next event might even be infinite time into the
1181 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1182 * leaves the inner idle loop so the newly added timer is taken into
1183 * account when the CPU goes back to idle and evaluates the timer
1184 * wheel for the next timer event.
1185 */
1186void wake_up_idle_cpu(int cpu)
1187{
1188 struct rq *rq = cpu_rq(cpu);
1189
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /*
1194 * This is safe, as this function is called with the timer
1195 * wheel base lock of (cpu) held. When the CPU is on the way
1196 * to idle and has not yet set rq->curr to idle then it will
1197 * be serialized on the timer wheel base lock and take the new
1198 * timer into account automatically.
1199 */
1200 if (rq->curr != rq->idle)
1201 return;
1202
1203 /*
1204 * We can set TIF_RESCHED on the idle task of the other CPU
1205 * lockless. The worst case is that the other CPU runs the
1206 * idle task through an additional NOOP schedule()
1207 */
1208 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(rq->idle))
1213 smp_send_reschedule(cpu);
1214}
6d6bc0ad 1215#endif /* CONFIG_NO_HZ */
06d8308c 1216
6d6bc0ad 1217#else /* !CONFIG_SMP */
31656519 1218static void resched_task(struct task_struct *p)
c24d20db
IM
1219{
1220 assert_spin_locked(&task_rq(p)->lock);
31656519 1221 set_tsk_need_resched(p);
c24d20db 1222}
6d6bc0ad 1223#endif /* CONFIG_SMP */
c24d20db 1224
45bf76df
IM
1225#if BITS_PER_LONG == 32
1226# define WMULT_CONST (~0UL)
1227#else
1228# define WMULT_CONST (1UL << 32)
1229#endif
1230
1231#define WMULT_SHIFT 32
1232
194081eb
IM
1233/*
1234 * Shift right and round:
1235 */
cf2ab469 1236#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1237
a7be37ac
PZ
1238/*
1239 * delta *= weight / lw
1240 */
cb1c4fc9 1241static unsigned long
45bf76df
IM
1242calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1243 struct load_weight *lw)
1244{
1245 u64 tmp;
1246
7a232e03
LJ
1247 if (!lw->inv_weight) {
1248 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1249 lw->inv_weight = 1;
1250 else
1251 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1252 / (lw->weight+1);
1253 }
45bf76df
IM
1254
1255 tmp = (u64)delta_exec * weight;
1256 /*
1257 * Check whether we'd overflow the 64-bit multiplication:
1258 */
194081eb 1259 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1260 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1261 WMULT_SHIFT/2);
1262 else
cf2ab469 1263 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1264
ecf691da 1265 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1266}
1267
1091985b 1268static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1269{
1270 lw->weight += inc;
e89996ae 1271 lw->inv_weight = 0;
45bf76df
IM
1272}
1273
1091985b 1274static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1275{
1276 lw->weight -= dec;
e89996ae 1277 lw->inv_weight = 0;
45bf76df
IM
1278}
1279
2dd73a4f
PW
1280/*
1281 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1282 * of tasks with abnormal "nice" values across CPUs the contribution that
1283 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1284 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1285 * scaled version of the new time slice allocation that they receive on time
1286 * slice expiry etc.
1287 */
1288
dd41f596
IM
1289#define WEIGHT_IDLEPRIO 2
1290#define WMULT_IDLEPRIO (1 << 31)
1291
1292/*
1293 * Nice levels are multiplicative, with a gentle 10% change for every
1294 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1295 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1296 * that remained on nice 0.
1297 *
1298 * The "10% effect" is relative and cumulative: from _any_ nice level,
1299 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1300 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1301 * If a task goes up by ~10% and another task goes down by ~10% then
1302 * the relative distance between them is ~25%.)
dd41f596
IM
1303 */
1304static const int prio_to_weight[40] = {
254753dc
IM
1305 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1306 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1307 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1308 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1309 /* 0 */ 1024, 820, 655, 526, 423,
1310 /* 5 */ 335, 272, 215, 172, 137,
1311 /* 10 */ 110, 87, 70, 56, 45,
1312 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1313};
1314
5714d2de
IM
1315/*
1316 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1317 *
1318 * In cases where the weight does not change often, we can use the
1319 * precalculated inverse to speed up arithmetics by turning divisions
1320 * into multiplications:
1321 */
dd41f596 1322static const u32 prio_to_wmult[40] = {
254753dc
IM
1323 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1324 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1325 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1326 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1327 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1328 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1329 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1330 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1331};
2dd73a4f 1332
dd41f596
IM
1333static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1334
1335/*
1336 * runqueue iterator, to support SMP load-balancing between different
1337 * scheduling classes, without having to expose their internal data
1338 * structures to the load-balancing proper:
1339 */
1340struct rq_iterator {
1341 void *arg;
1342 struct task_struct *(*start)(void *);
1343 struct task_struct *(*next)(void *);
1344};
1345
e1d1484f
PW
1346#ifdef CONFIG_SMP
1347static unsigned long
1348balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1349 unsigned long max_load_move, struct sched_domain *sd,
1350 enum cpu_idle_type idle, int *all_pinned,
1351 int *this_best_prio, struct rq_iterator *iterator);
1352
1353static int
1354iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1355 struct sched_domain *sd, enum cpu_idle_type idle,
1356 struct rq_iterator *iterator);
e1d1484f 1357#endif
dd41f596 1358
d842de87
SV
1359#ifdef CONFIG_CGROUP_CPUACCT
1360static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1361#else
1362static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1363#endif
1364
18d95a28
PZ
1365static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1366{
1367 update_load_add(&rq->load, load);
1368}
1369
1370static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1371{
1372 update_load_sub(&rq->load, load);
1373}
1374
7940ca36 1375#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1376typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1377
1378/*
1379 * Iterate the full tree, calling @down when first entering a node and @up when
1380 * leaving it for the final time.
1381 */
eb755805 1382static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1383{
1384 struct task_group *parent, *child;
eb755805 1385 int ret;
c09595f6
PZ
1386
1387 rcu_read_lock();
1388 parent = &root_task_group;
1389down:
eb755805
PZ
1390 ret = (*down)(parent, data);
1391 if (ret)
1392 goto out_unlock;
c09595f6
PZ
1393 list_for_each_entry_rcu(child, &parent->children, siblings) {
1394 parent = child;
1395 goto down;
1396
1397up:
1398 continue;
1399 }
eb755805
PZ
1400 ret = (*up)(parent, data);
1401 if (ret)
1402 goto out_unlock;
c09595f6
PZ
1403
1404 child = parent;
1405 parent = parent->parent;
1406 if (parent)
1407 goto up;
eb755805 1408out_unlock:
c09595f6 1409 rcu_read_unlock();
eb755805
PZ
1410
1411 return ret;
c09595f6
PZ
1412}
1413
eb755805
PZ
1414static int tg_nop(struct task_group *tg, void *data)
1415{
1416 return 0;
c09595f6 1417}
eb755805
PZ
1418#endif
1419
1420#ifdef CONFIG_SMP
1421static unsigned long source_load(int cpu, int type);
1422static unsigned long target_load(int cpu, int type);
1423static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1424
1425static unsigned long cpu_avg_load_per_task(int cpu)
1426{
1427 struct rq *rq = cpu_rq(cpu);
1428
1429 if (rq->nr_running)
1430 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1431
1432 return rq->avg_load_per_task;
1433}
1434
1435#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1436
c09595f6
PZ
1437static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1438
1439/*
1440 * Calculate and set the cpu's group shares.
1441 */
1442static void
ffda12a1
PZ
1443update_group_shares_cpu(struct task_group *tg, int cpu,
1444 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1445{
c09595f6
PZ
1446 int boost = 0;
1447 unsigned long shares;
1448 unsigned long rq_weight;
1449
c8cba857 1450 if (!tg->se[cpu])
c09595f6
PZ
1451 return;
1452
c8cba857 1453 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1454
1455 /*
1456 * If there are currently no tasks on the cpu pretend there is one of
1457 * average load so that when a new task gets to run here it will not
1458 * get delayed by group starvation.
1459 */
1460 if (!rq_weight) {
1461 boost = 1;
1462 rq_weight = NICE_0_LOAD;
1463 }
1464
c8cba857
PZ
1465 if (unlikely(rq_weight > sd_rq_weight))
1466 rq_weight = sd_rq_weight;
1467
c09595f6
PZ
1468 /*
1469 * \Sum shares * rq_weight
1470 * shares = -----------------------
1471 * \Sum rq_weight
1472 *
1473 */
c8cba857 1474 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1475 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1476
ffda12a1
PZ
1477 if (abs(shares - tg->se[cpu]->load.weight) >
1478 sysctl_sched_shares_thresh) {
1479 struct rq *rq = cpu_rq(cpu);
1480 unsigned long flags;
c09595f6 1481
ffda12a1
PZ
1482 spin_lock_irqsave(&rq->lock, flags);
1483 /*
1484 * record the actual number of shares, not the boosted amount.
1485 */
1486 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1487 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1488
ffda12a1
PZ
1489 __set_se_shares(tg->se[cpu], shares);
1490 spin_unlock_irqrestore(&rq->lock, flags);
1491 }
18d95a28 1492}
c09595f6
PZ
1493
1494/*
c8cba857
PZ
1495 * Re-compute the task group their per cpu shares over the given domain.
1496 * This needs to be done in a bottom-up fashion because the rq weight of a
1497 * parent group depends on the shares of its child groups.
c09595f6 1498 */
eb755805 1499static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1500{
c8cba857
PZ
1501 unsigned long rq_weight = 0;
1502 unsigned long shares = 0;
eb755805 1503 struct sched_domain *sd = data;
c8cba857 1504 int i;
c09595f6 1505
c8cba857
PZ
1506 for_each_cpu_mask(i, sd->span) {
1507 rq_weight += tg->cfs_rq[i]->load.weight;
1508 shares += tg->cfs_rq[i]->shares;
c09595f6 1509 }
c09595f6 1510
c8cba857
PZ
1511 if ((!shares && rq_weight) || shares > tg->shares)
1512 shares = tg->shares;
1513
1514 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1515 shares = tg->shares;
c09595f6 1516
cd80917e
PZ
1517 if (!rq_weight)
1518 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1519
ffda12a1
PZ
1520 for_each_cpu_mask(i, sd->span)
1521 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1522
1523 return 0;
c09595f6
PZ
1524}
1525
1526/*
c8cba857
PZ
1527 * Compute the cpu's hierarchical load factor for each task group.
1528 * This needs to be done in a top-down fashion because the load of a child
1529 * group is a fraction of its parents load.
c09595f6 1530 */
eb755805 1531static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1532{
c8cba857 1533 unsigned long load;
eb755805 1534 long cpu = (long)data;
c09595f6 1535
c8cba857
PZ
1536 if (!tg->parent) {
1537 load = cpu_rq(cpu)->load.weight;
1538 } else {
1539 load = tg->parent->cfs_rq[cpu]->h_load;
1540 load *= tg->cfs_rq[cpu]->shares;
1541 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1542 }
c09595f6 1543
c8cba857 1544 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1545
eb755805 1546 return 0;
c09595f6
PZ
1547}
1548
c8cba857 1549static void update_shares(struct sched_domain *sd)
4d8d595d 1550{
2398f2c6
PZ
1551 u64 now = cpu_clock(raw_smp_processor_id());
1552 s64 elapsed = now - sd->last_update;
1553
1554 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1555 sd->last_update = now;
eb755805 1556 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1557 }
4d8d595d
PZ
1558}
1559
3e5459b4
PZ
1560static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561{
1562 spin_unlock(&rq->lock);
1563 update_shares(sd);
1564 spin_lock(&rq->lock);
1565}
1566
eb755805 1567static void update_h_load(long cpu)
c09595f6 1568{
eb755805 1569 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1570}
1571
c09595f6
PZ
1572#else
1573
c8cba857 1574static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1575{
1576}
1577
3e5459b4
PZ
1578static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1579{
1580}
1581
18d95a28
PZ
1582#endif
1583
18d95a28
PZ
1584#endif
1585
30432094 1586#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1587static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1588{
30432094 1589#ifdef CONFIG_SMP
34e83e85
IM
1590 cfs_rq->shares = shares;
1591#endif
1592}
30432094 1593#endif
e7693a36 1594
dd41f596 1595#include "sched_stats.h"
dd41f596 1596#include "sched_idletask.c"
5522d5d5
IM
1597#include "sched_fair.c"
1598#include "sched_rt.c"
dd41f596
IM
1599#ifdef CONFIG_SCHED_DEBUG
1600# include "sched_debug.c"
1601#endif
1602
1603#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1604#define for_each_class(class) \
1605 for (class = sched_class_highest; class; class = class->next)
dd41f596 1606
c09595f6 1607static void inc_nr_running(struct rq *rq)
9c217245
IM
1608{
1609 rq->nr_running++;
9c217245
IM
1610}
1611
c09595f6 1612static void dec_nr_running(struct rq *rq)
9c217245
IM
1613{
1614 rq->nr_running--;
9c217245
IM
1615}
1616
45bf76df
IM
1617static void set_load_weight(struct task_struct *p)
1618{
1619 if (task_has_rt_policy(p)) {
dd41f596
IM
1620 p->se.load.weight = prio_to_weight[0] * 2;
1621 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1622 return;
1623 }
45bf76df 1624
dd41f596
IM
1625 /*
1626 * SCHED_IDLE tasks get minimal weight:
1627 */
1628 if (p->policy == SCHED_IDLE) {
1629 p->se.load.weight = WEIGHT_IDLEPRIO;
1630 p->se.load.inv_weight = WMULT_IDLEPRIO;
1631 return;
1632 }
71f8bd46 1633
dd41f596
IM
1634 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1635 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1636}
1637
2087a1ad
GH
1638static void update_avg(u64 *avg, u64 sample)
1639{
1640 s64 diff = sample - *avg;
1641 *avg += diff >> 3;
1642}
1643
8159f87e 1644static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1645{
dd41f596 1646 sched_info_queued(p);
fd390f6a 1647 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1648 p->se.on_rq = 1;
71f8bd46
IM
1649}
1650
69be72c1 1651static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1652{
2087a1ad
GH
1653 if (sleep && p->se.last_wakeup) {
1654 update_avg(&p->se.avg_overlap,
1655 p->se.sum_exec_runtime - p->se.last_wakeup);
1656 p->se.last_wakeup = 0;
1657 }
1658
46ac22ba 1659 sched_info_dequeued(p);
f02231e5 1660 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1661 p->se.on_rq = 0;
71f8bd46
IM
1662}
1663
14531189 1664/*
dd41f596 1665 * __normal_prio - return the priority that is based on the static prio
14531189 1666 */
14531189
IM
1667static inline int __normal_prio(struct task_struct *p)
1668{
dd41f596 1669 return p->static_prio;
14531189
IM
1670}
1671
b29739f9
IM
1672/*
1673 * Calculate the expected normal priority: i.e. priority
1674 * without taking RT-inheritance into account. Might be
1675 * boosted by interactivity modifiers. Changes upon fork,
1676 * setprio syscalls, and whenever the interactivity
1677 * estimator recalculates.
1678 */
36c8b586 1679static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1680{
1681 int prio;
1682
e05606d3 1683 if (task_has_rt_policy(p))
b29739f9
IM
1684 prio = MAX_RT_PRIO-1 - p->rt_priority;
1685 else
1686 prio = __normal_prio(p);
1687 return prio;
1688}
1689
1690/*
1691 * Calculate the current priority, i.e. the priority
1692 * taken into account by the scheduler. This value might
1693 * be boosted by RT tasks, or might be boosted by
1694 * interactivity modifiers. Will be RT if the task got
1695 * RT-boosted. If not then it returns p->normal_prio.
1696 */
36c8b586 1697static int effective_prio(struct task_struct *p)
b29739f9
IM
1698{
1699 p->normal_prio = normal_prio(p);
1700 /*
1701 * If we are RT tasks or we were boosted to RT priority,
1702 * keep the priority unchanged. Otherwise, update priority
1703 * to the normal priority:
1704 */
1705 if (!rt_prio(p->prio))
1706 return p->normal_prio;
1707 return p->prio;
1708}
1709
1da177e4 1710/*
dd41f596 1711 * activate_task - move a task to the runqueue.
1da177e4 1712 */
dd41f596 1713static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1714{
d9514f6c 1715 if (task_contributes_to_load(p))
dd41f596 1716 rq->nr_uninterruptible--;
1da177e4 1717
8159f87e 1718 enqueue_task(rq, p, wakeup);
c09595f6 1719 inc_nr_running(rq);
1da177e4
LT
1720}
1721
1da177e4
LT
1722/*
1723 * deactivate_task - remove a task from the runqueue.
1724 */
2e1cb74a 1725static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1726{
d9514f6c 1727 if (task_contributes_to_load(p))
dd41f596
IM
1728 rq->nr_uninterruptible++;
1729
69be72c1 1730 dequeue_task(rq, p, sleep);
c09595f6 1731 dec_nr_running(rq);
1da177e4
LT
1732}
1733
1da177e4
LT
1734/**
1735 * task_curr - is this task currently executing on a CPU?
1736 * @p: the task in question.
1737 */
36c8b586 1738inline int task_curr(const struct task_struct *p)
1da177e4
LT
1739{
1740 return cpu_curr(task_cpu(p)) == p;
1741}
1742
dd41f596
IM
1743static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1744{
6f505b16 1745 set_task_rq(p, cpu);
dd41f596 1746#ifdef CONFIG_SMP
ce96b5ac
DA
1747 /*
1748 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1749 * successfuly executed on another CPU. We must ensure that updates of
1750 * per-task data have been completed by this moment.
1751 */
1752 smp_wmb();
dd41f596 1753 task_thread_info(p)->cpu = cpu;
dd41f596 1754#endif
2dd73a4f
PW
1755}
1756
cb469845
SR
1757static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1758 const struct sched_class *prev_class,
1759 int oldprio, int running)
1760{
1761 if (prev_class != p->sched_class) {
1762 if (prev_class->switched_from)
1763 prev_class->switched_from(rq, p, running);
1764 p->sched_class->switched_to(rq, p, running);
1765 } else
1766 p->sched_class->prio_changed(rq, p, oldprio, running);
1767}
1768
1da177e4 1769#ifdef CONFIG_SMP
c65cc870 1770
e958b360
TG
1771/* Used instead of source_load when we know the type == 0 */
1772static unsigned long weighted_cpuload(const int cpu)
1773{
1774 return cpu_rq(cpu)->load.weight;
1775}
1776
cc367732
IM
1777/*
1778 * Is this task likely cache-hot:
1779 */
e7693a36 1780static int
cc367732
IM
1781task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1782{
1783 s64 delta;
1784
f540a608
IM
1785 /*
1786 * Buddy candidates are cache hot:
1787 */
4793241b
PZ
1788 if (sched_feat(CACHE_HOT_BUDDY) &&
1789 (&p->se == cfs_rq_of(&p->se)->next ||
1790 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1791 return 1;
1792
cc367732
IM
1793 if (p->sched_class != &fair_sched_class)
1794 return 0;
1795
6bc1665b
IM
1796 if (sysctl_sched_migration_cost == -1)
1797 return 1;
1798 if (sysctl_sched_migration_cost == 0)
1799 return 0;
1800
cc367732
IM
1801 delta = now - p->se.exec_start;
1802
1803 return delta < (s64)sysctl_sched_migration_cost;
1804}
1805
1806
dd41f596 1807void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1808{
dd41f596
IM
1809 int old_cpu = task_cpu(p);
1810 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1811 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1812 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1813 u64 clock_offset;
dd41f596
IM
1814
1815 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1816
1817#ifdef CONFIG_SCHEDSTATS
1818 if (p->se.wait_start)
1819 p->se.wait_start -= clock_offset;
dd41f596
IM
1820 if (p->se.sleep_start)
1821 p->se.sleep_start -= clock_offset;
1822 if (p->se.block_start)
1823 p->se.block_start -= clock_offset;
cc367732
IM
1824 if (old_cpu != new_cpu) {
1825 schedstat_inc(p, se.nr_migrations);
1826 if (task_hot(p, old_rq->clock, NULL))
1827 schedstat_inc(p, se.nr_forced2_migrations);
1828 }
6cfb0d5d 1829#endif
2830cf8c
SV
1830 p->se.vruntime -= old_cfsrq->min_vruntime -
1831 new_cfsrq->min_vruntime;
dd41f596
IM
1832
1833 __set_task_cpu(p, new_cpu);
c65cc870
IM
1834}
1835
70b97a7f 1836struct migration_req {
1da177e4 1837 struct list_head list;
1da177e4 1838
36c8b586 1839 struct task_struct *task;
1da177e4
LT
1840 int dest_cpu;
1841
1da177e4 1842 struct completion done;
70b97a7f 1843};
1da177e4
LT
1844
1845/*
1846 * The task's runqueue lock must be held.
1847 * Returns true if you have to wait for migration thread.
1848 */
36c8b586 1849static int
70b97a7f 1850migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1851{
70b97a7f 1852 struct rq *rq = task_rq(p);
1da177e4
LT
1853
1854 /*
1855 * If the task is not on a runqueue (and not running), then
1856 * it is sufficient to simply update the task's cpu field.
1857 */
dd41f596 1858 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1859 set_task_cpu(p, dest_cpu);
1860 return 0;
1861 }
1862
1863 init_completion(&req->done);
1da177e4
LT
1864 req->task = p;
1865 req->dest_cpu = dest_cpu;
1866 list_add(&req->list, &rq->migration_queue);
48f24c4d 1867
1da177e4
LT
1868 return 1;
1869}
1870
1871/*
1872 * wait_task_inactive - wait for a thread to unschedule.
1873 *
85ba2d86
RM
1874 * If @match_state is nonzero, it's the @p->state value just checked and
1875 * not expected to change. If it changes, i.e. @p might have woken up,
1876 * then return zero. When we succeed in waiting for @p to be off its CPU,
1877 * we return a positive number (its total switch count). If a second call
1878 * a short while later returns the same number, the caller can be sure that
1879 * @p has remained unscheduled the whole time.
1880 *
1da177e4
LT
1881 * The caller must ensure that the task *will* unschedule sometime soon,
1882 * else this function might spin for a *long* time. This function can't
1883 * be called with interrupts off, or it may introduce deadlock with
1884 * smp_call_function() if an IPI is sent by the same process we are
1885 * waiting to become inactive.
1886 */
85ba2d86 1887unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1888{
1889 unsigned long flags;
dd41f596 1890 int running, on_rq;
85ba2d86 1891 unsigned long ncsw;
70b97a7f 1892 struct rq *rq;
1da177e4 1893
3a5c359a
AK
1894 for (;;) {
1895 /*
1896 * We do the initial early heuristics without holding
1897 * any task-queue locks at all. We'll only try to get
1898 * the runqueue lock when things look like they will
1899 * work out!
1900 */
1901 rq = task_rq(p);
fa490cfd 1902
3a5c359a
AK
1903 /*
1904 * If the task is actively running on another CPU
1905 * still, just relax and busy-wait without holding
1906 * any locks.
1907 *
1908 * NOTE! Since we don't hold any locks, it's not
1909 * even sure that "rq" stays as the right runqueue!
1910 * But we don't care, since "task_running()" will
1911 * return false if the runqueue has changed and p
1912 * is actually now running somewhere else!
1913 */
85ba2d86
RM
1914 while (task_running(rq, p)) {
1915 if (match_state && unlikely(p->state != match_state))
1916 return 0;
3a5c359a 1917 cpu_relax();
85ba2d86 1918 }
fa490cfd 1919
3a5c359a
AK
1920 /*
1921 * Ok, time to look more closely! We need the rq
1922 * lock now, to be *sure*. If we're wrong, we'll
1923 * just go back and repeat.
1924 */
1925 rq = task_rq_lock(p, &flags);
0a16b607 1926 trace_sched_wait_task(rq, p);
3a5c359a
AK
1927 running = task_running(rq, p);
1928 on_rq = p->se.on_rq;
85ba2d86 1929 ncsw = 0;
f31e11d8 1930 if (!match_state || p->state == match_state)
93dcf55f 1931 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1932 task_rq_unlock(rq, &flags);
fa490cfd 1933
85ba2d86
RM
1934 /*
1935 * If it changed from the expected state, bail out now.
1936 */
1937 if (unlikely(!ncsw))
1938 break;
1939
3a5c359a
AK
1940 /*
1941 * Was it really running after all now that we
1942 * checked with the proper locks actually held?
1943 *
1944 * Oops. Go back and try again..
1945 */
1946 if (unlikely(running)) {
1947 cpu_relax();
1948 continue;
1949 }
fa490cfd 1950
3a5c359a
AK
1951 /*
1952 * It's not enough that it's not actively running,
1953 * it must be off the runqueue _entirely_, and not
1954 * preempted!
1955 *
1956 * So if it wa still runnable (but just not actively
1957 * running right now), it's preempted, and we should
1958 * yield - it could be a while.
1959 */
1960 if (unlikely(on_rq)) {
1961 schedule_timeout_uninterruptible(1);
1962 continue;
1963 }
fa490cfd 1964
3a5c359a
AK
1965 /*
1966 * Ahh, all good. It wasn't running, and it wasn't
1967 * runnable, which means that it will never become
1968 * running in the future either. We're all done!
1969 */
1970 break;
1971 }
85ba2d86
RM
1972
1973 return ncsw;
1da177e4
LT
1974}
1975
1976/***
1977 * kick_process - kick a running thread to enter/exit the kernel
1978 * @p: the to-be-kicked thread
1979 *
1980 * Cause a process which is running on another CPU to enter
1981 * kernel-mode, without any delay. (to get signals handled.)
1982 *
1983 * NOTE: this function doesnt have to take the runqueue lock,
1984 * because all it wants to ensure is that the remote task enters
1985 * the kernel. If the IPI races and the task has been migrated
1986 * to another CPU then no harm is done and the purpose has been
1987 * achieved as well.
1988 */
36c8b586 1989void kick_process(struct task_struct *p)
1da177e4
LT
1990{
1991 int cpu;
1992
1993 preempt_disable();
1994 cpu = task_cpu(p);
1995 if ((cpu != smp_processor_id()) && task_curr(p))
1996 smp_send_reschedule(cpu);
1997 preempt_enable();
1998}
1999
2000/*
2dd73a4f
PW
2001 * Return a low guess at the load of a migration-source cpu weighted
2002 * according to the scheduling class and "nice" value.
1da177e4
LT
2003 *
2004 * We want to under-estimate the load of migration sources, to
2005 * balance conservatively.
2006 */
a9957449 2007static unsigned long source_load(int cpu, int type)
1da177e4 2008{
70b97a7f 2009 struct rq *rq = cpu_rq(cpu);
dd41f596 2010 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2011
93b75217 2012 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2013 return total;
b910472d 2014
dd41f596 2015 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2016}
2017
2018/*
2dd73a4f
PW
2019 * Return a high guess at the load of a migration-target cpu weighted
2020 * according to the scheduling class and "nice" value.
1da177e4 2021 */
a9957449 2022static unsigned long target_load(int cpu, int type)
1da177e4 2023{
70b97a7f 2024 struct rq *rq = cpu_rq(cpu);
dd41f596 2025 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2026
93b75217 2027 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2028 return total;
3b0bd9bc 2029
dd41f596 2030 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2031}
2032
147cbb4b
NP
2033/*
2034 * find_idlest_group finds and returns the least busy CPU group within the
2035 * domain.
2036 */
2037static struct sched_group *
2038find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2039{
2040 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2041 unsigned long min_load = ULONG_MAX, this_load = 0;
2042 int load_idx = sd->forkexec_idx;
2043 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2044
2045 do {
2046 unsigned long load, avg_load;
2047 int local_group;
2048 int i;
2049
da5a5522
BD
2050 /* Skip over this group if it has no CPUs allowed */
2051 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2052 continue;
da5a5522 2053
147cbb4b 2054 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2055
2056 /* Tally up the load of all CPUs in the group */
2057 avg_load = 0;
2058
363ab6f1 2059 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2060 /* Bias balancing toward cpus of our domain */
2061 if (local_group)
2062 load = source_load(i, load_idx);
2063 else
2064 load = target_load(i, load_idx);
2065
2066 avg_load += load;
2067 }
2068
2069 /* Adjust by relative CPU power of the group */
5517d86b
ED
2070 avg_load = sg_div_cpu_power(group,
2071 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2072
2073 if (local_group) {
2074 this_load = avg_load;
2075 this = group;
2076 } else if (avg_load < min_load) {
2077 min_load = avg_load;
2078 idlest = group;
2079 }
3a5c359a 2080 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2081
2082 if (!idlest || 100*this_load < imbalance*min_load)
2083 return NULL;
2084 return idlest;
2085}
2086
2087/*
0feaece9 2088 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2089 */
95cdf3b7 2090static int
7c16ec58
MT
2091find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2092 cpumask_t *tmp)
147cbb4b
NP
2093{
2094 unsigned long load, min_load = ULONG_MAX;
2095 int idlest = -1;
2096 int i;
2097
da5a5522 2098 /* Traverse only the allowed CPUs */
7c16ec58 2099 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2100
363ab6f1 2101 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2102 load = weighted_cpuload(i);
147cbb4b
NP
2103
2104 if (load < min_load || (load == min_load && i == this_cpu)) {
2105 min_load = load;
2106 idlest = i;
2107 }
2108 }
2109
2110 return idlest;
2111}
2112
476d139c
NP
2113/*
2114 * sched_balance_self: balance the current task (running on cpu) in domains
2115 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2116 * SD_BALANCE_EXEC.
2117 *
2118 * Balance, ie. select the least loaded group.
2119 *
2120 * Returns the target CPU number, or the same CPU if no balancing is needed.
2121 *
2122 * preempt must be disabled.
2123 */
2124static int sched_balance_self(int cpu, int flag)
2125{
2126 struct task_struct *t = current;
2127 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2128
c96d145e 2129 for_each_domain(cpu, tmp) {
9761eea8
IM
2130 /*
2131 * If power savings logic is enabled for a domain, stop there.
2132 */
5c45bf27
SS
2133 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2134 break;
476d139c
NP
2135 if (tmp->flags & flag)
2136 sd = tmp;
c96d145e 2137 }
476d139c 2138
039a1c41
PZ
2139 if (sd)
2140 update_shares(sd);
2141
476d139c 2142 while (sd) {
7c16ec58 2143 cpumask_t span, tmpmask;
476d139c 2144 struct sched_group *group;
1a848870
SS
2145 int new_cpu, weight;
2146
2147 if (!(sd->flags & flag)) {
2148 sd = sd->child;
2149 continue;
2150 }
476d139c
NP
2151
2152 span = sd->span;
2153 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2154 if (!group) {
2155 sd = sd->child;
2156 continue;
2157 }
476d139c 2158
7c16ec58 2159 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2160 if (new_cpu == -1 || new_cpu == cpu) {
2161 /* Now try balancing at a lower domain level of cpu */
2162 sd = sd->child;
2163 continue;
2164 }
476d139c 2165
1a848870 2166 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2167 cpu = new_cpu;
476d139c
NP
2168 sd = NULL;
2169 weight = cpus_weight(span);
2170 for_each_domain(cpu, tmp) {
2171 if (weight <= cpus_weight(tmp->span))
2172 break;
2173 if (tmp->flags & flag)
2174 sd = tmp;
2175 }
2176 /* while loop will break here if sd == NULL */
2177 }
2178
2179 return cpu;
2180}
2181
2182#endif /* CONFIG_SMP */
1da177e4 2183
1da177e4
LT
2184/***
2185 * try_to_wake_up - wake up a thread
2186 * @p: the to-be-woken-up thread
2187 * @state: the mask of task states that can be woken
2188 * @sync: do a synchronous wakeup?
2189 *
2190 * Put it on the run-queue if it's not already there. The "current"
2191 * thread is always on the run-queue (except when the actual
2192 * re-schedule is in progress), and as such you're allowed to do
2193 * the simpler "current->state = TASK_RUNNING" to mark yourself
2194 * runnable without the overhead of this.
2195 *
2196 * returns failure only if the task is already active.
2197 */
36c8b586 2198static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2199{
cc367732 2200 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2201 unsigned long flags;
2202 long old_state;
70b97a7f 2203 struct rq *rq;
1da177e4 2204
b85d0667
IM
2205 if (!sched_feat(SYNC_WAKEUPS))
2206 sync = 0;
2207
2398f2c6
PZ
2208#ifdef CONFIG_SMP
2209 if (sched_feat(LB_WAKEUP_UPDATE)) {
2210 struct sched_domain *sd;
2211
2212 this_cpu = raw_smp_processor_id();
2213 cpu = task_cpu(p);
2214
2215 for_each_domain(this_cpu, sd) {
2216 if (cpu_isset(cpu, sd->span)) {
2217 update_shares(sd);
2218 break;
2219 }
2220 }
2221 }
2222#endif
2223
04e2f174 2224 smp_wmb();
1da177e4
LT
2225 rq = task_rq_lock(p, &flags);
2226 old_state = p->state;
2227 if (!(old_state & state))
2228 goto out;
2229
dd41f596 2230 if (p->se.on_rq)
1da177e4
LT
2231 goto out_running;
2232
2233 cpu = task_cpu(p);
cc367732 2234 orig_cpu = cpu;
1da177e4
LT
2235 this_cpu = smp_processor_id();
2236
2237#ifdef CONFIG_SMP
2238 if (unlikely(task_running(rq, p)))
2239 goto out_activate;
2240
5d2f5a61
DA
2241 cpu = p->sched_class->select_task_rq(p, sync);
2242 if (cpu != orig_cpu) {
2243 set_task_cpu(p, cpu);
1da177e4
LT
2244 task_rq_unlock(rq, &flags);
2245 /* might preempt at this point */
2246 rq = task_rq_lock(p, &flags);
2247 old_state = p->state;
2248 if (!(old_state & state))
2249 goto out;
dd41f596 2250 if (p->se.on_rq)
1da177e4
LT
2251 goto out_running;
2252
2253 this_cpu = smp_processor_id();
2254 cpu = task_cpu(p);
2255 }
2256
e7693a36
GH
2257#ifdef CONFIG_SCHEDSTATS
2258 schedstat_inc(rq, ttwu_count);
2259 if (cpu == this_cpu)
2260 schedstat_inc(rq, ttwu_local);
2261 else {
2262 struct sched_domain *sd;
2263 for_each_domain(this_cpu, sd) {
2264 if (cpu_isset(cpu, sd->span)) {
2265 schedstat_inc(sd, ttwu_wake_remote);
2266 break;
2267 }
2268 }
2269 }
6d6bc0ad 2270#endif /* CONFIG_SCHEDSTATS */
e7693a36 2271
1da177e4
LT
2272out_activate:
2273#endif /* CONFIG_SMP */
cc367732
IM
2274 schedstat_inc(p, se.nr_wakeups);
2275 if (sync)
2276 schedstat_inc(p, se.nr_wakeups_sync);
2277 if (orig_cpu != cpu)
2278 schedstat_inc(p, se.nr_wakeups_migrate);
2279 if (cpu == this_cpu)
2280 schedstat_inc(p, se.nr_wakeups_local);
2281 else
2282 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2283 update_rq_clock(rq);
dd41f596 2284 activate_task(rq, p, 1);
1da177e4
LT
2285 success = 1;
2286
2287out_running:
0a16b607 2288 trace_sched_wakeup(rq, p);
15afe09b 2289 check_preempt_curr(rq, p, sync);
4ae7d5ce 2290
1da177e4 2291 p->state = TASK_RUNNING;
9a897c5a
SR
2292#ifdef CONFIG_SMP
2293 if (p->sched_class->task_wake_up)
2294 p->sched_class->task_wake_up(rq, p);
2295#endif
1da177e4 2296out:
2087a1ad
GH
2297 current->se.last_wakeup = current->se.sum_exec_runtime;
2298
1da177e4
LT
2299 task_rq_unlock(rq, &flags);
2300
2301 return success;
2302}
2303
7ad5b3a5 2304int wake_up_process(struct task_struct *p)
1da177e4 2305{
d9514f6c 2306 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2307}
1da177e4
LT
2308EXPORT_SYMBOL(wake_up_process);
2309
7ad5b3a5 2310int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2311{
2312 return try_to_wake_up(p, state, 0);
2313}
2314
1da177e4
LT
2315/*
2316 * Perform scheduler related setup for a newly forked process p.
2317 * p is forked by current.
dd41f596
IM
2318 *
2319 * __sched_fork() is basic setup used by init_idle() too:
2320 */
2321static void __sched_fork(struct task_struct *p)
2322{
dd41f596
IM
2323 p->se.exec_start = 0;
2324 p->se.sum_exec_runtime = 0;
f6cf891c 2325 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2326 p->se.last_wakeup = 0;
2327 p->se.avg_overlap = 0;
6cfb0d5d
IM
2328
2329#ifdef CONFIG_SCHEDSTATS
2330 p->se.wait_start = 0;
dd41f596
IM
2331 p->se.sum_sleep_runtime = 0;
2332 p->se.sleep_start = 0;
dd41f596
IM
2333 p->se.block_start = 0;
2334 p->se.sleep_max = 0;
2335 p->se.block_max = 0;
2336 p->se.exec_max = 0;
eba1ed4b 2337 p->se.slice_max = 0;
dd41f596 2338 p->se.wait_max = 0;
6cfb0d5d 2339#endif
476d139c 2340
fa717060 2341 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2342 p->se.on_rq = 0;
4a55bd5e 2343 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2344
e107be36
AK
2345#ifdef CONFIG_PREEMPT_NOTIFIERS
2346 INIT_HLIST_HEAD(&p->preempt_notifiers);
2347#endif
2348
1da177e4
LT
2349 /*
2350 * We mark the process as running here, but have not actually
2351 * inserted it onto the runqueue yet. This guarantees that
2352 * nobody will actually run it, and a signal or other external
2353 * event cannot wake it up and insert it on the runqueue either.
2354 */
2355 p->state = TASK_RUNNING;
dd41f596
IM
2356}
2357
2358/*
2359 * fork()/clone()-time setup:
2360 */
2361void sched_fork(struct task_struct *p, int clone_flags)
2362{
2363 int cpu = get_cpu();
2364
2365 __sched_fork(p);
2366
2367#ifdef CONFIG_SMP
2368 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2369#endif
02e4bac2 2370 set_task_cpu(p, cpu);
b29739f9
IM
2371
2372 /*
2373 * Make sure we do not leak PI boosting priority to the child:
2374 */
2375 p->prio = current->normal_prio;
2ddbf952
HS
2376 if (!rt_prio(p->prio))
2377 p->sched_class = &fair_sched_class;
b29739f9 2378
52f17b6c 2379#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2380 if (likely(sched_info_on()))
52f17b6c 2381 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2382#endif
d6077cb8 2383#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2384 p->oncpu = 0;
2385#endif
1da177e4 2386#ifdef CONFIG_PREEMPT
4866cde0 2387 /* Want to start with kernel preemption disabled. */
a1261f54 2388 task_thread_info(p)->preempt_count = 1;
1da177e4 2389#endif
476d139c 2390 put_cpu();
1da177e4
LT
2391}
2392
2393/*
2394 * wake_up_new_task - wake up a newly created task for the first time.
2395 *
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2399 */
7ad5b3a5 2400void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2401{
2402 unsigned long flags;
dd41f596 2403 struct rq *rq;
1da177e4
LT
2404
2405 rq = task_rq_lock(p, &flags);
147cbb4b 2406 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2407 update_rq_clock(rq);
1da177e4
LT
2408
2409 p->prio = effective_prio(p);
2410
b9dca1e0 2411 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2412 activate_task(rq, p, 0);
1da177e4 2413 } else {
1da177e4 2414 /*
dd41f596
IM
2415 * Let the scheduling class do new task startup
2416 * management (if any):
1da177e4 2417 */
ee0827d8 2418 p->sched_class->task_new(rq, p);
c09595f6 2419 inc_nr_running(rq);
1da177e4 2420 }
0a16b607 2421 trace_sched_wakeup_new(rq, p);
15afe09b 2422 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2423#ifdef CONFIG_SMP
2424 if (p->sched_class->task_wake_up)
2425 p->sched_class->task_wake_up(rq, p);
2426#endif
dd41f596 2427 task_rq_unlock(rq, &flags);
1da177e4
LT
2428}
2429
e107be36
AK
2430#ifdef CONFIG_PREEMPT_NOTIFIERS
2431
2432/**
421cee29
RD
2433 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2434 * @notifier: notifier struct to register
e107be36
AK
2435 */
2436void preempt_notifier_register(struct preempt_notifier *notifier)
2437{
2438 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2439}
2440EXPORT_SYMBOL_GPL(preempt_notifier_register);
2441
2442/**
2443 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2444 * @notifier: notifier struct to unregister
e107be36
AK
2445 *
2446 * This is safe to call from within a preemption notifier.
2447 */
2448void preempt_notifier_unregister(struct preempt_notifier *notifier)
2449{
2450 hlist_del(&notifier->link);
2451}
2452EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2453
2454static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2455{
2456 struct preempt_notifier *notifier;
2457 struct hlist_node *node;
2458
2459 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2460 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2461}
2462
2463static void
2464fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 struct task_struct *next)
2466{
2467 struct preempt_notifier *notifier;
2468 struct hlist_node *node;
2469
2470 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2471 notifier->ops->sched_out(notifier, next);
2472}
2473
6d6bc0ad 2474#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2475
2476static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2477{
2478}
2479
2480static void
2481fire_sched_out_preempt_notifiers(struct task_struct *curr,
2482 struct task_struct *next)
2483{
2484}
2485
6d6bc0ad 2486#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2487
4866cde0
NP
2488/**
2489 * prepare_task_switch - prepare to switch tasks
2490 * @rq: the runqueue preparing to switch
421cee29 2491 * @prev: the current task that is being switched out
4866cde0
NP
2492 * @next: the task we are going to switch to.
2493 *
2494 * This is called with the rq lock held and interrupts off. It must
2495 * be paired with a subsequent finish_task_switch after the context
2496 * switch.
2497 *
2498 * prepare_task_switch sets up locking and calls architecture specific
2499 * hooks.
2500 */
e107be36
AK
2501static inline void
2502prepare_task_switch(struct rq *rq, struct task_struct *prev,
2503 struct task_struct *next)
4866cde0 2504{
e107be36 2505 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2506 prepare_lock_switch(rq, next);
2507 prepare_arch_switch(next);
2508}
2509
1da177e4
LT
2510/**
2511 * finish_task_switch - clean up after a task-switch
344babaa 2512 * @rq: runqueue associated with task-switch
1da177e4
LT
2513 * @prev: the thread we just switched away from.
2514 *
4866cde0
NP
2515 * finish_task_switch must be called after the context switch, paired
2516 * with a prepare_task_switch call before the context switch.
2517 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2518 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2519 *
2520 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2521 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2522 * with the lock held can cause deadlocks; see schedule() for
2523 * details.)
2524 */
a9957449 2525static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2526 __releases(rq->lock)
2527{
1da177e4 2528 struct mm_struct *mm = rq->prev_mm;
55a101f8 2529 long prev_state;
1da177e4
LT
2530
2531 rq->prev_mm = NULL;
2532
2533 /*
2534 * A task struct has one reference for the use as "current".
c394cc9f 2535 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2536 * schedule one last time. The schedule call will never return, and
2537 * the scheduled task must drop that reference.
c394cc9f 2538 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2539 * still held, otherwise prev could be scheduled on another cpu, die
2540 * there before we look at prev->state, and then the reference would
2541 * be dropped twice.
2542 * Manfred Spraul <manfred@colorfullife.com>
2543 */
55a101f8 2544 prev_state = prev->state;
4866cde0
NP
2545 finish_arch_switch(prev);
2546 finish_lock_switch(rq, prev);
9a897c5a
SR
2547#ifdef CONFIG_SMP
2548 if (current->sched_class->post_schedule)
2549 current->sched_class->post_schedule(rq);
2550#endif
e8fa1362 2551
e107be36 2552 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2553 if (mm)
2554 mmdrop(mm);
c394cc9f 2555 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2556 /*
2557 * Remove function-return probe instances associated with this
2558 * task and put them back on the free list.
9761eea8 2559 */
c6fd91f0 2560 kprobe_flush_task(prev);
1da177e4 2561 put_task_struct(prev);
c6fd91f0 2562 }
1da177e4
LT
2563}
2564
2565/**
2566 * schedule_tail - first thing a freshly forked thread must call.
2567 * @prev: the thread we just switched away from.
2568 */
36c8b586 2569asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2570 __releases(rq->lock)
2571{
70b97a7f
IM
2572 struct rq *rq = this_rq();
2573
4866cde0
NP
2574 finish_task_switch(rq, prev);
2575#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2576 /* In this case, finish_task_switch does not reenable preemption */
2577 preempt_enable();
2578#endif
1da177e4 2579 if (current->set_child_tid)
b488893a 2580 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2581}
2582
2583/*
2584 * context_switch - switch to the new MM and the new
2585 * thread's register state.
2586 */
dd41f596 2587static inline void
70b97a7f 2588context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2589 struct task_struct *next)
1da177e4 2590{
dd41f596 2591 struct mm_struct *mm, *oldmm;
1da177e4 2592
e107be36 2593 prepare_task_switch(rq, prev, next);
0a16b607 2594 trace_sched_switch(rq, prev, next);
dd41f596
IM
2595 mm = next->mm;
2596 oldmm = prev->active_mm;
9226d125
ZA
2597 /*
2598 * For paravirt, this is coupled with an exit in switch_to to
2599 * combine the page table reload and the switch backend into
2600 * one hypercall.
2601 */
2602 arch_enter_lazy_cpu_mode();
2603
dd41f596 2604 if (unlikely(!mm)) {
1da177e4
LT
2605 next->active_mm = oldmm;
2606 atomic_inc(&oldmm->mm_count);
2607 enter_lazy_tlb(oldmm, next);
2608 } else
2609 switch_mm(oldmm, mm, next);
2610
dd41f596 2611 if (unlikely(!prev->mm)) {
1da177e4 2612 prev->active_mm = NULL;
1da177e4
LT
2613 rq->prev_mm = oldmm;
2614 }
3a5f5e48
IM
2615 /*
2616 * Since the runqueue lock will be released by the next
2617 * task (which is an invalid locking op but in the case
2618 * of the scheduler it's an obvious special-case), so we
2619 * do an early lockdep release here:
2620 */
2621#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2622 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2623#endif
1da177e4
LT
2624
2625 /* Here we just switch the register state and the stack. */
2626 switch_to(prev, next, prev);
2627
dd41f596
IM
2628 barrier();
2629 /*
2630 * this_rq must be evaluated again because prev may have moved
2631 * CPUs since it called schedule(), thus the 'rq' on its stack
2632 * frame will be invalid.
2633 */
2634 finish_task_switch(this_rq(), prev);
1da177e4
LT
2635}
2636
2637/*
2638 * nr_running, nr_uninterruptible and nr_context_switches:
2639 *
2640 * externally visible scheduler statistics: current number of runnable
2641 * threads, current number of uninterruptible-sleeping threads, total
2642 * number of context switches performed since bootup.
2643 */
2644unsigned long nr_running(void)
2645{
2646 unsigned long i, sum = 0;
2647
2648 for_each_online_cpu(i)
2649 sum += cpu_rq(i)->nr_running;
2650
2651 return sum;
2652}
2653
2654unsigned long nr_uninterruptible(void)
2655{
2656 unsigned long i, sum = 0;
2657
0a945022 2658 for_each_possible_cpu(i)
1da177e4
LT
2659 sum += cpu_rq(i)->nr_uninterruptible;
2660
2661 /*
2662 * Since we read the counters lockless, it might be slightly
2663 * inaccurate. Do not allow it to go below zero though:
2664 */
2665 if (unlikely((long)sum < 0))
2666 sum = 0;
2667
2668 return sum;
2669}
2670
2671unsigned long long nr_context_switches(void)
2672{
cc94abfc
SR
2673 int i;
2674 unsigned long long sum = 0;
1da177e4 2675
0a945022 2676 for_each_possible_cpu(i)
1da177e4
LT
2677 sum += cpu_rq(i)->nr_switches;
2678
2679 return sum;
2680}
2681
2682unsigned long nr_iowait(void)
2683{
2684 unsigned long i, sum = 0;
2685
0a945022 2686 for_each_possible_cpu(i)
1da177e4
LT
2687 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2688
2689 return sum;
2690}
2691
db1b1fef
JS
2692unsigned long nr_active(void)
2693{
2694 unsigned long i, running = 0, uninterruptible = 0;
2695
2696 for_each_online_cpu(i) {
2697 running += cpu_rq(i)->nr_running;
2698 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2699 }
2700
2701 if (unlikely((long)uninterruptible < 0))
2702 uninterruptible = 0;
2703
2704 return running + uninterruptible;
2705}
2706
48f24c4d 2707/*
dd41f596
IM
2708 * Update rq->cpu_load[] statistics. This function is usually called every
2709 * scheduler tick (TICK_NSEC).
48f24c4d 2710 */
dd41f596 2711static void update_cpu_load(struct rq *this_rq)
48f24c4d 2712{
495eca49 2713 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2714 int i, scale;
2715
2716 this_rq->nr_load_updates++;
dd41f596
IM
2717
2718 /* Update our load: */
2719 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2720 unsigned long old_load, new_load;
2721
2722 /* scale is effectively 1 << i now, and >> i divides by scale */
2723
2724 old_load = this_rq->cpu_load[i];
2725 new_load = this_load;
a25707f3
IM
2726 /*
2727 * Round up the averaging division if load is increasing. This
2728 * prevents us from getting stuck on 9 if the load is 10, for
2729 * example.
2730 */
2731 if (new_load > old_load)
2732 new_load += scale-1;
dd41f596
IM
2733 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2734 }
48f24c4d
IM
2735}
2736
dd41f596
IM
2737#ifdef CONFIG_SMP
2738
1da177e4
LT
2739/*
2740 * double_rq_lock - safely lock two runqueues
2741 *
2742 * Note this does not disable interrupts like task_rq_lock,
2743 * you need to do so manually before calling.
2744 */
70b97a7f 2745static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2746 __acquires(rq1->lock)
2747 __acquires(rq2->lock)
2748{
054b9108 2749 BUG_ON(!irqs_disabled());
1da177e4
LT
2750 if (rq1 == rq2) {
2751 spin_lock(&rq1->lock);
2752 __acquire(rq2->lock); /* Fake it out ;) */
2753 } else {
c96d145e 2754 if (rq1 < rq2) {
1da177e4 2755 spin_lock(&rq1->lock);
5e710e37 2756 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2757 } else {
2758 spin_lock(&rq2->lock);
5e710e37 2759 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2760 }
2761 }
6e82a3be
IM
2762 update_rq_clock(rq1);
2763 update_rq_clock(rq2);
1da177e4
LT
2764}
2765
2766/*
2767 * double_rq_unlock - safely unlock two runqueues
2768 *
2769 * Note this does not restore interrupts like task_rq_unlock,
2770 * you need to do so manually after calling.
2771 */
70b97a7f 2772static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2773 __releases(rq1->lock)
2774 __releases(rq2->lock)
2775{
2776 spin_unlock(&rq1->lock);
2777 if (rq1 != rq2)
2778 spin_unlock(&rq2->lock);
2779 else
2780 __release(rq2->lock);
2781}
2782
2783/*
2784 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2785 */
e8fa1362 2786static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2787 __releases(this_rq->lock)
2788 __acquires(busiest->lock)
2789 __acquires(this_rq->lock)
2790{
e8fa1362
SR
2791 int ret = 0;
2792
054b9108
KK
2793 if (unlikely(!irqs_disabled())) {
2794 /* printk() doesn't work good under rq->lock */
2795 spin_unlock(&this_rq->lock);
2796 BUG_ON(1);
2797 }
1da177e4 2798 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2799 if (busiest < this_rq) {
1da177e4
LT
2800 spin_unlock(&this_rq->lock);
2801 spin_lock(&busiest->lock);
5e710e37 2802 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2803 ret = 1;
1da177e4 2804 } else
5e710e37 2805 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2806 }
e8fa1362 2807 return ret;
1da177e4
LT
2808}
2809
1b12bbc7
PZ
2810static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2811 __releases(busiest->lock)
2812{
2813 spin_unlock(&busiest->lock);
2814 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2815}
2816
1da177e4
LT
2817/*
2818 * If dest_cpu is allowed for this process, migrate the task to it.
2819 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2820 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2821 * the cpu_allowed mask is restored.
2822 */
36c8b586 2823static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2824{
70b97a7f 2825 struct migration_req req;
1da177e4 2826 unsigned long flags;
70b97a7f 2827 struct rq *rq;
1da177e4
LT
2828
2829 rq = task_rq_lock(p, &flags);
2830 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2831 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2832 goto out;
2833
0a16b607 2834 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2835 /* force the process onto the specified CPU */
2836 if (migrate_task(p, dest_cpu, &req)) {
2837 /* Need to wait for migration thread (might exit: take ref). */
2838 struct task_struct *mt = rq->migration_thread;
36c8b586 2839
1da177e4
LT
2840 get_task_struct(mt);
2841 task_rq_unlock(rq, &flags);
2842 wake_up_process(mt);
2843 put_task_struct(mt);
2844 wait_for_completion(&req.done);
36c8b586 2845
1da177e4
LT
2846 return;
2847 }
2848out:
2849 task_rq_unlock(rq, &flags);
2850}
2851
2852/*
476d139c
NP
2853 * sched_exec - execve() is a valuable balancing opportunity, because at
2854 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2855 */
2856void sched_exec(void)
2857{
1da177e4 2858 int new_cpu, this_cpu = get_cpu();
476d139c 2859 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2860 put_cpu();
476d139c
NP
2861 if (new_cpu != this_cpu)
2862 sched_migrate_task(current, new_cpu);
1da177e4
LT
2863}
2864
2865/*
2866 * pull_task - move a task from a remote runqueue to the local runqueue.
2867 * Both runqueues must be locked.
2868 */
dd41f596
IM
2869static void pull_task(struct rq *src_rq, struct task_struct *p,
2870 struct rq *this_rq, int this_cpu)
1da177e4 2871{
2e1cb74a 2872 deactivate_task(src_rq, p, 0);
1da177e4 2873 set_task_cpu(p, this_cpu);
dd41f596 2874 activate_task(this_rq, p, 0);
1da177e4
LT
2875 /*
2876 * Note that idle threads have a prio of MAX_PRIO, for this test
2877 * to be always true for them.
2878 */
15afe09b 2879 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2880}
2881
2882/*
2883 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2884 */
858119e1 2885static
70b97a7f 2886int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2887 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2888 int *all_pinned)
1da177e4
LT
2889{
2890 /*
2891 * We do not migrate tasks that are:
2892 * 1) running (obviously), or
2893 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2894 * 3) are cache-hot on their current CPU.
2895 */
cc367732
IM
2896 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2897 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2898 return 0;
cc367732 2899 }
81026794
NP
2900 *all_pinned = 0;
2901
cc367732
IM
2902 if (task_running(rq, p)) {
2903 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2904 return 0;
cc367732 2905 }
1da177e4 2906
da84d961
IM
2907 /*
2908 * Aggressive migration if:
2909 * 1) task is cache cold, or
2910 * 2) too many balance attempts have failed.
2911 */
2912
6bc1665b
IM
2913 if (!task_hot(p, rq->clock, sd) ||
2914 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2915#ifdef CONFIG_SCHEDSTATS
cc367732 2916 if (task_hot(p, rq->clock, sd)) {
da84d961 2917 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2918 schedstat_inc(p, se.nr_forced_migrations);
2919 }
da84d961
IM
2920#endif
2921 return 1;
2922 }
2923
cc367732
IM
2924 if (task_hot(p, rq->clock, sd)) {
2925 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2926 return 0;
cc367732 2927 }
1da177e4
LT
2928 return 1;
2929}
2930
e1d1484f
PW
2931static unsigned long
2932balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2933 unsigned long max_load_move, struct sched_domain *sd,
2934 enum cpu_idle_type idle, int *all_pinned,
2935 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2936{
051c6764 2937 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2938 struct task_struct *p;
2939 long rem_load_move = max_load_move;
1da177e4 2940
e1d1484f 2941 if (max_load_move == 0)
1da177e4
LT
2942 goto out;
2943
81026794
NP
2944 pinned = 1;
2945
1da177e4 2946 /*
dd41f596 2947 * Start the load-balancing iterator:
1da177e4 2948 */
dd41f596
IM
2949 p = iterator->start(iterator->arg);
2950next:
b82d9fdd 2951 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2952 goto out;
051c6764
PZ
2953
2954 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2955 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2956 p = iterator->next(iterator->arg);
2957 goto next;
1da177e4
LT
2958 }
2959
dd41f596 2960 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2961 pulled++;
dd41f596 2962 rem_load_move -= p->se.load.weight;
1da177e4 2963
2dd73a4f 2964 /*
b82d9fdd 2965 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2966 */
e1d1484f 2967 if (rem_load_move > 0) {
a4ac01c3
PW
2968 if (p->prio < *this_best_prio)
2969 *this_best_prio = p->prio;
dd41f596
IM
2970 p = iterator->next(iterator->arg);
2971 goto next;
1da177e4
LT
2972 }
2973out:
2974 /*
e1d1484f 2975 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2976 * so we can safely collect pull_task() stats here rather than
2977 * inside pull_task().
2978 */
2979 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2980
2981 if (all_pinned)
2982 *all_pinned = pinned;
e1d1484f
PW
2983
2984 return max_load_move - rem_load_move;
1da177e4
LT
2985}
2986
dd41f596 2987/*
43010659
PW
2988 * move_tasks tries to move up to max_load_move weighted load from busiest to
2989 * this_rq, as part of a balancing operation within domain "sd".
2990 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2991 *
2992 * Called with both runqueues locked.
2993 */
2994static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2995 unsigned long max_load_move,
dd41f596
IM
2996 struct sched_domain *sd, enum cpu_idle_type idle,
2997 int *all_pinned)
2998{
5522d5d5 2999 const struct sched_class *class = sched_class_highest;
43010659 3000 unsigned long total_load_moved = 0;
a4ac01c3 3001 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3002
3003 do {
43010659
PW
3004 total_load_moved +=
3005 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3006 max_load_move - total_load_moved,
a4ac01c3 3007 sd, idle, all_pinned, &this_best_prio);
dd41f596 3008 class = class->next;
c4acb2c0
GH
3009
3010 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3011 break;
3012
43010659 3013 } while (class && max_load_move > total_load_moved);
dd41f596 3014
43010659
PW
3015 return total_load_moved > 0;
3016}
3017
e1d1484f
PW
3018static int
3019iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3020 struct sched_domain *sd, enum cpu_idle_type idle,
3021 struct rq_iterator *iterator)
3022{
3023 struct task_struct *p = iterator->start(iterator->arg);
3024 int pinned = 0;
3025
3026 while (p) {
3027 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3028 pull_task(busiest, p, this_rq, this_cpu);
3029 /*
3030 * Right now, this is only the second place pull_task()
3031 * is called, so we can safely collect pull_task()
3032 * stats here rather than inside pull_task().
3033 */
3034 schedstat_inc(sd, lb_gained[idle]);
3035
3036 return 1;
3037 }
3038 p = iterator->next(iterator->arg);
3039 }
3040
3041 return 0;
3042}
3043
43010659
PW
3044/*
3045 * move_one_task tries to move exactly one task from busiest to this_rq, as
3046 * part of active balancing operations within "domain".
3047 * Returns 1 if successful and 0 otherwise.
3048 *
3049 * Called with both runqueues locked.
3050 */
3051static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3052 struct sched_domain *sd, enum cpu_idle_type idle)
3053{
5522d5d5 3054 const struct sched_class *class;
43010659
PW
3055
3056 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3057 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3058 return 1;
3059
3060 return 0;
dd41f596
IM
3061}
3062
1da177e4
LT
3063/*
3064 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3065 * domain. It calculates and returns the amount of weighted load which
3066 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3067 */
3068static struct sched_group *
3069find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3070 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3071 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3072{
3073 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3074 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3075 unsigned long max_pull;
2dd73a4f
PW
3076 unsigned long busiest_load_per_task, busiest_nr_running;
3077 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3078 int load_idx, group_imb = 0;
5c45bf27
SS
3079#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3080 int power_savings_balance = 1;
3081 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3082 unsigned long min_nr_running = ULONG_MAX;
3083 struct sched_group *group_min = NULL, *group_leader = NULL;
3084#endif
1da177e4
LT
3085
3086 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3087 busiest_load_per_task = busiest_nr_running = 0;
3088 this_load_per_task = this_nr_running = 0;
408ed066 3089
d15bcfdb 3090 if (idle == CPU_NOT_IDLE)
7897986b 3091 load_idx = sd->busy_idx;
d15bcfdb 3092 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3093 load_idx = sd->newidle_idx;
3094 else
3095 load_idx = sd->idle_idx;
1da177e4
LT
3096
3097 do {
908a7c1b 3098 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3099 int local_group;
3100 int i;
908a7c1b 3101 int __group_imb = 0;
783609c6 3102 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3103 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3104 unsigned long sum_avg_load_per_task;
3105 unsigned long avg_load_per_task;
1da177e4
LT
3106
3107 local_group = cpu_isset(this_cpu, group->cpumask);
3108
783609c6
SS
3109 if (local_group)
3110 balance_cpu = first_cpu(group->cpumask);
3111
1da177e4 3112 /* Tally up the load of all CPUs in the group */
2dd73a4f 3113 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3114 sum_avg_load_per_task = avg_load_per_task = 0;
3115
908a7c1b
KC
3116 max_cpu_load = 0;
3117 min_cpu_load = ~0UL;
1da177e4 3118
363ab6f1 3119 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3120 struct rq *rq;
3121
3122 if (!cpu_isset(i, *cpus))
3123 continue;
3124
3125 rq = cpu_rq(i);
2dd73a4f 3126
9439aab8 3127 if (*sd_idle && rq->nr_running)
5969fe06
NP
3128 *sd_idle = 0;
3129
1da177e4 3130 /* Bias balancing toward cpus of our domain */
783609c6
SS
3131 if (local_group) {
3132 if (idle_cpu(i) && !first_idle_cpu) {
3133 first_idle_cpu = 1;
3134 balance_cpu = i;
3135 }
3136
a2000572 3137 load = target_load(i, load_idx);
908a7c1b 3138 } else {
a2000572 3139 load = source_load(i, load_idx);
908a7c1b
KC
3140 if (load > max_cpu_load)
3141 max_cpu_load = load;
3142 if (min_cpu_load > load)
3143 min_cpu_load = load;
3144 }
1da177e4
LT
3145
3146 avg_load += load;
2dd73a4f 3147 sum_nr_running += rq->nr_running;
dd41f596 3148 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3149
3150 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3151 }
3152
783609c6
SS
3153 /*
3154 * First idle cpu or the first cpu(busiest) in this sched group
3155 * is eligible for doing load balancing at this and above
9439aab8
SS
3156 * domains. In the newly idle case, we will allow all the cpu's
3157 * to do the newly idle load balance.
783609c6 3158 */
9439aab8
SS
3159 if (idle != CPU_NEWLY_IDLE && local_group &&
3160 balance_cpu != this_cpu && balance) {
783609c6
SS
3161 *balance = 0;
3162 goto ret;
3163 }
3164
1da177e4 3165 total_load += avg_load;
5517d86b 3166 total_pwr += group->__cpu_power;
1da177e4
LT
3167
3168 /* Adjust by relative CPU power of the group */
5517d86b
ED
3169 avg_load = sg_div_cpu_power(group,
3170 avg_load * SCHED_LOAD_SCALE);
1da177e4 3171
408ed066
PZ
3172
3173 /*
3174 * Consider the group unbalanced when the imbalance is larger
3175 * than the average weight of two tasks.
3176 *
3177 * APZ: with cgroup the avg task weight can vary wildly and
3178 * might not be a suitable number - should we keep a
3179 * normalized nr_running number somewhere that negates
3180 * the hierarchy?
3181 */
3182 avg_load_per_task = sg_div_cpu_power(group,
3183 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3184
3185 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3186 __group_imb = 1;
3187
5517d86b 3188 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3189
1da177e4
LT
3190 if (local_group) {
3191 this_load = avg_load;
3192 this = group;
2dd73a4f
PW
3193 this_nr_running = sum_nr_running;
3194 this_load_per_task = sum_weighted_load;
3195 } else if (avg_load > max_load &&
908a7c1b 3196 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3197 max_load = avg_load;
3198 busiest = group;
2dd73a4f
PW
3199 busiest_nr_running = sum_nr_running;
3200 busiest_load_per_task = sum_weighted_load;
908a7c1b 3201 group_imb = __group_imb;
1da177e4 3202 }
5c45bf27
SS
3203
3204#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3205 /*
3206 * Busy processors will not participate in power savings
3207 * balance.
3208 */
dd41f596
IM
3209 if (idle == CPU_NOT_IDLE ||
3210 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3211 goto group_next;
5c45bf27
SS
3212
3213 /*
3214 * If the local group is idle or completely loaded
3215 * no need to do power savings balance at this domain
3216 */
3217 if (local_group && (this_nr_running >= group_capacity ||
3218 !this_nr_running))
3219 power_savings_balance = 0;
3220
dd41f596 3221 /*
5c45bf27
SS
3222 * If a group is already running at full capacity or idle,
3223 * don't include that group in power savings calculations
dd41f596
IM
3224 */
3225 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3226 || !sum_nr_running)
dd41f596 3227 goto group_next;
5c45bf27 3228
dd41f596 3229 /*
5c45bf27 3230 * Calculate the group which has the least non-idle load.
dd41f596
IM
3231 * This is the group from where we need to pick up the load
3232 * for saving power
3233 */
3234 if ((sum_nr_running < min_nr_running) ||
3235 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3236 first_cpu(group->cpumask) <
3237 first_cpu(group_min->cpumask))) {
dd41f596
IM
3238 group_min = group;
3239 min_nr_running = sum_nr_running;
5c45bf27
SS
3240 min_load_per_task = sum_weighted_load /
3241 sum_nr_running;
dd41f596 3242 }
5c45bf27 3243
dd41f596 3244 /*
5c45bf27 3245 * Calculate the group which is almost near its
dd41f596
IM
3246 * capacity but still has some space to pick up some load
3247 * from other group and save more power
3248 */
3249 if (sum_nr_running <= group_capacity - 1) {
3250 if (sum_nr_running > leader_nr_running ||
3251 (sum_nr_running == leader_nr_running &&
3252 first_cpu(group->cpumask) >
3253 first_cpu(group_leader->cpumask))) {
3254 group_leader = group;
3255 leader_nr_running = sum_nr_running;
3256 }
48f24c4d 3257 }
5c45bf27
SS
3258group_next:
3259#endif
1da177e4
LT
3260 group = group->next;
3261 } while (group != sd->groups);
3262
2dd73a4f 3263 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3264 goto out_balanced;
3265
3266 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3267
3268 if (this_load >= avg_load ||
3269 100*max_load <= sd->imbalance_pct*this_load)
3270 goto out_balanced;
3271
2dd73a4f 3272 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3273 if (group_imb)
3274 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3275
1da177e4
LT
3276 /*
3277 * We're trying to get all the cpus to the average_load, so we don't
3278 * want to push ourselves above the average load, nor do we wish to
3279 * reduce the max loaded cpu below the average load, as either of these
3280 * actions would just result in more rebalancing later, and ping-pong
3281 * tasks around. Thus we look for the minimum possible imbalance.
3282 * Negative imbalances (*we* are more loaded than anyone else) will
3283 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3284 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3285 * appear as very large values with unsigned longs.
3286 */
2dd73a4f
PW
3287 if (max_load <= busiest_load_per_task)
3288 goto out_balanced;
3289
3290 /*
3291 * In the presence of smp nice balancing, certain scenarios can have
3292 * max load less than avg load(as we skip the groups at or below
3293 * its cpu_power, while calculating max_load..)
3294 */
3295 if (max_load < avg_load) {
3296 *imbalance = 0;
3297 goto small_imbalance;
3298 }
0c117f1b
SS
3299
3300 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3301 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3302
1da177e4 3303 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3304 *imbalance = min(max_pull * busiest->__cpu_power,
3305 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3306 / SCHED_LOAD_SCALE;
3307
2dd73a4f
PW
3308 /*
3309 * if *imbalance is less than the average load per runnable task
3310 * there is no gaurantee that any tasks will be moved so we'll have
3311 * a think about bumping its value to force at least one task to be
3312 * moved
3313 */
7fd0d2dd 3314 if (*imbalance < busiest_load_per_task) {
48f24c4d 3315 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3316 unsigned int imbn;
3317
3318small_imbalance:
3319 pwr_move = pwr_now = 0;
3320 imbn = 2;
3321 if (this_nr_running) {
3322 this_load_per_task /= this_nr_running;
3323 if (busiest_load_per_task > this_load_per_task)
3324 imbn = 1;
3325 } else
408ed066 3326 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3327
01c8c57d 3328 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3329 busiest_load_per_task * imbn) {
2dd73a4f 3330 *imbalance = busiest_load_per_task;
1da177e4
LT
3331 return busiest;
3332 }
3333
3334 /*
3335 * OK, we don't have enough imbalance to justify moving tasks,
3336 * however we may be able to increase total CPU power used by
3337 * moving them.
3338 */
3339
5517d86b
ED
3340 pwr_now += busiest->__cpu_power *
3341 min(busiest_load_per_task, max_load);
3342 pwr_now += this->__cpu_power *
3343 min(this_load_per_task, this_load);
1da177e4
LT
3344 pwr_now /= SCHED_LOAD_SCALE;
3345
3346 /* Amount of load we'd subtract */
5517d86b
ED
3347 tmp = sg_div_cpu_power(busiest,
3348 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3349 if (max_load > tmp)
5517d86b 3350 pwr_move += busiest->__cpu_power *
2dd73a4f 3351 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3352
3353 /* Amount of load we'd add */
5517d86b 3354 if (max_load * busiest->__cpu_power <
33859f7f 3355 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3356 tmp = sg_div_cpu_power(this,
3357 max_load * busiest->__cpu_power);
1da177e4 3358 else
5517d86b
ED
3359 tmp = sg_div_cpu_power(this,
3360 busiest_load_per_task * SCHED_LOAD_SCALE);
3361 pwr_move += this->__cpu_power *
3362 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3363 pwr_move /= SCHED_LOAD_SCALE;
3364
3365 /* Move if we gain throughput */
7fd0d2dd
SS
3366 if (pwr_move > pwr_now)
3367 *imbalance = busiest_load_per_task;
1da177e4
LT
3368 }
3369
1da177e4
LT
3370 return busiest;
3371
3372out_balanced:
5c45bf27 3373#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3374 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3375 goto ret;
1da177e4 3376
5c45bf27
SS
3377 if (this == group_leader && group_leader != group_min) {
3378 *imbalance = min_load_per_task;
3379 return group_min;
3380 }
5c45bf27 3381#endif
783609c6 3382ret:
1da177e4
LT
3383 *imbalance = 0;
3384 return NULL;
3385}
3386
3387/*
3388 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3389 */
70b97a7f 3390static struct rq *
d15bcfdb 3391find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3392 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3393{
70b97a7f 3394 struct rq *busiest = NULL, *rq;
2dd73a4f 3395 unsigned long max_load = 0;
1da177e4
LT
3396 int i;
3397
363ab6f1 3398 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3399 unsigned long wl;
0a2966b4
CL
3400
3401 if (!cpu_isset(i, *cpus))
3402 continue;
3403
48f24c4d 3404 rq = cpu_rq(i);
dd41f596 3405 wl = weighted_cpuload(i);
2dd73a4f 3406
dd41f596 3407 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3408 continue;
1da177e4 3409
dd41f596
IM
3410 if (wl > max_load) {
3411 max_load = wl;
48f24c4d 3412 busiest = rq;
1da177e4
LT
3413 }
3414 }
3415
3416 return busiest;
3417}
3418
77391d71
NP
3419/*
3420 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3421 * so long as it is large enough.
3422 */
3423#define MAX_PINNED_INTERVAL 512
3424
1da177e4
LT
3425/*
3426 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3427 * tasks if there is an imbalance.
1da177e4 3428 */
70b97a7f 3429static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3430 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3431 int *balance, cpumask_t *cpus)
1da177e4 3432{
43010659 3433 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3434 struct sched_group *group;
1da177e4 3435 unsigned long imbalance;
70b97a7f 3436 struct rq *busiest;
fe2eea3f 3437 unsigned long flags;
5969fe06 3438
7c16ec58
MT
3439 cpus_setall(*cpus);
3440
89c4710e
SS
3441 /*
3442 * When power savings policy is enabled for the parent domain, idle
3443 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3444 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3445 * portraying it as CPU_NOT_IDLE.
89c4710e 3446 */
d15bcfdb 3447 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3448 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3449 sd_idle = 1;
1da177e4 3450
2d72376b 3451 schedstat_inc(sd, lb_count[idle]);
1da177e4 3452
0a2966b4 3453redo:
c8cba857 3454 update_shares(sd);
0a2966b4 3455 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3456 cpus, balance);
783609c6 3457
06066714 3458 if (*balance == 0)
783609c6 3459 goto out_balanced;
783609c6 3460
1da177e4
LT
3461 if (!group) {
3462 schedstat_inc(sd, lb_nobusyg[idle]);
3463 goto out_balanced;
3464 }
3465
7c16ec58 3466 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3467 if (!busiest) {
3468 schedstat_inc(sd, lb_nobusyq[idle]);
3469 goto out_balanced;
3470 }
3471
db935dbd 3472 BUG_ON(busiest == this_rq);
1da177e4
LT
3473
3474 schedstat_add(sd, lb_imbalance[idle], imbalance);
3475
43010659 3476 ld_moved = 0;
1da177e4
LT
3477 if (busiest->nr_running > 1) {
3478 /*
3479 * Attempt to move tasks. If find_busiest_group has found
3480 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3481 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3482 * correctly treated as an imbalance.
3483 */
fe2eea3f 3484 local_irq_save(flags);
e17224bf 3485 double_rq_lock(this_rq, busiest);
43010659 3486 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3487 imbalance, sd, idle, &all_pinned);
e17224bf 3488 double_rq_unlock(this_rq, busiest);
fe2eea3f 3489 local_irq_restore(flags);
81026794 3490
46cb4b7c
SS
3491 /*
3492 * some other cpu did the load balance for us.
3493 */
43010659 3494 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3495 resched_cpu(this_cpu);
3496
81026794 3497 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3498 if (unlikely(all_pinned)) {
7c16ec58
MT
3499 cpu_clear(cpu_of(busiest), *cpus);
3500 if (!cpus_empty(*cpus))
0a2966b4 3501 goto redo;
81026794 3502 goto out_balanced;
0a2966b4 3503 }
1da177e4 3504 }
81026794 3505
43010659 3506 if (!ld_moved) {
1da177e4
LT
3507 schedstat_inc(sd, lb_failed[idle]);
3508 sd->nr_balance_failed++;
3509
3510 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3511
fe2eea3f 3512 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3513
3514 /* don't kick the migration_thread, if the curr
3515 * task on busiest cpu can't be moved to this_cpu
3516 */
3517 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3518 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3519 all_pinned = 1;
3520 goto out_one_pinned;
3521 }
3522
1da177e4
LT
3523 if (!busiest->active_balance) {
3524 busiest->active_balance = 1;
3525 busiest->push_cpu = this_cpu;
81026794 3526 active_balance = 1;
1da177e4 3527 }
fe2eea3f 3528 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3529 if (active_balance)
1da177e4
LT
3530 wake_up_process(busiest->migration_thread);
3531
3532 /*
3533 * We've kicked active balancing, reset the failure
3534 * counter.
3535 */
39507451 3536 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3537 }
81026794 3538 } else
1da177e4
LT
3539 sd->nr_balance_failed = 0;
3540
81026794 3541 if (likely(!active_balance)) {
1da177e4
LT
3542 /* We were unbalanced, so reset the balancing interval */
3543 sd->balance_interval = sd->min_interval;
81026794
NP
3544 } else {
3545 /*
3546 * If we've begun active balancing, start to back off. This
3547 * case may not be covered by the all_pinned logic if there
3548 * is only 1 task on the busy runqueue (because we don't call
3549 * move_tasks).
3550 */
3551 if (sd->balance_interval < sd->max_interval)
3552 sd->balance_interval *= 2;
1da177e4
LT
3553 }
3554
43010659 3555 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3556 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3557 ld_moved = -1;
3558
3559 goto out;
1da177e4
LT
3560
3561out_balanced:
1da177e4
LT
3562 schedstat_inc(sd, lb_balanced[idle]);
3563
16cfb1c0 3564 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3565
3566out_one_pinned:
1da177e4 3567 /* tune up the balancing interval */
77391d71
NP
3568 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3569 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3570 sd->balance_interval *= 2;
3571
48f24c4d 3572 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3573 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3574 ld_moved = -1;
3575 else
3576 ld_moved = 0;
3577out:
c8cba857
PZ
3578 if (ld_moved)
3579 update_shares(sd);
c09595f6 3580 return ld_moved;
1da177e4
LT
3581}
3582
3583/*
3584 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3585 * tasks if there is an imbalance.
3586 *
d15bcfdb 3587 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3588 * this_rq is locked.
3589 */
48f24c4d 3590static int
7c16ec58
MT
3591load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3592 cpumask_t *cpus)
1da177e4
LT
3593{
3594 struct sched_group *group;
70b97a7f 3595 struct rq *busiest = NULL;
1da177e4 3596 unsigned long imbalance;
43010659 3597 int ld_moved = 0;
5969fe06 3598 int sd_idle = 0;
969bb4e4 3599 int all_pinned = 0;
7c16ec58
MT
3600
3601 cpus_setall(*cpus);
5969fe06 3602
89c4710e
SS
3603 /*
3604 * When power savings policy is enabled for the parent domain, idle
3605 * sibling can pick up load irrespective of busy siblings. In this case,
3606 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3607 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3608 */
3609 if (sd->flags & SD_SHARE_CPUPOWER &&
3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3611 sd_idle = 1;
1da177e4 3612
2d72376b 3613 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3614redo:
3e5459b4 3615 update_shares_locked(this_rq, sd);
d15bcfdb 3616 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3617 &sd_idle, cpus, NULL);
1da177e4 3618 if (!group) {
d15bcfdb 3619 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3620 goto out_balanced;
1da177e4
LT
3621 }
3622
7c16ec58 3623 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3624 if (!busiest) {
d15bcfdb 3625 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3626 goto out_balanced;
1da177e4
LT
3627 }
3628
db935dbd
NP
3629 BUG_ON(busiest == this_rq);
3630
d15bcfdb 3631 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3632
43010659 3633 ld_moved = 0;
d6d5cfaf
NP
3634 if (busiest->nr_running > 1) {
3635 /* Attempt to move tasks */
3636 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3637 /* this_rq->clock is already updated */
3638 update_rq_clock(busiest);
43010659 3639 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3640 imbalance, sd, CPU_NEWLY_IDLE,
3641 &all_pinned);
1b12bbc7 3642 double_unlock_balance(this_rq, busiest);
0a2966b4 3643
969bb4e4 3644 if (unlikely(all_pinned)) {
7c16ec58
MT
3645 cpu_clear(cpu_of(busiest), *cpus);
3646 if (!cpus_empty(*cpus))
0a2966b4
CL
3647 goto redo;
3648 }
d6d5cfaf
NP
3649 }
3650
43010659 3651 if (!ld_moved) {
d15bcfdb 3652 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3653 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3654 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3655 return -1;
3656 } else
16cfb1c0 3657 sd->nr_balance_failed = 0;
1da177e4 3658
3e5459b4 3659 update_shares_locked(this_rq, sd);
43010659 3660 return ld_moved;
16cfb1c0
NP
3661
3662out_balanced:
d15bcfdb 3663 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3664 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3665 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3666 return -1;
16cfb1c0 3667 sd->nr_balance_failed = 0;
48f24c4d 3668
16cfb1c0 3669 return 0;
1da177e4
LT
3670}
3671
3672/*
3673 * idle_balance is called by schedule() if this_cpu is about to become
3674 * idle. Attempts to pull tasks from other CPUs.
3675 */
70b97a7f 3676static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3677{
3678 struct sched_domain *sd;
dd41f596
IM
3679 int pulled_task = -1;
3680 unsigned long next_balance = jiffies + HZ;
7c16ec58 3681 cpumask_t tmpmask;
1da177e4
LT
3682
3683 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3684 unsigned long interval;
3685
3686 if (!(sd->flags & SD_LOAD_BALANCE))
3687 continue;
3688
3689 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3690 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3691 pulled_task = load_balance_newidle(this_cpu, this_rq,
3692 sd, &tmpmask);
92c4ca5c
CL
3693
3694 interval = msecs_to_jiffies(sd->balance_interval);
3695 if (time_after(next_balance, sd->last_balance + interval))
3696 next_balance = sd->last_balance + interval;
3697 if (pulled_task)
3698 break;
1da177e4 3699 }
dd41f596 3700 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3701 /*
3702 * We are going idle. next_balance may be set based on
3703 * a busy processor. So reset next_balance.
3704 */
3705 this_rq->next_balance = next_balance;
dd41f596 3706 }
1da177e4
LT
3707}
3708
3709/*
3710 * active_load_balance is run by migration threads. It pushes running tasks
3711 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3712 * running on each physical CPU where possible, and avoids physical /
3713 * logical imbalances.
3714 *
3715 * Called with busiest_rq locked.
3716 */
70b97a7f 3717static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3718{
39507451 3719 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3720 struct sched_domain *sd;
3721 struct rq *target_rq;
39507451 3722
48f24c4d 3723 /* Is there any task to move? */
39507451 3724 if (busiest_rq->nr_running <= 1)
39507451
NP
3725 return;
3726
3727 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3728
3729 /*
39507451 3730 * This condition is "impossible", if it occurs
41a2d6cf 3731 * we need to fix it. Originally reported by
39507451 3732 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3733 */
39507451 3734 BUG_ON(busiest_rq == target_rq);
1da177e4 3735
39507451
NP
3736 /* move a task from busiest_rq to target_rq */
3737 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3738 update_rq_clock(busiest_rq);
3739 update_rq_clock(target_rq);
39507451
NP
3740
3741 /* Search for an sd spanning us and the target CPU. */
c96d145e 3742 for_each_domain(target_cpu, sd) {
39507451 3743 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3744 cpu_isset(busiest_cpu, sd->span))
39507451 3745 break;
c96d145e 3746 }
39507451 3747
48f24c4d 3748 if (likely(sd)) {
2d72376b 3749 schedstat_inc(sd, alb_count);
39507451 3750
43010659
PW
3751 if (move_one_task(target_rq, target_cpu, busiest_rq,
3752 sd, CPU_IDLE))
48f24c4d
IM
3753 schedstat_inc(sd, alb_pushed);
3754 else
3755 schedstat_inc(sd, alb_failed);
3756 }
1b12bbc7 3757 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3758}
3759
46cb4b7c
SS
3760#ifdef CONFIG_NO_HZ
3761static struct {
3762 atomic_t load_balancer;
41a2d6cf 3763 cpumask_t cpu_mask;
46cb4b7c
SS
3764} nohz ____cacheline_aligned = {
3765 .load_balancer = ATOMIC_INIT(-1),
3766 .cpu_mask = CPU_MASK_NONE,
3767};
3768
7835b98b 3769/*
46cb4b7c
SS
3770 * This routine will try to nominate the ilb (idle load balancing)
3771 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3772 * load balancing on behalf of all those cpus. If all the cpus in the system
3773 * go into this tickless mode, then there will be no ilb owner (as there is
3774 * no need for one) and all the cpus will sleep till the next wakeup event
3775 * arrives...
3776 *
3777 * For the ilb owner, tick is not stopped. And this tick will be used
3778 * for idle load balancing. ilb owner will still be part of
3779 * nohz.cpu_mask..
7835b98b 3780 *
46cb4b7c
SS
3781 * While stopping the tick, this cpu will become the ilb owner if there
3782 * is no other owner. And will be the owner till that cpu becomes busy
3783 * or if all cpus in the system stop their ticks at which point
3784 * there is no need for ilb owner.
3785 *
3786 * When the ilb owner becomes busy, it nominates another owner, during the
3787 * next busy scheduler_tick()
3788 */
3789int select_nohz_load_balancer(int stop_tick)
3790{
3791 int cpu = smp_processor_id();
3792
3793 if (stop_tick) {
3794 cpu_set(cpu, nohz.cpu_mask);
3795 cpu_rq(cpu)->in_nohz_recently = 1;
3796
3797 /*
3798 * If we are going offline and still the leader, give up!
3799 */
e761b772 3800 if (!cpu_active(cpu) &&
46cb4b7c
SS
3801 atomic_read(&nohz.load_balancer) == cpu) {
3802 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3803 BUG();
3804 return 0;
3805 }
3806
3807 /* time for ilb owner also to sleep */
3808 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3809 if (atomic_read(&nohz.load_balancer) == cpu)
3810 atomic_set(&nohz.load_balancer, -1);
3811 return 0;
3812 }
3813
3814 if (atomic_read(&nohz.load_balancer) == -1) {
3815 /* make me the ilb owner */
3816 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3817 return 1;
3818 } else if (atomic_read(&nohz.load_balancer) == cpu)
3819 return 1;
3820 } else {
3821 if (!cpu_isset(cpu, nohz.cpu_mask))
3822 return 0;
3823
3824 cpu_clear(cpu, nohz.cpu_mask);
3825
3826 if (atomic_read(&nohz.load_balancer) == cpu)
3827 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3828 BUG();
3829 }
3830 return 0;
3831}
3832#endif
3833
3834static DEFINE_SPINLOCK(balancing);
3835
3836/*
7835b98b
CL
3837 * It checks each scheduling domain to see if it is due to be balanced,
3838 * and initiates a balancing operation if so.
3839 *
3840 * Balancing parameters are set up in arch_init_sched_domains.
3841 */
a9957449 3842static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3843{
46cb4b7c
SS
3844 int balance = 1;
3845 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3846 unsigned long interval;
3847 struct sched_domain *sd;
46cb4b7c 3848 /* Earliest time when we have to do rebalance again */
c9819f45 3849 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3850 int update_next_balance = 0;
d07355f5 3851 int need_serialize;
7c16ec58 3852 cpumask_t tmp;
1da177e4 3853
46cb4b7c 3854 for_each_domain(cpu, sd) {
1da177e4
LT
3855 if (!(sd->flags & SD_LOAD_BALANCE))
3856 continue;
3857
3858 interval = sd->balance_interval;
d15bcfdb 3859 if (idle != CPU_IDLE)
1da177e4
LT
3860 interval *= sd->busy_factor;
3861
3862 /* scale ms to jiffies */
3863 interval = msecs_to_jiffies(interval);
3864 if (unlikely(!interval))
3865 interval = 1;
dd41f596
IM
3866 if (interval > HZ*NR_CPUS/10)
3867 interval = HZ*NR_CPUS/10;
3868
d07355f5 3869 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3870
d07355f5 3871 if (need_serialize) {
08c183f3
CL
3872 if (!spin_trylock(&balancing))
3873 goto out;
3874 }
3875
c9819f45 3876 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3877 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3878 /*
3879 * We've pulled tasks over so either we're no
5969fe06
NP
3880 * longer idle, or one of our SMT siblings is
3881 * not idle.
3882 */
d15bcfdb 3883 idle = CPU_NOT_IDLE;
1da177e4 3884 }
1bd77f2d 3885 sd->last_balance = jiffies;
1da177e4 3886 }
d07355f5 3887 if (need_serialize)
08c183f3
CL
3888 spin_unlock(&balancing);
3889out:
f549da84 3890 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3891 next_balance = sd->last_balance + interval;
f549da84
SS
3892 update_next_balance = 1;
3893 }
783609c6
SS
3894
3895 /*
3896 * Stop the load balance at this level. There is another
3897 * CPU in our sched group which is doing load balancing more
3898 * actively.
3899 */
3900 if (!balance)
3901 break;
1da177e4 3902 }
f549da84
SS
3903
3904 /*
3905 * next_balance will be updated only when there is a need.
3906 * When the cpu is attached to null domain for ex, it will not be
3907 * updated.
3908 */
3909 if (likely(update_next_balance))
3910 rq->next_balance = next_balance;
46cb4b7c
SS
3911}
3912
3913/*
3914 * run_rebalance_domains is triggered when needed from the scheduler tick.
3915 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3916 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3917 */
3918static void run_rebalance_domains(struct softirq_action *h)
3919{
dd41f596
IM
3920 int this_cpu = smp_processor_id();
3921 struct rq *this_rq = cpu_rq(this_cpu);
3922 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3923 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3924
dd41f596 3925 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3926
3927#ifdef CONFIG_NO_HZ
3928 /*
3929 * If this cpu is the owner for idle load balancing, then do the
3930 * balancing on behalf of the other idle cpus whose ticks are
3931 * stopped.
3932 */
dd41f596
IM
3933 if (this_rq->idle_at_tick &&
3934 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3935 cpumask_t cpus = nohz.cpu_mask;
3936 struct rq *rq;
3937 int balance_cpu;
3938
dd41f596 3939 cpu_clear(this_cpu, cpus);
363ab6f1 3940 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3941 /*
3942 * If this cpu gets work to do, stop the load balancing
3943 * work being done for other cpus. Next load
3944 * balancing owner will pick it up.
3945 */
3946 if (need_resched())
3947 break;
3948
de0cf899 3949 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3950
3951 rq = cpu_rq(balance_cpu);
dd41f596
IM
3952 if (time_after(this_rq->next_balance, rq->next_balance))
3953 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3954 }
3955 }
3956#endif
3957}
3958
3959/*
3960 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3961 *
3962 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3963 * idle load balancing owner or decide to stop the periodic load balancing,
3964 * if the whole system is idle.
3965 */
dd41f596 3966static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3967{
46cb4b7c
SS
3968#ifdef CONFIG_NO_HZ
3969 /*
3970 * If we were in the nohz mode recently and busy at the current
3971 * scheduler tick, then check if we need to nominate new idle
3972 * load balancer.
3973 */
3974 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3975 rq->in_nohz_recently = 0;
3976
3977 if (atomic_read(&nohz.load_balancer) == cpu) {
3978 cpu_clear(cpu, nohz.cpu_mask);
3979 atomic_set(&nohz.load_balancer, -1);
3980 }
3981
3982 if (atomic_read(&nohz.load_balancer) == -1) {
3983 /*
3984 * simple selection for now: Nominate the
3985 * first cpu in the nohz list to be the next
3986 * ilb owner.
3987 *
3988 * TBD: Traverse the sched domains and nominate
3989 * the nearest cpu in the nohz.cpu_mask.
3990 */
3991 int ilb = first_cpu(nohz.cpu_mask);
3992
434d53b0 3993 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3994 resched_cpu(ilb);
3995 }
3996 }
3997
3998 /*
3999 * If this cpu is idle and doing idle load balancing for all the
4000 * cpus with ticks stopped, is it time for that to stop?
4001 */
4002 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4003 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4004 resched_cpu(cpu);
4005 return;
4006 }
4007
4008 /*
4009 * If this cpu is idle and the idle load balancing is done by
4010 * someone else, then no need raise the SCHED_SOFTIRQ
4011 */
4012 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4013 cpu_isset(cpu, nohz.cpu_mask))
4014 return;
4015#endif
4016 if (time_after_eq(jiffies, rq->next_balance))
4017 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4018}
dd41f596
IM
4019
4020#else /* CONFIG_SMP */
4021
1da177e4
LT
4022/*
4023 * on UP we do not need to balance between CPUs:
4024 */
70b97a7f 4025static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4026{
4027}
dd41f596 4028
1da177e4
LT
4029#endif
4030
1da177e4
LT
4031DEFINE_PER_CPU(struct kernel_stat, kstat);
4032
4033EXPORT_PER_CPU_SYMBOL(kstat);
4034
4035/*
f06febc9
FM
4036 * Return any ns on the sched_clock that have not yet been banked in
4037 * @p in case that task is currently running.
1da177e4 4038 */
bb34d92f 4039unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4040{
1da177e4 4041 unsigned long flags;
41b86e9c 4042 struct rq *rq;
bb34d92f 4043 u64 ns = 0;
48f24c4d 4044
41b86e9c 4045 rq = task_rq_lock(p, &flags);
1508487e 4046
051a1d1a 4047 if (task_current(rq, p)) {
f06febc9
FM
4048 u64 delta_exec;
4049
a8e504d2
IM
4050 update_rq_clock(rq);
4051 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4052 if ((s64)delta_exec > 0)
bb34d92f 4053 ns = delta_exec;
41b86e9c 4054 }
48f24c4d 4055
41b86e9c 4056 task_rq_unlock(rq, &flags);
48f24c4d 4057
1da177e4
LT
4058 return ns;
4059}
4060
1da177e4
LT
4061/*
4062 * Account user cpu time to a process.
4063 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4064 * @cputime: the cpu time spent in user space since the last update
4065 */
4066void account_user_time(struct task_struct *p, cputime_t cputime)
4067{
4068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4069 cputime64_t tmp;
4070
4071 p->utime = cputime_add(p->utime, cputime);
f06febc9 4072 account_group_user_time(p, cputime);
1da177e4
LT
4073
4074 /* Add user time to cpustat. */
4075 tmp = cputime_to_cputime64(cputime);
4076 if (TASK_NICE(p) > 0)
4077 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4078 else
4079 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4080 /* Account for user time used */
4081 acct_update_integrals(p);
1da177e4
LT
4082}
4083
94886b84
LV
4084/*
4085 * Account guest cpu time to a process.
4086 * @p: the process that the cpu time gets accounted to
4087 * @cputime: the cpu time spent in virtual machine since the last update
4088 */
f7402e03 4089static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4090{
4091 cputime64_t tmp;
4092 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4093
4094 tmp = cputime_to_cputime64(cputime);
4095
4096 p->utime = cputime_add(p->utime, cputime);
f06febc9 4097 account_group_user_time(p, cputime);
94886b84
LV
4098 p->gtime = cputime_add(p->gtime, cputime);
4099
4100 cpustat->user = cputime64_add(cpustat->user, tmp);
4101 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4102}
4103
c66f08be
MN
4104/*
4105 * Account scaled user cpu time to a process.
4106 * @p: the process that the cpu time gets accounted to
4107 * @cputime: the cpu time spent in user space since the last update
4108 */
4109void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4110{
4111 p->utimescaled = cputime_add(p->utimescaled, cputime);
4112}
4113
1da177e4
LT
4114/*
4115 * Account system cpu time to a process.
4116 * @p: the process that the cpu time gets accounted to
4117 * @hardirq_offset: the offset to subtract from hardirq_count()
4118 * @cputime: the cpu time spent in kernel space since the last update
4119 */
4120void account_system_time(struct task_struct *p, int hardirq_offset,
4121 cputime_t cputime)
4122{
4123 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4124 struct rq *rq = this_rq();
1da177e4
LT
4125 cputime64_t tmp;
4126
983ed7a6
HH
4127 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4128 account_guest_time(p, cputime);
4129 return;
4130 }
94886b84 4131
1da177e4 4132 p->stime = cputime_add(p->stime, cputime);
f06febc9 4133 account_group_system_time(p, cputime);
1da177e4
LT
4134
4135 /* Add system time to cpustat. */
4136 tmp = cputime_to_cputime64(cputime);
4137 if (hardirq_count() - hardirq_offset)
4138 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4139 else if (softirq_count())
4140 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4141 else if (p != rq->idle)
1da177e4 4142 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4143 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4144 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4145 else
4146 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4147 /* Account for system time used */
4148 acct_update_integrals(p);
1da177e4
LT
4149}
4150
c66f08be
MN
4151/*
4152 * Account scaled system cpu time to a process.
4153 * @p: the process that the cpu time gets accounted to
4154 * @hardirq_offset: the offset to subtract from hardirq_count()
4155 * @cputime: the cpu time spent in kernel space since the last update
4156 */
4157void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4158{
4159 p->stimescaled = cputime_add(p->stimescaled, cputime);
4160}
4161
1da177e4
LT
4162/*
4163 * Account for involuntary wait time.
4164 * @p: the process from which the cpu time has been stolen
4165 * @steal: the cpu time spent in involuntary wait
4166 */
4167void account_steal_time(struct task_struct *p, cputime_t steal)
4168{
4169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4170 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4171 struct rq *rq = this_rq();
1da177e4
LT
4172
4173 if (p == rq->idle) {
4174 p->stime = cputime_add(p->stime, steal);
f06febc9 4175 account_group_system_time(p, steal);
1da177e4
LT
4176 if (atomic_read(&rq->nr_iowait) > 0)
4177 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4178 else
4179 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4180 } else
1da177e4
LT
4181 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4182}
4183
49048622
BS
4184/*
4185 * Use precise platform statistics if available:
4186 */
4187#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4188cputime_t task_utime(struct task_struct *p)
4189{
4190 return p->utime;
4191}
4192
4193cputime_t task_stime(struct task_struct *p)
4194{
4195 return p->stime;
4196}
4197#else
4198cputime_t task_utime(struct task_struct *p)
4199{
4200 clock_t utime = cputime_to_clock_t(p->utime),
4201 total = utime + cputime_to_clock_t(p->stime);
4202 u64 temp;
4203
4204 /*
4205 * Use CFS's precise accounting:
4206 */
4207 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4208
4209 if (total) {
4210 temp *= utime;
4211 do_div(temp, total);
4212 }
4213 utime = (clock_t)temp;
4214
4215 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4216 return p->prev_utime;
4217}
4218
4219cputime_t task_stime(struct task_struct *p)
4220{
4221 clock_t stime;
4222
4223 /*
4224 * Use CFS's precise accounting. (we subtract utime from
4225 * the total, to make sure the total observed by userspace
4226 * grows monotonically - apps rely on that):
4227 */
4228 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4229 cputime_to_clock_t(task_utime(p));
4230
4231 if (stime >= 0)
4232 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4233
4234 return p->prev_stime;
4235}
4236#endif
4237
4238inline cputime_t task_gtime(struct task_struct *p)
4239{
4240 return p->gtime;
4241}
4242
7835b98b
CL
4243/*
4244 * This function gets called by the timer code, with HZ frequency.
4245 * We call it with interrupts disabled.
4246 *
4247 * It also gets called by the fork code, when changing the parent's
4248 * timeslices.
4249 */
4250void scheduler_tick(void)
4251{
7835b98b
CL
4252 int cpu = smp_processor_id();
4253 struct rq *rq = cpu_rq(cpu);
dd41f596 4254 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4255
4256 sched_clock_tick();
dd41f596
IM
4257
4258 spin_lock(&rq->lock);
3e51f33f 4259 update_rq_clock(rq);
f1a438d8 4260 update_cpu_load(rq);
fa85ae24 4261 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4262 spin_unlock(&rq->lock);
7835b98b 4263
e418e1c2 4264#ifdef CONFIG_SMP
dd41f596
IM
4265 rq->idle_at_tick = idle_cpu(cpu);
4266 trigger_load_balance(rq, cpu);
e418e1c2 4267#endif
1da177e4
LT
4268}
4269
6cd8a4bb
SR
4270#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4271 defined(CONFIG_PREEMPT_TRACER))
4272
4273static inline unsigned long get_parent_ip(unsigned long addr)
4274{
4275 if (in_lock_functions(addr)) {
4276 addr = CALLER_ADDR2;
4277 if (in_lock_functions(addr))
4278 addr = CALLER_ADDR3;
4279 }
4280 return addr;
4281}
1da177e4 4282
43627582 4283void __kprobes add_preempt_count(int val)
1da177e4 4284{
6cd8a4bb 4285#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4286 /*
4287 * Underflow?
4288 */
9a11b49a
IM
4289 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4290 return;
6cd8a4bb 4291#endif
1da177e4 4292 preempt_count() += val;
6cd8a4bb 4293#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4294 /*
4295 * Spinlock count overflowing soon?
4296 */
33859f7f
MOS
4297 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4298 PREEMPT_MASK - 10);
6cd8a4bb
SR
4299#endif
4300 if (preempt_count() == val)
4301 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4302}
4303EXPORT_SYMBOL(add_preempt_count);
4304
43627582 4305void __kprobes sub_preempt_count(int val)
1da177e4 4306{
6cd8a4bb 4307#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4308 /*
4309 * Underflow?
4310 */
9a11b49a
IM
4311 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4312 return;
1da177e4
LT
4313 /*
4314 * Is the spinlock portion underflowing?
4315 */
9a11b49a
IM
4316 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4317 !(preempt_count() & PREEMPT_MASK)))
4318 return;
6cd8a4bb 4319#endif
9a11b49a 4320
6cd8a4bb
SR
4321 if (preempt_count() == val)
4322 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4323 preempt_count() -= val;
4324}
4325EXPORT_SYMBOL(sub_preempt_count);
4326
4327#endif
4328
4329/*
dd41f596 4330 * Print scheduling while atomic bug:
1da177e4 4331 */
dd41f596 4332static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4333{
838225b4
SS
4334 struct pt_regs *regs = get_irq_regs();
4335
4336 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4337 prev->comm, prev->pid, preempt_count());
4338
dd41f596 4339 debug_show_held_locks(prev);
e21f5b15 4340 print_modules();
dd41f596
IM
4341 if (irqs_disabled())
4342 print_irqtrace_events(prev);
838225b4
SS
4343
4344 if (regs)
4345 show_regs(regs);
4346 else
4347 dump_stack();
dd41f596 4348}
1da177e4 4349
dd41f596
IM
4350/*
4351 * Various schedule()-time debugging checks and statistics:
4352 */
4353static inline void schedule_debug(struct task_struct *prev)
4354{
1da177e4 4355 /*
41a2d6cf 4356 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4357 * schedule() atomically, we ignore that path for now.
4358 * Otherwise, whine if we are scheduling when we should not be.
4359 */
3f33a7ce 4360 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4361 __schedule_bug(prev);
4362
1da177e4
LT
4363 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4364
2d72376b 4365 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4366#ifdef CONFIG_SCHEDSTATS
4367 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4368 schedstat_inc(this_rq(), bkl_count);
4369 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4370 }
4371#endif
dd41f596
IM
4372}
4373
4374/*
4375 * Pick up the highest-prio task:
4376 */
4377static inline struct task_struct *
ff95f3df 4378pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4379{
5522d5d5 4380 const struct sched_class *class;
dd41f596 4381 struct task_struct *p;
1da177e4
LT
4382
4383 /*
dd41f596
IM
4384 * Optimization: we know that if all tasks are in
4385 * the fair class we can call that function directly:
1da177e4 4386 */
dd41f596 4387 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4388 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4389 if (likely(p))
4390 return p;
1da177e4
LT
4391 }
4392
dd41f596
IM
4393 class = sched_class_highest;
4394 for ( ; ; ) {
fb8d4724 4395 p = class->pick_next_task(rq);
dd41f596
IM
4396 if (p)
4397 return p;
4398 /*
4399 * Will never be NULL as the idle class always
4400 * returns a non-NULL p:
4401 */
4402 class = class->next;
4403 }
4404}
1da177e4 4405
dd41f596
IM
4406/*
4407 * schedule() is the main scheduler function.
4408 */
4409asmlinkage void __sched schedule(void)
4410{
4411 struct task_struct *prev, *next;
67ca7bde 4412 unsigned long *switch_count;
dd41f596 4413 struct rq *rq;
31656519 4414 int cpu;
dd41f596
IM
4415
4416need_resched:
4417 preempt_disable();
4418 cpu = smp_processor_id();
4419 rq = cpu_rq(cpu);
4420 rcu_qsctr_inc(cpu);
4421 prev = rq->curr;
4422 switch_count = &prev->nivcsw;
4423
4424 release_kernel_lock(prev);
4425need_resched_nonpreemptible:
4426
4427 schedule_debug(prev);
1da177e4 4428
31656519 4429 if (sched_feat(HRTICK))
f333fdc9 4430 hrtick_clear(rq);
8f4d37ec 4431
8cd162ce 4432 spin_lock_irq(&rq->lock);
3e51f33f 4433 update_rq_clock(rq);
1e819950 4434 clear_tsk_need_resched(prev);
1da177e4 4435
1da177e4 4436 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4437 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4438 prev->state = TASK_RUNNING;
16882c1e 4439 else
2e1cb74a 4440 deactivate_task(rq, prev, 1);
dd41f596 4441 switch_count = &prev->nvcsw;
1da177e4
LT
4442 }
4443
9a897c5a
SR
4444#ifdef CONFIG_SMP
4445 if (prev->sched_class->pre_schedule)
4446 prev->sched_class->pre_schedule(rq, prev);
4447#endif
f65eda4f 4448
dd41f596 4449 if (unlikely(!rq->nr_running))
1da177e4 4450 idle_balance(cpu, rq);
1da177e4 4451
31ee529c 4452 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4453 next = pick_next_task(rq, prev);
1da177e4 4454
1da177e4 4455 if (likely(prev != next)) {
673a90a1
DS
4456 sched_info_switch(prev, next);
4457
1da177e4
LT
4458 rq->nr_switches++;
4459 rq->curr = next;
4460 ++*switch_count;
4461
dd41f596 4462 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4463 /*
4464 * the context switch might have flipped the stack from under
4465 * us, hence refresh the local variables.
4466 */
4467 cpu = smp_processor_id();
4468 rq = cpu_rq(cpu);
1da177e4
LT
4469 } else
4470 spin_unlock_irq(&rq->lock);
4471
8f4d37ec 4472 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4473 goto need_resched_nonpreemptible;
8f4d37ec 4474
1da177e4
LT
4475 preempt_enable_no_resched();
4476 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4477 goto need_resched;
4478}
1da177e4
LT
4479EXPORT_SYMBOL(schedule);
4480
4481#ifdef CONFIG_PREEMPT
4482/*
2ed6e34f 4483 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4484 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4485 * occur there and call schedule directly.
4486 */
4487asmlinkage void __sched preempt_schedule(void)
4488{
4489 struct thread_info *ti = current_thread_info();
6478d880 4490
1da177e4
LT
4491 /*
4492 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4493 * we do not want to preempt the current task. Just return..
1da177e4 4494 */
beed33a8 4495 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4496 return;
4497
3a5c359a
AK
4498 do {
4499 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4500 schedule();
3a5c359a 4501 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4502
3a5c359a
AK
4503 /*
4504 * Check again in case we missed a preemption opportunity
4505 * between schedule and now.
4506 */
4507 barrier();
4508 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4509}
1da177e4
LT
4510EXPORT_SYMBOL(preempt_schedule);
4511
4512/*
2ed6e34f 4513 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4514 * off of irq context.
4515 * Note, that this is called and return with irqs disabled. This will
4516 * protect us against recursive calling from irq.
4517 */
4518asmlinkage void __sched preempt_schedule_irq(void)
4519{
4520 struct thread_info *ti = current_thread_info();
6478d880 4521
2ed6e34f 4522 /* Catch callers which need to be fixed */
1da177e4
LT
4523 BUG_ON(ti->preempt_count || !irqs_disabled());
4524
3a5c359a
AK
4525 do {
4526 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4527 local_irq_enable();
4528 schedule();
4529 local_irq_disable();
3a5c359a 4530 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4531
3a5c359a
AK
4532 /*
4533 * Check again in case we missed a preemption opportunity
4534 * between schedule and now.
4535 */
4536 barrier();
4537 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4538}
4539
4540#endif /* CONFIG_PREEMPT */
4541
95cdf3b7
IM
4542int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4543 void *key)
1da177e4 4544{
48f24c4d 4545 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4546}
1da177e4
LT
4547EXPORT_SYMBOL(default_wake_function);
4548
4549/*
41a2d6cf
IM
4550 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4551 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4552 * number) then we wake all the non-exclusive tasks and one exclusive task.
4553 *
4554 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4555 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4556 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4557 */
4558static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4559 int nr_exclusive, int sync, void *key)
4560{
2e45874c 4561 wait_queue_t *curr, *next;
1da177e4 4562
2e45874c 4563 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4564 unsigned flags = curr->flags;
4565
1da177e4 4566 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4567 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4568 break;
4569 }
4570}
4571
4572/**
4573 * __wake_up - wake up threads blocked on a waitqueue.
4574 * @q: the waitqueue
4575 * @mode: which threads
4576 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4577 * @key: is directly passed to the wakeup function
1da177e4 4578 */
7ad5b3a5 4579void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4580 int nr_exclusive, void *key)
1da177e4
LT
4581{
4582 unsigned long flags;
4583
4584 spin_lock_irqsave(&q->lock, flags);
4585 __wake_up_common(q, mode, nr_exclusive, 0, key);
4586 spin_unlock_irqrestore(&q->lock, flags);
4587}
1da177e4
LT
4588EXPORT_SYMBOL(__wake_up);
4589
4590/*
4591 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4592 */
7ad5b3a5 4593void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4594{
4595 __wake_up_common(q, mode, 1, 0, NULL);
4596}
4597
4598/**
67be2dd1 4599 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4600 * @q: the waitqueue
4601 * @mode: which threads
4602 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4603 *
4604 * The sync wakeup differs that the waker knows that it will schedule
4605 * away soon, so while the target thread will be woken up, it will not
4606 * be migrated to another CPU - ie. the two threads are 'synchronized'
4607 * with each other. This can prevent needless bouncing between CPUs.
4608 *
4609 * On UP it can prevent extra preemption.
4610 */
7ad5b3a5 4611void
95cdf3b7 4612__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4613{
4614 unsigned long flags;
4615 int sync = 1;
4616
4617 if (unlikely(!q))
4618 return;
4619
4620 if (unlikely(!nr_exclusive))
4621 sync = 0;
4622
4623 spin_lock_irqsave(&q->lock, flags);
4624 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4625 spin_unlock_irqrestore(&q->lock, flags);
4626}
4627EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4628
65eb3dc6
KD
4629/**
4630 * complete: - signals a single thread waiting on this completion
4631 * @x: holds the state of this particular completion
4632 *
4633 * This will wake up a single thread waiting on this completion. Threads will be
4634 * awakened in the same order in which they were queued.
4635 *
4636 * See also complete_all(), wait_for_completion() and related routines.
4637 */
b15136e9 4638void complete(struct completion *x)
1da177e4
LT
4639{
4640 unsigned long flags;
4641
4642 spin_lock_irqsave(&x->wait.lock, flags);
4643 x->done++;
d9514f6c 4644 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4645 spin_unlock_irqrestore(&x->wait.lock, flags);
4646}
4647EXPORT_SYMBOL(complete);
4648
65eb3dc6
KD
4649/**
4650 * complete_all: - signals all threads waiting on this completion
4651 * @x: holds the state of this particular completion
4652 *
4653 * This will wake up all threads waiting on this particular completion event.
4654 */
b15136e9 4655void complete_all(struct completion *x)
1da177e4
LT
4656{
4657 unsigned long flags;
4658
4659 spin_lock_irqsave(&x->wait.lock, flags);
4660 x->done += UINT_MAX/2;
d9514f6c 4661 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4662 spin_unlock_irqrestore(&x->wait.lock, flags);
4663}
4664EXPORT_SYMBOL(complete_all);
4665
8cbbe86d
AK
4666static inline long __sched
4667do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4668{
1da177e4
LT
4669 if (!x->done) {
4670 DECLARE_WAITQUEUE(wait, current);
4671
4672 wait.flags |= WQ_FLAG_EXCLUSIVE;
4673 __add_wait_queue_tail(&x->wait, &wait);
4674 do {
94d3d824 4675 if (signal_pending_state(state, current)) {
ea71a546
ON
4676 timeout = -ERESTARTSYS;
4677 break;
8cbbe86d
AK
4678 }
4679 __set_current_state(state);
1da177e4
LT
4680 spin_unlock_irq(&x->wait.lock);
4681 timeout = schedule_timeout(timeout);
4682 spin_lock_irq(&x->wait.lock);
ea71a546 4683 } while (!x->done && timeout);
1da177e4 4684 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4685 if (!x->done)
4686 return timeout;
1da177e4
LT
4687 }
4688 x->done--;
ea71a546 4689 return timeout ?: 1;
1da177e4 4690}
1da177e4 4691
8cbbe86d
AK
4692static long __sched
4693wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4694{
1da177e4
LT
4695 might_sleep();
4696
4697 spin_lock_irq(&x->wait.lock);
8cbbe86d 4698 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4699 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4700 return timeout;
4701}
1da177e4 4702
65eb3dc6
KD
4703/**
4704 * wait_for_completion: - waits for completion of a task
4705 * @x: holds the state of this particular completion
4706 *
4707 * This waits to be signaled for completion of a specific task. It is NOT
4708 * interruptible and there is no timeout.
4709 *
4710 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4711 * and interrupt capability. Also see complete().
4712 */
b15136e9 4713void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4714{
4715 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4716}
8cbbe86d 4717EXPORT_SYMBOL(wait_for_completion);
1da177e4 4718
65eb3dc6
KD
4719/**
4720 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4721 * @x: holds the state of this particular completion
4722 * @timeout: timeout value in jiffies
4723 *
4724 * This waits for either a completion of a specific task to be signaled or for a
4725 * specified timeout to expire. The timeout is in jiffies. It is not
4726 * interruptible.
4727 */
b15136e9 4728unsigned long __sched
8cbbe86d 4729wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4730{
8cbbe86d 4731 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4732}
8cbbe86d 4733EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4734
65eb3dc6
KD
4735/**
4736 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4737 * @x: holds the state of this particular completion
4738 *
4739 * This waits for completion of a specific task to be signaled. It is
4740 * interruptible.
4741 */
8cbbe86d 4742int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4743{
51e97990
AK
4744 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4745 if (t == -ERESTARTSYS)
4746 return t;
4747 return 0;
0fec171c 4748}
8cbbe86d 4749EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4750
65eb3dc6
KD
4751/**
4752 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4753 * @x: holds the state of this particular completion
4754 * @timeout: timeout value in jiffies
4755 *
4756 * This waits for either a completion of a specific task to be signaled or for a
4757 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4758 */
b15136e9 4759unsigned long __sched
8cbbe86d
AK
4760wait_for_completion_interruptible_timeout(struct completion *x,
4761 unsigned long timeout)
0fec171c 4762{
8cbbe86d 4763 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4764}
8cbbe86d 4765EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4766
65eb3dc6
KD
4767/**
4768 * wait_for_completion_killable: - waits for completion of a task (killable)
4769 * @x: holds the state of this particular completion
4770 *
4771 * This waits to be signaled for completion of a specific task. It can be
4772 * interrupted by a kill signal.
4773 */
009e577e
MW
4774int __sched wait_for_completion_killable(struct completion *x)
4775{
4776 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4777 if (t == -ERESTARTSYS)
4778 return t;
4779 return 0;
4780}
4781EXPORT_SYMBOL(wait_for_completion_killable);
4782
be4de352
DC
4783/**
4784 * try_wait_for_completion - try to decrement a completion without blocking
4785 * @x: completion structure
4786 *
4787 * Returns: 0 if a decrement cannot be done without blocking
4788 * 1 if a decrement succeeded.
4789 *
4790 * If a completion is being used as a counting completion,
4791 * attempt to decrement the counter without blocking. This
4792 * enables us to avoid waiting if the resource the completion
4793 * is protecting is not available.
4794 */
4795bool try_wait_for_completion(struct completion *x)
4796{
4797 int ret = 1;
4798
4799 spin_lock_irq(&x->wait.lock);
4800 if (!x->done)
4801 ret = 0;
4802 else
4803 x->done--;
4804 spin_unlock_irq(&x->wait.lock);
4805 return ret;
4806}
4807EXPORT_SYMBOL(try_wait_for_completion);
4808
4809/**
4810 * completion_done - Test to see if a completion has any waiters
4811 * @x: completion structure
4812 *
4813 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4814 * 1 if there are no waiters.
4815 *
4816 */
4817bool completion_done(struct completion *x)
4818{
4819 int ret = 1;
4820
4821 spin_lock_irq(&x->wait.lock);
4822 if (!x->done)
4823 ret = 0;
4824 spin_unlock_irq(&x->wait.lock);
4825 return ret;
4826}
4827EXPORT_SYMBOL(completion_done);
4828
8cbbe86d
AK
4829static long __sched
4830sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4831{
0fec171c
IM
4832 unsigned long flags;
4833 wait_queue_t wait;
4834
4835 init_waitqueue_entry(&wait, current);
1da177e4 4836
8cbbe86d 4837 __set_current_state(state);
1da177e4 4838
8cbbe86d
AK
4839 spin_lock_irqsave(&q->lock, flags);
4840 __add_wait_queue(q, &wait);
4841 spin_unlock(&q->lock);
4842 timeout = schedule_timeout(timeout);
4843 spin_lock_irq(&q->lock);
4844 __remove_wait_queue(q, &wait);
4845 spin_unlock_irqrestore(&q->lock, flags);
4846
4847 return timeout;
4848}
4849
4850void __sched interruptible_sleep_on(wait_queue_head_t *q)
4851{
4852 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4853}
1da177e4
LT
4854EXPORT_SYMBOL(interruptible_sleep_on);
4855
0fec171c 4856long __sched
95cdf3b7 4857interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4858{
8cbbe86d 4859 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4860}
1da177e4
LT
4861EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4862
0fec171c 4863void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4864{
8cbbe86d 4865 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4866}
1da177e4
LT
4867EXPORT_SYMBOL(sleep_on);
4868
0fec171c 4869long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4870{
8cbbe86d 4871 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4872}
1da177e4
LT
4873EXPORT_SYMBOL(sleep_on_timeout);
4874
b29739f9
IM
4875#ifdef CONFIG_RT_MUTEXES
4876
4877/*
4878 * rt_mutex_setprio - set the current priority of a task
4879 * @p: task
4880 * @prio: prio value (kernel-internal form)
4881 *
4882 * This function changes the 'effective' priority of a task. It does
4883 * not touch ->normal_prio like __setscheduler().
4884 *
4885 * Used by the rt_mutex code to implement priority inheritance logic.
4886 */
36c8b586 4887void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4888{
4889 unsigned long flags;
83b699ed 4890 int oldprio, on_rq, running;
70b97a7f 4891 struct rq *rq;
cb469845 4892 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4893
4894 BUG_ON(prio < 0 || prio > MAX_PRIO);
4895
4896 rq = task_rq_lock(p, &flags);
a8e504d2 4897 update_rq_clock(rq);
b29739f9 4898
d5f9f942 4899 oldprio = p->prio;
dd41f596 4900 on_rq = p->se.on_rq;
051a1d1a 4901 running = task_current(rq, p);
0e1f3483 4902 if (on_rq)
69be72c1 4903 dequeue_task(rq, p, 0);
0e1f3483
HS
4904 if (running)
4905 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4906
4907 if (rt_prio(prio))
4908 p->sched_class = &rt_sched_class;
4909 else
4910 p->sched_class = &fair_sched_class;
4911
b29739f9
IM
4912 p->prio = prio;
4913
0e1f3483
HS
4914 if (running)
4915 p->sched_class->set_curr_task(rq);
dd41f596 4916 if (on_rq) {
8159f87e 4917 enqueue_task(rq, p, 0);
cb469845
SR
4918
4919 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4920 }
4921 task_rq_unlock(rq, &flags);
4922}
4923
4924#endif
4925
36c8b586 4926void set_user_nice(struct task_struct *p, long nice)
1da177e4 4927{
dd41f596 4928 int old_prio, delta, on_rq;
1da177e4 4929 unsigned long flags;
70b97a7f 4930 struct rq *rq;
1da177e4
LT
4931
4932 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4933 return;
4934 /*
4935 * We have to be careful, if called from sys_setpriority(),
4936 * the task might be in the middle of scheduling on another CPU.
4937 */
4938 rq = task_rq_lock(p, &flags);
a8e504d2 4939 update_rq_clock(rq);
1da177e4
LT
4940 /*
4941 * The RT priorities are set via sched_setscheduler(), but we still
4942 * allow the 'normal' nice value to be set - but as expected
4943 * it wont have any effect on scheduling until the task is
dd41f596 4944 * SCHED_FIFO/SCHED_RR:
1da177e4 4945 */
e05606d3 4946 if (task_has_rt_policy(p)) {
1da177e4
LT
4947 p->static_prio = NICE_TO_PRIO(nice);
4948 goto out_unlock;
4949 }
dd41f596 4950 on_rq = p->se.on_rq;
c09595f6 4951 if (on_rq)
69be72c1 4952 dequeue_task(rq, p, 0);
1da177e4 4953
1da177e4 4954 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4955 set_load_weight(p);
b29739f9
IM
4956 old_prio = p->prio;
4957 p->prio = effective_prio(p);
4958 delta = p->prio - old_prio;
1da177e4 4959
dd41f596 4960 if (on_rq) {
8159f87e 4961 enqueue_task(rq, p, 0);
1da177e4 4962 /*
d5f9f942
AM
4963 * If the task increased its priority or is running and
4964 * lowered its priority, then reschedule its CPU:
1da177e4 4965 */
d5f9f942 4966 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4967 resched_task(rq->curr);
4968 }
4969out_unlock:
4970 task_rq_unlock(rq, &flags);
4971}
1da177e4
LT
4972EXPORT_SYMBOL(set_user_nice);
4973
e43379f1
MM
4974/*
4975 * can_nice - check if a task can reduce its nice value
4976 * @p: task
4977 * @nice: nice value
4978 */
36c8b586 4979int can_nice(const struct task_struct *p, const int nice)
e43379f1 4980{
024f4747
MM
4981 /* convert nice value [19,-20] to rlimit style value [1,40] */
4982 int nice_rlim = 20 - nice;
48f24c4d 4983
e43379f1
MM
4984 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4985 capable(CAP_SYS_NICE));
4986}
4987
1da177e4
LT
4988#ifdef __ARCH_WANT_SYS_NICE
4989
4990/*
4991 * sys_nice - change the priority of the current process.
4992 * @increment: priority increment
4993 *
4994 * sys_setpriority is a more generic, but much slower function that
4995 * does similar things.
4996 */
4997asmlinkage long sys_nice(int increment)
4998{
48f24c4d 4999 long nice, retval;
1da177e4
LT
5000
5001 /*
5002 * Setpriority might change our priority at the same moment.
5003 * We don't have to worry. Conceptually one call occurs first
5004 * and we have a single winner.
5005 */
e43379f1
MM
5006 if (increment < -40)
5007 increment = -40;
1da177e4
LT
5008 if (increment > 40)
5009 increment = 40;
5010
5011 nice = PRIO_TO_NICE(current->static_prio) + increment;
5012 if (nice < -20)
5013 nice = -20;
5014 if (nice > 19)
5015 nice = 19;
5016
e43379f1
MM
5017 if (increment < 0 && !can_nice(current, nice))
5018 return -EPERM;
5019
1da177e4
LT
5020 retval = security_task_setnice(current, nice);
5021 if (retval)
5022 return retval;
5023
5024 set_user_nice(current, nice);
5025 return 0;
5026}
5027
5028#endif
5029
5030/**
5031 * task_prio - return the priority value of a given task.
5032 * @p: the task in question.
5033 *
5034 * This is the priority value as seen by users in /proc.
5035 * RT tasks are offset by -200. Normal tasks are centered
5036 * around 0, value goes from -16 to +15.
5037 */
36c8b586 5038int task_prio(const struct task_struct *p)
1da177e4
LT
5039{
5040 return p->prio - MAX_RT_PRIO;
5041}
5042
5043/**
5044 * task_nice - return the nice value of a given task.
5045 * @p: the task in question.
5046 */
36c8b586 5047int task_nice(const struct task_struct *p)
1da177e4
LT
5048{
5049 return TASK_NICE(p);
5050}
150d8bed 5051EXPORT_SYMBOL(task_nice);
1da177e4
LT
5052
5053/**
5054 * idle_cpu - is a given cpu idle currently?
5055 * @cpu: the processor in question.
5056 */
5057int idle_cpu(int cpu)
5058{
5059 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5060}
5061
1da177e4
LT
5062/**
5063 * idle_task - return the idle task for a given cpu.
5064 * @cpu: the processor in question.
5065 */
36c8b586 5066struct task_struct *idle_task(int cpu)
1da177e4
LT
5067{
5068 return cpu_rq(cpu)->idle;
5069}
5070
5071/**
5072 * find_process_by_pid - find a process with a matching PID value.
5073 * @pid: the pid in question.
5074 */
a9957449 5075static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5076{
228ebcbe 5077 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5078}
5079
5080/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5081static void
5082__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5083{
dd41f596 5084 BUG_ON(p->se.on_rq);
48f24c4d 5085
1da177e4 5086 p->policy = policy;
dd41f596
IM
5087 switch (p->policy) {
5088 case SCHED_NORMAL:
5089 case SCHED_BATCH:
5090 case SCHED_IDLE:
5091 p->sched_class = &fair_sched_class;
5092 break;
5093 case SCHED_FIFO:
5094 case SCHED_RR:
5095 p->sched_class = &rt_sched_class;
5096 break;
5097 }
5098
1da177e4 5099 p->rt_priority = prio;
b29739f9
IM
5100 p->normal_prio = normal_prio(p);
5101 /* we are holding p->pi_lock already */
5102 p->prio = rt_mutex_getprio(p);
2dd73a4f 5103 set_load_weight(p);
1da177e4
LT
5104}
5105
961ccddd
RR
5106static int __sched_setscheduler(struct task_struct *p, int policy,
5107 struct sched_param *param, bool user)
1da177e4 5108{
83b699ed 5109 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5110 unsigned long flags;
cb469845 5111 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5112 struct rq *rq;
1da177e4 5113
66e5393a
SR
5114 /* may grab non-irq protected spin_locks */
5115 BUG_ON(in_interrupt());
1da177e4
LT
5116recheck:
5117 /* double check policy once rq lock held */
5118 if (policy < 0)
5119 policy = oldpolicy = p->policy;
5120 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5121 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5122 policy != SCHED_IDLE)
b0a9499c 5123 return -EINVAL;
1da177e4
LT
5124 /*
5125 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5126 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5127 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5128 */
5129 if (param->sched_priority < 0 ||
95cdf3b7 5130 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5131 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5132 return -EINVAL;
e05606d3 5133 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5134 return -EINVAL;
5135
37e4ab3f
OC
5136 /*
5137 * Allow unprivileged RT tasks to decrease priority:
5138 */
961ccddd 5139 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5140 if (rt_policy(policy)) {
8dc3e909 5141 unsigned long rlim_rtprio;
8dc3e909
ON
5142
5143 if (!lock_task_sighand(p, &flags))
5144 return -ESRCH;
5145 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5146 unlock_task_sighand(p, &flags);
5147
5148 /* can't set/change the rt policy */
5149 if (policy != p->policy && !rlim_rtprio)
5150 return -EPERM;
5151
5152 /* can't increase priority */
5153 if (param->sched_priority > p->rt_priority &&
5154 param->sched_priority > rlim_rtprio)
5155 return -EPERM;
5156 }
dd41f596
IM
5157 /*
5158 * Like positive nice levels, dont allow tasks to
5159 * move out of SCHED_IDLE either:
5160 */
5161 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5162 return -EPERM;
5fe1d75f 5163
37e4ab3f
OC
5164 /* can't change other user's priorities */
5165 if ((current->euid != p->euid) &&
5166 (current->euid != p->uid))
5167 return -EPERM;
5168 }
1da177e4 5169
725aad24 5170 if (user) {
b68aa230 5171#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5172 /*
5173 * Do not allow realtime tasks into groups that have no runtime
5174 * assigned.
5175 */
9a7e0b18
PZ
5176 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5177 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5178 return -EPERM;
b68aa230
PZ
5179#endif
5180
725aad24
JF
5181 retval = security_task_setscheduler(p, policy, param);
5182 if (retval)
5183 return retval;
5184 }
5185
b29739f9
IM
5186 /*
5187 * make sure no PI-waiters arrive (or leave) while we are
5188 * changing the priority of the task:
5189 */
5190 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5191 /*
5192 * To be able to change p->policy safely, the apropriate
5193 * runqueue lock must be held.
5194 */
b29739f9 5195 rq = __task_rq_lock(p);
1da177e4
LT
5196 /* recheck policy now with rq lock held */
5197 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5198 policy = oldpolicy = -1;
b29739f9
IM
5199 __task_rq_unlock(rq);
5200 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5201 goto recheck;
5202 }
2daa3577 5203 update_rq_clock(rq);
dd41f596 5204 on_rq = p->se.on_rq;
051a1d1a 5205 running = task_current(rq, p);
0e1f3483 5206 if (on_rq)
2e1cb74a 5207 deactivate_task(rq, p, 0);
0e1f3483
HS
5208 if (running)
5209 p->sched_class->put_prev_task(rq, p);
f6b53205 5210
1da177e4 5211 oldprio = p->prio;
dd41f596 5212 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5213
0e1f3483
HS
5214 if (running)
5215 p->sched_class->set_curr_task(rq);
dd41f596
IM
5216 if (on_rq) {
5217 activate_task(rq, p, 0);
cb469845
SR
5218
5219 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5220 }
b29739f9
IM
5221 __task_rq_unlock(rq);
5222 spin_unlock_irqrestore(&p->pi_lock, flags);
5223
95e02ca9
TG
5224 rt_mutex_adjust_pi(p);
5225
1da177e4
LT
5226 return 0;
5227}
961ccddd
RR
5228
5229/**
5230 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5231 * @p: the task in question.
5232 * @policy: new policy.
5233 * @param: structure containing the new RT priority.
5234 *
5235 * NOTE that the task may be already dead.
5236 */
5237int sched_setscheduler(struct task_struct *p, int policy,
5238 struct sched_param *param)
5239{
5240 return __sched_setscheduler(p, policy, param, true);
5241}
1da177e4
LT
5242EXPORT_SYMBOL_GPL(sched_setscheduler);
5243
961ccddd
RR
5244/**
5245 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5246 * @p: the task in question.
5247 * @policy: new policy.
5248 * @param: structure containing the new RT priority.
5249 *
5250 * Just like sched_setscheduler, only don't bother checking if the
5251 * current context has permission. For example, this is needed in
5252 * stop_machine(): we create temporary high priority worker threads,
5253 * but our caller might not have that capability.
5254 */
5255int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5256 struct sched_param *param)
5257{
5258 return __sched_setscheduler(p, policy, param, false);
5259}
5260
95cdf3b7
IM
5261static int
5262do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5263{
1da177e4
LT
5264 struct sched_param lparam;
5265 struct task_struct *p;
36c8b586 5266 int retval;
1da177e4
LT
5267
5268 if (!param || pid < 0)
5269 return -EINVAL;
5270 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5271 return -EFAULT;
5fe1d75f
ON
5272
5273 rcu_read_lock();
5274 retval = -ESRCH;
1da177e4 5275 p = find_process_by_pid(pid);
5fe1d75f
ON
5276 if (p != NULL)
5277 retval = sched_setscheduler(p, policy, &lparam);
5278 rcu_read_unlock();
36c8b586 5279
1da177e4
LT
5280 return retval;
5281}
5282
5283/**
5284 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5285 * @pid: the pid in question.
5286 * @policy: new policy.
5287 * @param: structure containing the new RT priority.
5288 */
41a2d6cf
IM
5289asmlinkage long
5290sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5291{
c21761f1
JB
5292 /* negative values for policy are not valid */
5293 if (policy < 0)
5294 return -EINVAL;
5295
1da177e4
LT
5296 return do_sched_setscheduler(pid, policy, param);
5297}
5298
5299/**
5300 * sys_sched_setparam - set/change the RT priority of a thread
5301 * @pid: the pid in question.
5302 * @param: structure containing the new RT priority.
5303 */
5304asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5305{
5306 return do_sched_setscheduler(pid, -1, param);
5307}
5308
5309/**
5310 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5311 * @pid: the pid in question.
5312 */
5313asmlinkage long sys_sched_getscheduler(pid_t pid)
5314{
36c8b586 5315 struct task_struct *p;
3a5c359a 5316 int retval;
1da177e4
LT
5317
5318 if (pid < 0)
3a5c359a 5319 return -EINVAL;
1da177e4
LT
5320
5321 retval = -ESRCH;
5322 read_lock(&tasklist_lock);
5323 p = find_process_by_pid(pid);
5324 if (p) {
5325 retval = security_task_getscheduler(p);
5326 if (!retval)
5327 retval = p->policy;
5328 }
5329 read_unlock(&tasklist_lock);
1da177e4
LT
5330 return retval;
5331}
5332
5333/**
5334 * sys_sched_getscheduler - get the RT priority of a thread
5335 * @pid: the pid in question.
5336 * @param: structure containing the RT priority.
5337 */
5338asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5339{
5340 struct sched_param lp;
36c8b586 5341 struct task_struct *p;
3a5c359a 5342 int retval;
1da177e4
LT
5343
5344 if (!param || pid < 0)
3a5c359a 5345 return -EINVAL;
1da177e4
LT
5346
5347 read_lock(&tasklist_lock);
5348 p = find_process_by_pid(pid);
5349 retval = -ESRCH;
5350 if (!p)
5351 goto out_unlock;
5352
5353 retval = security_task_getscheduler(p);
5354 if (retval)
5355 goto out_unlock;
5356
5357 lp.sched_priority = p->rt_priority;
5358 read_unlock(&tasklist_lock);
5359
5360 /*
5361 * This one might sleep, we cannot do it with a spinlock held ...
5362 */
5363 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5364
1da177e4
LT
5365 return retval;
5366
5367out_unlock:
5368 read_unlock(&tasklist_lock);
5369 return retval;
5370}
5371
b53e921b 5372long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5373{
1da177e4 5374 cpumask_t cpus_allowed;
b53e921b 5375 cpumask_t new_mask = *in_mask;
36c8b586
IM
5376 struct task_struct *p;
5377 int retval;
1da177e4 5378
95402b38 5379 get_online_cpus();
1da177e4
LT
5380 read_lock(&tasklist_lock);
5381
5382 p = find_process_by_pid(pid);
5383 if (!p) {
5384 read_unlock(&tasklist_lock);
95402b38 5385 put_online_cpus();
1da177e4
LT
5386 return -ESRCH;
5387 }
5388
5389 /*
5390 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5391 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5392 * usage count and then drop tasklist_lock.
5393 */
5394 get_task_struct(p);
5395 read_unlock(&tasklist_lock);
5396
5397 retval = -EPERM;
5398 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5399 !capable(CAP_SYS_NICE))
5400 goto out_unlock;
5401
e7834f8f
DQ
5402 retval = security_task_setscheduler(p, 0, NULL);
5403 if (retval)
5404 goto out_unlock;
5405
f9a86fcb 5406 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5407 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5408 again:
7c16ec58 5409 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5410
8707d8b8 5411 if (!retval) {
f9a86fcb 5412 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5413 if (!cpus_subset(new_mask, cpus_allowed)) {
5414 /*
5415 * We must have raced with a concurrent cpuset
5416 * update. Just reset the cpus_allowed to the
5417 * cpuset's cpus_allowed
5418 */
5419 new_mask = cpus_allowed;
5420 goto again;
5421 }
5422 }
1da177e4
LT
5423out_unlock:
5424 put_task_struct(p);
95402b38 5425 put_online_cpus();
1da177e4
LT
5426 return retval;
5427}
5428
5429static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5430 cpumask_t *new_mask)
5431{
5432 if (len < sizeof(cpumask_t)) {
5433 memset(new_mask, 0, sizeof(cpumask_t));
5434 } else if (len > sizeof(cpumask_t)) {
5435 len = sizeof(cpumask_t);
5436 }
5437 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5438}
5439
5440/**
5441 * sys_sched_setaffinity - set the cpu affinity of a process
5442 * @pid: pid of the process
5443 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5444 * @user_mask_ptr: user-space pointer to the new cpu mask
5445 */
5446asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5447 unsigned long __user *user_mask_ptr)
5448{
5449 cpumask_t new_mask;
5450 int retval;
5451
5452 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5453 if (retval)
5454 return retval;
5455
b53e921b 5456 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5457}
5458
1da177e4
LT
5459long sched_getaffinity(pid_t pid, cpumask_t *mask)
5460{
36c8b586 5461 struct task_struct *p;
1da177e4 5462 int retval;
1da177e4 5463
95402b38 5464 get_online_cpus();
1da177e4
LT
5465 read_lock(&tasklist_lock);
5466
5467 retval = -ESRCH;
5468 p = find_process_by_pid(pid);
5469 if (!p)
5470 goto out_unlock;
5471
e7834f8f
DQ
5472 retval = security_task_getscheduler(p);
5473 if (retval)
5474 goto out_unlock;
5475
2f7016d9 5476 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5477
5478out_unlock:
5479 read_unlock(&tasklist_lock);
95402b38 5480 put_online_cpus();
1da177e4 5481
9531b62f 5482 return retval;
1da177e4
LT
5483}
5484
5485/**
5486 * sys_sched_getaffinity - get the cpu affinity of a process
5487 * @pid: pid of the process
5488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5489 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5490 */
5491asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5492 unsigned long __user *user_mask_ptr)
5493{
5494 int ret;
5495 cpumask_t mask;
5496
5497 if (len < sizeof(cpumask_t))
5498 return -EINVAL;
5499
5500 ret = sched_getaffinity(pid, &mask);
5501 if (ret < 0)
5502 return ret;
5503
5504 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5505 return -EFAULT;
5506
5507 return sizeof(cpumask_t);
5508}
5509
5510/**
5511 * sys_sched_yield - yield the current processor to other threads.
5512 *
dd41f596
IM
5513 * This function yields the current CPU to other tasks. If there are no
5514 * other threads running on this CPU then this function will return.
1da177e4
LT
5515 */
5516asmlinkage long sys_sched_yield(void)
5517{
70b97a7f 5518 struct rq *rq = this_rq_lock();
1da177e4 5519
2d72376b 5520 schedstat_inc(rq, yld_count);
4530d7ab 5521 current->sched_class->yield_task(rq);
1da177e4
LT
5522
5523 /*
5524 * Since we are going to call schedule() anyway, there's
5525 * no need to preempt or enable interrupts:
5526 */
5527 __release(rq->lock);
8a25d5de 5528 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5529 _raw_spin_unlock(&rq->lock);
5530 preempt_enable_no_resched();
5531
5532 schedule();
5533
5534 return 0;
5535}
5536
e7b38404 5537static void __cond_resched(void)
1da177e4 5538{
8e0a43d8
IM
5539#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5540 __might_sleep(__FILE__, __LINE__);
5541#endif
5bbcfd90
IM
5542 /*
5543 * The BKS might be reacquired before we have dropped
5544 * PREEMPT_ACTIVE, which could trigger a second
5545 * cond_resched() call.
5546 */
1da177e4
LT
5547 do {
5548 add_preempt_count(PREEMPT_ACTIVE);
5549 schedule();
5550 sub_preempt_count(PREEMPT_ACTIVE);
5551 } while (need_resched());
5552}
5553
02b67cc3 5554int __sched _cond_resched(void)
1da177e4 5555{
9414232f
IM
5556 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5557 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5558 __cond_resched();
5559 return 1;
5560 }
5561 return 0;
5562}
02b67cc3 5563EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5564
5565/*
5566 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5567 * call schedule, and on return reacquire the lock.
5568 *
41a2d6cf 5569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5570 * operations here to prevent schedule() from being called twice (once via
5571 * spin_unlock(), once by hand).
5572 */
95cdf3b7 5573int cond_resched_lock(spinlock_t *lock)
1da177e4 5574{
95c354fe 5575 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5576 int ret = 0;
5577
95c354fe 5578 if (spin_needbreak(lock) || resched) {
1da177e4 5579 spin_unlock(lock);
95c354fe
NP
5580 if (resched && need_resched())
5581 __cond_resched();
5582 else
5583 cpu_relax();
6df3cecb 5584 ret = 1;
1da177e4 5585 spin_lock(lock);
1da177e4 5586 }
6df3cecb 5587 return ret;
1da177e4 5588}
1da177e4
LT
5589EXPORT_SYMBOL(cond_resched_lock);
5590
5591int __sched cond_resched_softirq(void)
5592{
5593 BUG_ON(!in_softirq());
5594
9414232f 5595 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5596 local_bh_enable();
1da177e4
LT
5597 __cond_resched();
5598 local_bh_disable();
5599 return 1;
5600 }
5601 return 0;
5602}
1da177e4
LT
5603EXPORT_SYMBOL(cond_resched_softirq);
5604
1da177e4
LT
5605/**
5606 * yield - yield the current processor to other threads.
5607 *
72fd4a35 5608 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5609 * thread runnable and calls sys_sched_yield().
5610 */
5611void __sched yield(void)
5612{
5613 set_current_state(TASK_RUNNING);
5614 sys_sched_yield();
5615}
1da177e4
LT
5616EXPORT_SYMBOL(yield);
5617
5618/*
41a2d6cf 5619 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5620 * that process accounting knows that this is a task in IO wait state.
5621 *
5622 * But don't do that if it is a deliberate, throttling IO wait (this task
5623 * has set its backing_dev_info: the queue against which it should throttle)
5624 */
5625void __sched io_schedule(void)
5626{
70b97a7f 5627 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5628
0ff92245 5629 delayacct_blkio_start();
1da177e4
LT
5630 atomic_inc(&rq->nr_iowait);
5631 schedule();
5632 atomic_dec(&rq->nr_iowait);
0ff92245 5633 delayacct_blkio_end();
1da177e4 5634}
1da177e4
LT
5635EXPORT_SYMBOL(io_schedule);
5636
5637long __sched io_schedule_timeout(long timeout)
5638{
70b97a7f 5639 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5640 long ret;
5641
0ff92245 5642 delayacct_blkio_start();
1da177e4
LT
5643 atomic_inc(&rq->nr_iowait);
5644 ret = schedule_timeout(timeout);
5645 atomic_dec(&rq->nr_iowait);
0ff92245 5646 delayacct_blkio_end();
1da177e4
LT
5647 return ret;
5648}
5649
5650/**
5651 * sys_sched_get_priority_max - return maximum RT priority.
5652 * @policy: scheduling class.
5653 *
5654 * this syscall returns the maximum rt_priority that can be used
5655 * by a given scheduling class.
5656 */
5657asmlinkage long sys_sched_get_priority_max(int policy)
5658{
5659 int ret = -EINVAL;
5660
5661 switch (policy) {
5662 case SCHED_FIFO:
5663 case SCHED_RR:
5664 ret = MAX_USER_RT_PRIO-1;
5665 break;
5666 case SCHED_NORMAL:
b0a9499c 5667 case SCHED_BATCH:
dd41f596 5668 case SCHED_IDLE:
1da177e4
LT
5669 ret = 0;
5670 break;
5671 }
5672 return ret;
5673}
5674
5675/**
5676 * sys_sched_get_priority_min - return minimum RT priority.
5677 * @policy: scheduling class.
5678 *
5679 * this syscall returns the minimum rt_priority that can be used
5680 * by a given scheduling class.
5681 */
5682asmlinkage long sys_sched_get_priority_min(int policy)
5683{
5684 int ret = -EINVAL;
5685
5686 switch (policy) {
5687 case SCHED_FIFO:
5688 case SCHED_RR:
5689 ret = 1;
5690 break;
5691 case SCHED_NORMAL:
b0a9499c 5692 case SCHED_BATCH:
dd41f596 5693 case SCHED_IDLE:
1da177e4
LT
5694 ret = 0;
5695 }
5696 return ret;
5697}
5698
5699/**
5700 * sys_sched_rr_get_interval - return the default timeslice of a process.
5701 * @pid: pid of the process.
5702 * @interval: userspace pointer to the timeslice value.
5703 *
5704 * this syscall writes the default timeslice value of a given process
5705 * into the user-space timespec buffer. A value of '0' means infinity.
5706 */
5707asmlinkage
5708long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5709{
36c8b586 5710 struct task_struct *p;
a4ec24b4 5711 unsigned int time_slice;
3a5c359a 5712 int retval;
1da177e4 5713 struct timespec t;
1da177e4
LT
5714
5715 if (pid < 0)
3a5c359a 5716 return -EINVAL;
1da177e4
LT
5717
5718 retval = -ESRCH;
5719 read_lock(&tasklist_lock);
5720 p = find_process_by_pid(pid);
5721 if (!p)
5722 goto out_unlock;
5723
5724 retval = security_task_getscheduler(p);
5725 if (retval)
5726 goto out_unlock;
5727
77034937
IM
5728 /*
5729 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5730 * tasks that are on an otherwise idle runqueue:
5731 */
5732 time_slice = 0;
5733 if (p->policy == SCHED_RR) {
a4ec24b4 5734 time_slice = DEF_TIMESLICE;
1868f958 5735 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5736 struct sched_entity *se = &p->se;
5737 unsigned long flags;
5738 struct rq *rq;
5739
5740 rq = task_rq_lock(p, &flags);
77034937
IM
5741 if (rq->cfs.load.weight)
5742 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5743 task_rq_unlock(rq, &flags);
5744 }
1da177e4 5745 read_unlock(&tasklist_lock);
a4ec24b4 5746 jiffies_to_timespec(time_slice, &t);
1da177e4 5747 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5748 return retval;
3a5c359a 5749
1da177e4
LT
5750out_unlock:
5751 read_unlock(&tasklist_lock);
5752 return retval;
5753}
5754
7c731e0a 5755static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5756
82a1fcb9 5757void sched_show_task(struct task_struct *p)
1da177e4 5758{
1da177e4 5759 unsigned long free = 0;
36c8b586 5760 unsigned state;
1da177e4 5761
1da177e4 5762 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5763 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5764 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5765#if BITS_PER_LONG == 32
1da177e4 5766 if (state == TASK_RUNNING)
cc4ea795 5767 printk(KERN_CONT " running ");
1da177e4 5768 else
cc4ea795 5769 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5770#else
5771 if (state == TASK_RUNNING)
cc4ea795 5772 printk(KERN_CONT " running task ");
1da177e4 5773 else
cc4ea795 5774 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5775#endif
5776#ifdef CONFIG_DEBUG_STACK_USAGE
5777 {
10ebffde 5778 unsigned long *n = end_of_stack(p);
1da177e4
LT
5779 while (!*n)
5780 n++;
10ebffde 5781 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5782 }
5783#endif
ba25f9dc 5784 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5785 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5786
5fb5e6de 5787 show_stack(p, NULL);
1da177e4
LT
5788}
5789
e59e2ae2 5790void show_state_filter(unsigned long state_filter)
1da177e4 5791{
36c8b586 5792 struct task_struct *g, *p;
1da177e4 5793
4bd77321
IM
5794#if BITS_PER_LONG == 32
5795 printk(KERN_INFO
5796 " task PC stack pid father\n");
1da177e4 5797#else
4bd77321
IM
5798 printk(KERN_INFO
5799 " task PC stack pid father\n");
1da177e4
LT
5800#endif
5801 read_lock(&tasklist_lock);
5802 do_each_thread(g, p) {
5803 /*
5804 * reset the NMI-timeout, listing all files on a slow
5805 * console might take alot of time:
5806 */
5807 touch_nmi_watchdog();
39bc89fd 5808 if (!state_filter || (p->state & state_filter))
82a1fcb9 5809 sched_show_task(p);
1da177e4
LT
5810 } while_each_thread(g, p);
5811
04c9167f
JF
5812 touch_all_softlockup_watchdogs();
5813
dd41f596
IM
5814#ifdef CONFIG_SCHED_DEBUG
5815 sysrq_sched_debug_show();
5816#endif
1da177e4 5817 read_unlock(&tasklist_lock);
e59e2ae2
IM
5818 /*
5819 * Only show locks if all tasks are dumped:
5820 */
5821 if (state_filter == -1)
5822 debug_show_all_locks();
1da177e4
LT
5823}
5824
1df21055
IM
5825void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5826{
dd41f596 5827 idle->sched_class = &idle_sched_class;
1df21055
IM
5828}
5829
f340c0d1
IM
5830/**
5831 * init_idle - set up an idle thread for a given CPU
5832 * @idle: task in question
5833 * @cpu: cpu the idle task belongs to
5834 *
5835 * NOTE: this function does not set the idle thread's NEED_RESCHED
5836 * flag, to make booting more robust.
5837 */
5c1e1767 5838void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5839{
70b97a7f 5840 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5841 unsigned long flags;
5842
dd41f596
IM
5843 __sched_fork(idle);
5844 idle->se.exec_start = sched_clock();
5845
b29739f9 5846 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5847 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5848 __set_task_cpu(idle, cpu);
1da177e4
LT
5849
5850 spin_lock_irqsave(&rq->lock, flags);
5851 rq->curr = rq->idle = idle;
4866cde0
NP
5852#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5853 idle->oncpu = 1;
5854#endif
1da177e4
LT
5855 spin_unlock_irqrestore(&rq->lock, flags);
5856
5857 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5858#if defined(CONFIG_PREEMPT)
5859 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5860#else
a1261f54 5861 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5862#endif
dd41f596
IM
5863 /*
5864 * The idle tasks have their own, simple scheduling class:
5865 */
5866 idle->sched_class = &idle_sched_class;
1da177e4
LT
5867}
5868
5869/*
5870 * In a system that switches off the HZ timer nohz_cpu_mask
5871 * indicates which cpus entered this state. This is used
5872 * in the rcu update to wait only for active cpus. For system
5873 * which do not switch off the HZ timer nohz_cpu_mask should
5874 * always be CPU_MASK_NONE.
5875 */
5876cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5877
19978ca6
IM
5878/*
5879 * Increase the granularity value when there are more CPUs,
5880 * because with more CPUs the 'effective latency' as visible
5881 * to users decreases. But the relationship is not linear,
5882 * so pick a second-best guess by going with the log2 of the
5883 * number of CPUs.
5884 *
5885 * This idea comes from the SD scheduler of Con Kolivas:
5886 */
5887static inline void sched_init_granularity(void)
5888{
5889 unsigned int factor = 1 + ilog2(num_online_cpus());
5890 const unsigned long limit = 200000000;
5891
5892 sysctl_sched_min_granularity *= factor;
5893 if (sysctl_sched_min_granularity > limit)
5894 sysctl_sched_min_granularity = limit;
5895
5896 sysctl_sched_latency *= factor;
5897 if (sysctl_sched_latency > limit)
5898 sysctl_sched_latency = limit;
5899
5900 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5901
5902 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5903}
5904
1da177e4
LT
5905#ifdef CONFIG_SMP
5906/*
5907 * This is how migration works:
5908 *
70b97a7f 5909 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5910 * runqueue and wake up that CPU's migration thread.
5911 * 2) we down() the locked semaphore => thread blocks.
5912 * 3) migration thread wakes up (implicitly it forces the migrated
5913 * thread off the CPU)
5914 * 4) it gets the migration request and checks whether the migrated
5915 * task is still in the wrong runqueue.
5916 * 5) if it's in the wrong runqueue then the migration thread removes
5917 * it and puts it into the right queue.
5918 * 6) migration thread up()s the semaphore.
5919 * 7) we wake up and the migration is done.
5920 */
5921
5922/*
5923 * Change a given task's CPU affinity. Migrate the thread to a
5924 * proper CPU and schedule it away if the CPU it's executing on
5925 * is removed from the allowed bitmask.
5926 *
5927 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5928 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5929 * call is not atomic; no spinlocks may be held.
5930 */
cd8ba7cd 5931int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5932{
70b97a7f 5933 struct migration_req req;
1da177e4 5934 unsigned long flags;
70b97a7f 5935 struct rq *rq;
48f24c4d 5936 int ret = 0;
1da177e4
LT
5937
5938 rq = task_rq_lock(p, &flags);
cd8ba7cd 5939 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5940 ret = -EINVAL;
5941 goto out;
5942 }
5943
9985b0ba
DR
5944 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5945 !cpus_equal(p->cpus_allowed, *new_mask))) {
5946 ret = -EINVAL;
5947 goto out;
5948 }
5949
73fe6aae 5950 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5951 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5952 else {
cd8ba7cd
MT
5953 p->cpus_allowed = *new_mask;
5954 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5955 }
5956
1da177e4 5957 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5958 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5959 goto out;
5960
cd8ba7cd 5961 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5962 /* Need help from migration thread: drop lock and wait. */
5963 task_rq_unlock(rq, &flags);
5964 wake_up_process(rq->migration_thread);
5965 wait_for_completion(&req.done);
5966 tlb_migrate_finish(p->mm);
5967 return 0;
5968 }
5969out:
5970 task_rq_unlock(rq, &flags);
48f24c4d 5971
1da177e4
LT
5972 return ret;
5973}
cd8ba7cd 5974EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5975
5976/*
41a2d6cf 5977 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5978 * this because either it can't run here any more (set_cpus_allowed()
5979 * away from this CPU, or CPU going down), or because we're
5980 * attempting to rebalance this task on exec (sched_exec).
5981 *
5982 * So we race with normal scheduler movements, but that's OK, as long
5983 * as the task is no longer on this CPU.
efc30814
KK
5984 *
5985 * Returns non-zero if task was successfully migrated.
1da177e4 5986 */
efc30814 5987static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5988{
70b97a7f 5989 struct rq *rq_dest, *rq_src;
dd41f596 5990 int ret = 0, on_rq;
1da177e4 5991
e761b772 5992 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5993 return ret;
1da177e4
LT
5994
5995 rq_src = cpu_rq(src_cpu);
5996 rq_dest = cpu_rq(dest_cpu);
5997
5998 double_rq_lock(rq_src, rq_dest);
5999 /* Already moved. */
6000 if (task_cpu(p) != src_cpu)
b1e38734 6001 goto done;
1da177e4
LT
6002 /* Affinity changed (again). */
6003 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6004 goto fail;
1da177e4 6005
dd41f596 6006 on_rq = p->se.on_rq;
6e82a3be 6007 if (on_rq)
2e1cb74a 6008 deactivate_task(rq_src, p, 0);
6e82a3be 6009
1da177e4 6010 set_task_cpu(p, dest_cpu);
dd41f596
IM
6011 if (on_rq) {
6012 activate_task(rq_dest, p, 0);
15afe09b 6013 check_preempt_curr(rq_dest, p, 0);
1da177e4 6014 }
b1e38734 6015done:
efc30814 6016 ret = 1;
b1e38734 6017fail:
1da177e4 6018 double_rq_unlock(rq_src, rq_dest);
efc30814 6019 return ret;
1da177e4
LT
6020}
6021
6022/*
6023 * migration_thread - this is a highprio system thread that performs
6024 * thread migration by bumping thread off CPU then 'pushing' onto
6025 * another runqueue.
6026 */
95cdf3b7 6027static int migration_thread(void *data)
1da177e4 6028{
1da177e4 6029 int cpu = (long)data;
70b97a7f 6030 struct rq *rq;
1da177e4
LT
6031
6032 rq = cpu_rq(cpu);
6033 BUG_ON(rq->migration_thread != current);
6034
6035 set_current_state(TASK_INTERRUPTIBLE);
6036 while (!kthread_should_stop()) {
70b97a7f 6037 struct migration_req *req;
1da177e4 6038 struct list_head *head;
1da177e4 6039
1da177e4
LT
6040 spin_lock_irq(&rq->lock);
6041
6042 if (cpu_is_offline(cpu)) {
6043 spin_unlock_irq(&rq->lock);
6044 goto wait_to_die;
6045 }
6046
6047 if (rq->active_balance) {
6048 active_load_balance(rq, cpu);
6049 rq->active_balance = 0;
6050 }
6051
6052 head = &rq->migration_queue;
6053
6054 if (list_empty(head)) {
6055 spin_unlock_irq(&rq->lock);
6056 schedule();
6057 set_current_state(TASK_INTERRUPTIBLE);
6058 continue;
6059 }
70b97a7f 6060 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6061 list_del_init(head->next);
6062
674311d5
NP
6063 spin_unlock(&rq->lock);
6064 __migrate_task(req->task, cpu, req->dest_cpu);
6065 local_irq_enable();
1da177e4
LT
6066
6067 complete(&req->done);
6068 }
6069 __set_current_state(TASK_RUNNING);
6070 return 0;
6071
6072wait_to_die:
6073 /* Wait for kthread_stop */
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 while (!kthread_should_stop()) {
6076 schedule();
6077 set_current_state(TASK_INTERRUPTIBLE);
6078 }
6079 __set_current_state(TASK_RUNNING);
6080 return 0;
6081}
6082
6083#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6084
6085static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6086{
6087 int ret;
6088
6089 local_irq_disable();
6090 ret = __migrate_task(p, src_cpu, dest_cpu);
6091 local_irq_enable();
6092 return ret;
6093}
6094
054b9108 6095/*
3a4fa0a2 6096 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6097 * NOTE: interrupts should be disabled by the caller
6098 */
48f24c4d 6099static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6100{
efc30814 6101 unsigned long flags;
1da177e4 6102 cpumask_t mask;
70b97a7f
IM
6103 struct rq *rq;
6104 int dest_cpu;
1da177e4 6105
3a5c359a
AK
6106 do {
6107 /* On same node? */
6108 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6109 cpus_and(mask, mask, p->cpus_allowed);
6110 dest_cpu = any_online_cpu(mask);
6111
6112 /* On any allowed CPU? */
434d53b0 6113 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6114 dest_cpu = any_online_cpu(p->cpus_allowed);
6115
6116 /* No more Mr. Nice Guy. */
434d53b0 6117 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6118 cpumask_t cpus_allowed;
6119
6120 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6121 /*
6122 * Try to stay on the same cpuset, where the
6123 * current cpuset may be a subset of all cpus.
6124 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6125 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6126 * called within calls to cpuset_lock/cpuset_unlock.
6127 */
3a5c359a 6128 rq = task_rq_lock(p, &flags);
470fd646 6129 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6130 dest_cpu = any_online_cpu(p->cpus_allowed);
6131 task_rq_unlock(rq, &flags);
1da177e4 6132
3a5c359a
AK
6133 /*
6134 * Don't tell them about moving exiting tasks or
6135 * kernel threads (both mm NULL), since they never
6136 * leave kernel.
6137 */
41a2d6cf 6138 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6139 printk(KERN_INFO "process %d (%s) no "
6140 "longer affine to cpu%d\n",
41a2d6cf
IM
6141 task_pid_nr(p), p->comm, dead_cpu);
6142 }
3a5c359a 6143 }
f7b4cddc 6144 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6145}
6146
6147/*
6148 * While a dead CPU has no uninterruptible tasks queued at this point,
6149 * it might still have a nonzero ->nr_uninterruptible counter, because
6150 * for performance reasons the counter is not stricly tracking tasks to
6151 * their home CPUs. So we just add the counter to another CPU's counter,
6152 * to keep the global sum constant after CPU-down:
6153 */
70b97a7f 6154static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6155{
7c16ec58 6156 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6157 unsigned long flags;
6158
6159 local_irq_save(flags);
6160 double_rq_lock(rq_src, rq_dest);
6161 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6162 rq_src->nr_uninterruptible = 0;
6163 double_rq_unlock(rq_src, rq_dest);
6164 local_irq_restore(flags);
6165}
6166
6167/* Run through task list and migrate tasks from the dead cpu. */
6168static void migrate_live_tasks(int src_cpu)
6169{
48f24c4d 6170 struct task_struct *p, *t;
1da177e4 6171
f7b4cddc 6172 read_lock(&tasklist_lock);
1da177e4 6173
48f24c4d
IM
6174 do_each_thread(t, p) {
6175 if (p == current)
1da177e4
LT
6176 continue;
6177
48f24c4d
IM
6178 if (task_cpu(p) == src_cpu)
6179 move_task_off_dead_cpu(src_cpu, p);
6180 } while_each_thread(t, p);
1da177e4 6181
f7b4cddc 6182 read_unlock(&tasklist_lock);
1da177e4
LT
6183}
6184
dd41f596
IM
6185/*
6186 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6187 * It does so by boosting its priority to highest possible.
6188 * Used by CPU offline code.
1da177e4
LT
6189 */
6190void sched_idle_next(void)
6191{
48f24c4d 6192 int this_cpu = smp_processor_id();
70b97a7f 6193 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6194 struct task_struct *p = rq->idle;
6195 unsigned long flags;
6196
6197 /* cpu has to be offline */
48f24c4d 6198 BUG_ON(cpu_online(this_cpu));
1da177e4 6199
48f24c4d
IM
6200 /*
6201 * Strictly not necessary since rest of the CPUs are stopped by now
6202 * and interrupts disabled on the current cpu.
1da177e4
LT
6203 */
6204 spin_lock_irqsave(&rq->lock, flags);
6205
dd41f596 6206 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6207
94bc9a7b
DA
6208 update_rq_clock(rq);
6209 activate_task(rq, p, 0);
1da177e4
LT
6210
6211 spin_unlock_irqrestore(&rq->lock, flags);
6212}
6213
48f24c4d
IM
6214/*
6215 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6216 * offline.
6217 */
6218void idle_task_exit(void)
6219{
6220 struct mm_struct *mm = current->active_mm;
6221
6222 BUG_ON(cpu_online(smp_processor_id()));
6223
6224 if (mm != &init_mm)
6225 switch_mm(mm, &init_mm, current);
6226 mmdrop(mm);
6227}
6228
054b9108 6229/* called under rq->lock with disabled interrupts */
36c8b586 6230static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6231{
70b97a7f 6232 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6233
6234 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6235 BUG_ON(!p->exit_state);
1da177e4
LT
6236
6237 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6238 BUG_ON(p->state == TASK_DEAD);
1da177e4 6239
48f24c4d 6240 get_task_struct(p);
1da177e4
LT
6241
6242 /*
6243 * Drop lock around migration; if someone else moves it,
41a2d6cf 6244 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6245 * fine.
6246 */
f7b4cddc 6247 spin_unlock_irq(&rq->lock);
48f24c4d 6248 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6249 spin_lock_irq(&rq->lock);
1da177e4 6250
48f24c4d 6251 put_task_struct(p);
1da177e4
LT
6252}
6253
6254/* release_task() removes task from tasklist, so we won't find dead tasks. */
6255static void migrate_dead_tasks(unsigned int dead_cpu)
6256{
70b97a7f 6257 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6258 struct task_struct *next;
48f24c4d 6259
dd41f596
IM
6260 for ( ; ; ) {
6261 if (!rq->nr_running)
6262 break;
a8e504d2 6263 update_rq_clock(rq);
ff95f3df 6264 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6265 if (!next)
6266 break;
79c53799 6267 next->sched_class->put_prev_task(rq, next);
dd41f596 6268 migrate_dead(dead_cpu, next);
e692ab53 6269
1da177e4
LT
6270 }
6271}
6272#endif /* CONFIG_HOTPLUG_CPU */
6273
e692ab53
NP
6274#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6275
6276static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6277 {
6278 .procname = "sched_domain",
c57baf1e 6279 .mode = 0555,
e0361851 6280 },
38605cae 6281 {0, },
e692ab53
NP
6282};
6283
6284static struct ctl_table sd_ctl_root[] = {
e0361851 6285 {
c57baf1e 6286 .ctl_name = CTL_KERN,
e0361851 6287 .procname = "kernel",
c57baf1e 6288 .mode = 0555,
e0361851
AD
6289 .child = sd_ctl_dir,
6290 },
38605cae 6291 {0, },
e692ab53
NP
6292};
6293
6294static struct ctl_table *sd_alloc_ctl_entry(int n)
6295{
6296 struct ctl_table *entry =
5cf9f062 6297 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6298
e692ab53
NP
6299 return entry;
6300}
6301
6382bc90
MM
6302static void sd_free_ctl_entry(struct ctl_table **tablep)
6303{
cd790076 6304 struct ctl_table *entry;
6382bc90 6305
cd790076
MM
6306 /*
6307 * In the intermediate directories, both the child directory and
6308 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6309 * will always be set. In the lowest directory the names are
cd790076
MM
6310 * static strings and all have proc handlers.
6311 */
6312 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6313 if (entry->child)
6314 sd_free_ctl_entry(&entry->child);
cd790076
MM
6315 if (entry->proc_handler == NULL)
6316 kfree(entry->procname);
6317 }
6382bc90
MM
6318
6319 kfree(*tablep);
6320 *tablep = NULL;
6321}
6322
e692ab53 6323static void
e0361851 6324set_table_entry(struct ctl_table *entry,
e692ab53
NP
6325 const char *procname, void *data, int maxlen,
6326 mode_t mode, proc_handler *proc_handler)
6327{
e692ab53
NP
6328 entry->procname = procname;
6329 entry->data = data;
6330 entry->maxlen = maxlen;
6331 entry->mode = mode;
6332 entry->proc_handler = proc_handler;
6333}
6334
6335static struct ctl_table *
6336sd_alloc_ctl_domain_table(struct sched_domain *sd)
6337{
a5d8c348 6338 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6339
ad1cdc1d
MM
6340 if (table == NULL)
6341 return NULL;
6342
e0361851 6343 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6344 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6345 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6346 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6347 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6348 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6349 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6350 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6351 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6352 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6353 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6354 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6355 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6356 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6357 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6358 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6359 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6360 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6361 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6362 &sd->cache_nice_tries,
6363 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6364 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6365 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6366 set_table_entry(&table[11], "name", sd->name,
6367 CORENAME_MAX_SIZE, 0444, proc_dostring);
6368 /* &table[12] is terminator */
e692ab53
NP
6369
6370 return table;
6371}
6372
9a4e7159 6373static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6374{
6375 struct ctl_table *entry, *table;
6376 struct sched_domain *sd;
6377 int domain_num = 0, i;
6378 char buf[32];
6379
6380 for_each_domain(cpu, sd)
6381 domain_num++;
6382 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6383 if (table == NULL)
6384 return NULL;
e692ab53
NP
6385
6386 i = 0;
6387 for_each_domain(cpu, sd) {
6388 snprintf(buf, 32, "domain%d", i);
e692ab53 6389 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6390 entry->mode = 0555;
e692ab53
NP
6391 entry->child = sd_alloc_ctl_domain_table(sd);
6392 entry++;
6393 i++;
6394 }
6395 return table;
6396}
6397
6398static struct ctl_table_header *sd_sysctl_header;
6382bc90 6399static void register_sched_domain_sysctl(void)
e692ab53
NP
6400{
6401 int i, cpu_num = num_online_cpus();
6402 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6403 char buf[32];
6404
7378547f
MM
6405 WARN_ON(sd_ctl_dir[0].child);
6406 sd_ctl_dir[0].child = entry;
6407
ad1cdc1d
MM
6408 if (entry == NULL)
6409 return;
6410
97b6ea7b 6411 for_each_online_cpu(i) {
e692ab53 6412 snprintf(buf, 32, "cpu%d", i);
e692ab53 6413 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6414 entry->mode = 0555;
e692ab53 6415 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6416 entry++;
e692ab53 6417 }
7378547f
MM
6418
6419 WARN_ON(sd_sysctl_header);
e692ab53
NP
6420 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6421}
6382bc90 6422
7378547f 6423/* may be called multiple times per register */
6382bc90
MM
6424static void unregister_sched_domain_sysctl(void)
6425{
7378547f
MM
6426 if (sd_sysctl_header)
6427 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6428 sd_sysctl_header = NULL;
7378547f
MM
6429 if (sd_ctl_dir[0].child)
6430 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6431}
e692ab53 6432#else
6382bc90
MM
6433static void register_sched_domain_sysctl(void)
6434{
6435}
6436static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6437{
6438}
6439#endif
6440
1f11eb6a
GH
6441static void set_rq_online(struct rq *rq)
6442{
6443 if (!rq->online) {
6444 const struct sched_class *class;
6445
6446 cpu_set(rq->cpu, rq->rd->online);
6447 rq->online = 1;
6448
6449 for_each_class(class) {
6450 if (class->rq_online)
6451 class->rq_online(rq);
6452 }
6453 }
6454}
6455
6456static void set_rq_offline(struct rq *rq)
6457{
6458 if (rq->online) {
6459 const struct sched_class *class;
6460
6461 for_each_class(class) {
6462 if (class->rq_offline)
6463 class->rq_offline(rq);
6464 }
6465
6466 cpu_clear(rq->cpu, rq->rd->online);
6467 rq->online = 0;
6468 }
6469}
6470
1da177e4
LT
6471/*
6472 * migration_call - callback that gets triggered when a CPU is added.
6473 * Here we can start up the necessary migration thread for the new CPU.
6474 */
48f24c4d
IM
6475static int __cpuinit
6476migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6477{
1da177e4 6478 struct task_struct *p;
48f24c4d 6479 int cpu = (long)hcpu;
1da177e4 6480 unsigned long flags;
70b97a7f 6481 struct rq *rq;
1da177e4
LT
6482
6483 switch (action) {
5be9361c 6484
1da177e4 6485 case CPU_UP_PREPARE:
8bb78442 6486 case CPU_UP_PREPARE_FROZEN:
dd41f596 6487 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6488 if (IS_ERR(p))
6489 return NOTIFY_BAD;
1da177e4
LT
6490 kthread_bind(p, cpu);
6491 /* Must be high prio: stop_machine expects to yield to it. */
6492 rq = task_rq_lock(p, &flags);
dd41f596 6493 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6494 task_rq_unlock(rq, &flags);
6495 cpu_rq(cpu)->migration_thread = p;
6496 break;
48f24c4d 6497
1da177e4 6498 case CPU_ONLINE:
8bb78442 6499 case CPU_ONLINE_FROZEN:
3a4fa0a2 6500 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6501 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6502
6503 /* Update our root-domain */
6504 rq = cpu_rq(cpu);
6505 spin_lock_irqsave(&rq->lock, flags);
6506 if (rq->rd) {
6507 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6508
6509 set_rq_online(rq);
1f94ef59
GH
6510 }
6511 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6512 break;
48f24c4d 6513
1da177e4
LT
6514#ifdef CONFIG_HOTPLUG_CPU
6515 case CPU_UP_CANCELED:
8bb78442 6516 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6517 if (!cpu_rq(cpu)->migration_thread)
6518 break;
41a2d6cf 6519 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6520 kthread_bind(cpu_rq(cpu)->migration_thread,
6521 any_online_cpu(cpu_online_map));
1da177e4
LT
6522 kthread_stop(cpu_rq(cpu)->migration_thread);
6523 cpu_rq(cpu)->migration_thread = NULL;
6524 break;
48f24c4d 6525
1da177e4 6526 case CPU_DEAD:
8bb78442 6527 case CPU_DEAD_FROZEN:
470fd646 6528 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6529 migrate_live_tasks(cpu);
6530 rq = cpu_rq(cpu);
6531 kthread_stop(rq->migration_thread);
6532 rq->migration_thread = NULL;
6533 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6534 spin_lock_irq(&rq->lock);
a8e504d2 6535 update_rq_clock(rq);
2e1cb74a 6536 deactivate_task(rq, rq->idle, 0);
1da177e4 6537 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6538 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6539 rq->idle->sched_class = &idle_sched_class;
1da177e4 6540 migrate_dead_tasks(cpu);
d2da272a 6541 spin_unlock_irq(&rq->lock);
470fd646 6542 cpuset_unlock();
1da177e4
LT
6543 migrate_nr_uninterruptible(rq);
6544 BUG_ON(rq->nr_running != 0);
6545
41a2d6cf
IM
6546 /*
6547 * No need to migrate the tasks: it was best-effort if
6548 * they didn't take sched_hotcpu_mutex. Just wake up
6549 * the requestors.
6550 */
1da177e4
LT
6551 spin_lock_irq(&rq->lock);
6552 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6553 struct migration_req *req;
6554
1da177e4 6555 req = list_entry(rq->migration_queue.next,
70b97a7f 6556 struct migration_req, list);
1da177e4
LT
6557 list_del_init(&req->list);
6558 complete(&req->done);
6559 }
6560 spin_unlock_irq(&rq->lock);
6561 break;
57d885fe 6562
08f503b0
GH
6563 case CPU_DYING:
6564 case CPU_DYING_FROZEN:
57d885fe
GH
6565 /* Update our root-domain */
6566 rq = cpu_rq(cpu);
6567 spin_lock_irqsave(&rq->lock, flags);
6568 if (rq->rd) {
6569 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6570 set_rq_offline(rq);
57d885fe
GH
6571 }
6572 spin_unlock_irqrestore(&rq->lock, flags);
6573 break;
1da177e4
LT
6574#endif
6575 }
6576 return NOTIFY_OK;
6577}
6578
6579/* Register at highest priority so that task migration (migrate_all_tasks)
6580 * happens before everything else.
6581 */
26c2143b 6582static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6583 .notifier_call = migration_call,
6584 .priority = 10
6585};
6586
7babe8db 6587static int __init migration_init(void)
1da177e4
LT
6588{
6589 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6590 int err;
48f24c4d
IM
6591
6592 /* Start one for the boot CPU: */
07dccf33
AM
6593 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6594 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6595 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6596 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6597
6598 return err;
1da177e4 6599}
7babe8db 6600early_initcall(migration_init);
1da177e4
LT
6601#endif
6602
6603#ifdef CONFIG_SMP
476f3534 6604
3e9830dc 6605#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6606
7c16ec58
MT
6607static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6608 cpumask_t *groupmask)
1da177e4 6609{
4dcf6aff 6610 struct sched_group *group = sd->groups;
434d53b0 6611 char str[256];
1da177e4 6612
434d53b0 6613 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6614 cpus_clear(*groupmask);
4dcf6aff
IM
6615
6616 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6617
6618 if (!(sd->flags & SD_LOAD_BALANCE)) {
6619 printk("does not load-balance\n");
6620 if (sd->parent)
6621 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6622 " has parent");
6623 return -1;
41c7ce9a
NP
6624 }
6625
eefd796a 6626 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff
IM
6627
6628 if (!cpu_isset(cpu, sd->span)) {
6629 printk(KERN_ERR "ERROR: domain->span does not contain "
6630 "CPU%d\n", cpu);
6631 }
6632 if (!cpu_isset(cpu, group->cpumask)) {
6633 printk(KERN_ERR "ERROR: domain->groups does not contain"
6634 " CPU%d\n", cpu);
6635 }
1da177e4 6636
4dcf6aff 6637 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6638 do {
4dcf6aff
IM
6639 if (!group) {
6640 printk("\n");
6641 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6642 break;
6643 }
6644
4dcf6aff
IM
6645 if (!group->__cpu_power) {
6646 printk(KERN_CONT "\n");
6647 printk(KERN_ERR "ERROR: domain->cpu_power not "
6648 "set\n");
6649 break;
6650 }
1da177e4 6651
4dcf6aff
IM
6652 if (!cpus_weight(group->cpumask)) {
6653 printk(KERN_CONT "\n");
6654 printk(KERN_ERR "ERROR: empty group\n");
6655 break;
6656 }
1da177e4 6657
7c16ec58 6658 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6659 printk(KERN_CONT "\n");
6660 printk(KERN_ERR "ERROR: repeated CPUs\n");
6661 break;
6662 }
1da177e4 6663
7c16ec58 6664 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6665
434d53b0 6666 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6667 printk(KERN_CONT " %s", str);
1da177e4 6668
4dcf6aff
IM
6669 group = group->next;
6670 } while (group != sd->groups);
6671 printk(KERN_CONT "\n");
1da177e4 6672
7c16ec58 6673 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6674 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6675
7c16ec58 6676 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6677 printk(KERN_ERR "ERROR: parent span is not a superset "
6678 "of domain->span\n");
6679 return 0;
6680}
1da177e4 6681
4dcf6aff
IM
6682static void sched_domain_debug(struct sched_domain *sd, int cpu)
6683{
7c16ec58 6684 cpumask_t *groupmask;
4dcf6aff 6685 int level = 0;
1da177e4 6686
4dcf6aff
IM
6687 if (!sd) {
6688 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6689 return;
6690 }
1da177e4 6691
4dcf6aff
IM
6692 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6693
7c16ec58
MT
6694 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6695 if (!groupmask) {
6696 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6697 return;
6698 }
6699
4dcf6aff 6700 for (;;) {
7c16ec58 6701 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6702 break;
1da177e4
LT
6703 level++;
6704 sd = sd->parent;
33859f7f 6705 if (!sd)
4dcf6aff
IM
6706 break;
6707 }
7c16ec58 6708 kfree(groupmask);
1da177e4 6709}
6d6bc0ad 6710#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6711# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6712#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6713
1a20ff27 6714static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6715{
6716 if (cpus_weight(sd->span) == 1)
6717 return 1;
6718
6719 /* Following flags need at least 2 groups */
6720 if (sd->flags & (SD_LOAD_BALANCE |
6721 SD_BALANCE_NEWIDLE |
6722 SD_BALANCE_FORK |
89c4710e
SS
6723 SD_BALANCE_EXEC |
6724 SD_SHARE_CPUPOWER |
6725 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6726 if (sd->groups != sd->groups->next)
6727 return 0;
6728 }
6729
6730 /* Following flags don't use groups */
6731 if (sd->flags & (SD_WAKE_IDLE |
6732 SD_WAKE_AFFINE |
6733 SD_WAKE_BALANCE))
6734 return 0;
6735
6736 return 1;
6737}
6738
48f24c4d
IM
6739static int
6740sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6741{
6742 unsigned long cflags = sd->flags, pflags = parent->flags;
6743
6744 if (sd_degenerate(parent))
6745 return 1;
6746
6747 if (!cpus_equal(sd->span, parent->span))
6748 return 0;
6749
6750 /* Does parent contain flags not in child? */
6751 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6752 if (cflags & SD_WAKE_AFFINE)
6753 pflags &= ~SD_WAKE_BALANCE;
6754 /* Flags needing groups don't count if only 1 group in parent */
6755 if (parent->groups == parent->groups->next) {
6756 pflags &= ~(SD_LOAD_BALANCE |
6757 SD_BALANCE_NEWIDLE |
6758 SD_BALANCE_FORK |
89c4710e
SS
6759 SD_BALANCE_EXEC |
6760 SD_SHARE_CPUPOWER |
6761 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6762 }
6763 if (~cflags & pflags)
6764 return 0;
6765
6766 return 1;
6767}
6768
57d885fe
GH
6769static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6770{
6771 unsigned long flags;
57d885fe
GH
6772
6773 spin_lock_irqsave(&rq->lock, flags);
6774
6775 if (rq->rd) {
6776 struct root_domain *old_rd = rq->rd;
6777
1f11eb6a
GH
6778 if (cpu_isset(rq->cpu, old_rd->online))
6779 set_rq_offline(rq);
57d885fe 6780
dc938520 6781 cpu_clear(rq->cpu, old_rd->span);
dc938520 6782
57d885fe
GH
6783 if (atomic_dec_and_test(&old_rd->refcount))
6784 kfree(old_rd);
6785 }
6786
6787 atomic_inc(&rd->refcount);
6788 rq->rd = rd;
6789
dc938520 6790 cpu_set(rq->cpu, rd->span);
1f94ef59 6791 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6792 set_rq_online(rq);
57d885fe
GH
6793
6794 spin_unlock_irqrestore(&rq->lock, flags);
6795}
6796
dc938520 6797static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6798{
6799 memset(rd, 0, sizeof(*rd));
6800
dc938520
GH
6801 cpus_clear(rd->span);
6802 cpus_clear(rd->online);
6e0534f2
GH
6803
6804 cpupri_init(&rd->cpupri);
57d885fe
GH
6805}
6806
6807static void init_defrootdomain(void)
6808{
dc938520 6809 init_rootdomain(&def_root_domain);
57d885fe
GH
6810 atomic_set(&def_root_domain.refcount, 1);
6811}
6812
dc938520 6813static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6814{
6815 struct root_domain *rd;
6816
6817 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6818 if (!rd)
6819 return NULL;
6820
dc938520 6821 init_rootdomain(rd);
57d885fe
GH
6822
6823 return rd;
6824}
6825
1da177e4 6826/*
0eab9146 6827 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6828 * hold the hotplug lock.
6829 */
0eab9146
IM
6830static void
6831cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6832{
70b97a7f 6833 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6834 struct sched_domain *tmp;
6835
6836 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6837 for (tmp = sd; tmp; ) {
245af2c7
SS
6838 struct sched_domain *parent = tmp->parent;
6839 if (!parent)
6840 break;
f29c9b1c 6841
1a848870 6842 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6843 tmp->parent = parent->parent;
1a848870
SS
6844 if (parent->parent)
6845 parent->parent->child = tmp;
f29c9b1c
LZ
6846 } else
6847 tmp = tmp->parent;
245af2c7
SS
6848 }
6849
1a848870 6850 if (sd && sd_degenerate(sd)) {
245af2c7 6851 sd = sd->parent;
1a848870
SS
6852 if (sd)
6853 sd->child = NULL;
6854 }
1da177e4
LT
6855
6856 sched_domain_debug(sd, cpu);
6857
57d885fe 6858 rq_attach_root(rq, rd);
674311d5 6859 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6860}
6861
6862/* cpus with isolated domains */
67af63a6 6863static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6864
6865/* Setup the mask of cpus configured for isolated domains */
6866static int __init isolated_cpu_setup(char *str)
6867{
13b40c1e
MT
6868 static int __initdata ints[NR_CPUS];
6869 int i;
1da177e4
LT
6870
6871 str = get_options(str, ARRAY_SIZE(ints), ints);
6872 cpus_clear(cpu_isolated_map);
6873 for (i = 1; i <= ints[0]; i++)
6874 if (ints[i] < NR_CPUS)
6875 cpu_set(ints[i], cpu_isolated_map);
6876 return 1;
6877}
6878
8927f494 6879__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6880
6881/*
6711cab4
SS
6882 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6883 * to a function which identifies what group(along with sched group) a CPU
6884 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6885 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6886 *
6887 * init_sched_build_groups will build a circular linked list of the groups
6888 * covered by the given span, and will set each group's ->cpumask correctly,
6889 * and ->cpu_power to 0.
6890 */
a616058b 6891static void
7c16ec58 6892init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6893 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6894 struct sched_group **sg,
6895 cpumask_t *tmpmask),
6896 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6897{
6898 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6899 int i;
6900
7c16ec58
MT
6901 cpus_clear(*covered);
6902
363ab6f1 6903 for_each_cpu_mask_nr(i, *span) {
6711cab4 6904 struct sched_group *sg;
7c16ec58 6905 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6906 int j;
6907
7c16ec58 6908 if (cpu_isset(i, *covered))
1da177e4
LT
6909 continue;
6910
7c16ec58 6911 cpus_clear(sg->cpumask);
5517d86b 6912 sg->__cpu_power = 0;
1da177e4 6913
363ab6f1 6914 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6915 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6916 continue;
6917
7c16ec58 6918 cpu_set(j, *covered);
1da177e4
LT
6919 cpu_set(j, sg->cpumask);
6920 }
6921 if (!first)
6922 first = sg;
6923 if (last)
6924 last->next = sg;
6925 last = sg;
6926 }
6927 last->next = first;
6928}
6929
9c1cfda2 6930#define SD_NODES_PER_DOMAIN 16
1da177e4 6931
9c1cfda2 6932#ifdef CONFIG_NUMA
198e2f18 6933
9c1cfda2
JH
6934/**
6935 * find_next_best_node - find the next node to include in a sched_domain
6936 * @node: node whose sched_domain we're building
6937 * @used_nodes: nodes already in the sched_domain
6938 *
41a2d6cf 6939 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6940 * finds the closest node not already in the @used_nodes map.
6941 *
6942 * Should use nodemask_t.
6943 */
c5f59f08 6944static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6945{
6946 int i, n, val, min_val, best_node = 0;
6947
6948 min_val = INT_MAX;
6949
076ac2af 6950 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6951 /* Start at @node */
076ac2af 6952 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6953
6954 if (!nr_cpus_node(n))
6955 continue;
6956
6957 /* Skip already used nodes */
c5f59f08 6958 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6959 continue;
6960
6961 /* Simple min distance search */
6962 val = node_distance(node, n);
6963
6964 if (val < min_val) {
6965 min_val = val;
6966 best_node = n;
6967 }
6968 }
6969
c5f59f08 6970 node_set(best_node, *used_nodes);
9c1cfda2
JH
6971 return best_node;
6972}
6973
6974/**
6975 * sched_domain_node_span - get a cpumask for a node's sched_domain
6976 * @node: node whose cpumask we're constructing
73486722 6977 * @span: resulting cpumask
9c1cfda2 6978 *
41a2d6cf 6979 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6980 * should be one that prevents unnecessary balancing, but also spreads tasks
6981 * out optimally.
6982 */
4bdbaad3 6983static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6984{
c5f59f08 6985 nodemask_t used_nodes;
c5f59f08 6986 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6987 int i;
9c1cfda2 6988
4bdbaad3 6989 cpus_clear(*span);
c5f59f08 6990 nodes_clear(used_nodes);
9c1cfda2 6991
4bdbaad3 6992 cpus_or(*span, *span, *nodemask);
c5f59f08 6993 node_set(node, used_nodes);
9c1cfda2
JH
6994
6995 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6996 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6997
c5f59f08 6998 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6999 cpus_or(*span, *span, *nodemask);
9c1cfda2 7000 }
9c1cfda2 7001}
6d6bc0ad 7002#endif /* CONFIG_NUMA */
9c1cfda2 7003
5c45bf27 7004int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7005
9c1cfda2 7006/*
48f24c4d 7007 * SMT sched-domains:
9c1cfda2 7008 */
1da177e4
LT
7009#ifdef CONFIG_SCHED_SMT
7010static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7011static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7012
41a2d6cf 7013static int
7c16ec58
MT
7014cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7015 cpumask_t *unused)
1da177e4 7016{
6711cab4
SS
7017 if (sg)
7018 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7019 return cpu;
7020}
6d6bc0ad 7021#endif /* CONFIG_SCHED_SMT */
1da177e4 7022
48f24c4d
IM
7023/*
7024 * multi-core sched-domains:
7025 */
1e9f28fa
SS
7026#ifdef CONFIG_SCHED_MC
7027static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7028static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7029#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7030
7031#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7032static int
7c16ec58
MT
7033cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7034 cpumask_t *mask)
1e9f28fa 7035{
6711cab4 7036 int group;
7c16ec58
MT
7037
7038 *mask = per_cpu(cpu_sibling_map, cpu);
7039 cpus_and(*mask, *mask, *cpu_map);
7040 group = first_cpu(*mask);
6711cab4
SS
7041 if (sg)
7042 *sg = &per_cpu(sched_group_core, group);
7043 return group;
1e9f28fa
SS
7044}
7045#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7046static int
7c16ec58
MT
7047cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7048 cpumask_t *unused)
1e9f28fa 7049{
6711cab4
SS
7050 if (sg)
7051 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7052 return cpu;
7053}
7054#endif
7055
1da177e4 7056static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7057static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7058
41a2d6cf 7059static int
7c16ec58
MT
7060cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7061 cpumask_t *mask)
1da177e4 7062{
6711cab4 7063 int group;
48f24c4d 7064#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7065 *mask = cpu_coregroup_map(cpu);
7066 cpus_and(*mask, *mask, *cpu_map);
7067 group = first_cpu(*mask);
1e9f28fa 7068#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7069 *mask = per_cpu(cpu_sibling_map, cpu);
7070 cpus_and(*mask, *mask, *cpu_map);
7071 group = first_cpu(*mask);
1da177e4 7072#else
6711cab4 7073 group = cpu;
1da177e4 7074#endif
6711cab4
SS
7075 if (sg)
7076 *sg = &per_cpu(sched_group_phys, group);
7077 return group;
1da177e4
LT
7078}
7079
7080#ifdef CONFIG_NUMA
1da177e4 7081/*
9c1cfda2
JH
7082 * The init_sched_build_groups can't handle what we want to do with node
7083 * groups, so roll our own. Now each node has its own list of groups which
7084 * gets dynamically allocated.
1da177e4 7085 */
9c1cfda2 7086static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7087static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7088
9c1cfda2 7089static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7090static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7091
6711cab4 7092static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7093 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7094{
6711cab4
SS
7095 int group;
7096
7c16ec58
MT
7097 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7098 cpus_and(*nodemask, *nodemask, *cpu_map);
7099 group = first_cpu(*nodemask);
6711cab4
SS
7100
7101 if (sg)
7102 *sg = &per_cpu(sched_group_allnodes, group);
7103 return group;
1da177e4 7104}
6711cab4 7105
08069033
SS
7106static void init_numa_sched_groups_power(struct sched_group *group_head)
7107{
7108 struct sched_group *sg = group_head;
7109 int j;
7110
7111 if (!sg)
7112 return;
3a5c359a 7113 do {
363ab6f1 7114 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7115 struct sched_domain *sd;
08069033 7116
3a5c359a
AK
7117 sd = &per_cpu(phys_domains, j);
7118 if (j != first_cpu(sd->groups->cpumask)) {
7119 /*
7120 * Only add "power" once for each
7121 * physical package.
7122 */
7123 continue;
7124 }
08069033 7125
3a5c359a
AK
7126 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7127 }
7128 sg = sg->next;
7129 } while (sg != group_head);
08069033 7130}
6d6bc0ad 7131#endif /* CONFIG_NUMA */
1da177e4 7132
a616058b 7133#ifdef CONFIG_NUMA
51888ca2 7134/* Free memory allocated for various sched_group structures */
7c16ec58 7135static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7136{
a616058b 7137 int cpu, i;
51888ca2 7138
363ab6f1 7139 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7140 struct sched_group **sched_group_nodes
7141 = sched_group_nodes_bycpu[cpu];
7142
51888ca2
SV
7143 if (!sched_group_nodes)
7144 continue;
7145
076ac2af 7146 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7147 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7148
7c16ec58
MT
7149 *nodemask = node_to_cpumask(i);
7150 cpus_and(*nodemask, *nodemask, *cpu_map);
7151 if (cpus_empty(*nodemask))
51888ca2
SV
7152 continue;
7153
7154 if (sg == NULL)
7155 continue;
7156 sg = sg->next;
7157next_sg:
7158 oldsg = sg;
7159 sg = sg->next;
7160 kfree(oldsg);
7161 if (oldsg != sched_group_nodes[i])
7162 goto next_sg;
7163 }
7164 kfree(sched_group_nodes);
7165 sched_group_nodes_bycpu[cpu] = NULL;
7166 }
51888ca2 7167}
6d6bc0ad 7168#else /* !CONFIG_NUMA */
7c16ec58 7169static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7170{
7171}
6d6bc0ad 7172#endif /* CONFIG_NUMA */
51888ca2 7173
89c4710e
SS
7174/*
7175 * Initialize sched groups cpu_power.
7176 *
7177 * cpu_power indicates the capacity of sched group, which is used while
7178 * distributing the load between different sched groups in a sched domain.
7179 * Typically cpu_power for all the groups in a sched domain will be same unless
7180 * there are asymmetries in the topology. If there are asymmetries, group
7181 * having more cpu_power will pickup more load compared to the group having
7182 * less cpu_power.
7183 *
7184 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7185 * the maximum number of tasks a group can handle in the presence of other idle
7186 * or lightly loaded groups in the same sched domain.
7187 */
7188static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7189{
7190 struct sched_domain *child;
7191 struct sched_group *group;
7192
7193 WARN_ON(!sd || !sd->groups);
7194
7195 if (cpu != first_cpu(sd->groups->cpumask))
7196 return;
7197
7198 child = sd->child;
7199
5517d86b
ED
7200 sd->groups->__cpu_power = 0;
7201
89c4710e
SS
7202 /*
7203 * For perf policy, if the groups in child domain share resources
7204 * (for example cores sharing some portions of the cache hierarchy
7205 * or SMT), then set this domain groups cpu_power such that each group
7206 * can handle only one task, when there are other idle groups in the
7207 * same sched domain.
7208 */
7209 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7210 (child->flags &
7211 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7212 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7213 return;
7214 }
7215
89c4710e
SS
7216 /*
7217 * add cpu_power of each child group to this groups cpu_power
7218 */
7219 group = child->groups;
7220 do {
5517d86b 7221 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7222 group = group->next;
7223 } while (group != child->groups);
7224}
7225
7c16ec58
MT
7226/*
7227 * Initializers for schedule domains
7228 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7229 */
7230
a5d8c348
IM
7231#ifdef CONFIG_SCHED_DEBUG
7232# define SD_INIT_NAME(sd, type) sd->name = #type
7233#else
7234# define SD_INIT_NAME(sd, type) do { } while (0)
7235#endif
7236
7c16ec58 7237#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7238
7c16ec58
MT
7239#define SD_INIT_FUNC(type) \
7240static noinline void sd_init_##type(struct sched_domain *sd) \
7241{ \
7242 memset(sd, 0, sizeof(*sd)); \
7243 *sd = SD_##type##_INIT; \
1d3504fc 7244 sd->level = SD_LV_##type; \
a5d8c348 7245 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7246}
7247
7248SD_INIT_FUNC(CPU)
7249#ifdef CONFIG_NUMA
7250 SD_INIT_FUNC(ALLNODES)
7251 SD_INIT_FUNC(NODE)
7252#endif
7253#ifdef CONFIG_SCHED_SMT
7254 SD_INIT_FUNC(SIBLING)
7255#endif
7256#ifdef CONFIG_SCHED_MC
7257 SD_INIT_FUNC(MC)
7258#endif
7259
7260/*
7261 * To minimize stack usage kmalloc room for cpumasks and share the
7262 * space as the usage in build_sched_domains() dictates. Used only
7263 * if the amount of space is significant.
7264 */
7265struct allmasks {
7266 cpumask_t tmpmask; /* make this one first */
7267 union {
7268 cpumask_t nodemask;
7269 cpumask_t this_sibling_map;
7270 cpumask_t this_core_map;
7271 };
7272 cpumask_t send_covered;
7273
7274#ifdef CONFIG_NUMA
7275 cpumask_t domainspan;
7276 cpumask_t covered;
7277 cpumask_t notcovered;
7278#endif
7279};
7280
7281#if NR_CPUS > 128
6d21cd62
LZ
7282#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7283static inline void sched_cpumask_alloc(struct allmasks **masks)
7284{
7285 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7286}
7287static inline void sched_cpumask_free(struct allmasks *masks)
7288{
7289 kfree(masks);
7290}
7c16ec58 7291#else
6d21cd62
LZ
7292#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7293static inline void sched_cpumask_alloc(struct allmasks **masks)
7294{ }
7295static inline void sched_cpumask_free(struct allmasks *masks)
7296{ }
7c16ec58
MT
7297#endif
7298
7299#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7300 ((unsigned long)(a) + offsetof(struct allmasks, v))
7301
1d3504fc
HS
7302static int default_relax_domain_level = -1;
7303
7304static int __init setup_relax_domain_level(char *str)
7305{
30e0e178
LZ
7306 unsigned long val;
7307
7308 val = simple_strtoul(str, NULL, 0);
7309 if (val < SD_LV_MAX)
7310 default_relax_domain_level = val;
7311
1d3504fc
HS
7312 return 1;
7313}
7314__setup("relax_domain_level=", setup_relax_domain_level);
7315
7316static void set_domain_attribute(struct sched_domain *sd,
7317 struct sched_domain_attr *attr)
7318{
7319 int request;
7320
7321 if (!attr || attr->relax_domain_level < 0) {
7322 if (default_relax_domain_level < 0)
7323 return;
7324 else
7325 request = default_relax_domain_level;
7326 } else
7327 request = attr->relax_domain_level;
7328 if (request < sd->level) {
7329 /* turn off idle balance on this domain */
7330 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7331 } else {
7332 /* turn on idle balance on this domain */
7333 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7334 }
7335}
7336
1da177e4 7337/*
1a20ff27
DG
7338 * Build sched domains for a given set of cpus and attach the sched domains
7339 * to the individual cpus
1da177e4 7340 */
1d3504fc
HS
7341static int __build_sched_domains(const cpumask_t *cpu_map,
7342 struct sched_domain_attr *attr)
1da177e4
LT
7343{
7344 int i;
57d885fe 7345 struct root_domain *rd;
7c16ec58
MT
7346 SCHED_CPUMASK_DECLARE(allmasks);
7347 cpumask_t *tmpmask;
d1b55138
JH
7348#ifdef CONFIG_NUMA
7349 struct sched_group **sched_group_nodes = NULL;
6711cab4 7350 int sd_allnodes = 0;
d1b55138
JH
7351
7352 /*
7353 * Allocate the per-node list of sched groups
7354 */
076ac2af 7355 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7356 GFP_KERNEL);
d1b55138
JH
7357 if (!sched_group_nodes) {
7358 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7359 return -ENOMEM;
d1b55138 7360 }
d1b55138 7361#endif
1da177e4 7362
dc938520 7363 rd = alloc_rootdomain();
57d885fe
GH
7364 if (!rd) {
7365 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7366#ifdef CONFIG_NUMA
7367 kfree(sched_group_nodes);
7368#endif
57d885fe
GH
7369 return -ENOMEM;
7370 }
7371
7c16ec58 7372 /* get space for all scratch cpumask variables */
6d21cd62 7373 sched_cpumask_alloc(&allmasks);
7c16ec58
MT
7374 if (!allmasks) {
7375 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7376 kfree(rd);
7377#ifdef CONFIG_NUMA
7378 kfree(sched_group_nodes);
7379#endif
7380 return -ENOMEM;
7381 }
6d21cd62 7382
7c16ec58
MT
7383 tmpmask = (cpumask_t *)allmasks;
7384
7385
7386#ifdef CONFIG_NUMA
7387 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7388#endif
7389
1da177e4 7390 /*
1a20ff27 7391 * Set up domains for cpus specified by the cpu_map.
1da177e4 7392 */
363ab6f1 7393 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7394 struct sched_domain *sd = NULL, *p;
7c16ec58 7395 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7396
7c16ec58
MT
7397 *nodemask = node_to_cpumask(cpu_to_node(i));
7398 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7399
7400#ifdef CONFIG_NUMA
dd41f596 7401 if (cpus_weight(*cpu_map) >
7c16ec58 7402 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7403 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7404 SD_INIT(sd, ALLNODES);
1d3504fc 7405 set_domain_attribute(sd, attr);
9c1cfda2 7406 sd->span = *cpu_map;
7c16ec58 7407 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7408 p = sd;
6711cab4 7409 sd_allnodes = 1;
9c1cfda2
JH
7410 } else
7411 p = NULL;
7412
1da177e4 7413 sd = &per_cpu(node_domains, i);
7c16ec58 7414 SD_INIT(sd, NODE);
1d3504fc 7415 set_domain_attribute(sd, attr);
4bdbaad3 7416 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7417 sd->parent = p;
1a848870
SS
7418 if (p)
7419 p->child = sd;
9c1cfda2 7420 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7421#endif
7422
7423 p = sd;
7424 sd = &per_cpu(phys_domains, i);
7c16ec58 7425 SD_INIT(sd, CPU);
1d3504fc 7426 set_domain_attribute(sd, attr);
7c16ec58 7427 sd->span = *nodemask;
1da177e4 7428 sd->parent = p;
1a848870
SS
7429 if (p)
7430 p->child = sd;
7c16ec58 7431 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7432
1e9f28fa
SS
7433#ifdef CONFIG_SCHED_MC
7434 p = sd;
7435 sd = &per_cpu(core_domains, i);
7c16ec58 7436 SD_INIT(sd, MC);
1d3504fc 7437 set_domain_attribute(sd, attr);
1e9f28fa
SS
7438 sd->span = cpu_coregroup_map(i);
7439 cpus_and(sd->span, sd->span, *cpu_map);
7440 sd->parent = p;
1a848870 7441 p->child = sd;
7c16ec58 7442 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7443#endif
7444
1da177e4
LT
7445#ifdef CONFIG_SCHED_SMT
7446 p = sd;
7447 sd = &per_cpu(cpu_domains, i);
7c16ec58 7448 SD_INIT(sd, SIBLING);
1d3504fc 7449 set_domain_attribute(sd, attr);
d5a7430d 7450 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7451 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7452 sd->parent = p;
1a848870 7453 p->child = sd;
7c16ec58 7454 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7455#endif
7456 }
7457
7458#ifdef CONFIG_SCHED_SMT
7459 /* Set up CPU (sibling) groups */
363ab6f1 7460 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7461 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7462 SCHED_CPUMASK_VAR(send_covered, allmasks);
7463
7464 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7465 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7466 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7467 continue;
7468
dd41f596 7469 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7470 &cpu_to_cpu_group,
7471 send_covered, tmpmask);
1da177e4
LT
7472 }
7473#endif
7474
1e9f28fa
SS
7475#ifdef CONFIG_SCHED_MC
7476 /* Set up multi-core groups */
363ab6f1 7477 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7478 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7479 SCHED_CPUMASK_VAR(send_covered, allmasks);
7480
7481 *this_core_map = cpu_coregroup_map(i);
7482 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7483 if (i != first_cpu(*this_core_map))
1e9f28fa 7484 continue;
7c16ec58 7485
dd41f596 7486 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7487 &cpu_to_core_group,
7488 send_covered, tmpmask);
1e9f28fa
SS
7489 }
7490#endif
7491
1da177e4 7492 /* Set up physical groups */
076ac2af 7493 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7494 SCHED_CPUMASK_VAR(nodemask, allmasks);
7495 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7496
7c16ec58
MT
7497 *nodemask = node_to_cpumask(i);
7498 cpus_and(*nodemask, *nodemask, *cpu_map);
7499 if (cpus_empty(*nodemask))
1da177e4
LT
7500 continue;
7501
7c16ec58
MT
7502 init_sched_build_groups(nodemask, cpu_map,
7503 &cpu_to_phys_group,
7504 send_covered, tmpmask);
1da177e4
LT
7505 }
7506
7507#ifdef CONFIG_NUMA
7508 /* Set up node groups */
7c16ec58
MT
7509 if (sd_allnodes) {
7510 SCHED_CPUMASK_VAR(send_covered, allmasks);
7511
7512 init_sched_build_groups(cpu_map, cpu_map,
7513 &cpu_to_allnodes_group,
7514 send_covered, tmpmask);
7515 }
9c1cfda2 7516
076ac2af 7517 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7518 /* Set up node groups */
7519 struct sched_group *sg, *prev;
7c16ec58
MT
7520 SCHED_CPUMASK_VAR(nodemask, allmasks);
7521 SCHED_CPUMASK_VAR(domainspan, allmasks);
7522 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7523 int j;
7524
7c16ec58
MT
7525 *nodemask = node_to_cpumask(i);
7526 cpus_clear(*covered);
7527
7528 cpus_and(*nodemask, *nodemask, *cpu_map);
7529 if (cpus_empty(*nodemask)) {
d1b55138 7530 sched_group_nodes[i] = NULL;
9c1cfda2 7531 continue;
d1b55138 7532 }
9c1cfda2 7533
4bdbaad3 7534 sched_domain_node_span(i, domainspan);
7c16ec58 7535 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7536
15f0b676 7537 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7538 if (!sg) {
7539 printk(KERN_WARNING "Can not alloc domain group for "
7540 "node %d\n", i);
7541 goto error;
7542 }
9c1cfda2 7543 sched_group_nodes[i] = sg;
363ab6f1 7544 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7545 struct sched_domain *sd;
9761eea8 7546
9c1cfda2
JH
7547 sd = &per_cpu(node_domains, j);
7548 sd->groups = sg;
9c1cfda2 7549 }
5517d86b 7550 sg->__cpu_power = 0;
7c16ec58 7551 sg->cpumask = *nodemask;
51888ca2 7552 sg->next = sg;
7c16ec58 7553 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7554 prev = sg;
7555
076ac2af 7556 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7557 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7558 int n = (i + j) % nr_node_ids;
c5f59f08 7559 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7560
7c16ec58
MT
7561 cpus_complement(*notcovered, *covered);
7562 cpus_and(*tmpmask, *notcovered, *cpu_map);
7563 cpus_and(*tmpmask, *tmpmask, *domainspan);
7564 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7565 break;
7566
7c16ec58
MT
7567 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7568 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7569 continue;
7570
15f0b676
SV
7571 sg = kmalloc_node(sizeof(struct sched_group),
7572 GFP_KERNEL, i);
9c1cfda2
JH
7573 if (!sg) {
7574 printk(KERN_WARNING
7575 "Can not alloc domain group for node %d\n", j);
51888ca2 7576 goto error;
9c1cfda2 7577 }
5517d86b 7578 sg->__cpu_power = 0;
7c16ec58 7579 sg->cpumask = *tmpmask;
51888ca2 7580 sg->next = prev->next;
7c16ec58 7581 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7582 prev->next = sg;
7583 prev = sg;
7584 }
9c1cfda2 7585 }
1da177e4
LT
7586#endif
7587
7588 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7589#ifdef CONFIG_SCHED_SMT
363ab6f1 7590 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7591 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7592
89c4710e 7593 init_sched_groups_power(i, sd);
5c45bf27 7594 }
1da177e4 7595#endif
1e9f28fa 7596#ifdef CONFIG_SCHED_MC
363ab6f1 7597 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7598 struct sched_domain *sd = &per_cpu(core_domains, i);
7599
89c4710e 7600 init_sched_groups_power(i, sd);
5c45bf27
SS
7601 }
7602#endif
1e9f28fa 7603
363ab6f1 7604 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7605 struct sched_domain *sd = &per_cpu(phys_domains, i);
7606
89c4710e 7607 init_sched_groups_power(i, sd);
1da177e4
LT
7608 }
7609
9c1cfda2 7610#ifdef CONFIG_NUMA
076ac2af 7611 for (i = 0; i < nr_node_ids; i++)
08069033 7612 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7613
6711cab4
SS
7614 if (sd_allnodes) {
7615 struct sched_group *sg;
f712c0c7 7616
7c16ec58
MT
7617 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7618 tmpmask);
f712c0c7
SS
7619 init_numa_sched_groups_power(sg);
7620 }
9c1cfda2
JH
7621#endif
7622
1da177e4 7623 /* Attach the domains */
363ab6f1 7624 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7625 struct sched_domain *sd;
7626#ifdef CONFIG_SCHED_SMT
7627 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7628#elif defined(CONFIG_SCHED_MC)
7629 sd = &per_cpu(core_domains, i);
1da177e4
LT
7630#else
7631 sd = &per_cpu(phys_domains, i);
7632#endif
57d885fe 7633 cpu_attach_domain(sd, rd, i);
1da177e4 7634 }
51888ca2 7635
6d21cd62 7636 sched_cpumask_free(allmasks);
51888ca2
SV
7637 return 0;
7638
a616058b 7639#ifdef CONFIG_NUMA
51888ca2 7640error:
7c16ec58 7641 free_sched_groups(cpu_map, tmpmask);
6d21cd62 7642 sched_cpumask_free(allmasks);
ca3273f9 7643 kfree(rd);
51888ca2 7644 return -ENOMEM;
a616058b 7645#endif
1da177e4 7646}
029190c5 7647
1d3504fc
HS
7648static int build_sched_domains(const cpumask_t *cpu_map)
7649{
7650 return __build_sched_domains(cpu_map, NULL);
7651}
7652
029190c5
PJ
7653static cpumask_t *doms_cur; /* current sched domains */
7654static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7655static struct sched_domain_attr *dattr_cur;
7656 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7657
7658/*
7659 * Special case: If a kmalloc of a doms_cur partition (array of
7660 * cpumask_t) fails, then fallback to a single sched domain,
7661 * as determined by the single cpumask_t fallback_doms.
7662 */
7663static cpumask_t fallback_doms;
7664
22e52b07
HC
7665void __attribute__((weak)) arch_update_cpu_topology(void)
7666{
7667}
7668
1a20ff27 7669/*
41a2d6cf 7670 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7671 * For now this just excludes isolated cpus, but could be used to
7672 * exclude other special cases in the future.
1a20ff27 7673 */
51888ca2 7674static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7675{
7378547f
MM
7676 int err;
7677
22e52b07 7678 arch_update_cpu_topology();
029190c5
PJ
7679 ndoms_cur = 1;
7680 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7681 if (!doms_cur)
7682 doms_cur = &fallback_doms;
7683 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7684 dattr_cur = NULL;
7378547f 7685 err = build_sched_domains(doms_cur);
6382bc90 7686 register_sched_domain_sysctl();
7378547f
MM
7687
7688 return err;
1a20ff27
DG
7689}
7690
7c16ec58
MT
7691static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7692 cpumask_t *tmpmask)
1da177e4 7693{
7c16ec58 7694 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7695}
1da177e4 7696
1a20ff27
DG
7697/*
7698 * Detach sched domains from a group of cpus specified in cpu_map
7699 * These cpus will now be attached to the NULL domain
7700 */
858119e1 7701static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7702{
7c16ec58 7703 cpumask_t tmpmask;
1a20ff27
DG
7704 int i;
7705
363ab6f1 7706 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7707 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7708 synchronize_sched();
7c16ec58 7709 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7710}
7711
1d3504fc
HS
7712/* handle null as "default" */
7713static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7714 struct sched_domain_attr *new, int idx_new)
7715{
7716 struct sched_domain_attr tmp;
7717
7718 /* fast path */
7719 if (!new && !cur)
7720 return 1;
7721
7722 tmp = SD_ATTR_INIT;
7723 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7724 new ? (new + idx_new) : &tmp,
7725 sizeof(struct sched_domain_attr));
7726}
7727
029190c5
PJ
7728/*
7729 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7730 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7731 * doms_new[] to the current sched domain partitioning, doms_cur[].
7732 * It destroys each deleted domain and builds each new domain.
7733 *
7734 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7735 * The masks don't intersect (don't overlap.) We should setup one
7736 * sched domain for each mask. CPUs not in any of the cpumasks will
7737 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7738 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7739 * it as it is.
7740 *
41a2d6cf
IM
7741 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7742 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7743 * failed the kmalloc call, then it can pass in doms_new == NULL,
7744 * and partition_sched_domains() will fallback to the single partition
e761b772 7745 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7746 *
dfb512ec
MK
7747 * If doms_new==NULL it will be replaced with cpu_online_map.
7748 * ndoms_new==0 is a special case for destroying existing domains.
7749 * It will not create the default domain.
7750 *
029190c5
PJ
7751 * Call with hotplug lock held
7752 */
1d3504fc
HS
7753void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7754 struct sched_domain_attr *dattr_new)
029190c5 7755{
dfb512ec 7756 int i, j, n;
029190c5 7757
712555ee 7758 mutex_lock(&sched_domains_mutex);
a1835615 7759
7378547f
MM
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7762
dfb512ec 7763 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7764
7765 /* Destroy deleted domains */
7766 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7767 for (j = 0; j < n; j++) {
1d3504fc
HS
7768 if (cpus_equal(doms_cur[i], doms_new[j])
7769 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7770 goto match1;
7771 }
7772 /* no match - a current sched domain not in new doms_new[] */
7773 detach_destroy_domains(doms_cur + i);
7774match1:
7775 ;
7776 }
7777
e761b772
MK
7778 if (doms_new == NULL) {
7779 ndoms_cur = 0;
e761b772
MK
7780 doms_new = &fallback_doms;
7781 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
faa2f98f 7782 WARN_ON_ONCE(dattr_new);
e761b772
MK
7783 }
7784
029190c5
PJ
7785 /* Build new domains */
7786 for (i = 0; i < ndoms_new; i++) {
7787 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7788 if (cpus_equal(doms_new[i], doms_cur[j])
7789 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7790 goto match2;
7791 }
7792 /* no match - add a new doms_new */
1d3504fc
HS
7793 __build_sched_domains(doms_new + i,
7794 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7795match2:
7796 ;
7797 }
7798
7799 /* Remember the new sched domains */
7800 if (doms_cur != &fallback_doms)
7801 kfree(doms_cur);
1d3504fc 7802 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7803 doms_cur = doms_new;
1d3504fc 7804 dattr_cur = dattr_new;
029190c5 7805 ndoms_cur = ndoms_new;
7378547f
MM
7806
7807 register_sched_domain_sysctl();
a1835615 7808
712555ee 7809 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7810}
7811
5c45bf27 7812#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7813int arch_reinit_sched_domains(void)
5c45bf27 7814{
95402b38 7815 get_online_cpus();
dfb512ec
MK
7816
7817 /* Destroy domains first to force the rebuild */
7818 partition_sched_domains(0, NULL, NULL);
7819
e761b772 7820 rebuild_sched_domains();
95402b38 7821 put_online_cpus();
dfb512ec 7822
e761b772 7823 return 0;
5c45bf27
SS
7824}
7825
7826static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7827{
7828 int ret;
7829
7830 if (buf[0] != '0' && buf[0] != '1')
7831 return -EINVAL;
7832
7833 if (smt)
7834 sched_smt_power_savings = (buf[0] == '1');
7835 else
7836 sched_mc_power_savings = (buf[0] == '1');
7837
7838 ret = arch_reinit_sched_domains();
7839
7840 return ret ? ret : count;
7841}
7842
5c45bf27 7843#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7844static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7845 char *page)
5c45bf27
SS
7846{
7847 return sprintf(page, "%u\n", sched_mc_power_savings);
7848}
f718cd4a 7849static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7850 const char *buf, size_t count)
5c45bf27
SS
7851{
7852 return sched_power_savings_store(buf, count, 0);
7853}
f718cd4a
AK
7854static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7855 sched_mc_power_savings_show,
7856 sched_mc_power_savings_store);
5c45bf27
SS
7857#endif
7858
7859#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7860static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7861 char *page)
5c45bf27
SS
7862{
7863 return sprintf(page, "%u\n", sched_smt_power_savings);
7864}
f718cd4a 7865static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7866 const char *buf, size_t count)
5c45bf27
SS
7867{
7868 return sched_power_savings_store(buf, count, 1);
7869}
f718cd4a
AK
7870static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7871 sched_smt_power_savings_show,
6707de00
AB
7872 sched_smt_power_savings_store);
7873#endif
7874
7875int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7876{
7877 int err = 0;
7878
7879#ifdef CONFIG_SCHED_SMT
7880 if (smt_capable())
7881 err = sysfs_create_file(&cls->kset.kobj,
7882 &attr_sched_smt_power_savings.attr);
7883#endif
7884#ifdef CONFIG_SCHED_MC
7885 if (!err && mc_capable())
7886 err = sysfs_create_file(&cls->kset.kobj,
7887 &attr_sched_mc_power_savings.attr);
7888#endif
7889 return err;
7890}
6d6bc0ad 7891#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7892
e761b772 7893#ifndef CONFIG_CPUSETS
1da177e4 7894/*
e761b772
MK
7895 * Add online and remove offline CPUs from the scheduler domains.
7896 * When cpusets are enabled they take over this function.
1da177e4
LT
7897 */
7898static int update_sched_domains(struct notifier_block *nfb,
7899 unsigned long action, void *hcpu)
e761b772
MK
7900{
7901 switch (action) {
7902 case CPU_ONLINE:
7903 case CPU_ONLINE_FROZEN:
7904 case CPU_DEAD:
7905 case CPU_DEAD_FROZEN:
dfb512ec 7906 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7907 return NOTIFY_OK;
7908
7909 default:
7910 return NOTIFY_DONE;
7911 }
7912}
7913#endif
7914
7915static int update_runtime(struct notifier_block *nfb,
7916 unsigned long action, void *hcpu)
1da177e4 7917{
7def2be1
PZ
7918 int cpu = (int)(long)hcpu;
7919
1da177e4 7920 switch (action) {
1da177e4 7921 case CPU_DOWN_PREPARE:
8bb78442 7922 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7923 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7924 return NOTIFY_OK;
7925
1da177e4 7926 case CPU_DOWN_FAILED:
8bb78442 7927 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7928 case CPU_ONLINE:
8bb78442 7929 case CPU_ONLINE_FROZEN:
7def2be1 7930 enable_runtime(cpu_rq(cpu));
e761b772
MK
7931 return NOTIFY_OK;
7932
1da177e4
LT
7933 default:
7934 return NOTIFY_DONE;
7935 }
1da177e4 7936}
1da177e4
LT
7937
7938void __init sched_init_smp(void)
7939{
5c1e1767
NP
7940 cpumask_t non_isolated_cpus;
7941
434d53b0
MT
7942#if defined(CONFIG_NUMA)
7943 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7944 GFP_KERNEL);
7945 BUG_ON(sched_group_nodes_bycpu == NULL);
7946#endif
95402b38 7947 get_online_cpus();
712555ee 7948 mutex_lock(&sched_domains_mutex);
1a20ff27 7949 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7950 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7951 if (cpus_empty(non_isolated_cpus))
7952 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7953 mutex_unlock(&sched_domains_mutex);
95402b38 7954 put_online_cpus();
e761b772
MK
7955
7956#ifndef CONFIG_CPUSETS
1da177e4
LT
7957 /* XXX: Theoretical race here - CPU may be hotplugged now */
7958 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7959#endif
7960
7961 /* RT runtime code needs to handle some hotplug events */
7962 hotcpu_notifier(update_runtime, 0);
7963
b328ca18 7964 init_hrtick();
5c1e1767
NP
7965
7966 /* Move init over to a non-isolated CPU */
7c16ec58 7967 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7968 BUG();
19978ca6 7969 sched_init_granularity();
1da177e4
LT
7970}
7971#else
7972void __init sched_init_smp(void)
7973{
19978ca6 7974 sched_init_granularity();
1da177e4
LT
7975}
7976#endif /* CONFIG_SMP */
7977
7978int in_sched_functions(unsigned long addr)
7979{
1da177e4
LT
7980 return in_lock_functions(addr) ||
7981 (addr >= (unsigned long)__sched_text_start
7982 && addr < (unsigned long)__sched_text_end);
7983}
7984
a9957449 7985static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7986{
7987 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7988 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7989#ifdef CONFIG_FAIR_GROUP_SCHED
7990 cfs_rq->rq = rq;
7991#endif
67e9fb2a 7992 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7993}
7994
fa85ae24
PZ
7995static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7996{
7997 struct rt_prio_array *array;
7998 int i;
7999
8000 array = &rt_rq->active;
8001 for (i = 0; i < MAX_RT_PRIO; i++) {
8002 INIT_LIST_HEAD(array->queue + i);
8003 __clear_bit(i, array->bitmap);
8004 }
8005 /* delimiter for bitsearch: */
8006 __set_bit(MAX_RT_PRIO, array->bitmap);
8007
052f1dc7 8008#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8009 rt_rq->highest_prio = MAX_RT_PRIO;
8010#endif
fa85ae24
PZ
8011#ifdef CONFIG_SMP
8012 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8013 rt_rq->overloaded = 0;
8014#endif
8015
8016 rt_rq->rt_time = 0;
8017 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8018 rt_rq->rt_runtime = 0;
8019 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8020
052f1dc7 8021#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8022 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8023 rt_rq->rq = rq;
8024#endif
fa85ae24
PZ
8025}
8026
6f505b16 8027#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8028static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8029 struct sched_entity *se, int cpu, int add,
8030 struct sched_entity *parent)
6f505b16 8031{
ec7dc8ac 8032 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8033 tg->cfs_rq[cpu] = cfs_rq;
8034 init_cfs_rq(cfs_rq, rq);
8035 cfs_rq->tg = tg;
8036 if (add)
8037 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8038
8039 tg->se[cpu] = se;
354d60c2
DG
8040 /* se could be NULL for init_task_group */
8041 if (!se)
8042 return;
8043
ec7dc8ac
DG
8044 if (!parent)
8045 se->cfs_rq = &rq->cfs;
8046 else
8047 se->cfs_rq = parent->my_q;
8048
6f505b16
PZ
8049 se->my_q = cfs_rq;
8050 se->load.weight = tg->shares;
e05510d0 8051 se->load.inv_weight = 0;
ec7dc8ac 8052 se->parent = parent;
6f505b16 8053}
052f1dc7 8054#endif
6f505b16 8055
052f1dc7 8056#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8057static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8058 struct sched_rt_entity *rt_se, int cpu, int add,
8059 struct sched_rt_entity *parent)
6f505b16 8060{
ec7dc8ac
DG
8061 struct rq *rq = cpu_rq(cpu);
8062
6f505b16
PZ
8063 tg->rt_rq[cpu] = rt_rq;
8064 init_rt_rq(rt_rq, rq);
8065 rt_rq->tg = tg;
8066 rt_rq->rt_se = rt_se;
ac086bc2 8067 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8068 if (add)
8069 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8070
8071 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8072 if (!rt_se)
8073 return;
8074
ec7dc8ac
DG
8075 if (!parent)
8076 rt_se->rt_rq = &rq->rt;
8077 else
8078 rt_se->rt_rq = parent->my_q;
8079
6f505b16 8080 rt_se->my_q = rt_rq;
ec7dc8ac 8081 rt_se->parent = parent;
6f505b16
PZ
8082 INIT_LIST_HEAD(&rt_se->run_list);
8083}
8084#endif
8085
1da177e4
LT
8086void __init sched_init(void)
8087{
dd41f596 8088 int i, j;
434d53b0
MT
8089 unsigned long alloc_size = 0, ptr;
8090
8091#ifdef CONFIG_FAIR_GROUP_SCHED
8092 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8093#endif
8094#ifdef CONFIG_RT_GROUP_SCHED
8095 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8096#endif
8097#ifdef CONFIG_USER_SCHED
8098 alloc_size *= 2;
434d53b0
MT
8099#endif
8100 /*
8101 * As sched_init() is called before page_alloc is setup,
8102 * we use alloc_bootmem().
8103 */
8104 if (alloc_size) {
5a9d3225 8105 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8106
8107#ifdef CONFIG_FAIR_GROUP_SCHED
8108 init_task_group.se = (struct sched_entity **)ptr;
8109 ptr += nr_cpu_ids * sizeof(void **);
8110
8111 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8113
8114#ifdef CONFIG_USER_SCHED
8115 root_task_group.se = (struct sched_entity **)ptr;
8116 ptr += nr_cpu_ids * sizeof(void **);
8117
8118 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8119 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8120#endif /* CONFIG_USER_SCHED */
8121#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8122#ifdef CONFIG_RT_GROUP_SCHED
8123 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8124 ptr += nr_cpu_ids * sizeof(void **);
8125
8126 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8127 ptr += nr_cpu_ids * sizeof(void **);
8128
8129#ifdef CONFIG_USER_SCHED
8130 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8131 ptr += nr_cpu_ids * sizeof(void **);
8132
8133 root_task_group.rt_rq = (struct rt_rq **)ptr;
8134 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8135#endif /* CONFIG_USER_SCHED */
8136#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8137 }
dd41f596 8138
57d885fe
GH
8139#ifdef CONFIG_SMP
8140 init_defrootdomain();
8141#endif
8142
d0b27fa7
PZ
8143 init_rt_bandwidth(&def_rt_bandwidth,
8144 global_rt_period(), global_rt_runtime());
8145
8146#ifdef CONFIG_RT_GROUP_SCHED
8147 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8148 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8149#ifdef CONFIG_USER_SCHED
8150 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8151 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8152#endif /* CONFIG_USER_SCHED */
8153#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8154
052f1dc7 8155#ifdef CONFIG_GROUP_SCHED
6f505b16 8156 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8157 INIT_LIST_HEAD(&init_task_group.children);
8158
8159#ifdef CONFIG_USER_SCHED
8160 INIT_LIST_HEAD(&root_task_group.children);
8161 init_task_group.parent = &root_task_group;
8162 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8163#endif /* CONFIG_USER_SCHED */
8164#endif /* CONFIG_GROUP_SCHED */
6f505b16 8165
0a945022 8166 for_each_possible_cpu(i) {
70b97a7f 8167 struct rq *rq;
1da177e4
LT
8168
8169 rq = cpu_rq(i);
8170 spin_lock_init(&rq->lock);
7897986b 8171 rq->nr_running = 0;
dd41f596 8172 init_cfs_rq(&rq->cfs, rq);
6f505b16 8173 init_rt_rq(&rq->rt, rq);
dd41f596 8174#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8175 init_task_group.shares = init_task_group_load;
6f505b16 8176 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8177#ifdef CONFIG_CGROUP_SCHED
8178 /*
8179 * How much cpu bandwidth does init_task_group get?
8180 *
8181 * In case of task-groups formed thr' the cgroup filesystem, it
8182 * gets 100% of the cpu resources in the system. This overall
8183 * system cpu resource is divided among the tasks of
8184 * init_task_group and its child task-groups in a fair manner,
8185 * based on each entity's (task or task-group's) weight
8186 * (se->load.weight).
8187 *
8188 * In other words, if init_task_group has 10 tasks of weight
8189 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8190 * then A0's share of the cpu resource is:
8191 *
8192 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8193 *
8194 * We achieve this by letting init_task_group's tasks sit
8195 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8196 */
ec7dc8ac 8197 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8198#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8199 root_task_group.shares = NICE_0_LOAD;
8200 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8201 /*
8202 * In case of task-groups formed thr' the user id of tasks,
8203 * init_task_group represents tasks belonging to root user.
8204 * Hence it forms a sibling of all subsequent groups formed.
8205 * In this case, init_task_group gets only a fraction of overall
8206 * system cpu resource, based on the weight assigned to root
8207 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8208 * by letting tasks of init_task_group sit in a separate cfs_rq
8209 * (init_cfs_rq) and having one entity represent this group of
8210 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8211 */
ec7dc8ac 8212 init_tg_cfs_entry(&init_task_group,
6f505b16 8213 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8214 &per_cpu(init_sched_entity, i), i, 1,
8215 root_task_group.se[i]);
6f505b16 8216
052f1dc7 8217#endif
354d60c2
DG
8218#endif /* CONFIG_FAIR_GROUP_SCHED */
8219
8220 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8221#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8222 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8223#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8224 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8225#elif defined CONFIG_USER_SCHED
eff766a6 8226 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8227 init_tg_rt_entry(&init_task_group,
6f505b16 8228 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8229 &per_cpu(init_sched_rt_entity, i), i, 1,
8230 root_task_group.rt_se[i]);
354d60c2 8231#endif
dd41f596 8232#endif
1da177e4 8233
dd41f596
IM
8234 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8235 rq->cpu_load[j] = 0;
1da177e4 8236#ifdef CONFIG_SMP
41c7ce9a 8237 rq->sd = NULL;
57d885fe 8238 rq->rd = NULL;
1da177e4 8239 rq->active_balance = 0;
dd41f596 8240 rq->next_balance = jiffies;
1da177e4 8241 rq->push_cpu = 0;
0a2966b4 8242 rq->cpu = i;
1f11eb6a 8243 rq->online = 0;
1da177e4
LT
8244 rq->migration_thread = NULL;
8245 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8246 rq_attach_root(rq, &def_root_domain);
1da177e4 8247#endif
8f4d37ec 8248 init_rq_hrtick(rq);
1da177e4 8249 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8250 }
8251
2dd73a4f 8252 set_load_weight(&init_task);
b50f60ce 8253
e107be36
AK
8254#ifdef CONFIG_PREEMPT_NOTIFIERS
8255 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8256#endif
8257
c9819f45 8258#ifdef CONFIG_SMP
962cf36c 8259 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8260#endif
8261
b50f60ce
HC
8262#ifdef CONFIG_RT_MUTEXES
8263 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8264#endif
8265
1da177e4
LT
8266 /*
8267 * The boot idle thread does lazy MMU switching as well:
8268 */
8269 atomic_inc(&init_mm.mm_count);
8270 enter_lazy_tlb(&init_mm, current);
8271
8272 /*
8273 * Make us the idle thread. Technically, schedule() should not be
8274 * called from this thread, however somewhere below it might be,
8275 * but because we are the idle thread, we just pick up running again
8276 * when this runqueue becomes "idle".
8277 */
8278 init_idle(current, smp_processor_id());
dd41f596
IM
8279 /*
8280 * During early bootup we pretend to be a normal task:
8281 */
8282 current->sched_class = &fair_sched_class;
6892b75e
IM
8283
8284 scheduler_running = 1;
1da177e4
LT
8285}
8286
8287#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8288void __might_sleep(char *file, int line)
8289{
48f24c4d 8290#ifdef in_atomic
1da177e4
LT
8291 static unsigned long prev_jiffy; /* ratelimiting */
8292
aef745fc
IM
8293 if ((!in_atomic() && !irqs_disabled()) ||
8294 system_state != SYSTEM_RUNNING || oops_in_progress)
8295 return;
8296 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8297 return;
8298 prev_jiffy = jiffies;
8299
8300 printk(KERN_ERR
8301 "BUG: sleeping function called from invalid context at %s:%d\n",
8302 file, line);
8303 printk(KERN_ERR
8304 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8305 in_atomic(), irqs_disabled(),
8306 current->pid, current->comm);
8307
8308 debug_show_held_locks(current);
8309 if (irqs_disabled())
8310 print_irqtrace_events(current);
8311 dump_stack();
1da177e4
LT
8312#endif
8313}
8314EXPORT_SYMBOL(__might_sleep);
8315#endif
8316
8317#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8318static void normalize_task(struct rq *rq, struct task_struct *p)
8319{
8320 int on_rq;
3e51f33f 8321
3a5e4dc1
AK
8322 update_rq_clock(rq);
8323 on_rq = p->se.on_rq;
8324 if (on_rq)
8325 deactivate_task(rq, p, 0);
8326 __setscheduler(rq, p, SCHED_NORMAL, 0);
8327 if (on_rq) {
8328 activate_task(rq, p, 0);
8329 resched_task(rq->curr);
8330 }
8331}
8332
1da177e4
LT
8333void normalize_rt_tasks(void)
8334{
a0f98a1c 8335 struct task_struct *g, *p;
1da177e4 8336 unsigned long flags;
70b97a7f 8337 struct rq *rq;
1da177e4 8338
4cf5d77a 8339 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8340 do_each_thread(g, p) {
178be793
IM
8341 /*
8342 * Only normalize user tasks:
8343 */
8344 if (!p->mm)
8345 continue;
8346
6cfb0d5d 8347 p->se.exec_start = 0;
6cfb0d5d 8348#ifdef CONFIG_SCHEDSTATS
dd41f596 8349 p->se.wait_start = 0;
dd41f596 8350 p->se.sleep_start = 0;
dd41f596 8351 p->se.block_start = 0;
6cfb0d5d 8352#endif
dd41f596
IM
8353
8354 if (!rt_task(p)) {
8355 /*
8356 * Renice negative nice level userspace
8357 * tasks back to 0:
8358 */
8359 if (TASK_NICE(p) < 0 && p->mm)
8360 set_user_nice(p, 0);
1da177e4 8361 continue;
dd41f596 8362 }
1da177e4 8363
4cf5d77a 8364 spin_lock(&p->pi_lock);
b29739f9 8365 rq = __task_rq_lock(p);
1da177e4 8366
178be793 8367 normalize_task(rq, p);
3a5e4dc1 8368
b29739f9 8369 __task_rq_unlock(rq);
4cf5d77a 8370 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8371 } while_each_thread(g, p);
8372
4cf5d77a 8373 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8374}
8375
8376#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8377
8378#ifdef CONFIG_IA64
8379/*
8380 * These functions are only useful for the IA64 MCA handling.
8381 *
8382 * They can only be called when the whole system has been
8383 * stopped - every CPU needs to be quiescent, and no scheduling
8384 * activity can take place. Using them for anything else would
8385 * be a serious bug, and as a result, they aren't even visible
8386 * under any other configuration.
8387 */
8388
8389/**
8390 * curr_task - return the current task for a given cpu.
8391 * @cpu: the processor in question.
8392 *
8393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8394 */
36c8b586 8395struct task_struct *curr_task(int cpu)
1df5c10a
LT
8396{
8397 return cpu_curr(cpu);
8398}
8399
8400/**
8401 * set_curr_task - set the current task for a given cpu.
8402 * @cpu: the processor in question.
8403 * @p: the task pointer to set.
8404 *
8405 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8406 * are serviced on a separate stack. It allows the architecture to switch the
8407 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8408 * must be called with all CPU's synchronized, and interrupts disabled, the
8409 * and caller must save the original value of the current task (see
8410 * curr_task() above) and restore that value before reenabling interrupts and
8411 * re-starting the system.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
36c8b586 8415void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8416{
8417 cpu_curr(cpu) = p;
8418}
8419
8420#endif
29f59db3 8421
bccbe08a
PZ
8422#ifdef CONFIG_FAIR_GROUP_SCHED
8423static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8424{
8425 int i;
8426
8427 for_each_possible_cpu(i) {
8428 if (tg->cfs_rq)
8429 kfree(tg->cfs_rq[i]);
8430 if (tg->se)
8431 kfree(tg->se[i]);
6f505b16
PZ
8432 }
8433
8434 kfree(tg->cfs_rq);
8435 kfree(tg->se);
6f505b16
PZ
8436}
8437
ec7dc8ac
DG
8438static
8439int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8440{
29f59db3 8441 struct cfs_rq *cfs_rq;
eab17229 8442 struct sched_entity *se;
9b5b7751 8443 struct rq *rq;
29f59db3
SV
8444 int i;
8445
434d53b0 8446 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8447 if (!tg->cfs_rq)
8448 goto err;
434d53b0 8449 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8450 if (!tg->se)
8451 goto err;
052f1dc7
PZ
8452
8453 tg->shares = NICE_0_LOAD;
29f59db3
SV
8454
8455 for_each_possible_cpu(i) {
9b5b7751 8456 rq = cpu_rq(i);
29f59db3 8457
eab17229
LZ
8458 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8459 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8460 if (!cfs_rq)
8461 goto err;
8462
eab17229
LZ
8463 se = kzalloc_node(sizeof(struct sched_entity),
8464 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8465 if (!se)
8466 goto err;
8467
eab17229 8468 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8469 }
8470
8471 return 1;
8472
8473 err:
8474 return 0;
8475}
8476
8477static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8478{
8479 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8480 &cpu_rq(cpu)->leaf_cfs_rq_list);
8481}
8482
8483static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8484{
8485 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8486}
6d6bc0ad 8487#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8488static inline void free_fair_sched_group(struct task_group *tg)
8489{
8490}
8491
ec7dc8ac
DG
8492static inline
8493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8494{
8495 return 1;
8496}
8497
8498static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8499{
8500}
8501
8502static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8503{
8504}
6d6bc0ad 8505#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8506
8507#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8508static void free_rt_sched_group(struct task_group *tg)
8509{
8510 int i;
8511
d0b27fa7
PZ
8512 destroy_rt_bandwidth(&tg->rt_bandwidth);
8513
bccbe08a
PZ
8514 for_each_possible_cpu(i) {
8515 if (tg->rt_rq)
8516 kfree(tg->rt_rq[i]);
8517 if (tg->rt_se)
8518 kfree(tg->rt_se[i]);
8519 }
8520
8521 kfree(tg->rt_rq);
8522 kfree(tg->rt_se);
8523}
8524
ec7dc8ac
DG
8525static
8526int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8527{
8528 struct rt_rq *rt_rq;
eab17229 8529 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8530 struct rq *rq;
8531 int i;
8532
434d53b0 8533 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8534 if (!tg->rt_rq)
8535 goto err;
434d53b0 8536 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8537 if (!tg->rt_se)
8538 goto err;
8539
d0b27fa7
PZ
8540 init_rt_bandwidth(&tg->rt_bandwidth,
8541 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8542
8543 for_each_possible_cpu(i) {
8544 rq = cpu_rq(i);
8545
eab17229
LZ
8546 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8547 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8548 if (!rt_rq)
8549 goto err;
29f59db3 8550
eab17229
LZ
8551 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8552 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8553 if (!rt_se)
8554 goto err;
29f59db3 8555
eab17229 8556 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8557 }
8558
bccbe08a
PZ
8559 return 1;
8560
8561 err:
8562 return 0;
8563}
8564
8565static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8566{
8567 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8568 &cpu_rq(cpu)->leaf_rt_rq_list);
8569}
8570
8571static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8572{
8573 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8574}
6d6bc0ad 8575#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8576static inline void free_rt_sched_group(struct task_group *tg)
8577{
8578}
8579
ec7dc8ac
DG
8580static inline
8581int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8582{
8583 return 1;
8584}
8585
8586static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8587{
8588}
8589
8590static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8591{
8592}
6d6bc0ad 8593#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8594
d0b27fa7 8595#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8596static void free_sched_group(struct task_group *tg)
8597{
8598 free_fair_sched_group(tg);
8599 free_rt_sched_group(tg);
8600 kfree(tg);
8601}
8602
8603/* allocate runqueue etc for a new task group */
ec7dc8ac 8604struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8605{
8606 struct task_group *tg;
8607 unsigned long flags;
8608 int i;
8609
8610 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8611 if (!tg)
8612 return ERR_PTR(-ENOMEM);
8613
ec7dc8ac 8614 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8615 goto err;
8616
ec7dc8ac 8617 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8618 goto err;
8619
8ed36996 8620 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8621 for_each_possible_cpu(i) {
bccbe08a
PZ
8622 register_fair_sched_group(tg, i);
8623 register_rt_sched_group(tg, i);
9b5b7751 8624 }
6f505b16 8625 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8626
8627 WARN_ON(!parent); /* root should already exist */
8628
8629 tg->parent = parent;
f473aa5e 8630 INIT_LIST_HEAD(&tg->children);
09f2724a 8631 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8632 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8633
9b5b7751 8634 return tg;
29f59db3
SV
8635
8636err:
6f505b16 8637 free_sched_group(tg);
29f59db3
SV
8638 return ERR_PTR(-ENOMEM);
8639}
8640
9b5b7751 8641/* rcu callback to free various structures associated with a task group */
6f505b16 8642static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8643{
29f59db3 8644 /* now it should be safe to free those cfs_rqs */
6f505b16 8645 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8646}
8647
9b5b7751 8648/* Destroy runqueue etc associated with a task group */
4cf86d77 8649void sched_destroy_group(struct task_group *tg)
29f59db3 8650{
8ed36996 8651 unsigned long flags;
9b5b7751 8652 int i;
29f59db3 8653
8ed36996 8654 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8655 for_each_possible_cpu(i) {
bccbe08a
PZ
8656 unregister_fair_sched_group(tg, i);
8657 unregister_rt_sched_group(tg, i);
9b5b7751 8658 }
6f505b16 8659 list_del_rcu(&tg->list);
f473aa5e 8660 list_del_rcu(&tg->siblings);
8ed36996 8661 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8662
9b5b7751 8663 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8664 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8665}
8666
9b5b7751 8667/* change task's runqueue when it moves between groups.
3a252015
IM
8668 * The caller of this function should have put the task in its new group
8669 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8670 * reflect its new group.
9b5b7751
SV
8671 */
8672void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8673{
8674 int on_rq, running;
8675 unsigned long flags;
8676 struct rq *rq;
8677
8678 rq = task_rq_lock(tsk, &flags);
8679
29f59db3
SV
8680 update_rq_clock(rq);
8681
051a1d1a 8682 running = task_current(rq, tsk);
29f59db3
SV
8683 on_rq = tsk->se.on_rq;
8684
0e1f3483 8685 if (on_rq)
29f59db3 8686 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8687 if (unlikely(running))
8688 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8689
6f505b16 8690 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8691
810b3817
PZ
8692#ifdef CONFIG_FAIR_GROUP_SCHED
8693 if (tsk->sched_class->moved_group)
8694 tsk->sched_class->moved_group(tsk);
8695#endif
8696
0e1f3483
HS
8697 if (unlikely(running))
8698 tsk->sched_class->set_curr_task(rq);
8699 if (on_rq)
7074badb 8700 enqueue_task(rq, tsk, 0);
29f59db3 8701
29f59db3
SV
8702 task_rq_unlock(rq, &flags);
8703}
6d6bc0ad 8704#endif /* CONFIG_GROUP_SCHED */
29f59db3 8705
052f1dc7 8706#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8707static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8708{
8709 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8710 int on_rq;
8711
29f59db3 8712 on_rq = se->on_rq;
62fb1851 8713 if (on_rq)
29f59db3
SV
8714 dequeue_entity(cfs_rq, se, 0);
8715
8716 se->load.weight = shares;
e05510d0 8717 se->load.inv_weight = 0;
29f59db3 8718
62fb1851 8719 if (on_rq)
29f59db3 8720 enqueue_entity(cfs_rq, se, 0);
c09595f6 8721}
62fb1851 8722
c09595f6
PZ
8723static void set_se_shares(struct sched_entity *se, unsigned long shares)
8724{
8725 struct cfs_rq *cfs_rq = se->cfs_rq;
8726 struct rq *rq = cfs_rq->rq;
8727 unsigned long flags;
8728
8729 spin_lock_irqsave(&rq->lock, flags);
8730 __set_se_shares(se, shares);
8731 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8732}
8733
8ed36996
PZ
8734static DEFINE_MUTEX(shares_mutex);
8735
4cf86d77 8736int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8737{
8738 int i;
8ed36996 8739 unsigned long flags;
c61935fd 8740
ec7dc8ac
DG
8741 /*
8742 * We can't change the weight of the root cgroup.
8743 */
8744 if (!tg->se[0])
8745 return -EINVAL;
8746
18d95a28
PZ
8747 if (shares < MIN_SHARES)
8748 shares = MIN_SHARES;
cb4ad1ff
MX
8749 else if (shares > MAX_SHARES)
8750 shares = MAX_SHARES;
62fb1851 8751
8ed36996 8752 mutex_lock(&shares_mutex);
9b5b7751 8753 if (tg->shares == shares)
5cb350ba 8754 goto done;
29f59db3 8755
8ed36996 8756 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8757 for_each_possible_cpu(i)
8758 unregister_fair_sched_group(tg, i);
f473aa5e 8759 list_del_rcu(&tg->siblings);
8ed36996 8760 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8761
8762 /* wait for any ongoing reference to this group to finish */
8763 synchronize_sched();
8764
8765 /*
8766 * Now we are free to modify the group's share on each cpu
8767 * w/o tripping rebalance_share or load_balance_fair.
8768 */
9b5b7751 8769 tg->shares = shares;
c09595f6
PZ
8770 for_each_possible_cpu(i) {
8771 /*
8772 * force a rebalance
8773 */
8774 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8775 set_se_shares(tg->se[i], shares);
c09595f6 8776 }
29f59db3 8777
6b2d7700
SV
8778 /*
8779 * Enable load balance activity on this group, by inserting it back on
8780 * each cpu's rq->leaf_cfs_rq_list.
8781 */
8ed36996 8782 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8783 for_each_possible_cpu(i)
8784 register_fair_sched_group(tg, i);
f473aa5e 8785 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8786 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8787done:
8ed36996 8788 mutex_unlock(&shares_mutex);
9b5b7751 8789 return 0;
29f59db3
SV
8790}
8791
5cb350ba
DG
8792unsigned long sched_group_shares(struct task_group *tg)
8793{
8794 return tg->shares;
8795}
052f1dc7 8796#endif
5cb350ba 8797
052f1dc7 8798#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8799/*
9f0c1e56 8800 * Ensure that the real time constraints are schedulable.
6f505b16 8801 */
9f0c1e56
PZ
8802static DEFINE_MUTEX(rt_constraints_mutex);
8803
8804static unsigned long to_ratio(u64 period, u64 runtime)
8805{
8806 if (runtime == RUNTIME_INF)
9a7e0b18 8807 return 1ULL << 20;
9f0c1e56 8808
9a7e0b18 8809 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8810}
8811
9a7e0b18
PZ
8812/* Must be called with tasklist_lock held */
8813static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8814{
9a7e0b18 8815 struct task_struct *g, *p;
b40b2e8e 8816
9a7e0b18
PZ
8817 do_each_thread(g, p) {
8818 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8819 return 1;
8820 } while_each_thread(g, p);
b40b2e8e 8821
9a7e0b18
PZ
8822 return 0;
8823}
b40b2e8e 8824
9a7e0b18
PZ
8825struct rt_schedulable_data {
8826 struct task_group *tg;
8827 u64 rt_period;
8828 u64 rt_runtime;
8829};
b40b2e8e 8830
9a7e0b18
PZ
8831static int tg_schedulable(struct task_group *tg, void *data)
8832{
8833 struct rt_schedulable_data *d = data;
8834 struct task_group *child;
8835 unsigned long total, sum = 0;
8836 u64 period, runtime;
b40b2e8e 8837
9a7e0b18
PZ
8838 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8839 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8840
9a7e0b18
PZ
8841 if (tg == d->tg) {
8842 period = d->rt_period;
8843 runtime = d->rt_runtime;
b40b2e8e 8844 }
b40b2e8e 8845
4653f803
PZ
8846 /*
8847 * Cannot have more runtime than the period.
8848 */
8849 if (runtime > period && runtime != RUNTIME_INF)
8850 return -EINVAL;
6f505b16 8851
4653f803
PZ
8852 /*
8853 * Ensure we don't starve existing RT tasks.
8854 */
9a7e0b18
PZ
8855 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8856 return -EBUSY;
6f505b16 8857
9a7e0b18 8858 total = to_ratio(period, runtime);
6f505b16 8859
4653f803
PZ
8860 /*
8861 * Nobody can have more than the global setting allows.
8862 */
8863 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8864 return -EINVAL;
6f505b16 8865
4653f803
PZ
8866 /*
8867 * The sum of our children's runtime should not exceed our own.
8868 */
9a7e0b18
PZ
8869 list_for_each_entry_rcu(child, &tg->children, siblings) {
8870 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8871 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8872
9a7e0b18
PZ
8873 if (child == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
8876 }
6f505b16 8877
9a7e0b18 8878 sum += to_ratio(period, runtime);
9f0c1e56 8879 }
6f505b16 8880
9a7e0b18
PZ
8881 if (sum > total)
8882 return -EINVAL;
8883
8884 return 0;
6f505b16
PZ
8885}
8886
9a7e0b18 8887static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8888{
9a7e0b18
PZ
8889 struct rt_schedulable_data data = {
8890 .tg = tg,
8891 .rt_period = period,
8892 .rt_runtime = runtime,
8893 };
8894
8895 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8896}
8897
d0b27fa7
PZ
8898static int tg_set_bandwidth(struct task_group *tg,
8899 u64 rt_period, u64 rt_runtime)
6f505b16 8900{
ac086bc2 8901 int i, err = 0;
9f0c1e56 8902
9f0c1e56 8903 mutex_lock(&rt_constraints_mutex);
521f1a24 8904 read_lock(&tasklist_lock);
9a7e0b18
PZ
8905 err = __rt_schedulable(tg, rt_period, rt_runtime);
8906 if (err)
9f0c1e56 8907 goto unlock;
ac086bc2
PZ
8908
8909 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8910 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8911 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8912
8913 for_each_possible_cpu(i) {
8914 struct rt_rq *rt_rq = tg->rt_rq[i];
8915
8916 spin_lock(&rt_rq->rt_runtime_lock);
8917 rt_rq->rt_runtime = rt_runtime;
8918 spin_unlock(&rt_rq->rt_runtime_lock);
8919 }
8920 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8921 unlock:
521f1a24 8922 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8923 mutex_unlock(&rt_constraints_mutex);
8924
8925 return err;
6f505b16
PZ
8926}
8927
d0b27fa7
PZ
8928int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8929{
8930 u64 rt_runtime, rt_period;
8931
8932 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8933 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8934 if (rt_runtime_us < 0)
8935 rt_runtime = RUNTIME_INF;
8936
8937 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8938}
8939
9f0c1e56
PZ
8940long sched_group_rt_runtime(struct task_group *tg)
8941{
8942 u64 rt_runtime_us;
8943
d0b27fa7 8944 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8945 return -1;
8946
d0b27fa7 8947 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8948 do_div(rt_runtime_us, NSEC_PER_USEC);
8949 return rt_runtime_us;
8950}
d0b27fa7
PZ
8951
8952int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8953{
8954 u64 rt_runtime, rt_period;
8955
8956 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8957 rt_runtime = tg->rt_bandwidth.rt_runtime;
8958
619b0488
R
8959 if (rt_period == 0)
8960 return -EINVAL;
8961
d0b27fa7
PZ
8962 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8963}
8964
8965long sched_group_rt_period(struct task_group *tg)
8966{
8967 u64 rt_period_us;
8968
8969 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8970 do_div(rt_period_us, NSEC_PER_USEC);
8971 return rt_period_us;
8972}
8973
8974static int sched_rt_global_constraints(void)
8975{
4653f803 8976 u64 runtime, period;
d0b27fa7
PZ
8977 int ret = 0;
8978
ec5d4989
HS
8979 if (sysctl_sched_rt_period <= 0)
8980 return -EINVAL;
8981
4653f803
PZ
8982 runtime = global_rt_runtime();
8983 period = global_rt_period();
8984
8985 /*
8986 * Sanity check on the sysctl variables.
8987 */
8988 if (runtime > period && runtime != RUNTIME_INF)
8989 return -EINVAL;
10b612f4 8990
d0b27fa7 8991 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8992 read_lock(&tasklist_lock);
4653f803 8993 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8994 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8995 mutex_unlock(&rt_constraints_mutex);
8996
8997 return ret;
8998}
6d6bc0ad 8999#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9000static int sched_rt_global_constraints(void)
9001{
ac086bc2
PZ
9002 unsigned long flags;
9003 int i;
9004
ec5d4989
HS
9005 if (sysctl_sched_rt_period <= 0)
9006 return -EINVAL;
9007
ac086bc2
PZ
9008 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9009 for_each_possible_cpu(i) {
9010 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9011
9012 spin_lock(&rt_rq->rt_runtime_lock);
9013 rt_rq->rt_runtime = global_rt_runtime();
9014 spin_unlock(&rt_rq->rt_runtime_lock);
9015 }
9016 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9017
d0b27fa7
PZ
9018 return 0;
9019}
6d6bc0ad 9020#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9021
9022int sched_rt_handler(struct ctl_table *table, int write,
9023 struct file *filp, void __user *buffer, size_t *lenp,
9024 loff_t *ppos)
9025{
9026 int ret;
9027 int old_period, old_runtime;
9028 static DEFINE_MUTEX(mutex);
9029
9030 mutex_lock(&mutex);
9031 old_period = sysctl_sched_rt_period;
9032 old_runtime = sysctl_sched_rt_runtime;
9033
9034 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9035
9036 if (!ret && write) {
9037 ret = sched_rt_global_constraints();
9038 if (ret) {
9039 sysctl_sched_rt_period = old_period;
9040 sysctl_sched_rt_runtime = old_runtime;
9041 } else {
9042 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9043 def_rt_bandwidth.rt_period =
9044 ns_to_ktime(global_rt_period());
9045 }
9046 }
9047 mutex_unlock(&mutex);
9048
9049 return ret;
9050}
68318b8e 9051
052f1dc7 9052#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9053
9054/* return corresponding task_group object of a cgroup */
2b01dfe3 9055static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9056{
2b01dfe3
PM
9057 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9058 struct task_group, css);
68318b8e
SV
9059}
9060
9061static struct cgroup_subsys_state *
2b01dfe3 9062cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9063{
ec7dc8ac 9064 struct task_group *tg, *parent;
68318b8e 9065
2b01dfe3 9066 if (!cgrp->parent) {
68318b8e 9067 /* This is early initialization for the top cgroup */
68318b8e
SV
9068 return &init_task_group.css;
9069 }
9070
ec7dc8ac
DG
9071 parent = cgroup_tg(cgrp->parent);
9072 tg = sched_create_group(parent);
68318b8e
SV
9073 if (IS_ERR(tg))
9074 return ERR_PTR(-ENOMEM);
9075
68318b8e
SV
9076 return &tg->css;
9077}
9078
41a2d6cf
IM
9079static void
9080cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9081{
2b01dfe3 9082 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9083
9084 sched_destroy_group(tg);
9085}
9086
41a2d6cf
IM
9087static int
9088cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9089 struct task_struct *tsk)
68318b8e 9090{
b68aa230
PZ
9091#ifdef CONFIG_RT_GROUP_SCHED
9092 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9093 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9094 return -EINVAL;
9095#else
68318b8e
SV
9096 /* We don't support RT-tasks being in separate groups */
9097 if (tsk->sched_class != &fair_sched_class)
9098 return -EINVAL;
b68aa230 9099#endif
68318b8e
SV
9100
9101 return 0;
9102}
9103
9104static void
2b01dfe3 9105cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9106 struct cgroup *old_cont, struct task_struct *tsk)
9107{
9108 sched_move_task(tsk);
9109}
9110
052f1dc7 9111#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9112static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9113 u64 shareval)
68318b8e 9114{
2b01dfe3 9115 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9116}
9117
f4c753b7 9118static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9119{
2b01dfe3 9120 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9121
9122 return (u64) tg->shares;
9123}
6d6bc0ad 9124#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9125
052f1dc7 9126#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9127static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9128 s64 val)
6f505b16 9129{
06ecb27c 9130 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9131}
9132
06ecb27c 9133static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9134{
06ecb27c 9135 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9136}
d0b27fa7
PZ
9137
9138static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9139 u64 rt_period_us)
9140{
9141 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9142}
9143
9144static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9145{
9146 return sched_group_rt_period(cgroup_tg(cgrp));
9147}
6d6bc0ad 9148#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9149
fe5c7cc2 9150static struct cftype cpu_files[] = {
052f1dc7 9151#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9152 {
9153 .name = "shares",
f4c753b7
PM
9154 .read_u64 = cpu_shares_read_u64,
9155 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9156 },
052f1dc7
PZ
9157#endif
9158#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9159 {
9f0c1e56 9160 .name = "rt_runtime_us",
06ecb27c
PM
9161 .read_s64 = cpu_rt_runtime_read,
9162 .write_s64 = cpu_rt_runtime_write,
6f505b16 9163 },
d0b27fa7
PZ
9164 {
9165 .name = "rt_period_us",
f4c753b7
PM
9166 .read_u64 = cpu_rt_period_read_uint,
9167 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9168 },
052f1dc7 9169#endif
68318b8e
SV
9170};
9171
9172static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9173{
fe5c7cc2 9174 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9175}
9176
9177struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9178 .name = "cpu",
9179 .create = cpu_cgroup_create,
9180 .destroy = cpu_cgroup_destroy,
9181 .can_attach = cpu_cgroup_can_attach,
9182 .attach = cpu_cgroup_attach,
9183 .populate = cpu_cgroup_populate,
9184 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9185 .early_init = 1,
9186};
9187
052f1dc7 9188#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9189
9190#ifdef CONFIG_CGROUP_CPUACCT
9191
9192/*
9193 * CPU accounting code for task groups.
9194 *
9195 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9196 * (balbir@in.ibm.com).
9197 */
9198
9199/* track cpu usage of a group of tasks */
9200struct cpuacct {
9201 struct cgroup_subsys_state css;
9202 /* cpuusage holds pointer to a u64-type object on every cpu */
9203 u64 *cpuusage;
9204};
9205
9206struct cgroup_subsys cpuacct_subsys;
9207
9208/* return cpu accounting group corresponding to this container */
32cd756a 9209static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9210{
32cd756a 9211 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9212 struct cpuacct, css);
9213}
9214
9215/* return cpu accounting group to which this task belongs */
9216static inline struct cpuacct *task_ca(struct task_struct *tsk)
9217{
9218 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9219 struct cpuacct, css);
9220}
9221
9222/* create a new cpu accounting group */
9223static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9224 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9225{
9226 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9227
9228 if (!ca)
9229 return ERR_PTR(-ENOMEM);
9230
9231 ca->cpuusage = alloc_percpu(u64);
9232 if (!ca->cpuusage) {
9233 kfree(ca);
9234 return ERR_PTR(-ENOMEM);
9235 }
9236
9237 return &ca->css;
9238}
9239
9240/* destroy an existing cpu accounting group */
41a2d6cf 9241static void
32cd756a 9242cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9243{
32cd756a 9244 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9245
9246 free_percpu(ca->cpuusage);
9247 kfree(ca);
9248}
9249
9250/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9251static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9252{
32cd756a 9253 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9254 u64 totalcpuusage = 0;
9255 int i;
9256
9257 for_each_possible_cpu(i) {
9258 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9259
9260 /*
9261 * Take rq->lock to make 64-bit addition safe on 32-bit
9262 * platforms.
9263 */
9264 spin_lock_irq(&cpu_rq(i)->lock);
9265 totalcpuusage += *cpuusage;
9266 spin_unlock_irq(&cpu_rq(i)->lock);
9267 }
9268
9269 return totalcpuusage;
9270}
9271
0297b803
DG
9272static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9273 u64 reset)
9274{
9275 struct cpuacct *ca = cgroup_ca(cgrp);
9276 int err = 0;
9277 int i;
9278
9279 if (reset) {
9280 err = -EINVAL;
9281 goto out;
9282 }
9283
9284 for_each_possible_cpu(i) {
9285 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9286
9287 spin_lock_irq(&cpu_rq(i)->lock);
9288 *cpuusage = 0;
9289 spin_unlock_irq(&cpu_rq(i)->lock);
9290 }
9291out:
9292 return err;
9293}
9294
d842de87
SV
9295static struct cftype files[] = {
9296 {
9297 .name = "usage",
f4c753b7
PM
9298 .read_u64 = cpuusage_read,
9299 .write_u64 = cpuusage_write,
d842de87
SV
9300 },
9301};
9302
32cd756a 9303static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9304{
32cd756a 9305 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9306}
9307
9308/*
9309 * charge this task's execution time to its accounting group.
9310 *
9311 * called with rq->lock held.
9312 */
9313static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9314{
9315 struct cpuacct *ca;
9316
9317 if (!cpuacct_subsys.active)
9318 return;
9319
9320 ca = task_ca(tsk);
9321 if (ca) {
9322 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9323
9324 *cpuusage += cputime;
9325 }
9326}
9327
9328struct cgroup_subsys cpuacct_subsys = {
9329 .name = "cpuacct",
9330 .create = cpuacct_create,
9331 .destroy = cpuacct_destroy,
9332 .populate = cpuacct_populate,
9333 .subsys_id = cpuacct_subsys_id,
9334};
9335#endif /* CONFIG_CGROUP_CPUACCT */