sched: Provide p->on_rq
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
1da177e4 78
6e0534f2 79#include "sched_cpupri.h"
21aa9af0 80#include "workqueue_sched.h"
5091faa4 81#include "sched_autogroup.h"
6e0534f2 82
a8d154b0 83#define CREATE_TRACE_POINTS
ad8d75ff 84#include <trace/events/sched.h>
a8d154b0 85
1da177e4
LT
86/*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95/*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104/*
d7876a08 105 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 106 */
d6322faf 107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 108
6aa645ea
IM
109#define NICE_0_LOAD SCHED_LOAD_SCALE
110#define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
1da177e4
LT
112/*
113 * These are the 'tuning knobs' of the scheduler:
114 *
a4ec24b4 115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
116 * Timeslices get refilled after they expire.
117 */
1da177e4 118#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 119
d0b27fa7
PZ
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
e05606d3
IM
125static inline int rt_policy(int policy)
126{
3f33a7ce 127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
128 return 1;
129 return 0;
130}
131
132static inline int task_has_rt_policy(struct task_struct *p)
133{
134 return rt_policy(p->policy);
135}
136
1da177e4 137/*
6aa645ea 138 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 139 */
6aa645ea
IM
140struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143};
144
d0b27fa7 145struct rt_bandwidth {
ea736ed5 146 /* nests inside the rq lock: */
0986b11b 147 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
d0b27fa7
PZ
151};
152
153static struct rt_bandwidth def_rt_bandwidth;
154
155static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158{
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176}
177
178static
179void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180{
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
0986b11b 184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 185
d0b27fa7
PZ
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
189}
190
c8bfff6d
KH
191static inline int rt_bandwidth_enabled(void)
192{
193 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
194}
195
196static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197{
198 ktime_t now;
199
cac64d00 200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
0986b11b 206 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 207 for (;;) {
7f1e2ca9
PZ
208 unsigned long delta;
209 ktime_t soft, hard;
210
d0b27fa7
PZ
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 221 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 222 }
0986b11b 223 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
224}
225
226#ifdef CONFIG_RT_GROUP_SCHED
227static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228{
229 hrtimer_cancel(&rt_b->rt_period_timer);
230}
231#endif
232
712555ee
HC
233/*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237static DEFINE_MUTEX(sched_domains_mutex);
238
7c941438 239#ifdef CONFIG_CGROUP_SCHED
29f59db3 240
68318b8e
SV
241#include <linux/cgroup.h>
242
29f59db3
SV
243struct cfs_rq;
244
6f505b16
PZ
245static LIST_HEAD(task_groups);
246
29f59db3 247/* task group related information */
4cf86d77 248struct task_group {
68318b8e 249 struct cgroup_subsys_state css;
6c415b92 250
052f1dc7 251#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
2069dd75
PZ
257
258 atomic_t load_weight;
052f1dc7
PZ
259#endif
260
261#ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
d0b27fa7 265 struct rt_bandwidth rt_bandwidth;
052f1dc7 266#endif
6b2d7700 267
ae8393e5 268 struct rcu_head rcu;
6f505b16 269 struct list_head list;
f473aa5e
PZ
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
5091faa4
MG
274
275#ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277#endif
29f59db3
SV
278};
279
3d4b47b4 280/* task_group_lock serializes the addition/removal of task groups */
8ed36996 281static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 282
e9036b36
CG
283#ifdef CONFIG_FAIR_GROUP_SCHED
284
07e06b01 285# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 286
cb4ad1ff 287/*
2e084786
LJ
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
cb4ad1ff
MX
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
18d95a28 295#define MIN_SHARES 2
2e084786 296#define MAX_SHARES (1UL << 18)
18d95a28 297
07e06b01 298static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
299#endif
300
29f59db3 301/* Default task group.
3a252015 302 * Every task in system belong to this group at bootup.
29f59db3 303 */
07e06b01 304struct task_group root_task_group;
29f59db3 305
7c941438 306#endif /* CONFIG_CGROUP_SCHED */
29f59db3 307
6aa645ea
IM
308/* CFS-related fields in a runqueue */
309struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
6aa645ea 313 u64 exec_clock;
e9acbff6 314 u64 min_vruntime;
6aa645ea
IM
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
4a55bd5e
PZ
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
ac53db59 326 struct sched_entity *curr, *next, *last, *skip;
ddc97297 327
5ac5c4d6 328 unsigned int nr_spread_over;
ddc97297 329
62160e3f 330#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
41a2d6cf
IM
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
3d4b47b4 341 int on_list;
41a2d6cf
IM
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
344
345#ifdef CONFIG_SMP
c09595f6 346 /*
c8cba857 347 * the part of load.weight contributed by tasks
c09595f6 348 */
c8cba857 349 unsigned long task_weight;
c09595f6 350
c8cba857
PZ
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
c09595f6 358
c8cba857 359 /*
3b3d190e
PT
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 365 */
2069dd75
PZ
366 u64 load_avg;
367 u64 load_period;
3b3d190e 368 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 369
2069dd75 370 unsigned long load_contribution;
c09595f6 371#endif
6aa645ea
IM
372#endif
373};
1da177e4 374
6aa645ea
IM
375/* Real-Time classes' related field in a runqueue: */
376struct rt_rq {
377 struct rt_prio_array active;
63489e45 378 unsigned long rt_nr_running;
052f1dc7 379#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
380 struct {
381 int curr; /* highest queued rt task prio */
398a153b 382#ifdef CONFIG_SMP
e864c499 383 int next; /* next highest */
398a153b 384#endif
e864c499 385 } highest_prio;
6f505b16 386#endif
fa85ae24 387#ifdef CONFIG_SMP
73fe6aae 388 unsigned long rt_nr_migratory;
a1ba4d8b 389 unsigned long rt_nr_total;
a22d7fc1 390 int overloaded;
917b627d 391 struct plist_head pushable_tasks;
fa85ae24 392#endif
6f505b16 393 int rt_throttled;
fa85ae24 394 u64 rt_time;
ac086bc2 395 u64 rt_runtime;
ea736ed5 396 /* Nests inside the rq lock: */
0986b11b 397 raw_spinlock_t rt_runtime_lock;
6f505b16 398
052f1dc7 399#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
400 unsigned long rt_nr_boosted;
401
6f505b16
PZ
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
6f505b16 405#endif
6aa645ea
IM
406};
407
57d885fe
GH
408#ifdef CONFIG_SMP
409
410/*
411 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
57d885fe
GH
417 */
418struct root_domain {
419 atomic_t refcount;
c6c4927b
RR
420 cpumask_var_t span;
421 cpumask_var_t online;
637f5085 422
0eab9146 423 /*
637f5085
GH
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
c6c4927b 427 cpumask_var_t rto_mask;
0eab9146 428 atomic_t rto_count;
6e0534f2 429 struct cpupri cpupri;
57d885fe
GH
430};
431
dc938520
GH
432/*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
57d885fe
GH
436static struct root_domain def_root_domain;
437
ed2d372c 438#endif /* CONFIG_SMP */
57d885fe 439
1da177e4
LT
440/*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
70b97a7f 447struct rq {
d8016491 448 /* runqueue lock: */
05fa785c 449 raw_spinlock_t lock;
1da177e4
LT
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
6aa645ea
IM
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 458 unsigned long last_load_update_tick;
46cb4b7c 459#ifdef CONFIG_NO_HZ
39c0cbe2 460 u64 nohz_stamp;
83cd4fe2 461 unsigned char nohz_balance_kick;
46cb4b7c 462#endif
a64692a3
MG
463 unsigned int skip_clock_update;
464
d8016491
IM
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
6aa645ea
IM
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
6f505b16 471 struct rt_rq rt;
6f505b16 472
6aa645ea 473#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
476#endif
477#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 478 struct list_head leaf_rt_rq_list;
1da177e4 479#endif
1da177e4
LT
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
34f971f6 489 struct task_struct *curr, *idle, *stop;
c9819f45 490 unsigned long next_balance;
1da177e4 491 struct mm_struct *prev_mm;
6aa645ea 492
3e51f33f 493 u64 clock;
305e6835 494 u64 clock_task;
6aa645ea 495
1da177e4
LT
496 atomic_t nr_iowait;
497
498#ifdef CONFIG_SMP
0eab9146 499 struct root_domain *rd;
1da177e4
LT
500 struct sched_domain *sd;
501
e51fd5e2
PZ
502 unsigned long cpu_power;
503
a0a522ce 504 unsigned char idle_at_tick;
1da177e4 505 /* For active balancing */
3f029d3c 506 int post_schedule;
1da177e4
LT
507 int active_balance;
508 int push_cpu;
969c7921 509 struct cpu_stop_work active_balance_work;
d8016491
IM
510 /* cpu of this runqueue: */
511 int cpu;
1f11eb6a 512 int online;
1da177e4 513
a8a51d5e 514 unsigned long avg_load_per_task;
1da177e4 515
e9e9250b
PZ
516 u64 rt_avg;
517 u64 age_stamp;
1b9508f6
MG
518 u64 idle_stamp;
519 u64 avg_idle;
1da177e4
LT
520#endif
521
aa483808
VP
522#ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524#endif
525
dce48a84
TG
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
8f4d37ec 530#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
531#ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534#endif
8f4d37ec
PZ
535 struct hrtimer hrtick_timer;
536#endif
537
1da177e4
LT
538#ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
9c2c4802
KC
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
543
544 /* sys_sched_yield() stats */
480b9434 545 unsigned int yld_count;
1da177e4
LT
546
547 /* schedule() stats */
480b9434
KC
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
1da177e4
LT
551
552 /* try_to_wake_up() stats */
480b9434
KC
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
1da177e4
LT
555#endif
556};
557
f34e3b61 558static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 559
a64692a3 560
1e5a7405 561static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 562
0a2966b4
CL
563static inline int cpu_of(struct rq *rq)
564{
565#ifdef CONFIG_SMP
566 return rq->cpu;
567#else
568 return 0;
569#endif
570}
571
497f0ab3 572#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
674311d5
NP
577/*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 579 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
48f24c4d 584#define for_each_domain(cpu, __sd) \
497f0ab3 585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
586
587#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588#define this_rq() (&__get_cpu_var(runqueues))
589#define task_rq(p) cpu_rq(task_cpu(p))
590#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 591#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 592
dc61b1d6
PZ
593#ifdef CONFIG_CGROUP_SCHED
594
595/*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603static inline struct task_group *task_group(struct task_struct *p)
604{
5091faa4 605 struct task_group *tg;
dc61b1d6
PZ
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
dc61b1d6
PZ
613}
614
615/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617{
618#ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621#endif
622
623#ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626#endif
627}
628
629#else /* CONFIG_CGROUP_SCHED */
630
631static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632static inline struct task_group *task_group(struct task_struct *p)
633{
634 return NULL;
635}
636
637#endif /* CONFIG_CGROUP_SCHED */
638
fe44d621 639static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 640
fe44d621 641static void update_rq_clock(struct rq *rq)
3e51f33f 642{
fe44d621 643 s64 delta;
305e6835 644
f26f9aff
MG
645 if (rq->skip_clock_update)
646 return;
aa483808 647
fe44d621
PZ
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
3e51f33f
PZ
651}
652
bf5c91ba
IM
653/*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656#ifdef CONFIG_SCHED_DEBUG
657# define const_debug __read_mostly
658#else
659# define const_debug static const
660#endif
661
017730c1 662/**
1fd06bb1 663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 664 * @cpu: the processor in question.
017730c1 665 *
017730c1
IM
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
89f19f04 669int runqueue_is_locked(int cpu)
017730c1 670{
05fa785c 671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
672}
673
bf5c91ba
IM
674/*
675 * Debugging: various feature bits
676 */
f00b45c1
PZ
677
678#define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
bf5c91ba 681enum {
f00b45c1 682#include "sched_features.h"
bf5c91ba
IM
683};
684
f00b45c1
PZ
685#undef SCHED_FEAT
686
687#define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
bf5c91ba 690const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
691#include "sched_features.h"
692 0;
693
694#undef SCHED_FEAT
695
696#ifdef CONFIG_SCHED_DEBUG
697#define SCHED_FEAT(name, enabled) \
698 #name ,
699
983ed7a6 700static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
701#include "sched_features.h"
702 NULL
703};
704
705#undef SCHED_FEAT
706
34f3a814 707static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 708{
f00b45c1
PZ
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 715 }
34f3a814 716 seq_puts(m, "\n");
f00b45c1 717
34f3a814 718 return 0;
f00b45c1
PZ
719}
720
721static ssize_t
722sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724{
725 char buf[64];
7740191c 726 char *cmp;
f00b45c1
PZ
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
7740191c 737 cmp = strstrip(buf);
f00b45c1 738
524429c3 739 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
7740191c 745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
42994724 757 *ppos += cnt;
f00b45c1
PZ
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
828c0950 767static const struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
e9e9250b
PZ
794/*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
fa85ae24 802/*
9f0c1e56 803 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
804 * default: 1s
805 */
9f0c1e56 806unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 807
6892b75e
IM
808static __read_mostly int scheduler_running;
809
9f0c1e56
PZ
810/*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814int sysctl_sched_rt_runtime = 950000;
fa85ae24 815
d0b27fa7
PZ
816static inline u64 global_rt_period(void)
817{
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819}
820
821static inline u64 global_rt_runtime(void)
822{
e26873bb 823 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827}
fa85ae24 828
1da177e4 829#ifndef prepare_arch_switch
4866cde0
NP
830# define prepare_arch_switch(next) do { } while (0)
831#endif
832#ifndef finish_arch_switch
833# define finish_arch_switch(prev) do { } while (0)
834#endif
835
051a1d1a
DA
836static inline int task_current(struct rq *rq, struct task_struct *p)
837{
838 return rq->curr == p;
839}
840
70b97a7f 841static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 842{
3ca7a440
PZ
843#ifdef CONFIG_SMP
844 return p->on_cpu;
845#else
051a1d1a 846 return task_current(rq, p);
3ca7a440 847#endif
4866cde0
NP
848}
849
3ca7a440 850#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 851static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 852{
3ca7a440
PZ
853#ifdef CONFIG_SMP
854 /*
855 * We can optimise this out completely for !SMP, because the
856 * SMP rebalancing from interrupt is the only thing that cares
857 * here.
858 */
859 next->on_cpu = 1;
860#endif
4866cde0
NP
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
3ca7a440
PZ
865#ifdef CONFIG_SMP
866 /*
867 * After ->on_cpu is cleared, the task can be moved to a different CPU.
868 * We must ensure this doesn't happen until the switch is completely
869 * finished.
870 */
871 smp_wmb();
872 prev->on_cpu = 0;
873#endif
da04c035
IM
874#ifdef CONFIG_DEBUG_SPINLOCK
875 /* this is a valid case when another task releases the spinlock */
876 rq->lock.owner = current;
877#endif
8a25d5de
IM
878 /*
879 * If we are tracking spinlock dependencies then we have to
880 * fix up the runqueue lock - which gets 'carried over' from
881 * prev into current:
882 */
883 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
884
05fa785c 885 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
886}
887
888#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
3ca7a440 897 next->on_cpu = 1;
4866cde0
NP
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 900 raw_spin_unlock_irq(&rq->lock);
4866cde0 901#else
05fa785c 902 raw_spin_unlock(&rq->lock);
4866cde0
NP
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
3ca7a440 910 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
3ca7a440 915 prev->on_cpu = 0;
4866cde0
NP
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
0970d299 923/*
65cc8e48
PZ
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
0970d299
PZ
926 */
927static inline int task_is_waking(struct task_struct *p)
928{
0017d735 929 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
930}
931
b29739f9
IM
932/*
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
935 */
70b97a7f 936static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
937 __acquires(rq->lock)
938{
0970d299
PZ
939 struct rq *rq;
940
3a5c359a 941 for (;;) {
0970d299 942 rq = task_rq(p);
05fa785c 943 raw_spin_lock(&rq->lock);
65cc8e48 944 if (likely(rq == task_rq(p)))
3a5c359a 945 return rq;
05fa785c 946 raw_spin_unlock(&rq->lock);
b29739f9 947 }
b29739f9
IM
948}
949
1da177e4
LT
950/*
951 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 952 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
953 * explicitly disabling preemption.
954 */
70b97a7f 955static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4 959
3a5c359a
AK
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
05fa785c 963 raw_spin_lock(&rq->lock);
65cc8e48 964 if (likely(rq == task_rq(p)))
3a5c359a 965 return rq;
05fa785c 966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 967 }
1da177e4
LT
968}
969
a9957449 970static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
971 __releases(rq->lock)
972{
05fa785c 973 raw_spin_unlock(&rq->lock);
b29739f9
IM
974}
975
70b97a7f 976static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
977 __releases(rq->lock)
978{
05fa785c 979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
980}
981
1da177e4 982/*
cc2a73b5 983 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 984 */
a9957449 985static struct rq *this_rq_lock(void)
1da177e4
LT
986 __acquires(rq->lock)
987{
70b97a7f 988 struct rq *rq;
1da177e4
LT
989
990 local_irq_disable();
991 rq = this_rq();
05fa785c 992 raw_spin_lock(&rq->lock);
1da177e4
LT
993
994 return rq;
995}
996
8f4d37ec
PZ
997#ifdef CONFIG_SCHED_HRTICK
998/*
999 * Use HR-timers to deliver accurate preemption points.
1000 *
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1004 *
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1007 */
8f4d37ec
PZ
1008
1009/*
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1013 */
1014static inline int hrtick_enabled(struct rq *rq)
1015{
1016 if (!sched_feat(HRTICK))
1017 return 0;
ba42059f 1018 if (!cpu_active(cpu_of(rq)))
b328ca18 1019 return 0;
8f4d37ec
PZ
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1021}
1022
8f4d37ec
PZ
1023static void hrtick_clear(struct rq *rq)
1024{
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1027}
1028
8f4d37ec
PZ
1029/*
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1032 */
1033static enum hrtimer_restart hrtick(struct hrtimer *timer)
1034{
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1036
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1038
05fa785c 1039 raw_spin_lock(&rq->lock);
3e51f33f 1040 update_rq_clock(rq);
8f4d37ec 1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1042 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1043
1044 return HRTIMER_NORESTART;
1045}
1046
95e904c7 1047#ifdef CONFIG_SMP
31656519
PZ
1048/*
1049 * called from hardirq (IPI) context
1050 */
1051static void __hrtick_start(void *arg)
b328ca18 1052{
31656519 1053 struct rq *rq = arg;
b328ca18 1054
05fa785c 1055 raw_spin_lock(&rq->lock);
31656519
PZ
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
05fa785c 1058 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1059}
1060
31656519
PZ
1061/*
1062 * Called to set the hrtick timer state.
1063 *
1064 * called with rq->lock held and irqs disabled
1065 */
1066static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1067{
31656519
PZ
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1070
cc584b21 1071 hrtimer_set_expires(timer, time);
31656519
PZ
1072
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
6e275637 1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1077 rq->hrtick_csd_pending = 1;
1078 }
b328ca18
PZ
1079}
1080
1081static int
1082hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1083{
1084 int cpu = (int)(long)hcpu;
1085
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
31656519 1093 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1094 return NOTIFY_OK;
1095 }
1096
1097 return NOTIFY_DONE;
1098}
1099
fa748203 1100static __init void init_hrtick(void)
b328ca18
PZ
1101{
1102 hotcpu_notifier(hotplug_hrtick, 0);
1103}
31656519
PZ
1104#else
1105/*
1106 * Called to set the hrtick timer state.
1107 *
1108 * called with rq->lock held and irqs disabled
1109 */
1110static void hrtick_start(struct rq *rq, u64 delay)
1111{
7f1e2ca9 1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1113 HRTIMER_MODE_REL_PINNED, 0);
31656519 1114}
b328ca18 1115
006c75f1 1116static inline void init_hrtick(void)
8f4d37ec 1117{
8f4d37ec 1118}
31656519 1119#endif /* CONFIG_SMP */
8f4d37ec 1120
31656519 1121static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1122{
31656519
PZ
1123#ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
8f4d37ec 1125
31656519
PZ
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129#endif
8f4d37ec 1130
31656519
PZ
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
8f4d37ec 1133}
006c75f1 1134#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1135static inline void hrtick_clear(struct rq *rq)
1136{
1137}
1138
8f4d37ec
PZ
1139static inline void init_rq_hrtick(struct rq *rq)
1140{
1141}
1142
b328ca18
PZ
1143static inline void init_hrtick(void)
1144{
1145}
006c75f1 1146#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1147
c24d20db
IM
1148/*
1149 * resched_task - mark a task 'to be rescheduled now'.
1150 *
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1154 */
1155#ifdef CONFIG_SMP
1156
1157#ifndef tsk_is_polling
1158#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159#endif
1160
31656519 1161static void resched_task(struct task_struct *p)
c24d20db
IM
1162{
1163 int cpu;
1164
05fa785c 1165 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1166
5ed0cec0 1167 if (test_tsk_need_resched(p))
c24d20db
IM
1168 return;
1169
5ed0cec0 1170 set_tsk_need_resched(p);
c24d20db
IM
1171
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1175
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1180}
1181
1182static void resched_cpu(int cpu)
1183{
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1186
05fa785c 1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1188 return;
1189 resched_task(cpu_curr(cpu));
05fa785c 1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1191}
06d8308c
TG
1192
1193#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1194/*
1195 * In the semi idle case, use the nearest busy cpu for migrating timers
1196 * from an idle cpu. This is good for power-savings.
1197 *
1198 * We don't do similar optimization for completely idle system, as
1199 * selecting an idle cpu will add more delays to the timers than intended
1200 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1201 */
1202int get_nohz_timer_target(void)
1203{
1204 int cpu = smp_processor_id();
1205 int i;
1206 struct sched_domain *sd;
1207
1208 for_each_domain(cpu, sd) {
1209 for_each_cpu(i, sched_domain_span(sd))
1210 if (!idle_cpu(i))
1211 return i;
1212 }
1213 return cpu;
1214}
06d8308c
TG
1215/*
1216 * When add_timer_on() enqueues a timer into the timer wheel of an
1217 * idle CPU then this timer might expire before the next timer event
1218 * which is scheduled to wake up that CPU. In case of a completely
1219 * idle system the next event might even be infinite time into the
1220 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1221 * leaves the inner idle loop so the newly added timer is taken into
1222 * account when the CPU goes back to idle and evaluates the timer
1223 * wheel for the next timer event.
1224 */
1225void wake_up_idle_cpu(int cpu)
1226{
1227 struct rq *rq = cpu_rq(cpu);
1228
1229 if (cpu == smp_processor_id())
1230 return;
1231
1232 /*
1233 * This is safe, as this function is called with the timer
1234 * wheel base lock of (cpu) held. When the CPU is on the way
1235 * to idle and has not yet set rq->curr to idle then it will
1236 * be serialized on the timer wheel base lock and take the new
1237 * timer into account automatically.
1238 */
1239 if (rq->curr != rq->idle)
1240 return;
1241
1242 /*
1243 * We can set TIF_RESCHED on the idle task of the other CPU
1244 * lockless. The worst case is that the other CPU runs the
1245 * idle task through an additional NOOP schedule()
1246 */
5ed0cec0 1247 set_tsk_need_resched(rq->idle);
06d8308c
TG
1248
1249 /* NEED_RESCHED must be visible before we test polling */
1250 smp_mb();
1251 if (!tsk_is_polling(rq->idle))
1252 smp_send_reschedule(cpu);
1253}
39c0cbe2 1254
6d6bc0ad 1255#endif /* CONFIG_NO_HZ */
06d8308c 1256
e9e9250b
PZ
1257static u64 sched_avg_period(void)
1258{
1259 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1260}
1261
1262static void sched_avg_update(struct rq *rq)
1263{
1264 s64 period = sched_avg_period();
1265
1266 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1267 /*
1268 * Inline assembly required to prevent the compiler
1269 * optimising this loop into a divmod call.
1270 * See __iter_div_u64_rem() for another example of this.
1271 */
1272 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1273 rq->age_stamp += period;
1274 rq->rt_avg /= 2;
1275 }
1276}
1277
1278static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279{
1280 rq->rt_avg += rt_delta;
1281 sched_avg_update(rq);
1282}
1283
6d6bc0ad 1284#else /* !CONFIG_SMP */
31656519 1285static void resched_task(struct task_struct *p)
c24d20db 1286{
05fa785c 1287 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1288 set_tsk_need_resched(p);
c24d20db 1289}
e9e9250b
PZ
1290
1291static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1292{
1293}
da2b71ed
SS
1294
1295static void sched_avg_update(struct rq *rq)
1296{
1297}
6d6bc0ad 1298#endif /* CONFIG_SMP */
c24d20db 1299
45bf76df
IM
1300#if BITS_PER_LONG == 32
1301# define WMULT_CONST (~0UL)
1302#else
1303# define WMULT_CONST (1UL << 32)
1304#endif
1305
1306#define WMULT_SHIFT 32
1307
194081eb
IM
1308/*
1309 * Shift right and round:
1310 */
cf2ab469 1311#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1312
a7be37ac
PZ
1313/*
1314 * delta *= weight / lw
1315 */
cb1c4fc9 1316static unsigned long
45bf76df
IM
1317calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1318 struct load_weight *lw)
1319{
1320 u64 tmp;
1321
7a232e03
LJ
1322 if (!lw->inv_weight) {
1323 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1324 lw->inv_weight = 1;
1325 else
1326 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1327 / (lw->weight+1);
1328 }
45bf76df
IM
1329
1330 tmp = (u64)delta_exec * weight;
1331 /*
1332 * Check whether we'd overflow the 64-bit multiplication:
1333 */
194081eb 1334 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1335 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1336 WMULT_SHIFT/2);
1337 else
cf2ab469 1338 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1339
ecf691da 1340 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1344{
1345 lw->weight += inc;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
1091985b 1349static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1350{
1351 lw->weight -= dec;
e89996ae 1352 lw->inv_weight = 0;
45bf76df
IM
1353}
1354
2069dd75
PZ
1355static inline void update_load_set(struct load_weight *lw, unsigned long w)
1356{
1357 lw->weight = w;
1358 lw->inv_weight = 0;
1359}
1360
2dd73a4f
PW
1361/*
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1368 */
1369
cce7ade8
PZ
1370#define WEIGHT_IDLEPRIO 3
1371#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1372
1373/*
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1378 *
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
dd41f596
IM
1384 */
1385static const int prio_to_weight[40] = {
254753dc
IM
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1394};
1395
5714d2de
IM
1396/*
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1398 *
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1402 */
dd41f596 1403static const u32 prio_to_wmult[40] = {
254753dc
IM
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1412};
2dd73a4f 1413
ef12fefa
BR
1414/* Time spent by the tasks of the cpu accounting group executing in ... */
1415enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1418
1419 CPUACCT_STAT_NSTATS,
1420};
1421
d842de87
SV
1422#ifdef CONFIG_CGROUP_CPUACCT
1423static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1424static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1426#else
1427static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1428static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1430#endif
1431
18d95a28
PZ
1432static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1433{
1434 update_load_add(&rq->load, load);
1435}
1436
1437static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_sub(&rq->load, load);
1440}
1441
7940ca36 1442#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1443typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1444
1445/*
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1448 */
eb755805 1449static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1450{
1451 struct task_group *parent, *child;
eb755805 1452 int ret;
c09595f6
PZ
1453
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456down:
eb755805
PZ
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1463
1464up:
1465 continue;
1466 }
eb755805
PZ
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
eb755805 1475out_unlock:
c09595f6 1476 rcu_read_unlock();
eb755805
PZ
1477
1478 return ret;
c09595f6
PZ
1479}
1480
eb755805
PZ
1481static int tg_nop(struct task_group *tg, void *data)
1482{
1483 return 0;
c09595f6 1484}
eb755805
PZ
1485#endif
1486
1487#ifdef CONFIG_SMP
f5f08f39
PZ
1488/* Used instead of source_load when we know the type == 0 */
1489static unsigned long weighted_cpuload(const int cpu)
1490{
1491 return cpu_rq(cpu)->load.weight;
1492}
1493
1494/*
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 *
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1500 */
1501static unsigned long source_load(int cpu, int type)
1502{
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1505
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1508
1509 return min(rq->cpu_load[type-1], total);
1510}
1511
1512/*
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1515 */
1516static unsigned long target_load(int cpu, int type)
1517{
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1520
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1523
1524 return max(rq->cpu_load[type-1], total);
1525}
1526
ae154be1
PZ
1527static unsigned long power_of(int cpu)
1528{
e51fd5e2 1529 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1530}
1531
eb755805
PZ
1532static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1533
1534static unsigned long cpu_avg_load_per_task(int cpu)
1535{
1536 struct rq *rq = cpu_rq(cpu);
af6d596f 1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1538
4cd42620
SR
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1541 else
1542 rq->avg_load_per_task = 0;
eb755805
PZ
1543
1544 return rq->avg_load_per_task;
1545}
1546
1547#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1548
c09595f6 1549/*
c8cba857
PZ
1550 * Compute the cpu's hierarchical load factor for each task group.
1551 * This needs to be done in a top-down fashion because the load of a child
1552 * group is a fraction of its parents load.
c09595f6 1553 */
eb755805 1554static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1555{
c8cba857 1556 unsigned long load;
eb755805 1557 long cpu = (long)data;
c09595f6 1558
c8cba857
PZ
1559 if (!tg->parent) {
1560 load = cpu_rq(cpu)->load.weight;
1561 } else {
1562 load = tg->parent->cfs_rq[cpu]->h_load;
2069dd75 1563 load *= tg->se[cpu]->load.weight;
c8cba857
PZ
1564 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1565 }
c09595f6 1566
c8cba857 1567 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1568
eb755805 1569 return 0;
c09595f6
PZ
1570}
1571
eb755805 1572static void update_h_load(long cpu)
c09595f6 1573{
eb755805 1574 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1575}
1576
18d95a28
PZ
1577#endif
1578
8f45e2b5
GH
1579#ifdef CONFIG_PREEMPT
1580
b78bb868
PZ
1581static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1582
70574a99 1583/*
8f45e2b5
GH
1584 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1585 * way at the expense of forcing extra atomic operations in all
1586 * invocations. This assures that the double_lock is acquired using the
1587 * same underlying policy as the spinlock_t on this architecture, which
1588 * reduces latency compared to the unfair variant below. However, it
1589 * also adds more overhead and therefore may reduce throughput.
70574a99 1590 */
8f45e2b5
GH
1591static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592 __releases(this_rq->lock)
1593 __acquires(busiest->lock)
1594 __acquires(this_rq->lock)
1595{
05fa785c 1596 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1597 double_rq_lock(this_rq, busiest);
1598
1599 return 1;
1600}
1601
1602#else
1603/*
1604 * Unfair double_lock_balance: Optimizes throughput at the expense of
1605 * latency by eliminating extra atomic operations when the locks are
1606 * already in proper order on entry. This favors lower cpu-ids and will
1607 * grant the double lock to lower cpus over higher ids under contention,
1608 * regardless of entry order into the function.
1609 */
1610static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1611 __releases(this_rq->lock)
1612 __acquires(busiest->lock)
1613 __acquires(this_rq->lock)
1614{
1615 int ret = 0;
1616
05fa785c 1617 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1618 if (busiest < this_rq) {
05fa785c
TG
1619 raw_spin_unlock(&this_rq->lock);
1620 raw_spin_lock(&busiest->lock);
1621 raw_spin_lock_nested(&this_rq->lock,
1622 SINGLE_DEPTH_NESTING);
70574a99
AD
1623 ret = 1;
1624 } else
05fa785c
TG
1625 raw_spin_lock_nested(&busiest->lock,
1626 SINGLE_DEPTH_NESTING);
70574a99
AD
1627 }
1628 return ret;
1629}
1630
8f45e2b5
GH
1631#endif /* CONFIG_PREEMPT */
1632
1633/*
1634 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1635 */
1636static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1637{
1638 if (unlikely(!irqs_disabled())) {
1639 /* printk() doesn't work good under rq->lock */
05fa785c 1640 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1641 BUG_ON(1);
1642 }
1643
1644 return _double_lock_balance(this_rq, busiest);
1645}
1646
70574a99
AD
1647static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1648 __releases(busiest->lock)
1649{
05fa785c 1650 raw_spin_unlock(&busiest->lock);
70574a99
AD
1651 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1652}
1e3c88bd
PZ
1653
1654/*
1655 * double_rq_lock - safely lock two runqueues
1656 *
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1659 */
1660static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1663{
1664 BUG_ON(!irqs_disabled());
1665 if (rq1 == rq2) {
1666 raw_spin_lock(&rq1->lock);
1667 __acquire(rq2->lock); /* Fake it out ;) */
1668 } else {
1669 if (rq1 < rq2) {
1670 raw_spin_lock(&rq1->lock);
1671 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1672 } else {
1673 raw_spin_lock(&rq2->lock);
1674 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1675 }
1676 }
1e3c88bd
PZ
1677}
1678
1679/*
1680 * double_rq_unlock - safely unlock two runqueues
1681 *
1682 * Note this does not restore interrupts like task_rq_unlock,
1683 * you need to do so manually after calling.
1684 */
1685static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1686 __releases(rq1->lock)
1687 __releases(rq2->lock)
1688{
1689 raw_spin_unlock(&rq1->lock);
1690 if (rq1 != rq2)
1691 raw_spin_unlock(&rq2->lock);
1692 else
1693 __release(rq2->lock);
1694}
1695
d95f4122
MG
1696#else /* CONFIG_SMP */
1697
1698/*
1699 * double_rq_lock - safely lock two runqueues
1700 *
1701 * Note this does not disable interrupts like task_rq_lock,
1702 * you need to do so manually before calling.
1703 */
1704static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1705 __acquires(rq1->lock)
1706 __acquires(rq2->lock)
1707{
1708 BUG_ON(!irqs_disabled());
1709 BUG_ON(rq1 != rq2);
1710 raw_spin_lock(&rq1->lock);
1711 __acquire(rq2->lock); /* Fake it out ;) */
1712}
1713
1714/*
1715 * double_rq_unlock - safely unlock two runqueues
1716 *
1717 * Note this does not restore interrupts like task_rq_unlock,
1718 * you need to do so manually after calling.
1719 */
1720static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1721 __releases(rq1->lock)
1722 __releases(rq2->lock)
1723{
1724 BUG_ON(rq1 != rq2);
1725 raw_spin_unlock(&rq1->lock);
1726 __release(rq2->lock);
1727}
1728
18d95a28
PZ
1729#endif
1730
74f5187a 1731static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1732static void update_sysctl(void);
acb4a848 1733static int get_update_sysctl_factor(void);
fdf3e95d 1734static void update_cpu_load(struct rq *this_rq);
dce48a84 1735
cd29fe6f
PZ
1736static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1737{
1738 set_task_rq(p, cpu);
1739#ifdef CONFIG_SMP
1740 /*
1741 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1742 * successfuly executed on another CPU. We must ensure that updates of
1743 * per-task data have been completed by this moment.
1744 */
1745 smp_wmb();
1746 task_thread_info(p)->cpu = cpu;
1747#endif
1748}
dce48a84 1749
1e3c88bd 1750static const struct sched_class rt_sched_class;
dd41f596 1751
34f971f6 1752#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1753#define for_each_class(class) \
1754 for (class = sched_class_highest; class; class = class->next)
dd41f596 1755
1e3c88bd
PZ
1756#include "sched_stats.h"
1757
c09595f6 1758static void inc_nr_running(struct rq *rq)
9c217245
IM
1759{
1760 rq->nr_running++;
9c217245
IM
1761}
1762
c09595f6 1763static void dec_nr_running(struct rq *rq)
9c217245
IM
1764{
1765 rq->nr_running--;
9c217245
IM
1766}
1767
45bf76df
IM
1768static void set_load_weight(struct task_struct *p)
1769{
dd41f596
IM
1770 /*
1771 * SCHED_IDLE tasks get minimal weight:
1772 */
1773 if (p->policy == SCHED_IDLE) {
1774 p->se.load.weight = WEIGHT_IDLEPRIO;
1775 p->se.load.inv_weight = WMULT_IDLEPRIO;
1776 return;
1777 }
71f8bd46 1778
dd41f596
IM
1779 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1780 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1781}
1782
371fd7e7 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1784{
a64692a3 1785 update_rq_clock(rq);
dd41f596 1786 sched_info_queued(p);
371fd7e7 1787 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1788}
1789
371fd7e7 1790static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1791{
a64692a3 1792 update_rq_clock(rq);
46ac22ba 1793 sched_info_dequeued(p);
371fd7e7 1794 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1795}
1796
1e3c88bd
PZ
1797/*
1798 * activate_task - move a task to the runqueue.
1799 */
371fd7e7 1800static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1801{
1802 if (task_contributes_to_load(p))
1803 rq->nr_uninterruptible--;
1804
371fd7e7 1805 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1806 inc_nr_running(rq);
1807}
1808
1809/*
1810 * deactivate_task - remove a task from the runqueue.
1811 */
371fd7e7 1812static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1813{
1814 if (task_contributes_to_load(p))
1815 rq->nr_uninterruptible++;
1816
371fd7e7 1817 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1818 dec_nr_running(rq);
1819}
1820
b52bfee4
VP
1821#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1822
305e6835
VP
1823/*
1824 * There are no locks covering percpu hardirq/softirq time.
1825 * They are only modified in account_system_vtime, on corresponding CPU
1826 * with interrupts disabled. So, writes are safe.
1827 * They are read and saved off onto struct rq in update_rq_clock().
1828 * This may result in other CPU reading this CPU's irq time and can
1829 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1830 * or new value with a side effect of accounting a slice of irq time to wrong
1831 * task when irq is in progress while we read rq->clock. That is a worthy
1832 * compromise in place of having locks on each irq in account_system_time.
305e6835 1833 */
b52bfee4
VP
1834static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1835static DEFINE_PER_CPU(u64, cpu_softirq_time);
1836
1837static DEFINE_PER_CPU(u64, irq_start_time);
1838static int sched_clock_irqtime;
1839
1840void enable_sched_clock_irqtime(void)
1841{
1842 sched_clock_irqtime = 1;
1843}
1844
1845void disable_sched_clock_irqtime(void)
1846{
1847 sched_clock_irqtime = 0;
1848}
1849
8e92c201
PZ
1850#ifndef CONFIG_64BIT
1851static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1852
1853static inline void irq_time_write_begin(void)
1854{
1855 __this_cpu_inc(irq_time_seq.sequence);
1856 smp_wmb();
1857}
1858
1859static inline void irq_time_write_end(void)
1860{
1861 smp_wmb();
1862 __this_cpu_inc(irq_time_seq.sequence);
1863}
1864
1865static inline u64 irq_time_read(int cpu)
1866{
1867 u64 irq_time;
1868 unsigned seq;
1869
1870 do {
1871 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1872 irq_time = per_cpu(cpu_softirq_time, cpu) +
1873 per_cpu(cpu_hardirq_time, cpu);
1874 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1875
1876 return irq_time;
1877}
1878#else /* CONFIG_64BIT */
1879static inline void irq_time_write_begin(void)
1880{
1881}
1882
1883static inline void irq_time_write_end(void)
1884{
1885}
1886
1887static inline u64 irq_time_read(int cpu)
305e6835 1888{
305e6835
VP
1889 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1890}
8e92c201 1891#endif /* CONFIG_64BIT */
305e6835 1892
fe44d621
PZ
1893/*
1894 * Called before incrementing preempt_count on {soft,}irq_enter
1895 * and before decrementing preempt_count on {soft,}irq_exit.
1896 */
b52bfee4
VP
1897void account_system_vtime(struct task_struct *curr)
1898{
1899 unsigned long flags;
fe44d621 1900 s64 delta;
b52bfee4 1901 int cpu;
b52bfee4
VP
1902
1903 if (!sched_clock_irqtime)
1904 return;
1905
1906 local_irq_save(flags);
1907
b52bfee4 1908 cpu = smp_processor_id();
fe44d621
PZ
1909 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1910 __this_cpu_add(irq_start_time, delta);
1911
8e92c201 1912 irq_time_write_begin();
b52bfee4
VP
1913 /*
1914 * We do not account for softirq time from ksoftirqd here.
1915 * We want to continue accounting softirq time to ksoftirqd thread
1916 * in that case, so as not to confuse scheduler with a special task
1917 * that do not consume any time, but still wants to run.
1918 */
1919 if (hardirq_count())
fe44d621 1920 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 1921 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 1922 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 1923
8e92c201 1924 irq_time_write_end();
b52bfee4
VP
1925 local_irq_restore(flags);
1926}
b7dadc38 1927EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 1928
fe44d621 1929static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 1930{
fe44d621
PZ
1931 s64 irq_delta;
1932
8e92c201 1933 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
1934
1935 /*
1936 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1937 * this case when a previous update_rq_clock() happened inside a
1938 * {soft,}irq region.
1939 *
1940 * When this happens, we stop ->clock_task and only update the
1941 * prev_irq_time stamp to account for the part that fit, so that a next
1942 * update will consume the rest. This ensures ->clock_task is
1943 * monotonic.
1944 *
1945 * It does however cause some slight miss-attribution of {soft,}irq
1946 * time, a more accurate solution would be to update the irq_time using
1947 * the current rq->clock timestamp, except that would require using
1948 * atomic ops.
1949 */
1950 if (irq_delta > delta)
1951 irq_delta = delta;
1952
1953 rq->prev_irq_time += irq_delta;
1954 delta -= irq_delta;
1955 rq->clock_task += delta;
1956
1957 if (irq_delta && sched_feat(NONIRQ_POWER))
1958 sched_rt_avg_update(rq, irq_delta);
aa483808
VP
1959}
1960
abb74cef
VP
1961static int irqtime_account_hi_update(void)
1962{
1963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1964 unsigned long flags;
1965 u64 latest_ns;
1966 int ret = 0;
1967
1968 local_irq_save(flags);
1969 latest_ns = this_cpu_read(cpu_hardirq_time);
1970 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1971 ret = 1;
1972 local_irq_restore(flags);
1973 return ret;
1974}
1975
1976static int irqtime_account_si_update(void)
1977{
1978 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1979 unsigned long flags;
1980 u64 latest_ns;
1981 int ret = 0;
1982
1983 local_irq_save(flags);
1984 latest_ns = this_cpu_read(cpu_softirq_time);
1985 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1986 ret = 1;
1987 local_irq_restore(flags);
1988 return ret;
1989}
1990
fe44d621 1991#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 1992
abb74cef
VP
1993#define sched_clock_irqtime (0)
1994
fe44d621 1995static void update_rq_clock_task(struct rq *rq, s64 delta)
305e6835 1996{
fe44d621 1997 rq->clock_task += delta;
305e6835
VP
1998}
1999
fe44d621 2000#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
b52bfee4 2001
1e3c88bd
PZ
2002#include "sched_idletask.c"
2003#include "sched_fair.c"
2004#include "sched_rt.c"
5091faa4 2005#include "sched_autogroup.c"
34f971f6 2006#include "sched_stoptask.c"
1e3c88bd
PZ
2007#ifdef CONFIG_SCHED_DEBUG
2008# include "sched_debug.c"
2009#endif
2010
34f971f6
PZ
2011void sched_set_stop_task(int cpu, struct task_struct *stop)
2012{
2013 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2014 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2015
2016 if (stop) {
2017 /*
2018 * Make it appear like a SCHED_FIFO task, its something
2019 * userspace knows about and won't get confused about.
2020 *
2021 * Also, it will make PI more or less work without too
2022 * much confusion -- but then, stop work should not
2023 * rely on PI working anyway.
2024 */
2025 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2026
2027 stop->sched_class = &stop_sched_class;
2028 }
2029
2030 cpu_rq(cpu)->stop = stop;
2031
2032 if (old_stop) {
2033 /*
2034 * Reset it back to a normal scheduling class so that
2035 * it can die in pieces.
2036 */
2037 old_stop->sched_class = &rt_sched_class;
2038 }
2039}
2040
14531189 2041/*
dd41f596 2042 * __normal_prio - return the priority that is based on the static prio
14531189 2043 */
14531189
IM
2044static inline int __normal_prio(struct task_struct *p)
2045{
dd41f596 2046 return p->static_prio;
14531189
IM
2047}
2048
b29739f9
IM
2049/*
2050 * Calculate the expected normal priority: i.e. priority
2051 * without taking RT-inheritance into account. Might be
2052 * boosted by interactivity modifiers. Changes upon fork,
2053 * setprio syscalls, and whenever the interactivity
2054 * estimator recalculates.
2055 */
36c8b586 2056static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2057{
2058 int prio;
2059
e05606d3 2060 if (task_has_rt_policy(p))
b29739f9
IM
2061 prio = MAX_RT_PRIO-1 - p->rt_priority;
2062 else
2063 prio = __normal_prio(p);
2064 return prio;
2065}
2066
2067/*
2068 * Calculate the current priority, i.e. the priority
2069 * taken into account by the scheduler. This value might
2070 * be boosted by RT tasks, or might be boosted by
2071 * interactivity modifiers. Will be RT if the task got
2072 * RT-boosted. If not then it returns p->normal_prio.
2073 */
36c8b586 2074static int effective_prio(struct task_struct *p)
b29739f9
IM
2075{
2076 p->normal_prio = normal_prio(p);
2077 /*
2078 * If we are RT tasks or we were boosted to RT priority,
2079 * keep the priority unchanged. Otherwise, update priority
2080 * to the normal priority:
2081 */
2082 if (!rt_prio(p->prio))
2083 return p->normal_prio;
2084 return p->prio;
2085}
2086
1da177e4
LT
2087/**
2088 * task_curr - is this task currently executing on a CPU?
2089 * @p: the task in question.
2090 */
36c8b586 2091inline int task_curr(const struct task_struct *p)
1da177e4
LT
2092{
2093 return cpu_curr(task_cpu(p)) == p;
2094}
2095
cb469845
SR
2096static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2097 const struct sched_class *prev_class,
da7a735e 2098 int oldprio)
cb469845
SR
2099{
2100 if (prev_class != p->sched_class) {
2101 if (prev_class->switched_from)
da7a735e
PZ
2102 prev_class->switched_from(rq, p);
2103 p->sched_class->switched_to(rq, p);
2104 } else if (oldprio != p->prio)
2105 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2106}
2107
1e5a7405
PZ
2108static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2109{
2110 const struct sched_class *class;
2111
2112 if (p->sched_class == rq->curr->sched_class) {
2113 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2114 } else {
2115 for_each_class(class) {
2116 if (class == rq->curr->sched_class)
2117 break;
2118 if (class == p->sched_class) {
2119 resched_task(rq->curr);
2120 break;
2121 }
2122 }
2123 }
2124
2125 /*
2126 * A queue event has occurred, and we're going to schedule. In
2127 * this case, we can save a useless back to back clock update.
2128 */
fd2f4419 2129 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2130 rq->skip_clock_update = 1;
2131}
2132
1da177e4 2133#ifdef CONFIG_SMP
cc367732
IM
2134/*
2135 * Is this task likely cache-hot:
2136 */
e7693a36 2137static int
cc367732
IM
2138task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2139{
2140 s64 delta;
2141
e6c8fba7
PZ
2142 if (p->sched_class != &fair_sched_class)
2143 return 0;
2144
ef8002f6
NR
2145 if (unlikely(p->policy == SCHED_IDLE))
2146 return 0;
2147
f540a608
IM
2148 /*
2149 * Buddy candidates are cache hot:
2150 */
f685ceac 2151 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2152 (&p->se == cfs_rq_of(&p->se)->next ||
2153 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2154 return 1;
2155
6bc1665b
IM
2156 if (sysctl_sched_migration_cost == -1)
2157 return 1;
2158 if (sysctl_sched_migration_cost == 0)
2159 return 0;
2160
cc367732
IM
2161 delta = now - p->se.exec_start;
2162
2163 return delta < (s64)sysctl_sched_migration_cost;
2164}
2165
dd41f596 2166void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2167{
e2912009
PZ
2168#ifdef CONFIG_SCHED_DEBUG
2169 /*
2170 * We should never call set_task_cpu() on a blocked task,
2171 * ttwu() will sort out the placement.
2172 */
077614ee
PZ
2173 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2174 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2175#endif
2176
de1d7286 2177 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2178
0c69774e
PZ
2179 if (task_cpu(p) != new_cpu) {
2180 p->se.nr_migrations++;
2181 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2182 }
dd41f596
IM
2183
2184 __set_task_cpu(p, new_cpu);
c65cc870
IM
2185}
2186
969c7921 2187struct migration_arg {
36c8b586 2188 struct task_struct *task;
1da177e4 2189 int dest_cpu;
70b97a7f 2190};
1da177e4 2191
969c7921
TH
2192static int migration_cpu_stop(void *data);
2193
1da177e4
LT
2194/*
2195 * The task's runqueue lock must be held.
2196 * Returns true if you have to wait for migration thread.
2197 */
b7a2b39d 2198static bool migrate_task(struct task_struct *p, struct rq *rq)
1da177e4 2199{
1da177e4
LT
2200 /*
2201 * If the task is not on a runqueue (and not running), then
e2912009 2202 * the next wake-up will properly place the task.
1da177e4 2203 */
fd2f4419 2204 return p->on_rq || task_running(rq, p);
1da177e4
LT
2205}
2206
2207/*
2208 * wait_task_inactive - wait for a thread to unschedule.
2209 *
85ba2d86
RM
2210 * If @match_state is nonzero, it's the @p->state value just checked and
2211 * not expected to change. If it changes, i.e. @p might have woken up,
2212 * then return zero. When we succeed in waiting for @p to be off its CPU,
2213 * we return a positive number (its total switch count). If a second call
2214 * a short while later returns the same number, the caller can be sure that
2215 * @p has remained unscheduled the whole time.
2216 *
1da177e4
LT
2217 * The caller must ensure that the task *will* unschedule sometime soon,
2218 * else this function might spin for a *long* time. This function can't
2219 * be called with interrupts off, or it may introduce deadlock with
2220 * smp_call_function() if an IPI is sent by the same process we are
2221 * waiting to become inactive.
2222 */
85ba2d86 2223unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2224{
2225 unsigned long flags;
dd41f596 2226 int running, on_rq;
85ba2d86 2227 unsigned long ncsw;
70b97a7f 2228 struct rq *rq;
1da177e4 2229
3a5c359a
AK
2230 for (;;) {
2231 /*
2232 * We do the initial early heuristics without holding
2233 * any task-queue locks at all. We'll only try to get
2234 * the runqueue lock when things look like they will
2235 * work out!
2236 */
2237 rq = task_rq(p);
fa490cfd 2238
3a5c359a
AK
2239 /*
2240 * If the task is actively running on another CPU
2241 * still, just relax and busy-wait without holding
2242 * any locks.
2243 *
2244 * NOTE! Since we don't hold any locks, it's not
2245 * even sure that "rq" stays as the right runqueue!
2246 * But we don't care, since "task_running()" will
2247 * return false if the runqueue has changed and p
2248 * is actually now running somewhere else!
2249 */
85ba2d86
RM
2250 while (task_running(rq, p)) {
2251 if (match_state && unlikely(p->state != match_state))
2252 return 0;
3a5c359a 2253 cpu_relax();
85ba2d86 2254 }
fa490cfd 2255
3a5c359a
AK
2256 /*
2257 * Ok, time to look more closely! We need the rq
2258 * lock now, to be *sure*. If we're wrong, we'll
2259 * just go back and repeat.
2260 */
2261 rq = task_rq_lock(p, &flags);
27a9da65 2262 trace_sched_wait_task(p);
3a5c359a 2263 running = task_running(rq, p);
fd2f4419 2264 on_rq = p->on_rq;
85ba2d86 2265 ncsw = 0;
f31e11d8 2266 if (!match_state || p->state == match_state)
93dcf55f 2267 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2268 task_rq_unlock(rq, &flags);
fa490cfd 2269
85ba2d86
RM
2270 /*
2271 * If it changed from the expected state, bail out now.
2272 */
2273 if (unlikely(!ncsw))
2274 break;
2275
3a5c359a
AK
2276 /*
2277 * Was it really running after all now that we
2278 * checked with the proper locks actually held?
2279 *
2280 * Oops. Go back and try again..
2281 */
2282 if (unlikely(running)) {
2283 cpu_relax();
2284 continue;
2285 }
fa490cfd 2286
3a5c359a
AK
2287 /*
2288 * It's not enough that it's not actively running,
2289 * it must be off the runqueue _entirely_, and not
2290 * preempted!
2291 *
80dd99b3 2292 * So if it was still runnable (but just not actively
3a5c359a
AK
2293 * running right now), it's preempted, and we should
2294 * yield - it could be a while.
2295 */
2296 if (unlikely(on_rq)) {
8eb90c30
TG
2297 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2298
2299 set_current_state(TASK_UNINTERRUPTIBLE);
2300 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2301 continue;
2302 }
fa490cfd 2303
3a5c359a
AK
2304 /*
2305 * Ahh, all good. It wasn't running, and it wasn't
2306 * runnable, which means that it will never become
2307 * running in the future either. We're all done!
2308 */
2309 break;
2310 }
85ba2d86
RM
2311
2312 return ncsw;
1da177e4
LT
2313}
2314
2315/***
2316 * kick_process - kick a running thread to enter/exit the kernel
2317 * @p: the to-be-kicked thread
2318 *
2319 * Cause a process which is running on another CPU to enter
2320 * kernel-mode, without any delay. (to get signals handled.)
2321 *
25985edc 2322 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2323 * because all it wants to ensure is that the remote task enters
2324 * the kernel. If the IPI races and the task has been migrated
2325 * to another CPU then no harm is done and the purpose has been
2326 * achieved as well.
2327 */
36c8b586 2328void kick_process(struct task_struct *p)
1da177e4
LT
2329{
2330 int cpu;
2331
2332 preempt_disable();
2333 cpu = task_cpu(p);
2334 if ((cpu != smp_processor_id()) && task_curr(p))
2335 smp_send_reschedule(cpu);
2336 preempt_enable();
2337}
b43e3521 2338EXPORT_SYMBOL_GPL(kick_process);
476d139c 2339#endif /* CONFIG_SMP */
1da177e4 2340
970b13ba 2341#ifdef CONFIG_SMP
30da688e
ON
2342/*
2343 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2344 */
5da9a0fb
PZ
2345static int select_fallback_rq(int cpu, struct task_struct *p)
2346{
2347 int dest_cpu;
2348 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2349
2350 /* Look for allowed, online CPU in same node. */
2351 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2352 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2353 return dest_cpu;
2354
2355 /* Any allowed, online CPU? */
2356 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2357 if (dest_cpu < nr_cpu_ids)
2358 return dest_cpu;
2359
2360 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2361 dest_cpu = cpuset_cpus_allowed_fallback(p);
2362 /*
2363 * Don't tell them about moving exiting tasks or
2364 * kernel threads (both mm NULL), since they never
2365 * leave kernel.
2366 */
2367 if (p->mm && printk_ratelimit()) {
2368 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2369 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2370 }
2371
2372 return dest_cpu;
2373}
2374
e2912009 2375/*
30da688e 2376 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2377 */
970b13ba 2378static inline
0017d735 2379int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2380{
0017d735 2381 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2382
2383 /*
2384 * In order not to call set_task_cpu() on a blocking task we need
2385 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2386 * cpu.
2387 *
2388 * Since this is common to all placement strategies, this lives here.
2389 *
2390 * [ this allows ->select_task() to simply return task_cpu(p) and
2391 * not worry about this generic constraint ]
2392 */
2393 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2394 !cpu_online(cpu)))
5da9a0fb 2395 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2396
2397 return cpu;
970b13ba 2398}
09a40af5
MG
2399
2400static void update_avg(u64 *avg, u64 sample)
2401{
2402 s64 diff = sample - *avg;
2403 *avg += diff >> 3;
2404}
970b13ba
PZ
2405#endif
2406
d7c01d27
PZ
2407static void
2408ttwu_stat(struct rq *rq, struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2409{
d7c01d27
PZ
2410#ifdef CONFIG_SCHEDSTATS
2411#ifdef CONFIG_SMP
2412 int this_cpu = smp_processor_id();
2413
2414 if (cpu == this_cpu) {
2415 schedstat_inc(rq, ttwu_local);
2416 schedstat_inc(p, se.statistics.nr_wakeups_local);
2417 } else {
2418 struct sched_domain *sd;
2419
2420 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2421 for_each_domain(this_cpu, sd) {
2422 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2423 schedstat_inc(sd, ttwu_wake_remote);
2424 break;
2425 }
2426 }
2427 }
2428#endif /* CONFIG_SMP */
2429
2430 schedstat_inc(rq, ttwu_count);
9ed3811a 2431 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2432
2433 if (wake_flags & WF_SYNC)
9ed3811a 2434 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27
PZ
2435
2436 if (cpu != task_cpu(p))
9ed3811a 2437 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
9ed3811a 2438
d7c01d27
PZ
2439#endif /* CONFIG_SCHEDSTATS */
2440}
2441
2442static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2443{
9ed3811a 2444 activate_task(rq, p, en_flags);
fd2f4419 2445 p->on_rq = 1;
c2f7115e
PZ
2446
2447 /* if a worker is waking up, notify workqueue */
2448 if (p->flags & PF_WQ_WORKER)
2449 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2450}
2451
89363381
PZ
2452static void
2453ttwu_post_activation(struct task_struct *p, struct rq *rq, int wake_flags)
9ed3811a 2454{
89363381 2455 trace_sched_wakeup(p, true);
9ed3811a
TH
2456 check_preempt_curr(rq, p, wake_flags);
2457
2458 p->state = TASK_RUNNING;
2459#ifdef CONFIG_SMP
2460 if (p->sched_class->task_woken)
2461 p->sched_class->task_woken(rq, p);
2462
2463 if (unlikely(rq->idle_stamp)) {
2464 u64 delta = rq->clock - rq->idle_stamp;
2465 u64 max = 2*sysctl_sched_migration_cost;
2466
2467 if (delta > max)
2468 rq->avg_idle = max;
2469 else
2470 update_avg(&rq->avg_idle, delta);
2471 rq->idle_stamp = 0;
2472 }
2473#endif
2474}
2475
2476/**
1da177e4 2477 * try_to_wake_up - wake up a thread
9ed3811a 2478 * @p: the thread to be awakened
1da177e4 2479 * @state: the mask of task states that can be woken
9ed3811a 2480 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2481 *
2482 * Put it on the run-queue if it's not already there. The "current"
2483 * thread is always on the run-queue (except when the actual
2484 * re-schedule is in progress), and as such you're allowed to do
2485 * the simpler "current->state = TASK_RUNNING" to mark yourself
2486 * runnable without the overhead of this.
2487 *
9ed3811a
TH
2488 * Returns %true if @p was woken up, %false if it was already running
2489 * or @state didn't match @p's state.
1da177e4 2490 */
7d478721
PZ
2491static int try_to_wake_up(struct task_struct *p, unsigned int state,
2492 int wake_flags)
1da177e4 2493{
cc367732 2494 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2495 unsigned long flags;
371fd7e7 2496 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2497 struct rq *rq;
1da177e4 2498
e9c84311 2499 this_cpu = get_cpu();
2398f2c6 2500
04e2f174 2501 smp_wmb();
ab3b3aa5 2502 rq = task_rq_lock(p, &flags);
e9c84311 2503 if (!(p->state & state))
1da177e4
LT
2504 goto out;
2505
d7c01d27
PZ
2506 cpu = task_cpu(p);
2507
fd2f4419 2508 if (p->on_rq)
1da177e4
LT
2509 goto out_running;
2510
cc367732 2511 orig_cpu = cpu;
1da177e4
LT
2512#ifdef CONFIG_SMP
2513 if (unlikely(task_running(rq, p)))
2514 goto out_activate;
2515
e9c84311
PZ
2516 /*
2517 * In order to handle concurrent wakeups and release the rq->lock
2518 * we put the task in TASK_WAKING state.
eb24073b
IM
2519 *
2520 * First fix up the nr_uninterruptible count:
e9c84311 2521 */
cc87f76a
PZ
2522 if (task_contributes_to_load(p)) {
2523 if (likely(cpu_online(orig_cpu)))
2524 rq->nr_uninterruptible--;
2525 else
2526 this_rq()->nr_uninterruptible--;
2527 }
e9c84311 2528 p->state = TASK_WAKING;
efbbd05a 2529
371fd7e7 2530 if (p->sched_class->task_waking) {
efbbd05a 2531 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2532 en_flags |= ENQUEUE_WAKING;
2533 }
efbbd05a 2534
0017d735
PZ
2535 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2536 if (cpu != orig_cpu)
5d2f5a61 2537 set_task_cpu(p, cpu);
0017d735 2538 __task_rq_unlock(rq);
ab19cb23 2539
0970d299
PZ
2540 rq = cpu_rq(cpu);
2541 raw_spin_lock(&rq->lock);
f5dc3753 2542
0970d299
PZ
2543 /*
2544 * We migrated the task without holding either rq->lock, however
2545 * since the task is not on the task list itself, nobody else
2546 * will try and migrate the task, hence the rq should match the
2547 * cpu we just moved it to.
2548 */
2549 WARN_ON(task_cpu(p) != cpu);
e9c84311 2550 WARN_ON(p->state != TASK_WAKING);
1da177e4
LT
2551
2552out_activate:
2553#endif /* CONFIG_SMP */
d7c01d27 2554 ttwu_activate(rq, p, en_flags);
1da177e4 2555out_running:
89363381 2556 ttwu_post_activation(p, rq, wake_flags);
d7c01d27 2557 ttwu_stat(rq, p, cpu, wake_flags);
89363381 2558 success = 1;
1da177e4
LT
2559out:
2560 task_rq_unlock(rq, &flags);
e9c84311 2561 put_cpu();
1da177e4
LT
2562
2563 return success;
2564}
2565
21aa9af0
TH
2566/**
2567 * try_to_wake_up_local - try to wake up a local task with rq lock held
2568 * @p: the thread to be awakened
2569 *
b595076a 2570 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0
TH
2571 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2572 * the current task. this_rq() stays locked over invocation.
2573 */
2574static void try_to_wake_up_local(struct task_struct *p)
2575{
2576 struct rq *rq = task_rq(p);
21aa9af0
TH
2577
2578 BUG_ON(rq != this_rq());
2579 BUG_ON(p == current);
2580 lockdep_assert_held(&rq->lock);
2581
2582 if (!(p->state & TASK_NORMAL))
2583 return;
2584
fd2f4419 2585 if (!p->on_rq)
d7c01d27
PZ
2586 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2587
89363381 2588 ttwu_post_activation(p, rq, 0);
d7c01d27 2589 ttwu_stat(rq, p, smp_processor_id(), 0);
21aa9af0
TH
2590}
2591
50fa610a
DH
2592/**
2593 * wake_up_process - Wake up a specific process
2594 * @p: The process to be woken up.
2595 *
2596 * Attempt to wake up the nominated process and move it to the set of runnable
2597 * processes. Returns 1 if the process was woken up, 0 if it was already
2598 * running.
2599 *
2600 * It may be assumed that this function implies a write memory barrier before
2601 * changing the task state if and only if any tasks are woken up.
2602 */
7ad5b3a5 2603int wake_up_process(struct task_struct *p)
1da177e4 2604{
d9514f6c 2605 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2606}
1da177e4
LT
2607EXPORT_SYMBOL(wake_up_process);
2608
7ad5b3a5 2609int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2610{
2611 return try_to_wake_up(p, state, 0);
2612}
2613
1da177e4
LT
2614/*
2615 * Perform scheduler related setup for a newly forked process p.
2616 * p is forked by current.
dd41f596
IM
2617 *
2618 * __sched_fork() is basic setup used by init_idle() too:
2619 */
2620static void __sched_fork(struct task_struct *p)
2621{
fd2f4419
PZ
2622 p->on_rq = 0;
2623
2624 p->se.on_rq = 0;
dd41f596
IM
2625 p->se.exec_start = 0;
2626 p->se.sum_exec_runtime = 0;
f6cf891c 2627 p->se.prev_sum_exec_runtime = 0;
6c594c21 2628 p->se.nr_migrations = 0;
da7a735e 2629 p->se.vruntime = 0;
fd2f4419 2630 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2631
2632#ifdef CONFIG_SCHEDSTATS
41acab88 2633 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2634#endif
476d139c 2635
fa717060 2636 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2637
e107be36
AK
2638#ifdef CONFIG_PREEMPT_NOTIFIERS
2639 INIT_HLIST_HEAD(&p->preempt_notifiers);
2640#endif
dd41f596
IM
2641}
2642
2643/*
2644 * fork()/clone()-time setup:
2645 */
2646void sched_fork(struct task_struct *p, int clone_flags)
2647{
2648 int cpu = get_cpu();
2649
2650 __sched_fork(p);
06b83b5f 2651 /*
0017d735 2652 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2653 * nobody will actually run it, and a signal or other external
2654 * event cannot wake it up and insert it on the runqueue either.
2655 */
0017d735 2656 p->state = TASK_RUNNING;
dd41f596 2657
b9dc29e7
MG
2658 /*
2659 * Revert to default priority/policy on fork if requested.
2660 */
2661 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2662 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2663 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2664 p->normal_prio = p->static_prio;
2665 }
b9dc29e7 2666
6c697bdf
MG
2667 if (PRIO_TO_NICE(p->static_prio) < 0) {
2668 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2669 p->normal_prio = p->static_prio;
6c697bdf
MG
2670 set_load_weight(p);
2671 }
2672
b9dc29e7
MG
2673 /*
2674 * We don't need the reset flag anymore after the fork. It has
2675 * fulfilled its duty:
2676 */
2677 p->sched_reset_on_fork = 0;
2678 }
ca94c442 2679
f83f9ac2
PW
2680 /*
2681 * Make sure we do not leak PI boosting priority to the child.
2682 */
2683 p->prio = current->normal_prio;
2684
2ddbf952
HS
2685 if (!rt_prio(p->prio))
2686 p->sched_class = &fair_sched_class;
b29739f9 2687
cd29fe6f
PZ
2688 if (p->sched_class->task_fork)
2689 p->sched_class->task_fork(p);
2690
86951599
PZ
2691 /*
2692 * The child is not yet in the pid-hash so no cgroup attach races,
2693 * and the cgroup is pinned to this child due to cgroup_fork()
2694 * is ran before sched_fork().
2695 *
2696 * Silence PROVE_RCU.
2697 */
2698 rcu_read_lock();
5f3edc1b 2699 set_task_cpu(p, cpu);
86951599 2700 rcu_read_unlock();
5f3edc1b 2701
52f17b6c 2702#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2703 if (likely(sched_info_on()))
52f17b6c 2704 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2705#endif
3ca7a440
PZ
2706#if defined(CONFIG_SMP)
2707 p->on_cpu = 0;
4866cde0 2708#endif
1da177e4 2709#ifdef CONFIG_PREEMPT
4866cde0 2710 /* Want to start with kernel preemption disabled. */
a1261f54 2711 task_thread_info(p)->preempt_count = 1;
1da177e4 2712#endif
806c09a7 2713#ifdef CONFIG_SMP
917b627d 2714 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 2715#endif
917b627d 2716
476d139c 2717 put_cpu();
1da177e4
LT
2718}
2719
2720/*
2721 * wake_up_new_task - wake up a newly created task for the first time.
2722 *
2723 * This function will do some initial scheduler statistics housekeeping
2724 * that must be done for every newly created context, then puts the task
2725 * on the runqueue and wakes it.
2726 */
7ad5b3a5 2727void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2728{
2729 unsigned long flags;
dd41f596 2730 struct rq *rq;
c890692b 2731 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2732
2733#ifdef CONFIG_SMP
0017d735
PZ
2734 rq = task_rq_lock(p, &flags);
2735 p->state = TASK_WAKING;
2736
fabf318e
PZ
2737 /*
2738 * Fork balancing, do it here and not earlier because:
2739 * - cpus_allowed can change in the fork path
2740 * - any previously selected cpu might disappear through hotplug
2741 *
0017d735
PZ
2742 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2743 * without people poking at ->cpus_allowed.
fabf318e 2744 */
0017d735 2745 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2746 set_task_cpu(p, cpu);
1da177e4 2747
06b83b5f 2748 p->state = TASK_RUNNING;
0017d735
PZ
2749 task_rq_unlock(rq, &flags);
2750#endif
2751
2752 rq = task_rq_lock(p, &flags);
cd29fe6f 2753 activate_task(rq, p, 0);
fd2f4419 2754 p->on_rq = 1;
89363381 2755 trace_sched_wakeup_new(p, true);
a7558e01 2756 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2757#ifdef CONFIG_SMP
efbbd05a
PZ
2758 if (p->sched_class->task_woken)
2759 p->sched_class->task_woken(rq, p);
9a897c5a 2760#endif
dd41f596 2761 task_rq_unlock(rq, &flags);
fabf318e 2762 put_cpu();
1da177e4
LT
2763}
2764
e107be36
AK
2765#ifdef CONFIG_PREEMPT_NOTIFIERS
2766
2767/**
80dd99b3 2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2769 * @notifier: notifier struct to register
e107be36
AK
2770 */
2771void preempt_notifier_register(struct preempt_notifier *notifier)
2772{
2773 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2774}
2775EXPORT_SYMBOL_GPL(preempt_notifier_register);
2776
2777/**
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2779 * @notifier: notifier struct to unregister
e107be36
AK
2780 *
2781 * This is safe to call from within a preemption notifier.
2782 */
2783void preempt_notifier_unregister(struct preempt_notifier *notifier)
2784{
2785 hlist_del(&notifier->link);
2786}
2787EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2788
2789static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2790{
2791 struct preempt_notifier *notifier;
2792 struct hlist_node *node;
2793
2794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2796}
2797
2798static void
2799fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801{
2802 struct preempt_notifier *notifier;
2803 struct hlist_node *node;
2804
2805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2806 notifier->ops->sched_out(notifier, next);
2807}
2808
6d6bc0ad 2809#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2810
2811static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2812{
2813}
2814
2815static void
2816fire_sched_out_preempt_notifiers(struct task_struct *curr,
2817 struct task_struct *next)
2818{
2819}
2820
6d6bc0ad 2821#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2822
4866cde0
NP
2823/**
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
421cee29 2826 * @prev: the current task that is being switched out
4866cde0
NP
2827 * @next: the task we are going to switch to.
2828 *
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2831 * switch.
2832 *
2833 * prepare_task_switch sets up locking and calls architecture specific
2834 * hooks.
2835 */
e107be36
AK
2836static inline void
2837prepare_task_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
4866cde0 2839{
fe4b04fa
PZ
2840 sched_info_switch(prev, next);
2841 perf_event_task_sched_out(prev, next);
e107be36 2842 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2843 prepare_lock_switch(rq, next);
2844 prepare_arch_switch(next);
fe4b04fa 2845 trace_sched_switch(prev, next);
4866cde0
NP
2846}
2847
1da177e4
LT
2848/**
2849 * finish_task_switch - clean up after a task-switch
344babaa 2850 * @rq: runqueue associated with task-switch
1da177e4
LT
2851 * @prev: the thread we just switched away from.
2852 *
4866cde0
NP
2853 * finish_task_switch must be called after the context switch, paired
2854 * with a prepare_task_switch call before the context switch.
2855 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2856 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2857 *
2858 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2859 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2860 * with the lock held can cause deadlocks; see schedule() for
2861 * details.)
2862 */
a9957449 2863static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2864 __releases(rq->lock)
2865{
1da177e4 2866 struct mm_struct *mm = rq->prev_mm;
55a101f8 2867 long prev_state;
1da177e4
LT
2868
2869 rq->prev_mm = NULL;
2870
2871 /*
2872 * A task struct has one reference for the use as "current".
c394cc9f 2873 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2874 * schedule one last time. The schedule call will never return, and
2875 * the scheduled task must drop that reference.
c394cc9f 2876 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2877 * still held, otherwise prev could be scheduled on another cpu, die
2878 * there before we look at prev->state, and then the reference would
2879 * be dropped twice.
2880 * Manfred Spraul <manfred@colorfullife.com>
2881 */
55a101f8 2882 prev_state = prev->state;
4866cde0 2883 finish_arch_switch(prev);
8381f65d
JI
2884#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2885 local_irq_disable();
2886#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2887 perf_event_task_sched_in(current);
8381f65d
JI
2888#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2889 local_irq_enable();
2890#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2891 finish_lock_switch(rq, prev);
e8fa1362 2892
e107be36 2893 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2894 if (mm)
2895 mmdrop(mm);
c394cc9f 2896 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2897 /*
2898 * Remove function-return probe instances associated with this
2899 * task and put them back on the free list.
9761eea8 2900 */
c6fd91f0 2901 kprobe_flush_task(prev);
1da177e4 2902 put_task_struct(prev);
c6fd91f0 2903 }
1da177e4
LT
2904}
2905
3f029d3c
GH
2906#ifdef CONFIG_SMP
2907
2908/* assumes rq->lock is held */
2909static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2910{
2911 if (prev->sched_class->pre_schedule)
2912 prev->sched_class->pre_schedule(rq, prev);
2913}
2914
2915/* rq->lock is NOT held, but preemption is disabled */
2916static inline void post_schedule(struct rq *rq)
2917{
2918 if (rq->post_schedule) {
2919 unsigned long flags;
2920
05fa785c 2921 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2922 if (rq->curr->sched_class->post_schedule)
2923 rq->curr->sched_class->post_schedule(rq);
05fa785c 2924 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2925
2926 rq->post_schedule = 0;
2927 }
2928}
2929
2930#else
da19ab51 2931
3f029d3c
GH
2932static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2933{
2934}
2935
2936static inline void post_schedule(struct rq *rq)
2937{
1da177e4
LT
2938}
2939
3f029d3c
GH
2940#endif
2941
1da177e4
LT
2942/**
2943 * schedule_tail - first thing a freshly forked thread must call.
2944 * @prev: the thread we just switched away from.
2945 */
36c8b586 2946asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2947 __releases(rq->lock)
2948{
70b97a7f
IM
2949 struct rq *rq = this_rq();
2950
4866cde0 2951 finish_task_switch(rq, prev);
da19ab51 2952
3f029d3c
GH
2953 /*
2954 * FIXME: do we need to worry about rq being invalidated by the
2955 * task_switch?
2956 */
2957 post_schedule(rq);
70b97a7f 2958
4866cde0
NP
2959#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2960 /* In this case, finish_task_switch does not reenable preemption */
2961 preempt_enable();
2962#endif
1da177e4 2963 if (current->set_child_tid)
b488893a 2964 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2965}
2966
2967/*
2968 * context_switch - switch to the new MM and the new
2969 * thread's register state.
2970 */
dd41f596 2971static inline void
70b97a7f 2972context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2973 struct task_struct *next)
1da177e4 2974{
dd41f596 2975 struct mm_struct *mm, *oldmm;
1da177e4 2976
e107be36 2977 prepare_task_switch(rq, prev, next);
fe4b04fa 2978
dd41f596
IM
2979 mm = next->mm;
2980 oldmm = prev->active_mm;
9226d125
ZA
2981 /*
2982 * For paravirt, this is coupled with an exit in switch_to to
2983 * combine the page table reload and the switch backend into
2984 * one hypercall.
2985 */
224101ed 2986 arch_start_context_switch(prev);
9226d125 2987
31915ab4 2988 if (!mm) {
1da177e4
LT
2989 next->active_mm = oldmm;
2990 atomic_inc(&oldmm->mm_count);
2991 enter_lazy_tlb(oldmm, next);
2992 } else
2993 switch_mm(oldmm, mm, next);
2994
31915ab4 2995 if (!prev->mm) {
1da177e4 2996 prev->active_mm = NULL;
1da177e4
LT
2997 rq->prev_mm = oldmm;
2998 }
3a5f5e48
IM
2999 /*
3000 * Since the runqueue lock will be released by the next
3001 * task (which is an invalid locking op but in the case
3002 * of the scheduler it's an obvious special-case), so we
3003 * do an early lockdep release here:
3004 */
3005#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3006 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3007#endif
1da177e4
LT
3008
3009 /* Here we just switch the register state and the stack. */
3010 switch_to(prev, next, prev);
3011
dd41f596
IM
3012 barrier();
3013 /*
3014 * this_rq must be evaluated again because prev may have moved
3015 * CPUs since it called schedule(), thus the 'rq' on its stack
3016 * frame will be invalid.
3017 */
3018 finish_task_switch(this_rq(), prev);
1da177e4
LT
3019}
3020
3021/*
3022 * nr_running, nr_uninterruptible and nr_context_switches:
3023 *
3024 * externally visible scheduler statistics: current number of runnable
3025 * threads, current number of uninterruptible-sleeping threads, total
3026 * number of context switches performed since bootup.
3027 */
3028unsigned long nr_running(void)
3029{
3030 unsigned long i, sum = 0;
3031
3032 for_each_online_cpu(i)
3033 sum += cpu_rq(i)->nr_running;
3034
3035 return sum;
f711f609 3036}
1da177e4
LT
3037
3038unsigned long nr_uninterruptible(void)
f711f609 3039{
1da177e4 3040 unsigned long i, sum = 0;
f711f609 3041
0a945022 3042 for_each_possible_cpu(i)
1da177e4 3043 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3044
3045 /*
1da177e4
LT
3046 * Since we read the counters lockless, it might be slightly
3047 * inaccurate. Do not allow it to go below zero though:
f711f609 3048 */
1da177e4
LT
3049 if (unlikely((long)sum < 0))
3050 sum = 0;
f711f609 3051
1da177e4 3052 return sum;
f711f609 3053}
f711f609 3054
1da177e4 3055unsigned long long nr_context_switches(void)
46cb4b7c 3056{
cc94abfc
SR
3057 int i;
3058 unsigned long long sum = 0;
46cb4b7c 3059
0a945022 3060 for_each_possible_cpu(i)
1da177e4 3061 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3062
1da177e4
LT
3063 return sum;
3064}
483b4ee6 3065
1da177e4
LT
3066unsigned long nr_iowait(void)
3067{
3068 unsigned long i, sum = 0;
483b4ee6 3069
0a945022 3070 for_each_possible_cpu(i)
1da177e4 3071 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3072
1da177e4
LT
3073 return sum;
3074}
483b4ee6 3075
8c215bd3 3076unsigned long nr_iowait_cpu(int cpu)
69d25870 3077{
8c215bd3 3078 struct rq *this = cpu_rq(cpu);
69d25870
AV
3079 return atomic_read(&this->nr_iowait);
3080}
46cb4b7c 3081
69d25870
AV
3082unsigned long this_cpu_load(void)
3083{
3084 struct rq *this = this_rq();
3085 return this->cpu_load[0];
3086}
e790fb0b 3087
46cb4b7c 3088
dce48a84
TG
3089/* Variables and functions for calc_load */
3090static atomic_long_t calc_load_tasks;
3091static unsigned long calc_load_update;
3092unsigned long avenrun[3];
3093EXPORT_SYMBOL(avenrun);
46cb4b7c 3094
74f5187a
PZ
3095static long calc_load_fold_active(struct rq *this_rq)
3096{
3097 long nr_active, delta = 0;
3098
3099 nr_active = this_rq->nr_running;
3100 nr_active += (long) this_rq->nr_uninterruptible;
3101
3102 if (nr_active != this_rq->calc_load_active) {
3103 delta = nr_active - this_rq->calc_load_active;
3104 this_rq->calc_load_active = nr_active;
3105 }
3106
3107 return delta;
3108}
3109
0f004f5a
PZ
3110static unsigned long
3111calc_load(unsigned long load, unsigned long exp, unsigned long active)
3112{
3113 load *= exp;
3114 load += active * (FIXED_1 - exp);
3115 load += 1UL << (FSHIFT - 1);
3116 return load >> FSHIFT;
3117}
3118
74f5187a
PZ
3119#ifdef CONFIG_NO_HZ
3120/*
3121 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3122 *
3123 * When making the ILB scale, we should try to pull this in as well.
3124 */
3125static atomic_long_t calc_load_tasks_idle;
3126
3127static void calc_load_account_idle(struct rq *this_rq)
3128{
3129 long delta;
3130
3131 delta = calc_load_fold_active(this_rq);
3132 if (delta)
3133 atomic_long_add(delta, &calc_load_tasks_idle);
3134}
3135
3136static long calc_load_fold_idle(void)
3137{
3138 long delta = 0;
3139
3140 /*
3141 * Its got a race, we don't care...
3142 */
3143 if (atomic_long_read(&calc_load_tasks_idle))
3144 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3145
3146 return delta;
3147}
0f004f5a
PZ
3148
3149/**
3150 * fixed_power_int - compute: x^n, in O(log n) time
3151 *
3152 * @x: base of the power
3153 * @frac_bits: fractional bits of @x
3154 * @n: power to raise @x to.
3155 *
3156 * By exploiting the relation between the definition of the natural power
3157 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3158 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3159 * (where: n_i \elem {0, 1}, the binary vector representing n),
3160 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3161 * of course trivially computable in O(log_2 n), the length of our binary
3162 * vector.
3163 */
3164static unsigned long
3165fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3166{
3167 unsigned long result = 1UL << frac_bits;
3168
3169 if (n) for (;;) {
3170 if (n & 1) {
3171 result *= x;
3172 result += 1UL << (frac_bits - 1);
3173 result >>= frac_bits;
3174 }
3175 n >>= 1;
3176 if (!n)
3177 break;
3178 x *= x;
3179 x += 1UL << (frac_bits - 1);
3180 x >>= frac_bits;
3181 }
3182
3183 return result;
3184}
3185
3186/*
3187 * a1 = a0 * e + a * (1 - e)
3188 *
3189 * a2 = a1 * e + a * (1 - e)
3190 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3191 * = a0 * e^2 + a * (1 - e) * (1 + e)
3192 *
3193 * a3 = a2 * e + a * (1 - e)
3194 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3195 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3196 *
3197 * ...
3198 *
3199 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3200 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3201 * = a0 * e^n + a * (1 - e^n)
3202 *
3203 * [1] application of the geometric series:
3204 *
3205 * n 1 - x^(n+1)
3206 * S_n := \Sum x^i = -------------
3207 * i=0 1 - x
3208 */
3209static unsigned long
3210calc_load_n(unsigned long load, unsigned long exp,
3211 unsigned long active, unsigned int n)
3212{
3213
3214 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3215}
3216
3217/*
3218 * NO_HZ can leave us missing all per-cpu ticks calling
3219 * calc_load_account_active(), but since an idle CPU folds its delta into
3220 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3221 * in the pending idle delta if our idle period crossed a load cycle boundary.
3222 *
3223 * Once we've updated the global active value, we need to apply the exponential
3224 * weights adjusted to the number of cycles missed.
3225 */
3226static void calc_global_nohz(unsigned long ticks)
3227{
3228 long delta, active, n;
3229
3230 if (time_before(jiffies, calc_load_update))
3231 return;
3232
3233 /*
3234 * If we crossed a calc_load_update boundary, make sure to fold
3235 * any pending idle changes, the respective CPUs might have
3236 * missed the tick driven calc_load_account_active() update
3237 * due to NO_HZ.
3238 */
3239 delta = calc_load_fold_idle();
3240 if (delta)
3241 atomic_long_add(delta, &calc_load_tasks);
3242
3243 /*
3244 * If we were idle for multiple load cycles, apply them.
3245 */
3246 if (ticks >= LOAD_FREQ) {
3247 n = ticks / LOAD_FREQ;
3248
3249 active = atomic_long_read(&calc_load_tasks);
3250 active = active > 0 ? active * FIXED_1 : 0;
3251
3252 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3253 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3254 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3255
3256 calc_load_update += n * LOAD_FREQ;
3257 }
3258
3259 /*
3260 * Its possible the remainder of the above division also crosses
3261 * a LOAD_FREQ period, the regular check in calc_global_load()
3262 * which comes after this will take care of that.
3263 *
3264 * Consider us being 11 ticks before a cycle completion, and us
3265 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3266 * age us 4 cycles, and the test in calc_global_load() will
3267 * pick up the final one.
3268 */
3269}
74f5187a
PZ
3270#else
3271static void calc_load_account_idle(struct rq *this_rq)
3272{
3273}
3274
3275static inline long calc_load_fold_idle(void)
3276{
3277 return 0;
3278}
0f004f5a
PZ
3279
3280static void calc_global_nohz(unsigned long ticks)
3281{
3282}
74f5187a
PZ
3283#endif
3284
2d02494f
TG
3285/**
3286 * get_avenrun - get the load average array
3287 * @loads: pointer to dest load array
3288 * @offset: offset to add
3289 * @shift: shift count to shift the result left
3290 *
3291 * These values are estimates at best, so no need for locking.
3292 */
3293void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3294{
3295 loads[0] = (avenrun[0] + offset) << shift;
3296 loads[1] = (avenrun[1] + offset) << shift;
3297 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3298}
46cb4b7c 3299
46cb4b7c 3300/*
dce48a84
TG
3301 * calc_load - update the avenrun load estimates 10 ticks after the
3302 * CPUs have updated calc_load_tasks.
7835b98b 3303 */
0f004f5a 3304void calc_global_load(unsigned long ticks)
7835b98b 3305{
dce48a84 3306 long active;
1da177e4 3307
0f004f5a
PZ
3308 calc_global_nohz(ticks);
3309
3310 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3311 return;
1da177e4 3312
dce48a84
TG
3313 active = atomic_long_read(&calc_load_tasks);
3314 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3315
dce48a84
TG
3316 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3317 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3318 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3319
dce48a84
TG
3320 calc_load_update += LOAD_FREQ;
3321}
1da177e4 3322
dce48a84 3323/*
74f5187a
PZ
3324 * Called from update_cpu_load() to periodically update this CPU's
3325 * active count.
dce48a84
TG
3326 */
3327static void calc_load_account_active(struct rq *this_rq)
3328{
74f5187a 3329 long delta;
08c183f3 3330
74f5187a
PZ
3331 if (time_before(jiffies, this_rq->calc_load_update))
3332 return;
783609c6 3333
74f5187a
PZ
3334 delta = calc_load_fold_active(this_rq);
3335 delta += calc_load_fold_idle();
3336 if (delta)
dce48a84 3337 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3338
3339 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3340}
3341
fdf3e95d
VP
3342/*
3343 * The exact cpuload at various idx values, calculated at every tick would be
3344 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3345 *
3346 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3347 * on nth tick when cpu may be busy, then we have:
3348 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3349 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3350 *
3351 * decay_load_missed() below does efficient calculation of
3352 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3353 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3354 *
3355 * The calculation is approximated on a 128 point scale.
3356 * degrade_zero_ticks is the number of ticks after which load at any
3357 * particular idx is approximated to be zero.
3358 * degrade_factor is a precomputed table, a row for each load idx.
3359 * Each column corresponds to degradation factor for a power of two ticks,
3360 * based on 128 point scale.
3361 * Example:
3362 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3363 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3364 *
3365 * With this power of 2 load factors, we can degrade the load n times
3366 * by looking at 1 bits in n and doing as many mult/shift instead of
3367 * n mult/shifts needed by the exact degradation.
3368 */
3369#define DEGRADE_SHIFT 7
3370static const unsigned char
3371 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3372static const unsigned char
3373 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3374 {0, 0, 0, 0, 0, 0, 0, 0},
3375 {64, 32, 8, 0, 0, 0, 0, 0},
3376 {96, 72, 40, 12, 1, 0, 0},
3377 {112, 98, 75, 43, 15, 1, 0},
3378 {120, 112, 98, 76, 45, 16, 2} };
3379
3380/*
3381 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3382 * would be when CPU is idle and so we just decay the old load without
3383 * adding any new load.
3384 */
3385static unsigned long
3386decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3387{
3388 int j = 0;
3389
3390 if (!missed_updates)
3391 return load;
3392
3393 if (missed_updates >= degrade_zero_ticks[idx])
3394 return 0;
3395
3396 if (idx == 1)
3397 return load >> missed_updates;
3398
3399 while (missed_updates) {
3400 if (missed_updates % 2)
3401 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3402
3403 missed_updates >>= 1;
3404 j++;
3405 }
3406 return load;
3407}
3408
46cb4b7c 3409/*
dd41f596 3410 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3411 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3412 * every tick. We fix it up based on jiffies.
46cb4b7c 3413 */
dd41f596 3414static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3415{
495eca49 3416 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3417 unsigned long curr_jiffies = jiffies;
3418 unsigned long pending_updates;
dd41f596 3419 int i, scale;
46cb4b7c 3420
dd41f596 3421 this_rq->nr_load_updates++;
46cb4b7c 3422
fdf3e95d
VP
3423 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3424 if (curr_jiffies == this_rq->last_load_update_tick)
3425 return;
3426
3427 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3428 this_rq->last_load_update_tick = curr_jiffies;
3429
dd41f596 3430 /* Update our load: */
fdf3e95d
VP
3431 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3432 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3433 unsigned long old_load, new_load;
7d1e6a9b 3434
dd41f596 3435 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3436
dd41f596 3437 old_load = this_rq->cpu_load[i];
fdf3e95d 3438 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3439 new_load = this_load;
a25707f3
IM
3440 /*
3441 * Round up the averaging division if load is increasing. This
3442 * prevents us from getting stuck on 9 if the load is 10, for
3443 * example.
3444 */
3445 if (new_load > old_load)
fdf3e95d
VP
3446 new_load += scale - 1;
3447
3448 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3449 }
da2b71ed
SS
3450
3451 sched_avg_update(this_rq);
fdf3e95d
VP
3452}
3453
3454static void update_cpu_load_active(struct rq *this_rq)
3455{
3456 update_cpu_load(this_rq);
46cb4b7c 3457
74f5187a 3458 calc_load_account_active(this_rq);
46cb4b7c
SS
3459}
3460
dd41f596 3461#ifdef CONFIG_SMP
8a0be9ef 3462
46cb4b7c 3463/*
38022906
PZ
3464 * sched_exec - execve() is a valuable balancing opportunity, because at
3465 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3466 */
38022906 3467void sched_exec(void)
46cb4b7c 3468{
38022906 3469 struct task_struct *p = current;
1da177e4 3470 unsigned long flags;
70b97a7f 3471 struct rq *rq;
0017d735 3472 int dest_cpu;
46cb4b7c 3473
1da177e4 3474 rq = task_rq_lock(p, &flags);
0017d735
PZ
3475 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3476 if (dest_cpu == smp_processor_id())
3477 goto unlock;
38022906 3478
46cb4b7c 3479 /*
38022906 3480 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3481 */
30da688e 3482 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
b7a2b39d 3483 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
969c7921 3484 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3485
1da177e4 3486 task_rq_unlock(rq, &flags);
969c7921 3487 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
3488 return;
3489 }
0017d735 3490unlock:
1da177e4 3491 task_rq_unlock(rq, &flags);
1da177e4 3492}
dd41f596 3493
1da177e4
LT
3494#endif
3495
1da177e4
LT
3496DEFINE_PER_CPU(struct kernel_stat, kstat);
3497
3498EXPORT_PER_CPU_SYMBOL(kstat);
3499
3500/*
c5f8d995 3501 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3502 * @p in case that task is currently running.
c5f8d995
HS
3503 *
3504 * Called with task_rq_lock() held on @rq.
1da177e4 3505 */
c5f8d995
HS
3506static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3507{
3508 u64 ns = 0;
3509
3510 if (task_current(rq, p)) {
3511 update_rq_clock(rq);
305e6835 3512 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3513 if ((s64)ns < 0)
3514 ns = 0;
3515 }
3516
3517 return ns;
3518}
3519
bb34d92f 3520unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3521{
1da177e4 3522 unsigned long flags;
41b86e9c 3523 struct rq *rq;
bb34d92f 3524 u64 ns = 0;
48f24c4d 3525
41b86e9c 3526 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3527 ns = do_task_delta_exec(p, rq);
3528 task_rq_unlock(rq, &flags);
1508487e 3529
c5f8d995
HS
3530 return ns;
3531}
f06febc9 3532
c5f8d995
HS
3533/*
3534 * Return accounted runtime for the task.
3535 * In case the task is currently running, return the runtime plus current's
3536 * pending runtime that have not been accounted yet.
3537 */
3538unsigned long long task_sched_runtime(struct task_struct *p)
3539{
3540 unsigned long flags;
3541 struct rq *rq;
3542 u64 ns = 0;
3543
3544 rq = task_rq_lock(p, &flags);
3545 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3546 task_rq_unlock(rq, &flags);
3547
3548 return ns;
3549}
48f24c4d 3550
c5f8d995
HS
3551/*
3552 * Return sum_exec_runtime for the thread group.
3553 * In case the task is currently running, return the sum plus current's
3554 * pending runtime that have not been accounted yet.
3555 *
3556 * Note that the thread group might have other running tasks as well,
3557 * so the return value not includes other pending runtime that other
3558 * running tasks might have.
3559 */
3560unsigned long long thread_group_sched_runtime(struct task_struct *p)
3561{
3562 struct task_cputime totals;
3563 unsigned long flags;
3564 struct rq *rq;
3565 u64 ns;
3566
3567 rq = task_rq_lock(p, &flags);
3568 thread_group_cputime(p, &totals);
3569 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3570 task_rq_unlock(rq, &flags);
48f24c4d 3571
1da177e4
LT
3572 return ns;
3573}
3574
1da177e4
LT
3575/*
3576 * Account user cpu time to a process.
3577 * @p: the process that the cpu time gets accounted to
1da177e4 3578 * @cputime: the cpu time spent in user space since the last update
457533a7 3579 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3580 */
457533a7
MS
3581void account_user_time(struct task_struct *p, cputime_t cputime,
3582 cputime_t cputime_scaled)
1da177e4
LT
3583{
3584 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3585 cputime64_t tmp;
3586
457533a7 3587 /* Add user time to process. */
1da177e4 3588 p->utime = cputime_add(p->utime, cputime);
457533a7 3589 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3590 account_group_user_time(p, cputime);
1da177e4
LT
3591
3592 /* Add user time to cpustat. */
3593 tmp = cputime_to_cputime64(cputime);
3594 if (TASK_NICE(p) > 0)
3595 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3596 else
3597 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3598
3599 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3600 /* Account for user time used */
3601 acct_update_integrals(p);
1da177e4
LT
3602}
3603
94886b84
LV
3604/*
3605 * Account guest cpu time to a process.
3606 * @p: the process that the cpu time gets accounted to
3607 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3608 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3609 */
457533a7
MS
3610static void account_guest_time(struct task_struct *p, cputime_t cputime,
3611 cputime_t cputime_scaled)
94886b84
LV
3612{
3613 cputime64_t tmp;
3614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3615
3616 tmp = cputime_to_cputime64(cputime);
3617
457533a7 3618 /* Add guest time to process. */
94886b84 3619 p->utime = cputime_add(p->utime, cputime);
457533a7 3620 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3621 account_group_user_time(p, cputime);
94886b84
LV
3622 p->gtime = cputime_add(p->gtime, cputime);
3623
457533a7 3624 /* Add guest time to cpustat. */
ce0e7b28
RO
3625 if (TASK_NICE(p) > 0) {
3626 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3627 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3628 } else {
3629 cpustat->user = cputime64_add(cpustat->user, tmp);
3630 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3631 }
94886b84
LV
3632}
3633
70a89a66
VP
3634/*
3635 * Account system cpu time to a process and desired cpustat field
3636 * @p: the process that the cpu time gets accounted to
3637 * @cputime: the cpu time spent in kernel space since the last update
3638 * @cputime_scaled: cputime scaled by cpu frequency
3639 * @target_cputime64: pointer to cpustat field that has to be updated
3640 */
3641static inline
3642void __account_system_time(struct task_struct *p, cputime_t cputime,
3643 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3644{
3645 cputime64_t tmp = cputime_to_cputime64(cputime);
3646
3647 /* Add system time to process. */
3648 p->stime = cputime_add(p->stime, cputime);
3649 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3650 account_group_system_time(p, cputime);
3651
3652 /* Add system time to cpustat. */
3653 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3654 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3655
3656 /* Account for system time used */
3657 acct_update_integrals(p);
3658}
3659
1da177e4
LT
3660/*
3661 * Account system cpu time to a process.
3662 * @p: the process that the cpu time gets accounted to
3663 * @hardirq_offset: the offset to subtract from hardirq_count()
3664 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3665 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3666 */
3667void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3668 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3669{
3670 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3671 cputime64_t *target_cputime64;
1da177e4 3672
983ed7a6 3673 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3674 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3675 return;
3676 }
94886b84 3677
1da177e4 3678 if (hardirq_count() - hardirq_offset)
70a89a66 3679 target_cputime64 = &cpustat->irq;
75e1056f 3680 else if (in_serving_softirq())
70a89a66 3681 target_cputime64 = &cpustat->softirq;
1da177e4 3682 else
70a89a66 3683 target_cputime64 = &cpustat->system;
ef12fefa 3684
70a89a66 3685 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3686}
3687
c66f08be 3688/*
1da177e4 3689 * Account for involuntary wait time.
544b4a1f 3690 * @cputime: the cpu time spent in involuntary wait
c66f08be 3691 */
79741dd3 3692void account_steal_time(cputime_t cputime)
c66f08be 3693{
79741dd3
MS
3694 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3695 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3696
3697 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3698}
3699
1da177e4 3700/*
79741dd3
MS
3701 * Account for idle time.
3702 * @cputime: the cpu time spent in idle wait
1da177e4 3703 */
79741dd3 3704void account_idle_time(cputime_t cputime)
1da177e4
LT
3705{
3706 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3707 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3708 struct rq *rq = this_rq();
1da177e4 3709
79741dd3
MS
3710 if (atomic_read(&rq->nr_iowait) > 0)
3711 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3712 else
3713 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3714}
3715
79741dd3
MS
3716#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3717
abb74cef
VP
3718#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3719/*
3720 * Account a tick to a process and cpustat
3721 * @p: the process that the cpu time gets accounted to
3722 * @user_tick: is the tick from userspace
3723 * @rq: the pointer to rq
3724 *
3725 * Tick demultiplexing follows the order
3726 * - pending hardirq update
3727 * - pending softirq update
3728 * - user_time
3729 * - idle_time
3730 * - system time
3731 * - check for guest_time
3732 * - else account as system_time
3733 *
3734 * Check for hardirq is done both for system and user time as there is
3735 * no timer going off while we are on hardirq and hence we may never get an
3736 * opportunity to update it solely in system time.
3737 * p->stime and friends are only updated on system time and not on irq
3738 * softirq as those do not count in task exec_runtime any more.
3739 */
3740static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3741 struct rq *rq)
3742{
3743 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3744 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3745 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3746
3747 if (irqtime_account_hi_update()) {
3748 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3749 } else if (irqtime_account_si_update()) {
3750 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
3751 } else if (this_cpu_ksoftirqd() == p) {
3752 /*
3753 * ksoftirqd time do not get accounted in cpu_softirq_time.
3754 * So, we have to handle it separately here.
3755 * Also, p->stime needs to be updated for ksoftirqd.
3756 */
3757 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3758 &cpustat->softirq);
abb74cef
VP
3759 } else if (user_tick) {
3760 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3761 } else if (p == rq->idle) {
3762 account_idle_time(cputime_one_jiffy);
3763 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3764 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3765 } else {
3766 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3767 &cpustat->system);
3768 }
3769}
3770
3771static void irqtime_account_idle_ticks(int ticks)
3772{
3773 int i;
3774 struct rq *rq = this_rq();
3775
3776 for (i = 0; i < ticks; i++)
3777 irqtime_account_process_tick(current, 0, rq);
3778}
544b4a1f 3779#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
3780static void irqtime_account_idle_ticks(int ticks) {}
3781static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3782 struct rq *rq) {}
544b4a1f 3783#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
3784
3785/*
3786 * Account a single tick of cpu time.
3787 * @p: the process that the cpu time gets accounted to
3788 * @user_tick: indicates if the tick is a user or a system tick
3789 */
3790void account_process_tick(struct task_struct *p, int user_tick)
3791{
a42548a1 3792 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3793 struct rq *rq = this_rq();
3794
abb74cef
VP
3795 if (sched_clock_irqtime) {
3796 irqtime_account_process_tick(p, user_tick, rq);
3797 return;
3798 }
3799
79741dd3 3800 if (user_tick)
a42548a1 3801 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3802 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3803 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3804 one_jiffy_scaled);
3805 else
a42548a1 3806 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3807}
3808
3809/*
3810 * Account multiple ticks of steal time.
3811 * @p: the process from which the cpu time has been stolen
3812 * @ticks: number of stolen ticks
3813 */
3814void account_steal_ticks(unsigned long ticks)
3815{
3816 account_steal_time(jiffies_to_cputime(ticks));
3817}
3818
3819/*
3820 * Account multiple ticks of idle time.
3821 * @ticks: number of stolen ticks
3822 */
3823void account_idle_ticks(unsigned long ticks)
3824{
abb74cef
VP
3825
3826 if (sched_clock_irqtime) {
3827 irqtime_account_idle_ticks(ticks);
3828 return;
3829 }
3830
79741dd3 3831 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3832}
3833
79741dd3
MS
3834#endif
3835
49048622
BS
3836/*
3837 * Use precise platform statistics if available:
3838 */
3839#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3840void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3841{
d99ca3b9
HS
3842 *ut = p->utime;
3843 *st = p->stime;
49048622
BS
3844}
3845
0cf55e1e 3846void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3847{
0cf55e1e
HS
3848 struct task_cputime cputime;
3849
3850 thread_group_cputime(p, &cputime);
3851
3852 *ut = cputime.utime;
3853 *st = cputime.stime;
49048622
BS
3854}
3855#else
761b1d26
HS
3856
3857#ifndef nsecs_to_cputime
b7b20df9 3858# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3859#endif
3860
d180c5bc 3861void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3862{
d99ca3b9 3863 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3864
3865 /*
3866 * Use CFS's precise accounting:
3867 */
d180c5bc 3868 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3869
3870 if (total) {
e75e863d 3871 u64 temp = rtime;
d180c5bc 3872
e75e863d 3873 temp *= utime;
49048622 3874 do_div(temp, total);
d180c5bc
HS
3875 utime = (cputime_t)temp;
3876 } else
3877 utime = rtime;
49048622 3878
d180c5bc
HS
3879 /*
3880 * Compare with previous values, to keep monotonicity:
3881 */
761b1d26 3882 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3883 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3884
d99ca3b9
HS
3885 *ut = p->prev_utime;
3886 *st = p->prev_stime;
49048622
BS
3887}
3888
0cf55e1e
HS
3889/*
3890 * Must be called with siglock held.
3891 */
3892void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3893{
0cf55e1e
HS
3894 struct signal_struct *sig = p->signal;
3895 struct task_cputime cputime;
3896 cputime_t rtime, utime, total;
49048622 3897
0cf55e1e 3898 thread_group_cputime(p, &cputime);
49048622 3899
0cf55e1e
HS
3900 total = cputime_add(cputime.utime, cputime.stime);
3901 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3902
0cf55e1e 3903 if (total) {
e75e863d 3904 u64 temp = rtime;
49048622 3905
e75e863d 3906 temp *= cputime.utime;
0cf55e1e
HS
3907 do_div(temp, total);
3908 utime = (cputime_t)temp;
3909 } else
3910 utime = rtime;
3911
3912 sig->prev_utime = max(sig->prev_utime, utime);
3913 sig->prev_stime = max(sig->prev_stime,
3914 cputime_sub(rtime, sig->prev_utime));
3915
3916 *ut = sig->prev_utime;
3917 *st = sig->prev_stime;
49048622 3918}
49048622 3919#endif
49048622 3920
7835b98b
CL
3921/*
3922 * This function gets called by the timer code, with HZ frequency.
3923 * We call it with interrupts disabled.
3924 *
3925 * It also gets called by the fork code, when changing the parent's
3926 * timeslices.
3927 */
3928void scheduler_tick(void)
3929{
7835b98b
CL
3930 int cpu = smp_processor_id();
3931 struct rq *rq = cpu_rq(cpu);
dd41f596 3932 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3933
3934 sched_clock_tick();
dd41f596 3935
05fa785c 3936 raw_spin_lock(&rq->lock);
3e51f33f 3937 update_rq_clock(rq);
fdf3e95d 3938 update_cpu_load_active(rq);
fa85ae24 3939 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3940 raw_spin_unlock(&rq->lock);
7835b98b 3941
e9d2b064 3942 perf_event_task_tick();
e220d2dc 3943
e418e1c2 3944#ifdef CONFIG_SMP
dd41f596
IM
3945 rq->idle_at_tick = idle_cpu(cpu);
3946 trigger_load_balance(rq, cpu);
e418e1c2 3947#endif
1da177e4
LT
3948}
3949
132380a0 3950notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3951{
3952 if (in_lock_functions(addr)) {
3953 addr = CALLER_ADDR2;
3954 if (in_lock_functions(addr))
3955 addr = CALLER_ADDR3;
3956 }
3957 return addr;
3958}
1da177e4 3959
7e49fcce
SR
3960#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3961 defined(CONFIG_PREEMPT_TRACER))
3962
43627582 3963void __kprobes add_preempt_count(int val)
1da177e4 3964{
6cd8a4bb 3965#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3966 /*
3967 * Underflow?
3968 */
9a11b49a
IM
3969 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3970 return;
6cd8a4bb 3971#endif
1da177e4 3972 preempt_count() += val;
6cd8a4bb 3973#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3974 /*
3975 * Spinlock count overflowing soon?
3976 */
33859f7f
MOS
3977 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3978 PREEMPT_MASK - 10);
6cd8a4bb
SR
3979#endif
3980 if (preempt_count() == val)
3981 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3982}
3983EXPORT_SYMBOL(add_preempt_count);
3984
43627582 3985void __kprobes sub_preempt_count(int val)
1da177e4 3986{
6cd8a4bb 3987#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3988 /*
3989 * Underflow?
3990 */
01e3eb82 3991 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3992 return;
1da177e4
LT
3993 /*
3994 * Is the spinlock portion underflowing?
3995 */
9a11b49a
IM
3996 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3997 !(preempt_count() & PREEMPT_MASK)))
3998 return;
6cd8a4bb 3999#endif
9a11b49a 4000
6cd8a4bb
SR
4001 if (preempt_count() == val)
4002 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4003 preempt_count() -= val;
4004}
4005EXPORT_SYMBOL(sub_preempt_count);
4006
4007#endif
4008
4009/*
dd41f596 4010 * Print scheduling while atomic bug:
1da177e4 4011 */
dd41f596 4012static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4013{
838225b4
SS
4014 struct pt_regs *regs = get_irq_regs();
4015
3df0fc5b
PZ
4016 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4017 prev->comm, prev->pid, preempt_count());
838225b4 4018
dd41f596 4019 debug_show_held_locks(prev);
e21f5b15 4020 print_modules();
dd41f596
IM
4021 if (irqs_disabled())
4022 print_irqtrace_events(prev);
838225b4
SS
4023
4024 if (regs)
4025 show_regs(regs);
4026 else
4027 dump_stack();
dd41f596 4028}
1da177e4 4029
dd41f596
IM
4030/*
4031 * Various schedule()-time debugging checks and statistics:
4032 */
4033static inline void schedule_debug(struct task_struct *prev)
4034{
1da177e4 4035 /*
41a2d6cf 4036 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4037 * schedule() atomically, we ignore that path for now.
4038 * Otherwise, whine if we are scheduling when we should not be.
4039 */
3f33a7ce 4040 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4041 __schedule_bug(prev);
4042
1da177e4
LT
4043 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4044
2d72376b 4045 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4046#ifdef CONFIG_SCHEDSTATS
4047 if (unlikely(prev->lock_depth >= 0)) {
fce20979 4048 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
2d72376b 4049 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4050 }
4051#endif
dd41f596
IM
4052}
4053
6cecd084 4054static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4055{
fd2f4419 4056 if (prev->on_rq)
a64692a3 4057 update_rq_clock(rq);
6cecd084 4058 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4059}
4060
dd41f596
IM
4061/*
4062 * Pick up the highest-prio task:
4063 */
4064static inline struct task_struct *
b67802ea 4065pick_next_task(struct rq *rq)
dd41f596 4066{
5522d5d5 4067 const struct sched_class *class;
dd41f596 4068 struct task_struct *p;
1da177e4
LT
4069
4070 /*
dd41f596
IM
4071 * Optimization: we know that if all tasks are in
4072 * the fair class we can call that function directly:
1da177e4 4073 */
dd41f596 4074 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4075 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4076 if (likely(p))
4077 return p;
1da177e4
LT
4078 }
4079
34f971f6 4080 for_each_class(class) {
fb8d4724 4081 p = class->pick_next_task(rq);
dd41f596
IM
4082 if (p)
4083 return p;
dd41f596 4084 }
34f971f6
PZ
4085
4086 BUG(); /* the idle class will always have a runnable task */
dd41f596 4087}
1da177e4 4088
dd41f596
IM
4089/*
4090 * schedule() is the main scheduler function.
4091 */
ff743345 4092asmlinkage void __sched schedule(void)
dd41f596
IM
4093{
4094 struct task_struct *prev, *next;
67ca7bde 4095 unsigned long *switch_count;
dd41f596 4096 struct rq *rq;
31656519 4097 int cpu;
dd41f596 4098
ff743345
PZ
4099need_resched:
4100 preempt_disable();
dd41f596
IM
4101 cpu = smp_processor_id();
4102 rq = cpu_rq(cpu);
25502a6c 4103 rcu_note_context_switch(cpu);
dd41f596 4104 prev = rq->curr;
dd41f596 4105
dd41f596 4106 schedule_debug(prev);
1da177e4 4107
31656519 4108 if (sched_feat(HRTICK))
f333fdc9 4109 hrtick_clear(rq);
8f4d37ec 4110
05fa785c 4111 raw_spin_lock_irq(&rq->lock);
1da177e4 4112
246d86b5 4113 switch_count = &prev->nivcsw;
1da177e4 4114 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4115 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4116 prev->state = TASK_RUNNING;
21aa9af0
TH
4117 } else {
4118 /*
4119 * If a worker is going to sleep, notify and
4120 * ask workqueue whether it wants to wake up a
4121 * task to maintain concurrency. If so, wake
4122 * up the task.
4123 */
4124 if (prev->flags & PF_WQ_WORKER) {
4125 struct task_struct *to_wakeup;
4126
4127 to_wakeup = wq_worker_sleeping(prev, cpu);
4128 if (to_wakeup)
4129 try_to_wake_up_local(to_wakeup);
4130 }
fd2f4419 4131
371fd7e7 4132 deactivate_task(rq, prev, DEQUEUE_SLEEP);
fd2f4419 4133 prev->on_rq = 0;
6631e635
LT
4134
4135 /*
4136 * If we are going to sleep and we have plugged IO queued, make
4137 * sure to submit it to avoid deadlocks.
4138 */
4139 if (blk_needs_flush_plug(prev)) {
4140 raw_spin_unlock(&rq->lock);
4141 blk_flush_plug(prev);
4142 raw_spin_lock(&rq->lock);
4143 }
21aa9af0 4144 }
dd41f596 4145 switch_count = &prev->nvcsw;
1da177e4
LT
4146 }
4147
3f029d3c 4148 pre_schedule(rq, prev);
f65eda4f 4149
dd41f596 4150 if (unlikely(!rq->nr_running))
1da177e4 4151 idle_balance(cpu, rq);
1da177e4 4152
df1c99d4 4153 put_prev_task(rq, prev);
b67802ea 4154 next = pick_next_task(rq);
f26f9aff
MG
4155 clear_tsk_need_resched(prev);
4156 rq->skip_clock_update = 0;
1da177e4 4157
1da177e4 4158 if (likely(prev != next)) {
1da177e4
LT
4159 rq->nr_switches++;
4160 rq->curr = next;
4161 ++*switch_count;
4162
dd41f596 4163 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4164 /*
246d86b5
ON
4165 * The context switch have flipped the stack from under us
4166 * and restored the local variables which were saved when
4167 * this task called schedule() in the past. prev == current
4168 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4169 */
4170 cpu = smp_processor_id();
4171 rq = cpu_rq(cpu);
1da177e4 4172 } else
05fa785c 4173 raw_spin_unlock_irq(&rq->lock);
1da177e4 4174
3f029d3c 4175 post_schedule(rq);
1da177e4 4176
1da177e4 4177 preempt_enable_no_resched();
ff743345 4178 if (need_resched())
1da177e4
LT
4179 goto need_resched;
4180}
1da177e4
LT
4181EXPORT_SYMBOL(schedule);
4182
c08f7829 4183#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4184
c6eb3dda
PZ
4185static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4186{
4187 bool ret = false;
0d66bf6d 4188
c6eb3dda
PZ
4189 rcu_read_lock();
4190 if (lock->owner != owner)
4191 goto fail;
0d66bf6d
PZ
4192
4193 /*
c6eb3dda
PZ
4194 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4195 * lock->owner still matches owner, if that fails, owner might
4196 * point to free()d memory, if it still matches, the rcu_read_lock()
4197 * ensures the memory stays valid.
0d66bf6d 4198 */
c6eb3dda 4199 barrier();
0d66bf6d 4200
c6eb3dda
PZ
4201 ret = owner->on_cpu;
4202fail:
4203 rcu_read_unlock();
0d66bf6d 4204
c6eb3dda
PZ
4205 return ret;
4206}
0d66bf6d 4207
c6eb3dda
PZ
4208/*
4209 * Look out! "owner" is an entirely speculative pointer
4210 * access and not reliable.
4211 */
4212int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4213{
4214 if (!sched_feat(OWNER_SPIN))
4215 return 0;
0d66bf6d 4216
c6eb3dda
PZ
4217 while (owner_running(lock, owner)) {
4218 if (need_resched())
0d66bf6d
PZ
4219 return 0;
4220
335d7afb 4221 arch_mutex_cpu_relax();
0d66bf6d 4222 }
4b402210 4223
c6eb3dda
PZ
4224 /*
4225 * If the owner changed to another task there is likely
4226 * heavy contention, stop spinning.
4227 */
4228 if (lock->owner)
4229 return 0;
4230
0d66bf6d
PZ
4231 return 1;
4232}
4233#endif
4234
1da177e4
LT
4235#ifdef CONFIG_PREEMPT
4236/*
2ed6e34f 4237 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4238 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4239 * occur there and call schedule directly.
4240 */
d1f74e20 4241asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4242{
4243 struct thread_info *ti = current_thread_info();
6478d880 4244
1da177e4
LT
4245 /*
4246 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4247 * we do not want to preempt the current task. Just return..
1da177e4 4248 */
beed33a8 4249 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4250 return;
4251
3a5c359a 4252 do {
d1f74e20 4253 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4254 schedule();
d1f74e20 4255 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4256
3a5c359a
AK
4257 /*
4258 * Check again in case we missed a preemption opportunity
4259 * between schedule and now.
4260 */
4261 barrier();
5ed0cec0 4262 } while (need_resched());
1da177e4 4263}
1da177e4
LT
4264EXPORT_SYMBOL(preempt_schedule);
4265
4266/*
2ed6e34f 4267 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4268 * off of irq context.
4269 * Note, that this is called and return with irqs disabled. This will
4270 * protect us against recursive calling from irq.
4271 */
4272asmlinkage void __sched preempt_schedule_irq(void)
4273{
4274 struct thread_info *ti = current_thread_info();
6478d880 4275
2ed6e34f 4276 /* Catch callers which need to be fixed */
1da177e4
LT
4277 BUG_ON(ti->preempt_count || !irqs_disabled());
4278
3a5c359a
AK
4279 do {
4280 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4281 local_irq_enable();
4282 schedule();
4283 local_irq_disable();
3a5c359a 4284 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4285
3a5c359a
AK
4286 /*
4287 * Check again in case we missed a preemption opportunity
4288 * between schedule and now.
4289 */
4290 barrier();
5ed0cec0 4291 } while (need_resched());
1da177e4
LT
4292}
4293
4294#endif /* CONFIG_PREEMPT */
4295
63859d4f 4296int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4297 void *key)
1da177e4 4298{
63859d4f 4299 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4300}
1da177e4
LT
4301EXPORT_SYMBOL(default_wake_function);
4302
4303/*
41a2d6cf
IM
4304 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4305 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4306 * number) then we wake all the non-exclusive tasks and one exclusive task.
4307 *
4308 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4309 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4310 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4311 */
78ddb08f 4312static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4313 int nr_exclusive, int wake_flags, void *key)
1da177e4 4314{
2e45874c 4315 wait_queue_t *curr, *next;
1da177e4 4316
2e45874c 4317 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4318 unsigned flags = curr->flags;
4319
63859d4f 4320 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4321 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4322 break;
4323 }
4324}
4325
4326/**
4327 * __wake_up - wake up threads blocked on a waitqueue.
4328 * @q: the waitqueue
4329 * @mode: which threads
4330 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4331 * @key: is directly passed to the wakeup function
50fa610a
DH
4332 *
4333 * It may be assumed that this function implies a write memory barrier before
4334 * changing the task state if and only if any tasks are woken up.
1da177e4 4335 */
7ad5b3a5 4336void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4337 int nr_exclusive, void *key)
1da177e4
LT
4338{
4339 unsigned long flags;
4340
4341 spin_lock_irqsave(&q->lock, flags);
4342 __wake_up_common(q, mode, nr_exclusive, 0, key);
4343 spin_unlock_irqrestore(&q->lock, flags);
4344}
1da177e4
LT
4345EXPORT_SYMBOL(__wake_up);
4346
4347/*
4348 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4349 */
7ad5b3a5 4350void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4351{
4352 __wake_up_common(q, mode, 1, 0, NULL);
4353}
22c43c81 4354EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4355
4ede816a
DL
4356void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4357{
4358 __wake_up_common(q, mode, 1, 0, key);
4359}
bf294b41 4360EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4361
1da177e4 4362/**
4ede816a 4363 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4364 * @q: the waitqueue
4365 * @mode: which threads
4366 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4367 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4368 *
4369 * The sync wakeup differs that the waker knows that it will schedule
4370 * away soon, so while the target thread will be woken up, it will not
4371 * be migrated to another CPU - ie. the two threads are 'synchronized'
4372 * with each other. This can prevent needless bouncing between CPUs.
4373 *
4374 * On UP it can prevent extra preemption.
50fa610a
DH
4375 *
4376 * It may be assumed that this function implies a write memory barrier before
4377 * changing the task state if and only if any tasks are woken up.
1da177e4 4378 */
4ede816a
DL
4379void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4380 int nr_exclusive, void *key)
1da177e4
LT
4381{
4382 unsigned long flags;
7d478721 4383 int wake_flags = WF_SYNC;
1da177e4
LT
4384
4385 if (unlikely(!q))
4386 return;
4387
4388 if (unlikely(!nr_exclusive))
7d478721 4389 wake_flags = 0;
1da177e4
LT
4390
4391 spin_lock_irqsave(&q->lock, flags);
7d478721 4392 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4393 spin_unlock_irqrestore(&q->lock, flags);
4394}
4ede816a
DL
4395EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4396
4397/*
4398 * __wake_up_sync - see __wake_up_sync_key()
4399 */
4400void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4401{
4402 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4403}
1da177e4
LT
4404EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4405
65eb3dc6
KD
4406/**
4407 * complete: - signals a single thread waiting on this completion
4408 * @x: holds the state of this particular completion
4409 *
4410 * This will wake up a single thread waiting on this completion. Threads will be
4411 * awakened in the same order in which they were queued.
4412 *
4413 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4414 *
4415 * It may be assumed that this function implies a write memory barrier before
4416 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4417 */
b15136e9 4418void complete(struct completion *x)
1da177e4
LT
4419{
4420 unsigned long flags;
4421
4422 spin_lock_irqsave(&x->wait.lock, flags);
4423 x->done++;
d9514f6c 4424 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4425 spin_unlock_irqrestore(&x->wait.lock, flags);
4426}
4427EXPORT_SYMBOL(complete);
4428
65eb3dc6
KD
4429/**
4430 * complete_all: - signals all threads waiting on this completion
4431 * @x: holds the state of this particular completion
4432 *
4433 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4434 *
4435 * It may be assumed that this function implies a write memory barrier before
4436 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4437 */
b15136e9 4438void complete_all(struct completion *x)
1da177e4
LT
4439{
4440 unsigned long flags;
4441
4442 spin_lock_irqsave(&x->wait.lock, flags);
4443 x->done += UINT_MAX/2;
d9514f6c 4444 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4445 spin_unlock_irqrestore(&x->wait.lock, flags);
4446}
4447EXPORT_SYMBOL(complete_all);
4448
8cbbe86d
AK
4449static inline long __sched
4450do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4451{
1da177e4
LT
4452 if (!x->done) {
4453 DECLARE_WAITQUEUE(wait, current);
4454
a93d2f17 4455 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4456 do {
94d3d824 4457 if (signal_pending_state(state, current)) {
ea71a546
ON
4458 timeout = -ERESTARTSYS;
4459 break;
8cbbe86d
AK
4460 }
4461 __set_current_state(state);
1da177e4
LT
4462 spin_unlock_irq(&x->wait.lock);
4463 timeout = schedule_timeout(timeout);
4464 spin_lock_irq(&x->wait.lock);
ea71a546 4465 } while (!x->done && timeout);
1da177e4 4466 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4467 if (!x->done)
4468 return timeout;
1da177e4
LT
4469 }
4470 x->done--;
ea71a546 4471 return timeout ?: 1;
1da177e4 4472}
1da177e4 4473
8cbbe86d
AK
4474static long __sched
4475wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4476{
1da177e4
LT
4477 might_sleep();
4478
4479 spin_lock_irq(&x->wait.lock);
8cbbe86d 4480 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4481 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4482 return timeout;
4483}
1da177e4 4484
65eb3dc6
KD
4485/**
4486 * wait_for_completion: - waits for completion of a task
4487 * @x: holds the state of this particular completion
4488 *
4489 * This waits to be signaled for completion of a specific task. It is NOT
4490 * interruptible and there is no timeout.
4491 *
4492 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4493 * and interrupt capability. Also see complete().
4494 */
b15136e9 4495void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4496{
4497 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4498}
8cbbe86d 4499EXPORT_SYMBOL(wait_for_completion);
1da177e4 4500
65eb3dc6
KD
4501/**
4502 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4503 * @x: holds the state of this particular completion
4504 * @timeout: timeout value in jiffies
4505 *
4506 * This waits for either a completion of a specific task to be signaled or for a
4507 * specified timeout to expire. The timeout is in jiffies. It is not
4508 * interruptible.
4509 */
b15136e9 4510unsigned long __sched
8cbbe86d 4511wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4512{
8cbbe86d 4513 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4514}
8cbbe86d 4515EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4516
65eb3dc6
KD
4517/**
4518 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4519 * @x: holds the state of this particular completion
4520 *
4521 * This waits for completion of a specific task to be signaled. It is
4522 * interruptible.
4523 */
8cbbe86d 4524int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4525{
51e97990
AK
4526 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4527 if (t == -ERESTARTSYS)
4528 return t;
4529 return 0;
0fec171c 4530}
8cbbe86d 4531EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4532
65eb3dc6
KD
4533/**
4534 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4535 * @x: holds the state of this particular completion
4536 * @timeout: timeout value in jiffies
4537 *
4538 * This waits for either a completion of a specific task to be signaled or for a
4539 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4540 */
6bf41237 4541long __sched
8cbbe86d
AK
4542wait_for_completion_interruptible_timeout(struct completion *x,
4543 unsigned long timeout)
0fec171c 4544{
8cbbe86d 4545 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4546}
8cbbe86d 4547EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4548
65eb3dc6
KD
4549/**
4550 * wait_for_completion_killable: - waits for completion of a task (killable)
4551 * @x: holds the state of this particular completion
4552 *
4553 * This waits to be signaled for completion of a specific task. It can be
4554 * interrupted by a kill signal.
4555 */
009e577e
MW
4556int __sched wait_for_completion_killable(struct completion *x)
4557{
4558 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4559 if (t == -ERESTARTSYS)
4560 return t;
4561 return 0;
4562}
4563EXPORT_SYMBOL(wait_for_completion_killable);
4564
0aa12fb4
SW
4565/**
4566 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4567 * @x: holds the state of this particular completion
4568 * @timeout: timeout value in jiffies
4569 *
4570 * This waits for either a completion of a specific task to be
4571 * signaled or for a specified timeout to expire. It can be
4572 * interrupted by a kill signal. The timeout is in jiffies.
4573 */
6bf41237 4574long __sched
0aa12fb4
SW
4575wait_for_completion_killable_timeout(struct completion *x,
4576 unsigned long timeout)
4577{
4578 return wait_for_common(x, timeout, TASK_KILLABLE);
4579}
4580EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4581
be4de352
DC
4582/**
4583 * try_wait_for_completion - try to decrement a completion without blocking
4584 * @x: completion structure
4585 *
4586 * Returns: 0 if a decrement cannot be done without blocking
4587 * 1 if a decrement succeeded.
4588 *
4589 * If a completion is being used as a counting completion,
4590 * attempt to decrement the counter without blocking. This
4591 * enables us to avoid waiting if the resource the completion
4592 * is protecting is not available.
4593 */
4594bool try_wait_for_completion(struct completion *x)
4595{
7539a3b3 4596 unsigned long flags;
be4de352
DC
4597 int ret = 1;
4598
7539a3b3 4599 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4600 if (!x->done)
4601 ret = 0;
4602 else
4603 x->done--;
7539a3b3 4604 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4605 return ret;
4606}
4607EXPORT_SYMBOL(try_wait_for_completion);
4608
4609/**
4610 * completion_done - Test to see if a completion has any waiters
4611 * @x: completion structure
4612 *
4613 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4614 * 1 if there are no waiters.
4615 *
4616 */
4617bool completion_done(struct completion *x)
4618{
7539a3b3 4619 unsigned long flags;
be4de352
DC
4620 int ret = 1;
4621
7539a3b3 4622 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4623 if (!x->done)
4624 ret = 0;
7539a3b3 4625 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4626 return ret;
4627}
4628EXPORT_SYMBOL(completion_done);
4629
8cbbe86d
AK
4630static long __sched
4631sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4632{
0fec171c
IM
4633 unsigned long flags;
4634 wait_queue_t wait;
4635
4636 init_waitqueue_entry(&wait, current);
1da177e4 4637
8cbbe86d 4638 __set_current_state(state);
1da177e4 4639
8cbbe86d
AK
4640 spin_lock_irqsave(&q->lock, flags);
4641 __add_wait_queue(q, &wait);
4642 spin_unlock(&q->lock);
4643 timeout = schedule_timeout(timeout);
4644 spin_lock_irq(&q->lock);
4645 __remove_wait_queue(q, &wait);
4646 spin_unlock_irqrestore(&q->lock, flags);
4647
4648 return timeout;
4649}
4650
4651void __sched interruptible_sleep_on(wait_queue_head_t *q)
4652{
4653 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4654}
1da177e4
LT
4655EXPORT_SYMBOL(interruptible_sleep_on);
4656
0fec171c 4657long __sched
95cdf3b7 4658interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4659{
8cbbe86d 4660 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4661}
1da177e4
LT
4662EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4663
0fec171c 4664void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4665{
8cbbe86d 4666 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4667}
1da177e4
LT
4668EXPORT_SYMBOL(sleep_on);
4669
0fec171c 4670long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4671{
8cbbe86d 4672 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4673}
1da177e4
LT
4674EXPORT_SYMBOL(sleep_on_timeout);
4675
b29739f9
IM
4676#ifdef CONFIG_RT_MUTEXES
4677
4678/*
4679 * rt_mutex_setprio - set the current priority of a task
4680 * @p: task
4681 * @prio: prio value (kernel-internal form)
4682 *
4683 * This function changes the 'effective' priority of a task. It does
4684 * not touch ->normal_prio like __setscheduler().
4685 *
4686 * Used by the rt_mutex code to implement priority inheritance logic.
4687 */
36c8b586 4688void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4689{
4690 unsigned long flags;
83b699ed 4691 int oldprio, on_rq, running;
70b97a7f 4692 struct rq *rq;
83ab0aa0 4693 const struct sched_class *prev_class;
b29739f9
IM
4694
4695 BUG_ON(prio < 0 || prio > MAX_PRIO);
4696
4697 rq = task_rq_lock(p, &flags);
4698
a8027073 4699 trace_sched_pi_setprio(p, prio);
d5f9f942 4700 oldprio = p->prio;
83ab0aa0 4701 prev_class = p->sched_class;
fd2f4419 4702 on_rq = p->on_rq;
051a1d1a 4703 running = task_current(rq, p);
0e1f3483 4704 if (on_rq)
69be72c1 4705 dequeue_task(rq, p, 0);
0e1f3483
HS
4706 if (running)
4707 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4708
4709 if (rt_prio(prio))
4710 p->sched_class = &rt_sched_class;
4711 else
4712 p->sched_class = &fair_sched_class;
4713
b29739f9
IM
4714 p->prio = prio;
4715
0e1f3483
HS
4716 if (running)
4717 p->sched_class->set_curr_task(rq);
da7a735e 4718 if (on_rq)
371fd7e7 4719 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 4720
da7a735e 4721 check_class_changed(rq, p, prev_class, oldprio);
b29739f9
IM
4722 task_rq_unlock(rq, &flags);
4723}
4724
4725#endif
4726
36c8b586 4727void set_user_nice(struct task_struct *p, long nice)
1da177e4 4728{
dd41f596 4729 int old_prio, delta, on_rq;
1da177e4 4730 unsigned long flags;
70b97a7f 4731 struct rq *rq;
1da177e4
LT
4732
4733 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4734 return;
4735 /*
4736 * We have to be careful, if called from sys_setpriority(),
4737 * the task might be in the middle of scheduling on another CPU.
4738 */
4739 rq = task_rq_lock(p, &flags);
4740 /*
4741 * The RT priorities are set via sched_setscheduler(), but we still
4742 * allow the 'normal' nice value to be set - but as expected
4743 * it wont have any effect on scheduling until the task is
dd41f596 4744 * SCHED_FIFO/SCHED_RR:
1da177e4 4745 */
e05606d3 4746 if (task_has_rt_policy(p)) {
1da177e4
LT
4747 p->static_prio = NICE_TO_PRIO(nice);
4748 goto out_unlock;
4749 }
fd2f4419 4750 on_rq = p->on_rq;
c09595f6 4751 if (on_rq)
69be72c1 4752 dequeue_task(rq, p, 0);
1da177e4 4753
1da177e4 4754 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4755 set_load_weight(p);
b29739f9
IM
4756 old_prio = p->prio;
4757 p->prio = effective_prio(p);
4758 delta = p->prio - old_prio;
1da177e4 4759
dd41f596 4760 if (on_rq) {
371fd7e7 4761 enqueue_task(rq, p, 0);
1da177e4 4762 /*
d5f9f942
AM
4763 * If the task increased its priority or is running and
4764 * lowered its priority, then reschedule its CPU:
1da177e4 4765 */
d5f9f942 4766 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4767 resched_task(rq->curr);
4768 }
4769out_unlock:
4770 task_rq_unlock(rq, &flags);
4771}
1da177e4
LT
4772EXPORT_SYMBOL(set_user_nice);
4773
e43379f1
MM
4774/*
4775 * can_nice - check if a task can reduce its nice value
4776 * @p: task
4777 * @nice: nice value
4778 */
36c8b586 4779int can_nice(const struct task_struct *p, const int nice)
e43379f1 4780{
024f4747
MM
4781 /* convert nice value [19,-20] to rlimit style value [1,40] */
4782 int nice_rlim = 20 - nice;
48f24c4d 4783
78d7d407 4784 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4785 capable(CAP_SYS_NICE));
4786}
4787
1da177e4
LT
4788#ifdef __ARCH_WANT_SYS_NICE
4789
4790/*
4791 * sys_nice - change the priority of the current process.
4792 * @increment: priority increment
4793 *
4794 * sys_setpriority is a more generic, but much slower function that
4795 * does similar things.
4796 */
5add95d4 4797SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4798{
48f24c4d 4799 long nice, retval;
1da177e4
LT
4800
4801 /*
4802 * Setpriority might change our priority at the same moment.
4803 * We don't have to worry. Conceptually one call occurs first
4804 * and we have a single winner.
4805 */
e43379f1
MM
4806 if (increment < -40)
4807 increment = -40;
1da177e4
LT
4808 if (increment > 40)
4809 increment = 40;
4810
2b8f836f 4811 nice = TASK_NICE(current) + increment;
1da177e4
LT
4812 if (nice < -20)
4813 nice = -20;
4814 if (nice > 19)
4815 nice = 19;
4816
e43379f1
MM
4817 if (increment < 0 && !can_nice(current, nice))
4818 return -EPERM;
4819
1da177e4
LT
4820 retval = security_task_setnice(current, nice);
4821 if (retval)
4822 return retval;
4823
4824 set_user_nice(current, nice);
4825 return 0;
4826}
4827
4828#endif
4829
4830/**
4831 * task_prio - return the priority value of a given task.
4832 * @p: the task in question.
4833 *
4834 * This is the priority value as seen by users in /proc.
4835 * RT tasks are offset by -200. Normal tasks are centered
4836 * around 0, value goes from -16 to +15.
4837 */
36c8b586 4838int task_prio(const struct task_struct *p)
1da177e4
LT
4839{
4840 return p->prio - MAX_RT_PRIO;
4841}
4842
4843/**
4844 * task_nice - return the nice value of a given task.
4845 * @p: the task in question.
4846 */
36c8b586 4847int task_nice(const struct task_struct *p)
1da177e4
LT
4848{
4849 return TASK_NICE(p);
4850}
150d8bed 4851EXPORT_SYMBOL(task_nice);
1da177e4
LT
4852
4853/**
4854 * idle_cpu - is a given cpu idle currently?
4855 * @cpu: the processor in question.
4856 */
4857int idle_cpu(int cpu)
4858{
4859 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4860}
4861
1da177e4
LT
4862/**
4863 * idle_task - return the idle task for a given cpu.
4864 * @cpu: the processor in question.
4865 */
36c8b586 4866struct task_struct *idle_task(int cpu)
1da177e4
LT
4867{
4868 return cpu_rq(cpu)->idle;
4869}
4870
4871/**
4872 * find_process_by_pid - find a process with a matching PID value.
4873 * @pid: the pid in question.
4874 */
a9957449 4875static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4876{
228ebcbe 4877 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4878}
4879
4880/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4881static void
4882__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4883{
1da177e4
LT
4884 p->policy = policy;
4885 p->rt_priority = prio;
b29739f9
IM
4886 p->normal_prio = normal_prio(p);
4887 /* we are holding p->pi_lock already */
4888 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4889 if (rt_prio(p->prio))
4890 p->sched_class = &rt_sched_class;
4891 else
4892 p->sched_class = &fair_sched_class;
2dd73a4f 4893 set_load_weight(p);
1da177e4
LT
4894}
4895
c69e8d9c
DH
4896/*
4897 * check the target process has a UID that matches the current process's
4898 */
4899static bool check_same_owner(struct task_struct *p)
4900{
4901 const struct cred *cred = current_cred(), *pcred;
4902 bool match;
4903
4904 rcu_read_lock();
4905 pcred = __task_cred(p);
b0e77598
SH
4906 if (cred->user->user_ns == pcred->user->user_ns)
4907 match = (cred->euid == pcred->euid ||
4908 cred->euid == pcred->uid);
4909 else
4910 match = false;
c69e8d9c
DH
4911 rcu_read_unlock();
4912 return match;
4913}
4914
961ccddd 4915static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4916 const struct sched_param *param, bool user)
1da177e4 4917{
83b699ed 4918 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4919 unsigned long flags;
83ab0aa0 4920 const struct sched_class *prev_class;
70b97a7f 4921 struct rq *rq;
ca94c442 4922 int reset_on_fork;
1da177e4 4923
66e5393a
SR
4924 /* may grab non-irq protected spin_locks */
4925 BUG_ON(in_interrupt());
1da177e4
LT
4926recheck:
4927 /* double check policy once rq lock held */
ca94c442
LP
4928 if (policy < 0) {
4929 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4930 policy = oldpolicy = p->policy;
ca94c442
LP
4931 } else {
4932 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4933 policy &= ~SCHED_RESET_ON_FORK;
4934
4935 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4936 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4937 policy != SCHED_IDLE)
4938 return -EINVAL;
4939 }
4940
1da177e4
LT
4941 /*
4942 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4943 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4944 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4945 */
4946 if (param->sched_priority < 0 ||
95cdf3b7 4947 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4948 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4949 return -EINVAL;
e05606d3 4950 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4951 return -EINVAL;
4952
37e4ab3f
OC
4953 /*
4954 * Allow unprivileged RT tasks to decrease priority:
4955 */
961ccddd 4956 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4957 if (rt_policy(policy)) {
a44702e8
ON
4958 unsigned long rlim_rtprio =
4959 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4960
4961 /* can't set/change the rt policy */
4962 if (policy != p->policy && !rlim_rtprio)
4963 return -EPERM;
4964
4965 /* can't increase priority */
4966 if (param->sched_priority > p->rt_priority &&
4967 param->sched_priority > rlim_rtprio)
4968 return -EPERM;
4969 }
c02aa73b 4970
dd41f596 4971 /*
c02aa73b
DH
4972 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4973 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4974 */
c02aa73b
DH
4975 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4976 if (!can_nice(p, TASK_NICE(p)))
4977 return -EPERM;
4978 }
5fe1d75f 4979
37e4ab3f 4980 /* can't change other user's priorities */
c69e8d9c 4981 if (!check_same_owner(p))
37e4ab3f 4982 return -EPERM;
ca94c442
LP
4983
4984 /* Normal users shall not reset the sched_reset_on_fork flag */
4985 if (p->sched_reset_on_fork && !reset_on_fork)
4986 return -EPERM;
37e4ab3f 4987 }
1da177e4 4988
725aad24 4989 if (user) {
b0ae1981 4990 retval = security_task_setscheduler(p);
725aad24
JF
4991 if (retval)
4992 return retval;
4993 }
4994
b29739f9
IM
4995 /*
4996 * make sure no PI-waiters arrive (or leave) while we are
4997 * changing the priority of the task:
4998 */
1d615482 4999 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4 5000 /*
25985edc 5001 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5002 * runqueue lock must be held.
5003 */
b29739f9 5004 rq = __task_rq_lock(p);
dc61b1d6 5005
34f971f6
PZ
5006 /*
5007 * Changing the policy of the stop threads its a very bad idea
5008 */
5009 if (p == rq->stop) {
5010 __task_rq_unlock(rq);
5011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5012 return -EINVAL;
5013 }
5014
a51e9198
DF
5015 /*
5016 * If not changing anything there's no need to proceed further:
5017 */
5018 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5019 param->sched_priority == p->rt_priority))) {
5020
5021 __task_rq_unlock(rq);
5022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5023 return 0;
5024 }
5025
dc61b1d6
PZ
5026#ifdef CONFIG_RT_GROUP_SCHED
5027 if (user) {
5028 /*
5029 * Do not allow realtime tasks into groups that have no runtime
5030 * assigned.
5031 */
5032 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5033 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5034 !task_group_is_autogroup(task_group(p))) {
dc61b1d6
PZ
5035 __task_rq_unlock(rq);
5036 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5037 return -EPERM;
5038 }
5039 }
5040#endif
5041
1da177e4
LT
5042 /* recheck policy now with rq lock held */
5043 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5044 policy = oldpolicy = -1;
b29739f9 5045 __task_rq_unlock(rq);
1d615482 5046 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5047 goto recheck;
5048 }
fd2f4419 5049 on_rq = p->on_rq;
051a1d1a 5050 running = task_current(rq, p);
0e1f3483 5051 if (on_rq)
2e1cb74a 5052 deactivate_task(rq, p, 0);
0e1f3483
HS
5053 if (running)
5054 p->sched_class->put_prev_task(rq, p);
f6b53205 5055
ca94c442
LP
5056 p->sched_reset_on_fork = reset_on_fork;
5057
1da177e4 5058 oldprio = p->prio;
83ab0aa0 5059 prev_class = p->sched_class;
dd41f596 5060 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5061
0e1f3483
HS
5062 if (running)
5063 p->sched_class->set_curr_task(rq);
da7a735e 5064 if (on_rq)
dd41f596 5065 activate_task(rq, p, 0);
cb469845 5066
da7a735e 5067 check_class_changed(rq, p, prev_class, oldprio);
b29739f9 5068 __task_rq_unlock(rq);
1d615482 5069 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 5070
95e02ca9
TG
5071 rt_mutex_adjust_pi(p);
5072
1da177e4
LT
5073 return 0;
5074}
961ccddd
RR
5075
5076/**
5077 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5078 * @p: the task in question.
5079 * @policy: new policy.
5080 * @param: structure containing the new RT priority.
5081 *
5082 * NOTE that the task may be already dead.
5083 */
5084int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5085 const struct sched_param *param)
961ccddd
RR
5086{
5087 return __sched_setscheduler(p, policy, param, true);
5088}
1da177e4
LT
5089EXPORT_SYMBOL_GPL(sched_setscheduler);
5090
961ccddd
RR
5091/**
5092 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5093 * @p: the task in question.
5094 * @policy: new policy.
5095 * @param: structure containing the new RT priority.
5096 *
5097 * Just like sched_setscheduler, only don't bother checking if the
5098 * current context has permission. For example, this is needed in
5099 * stop_machine(): we create temporary high priority worker threads,
5100 * but our caller might not have that capability.
5101 */
5102int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5103 const struct sched_param *param)
961ccddd
RR
5104{
5105 return __sched_setscheduler(p, policy, param, false);
5106}
5107
95cdf3b7
IM
5108static int
5109do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5110{
1da177e4
LT
5111 struct sched_param lparam;
5112 struct task_struct *p;
36c8b586 5113 int retval;
1da177e4
LT
5114
5115 if (!param || pid < 0)
5116 return -EINVAL;
5117 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5118 return -EFAULT;
5fe1d75f
ON
5119
5120 rcu_read_lock();
5121 retval = -ESRCH;
1da177e4 5122 p = find_process_by_pid(pid);
5fe1d75f
ON
5123 if (p != NULL)
5124 retval = sched_setscheduler(p, policy, &lparam);
5125 rcu_read_unlock();
36c8b586 5126
1da177e4
LT
5127 return retval;
5128}
5129
5130/**
5131 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5132 * @pid: the pid in question.
5133 * @policy: new policy.
5134 * @param: structure containing the new RT priority.
5135 */
5add95d4
HC
5136SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5137 struct sched_param __user *, param)
1da177e4 5138{
c21761f1
JB
5139 /* negative values for policy are not valid */
5140 if (policy < 0)
5141 return -EINVAL;
5142
1da177e4
LT
5143 return do_sched_setscheduler(pid, policy, param);
5144}
5145
5146/**
5147 * sys_sched_setparam - set/change the RT priority of a thread
5148 * @pid: the pid in question.
5149 * @param: structure containing the new RT priority.
5150 */
5add95d4 5151SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5152{
5153 return do_sched_setscheduler(pid, -1, param);
5154}
5155
5156/**
5157 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5158 * @pid: the pid in question.
5159 */
5add95d4 5160SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5161{
36c8b586 5162 struct task_struct *p;
3a5c359a 5163 int retval;
1da177e4
LT
5164
5165 if (pid < 0)
3a5c359a 5166 return -EINVAL;
1da177e4
LT
5167
5168 retval = -ESRCH;
5fe85be0 5169 rcu_read_lock();
1da177e4
LT
5170 p = find_process_by_pid(pid);
5171 if (p) {
5172 retval = security_task_getscheduler(p);
5173 if (!retval)
ca94c442
LP
5174 retval = p->policy
5175 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5176 }
5fe85be0 5177 rcu_read_unlock();
1da177e4
LT
5178 return retval;
5179}
5180
5181/**
ca94c442 5182 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5183 * @pid: the pid in question.
5184 * @param: structure containing the RT priority.
5185 */
5add95d4 5186SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5187{
5188 struct sched_param lp;
36c8b586 5189 struct task_struct *p;
3a5c359a 5190 int retval;
1da177e4
LT
5191
5192 if (!param || pid < 0)
3a5c359a 5193 return -EINVAL;
1da177e4 5194
5fe85be0 5195 rcu_read_lock();
1da177e4
LT
5196 p = find_process_by_pid(pid);
5197 retval = -ESRCH;
5198 if (!p)
5199 goto out_unlock;
5200
5201 retval = security_task_getscheduler(p);
5202 if (retval)
5203 goto out_unlock;
5204
5205 lp.sched_priority = p->rt_priority;
5fe85be0 5206 rcu_read_unlock();
1da177e4
LT
5207
5208 /*
5209 * This one might sleep, we cannot do it with a spinlock held ...
5210 */
5211 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5212
1da177e4
LT
5213 return retval;
5214
5215out_unlock:
5fe85be0 5216 rcu_read_unlock();
1da177e4
LT
5217 return retval;
5218}
5219
96f874e2 5220long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5221{
5a16f3d3 5222 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5223 struct task_struct *p;
5224 int retval;
1da177e4 5225
95402b38 5226 get_online_cpus();
23f5d142 5227 rcu_read_lock();
1da177e4
LT
5228
5229 p = find_process_by_pid(pid);
5230 if (!p) {
23f5d142 5231 rcu_read_unlock();
95402b38 5232 put_online_cpus();
1da177e4
LT
5233 return -ESRCH;
5234 }
5235
23f5d142 5236 /* Prevent p going away */
1da177e4 5237 get_task_struct(p);
23f5d142 5238 rcu_read_unlock();
1da177e4 5239
5a16f3d3
RR
5240 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5241 retval = -ENOMEM;
5242 goto out_put_task;
5243 }
5244 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5245 retval = -ENOMEM;
5246 goto out_free_cpus_allowed;
5247 }
1da177e4 5248 retval = -EPERM;
b0e77598 5249 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5250 goto out_unlock;
5251
b0ae1981 5252 retval = security_task_setscheduler(p);
e7834f8f
DQ
5253 if (retval)
5254 goto out_unlock;
5255
5a16f3d3
RR
5256 cpuset_cpus_allowed(p, cpus_allowed);
5257 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5258again:
5a16f3d3 5259 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5260
8707d8b8 5261 if (!retval) {
5a16f3d3
RR
5262 cpuset_cpus_allowed(p, cpus_allowed);
5263 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5264 /*
5265 * We must have raced with a concurrent cpuset
5266 * update. Just reset the cpus_allowed to the
5267 * cpuset's cpus_allowed
5268 */
5a16f3d3 5269 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5270 goto again;
5271 }
5272 }
1da177e4 5273out_unlock:
5a16f3d3
RR
5274 free_cpumask_var(new_mask);
5275out_free_cpus_allowed:
5276 free_cpumask_var(cpus_allowed);
5277out_put_task:
1da177e4 5278 put_task_struct(p);
95402b38 5279 put_online_cpus();
1da177e4
LT
5280 return retval;
5281}
5282
5283static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5284 struct cpumask *new_mask)
1da177e4 5285{
96f874e2
RR
5286 if (len < cpumask_size())
5287 cpumask_clear(new_mask);
5288 else if (len > cpumask_size())
5289 len = cpumask_size();
5290
1da177e4
LT
5291 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5292}
5293
5294/**
5295 * sys_sched_setaffinity - set the cpu affinity of a process
5296 * @pid: pid of the process
5297 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5298 * @user_mask_ptr: user-space pointer to the new cpu mask
5299 */
5add95d4
HC
5300SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5301 unsigned long __user *, user_mask_ptr)
1da177e4 5302{
5a16f3d3 5303 cpumask_var_t new_mask;
1da177e4
LT
5304 int retval;
5305
5a16f3d3
RR
5306 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5307 return -ENOMEM;
1da177e4 5308
5a16f3d3
RR
5309 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5310 if (retval == 0)
5311 retval = sched_setaffinity(pid, new_mask);
5312 free_cpumask_var(new_mask);
5313 return retval;
1da177e4
LT
5314}
5315
96f874e2 5316long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5317{
36c8b586 5318 struct task_struct *p;
31605683
TG
5319 unsigned long flags;
5320 struct rq *rq;
1da177e4 5321 int retval;
1da177e4 5322
95402b38 5323 get_online_cpus();
23f5d142 5324 rcu_read_lock();
1da177e4
LT
5325
5326 retval = -ESRCH;
5327 p = find_process_by_pid(pid);
5328 if (!p)
5329 goto out_unlock;
5330
e7834f8f
DQ
5331 retval = security_task_getscheduler(p);
5332 if (retval)
5333 goto out_unlock;
5334
31605683 5335 rq = task_rq_lock(p, &flags);
96f874e2 5336 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 5337 task_rq_unlock(rq, &flags);
1da177e4
LT
5338
5339out_unlock:
23f5d142 5340 rcu_read_unlock();
95402b38 5341 put_online_cpus();
1da177e4 5342
9531b62f 5343 return retval;
1da177e4
LT
5344}
5345
5346/**
5347 * sys_sched_getaffinity - get the cpu affinity of a process
5348 * @pid: pid of the process
5349 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5350 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5351 */
5add95d4
HC
5352SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5353 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5354{
5355 int ret;
f17c8607 5356 cpumask_var_t mask;
1da177e4 5357
84fba5ec 5358 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5359 return -EINVAL;
5360 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5361 return -EINVAL;
5362
f17c8607
RR
5363 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5364 return -ENOMEM;
1da177e4 5365
f17c8607
RR
5366 ret = sched_getaffinity(pid, mask);
5367 if (ret == 0) {
8bc037fb 5368 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5369
5370 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5371 ret = -EFAULT;
5372 else
cd3d8031 5373 ret = retlen;
f17c8607
RR
5374 }
5375 free_cpumask_var(mask);
1da177e4 5376
f17c8607 5377 return ret;
1da177e4
LT
5378}
5379
5380/**
5381 * sys_sched_yield - yield the current processor to other threads.
5382 *
dd41f596
IM
5383 * This function yields the current CPU to other tasks. If there are no
5384 * other threads running on this CPU then this function will return.
1da177e4 5385 */
5add95d4 5386SYSCALL_DEFINE0(sched_yield)
1da177e4 5387{
70b97a7f 5388 struct rq *rq = this_rq_lock();
1da177e4 5389
2d72376b 5390 schedstat_inc(rq, yld_count);
4530d7ab 5391 current->sched_class->yield_task(rq);
1da177e4
LT
5392
5393 /*
5394 * Since we are going to call schedule() anyway, there's
5395 * no need to preempt or enable interrupts:
5396 */
5397 __release(rq->lock);
8a25d5de 5398 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5399 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5400 preempt_enable_no_resched();
5401
5402 schedule();
5403
5404 return 0;
5405}
5406
d86ee480
PZ
5407static inline int should_resched(void)
5408{
5409 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5410}
5411
e7b38404 5412static void __cond_resched(void)
1da177e4 5413{
e7aaaa69
FW
5414 add_preempt_count(PREEMPT_ACTIVE);
5415 schedule();
5416 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5417}
5418
02b67cc3 5419int __sched _cond_resched(void)
1da177e4 5420{
d86ee480 5421 if (should_resched()) {
1da177e4
LT
5422 __cond_resched();
5423 return 1;
5424 }
5425 return 0;
5426}
02b67cc3 5427EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5428
5429/*
613afbf8 5430 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5431 * call schedule, and on return reacquire the lock.
5432 *
41a2d6cf 5433 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5434 * operations here to prevent schedule() from being called twice (once via
5435 * spin_unlock(), once by hand).
5436 */
613afbf8 5437int __cond_resched_lock(spinlock_t *lock)
1da177e4 5438{
d86ee480 5439 int resched = should_resched();
6df3cecb
JK
5440 int ret = 0;
5441
f607c668
PZ
5442 lockdep_assert_held(lock);
5443
95c354fe 5444 if (spin_needbreak(lock) || resched) {
1da177e4 5445 spin_unlock(lock);
d86ee480 5446 if (resched)
95c354fe
NP
5447 __cond_resched();
5448 else
5449 cpu_relax();
6df3cecb 5450 ret = 1;
1da177e4 5451 spin_lock(lock);
1da177e4 5452 }
6df3cecb 5453 return ret;
1da177e4 5454}
613afbf8 5455EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5456
613afbf8 5457int __sched __cond_resched_softirq(void)
1da177e4
LT
5458{
5459 BUG_ON(!in_softirq());
5460
d86ee480 5461 if (should_resched()) {
98d82567 5462 local_bh_enable();
1da177e4
LT
5463 __cond_resched();
5464 local_bh_disable();
5465 return 1;
5466 }
5467 return 0;
5468}
613afbf8 5469EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5470
1da177e4
LT
5471/**
5472 * yield - yield the current processor to other threads.
5473 *
72fd4a35 5474 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5475 * thread runnable and calls sys_sched_yield().
5476 */
5477void __sched yield(void)
5478{
5479 set_current_state(TASK_RUNNING);
5480 sys_sched_yield();
5481}
1da177e4
LT
5482EXPORT_SYMBOL(yield);
5483
d95f4122
MG
5484/**
5485 * yield_to - yield the current processor to another thread in
5486 * your thread group, or accelerate that thread toward the
5487 * processor it's on.
16addf95
RD
5488 * @p: target task
5489 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5490 *
5491 * It's the caller's job to ensure that the target task struct
5492 * can't go away on us before we can do any checks.
5493 *
5494 * Returns true if we indeed boosted the target task.
5495 */
5496bool __sched yield_to(struct task_struct *p, bool preempt)
5497{
5498 struct task_struct *curr = current;
5499 struct rq *rq, *p_rq;
5500 unsigned long flags;
5501 bool yielded = 0;
5502
5503 local_irq_save(flags);
5504 rq = this_rq();
5505
5506again:
5507 p_rq = task_rq(p);
5508 double_rq_lock(rq, p_rq);
5509 while (task_rq(p) != p_rq) {
5510 double_rq_unlock(rq, p_rq);
5511 goto again;
5512 }
5513
5514 if (!curr->sched_class->yield_to_task)
5515 goto out;
5516
5517 if (curr->sched_class != p->sched_class)
5518 goto out;
5519
5520 if (task_running(p_rq, p) || p->state)
5521 goto out;
5522
5523 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5524 if (yielded) {
d95f4122 5525 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5526 /*
5527 * Make p's CPU reschedule; pick_next_entity takes care of
5528 * fairness.
5529 */
5530 if (preempt && rq != p_rq)
5531 resched_task(p_rq->curr);
5532 }
d95f4122
MG
5533
5534out:
5535 double_rq_unlock(rq, p_rq);
5536 local_irq_restore(flags);
5537
5538 if (yielded)
5539 schedule();
5540
5541 return yielded;
5542}
5543EXPORT_SYMBOL_GPL(yield_to);
5544
1da177e4 5545/*
41a2d6cf 5546 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5547 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5548 */
5549void __sched io_schedule(void)
5550{
54d35f29 5551 struct rq *rq = raw_rq();
1da177e4 5552
0ff92245 5553 delayacct_blkio_start();
1da177e4 5554 atomic_inc(&rq->nr_iowait);
73c10101 5555 blk_flush_plug(current);
8f0dfc34 5556 current->in_iowait = 1;
1da177e4 5557 schedule();
8f0dfc34 5558 current->in_iowait = 0;
1da177e4 5559 atomic_dec(&rq->nr_iowait);
0ff92245 5560 delayacct_blkio_end();
1da177e4 5561}
1da177e4
LT
5562EXPORT_SYMBOL(io_schedule);
5563
5564long __sched io_schedule_timeout(long timeout)
5565{
54d35f29 5566 struct rq *rq = raw_rq();
1da177e4
LT
5567 long ret;
5568
0ff92245 5569 delayacct_blkio_start();
1da177e4 5570 atomic_inc(&rq->nr_iowait);
73c10101 5571 blk_flush_plug(current);
8f0dfc34 5572 current->in_iowait = 1;
1da177e4 5573 ret = schedule_timeout(timeout);
8f0dfc34 5574 current->in_iowait = 0;
1da177e4 5575 atomic_dec(&rq->nr_iowait);
0ff92245 5576 delayacct_blkio_end();
1da177e4
LT
5577 return ret;
5578}
5579
5580/**
5581 * sys_sched_get_priority_max - return maximum RT priority.
5582 * @policy: scheduling class.
5583 *
5584 * this syscall returns the maximum rt_priority that can be used
5585 * by a given scheduling class.
5586 */
5add95d4 5587SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5588{
5589 int ret = -EINVAL;
5590
5591 switch (policy) {
5592 case SCHED_FIFO:
5593 case SCHED_RR:
5594 ret = MAX_USER_RT_PRIO-1;
5595 break;
5596 case SCHED_NORMAL:
b0a9499c 5597 case SCHED_BATCH:
dd41f596 5598 case SCHED_IDLE:
1da177e4
LT
5599 ret = 0;
5600 break;
5601 }
5602 return ret;
5603}
5604
5605/**
5606 * sys_sched_get_priority_min - return minimum RT priority.
5607 * @policy: scheduling class.
5608 *
5609 * this syscall returns the minimum rt_priority that can be used
5610 * by a given scheduling class.
5611 */
5add95d4 5612SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5613{
5614 int ret = -EINVAL;
5615
5616 switch (policy) {
5617 case SCHED_FIFO:
5618 case SCHED_RR:
5619 ret = 1;
5620 break;
5621 case SCHED_NORMAL:
b0a9499c 5622 case SCHED_BATCH:
dd41f596 5623 case SCHED_IDLE:
1da177e4
LT
5624 ret = 0;
5625 }
5626 return ret;
5627}
5628
5629/**
5630 * sys_sched_rr_get_interval - return the default timeslice of a process.
5631 * @pid: pid of the process.
5632 * @interval: userspace pointer to the timeslice value.
5633 *
5634 * this syscall writes the default timeslice value of a given process
5635 * into the user-space timespec buffer. A value of '0' means infinity.
5636 */
17da2bd9 5637SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5638 struct timespec __user *, interval)
1da177e4 5639{
36c8b586 5640 struct task_struct *p;
a4ec24b4 5641 unsigned int time_slice;
dba091b9
TG
5642 unsigned long flags;
5643 struct rq *rq;
3a5c359a 5644 int retval;
1da177e4 5645 struct timespec t;
1da177e4
LT
5646
5647 if (pid < 0)
3a5c359a 5648 return -EINVAL;
1da177e4
LT
5649
5650 retval = -ESRCH;
1a551ae7 5651 rcu_read_lock();
1da177e4
LT
5652 p = find_process_by_pid(pid);
5653 if (!p)
5654 goto out_unlock;
5655
5656 retval = security_task_getscheduler(p);
5657 if (retval)
5658 goto out_unlock;
5659
dba091b9
TG
5660 rq = task_rq_lock(p, &flags);
5661 time_slice = p->sched_class->get_rr_interval(rq, p);
5662 task_rq_unlock(rq, &flags);
a4ec24b4 5663
1a551ae7 5664 rcu_read_unlock();
a4ec24b4 5665 jiffies_to_timespec(time_slice, &t);
1da177e4 5666 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5667 return retval;
3a5c359a 5668
1da177e4 5669out_unlock:
1a551ae7 5670 rcu_read_unlock();
1da177e4
LT
5671 return retval;
5672}
5673
7c731e0a 5674static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5675
82a1fcb9 5676void sched_show_task(struct task_struct *p)
1da177e4 5677{
1da177e4 5678 unsigned long free = 0;
36c8b586 5679 unsigned state;
1da177e4 5680
1da177e4 5681 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5682 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5683 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5684#if BITS_PER_LONG == 32
1da177e4 5685 if (state == TASK_RUNNING)
3df0fc5b 5686 printk(KERN_CONT " running ");
1da177e4 5687 else
3df0fc5b 5688 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5689#else
5690 if (state == TASK_RUNNING)
3df0fc5b 5691 printk(KERN_CONT " running task ");
1da177e4 5692 else
3df0fc5b 5693 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5694#endif
5695#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5696 free = stack_not_used(p);
1da177e4 5697#endif
3df0fc5b 5698 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5699 task_pid_nr(p), task_pid_nr(p->real_parent),
5700 (unsigned long)task_thread_info(p)->flags);
1da177e4 5701
5fb5e6de 5702 show_stack(p, NULL);
1da177e4
LT
5703}
5704
e59e2ae2 5705void show_state_filter(unsigned long state_filter)
1da177e4 5706{
36c8b586 5707 struct task_struct *g, *p;
1da177e4 5708
4bd77321 5709#if BITS_PER_LONG == 32
3df0fc5b
PZ
5710 printk(KERN_INFO
5711 " task PC stack pid father\n");
1da177e4 5712#else
3df0fc5b
PZ
5713 printk(KERN_INFO
5714 " task PC stack pid father\n");
1da177e4
LT
5715#endif
5716 read_lock(&tasklist_lock);
5717 do_each_thread(g, p) {
5718 /*
5719 * reset the NMI-timeout, listing all files on a slow
25985edc 5720 * console might take a lot of time:
1da177e4
LT
5721 */
5722 touch_nmi_watchdog();
39bc89fd 5723 if (!state_filter || (p->state & state_filter))
82a1fcb9 5724 sched_show_task(p);
1da177e4
LT
5725 } while_each_thread(g, p);
5726
04c9167f
JF
5727 touch_all_softlockup_watchdogs();
5728
dd41f596
IM
5729#ifdef CONFIG_SCHED_DEBUG
5730 sysrq_sched_debug_show();
5731#endif
1da177e4 5732 read_unlock(&tasklist_lock);
e59e2ae2
IM
5733 /*
5734 * Only show locks if all tasks are dumped:
5735 */
93335a21 5736 if (!state_filter)
e59e2ae2 5737 debug_show_all_locks();
1da177e4
LT
5738}
5739
1df21055
IM
5740void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5741{
dd41f596 5742 idle->sched_class = &idle_sched_class;
1df21055
IM
5743}
5744
f340c0d1
IM
5745/**
5746 * init_idle - set up an idle thread for a given CPU
5747 * @idle: task in question
5748 * @cpu: cpu the idle task belongs to
5749 *
5750 * NOTE: this function does not set the idle thread's NEED_RESCHED
5751 * flag, to make booting more robust.
5752 */
5c1e1767 5753void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5754{
70b97a7f 5755 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5756 unsigned long flags;
5757
05fa785c 5758 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5759
dd41f596 5760 __sched_fork(idle);
06b83b5f 5761 idle->state = TASK_RUNNING;
dd41f596
IM
5762 idle->se.exec_start = sched_clock();
5763
96f874e2 5764 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6506cf6c
PZ
5765 /*
5766 * We're having a chicken and egg problem, even though we are
5767 * holding rq->lock, the cpu isn't yet set to this cpu so the
5768 * lockdep check in task_group() will fail.
5769 *
5770 * Similar case to sched_fork(). / Alternatively we could
5771 * use task_rq_lock() here and obtain the other rq->lock.
5772 *
5773 * Silence PROVE_RCU
5774 */
5775 rcu_read_lock();
dd41f596 5776 __set_task_cpu(idle, cpu);
6506cf6c 5777 rcu_read_unlock();
1da177e4 5778
1da177e4 5779 rq->curr = rq->idle = idle;
3ca7a440
PZ
5780#if defined(CONFIG_SMP)
5781 idle->on_cpu = 1;
4866cde0 5782#endif
05fa785c 5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5784
5785 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5786#if defined(CONFIG_PREEMPT)
5787 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5788#else
a1261f54 5789 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5790#endif
dd41f596
IM
5791 /*
5792 * The idle tasks have their own, simple scheduling class:
5793 */
5794 idle->sched_class = &idle_sched_class;
868baf07 5795 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
5796}
5797
5798/*
5799 * In a system that switches off the HZ timer nohz_cpu_mask
5800 * indicates which cpus entered this state. This is used
5801 * in the rcu update to wait only for active cpus. For system
5802 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5803 * always be CPU_BITS_NONE.
1da177e4 5804 */
6a7b3dc3 5805cpumask_var_t nohz_cpu_mask;
1da177e4 5806
19978ca6
IM
5807/*
5808 * Increase the granularity value when there are more CPUs,
5809 * because with more CPUs the 'effective latency' as visible
5810 * to users decreases. But the relationship is not linear,
5811 * so pick a second-best guess by going with the log2 of the
5812 * number of CPUs.
5813 *
5814 * This idea comes from the SD scheduler of Con Kolivas:
5815 */
acb4a848 5816static int get_update_sysctl_factor(void)
19978ca6 5817{
4ca3ef71 5818 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5819 unsigned int factor;
5820
5821 switch (sysctl_sched_tunable_scaling) {
5822 case SCHED_TUNABLESCALING_NONE:
5823 factor = 1;
5824 break;
5825 case SCHED_TUNABLESCALING_LINEAR:
5826 factor = cpus;
5827 break;
5828 case SCHED_TUNABLESCALING_LOG:
5829 default:
5830 factor = 1 + ilog2(cpus);
5831 break;
5832 }
19978ca6 5833
acb4a848
CE
5834 return factor;
5835}
19978ca6 5836
acb4a848
CE
5837static void update_sysctl(void)
5838{
5839 unsigned int factor = get_update_sysctl_factor();
19978ca6 5840
0bcdcf28
CE
5841#define SET_SYSCTL(name) \
5842 (sysctl_##name = (factor) * normalized_sysctl_##name)
5843 SET_SYSCTL(sched_min_granularity);
5844 SET_SYSCTL(sched_latency);
5845 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
5846#undef SET_SYSCTL
5847}
55cd5340 5848
0bcdcf28
CE
5849static inline void sched_init_granularity(void)
5850{
5851 update_sysctl();
19978ca6
IM
5852}
5853
1da177e4
LT
5854#ifdef CONFIG_SMP
5855/*
5856 * This is how migration works:
5857 *
969c7921
TH
5858 * 1) we invoke migration_cpu_stop() on the target CPU using
5859 * stop_one_cpu().
5860 * 2) stopper starts to run (implicitly forcing the migrated thread
5861 * off the CPU)
5862 * 3) it checks whether the migrated task is still in the wrong runqueue.
5863 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5864 * it and puts it into the right queue.
969c7921
TH
5865 * 5) stopper completes and stop_one_cpu() returns and the migration
5866 * is done.
1da177e4
LT
5867 */
5868
5869/*
5870 * Change a given task's CPU affinity. Migrate the thread to a
5871 * proper CPU and schedule it away if the CPU it's executing on
5872 * is removed from the allowed bitmask.
5873 *
5874 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5875 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5876 * call is not atomic; no spinlocks may be held.
5877 */
96f874e2 5878int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5879{
5880 unsigned long flags;
70b97a7f 5881 struct rq *rq;
969c7921 5882 unsigned int dest_cpu;
48f24c4d 5883 int ret = 0;
1da177e4 5884
65cc8e48
PZ
5885 /*
5886 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5887 * drop the rq->lock and still rely on ->cpus_allowed.
5888 */
5889again:
5890 while (task_is_waking(p))
5891 cpu_relax();
1da177e4 5892 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5893 if (task_is_waking(p)) {
5894 task_rq_unlock(rq, &flags);
5895 goto again;
5896 }
e2912009 5897
6ad4c188 5898 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5899 ret = -EINVAL;
5900 goto out;
5901 }
5902
9985b0ba 5903 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5904 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5905 ret = -EINVAL;
5906 goto out;
5907 }
5908
73fe6aae 5909 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5910 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5911 else {
96f874e2
RR
5912 cpumask_copy(&p->cpus_allowed, new_mask);
5913 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5914 }
5915
1da177e4 5916 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5917 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5918 goto out;
5919
969c7921 5920 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
b7a2b39d 5921 if (migrate_task(p, rq)) {
969c7921 5922 struct migration_arg arg = { p, dest_cpu };
1da177e4
LT
5923 /* Need help from migration thread: drop lock and wait. */
5924 task_rq_unlock(rq, &flags);
969c7921 5925 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5926 tlb_migrate_finish(p->mm);
5927 return 0;
5928 }
5929out:
5930 task_rq_unlock(rq, &flags);
48f24c4d 5931
1da177e4
LT
5932 return ret;
5933}
cd8ba7cd 5934EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5935
5936/*
41a2d6cf 5937 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5938 * this because either it can't run here any more (set_cpus_allowed()
5939 * away from this CPU, or CPU going down), or because we're
5940 * attempting to rebalance this task on exec (sched_exec).
5941 *
5942 * So we race with normal scheduler movements, but that's OK, as long
5943 * as the task is no longer on this CPU.
efc30814
KK
5944 *
5945 * Returns non-zero if task was successfully migrated.
1da177e4 5946 */
efc30814 5947static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5948{
70b97a7f 5949 struct rq *rq_dest, *rq_src;
e2912009 5950 int ret = 0;
1da177e4 5951
e761b772 5952 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5953 return ret;
1da177e4
LT
5954
5955 rq_src = cpu_rq(src_cpu);
5956 rq_dest = cpu_rq(dest_cpu);
5957
5958 double_rq_lock(rq_src, rq_dest);
5959 /* Already moved. */
5960 if (task_cpu(p) != src_cpu)
b1e38734 5961 goto done;
1da177e4 5962 /* Affinity changed (again). */
96f874e2 5963 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5964 goto fail;
1da177e4 5965
e2912009
PZ
5966 /*
5967 * If we're not on a rq, the next wake-up will ensure we're
5968 * placed properly.
5969 */
fd2f4419 5970 if (p->on_rq) {
2e1cb74a 5971 deactivate_task(rq_src, p, 0);
e2912009 5972 set_task_cpu(p, dest_cpu);
dd41f596 5973 activate_task(rq_dest, p, 0);
15afe09b 5974 check_preempt_curr(rq_dest, p, 0);
1da177e4 5975 }
b1e38734 5976done:
efc30814 5977 ret = 1;
b1e38734 5978fail:
1da177e4 5979 double_rq_unlock(rq_src, rq_dest);
efc30814 5980 return ret;
1da177e4
LT
5981}
5982
5983/*
969c7921
TH
5984 * migration_cpu_stop - this will be executed by a highprio stopper thread
5985 * and performs thread migration by bumping thread off CPU then
5986 * 'pushing' onto another runqueue.
1da177e4 5987 */
969c7921 5988static int migration_cpu_stop(void *data)
1da177e4 5989{
969c7921 5990 struct migration_arg *arg = data;
f7b4cddc 5991
969c7921
TH
5992 /*
5993 * The original target cpu might have gone down and we might
5994 * be on another cpu but it doesn't matter.
5995 */
f7b4cddc 5996 local_irq_disable();
969c7921 5997 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5998 local_irq_enable();
1da177e4 5999 return 0;
f7b4cddc
ON
6000}
6001
1da177e4 6002#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6003
054b9108 6004/*
48c5ccae
PZ
6005 * Ensures that the idle task is using init_mm right before its cpu goes
6006 * offline.
054b9108 6007 */
48c5ccae 6008void idle_task_exit(void)
1da177e4 6009{
48c5ccae 6010 struct mm_struct *mm = current->active_mm;
e76bd8d9 6011
48c5ccae 6012 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6013
48c5ccae
PZ
6014 if (mm != &init_mm)
6015 switch_mm(mm, &init_mm, current);
6016 mmdrop(mm);
1da177e4
LT
6017}
6018
6019/*
6020 * While a dead CPU has no uninterruptible tasks queued at this point,
6021 * it might still have a nonzero ->nr_uninterruptible counter, because
6022 * for performance reasons the counter is not stricly tracking tasks to
6023 * their home CPUs. So we just add the counter to another CPU's counter,
6024 * to keep the global sum constant after CPU-down:
6025 */
70b97a7f 6026static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6027{
6ad4c188 6028 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6029
1da177e4
LT
6030 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6031 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6032}
6033
dd41f596 6034/*
48c5ccae 6035 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6036 */
48c5ccae 6037static void calc_global_load_remove(struct rq *rq)
1da177e4 6038{
48c5ccae
PZ
6039 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6040 rq->calc_load_active = 0;
1da177e4
LT
6041}
6042
48f24c4d 6043/*
48c5ccae
PZ
6044 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6045 * try_to_wake_up()->select_task_rq().
6046 *
6047 * Called with rq->lock held even though we'er in stop_machine() and
6048 * there's no concurrency possible, we hold the required locks anyway
6049 * because of lock validation efforts.
1da177e4 6050 */
48c5ccae 6051static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6052{
70b97a7f 6053 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6054 struct task_struct *next, *stop = rq->stop;
6055 int dest_cpu;
1da177e4
LT
6056
6057 /*
48c5ccae
PZ
6058 * Fudge the rq selection such that the below task selection loop
6059 * doesn't get stuck on the currently eligible stop task.
6060 *
6061 * We're currently inside stop_machine() and the rq is either stuck
6062 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6063 * either way we should never end up calling schedule() until we're
6064 * done here.
1da177e4 6065 */
48c5ccae 6066 rq->stop = NULL;
48f24c4d 6067
dd41f596 6068 for ( ; ; ) {
48c5ccae
PZ
6069 /*
6070 * There's this thread running, bail when that's the only
6071 * remaining thread.
6072 */
6073 if (rq->nr_running == 1)
dd41f596 6074 break;
48c5ccae 6075
b67802ea 6076 next = pick_next_task(rq);
48c5ccae 6077 BUG_ON(!next);
79c53799 6078 next->sched_class->put_prev_task(rq, next);
e692ab53 6079
48c5ccae
PZ
6080 /* Find suitable destination for @next, with force if needed. */
6081 dest_cpu = select_fallback_rq(dead_cpu, next);
6082 raw_spin_unlock(&rq->lock);
6083
6084 __migrate_task(next, dead_cpu, dest_cpu);
6085
6086 raw_spin_lock(&rq->lock);
1da177e4 6087 }
dce48a84 6088
48c5ccae 6089 rq->stop = stop;
dce48a84 6090}
48c5ccae 6091
1da177e4
LT
6092#endif /* CONFIG_HOTPLUG_CPU */
6093
e692ab53
NP
6094#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6095
6096static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6097 {
6098 .procname = "sched_domain",
c57baf1e 6099 .mode = 0555,
e0361851 6100 },
56992309 6101 {}
e692ab53
NP
6102};
6103
6104static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6105 {
6106 .procname = "kernel",
c57baf1e 6107 .mode = 0555,
e0361851
AD
6108 .child = sd_ctl_dir,
6109 },
56992309 6110 {}
e692ab53
NP
6111};
6112
6113static struct ctl_table *sd_alloc_ctl_entry(int n)
6114{
6115 struct ctl_table *entry =
5cf9f062 6116 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6117
e692ab53
NP
6118 return entry;
6119}
6120
6382bc90
MM
6121static void sd_free_ctl_entry(struct ctl_table **tablep)
6122{
cd790076 6123 struct ctl_table *entry;
6382bc90 6124
cd790076
MM
6125 /*
6126 * In the intermediate directories, both the child directory and
6127 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6128 * will always be set. In the lowest directory the names are
cd790076
MM
6129 * static strings and all have proc handlers.
6130 */
6131 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6132 if (entry->child)
6133 sd_free_ctl_entry(&entry->child);
cd790076
MM
6134 if (entry->proc_handler == NULL)
6135 kfree(entry->procname);
6136 }
6382bc90
MM
6137
6138 kfree(*tablep);
6139 *tablep = NULL;
6140}
6141
e692ab53 6142static void
e0361851 6143set_table_entry(struct ctl_table *entry,
e692ab53
NP
6144 const char *procname, void *data, int maxlen,
6145 mode_t mode, proc_handler *proc_handler)
6146{
e692ab53
NP
6147 entry->procname = procname;
6148 entry->data = data;
6149 entry->maxlen = maxlen;
6150 entry->mode = mode;
6151 entry->proc_handler = proc_handler;
6152}
6153
6154static struct ctl_table *
6155sd_alloc_ctl_domain_table(struct sched_domain *sd)
6156{
a5d8c348 6157 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6158
ad1cdc1d
MM
6159 if (table == NULL)
6160 return NULL;
6161
e0361851 6162 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6163 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6164 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6165 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6166 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6170 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6171 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6172 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6173 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6174 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6175 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6176 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6177 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6178 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6179 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6180 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6181 &sd->cache_nice_tries,
6182 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6183 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6184 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6185 set_table_entry(&table[11], "name", sd->name,
6186 CORENAME_MAX_SIZE, 0444, proc_dostring);
6187 /* &table[12] is terminator */
e692ab53
NP
6188
6189 return table;
6190}
6191
9a4e7159 6192static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6193{
6194 struct ctl_table *entry, *table;
6195 struct sched_domain *sd;
6196 int domain_num = 0, i;
6197 char buf[32];
6198
6199 for_each_domain(cpu, sd)
6200 domain_num++;
6201 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6202 if (table == NULL)
6203 return NULL;
e692ab53
NP
6204
6205 i = 0;
6206 for_each_domain(cpu, sd) {
6207 snprintf(buf, 32, "domain%d", i);
e692ab53 6208 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6209 entry->mode = 0555;
e692ab53
NP
6210 entry->child = sd_alloc_ctl_domain_table(sd);
6211 entry++;
6212 i++;
6213 }
6214 return table;
6215}
6216
6217static struct ctl_table_header *sd_sysctl_header;
6382bc90 6218static void register_sched_domain_sysctl(void)
e692ab53 6219{
6ad4c188 6220 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6221 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6222 char buf[32];
6223
7378547f
MM
6224 WARN_ON(sd_ctl_dir[0].child);
6225 sd_ctl_dir[0].child = entry;
6226
ad1cdc1d
MM
6227 if (entry == NULL)
6228 return;
6229
6ad4c188 6230 for_each_possible_cpu(i) {
e692ab53 6231 snprintf(buf, 32, "cpu%d", i);
e692ab53 6232 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6233 entry->mode = 0555;
e692ab53 6234 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6235 entry++;
e692ab53 6236 }
7378547f
MM
6237
6238 WARN_ON(sd_sysctl_header);
e692ab53
NP
6239 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6240}
6382bc90 6241
7378547f 6242/* may be called multiple times per register */
6382bc90
MM
6243static void unregister_sched_domain_sysctl(void)
6244{
7378547f
MM
6245 if (sd_sysctl_header)
6246 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6247 sd_sysctl_header = NULL;
7378547f
MM
6248 if (sd_ctl_dir[0].child)
6249 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6250}
e692ab53 6251#else
6382bc90
MM
6252static void register_sched_domain_sysctl(void)
6253{
6254}
6255static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6256{
6257}
6258#endif
6259
1f11eb6a
GH
6260static void set_rq_online(struct rq *rq)
6261{
6262 if (!rq->online) {
6263 const struct sched_class *class;
6264
c6c4927b 6265 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6266 rq->online = 1;
6267
6268 for_each_class(class) {
6269 if (class->rq_online)
6270 class->rq_online(rq);
6271 }
6272 }
6273}
6274
6275static void set_rq_offline(struct rq *rq)
6276{
6277 if (rq->online) {
6278 const struct sched_class *class;
6279
6280 for_each_class(class) {
6281 if (class->rq_offline)
6282 class->rq_offline(rq);
6283 }
6284
c6c4927b 6285 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6286 rq->online = 0;
6287 }
6288}
6289
1da177e4
LT
6290/*
6291 * migration_call - callback that gets triggered when a CPU is added.
6292 * Here we can start up the necessary migration thread for the new CPU.
6293 */
48f24c4d
IM
6294static int __cpuinit
6295migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6296{
48f24c4d 6297 int cpu = (long)hcpu;
1da177e4 6298 unsigned long flags;
969c7921 6299 struct rq *rq = cpu_rq(cpu);
1da177e4 6300
48c5ccae 6301 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6302
1da177e4 6303 case CPU_UP_PREPARE:
a468d389 6304 rq->calc_load_update = calc_load_update;
1da177e4 6305 break;
48f24c4d 6306
1da177e4 6307 case CPU_ONLINE:
1f94ef59 6308 /* Update our root-domain */
05fa785c 6309 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6310 if (rq->rd) {
c6c4927b 6311 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6312
6313 set_rq_online(rq);
1f94ef59 6314 }
05fa785c 6315 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6316 break;
48f24c4d 6317
1da177e4 6318#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6319 case CPU_DYING:
57d885fe 6320 /* Update our root-domain */
05fa785c 6321 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6322 if (rq->rd) {
c6c4927b 6323 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6324 set_rq_offline(rq);
57d885fe 6325 }
48c5ccae
PZ
6326 migrate_tasks(cpu);
6327 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6328 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6329
6330 migrate_nr_uninterruptible(rq);
6331 calc_global_load_remove(rq);
57d885fe 6332 break;
1da177e4
LT
6333#endif
6334 }
49c022e6
PZ
6335
6336 update_max_interval();
6337
1da177e4
LT
6338 return NOTIFY_OK;
6339}
6340
f38b0820
PM
6341/*
6342 * Register at high priority so that task migration (migrate_all_tasks)
6343 * happens before everything else. This has to be lower priority than
cdd6c482 6344 * the notifier in the perf_event subsystem, though.
1da177e4 6345 */
26c2143b 6346static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6347 .notifier_call = migration_call,
50a323b7 6348 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6349};
6350
3a101d05
TH
6351static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6352 unsigned long action, void *hcpu)
6353{
6354 switch (action & ~CPU_TASKS_FROZEN) {
6355 case CPU_ONLINE:
6356 case CPU_DOWN_FAILED:
6357 set_cpu_active((long)hcpu, true);
6358 return NOTIFY_OK;
6359 default:
6360 return NOTIFY_DONE;
6361 }
6362}
6363
6364static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6365 unsigned long action, void *hcpu)
6366{
6367 switch (action & ~CPU_TASKS_FROZEN) {
6368 case CPU_DOWN_PREPARE:
6369 set_cpu_active((long)hcpu, false);
6370 return NOTIFY_OK;
6371 default:
6372 return NOTIFY_DONE;
6373 }
6374}
6375
7babe8db 6376static int __init migration_init(void)
1da177e4
LT
6377{
6378 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6379 int err;
48f24c4d 6380
3a101d05 6381 /* Initialize migration for the boot CPU */
07dccf33
AM
6382 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6383 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6384 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6385 register_cpu_notifier(&migration_notifier);
7babe8db 6386
3a101d05
TH
6387 /* Register cpu active notifiers */
6388 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6389 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6390
a004cd42 6391 return 0;
1da177e4 6392}
7babe8db 6393early_initcall(migration_init);
1da177e4
LT
6394#endif
6395
6396#ifdef CONFIG_SMP
476f3534 6397
3e9830dc 6398#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6399
f6630114
MT
6400static __read_mostly int sched_domain_debug_enabled;
6401
6402static int __init sched_domain_debug_setup(char *str)
6403{
6404 sched_domain_debug_enabled = 1;
6405
6406 return 0;
6407}
6408early_param("sched_debug", sched_domain_debug_setup);
6409
7c16ec58 6410static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6411 struct cpumask *groupmask)
1da177e4 6412{
4dcf6aff 6413 struct sched_group *group = sd->groups;
434d53b0 6414 char str[256];
1da177e4 6415
968ea6d8 6416 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6417 cpumask_clear(groupmask);
4dcf6aff
IM
6418
6419 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6420
6421 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6422 printk("does not load-balance\n");
4dcf6aff 6423 if (sd->parent)
3df0fc5b
PZ
6424 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6425 " has parent");
4dcf6aff 6426 return -1;
41c7ce9a
NP
6427 }
6428
3df0fc5b 6429 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6430
758b2cdc 6431 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6432 printk(KERN_ERR "ERROR: domain->span does not contain "
6433 "CPU%d\n", cpu);
4dcf6aff 6434 }
758b2cdc 6435 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6436 printk(KERN_ERR "ERROR: domain->groups does not contain"
6437 " CPU%d\n", cpu);
4dcf6aff 6438 }
1da177e4 6439
4dcf6aff 6440 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6441 do {
4dcf6aff 6442 if (!group) {
3df0fc5b
PZ
6443 printk("\n");
6444 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6445 break;
6446 }
6447
18a3885f 6448 if (!group->cpu_power) {
3df0fc5b
PZ
6449 printk(KERN_CONT "\n");
6450 printk(KERN_ERR "ERROR: domain->cpu_power not "
6451 "set\n");
4dcf6aff
IM
6452 break;
6453 }
1da177e4 6454
758b2cdc 6455 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6456 printk(KERN_CONT "\n");
6457 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6458 break;
6459 }
1da177e4 6460
758b2cdc 6461 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6462 printk(KERN_CONT "\n");
6463 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6464 break;
6465 }
1da177e4 6466
758b2cdc 6467 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6468
968ea6d8 6469 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6470
3df0fc5b 6471 printk(KERN_CONT " %s", str);
18a3885f 6472 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6473 printk(KERN_CONT " (cpu_power = %d)",
6474 group->cpu_power);
381512cf 6475 }
1da177e4 6476
4dcf6aff
IM
6477 group = group->next;
6478 } while (group != sd->groups);
3df0fc5b 6479 printk(KERN_CONT "\n");
1da177e4 6480
758b2cdc 6481 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6482 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6483
758b2cdc
RR
6484 if (sd->parent &&
6485 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6486 printk(KERN_ERR "ERROR: parent span is not a superset "
6487 "of domain->span\n");
4dcf6aff
IM
6488 return 0;
6489}
1da177e4 6490
4dcf6aff
IM
6491static void sched_domain_debug(struct sched_domain *sd, int cpu)
6492{
d5dd3db1 6493 cpumask_var_t groupmask;
4dcf6aff 6494 int level = 0;
1da177e4 6495
f6630114
MT
6496 if (!sched_domain_debug_enabled)
6497 return;
6498
4dcf6aff
IM
6499 if (!sd) {
6500 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6501 return;
6502 }
1da177e4 6503
4dcf6aff
IM
6504 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6505
d5dd3db1 6506 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6507 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6508 return;
6509 }
6510
4dcf6aff 6511 for (;;) {
7c16ec58 6512 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6513 break;
1da177e4
LT
6514 level++;
6515 sd = sd->parent;
33859f7f 6516 if (!sd)
4dcf6aff
IM
6517 break;
6518 }
d5dd3db1 6519 free_cpumask_var(groupmask);
1da177e4 6520}
6d6bc0ad 6521#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6522# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6523#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6524
1a20ff27 6525static int sd_degenerate(struct sched_domain *sd)
245af2c7 6526{
758b2cdc 6527 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6528 return 1;
6529
6530 /* Following flags need at least 2 groups */
6531 if (sd->flags & (SD_LOAD_BALANCE |
6532 SD_BALANCE_NEWIDLE |
6533 SD_BALANCE_FORK |
89c4710e
SS
6534 SD_BALANCE_EXEC |
6535 SD_SHARE_CPUPOWER |
6536 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6537 if (sd->groups != sd->groups->next)
6538 return 0;
6539 }
6540
6541 /* Following flags don't use groups */
c88d5910 6542 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6543 return 0;
6544
6545 return 1;
6546}
6547
48f24c4d
IM
6548static int
6549sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6550{
6551 unsigned long cflags = sd->flags, pflags = parent->flags;
6552
6553 if (sd_degenerate(parent))
6554 return 1;
6555
758b2cdc 6556 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6557 return 0;
6558
245af2c7
SS
6559 /* Flags needing groups don't count if only 1 group in parent */
6560 if (parent->groups == parent->groups->next) {
6561 pflags &= ~(SD_LOAD_BALANCE |
6562 SD_BALANCE_NEWIDLE |
6563 SD_BALANCE_FORK |
89c4710e
SS
6564 SD_BALANCE_EXEC |
6565 SD_SHARE_CPUPOWER |
6566 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6567 if (nr_node_ids == 1)
6568 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6569 }
6570 if (~cflags & pflags)
6571 return 0;
6572
6573 return 1;
6574}
6575
c6c4927b
RR
6576static void free_rootdomain(struct root_domain *rd)
6577{
047106ad
PZ
6578 synchronize_sched();
6579
68e74568
RR
6580 cpupri_cleanup(&rd->cpupri);
6581
c6c4927b
RR
6582 free_cpumask_var(rd->rto_mask);
6583 free_cpumask_var(rd->online);
6584 free_cpumask_var(rd->span);
6585 kfree(rd);
6586}
6587
57d885fe
GH
6588static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6589{
a0490fa3 6590 struct root_domain *old_rd = NULL;
57d885fe 6591 unsigned long flags;
57d885fe 6592
05fa785c 6593 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6594
6595 if (rq->rd) {
a0490fa3 6596 old_rd = rq->rd;
57d885fe 6597
c6c4927b 6598 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6599 set_rq_offline(rq);
57d885fe 6600
c6c4927b 6601 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6602
a0490fa3
IM
6603 /*
6604 * If we dont want to free the old_rt yet then
6605 * set old_rd to NULL to skip the freeing later
6606 * in this function:
6607 */
6608 if (!atomic_dec_and_test(&old_rd->refcount))
6609 old_rd = NULL;
57d885fe
GH
6610 }
6611
6612 atomic_inc(&rd->refcount);
6613 rq->rd = rd;
6614
c6c4927b 6615 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6616 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6617 set_rq_online(rq);
57d885fe 6618
05fa785c 6619 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6620
6621 if (old_rd)
6622 free_rootdomain(old_rd);
57d885fe
GH
6623}
6624
68c38fc3 6625static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6626{
6627 memset(rd, 0, sizeof(*rd));
6628
68c38fc3 6629 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6630 goto out;
68c38fc3 6631 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6632 goto free_span;
68c38fc3 6633 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6634 goto free_online;
6e0534f2 6635
68c38fc3 6636 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6637 goto free_rto_mask;
c6c4927b 6638 return 0;
6e0534f2 6639
68e74568
RR
6640free_rto_mask:
6641 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6642free_online:
6643 free_cpumask_var(rd->online);
6644free_span:
6645 free_cpumask_var(rd->span);
0c910d28 6646out:
c6c4927b 6647 return -ENOMEM;
57d885fe
GH
6648}
6649
6650static void init_defrootdomain(void)
6651{
68c38fc3 6652 init_rootdomain(&def_root_domain);
c6c4927b 6653
57d885fe
GH
6654 atomic_set(&def_root_domain.refcount, 1);
6655}
6656
dc938520 6657static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6658{
6659 struct root_domain *rd;
6660
6661 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6662 if (!rd)
6663 return NULL;
6664
68c38fc3 6665 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6666 kfree(rd);
6667 return NULL;
6668 }
57d885fe
GH
6669
6670 return rd;
6671}
6672
1da177e4 6673/*
0eab9146 6674 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6675 * hold the hotplug lock.
6676 */
0eab9146
IM
6677static void
6678cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6679{
70b97a7f 6680 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6681 struct sched_domain *tmp;
6682
669c55e9
PZ
6683 for (tmp = sd; tmp; tmp = tmp->parent)
6684 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6685
245af2c7 6686 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6687 for (tmp = sd; tmp; ) {
245af2c7
SS
6688 struct sched_domain *parent = tmp->parent;
6689 if (!parent)
6690 break;
f29c9b1c 6691
1a848870 6692 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6693 tmp->parent = parent->parent;
1a848870
SS
6694 if (parent->parent)
6695 parent->parent->child = tmp;
f29c9b1c
LZ
6696 } else
6697 tmp = tmp->parent;
245af2c7
SS
6698 }
6699
1a848870 6700 if (sd && sd_degenerate(sd)) {
245af2c7 6701 sd = sd->parent;
1a848870
SS
6702 if (sd)
6703 sd->child = NULL;
6704 }
1da177e4
LT
6705
6706 sched_domain_debug(sd, cpu);
6707
57d885fe 6708 rq_attach_root(rq, rd);
674311d5 6709 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6710}
6711
6712/* cpus with isolated domains */
dcc30a35 6713static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6714
6715/* Setup the mask of cpus configured for isolated domains */
6716static int __init isolated_cpu_setup(char *str)
6717{
bdddd296 6718 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6719 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6720 return 1;
6721}
6722
8927f494 6723__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6724
6725/*
6711cab4
SS
6726 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6727 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6728 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6729 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6730 *
6731 * init_sched_build_groups will build a circular linked list of the groups
6732 * covered by the given span, and will set each group's ->cpumask correctly,
6733 * and ->cpu_power to 0.
6734 */
a616058b 6735static void
96f874e2
RR
6736init_sched_build_groups(const struct cpumask *span,
6737 const struct cpumask *cpu_map,
6738 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6739 struct sched_group **sg,
96f874e2
RR
6740 struct cpumask *tmpmask),
6741 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6742{
6743 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6744 int i;
6745
96f874e2 6746 cpumask_clear(covered);
7c16ec58 6747
abcd083a 6748 for_each_cpu(i, span) {
6711cab4 6749 struct sched_group *sg;
7c16ec58 6750 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6751 int j;
6752
758b2cdc 6753 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6754 continue;
6755
758b2cdc 6756 cpumask_clear(sched_group_cpus(sg));
18a3885f 6757 sg->cpu_power = 0;
1da177e4 6758
abcd083a 6759 for_each_cpu(j, span) {
7c16ec58 6760 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6761 continue;
6762
96f874e2 6763 cpumask_set_cpu(j, covered);
758b2cdc 6764 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6765 }
6766 if (!first)
6767 first = sg;
6768 if (last)
6769 last->next = sg;
6770 last = sg;
6771 }
6772 last->next = first;
6773}
6774
9c1cfda2 6775#define SD_NODES_PER_DOMAIN 16
1da177e4 6776
9c1cfda2 6777#ifdef CONFIG_NUMA
198e2f18 6778
9c1cfda2
JH
6779/**
6780 * find_next_best_node - find the next node to include in a sched_domain
6781 * @node: node whose sched_domain we're building
6782 * @used_nodes: nodes already in the sched_domain
6783 *
41a2d6cf 6784 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6785 * finds the closest node not already in the @used_nodes map.
6786 *
6787 * Should use nodemask_t.
6788 */
c5f59f08 6789static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6790{
6791 int i, n, val, min_val, best_node = 0;
6792
6793 min_val = INT_MAX;
6794
076ac2af 6795 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6796 /* Start at @node */
076ac2af 6797 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6798
6799 if (!nr_cpus_node(n))
6800 continue;
6801
6802 /* Skip already used nodes */
c5f59f08 6803 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6804 continue;
6805
6806 /* Simple min distance search */
6807 val = node_distance(node, n);
6808
6809 if (val < min_val) {
6810 min_val = val;
6811 best_node = n;
6812 }
6813 }
6814
c5f59f08 6815 node_set(best_node, *used_nodes);
9c1cfda2
JH
6816 return best_node;
6817}
6818
6819/**
6820 * sched_domain_node_span - get a cpumask for a node's sched_domain
6821 * @node: node whose cpumask we're constructing
73486722 6822 * @span: resulting cpumask
9c1cfda2 6823 *
41a2d6cf 6824 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6825 * should be one that prevents unnecessary balancing, but also spreads tasks
6826 * out optimally.
6827 */
96f874e2 6828static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6829{
c5f59f08 6830 nodemask_t used_nodes;
48f24c4d 6831 int i;
9c1cfda2 6832
6ca09dfc 6833 cpumask_clear(span);
c5f59f08 6834 nodes_clear(used_nodes);
9c1cfda2 6835
6ca09dfc 6836 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6837 node_set(node, used_nodes);
9c1cfda2
JH
6838
6839 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6840 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6841
6ca09dfc 6842 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6843 }
9c1cfda2 6844}
6d6bc0ad 6845#endif /* CONFIG_NUMA */
9c1cfda2 6846
5c45bf27 6847int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6848
6c99e9ad
RR
6849/*
6850 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6851 *
6852 * ( See the the comments in include/linux/sched.h:struct sched_group
6853 * and struct sched_domain. )
6c99e9ad
RR
6854 */
6855struct static_sched_group {
6856 struct sched_group sg;
6857 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6858};
6859
6860struct static_sched_domain {
6861 struct sched_domain sd;
6862 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6863};
6864
49a02c51
AH
6865struct s_data {
6866#ifdef CONFIG_NUMA
6867 int sd_allnodes;
6868 cpumask_var_t domainspan;
6869 cpumask_var_t covered;
6870 cpumask_var_t notcovered;
6871#endif
6872 cpumask_var_t nodemask;
6873 cpumask_var_t this_sibling_map;
6874 cpumask_var_t this_core_map;
01a08546 6875 cpumask_var_t this_book_map;
49a02c51
AH
6876 cpumask_var_t send_covered;
6877 cpumask_var_t tmpmask;
6878 struct sched_group **sched_group_nodes;
6879 struct root_domain *rd;
6880};
6881
2109b99e
AH
6882enum s_alloc {
6883 sa_sched_groups = 0,
6884 sa_rootdomain,
6885 sa_tmpmask,
6886 sa_send_covered,
01a08546 6887 sa_this_book_map,
2109b99e
AH
6888 sa_this_core_map,
6889 sa_this_sibling_map,
6890 sa_nodemask,
6891 sa_sched_group_nodes,
6892#ifdef CONFIG_NUMA
6893 sa_notcovered,
6894 sa_covered,
6895 sa_domainspan,
6896#endif
6897 sa_none,
6898};
6899
9c1cfda2 6900/*
48f24c4d 6901 * SMT sched-domains:
9c1cfda2 6902 */
1da177e4 6903#ifdef CONFIG_SCHED_SMT
6c99e9ad 6904static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6905static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6906
41a2d6cf 6907static int
96f874e2
RR
6908cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6909 struct sched_group **sg, struct cpumask *unused)
1da177e4 6910{
6711cab4 6911 if (sg)
1871e52c 6912 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6913 return cpu;
6914}
6d6bc0ad 6915#endif /* CONFIG_SCHED_SMT */
1da177e4 6916
48f24c4d
IM
6917/*
6918 * multi-core sched-domains:
6919 */
1e9f28fa 6920#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6921static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6922static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
1e9f28fa 6923
41a2d6cf 6924static int
96f874e2
RR
6925cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6926 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6927{
6711cab4 6928 int group;
f269893c 6929#ifdef CONFIG_SCHED_SMT
c69fc56d 6930 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6931 group = cpumask_first(mask);
f269893c
HC
6932#else
6933 group = cpu;
6934#endif
6711cab4 6935 if (sg)
6c99e9ad 6936 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6937 return group;
1e9f28fa 6938}
f269893c 6939#endif /* CONFIG_SCHED_MC */
1e9f28fa 6940
01a08546
HC
6941/*
6942 * book sched-domains:
6943 */
6944#ifdef CONFIG_SCHED_BOOK
6945static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6946static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6947
41a2d6cf 6948static int
01a08546
HC
6949cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6950 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6951{
01a08546
HC
6952 int group = cpu;
6953#ifdef CONFIG_SCHED_MC
6954 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6955 group = cpumask_first(mask);
6956#elif defined(CONFIG_SCHED_SMT)
6957 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6958 group = cpumask_first(mask);
6959#endif
6711cab4 6960 if (sg)
01a08546
HC
6961 *sg = &per_cpu(sched_group_book, group).sg;
6962 return group;
1e9f28fa 6963}
01a08546 6964#endif /* CONFIG_SCHED_BOOK */
1e9f28fa 6965
6c99e9ad
RR
6966static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6967static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6968
41a2d6cf 6969static int
96f874e2
RR
6970cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6971 struct sched_group **sg, struct cpumask *mask)
1da177e4 6972{
6711cab4 6973 int group;
01a08546
HC
6974#ifdef CONFIG_SCHED_BOOK
6975 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6976 group = cpumask_first(mask);
6977#elif defined(CONFIG_SCHED_MC)
6ca09dfc 6978 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6979 group = cpumask_first(mask);
1e9f28fa 6980#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6981 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6982 group = cpumask_first(mask);
1da177e4 6983#else
6711cab4 6984 group = cpu;
1da177e4 6985#endif
6711cab4 6986 if (sg)
6c99e9ad 6987 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6988 return group;
1da177e4
LT
6989}
6990
6991#ifdef CONFIG_NUMA
1da177e4 6992/*
9c1cfda2
JH
6993 * The init_sched_build_groups can't handle what we want to do with node
6994 * groups, so roll our own. Now each node has its own list of groups which
6995 * gets dynamically allocated.
1da177e4 6996 */
62ea9ceb 6997static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6998static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6999
62ea9ceb 7000static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7001static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7002
96f874e2
RR
7003static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7004 struct sched_group **sg,
7005 struct cpumask *nodemask)
9c1cfda2 7006{
6711cab4
SS
7007 int group;
7008
6ca09dfc 7009 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7010 group = cpumask_first(nodemask);
6711cab4
SS
7011
7012 if (sg)
6c99e9ad 7013 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7014 return group;
1da177e4 7015}
6711cab4 7016
08069033
SS
7017static void init_numa_sched_groups_power(struct sched_group *group_head)
7018{
7019 struct sched_group *sg = group_head;
7020 int j;
7021
7022 if (!sg)
7023 return;
3a5c359a 7024 do {
758b2cdc 7025 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7026 struct sched_domain *sd;
08069033 7027
6c99e9ad 7028 sd = &per_cpu(phys_domains, j).sd;
13318a71 7029 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
7030 /*
7031 * Only add "power" once for each
7032 * physical package.
7033 */
7034 continue;
7035 }
08069033 7036
18a3885f 7037 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
7038 }
7039 sg = sg->next;
7040 } while (sg != group_head);
08069033 7041}
0601a88d
AH
7042
7043static int build_numa_sched_groups(struct s_data *d,
7044 const struct cpumask *cpu_map, int num)
7045{
7046 struct sched_domain *sd;
7047 struct sched_group *sg, *prev;
7048 int n, j;
7049
7050 cpumask_clear(d->covered);
7051 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7052 if (cpumask_empty(d->nodemask)) {
7053 d->sched_group_nodes[num] = NULL;
7054 goto out;
7055 }
7056
7057 sched_domain_node_span(num, d->domainspan);
7058 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7059
7060 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7061 GFP_KERNEL, num);
7062 if (!sg) {
3df0fc5b
PZ
7063 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7064 num);
0601a88d
AH
7065 return -ENOMEM;
7066 }
7067 d->sched_group_nodes[num] = sg;
7068
7069 for_each_cpu(j, d->nodemask) {
7070 sd = &per_cpu(node_domains, j).sd;
7071 sd->groups = sg;
7072 }
7073
18a3885f 7074 sg->cpu_power = 0;
0601a88d
AH
7075 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7076 sg->next = sg;
7077 cpumask_or(d->covered, d->covered, d->nodemask);
7078
7079 prev = sg;
7080 for (j = 0; j < nr_node_ids; j++) {
7081 n = (num + j) % nr_node_ids;
7082 cpumask_complement(d->notcovered, d->covered);
7083 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7084 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7085 if (cpumask_empty(d->tmpmask))
7086 break;
7087 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7088 if (cpumask_empty(d->tmpmask))
7089 continue;
7090 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7091 GFP_KERNEL, num);
7092 if (!sg) {
3df0fc5b
PZ
7093 printk(KERN_WARNING
7094 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
7095 return -ENOMEM;
7096 }
18a3885f 7097 sg->cpu_power = 0;
0601a88d
AH
7098 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7099 sg->next = prev->next;
7100 cpumask_or(d->covered, d->covered, d->tmpmask);
7101 prev->next = sg;
7102 prev = sg;
7103 }
7104out:
7105 return 0;
7106}
6d6bc0ad 7107#endif /* CONFIG_NUMA */
1da177e4 7108
a616058b 7109#ifdef CONFIG_NUMA
51888ca2 7110/* Free memory allocated for various sched_group structures */
96f874e2
RR
7111static void free_sched_groups(const struct cpumask *cpu_map,
7112 struct cpumask *nodemask)
51888ca2 7113{
a616058b 7114 int cpu, i;
51888ca2 7115
abcd083a 7116 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7117 struct sched_group **sched_group_nodes
7118 = sched_group_nodes_bycpu[cpu];
7119
51888ca2
SV
7120 if (!sched_group_nodes)
7121 continue;
7122
076ac2af 7123 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7124 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7125
6ca09dfc 7126 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7127 if (cpumask_empty(nodemask))
51888ca2
SV
7128 continue;
7129
7130 if (sg == NULL)
7131 continue;
7132 sg = sg->next;
7133next_sg:
7134 oldsg = sg;
7135 sg = sg->next;
7136 kfree(oldsg);
7137 if (oldsg != sched_group_nodes[i])
7138 goto next_sg;
7139 }
7140 kfree(sched_group_nodes);
7141 sched_group_nodes_bycpu[cpu] = NULL;
7142 }
51888ca2 7143}
6d6bc0ad 7144#else /* !CONFIG_NUMA */
96f874e2
RR
7145static void free_sched_groups(const struct cpumask *cpu_map,
7146 struct cpumask *nodemask)
a616058b
SS
7147{
7148}
6d6bc0ad 7149#endif /* CONFIG_NUMA */
51888ca2 7150
89c4710e
SS
7151/*
7152 * Initialize sched groups cpu_power.
7153 *
7154 * cpu_power indicates the capacity of sched group, which is used while
7155 * distributing the load between different sched groups in a sched domain.
7156 * Typically cpu_power for all the groups in a sched domain will be same unless
7157 * there are asymmetries in the topology. If there are asymmetries, group
7158 * having more cpu_power will pickup more load compared to the group having
7159 * less cpu_power.
89c4710e
SS
7160 */
7161static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7162{
7163 struct sched_domain *child;
7164 struct sched_group *group;
f93e65c1
PZ
7165 long power;
7166 int weight;
89c4710e
SS
7167
7168 WARN_ON(!sd || !sd->groups);
7169
13318a71 7170 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
7171 return;
7172
aae6d3dd
SS
7173 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7174
89c4710e
SS
7175 child = sd->child;
7176
18a3885f 7177 sd->groups->cpu_power = 0;
5517d86b 7178
f93e65c1
PZ
7179 if (!child) {
7180 power = SCHED_LOAD_SCALE;
7181 weight = cpumask_weight(sched_domain_span(sd));
7182 /*
7183 * SMT siblings share the power of a single core.
a52bfd73
PZ
7184 * Usually multiple threads get a better yield out of
7185 * that one core than a single thread would have,
7186 * reflect that in sd->smt_gain.
f93e65c1 7187 */
a52bfd73
PZ
7188 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7189 power *= sd->smt_gain;
f93e65c1 7190 power /= weight;
a52bfd73
PZ
7191 power >>= SCHED_LOAD_SHIFT;
7192 }
18a3885f 7193 sd->groups->cpu_power += power;
89c4710e
SS
7194 return;
7195 }
7196
89c4710e 7197 /*
f93e65c1 7198 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
7199 */
7200 group = child->groups;
7201 do {
18a3885f 7202 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
7203 group = group->next;
7204 } while (group != child->groups);
7205}
7206
7c16ec58
MT
7207/*
7208 * Initializers for schedule domains
7209 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7210 */
7211
a5d8c348
IM
7212#ifdef CONFIG_SCHED_DEBUG
7213# define SD_INIT_NAME(sd, type) sd->name = #type
7214#else
7215# define SD_INIT_NAME(sd, type) do { } while (0)
7216#endif
7217
7c16ec58 7218#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7219
7c16ec58
MT
7220#define SD_INIT_FUNC(type) \
7221static noinline void sd_init_##type(struct sched_domain *sd) \
7222{ \
7223 memset(sd, 0, sizeof(*sd)); \
7224 *sd = SD_##type##_INIT; \
1d3504fc 7225 sd->level = SD_LV_##type; \
a5d8c348 7226 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7227}
7228
7229SD_INIT_FUNC(CPU)
7230#ifdef CONFIG_NUMA
7231 SD_INIT_FUNC(ALLNODES)
7232 SD_INIT_FUNC(NODE)
7233#endif
7234#ifdef CONFIG_SCHED_SMT
7235 SD_INIT_FUNC(SIBLING)
7236#endif
7237#ifdef CONFIG_SCHED_MC
7238 SD_INIT_FUNC(MC)
7239#endif
01a08546
HC
7240#ifdef CONFIG_SCHED_BOOK
7241 SD_INIT_FUNC(BOOK)
7242#endif
7c16ec58 7243
1d3504fc
HS
7244static int default_relax_domain_level = -1;
7245
7246static int __init setup_relax_domain_level(char *str)
7247{
30e0e178
LZ
7248 unsigned long val;
7249
7250 val = simple_strtoul(str, NULL, 0);
7251 if (val < SD_LV_MAX)
7252 default_relax_domain_level = val;
7253
1d3504fc
HS
7254 return 1;
7255}
7256__setup("relax_domain_level=", setup_relax_domain_level);
7257
7258static void set_domain_attribute(struct sched_domain *sd,
7259 struct sched_domain_attr *attr)
7260{
7261 int request;
7262
7263 if (!attr || attr->relax_domain_level < 0) {
7264 if (default_relax_domain_level < 0)
7265 return;
7266 else
7267 request = default_relax_domain_level;
7268 } else
7269 request = attr->relax_domain_level;
7270 if (request < sd->level) {
7271 /* turn off idle balance on this domain */
c88d5910 7272 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7273 } else {
7274 /* turn on idle balance on this domain */
c88d5910 7275 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7276 }
7277}
7278
2109b99e
AH
7279static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7280 const struct cpumask *cpu_map)
7281{
7282 switch (what) {
7283 case sa_sched_groups:
7284 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7285 d->sched_group_nodes = NULL;
7286 case sa_rootdomain:
7287 free_rootdomain(d->rd); /* fall through */
7288 case sa_tmpmask:
7289 free_cpumask_var(d->tmpmask); /* fall through */
7290 case sa_send_covered:
7291 free_cpumask_var(d->send_covered); /* fall through */
01a08546
HC
7292 case sa_this_book_map:
7293 free_cpumask_var(d->this_book_map); /* fall through */
2109b99e
AH
7294 case sa_this_core_map:
7295 free_cpumask_var(d->this_core_map); /* fall through */
7296 case sa_this_sibling_map:
7297 free_cpumask_var(d->this_sibling_map); /* fall through */
7298 case sa_nodemask:
7299 free_cpumask_var(d->nodemask); /* fall through */
7300 case sa_sched_group_nodes:
d1b55138 7301#ifdef CONFIG_NUMA
2109b99e
AH
7302 kfree(d->sched_group_nodes); /* fall through */
7303 case sa_notcovered:
7304 free_cpumask_var(d->notcovered); /* fall through */
7305 case sa_covered:
7306 free_cpumask_var(d->covered); /* fall through */
7307 case sa_domainspan:
7308 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 7309#endif
2109b99e
AH
7310 case sa_none:
7311 break;
7312 }
7313}
3404c8d9 7314
2109b99e
AH
7315static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7316 const struct cpumask *cpu_map)
7317{
3404c8d9 7318#ifdef CONFIG_NUMA
2109b99e
AH
7319 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7320 return sa_none;
7321 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7322 return sa_domainspan;
7323 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7324 return sa_covered;
7325 /* Allocate the per-node list of sched groups */
7326 d->sched_group_nodes = kcalloc(nr_node_ids,
7327 sizeof(struct sched_group *), GFP_KERNEL);
7328 if (!d->sched_group_nodes) {
3df0fc5b 7329 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 7330 return sa_notcovered;
d1b55138 7331 }
2109b99e 7332 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 7333#endif
2109b99e
AH
7334 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7335 return sa_sched_group_nodes;
7336 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7337 return sa_nodemask;
7338 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7339 return sa_this_sibling_map;
01a08546 7340 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
2109b99e 7341 return sa_this_core_map;
01a08546
HC
7342 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7343 return sa_this_book_map;
2109b99e
AH
7344 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7345 return sa_send_covered;
7346 d->rd = alloc_rootdomain();
7347 if (!d->rd) {
3df0fc5b 7348 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 7349 return sa_tmpmask;
57d885fe 7350 }
2109b99e
AH
7351 return sa_rootdomain;
7352}
57d885fe 7353
7f4588f3
AH
7354static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7355 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7356{
7357 struct sched_domain *sd = NULL;
7c16ec58 7358#ifdef CONFIG_NUMA
7f4588f3 7359 struct sched_domain *parent;
1da177e4 7360
7f4588f3
AH
7361 d->sd_allnodes = 0;
7362 if (cpumask_weight(cpu_map) >
7363 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7364 sd = &per_cpu(allnodes_domains, i).sd;
7365 SD_INIT(sd, ALLNODES);
1d3504fc 7366 set_domain_attribute(sd, attr);
7f4588f3
AH
7367 cpumask_copy(sched_domain_span(sd), cpu_map);
7368 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7369 d->sd_allnodes = 1;
7370 }
7371 parent = sd;
7372
7373 sd = &per_cpu(node_domains, i).sd;
7374 SD_INIT(sd, NODE);
7375 set_domain_attribute(sd, attr);
7376 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7377 sd->parent = parent;
7378 if (parent)
7379 parent->child = sd;
7380 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 7381#endif
7f4588f3
AH
7382 return sd;
7383}
1da177e4 7384
87cce662
AH
7385static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7386 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7387 struct sched_domain *parent, int i)
7388{
7389 struct sched_domain *sd;
7390 sd = &per_cpu(phys_domains, i).sd;
7391 SD_INIT(sd, CPU);
7392 set_domain_attribute(sd, attr);
7393 cpumask_copy(sched_domain_span(sd), d->nodemask);
7394 sd->parent = parent;
7395 if (parent)
7396 parent->child = sd;
7397 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7398 return sd;
7399}
1da177e4 7400
01a08546
HC
7401static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7402 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7403 struct sched_domain *parent, int i)
7404{
7405 struct sched_domain *sd = parent;
7406#ifdef CONFIG_SCHED_BOOK
7407 sd = &per_cpu(book_domains, i).sd;
7408 SD_INIT(sd, BOOK);
7409 set_domain_attribute(sd, attr);
7410 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7411 sd->parent = parent;
7412 parent->child = sd;
7413 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7414#endif
7415 return sd;
7416}
7417
410c4081
AH
7418static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7419 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7420 struct sched_domain *parent, int i)
7421{
7422 struct sched_domain *sd = parent;
1e9f28fa 7423#ifdef CONFIG_SCHED_MC
410c4081
AH
7424 sd = &per_cpu(core_domains, i).sd;
7425 SD_INIT(sd, MC);
7426 set_domain_attribute(sd, attr);
7427 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7428 sd->parent = parent;
7429 parent->child = sd;
7430 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 7431#endif
410c4081
AH
7432 return sd;
7433}
1e9f28fa 7434
d8173535
AH
7435static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7436 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7437 struct sched_domain *parent, int i)
7438{
7439 struct sched_domain *sd = parent;
1da177e4 7440#ifdef CONFIG_SCHED_SMT
d8173535
AH
7441 sd = &per_cpu(cpu_domains, i).sd;
7442 SD_INIT(sd, SIBLING);
7443 set_domain_attribute(sd, attr);
7444 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7445 sd->parent = parent;
7446 parent->child = sd;
7447 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 7448#endif
d8173535
AH
7449 return sd;
7450}
1da177e4 7451
0e8e85c9
AH
7452static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7453 const struct cpumask *cpu_map, int cpu)
7454{
7455 switch (l) {
1da177e4 7456#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
7457 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7458 cpumask_and(d->this_sibling_map, cpu_map,
7459 topology_thread_cpumask(cpu));
7460 if (cpu == cpumask_first(d->this_sibling_map))
7461 init_sched_build_groups(d->this_sibling_map, cpu_map,
7462 &cpu_to_cpu_group,
7463 d->send_covered, d->tmpmask);
7464 break;
1da177e4 7465#endif
1e9f28fa 7466#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7467 case SD_LV_MC: /* set up multi-core groups */
7468 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7469 if (cpu == cpumask_first(d->this_core_map))
7470 init_sched_build_groups(d->this_core_map, cpu_map,
7471 &cpu_to_core_group,
7472 d->send_covered, d->tmpmask);
7473 break;
01a08546
HC
7474#endif
7475#ifdef CONFIG_SCHED_BOOK
7476 case SD_LV_BOOK: /* set up book groups */
7477 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7478 if (cpu == cpumask_first(d->this_book_map))
7479 init_sched_build_groups(d->this_book_map, cpu_map,
7480 &cpu_to_book_group,
7481 d->send_covered, d->tmpmask);
7482 break;
1e9f28fa 7483#endif
86548096
AH
7484 case SD_LV_CPU: /* set up physical groups */
7485 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7486 if (!cpumask_empty(d->nodemask))
7487 init_sched_build_groups(d->nodemask, cpu_map,
7488 &cpu_to_phys_group,
7489 d->send_covered, d->tmpmask);
7490 break;
1da177e4 7491#ifdef CONFIG_NUMA
de616e36
AH
7492 case SD_LV_ALLNODES:
7493 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7494 d->send_covered, d->tmpmask);
7495 break;
7496#endif
0e8e85c9
AH
7497 default:
7498 break;
7c16ec58 7499 }
0e8e85c9 7500}
9c1cfda2 7501
2109b99e
AH
7502/*
7503 * Build sched domains for a given set of cpus and attach the sched domains
7504 * to the individual cpus
7505 */
7506static int __build_sched_domains(const struct cpumask *cpu_map,
7507 struct sched_domain_attr *attr)
7508{
7509 enum s_alloc alloc_state = sa_none;
7510 struct s_data d;
294b0c96 7511 struct sched_domain *sd;
2109b99e 7512 int i;
7c16ec58 7513#ifdef CONFIG_NUMA
2109b99e 7514 d.sd_allnodes = 0;
7c16ec58 7515#endif
9c1cfda2 7516
2109b99e
AH
7517 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7518 if (alloc_state != sa_rootdomain)
7519 goto error;
7520 alloc_state = sa_sched_groups;
9c1cfda2 7521
1da177e4 7522 /*
1a20ff27 7523 * Set up domains for cpus specified by the cpu_map.
1da177e4 7524 */
abcd083a 7525 for_each_cpu(i, cpu_map) {
49a02c51
AH
7526 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7527 cpu_map);
9761eea8 7528
7f4588f3 7529 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7530 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
01a08546 7531 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7532 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7533 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7534 }
9c1cfda2 7535
abcd083a 7536 for_each_cpu(i, cpu_map) {
0e8e85c9 7537 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
01a08546 7538 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
a2af04cd 7539 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7540 }
9c1cfda2 7541
1da177e4 7542 /* Set up physical groups */
86548096
AH
7543 for (i = 0; i < nr_node_ids; i++)
7544 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7545
1da177e4
LT
7546#ifdef CONFIG_NUMA
7547 /* Set up node groups */
de616e36
AH
7548 if (d.sd_allnodes)
7549 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7550
0601a88d
AH
7551 for (i = 0; i < nr_node_ids; i++)
7552 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7553 goto error;
1da177e4
LT
7554#endif
7555
7556 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7557#ifdef CONFIG_SCHED_SMT
abcd083a 7558 for_each_cpu(i, cpu_map) {
294b0c96 7559 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7560 init_sched_groups_power(i, sd);
5c45bf27 7561 }
1da177e4 7562#endif
1e9f28fa 7563#ifdef CONFIG_SCHED_MC
abcd083a 7564 for_each_cpu(i, cpu_map) {
294b0c96 7565 sd = &per_cpu(core_domains, i).sd;
89c4710e 7566 init_sched_groups_power(i, sd);
5c45bf27
SS
7567 }
7568#endif
01a08546
HC
7569#ifdef CONFIG_SCHED_BOOK
7570 for_each_cpu(i, cpu_map) {
7571 sd = &per_cpu(book_domains, i).sd;
7572 init_sched_groups_power(i, sd);
7573 }
7574#endif
1e9f28fa 7575
abcd083a 7576 for_each_cpu(i, cpu_map) {
294b0c96 7577 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7578 init_sched_groups_power(i, sd);
1da177e4
LT
7579 }
7580
9c1cfda2 7581#ifdef CONFIG_NUMA
076ac2af 7582 for (i = 0; i < nr_node_ids; i++)
49a02c51 7583 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7584
49a02c51 7585 if (d.sd_allnodes) {
6711cab4 7586 struct sched_group *sg;
f712c0c7 7587
96f874e2 7588 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7589 d.tmpmask);
f712c0c7
SS
7590 init_numa_sched_groups_power(sg);
7591 }
9c1cfda2
JH
7592#endif
7593
1da177e4 7594 /* Attach the domains */
abcd083a 7595 for_each_cpu(i, cpu_map) {
1da177e4 7596#ifdef CONFIG_SCHED_SMT
6c99e9ad 7597 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7598#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7599 sd = &per_cpu(core_domains, i).sd;
01a08546
HC
7600#elif defined(CONFIG_SCHED_BOOK)
7601 sd = &per_cpu(book_domains, i).sd;
1da177e4 7602#else
6c99e9ad 7603 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7604#endif
49a02c51 7605 cpu_attach_domain(sd, d.rd, i);
1da177e4 7606 }
51888ca2 7607
2109b99e
AH
7608 d.sched_group_nodes = NULL; /* don't free this we still need it */
7609 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7610 return 0;
51888ca2 7611
51888ca2 7612error:
2109b99e
AH
7613 __free_domain_allocs(&d, alloc_state, cpu_map);
7614 return -ENOMEM;
1da177e4 7615}
029190c5 7616
96f874e2 7617static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7618{
7619 return __build_sched_domains(cpu_map, NULL);
7620}
7621
acc3f5d7 7622static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7623static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7624static struct sched_domain_attr *dattr_cur;
7625 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7626
7627/*
7628 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7629 * cpumask) fails, then fallback to a single sched domain,
7630 * as determined by the single cpumask fallback_doms.
029190c5 7631 */
4212823f 7632static cpumask_var_t fallback_doms;
029190c5 7633
ee79d1bd
HC
7634/*
7635 * arch_update_cpu_topology lets virtualized architectures update the
7636 * cpu core maps. It is supposed to return 1 if the topology changed
7637 * or 0 if it stayed the same.
7638 */
7639int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7640{
ee79d1bd 7641 return 0;
22e52b07
HC
7642}
7643
acc3f5d7
RR
7644cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7645{
7646 int i;
7647 cpumask_var_t *doms;
7648
7649 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7650 if (!doms)
7651 return NULL;
7652 for (i = 0; i < ndoms; i++) {
7653 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7654 free_sched_domains(doms, i);
7655 return NULL;
7656 }
7657 }
7658 return doms;
7659}
7660
7661void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7662{
7663 unsigned int i;
7664 for (i = 0; i < ndoms; i++)
7665 free_cpumask_var(doms[i]);
7666 kfree(doms);
7667}
7668
1a20ff27 7669/*
41a2d6cf 7670 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7671 * For now this just excludes isolated cpus, but could be used to
7672 * exclude other special cases in the future.
1a20ff27 7673 */
96f874e2 7674static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7675{
7378547f
MM
7676 int err;
7677
22e52b07 7678 arch_update_cpu_topology();
029190c5 7679 ndoms_cur = 1;
acc3f5d7 7680 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7681 if (!doms_cur)
acc3f5d7
RR
7682 doms_cur = &fallback_doms;
7683 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7684 dattr_cur = NULL;
acc3f5d7 7685 err = build_sched_domains(doms_cur[0]);
6382bc90 7686 register_sched_domain_sysctl();
7378547f
MM
7687
7688 return err;
1a20ff27
DG
7689}
7690
96f874e2
RR
7691static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7692 struct cpumask *tmpmask)
1da177e4 7693{
7c16ec58 7694 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7695}
1da177e4 7696
1a20ff27
DG
7697/*
7698 * Detach sched domains from a group of cpus specified in cpu_map
7699 * These cpus will now be attached to the NULL domain
7700 */
96f874e2 7701static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7702{
96f874e2
RR
7703 /* Save because hotplug lock held. */
7704 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7705 int i;
7706
abcd083a 7707 for_each_cpu(i, cpu_map)
57d885fe 7708 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7709 synchronize_sched();
96f874e2 7710 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7711}
7712
1d3504fc
HS
7713/* handle null as "default" */
7714static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7715 struct sched_domain_attr *new, int idx_new)
7716{
7717 struct sched_domain_attr tmp;
7718
7719 /* fast path */
7720 if (!new && !cur)
7721 return 1;
7722
7723 tmp = SD_ATTR_INIT;
7724 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7725 new ? (new + idx_new) : &tmp,
7726 sizeof(struct sched_domain_attr));
7727}
7728
029190c5
PJ
7729/*
7730 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7731 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7732 * doms_new[] to the current sched domain partitioning, doms_cur[].
7733 * It destroys each deleted domain and builds each new domain.
7734 *
acc3f5d7 7735 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7736 * The masks don't intersect (don't overlap.) We should setup one
7737 * sched domain for each mask. CPUs not in any of the cpumasks will
7738 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7739 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7740 * it as it is.
7741 *
acc3f5d7
RR
7742 * The passed in 'doms_new' should be allocated using
7743 * alloc_sched_domains. This routine takes ownership of it and will
7744 * free_sched_domains it when done with it. If the caller failed the
7745 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7746 * and partition_sched_domains() will fallback to the single partition
7747 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7748 *
96f874e2 7749 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7750 * ndoms_new == 0 is a special case for destroying existing domains,
7751 * and it will not create the default domain.
dfb512ec 7752 *
029190c5
PJ
7753 * Call with hotplug lock held
7754 */
acc3f5d7 7755void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7756 struct sched_domain_attr *dattr_new)
029190c5 7757{
dfb512ec 7758 int i, j, n;
d65bd5ec 7759 int new_topology;
029190c5 7760
712555ee 7761 mutex_lock(&sched_domains_mutex);
a1835615 7762
7378547f
MM
7763 /* always unregister in case we don't destroy any domains */
7764 unregister_sched_domain_sysctl();
7765
d65bd5ec
HC
7766 /* Let architecture update cpu core mappings. */
7767 new_topology = arch_update_cpu_topology();
7768
dfb512ec 7769 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7770
7771 /* Destroy deleted domains */
7772 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7773 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7774 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7775 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7776 goto match1;
7777 }
7778 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7779 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7780match1:
7781 ;
7782 }
7783
e761b772
MK
7784 if (doms_new == NULL) {
7785 ndoms_cur = 0;
acc3f5d7 7786 doms_new = &fallback_doms;
6ad4c188 7787 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7788 WARN_ON_ONCE(dattr_new);
e761b772
MK
7789 }
7790
029190c5
PJ
7791 /* Build new domains */
7792 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7793 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7794 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7795 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7796 goto match2;
7797 }
7798 /* no match - add a new doms_new */
acc3f5d7 7799 __build_sched_domains(doms_new[i],
1d3504fc 7800 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7801match2:
7802 ;
7803 }
7804
7805 /* Remember the new sched domains */
acc3f5d7
RR
7806 if (doms_cur != &fallback_doms)
7807 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7808 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7809 doms_cur = doms_new;
1d3504fc 7810 dattr_cur = dattr_new;
029190c5 7811 ndoms_cur = ndoms_new;
7378547f
MM
7812
7813 register_sched_domain_sysctl();
a1835615 7814
712555ee 7815 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7816}
7817
5c45bf27 7818#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7819static void arch_reinit_sched_domains(void)
5c45bf27 7820{
95402b38 7821 get_online_cpus();
dfb512ec
MK
7822
7823 /* Destroy domains first to force the rebuild */
7824 partition_sched_domains(0, NULL, NULL);
7825
e761b772 7826 rebuild_sched_domains();
95402b38 7827 put_online_cpus();
5c45bf27
SS
7828}
7829
7830static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7831{
afb8a9b7 7832 unsigned int level = 0;
5c45bf27 7833
afb8a9b7
GS
7834 if (sscanf(buf, "%u", &level) != 1)
7835 return -EINVAL;
7836
7837 /*
7838 * level is always be positive so don't check for
7839 * level < POWERSAVINGS_BALANCE_NONE which is 0
7840 * What happens on 0 or 1 byte write,
7841 * need to check for count as well?
7842 */
7843
7844 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7845 return -EINVAL;
7846
7847 if (smt)
afb8a9b7 7848 sched_smt_power_savings = level;
5c45bf27 7849 else
afb8a9b7 7850 sched_mc_power_savings = level;
5c45bf27 7851
c70f22d2 7852 arch_reinit_sched_domains();
5c45bf27 7853
c70f22d2 7854 return count;
5c45bf27
SS
7855}
7856
5c45bf27 7857#ifdef CONFIG_SCHED_MC
f718cd4a 7858static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7859 struct sysdev_class_attribute *attr,
f718cd4a 7860 char *page)
5c45bf27
SS
7861{
7862 return sprintf(page, "%u\n", sched_mc_power_savings);
7863}
f718cd4a 7864static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7865 struct sysdev_class_attribute *attr,
48f24c4d 7866 const char *buf, size_t count)
5c45bf27
SS
7867{
7868 return sched_power_savings_store(buf, count, 0);
7869}
f718cd4a
AK
7870static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7871 sched_mc_power_savings_show,
7872 sched_mc_power_savings_store);
5c45bf27
SS
7873#endif
7874
7875#ifdef CONFIG_SCHED_SMT
f718cd4a 7876static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7877 struct sysdev_class_attribute *attr,
f718cd4a 7878 char *page)
5c45bf27
SS
7879{
7880 return sprintf(page, "%u\n", sched_smt_power_savings);
7881}
f718cd4a 7882static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7883 struct sysdev_class_attribute *attr,
48f24c4d 7884 const char *buf, size_t count)
5c45bf27
SS
7885{
7886 return sched_power_savings_store(buf, count, 1);
7887}
f718cd4a
AK
7888static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7889 sched_smt_power_savings_show,
6707de00
AB
7890 sched_smt_power_savings_store);
7891#endif
7892
39aac648 7893int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7894{
7895 int err = 0;
7896
7897#ifdef CONFIG_SCHED_SMT
7898 if (smt_capable())
7899 err = sysfs_create_file(&cls->kset.kobj,
7900 &attr_sched_smt_power_savings.attr);
7901#endif
7902#ifdef CONFIG_SCHED_MC
7903 if (!err && mc_capable())
7904 err = sysfs_create_file(&cls->kset.kobj,
7905 &attr_sched_mc_power_savings.attr);
7906#endif
7907 return err;
7908}
6d6bc0ad 7909#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7910
1da177e4 7911/*
3a101d05
TH
7912 * Update cpusets according to cpu_active mask. If cpusets are
7913 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7914 * around partition_sched_domains().
1da177e4 7915 */
0b2e918a
TH
7916static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7917 void *hcpu)
e761b772 7918{
3a101d05 7919 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7920 case CPU_ONLINE:
6ad4c188 7921 case CPU_DOWN_FAILED:
3a101d05 7922 cpuset_update_active_cpus();
e761b772 7923 return NOTIFY_OK;
3a101d05
TH
7924 default:
7925 return NOTIFY_DONE;
7926 }
7927}
e761b772 7928
0b2e918a
TH
7929static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7930 void *hcpu)
3a101d05
TH
7931{
7932 switch (action & ~CPU_TASKS_FROZEN) {
7933 case CPU_DOWN_PREPARE:
7934 cpuset_update_active_cpus();
7935 return NOTIFY_OK;
e761b772
MK
7936 default:
7937 return NOTIFY_DONE;
7938 }
7939}
e761b772
MK
7940
7941static int update_runtime(struct notifier_block *nfb,
7942 unsigned long action, void *hcpu)
1da177e4 7943{
7def2be1
PZ
7944 int cpu = (int)(long)hcpu;
7945
1da177e4 7946 switch (action) {
1da177e4 7947 case CPU_DOWN_PREPARE:
8bb78442 7948 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7949 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7950 return NOTIFY_OK;
7951
1da177e4 7952 case CPU_DOWN_FAILED:
8bb78442 7953 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7954 case CPU_ONLINE:
8bb78442 7955 case CPU_ONLINE_FROZEN:
7def2be1 7956 enable_runtime(cpu_rq(cpu));
e761b772
MK
7957 return NOTIFY_OK;
7958
1da177e4
LT
7959 default:
7960 return NOTIFY_DONE;
7961 }
1da177e4 7962}
1da177e4
LT
7963
7964void __init sched_init_smp(void)
7965{
dcc30a35
RR
7966 cpumask_var_t non_isolated_cpus;
7967
7968 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7969 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7970
434d53b0
MT
7971#if defined(CONFIG_NUMA)
7972 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7973 GFP_KERNEL);
7974 BUG_ON(sched_group_nodes_bycpu == NULL);
7975#endif
95402b38 7976 get_online_cpus();
712555ee 7977 mutex_lock(&sched_domains_mutex);
6ad4c188 7978 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7979 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7980 if (cpumask_empty(non_isolated_cpus))
7981 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7982 mutex_unlock(&sched_domains_mutex);
95402b38 7983 put_online_cpus();
e761b772 7984
3a101d05
TH
7985 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7986 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
7987
7988 /* RT runtime code needs to handle some hotplug events */
7989 hotcpu_notifier(update_runtime, 0);
7990
b328ca18 7991 init_hrtick();
5c1e1767
NP
7992
7993 /* Move init over to a non-isolated CPU */
dcc30a35 7994 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7995 BUG();
19978ca6 7996 sched_init_granularity();
dcc30a35 7997 free_cpumask_var(non_isolated_cpus);
4212823f 7998
0e3900e6 7999 init_sched_rt_class();
1da177e4
LT
8000}
8001#else
8002void __init sched_init_smp(void)
8003{
19978ca6 8004 sched_init_granularity();
1da177e4
LT
8005}
8006#endif /* CONFIG_SMP */
8007
cd1bb94b
AB
8008const_debug unsigned int sysctl_timer_migration = 1;
8009
1da177e4
LT
8010int in_sched_functions(unsigned long addr)
8011{
1da177e4
LT
8012 return in_lock_functions(addr) ||
8013 (addr >= (unsigned long)__sched_text_start
8014 && addr < (unsigned long)__sched_text_end);
8015}
8016
a9957449 8017static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8018{
8019 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8020 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8021#ifdef CONFIG_FAIR_GROUP_SCHED
8022 cfs_rq->rq = rq;
f07333bf 8023 /* allow initial update_cfs_load() to truncate */
6ea72f12 8024#ifdef CONFIG_SMP
f07333bf 8025 cfs_rq->load_stamp = 1;
6ea72f12 8026#endif
dd41f596 8027#endif
67e9fb2a 8028 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8029}
8030
fa85ae24
PZ
8031static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8032{
8033 struct rt_prio_array *array;
8034 int i;
8035
8036 array = &rt_rq->active;
8037 for (i = 0; i < MAX_RT_PRIO; i++) {
8038 INIT_LIST_HEAD(array->queue + i);
8039 __clear_bit(i, array->bitmap);
8040 }
8041 /* delimiter for bitsearch: */
8042 __set_bit(MAX_RT_PRIO, array->bitmap);
8043
052f1dc7 8044#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8045 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8046#ifdef CONFIG_SMP
e864c499 8047 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8048#endif
48d5e258 8049#endif
fa85ae24
PZ
8050#ifdef CONFIG_SMP
8051 rt_rq->rt_nr_migratory = 0;
fa85ae24 8052 rt_rq->overloaded = 0;
05fa785c 8053 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
8054#endif
8055
8056 rt_rq->rt_time = 0;
8057 rt_rq->rt_throttled = 0;
ac086bc2 8058 rt_rq->rt_runtime = 0;
0986b11b 8059 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8060
052f1dc7 8061#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8062 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8063 rt_rq->rq = rq;
8064#endif
fa85ae24
PZ
8065}
8066
6f505b16 8067#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8068static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8069 struct sched_entity *se, int cpu,
ec7dc8ac 8070 struct sched_entity *parent)
6f505b16 8071{
ec7dc8ac 8072 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8073 tg->cfs_rq[cpu] = cfs_rq;
8074 init_cfs_rq(cfs_rq, rq);
8075 cfs_rq->tg = tg;
6f505b16
PZ
8076
8077 tg->se[cpu] = se;
07e06b01 8078 /* se could be NULL for root_task_group */
354d60c2
DG
8079 if (!se)
8080 return;
8081
ec7dc8ac
DG
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8086
6f505b16 8087 se->my_q = cfs_rq;
9437178f 8088 update_load_set(&se->load, 0);
ec7dc8ac 8089 se->parent = parent;
6f505b16 8090}
052f1dc7 8091#endif
6f505b16 8092
052f1dc7 8093#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8094static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8095 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8096 struct sched_rt_entity *parent)
6f505b16 8097{
ec7dc8ac
DG
8098 struct rq *rq = cpu_rq(cpu);
8099
6f505b16
PZ
8100 tg->rt_rq[cpu] = rt_rq;
8101 init_rt_rq(rt_rq, rq);
8102 rt_rq->tg = tg;
ac086bc2 8103 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8104
8105 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8106 if (!rt_se)
8107 return;
8108
ec7dc8ac
DG
8109 if (!parent)
8110 rt_se->rt_rq = &rq->rt;
8111 else
8112 rt_se->rt_rq = parent->my_q;
8113
6f505b16 8114 rt_se->my_q = rt_rq;
ec7dc8ac 8115 rt_se->parent = parent;
6f505b16
PZ
8116 INIT_LIST_HEAD(&rt_se->run_list);
8117}
8118#endif
8119
1da177e4
LT
8120void __init sched_init(void)
8121{
dd41f596 8122 int i, j;
434d53b0
MT
8123 unsigned long alloc_size = 0, ptr;
8124
8125#ifdef CONFIG_FAIR_GROUP_SCHED
8126 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8127#endif
8128#ifdef CONFIG_RT_GROUP_SCHED
8129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8130#endif
df7c8e84 8131#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8132 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8133#endif
434d53b0 8134 if (alloc_size) {
36b7b6d4 8135 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8136
8137#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8138 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8139 ptr += nr_cpu_ids * sizeof(void **);
8140
07e06b01 8141 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8142 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8143
6d6bc0ad 8144#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8145#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8146 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
07e06b01 8149 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8150 ptr += nr_cpu_ids * sizeof(void **);
8151
6d6bc0ad 8152#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8153#ifdef CONFIG_CPUMASK_OFFSTACK
8154 for_each_possible_cpu(i) {
8155 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8156 ptr += cpumask_size();
8157 }
8158#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8159 }
dd41f596 8160
57d885fe
GH
8161#ifdef CONFIG_SMP
8162 init_defrootdomain();
8163#endif
8164
d0b27fa7
PZ
8165 init_rt_bandwidth(&def_rt_bandwidth,
8166 global_rt_period(), global_rt_runtime());
8167
8168#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8169 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8170 global_rt_period(), global_rt_runtime());
6d6bc0ad 8171#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8172
7c941438 8173#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8174 list_add(&root_task_group.list, &task_groups);
8175 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8176 autogroup_init(&init_task);
7c941438 8177#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8178
0a945022 8179 for_each_possible_cpu(i) {
70b97a7f 8180 struct rq *rq;
1da177e4
LT
8181
8182 rq = cpu_rq(i);
05fa785c 8183 raw_spin_lock_init(&rq->lock);
7897986b 8184 rq->nr_running = 0;
dce48a84
TG
8185 rq->calc_load_active = 0;
8186 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 8187 init_cfs_rq(&rq->cfs, rq);
6f505b16 8188 init_rt_rq(&rq->rt, rq);
dd41f596 8189#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8190 root_task_group.shares = root_task_group_load;
6f505b16 8191 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8192 /*
07e06b01 8193 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8194 *
8195 * In case of task-groups formed thr' the cgroup filesystem, it
8196 * gets 100% of the cpu resources in the system. This overall
8197 * system cpu resource is divided among the tasks of
07e06b01 8198 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8199 * based on each entity's (task or task-group's) weight
8200 * (se->load.weight).
8201 *
07e06b01 8202 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8203 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8204 * then A0's share of the cpu resource is:
8205 *
0d905bca 8206 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8207 *
07e06b01
YZ
8208 * We achieve this by letting root_task_group's tasks sit
8209 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8210 */
07e06b01 8211 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8212#endif /* CONFIG_FAIR_GROUP_SCHED */
8213
8214 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8215#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8216 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8217 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8218#endif
1da177e4 8219
dd41f596
IM
8220 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8221 rq->cpu_load[j] = 0;
fdf3e95d
VP
8222
8223 rq->last_load_update_tick = jiffies;
8224
1da177e4 8225#ifdef CONFIG_SMP
41c7ce9a 8226 rq->sd = NULL;
57d885fe 8227 rq->rd = NULL;
e51fd5e2 8228 rq->cpu_power = SCHED_LOAD_SCALE;
3f029d3c 8229 rq->post_schedule = 0;
1da177e4 8230 rq->active_balance = 0;
dd41f596 8231 rq->next_balance = jiffies;
1da177e4 8232 rq->push_cpu = 0;
0a2966b4 8233 rq->cpu = i;
1f11eb6a 8234 rq->online = 0;
eae0c9df
MG
8235 rq->idle_stamp = 0;
8236 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8237 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8238#ifdef CONFIG_NO_HZ
8239 rq->nohz_balance_kick = 0;
8240 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8241#endif
1da177e4 8242#endif
8f4d37ec 8243 init_rq_hrtick(rq);
1da177e4 8244 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8245 }
8246
2dd73a4f 8247 set_load_weight(&init_task);
b50f60ce 8248
e107be36
AK
8249#ifdef CONFIG_PREEMPT_NOTIFIERS
8250 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8251#endif
8252
c9819f45 8253#ifdef CONFIG_SMP
962cf36c 8254 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8255#endif
8256
b50f60ce 8257#ifdef CONFIG_RT_MUTEXES
1d615482 8258 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
8259#endif
8260
1da177e4
LT
8261 /*
8262 * The boot idle thread does lazy MMU switching as well:
8263 */
8264 atomic_inc(&init_mm.mm_count);
8265 enter_lazy_tlb(&init_mm, current);
8266
8267 /*
8268 * Make us the idle thread. Technically, schedule() should not be
8269 * called from this thread, however somewhere below it might be,
8270 * but because we are the idle thread, we just pick up running again
8271 * when this runqueue becomes "idle".
8272 */
8273 init_idle(current, smp_processor_id());
dce48a84
TG
8274
8275 calc_load_update = jiffies + LOAD_FREQ;
8276
dd41f596
IM
8277 /*
8278 * During early bootup we pretend to be a normal task:
8279 */
8280 current->sched_class = &fair_sched_class;
6892b75e 8281
6a7b3dc3 8282 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8283 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8284#ifdef CONFIG_SMP
7d1e6a9b 8285#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8286 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8287 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8288 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8289 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8290 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8291#endif
bdddd296
RR
8292 /* May be allocated at isolcpus cmdline parse time */
8293 if (cpu_isolated_map == NULL)
8294 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8295#endif /* SMP */
6a7b3dc3 8296
6892b75e 8297 scheduler_running = 1;
1da177e4
LT
8298}
8299
8300#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
8301static inline int preempt_count_equals(int preempt_offset)
8302{
234da7bc 8303 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8304
4ba8216c 8305 return (nested == preempt_offset);
e4aafea2
FW
8306}
8307
d894837f 8308void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8309{
48f24c4d 8310#ifdef in_atomic
1da177e4
LT
8311 static unsigned long prev_jiffy; /* ratelimiting */
8312
e4aafea2
FW
8313 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8314 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8315 return;
8316 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8317 return;
8318 prev_jiffy = jiffies;
8319
3df0fc5b
PZ
8320 printk(KERN_ERR
8321 "BUG: sleeping function called from invalid context at %s:%d\n",
8322 file, line);
8323 printk(KERN_ERR
8324 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8325 in_atomic(), irqs_disabled(),
8326 current->pid, current->comm);
aef745fc
IM
8327
8328 debug_show_held_locks(current);
8329 if (irqs_disabled())
8330 print_irqtrace_events(current);
8331 dump_stack();
1da177e4
LT
8332#endif
8333}
8334EXPORT_SYMBOL(__might_sleep);
8335#endif
8336
8337#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8338static void normalize_task(struct rq *rq, struct task_struct *p)
8339{
da7a735e
PZ
8340 const struct sched_class *prev_class = p->sched_class;
8341 int old_prio = p->prio;
3a5e4dc1 8342 int on_rq;
3e51f33f 8343
fd2f4419 8344 on_rq = p->on_rq;
3a5e4dc1
AK
8345 if (on_rq)
8346 deactivate_task(rq, p, 0);
8347 __setscheduler(rq, p, SCHED_NORMAL, 0);
8348 if (on_rq) {
8349 activate_task(rq, p, 0);
8350 resched_task(rq->curr);
8351 }
da7a735e
PZ
8352
8353 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8354}
8355
1da177e4
LT
8356void normalize_rt_tasks(void)
8357{
a0f98a1c 8358 struct task_struct *g, *p;
1da177e4 8359 unsigned long flags;
70b97a7f 8360 struct rq *rq;
1da177e4 8361
4cf5d77a 8362 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8363 do_each_thread(g, p) {
178be793
IM
8364 /*
8365 * Only normalize user tasks:
8366 */
8367 if (!p->mm)
8368 continue;
8369
6cfb0d5d 8370 p->se.exec_start = 0;
6cfb0d5d 8371#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8372 p->se.statistics.wait_start = 0;
8373 p->se.statistics.sleep_start = 0;
8374 p->se.statistics.block_start = 0;
6cfb0d5d 8375#endif
dd41f596
IM
8376
8377 if (!rt_task(p)) {
8378 /*
8379 * Renice negative nice level userspace
8380 * tasks back to 0:
8381 */
8382 if (TASK_NICE(p) < 0 && p->mm)
8383 set_user_nice(p, 0);
1da177e4 8384 continue;
dd41f596 8385 }
1da177e4 8386
1d615482 8387 raw_spin_lock(&p->pi_lock);
b29739f9 8388 rq = __task_rq_lock(p);
1da177e4 8389
178be793 8390 normalize_task(rq, p);
3a5e4dc1 8391
b29739f9 8392 __task_rq_unlock(rq);
1d615482 8393 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8394 } while_each_thread(g, p);
8395
4cf5d77a 8396 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8397}
8398
8399#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8400
67fc4e0c 8401#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8402/*
67fc4e0c 8403 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8404 *
8405 * They can only be called when the whole system has been
8406 * stopped - every CPU needs to be quiescent, and no scheduling
8407 * activity can take place. Using them for anything else would
8408 * be a serious bug, and as a result, they aren't even visible
8409 * under any other configuration.
8410 */
8411
8412/**
8413 * curr_task - return the current task for a given cpu.
8414 * @cpu: the processor in question.
8415 *
8416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8417 */
36c8b586 8418struct task_struct *curr_task(int cpu)
1df5c10a
LT
8419{
8420 return cpu_curr(cpu);
8421}
8422
67fc4e0c
JW
8423#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8424
8425#ifdef CONFIG_IA64
1df5c10a
LT
8426/**
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8430 *
8431 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8438 *
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8440 */
36c8b586 8441void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8442{
8443 cpu_curr(cpu) = p;
8444}
8445
8446#endif
29f59db3 8447
bccbe08a
PZ
8448#ifdef CONFIG_FAIR_GROUP_SCHED
8449static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8450{
8451 int i;
8452
8453 for_each_possible_cpu(i) {
8454 if (tg->cfs_rq)
8455 kfree(tg->cfs_rq[i]);
8456 if (tg->se)
8457 kfree(tg->se[i]);
6f505b16
PZ
8458 }
8459
8460 kfree(tg->cfs_rq);
8461 kfree(tg->se);
6f505b16
PZ
8462}
8463
ec7dc8ac
DG
8464static
8465int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8466{
29f59db3 8467 struct cfs_rq *cfs_rq;
eab17229 8468 struct sched_entity *se;
29f59db3
SV
8469 int i;
8470
434d53b0 8471 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8472 if (!tg->cfs_rq)
8473 goto err;
434d53b0 8474 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8475 if (!tg->se)
8476 goto err;
052f1dc7
PZ
8477
8478 tg->shares = NICE_0_LOAD;
29f59db3
SV
8479
8480 for_each_possible_cpu(i) {
eab17229
LZ
8481 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8482 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8483 if (!cfs_rq)
8484 goto err;
8485
eab17229
LZ
8486 se = kzalloc_node(sizeof(struct sched_entity),
8487 GFP_KERNEL, cpu_to_node(i));
29f59db3 8488 if (!se)
dfc12eb2 8489 goto err_free_rq;
29f59db3 8490
3d4b47b4 8491 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8492 }
8493
8494 return 1;
8495
49246274 8496err_free_rq:
dfc12eb2 8497 kfree(cfs_rq);
49246274 8498err:
bccbe08a
PZ
8499 return 0;
8500}
8501
bccbe08a
PZ
8502static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8503{
3d4b47b4
PZ
8504 struct rq *rq = cpu_rq(cpu);
8505 unsigned long flags;
3d4b47b4
PZ
8506
8507 /*
8508 * Only empty task groups can be destroyed; so we can speculatively
8509 * check on_list without danger of it being re-added.
8510 */
8511 if (!tg->cfs_rq[cpu]->on_list)
8512 return;
8513
8514 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8515 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8516 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8517}
6d6bc0ad 8518#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8519static inline void free_fair_sched_group(struct task_group *tg)
8520{
8521}
8522
ec7dc8ac
DG
8523static inline
8524int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8525{
8526 return 1;
8527}
8528
bccbe08a
PZ
8529static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8530{
8531}
6d6bc0ad 8532#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8533
8534#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8535static void free_rt_sched_group(struct task_group *tg)
8536{
8537 int i;
8538
d0b27fa7
PZ
8539 destroy_rt_bandwidth(&tg->rt_bandwidth);
8540
bccbe08a
PZ
8541 for_each_possible_cpu(i) {
8542 if (tg->rt_rq)
8543 kfree(tg->rt_rq[i]);
8544 if (tg->rt_se)
8545 kfree(tg->rt_se[i]);
8546 }
8547
8548 kfree(tg->rt_rq);
8549 kfree(tg->rt_se);
8550}
8551
ec7dc8ac
DG
8552static
8553int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8554{
8555 struct rt_rq *rt_rq;
eab17229 8556 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8557 struct rq *rq;
8558 int i;
8559
434d53b0 8560 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8561 if (!tg->rt_rq)
8562 goto err;
434d53b0 8563 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8564 if (!tg->rt_se)
8565 goto err;
8566
d0b27fa7
PZ
8567 init_rt_bandwidth(&tg->rt_bandwidth,
8568 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8569
8570 for_each_possible_cpu(i) {
8571 rq = cpu_rq(i);
8572
eab17229
LZ
8573 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8574 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8575 if (!rt_rq)
8576 goto err;
29f59db3 8577
eab17229
LZ
8578 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8579 GFP_KERNEL, cpu_to_node(i));
6f505b16 8580 if (!rt_se)
dfc12eb2 8581 goto err_free_rq;
29f59db3 8582
3d4b47b4 8583 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8584 }
8585
bccbe08a
PZ
8586 return 1;
8587
49246274 8588err_free_rq:
dfc12eb2 8589 kfree(rt_rq);
49246274 8590err:
bccbe08a
PZ
8591 return 0;
8592}
6d6bc0ad 8593#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8594static inline void free_rt_sched_group(struct task_group *tg)
8595{
8596}
8597
ec7dc8ac
DG
8598static inline
8599int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8600{
8601 return 1;
8602}
6d6bc0ad 8603#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8604
7c941438 8605#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8606static void free_sched_group(struct task_group *tg)
8607{
8608 free_fair_sched_group(tg);
8609 free_rt_sched_group(tg);
e9aa1dd1 8610 autogroup_free(tg);
bccbe08a
PZ
8611 kfree(tg);
8612}
8613
8614/* allocate runqueue etc for a new task group */
ec7dc8ac 8615struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8616{
8617 struct task_group *tg;
8618 unsigned long flags;
bccbe08a
PZ
8619
8620 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8621 if (!tg)
8622 return ERR_PTR(-ENOMEM);
8623
ec7dc8ac 8624 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8625 goto err;
8626
ec7dc8ac 8627 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8628 goto err;
8629
8ed36996 8630 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8631 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8632
8633 WARN_ON(!parent); /* root should already exist */
8634
8635 tg->parent = parent;
f473aa5e 8636 INIT_LIST_HEAD(&tg->children);
09f2724a 8637 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8638 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8639
9b5b7751 8640 return tg;
29f59db3
SV
8641
8642err:
6f505b16 8643 free_sched_group(tg);
29f59db3
SV
8644 return ERR_PTR(-ENOMEM);
8645}
8646
9b5b7751 8647/* rcu callback to free various structures associated with a task group */
6f505b16 8648static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8649{
29f59db3 8650 /* now it should be safe to free those cfs_rqs */
6f505b16 8651 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8652}
8653
9b5b7751 8654/* Destroy runqueue etc associated with a task group */
4cf86d77 8655void sched_destroy_group(struct task_group *tg)
29f59db3 8656{
8ed36996 8657 unsigned long flags;
9b5b7751 8658 int i;
29f59db3 8659
3d4b47b4
PZ
8660 /* end participation in shares distribution */
8661 for_each_possible_cpu(i)
bccbe08a 8662 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8663
8664 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8665 list_del_rcu(&tg->list);
f473aa5e 8666 list_del_rcu(&tg->siblings);
8ed36996 8667 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8668
9b5b7751 8669 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8670 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8671}
8672
9b5b7751 8673/* change task's runqueue when it moves between groups.
3a252015
IM
8674 * The caller of this function should have put the task in its new group
8675 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8676 * reflect its new group.
9b5b7751
SV
8677 */
8678void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8679{
8680 int on_rq, running;
8681 unsigned long flags;
8682 struct rq *rq;
8683
8684 rq = task_rq_lock(tsk, &flags);
8685
051a1d1a 8686 running = task_current(rq, tsk);
fd2f4419 8687 on_rq = tsk->on_rq;
29f59db3 8688
0e1f3483 8689 if (on_rq)
29f59db3 8690 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8691 if (unlikely(running))
8692 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8693
810b3817 8694#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8695 if (tsk->sched_class->task_move_group)
8696 tsk->sched_class->task_move_group(tsk, on_rq);
8697 else
810b3817 8698#endif
b2b5ce02 8699 set_task_rq(tsk, task_cpu(tsk));
810b3817 8700
0e1f3483
HS
8701 if (unlikely(running))
8702 tsk->sched_class->set_curr_task(rq);
8703 if (on_rq)
371fd7e7 8704 enqueue_task(rq, tsk, 0);
29f59db3 8705
29f59db3
SV
8706 task_rq_unlock(rq, &flags);
8707}
7c941438 8708#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8709
052f1dc7 8710#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8711static DEFINE_MUTEX(shares_mutex);
8712
4cf86d77 8713int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8714{
8715 int i;
8ed36996 8716 unsigned long flags;
c61935fd 8717
ec7dc8ac
DG
8718 /*
8719 * We can't change the weight of the root cgroup.
8720 */
8721 if (!tg->se[0])
8722 return -EINVAL;
8723
18d95a28
PZ
8724 if (shares < MIN_SHARES)
8725 shares = MIN_SHARES;
cb4ad1ff
MX
8726 else if (shares > MAX_SHARES)
8727 shares = MAX_SHARES;
62fb1851 8728
8ed36996 8729 mutex_lock(&shares_mutex);
9b5b7751 8730 if (tg->shares == shares)
5cb350ba 8731 goto done;
29f59db3 8732
9b5b7751 8733 tg->shares = shares;
c09595f6 8734 for_each_possible_cpu(i) {
9437178f
PT
8735 struct rq *rq = cpu_rq(i);
8736 struct sched_entity *se;
8737
8738 se = tg->se[i];
8739 /* Propagate contribution to hierarchy */
8740 raw_spin_lock_irqsave(&rq->lock, flags);
8741 for_each_sched_entity(se)
6d5ab293 8742 update_cfs_shares(group_cfs_rq(se));
9437178f 8743 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8744 }
29f59db3 8745
5cb350ba 8746done:
8ed36996 8747 mutex_unlock(&shares_mutex);
9b5b7751 8748 return 0;
29f59db3
SV
8749}
8750
5cb350ba
DG
8751unsigned long sched_group_shares(struct task_group *tg)
8752{
8753 return tg->shares;
8754}
052f1dc7 8755#endif
5cb350ba 8756
052f1dc7 8757#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8758/*
9f0c1e56 8759 * Ensure that the real time constraints are schedulable.
6f505b16 8760 */
9f0c1e56
PZ
8761static DEFINE_MUTEX(rt_constraints_mutex);
8762
8763static unsigned long to_ratio(u64 period, u64 runtime)
8764{
8765 if (runtime == RUNTIME_INF)
9a7e0b18 8766 return 1ULL << 20;
9f0c1e56 8767
9a7e0b18 8768 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8769}
8770
9a7e0b18
PZ
8771/* Must be called with tasklist_lock held */
8772static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8773{
9a7e0b18 8774 struct task_struct *g, *p;
b40b2e8e 8775
9a7e0b18
PZ
8776 do_each_thread(g, p) {
8777 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8778 return 1;
8779 } while_each_thread(g, p);
b40b2e8e 8780
9a7e0b18
PZ
8781 return 0;
8782}
b40b2e8e 8783
9a7e0b18
PZ
8784struct rt_schedulable_data {
8785 struct task_group *tg;
8786 u64 rt_period;
8787 u64 rt_runtime;
8788};
b40b2e8e 8789
9a7e0b18
PZ
8790static int tg_schedulable(struct task_group *tg, void *data)
8791{
8792 struct rt_schedulable_data *d = data;
8793 struct task_group *child;
8794 unsigned long total, sum = 0;
8795 u64 period, runtime;
b40b2e8e 8796
9a7e0b18
PZ
8797 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8798 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8799
9a7e0b18
PZ
8800 if (tg == d->tg) {
8801 period = d->rt_period;
8802 runtime = d->rt_runtime;
b40b2e8e 8803 }
b40b2e8e 8804
4653f803
PZ
8805 /*
8806 * Cannot have more runtime than the period.
8807 */
8808 if (runtime > period && runtime != RUNTIME_INF)
8809 return -EINVAL;
6f505b16 8810
4653f803
PZ
8811 /*
8812 * Ensure we don't starve existing RT tasks.
8813 */
9a7e0b18
PZ
8814 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8815 return -EBUSY;
6f505b16 8816
9a7e0b18 8817 total = to_ratio(period, runtime);
6f505b16 8818
4653f803
PZ
8819 /*
8820 * Nobody can have more than the global setting allows.
8821 */
8822 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8823 return -EINVAL;
6f505b16 8824
4653f803
PZ
8825 /*
8826 * The sum of our children's runtime should not exceed our own.
8827 */
9a7e0b18
PZ
8828 list_for_each_entry_rcu(child, &tg->children, siblings) {
8829 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8830 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8831
9a7e0b18
PZ
8832 if (child == d->tg) {
8833 period = d->rt_period;
8834 runtime = d->rt_runtime;
8835 }
6f505b16 8836
9a7e0b18 8837 sum += to_ratio(period, runtime);
9f0c1e56 8838 }
6f505b16 8839
9a7e0b18
PZ
8840 if (sum > total)
8841 return -EINVAL;
8842
8843 return 0;
6f505b16
PZ
8844}
8845
9a7e0b18 8846static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8847{
9a7e0b18
PZ
8848 struct rt_schedulable_data data = {
8849 .tg = tg,
8850 .rt_period = period,
8851 .rt_runtime = runtime,
8852 };
8853
8854 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8855}
8856
d0b27fa7
PZ
8857static int tg_set_bandwidth(struct task_group *tg,
8858 u64 rt_period, u64 rt_runtime)
6f505b16 8859{
ac086bc2 8860 int i, err = 0;
9f0c1e56 8861
9f0c1e56 8862 mutex_lock(&rt_constraints_mutex);
521f1a24 8863 read_lock(&tasklist_lock);
9a7e0b18
PZ
8864 err = __rt_schedulable(tg, rt_period, rt_runtime);
8865 if (err)
9f0c1e56 8866 goto unlock;
ac086bc2 8867
0986b11b 8868 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8869 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8870 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8871
8872 for_each_possible_cpu(i) {
8873 struct rt_rq *rt_rq = tg->rt_rq[i];
8874
0986b11b 8875 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8876 rt_rq->rt_runtime = rt_runtime;
0986b11b 8877 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8878 }
0986b11b 8879 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8880unlock:
521f1a24 8881 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8882 mutex_unlock(&rt_constraints_mutex);
8883
8884 return err;
6f505b16
PZ
8885}
8886
d0b27fa7
PZ
8887int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8888{
8889 u64 rt_runtime, rt_period;
8890
8891 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8892 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8893 if (rt_runtime_us < 0)
8894 rt_runtime = RUNTIME_INF;
8895
8896 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8897}
8898
9f0c1e56
PZ
8899long sched_group_rt_runtime(struct task_group *tg)
8900{
8901 u64 rt_runtime_us;
8902
d0b27fa7 8903 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8904 return -1;
8905
d0b27fa7 8906 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8907 do_div(rt_runtime_us, NSEC_PER_USEC);
8908 return rt_runtime_us;
8909}
d0b27fa7
PZ
8910
8911int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8912{
8913 u64 rt_runtime, rt_period;
8914
8915 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8916 rt_runtime = tg->rt_bandwidth.rt_runtime;
8917
619b0488
R
8918 if (rt_period == 0)
8919 return -EINVAL;
8920
d0b27fa7
PZ
8921 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8922}
8923
8924long sched_group_rt_period(struct task_group *tg)
8925{
8926 u64 rt_period_us;
8927
8928 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8929 do_div(rt_period_us, NSEC_PER_USEC);
8930 return rt_period_us;
8931}
8932
8933static int sched_rt_global_constraints(void)
8934{
4653f803 8935 u64 runtime, period;
d0b27fa7
PZ
8936 int ret = 0;
8937
ec5d4989
HS
8938 if (sysctl_sched_rt_period <= 0)
8939 return -EINVAL;
8940
4653f803
PZ
8941 runtime = global_rt_runtime();
8942 period = global_rt_period();
8943
8944 /*
8945 * Sanity check on the sysctl variables.
8946 */
8947 if (runtime > period && runtime != RUNTIME_INF)
8948 return -EINVAL;
10b612f4 8949
d0b27fa7 8950 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8951 read_lock(&tasklist_lock);
4653f803 8952 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8953 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8954 mutex_unlock(&rt_constraints_mutex);
8955
8956 return ret;
8957}
54e99124
DG
8958
8959int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8960{
8961 /* Don't accept realtime tasks when there is no way for them to run */
8962 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8963 return 0;
8964
8965 return 1;
8966}
8967
6d6bc0ad 8968#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8969static int sched_rt_global_constraints(void)
8970{
ac086bc2
PZ
8971 unsigned long flags;
8972 int i;
8973
ec5d4989
HS
8974 if (sysctl_sched_rt_period <= 0)
8975 return -EINVAL;
8976
60aa605d
PZ
8977 /*
8978 * There's always some RT tasks in the root group
8979 * -- migration, kstopmachine etc..
8980 */
8981 if (sysctl_sched_rt_runtime == 0)
8982 return -EBUSY;
8983
0986b11b 8984 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8985 for_each_possible_cpu(i) {
8986 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8987
0986b11b 8988 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8989 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8990 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8991 }
0986b11b 8992 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8993
d0b27fa7
PZ
8994 return 0;
8995}
6d6bc0ad 8996#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8997
8998int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8999 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9000 loff_t *ppos)
9001{
9002 int ret;
9003 int old_period, old_runtime;
9004 static DEFINE_MUTEX(mutex);
9005
9006 mutex_lock(&mutex);
9007 old_period = sysctl_sched_rt_period;
9008 old_runtime = sysctl_sched_rt_runtime;
9009
8d65af78 9010 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9011
9012 if (!ret && write) {
9013 ret = sched_rt_global_constraints();
9014 if (ret) {
9015 sysctl_sched_rt_period = old_period;
9016 sysctl_sched_rt_runtime = old_runtime;
9017 } else {
9018 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9019 def_rt_bandwidth.rt_period =
9020 ns_to_ktime(global_rt_period());
9021 }
9022 }
9023 mutex_unlock(&mutex);
9024
9025 return ret;
9026}
68318b8e 9027
052f1dc7 9028#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9029
9030/* return corresponding task_group object of a cgroup */
2b01dfe3 9031static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9032{
2b01dfe3
PM
9033 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9034 struct task_group, css);
68318b8e
SV
9035}
9036
9037static struct cgroup_subsys_state *
2b01dfe3 9038cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9039{
ec7dc8ac 9040 struct task_group *tg, *parent;
68318b8e 9041
2b01dfe3 9042 if (!cgrp->parent) {
68318b8e 9043 /* This is early initialization for the top cgroup */
07e06b01 9044 return &root_task_group.css;
68318b8e
SV
9045 }
9046
ec7dc8ac
DG
9047 parent = cgroup_tg(cgrp->parent);
9048 tg = sched_create_group(parent);
68318b8e
SV
9049 if (IS_ERR(tg))
9050 return ERR_PTR(-ENOMEM);
9051
68318b8e
SV
9052 return &tg->css;
9053}
9054
41a2d6cf
IM
9055static void
9056cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9057{
2b01dfe3 9058 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9059
9060 sched_destroy_group(tg);
9061}
9062
41a2d6cf 9063static int
be367d09 9064cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9065{
b68aa230 9066#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9067 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9068 return -EINVAL;
9069#else
68318b8e
SV
9070 /* We don't support RT-tasks being in separate groups */
9071 if (tsk->sched_class != &fair_sched_class)
9072 return -EINVAL;
b68aa230 9073#endif
be367d09
BB
9074 return 0;
9075}
68318b8e 9076
be367d09
BB
9077static int
9078cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9079 struct task_struct *tsk, bool threadgroup)
9080{
9081 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9082 if (retval)
9083 return retval;
9084 if (threadgroup) {
9085 struct task_struct *c;
9086 rcu_read_lock();
9087 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9088 retval = cpu_cgroup_can_attach_task(cgrp, c);
9089 if (retval) {
9090 rcu_read_unlock();
9091 return retval;
9092 }
9093 }
9094 rcu_read_unlock();
9095 }
68318b8e
SV
9096 return 0;
9097}
9098
9099static void
2b01dfe3 9100cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
9101 struct cgroup *old_cont, struct task_struct *tsk,
9102 bool threadgroup)
68318b8e
SV
9103{
9104 sched_move_task(tsk);
be367d09
BB
9105 if (threadgroup) {
9106 struct task_struct *c;
9107 rcu_read_lock();
9108 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9109 sched_move_task(c);
9110 }
9111 rcu_read_unlock();
9112 }
68318b8e
SV
9113}
9114
068c5cc5 9115static void
d41d5a01
PZ
9116cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9117 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9118{
9119 /*
9120 * cgroup_exit() is called in the copy_process() failure path.
9121 * Ignore this case since the task hasn't ran yet, this avoids
9122 * trying to poke a half freed task state from generic code.
9123 */
9124 if (!(task->flags & PF_EXITING))
9125 return;
9126
9127 sched_move_task(task);
9128}
9129
052f1dc7 9130#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9131static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9132 u64 shareval)
68318b8e 9133{
2b01dfe3 9134 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9135}
9136
f4c753b7 9137static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9138{
2b01dfe3 9139 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9140
9141 return (u64) tg->shares;
9142}
6d6bc0ad 9143#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9144
052f1dc7 9145#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9146static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9147 s64 val)
6f505b16 9148{
06ecb27c 9149 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9150}
9151
06ecb27c 9152static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9153{
06ecb27c 9154 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9155}
d0b27fa7
PZ
9156
9157static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9158 u64 rt_period_us)
9159{
9160 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9161}
9162
9163static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9164{
9165 return sched_group_rt_period(cgroup_tg(cgrp));
9166}
6d6bc0ad 9167#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9168
fe5c7cc2 9169static struct cftype cpu_files[] = {
052f1dc7 9170#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9171 {
9172 .name = "shares",
f4c753b7
PM
9173 .read_u64 = cpu_shares_read_u64,
9174 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9175 },
052f1dc7
PZ
9176#endif
9177#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9178 {
9f0c1e56 9179 .name = "rt_runtime_us",
06ecb27c
PM
9180 .read_s64 = cpu_rt_runtime_read,
9181 .write_s64 = cpu_rt_runtime_write,
6f505b16 9182 },
d0b27fa7
PZ
9183 {
9184 .name = "rt_period_us",
f4c753b7
PM
9185 .read_u64 = cpu_rt_period_read_uint,
9186 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9187 },
052f1dc7 9188#endif
68318b8e
SV
9189};
9190
9191static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9192{
fe5c7cc2 9193 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9194}
9195
9196struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9197 .name = "cpu",
9198 .create = cpu_cgroup_create,
9199 .destroy = cpu_cgroup_destroy,
9200 .can_attach = cpu_cgroup_can_attach,
9201 .attach = cpu_cgroup_attach,
068c5cc5 9202 .exit = cpu_cgroup_exit,
38605cae
IM
9203 .populate = cpu_cgroup_populate,
9204 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9205 .early_init = 1,
9206};
9207
052f1dc7 9208#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9209
9210#ifdef CONFIG_CGROUP_CPUACCT
9211
9212/*
9213 * CPU accounting code for task groups.
9214 *
9215 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9216 * (balbir@in.ibm.com).
9217 */
9218
934352f2 9219/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9220struct cpuacct {
9221 struct cgroup_subsys_state css;
9222 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9223 u64 __percpu *cpuusage;
ef12fefa 9224 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9225 struct cpuacct *parent;
d842de87
SV
9226};
9227
9228struct cgroup_subsys cpuacct_subsys;
9229
9230/* return cpu accounting group corresponding to this container */
32cd756a 9231static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9232{
32cd756a 9233 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9234 struct cpuacct, css);
9235}
9236
9237/* return cpu accounting group to which this task belongs */
9238static inline struct cpuacct *task_ca(struct task_struct *tsk)
9239{
9240 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9241 struct cpuacct, css);
9242}
9243
9244/* create a new cpu accounting group */
9245static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9246 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9247{
9248 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9249 int i;
d842de87
SV
9250
9251 if (!ca)
ef12fefa 9252 goto out;
d842de87
SV
9253
9254 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9255 if (!ca->cpuusage)
9256 goto out_free_ca;
9257
9258 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9259 if (percpu_counter_init(&ca->cpustat[i], 0))
9260 goto out_free_counters;
d842de87 9261
934352f2
BR
9262 if (cgrp->parent)
9263 ca->parent = cgroup_ca(cgrp->parent);
9264
d842de87 9265 return &ca->css;
ef12fefa
BR
9266
9267out_free_counters:
9268 while (--i >= 0)
9269 percpu_counter_destroy(&ca->cpustat[i]);
9270 free_percpu(ca->cpuusage);
9271out_free_ca:
9272 kfree(ca);
9273out:
9274 return ERR_PTR(-ENOMEM);
d842de87
SV
9275}
9276
9277/* destroy an existing cpu accounting group */
41a2d6cf 9278static void
32cd756a 9279cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9280{
32cd756a 9281 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9282 int i;
d842de87 9283
ef12fefa
BR
9284 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9285 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9286 free_percpu(ca->cpuusage);
9287 kfree(ca);
9288}
9289
720f5498
KC
9290static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9291{
b36128c8 9292 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9293 u64 data;
9294
9295#ifndef CONFIG_64BIT
9296 /*
9297 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9298 */
05fa785c 9299 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9300 data = *cpuusage;
05fa785c 9301 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9302#else
9303 data = *cpuusage;
9304#endif
9305
9306 return data;
9307}
9308
9309static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9310{
b36128c8 9311 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9312
9313#ifndef CONFIG_64BIT
9314 /*
9315 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9316 */
05fa785c 9317 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9318 *cpuusage = val;
05fa785c 9319 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9320#else
9321 *cpuusage = val;
9322#endif
9323}
9324
d842de87 9325/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9326static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9327{
32cd756a 9328 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9329 u64 totalcpuusage = 0;
9330 int i;
9331
720f5498
KC
9332 for_each_present_cpu(i)
9333 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9334
9335 return totalcpuusage;
9336}
9337
0297b803
DG
9338static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9339 u64 reset)
9340{
9341 struct cpuacct *ca = cgroup_ca(cgrp);
9342 int err = 0;
9343 int i;
9344
9345 if (reset) {
9346 err = -EINVAL;
9347 goto out;
9348 }
9349
720f5498
KC
9350 for_each_present_cpu(i)
9351 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9352
0297b803
DG
9353out:
9354 return err;
9355}
9356
e9515c3c
KC
9357static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9358 struct seq_file *m)
9359{
9360 struct cpuacct *ca = cgroup_ca(cgroup);
9361 u64 percpu;
9362 int i;
9363
9364 for_each_present_cpu(i) {
9365 percpu = cpuacct_cpuusage_read(ca, i);
9366 seq_printf(m, "%llu ", (unsigned long long) percpu);
9367 }
9368 seq_printf(m, "\n");
9369 return 0;
9370}
9371
ef12fefa
BR
9372static const char *cpuacct_stat_desc[] = {
9373 [CPUACCT_STAT_USER] = "user",
9374 [CPUACCT_STAT_SYSTEM] = "system",
9375};
9376
9377static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9378 struct cgroup_map_cb *cb)
9379{
9380 struct cpuacct *ca = cgroup_ca(cgrp);
9381 int i;
9382
9383 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9384 s64 val = percpu_counter_read(&ca->cpustat[i]);
9385 val = cputime64_to_clock_t(val);
9386 cb->fill(cb, cpuacct_stat_desc[i], val);
9387 }
9388 return 0;
9389}
9390
d842de87
SV
9391static struct cftype files[] = {
9392 {
9393 .name = "usage",
f4c753b7
PM
9394 .read_u64 = cpuusage_read,
9395 .write_u64 = cpuusage_write,
d842de87 9396 },
e9515c3c
KC
9397 {
9398 .name = "usage_percpu",
9399 .read_seq_string = cpuacct_percpu_seq_read,
9400 },
ef12fefa
BR
9401 {
9402 .name = "stat",
9403 .read_map = cpuacct_stats_show,
9404 },
d842de87
SV
9405};
9406
32cd756a 9407static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9408{
32cd756a 9409 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9410}
9411
9412/*
9413 * charge this task's execution time to its accounting group.
9414 *
9415 * called with rq->lock held.
9416 */
9417static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9418{
9419 struct cpuacct *ca;
934352f2 9420 int cpu;
d842de87 9421
c40c6f85 9422 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9423 return;
9424
934352f2 9425 cpu = task_cpu(tsk);
a18b83b7
BR
9426
9427 rcu_read_lock();
9428
d842de87 9429 ca = task_ca(tsk);
d842de87 9430
934352f2 9431 for (; ca; ca = ca->parent) {
b36128c8 9432 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9433 *cpuusage += cputime;
9434 }
a18b83b7
BR
9435
9436 rcu_read_unlock();
d842de87
SV
9437}
9438
fa535a77
AB
9439/*
9440 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9441 * in cputime_t units. As a result, cpuacct_update_stats calls
9442 * percpu_counter_add with values large enough to always overflow the
9443 * per cpu batch limit causing bad SMP scalability.
9444 *
9445 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9446 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9447 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9448 */
9449#ifdef CONFIG_SMP
9450#define CPUACCT_BATCH \
9451 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9452#else
9453#define CPUACCT_BATCH 0
9454#endif
9455
ef12fefa
BR
9456/*
9457 * Charge the system/user time to the task's accounting group.
9458 */
9459static void cpuacct_update_stats(struct task_struct *tsk,
9460 enum cpuacct_stat_index idx, cputime_t val)
9461{
9462 struct cpuacct *ca;
fa535a77 9463 int batch = CPUACCT_BATCH;
ef12fefa
BR
9464
9465 if (unlikely(!cpuacct_subsys.active))
9466 return;
9467
9468 rcu_read_lock();
9469 ca = task_ca(tsk);
9470
9471 do {
fa535a77 9472 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9473 ca = ca->parent;
9474 } while (ca);
9475 rcu_read_unlock();
9476}
9477
d842de87
SV
9478struct cgroup_subsys cpuacct_subsys = {
9479 .name = "cpuacct",
9480 .create = cpuacct_create,
9481 .destroy = cpuacct_destroy,
9482 .populate = cpuacct_populate,
9483 .subsys_id = cpuacct_subsys_id,
9484};
9485#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf 9486