Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
052f1dc7 236#ifdef CONFIG_GROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
052f1dc7 246#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
247 struct cgroup_subsys_state css;
248#endif
052f1dc7 249
6c415b92
AB
250#ifdef CONFIG_USER_SCHED
251 uid_t uid;
252#endif
253
052f1dc7 254#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
052f1dc7
PZ
260#endif
261
262#ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
d0b27fa7 266 struct rt_bandwidth rt_bandwidth;
052f1dc7 267#endif
6b2d7700 268
ae8393e5 269 struct rcu_head rcu;
6f505b16 270 struct list_head list;
f473aa5e
PZ
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
29f59db3
SV
275};
276
354d60c2 277#ifdef CONFIG_USER_SCHED
eff766a6 278
6c415b92
AB
279/* Helper function to pass uid information to create_sched_user() */
280void set_tg_uid(struct user_struct *user)
281{
282 user->tg->uid = user->uid;
283}
284
eff766a6
PZ
285/*
286 * Root task group.
84e9dabf
AS
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
eff766a6
PZ
289 */
290struct task_group root_task_group;
291
052f1dc7 292#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
293/* Default task group's sched entity on each cpu */
294static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295/* Default task group's cfs_rq on each cpu */
ada3fa15 296static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
6d6bc0ad 297#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
298
299#ifdef CONFIG_RT_GROUP_SCHED
300static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
1871e52c 301static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
6d6bc0ad 302#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 303#else /* !CONFIG_USER_SCHED */
eff766a6 304#define root_task_group init_task_group
9a7e0b18 305#endif /* CONFIG_USER_SCHED */
6f505b16 306
8ed36996 307/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
308 * a task group's cpu shares.
309 */
8ed36996 310static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 311
e9036b36
CG
312#ifdef CONFIG_FAIR_GROUP_SCHED
313
57310a98
PZ
314#ifdef CONFIG_SMP
315static int root_task_group_empty(void)
316{
317 return list_empty(&root_task_group.children);
318}
319#endif
320
052f1dc7
PZ
321#ifdef CONFIG_USER_SCHED
322# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 323#else /* !CONFIG_USER_SCHED */
052f1dc7 324# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 325#endif /* CONFIG_USER_SCHED */
052f1dc7 326
cb4ad1ff 327/*
2e084786
LJ
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
cb4ad1ff
MX
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
18d95a28 335#define MIN_SHARES 2
2e084786 336#define MAX_SHARES (1UL << 18)
18d95a28 337
052f1dc7
PZ
338static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339#endif
340
29f59db3 341/* Default task group.
3a252015 342 * Every task in system belong to this group at bootup.
29f59db3 343 */
434d53b0 344struct task_group init_task_group;
29f59db3
SV
345
346/* return group to which a task belongs */
4cf86d77 347static inline struct task_group *task_group(struct task_struct *p)
29f59db3 348{
4cf86d77 349 struct task_group *tg;
9b5b7751 350
052f1dc7 351#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
456 struct {
457 int curr; /* highest queued rt task prio */
398a153b 458#ifdef CONFIG_SMP
e864c499 459 int next; /* next highest */
398a153b 460#endif
e864c499 461 } highest_prio;
6f505b16 462#endif
fa85ae24 463#ifdef CONFIG_SMP
73fe6aae 464 unsigned long rt_nr_migratory;
a1ba4d8b 465 unsigned long rt_nr_total;
a22d7fc1 466 int overloaded;
917b627d 467 struct plist_head pushable_tasks;
fa85ae24 468#endif
6f505b16 469 int rt_throttled;
fa85ae24 470 u64 rt_time;
ac086bc2 471 u64 rt_runtime;
ea736ed5 472 /* Nests inside the rq lock: */
0986b11b 473 raw_spinlock_t rt_runtime_lock;
6f505b16 474
052f1dc7 475#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
476 unsigned long rt_nr_boosted;
477
6f505b16
PZ
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482#endif
6aa645ea
IM
483};
484
57d885fe
GH
485#ifdef CONFIG_SMP
486
487/*
488 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
57d885fe
GH
494 */
495struct root_domain {
496 atomic_t refcount;
c6c4927b
RR
497 cpumask_var_t span;
498 cpumask_var_t online;
637f5085 499
0eab9146 500 /*
637f5085
GH
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
c6c4927b 504 cpumask_var_t rto_mask;
0eab9146 505 atomic_t rto_count;
6e0534f2
GH
506#ifdef CONFIG_SMP
507 struct cpupri cpupri;
508#endif
57d885fe
GH
509};
510
dc938520
GH
511/*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
57d885fe
GH
515static struct root_domain def_root_domain;
516
517#endif
518
1da177e4
LT
519/*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
70b97a7f 526struct rq {
d8016491 527 /* runqueue lock: */
05fa785c 528 raw_spinlock_t lock;
1da177e4
LT
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
6aa645ea
IM
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
537#ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539#endif
d8016491
IM
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
6aa645ea
IM
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
6f505b16 546 struct rt_rq rt;
6f505b16 547
6aa645ea 548#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
551#endif
552#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 553 struct list_head leaf_rt_rq_list;
1da177e4 554#endif
1da177e4
LT
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
36c8b586 564 struct task_struct *curr, *idle;
c9819f45 565 unsigned long next_balance;
1da177e4 566 struct mm_struct *prev_mm;
6aa645ea 567
3e51f33f 568 u64 clock;
6aa645ea 569
1da177e4
LT
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
0eab9146 573 struct root_domain *rd;
1da177e4
LT
574 struct sched_domain *sd;
575
a0a522ce 576 unsigned char idle_at_tick;
1da177e4 577 /* For active balancing */
3f029d3c 578 int post_schedule;
1da177e4
LT
579 int active_balance;
580 int push_cpu;
d8016491
IM
581 /* cpu of this runqueue: */
582 int cpu;
1f11eb6a 583 int online;
1da177e4 584
a8a51d5e 585 unsigned long avg_load_per_task;
1da177e4 586
36c8b586 587 struct task_struct *migration_thread;
1da177e4 588 struct list_head migration_queue;
e9e9250b
PZ
589
590 u64 rt_avg;
591 u64 age_stamp;
1b9508f6
MG
592 u64 idle_stamp;
593 u64 avg_idle;
1da177e4
LT
594#endif
595
dce48a84
TG
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
8f4d37ec 600#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
601#ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604#endif
8f4d37ec
PZ
605 struct hrtimer hrtick_timer;
606#endif
607
1da177e4
LT
608#ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
9c2c4802
KC
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
613
614 /* sys_sched_yield() stats */
480b9434 615 unsigned int yld_count;
1da177e4
LT
616
617 /* schedule() stats */
480b9434
KC
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
1da177e4
LT
621
622 /* try_to_wake_up() stats */
480b9434
KC
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
b8efb561
IM
625
626 /* BKL stats */
480b9434 627 unsigned int bkl_count;
1da177e4
LT
628#endif
629};
630
f34e3b61 631static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 632
7d478721
PZ
633static inline
634void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 635{
7d478721 636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
637}
638
0a2966b4
CL
639static inline int cpu_of(struct rq *rq)
640{
641#ifdef CONFIG_SMP
642 return rq->cpu;
643#else
644 return 0;
645#endif
646}
647
674311d5
NP
648/*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 650 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
48f24c4d
IM
655#define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
657
658#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659#define this_rq() (&__get_cpu_var(runqueues))
660#define task_rq(p) cpu_rq(task_cpu(p))
661#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 662#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 663
aa9c4c0f 664inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
665{
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667}
668
bf5c91ba
IM
669/*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672#ifdef CONFIG_SCHED_DEBUG
673# define const_debug __read_mostly
674#else
675# define const_debug static const
676#endif
677
017730c1
IM
678/**
679 * runqueue_is_locked
e17b38bf 680 * @cpu: the processor in question.
017730c1
IM
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
89f19f04 686int runqueue_is_locked(int cpu)
017730c1 687{
05fa785c 688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
689}
690
bf5c91ba
IM
691/*
692 * Debugging: various feature bits
693 */
f00b45c1
PZ
694
695#define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
bf5c91ba 698enum {
f00b45c1 699#include "sched_features.h"
bf5c91ba
IM
700};
701
f00b45c1
PZ
702#undef SCHED_FEAT
703
704#define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
bf5c91ba 707const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
708#include "sched_features.h"
709 0;
710
711#undef SCHED_FEAT
712
713#ifdef CONFIG_SCHED_DEBUG
714#define SCHED_FEAT(name, enabled) \
715 #name ,
716
983ed7a6 717static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
718#include "sched_features.h"
719 NULL
720};
721
722#undef SCHED_FEAT
723
34f3a814 724static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 725{
f00b45c1
PZ
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 732 }
34f3a814 733 seq_puts(m, "\n");
f00b45c1 734
34f3a814 735 return 0;
f00b45c1
PZ
736}
737
738static ssize_t
739sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741{
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
c24b7c52 755 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
42994724 775 *ppos += cnt;
f00b45c1
PZ
776
777 return cnt;
778}
779
34f3a814
LZ
780static int sched_feat_open(struct inode *inode, struct file *filp)
781{
782 return single_open(filp, sched_feat_show, NULL);
783}
784
828c0950 785static const struct file_operations sched_feat_fops = {
34f3a814
LZ
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
f00b45c1
PZ
791};
792
793static __init int sched_init_debug(void)
794{
f00b45c1
PZ
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799}
800late_initcall(sched_init_debug);
801
802#endif
803
804#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 805
b82d9fdd
PZ
806/*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
2398f2c6
PZ
812/*
813 * ratelimit for updating the group shares.
55cd5340 814 * default: 0.25ms
2398f2c6 815 */
55cd5340 816unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 817unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
e9e9250b
PZ
826/*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
05fa785c 896 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 920 raw_spin_unlock_irq(&rq->lock);
4866cde0 921#else
05fa785c 922 raw_spin_unlock(&rq->lock);
4866cde0
NP
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
05fa785c 952 raw_spin_lock(&rq->lock);
3a5c359a
AK
953 if (likely(rq == task_rq(p)))
954 return rq;
05fa785c 955 raw_spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
05fa785c 972 raw_spin_lock(&rq->lock);
3a5c359a
AK
973 if (likely(rq == task_rq(p)))
974 return rq;
05fa785c 975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 984 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
05fa785c 990 raw_spin_unlock(&rq->lock);
b29739f9
IM
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
05fa785c 996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
05fa785c 1009 raw_spin_lock(&rq->lock);
1da177e4
LT
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
05fa785c 1056 raw_spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec 1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1059 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
05fa785c 1072 raw_spin_lock(&rq->lock);
31656519
PZ
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
05fa785c 1075 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
6e275637 1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
7f1e2ca9 1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1130 HRTIMER_MODE_REL_PINNED, 0);
31656519 1131}
b328ca18 1132
006c75f1 1133static inline void init_hrtick(void)
8f4d37ec 1134{
8f4d37ec 1135}
31656519 1136#endif /* CONFIG_SMP */
8f4d37ec 1137
31656519 1138static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1139{
31656519
PZ
1140#ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
8f4d37ec 1142
31656519
PZ
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146#endif
8f4d37ec 1147
31656519
PZ
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
8f4d37ec 1150}
006c75f1 1151#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1152static inline void hrtick_clear(struct rq *rq)
1153{
1154}
1155
8f4d37ec
PZ
1156static inline void init_rq_hrtick(struct rq *rq)
1157{
1158}
1159
b328ca18
PZ
1160static inline void init_hrtick(void)
1161{
1162}
006c75f1 1163#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1164
c24d20db
IM
1165/*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172#ifdef CONFIG_SMP
1173
1174#ifndef tsk_is_polling
1175#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176#endif
1177
31656519 1178static void resched_task(struct task_struct *p)
c24d20db
IM
1179{
1180 int cpu;
1181
05fa785c 1182 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1183
5ed0cec0 1184 if (test_tsk_need_resched(p))
c24d20db
IM
1185 return;
1186
5ed0cec0 1187 set_tsk_need_resched(p);
c24d20db
IM
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197}
1198
1199static void resched_cpu(int cpu)
1200{
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
05fa785c 1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1205 return;
1206 resched_task(cpu_curr(cpu));
05fa785c 1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1208}
06d8308c
TG
1209
1210#ifdef CONFIG_NO_HZ
1211/*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221void wake_up_idle_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
5ed0cec0 1243 set_tsk_need_resched(rq->idle);
06d8308c
TG
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249}
6d6bc0ad 1250#endif /* CONFIG_NO_HZ */
06d8308c 1251
e9e9250b
PZ
1252static u64 sched_avg_period(void)
1253{
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255}
1256
1257static void sched_avg_update(struct rq *rq)
1258{
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265}
1266
1267static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268{
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271}
1272
6d6bc0ad 1273#else /* !CONFIG_SMP */
31656519 1274static void resched_task(struct task_struct *p)
c24d20db 1275{
05fa785c 1276 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1277 set_tsk_need_resched(p);
c24d20db 1278}
e9e9250b
PZ
1279
1280static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281{
1282}
6d6bc0ad 1283#endif /* CONFIG_SMP */
c24d20db 1284
45bf76df
IM
1285#if BITS_PER_LONG == 32
1286# define WMULT_CONST (~0UL)
1287#else
1288# define WMULT_CONST (1UL << 32)
1289#endif
1290
1291#define WMULT_SHIFT 32
1292
194081eb
IM
1293/*
1294 * Shift right and round:
1295 */
cf2ab469 1296#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1297
a7be37ac
PZ
1298/*
1299 * delta *= weight / lw
1300 */
cb1c4fc9 1301static unsigned long
45bf76df
IM
1302calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304{
1305 u64 tmp;
1306
7a232e03
LJ
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
45bf76df
IM
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
194081eb 1319 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1321 WMULT_SHIFT/2);
1322 else
cf2ab469 1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1324
ecf691da 1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1329{
1330 lw->weight += inc;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1335{
1336 lw->weight -= dec;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
2dd73a4f
PW
1340/*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
cce7ade8
PZ
1349#define WEIGHT_IDLEPRIO 3
1350#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1351
1352/*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
dd41f596
IM
1363 */
1364static const int prio_to_weight[40] = {
254753dc
IM
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1373};
1374
5714d2de
IM
1375/*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
dd41f596 1382static const u32 prio_to_wmult[40] = {
254753dc
IM
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1391};
2dd73a4f 1392
dd41f596
IM
1393static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395/*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404};
1405
e1d1484f
PW
1406#ifdef CONFIG_SMP
1407static unsigned long
1408balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413static int
1414iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
e1d1484f 1417#endif
dd41f596 1418
ef12fefa
BR
1419/* Time spent by the tasks of the cpu accounting group executing in ... */
1420enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425};
1426
d842de87
SV
1427#ifdef CONFIG_CGROUP_CPUACCT
1428static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1429static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1431#else
1432static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1433static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1435#endif
1436
18d95a28
PZ
1437static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438{
1439 update_load_add(&rq->load, load);
1440}
1441
1442static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_sub(&rq->load, load);
1445}
1446
7940ca36 1447#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1448typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1449
1450/*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
eb755805 1454static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1455{
1456 struct task_group *parent, *child;
eb755805 1457 int ret;
c09595f6
PZ
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461down:
eb755805
PZ
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
c09595f6
PZ
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469up:
1470 continue;
1471 }
eb755805
PZ
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
c09595f6
PZ
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
eb755805 1480out_unlock:
c09595f6 1481 rcu_read_unlock();
eb755805
PZ
1482
1483 return ret;
c09595f6
PZ
1484}
1485
eb755805
PZ
1486static int tg_nop(struct task_group *tg, void *data)
1487{
1488 return 0;
c09595f6 1489}
eb755805
PZ
1490#endif
1491
1492#ifdef CONFIG_SMP
f5f08f39
PZ
1493/* Used instead of source_load when we know the type == 0 */
1494static unsigned long weighted_cpuload(const int cpu)
1495{
1496 return cpu_rq(cpu)->load.weight;
1497}
1498
1499/*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506static unsigned long source_load(int cpu, int type)
1507{
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515}
1516
1517/*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521static unsigned long target_load(int cpu, int type)
1522{
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530}
1531
ae154be1
PZ
1532static struct sched_group *group_of(int cpu)
1533{
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540}
1541
1542static unsigned long power_of(int cpu)
1543{
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550}
1551
eb755805
PZ
1552static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554static unsigned long cpu_avg_load_per_task(int cpu)
1555{
1556 struct rq *rq = cpu_rq(cpu);
af6d596f 1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1558
4cd42620
SR
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1561 else
1562 rq->avg_load_per_task = 0;
eb755805
PZ
1563
1564 return rq->avg_load_per_task;
1565}
1566
1567#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1568
4a6cc4bd 1569static __read_mostly unsigned long *update_shares_data;
34d76c41 1570
c09595f6
PZ
1571static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573/*
1574 * Calculate and set the cpu's group shares.
1575 */
34d76c41
PZ
1576static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
4a6cc4bd 1579 unsigned long *usd_rq_weight)
18d95a28 1580{
34d76c41 1581 unsigned long shares, rq_weight;
a5004278 1582 int boost = 0;
c09595f6 1583
4a6cc4bd 1584 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
c8cba857 1589
c09595f6 1590 /*
a8af7246
PZ
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
c09595f6 1594 */
ec4e0e2f 1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1597
ffda12a1
PZ
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
c09595f6 1602
05fa785c 1603 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1606 __set_se_shares(tg->se[cpu], shares);
05fa785c 1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1608 }
18d95a28 1609}
c09595f6
PZ
1610
1611/*
c8cba857
PZ
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
c09595f6 1615 */
eb755805 1616static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1617{
cd8ad40d 1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1619 unsigned long *usd_rq_weight;
eb755805 1620 struct sched_domain *sd = data;
34d76c41 1621 unsigned long flags;
c8cba857 1622 int i;
c09595f6 1623
34d76c41
PZ
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
4a6cc4bd 1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1629
758b2cdc 1630 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1631 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1632 usd_rq_weight[i] = weight;
34d76c41 1633
cd8ad40d 1634 rq_weight += weight;
ec4e0e2f
KC
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
ec4e0e2f
KC
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
cd8ad40d 1643 sum_weight += weight;
c8cba857 1644 shares += tg->cfs_rq[i]->shares;
c09595f6 1645 }
c09595f6 1646
cd8ad40d
PZ
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
c8cba857
PZ
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
c09595f6 1655
758b2cdc 1656 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1658
1659 local_irq_restore(flags);
eb755805
PZ
1660
1661 return 0;
c09595f6
PZ
1662}
1663
1664/*
c8cba857
PZ
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
c09595f6 1668 */
eb755805 1669static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1670{
c8cba857 1671 unsigned long load;
eb755805 1672 long cpu = (long)data;
c09595f6 1673
c8cba857
PZ
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
c09595f6 1681
c8cba857 1682 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1683
eb755805 1684 return 0;
c09595f6
PZ
1685}
1686
c8cba857 1687static void update_shares(struct sched_domain *sd)
4d8d595d 1688{
e7097159
PZ
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
2398f2c6
PZ
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
eb755805 1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1701 }
4d8d595d
PZ
1702}
1703
3e5459b4
PZ
1704static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705{
e7097159
PZ
1706 if (root_task_group_empty())
1707 return;
1708
05fa785c 1709 raw_spin_unlock(&rq->lock);
3e5459b4 1710 update_shares(sd);
05fa785c 1711 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1712}
1713
eb755805 1714static void update_h_load(long cpu)
c09595f6 1715{
e7097159
PZ
1716 if (root_task_group_empty())
1717 return;
1718
eb755805 1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1720}
1721
c09595f6
PZ
1722#else
1723
c8cba857 1724static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1725{
1726}
1727
3e5459b4
PZ
1728static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729{
1730}
1731
18d95a28
PZ
1732#endif
1733
8f45e2b5
GH
1734#ifdef CONFIG_PREEMPT
1735
b78bb868
PZ
1736static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
70574a99 1738/*
8f45e2b5
GH
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
70574a99 1745 */
8f45e2b5
GH
1746static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750{
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755}
1756
1757#else
1758/*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769{
1770 int ret = 0;
1771
05fa785c 1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1773 if (busiest < this_rq) {
05fa785c
TG
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
70574a99
AD
1778 ret = 1;
1779 } else
05fa785c
TG
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
70574a99
AD
1782 }
1783 return ret;
1784}
1785
8f45e2b5
GH
1786#endif /* CONFIG_PREEMPT */
1787
1788/*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792{
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
05fa785c 1795 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800}
1801
70574a99
AD
1802static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804{
05fa785c 1805 raw_spin_unlock(&busiest->lock);
70574a99
AD
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807}
18d95a28
PZ
1808#endif
1809
30432094 1810#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1811static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812{
30432094 1813#ifdef CONFIG_SMP
34e83e85
IM
1814 cfs_rq->shares = shares;
1815#endif
1816}
30432094 1817#endif
e7693a36 1818
dce48a84 1819static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1820static void update_sysctl(void);
acb4a848 1821static int get_update_sysctl_factor(void);
dce48a84 1822
cd29fe6f
PZ
1823static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824{
1825 set_task_rq(p, cpu);
1826#ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834#endif
1835}
dce48a84 1836
dd41f596 1837#include "sched_stats.h"
dd41f596 1838#include "sched_idletask.c"
5522d5d5
IM
1839#include "sched_fair.c"
1840#include "sched_rt.c"
dd41f596
IM
1841#ifdef CONFIG_SCHED_DEBUG
1842# include "sched_debug.c"
1843#endif
1844
1845#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1846#define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
dd41f596 1848
c09595f6 1849static void inc_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running++;
9c217245
IM
1852}
1853
c09595f6 1854static void dec_nr_running(struct rq *rq)
9c217245
IM
1855{
1856 rq->nr_running--;
9c217245
IM
1857}
1858
45bf76df
IM
1859static void set_load_weight(struct task_struct *p)
1860{
1861 if (task_has_rt_policy(p)) {
dd41f596
IM
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
45bf76df 1866
dd41f596
IM
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
71f8bd46 1875
dd41f596
IM
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1878}
1879
2087a1ad
GH
1880static void update_avg(u64 *avg, u64 sample)
1881{
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884}
1885
8159f87e 1886static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1887{
831451ac
PZ
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
dd41f596 1891 sched_info_queued(p);
fd390f6a 1892 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1893 p->se.on_rq = 1;
71f8bd46
IM
1894}
1895
69be72c1 1896static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1897{
831451ac
PZ
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
2087a1ad
GH
1907 }
1908
46ac22ba 1909 sched_info_dequeued(p);
f02231e5 1910 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1911 p->se.on_rq = 0;
71f8bd46
IM
1912}
1913
14531189 1914/*
dd41f596 1915 * __normal_prio - return the priority that is based on the static prio
14531189 1916 */
14531189
IM
1917static inline int __normal_prio(struct task_struct *p)
1918{
dd41f596 1919 return p->static_prio;
14531189
IM
1920}
1921
b29739f9
IM
1922/*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
36c8b586 1929static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1930{
1931 int prio;
1932
e05606d3 1933 if (task_has_rt_policy(p))
b29739f9
IM
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938}
1939
1940/*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
36c8b586 1947static int effective_prio(struct task_struct *p)
b29739f9
IM
1948{
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958}
1959
1da177e4 1960/*
dd41f596 1961 * activate_task - move a task to the runqueue.
1da177e4 1962 */
dd41f596 1963static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1964{
d9514f6c 1965 if (task_contributes_to_load(p))
dd41f596 1966 rq->nr_uninterruptible--;
1da177e4 1967
8159f87e 1968 enqueue_task(rq, p, wakeup);
c09595f6 1969 inc_nr_running(rq);
1da177e4
LT
1970}
1971
1da177e4
LT
1972/*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
2e1cb74a 1975static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1976{
d9514f6c 1977 if (task_contributes_to_load(p))
dd41f596
IM
1978 rq->nr_uninterruptible++;
1979
69be72c1 1980 dequeue_task(rq, p, sleep);
c09595f6 1981 dec_nr_running(rq);
1da177e4
LT
1982}
1983
1da177e4
LT
1984/**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
36c8b586 1988inline int task_curr(const struct task_struct *p)
1da177e4
LT
1989{
1990 return cpu_curr(task_cpu(p)) == p;
1991}
1992
cb469845
SR
1993static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996{
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003}
2004
1da177e4 2005#ifdef CONFIG_SMP
cc367732
IM
2006/*
2007 * Is this task likely cache-hot:
2008 */
e7693a36 2009static int
cc367732
IM
2010task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011{
2012 s64 delta;
2013
e6c8fba7
PZ
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
f540a608
IM
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
f685ceac 2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2023 return 1;
2024
6bc1665b
IM
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
cc367732
IM
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033}
2034
dd41f596 2035void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2036{
e2912009
PZ
2037#ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
077614ee
PZ
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2044#endif
2045
de1d7286 2046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2047
738d2be4
PZ
2048 if (task_cpu(p) == new_cpu)
2049 return;
2050
2051 p->se.nr_migrations++;
2052 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
dd41f596
IM
2053
2054 __set_task_cpu(p, new_cpu);
c65cc870
IM
2055}
2056
70b97a7f 2057struct migration_req {
1da177e4 2058 struct list_head list;
1da177e4 2059
36c8b586 2060 struct task_struct *task;
1da177e4
LT
2061 int dest_cpu;
2062
1da177e4 2063 struct completion done;
70b97a7f 2064};
1da177e4
LT
2065
2066/*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
36c8b586 2070static int
70b97a7f 2071migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = task_rq(p);
1da177e4
LT
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
e2912009 2077 * the next wake-up will properly place the task.
1da177e4 2078 */
e2912009 2079 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2080 return 0;
1da177e4
LT
2081
2082 init_completion(&req->done);
1da177e4
LT
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
48f24c4d 2086
1da177e4
LT
2087 return 1;
2088}
2089
a26b89f0
MM
2090/*
2091 * wait_task_context_switch - wait for a thread to complete at least one
2092 * context switch.
2093 *
2094 * @p must not be current.
2095 */
2096void wait_task_context_switch(struct task_struct *p)
2097{
2098 unsigned long nvcsw, nivcsw, flags;
2099 int running;
2100 struct rq *rq;
2101
2102 nvcsw = p->nvcsw;
2103 nivcsw = p->nivcsw;
2104 for (;;) {
2105 /*
2106 * The runqueue is assigned before the actual context
2107 * switch. We need to take the runqueue lock.
2108 *
2109 * We could check initially without the lock but it is
2110 * very likely that we need to take the lock in every
2111 * iteration.
2112 */
2113 rq = task_rq_lock(p, &flags);
2114 running = task_running(rq, p);
2115 task_rq_unlock(rq, &flags);
2116
2117 if (likely(!running))
2118 break;
2119 /*
2120 * The switch count is incremented before the actual
2121 * context switch. We thus wait for two switches to be
2122 * sure at least one completed.
2123 */
2124 if ((p->nvcsw - nvcsw) > 1)
2125 break;
2126 if ((p->nivcsw - nivcsw) > 1)
2127 break;
2128
2129 cpu_relax();
2130 }
2131}
2132
1da177e4
LT
2133/*
2134 * wait_task_inactive - wait for a thread to unschedule.
2135 *
85ba2d86
RM
2136 * If @match_state is nonzero, it's the @p->state value just checked and
2137 * not expected to change. If it changes, i.e. @p might have woken up,
2138 * then return zero. When we succeed in waiting for @p to be off its CPU,
2139 * we return a positive number (its total switch count). If a second call
2140 * a short while later returns the same number, the caller can be sure that
2141 * @p has remained unscheduled the whole time.
2142 *
1da177e4
LT
2143 * The caller must ensure that the task *will* unschedule sometime soon,
2144 * else this function might spin for a *long* time. This function can't
2145 * be called with interrupts off, or it may introduce deadlock with
2146 * smp_call_function() if an IPI is sent by the same process we are
2147 * waiting to become inactive.
2148 */
85ba2d86 2149unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2150{
2151 unsigned long flags;
dd41f596 2152 int running, on_rq;
85ba2d86 2153 unsigned long ncsw;
70b97a7f 2154 struct rq *rq;
1da177e4 2155
3a5c359a
AK
2156 for (;;) {
2157 /*
2158 * We do the initial early heuristics without holding
2159 * any task-queue locks at all. We'll only try to get
2160 * the runqueue lock when things look like they will
2161 * work out!
2162 */
2163 rq = task_rq(p);
fa490cfd 2164
3a5c359a
AK
2165 /*
2166 * If the task is actively running on another CPU
2167 * still, just relax and busy-wait without holding
2168 * any locks.
2169 *
2170 * NOTE! Since we don't hold any locks, it's not
2171 * even sure that "rq" stays as the right runqueue!
2172 * But we don't care, since "task_running()" will
2173 * return false if the runqueue has changed and p
2174 * is actually now running somewhere else!
2175 */
85ba2d86
RM
2176 while (task_running(rq, p)) {
2177 if (match_state && unlikely(p->state != match_state))
2178 return 0;
3a5c359a 2179 cpu_relax();
85ba2d86 2180 }
fa490cfd 2181
3a5c359a
AK
2182 /*
2183 * Ok, time to look more closely! We need the rq
2184 * lock now, to be *sure*. If we're wrong, we'll
2185 * just go back and repeat.
2186 */
2187 rq = task_rq_lock(p, &flags);
0a16b607 2188 trace_sched_wait_task(rq, p);
3a5c359a
AK
2189 running = task_running(rq, p);
2190 on_rq = p->se.on_rq;
85ba2d86 2191 ncsw = 0;
f31e11d8 2192 if (!match_state || p->state == match_state)
93dcf55f 2193 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2194 task_rq_unlock(rq, &flags);
fa490cfd 2195
85ba2d86
RM
2196 /*
2197 * If it changed from the expected state, bail out now.
2198 */
2199 if (unlikely(!ncsw))
2200 break;
2201
3a5c359a
AK
2202 /*
2203 * Was it really running after all now that we
2204 * checked with the proper locks actually held?
2205 *
2206 * Oops. Go back and try again..
2207 */
2208 if (unlikely(running)) {
2209 cpu_relax();
2210 continue;
2211 }
fa490cfd 2212
3a5c359a
AK
2213 /*
2214 * It's not enough that it's not actively running,
2215 * it must be off the runqueue _entirely_, and not
2216 * preempted!
2217 *
80dd99b3 2218 * So if it was still runnable (but just not actively
3a5c359a
AK
2219 * running right now), it's preempted, and we should
2220 * yield - it could be a while.
2221 */
2222 if (unlikely(on_rq)) {
2223 schedule_timeout_uninterruptible(1);
2224 continue;
2225 }
fa490cfd 2226
3a5c359a
AK
2227 /*
2228 * Ahh, all good. It wasn't running, and it wasn't
2229 * runnable, which means that it will never become
2230 * running in the future either. We're all done!
2231 */
2232 break;
2233 }
85ba2d86
RM
2234
2235 return ncsw;
1da177e4
LT
2236}
2237
2238/***
2239 * kick_process - kick a running thread to enter/exit the kernel
2240 * @p: the to-be-kicked thread
2241 *
2242 * Cause a process which is running on another CPU to enter
2243 * kernel-mode, without any delay. (to get signals handled.)
2244 *
2245 * NOTE: this function doesnt have to take the runqueue lock,
2246 * because all it wants to ensure is that the remote task enters
2247 * the kernel. If the IPI races and the task has been migrated
2248 * to another CPU then no harm is done and the purpose has been
2249 * achieved as well.
2250 */
36c8b586 2251void kick_process(struct task_struct *p)
1da177e4
LT
2252{
2253 int cpu;
2254
2255 preempt_disable();
2256 cpu = task_cpu(p);
2257 if ((cpu != smp_processor_id()) && task_curr(p))
2258 smp_send_reschedule(cpu);
2259 preempt_enable();
2260}
b43e3521 2261EXPORT_SYMBOL_GPL(kick_process);
476d139c 2262#endif /* CONFIG_SMP */
1da177e4 2263
0793a61d
TG
2264/**
2265 * task_oncpu_function_call - call a function on the cpu on which a task runs
2266 * @p: the task to evaluate
2267 * @func: the function to be called
2268 * @info: the function call argument
2269 *
2270 * Calls the function @func when the task is currently running. This might
2271 * be on the current CPU, which just calls the function directly
2272 */
2273void task_oncpu_function_call(struct task_struct *p,
2274 void (*func) (void *info), void *info)
2275{
2276 int cpu;
2277
2278 preempt_disable();
2279 cpu = task_cpu(p);
2280 if (task_curr(p))
2281 smp_call_function_single(cpu, func, info, 1);
2282 preempt_enable();
2283}
2284
970b13ba 2285#ifdef CONFIG_SMP
5da9a0fb
PZ
2286static int select_fallback_rq(int cpu, struct task_struct *p)
2287{
2288 int dest_cpu;
2289 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2290
2291 /* Look for allowed, online CPU in same node. */
2292 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2293 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2294 return dest_cpu;
2295
2296 /* Any allowed, online CPU? */
2297 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2298 if (dest_cpu < nr_cpu_ids)
2299 return dest_cpu;
2300
2301 /* No more Mr. Nice Guy. */
2302 if (dest_cpu >= nr_cpu_ids) {
2303 rcu_read_lock();
2304 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2305 rcu_read_unlock();
2306 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2307
2308 /*
2309 * Don't tell them about moving exiting tasks or
2310 * kernel threads (both mm NULL), since they never
2311 * leave kernel.
2312 */
2313 if (p->mm && printk_ratelimit()) {
2314 printk(KERN_INFO "process %d (%s) no "
2315 "longer affine to cpu%d\n",
2316 task_pid_nr(p), p->comm, cpu);
2317 }
2318 }
2319
2320 return dest_cpu;
2321}
2322
e2912009
PZ
2323/*
2324 * Called from:
2325 *
2326 * - fork, @p is stable because it isn't on the tasklist yet
2327 *
38022906 2328 * - exec, @p is unstable, retry loop
e2912009
PZ
2329 *
2330 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2331 * we should be good.
2332 */
970b13ba
PZ
2333static inline
2334int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2335{
e2912009
PZ
2336 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2337
2338 /*
2339 * In order not to call set_task_cpu() on a blocking task we need
2340 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2341 * cpu.
2342 *
2343 * Since this is common to all placement strategies, this lives here.
2344 *
2345 * [ this allows ->select_task() to simply return task_cpu(p) and
2346 * not worry about this generic constraint ]
2347 */
2348 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2349 !cpu_online(cpu)))
5da9a0fb 2350 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2351
2352 return cpu;
970b13ba
PZ
2353}
2354#endif
2355
1da177e4
LT
2356/***
2357 * try_to_wake_up - wake up a thread
2358 * @p: the to-be-woken-up thread
2359 * @state: the mask of task states that can be woken
2360 * @sync: do a synchronous wakeup?
2361 *
2362 * Put it on the run-queue if it's not already there. The "current"
2363 * thread is always on the run-queue (except when the actual
2364 * re-schedule is in progress), and as such you're allowed to do
2365 * the simpler "current->state = TASK_RUNNING" to mark yourself
2366 * runnable without the overhead of this.
2367 *
2368 * returns failure only if the task is already active.
2369 */
7d478721
PZ
2370static int try_to_wake_up(struct task_struct *p, unsigned int state,
2371 int wake_flags)
1da177e4 2372{
cc367732 2373 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2374 unsigned long flags;
f5dc3753 2375 struct rq *rq, *orig_rq;
1da177e4 2376
b85d0667 2377 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2378 wake_flags &= ~WF_SYNC;
2398f2c6 2379
e9c84311 2380 this_cpu = get_cpu();
2398f2c6 2381
04e2f174 2382 smp_wmb();
f5dc3753 2383 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2384 update_rq_clock(rq);
e9c84311 2385 if (!(p->state & state))
1da177e4
LT
2386 goto out;
2387
dd41f596 2388 if (p->se.on_rq)
1da177e4
LT
2389 goto out_running;
2390
2391 cpu = task_cpu(p);
cc367732 2392 orig_cpu = cpu;
1da177e4
LT
2393
2394#ifdef CONFIG_SMP
2395 if (unlikely(task_running(rq, p)))
2396 goto out_activate;
2397
e9c84311
PZ
2398 /*
2399 * In order to handle concurrent wakeups and release the rq->lock
2400 * we put the task in TASK_WAKING state.
eb24073b
IM
2401 *
2402 * First fix up the nr_uninterruptible count:
e9c84311 2403 */
eb24073b
IM
2404 if (task_contributes_to_load(p))
2405 rq->nr_uninterruptible--;
e9c84311 2406 p->state = TASK_WAKING;
efbbd05a
PZ
2407
2408 if (p->sched_class->task_waking)
2409 p->sched_class->task_waking(rq, p);
2410
ab19cb23 2411 __task_rq_unlock(rq);
e9c84311 2412
970b13ba 2413 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2414 if (cpu != orig_cpu)
5d2f5a61 2415 set_task_cpu(p, cpu);
ab19cb23
PZ
2416
2417 rq = __task_rq_lock(p);
2418 update_rq_clock(rq);
f5dc3753 2419
e9c84311
PZ
2420 WARN_ON(p->state != TASK_WAKING);
2421 cpu = task_cpu(p);
1da177e4 2422
e7693a36
GH
2423#ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local);
2427 else {
2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) {
758b2cdc 2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2431 schedstat_inc(sd, ttwu_wake_remote);
2432 break;
2433 }
2434 }
2435 }
6d6bc0ad 2436#endif /* CONFIG_SCHEDSTATS */
e7693a36 2437
1da177e4
LT
2438out_activate:
2439#endif /* CONFIG_SMP */
cc367732 2440 schedstat_inc(p, se.nr_wakeups);
7d478721 2441 if (wake_flags & WF_SYNC)
cc367732
IM
2442 schedstat_inc(p, se.nr_wakeups_sync);
2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.nr_wakeups_migrate);
2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.nr_wakeups_local);
2447 else
2448 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2449 activate_task(rq, p, 1);
1da177e4
LT
2450 success = 1;
2451
831451ac
PZ
2452 /*
2453 * Only attribute actual wakeups done by this task.
2454 */
2455 if (!in_interrupt()) {
2456 struct sched_entity *se = &current->se;
2457 u64 sample = se->sum_exec_runtime;
2458
2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup;
2461 else
2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample);
2464
2465 se->last_wakeup = se->sum_exec_runtime;
2466 }
2467
1da177e4 2468out_running:
468a15bb 2469 trace_sched_wakeup(rq, p, success);
7d478721 2470 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2471
1da177e4 2472 p->state = TASK_RUNNING;
9a897c5a 2473#ifdef CONFIG_SMP
efbbd05a
PZ
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2476
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2480
2481 if (delta > max)
2482 rq->avg_idle = max;
2483 else
2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0;
2486 }
9a897c5a 2487#endif
1da177e4
LT
2488out:
2489 task_rq_unlock(rq, &flags);
e9c84311 2490 put_cpu();
1da177e4
LT
2491
2492 return success;
2493}
2494
50fa610a
DH
2495/**
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2498 *
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2501 * running.
2502 *
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2505 */
7ad5b3a5 2506int wake_up_process(struct task_struct *p)
1da177e4 2507{
d9514f6c 2508 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2509}
1da177e4
LT
2510EXPORT_SYMBOL(wake_up_process);
2511
7ad5b3a5 2512int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2513{
2514 return try_to_wake_up(p, state, 0);
2515}
2516
1da177e4
LT
2517/*
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
dd41f596
IM
2520 *
2521 * __sched_fork() is basic setup used by init_idle() too:
2522 */
2523static void __sched_fork(struct task_struct *p)
2524{
dd41f596
IM
2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0;
f6cf891c 2527 p->se.prev_sum_exec_runtime = 0;
6c594c21 2528 p->se.nr_migrations = 0;
4ae7d5ce
IM
2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0;
831451ac
PZ
2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2533
2534#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2535 p->se.wait_start = 0;
2536 p->se.wait_max = 0;
2537 p->se.wait_count = 0;
2538 p->se.wait_sum = 0;
2539
2540 p->se.sleep_start = 0;
2541 p->se.sleep_max = 0;
2542 p->se.sum_sleep_runtime = 0;
2543
2544 p->se.block_start = 0;
2545 p->se.block_max = 0;
2546 p->se.exec_max = 0;
2547 p->se.slice_max = 0;
2548
2549 p->se.nr_migrations_cold = 0;
2550 p->se.nr_failed_migrations_affine = 0;
2551 p->se.nr_failed_migrations_running = 0;
2552 p->se.nr_failed_migrations_hot = 0;
2553 p->se.nr_forced_migrations = 0;
7793527b
LDM
2554
2555 p->se.nr_wakeups = 0;
2556 p->se.nr_wakeups_sync = 0;
2557 p->se.nr_wakeups_migrate = 0;
2558 p->se.nr_wakeups_local = 0;
2559 p->se.nr_wakeups_remote = 0;
2560 p->se.nr_wakeups_affine = 0;
2561 p->se.nr_wakeups_affine_attempts = 0;
2562 p->se.nr_wakeups_passive = 0;
2563 p->se.nr_wakeups_idle = 0;
2564
6cfb0d5d 2565#endif
476d139c 2566
fa717060 2567 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2568 p->se.on_rq = 0;
4a55bd5e 2569 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2570
e107be36
AK
2571#ifdef CONFIG_PREEMPT_NOTIFIERS
2572 INIT_HLIST_HEAD(&p->preempt_notifiers);
2573#endif
dd41f596
IM
2574}
2575
2576/*
2577 * fork()/clone()-time setup:
2578 */
2579void sched_fork(struct task_struct *p, int clone_flags)
2580{
2581 int cpu = get_cpu();
2582
2583 __sched_fork(p);
06b83b5f
PZ
2584 /*
2585 * We mark the process as waking here. This guarantees that
2586 * nobody will actually run it, and a signal or other external
2587 * event cannot wake it up and insert it on the runqueue either.
2588 */
2589 p->state = TASK_WAKING;
dd41f596 2590
b9dc29e7
MG
2591 /*
2592 * Revert to default priority/policy on fork if requested.
2593 */
2594 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2595 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2596 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2597 p->normal_prio = p->static_prio;
2598 }
b9dc29e7 2599
6c697bdf
MG
2600 if (PRIO_TO_NICE(p->static_prio) < 0) {
2601 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2602 p->normal_prio = p->static_prio;
6c697bdf
MG
2603 set_load_weight(p);
2604 }
2605
b9dc29e7
MG
2606 /*
2607 * We don't need the reset flag anymore after the fork. It has
2608 * fulfilled its duty:
2609 */
2610 p->sched_reset_on_fork = 0;
2611 }
ca94c442 2612
f83f9ac2
PW
2613 /*
2614 * Make sure we do not leak PI boosting priority to the child.
2615 */
2616 p->prio = current->normal_prio;
2617
2ddbf952
HS
2618 if (!rt_prio(p->prio))
2619 p->sched_class = &fair_sched_class;
b29739f9 2620
cd29fe6f
PZ
2621 if (p->sched_class->task_fork)
2622 p->sched_class->task_fork(p);
2623
5f3edc1b 2624#ifdef CONFIG_SMP
970b13ba 2625 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2626#endif
2627 set_task_cpu(p, cpu);
2628
52f17b6c 2629#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2630 if (likely(sched_info_on()))
52f17b6c 2631 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2632#endif
d6077cb8 2633#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2634 p->oncpu = 0;
2635#endif
1da177e4 2636#ifdef CONFIG_PREEMPT
4866cde0 2637 /* Want to start with kernel preemption disabled. */
a1261f54 2638 task_thread_info(p)->preempt_count = 1;
1da177e4 2639#endif
917b627d
GH
2640 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2641
476d139c 2642 put_cpu();
1da177e4
LT
2643}
2644
2645/*
2646 * wake_up_new_task - wake up a newly created task for the first time.
2647 *
2648 * This function will do some initial scheduler statistics housekeeping
2649 * that must be done for every newly created context, then puts the task
2650 * on the runqueue and wakes it.
2651 */
7ad5b3a5 2652void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2653{
2654 unsigned long flags;
dd41f596 2655 struct rq *rq;
1da177e4
LT
2656
2657 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2658 BUG_ON(p->state != TASK_WAKING);
2659 p->state = TASK_RUNNING;
a8e504d2 2660 update_rq_clock(rq);
cd29fe6f 2661 activate_task(rq, p, 0);
c71dd42d 2662 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2663 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2664#ifdef CONFIG_SMP
efbbd05a
PZ
2665 if (p->sched_class->task_woken)
2666 p->sched_class->task_woken(rq, p);
9a897c5a 2667#endif
dd41f596 2668 task_rq_unlock(rq, &flags);
1da177e4
LT
2669}
2670
e107be36
AK
2671#ifdef CONFIG_PREEMPT_NOTIFIERS
2672
2673/**
80dd99b3 2674 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2675 * @notifier: notifier struct to register
e107be36
AK
2676 */
2677void preempt_notifier_register(struct preempt_notifier *notifier)
2678{
2679 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2680}
2681EXPORT_SYMBOL_GPL(preempt_notifier_register);
2682
2683/**
2684 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2685 * @notifier: notifier struct to unregister
e107be36
AK
2686 *
2687 * This is safe to call from within a preemption notifier.
2688 */
2689void preempt_notifier_unregister(struct preempt_notifier *notifier)
2690{
2691 hlist_del(&notifier->link);
2692}
2693EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2694
2695static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2696{
2697 struct preempt_notifier *notifier;
2698 struct hlist_node *node;
2699
2700 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2701 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2702}
2703
2704static void
2705fire_sched_out_preempt_notifiers(struct task_struct *curr,
2706 struct task_struct *next)
2707{
2708 struct preempt_notifier *notifier;
2709 struct hlist_node *node;
2710
2711 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2712 notifier->ops->sched_out(notifier, next);
2713}
2714
6d6bc0ad 2715#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2716
2717static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2718{
2719}
2720
2721static void
2722fire_sched_out_preempt_notifiers(struct task_struct *curr,
2723 struct task_struct *next)
2724{
2725}
2726
6d6bc0ad 2727#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2728
4866cde0
NP
2729/**
2730 * prepare_task_switch - prepare to switch tasks
2731 * @rq: the runqueue preparing to switch
421cee29 2732 * @prev: the current task that is being switched out
4866cde0
NP
2733 * @next: the task we are going to switch to.
2734 *
2735 * This is called with the rq lock held and interrupts off. It must
2736 * be paired with a subsequent finish_task_switch after the context
2737 * switch.
2738 *
2739 * prepare_task_switch sets up locking and calls architecture specific
2740 * hooks.
2741 */
e107be36
AK
2742static inline void
2743prepare_task_switch(struct rq *rq, struct task_struct *prev,
2744 struct task_struct *next)
4866cde0 2745{
e107be36 2746 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2747 prepare_lock_switch(rq, next);
2748 prepare_arch_switch(next);
2749}
2750
1da177e4
LT
2751/**
2752 * finish_task_switch - clean up after a task-switch
344babaa 2753 * @rq: runqueue associated with task-switch
1da177e4
LT
2754 * @prev: the thread we just switched away from.
2755 *
4866cde0
NP
2756 * finish_task_switch must be called after the context switch, paired
2757 * with a prepare_task_switch call before the context switch.
2758 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2759 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2760 *
2761 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2762 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2763 * with the lock held can cause deadlocks; see schedule() for
2764 * details.)
2765 */
a9957449 2766static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2767 __releases(rq->lock)
2768{
1da177e4 2769 struct mm_struct *mm = rq->prev_mm;
55a101f8 2770 long prev_state;
1da177e4
LT
2771
2772 rq->prev_mm = NULL;
2773
2774 /*
2775 * A task struct has one reference for the use as "current".
c394cc9f 2776 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2777 * schedule one last time. The schedule call will never return, and
2778 * the scheduled task must drop that reference.
c394cc9f 2779 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2780 * still held, otherwise prev could be scheduled on another cpu, die
2781 * there before we look at prev->state, and then the reference would
2782 * be dropped twice.
2783 * Manfred Spraul <manfred@colorfullife.com>
2784 */
55a101f8 2785 prev_state = prev->state;
4866cde0 2786 finish_arch_switch(prev);
cdd6c482 2787 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2788 finish_lock_switch(rq, prev);
e8fa1362 2789
e107be36 2790 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2791 if (mm)
2792 mmdrop(mm);
c394cc9f 2793 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2794 /*
2795 * Remove function-return probe instances associated with this
2796 * task and put them back on the free list.
9761eea8 2797 */
c6fd91f0 2798 kprobe_flush_task(prev);
1da177e4 2799 put_task_struct(prev);
c6fd91f0 2800 }
1da177e4
LT
2801}
2802
3f029d3c
GH
2803#ifdef CONFIG_SMP
2804
2805/* assumes rq->lock is held */
2806static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2807{
2808 if (prev->sched_class->pre_schedule)
2809 prev->sched_class->pre_schedule(rq, prev);
2810}
2811
2812/* rq->lock is NOT held, but preemption is disabled */
2813static inline void post_schedule(struct rq *rq)
2814{
2815 if (rq->post_schedule) {
2816 unsigned long flags;
2817
05fa785c 2818 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2819 if (rq->curr->sched_class->post_schedule)
2820 rq->curr->sched_class->post_schedule(rq);
05fa785c 2821 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2822
2823 rq->post_schedule = 0;
2824 }
2825}
2826
2827#else
da19ab51 2828
3f029d3c
GH
2829static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2830{
2831}
2832
2833static inline void post_schedule(struct rq *rq)
2834{
1da177e4
LT
2835}
2836
3f029d3c
GH
2837#endif
2838
1da177e4
LT
2839/**
2840 * schedule_tail - first thing a freshly forked thread must call.
2841 * @prev: the thread we just switched away from.
2842 */
36c8b586 2843asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2844 __releases(rq->lock)
2845{
70b97a7f
IM
2846 struct rq *rq = this_rq();
2847
4866cde0 2848 finish_task_switch(rq, prev);
da19ab51 2849
3f029d3c
GH
2850 /*
2851 * FIXME: do we need to worry about rq being invalidated by the
2852 * task_switch?
2853 */
2854 post_schedule(rq);
70b97a7f 2855
4866cde0
NP
2856#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2857 /* In this case, finish_task_switch does not reenable preemption */
2858 preempt_enable();
2859#endif
1da177e4 2860 if (current->set_child_tid)
b488893a 2861 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2862}
2863
2864/*
2865 * context_switch - switch to the new MM and the new
2866 * thread's register state.
2867 */
dd41f596 2868static inline void
70b97a7f 2869context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2870 struct task_struct *next)
1da177e4 2871{
dd41f596 2872 struct mm_struct *mm, *oldmm;
1da177e4 2873
e107be36 2874 prepare_task_switch(rq, prev, next);
0a16b607 2875 trace_sched_switch(rq, prev, next);
dd41f596
IM
2876 mm = next->mm;
2877 oldmm = prev->active_mm;
9226d125
ZA
2878 /*
2879 * For paravirt, this is coupled with an exit in switch_to to
2880 * combine the page table reload and the switch backend into
2881 * one hypercall.
2882 */
224101ed 2883 arch_start_context_switch(prev);
9226d125 2884
710390d9 2885 if (likely(!mm)) {
1da177e4
LT
2886 next->active_mm = oldmm;
2887 atomic_inc(&oldmm->mm_count);
2888 enter_lazy_tlb(oldmm, next);
2889 } else
2890 switch_mm(oldmm, mm, next);
2891
710390d9 2892 if (likely(!prev->mm)) {
1da177e4 2893 prev->active_mm = NULL;
1da177e4
LT
2894 rq->prev_mm = oldmm;
2895 }
3a5f5e48
IM
2896 /*
2897 * Since the runqueue lock will be released by the next
2898 * task (which is an invalid locking op but in the case
2899 * of the scheduler it's an obvious special-case), so we
2900 * do an early lockdep release here:
2901 */
2902#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2903 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2904#endif
1da177e4
LT
2905
2906 /* Here we just switch the register state and the stack. */
2907 switch_to(prev, next, prev);
2908
dd41f596
IM
2909 barrier();
2910 /*
2911 * this_rq must be evaluated again because prev may have moved
2912 * CPUs since it called schedule(), thus the 'rq' on its stack
2913 * frame will be invalid.
2914 */
2915 finish_task_switch(this_rq(), prev);
1da177e4
LT
2916}
2917
2918/*
2919 * nr_running, nr_uninterruptible and nr_context_switches:
2920 *
2921 * externally visible scheduler statistics: current number of runnable
2922 * threads, current number of uninterruptible-sleeping threads, total
2923 * number of context switches performed since bootup.
2924 */
2925unsigned long nr_running(void)
2926{
2927 unsigned long i, sum = 0;
2928
2929 for_each_online_cpu(i)
2930 sum += cpu_rq(i)->nr_running;
2931
2932 return sum;
2933}
2934
2935unsigned long nr_uninterruptible(void)
2936{
2937 unsigned long i, sum = 0;
2938
0a945022 2939 for_each_possible_cpu(i)
1da177e4
LT
2940 sum += cpu_rq(i)->nr_uninterruptible;
2941
2942 /*
2943 * Since we read the counters lockless, it might be slightly
2944 * inaccurate. Do not allow it to go below zero though:
2945 */
2946 if (unlikely((long)sum < 0))
2947 sum = 0;
2948
2949 return sum;
2950}
2951
2952unsigned long long nr_context_switches(void)
2953{
cc94abfc
SR
2954 int i;
2955 unsigned long long sum = 0;
1da177e4 2956
0a945022 2957 for_each_possible_cpu(i)
1da177e4
LT
2958 sum += cpu_rq(i)->nr_switches;
2959
2960 return sum;
2961}
2962
2963unsigned long nr_iowait(void)
2964{
2965 unsigned long i, sum = 0;
2966
0a945022 2967 for_each_possible_cpu(i)
1da177e4
LT
2968 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2969
2970 return sum;
2971}
2972
69d25870
AV
2973unsigned long nr_iowait_cpu(void)
2974{
2975 struct rq *this = this_rq();
2976 return atomic_read(&this->nr_iowait);
2977}
2978
2979unsigned long this_cpu_load(void)
2980{
2981 struct rq *this = this_rq();
2982 return this->cpu_load[0];
2983}
2984
2985
dce48a84
TG
2986/* Variables and functions for calc_load */
2987static atomic_long_t calc_load_tasks;
2988static unsigned long calc_load_update;
2989unsigned long avenrun[3];
2990EXPORT_SYMBOL(avenrun);
2991
2d02494f
TG
2992/**
2993 * get_avenrun - get the load average array
2994 * @loads: pointer to dest load array
2995 * @offset: offset to add
2996 * @shift: shift count to shift the result left
2997 *
2998 * These values are estimates at best, so no need for locking.
2999 */
3000void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3001{
3002 loads[0] = (avenrun[0] + offset) << shift;
3003 loads[1] = (avenrun[1] + offset) << shift;
3004 loads[2] = (avenrun[2] + offset) << shift;
3005}
3006
dce48a84
TG
3007static unsigned long
3008calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3009{
dce48a84
TG
3010 load *= exp;
3011 load += active * (FIXED_1 - exp);
3012 return load >> FSHIFT;
3013}
db1b1fef 3014
dce48a84
TG
3015/*
3016 * calc_load - update the avenrun load estimates 10 ticks after the
3017 * CPUs have updated calc_load_tasks.
3018 */
3019void calc_global_load(void)
3020{
3021 unsigned long upd = calc_load_update + 10;
3022 long active;
3023
3024 if (time_before(jiffies, upd))
3025 return;
db1b1fef 3026
dce48a84
TG
3027 active = atomic_long_read(&calc_load_tasks);
3028 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3029
dce48a84
TG
3030 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3031 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3032 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3033
3034 calc_load_update += LOAD_FREQ;
3035}
3036
3037/*
3038 * Either called from update_cpu_load() or from a cpu going idle
3039 */
3040static void calc_load_account_active(struct rq *this_rq)
3041{
3042 long nr_active, delta;
3043
3044 nr_active = this_rq->nr_running;
3045 nr_active += (long) this_rq->nr_uninterruptible;
3046
3047 if (nr_active != this_rq->calc_load_active) {
3048 delta = nr_active - this_rq->calc_load_active;
3049 this_rq->calc_load_active = nr_active;
3050 atomic_long_add(delta, &calc_load_tasks);
3051 }
db1b1fef
JS
3052}
3053
48f24c4d 3054/*
dd41f596
IM
3055 * Update rq->cpu_load[] statistics. This function is usually called every
3056 * scheduler tick (TICK_NSEC).
48f24c4d 3057 */
dd41f596 3058static void update_cpu_load(struct rq *this_rq)
48f24c4d 3059{
495eca49 3060 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3061 int i, scale;
3062
3063 this_rq->nr_load_updates++;
dd41f596
IM
3064
3065 /* Update our load: */
3066 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3067 unsigned long old_load, new_load;
3068
3069 /* scale is effectively 1 << i now, and >> i divides by scale */
3070
3071 old_load = this_rq->cpu_load[i];
3072 new_load = this_load;
a25707f3
IM
3073 /*
3074 * Round up the averaging division if load is increasing. This
3075 * prevents us from getting stuck on 9 if the load is 10, for
3076 * example.
3077 */
3078 if (new_load > old_load)
3079 new_load += scale-1;
dd41f596
IM
3080 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3081 }
dce48a84
TG
3082
3083 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3084 this_rq->calc_load_update += LOAD_FREQ;
3085 calc_load_account_active(this_rq);
3086 }
48f24c4d
IM
3087}
3088
dd41f596
IM
3089#ifdef CONFIG_SMP
3090
1da177e4
LT
3091/*
3092 * double_rq_lock - safely lock two runqueues
3093 *
3094 * Note this does not disable interrupts like task_rq_lock,
3095 * you need to do so manually before calling.
3096 */
70b97a7f 3097static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3098 __acquires(rq1->lock)
3099 __acquires(rq2->lock)
3100{
054b9108 3101 BUG_ON(!irqs_disabled());
1da177e4 3102 if (rq1 == rq2) {
05fa785c 3103 raw_spin_lock(&rq1->lock);
1da177e4
LT
3104 __acquire(rq2->lock); /* Fake it out ;) */
3105 } else {
c96d145e 3106 if (rq1 < rq2) {
05fa785c
TG
3107 raw_spin_lock(&rq1->lock);
3108 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4 3109 } else {
05fa785c
TG
3110 raw_spin_lock(&rq2->lock);
3111 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3112 }
3113 }
6e82a3be
IM
3114 update_rq_clock(rq1);
3115 update_rq_clock(rq2);
1da177e4
LT
3116}
3117
3118/*
3119 * double_rq_unlock - safely unlock two runqueues
3120 *
3121 * Note this does not restore interrupts like task_rq_unlock,
3122 * you need to do so manually after calling.
3123 */
70b97a7f 3124static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3125 __releases(rq1->lock)
3126 __releases(rq2->lock)
3127{
05fa785c 3128 raw_spin_unlock(&rq1->lock);
1da177e4 3129 if (rq1 != rq2)
05fa785c 3130 raw_spin_unlock(&rq2->lock);
1da177e4
LT
3131 else
3132 __release(rq2->lock);
3133}
3134
1da177e4 3135/*
38022906
PZ
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3138 */
38022906 3139void sched_exec(void)
1da177e4 3140{
38022906 3141 struct task_struct *p = current;
70b97a7f 3142 struct migration_req req;
38022906 3143 int dest_cpu, this_cpu;
1da177e4 3144 unsigned long flags;
70b97a7f 3145 struct rq *rq;
1da177e4 3146
38022906
PZ
3147again:
3148 this_cpu = get_cpu();
3149 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3150 if (dest_cpu == this_cpu) {
3151 put_cpu();
3152 return;
3153 }
3154
1da177e4 3155 rq = task_rq_lock(p, &flags);
38022906
PZ
3156 put_cpu();
3157
3158 /*
3159 * select_task_rq() can race against ->cpus_allowed
3160 */
96f874e2 3161 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3162 || unlikely(!cpu_active(dest_cpu))) {
3163 task_rq_unlock(rq, &flags);
3164 goto again;
3165 }
1da177e4
LT
3166
3167 /* force the process onto the specified CPU */
3168 if (migrate_task(p, dest_cpu, &req)) {
3169 /* Need to wait for migration thread (might exit: take ref). */
3170 struct task_struct *mt = rq->migration_thread;
36c8b586 3171
1da177e4
LT
3172 get_task_struct(mt);
3173 task_rq_unlock(rq, &flags);
3174 wake_up_process(mt);
3175 put_task_struct(mt);
3176 wait_for_completion(&req.done);
36c8b586 3177
1da177e4
LT
3178 return;
3179 }
1da177e4
LT
3180 task_rq_unlock(rq, &flags);
3181}
3182
1da177e4
LT
3183/*
3184 * pull_task - move a task from a remote runqueue to the local runqueue.
3185 * Both runqueues must be locked.
3186 */
dd41f596
IM
3187static void pull_task(struct rq *src_rq, struct task_struct *p,
3188 struct rq *this_rq, int this_cpu)
1da177e4 3189{
2e1cb74a 3190 deactivate_task(src_rq, p, 0);
1da177e4 3191 set_task_cpu(p, this_cpu);
dd41f596 3192 activate_task(this_rq, p, 0);
15afe09b 3193 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3194}
3195
3196/*
3197 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3198 */
858119e1 3199static
70b97a7f 3200int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3201 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3202 int *all_pinned)
1da177e4 3203{
708dc512 3204 int tsk_cache_hot = 0;
1da177e4
LT
3205 /*
3206 * We do not migrate tasks that are:
3207 * 1) running (obviously), or
3208 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3209 * 3) are cache-hot on their current CPU.
3210 */
96f874e2 3211 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3212 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3213 return 0;
cc367732 3214 }
81026794
NP
3215 *all_pinned = 0;
3216
cc367732
IM
3217 if (task_running(rq, p)) {
3218 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3219 return 0;
cc367732 3220 }
1da177e4 3221
da84d961
IM
3222 /*
3223 * Aggressive migration if:
3224 * 1) task is cache cold, or
3225 * 2) too many balance attempts have failed.
3226 */
3227
708dc512
LH
3228 tsk_cache_hot = task_hot(p, rq->clock, sd);
3229 if (!tsk_cache_hot ||
3230 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3231#ifdef CONFIG_SCHEDSTATS
708dc512 3232 if (tsk_cache_hot) {
da84d961 3233 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3234 schedstat_inc(p, se.nr_forced_migrations);
3235 }
da84d961
IM
3236#endif
3237 return 1;
3238 }
3239
708dc512 3240 if (tsk_cache_hot) {
cc367732 3241 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3242 return 0;
cc367732 3243 }
1da177e4
LT
3244 return 1;
3245}
3246
e1d1484f
PW
3247static unsigned long
3248balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3249 unsigned long max_load_move, struct sched_domain *sd,
3250 enum cpu_idle_type idle, int *all_pinned,
3251 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3252{
051c6764 3253 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3254 struct task_struct *p;
3255 long rem_load_move = max_load_move;
1da177e4 3256
e1d1484f 3257 if (max_load_move == 0)
1da177e4
LT
3258 goto out;
3259
81026794
NP
3260 pinned = 1;
3261
1da177e4 3262 /*
dd41f596 3263 * Start the load-balancing iterator:
1da177e4 3264 */
dd41f596
IM
3265 p = iterator->start(iterator->arg);
3266next:
b82d9fdd 3267 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3268 goto out;
051c6764
PZ
3269
3270 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3271 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3272 p = iterator->next(iterator->arg);
3273 goto next;
1da177e4
LT
3274 }
3275
dd41f596 3276 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3277 pulled++;
dd41f596 3278 rem_load_move -= p->se.load.weight;
1da177e4 3279
7e96fa58
GH
3280#ifdef CONFIG_PREEMPT
3281 /*
3282 * NEWIDLE balancing is a source of latency, so preemptible kernels
3283 * will stop after the first task is pulled to minimize the critical
3284 * section.
3285 */
3286 if (idle == CPU_NEWLY_IDLE)
3287 goto out;
3288#endif
3289
2dd73a4f 3290 /*
b82d9fdd 3291 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3292 */
e1d1484f 3293 if (rem_load_move > 0) {
a4ac01c3
PW
3294 if (p->prio < *this_best_prio)
3295 *this_best_prio = p->prio;
dd41f596
IM
3296 p = iterator->next(iterator->arg);
3297 goto next;
1da177e4
LT
3298 }
3299out:
3300 /*
e1d1484f 3301 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3302 * so we can safely collect pull_task() stats here rather than
3303 * inside pull_task().
3304 */
3305 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3306
3307 if (all_pinned)
3308 *all_pinned = pinned;
e1d1484f
PW
3309
3310 return max_load_move - rem_load_move;
1da177e4
LT
3311}
3312
dd41f596 3313/*
43010659
PW
3314 * move_tasks tries to move up to max_load_move weighted load from busiest to
3315 * this_rq, as part of a balancing operation within domain "sd".
3316 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3317 *
3318 * Called with both runqueues locked.
3319 */
3320static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3321 unsigned long max_load_move,
dd41f596
IM
3322 struct sched_domain *sd, enum cpu_idle_type idle,
3323 int *all_pinned)
3324{
5522d5d5 3325 const struct sched_class *class = sched_class_highest;
43010659 3326 unsigned long total_load_moved = 0;
a4ac01c3 3327 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3328
3329 do {
43010659
PW
3330 total_load_moved +=
3331 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3332 max_load_move - total_load_moved,
a4ac01c3 3333 sd, idle, all_pinned, &this_best_prio);
dd41f596 3334 class = class->next;
c4acb2c0 3335
7e96fa58
GH
3336#ifdef CONFIG_PREEMPT
3337 /*
3338 * NEWIDLE balancing is a source of latency, so preemptible
3339 * kernels will stop after the first task is pulled to minimize
3340 * the critical section.
3341 */
c4acb2c0
GH
3342 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3343 break;
7e96fa58 3344#endif
43010659 3345 } while (class && max_load_move > total_load_moved);
dd41f596 3346
43010659
PW
3347 return total_load_moved > 0;
3348}
3349
e1d1484f
PW
3350static int
3351iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3352 struct sched_domain *sd, enum cpu_idle_type idle,
3353 struct rq_iterator *iterator)
3354{
3355 struct task_struct *p = iterator->start(iterator->arg);
3356 int pinned = 0;
3357
3358 while (p) {
3359 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3360 pull_task(busiest, p, this_rq, this_cpu);
3361 /*
3362 * Right now, this is only the second place pull_task()
3363 * is called, so we can safely collect pull_task()
3364 * stats here rather than inside pull_task().
3365 */
3366 schedstat_inc(sd, lb_gained[idle]);
3367
3368 return 1;
3369 }
3370 p = iterator->next(iterator->arg);
3371 }
3372
3373 return 0;
3374}
3375
43010659
PW
3376/*
3377 * move_one_task tries to move exactly one task from busiest to this_rq, as
3378 * part of active balancing operations within "domain".
3379 * Returns 1 if successful and 0 otherwise.
3380 *
3381 * Called with both runqueues locked.
3382 */
3383static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3384 struct sched_domain *sd, enum cpu_idle_type idle)
3385{
5522d5d5 3386 const struct sched_class *class;
43010659 3387
cde7e5ca 3388 for_each_class(class) {
e1d1484f 3389 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3390 return 1;
cde7e5ca 3391 }
43010659
PW
3392
3393 return 0;
dd41f596 3394}
67bb6c03 3395/********** Helpers for find_busiest_group ************************/
1da177e4 3396/*
222d656d
GS
3397 * sd_lb_stats - Structure to store the statistics of a sched_domain
3398 * during load balancing.
1da177e4 3399 */
222d656d
GS
3400struct sd_lb_stats {
3401 struct sched_group *busiest; /* Busiest group in this sd */
3402 struct sched_group *this; /* Local group in this sd */
3403 unsigned long total_load; /* Total load of all groups in sd */
3404 unsigned long total_pwr; /* Total power of all groups in sd */
3405 unsigned long avg_load; /* Average load across all groups in sd */
3406
3407 /** Statistics of this group */
3408 unsigned long this_load;
3409 unsigned long this_load_per_task;
3410 unsigned long this_nr_running;
3411
3412 /* Statistics of the busiest group */
3413 unsigned long max_load;
3414 unsigned long busiest_load_per_task;
3415 unsigned long busiest_nr_running;
3416
3417 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3418#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3419 int power_savings_balance; /* Is powersave balance needed for this sd */
3420 struct sched_group *group_min; /* Least loaded group in sd */
3421 struct sched_group *group_leader; /* Group which relieves group_min */
3422 unsigned long min_load_per_task; /* load_per_task in group_min */
3423 unsigned long leader_nr_running; /* Nr running of group_leader */
3424 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3425#endif
222d656d 3426};
1da177e4 3427
d5ac537e 3428/*
381be78f
GS
3429 * sg_lb_stats - stats of a sched_group required for load_balancing
3430 */
3431struct sg_lb_stats {
3432 unsigned long avg_load; /*Avg load across the CPUs of the group */
3433 unsigned long group_load; /* Total load over the CPUs of the group */
3434 unsigned long sum_nr_running; /* Nr tasks running in the group */
3435 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3436 unsigned long group_capacity;
3437 int group_imb; /* Is there an imbalance in the group ? */
3438};
408ed066 3439
67bb6c03
GS
3440/**
3441 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3442 * @group: The group whose first cpu is to be returned.
3443 */
3444static inline unsigned int group_first_cpu(struct sched_group *group)
3445{
3446 return cpumask_first(sched_group_cpus(group));
3447}
3448
3449/**
3450 * get_sd_load_idx - Obtain the load index for a given sched domain.
3451 * @sd: The sched_domain whose load_idx is to be obtained.
3452 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3453 */
3454static inline int get_sd_load_idx(struct sched_domain *sd,
3455 enum cpu_idle_type idle)
3456{
3457 int load_idx;
3458
3459 switch (idle) {
3460 case CPU_NOT_IDLE:
7897986b 3461 load_idx = sd->busy_idx;
67bb6c03
GS
3462 break;
3463
3464 case CPU_NEWLY_IDLE:
7897986b 3465 load_idx = sd->newidle_idx;
67bb6c03
GS
3466 break;
3467 default:
7897986b 3468 load_idx = sd->idle_idx;
67bb6c03
GS
3469 break;
3470 }
1da177e4 3471
67bb6c03
GS
3472 return load_idx;
3473}
1da177e4 3474
1da177e4 3475
c071df18
GS
3476#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3477/**
3478 * init_sd_power_savings_stats - Initialize power savings statistics for
3479 * the given sched_domain, during load balancing.
3480 *
3481 * @sd: Sched domain whose power-savings statistics are to be initialized.
3482 * @sds: Variable containing the statistics for sd.
3483 * @idle: Idle status of the CPU at which we're performing load-balancing.
3484 */
3485static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3486 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3487{
3488 /*
3489 * Busy processors will not participate in power savings
3490 * balance.
3491 */
3492 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3493 sds->power_savings_balance = 0;
3494 else {
3495 sds->power_savings_balance = 1;
3496 sds->min_nr_running = ULONG_MAX;
3497 sds->leader_nr_running = 0;
3498 }
3499}
783609c6 3500
c071df18
GS
3501/**
3502 * update_sd_power_savings_stats - Update the power saving stats for a
3503 * sched_domain while performing load balancing.
3504 *
3505 * @group: sched_group belonging to the sched_domain under consideration.
3506 * @sds: Variable containing the statistics of the sched_domain
3507 * @local_group: Does group contain the CPU for which we're performing
3508 * load balancing ?
3509 * @sgs: Variable containing the statistics of the group.
3510 */
3511static inline void update_sd_power_savings_stats(struct sched_group *group,
3512 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3513{
408ed066 3514
c071df18
GS
3515 if (!sds->power_savings_balance)
3516 return;
1da177e4 3517
c071df18
GS
3518 /*
3519 * If the local group is idle or completely loaded
3520 * no need to do power savings balance at this domain
3521 */
3522 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3523 !sds->this_nr_running))
3524 sds->power_savings_balance = 0;
2dd73a4f 3525
c071df18
GS
3526 /*
3527 * If a group is already running at full capacity or idle,
3528 * don't include that group in power savings calculations
3529 */
3530 if (!sds->power_savings_balance ||
3531 sgs->sum_nr_running >= sgs->group_capacity ||
3532 !sgs->sum_nr_running)
3533 return;
5969fe06 3534
c071df18
GS
3535 /*
3536 * Calculate the group which has the least non-idle load.
3537 * This is the group from where we need to pick up the load
3538 * for saving power
3539 */
3540 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3541 (sgs->sum_nr_running == sds->min_nr_running &&
3542 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3543 sds->group_min = group;
3544 sds->min_nr_running = sgs->sum_nr_running;
3545 sds->min_load_per_task = sgs->sum_weighted_load /
3546 sgs->sum_nr_running;
3547 }
783609c6 3548
c071df18
GS
3549 /*
3550 * Calculate the group which is almost near its
3551 * capacity but still has some space to pick up some load
3552 * from other group and save more power
3553 */
d899a789 3554 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
c071df18 3555 return;
1da177e4 3556
c071df18
GS
3557 if (sgs->sum_nr_running > sds->leader_nr_running ||
3558 (sgs->sum_nr_running == sds->leader_nr_running &&
3559 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3560 sds->group_leader = group;
3561 sds->leader_nr_running = sgs->sum_nr_running;
3562 }
3563}
408ed066 3564
c071df18 3565/**
d5ac537e 3566 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3567 * @sds: Variable containing the statistics of the sched_domain
3568 * under consideration.
3569 * @this_cpu: Cpu at which we're currently performing load-balancing.
3570 * @imbalance: Variable to store the imbalance.
3571 *
d5ac537e
RD
3572 * Description:
3573 * Check if we have potential to perform some power-savings balance.
3574 * If yes, set the busiest group to be the least loaded group in the
3575 * sched_domain, so that it's CPUs can be put to idle.
3576 *
c071df18
GS
3577 * Returns 1 if there is potential to perform power-savings balance.
3578 * Else returns 0.
3579 */
3580static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3581 int this_cpu, unsigned long *imbalance)
3582{
3583 if (!sds->power_savings_balance)
3584 return 0;
1da177e4 3585
c071df18
GS
3586 if (sds->this != sds->group_leader ||
3587 sds->group_leader == sds->group_min)
3588 return 0;
783609c6 3589
c071df18
GS
3590 *imbalance = sds->min_load_per_task;
3591 sds->busiest = sds->group_min;
1da177e4 3592
c071df18 3593 return 1;
1da177e4 3594
c071df18
GS
3595}
3596#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3597static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3598 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3599{
3600 return;
3601}
408ed066 3602
c071df18
GS
3603static inline void update_sd_power_savings_stats(struct sched_group *group,
3604 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3605{
3606 return;
3607}
3608
3609static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3610 int this_cpu, unsigned long *imbalance)
3611{
3612 return 0;
3613}
3614#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3615
d6a59aa3
PZ
3616
3617unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3618{
3619 return SCHED_LOAD_SCALE;
3620}
3621
3622unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3623{
3624 return default_scale_freq_power(sd, cpu);
3625}
3626
3627unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
ab29230e
PZ
3628{
3629 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3630 unsigned long smt_gain = sd->smt_gain;
3631
3632 smt_gain /= weight;
3633
3634 return smt_gain;
3635}
3636
d6a59aa3
PZ
3637unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3638{
3639 return default_scale_smt_power(sd, cpu);
3640}
3641
e9e9250b
PZ
3642unsigned long scale_rt_power(int cpu)
3643{
3644 struct rq *rq = cpu_rq(cpu);
3645 u64 total, available;
3646
3647 sched_avg_update(rq);
3648
3649 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3650 available = total - rq->rt_avg;
3651
3652 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3653 total = SCHED_LOAD_SCALE;
3654
3655 total >>= SCHED_LOAD_SHIFT;
3656
3657 return div_u64(available, total);
3658}
3659
ab29230e
PZ
3660static void update_cpu_power(struct sched_domain *sd, int cpu)
3661{
3662 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3663 unsigned long power = SCHED_LOAD_SCALE;
3664 struct sched_group *sdg = sd->groups;
ab29230e 3665
8e6598af
PZ
3666 if (sched_feat(ARCH_POWER))
3667 power *= arch_scale_freq_power(sd, cpu);
3668 else
3669 power *= default_scale_freq_power(sd, cpu);
3670
d6a59aa3 3671 power >>= SCHED_LOAD_SHIFT;
ab29230e
PZ
3672
3673 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8e6598af
PZ
3674 if (sched_feat(ARCH_POWER))
3675 power *= arch_scale_smt_power(sd, cpu);
3676 else
3677 power *= default_scale_smt_power(sd, cpu);
3678
ab29230e
PZ
3679 power >>= SCHED_LOAD_SHIFT;
3680 }
3681
e9e9250b
PZ
3682 power *= scale_rt_power(cpu);
3683 power >>= SCHED_LOAD_SHIFT;
3684
3685 if (!power)
3686 power = 1;
ab29230e 3687
18a3885f 3688 sdg->cpu_power = power;
ab29230e
PZ
3689}
3690
3691static void update_group_power(struct sched_domain *sd, int cpu)
cc9fba7d
PZ
3692{
3693 struct sched_domain *child = sd->child;
3694 struct sched_group *group, *sdg = sd->groups;
d7ea17a7 3695 unsigned long power;
cc9fba7d
PZ
3696
3697 if (!child) {
ab29230e 3698 update_cpu_power(sd, cpu);
cc9fba7d
PZ
3699 return;
3700 }
3701
d7ea17a7 3702 power = 0;
cc9fba7d
PZ
3703
3704 group = child->groups;
3705 do {
d7ea17a7 3706 power += group->cpu_power;
cc9fba7d
PZ
3707 group = group->next;
3708 } while (group != child->groups);
d7ea17a7
IM
3709
3710 sdg->cpu_power = power;
cc9fba7d 3711}
c071df18 3712
1f8c553d
GS
3713/**
3714 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
e17b38bf 3715 * @sd: The sched_domain whose statistics are to be updated.
1f8c553d
GS
3716 * @group: sched_group whose statistics are to be updated.
3717 * @this_cpu: Cpu for which load balance is currently performed.
3718 * @idle: Idle status of this_cpu
3719 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3720 * @sd_idle: Idle status of the sched_domain containing group.
3721 * @local_group: Does group contain this_cpu.
3722 * @cpus: Set of cpus considered for load balancing.
3723 * @balance: Should we balance.
3724 * @sgs: variable to hold the statistics for this group.
3725 */
cc9fba7d
PZ
3726static inline void update_sg_lb_stats(struct sched_domain *sd,
3727 struct sched_group *group, int this_cpu,
1f8c553d
GS
3728 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3729 int local_group, const struct cpumask *cpus,
3730 int *balance, struct sg_lb_stats *sgs)
3731{
3732 unsigned long load, max_cpu_load, min_cpu_load;
3733 int i;
3734 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3735 unsigned long sum_avg_load_per_task;
3736 unsigned long avg_load_per_task;
3737
cc9fba7d 3738 if (local_group) {
1f8c553d 3739 balance_cpu = group_first_cpu(group);
cc9fba7d 3740 if (balance_cpu == this_cpu)
ab29230e 3741 update_group_power(sd, this_cpu);
cc9fba7d 3742 }
1f8c553d
GS
3743
3744 /* Tally up the load of all CPUs in the group */
3745 sum_avg_load_per_task = avg_load_per_task = 0;
3746 max_cpu_load = 0;
3747 min_cpu_load = ~0UL;
408ed066 3748
1f8c553d
GS
3749 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3750 struct rq *rq = cpu_rq(i);
908a7c1b 3751
1f8c553d
GS
3752 if (*sd_idle && rq->nr_running)
3753 *sd_idle = 0;
5c45bf27 3754
1f8c553d 3755 /* Bias balancing toward cpus of our domain */
1da177e4 3756 if (local_group) {
1f8c553d
GS
3757 if (idle_cpu(i) && !first_idle_cpu) {
3758 first_idle_cpu = 1;
3759 balance_cpu = i;
3760 }
3761
3762 load = target_load(i, load_idx);
3763 } else {
3764 load = source_load(i, load_idx);
3765 if (load > max_cpu_load)
3766 max_cpu_load = load;
3767 if (min_cpu_load > load)
3768 min_cpu_load = load;
1da177e4 3769 }
5c45bf27 3770
1f8c553d
GS
3771 sgs->group_load += load;
3772 sgs->sum_nr_running += rq->nr_running;
3773 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3774
1f8c553d
GS
3775 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3776 }
5c45bf27 3777
1f8c553d
GS
3778 /*
3779 * First idle cpu or the first cpu(busiest) in this sched group
3780 * is eligible for doing load balancing at this and above
3781 * domains. In the newly idle case, we will allow all the cpu's
3782 * to do the newly idle load balance.
3783 */
3784 if (idle != CPU_NEWLY_IDLE && local_group &&
3785 balance_cpu != this_cpu && balance) {
3786 *balance = 0;
3787 return;
3788 }
5c45bf27 3789
1f8c553d 3790 /* Adjust by relative CPU power of the group */
18a3885f 3791 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
5c45bf27 3792
1f8c553d
GS
3793
3794 /*
3795 * Consider the group unbalanced when the imbalance is larger
3796 * than the average weight of two tasks.
3797 *
3798 * APZ: with cgroup the avg task weight can vary wildly and
3799 * might not be a suitable number - should we keep a
3800 * normalized nr_running number somewhere that negates
3801 * the hierarchy?
3802 */
18a3885f
PZ
3803 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3804 group->cpu_power;
1f8c553d
GS
3805
3806 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3807 sgs->group_imb = 1;
3808
bdb94aa5 3809 sgs->group_capacity =
18a3885f 3810 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
1f8c553d 3811}
dd41f596 3812
37abe198
GS
3813/**
3814 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3815 * @sd: sched_domain whose statistics are to be updated.
3816 * @this_cpu: Cpu for which load balance is currently performed.
3817 * @idle: Idle status of this_cpu
3818 * @sd_idle: Idle status of the sched_domain containing group.
3819 * @cpus: Set of cpus considered for load balancing.
3820 * @balance: Should we balance.
3821 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3822 */
37abe198
GS
3823static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3824 enum cpu_idle_type idle, int *sd_idle,
3825 const struct cpumask *cpus, int *balance,
3826 struct sd_lb_stats *sds)
1da177e4 3827{
b5d978e0 3828 struct sched_domain *child = sd->child;
222d656d 3829 struct sched_group *group = sd->groups;
37abe198 3830 struct sg_lb_stats sgs;
b5d978e0
PZ
3831 int load_idx, prefer_sibling = 0;
3832
3833 if (child && child->flags & SD_PREFER_SIBLING)
3834 prefer_sibling = 1;
222d656d 3835
c071df18 3836 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3837 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3838
3839 do {
1da177e4 3840 int local_group;
1da177e4 3841
758b2cdc
RR
3842 local_group = cpumask_test_cpu(this_cpu,
3843 sched_group_cpus(group));
381be78f 3844 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3845 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3846 local_group, cpus, balance, &sgs);
1da177e4 3847
37abe198
GS
3848 if (local_group && balance && !(*balance))
3849 return;
783609c6 3850
37abe198 3851 sds->total_load += sgs.group_load;
18a3885f 3852 sds->total_pwr += group->cpu_power;
1da177e4 3853
b5d978e0
PZ
3854 /*
3855 * In case the child domain prefers tasks go to siblings
3856 * first, lower the group capacity to one so that we'll try
3857 * and move all the excess tasks away.
3858 */
3859 if (prefer_sibling)
bdb94aa5 3860 sgs.group_capacity = min(sgs.group_capacity, 1UL);
1da177e4 3861
1da177e4 3862 if (local_group) {
37abe198
GS
3863 sds->this_load = sgs.avg_load;
3864 sds->this = group;
3865 sds->this_nr_running = sgs.sum_nr_running;
3866 sds->this_load_per_task = sgs.sum_weighted_load;
3867 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3868 (sgs.sum_nr_running > sgs.group_capacity ||
3869 sgs.group_imb)) {
37abe198
GS
3870 sds->max_load = sgs.avg_load;
3871 sds->busiest = group;
3872 sds->busiest_nr_running = sgs.sum_nr_running;
3873 sds->busiest_load_per_task = sgs.sum_weighted_load;
3874 sds->group_imb = sgs.group_imb;
48f24c4d 3875 }
5c45bf27 3876
c071df18 3877 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3878 group = group->next;
3879 } while (group != sd->groups);
37abe198 3880}
1da177e4 3881
2e6f44ae
GS
3882/**
3883 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3884 * amongst the groups of a sched_domain, during
3885 * load balancing.
2e6f44ae
GS
3886 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3887 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3888 * @imbalance: Variable to store the imbalance.
3889 */
3890static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3891 int this_cpu, unsigned long *imbalance)
3892{
3893 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3894 unsigned int imbn = 2;
3895
3896 if (sds->this_nr_running) {
3897 sds->this_load_per_task /= sds->this_nr_running;
3898 if (sds->busiest_load_per_task >
3899 sds->this_load_per_task)
3900 imbn = 1;
3901 } else
3902 sds->this_load_per_task =
3903 cpu_avg_load_per_task(this_cpu);
1da177e4 3904
2e6f44ae
GS
3905 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3906 sds->busiest_load_per_task * imbn) {
3907 *imbalance = sds->busiest_load_per_task;
3908 return;
3909 }
908a7c1b 3910
1da177e4 3911 /*
2e6f44ae
GS
3912 * OK, we don't have enough imbalance to justify moving tasks,
3913 * however we may be able to increase total CPU power used by
3914 * moving them.
1da177e4 3915 */
2dd73a4f 3916
18a3885f 3917 pwr_now += sds->busiest->cpu_power *
2e6f44ae 3918 min(sds->busiest_load_per_task, sds->max_load);
18a3885f 3919 pwr_now += sds->this->cpu_power *
2e6f44ae
GS
3920 min(sds->this_load_per_task, sds->this_load);
3921 pwr_now /= SCHED_LOAD_SCALE;
3922
3923 /* Amount of load we'd subtract */
18a3885f
PZ
3924 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3925 sds->busiest->cpu_power;
2e6f44ae 3926 if (sds->max_load > tmp)
18a3885f 3927 pwr_move += sds->busiest->cpu_power *
2e6f44ae
GS
3928 min(sds->busiest_load_per_task, sds->max_load - tmp);
3929
3930 /* Amount of load we'd add */
18a3885f 3931 if (sds->max_load * sds->busiest->cpu_power <
2e6f44ae 3932 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
18a3885f
PZ
3933 tmp = (sds->max_load * sds->busiest->cpu_power) /
3934 sds->this->cpu_power;
2e6f44ae 3935 else
18a3885f
PZ
3936 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3937 sds->this->cpu_power;
3938 pwr_move += sds->this->cpu_power *
2e6f44ae
GS
3939 min(sds->this_load_per_task, sds->this_load + tmp);
3940 pwr_move /= SCHED_LOAD_SCALE;
3941
3942 /* Move if we gain throughput */
3943 if (pwr_move > pwr_now)
3944 *imbalance = sds->busiest_load_per_task;
3945}
dbc523a3
GS
3946
3947/**
3948 * calculate_imbalance - Calculate the amount of imbalance present within the
3949 * groups of a given sched_domain during load balance.
3950 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3951 * @this_cpu: Cpu for which currently load balance is being performed.
3952 * @imbalance: The variable to store the imbalance.
3953 */
3954static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3955 unsigned long *imbalance)
3956{
3957 unsigned long max_pull;
2dd73a4f
PW
3958 /*
3959 * In the presence of smp nice balancing, certain scenarios can have
3960 * max load less than avg load(as we skip the groups at or below
3961 * its cpu_power, while calculating max_load..)
3962 */
dbc523a3 3963 if (sds->max_load < sds->avg_load) {
2dd73a4f 3964 *imbalance = 0;
dbc523a3 3965 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3966 }
0c117f1b
SS
3967
3968 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3969 max_pull = min(sds->max_load - sds->avg_load,
3970 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3971
1da177e4 3972 /* How much load to actually move to equalise the imbalance */
18a3885f
PZ
3973 *imbalance = min(max_pull * sds->busiest->cpu_power,
3974 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
1da177e4
LT
3975 / SCHED_LOAD_SCALE;
3976
2dd73a4f
PW
3977 /*
3978 * if *imbalance is less than the average load per runnable task
3979 * there is no gaurantee that any tasks will be moved so we'll have
3980 * a think about bumping its value to force at least one task to be
3981 * moved
3982 */
dbc523a3
GS
3983 if (*imbalance < sds->busiest_load_per_task)
3984 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3985
dbc523a3 3986}
37abe198 3987/******* find_busiest_group() helpers end here *********************/
1da177e4 3988
b7bb4c9b
GS
3989/**
3990 * find_busiest_group - Returns the busiest group within the sched_domain
3991 * if there is an imbalance. If there isn't an imbalance, and
3992 * the user has opted for power-savings, it returns a group whose
3993 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3994 * such a group exists.
3995 *
3996 * Also calculates the amount of weighted load which should be moved
3997 * to restore balance.
3998 *
3999 * @sd: The sched_domain whose busiest group is to be returned.
4000 * @this_cpu: The cpu for which load balancing is currently being performed.
4001 * @imbalance: Variable which stores amount of weighted load which should
4002 * be moved to restore balance/put a group to idle.
4003 * @idle: The idle status of this_cpu.
4004 * @sd_idle: The idleness of sd
4005 * @cpus: The set of CPUs under consideration for load-balancing.
4006 * @balance: Pointer to a variable indicating if this_cpu
4007 * is the appropriate cpu to perform load balancing at this_level.
4008 *
4009 * Returns: - the busiest group if imbalance exists.
4010 * - If no imbalance and user has opted for power-savings balance,
4011 * return the least loaded group whose CPUs can be
4012 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4013 */
4014static struct sched_group *
4015find_busiest_group(struct sched_domain *sd, int this_cpu,
4016 unsigned long *imbalance, enum cpu_idle_type idle,
4017 int *sd_idle, const struct cpumask *cpus, int *balance)
4018{
4019 struct sd_lb_stats sds;
1da177e4 4020
37abe198 4021 memset(&sds, 0, sizeof(sds));
1da177e4 4022
37abe198
GS
4023 /*
4024 * Compute the various statistics relavent for load balancing at
4025 * this level.
4026 */
4027 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4028 balance, &sds);
4029
b7bb4c9b
GS
4030 /* Cases where imbalance does not exist from POV of this_cpu */
4031 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4032 * at this level.
4033 * 2) There is no busy sibling group to pull from.
4034 * 3) This group is the busiest group.
4035 * 4) This group is more busy than the avg busieness at this
4036 * sched_domain.
4037 * 5) The imbalance is within the specified limit.
4038 * 6) Any rebalance would lead to ping-pong
4039 */
37abe198
GS
4040 if (balance && !(*balance))
4041 goto ret;
1da177e4 4042
b7bb4c9b
GS
4043 if (!sds.busiest || sds.busiest_nr_running == 0)
4044 goto out_balanced;
1da177e4 4045
b7bb4c9b 4046 if (sds.this_load >= sds.max_load)
1da177e4 4047 goto out_balanced;
1da177e4 4048
222d656d 4049 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4050
b7bb4c9b
GS
4051 if (sds.this_load >= sds.avg_load)
4052 goto out_balanced;
4053
4054 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4055 goto out_balanced;
4056
222d656d
GS
4057 sds.busiest_load_per_task /= sds.busiest_nr_running;
4058 if (sds.group_imb)
4059 sds.busiest_load_per_task =
4060 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4061
1da177e4
LT
4062 /*
4063 * We're trying to get all the cpus to the average_load, so we don't
4064 * want to push ourselves above the average load, nor do we wish to
4065 * reduce the max loaded cpu below the average load, as either of these
4066 * actions would just result in more rebalancing later, and ping-pong
4067 * tasks around. Thus we look for the minimum possible imbalance.
4068 * Negative imbalances (*we* are more loaded than anyone else) will
4069 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4070 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4071 * appear as very large values with unsigned longs.
4072 */
222d656d 4073 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4074 goto out_balanced;
4075
dbc523a3
GS
4076 /* Looks like there is an imbalance. Compute it */
4077 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4078 return sds.busiest;
1da177e4
LT
4079
4080out_balanced:
c071df18
GS
4081 /*
4082 * There is no obvious imbalance. But check if we can do some balancing
4083 * to save power.
4084 */
4085 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4086 return sds.busiest;
783609c6 4087ret:
1da177e4
LT
4088 *imbalance = 0;
4089 return NULL;
4090}
4091
4092/*
4093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4094 */
70b97a7f 4095static struct rq *
d15bcfdb 4096find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4097 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4098{
70b97a7f 4099 struct rq *busiest = NULL, *rq;
2dd73a4f 4100 unsigned long max_load = 0;
1da177e4
LT
4101 int i;
4102
758b2cdc 4103 for_each_cpu(i, sched_group_cpus(group)) {
bdb94aa5
PZ
4104 unsigned long power = power_of(i);
4105 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
dd41f596 4106 unsigned long wl;
0a2966b4 4107
96f874e2 4108 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4109 continue;
4110
48f24c4d 4111 rq = cpu_rq(i);
bdb94aa5
PZ
4112 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4113 wl /= power;
2dd73a4f 4114
bdb94aa5 4115 if (capacity && rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4116 continue;
1da177e4 4117
dd41f596
IM
4118 if (wl > max_load) {
4119 max_load = wl;
48f24c4d 4120 busiest = rq;
1da177e4
LT
4121 }
4122 }
4123
4124 return busiest;
4125}
4126
77391d71
NP
4127/*
4128 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4129 * so long as it is large enough.
4130 */
4131#define MAX_PINNED_INTERVAL 512
4132
df7c8e84
RR
4133/* Working cpumask for load_balance and load_balance_newidle. */
4134static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4135
1da177e4
LT
4136/*
4137 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4138 * tasks if there is an imbalance.
1da177e4 4139 */
70b97a7f 4140static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4141 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4142 int *balance)
1da177e4 4143{
43010659 4144 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4145 struct sched_group *group;
1da177e4 4146 unsigned long imbalance;
70b97a7f 4147 struct rq *busiest;
fe2eea3f 4148 unsigned long flags;
df7c8e84 4149 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4150
6ad4c188 4151 cpumask_copy(cpus, cpu_active_mask);
7c16ec58 4152
89c4710e
SS
4153 /*
4154 * When power savings policy is enabled for the parent domain, idle
4155 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4156 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4157 * portraying it as CPU_NOT_IDLE.
89c4710e 4158 */
d15bcfdb 4159 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4160 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4161 sd_idle = 1;
1da177e4 4162
2d72376b 4163 schedstat_inc(sd, lb_count[idle]);
1da177e4 4164
0a2966b4 4165redo:
c8cba857 4166 update_shares(sd);
0a2966b4 4167 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4168 cpus, balance);
783609c6 4169
06066714 4170 if (*balance == 0)
783609c6 4171 goto out_balanced;
783609c6 4172
1da177e4
LT
4173 if (!group) {
4174 schedstat_inc(sd, lb_nobusyg[idle]);
4175 goto out_balanced;
4176 }
4177
7c16ec58 4178 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4179 if (!busiest) {
4180 schedstat_inc(sd, lb_nobusyq[idle]);
4181 goto out_balanced;
4182 }
4183
db935dbd 4184 BUG_ON(busiest == this_rq);
1da177e4
LT
4185
4186 schedstat_add(sd, lb_imbalance[idle], imbalance);
4187
43010659 4188 ld_moved = 0;
1da177e4
LT
4189 if (busiest->nr_running > 1) {
4190 /*
4191 * Attempt to move tasks. If find_busiest_group has found
4192 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4193 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4194 * correctly treated as an imbalance.
4195 */
fe2eea3f 4196 local_irq_save(flags);
e17224bf 4197 double_rq_lock(this_rq, busiest);
43010659 4198 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4199 imbalance, sd, idle, &all_pinned);
e17224bf 4200 double_rq_unlock(this_rq, busiest);
fe2eea3f 4201 local_irq_restore(flags);
81026794 4202
46cb4b7c
SS
4203 /*
4204 * some other cpu did the load balance for us.
4205 */
43010659 4206 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4207 resched_cpu(this_cpu);
4208
81026794 4209 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4210 if (unlikely(all_pinned)) {
96f874e2
RR
4211 cpumask_clear_cpu(cpu_of(busiest), cpus);
4212 if (!cpumask_empty(cpus))
0a2966b4 4213 goto redo;
81026794 4214 goto out_balanced;
0a2966b4 4215 }
1da177e4 4216 }
81026794 4217
43010659 4218 if (!ld_moved) {
1da177e4
LT
4219 schedstat_inc(sd, lb_failed[idle]);
4220 sd->nr_balance_failed++;
4221
4222 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4223
05fa785c 4224 raw_spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4225
4226 /* don't kick the migration_thread, if the curr
4227 * task on busiest cpu can't be moved to this_cpu
4228 */
96f874e2
RR
4229 if (!cpumask_test_cpu(this_cpu,
4230 &busiest->curr->cpus_allowed)) {
05fa785c
TG
4231 raw_spin_unlock_irqrestore(&busiest->lock,
4232 flags);
fa3b6ddc
SS
4233 all_pinned = 1;
4234 goto out_one_pinned;
4235 }
4236
1da177e4
LT
4237 if (!busiest->active_balance) {
4238 busiest->active_balance = 1;
4239 busiest->push_cpu = this_cpu;
81026794 4240 active_balance = 1;
1da177e4 4241 }
05fa785c 4242 raw_spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4243 if (active_balance)
1da177e4
LT
4244 wake_up_process(busiest->migration_thread);
4245
4246 /*
4247 * We've kicked active balancing, reset the failure
4248 * counter.
4249 */
39507451 4250 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4251 }
81026794 4252 } else
1da177e4
LT
4253 sd->nr_balance_failed = 0;
4254
81026794 4255 if (likely(!active_balance)) {
1da177e4
LT
4256 /* We were unbalanced, so reset the balancing interval */
4257 sd->balance_interval = sd->min_interval;
81026794
NP
4258 } else {
4259 /*
4260 * If we've begun active balancing, start to back off. This
4261 * case may not be covered by the all_pinned logic if there
4262 * is only 1 task on the busy runqueue (because we don't call
4263 * move_tasks).
4264 */
4265 if (sd->balance_interval < sd->max_interval)
4266 sd->balance_interval *= 2;
1da177e4
LT
4267 }
4268
43010659 4269 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4270 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4271 ld_moved = -1;
4272
4273 goto out;
1da177e4
LT
4274
4275out_balanced:
1da177e4
LT
4276 schedstat_inc(sd, lb_balanced[idle]);
4277
16cfb1c0 4278 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4279
4280out_one_pinned:
1da177e4 4281 /* tune up the balancing interval */
77391d71
NP
4282 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4283 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4284 sd->balance_interval *= 2;
4285
48f24c4d 4286 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4287 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4288 ld_moved = -1;
4289 else
4290 ld_moved = 0;
4291out:
c8cba857
PZ
4292 if (ld_moved)
4293 update_shares(sd);
c09595f6 4294 return ld_moved;
1da177e4
LT
4295}
4296
4297/*
4298 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4299 * tasks if there is an imbalance.
4300 *
d15bcfdb 4301 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4302 * this_rq is locked.
4303 */
48f24c4d 4304static int
df7c8e84 4305load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4306{
4307 struct sched_group *group;
70b97a7f 4308 struct rq *busiest = NULL;
1da177e4 4309 unsigned long imbalance;
43010659 4310 int ld_moved = 0;
5969fe06 4311 int sd_idle = 0;
969bb4e4 4312 int all_pinned = 0;
df7c8e84 4313 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4314
6ad4c188 4315 cpumask_copy(cpus, cpu_active_mask);
5969fe06 4316
89c4710e
SS
4317 /*
4318 * When power savings policy is enabled for the parent domain, idle
4319 * sibling can pick up load irrespective of busy siblings. In this case,
4320 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4321 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4322 */
4323 if (sd->flags & SD_SHARE_CPUPOWER &&
4324 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4325 sd_idle = 1;
1da177e4 4326
2d72376b 4327 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4328redo:
3e5459b4 4329 update_shares_locked(this_rq, sd);
d15bcfdb 4330 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4331 &sd_idle, cpus, NULL);
1da177e4 4332 if (!group) {
d15bcfdb 4333 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4334 goto out_balanced;
1da177e4
LT
4335 }
4336
7c16ec58 4337 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4338 if (!busiest) {
d15bcfdb 4339 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4340 goto out_balanced;
1da177e4
LT
4341 }
4342
db935dbd
NP
4343 BUG_ON(busiest == this_rq);
4344
d15bcfdb 4345 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4346
43010659 4347 ld_moved = 0;
d6d5cfaf
NP
4348 if (busiest->nr_running > 1) {
4349 /* Attempt to move tasks */
4350 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4351 /* this_rq->clock is already updated */
4352 update_rq_clock(busiest);
43010659 4353 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4354 imbalance, sd, CPU_NEWLY_IDLE,
4355 &all_pinned);
1b12bbc7 4356 double_unlock_balance(this_rq, busiest);
0a2966b4 4357
969bb4e4 4358 if (unlikely(all_pinned)) {
96f874e2
RR
4359 cpumask_clear_cpu(cpu_of(busiest), cpus);
4360 if (!cpumask_empty(cpus))
0a2966b4
CL
4361 goto redo;
4362 }
d6d5cfaf
NP
4363 }
4364
43010659 4365 if (!ld_moved) {
36dffab6 4366 int active_balance = 0;
ad273b32 4367
d15bcfdb 4368 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4369 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4370 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4371 return -1;
ad273b32
VS
4372
4373 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4374 return -1;
4375
4376 if (sd->nr_balance_failed++ < 2)
4377 return -1;
4378
4379 /*
4380 * The only task running in a non-idle cpu can be moved to this
4381 * cpu in an attempt to completely freeup the other CPU
4382 * package. The same method used to move task in load_balance()
4383 * have been extended for load_balance_newidle() to speedup
4384 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4385 *
4386 * The package power saving logic comes from
4387 * find_busiest_group(). If there are no imbalance, then
4388 * f_b_g() will return NULL. However when sched_mc={1,2} then
4389 * f_b_g() will select a group from which a running task may be
4390 * pulled to this cpu in order to make the other package idle.
4391 * If there is no opportunity to make a package idle and if
4392 * there are no imbalance, then f_b_g() will return NULL and no
4393 * action will be taken in load_balance_newidle().
4394 *
4395 * Under normal task pull operation due to imbalance, there
4396 * will be more than one task in the source run queue and
4397 * move_tasks() will succeed. ld_moved will be true and this
4398 * active balance code will not be triggered.
4399 */
4400
4401 /* Lock busiest in correct order while this_rq is held */
4402 double_lock_balance(this_rq, busiest);
4403
4404 /*
4405 * don't kick the migration_thread, if the curr
4406 * task on busiest cpu can't be moved to this_cpu
4407 */
6ca09dfc 4408 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4409 double_unlock_balance(this_rq, busiest);
4410 all_pinned = 1;
4411 return ld_moved;
4412 }
4413
4414 if (!busiest->active_balance) {
4415 busiest->active_balance = 1;
4416 busiest->push_cpu = this_cpu;
4417 active_balance = 1;
4418 }
4419
4420 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4421 /*
4422 * Should not call ttwu while holding a rq->lock
4423 */
05fa785c 4424 raw_spin_unlock(&this_rq->lock);
ad273b32
VS
4425 if (active_balance)
4426 wake_up_process(busiest->migration_thread);
05fa785c 4427 raw_spin_lock(&this_rq->lock);
ad273b32 4428
5969fe06 4429 } else
16cfb1c0 4430 sd->nr_balance_failed = 0;
1da177e4 4431
3e5459b4 4432 update_shares_locked(this_rq, sd);
43010659 4433 return ld_moved;
16cfb1c0
NP
4434
4435out_balanced:
d15bcfdb 4436 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4437 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4438 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4439 return -1;
16cfb1c0 4440 sd->nr_balance_failed = 0;
48f24c4d 4441
16cfb1c0 4442 return 0;
1da177e4
LT
4443}
4444
4445/*
4446 * idle_balance is called by schedule() if this_cpu is about to become
4447 * idle. Attempts to pull tasks from other CPUs.
4448 */
70b97a7f 4449static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4450{
4451 struct sched_domain *sd;
efbe027e 4452 int pulled_task = 0;
dd41f596 4453 unsigned long next_balance = jiffies + HZ;
1da177e4 4454
1b9508f6
MG
4455 this_rq->idle_stamp = this_rq->clock;
4456
4457 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4458 return;
4459
1da177e4 4460 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4461 unsigned long interval;
4462
4463 if (!(sd->flags & SD_LOAD_BALANCE))
4464 continue;
4465
4466 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4467 /* If we've pulled tasks over stop searching: */
7c16ec58 4468 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4469 sd);
92c4ca5c
CL
4470
4471 interval = msecs_to_jiffies(sd->balance_interval);
4472 if (time_after(next_balance, sd->last_balance + interval))
4473 next_balance = sd->last_balance + interval;
1b9508f6
MG
4474 if (pulled_task) {
4475 this_rq->idle_stamp = 0;
92c4ca5c 4476 break;
1b9508f6 4477 }
1da177e4 4478 }
dd41f596 4479 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4480 /*
4481 * We are going idle. next_balance may be set based on
4482 * a busy processor. So reset next_balance.
4483 */
4484 this_rq->next_balance = next_balance;
dd41f596 4485 }
1da177e4
LT
4486}
4487
4488/*
4489 * active_load_balance is run by migration threads. It pushes running tasks
4490 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4491 * running on each physical CPU where possible, and avoids physical /
4492 * logical imbalances.
4493 *
4494 * Called with busiest_rq locked.
4495 */
70b97a7f 4496static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4497{
39507451 4498 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4499 struct sched_domain *sd;
4500 struct rq *target_rq;
39507451 4501
48f24c4d 4502 /* Is there any task to move? */
39507451 4503 if (busiest_rq->nr_running <= 1)
39507451
NP
4504 return;
4505
4506 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4507
4508 /*
39507451 4509 * This condition is "impossible", if it occurs
41a2d6cf 4510 * we need to fix it. Originally reported by
39507451 4511 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4512 */
39507451 4513 BUG_ON(busiest_rq == target_rq);
1da177e4 4514
39507451
NP
4515 /* move a task from busiest_rq to target_rq */
4516 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4517 update_rq_clock(busiest_rq);
4518 update_rq_clock(target_rq);
39507451
NP
4519
4520 /* Search for an sd spanning us and the target CPU. */
c96d145e 4521 for_each_domain(target_cpu, sd) {
39507451 4522 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4523 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4524 break;
c96d145e 4525 }
39507451 4526
48f24c4d 4527 if (likely(sd)) {
2d72376b 4528 schedstat_inc(sd, alb_count);
39507451 4529
43010659
PW
4530 if (move_one_task(target_rq, target_cpu, busiest_rq,
4531 sd, CPU_IDLE))
48f24c4d
IM
4532 schedstat_inc(sd, alb_pushed);
4533 else
4534 schedstat_inc(sd, alb_failed);
4535 }
1b12bbc7 4536 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4537}
4538
46cb4b7c
SS
4539#ifdef CONFIG_NO_HZ
4540static struct {
4541 atomic_t load_balancer;
7d1e6a9b 4542 cpumask_var_t cpu_mask;
f711f609 4543 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4544} nohz ____cacheline_aligned = {
4545 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4546};
4547
eea08f32
AB
4548int get_nohz_load_balancer(void)
4549{
4550 return atomic_read(&nohz.load_balancer);
4551}
4552
f711f609
GS
4553#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4554/**
4555 * lowest_flag_domain - Return lowest sched_domain containing flag.
4556 * @cpu: The cpu whose lowest level of sched domain is to
4557 * be returned.
4558 * @flag: The flag to check for the lowest sched_domain
4559 * for the given cpu.
4560 *
4561 * Returns the lowest sched_domain of a cpu which contains the given flag.
4562 */
4563static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4564{
4565 struct sched_domain *sd;
4566
4567 for_each_domain(cpu, sd)
4568 if (sd && (sd->flags & flag))
4569 break;
4570
4571 return sd;
4572}
4573
4574/**
4575 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4576 * @cpu: The cpu whose domains we're iterating over.
4577 * @sd: variable holding the value of the power_savings_sd
4578 * for cpu.
4579 * @flag: The flag to filter the sched_domains to be iterated.
4580 *
4581 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4582 * set, starting from the lowest sched_domain to the highest.
4583 */
4584#define for_each_flag_domain(cpu, sd, flag) \
4585 for (sd = lowest_flag_domain(cpu, flag); \
4586 (sd && (sd->flags & flag)); sd = sd->parent)
4587
4588/**
4589 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4590 * @ilb_group: group to be checked for semi-idleness
4591 *
4592 * Returns: 1 if the group is semi-idle. 0 otherwise.
4593 *
4594 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4595 * and atleast one non-idle CPU. This helper function checks if the given
4596 * sched_group is semi-idle or not.
4597 */
4598static inline int is_semi_idle_group(struct sched_group *ilb_group)
4599{
4600 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4601 sched_group_cpus(ilb_group));
4602
4603 /*
4604 * A sched_group is semi-idle when it has atleast one busy cpu
4605 * and atleast one idle cpu.
4606 */
4607 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4608 return 0;
4609
4610 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4611 return 0;
4612
4613 return 1;
4614}
4615/**
4616 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4617 * @cpu: The cpu which is nominating a new idle_load_balancer.
4618 *
4619 * Returns: Returns the id of the idle load balancer if it exists,
4620 * Else, returns >= nr_cpu_ids.
4621 *
4622 * This algorithm picks the idle load balancer such that it belongs to a
4623 * semi-idle powersavings sched_domain. The idea is to try and avoid
4624 * completely idle packages/cores just for the purpose of idle load balancing
4625 * when there are other idle cpu's which are better suited for that job.
4626 */
4627static int find_new_ilb(int cpu)
4628{
4629 struct sched_domain *sd;
4630 struct sched_group *ilb_group;
4631
4632 /*
4633 * Have idle load balancer selection from semi-idle packages only
4634 * when power-aware load balancing is enabled
4635 */
4636 if (!(sched_smt_power_savings || sched_mc_power_savings))
4637 goto out_done;
4638
4639 /*
4640 * Optimize for the case when we have no idle CPUs or only one
4641 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4642 */
4643 if (cpumask_weight(nohz.cpu_mask) < 2)
4644 goto out_done;
4645
4646 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4647 ilb_group = sd->groups;
4648
4649 do {
4650 if (is_semi_idle_group(ilb_group))
4651 return cpumask_first(nohz.ilb_grp_nohz_mask);
4652
4653 ilb_group = ilb_group->next;
4654
4655 } while (ilb_group != sd->groups);
4656 }
4657
4658out_done:
4659 return cpumask_first(nohz.cpu_mask);
4660}
4661#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4662static inline int find_new_ilb(int call_cpu)
4663{
6e29ec57 4664 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4665}
4666#endif
4667
7835b98b 4668/*
46cb4b7c
SS
4669 * This routine will try to nominate the ilb (idle load balancing)
4670 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4671 * load balancing on behalf of all those cpus. If all the cpus in the system
4672 * go into this tickless mode, then there will be no ilb owner (as there is
4673 * no need for one) and all the cpus will sleep till the next wakeup event
4674 * arrives...
4675 *
4676 * For the ilb owner, tick is not stopped. And this tick will be used
4677 * for idle load balancing. ilb owner will still be part of
4678 * nohz.cpu_mask..
7835b98b 4679 *
46cb4b7c
SS
4680 * While stopping the tick, this cpu will become the ilb owner if there
4681 * is no other owner. And will be the owner till that cpu becomes busy
4682 * or if all cpus in the system stop their ticks at which point
4683 * there is no need for ilb owner.
4684 *
4685 * When the ilb owner becomes busy, it nominates another owner, during the
4686 * next busy scheduler_tick()
4687 */
4688int select_nohz_load_balancer(int stop_tick)
4689{
4690 int cpu = smp_processor_id();
4691
4692 if (stop_tick) {
46cb4b7c
SS
4693 cpu_rq(cpu)->in_nohz_recently = 1;
4694
483b4ee6
SS
4695 if (!cpu_active(cpu)) {
4696 if (atomic_read(&nohz.load_balancer) != cpu)
4697 return 0;
4698
4699 /*
4700 * If we are going offline and still the leader,
4701 * give up!
4702 */
46cb4b7c
SS
4703 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4704 BUG();
483b4ee6 4705
46cb4b7c
SS
4706 return 0;
4707 }
4708
483b4ee6
SS
4709 cpumask_set_cpu(cpu, nohz.cpu_mask);
4710
46cb4b7c 4711 /* time for ilb owner also to sleep */
6ad4c188 4712 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
46cb4b7c
SS
4713 if (atomic_read(&nohz.load_balancer) == cpu)
4714 atomic_set(&nohz.load_balancer, -1);
4715 return 0;
4716 }
4717
4718 if (atomic_read(&nohz.load_balancer) == -1) {
4719 /* make me the ilb owner */
4720 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4721 return 1;
e790fb0b
GS
4722 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4723 int new_ilb;
4724
4725 if (!(sched_smt_power_savings ||
4726 sched_mc_power_savings))
4727 return 1;
4728 /*
4729 * Check to see if there is a more power-efficient
4730 * ilb.
4731 */
4732 new_ilb = find_new_ilb(cpu);
4733 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4734 atomic_set(&nohz.load_balancer, -1);
4735 resched_cpu(new_ilb);
4736 return 0;
4737 }
46cb4b7c 4738 return 1;
e790fb0b 4739 }
46cb4b7c 4740 } else {
7d1e6a9b 4741 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4742 return 0;
4743
7d1e6a9b 4744 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4745
4746 if (atomic_read(&nohz.load_balancer) == cpu)
4747 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4748 BUG();
4749 }
4750 return 0;
4751}
4752#endif
4753
4754static DEFINE_SPINLOCK(balancing);
4755
4756/*
7835b98b
CL
4757 * It checks each scheduling domain to see if it is due to be balanced,
4758 * and initiates a balancing operation if so.
4759 *
4760 * Balancing parameters are set up in arch_init_sched_domains.
4761 */
a9957449 4762static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4763{
46cb4b7c
SS
4764 int balance = 1;
4765 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4766 unsigned long interval;
4767 struct sched_domain *sd;
46cb4b7c 4768 /* Earliest time when we have to do rebalance again */
c9819f45 4769 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4770 int update_next_balance = 0;
d07355f5 4771 int need_serialize;
1da177e4 4772
46cb4b7c 4773 for_each_domain(cpu, sd) {
1da177e4
LT
4774 if (!(sd->flags & SD_LOAD_BALANCE))
4775 continue;
4776
4777 interval = sd->balance_interval;
d15bcfdb 4778 if (idle != CPU_IDLE)
1da177e4
LT
4779 interval *= sd->busy_factor;
4780
4781 /* scale ms to jiffies */
4782 interval = msecs_to_jiffies(interval);
4783 if (unlikely(!interval))
4784 interval = 1;
dd41f596
IM
4785 if (interval > HZ*NR_CPUS/10)
4786 interval = HZ*NR_CPUS/10;
4787
d07355f5 4788 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4789
d07355f5 4790 if (need_serialize) {
08c183f3
CL
4791 if (!spin_trylock(&balancing))
4792 goto out;
4793 }
4794
c9819f45 4795 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4796 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4797 /*
4798 * We've pulled tasks over so either we're no
5969fe06
NP
4799 * longer idle, or one of our SMT siblings is
4800 * not idle.
4801 */
d15bcfdb 4802 idle = CPU_NOT_IDLE;
1da177e4 4803 }
1bd77f2d 4804 sd->last_balance = jiffies;
1da177e4 4805 }
d07355f5 4806 if (need_serialize)
08c183f3
CL
4807 spin_unlock(&balancing);
4808out:
f549da84 4809 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4810 next_balance = sd->last_balance + interval;
f549da84
SS
4811 update_next_balance = 1;
4812 }
783609c6
SS
4813
4814 /*
4815 * Stop the load balance at this level. There is another
4816 * CPU in our sched group which is doing load balancing more
4817 * actively.
4818 */
4819 if (!balance)
4820 break;
1da177e4 4821 }
f549da84
SS
4822
4823 /*
4824 * next_balance will be updated only when there is a need.
4825 * When the cpu is attached to null domain for ex, it will not be
4826 * updated.
4827 */
4828 if (likely(update_next_balance))
4829 rq->next_balance = next_balance;
46cb4b7c
SS
4830}
4831
4832/*
4833 * run_rebalance_domains is triggered when needed from the scheduler tick.
4834 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4835 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4836 */
4837static void run_rebalance_domains(struct softirq_action *h)
4838{
dd41f596
IM
4839 int this_cpu = smp_processor_id();
4840 struct rq *this_rq = cpu_rq(this_cpu);
4841 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4842 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4843
dd41f596 4844 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4845
4846#ifdef CONFIG_NO_HZ
4847 /*
4848 * If this cpu is the owner for idle load balancing, then do the
4849 * balancing on behalf of the other idle cpus whose ticks are
4850 * stopped.
4851 */
dd41f596
IM
4852 if (this_rq->idle_at_tick &&
4853 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4854 struct rq *rq;
4855 int balance_cpu;
4856
7d1e6a9b
RR
4857 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4858 if (balance_cpu == this_cpu)
4859 continue;
4860
46cb4b7c
SS
4861 /*
4862 * If this cpu gets work to do, stop the load balancing
4863 * work being done for other cpus. Next load
4864 * balancing owner will pick it up.
4865 */
4866 if (need_resched())
4867 break;
4868
de0cf899 4869 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4870
4871 rq = cpu_rq(balance_cpu);
dd41f596
IM
4872 if (time_after(this_rq->next_balance, rq->next_balance))
4873 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4874 }
4875 }
4876#endif
4877}
4878
8a0be9ef
FW
4879static inline int on_null_domain(int cpu)
4880{
4881 return !rcu_dereference(cpu_rq(cpu)->sd);
4882}
4883
46cb4b7c
SS
4884/*
4885 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4886 *
4887 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4888 * idle load balancing owner or decide to stop the periodic load balancing,
4889 * if the whole system is idle.
4890 */
dd41f596 4891static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4892{
46cb4b7c
SS
4893#ifdef CONFIG_NO_HZ
4894 /*
4895 * If we were in the nohz mode recently and busy at the current
4896 * scheduler tick, then check if we need to nominate new idle
4897 * load balancer.
4898 */
4899 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4900 rq->in_nohz_recently = 0;
4901
4902 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4903 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4904 atomic_set(&nohz.load_balancer, -1);
4905 }
4906
4907 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4908 int ilb = find_new_ilb(cpu);
46cb4b7c 4909
434d53b0 4910 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4911 resched_cpu(ilb);
4912 }
4913 }
4914
4915 /*
4916 * If this cpu is idle and doing idle load balancing for all the
4917 * cpus with ticks stopped, is it time for that to stop?
4918 */
4919 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4920 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4921 resched_cpu(cpu);
4922 return;
4923 }
4924
4925 /*
4926 * If this cpu is idle and the idle load balancing is done by
4927 * someone else, then no need raise the SCHED_SOFTIRQ
4928 */
4929 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4930 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4931 return;
4932#endif
8a0be9ef
FW
4933 /* Don't need to rebalance while attached to NULL domain */
4934 if (time_after_eq(jiffies, rq->next_balance) &&
4935 likely(!on_null_domain(cpu)))
46cb4b7c 4936 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4937}
dd41f596
IM
4938
4939#else /* CONFIG_SMP */
4940
1da177e4
LT
4941/*
4942 * on UP we do not need to balance between CPUs:
4943 */
70b97a7f 4944static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4945{
4946}
dd41f596 4947
1da177e4
LT
4948#endif
4949
1da177e4
LT
4950DEFINE_PER_CPU(struct kernel_stat, kstat);
4951
4952EXPORT_PER_CPU_SYMBOL(kstat);
4953
4954/*
c5f8d995 4955 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4956 * @p in case that task is currently running.
c5f8d995
HS
4957 *
4958 * Called with task_rq_lock() held on @rq.
1da177e4 4959 */
c5f8d995
HS
4960static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4961{
4962 u64 ns = 0;
4963
4964 if (task_current(rq, p)) {
4965 update_rq_clock(rq);
4966 ns = rq->clock - p->se.exec_start;
4967 if ((s64)ns < 0)
4968 ns = 0;
4969 }
4970
4971 return ns;
4972}
4973
bb34d92f 4974unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4975{
1da177e4 4976 unsigned long flags;
41b86e9c 4977 struct rq *rq;
bb34d92f 4978 u64 ns = 0;
48f24c4d 4979
41b86e9c 4980 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4981 ns = do_task_delta_exec(p, rq);
4982 task_rq_unlock(rq, &flags);
1508487e 4983
c5f8d995
HS
4984 return ns;
4985}
f06febc9 4986
c5f8d995
HS
4987/*
4988 * Return accounted runtime for the task.
4989 * In case the task is currently running, return the runtime plus current's
4990 * pending runtime that have not been accounted yet.
4991 */
4992unsigned long long task_sched_runtime(struct task_struct *p)
4993{
4994 unsigned long flags;
4995 struct rq *rq;
4996 u64 ns = 0;
4997
4998 rq = task_rq_lock(p, &flags);
4999 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5000 task_rq_unlock(rq, &flags);
5001
5002 return ns;
5003}
48f24c4d 5004
c5f8d995
HS
5005/*
5006 * Return sum_exec_runtime for the thread group.
5007 * In case the task is currently running, return the sum plus current's
5008 * pending runtime that have not been accounted yet.
5009 *
5010 * Note that the thread group might have other running tasks as well,
5011 * so the return value not includes other pending runtime that other
5012 * running tasks might have.
5013 */
5014unsigned long long thread_group_sched_runtime(struct task_struct *p)
5015{
5016 struct task_cputime totals;
5017 unsigned long flags;
5018 struct rq *rq;
5019 u64 ns;
5020
5021 rq = task_rq_lock(p, &flags);
5022 thread_group_cputime(p, &totals);
5023 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5024 task_rq_unlock(rq, &flags);
48f24c4d 5025
1da177e4
LT
5026 return ns;
5027}
5028
1da177e4
LT
5029/*
5030 * Account user cpu time to a process.
5031 * @p: the process that the cpu time gets accounted to
1da177e4 5032 * @cputime: the cpu time spent in user space since the last update
457533a7 5033 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5034 */
457533a7
MS
5035void account_user_time(struct task_struct *p, cputime_t cputime,
5036 cputime_t cputime_scaled)
1da177e4
LT
5037{
5038 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5039 cputime64_t tmp;
5040
457533a7 5041 /* Add user time to process. */
1da177e4 5042 p->utime = cputime_add(p->utime, cputime);
457533a7 5043 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5044 account_group_user_time(p, cputime);
1da177e4
LT
5045
5046 /* Add user time to cpustat. */
5047 tmp = cputime_to_cputime64(cputime);
5048 if (TASK_NICE(p) > 0)
5049 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5050 else
5051 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5052
5053 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5054 /* Account for user time used */
5055 acct_update_integrals(p);
1da177e4
LT
5056}
5057
94886b84
LV
5058/*
5059 * Account guest cpu time to a process.
5060 * @p: the process that the cpu time gets accounted to
5061 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5062 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5063 */
457533a7
MS
5064static void account_guest_time(struct task_struct *p, cputime_t cputime,
5065 cputime_t cputime_scaled)
94886b84
LV
5066{
5067 cputime64_t tmp;
5068 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5069
5070 tmp = cputime_to_cputime64(cputime);
5071
457533a7 5072 /* Add guest time to process. */
94886b84 5073 p->utime = cputime_add(p->utime, cputime);
457533a7 5074 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5075 account_group_user_time(p, cputime);
94886b84
LV
5076 p->gtime = cputime_add(p->gtime, cputime);
5077
457533a7 5078 /* Add guest time to cpustat. */
ce0e7b28
RO
5079 if (TASK_NICE(p) > 0) {
5080 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5081 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5082 } else {
5083 cpustat->user = cputime64_add(cpustat->user, tmp);
5084 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5085 }
94886b84
LV
5086}
5087
1da177e4
LT
5088/*
5089 * Account system cpu time to a process.
5090 * @p: the process that the cpu time gets accounted to
5091 * @hardirq_offset: the offset to subtract from hardirq_count()
5092 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5093 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5094 */
5095void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5096 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5097{
5098 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5099 cputime64_t tmp;
5100
983ed7a6 5101 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5102 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5103 return;
5104 }
94886b84 5105
457533a7 5106 /* Add system time to process. */
1da177e4 5107 p->stime = cputime_add(p->stime, cputime);
457533a7 5108 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5109 account_group_system_time(p, cputime);
1da177e4
LT
5110
5111 /* Add system time to cpustat. */
5112 tmp = cputime_to_cputime64(cputime);
5113 if (hardirq_count() - hardirq_offset)
5114 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5115 else if (softirq_count())
5116 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5117 else
79741dd3
MS
5118 cpustat->system = cputime64_add(cpustat->system, tmp);
5119
ef12fefa
BR
5120 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5121
1da177e4
LT
5122 /* Account for system time used */
5123 acct_update_integrals(p);
1da177e4
LT
5124}
5125
c66f08be 5126/*
1da177e4 5127 * Account for involuntary wait time.
1da177e4 5128 * @steal: the cpu time spent in involuntary wait
c66f08be 5129 */
79741dd3 5130void account_steal_time(cputime_t cputime)
c66f08be 5131{
79741dd3
MS
5132 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5133 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5134
5135 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5136}
5137
1da177e4 5138/*
79741dd3
MS
5139 * Account for idle time.
5140 * @cputime: the cpu time spent in idle wait
1da177e4 5141 */
79741dd3 5142void account_idle_time(cputime_t cputime)
1da177e4
LT
5143{
5144 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5145 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5146 struct rq *rq = this_rq();
1da177e4 5147
79741dd3
MS
5148 if (atomic_read(&rq->nr_iowait) > 0)
5149 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5150 else
5151 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5152}
5153
79741dd3
MS
5154#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5155
5156/*
5157 * Account a single tick of cpu time.
5158 * @p: the process that the cpu time gets accounted to
5159 * @user_tick: indicates if the tick is a user or a system tick
5160 */
5161void account_process_tick(struct task_struct *p, int user_tick)
5162{
a42548a1 5163 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
5164 struct rq *rq = this_rq();
5165
5166 if (user_tick)
a42548a1 5167 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 5168 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 5169 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
5170 one_jiffy_scaled);
5171 else
a42548a1 5172 account_idle_time(cputime_one_jiffy);
79741dd3
MS
5173}
5174
5175/*
5176 * Account multiple ticks of steal time.
5177 * @p: the process from which the cpu time has been stolen
5178 * @ticks: number of stolen ticks
5179 */
5180void account_steal_ticks(unsigned long ticks)
5181{
5182 account_steal_time(jiffies_to_cputime(ticks));
5183}
5184
5185/*
5186 * Account multiple ticks of idle time.
5187 * @ticks: number of stolen ticks
5188 */
5189void account_idle_ticks(unsigned long ticks)
5190{
5191 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5192}
5193
79741dd3
MS
5194#endif
5195
49048622
BS
5196/*
5197 * Use precise platform statistics if available:
5198 */
5199#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 5200void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5201{
d99ca3b9
HS
5202 *ut = p->utime;
5203 *st = p->stime;
49048622
BS
5204}
5205
0cf55e1e 5206void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5207{
0cf55e1e
HS
5208 struct task_cputime cputime;
5209
5210 thread_group_cputime(p, &cputime);
5211
5212 *ut = cputime.utime;
5213 *st = cputime.stime;
49048622
BS
5214}
5215#else
761b1d26
HS
5216
5217#ifndef nsecs_to_cputime
b7b20df9 5218# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
5219#endif
5220
d180c5bc 5221void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5222{
d99ca3b9 5223 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
5224
5225 /*
5226 * Use CFS's precise accounting:
5227 */
d180c5bc 5228 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
5229
5230 if (total) {
d180c5bc
HS
5231 u64 temp;
5232
5233 temp = (u64)(rtime * utime);
49048622 5234 do_div(temp, total);
d180c5bc
HS
5235 utime = (cputime_t)temp;
5236 } else
5237 utime = rtime;
49048622 5238
d180c5bc
HS
5239 /*
5240 * Compare with previous values, to keep monotonicity:
5241 */
761b1d26 5242 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 5243 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 5244
d99ca3b9
HS
5245 *ut = p->prev_utime;
5246 *st = p->prev_stime;
49048622
BS
5247}
5248
0cf55e1e
HS
5249/*
5250 * Must be called with siglock held.
5251 */
5252void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 5253{
0cf55e1e
HS
5254 struct signal_struct *sig = p->signal;
5255 struct task_cputime cputime;
5256 cputime_t rtime, utime, total;
49048622 5257
0cf55e1e 5258 thread_group_cputime(p, &cputime);
49048622 5259
0cf55e1e
HS
5260 total = cputime_add(cputime.utime, cputime.stime);
5261 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 5262
0cf55e1e
HS
5263 if (total) {
5264 u64 temp;
49048622 5265
0cf55e1e
HS
5266 temp = (u64)(rtime * cputime.utime);
5267 do_div(temp, total);
5268 utime = (cputime_t)temp;
5269 } else
5270 utime = rtime;
5271
5272 sig->prev_utime = max(sig->prev_utime, utime);
5273 sig->prev_stime = max(sig->prev_stime,
5274 cputime_sub(rtime, sig->prev_utime));
5275
5276 *ut = sig->prev_utime;
5277 *st = sig->prev_stime;
49048622 5278}
49048622 5279#endif
49048622 5280
7835b98b
CL
5281/*
5282 * This function gets called by the timer code, with HZ frequency.
5283 * We call it with interrupts disabled.
5284 *
5285 * It also gets called by the fork code, when changing the parent's
5286 * timeslices.
5287 */
5288void scheduler_tick(void)
5289{
7835b98b
CL
5290 int cpu = smp_processor_id();
5291 struct rq *rq = cpu_rq(cpu);
dd41f596 5292 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5293
5294 sched_clock_tick();
dd41f596 5295
05fa785c 5296 raw_spin_lock(&rq->lock);
3e51f33f 5297 update_rq_clock(rq);
f1a438d8 5298 update_cpu_load(rq);
fa85ae24 5299 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 5300 raw_spin_unlock(&rq->lock);
7835b98b 5301
cdd6c482 5302 perf_event_task_tick(curr, cpu);
e220d2dc 5303
e418e1c2 5304#ifdef CONFIG_SMP
dd41f596
IM
5305 rq->idle_at_tick = idle_cpu(cpu);
5306 trigger_load_balance(rq, cpu);
e418e1c2 5307#endif
1da177e4
LT
5308}
5309
132380a0 5310notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5311{
5312 if (in_lock_functions(addr)) {
5313 addr = CALLER_ADDR2;
5314 if (in_lock_functions(addr))
5315 addr = CALLER_ADDR3;
5316 }
5317 return addr;
5318}
1da177e4 5319
7e49fcce
SR
5320#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5321 defined(CONFIG_PREEMPT_TRACER))
5322
43627582 5323void __kprobes add_preempt_count(int val)
1da177e4 5324{
6cd8a4bb 5325#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5326 /*
5327 * Underflow?
5328 */
9a11b49a
IM
5329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5330 return;
6cd8a4bb 5331#endif
1da177e4 5332 preempt_count() += val;
6cd8a4bb 5333#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5334 /*
5335 * Spinlock count overflowing soon?
5336 */
33859f7f
MOS
5337 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5338 PREEMPT_MASK - 10);
6cd8a4bb
SR
5339#endif
5340 if (preempt_count() == val)
5341 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5342}
5343EXPORT_SYMBOL(add_preempt_count);
5344
43627582 5345void __kprobes sub_preempt_count(int val)
1da177e4 5346{
6cd8a4bb 5347#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5348 /*
5349 * Underflow?
5350 */
01e3eb82 5351 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5352 return;
1da177e4
LT
5353 /*
5354 * Is the spinlock portion underflowing?
5355 */
9a11b49a
IM
5356 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5357 !(preempt_count() & PREEMPT_MASK)))
5358 return;
6cd8a4bb 5359#endif
9a11b49a 5360
6cd8a4bb
SR
5361 if (preempt_count() == val)
5362 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5363 preempt_count() -= val;
5364}
5365EXPORT_SYMBOL(sub_preempt_count);
5366
5367#endif
5368
5369/*
dd41f596 5370 * Print scheduling while atomic bug:
1da177e4 5371 */
dd41f596 5372static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5373{
838225b4
SS
5374 struct pt_regs *regs = get_irq_regs();
5375
3df0fc5b
PZ
5376 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5377 prev->comm, prev->pid, preempt_count());
838225b4 5378
dd41f596 5379 debug_show_held_locks(prev);
e21f5b15 5380 print_modules();
dd41f596
IM
5381 if (irqs_disabled())
5382 print_irqtrace_events(prev);
838225b4
SS
5383
5384 if (regs)
5385 show_regs(regs);
5386 else
5387 dump_stack();
dd41f596 5388}
1da177e4 5389
dd41f596
IM
5390/*
5391 * Various schedule()-time debugging checks and statistics:
5392 */
5393static inline void schedule_debug(struct task_struct *prev)
5394{
1da177e4 5395 /*
41a2d6cf 5396 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5397 * schedule() atomically, we ignore that path for now.
5398 * Otherwise, whine if we are scheduling when we should not be.
5399 */
3f33a7ce 5400 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5401 __schedule_bug(prev);
5402
1da177e4
LT
5403 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5404
2d72376b 5405 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5406#ifdef CONFIG_SCHEDSTATS
5407 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5408 schedstat_inc(this_rq(), bkl_count);
5409 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5410 }
5411#endif
dd41f596
IM
5412}
5413
6cecd084 5414static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 5415{
6cecd084
PZ
5416 if (prev->state == TASK_RUNNING) {
5417 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 5418
6cecd084
PZ
5419 runtime -= prev->se.prev_sum_exec_runtime;
5420 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
5421
5422 /*
5423 * In order to avoid avg_overlap growing stale when we are
5424 * indeed overlapping and hence not getting put to sleep, grow
5425 * the avg_overlap on preemption.
5426 *
5427 * We use the average preemption runtime because that
5428 * correlates to the amount of cache footprint a task can
5429 * build up.
5430 */
6cecd084 5431 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 5432 }
6cecd084 5433 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
5434}
5435
dd41f596
IM
5436/*
5437 * Pick up the highest-prio task:
5438 */
5439static inline struct task_struct *
b67802ea 5440pick_next_task(struct rq *rq)
dd41f596 5441{
5522d5d5 5442 const struct sched_class *class;
dd41f596 5443 struct task_struct *p;
1da177e4
LT
5444
5445 /*
dd41f596
IM
5446 * Optimization: we know that if all tasks are in
5447 * the fair class we can call that function directly:
1da177e4 5448 */
dd41f596 5449 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5450 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5451 if (likely(p))
5452 return p;
1da177e4
LT
5453 }
5454
dd41f596
IM
5455 class = sched_class_highest;
5456 for ( ; ; ) {
fb8d4724 5457 p = class->pick_next_task(rq);
dd41f596
IM
5458 if (p)
5459 return p;
5460 /*
5461 * Will never be NULL as the idle class always
5462 * returns a non-NULL p:
5463 */
5464 class = class->next;
5465 }
5466}
1da177e4 5467
dd41f596
IM
5468/*
5469 * schedule() is the main scheduler function.
5470 */
ff743345 5471asmlinkage void __sched schedule(void)
dd41f596
IM
5472{
5473 struct task_struct *prev, *next;
67ca7bde 5474 unsigned long *switch_count;
dd41f596 5475 struct rq *rq;
31656519 5476 int cpu;
dd41f596 5477
ff743345
PZ
5478need_resched:
5479 preempt_disable();
dd41f596
IM
5480 cpu = smp_processor_id();
5481 rq = cpu_rq(cpu);
d6714c22 5482 rcu_sched_qs(cpu);
dd41f596
IM
5483 prev = rq->curr;
5484 switch_count = &prev->nivcsw;
5485
5486 release_kernel_lock(prev);
5487need_resched_nonpreemptible:
5488
5489 schedule_debug(prev);
1da177e4 5490
31656519 5491 if (sched_feat(HRTICK))
f333fdc9 5492 hrtick_clear(rq);
8f4d37ec 5493
05fa785c 5494 raw_spin_lock_irq(&rq->lock);
3e51f33f 5495 update_rq_clock(rq);
1e819950 5496 clear_tsk_need_resched(prev);
1da177e4 5497
1da177e4 5498 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5499 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5500 prev->state = TASK_RUNNING;
16882c1e 5501 else
2e1cb74a 5502 deactivate_task(rq, prev, 1);
dd41f596 5503 switch_count = &prev->nvcsw;
1da177e4
LT
5504 }
5505
3f029d3c 5506 pre_schedule(rq, prev);
f65eda4f 5507
dd41f596 5508 if (unlikely(!rq->nr_running))
1da177e4 5509 idle_balance(cpu, rq);
1da177e4 5510
df1c99d4 5511 put_prev_task(rq, prev);
b67802ea 5512 next = pick_next_task(rq);
1da177e4 5513
1da177e4 5514 if (likely(prev != next)) {
673a90a1 5515 sched_info_switch(prev, next);
cdd6c482 5516 perf_event_task_sched_out(prev, next, cpu);
673a90a1 5517
1da177e4
LT
5518 rq->nr_switches++;
5519 rq->curr = next;
5520 ++*switch_count;
5521
dd41f596 5522 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5523 /*
5524 * the context switch might have flipped the stack from under
5525 * us, hence refresh the local variables.
5526 */
5527 cpu = smp_processor_id();
5528 rq = cpu_rq(cpu);
1da177e4 5529 } else
05fa785c 5530 raw_spin_unlock_irq(&rq->lock);
1da177e4 5531
3f029d3c 5532 post_schedule(rq);
1da177e4 5533
8f4d37ec 5534 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5535 goto need_resched_nonpreemptible;
8f4d37ec 5536
1da177e4 5537 preempt_enable_no_resched();
ff743345 5538 if (need_resched())
1da177e4
LT
5539 goto need_resched;
5540}
1da177e4
LT
5541EXPORT_SYMBOL(schedule);
5542
c08f7829 5543#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
5544/*
5545 * Look out! "owner" is an entirely speculative pointer
5546 * access and not reliable.
5547 */
5548int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5549{
5550 unsigned int cpu;
5551 struct rq *rq;
5552
5553 if (!sched_feat(OWNER_SPIN))
5554 return 0;
5555
5556#ifdef CONFIG_DEBUG_PAGEALLOC
5557 /*
5558 * Need to access the cpu field knowing that
5559 * DEBUG_PAGEALLOC could have unmapped it if
5560 * the mutex owner just released it and exited.
5561 */
5562 if (probe_kernel_address(&owner->cpu, cpu))
5563 goto out;
5564#else
5565 cpu = owner->cpu;
5566#endif
5567
5568 /*
5569 * Even if the access succeeded (likely case),
5570 * the cpu field may no longer be valid.
5571 */
5572 if (cpu >= nr_cpumask_bits)
5573 goto out;
5574
5575 /*
5576 * We need to validate that we can do a
5577 * get_cpu() and that we have the percpu area.
5578 */
5579 if (!cpu_online(cpu))
5580 goto out;
5581
5582 rq = cpu_rq(cpu);
5583
5584 for (;;) {
5585 /*
5586 * Owner changed, break to re-assess state.
5587 */
5588 if (lock->owner != owner)
5589 break;
5590
5591 /*
5592 * Is that owner really running on that cpu?
5593 */
5594 if (task_thread_info(rq->curr) != owner || need_resched())
5595 return 0;
5596
5597 cpu_relax();
5598 }
5599out:
5600 return 1;
5601}
5602#endif
5603
1da177e4
LT
5604#ifdef CONFIG_PREEMPT
5605/*
2ed6e34f 5606 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5607 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5608 * occur there and call schedule directly.
5609 */
5610asmlinkage void __sched preempt_schedule(void)
5611{
5612 struct thread_info *ti = current_thread_info();
6478d880 5613
1da177e4
LT
5614 /*
5615 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5616 * we do not want to preempt the current task. Just return..
1da177e4 5617 */
beed33a8 5618 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5619 return;
5620
3a5c359a
AK
5621 do {
5622 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5623 schedule();
3a5c359a 5624 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5625
3a5c359a
AK
5626 /*
5627 * Check again in case we missed a preemption opportunity
5628 * between schedule and now.
5629 */
5630 barrier();
5ed0cec0 5631 } while (need_resched());
1da177e4 5632}
1da177e4
LT
5633EXPORT_SYMBOL(preempt_schedule);
5634
5635/*
2ed6e34f 5636 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5637 * off of irq context.
5638 * Note, that this is called and return with irqs disabled. This will
5639 * protect us against recursive calling from irq.
5640 */
5641asmlinkage void __sched preempt_schedule_irq(void)
5642{
5643 struct thread_info *ti = current_thread_info();
6478d880 5644
2ed6e34f 5645 /* Catch callers which need to be fixed */
1da177e4
LT
5646 BUG_ON(ti->preempt_count || !irqs_disabled());
5647
3a5c359a
AK
5648 do {
5649 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5650 local_irq_enable();
5651 schedule();
5652 local_irq_disable();
3a5c359a 5653 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5654
3a5c359a
AK
5655 /*
5656 * Check again in case we missed a preemption opportunity
5657 * between schedule and now.
5658 */
5659 barrier();
5ed0cec0 5660 } while (need_resched());
1da177e4
LT
5661}
5662
5663#endif /* CONFIG_PREEMPT */
5664
63859d4f 5665int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 5666 void *key)
1da177e4 5667{
63859d4f 5668 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 5669}
1da177e4
LT
5670EXPORT_SYMBOL(default_wake_function);
5671
5672/*
41a2d6cf
IM
5673 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5674 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5675 * number) then we wake all the non-exclusive tasks and one exclusive task.
5676 *
5677 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5678 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5679 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5680 */
78ddb08f 5681static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 5682 int nr_exclusive, int wake_flags, void *key)
1da177e4 5683{
2e45874c 5684 wait_queue_t *curr, *next;
1da177e4 5685
2e45874c 5686 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5687 unsigned flags = curr->flags;
5688
63859d4f 5689 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 5690 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5691 break;
5692 }
5693}
5694
5695/**
5696 * __wake_up - wake up threads blocked on a waitqueue.
5697 * @q: the waitqueue
5698 * @mode: which threads
5699 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5700 * @key: is directly passed to the wakeup function
50fa610a
DH
5701 *
5702 * It may be assumed that this function implies a write memory barrier before
5703 * changing the task state if and only if any tasks are woken up.
1da177e4 5704 */
7ad5b3a5 5705void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5706 int nr_exclusive, void *key)
1da177e4
LT
5707{
5708 unsigned long flags;
5709
5710 spin_lock_irqsave(&q->lock, flags);
5711 __wake_up_common(q, mode, nr_exclusive, 0, key);
5712 spin_unlock_irqrestore(&q->lock, flags);
5713}
1da177e4
LT
5714EXPORT_SYMBOL(__wake_up);
5715
5716/*
5717 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5718 */
7ad5b3a5 5719void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5720{
5721 __wake_up_common(q, mode, 1, 0, NULL);
5722}
5723
4ede816a
DL
5724void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5725{
5726 __wake_up_common(q, mode, 1, 0, key);
5727}
5728
1da177e4 5729/**
4ede816a 5730 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5731 * @q: the waitqueue
5732 * @mode: which threads
5733 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5734 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5735 *
5736 * The sync wakeup differs that the waker knows that it will schedule
5737 * away soon, so while the target thread will be woken up, it will not
5738 * be migrated to another CPU - ie. the two threads are 'synchronized'
5739 * with each other. This can prevent needless bouncing between CPUs.
5740 *
5741 * On UP it can prevent extra preemption.
50fa610a
DH
5742 *
5743 * It may be assumed that this function implies a write memory barrier before
5744 * changing the task state if and only if any tasks are woken up.
1da177e4 5745 */
4ede816a
DL
5746void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5747 int nr_exclusive, void *key)
1da177e4
LT
5748{
5749 unsigned long flags;
7d478721 5750 int wake_flags = WF_SYNC;
1da177e4
LT
5751
5752 if (unlikely(!q))
5753 return;
5754
5755 if (unlikely(!nr_exclusive))
7d478721 5756 wake_flags = 0;
1da177e4
LT
5757
5758 spin_lock_irqsave(&q->lock, flags);
7d478721 5759 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
5760 spin_unlock_irqrestore(&q->lock, flags);
5761}
4ede816a
DL
5762EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5763
5764/*
5765 * __wake_up_sync - see __wake_up_sync_key()
5766 */
5767void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5768{
5769 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5770}
1da177e4
LT
5771EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5772
65eb3dc6
KD
5773/**
5774 * complete: - signals a single thread waiting on this completion
5775 * @x: holds the state of this particular completion
5776 *
5777 * This will wake up a single thread waiting on this completion. Threads will be
5778 * awakened in the same order in which they were queued.
5779 *
5780 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5781 *
5782 * It may be assumed that this function implies a write memory barrier before
5783 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5784 */
b15136e9 5785void complete(struct completion *x)
1da177e4
LT
5786{
5787 unsigned long flags;
5788
5789 spin_lock_irqsave(&x->wait.lock, flags);
5790 x->done++;
d9514f6c 5791 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5792 spin_unlock_irqrestore(&x->wait.lock, flags);
5793}
5794EXPORT_SYMBOL(complete);
5795
65eb3dc6
KD
5796/**
5797 * complete_all: - signals all threads waiting on this completion
5798 * @x: holds the state of this particular completion
5799 *
5800 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5801 *
5802 * It may be assumed that this function implies a write memory barrier before
5803 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5804 */
b15136e9 5805void complete_all(struct completion *x)
1da177e4
LT
5806{
5807 unsigned long flags;
5808
5809 spin_lock_irqsave(&x->wait.lock, flags);
5810 x->done += UINT_MAX/2;
d9514f6c 5811 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5812 spin_unlock_irqrestore(&x->wait.lock, flags);
5813}
5814EXPORT_SYMBOL(complete_all);
5815
8cbbe86d
AK
5816static inline long __sched
5817do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5818{
1da177e4
LT
5819 if (!x->done) {
5820 DECLARE_WAITQUEUE(wait, current);
5821
5822 wait.flags |= WQ_FLAG_EXCLUSIVE;
5823 __add_wait_queue_tail(&x->wait, &wait);
5824 do {
94d3d824 5825 if (signal_pending_state(state, current)) {
ea71a546
ON
5826 timeout = -ERESTARTSYS;
5827 break;
8cbbe86d
AK
5828 }
5829 __set_current_state(state);
1da177e4
LT
5830 spin_unlock_irq(&x->wait.lock);
5831 timeout = schedule_timeout(timeout);
5832 spin_lock_irq(&x->wait.lock);
ea71a546 5833 } while (!x->done && timeout);
1da177e4 5834 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5835 if (!x->done)
5836 return timeout;
1da177e4
LT
5837 }
5838 x->done--;
ea71a546 5839 return timeout ?: 1;
1da177e4 5840}
1da177e4 5841
8cbbe86d
AK
5842static long __sched
5843wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5844{
1da177e4
LT
5845 might_sleep();
5846
5847 spin_lock_irq(&x->wait.lock);
8cbbe86d 5848 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5849 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5850 return timeout;
5851}
1da177e4 5852
65eb3dc6
KD
5853/**
5854 * wait_for_completion: - waits for completion of a task
5855 * @x: holds the state of this particular completion
5856 *
5857 * This waits to be signaled for completion of a specific task. It is NOT
5858 * interruptible and there is no timeout.
5859 *
5860 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5861 * and interrupt capability. Also see complete().
5862 */
b15136e9 5863void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5864{
5865 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5866}
8cbbe86d 5867EXPORT_SYMBOL(wait_for_completion);
1da177e4 5868
65eb3dc6
KD
5869/**
5870 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5871 * @x: holds the state of this particular completion
5872 * @timeout: timeout value in jiffies
5873 *
5874 * This waits for either a completion of a specific task to be signaled or for a
5875 * specified timeout to expire. The timeout is in jiffies. It is not
5876 * interruptible.
5877 */
b15136e9 5878unsigned long __sched
8cbbe86d 5879wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5880{
8cbbe86d 5881 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5882}
8cbbe86d 5883EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5884
65eb3dc6
KD
5885/**
5886 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5887 * @x: holds the state of this particular completion
5888 *
5889 * This waits for completion of a specific task to be signaled. It is
5890 * interruptible.
5891 */
8cbbe86d 5892int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5893{
51e97990
AK
5894 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5895 if (t == -ERESTARTSYS)
5896 return t;
5897 return 0;
0fec171c 5898}
8cbbe86d 5899EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5900
65eb3dc6
KD
5901/**
5902 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5903 * @x: holds the state of this particular completion
5904 * @timeout: timeout value in jiffies
5905 *
5906 * This waits for either a completion of a specific task to be signaled or for a
5907 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5908 */
b15136e9 5909unsigned long __sched
8cbbe86d
AK
5910wait_for_completion_interruptible_timeout(struct completion *x,
5911 unsigned long timeout)
0fec171c 5912{
8cbbe86d 5913 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5914}
8cbbe86d 5915EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5916
65eb3dc6
KD
5917/**
5918 * wait_for_completion_killable: - waits for completion of a task (killable)
5919 * @x: holds the state of this particular completion
5920 *
5921 * This waits to be signaled for completion of a specific task. It can be
5922 * interrupted by a kill signal.
5923 */
009e577e
MW
5924int __sched wait_for_completion_killable(struct completion *x)
5925{
5926 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5927 if (t == -ERESTARTSYS)
5928 return t;
5929 return 0;
5930}
5931EXPORT_SYMBOL(wait_for_completion_killable);
5932
be4de352
DC
5933/**
5934 * try_wait_for_completion - try to decrement a completion without blocking
5935 * @x: completion structure
5936 *
5937 * Returns: 0 if a decrement cannot be done without blocking
5938 * 1 if a decrement succeeded.
5939 *
5940 * If a completion is being used as a counting completion,
5941 * attempt to decrement the counter without blocking. This
5942 * enables us to avoid waiting if the resource the completion
5943 * is protecting is not available.
5944 */
5945bool try_wait_for_completion(struct completion *x)
5946{
7539a3b3 5947 unsigned long flags;
be4de352
DC
5948 int ret = 1;
5949
7539a3b3 5950 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5951 if (!x->done)
5952 ret = 0;
5953 else
5954 x->done--;
7539a3b3 5955 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5956 return ret;
5957}
5958EXPORT_SYMBOL(try_wait_for_completion);
5959
5960/**
5961 * completion_done - Test to see if a completion has any waiters
5962 * @x: completion structure
5963 *
5964 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5965 * 1 if there are no waiters.
5966 *
5967 */
5968bool completion_done(struct completion *x)
5969{
7539a3b3 5970 unsigned long flags;
be4de352
DC
5971 int ret = 1;
5972
7539a3b3 5973 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
5974 if (!x->done)
5975 ret = 0;
7539a3b3 5976 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
5977 return ret;
5978}
5979EXPORT_SYMBOL(completion_done);
5980
8cbbe86d
AK
5981static long __sched
5982sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5983{
0fec171c
IM
5984 unsigned long flags;
5985 wait_queue_t wait;
5986
5987 init_waitqueue_entry(&wait, current);
1da177e4 5988
8cbbe86d 5989 __set_current_state(state);
1da177e4 5990
8cbbe86d
AK
5991 spin_lock_irqsave(&q->lock, flags);
5992 __add_wait_queue(q, &wait);
5993 spin_unlock(&q->lock);
5994 timeout = schedule_timeout(timeout);
5995 spin_lock_irq(&q->lock);
5996 __remove_wait_queue(q, &wait);
5997 spin_unlock_irqrestore(&q->lock, flags);
5998
5999 return timeout;
6000}
6001
6002void __sched interruptible_sleep_on(wait_queue_head_t *q)
6003{
6004 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6005}
1da177e4
LT
6006EXPORT_SYMBOL(interruptible_sleep_on);
6007
0fec171c 6008long __sched
95cdf3b7 6009interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6010{
8cbbe86d 6011 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 6012}
1da177e4
LT
6013EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6014
0fec171c 6015void __sched sleep_on(wait_queue_head_t *q)
1da177e4 6016{
8cbbe86d 6017 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 6018}
1da177e4
LT
6019EXPORT_SYMBOL(sleep_on);
6020
0fec171c 6021long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 6022{
8cbbe86d 6023 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 6024}
1da177e4
LT
6025EXPORT_SYMBOL(sleep_on_timeout);
6026
b29739f9
IM
6027#ifdef CONFIG_RT_MUTEXES
6028
6029/*
6030 * rt_mutex_setprio - set the current priority of a task
6031 * @p: task
6032 * @prio: prio value (kernel-internal form)
6033 *
6034 * This function changes the 'effective' priority of a task. It does
6035 * not touch ->normal_prio like __setscheduler().
6036 *
6037 * Used by the rt_mutex code to implement priority inheritance logic.
6038 */
36c8b586 6039void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6040{
6041 unsigned long flags;
83b699ed 6042 int oldprio, on_rq, running;
70b97a7f 6043 struct rq *rq;
cb469845 6044 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6045
6046 BUG_ON(prio < 0 || prio > MAX_PRIO);
6047
6048 rq = task_rq_lock(p, &flags);
a8e504d2 6049 update_rq_clock(rq);
b29739f9 6050
d5f9f942 6051 oldprio = p->prio;
dd41f596 6052 on_rq = p->se.on_rq;
051a1d1a 6053 running = task_current(rq, p);
0e1f3483 6054 if (on_rq)
69be72c1 6055 dequeue_task(rq, p, 0);
0e1f3483
HS
6056 if (running)
6057 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6058
6059 if (rt_prio(prio))
6060 p->sched_class = &rt_sched_class;
6061 else
6062 p->sched_class = &fair_sched_class;
6063
b29739f9
IM
6064 p->prio = prio;
6065
0e1f3483
HS
6066 if (running)
6067 p->sched_class->set_curr_task(rq);
dd41f596 6068 if (on_rq) {
8159f87e 6069 enqueue_task(rq, p, 0);
cb469845
SR
6070
6071 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6072 }
6073 task_rq_unlock(rq, &flags);
6074}
6075
6076#endif
6077
36c8b586 6078void set_user_nice(struct task_struct *p, long nice)
1da177e4 6079{
dd41f596 6080 int old_prio, delta, on_rq;
1da177e4 6081 unsigned long flags;
70b97a7f 6082 struct rq *rq;
1da177e4
LT
6083
6084 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6085 return;
6086 /*
6087 * We have to be careful, if called from sys_setpriority(),
6088 * the task might be in the middle of scheduling on another CPU.
6089 */
6090 rq = task_rq_lock(p, &flags);
a8e504d2 6091 update_rq_clock(rq);
1da177e4
LT
6092 /*
6093 * The RT priorities are set via sched_setscheduler(), but we still
6094 * allow the 'normal' nice value to be set - but as expected
6095 * it wont have any effect on scheduling until the task is
dd41f596 6096 * SCHED_FIFO/SCHED_RR:
1da177e4 6097 */
e05606d3 6098 if (task_has_rt_policy(p)) {
1da177e4
LT
6099 p->static_prio = NICE_TO_PRIO(nice);
6100 goto out_unlock;
6101 }
dd41f596 6102 on_rq = p->se.on_rq;
c09595f6 6103 if (on_rq)
69be72c1 6104 dequeue_task(rq, p, 0);
1da177e4 6105
1da177e4 6106 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6107 set_load_weight(p);
b29739f9
IM
6108 old_prio = p->prio;
6109 p->prio = effective_prio(p);
6110 delta = p->prio - old_prio;
1da177e4 6111
dd41f596 6112 if (on_rq) {
8159f87e 6113 enqueue_task(rq, p, 0);
1da177e4 6114 /*
d5f9f942
AM
6115 * If the task increased its priority or is running and
6116 * lowered its priority, then reschedule its CPU:
1da177e4 6117 */
d5f9f942 6118 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6119 resched_task(rq->curr);
6120 }
6121out_unlock:
6122 task_rq_unlock(rq, &flags);
6123}
1da177e4
LT
6124EXPORT_SYMBOL(set_user_nice);
6125
e43379f1
MM
6126/*
6127 * can_nice - check if a task can reduce its nice value
6128 * @p: task
6129 * @nice: nice value
6130 */
36c8b586 6131int can_nice(const struct task_struct *p, const int nice)
e43379f1 6132{
024f4747
MM
6133 /* convert nice value [19,-20] to rlimit style value [1,40] */
6134 int nice_rlim = 20 - nice;
48f24c4d 6135
e43379f1
MM
6136 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6137 capable(CAP_SYS_NICE));
6138}
6139
1da177e4
LT
6140#ifdef __ARCH_WANT_SYS_NICE
6141
6142/*
6143 * sys_nice - change the priority of the current process.
6144 * @increment: priority increment
6145 *
6146 * sys_setpriority is a more generic, but much slower function that
6147 * does similar things.
6148 */
5add95d4 6149SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6150{
48f24c4d 6151 long nice, retval;
1da177e4
LT
6152
6153 /*
6154 * Setpriority might change our priority at the same moment.
6155 * We don't have to worry. Conceptually one call occurs first
6156 * and we have a single winner.
6157 */
e43379f1
MM
6158 if (increment < -40)
6159 increment = -40;
1da177e4
LT
6160 if (increment > 40)
6161 increment = 40;
6162
2b8f836f 6163 nice = TASK_NICE(current) + increment;
1da177e4
LT
6164 if (nice < -20)
6165 nice = -20;
6166 if (nice > 19)
6167 nice = 19;
6168
e43379f1
MM
6169 if (increment < 0 && !can_nice(current, nice))
6170 return -EPERM;
6171
1da177e4
LT
6172 retval = security_task_setnice(current, nice);
6173 if (retval)
6174 return retval;
6175
6176 set_user_nice(current, nice);
6177 return 0;
6178}
6179
6180#endif
6181
6182/**
6183 * task_prio - return the priority value of a given task.
6184 * @p: the task in question.
6185 *
6186 * This is the priority value as seen by users in /proc.
6187 * RT tasks are offset by -200. Normal tasks are centered
6188 * around 0, value goes from -16 to +15.
6189 */
36c8b586 6190int task_prio(const struct task_struct *p)
1da177e4
LT
6191{
6192 return p->prio - MAX_RT_PRIO;
6193}
6194
6195/**
6196 * task_nice - return the nice value of a given task.
6197 * @p: the task in question.
6198 */
36c8b586 6199int task_nice(const struct task_struct *p)
1da177e4
LT
6200{
6201 return TASK_NICE(p);
6202}
150d8bed 6203EXPORT_SYMBOL(task_nice);
1da177e4
LT
6204
6205/**
6206 * idle_cpu - is a given cpu idle currently?
6207 * @cpu: the processor in question.
6208 */
6209int idle_cpu(int cpu)
6210{
6211 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6212}
6213
1da177e4
LT
6214/**
6215 * idle_task - return the idle task for a given cpu.
6216 * @cpu: the processor in question.
6217 */
36c8b586 6218struct task_struct *idle_task(int cpu)
1da177e4
LT
6219{
6220 return cpu_rq(cpu)->idle;
6221}
6222
6223/**
6224 * find_process_by_pid - find a process with a matching PID value.
6225 * @pid: the pid in question.
6226 */
a9957449 6227static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6228{
228ebcbe 6229 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6230}
6231
6232/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6233static void
6234__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6235{
dd41f596 6236 BUG_ON(p->se.on_rq);
48f24c4d 6237
1da177e4
LT
6238 p->policy = policy;
6239 p->rt_priority = prio;
b29739f9
IM
6240 p->normal_prio = normal_prio(p);
6241 /* we are holding p->pi_lock already */
6242 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
6243 if (rt_prio(p->prio))
6244 p->sched_class = &rt_sched_class;
6245 else
6246 p->sched_class = &fair_sched_class;
2dd73a4f 6247 set_load_weight(p);
1da177e4
LT
6248}
6249
c69e8d9c
DH
6250/*
6251 * check the target process has a UID that matches the current process's
6252 */
6253static bool check_same_owner(struct task_struct *p)
6254{
6255 const struct cred *cred = current_cred(), *pcred;
6256 bool match;
6257
6258 rcu_read_lock();
6259 pcred = __task_cred(p);
6260 match = (cred->euid == pcred->euid ||
6261 cred->euid == pcred->uid);
6262 rcu_read_unlock();
6263 return match;
6264}
6265
961ccddd
RR
6266static int __sched_setscheduler(struct task_struct *p, int policy,
6267 struct sched_param *param, bool user)
1da177e4 6268{
83b699ed 6269 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6270 unsigned long flags;
cb469845 6271 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6272 struct rq *rq;
ca94c442 6273 int reset_on_fork;
1da177e4 6274
66e5393a
SR
6275 /* may grab non-irq protected spin_locks */
6276 BUG_ON(in_interrupt());
1da177e4
LT
6277recheck:
6278 /* double check policy once rq lock held */
ca94c442
LP
6279 if (policy < 0) {
6280 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6281 policy = oldpolicy = p->policy;
ca94c442
LP
6282 } else {
6283 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6284 policy &= ~SCHED_RESET_ON_FORK;
6285
6286 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6287 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6288 policy != SCHED_IDLE)
6289 return -EINVAL;
6290 }
6291
1da177e4
LT
6292 /*
6293 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6294 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6295 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6296 */
6297 if (param->sched_priority < 0 ||
95cdf3b7 6298 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6299 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6300 return -EINVAL;
e05606d3 6301 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6302 return -EINVAL;
6303
37e4ab3f
OC
6304 /*
6305 * Allow unprivileged RT tasks to decrease priority:
6306 */
961ccddd 6307 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6308 if (rt_policy(policy)) {
8dc3e909 6309 unsigned long rlim_rtprio;
8dc3e909
ON
6310
6311 if (!lock_task_sighand(p, &flags))
6312 return -ESRCH;
6313 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6314 unlock_task_sighand(p, &flags);
6315
6316 /* can't set/change the rt policy */
6317 if (policy != p->policy && !rlim_rtprio)
6318 return -EPERM;
6319
6320 /* can't increase priority */
6321 if (param->sched_priority > p->rt_priority &&
6322 param->sched_priority > rlim_rtprio)
6323 return -EPERM;
6324 }
dd41f596
IM
6325 /*
6326 * Like positive nice levels, dont allow tasks to
6327 * move out of SCHED_IDLE either:
6328 */
6329 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6330 return -EPERM;
5fe1d75f 6331
37e4ab3f 6332 /* can't change other user's priorities */
c69e8d9c 6333 if (!check_same_owner(p))
37e4ab3f 6334 return -EPERM;
ca94c442
LP
6335
6336 /* Normal users shall not reset the sched_reset_on_fork flag */
6337 if (p->sched_reset_on_fork && !reset_on_fork)
6338 return -EPERM;
37e4ab3f 6339 }
1da177e4 6340
725aad24 6341 if (user) {
b68aa230 6342#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6343 /*
6344 * Do not allow realtime tasks into groups that have no runtime
6345 * assigned.
6346 */
9a7e0b18
PZ
6347 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6348 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6349 return -EPERM;
b68aa230
PZ
6350#endif
6351
725aad24
JF
6352 retval = security_task_setscheduler(p, policy, param);
6353 if (retval)
6354 return retval;
6355 }
6356
b29739f9
IM
6357 /*
6358 * make sure no PI-waiters arrive (or leave) while we are
6359 * changing the priority of the task:
6360 */
1d615482 6361 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6362 /*
6363 * To be able to change p->policy safely, the apropriate
6364 * runqueue lock must be held.
6365 */
b29739f9 6366 rq = __task_rq_lock(p);
1da177e4
LT
6367 /* recheck policy now with rq lock held */
6368 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6369 policy = oldpolicy = -1;
b29739f9 6370 __task_rq_unlock(rq);
1d615482 6371 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6372 goto recheck;
6373 }
2daa3577 6374 update_rq_clock(rq);
dd41f596 6375 on_rq = p->se.on_rq;
051a1d1a 6376 running = task_current(rq, p);
0e1f3483 6377 if (on_rq)
2e1cb74a 6378 deactivate_task(rq, p, 0);
0e1f3483
HS
6379 if (running)
6380 p->sched_class->put_prev_task(rq, p);
f6b53205 6381
ca94c442
LP
6382 p->sched_reset_on_fork = reset_on_fork;
6383
1da177e4 6384 oldprio = p->prio;
dd41f596 6385 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6386
0e1f3483
HS
6387 if (running)
6388 p->sched_class->set_curr_task(rq);
dd41f596
IM
6389 if (on_rq) {
6390 activate_task(rq, p, 0);
cb469845
SR
6391
6392 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6393 }
b29739f9 6394 __task_rq_unlock(rq);
1d615482 6395 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 6396
95e02ca9
TG
6397 rt_mutex_adjust_pi(p);
6398
1da177e4
LT
6399 return 0;
6400}
961ccddd
RR
6401
6402/**
6403 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6404 * @p: the task in question.
6405 * @policy: new policy.
6406 * @param: structure containing the new RT priority.
6407 *
6408 * NOTE that the task may be already dead.
6409 */
6410int sched_setscheduler(struct task_struct *p, int policy,
6411 struct sched_param *param)
6412{
6413 return __sched_setscheduler(p, policy, param, true);
6414}
1da177e4
LT
6415EXPORT_SYMBOL_GPL(sched_setscheduler);
6416
961ccddd
RR
6417/**
6418 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6419 * @p: the task in question.
6420 * @policy: new policy.
6421 * @param: structure containing the new RT priority.
6422 *
6423 * Just like sched_setscheduler, only don't bother checking if the
6424 * current context has permission. For example, this is needed in
6425 * stop_machine(): we create temporary high priority worker threads,
6426 * but our caller might not have that capability.
6427 */
6428int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6429 struct sched_param *param)
6430{
6431 return __sched_setscheduler(p, policy, param, false);
6432}
6433
95cdf3b7
IM
6434static int
6435do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6436{
1da177e4
LT
6437 struct sched_param lparam;
6438 struct task_struct *p;
36c8b586 6439 int retval;
1da177e4
LT
6440
6441 if (!param || pid < 0)
6442 return -EINVAL;
6443 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6444 return -EFAULT;
5fe1d75f
ON
6445
6446 rcu_read_lock();
6447 retval = -ESRCH;
1da177e4 6448 p = find_process_by_pid(pid);
5fe1d75f
ON
6449 if (p != NULL)
6450 retval = sched_setscheduler(p, policy, &lparam);
6451 rcu_read_unlock();
36c8b586 6452
1da177e4
LT
6453 return retval;
6454}
6455
6456/**
6457 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6458 * @pid: the pid in question.
6459 * @policy: new policy.
6460 * @param: structure containing the new RT priority.
6461 */
5add95d4
HC
6462SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6463 struct sched_param __user *, param)
1da177e4 6464{
c21761f1
JB
6465 /* negative values for policy are not valid */
6466 if (policy < 0)
6467 return -EINVAL;
6468
1da177e4
LT
6469 return do_sched_setscheduler(pid, policy, param);
6470}
6471
6472/**
6473 * sys_sched_setparam - set/change the RT priority of a thread
6474 * @pid: the pid in question.
6475 * @param: structure containing the new RT priority.
6476 */
5add95d4 6477SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6478{
6479 return do_sched_setscheduler(pid, -1, param);
6480}
6481
6482/**
6483 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6484 * @pid: the pid in question.
6485 */
5add95d4 6486SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6487{
36c8b586 6488 struct task_struct *p;
3a5c359a 6489 int retval;
1da177e4
LT
6490
6491 if (pid < 0)
3a5c359a 6492 return -EINVAL;
1da177e4
LT
6493
6494 retval = -ESRCH;
5fe85be0 6495 rcu_read_lock();
1da177e4
LT
6496 p = find_process_by_pid(pid);
6497 if (p) {
6498 retval = security_task_getscheduler(p);
6499 if (!retval)
ca94c442
LP
6500 retval = p->policy
6501 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 6502 }
5fe85be0 6503 rcu_read_unlock();
1da177e4
LT
6504 return retval;
6505}
6506
6507/**
ca94c442 6508 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6509 * @pid: the pid in question.
6510 * @param: structure containing the RT priority.
6511 */
5add95d4 6512SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6513{
6514 struct sched_param lp;
36c8b586 6515 struct task_struct *p;
3a5c359a 6516 int retval;
1da177e4
LT
6517
6518 if (!param || pid < 0)
3a5c359a 6519 return -EINVAL;
1da177e4 6520
5fe85be0 6521 rcu_read_lock();
1da177e4
LT
6522 p = find_process_by_pid(pid);
6523 retval = -ESRCH;
6524 if (!p)
6525 goto out_unlock;
6526
6527 retval = security_task_getscheduler(p);
6528 if (retval)
6529 goto out_unlock;
6530
6531 lp.sched_priority = p->rt_priority;
5fe85be0 6532 rcu_read_unlock();
1da177e4
LT
6533
6534 /*
6535 * This one might sleep, we cannot do it with a spinlock held ...
6536 */
6537 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6538
1da177e4
LT
6539 return retval;
6540
6541out_unlock:
5fe85be0 6542 rcu_read_unlock();
1da177e4
LT
6543 return retval;
6544}
6545
96f874e2 6546long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6547{
5a16f3d3 6548 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6549 struct task_struct *p;
6550 int retval;
1da177e4 6551
95402b38 6552 get_online_cpus();
23f5d142 6553 rcu_read_lock();
1da177e4
LT
6554
6555 p = find_process_by_pid(pid);
6556 if (!p) {
23f5d142 6557 rcu_read_unlock();
95402b38 6558 put_online_cpus();
1da177e4
LT
6559 return -ESRCH;
6560 }
6561
23f5d142 6562 /* Prevent p going away */
1da177e4 6563 get_task_struct(p);
23f5d142 6564 rcu_read_unlock();
1da177e4 6565
5a16f3d3
RR
6566 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6567 retval = -ENOMEM;
6568 goto out_put_task;
6569 }
6570 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6571 retval = -ENOMEM;
6572 goto out_free_cpus_allowed;
6573 }
1da177e4 6574 retval = -EPERM;
c69e8d9c 6575 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6576 goto out_unlock;
6577
e7834f8f
DQ
6578 retval = security_task_setscheduler(p, 0, NULL);
6579 if (retval)
6580 goto out_unlock;
6581
5a16f3d3
RR
6582 cpuset_cpus_allowed(p, cpus_allowed);
6583 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6584 again:
5a16f3d3 6585 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6586
8707d8b8 6587 if (!retval) {
5a16f3d3
RR
6588 cpuset_cpus_allowed(p, cpus_allowed);
6589 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6590 /*
6591 * We must have raced with a concurrent cpuset
6592 * update. Just reset the cpus_allowed to the
6593 * cpuset's cpus_allowed
6594 */
5a16f3d3 6595 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6596 goto again;
6597 }
6598 }
1da177e4 6599out_unlock:
5a16f3d3
RR
6600 free_cpumask_var(new_mask);
6601out_free_cpus_allowed:
6602 free_cpumask_var(cpus_allowed);
6603out_put_task:
1da177e4 6604 put_task_struct(p);
95402b38 6605 put_online_cpus();
1da177e4
LT
6606 return retval;
6607}
6608
6609static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6610 struct cpumask *new_mask)
1da177e4 6611{
96f874e2
RR
6612 if (len < cpumask_size())
6613 cpumask_clear(new_mask);
6614 else if (len > cpumask_size())
6615 len = cpumask_size();
6616
1da177e4
LT
6617 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6618}
6619
6620/**
6621 * sys_sched_setaffinity - set the cpu affinity of a process
6622 * @pid: pid of the process
6623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6624 * @user_mask_ptr: user-space pointer to the new cpu mask
6625 */
5add95d4
HC
6626SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6627 unsigned long __user *, user_mask_ptr)
1da177e4 6628{
5a16f3d3 6629 cpumask_var_t new_mask;
1da177e4
LT
6630 int retval;
6631
5a16f3d3
RR
6632 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6633 return -ENOMEM;
1da177e4 6634
5a16f3d3
RR
6635 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6636 if (retval == 0)
6637 retval = sched_setaffinity(pid, new_mask);
6638 free_cpumask_var(new_mask);
6639 return retval;
1da177e4
LT
6640}
6641
96f874e2 6642long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6643{
36c8b586 6644 struct task_struct *p;
31605683
TG
6645 unsigned long flags;
6646 struct rq *rq;
1da177e4 6647 int retval;
1da177e4 6648
95402b38 6649 get_online_cpus();
23f5d142 6650 rcu_read_lock();
1da177e4
LT
6651
6652 retval = -ESRCH;
6653 p = find_process_by_pid(pid);
6654 if (!p)
6655 goto out_unlock;
6656
e7834f8f
DQ
6657 retval = security_task_getscheduler(p);
6658 if (retval)
6659 goto out_unlock;
6660
31605683 6661 rq = task_rq_lock(p, &flags);
96f874e2 6662 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 6663 task_rq_unlock(rq, &flags);
1da177e4
LT
6664
6665out_unlock:
23f5d142 6666 rcu_read_unlock();
95402b38 6667 put_online_cpus();
1da177e4 6668
9531b62f 6669 return retval;
1da177e4
LT
6670}
6671
6672/**
6673 * sys_sched_getaffinity - get the cpu affinity of a process
6674 * @pid: pid of the process
6675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6676 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6677 */
5add95d4
HC
6678SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6679 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6680{
6681 int ret;
f17c8607 6682 cpumask_var_t mask;
1da177e4 6683
f17c8607 6684 if (len < cpumask_size())
1da177e4
LT
6685 return -EINVAL;
6686
f17c8607
RR
6687 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6688 return -ENOMEM;
1da177e4 6689
f17c8607
RR
6690 ret = sched_getaffinity(pid, mask);
6691 if (ret == 0) {
6692 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6693 ret = -EFAULT;
6694 else
6695 ret = cpumask_size();
6696 }
6697 free_cpumask_var(mask);
1da177e4 6698
f17c8607 6699 return ret;
1da177e4
LT
6700}
6701
6702/**
6703 * sys_sched_yield - yield the current processor to other threads.
6704 *
dd41f596
IM
6705 * This function yields the current CPU to other tasks. If there are no
6706 * other threads running on this CPU then this function will return.
1da177e4 6707 */
5add95d4 6708SYSCALL_DEFINE0(sched_yield)
1da177e4 6709{
70b97a7f 6710 struct rq *rq = this_rq_lock();
1da177e4 6711
2d72376b 6712 schedstat_inc(rq, yld_count);
4530d7ab 6713 current->sched_class->yield_task(rq);
1da177e4
LT
6714
6715 /*
6716 * Since we are going to call schedule() anyway, there's
6717 * no need to preempt or enable interrupts:
6718 */
6719 __release(rq->lock);
8a25d5de 6720 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 6721 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
6722 preempt_enable_no_resched();
6723
6724 schedule();
6725
6726 return 0;
6727}
6728
d86ee480
PZ
6729static inline int should_resched(void)
6730{
6731 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6732}
6733
e7b38404 6734static void __cond_resched(void)
1da177e4 6735{
e7aaaa69
FW
6736 add_preempt_count(PREEMPT_ACTIVE);
6737 schedule();
6738 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6739}
6740
02b67cc3 6741int __sched _cond_resched(void)
1da177e4 6742{
d86ee480 6743 if (should_resched()) {
1da177e4
LT
6744 __cond_resched();
6745 return 1;
6746 }
6747 return 0;
6748}
02b67cc3 6749EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6750
6751/*
613afbf8 6752 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6753 * call schedule, and on return reacquire the lock.
6754 *
41a2d6cf 6755 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6756 * operations here to prevent schedule() from being called twice (once via
6757 * spin_unlock(), once by hand).
6758 */
613afbf8 6759int __cond_resched_lock(spinlock_t *lock)
1da177e4 6760{
d86ee480 6761 int resched = should_resched();
6df3cecb
JK
6762 int ret = 0;
6763
f607c668
PZ
6764 lockdep_assert_held(lock);
6765
95c354fe 6766 if (spin_needbreak(lock) || resched) {
1da177e4 6767 spin_unlock(lock);
d86ee480 6768 if (resched)
95c354fe
NP
6769 __cond_resched();
6770 else
6771 cpu_relax();
6df3cecb 6772 ret = 1;
1da177e4 6773 spin_lock(lock);
1da177e4 6774 }
6df3cecb 6775 return ret;
1da177e4 6776}
613afbf8 6777EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6778
613afbf8 6779int __sched __cond_resched_softirq(void)
1da177e4
LT
6780{
6781 BUG_ON(!in_softirq());
6782
d86ee480 6783 if (should_resched()) {
98d82567 6784 local_bh_enable();
1da177e4
LT
6785 __cond_resched();
6786 local_bh_disable();
6787 return 1;
6788 }
6789 return 0;
6790}
613afbf8 6791EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6792
1da177e4
LT
6793/**
6794 * yield - yield the current processor to other threads.
6795 *
72fd4a35 6796 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6797 * thread runnable and calls sys_sched_yield().
6798 */
6799void __sched yield(void)
6800{
6801 set_current_state(TASK_RUNNING);
6802 sys_sched_yield();
6803}
1da177e4
LT
6804EXPORT_SYMBOL(yield);
6805
6806/*
41a2d6cf 6807 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 6808 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
6809 */
6810void __sched io_schedule(void)
6811{
54d35f29 6812 struct rq *rq = raw_rq();
1da177e4 6813
0ff92245 6814 delayacct_blkio_start();
1da177e4 6815 atomic_inc(&rq->nr_iowait);
8f0dfc34 6816 current->in_iowait = 1;
1da177e4 6817 schedule();
8f0dfc34 6818 current->in_iowait = 0;
1da177e4 6819 atomic_dec(&rq->nr_iowait);
0ff92245 6820 delayacct_blkio_end();
1da177e4 6821}
1da177e4
LT
6822EXPORT_SYMBOL(io_schedule);
6823
6824long __sched io_schedule_timeout(long timeout)
6825{
54d35f29 6826 struct rq *rq = raw_rq();
1da177e4
LT
6827 long ret;
6828
0ff92245 6829 delayacct_blkio_start();
1da177e4 6830 atomic_inc(&rq->nr_iowait);
8f0dfc34 6831 current->in_iowait = 1;
1da177e4 6832 ret = schedule_timeout(timeout);
8f0dfc34 6833 current->in_iowait = 0;
1da177e4 6834 atomic_dec(&rq->nr_iowait);
0ff92245 6835 delayacct_blkio_end();
1da177e4
LT
6836 return ret;
6837}
6838
6839/**
6840 * sys_sched_get_priority_max - return maximum RT priority.
6841 * @policy: scheduling class.
6842 *
6843 * this syscall returns the maximum rt_priority that can be used
6844 * by a given scheduling class.
6845 */
5add95d4 6846SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6847{
6848 int ret = -EINVAL;
6849
6850 switch (policy) {
6851 case SCHED_FIFO:
6852 case SCHED_RR:
6853 ret = MAX_USER_RT_PRIO-1;
6854 break;
6855 case SCHED_NORMAL:
b0a9499c 6856 case SCHED_BATCH:
dd41f596 6857 case SCHED_IDLE:
1da177e4
LT
6858 ret = 0;
6859 break;
6860 }
6861 return ret;
6862}
6863
6864/**
6865 * sys_sched_get_priority_min - return minimum RT priority.
6866 * @policy: scheduling class.
6867 *
6868 * this syscall returns the minimum rt_priority that can be used
6869 * by a given scheduling class.
6870 */
5add95d4 6871SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6872{
6873 int ret = -EINVAL;
6874
6875 switch (policy) {
6876 case SCHED_FIFO:
6877 case SCHED_RR:
6878 ret = 1;
6879 break;
6880 case SCHED_NORMAL:
b0a9499c 6881 case SCHED_BATCH:
dd41f596 6882 case SCHED_IDLE:
1da177e4
LT
6883 ret = 0;
6884 }
6885 return ret;
6886}
6887
6888/**
6889 * sys_sched_rr_get_interval - return the default timeslice of a process.
6890 * @pid: pid of the process.
6891 * @interval: userspace pointer to the timeslice value.
6892 *
6893 * this syscall writes the default timeslice value of a given process
6894 * into the user-space timespec buffer. A value of '0' means infinity.
6895 */
17da2bd9 6896SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6897 struct timespec __user *, interval)
1da177e4 6898{
36c8b586 6899 struct task_struct *p;
a4ec24b4 6900 unsigned int time_slice;
dba091b9
TG
6901 unsigned long flags;
6902 struct rq *rq;
3a5c359a 6903 int retval;
1da177e4 6904 struct timespec t;
1da177e4
LT
6905
6906 if (pid < 0)
3a5c359a 6907 return -EINVAL;
1da177e4
LT
6908
6909 retval = -ESRCH;
1a551ae7 6910 rcu_read_lock();
1da177e4
LT
6911 p = find_process_by_pid(pid);
6912 if (!p)
6913 goto out_unlock;
6914
6915 retval = security_task_getscheduler(p);
6916 if (retval)
6917 goto out_unlock;
6918
dba091b9
TG
6919 rq = task_rq_lock(p, &flags);
6920 time_slice = p->sched_class->get_rr_interval(rq, p);
6921 task_rq_unlock(rq, &flags);
a4ec24b4 6922
1a551ae7 6923 rcu_read_unlock();
a4ec24b4 6924 jiffies_to_timespec(time_slice, &t);
1da177e4 6925 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6926 return retval;
3a5c359a 6927
1da177e4 6928out_unlock:
1a551ae7 6929 rcu_read_unlock();
1da177e4
LT
6930 return retval;
6931}
6932
7c731e0a 6933static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6934
82a1fcb9 6935void sched_show_task(struct task_struct *p)
1da177e4 6936{
1da177e4 6937 unsigned long free = 0;
36c8b586 6938 unsigned state;
1da177e4 6939
1da177e4 6940 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 6941 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6942 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6943#if BITS_PER_LONG == 32
1da177e4 6944 if (state == TASK_RUNNING)
3df0fc5b 6945 printk(KERN_CONT " running ");
1da177e4 6946 else
3df0fc5b 6947 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6948#else
6949 if (state == TASK_RUNNING)
3df0fc5b 6950 printk(KERN_CONT " running task ");
1da177e4 6951 else
3df0fc5b 6952 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6953#endif
6954#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6955 free = stack_not_used(p);
1da177e4 6956#endif
3df0fc5b 6957 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
6958 task_pid_nr(p), task_pid_nr(p->real_parent),
6959 (unsigned long)task_thread_info(p)->flags);
1da177e4 6960
5fb5e6de 6961 show_stack(p, NULL);
1da177e4
LT
6962}
6963
e59e2ae2 6964void show_state_filter(unsigned long state_filter)
1da177e4 6965{
36c8b586 6966 struct task_struct *g, *p;
1da177e4 6967
4bd77321 6968#if BITS_PER_LONG == 32
3df0fc5b
PZ
6969 printk(KERN_INFO
6970 " task PC stack pid father\n");
1da177e4 6971#else
3df0fc5b
PZ
6972 printk(KERN_INFO
6973 " task PC stack pid father\n");
1da177e4
LT
6974#endif
6975 read_lock(&tasklist_lock);
6976 do_each_thread(g, p) {
6977 /*
6978 * reset the NMI-timeout, listing all files on a slow
6979 * console might take alot of time:
6980 */
6981 touch_nmi_watchdog();
39bc89fd 6982 if (!state_filter || (p->state & state_filter))
82a1fcb9 6983 sched_show_task(p);
1da177e4
LT
6984 } while_each_thread(g, p);
6985
04c9167f
JF
6986 touch_all_softlockup_watchdogs();
6987
dd41f596
IM
6988#ifdef CONFIG_SCHED_DEBUG
6989 sysrq_sched_debug_show();
6990#endif
1da177e4 6991 read_unlock(&tasklist_lock);
e59e2ae2
IM
6992 /*
6993 * Only show locks if all tasks are dumped:
6994 */
93335a21 6995 if (!state_filter)
e59e2ae2 6996 debug_show_all_locks();
1da177e4
LT
6997}
6998
1df21055
IM
6999void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7000{
dd41f596 7001 idle->sched_class = &idle_sched_class;
1df21055
IM
7002}
7003
f340c0d1
IM
7004/**
7005 * init_idle - set up an idle thread for a given CPU
7006 * @idle: task in question
7007 * @cpu: cpu the idle task belongs to
7008 *
7009 * NOTE: this function does not set the idle thread's NEED_RESCHED
7010 * flag, to make booting more robust.
7011 */
5c1e1767 7012void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7013{
70b97a7f 7014 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7015 unsigned long flags;
7016
05fa785c 7017 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 7018
dd41f596 7019 __sched_fork(idle);
06b83b5f 7020 idle->state = TASK_RUNNING;
dd41f596
IM
7021 idle->se.exec_start = sched_clock();
7022
96f874e2 7023 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7024 __set_task_cpu(idle, cpu);
1da177e4 7025
1da177e4 7026 rq->curr = rq->idle = idle;
4866cde0
NP
7027#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7028 idle->oncpu = 1;
7029#endif
05fa785c 7030 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7031
7032 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7033#if defined(CONFIG_PREEMPT)
7034 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7035#else
a1261f54 7036 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7037#endif
dd41f596
IM
7038 /*
7039 * The idle tasks have their own, simple scheduling class:
7040 */
7041 idle->sched_class = &idle_sched_class;
fb52607a 7042 ftrace_graph_init_task(idle);
1da177e4
LT
7043}
7044
7045/*
7046 * In a system that switches off the HZ timer nohz_cpu_mask
7047 * indicates which cpus entered this state. This is used
7048 * in the rcu update to wait only for active cpus. For system
7049 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7050 * always be CPU_BITS_NONE.
1da177e4 7051 */
6a7b3dc3 7052cpumask_var_t nohz_cpu_mask;
1da177e4 7053
19978ca6
IM
7054/*
7055 * Increase the granularity value when there are more CPUs,
7056 * because with more CPUs the 'effective latency' as visible
7057 * to users decreases. But the relationship is not linear,
7058 * so pick a second-best guess by going with the log2 of the
7059 * number of CPUs.
7060 *
7061 * This idea comes from the SD scheduler of Con Kolivas:
7062 */
acb4a848 7063static int get_update_sysctl_factor(void)
19978ca6 7064{
4ca3ef71 7065 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
7066 unsigned int factor;
7067
7068 switch (sysctl_sched_tunable_scaling) {
7069 case SCHED_TUNABLESCALING_NONE:
7070 factor = 1;
7071 break;
7072 case SCHED_TUNABLESCALING_LINEAR:
7073 factor = cpus;
7074 break;
7075 case SCHED_TUNABLESCALING_LOG:
7076 default:
7077 factor = 1 + ilog2(cpus);
7078 break;
7079 }
19978ca6 7080
acb4a848
CE
7081 return factor;
7082}
19978ca6 7083
acb4a848
CE
7084static void update_sysctl(void)
7085{
7086 unsigned int factor = get_update_sysctl_factor();
19978ca6 7087
0bcdcf28
CE
7088#define SET_SYSCTL(name) \
7089 (sysctl_##name = (factor) * normalized_sysctl_##name)
7090 SET_SYSCTL(sched_min_granularity);
7091 SET_SYSCTL(sched_latency);
7092 SET_SYSCTL(sched_wakeup_granularity);
7093 SET_SYSCTL(sched_shares_ratelimit);
7094#undef SET_SYSCTL
7095}
55cd5340 7096
0bcdcf28
CE
7097static inline void sched_init_granularity(void)
7098{
7099 update_sysctl();
19978ca6
IM
7100}
7101
1da177e4
LT
7102#ifdef CONFIG_SMP
7103/*
7104 * This is how migration works:
7105 *
70b97a7f 7106 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7107 * runqueue and wake up that CPU's migration thread.
7108 * 2) we down() the locked semaphore => thread blocks.
7109 * 3) migration thread wakes up (implicitly it forces the migrated
7110 * thread off the CPU)
7111 * 4) it gets the migration request and checks whether the migrated
7112 * task is still in the wrong runqueue.
7113 * 5) if it's in the wrong runqueue then the migration thread removes
7114 * it and puts it into the right queue.
7115 * 6) migration thread up()s the semaphore.
7116 * 7) we wake up and the migration is done.
7117 */
7118
7119/*
7120 * Change a given task's CPU affinity. Migrate the thread to a
7121 * proper CPU and schedule it away if the CPU it's executing on
7122 * is removed from the allowed bitmask.
7123 *
7124 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7125 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7126 * call is not atomic; no spinlocks may be held.
7127 */
96f874e2 7128int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7129{
70b97a7f 7130 struct migration_req req;
1da177e4 7131 unsigned long flags;
70b97a7f 7132 struct rq *rq;
48f24c4d 7133 int ret = 0;
1da177e4 7134
e2912009
PZ
7135 /*
7136 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7137 * the ->cpus_allowed mask from under waking tasks, which would be
7138 * possible when we change rq->lock in ttwu(), so synchronize against
7139 * TASK_WAKING to avoid that.
7140 */
7141again:
7142 while (p->state == TASK_WAKING)
7143 cpu_relax();
7144
1da177e4 7145 rq = task_rq_lock(p, &flags);
e2912009
PZ
7146
7147 if (p->state == TASK_WAKING) {
7148 task_rq_unlock(rq, &flags);
7149 goto again;
7150 }
7151
6ad4c188 7152 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
7153 ret = -EINVAL;
7154 goto out;
7155 }
7156
9985b0ba 7157 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7158 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7159 ret = -EINVAL;
7160 goto out;
7161 }
7162
73fe6aae 7163 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7164 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7165 else {
96f874e2
RR
7166 cpumask_copy(&p->cpus_allowed, new_mask);
7167 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7168 }
7169
1da177e4 7170 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7172 goto out;
7173
6ad4c188 7174 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 7175 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7176 struct task_struct *mt = rq->migration_thread;
7177
7178 get_task_struct(mt);
1da177e4
LT
7179 task_rq_unlock(rq, &flags);
7180 wake_up_process(rq->migration_thread);
693525e3 7181 put_task_struct(mt);
1da177e4
LT
7182 wait_for_completion(&req.done);
7183 tlb_migrate_finish(p->mm);
7184 return 0;
7185 }
7186out:
7187 task_rq_unlock(rq, &flags);
48f24c4d 7188
1da177e4
LT
7189 return ret;
7190}
cd8ba7cd 7191EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7192
7193/*
41a2d6cf 7194 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7195 * this because either it can't run here any more (set_cpus_allowed()
7196 * away from this CPU, or CPU going down), or because we're
7197 * attempting to rebalance this task on exec (sched_exec).
7198 *
7199 * So we race with normal scheduler movements, but that's OK, as long
7200 * as the task is no longer on this CPU.
efc30814
KK
7201 *
7202 * Returns non-zero if task was successfully migrated.
1da177e4 7203 */
efc30814 7204static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7205{
70b97a7f 7206 struct rq *rq_dest, *rq_src;
e2912009 7207 int ret = 0;
1da177e4 7208
e761b772 7209 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7210 return ret;
1da177e4
LT
7211
7212 rq_src = cpu_rq(src_cpu);
7213 rq_dest = cpu_rq(dest_cpu);
7214
7215 double_rq_lock(rq_src, rq_dest);
7216 /* Already moved. */
7217 if (task_cpu(p) != src_cpu)
b1e38734 7218 goto done;
1da177e4 7219 /* Affinity changed (again). */
96f874e2 7220 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7221 goto fail;
1da177e4 7222
e2912009
PZ
7223 /*
7224 * If we're not on a rq, the next wake-up will ensure we're
7225 * placed properly.
7226 */
7227 if (p->se.on_rq) {
2e1cb74a 7228 deactivate_task(rq_src, p, 0);
e2912009 7229 set_task_cpu(p, dest_cpu);
dd41f596 7230 activate_task(rq_dest, p, 0);
15afe09b 7231 check_preempt_curr(rq_dest, p, 0);
1da177e4 7232 }
b1e38734 7233done:
efc30814 7234 ret = 1;
b1e38734 7235fail:
1da177e4 7236 double_rq_unlock(rq_src, rq_dest);
efc30814 7237 return ret;
1da177e4
LT
7238}
7239
03b042bf
PM
7240#define RCU_MIGRATION_IDLE 0
7241#define RCU_MIGRATION_NEED_QS 1
7242#define RCU_MIGRATION_GOT_QS 2
7243#define RCU_MIGRATION_MUST_SYNC 3
7244
1da177e4
LT
7245/*
7246 * migration_thread - this is a highprio system thread that performs
7247 * thread migration by bumping thread off CPU then 'pushing' onto
7248 * another runqueue.
7249 */
95cdf3b7 7250static int migration_thread(void *data)
1da177e4 7251{
03b042bf 7252 int badcpu;
1da177e4 7253 int cpu = (long)data;
70b97a7f 7254 struct rq *rq;
1da177e4
LT
7255
7256 rq = cpu_rq(cpu);
7257 BUG_ON(rq->migration_thread != current);
7258
7259 set_current_state(TASK_INTERRUPTIBLE);
7260 while (!kthread_should_stop()) {
70b97a7f 7261 struct migration_req *req;
1da177e4 7262 struct list_head *head;
1da177e4 7263
05fa785c 7264 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
7265
7266 if (cpu_is_offline(cpu)) {
05fa785c 7267 raw_spin_unlock_irq(&rq->lock);
371cbb38 7268 break;
1da177e4
LT
7269 }
7270
7271 if (rq->active_balance) {
7272 active_load_balance(rq, cpu);
7273 rq->active_balance = 0;
7274 }
7275
7276 head = &rq->migration_queue;
7277
7278 if (list_empty(head)) {
05fa785c 7279 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
7280 schedule();
7281 set_current_state(TASK_INTERRUPTIBLE);
7282 continue;
7283 }
70b97a7f 7284 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7285 list_del_init(head->next);
7286
03b042bf 7287 if (req->task != NULL) {
05fa785c 7288 raw_spin_unlock(&rq->lock);
03b042bf
PM
7289 __migrate_task(req->task, cpu, req->dest_cpu);
7290 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7291 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 7292 raw_spin_unlock(&rq->lock);
03b042bf
PM
7293 } else {
7294 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 7295 raw_spin_unlock(&rq->lock);
03b042bf
PM
7296 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7297 }
674311d5 7298 local_irq_enable();
1da177e4
LT
7299
7300 complete(&req->done);
7301 }
7302 __set_current_state(TASK_RUNNING);
1da177e4 7303
1da177e4
LT
7304 return 0;
7305}
7306
7307#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7308
7309static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7310{
7311 int ret;
7312
7313 local_irq_disable();
7314 ret = __migrate_task(p, src_cpu, dest_cpu);
7315 local_irq_enable();
7316 return ret;
7317}
7318
054b9108 7319/*
3a4fa0a2 7320 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7321 */
48f24c4d 7322static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7323{
70b97a7f 7324 int dest_cpu;
e76bd8d9
RR
7325
7326again:
5da9a0fb 7327 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 7328
e76bd8d9
RR
7329 /* It can have affinity changed while we were choosing. */
7330 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7331 goto again;
1da177e4
LT
7332}
7333
7334/*
7335 * While a dead CPU has no uninterruptible tasks queued at this point,
7336 * it might still have a nonzero ->nr_uninterruptible counter, because
7337 * for performance reasons the counter is not stricly tracking tasks to
7338 * their home CPUs. So we just add the counter to another CPU's counter,
7339 * to keep the global sum constant after CPU-down:
7340 */
70b97a7f 7341static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7342{
6ad4c188 7343 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
7344 unsigned long flags;
7345
7346 local_irq_save(flags);
7347 double_rq_lock(rq_src, rq_dest);
7348 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7349 rq_src->nr_uninterruptible = 0;
7350 double_rq_unlock(rq_src, rq_dest);
7351 local_irq_restore(flags);
7352}
7353
7354/* Run through task list and migrate tasks from the dead cpu. */
7355static void migrate_live_tasks(int src_cpu)
7356{
48f24c4d 7357 struct task_struct *p, *t;
1da177e4 7358
f7b4cddc 7359 read_lock(&tasklist_lock);
1da177e4 7360
48f24c4d
IM
7361 do_each_thread(t, p) {
7362 if (p == current)
1da177e4
LT
7363 continue;
7364
48f24c4d
IM
7365 if (task_cpu(p) == src_cpu)
7366 move_task_off_dead_cpu(src_cpu, p);
7367 } while_each_thread(t, p);
1da177e4 7368
f7b4cddc 7369 read_unlock(&tasklist_lock);
1da177e4
LT
7370}
7371
dd41f596
IM
7372/*
7373 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7374 * It does so by boosting its priority to highest possible.
7375 * Used by CPU offline code.
1da177e4
LT
7376 */
7377void sched_idle_next(void)
7378{
48f24c4d 7379 int this_cpu = smp_processor_id();
70b97a7f 7380 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7381 struct task_struct *p = rq->idle;
7382 unsigned long flags;
7383
7384 /* cpu has to be offline */
48f24c4d 7385 BUG_ON(cpu_online(this_cpu));
1da177e4 7386
48f24c4d
IM
7387 /*
7388 * Strictly not necessary since rest of the CPUs are stopped by now
7389 * and interrupts disabled on the current cpu.
1da177e4 7390 */
05fa785c 7391 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 7392
dd41f596 7393 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7394
94bc9a7b
DA
7395 update_rq_clock(rq);
7396 activate_task(rq, p, 0);
1da177e4 7397
05fa785c 7398 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
7399}
7400
48f24c4d
IM
7401/*
7402 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7403 * offline.
7404 */
7405void idle_task_exit(void)
7406{
7407 struct mm_struct *mm = current->active_mm;
7408
7409 BUG_ON(cpu_online(smp_processor_id()));
7410
7411 if (mm != &init_mm)
7412 switch_mm(mm, &init_mm, current);
7413 mmdrop(mm);
7414}
7415
054b9108 7416/* called under rq->lock with disabled interrupts */
36c8b586 7417static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7418{
70b97a7f 7419 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7420
7421 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7422 BUG_ON(!p->exit_state);
1da177e4
LT
7423
7424 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7425 BUG_ON(p->state == TASK_DEAD);
1da177e4 7426
48f24c4d 7427 get_task_struct(p);
1da177e4
LT
7428
7429 /*
7430 * Drop lock around migration; if someone else moves it,
41a2d6cf 7431 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7432 * fine.
7433 */
05fa785c 7434 raw_spin_unlock_irq(&rq->lock);
48f24c4d 7435 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 7436 raw_spin_lock_irq(&rq->lock);
1da177e4 7437
48f24c4d 7438 put_task_struct(p);
1da177e4
LT
7439}
7440
7441/* release_task() removes task from tasklist, so we won't find dead tasks. */
7442static void migrate_dead_tasks(unsigned int dead_cpu)
7443{
70b97a7f 7444 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7445 struct task_struct *next;
48f24c4d 7446
dd41f596
IM
7447 for ( ; ; ) {
7448 if (!rq->nr_running)
7449 break;
a8e504d2 7450 update_rq_clock(rq);
b67802ea 7451 next = pick_next_task(rq);
dd41f596
IM
7452 if (!next)
7453 break;
79c53799 7454 next->sched_class->put_prev_task(rq, next);
dd41f596 7455 migrate_dead(dead_cpu, next);
e692ab53 7456
1da177e4
LT
7457 }
7458}
dce48a84
TG
7459
7460/*
7461 * remove the tasks which were accounted by rq from calc_load_tasks.
7462 */
7463static void calc_global_load_remove(struct rq *rq)
7464{
7465 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7466 rq->calc_load_active = 0;
dce48a84 7467}
1da177e4
LT
7468#endif /* CONFIG_HOTPLUG_CPU */
7469
e692ab53
NP
7470#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7471
7472static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7473 {
7474 .procname = "sched_domain",
c57baf1e 7475 .mode = 0555,
e0361851 7476 },
56992309 7477 {}
e692ab53
NP
7478};
7479
7480static struct ctl_table sd_ctl_root[] = {
e0361851
AD
7481 {
7482 .procname = "kernel",
c57baf1e 7483 .mode = 0555,
e0361851
AD
7484 .child = sd_ctl_dir,
7485 },
56992309 7486 {}
e692ab53
NP
7487};
7488
7489static struct ctl_table *sd_alloc_ctl_entry(int n)
7490{
7491 struct ctl_table *entry =
5cf9f062 7492 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7493
e692ab53
NP
7494 return entry;
7495}
7496
6382bc90
MM
7497static void sd_free_ctl_entry(struct ctl_table **tablep)
7498{
cd790076 7499 struct ctl_table *entry;
6382bc90 7500
cd790076
MM
7501 /*
7502 * In the intermediate directories, both the child directory and
7503 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7504 * will always be set. In the lowest directory the names are
cd790076
MM
7505 * static strings and all have proc handlers.
7506 */
7507 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7508 if (entry->child)
7509 sd_free_ctl_entry(&entry->child);
cd790076
MM
7510 if (entry->proc_handler == NULL)
7511 kfree(entry->procname);
7512 }
6382bc90
MM
7513
7514 kfree(*tablep);
7515 *tablep = NULL;
7516}
7517
e692ab53 7518static void
e0361851 7519set_table_entry(struct ctl_table *entry,
e692ab53
NP
7520 const char *procname, void *data, int maxlen,
7521 mode_t mode, proc_handler *proc_handler)
7522{
e692ab53
NP
7523 entry->procname = procname;
7524 entry->data = data;
7525 entry->maxlen = maxlen;
7526 entry->mode = mode;
7527 entry->proc_handler = proc_handler;
7528}
7529
7530static struct ctl_table *
7531sd_alloc_ctl_domain_table(struct sched_domain *sd)
7532{
a5d8c348 7533 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7534
ad1cdc1d
MM
7535 if (table == NULL)
7536 return NULL;
7537
e0361851 7538 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7539 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7540 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7541 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7542 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7543 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7544 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7545 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7546 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7547 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7548 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7549 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7550 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7551 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7552 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7553 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7554 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7555 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7556 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7557 &sd->cache_nice_tries,
7558 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7559 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7560 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7561 set_table_entry(&table[11], "name", sd->name,
7562 CORENAME_MAX_SIZE, 0444, proc_dostring);
7563 /* &table[12] is terminator */
e692ab53
NP
7564
7565 return table;
7566}
7567
9a4e7159 7568static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7569{
7570 struct ctl_table *entry, *table;
7571 struct sched_domain *sd;
7572 int domain_num = 0, i;
7573 char buf[32];
7574
7575 for_each_domain(cpu, sd)
7576 domain_num++;
7577 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7578 if (table == NULL)
7579 return NULL;
e692ab53
NP
7580
7581 i = 0;
7582 for_each_domain(cpu, sd) {
7583 snprintf(buf, 32, "domain%d", i);
e692ab53 7584 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7585 entry->mode = 0555;
e692ab53
NP
7586 entry->child = sd_alloc_ctl_domain_table(sd);
7587 entry++;
7588 i++;
7589 }
7590 return table;
7591}
7592
7593static struct ctl_table_header *sd_sysctl_header;
6382bc90 7594static void register_sched_domain_sysctl(void)
e692ab53 7595{
6ad4c188 7596 int i, cpu_num = num_possible_cpus();
e692ab53
NP
7597 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7598 char buf[32];
7599
7378547f
MM
7600 WARN_ON(sd_ctl_dir[0].child);
7601 sd_ctl_dir[0].child = entry;
7602
ad1cdc1d
MM
7603 if (entry == NULL)
7604 return;
7605
6ad4c188 7606 for_each_possible_cpu(i) {
e692ab53 7607 snprintf(buf, 32, "cpu%d", i);
e692ab53 7608 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7609 entry->mode = 0555;
e692ab53 7610 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7611 entry++;
e692ab53 7612 }
7378547f
MM
7613
7614 WARN_ON(sd_sysctl_header);
e692ab53
NP
7615 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7616}
6382bc90 7617
7378547f 7618/* may be called multiple times per register */
6382bc90
MM
7619static void unregister_sched_domain_sysctl(void)
7620{
7378547f
MM
7621 if (sd_sysctl_header)
7622 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7623 sd_sysctl_header = NULL;
7378547f
MM
7624 if (sd_ctl_dir[0].child)
7625 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7626}
e692ab53 7627#else
6382bc90
MM
7628static void register_sched_domain_sysctl(void)
7629{
7630}
7631static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7632{
7633}
7634#endif
7635
1f11eb6a
GH
7636static void set_rq_online(struct rq *rq)
7637{
7638 if (!rq->online) {
7639 const struct sched_class *class;
7640
c6c4927b 7641 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7642 rq->online = 1;
7643
7644 for_each_class(class) {
7645 if (class->rq_online)
7646 class->rq_online(rq);
7647 }
7648 }
7649}
7650
7651static void set_rq_offline(struct rq *rq)
7652{
7653 if (rq->online) {
7654 const struct sched_class *class;
7655
7656 for_each_class(class) {
7657 if (class->rq_offline)
7658 class->rq_offline(rq);
7659 }
7660
c6c4927b 7661 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7662 rq->online = 0;
7663 }
7664}
7665
1da177e4
LT
7666/*
7667 * migration_call - callback that gets triggered when a CPU is added.
7668 * Here we can start up the necessary migration thread for the new CPU.
7669 */
48f24c4d
IM
7670static int __cpuinit
7671migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7672{
1da177e4 7673 struct task_struct *p;
48f24c4d 7674 int cpu = (long)hcpu;
1da177e4 7675 unsigned long flags;
70b97a7f 7676 struct rq *rq;
1da177e4
LT
7677
7678 switch (action) {
5be9361c 7679
1da177e4 7680 case CPU_UP_PREPARE:
8bb78442 7681 case CPU_UP_PREPARE_FROZEN:
dd41f596 7682 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7683 if (IS_ERR(p))
7684 return NOTIFY_BAD;
1da177e4
LT
7685 kthread_bind(p, cpu);
7686 /* Must be high prio: stop_machine expects to yield to it. */
7687 rq = task_rq_lock(p, &flags);
dd41f596 7688 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7689 task_rq_unlock(rq, &flags);
371cbb38 7690 get_task_struct(p);
1da177e4 7691 cpu_rq(cpu)->migration_thread = p;
a468d389 7692 rq->calc_load_update = calc_load_update;
1da177e4 7693 break;
48f24c4d 7694
1da177e4 7695 case CPU_ONLINE:
8bb78442 7696 case CPU_ONLINE_FROZEN:
3a4fa0a2 7697 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7698 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7699
7700 /* Update our root-domain */
7701 rq = cpu_rq(cpu);
05fa785c 7702 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 7703 if (rq->rd) {
c6c4927b 7704 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7705
7706 set_rq_online(rq);
1f94ef59 7707 }
05fa785c 7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7709 break;
48f24c4d 7710
1da177e4
LT
7711#ifdef CONFIG_HOTPLUG_CPU
7712 case CPU_UP_CANCELED:
8bb78442 7713 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7714 if (!cpu_rq(cpu)->migration_thread)
7715 break;
41a2d6cf 7716 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7717 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7718 cpumask_any(cpu_online_mask));
1da177e4 7719 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7720 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7721 cpu_rq(cpu)->migration_thread = NULL;
7722 break;
48f24c4d 7723
1da177e4 7724 case CPU_DEAD:
8bb78442 7725 case CPU_DEAD_FROZEN:
470fd646 7726 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7727 migrate_live_tasks(cpu);
7728 rq = cpu_rq(cpu);
7729 kthread_stop(rq->migration_thread);
371cbb38 7730 put_task_struct(rq->migration_thread);
1da177e4
LT
7731 rq->migration_thread = NULL;
7732 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 7733 raw_spin_lock_irq(&rq->lock);
a8e504d2 7734 update_rq_clock(rq);
2e1cb74a 7735 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
7736 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7737 rq->idle->sched_class = &idle_sched_class;
1da177e4 7738 migrate_dead_tasks(cpu);
05fa785c 7739 raw_spin_unlock_irq(&rq->lock);
470fd646 7740 cpuset_unlock();
1da177e4
LT
7741 migrate_nr_uninterruptible(rq);
7742 BUG_ON(rq->nr_running != 0);
dce48a84 7743 calc_global_load_remove(rq);
41a2d6cf
IM
7744 /*
7745 * No need to migrate the tasks: it was best-effort if
7746 * they didn't take sched_hotcpu_mutex. Just wake up
7747 * the requestors.
7748 */
05fa785c 7749 raw_spin_lock_irq(&rq->lock);
1da177e4 7750 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7751 struct migration_req *req;
7752
1da177e4 7753 req = list_entry(rq->migration_queue.next,
70b97a7f 7754 struct migration_req, list);
1da177e4 7755 list_del_init(&req->list);
05fa785c 7756 raw_spin_unlock_irq(&rq->lock);
1da177e4 7757 complete(&req->done);
05fa785c 7758 raw_spin_lock_irq(&rq->lock);
1da177e4 7759 }
05fa785c 7760 raw_spin_unlock_irq(&rq->lock);
1da177e4 7761 break;
57d885fe 7762
08f503b0
GH
7763 case CPU_DYING:
7764 case CPU_DYING_FROZEN:
57d885fe
GH
7765 /* Update our root-domain */
7766 rq = cpu_rq(cpu);
05fa785c 7767 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 7768 if (rq->rd) {
c6c4927b 7769 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7770 set_rq_offline(rq);
57d885fe 7771 }
05fa785c 7772 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 7773 break;
1da177e4
LT
7774#endif
7775 }
7776 return NOTIFY_OK;
7777}
7778
f38b0820
PM
7779/*
7780 * Register at high priority so that task migration (migrate_all_tasks)
7781 * happens before everything else. This has to be lower priority than
cdd6c482 7782 * the notifier in the perf_event subsystem, though.
1da177e4 7783 */
26c2143b 7784static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7785 .notifier_call = migration_call,
7786 .priority = 10
7787};
7788
7babe8db 7789static int __init migration_init(void)
1da177e4
LT
7790{
7791 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7792 int err;
48f24c4d
IM
7793
7794 /* Start one for the boot CPU: */
07dccf33
AM
7795 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7796 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7797 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7798 register_cpu_notifier(&migration_notifier);
7babe8db 7799
a004cd42 7800 return 0;
1da177e4 7801}
7babe8db 7802early_initcall(migration_init);
1da177e4
LT
7803#endif
7804
7805#ifdef CONFIG_SMP
476f3534 7806
3e9830dc 7807#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7808
f6630114
MT
7809static __read_mostly int sched_domain_debug_enabled;
7810
7811static int __init sched_domain_debug_setup(char *str)
7812{
7813 sched_domain_debug_enabled = 1;
7814
7815 return 0;
7816}
7817early_param("sched_debug", sched_domain_debug_setup);
7818
7c16ec58 7819static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7820 struct cpumask *groupmask)
1da177e4 7821{
4dcf6aff 7822 struct sched_group *group = sd->groups;
434d53b0 7823 char str[256];
1da177e4 7824
968ea6d8 7825 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7826 cpumask_clear(groupmask);
4dcf6aff
IM
7827
7828 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7829
7830 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 7831 printk("does not load-balance\n");
4dcf6aff 7832 if (sd->parent)
3df0fc5b
PZ
7833 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7834 " has parent");
4dcf6aff 7835 return -1;
41c7ce9a
NP
7836 }
7837
3df0fc5b 7838 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7839
758b2cdc 7840 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
7841 printk(KERN_ERR "ERROR: domain->span does not contain "
7842 "CPU%d\n", cpu);
4dcf6aff 7843 }
758b2cdc 7844 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
7845 printk(KERN_ERR "ERROR: domain->groups does not contain"
7846 " CPU%d\n", cpu);
4dcf6aff 7847 }
1da177e4 7848
4dcf6aff 7849 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7850 do {
4dcf6aff 7851 if (!group) {
3df0fc5b
PZ
7852 printk("\n");
7853 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7854 break;
7855 }
7856
18a3885f 7857 if (!group->cpu_power) {
3df0fc5b
PZ
7858 printk(KERN_CONT "\n");
7859 printk(KERN_ERR "ERROR: domain->cpu_power not "
7860 "set\n");
4dcf6aff
IM
7861 break;
7862 }
1da177e4 7863
758b2cdc 7864 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
7865 printk(KERN_CONT "\n");
7866 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
7867 break;
7868 }
1da177e4 7869
758b2cdc 7870 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
7871 printk(KERN_CONT "\n");
7872 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
7873 break;
7874 }
1da177e4 7875
758b2cdc 7876 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7877
968ea6d8 7878 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7879
3df0fc5b 7880 printk(KERN_CONT " %s", str);
18a3885f 7881 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
7882 printk(KERN_CONT " (cpu_power = %d)",
7883 group->cpu_power);
381512cf 7884 }
1da177e4 7885
4dcf6aff
IM
7886 group = group->next;
7887 } while (group != sd->groups);
3df0fc5b 7888 printk(KERN_CONT "\n");
1da177e4 7889
758b2cdc 7890 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 7891 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7892
758b2cdc
RR
7893 if (sd->parent &&
7894 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
7895 printk(KERN_ERR "ERROR: parent span is not a superset "
7896 "of domain->span\n");
4dcf6aff
IM
7897 return 0;
7898}
1da177e4 7899
4dcf6aff
IM
7900static void sched_domain_debug(struct sched_domain *sd, int cpu)
7901{
d5dd3db1 7902 cpumask_var_t groupmask;
4dcf6aff 7903 int level = 0;
1da177e4 7904
f6630114
MT
7905 if (!sched_domain_debug_enabled)
7906 return;
7907
4dcf6aff
IM
7908 if (!sd) {
7909 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7910 return;
7911 }
1da177e4 7912
4dcf6aff
IM
7913 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7914
d5dd3db1 7915 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7916 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7917 return;
7918 }
7919
4dcf6aff 7920 for (;;) {
7c16ec58 7921 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7922 break;
1da177e4
LT
7923 level++;
7924 sd = sd->parent;
33859f7f 7925 if (!sd)
4dcf6aff
IM
7926 break;
7927 }
d5dd3db1 7928 free_cpumask_var(groupmask);
1da177e4 7929}
6d6bc0ad 7930#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7931# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7932#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7933
1a20ff27 7934static int sd_degenerate(struct sched_domain *sd)
245af2c7 7935{
758b2cdc 7936 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7937 return 1;
7938
7939 /* Following flags need at least 2 groups */
7940 if (sd->flags & (SD_LOAD_BALANCE |
7941 SD_BALANCE_NEWIDLE |
7942 SD_BALANCE_FORK |
89c4710e
SS
7943 SD_BALANCE_EXEC |
7944 SD_SHARE_CPUPOWER |
7945 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7946 if (sd->groups != sd->groups->next)
7947 return 0;
7948 }
7949
7950 /* Following flags don't use groups */
c88d5910 7951 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
7952 return 0;
7953
7954 return 1;
7955}
7956
48f24c4d
IM
7957static int
7958sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7959{
7960 unsigned long cflags = sd->flags, pflags = parent->flags;
7961
7962 if (sd_degenerate(parent))
7963 return 1;
7964
758b2cdc 7965 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7966 return 0;
7967
245af2c7
SS
7968 /* Flags needing groups don't count if only 1 group in parent */
7969 if (parent->groups == parent->groups->next) {
7970 pflags &= ~(SD_LOAD_BALANCE |
7971 SD_BALANCE_NEWIDLE |
7972 SD_BALANCE_FORK |
89c4710e
SS
7973 SD_BALANCE_EXEC |
7974 SD_SHARE_CPUPOWER |
7975 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7976 if (nr_node_ids == 1)
7977 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7978 }
7979 if (~cflags & pflags)
7980 return 0;
7981
7982 return 1;
7983}
7984
c6c4927b
RR
7985static void free_rootdomain(struct root_domain *rd)
7986{
047106ad
PZ
7987 synchronize_sched();
7988
68e74568
RR
7989 cpupri_cleanup(&rd->cpupri);
7990
c6c4927b
RR
7991 free_cpumask_var(rd->rto_mask);
7992 free_cpumask_var(rd->online);
7993 free_cpumask_var(rd->span);
7994 kfree(rd);
7995}
7996
57d885fe
GH
7997static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7998{
a0490fa3 7999 struct root_domain *old_rd = NULL;
57d885fe 8000 unsigned long flags;
57d885fe 8001
05fa785c 8002 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
8003
8004 if (rq->rd) {
a0490fa3 8005 old_rd = rq->rd;
57d885fe 8006
c6c4927b 8007 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 8008 set_rq_offline(rq);
57d885fe 8009
c6c4927b 8010 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 8011
a0490fa3
IM
8012 /*
8013 * If we dont want to free the old_rt yet then
8014 * set old_rd to NULL to skip the freeing later
8015 * in this function:
8016 */
8017 if (!atomic_dec_and_test(&old_rd->refcount))
8018 old_rd = NULL;
57d885fe
GH
8019 }
8020
8021 atomic_inc(&rd->refcount);
8022 rq->rd = rd;
8023
c6c4927b 8024 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 8025 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 8026 set_rq_online(rq);
57d885fe 8027
05fa785c 8028 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
8029
8030 if (old_rd)
8031 free_rootdomain(old_rd);
57d885fe
GH
8032}
8033
fd5e1b5d 8034static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 8035{
36b7b6d4
PE
8036 gfp_t gfp = GFP_KERNEL;
8037
57d885fe
GH
8038 memset(rd, 0, sizeof(*rd));
8039
36b7b6d4
PE
8040 if (bootmem)
8041 gfp = GFP_NOWAIT;
c6c4927b 8042
36b7b6d4 8043 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8044 goto out;
36b7b6d4 8045 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8046 goto free_span;
36b7b6d4 8047 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8048 goto free_online;
6e0534f2 8049
0fb53029 8050 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8051 goto free_rto_mask;
c6c4927b 8052 return 0;
6e0534f2 8053
68e74568
RR
8054free_rto_mask:
8055 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8056free_online:
8057 free_cpumask_var(rd->online);
8058free_span:
8059 free_cpumask_var(rd->span);
0c910d28 8060out:
c6c4927b 8061 return -ENOMEM;
57d885fe
GH
8062}
8063
8064static void init_defrootdomain(void)
8065{
c6c4927b
RR
8066 init_rootdomain(&def_root_domain, true);
8067
57d885fe
GH
8068 atomic_set(&def_root_domain.refcount, 1);
8069}
8070
dc938520 8071static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8072{
8073 struct root_domain *rd;
8074
8075 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8076 if (!rd)
8077 return NULL;
8078
c6c4927b
RR
8079 if (init_rootdomain(rd, false) != 0) {
8080 kfree(rd);
8081 return NULL;
8082 }
57d885fe
GH
8083
8084 return rd;
8085}
8086
1da177e4 8087/*
0eab9146 8088 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8089 * hold the hotplug lock.
8090 */
0eab9146
IM
8091static void
8092cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8093{
70b97a7f 8094 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8095 struct sched_domain *tmp;
8096
8097 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8098 for (tmp = sd; tmp; ) {
245af2c7
SS
8099 struct sched_domain *parent = tmp->parent;
8100 if (!parent)
8101 break;
f29c9b1c 8102
1a848870 8103 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8104 tmp->parent = parent->parent;
1a848870
SS
8105 if (parent->parent)
8106 parent->parent->child = tmp;
f29c9b1c
LZ
8107 } else
8108 tmp = tmp->parent;
245af2c7
SS
8109 }
8110
1a848870 8111 if (sd && sd_degenerate(sd)) {
245af2c7 8112 sd = sd->parent;
1a848870
SS
8113 if (sd)
8114 sd->child = NULL;
8115 }
1da177e4
LT
8116
8117 sched_domain_debug(sd, cpu);
8118
57d885fe 8119 rq_attach_root(rq, rd);
674311d5 8120 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8121}
8122
8123/* cpus with isolated domains */
dcc30a35 8124static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8125
8126/* Setup the mask of cpus configured for isolated domains */
8127static int __init isolated_cpu_setup(char *str)
8128{
bdddd296 8129 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 8130 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8131 return 1;
8132}
8133
8927f494 8134__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8135
8136/*
6711cab4
SS
8137 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8138 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8139 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8140 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8141 *
8142 * init_sched_build_groups will build a circular linked list of the groups
8143 * covered by the given span, and will set each group's ->cpumask correctly,
8144 * and ->cpu_power to 0.
8145 */
a616058b 8146static void
96f874e2
RR
8147init_sched_build_groups(const struct cpumask *span,
8148 const struct cpumask *cpu_map,
8149 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8150 struct sched_group **sg,
96f874e2
RR
8151 struct cpumask *tmpmask),
8152 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8153{
8154 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8155 int i;
8156
96f874e2 8157 cpumask_clear(covered);
7c16ec58 8158
abcd083a 8159 for_each_cpu(i, span) {
6711cab4 8160 struct sched_group *sg;
7c16ec58 8161 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8162 int j;
8163
758b2cdc 8164 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8165 continue;
8166
758b2cdc 8167 cpumask_clear(sched_group_cpus(sg));
18a3885f 8168 sg->cpu_power = 0;
1da177e4 8169
abcd083a 8170 for_each_cpu(j, span) {
7c16ec58 8171 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8172 continue;
8173
96f874e2 8174 cpumask_set_cpu(j, covered);
758b2cdc 8175 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8176 }
8177 if (!first)
8178 first = sg;
8179 if (last)
8180 last->next = sg;
8181 last = sg;
8182 }
8183 last->next = first;
8184}
8185
9c1cfda2 8186#define SD_NODES_PER_DOMAIN 16
1da177e4 8187
9c1cfda2 8188#ifdef CONFIG_NUMA
198e2f18 8189
9c1cfda2
JH
8190/**
8191 * find_next_best_node - find the next node to include in a sched_domain
8192 * @node: node whose sched_domain we're building
8193 * @used_nodes: nodes already in the sched_domain
8194 *
41a2d6cf 8195 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8196 * finds the closest node not already in the @used_nodes map.
8197 *
8198 * Should use nodemask_t.
8199 */
c5f59f08 8200static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8201{
8202 int i, n, val, min_val, best_node = 0;
8203
8204 min_val = INT_MAX;
8205
076ac2af 8206 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8207 /* Start at @node */
076ac2af 8208 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8209
8210 if (!nr_cpus_node(n))
8211 continue;
8212
8213 /* Skip already used nodes */
c5f59f08 8214 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8215 continue;
8216
8217 /* Simple min distance search */
8218 val = node_distance(node, n);
8219
8220 if (val < min_val) {
8221 min_val = val;
8222 best_node = n;
8223 }
8224 }
8225
c5f59f08 8226 node_set(best_node, *used_nodes);
9c1cfda2
JH
8227 return best_node;
8228}
8229
8230/**
8231 * sched_domain_node_span - get a cpumask for a node's sched_domain
8232 * @node: node whose cpumask we're constructing
73486722 8233 * @span: resulting cpumask
9c1cfda2 8234 *
41a2d6cf 8235 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8236 * should be one that prevents unnecessary balancing, but also spreads tasks
8237 * out optimally.
8238 */
96f874e2 8239static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8240{
c5f59f08 8241 nodemask_t used_nodes;
48f24c4d 8242 int i;
9c1cfda2 8243
6ca09dfc 8244 cpumask_clear(span);
c5f59f08 8245 nodes_clear(used_nodes);
9c1cfda2 8246
6ca09dfc 8247 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8248 node_set(node, used_nodes);
9c1cfda2
JH
8249
8250 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8251 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8252
6ca09dfc 8253 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8254 }
9c1cfda2 8255}
6d6bc0ad 8256#endif /* CONFIG_NUMA */
9c1cfda2 8257
5c45bf27 8258int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8259
6c99e9ad
RR
8260/*
8261 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8262 *
8263 * ( See the the comments in include/linux/sched.h:struct sched_group
8264 * and struct sched_domain. )
6c99e9ad
RR
8265 */
8266struct static_sched_group {
8267 struct sched_group sg;
8268 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8269};
8270
8271struct static_sched_domain {
8272 struct sched_domain sd;
8273 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8274};
8275
49a02c51
AH
8276struct s_data {
8277#ifdef CONFIG_NUMA
8278 int sd_allnodes;
8279 cpumask_var_t domainspan;
8280 cpumask_var_t covered;
8281 cpumask_var_t notcovered;
8282#endif
8283 cpumask_var_t nodemask;
8284 cpumask_var_t this_sibling_map;
8285 cpumask_var_t this_core_map;
8286 cpumask_var_t send_covered;
8287 cpumask_var_t tmpmask;
8288 struct sched_group **sched_group_nodes;
8289 struct root_domain *rd;
8290};
8291
2109b99e
AH
8292enum s_alloc {
8293 sa_sched_groups = 0,
8294 sa_rootdomain,
8295 sa_tmpmask,
8296 sa_send_covered,
8297 sa_this_core_map,
8298 sa_this_sibling_map,
8299 sa_nodemask,
8300 sa_sched_group_nodes,
8301#ifdef CONFIG_NUMA
8302 sa_notcovered,
8303 sa_covered,
8304 sa_domainspan,
8305#endif
8306 sa_none,
8307};
8308
9c1cfda2 8309/*
48f24c4d 8310 * SMT sched-domains:
9c1cfda2 8311 */
1da177e4 8312#ifdef CONFIG_SCHED_SMT
6c99e9ad 8313static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 8314static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 8315
41a2d6cf 8316static int
96f874e2
RR
8317cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8318 struct sched_group **sg, struct cpumask *unused)
1da177e4 8319{
6711cab4 8320 if (sg)
1871e52c 8321 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
8322 return cpu;
8323}
6d6bc0ad 8324#endif /* CONFIG_SCHED_SMT */
1da177e4 8325
48f24c4d
IM
8326/*
8327 * multi-core sched-domains:
8328 */
1e9f28fa 8329#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8330static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8331static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8332#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8333
8334#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8335static int
96f874e2
RR
8336cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8337 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8338{
6711cab4 8339 int group;
7c16ec58 8340
c69fc56d 8341 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8342 group = cpumask_first(mask);
6711cab4 8343 if (sg)
6c99e9ad 8344 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8345 return group;
1e9f28fa
SS
8346}
8347#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8348static int
96f874e2
RR
8349cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8350 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8351{
6711cab4 8352 if (sg)
6c99e9ad 8353 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8354 return cpu;
8355}
8356#endif
8357
6c99e9ad
RR
8358static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8359static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8360
41a2d6cf 8361static int
96f874e2
RR
8362cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8363 struct sched_group **sg, struct cpumask *mask)
1da177e4 8364{
6711cab4 8365 int group;
48f24c4d 8366#ifdef CONFIG_SCHED_MC
6ca09dfc 8367 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8368 group = cpumask_first(mask);
1e9f28fa 8369#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8370 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8371 group = cpumask_first(mask);
1da177e4 8372#else
6711cab4 8373 group = cpu;
1da177e4 8374#endif
6711cab4 8375 if (sg)
6c99e9ad 8376 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8377 return group;
1da177e4
LT
8378}
8379
8380#ifdef CONFIG_NUMA
1da177e4 8381/*
9c1cfda2
JH
8382 * The init_sched_build_groups can't handle what we want to do with node
8383 * groups, so roll our own. Now each node has its own list of groups which
8384 * gets dynamically allocated.
1da177e4 8385 */
62ea9ceb 8386static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8387static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8388
62ea9ceb 8389static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8390static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8391
96f874e2
RR
8392static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8393 struct sched_group **sg,
8394 struct cpumask *nodemask)
9c1cfda2 8395{
6711cab4
SS
8396 int group;
8397
6ca09dfc 8398 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8399 group = cpumask_first(nodemask);
6711cab4
SS
8400
8401 if (sg)
6c99e9ad 8402 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8403 return group;
1da177e4 8404}
6711cab4 8405
08069033
SS
8406static void init_numa_sched_groups_power(struct sched_group *group_head)
8407{
8408 struct sched_group *sg = group_head;
8409 int j;
8410
8411 if (!sg)
8412 return;
3a5c359a 8413 do {
758b2cdc 8414 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8415 struct sched_domain *sd;
08069033 8416
6c99e9ad 8417 sd = &per_cpu(phys_domains, j).sd;
13318a71 8418 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8419 /*
8420 * Only add "power" once for each
8421 * physical package.
8422 */
8423 continue;
8424 }
08069033 8425
18a3885f 8426 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
8427 }
8428 sg = sg->next;
8429 } while (sg != group_head);
08069033 8430}
0601a88d
AH
8431
8432static int build_numa_sched_groups(struct s_data *d,
8433 const struct cpumask *cpu_map, int num)
8434{
8435 struct sched_domain *sd;
8436 struct sched_group *sg, *prev;
8437 int n, j;
8438
8439 cpumask_clear(d->covered);
8440 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8441 if (cpumask_empty(d->nodemask)) {
8442 d->sched_group_nodes[num] = NULL;
8443 goto out;
8444 }
8445
8446 sched_domain_node_span(num, d->domainspan);
8447 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8448
8449 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8450 GFP_KERNEL, num);
8451 if (!sg) {
3df0fc5b
PZ
8452 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8453 num);
0601a88d
AH
8454 return -ENOMEM;
8455 }
8456 d->sched_group_nodes[num] = sg;
8457
8458 for_each_cpu(j, d->nodemask) {
8459 sd = &per_cpu(node_domains, j).sd;
8460 sd->groups = sg;
8461 }
8462
18a3885f 8463 sg->cpu_power = 0;
0601a88d
AH
8464 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8465 sg->next = sg;
8466 cpumask_or(d->covered, d->covered, d->nodemask);
8467
8468 prev = sg;
8469 for (j = 0; j < nr_node_ids; j++) {
8470 n = (num + j) % nr_node_ids;
8471 cpumask_complement(d->notcovered, d->covered);
8472 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8473 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8474 if (cpumask_empty(d->tmpmask))
8475 break;
8476 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8477 if (cpumask_empty(d->tmpmask))
8478 continue;
8479 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8480 GFP_KERNEL, num);
8481 if (!sg) {
3df0fc5b
PZ
8482 printk(KERN_WARNING
8483 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
8484 return -ENOMEM;
8485 }
18a3885f 8486 sg->cpu_power = 0;
0601a88d
AH
8487 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8488 sg->next = prev->next;
8489 cpumask_or(d->covered, d->covered, d->tmpmask);
8490 prev->next = sg;
8491 prev = sg;
8492 }
8493out:
8494 return 0;
8495}
6d6bc0ad 8496#endif /* CONFIG_NUMA */
1da177e4 8497
a616058b 8498#ifdef CONFIG_NUMA
51888ca2 8499/* Free memory allocated for various sched_group structures */
96f874e2
RR
8500static void free_sched_groups(const struct cpumask *cpu_map,
8501 struct cpumask *nodemask)
51888ca2 8502{
a616058b 8503 int cpu, i;
51888ca2 8504
abcd083a 8505 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8506 struct sched_group **sched_group_nodes
8507 = sched_group_nodes_bycpu[cpu];
8508
51888ca2
SV
8509 if (!sched_group_nodes)
8510 continue;
8511
076ac2af 8512 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8513 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8514
6ca09dfc 8515 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8516 if (cpumask_empty(nodemask))
51888ca2
SV
8517 continue;
8518
8519 if (sg == NULL)
8520 continue;
8521 sg = sg->next;
8522next_sg:
8523 oldsg = sg;
8524 sg = sg->next;
8525 kfree(oldsg);
8526 if (oldsg != sched_group_nodes[i])
8527 goto next_sg;
8528 }
8529 kfree(sched_group_nodes);
8530 sched_group_nodes_bycpu[cpu] = NULL;
8531 }
51888ca2 8532}
6d6bc0ad 8533#else /* !CONFIG_NUMA */
96f874e2
RR
8534static void free_sched_groups(const struct cpumask *cpu_map,
8535 struct cpumask *nodemask)
a616058b
SS
8536{
8537}
6d6bc0ad 8538#endif /* CONFIG_NUMA */
51888ca2 8539
89c4710e
SS
8540/*
8541 * Initialize sched groups cpu_power.
8542 *
8543 * cpu_power indicates the capacity of sched group, which is used while
8544 * distributing the load between different sched groups in a sched domain.
8545 * Typically cpu_power for all the groups in a sched domain will be same unless
8546 * there are asymmetries in the topology. If there are asymmetries, group
8547 * having more cpu_power will pickup more load compared to the group having
8548 * less cpu_power.
89c4710e
SS
8549 */
8550static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8551{
8552 struct sched_domain *child;
8553 struct sched_group *group;
f93e65c1
PZ
8554 long power;
8555 int weight;
89c4710e
SS
8556
8557 WARN_ON(!sd || !sd->groups);
8558
13318a71 8559 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8560 return;
8561
8562 child = sd->child;
8563
18a3885f 8564 sd->groups->cpu_power = 0;
5517d86b 8565
f93e65c1
PZ
8566 if (!child) {
8567 power = SCHED_LOAD_SCALE;
8568 weight = cpumask_weight(sched_domain_span(sd));
8569 /*
8570 * SMT siblings share the power of a single core.
a52bfd73
PZ
8571 * Usually multiple threads get a better yield out of
8572 * that one core than a single thread would have,
8573 * reflect that in sd->smt_gain.
f93e65c1 8574 */
a52bfd73
PZ
8575 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8576 power *= sd->smt_gain;
f93e65c1 8577 power /= weight;
a52bfd73
PZ
8578 power >>= SCHED_LOAD_SHIFT;
8579 }
18a3885f 8580 sd->groups->cpu_power += power;
89c4710e
SS
8581 return;
8582 }
8583
89c4710e 8584 /*
f93e65c1 8585 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8586 */
8587 group = child->groups;
8588 do {
18a3885f 8589 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
8590 group = group->next;
8591 } while (group != child->groups);
8592}
8593
7c16ec58
MT
8594/*
8595 * Initializers for schedule domains
8596 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8597 */
8598
a5d8c348
IM
8599#ifdef CONFIG_SCHED_DEBUG
8600# define SD_INIT_NAME(sd, type) sd->name = #type
8601#else
8602# define SD_INIT_NAME(sd, type) do { } while (0)
8603#endif
8604
7c16ec58 8605#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8606
7c16ec58
MT
8607#define SD_INIT_FUNC(type) \
8608static noinline void sd_init_##type(struct sched_domain *sd) \
8609{ \
8610 memset(sd, 0, sizeof(*sd)); \
8611 *sd = SD_##type##_INIT; \
1d3504fc 8612 sd->level = SD_LV_##type; \
a5d8c348 8613 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8614}
8615
8616SD_INIT_FUNC(CPU)
8617#ifdef CONFIG_NUMA
8618 SD_INIT_FUNC(ALLNODES)
8619 SD_INIT_FUNC(NODE)
8620#endif
8621#ifdef CONFIG_SCHED_SMT
8622 SD_INIT_FUNC(SIBLING)
8623#endif
8624#ifdef CONFIG_SCHED_MC
8625 SD_INIT_FUNC(MC)
8626#endif
8627
1d3504fc
HS
8628static int default_relax_domain_level = -1;
8629
8630static int __init setup_relax_domain_level(char *str)
8631{
30e0e178
LZ
8632 unsigned long val;
8633
8634 val = simple_strtoul(str, NULL, 0);
8635 if (val < SD_LV_MAX)
8636 default_relax_domain_level = val;
8637
1d3504fc
HS
8638 return 1;
8639}
8640__setup("relax_domain_level=", setup_relax_domain_level);
8641
8642static void set_domain_attribute(struct sched_domain *sd,
8643 struct sched_domain_attr *attr)
8644{
8645 int request;
8646
8647 if (!attr || attr->relax_domain_level < 0) {
8648 if (default_relax_domain_level < 0)
8649 return;
8650 else
8651 request = default_relax_domain_level;
8652 } else
8653 request = attr->relax_domain_level;
8654 if (request < sd->level) {
8655 /* turn off idle balance on this domain */
c88d5910 8656 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8657 } else {
8658 /* turn on idle balance on this domain */
c88d5910 8659 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
8660 }
8661}
8662
2109b99e
AH
8663static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8664 const struct cpumask *cpu_map)
8665{
8666 switch (what) {
8667 case sa_sched_groups:
8668 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8669 d->sched_group_nodes = NULL;
8670 case sa_rootdomain:
8671 free_rootdomain(d->rd); /* fall through */
8672 case sa_tmpmask:
8673 free_cpumask_var(d->tmpmask); /* fall through */
8674 case sa_send_covered:
8675 free_cpumask_var(d->send_covered); /* fall through */
8676 case sa_this_core_map:
8677 free_cpumask_var(d->this_core_map); /* fall through */
8678 case sa_this_sibling_map:
8679 free_cpumask_var(d->this_sibling_map); /* fall through */
8680 case sa_nodemask:
8681 free_cpumask_var(d->nodemask); /* fall through */
8682 case sa_sched_group_nodes:
d1b55138 8683#ifdef CONFIG_NUMA
2109b99e
AH
8684 kfree(d->sched_group_nodes); /* fall through */
8685 case sa_notcovered:
8686 free_cpumask_var(d->notcovered); /* fall through */
8687 case sa_covered:
8688 free_cpumask_var(d->covered); /* fall through */
8689 case sa_domainspan:
8690 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8691#endif
2109b99e
AH
8692 case sa_none:
8693 break;
8694 }
8695}
3404c8d9 8696
2109b99e
AH
8697static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8698 const struct cpumask *cpu_map)
8699{
3404c8d9 8700#ifdef CONFIG_NUMA
2109b99e
AH
8701 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8702 return sa_none;
8703 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8704 return sa_domainspan;
8705 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8706 return sa_covered;
8707 /* Allocate the per-node list of sched groups */
8708 d->sched_group_nodes = kcalloc(nr_node_ids,
8709 sizeof(struct sched_group *), GFP_KERNEL);
8710 if (!d->sched_group_nodes) {
3df0fc5b 8711 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8712 return sa_notcovered;
d1b55138 8713 }
2109b99e 8714 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8715#endif
2109b99e
AH
8716 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8717 return sa_sched_group_nodes;
8718 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8719 return sa_nodemask;
8720 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8721 return sa_this_sibling_map;
8722 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8723 return sa_this_core_map;
8724 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8725 return sa_send_covered;
8726 d->rd = alloc_rootdomain();
8727 if (!d->rd) {
3df0fc5b 8728 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8729 return sa_tmpmask;
57d885fe 8730 }
2109b99e
AH
8731 return sa_rootdomain;
8732}
57d885fe 8733
7f4588f3
AH
8734static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8735 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8736{
8737 struct sched_domain *sd = NULL;
7c16ec58 8738#ifdef CONFIG_NUMA
7f4588f3 8739 struct sched_domain *parent;
1da177e4 8740
7f4588f3
AH
8741 d->sd_allnodes = 0;
8742 if (cpumask_weight(cpu_map) >
8743 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8744 sd = &per_cpu(allnodes_domains, i).sd;
8745 SD_INIT(sd, ALLNODES);
1d3504fc 8746 set_domain_attribute(sd, attr);
7f4588f3
AH
8747 cpumask_copy(sched_domain_span(sd), cpu_map);
8748 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8749 d->sd_allnodes = 1;
8750 }
8751 parent = sd;
8752
8753 sd = &per_cpu(node_domains, i).sd;
8754 SD_INIT(sd, NODE);
8755 set_domain_attribute(sd, attr);
8756 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8757 sd->parent = parent;
8758 if (parent)
8759 parent->child = sd;
8760 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8761#endif
7f4588f3
AH
8762 return sd;
8763}
1da177e4 8764
87cce662
AH
8765static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8766 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8767 struct sched_domain *parent, int i)
8768{
8769 struct sched_domain *sd;
8770 sd = &per_cpu(phys_domains, i).sd;
8771 SD_INIT(sd, CPU);
8772 set_domain_attribute(sd, attr);
8773 cpumask_copy(sched_domain_span(sd), d->nodemask);
8774 sd->parent = parent;
8775 if (parent)
8776 parent->child = sd;
8777 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8778 return sd;
8779}
1da177e4 8780
410c4081
AH
8781static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8782 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8783 struct sched_domain *parent, int i)
8784{
8785 struct sched_domain *sd = parent;
1e9f28fa 8786#ifdef CONFIG_SCHED_MC
410c4081
AH
8787 sd = &per_cpu(core_domains, i).sd;
8788 SD_INIT(sd, MC);
8789 set_domain_attribute(sd, attr);
8790 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8791 sd->parent = parent;
8792 parent->child = sd;
8793 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8794#endif
410c4081
AH
8795 return sd;
8796}
1e9f28fa 8797
d8173535
AH
8798static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8799 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8800 struct sched_domain *parent, int i)
8801{
8802 struct sched_domain *sd = parent;
1da177e4 8803#ifdef CONFIG_SCHED_SMT
d8173535
AH
8804 sd = &per_cpu(cpu_domains, i).sd;
8805 SD_INIT(sd, SIBLING);
8806 set_domain_attribute(sd, attr);
8807 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8808 sd->parent = parent;
8809 parent->child = sd;
8810 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8811#endif
d8173535
AH
8812 return sd;
8813}
1da177e4 8814
0e8e85c9
AH
8815static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8816 const struct cpumask *cpu_map, int cpu)
8817{
8818 switch (l) {
1da177e4 8819#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8820 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8821 cpumask_and(d->this_sibling_map, cpu_map,
8822 topology_thread_cpumask(cpu));
8823 if (cpu == cpumask_first(d->this_sibling_map))
8824 init_sched_build_groups(d->this_sibling_map, cpu_map,
8825 &cpu_to_cpu_group,
8826 d->send_covered, d->tmpmask);
8827 break;
1da177e4 8828#endif
1e9f28fa 8829#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8830 case SD_LV_MC: /* set up multi-core groups */
8831 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8832 if (cpu == cpumask_first(d->this_core_map))
8833 init_sched_build_groups(d->this_core_map, cpu_map,
8834 &cpu_to_core_group,
8835 d->send_covered, d->tmpmask);
8836 break;
1e9f28fa 8837#endif
86548096
AH
8838 case SD_LV_CPU: /* set up physical groups */
8839 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8840 if (!cpumask_empty(d->nodemask))
8841 init_sched_build_groups(d->nodemask, cpu_map,
8842 &cpu_to_phys_group,
8843 d->send_covered, d->tmpmask);
8844 break;
1da177e4 8845#ifdef CONFIG_NUMA
de616e36
AH
8846 case SD_LV_ALLNODES:
8847 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8848 d->send_covered, d->tmpmask);
8849 break;
8850#endif
0e8e85c9
AH
8851 default:
8852 break;
7c16ec58 8853 }
0e8e85c9 8854}
9c1cfda2 8855
2109b99e
AH
8856/*
8857 * Build sched domains for a given set of cpus and attach the sched domains
8858 * to the individual cpus
8859 */
8860static int __build_sched_domains(const struct cpumask *cpu_map,
8861 struct sched_domain_attr *attr)
8862{
8863 enum s_alloc alloc_state = sa_none;
8864 struct s_data d;
294b0c96 8865 struct sched_domain *sd;
2109b99e 8866 int i;
7c16ec58 8867#ifdef CONFIG_NUMA
2109b99e 8868 d.sd_allnodes = 0;
7c16ec58 8869#endif
9c1cfda2 8870
2109b99e
AH
8871 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8872 if (alloc_state != sa_rootdomain)
8873 goto error;
8874 alloc_state = sa_sched_groups;
9c1cfda2 8875
1da177e4 8876 /*
1a20ff27 8877 * Set up domains for cpus specified by the cpu_map.
1da177e4 8878 */
abcd083a 8879 for_each_cpu(i, cpu_map) {
49a02c51
AH
8880 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8881 cpu_map);
9761eea8 8882
7f4588f3 8883 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8884 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8885 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8886 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8887 }
9c1cfda2 8888
abcd083a 8889 for_each_cpu(i, cpu_map) {
0e8e85c9 8890 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8891 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8892 }
9c1cfda2 8893
1da177e4 8894 /* Set up physical groups */
86548096
AH
8895 for (i = 0; i < nr_node_ids; i++)
8896 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8897
1da177e4
LT
8898#ifdef CONFIG_NUMA
8899 /* Set up node groups */
de616e36
AH
8900 if (d.sd_allnodes)
8901 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8902
0601a88d
AH
8903 for (i = 0; i < nr_node_ids; i++)
8904 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8905 goto error;
1da177e4
LT
8906#endif
8907
8908 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8909#ifdef CONFIG_SCHED_SMT
abcd083a 8910 for_each_cpu(i, cpu_map) {
294b0c96 8911 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8912 init_sched_groups_power(i, sd);
5c45bf27 8913 }
1da177e4 8914#endif
1e9f28fa 8915#ifdef CONFIG_SCHED_MC
abcd083a 8916 for_each_cpu(i, cpu_map) {
294b0c96 8917 sd = &per_cpu(core_domains, i).sd;
89c4710e 8918 init_sched_groups_power(i, sd);
5c45bf27
SS
8919 }
8920#endif
1e9f28fa 8921
abcd083a 8922 for_each_cpu(i, cpu_map) {
294b0c96 8923 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8924 init_sched_groups_power(i, sd);
1da177e4
LT
8925 }
8926
9c1cfda2 8927#ifdef CONFIG_NUMA
076ac2af 8928 for (i = 0; i < nr_node_ids; i++)
49a02c51 8929 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8930
49a02c51 8931 if (d.sd_allnodes) {
6711cab4 8932 struct sched_group *sg;
f712c0c7 8933
96f874e2 8934 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8935 d.tmpmask);
f712c0c7
SS
8936 init_numa_sched_groups_power(sg);
8937 }
9c1cfda2
JH
8938#endif
8939
1da177e4 8940 /* Attach the domains */
abcd083a 8941 for_each_cpu(i, cpu_map) {
1da177e4 8942#ifdef CONFIG_SCHED_SMT
6c99e9ad 8943 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8944#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8945 sd = &per_cpu(core_domains, i).sd;
1da177e4 8946#else
6c99e9ad 8947 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8948#endif
49a02c51 8949 cpu_attach_domain(sd, d.rd, i);
1da177e4 8950 }
51888ca2 8951
2109b99e
AH
8952 d.sched_group_nodes = NULL; /* don't free this we still need it */
8953 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8954 return 0;
51888ca2 8955
51888ca2 8956error:
2109b99e
AH
8957 __free_domain_allocs(&d, alloc_state, cpu_map);
8958 return -ENOMEM;
1da177e4 8959}
029190c5 8960
96f874e2 8961static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8962{
8963 return __build_sched_domains(cpu_map, NULL);
8964}
8965
acc3f5d7 8966static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 8967static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8968static struct sched_domain_attr *dattr_cur;
8969 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8970
8971/*
8972 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8973 * cpumask) fails, then fallback to a single sched domain,
8974 * as determined by the single cpumask fallback_doms.
029190c5 8975 */
4212823f 8976static cpumask_var_t fallback_doms;
029190c5 8977
ee79d1bd
HC
8978/*
8979 * arch_update_cpu_topology lets virtualized architectures update the
8980 * cpu core maps. It is supposed to return 1 if the topology changed
8981 * or 0 if it stayed the same.
8982 */
8983int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8984{
ee79d1bd 8985 return 0;
22e52b07
HC
8986}
8987
acc3f5d7
RR
8988cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8989{
8990 int i;
8991 cpumask_var_t *doms;
8992
8993 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8994 if (!doms)
8995 return NULL;
8996 for (i = 0; i < ndoms; i++) {
8997 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8998 free_sched_domains(doms, i);
8999 return NULL;
9000 }
9001 }
9002 return doms;
9003}
9004
9005void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9006{
9007 unsigned int i;
9008 for (i = 0; i < ndoms; i++)
9009 free_cpumask_var(doms[i]);
9010 kfree(doms);
9011}
9012
1a20ff27 9013/*
41a2d6cf 9014 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
9015 * For now this just excludes isolated cpus, but could be used to
9016 * exclude other special cases in the future.
1a20ff27 9017 */
96f874e2 9018static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 9019{
7378547f
MM
9020 int err;
9021
22e52b07 9022 arch_update_cpu_topology();
029190c5 9023 ndoms_cur = 1;
acc3f5d7 9024 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 9025 if (!doms_cur)
acc3f5d7
RR
9026 doms_cur = &fallback_doms;
9027 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 9028 dattr_cur = NULL;
acc3f5d7 9029 err = build_sched_domains(doms_cur[0]);
6382bc90 9030 register_sched_domain_sysctl();
7378547f
MM
9031
9032 return err;
1a20ff27
DG
9033}
9034
96f874e2
RR
9035static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9036 struct cpumask *tmpmask)
1da177e4 9037{
7c16ec58 9038 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 9039}
1da177e4 9040
1a20ff27
DG
9041/*
9042 * Detach sched domains from a group of cpus specified in cpu_map
9043 * These cpus will now be attached to the NULL domain
9044 */
96f874e2 9045static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 9046{
96f874e2
RR
9047 /* Save because hotplug lock held. */
9048 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
9049 int i;
9050
abcd083a 9051 for_each_cpu(i, cpu_map)
57d885fe 9052 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 9053 synchronize_sched();
96f874e2 9054 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
9055}
9056
1d3504fc
HS
9057/* handle null as "default" */
9058static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9059 struct sched_domain_attr *new, int idx_new)
9060{
9061 struct sched_domain_attr tmp;
9062
9063 /* fast path */
9064 if (!new && !cur)
9065 return 1;
9066
9067 tmp = SD_ATTR_INIT;
9068 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9069 new ? (new + idx_new) : &tmp,
9070 sizeof(struct sched_domain_attr));
9071}
9072
029190c5
PJ
9073/*
9074 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 9075 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9076 * doms_new[] to the current sched domain partitioning, doms_cur[].
9077 * It destroys each deleted domain and builds each new domain.
9078 *
acc3f5d7 9079 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
9080 * The masks don't intersect (don't overlap.) We should setup one
9081 * sched domain for each mask. CPUs not in any of the cpumasks will
9082 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9083 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9084 * it as it is.
9085 *
acc3f5d7
RR
9086 * The passed in 'doms_new' should be allocated using
9087 * alloc_sched_domains. This routine takes ownership of it and will
9088 * free_sched_domains it when done with it. If the caller failed the
9089 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9090 * and partition_sched_domains() will fallback to the single partition
9091 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 9092 *
96f874e2 9093 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9094 * ndoms_new == 0 is a special case for destroying existing domains,
9095 * and it will not create the default domain.
dfb512ec 9096 *
029190c5
PJ
9097 * Call with hotplug lock held
9098 */
acc3f5d7 9099void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 9100 struct sched_domain_attr *dattr_new)
029190c5 9101{
dfb512ec 9102 int i, j, n;
d65bd5ec 9103 int new_topology;
029190c5 9104
712555ee 9105 mutex_lock(&sched_domains_mutex);
a1835615 9106
7378547f
MM
9107 /* always unregister in case we don't destroy any domains */
9108 unregister_sched_domain_sysctl();
9109
d65bd5ec
HC
9110 /* Let architecture update cpu core mappings. */
9111 new_topology = arch_update_cpu_topology();
9112
dfb512ec 9113 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9114
9115 /* Destroy deleted domains */
9116 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9117 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 9118 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 9119 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9120 goto match1;
9121 }
9122 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 9123 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
9124match1:
9125 ;
9126 }
9127
e761b772
MK
9128 if (doms_new == NULL) {
9129 ndoms_cur = 0;
acc3f5d7 9130 doms_new = &fallback_doms;
6ad4c188 9131 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 9132 WARN_ON_ONCE(dattr_new);
e761b772
MK
9133 }
9134
029190c5
PJ
9135 /* Build new domains */
9136 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9137 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 9138 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 9139 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9140 goto match2;
9141 }
9142 /* no match - add a new doms_new */
acc3f5d7 9143 __build_sched_domains(doms_new[i],
1d3504fc 9144 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9145match2:
9146 ;
9147 }
9148
9149 /* Remember the new sched domains */
acc3f5d7
RR
9150 if (doms_cur != &fallback_doms)
9151 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 9152 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9153 doms_cur = doms_new;
1d3504fc 9154 dattr_cur = dattr_new;
029190c5 9155 ndoms_cur = ndoms_new;
7378547f
MM
9156
9157 register_sched_domain_sysctl();
a1835615 9158
712555ee 9159 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9160}
9161
5c45bf27 9162#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9163static void arch_reinit_sched_domains(void)
5c45bf27 9164{
95402b38 9165 get_online_cpus();
dfb512ec
MK
9166
9167 /* Destroy domains first to force the rebuild */
9168 partition_sched_domains(0, NULL, NULL);
9169
e761b772 9170 rebuild_sched_domains();
95402b38 9171 put_online_cpus();
5c45bf27
SS
9172}
9173
9174static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9175{
afb8a9b7 9176 unsigned int level = 0;
5c45bf27 9177
afb8a9b7
GS
9178 if (sscanf(buf, "%u", &level) != 1)
9179 return -EINVAL;
9180
9181 /*
9182 * level is always be positive so don't check for
9183 * level < POWERSAVINGS_BALANCE_NONE which is 0
9184 * What happens on 0 or 1 byte write,
9185 * need to check for count as well?
9186 */
9187
9188 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9189 return -EINVAL;
9190
9191 if (smt)
afb8a9b7 9192 sched_smt_power_savings = level;
5c45bf27 9193 else
afb8a9b7 9194 sched_mc_power_savings = level;
5c45bf27 9195
c70f22d2 9196 arch_reinit_sched_domains();
5c45bf27 9197
c70f22d2 9198 return count;
5c45bf27
SS
9199}
9200
5c45bf27 9201#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9202static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9203 char *page)
5c45bf27
SS
9204{
9205 return sprintf(page, "%u\n", sched_mc_power_savings);
9206}
f718cd4a 9207static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9208 const char *buf, size_t count)
5c45bf27
SS
9209{
9210 return sched_power_savings_store(buf, count, 0);
9211}
f718cd4a
AK
9212static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9213 sched_mc_power_savings_show,
9214 sched_mc_power_savings_store);
5c45bf27
SS
9215#endif
9216
9217#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9218static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9219 char *page)
5c45bf27
SS
9220{
9221 return sprintf(page, "%u\n", sched_smt_power_savings);
9222}
f718cd4a 9223static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9224 const char *buf, size_t count)
5c45bf27
SS
9225{
9226 return sched_power_savings_store(buf, count, 1);
9227}
f718cd4a
AK
9228static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9229 sched_smt_power_savings_show,
6707de00
AB
9230 sched_smt_power_savings_store);
9231#endif
9232
39aac648 9233int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9234{
9235 int err = 0;
9236
9237#ifdef CONFIG_SCHED_SMT
9238 if (smt_capable())
9239 err = sysfs_create_file(&cls->kset.kobj,
9240 &attr_sched_smt_power_savings.attr);
9241#endif
9242#ifdef CONFIG_SCHED_MC
9243 if (!err && mc_capable())
9244 err = sysfs_create_file(&cls->kset.kobj,
9245 &attr_sched_mc_power_savings.attr);
9246#endif
9247 return err;
9248}
6d6bc0ad 9249#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9250
e761b772 9251#ifndef CONFIG_CPUSETS
1da177e4 9252/*
e761b772
MK
9253 * Add online and remove offline CPUs from the scheduler domains.
9254 * When cpusets are enabled they take over this function.
1da177e4
LT
9255 */
9256static int update_sched_domains(struct notifier_block *nfb,
9257 unsigned long action, void *hcpu)
e761b772
MK
9258{
9259 switch (action) {
9260 case CPU_ONLINE:
9261 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
9262 case CPU_DOWN_PREPARE:
9263 case CPU_DOWN_PREPARE_FROZEN:
9264 case CPU_DOWN_FAILED:
9265 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 9266 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9267 return NOTIFY_OK;
9268
9269 default:
9270 return NOTIFY_DONE;
9271 }
9272}
9273#endif
9274
9275static int update_runtime(struct notifier_block *nfb,
9276 unsigned long action, void *hcpu)
1da177e4 9277{
7def2be1
PZ
9278 int cpu = (int)(long)hcpu;
9279
1da177e4 9280 switch (action) {
1da177e4 9281 case CPU_DOWN_PREPARE:
8bb78442 9282 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9283 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9284 return NOTIFY_OK;
9285
1da177e4 9286 case CPU_DOWN_FAILED:
8bb78442 9287 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9288 case CPU_ONLINE:
8bb78442 9289 case CPU_ONLINE_FROZEN:
7def2be1 9290 enable_runtime(cpu_rq(cpu));
e761b772
MK
9291 return NOTIFY_OK;
9292
1da177e4
LT
9293 default:
9294 return NOTIFY_DONE;
9295 }
1da177e4 9296}
1da177e4
LT
9297
9298void __init sched_init_smp(void)
9299{
dcc30a35
RR
9300 cpumask_var_t non_isolated_cpus;
9301
9302 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 9303 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 9304
434d53b0
MT
9305#if defined(CONFIG_NUMA)
9306 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9307 GFP_KERNEL);
9308 BUG_ON(sched_group_nodes_bycpu == NULL);
9309#endif
95402b38 9310 get_online_cpus();
712555ee 9311 mutex_lock(&sched_domains_mutex);
6ad4c188 9312 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
9313 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9314 if (cpumask_empty(non_isolated_cpus))
9315 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9316 mutex_unlock(&sched_domains_mutex);
95402b38 9317 put_online_cpus();
e761b772
MK
9318
9319#ifndef CONFIG_CPUSETS
1da177e4
LT
9320 /* XXX: Theoretical race here - CPU may be hotplugged now */
9321 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9322#endif
9323
9324 /* RT runtime code needs to handle some hotplug events */
9325 hotcpu_notifier(update_runtime, 0);
9326
b328ca18 9327 init_hrtick();
5c1e1767
NP
9328
9329 /* Move init over to a non-isolated CPU */
dcc30a35 9330 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9331 BUG();
19978ca6 9332 sched_init_granularity();
dcc30a35 9333 free_cpumask_var(non_isolated_cpus);
4212823f 9334
0e3900e6 9335 init_sched_rt_class();
1da177e4
LT
9336}
9337#else
9338void __init sched_init_smp(void)
9339{
19978ca6 9340 sched_init_granularity();
1da177e4
LT
9341}
9342#endif /* CONFIG_SMP */
9343
cd1bb94b
AB
9344const_debug unsigned int sysctl_timer_migration = 1;
9345
1da177e4
LT
9346int in_sched_functions(unsigned long addr)
9347{
1da177e4
LT
9348 return in_lock_functions(addr) ||
9349 (addr >= (unsigned long)__sched_text_start
9350 && addr < (unsigned long)__sched_text_end);
9351}
9352
a9957449 9353static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9354{
9355 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9356 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9357#ifdef CONFIG_FAIR_GROUP_SCHED
9358 cfs_rq->rq = rq;
9359#endif
67e9fb2a 9360 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9361}
9362
fa85ae24
PZ
9363static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9364{
9365 struct rt_prio_array *array;
9366 int i;
9367
9368 array = &rt_rq->active;
9369 for (i = 0; i < MAX_RT_PRIO; i++) {
9370 INIT_LIST_HEAD(array->queue + i);
9371 __clear_bit(i, array->bitmap);
9372 }
9373 /* delimiter for bitsearch: */
9374 __set_bit(MAX_RT_PRIO, array->bitmap);
9375
052f1dc7 9376#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9377 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9378#ifdef CONFIG_SMP
e864c499 9379 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9380#endif
48d5e258 9381#endif
fa85ae24
PZ
9382#ifdef CONFIG_SMP
9383 rt_rq->rt_nr_migratory = 0;
fa85ae24 9384 rt_rq->overloaded = 0;
05fa785c 9385 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9386#endif
9387
9388 rt_rq->rt_time = 0;
9389 rt_rq->rt_throttled = 0;
ac086bc2 9390 rt_rq->rt_runtime = 0;
0986b11b 9391 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9392
052f1dc7 9393#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9394 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9395 rt_rq->rq = rq;
9396#endif
fa85ae24
PZ
9397}
9398
6f505b16 9399#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9400static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9401 struct sched_entity *se, int cpu, int add,
9402 struct sched_entity *parent)
6f505b16 9403{
ec7dc8ac 9404 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9405 tg->cfs_rq[cpu] = cfs_rq;
9406 init_cfs_rq(cfs_rq, rq);
9407 cfs_rq->tg = tg;
9408 if (add)
9409 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9410
9411 tg->se[cpu] = se;
354d60c2
DG
9412 /* se could be NULL for init_task_group */
9413 if (!se)
9414 return;
9415
ec7dc8ac
DG
9416 if (!parent)
9417 se->cfs_rq = &rq->cfs;
9418 else
9419 se->cfs_rq = parent->my_q;
9420
6f505b16
PZ
9421 se->my_q = cfs_rq;
9422 se->load.weight = tg->shares;
e05510d0 9423 se->load.inv_weight = 0;
ec7dc8ac 9424 se->parent = parent;
6f505b16 9425}
052f1dc7 9426#endif
6f505b16 9427
052f1dc7 9428#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9429static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9430 struct sched_rt_entity *rt_se, int cpu, int add,
9431 struct sched_rt_entity *parent)
6f505b16 9432{
ec7dc8ac
DG
9433 struct rq *rq = cpu_rq(cpu);
9434
6f505b16
PZ
9435 tg->rt_rq[cpu] = rt_rq;
9436 init_rt_rq(rt_rq, rq);
9437 rt_rq->tg = tg;
9438 rt_rq->rt_se = rt_se;
ac086bc2 9439 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9440 if (add)
9441 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9442
9443 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9444 if (!rt_se)
9445 return;
9446
ec7dc8ac
DG
9447 if (!parent)
9448 rt_se->rt_rq = &rq->rt;
9449 else
9450 rt_se->rt_rq = parent->my_q;
9451
6f505b16 9452 rt_se->my_q = rt_rq;
ec7dc8ac 9453 rt_se->parent = parent;
6f505b16
PZ
9454 INIT_LIST_HEAD(&rt_se->run_list);
9455}
9456#endif
9457
1da177e4
LT
9458void __init sched_init(void)
9459{
dd41f596 9460 int i, j;
434d53b0
MT
9461 unsigned long alloc_size = 0, ptr;
9462
9463#ifdef CONFIG_FAIR_GROUP_SCHED
9464 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9465#endif
9466#ifdef CONFIG_RT_GROUP_SCHED
9467 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9468#endif
9469#ifdef CONFIG_USER_SCHED
9470 alloc_size *= 2;
df7c8e84
RR
9471#endif
9472#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9473 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 9474#endif
434d53b0 9475 if (alloc_size) {
36b7b6d4 9476 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9477
9478#ifdef CONFIG_FAIR_GROUP_SCHED
9479 init_task_group.se = (struct sched_entity **)ptr;
9480 ptr += nr_cpu_ids * sizeof(void **);
9481
9482 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9483 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9484
9485#ifdef CONFIG_USER_SCHED
9486 root_task_group.se = (struct sched_entity **)ptr;
9487 ptr += nr_cpu_ids * sizeof(void **);
9488
9489 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9490 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9491#endif /* CONFIG_USER_SCHED */
9492#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9493#ifdef CONFIG_RT_GROUP_SCHED
9494 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9495 ptr += nr_cpu_ids * sizeof(void **);
9496
9497 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9498 ptr += nr_cpu_ids * sizeof(void **);
9499
9500#ifdef CONFIG_USER_SCHED
9501 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9502 ptr += nr_cpu_ids * sizeof(void **);
9503
9504 root_task_group.rt_rq = (struct rt_rq **)ptr;
9505 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9506#endif /* CONFIG_USER_SCHED */
9507#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9508#ifdef CONFIG_CPUMASK_OFFSTACK
9509 for_each_possible_cpu(i) {
9510 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9511 ptr += cpumask_size();
9512 }
9513#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9514 }
dd41f596 9515
57d885fe
GH
9516#ifdef CONFIG_SMP
9517 init_defrootdomain();
9518#endif
9519
d0b27fa7
PZ
9520 init_rt_bandwidth(&def_rt_bandwidth,
9521 global_rt_period(), global_rt_runtime());
9522
9523#ifdef CONFIG_RT_GROUP_SCHED
9524 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9525 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9526#ifdef CONFIG_USER_SCHED
9527 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9528 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9529#endif /* CONFIG_USER_SCHED */
9530#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9531
052f1dc7 9532#ifdef CONFIG_GROUP_SCHED
6f505b16 9533 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9534 INIT_LIST_HEAD(&init_task_group.children);
9535
9536#ifdef CONFIG_USER_SCHED
9537 INIT_LIST_HEAD(&root_task_group.children);
9538 init_task_group.parent = &root_task_group;
9539 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9540#endif /* CONFIG_USER_SCHED */
9541#endif /* CONFIG_GROUP_SCHED */
6f505b16 9542
4a6cc4bd
JK
9543#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9544 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9545 __alignof__(unsigned long));
9546#endif
0a945022 9547 for_each_possible_cpu(i) {
70b97a7f 9548 struct rq *rq;
1da177e4
LT
9549
9550 rq = cpu_rq(i);
05fa785c 9551 raw_spin_lock_init(&rq->lock);
7897986b 9552 rq->nr_running = 0;
dce48a84
TG
9553 rq->calc_load_active = 0;
9554 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9555 init_cfs_rq(&rq->cfs, rq);
6f505b16 9556 init_rt_rq(&rq->rt, rq);
dd41f596 9557#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9558 init_task_group.shares = init_task_group_load;
6f505b16 9559 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9560#ifdef CONFIG_CGROUP_SCHED
9561 /*
9562 * How much cpu bandwidth does init_task_group get?
9563 *
9564 * In case of task-groups formed thr' the cgroup filesystem, it
9565 * gets 100% of the cpu resources in the system. This overall
9566 * system cpu resource is divided among the tasks of
9567 * init_task_group and its child task-groups in a fair manner,
9568 * based on each entity's (task or task-group's) weight
9569 * (se->load.weight).
9570 *
9571 * In other words, if init_task_group has 10 tasks of weight
9572 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9573 * then A0's share of the cpu resource is:
9574 *
0d905bca 9575 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9576 *
9577 * We achieve this by letting init_task_group's tasks sit
9578 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9579 */
ec7dc8ac 9580 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9581#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9582 root_task_group.shares = NICE_0_LOAD;
9583 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9584 /*
9585 * In case of task-groups formed thr' the user id of tasks,
9586 * init_task_group represents tasks belonging to root user.
9587 * Hence it forms a sibling of all subsequent groups formed.
9588 * In this case, init_task_group gets only a fraction of overall
9589 * system cpu resource, based on the weight assigned to root
9590 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9591 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9592 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9593 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9594 */
ec7dc8ac 9595 init_tg_cfs_entry(&init_task_group,
84e9dabf 9596 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9597 &per_cpu(init_sched_entity, i), i, 1,
9598 root_task_group.se[i]);
6f505b16 9599
052f1dc7 9600#endif
354d60c2
DG
9601#endif /* CONFIG_FAIR_GROUP_SCHED */
9602
9603 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9604#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9605 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9606#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9607 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9608#elif defined CONFIG_USER_SCHED
eff766a6 9609 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9610 init_tg_rt_entry(&init_task_group,
1871e52c 9611 &per_cpu(init_rt_rq_var, i),
eff766a6
PZ
9612 &per_cpu(init_sched_rt_entity, i), i, 1,
9613 root_task_group.rt_se[i]);
354d60c2 9614#endif
dd41f596 9615#endif
1da177e4 9616
dd41f596
IM
9617 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9618 rq->cpu_load[j] = 0;
1da177e4 9619#ifdef CONFIG_SMP
41c7ce9a 9620 rq->sd = NULL;
57d885fe 9621 rq->rd = NULL;
3f029d3c 9622 rq->post_schedule = 0;
1da177e4 9623 rq->active_balance = 0;
dd41f596 9624 rq->next_balance = jiffies;
1da177e4 9625 rq->push_cpu = 0;
0a2966b4 9626 rq->cpu = i;
1f11eb6a 9627 rq->online = 0;
1da177e4 9628 rq->migration_thread = NULL;
eae0c9df
MG
9629 rq->idle_stamp = 0;
9630 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 9631 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9632 rq_attach_root(rq, &def_root_domain);
1da177e4 9633#endif
8f4d37ec 9634 init_rq_hrtick(rq);
1da177e4 9635 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9636 }
9637
2dd73a4f 9638 set_load_weight(&init_task);
b50f60ce 9639
e107be36
AK
9640#ifdef CONFIG_PREEMPT_NOTIFIERS
9641 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9642#endif
9643
c9819f45 9644#ifdef CONFIG_SMP
962cf36c 9645 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9646#endif
9647
b50f60ce 9648#ifdef CONFIG_RT_MUTEXES
1d615482 9649 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
9650#endif
9651
1da177e4
LT
9652 /*
9653 * The boot idle thread does lazy MMU switching as well:
9654 */
9655 atomic_inc(&init_mm.mm_count);
9656 enter_lazy_tlb(&init_mm, current);
9657
9658 /*
9659 * Make us the idle thread. Technically, schedule() should not be
9660 * called from this thread, however somewhere below it might be,
9661 * but because we are the idle thread, we just pick up running again
9662 * when this runqueue becomes "idle".
9663 */
9664 init_idle(current, smp_processor_id());
dce48a84
TG
9665
9666 calc_load_update = jiffies + LOAD_FREQ;
9667
dd41f596
IM
9668 /*
9669 * During early bootup we pretend to be a normal task:
9670 */
9671 current->sched_class = &fair_sched_class;
6892b75e 9672
6a7b3dc3 9673 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 9674 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9675#ifdef CONFIG_SMP
7d1e6a9b 9676#ifdef CONFIG_NO_HZ
49557e62 9677 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 9678 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9679#endif
bdddd296
RR
9680 /* May be allocated at isolcpus cmdline parse time */
9681 if (cpu_isolated_map == NULL)
9682 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9683#endif /* SMP */
6a7b3dc3 9684
cdd6c482 9685 perf_event_init();
0d905bca 9686
6892b75e 9687 scheduler_running = 1;
1da177e4
LT
9688}
9689
9690#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9691static inline int preempt_count_equals(int preempt_offset)
9692{
234da7bc 9693 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
9694
9695 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9696}
9697
9698void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9699{
48f24c4d 9700#ifdef in_atomic
1da177e4
LT
9701 static unsigned long prev_jiffy; /* ratelimiting */
9702
e4aafea2
FW
9703 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9704 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9705 return;
9706 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9707 return;
9708 prev_jiffy = jiffies;
9709
3df0fc5b
PZ
9710 printk(KERN_ERR
9711 "BUG: sleeping function called from invalid context at %s:%d\n",
9712 file, line);
9713 printk(KERN_ERR
9714 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9715 in_atomic(), irqs_disabled(),
9716 current->pid, current->comm);
aef745fc
IM
9717
9718 debug_show_held_locks(current);
9719 if (irqs_disabled())
9720 print_irqtrace_events(current);
9721 dump_stack();
1da177e4
LT
9722#endif
9723}
9724EXPORT_SYMBOL(__might_sleep);
9725#endif
9726
9727#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9728static void normalize_task(struct rq *rq, struct task_struct *p)
9729{
9730 int on_rq;
3e51f33f 9731
3a5e4dc1
AK
9732 update_rq_clock(rq);
9733 on_rq = p->se.on_rq;
9734 if (on_rq)
9735 deactivate_task(rq, p, 0);
9736 __setscheduler(rq, p, SCHED_NORMAL, 0);
9737 if (on_rq) {
9738 activate_task(rq, p, 0);
9739 resched_task(rq->curr);
9740 }
9741}
9742
1da177e4
LT
9743void normalize_rt_tasks(void)
9744{
a0f98a1c 9745 struct task_struct *g, *p;
1da177e4 9746 unsigned long flags;
70b97a7f 9747 struct rq *rq;
1da177e4 9748
4cf5d77a 9749 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9750 do_each_thread(g, p) {
178be793
IM
9751 /*
9752 * Only normalize user tasks:
9753 */
9754 if (!p->mm)
9755 continue;
9756
6cfb0d5d 9757 p->se.exec_start = 0;
6cfb0d5d 9758#ifdef CONFIG_SCHEDSTATS
dd41f596 9759 p->se.wait_start = 0;
dd41f596 9760 p->se.sleep_start = 0;
dd41f596 9761 p->se.block_start = 0;
6cfb0d5d 9762#endif
dd41f596
IM
9763
9764 if (!rt_task(p)) {
9765 /*
9766 * Renice negative nice level userspace
9767 * tasks back to 0:
9768 */
9769 if (TASK_NICE(p) < 0 && p->mm)
9770 set_user_nice(p, 0);
1da177e4 9771 continue;
dd41f596 9772 }
1da177e4 9773
1d615482 9774 raw_spin_lock(&p->pi_lock);
b29739f9 9775 rq = __task_rq_lock(p);
1da177e4 9776
178be793 9777 normalize_task(rq, p);
3a5e4dc1 9778
b29739f9 9779 __task_rq_unlock(rq);
1d615482 9780 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
9781 } while_each_thread(g, p);
9782
4cf5d77a 9783 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9784}
9785
9786#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9787
9788#ifdef CONFIG_IA64
9789/*
9790 * These functions are only useful for the IA64 MCA handling.
9791 *
9792 * They can only be called when the whole system has been
9793 * stopped - every CPU needs to be quiescent, and no scheduling
9794 * activity can take place. Using them for anything else would
9795 * be a serious bug, and as a result, they aren't even visible
9796 * under any other configuration.
9797 */
9798
9799/**
9800 * curr_task - return the current task for a given cpu.
9801 * @cpu: the processor in question.
9802 *
9803 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9804 */
36c8b586 9805struct task_struct *curr_task(int cpu)
1df5c10a
LT
9806{
9807 return cpu_curr(cpu);
9808}
9809
9810/**
9811 * set_curr_task - set the current task for a given cpu.
9812 * @cpu: the processor in question.
9813 * @p: the task pointer to set.
9814 *
9815 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9816 * are serviced on a separate stack. It allows the architecture to switch the
9817 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9818 * must be called with all CPU's synchronized, and interrupts disabled, the
9819 * and caller must save the original value of the current task (see
9820 * curr_task() above) and restore that value before reenabling interrupts and
9821 * re-starting the system.
9822 *
9823 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9824 */
36c8b586 9825void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9826{
9827 cpu_curr(cpu) = p;
9828}
9829
9830#endif
29f59db3 9831
bccbe08a
PZ
9832#ifdef CONFIG_FAIR_GROUP_SCHED
9833static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9834{
9835 int i;
9836
9837 for_each_possible_cpu(i) {
9838 if (tg->cfs_rq)
9839 kfree(tg->cfs_rq[i]);
9840 if (tg->se)
9841 kfree(tg->se[i]);
6f505b16
PZ
9842 }
9843
9844 kfree(tg->cfs_rq);
9845 kfree(tg->se);
6f505b16
PZ
9846}
9847
ec7dc8ac
DG
9848static
9849int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9850{
29f59db3 9851 struct cfs_rq *cfs_rq;
eab17229 9852 struct sched_entity *se;
9b5b7751 9853 struct rq *rq;
29f59db3
SV
9854 int i;
9855
434d53b0 9856 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9857 if (!tg->cfs_rq)
9858 goto err;
434d53b0 9859 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9860 if (!tg->se)
9861 goto err;
052f1dc7
PZ
9862
9863 tg->shares = NICE_0_LOAD;
29f59db3
SV
9864
9865 for_each_possible_cpu(i) {
9b5b7751 9866 rq = cpu_rq(i);
29f59db3 9867
eab17229
LZ
9868 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9869 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9870 if (!cfs_rq)
9871 goto err;
9872
eab17229
LZ
9873 se = kzalloc_node(sizeof(struct sched_entity),
9874 GFP_KERNEL, cpu_to_node(i));
29f59db3 9875 if (!se)
dfc12eb2 9876 goto err_free_rq;
29f59db3 9877
eab17229 9878 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9879 }
9880
9881 return 1;
9882
dfc12eb2
PC
9883 err_free_rq:
9884 kfree(cfs_rq);
bccbe08a
PZ
9885 err:
9886 return 0;
9887}
9888
9889static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9890{
9891 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9892 &cpu_rq(cpu)->leaf_cfs_rq_list);
9893}
9894
9895static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9896{
9897 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9898}
6d6bc0ad 9899#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9900static inline void free_fair_sched_group(struct task_group *tg)
9901{
9902}
9903
ec7dc8ac
DG
9904static inline
9905int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9906{
9907 return 1;
9908}
9909
9910static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9911{
9912}
9913
9914static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9915{
9916}
6d6bc0ad 9917#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9918
9919#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9920static void free_rt_sched_group(struct task_group *tg)
9921{
9922 int i;
9923
d0b27fa7
PZ
9924 destroy_rt_bandwidth(&tg->rt_bandwidth);
9925
bccbe08a
PZ
9926 for_each_possible_cpu(i) {
9927 if (tg->rt_rq)
9928 kfree(tg->rt_rq[i]);
9929 if (tg->rt_se)
9930 kfree(tg->rt_se[i]);
9931 }
9932
9933 kfree(tg->rt_rq);
9934 kfree(tg->rt_se);
9935}
9936
ec7dc8ac
DG
9937static
9938int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9939{
9940 struct rt_rq *rt_rq;
eab17229 9941 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9942 struct rq *rq;
9943 int i;
9944
434d53b0 9945 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9946 if (!tg->rt_rq)
9947 goto err;
434d53b0 9948 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9949 if (!tg->rt_se)
9950 goto err;
9951
d0b27fa7
PZ
9952 init_rt_bandwidth(&tg->rt_bandwidth,
9953 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9954
9955 for_each_possible_cpu(i) {
9956 rq = cpu_rq(i);
9957
eab17229
LZ
9958 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9959 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9960 if (!rt_rq)
9961 goto err;
29f59db3 9962
eab17229
LZ
9963 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9964 GFP_KERNEL, cpu_to_node(i));
6f505b16 9965 if (!rt_se)
dfc12eb2 9966 goto err_free_rq;
29f59db3 9967
eab17229 9968 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9969 }
9970
bccbe08a
PZ
9971 return 1;
9972
dfc12eb2
PC
9973 err_free_rq:
9974 kfree(rt_rq);
bccbe08a
PZ
9975 err:
9976 return 0;
9977}
9978
9979static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9980{
9981 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9982 &cpu_rq(cpu)->leaf_rt_rq_list);
9983}
9984
9985static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9986{
9987 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9988}
6d6bc0ad 9989#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9990static inline void free_rt_sched_group(struct task_group *tg)
9991{
9992}
9993
ec7dc8ac
DG
9994static inline
9995int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9996{
9997 return 1;
9998}
9999
10000static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10001{
10002}
10003
10004static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10005{
10006}
6d6bc0ad 10007#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 10008
d0b27fa7 10009#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
10010static void free_sched_group(struct task_group *tg)
10011{
10012 free_fair_sched_group(tg);
10013 free_rt_sched_group(tg);
10014 kfree(tg);
10015}
10016
10017/* allocate runqueue etc for a new task group */
ec7dc8ac 10018struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10019{
10020 struct task_group *tg;
10021 unsigned long flags;
10022 int i;
10023
10024 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10025 if (!tg)
10026 return ERR_PTR(-ENOMEM);
10027
ec7dc8ac 10028 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10029 goto err;
10030
ec7dc8ac 10031 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10032 goto err;
10033
8ed36996 10034 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10035 for_each_possible_cpu(i) {
bccbe08a
PZ
10036 register_fair_sched_group(tg, i);
10037 register_rt_sched_group(tg, i);
9b5b7751 10038 }
6f505b16 10039 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
10040
10041 WARN_ON(!parent); /* root should already exist */
10042
10043 tg->parent = parent;
f473aa5e 10044 INIT_LIST_HEAD(&tg->children);
09f2724a 10045 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10046 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 10047
9b5b7751 10048 return tg;
29f59db3
SV
10049
10050err:
6f505b16 10051 free_sched_group(tg);
29f59db3
SV
10052 return ERR_PTR(-ENOMEM);
10053}
10054
9b5b7751 10055/* rcu callback to free various structures associated with a task group */
6f505b16 10056static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 10057{
29f59db3 10058 /* now it should be safe to free those cfs_rqs */
6f505b16 10059 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10060}
10061
9b5b7751 10062/* Destroy runqueue etc associated with a task group */
4cf86d77 10063void sched_destroy_group(struct task_group *tg)
29f59db3 10064{
8ed36996 10065 unsigned long flags;
9b5b7751 10066 int i;
29f59db3 10067
8ed36996 10068 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 10069 for_each_possible_cpu(i) {
bccbe08a
PZ
10070 unregister_fair_sched_group(tg, i);
10071 unregister_rt_sched_group(tg, i);
9b5b7751 10072 }
6f505b16 10073 list_del_rcu(&tg->list);
f473aa5e 10074 list_del_rcu(&tg->siblings);
8ed36996 10075 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 10076
9b5b7751 10077 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 10078 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
10079}
10080
9b5b7751 10081/* change task's runqueue when it moves between groups.
3a252015
IM
10082 * The caller of this function should have put the task in its new group
10083 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10084 * reflect its new group.
9b5b7751
SV
10085 */
10086void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10087{
10088 int on_rq, running;
10089 unsigned long flags;
10090 struct rq *rq;
10091
10092 rq = task_rq_lock(tsk, &flags);
10093
29f59db3
SV
10094 update_rq_clock(rq);
10095
051a1d1a 10096 running = task_current(rq, tsk);
29f59db3
SV
10097 on_rq = tsk->se.on_rq;
10098
0e1f3483 10099 if (on_rq)
29f59db3 10100 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10101 if (unlikely(running))
10102 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10103
6f505b16 10104 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10105
810b3817
PZ
10106#ifdef CONFIG_FAIR_GROUP_SCHED
10107 if (tsk->sched_class->moved_group)
88ec22d3 10108 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
10109#endif
10110
0e1f3483
HS
10111 if (unlikely(running))
10112 tsk->sched_class->set_curr_task(rq);
10113 if (on_rq)
7074badb 10114 enqueue_task(rq, tsk, 0);
29f59db3 10115
29f59db3
SV
10116 task_rq_unlock(rq, &flags);
10117}
6d6bc0ad 10118#endif /* CONFIG_GROUP_SCHED */
29f59db3 10119
052f1dc7 10120#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10121static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10122{
10123 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10124 int on_rq;
10125
29f59db3 10126 on_rq = se->on_rq;
62fb1851 10127 if (on_rq)
29f59db3
SV
10128 dequeue_entity(cfs_rq, se, 0);
10129
10130 se->load.weight = shares;
e05510d0 10131 se->load.inv_weight = 0;
29f59db3 10132
62fb1851 10133 if (on_rq)
29f59db3 10134 enqueue_entity(cfs_rq, se, 0);
c09595f6 10135}
62fb1851 10136
c09595f6
PZ
10137static void set_se_shares(struct sched_entity *se, unsigned long shares)
10138{
10139 struct cfs_rq *cfs_rq = se->cfs_rq;
10140 struct rq *rq = cfs_rq->rq;
10141 unsigned long flags;
10142
05fa785c 10143 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 10144 __set_se_shares(se, shares);
05fa785c 10145 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10146}
10147
8ed36996
PZ
10148static DEFINE_MUTEX(shares_mutex);
10149
4cf86d77 10150int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10151{
10152 int i;
8ed36996 10153 unsigned long flags;
c61935fd 10154
ec7dc8ac
DG
10155 /*
10156 * We can't change the weight of the root cgroup.
10157 */
10158 if (!tg->se[0])
10159 return -EINVAL;
10160
18d95a28
PZ
10161 if (shares < MIN_SHARES)
10162 shares = MIN_SHARES;
cb4ad1ff
MX
10163 else if (shares > MAX_SHARES)
10164 shares = MAX_SHARES;
62fb1851 10165
8ed36996 10166 mutex_lock(&shares_mutex);
9b5b7751 10167 if (tg->shares == shares)
5cb350ba 10168 goto done;
29f59db3 10169
8ed36996 10170 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10171 for_each_possible_cpu(i)
10172 unregister_fair_sched_group(tg, i);
f473aa5e 10173 list_del_rcu(&tg->siblings);
8ed36996 10174 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10175
10176 /* wait for any ongoing reference to this group to finish */
10177 synchronize_sched();
10178
10179 /*
10180 * Now we are free to modify the group's share on each cpu
10181 * w/o tripping rebalance_share or load_balance_fair.
10182 */
9b5b7751 10183 tg->shares = shares;
c09595f6
PZ
10184 for_each_possible_cpu(i) {
10185 /*
10186 * force a rebalance
10187 */
10188 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10189 set_se_shares(tg->se[i], shares);
c09595f6 10190 }
29f59db3 10191
6b2d7700
SV
10192 /*
10193 * Enable load balance activity on this group, by inserting it back on
10194 * each cpu's rq->leaf_cfs_rq_list.
10195 */
8ed36996 10196 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10197 for_each_possible_cpu(i)
10198 register_fair_sched_group(tg, i);
f473aa5e 10199 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10200 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10201done:
8ed36996 10202 mutex_unlock(&shares_mutex);
9b5b7751 10203 return 0;
29f59db3
SV
10204}
10205
5cb350ba
DG
10206unsigned long sched_group_shares(struct task_group *tg)
10207{
10208 return tg->shares;
10209}
052f1dc7 10210#endif
5cb350ba 10211
052f1dc7 10212#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10213/*
9f0c1e56 10214 * Ensure that the real time constraints are schedulable.
6f505b16 10215 */
9f0c1e56
PZ
10216static DEFINE_MUTEX(rt_constraints_mutex);
10217
10218static unsigned long to_ratio(u64 period, u64 runtime)
10219{
10220 if (runtime == RUNTIME_INF)
9a7e0b18 10221 return 1ULL << 20;
9f0c1e56 10222
9a7e0b18 10223 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10224}
10225
9a7e0b18
PZ
10226/* Must be called with tasklist_lock held */
10227static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10228{
9a7e0b18 10229 struct task_struct *g, *p;
b40b2e8e 10230
9a7e0b18
PZ
10231 do_each_thread(g, p) {
10232 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10233 return 1;
10234 } while_each_thread(g, p);
b40b2e8e 10235
9a7e0b18
PZ
10236 return 0;
10237}
b40b2e8e 10238
9a7e0b18
PZ
10239struct rt_schedulable_data {
10240 struct task_group *tg;
10241 u64 rt_period;
10242 u64 rt_runtime;
10243};
b40b2e8e 10244
9a7e0b18
PZ
10245static int tg_schedulable(struct task_group *tg, void *data)
10246{
10247 struct rt_schedulable_data *d = data;
10248 struct task_group *child;
10249 unsigned long total, sum = 0;
10250 u64 period, runtime;
b40b2e8e 10251
9a7e0b18
PZ
10252 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10253 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10254
9a7e0b18
PZ
10255 if (tg == d->tg) {
10256 period = d->rt_period;
10257 runtime = d->rt_runtime;
b40b2e8e 10258 }
b40b2e8e 10259
98a4826b
PZ
10260#ifdef CONFIG_USER_SCHED
10261 if (tg == &root_task_group) {
10262 period = global_rt_period();
10263 runtime = global_rt_runtime();
10264 }
10265#endif
10266
4653f803
PZ
10267 /*
10268 * Cannot have more runtime than the period.
10269 */
10270 if (runtime > period && runtime != RUNTIME_INF)
10271 return -EINVAL;
6f505b16 10272
4653f803
PZ
10273 /*
10274 * Ensure we don't starve existing RT tasks.
10275 */
9a7e0b18
PZ
10276 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10277 return -EBUSY;
6f505b16 10278
9a7e0b18 10279 total = to_ratio(period, runtime);
6f505b16 10280
4653f803
PZ
10281 /*
10282 * Nobody can have more than the global setting allows.
10283 */
10284 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10285 return -EINVAL;
6f505b16 10286
4653f803
PZ
10287 /*
10288 * The sum of our children's runtime should not exceed our own.
10289 */
9a7e0b18
PZ
10290 list_for_each_entry_rcu(child, &tg->children, siblings) {
10291 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10292 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10293
9a7e0b18
PZ
10294 if (child == d->tg) {
10295 period = d->rt_period;
10296 runtime = d->rt_runtime;
10297 }
6f505b16 10298
9a7e0b18 10299 sum += to_ratio(period, runtime);
9f0c1e56 10300 }
6f505b16 10301
9a7e0b18
PZ
10302 if (sum > total)
10303 return -EINVAL;
10304
10305 return 0;
6f505b16
PZ
10306}
10307
9a7e0b18 10308static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10309{
9a7e0b18
PZ
10310 struct rt_schedulable_data data = {
10311 .tg = tg,
10312 .rt_period = period,
10313 .rt_runtime = runtime,
10314 };
10315
10316 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10317}
10318
d0b27fa7
PZ
10319static int tg_set_bandwidth(struct task_group *tg,
10320 u64 rt_period, u64 rt_runtime)
6f505b16 10321{
ac086bc2 10322 int i, err = 0;
9f0c1e56 10323
9f0c1e56 10324 mutex_lock(&rt_constraints_mutex);
521f1a24 10325 read_lock(&tasklist_lock);
9a7e0b18
PZ
10326 err = __rt_schedulable(tg, rt_period, rt_runtime);
10327 if (err)
9f0c1e56 10328 goto unlock;
ac086bc2 10329
0986b11b 10330 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10331 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10332 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10333
10334 for_each_possible_cpu(i) {
10335 struct rt_rq *rt_rq = tg->rt_rq[i];
10336
0986b11b 10337 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10338 rt_rq->rt_runtime = rt_runtime;
0986b11b 10339 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10340 }
0986b11b 10341 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10342 unlock:
521f1a24 10343 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10344 mutex_unlock(&rt_constraints_mutex);
10345
10346 return err;
6f505b16
PZ
10347}
10348
d0b27fa7
PZ
10349int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10350{
10351 u64 rt_runtime, rt_period;
10352
10353 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10354 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10355 if (rt_runtime_us < 0)
10356 rt_runtime = RUNTIME_INF;
10357
10358 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10359}
10360
9f0c1e56
PZ
10361long sched_group_rt_runtime(struct task_group *tg)
10362{
10363 u64 rt_runtime_us;
10364
d0b27fa7 10365 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10366 return -1;
10367
d0b27fa7 10368 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10369 do_div(rt_runtime_us, NSEC_PER_USEC);
10370 return rt_runtime_us;
10371}
d0b27fa7
PZ
10372
10373int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10374{
10375 u64 rt_runtime, rt_period;
10376
10377 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10378 rt_runtime = tg->rt_bandwidth.rt_runtime;
10379
619b0488
R
10380 if (rt_period == 0)
10381 return -EINVAL;
10382
d0b27fa7
PZ
10383 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10384}
10385
10386long sched_group_rt_period(struct task_group *tg)
10387{
10388 u64 rt_period_us;
10389
10390 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10391 do_div(rt_period_us, NSEC_PER_USEC);
10392 return rt_period_us;
10393}
10394
10395static int sched_rt_global_constraints(void)
10396{
4653f803 10397 u64 runtime, period;
d0b27fa7
PZ
10398 int ret = 0;
10399
ec5d4989
HS
10400 if (sysctl_sched_rt_period <= 0)
10401 return -EINVAL;
10402
4653f803
PZ
10403 runtime = global_rt_runtime();
10404 period = global_rt_period();
10405
10406 /*
10407 * Sanity check on the sysctl variables.
10408 */
10409 if (runtime > period && runtime != RUNTIME_INF)
10410 return -EINVAL;
10b612f4 10411
d0b27fa7 10412 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10413 read_lock(&tasklist_lock);
4653f803 10414 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10415 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10416 mutex_unlock(&rt_constraints_mutex);
10417
10418 return ret;
10419}
54e99124
DG
10420
10421int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10422{
10423 /* Don't accept realtime tasks when there is no way for them to run */
10424 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10425 return 0;
10426
10427 return 1;
10428}
10429
6d6bc0ad 10430#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10431static int sched_rt_global_constraints(void)
10432{
ac086bc2
PZ
10433 unsigned long flags;
10434 int i;
10435
ec5d4989
HS
10436 if (sysctl_sched_rt_period <= 0)
10437 return -EINVAL;
10438
60aa605d
PZ
10439 /*
10440 * There's always some RT tasks in the root group
10441 * -- migration, kstopmachine etc..
10442 */
10443 if (sysctl_sched_rt_runtime == 0)
10444 return -EBUSY;
10445
0986b11b 10446 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
10447 for_each_possible_cpu(i) {
10448 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10449
0986b11b 10450 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 10451 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 10452 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 10453 }
0986b11b 10454 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 10455
d0b27fa7
PZ
10456 return 0;
10457}
6d6bc0ad 10458#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10459
10460int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 10461 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
10462 loff_t *ppos)
10463{
10464 int ret;
10465 int old_period, old_runtime;
10466 static DEFINE_MUTEX(mutex);
10467
10468 mutex_lock(&mutex);
10469 old_period = sysctl_sched_rt_period;
10470 old_runtime = sysctl_sched_rt_runtime;
10471
8d65af78 10472 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
10473
10474 if (!ret && write) {
10475 ret = sched_rt_global_constraints();
10476 if (ret) {
10477 sysctl_sched_rt_period = old_period;
10478 sysctl_sched_rt_runtime = old_runtime;
10479 } else {
10480 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10481 def_rt_bandwidth.rt_period =
10482 ns_to_ktime(global_rt_period());
10483 }
10484 }
10485 mutex_unlock(&mutex);
10486
10487 return ret;
10488}
68318b8e 10489
052f1dc7 10490#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10491
10492/* return corresponding task_group object of a cgroup */
2b01dfe3 10493static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10494{
2b01dfe3
PM
10495 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10496 struct task_group, css);
68318b8e
SV
10497}
10498
10499static struct cgroup_subsys_state *
2b01dfe3 10500cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10501{
ec7dc8ac 10502 struct task_group *tg, *parent;
68318b8e 10503
2b01dfe3 10504 if (!cgrp->parent) {
68318b8e 10505 /* This is early initialization for the top cgroup */
68318b8e
SV
10506 return &init_task_group.css;
10507 }
10508
ec7dc8ac
DG
10509 parent = cgroup_tg(cgrp->parent);
10510 tg = sched_create_group(parent);
68318b8e
SV
10511 if (IS_ERR(tg))
10512 return ERR_PTR(-ENOMEM);
10513
68318b8e
SV
10514 return &tg->css;
10515}
10516
41a2d6cf
IM
10517static void
10518cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10519{
2b01dfe3 10520 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10521
10522 sched_destroy_group(tg);
10523}
10524
41a2d6cf 10525static int
be367d09 10526cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 10527{
b68aa230 10528#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10529 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10530 return -EINVAL;
10531#else
68318b8e
SV
10532 /* We don't support RT-tasks being in separate groups */
10533 if (tsk->sched_class != &fair_sched_class)
10534 return -EINVAL;
b68aa230 10535#endif
be367d09
BB
10536 return 0;
10537}
68318b8e 10538
be367d09
BB
10539static int
10540cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10541 struct task_struct *tsk, bool threadgroup)
10542{
10543 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10544 if (retval)
10545 return retval;
10546 if (threadgroup) {
10547 struct task_struct *c;
10548 rcu_read_lock();
10549 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10550 retval = cpu_cgroup_can_attach_task(cgrp, c);
10551 if (retval) {
10552 rcu_read_unlock();
10553 return retval;
10554 }
10555 }
10556 rcu_read_unlock();
10557 }
68318b8e
SV
10558 return 0;
10559}
10560
10561static void
2b01dfe3 10562cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
10563 struct cgroup *old_cont, struct task_struct *tsk,
10564 bool threadgroup)
68318b8e
SV
10565{
10566 sched_move_task(tsk);
be367d09
BB
10567 if (threadgroup) {
10568 struct task_struct *c;
10569 rcu_read_lock();
10570 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10571 sched_move_task(c);
10572 }
10573 rcu_read_unlock();
10574 }
68318b8e
SV
10575}
10576
052f1dc7 10577#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10578static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10579 u64 shareval)
68318b8e 10580{
2b01dfe3 10581 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10582}
10583
f4c753b7 10584static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10585{
2b01dfe3 10586 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10587
10588 return (u64) tg->shares;
10589}
6d6bc0ad 10590#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10591
052f1dc7 10592#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10593static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10594 s64 val)
6f505b16 10595{
06ecb27c 10596 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10597}
10598
06ecb27c 10599static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10600{
06ecb27c 10601 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10602}
d0b27fa7
PZ
10603
10604static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10605 u64 rt_period_us)
10606{
10607 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10608}
10609
10610static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10611{
10612 return sched_group_rt_period(cgroup_tg(cgrp));
10613}
6d6bc0ad 10614#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10615
fe5c7cc2 10616static struct cftype cpu_files[] = {
052f1dc7 10617#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10618 {
10619 .name = "shares",
f4c753b7
PM
10620 .read_u64 = cpu_shares_read_u64,
10621 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10622 },
052f1dc7
PZ
10623#endif
10624#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10625 {
9f0c1e56 10626 .name = "rt_runtime_us",
06ecb27c
PM
10627 .read_s64 = cpu_rt_runtime_read,
10628 .write_s64 = cpu_rt_runtime_write,
6f505b16 10629 },
d0b27fa7
PZ
10630 {
10631 .name = "rt_period_us",
f4c753b7
PM
10632 .read_u64 = cpu_rt_period_read_uint,
10633 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10634 },
052f1dc7 10635#endif
68318b8e
SV
10636};
10637
10638static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10639{
fe5c7cc2 10640 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10641}
10642
10643struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10644 .name = "cpu",
10645 .create = cpu_cgroup_create,
10646 .destroy = cpu_cgroup_destroy,
10647 .can_attach = cpu_cgroup_can_attach,
10648 .attach = cpu_cgroup_attach,
10649 .populate = cpu_cgroup_populate,
10650 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10651 .early_init = 1,
10652};
10653
052f1dc7 10654#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10655
10656#ifdef CONFIG_CGROUP_CPUACCT
10657
10658/*
10659 * CPU accounting code for task groups.
10660 *
10661 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10662 * (balbir@in.ibm.com).
10663 */
10664
934352f2 10665/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10666struct cpuacct {
10667 struct cgroup_subsys_state css;
10668 /* cpuusage holds pointer to a u64-type object on every cpu */
10669 u64 *cpuusage;
ef12fefa 10670 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10671 struct cpuacct *parent;
d842de87
SV
10672};
10673
10674struct cgroup_subsys cpuacct_subsys;
10675
10676/* return cpu accounting group corresponding to this container */
32cd756a 10677static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10678{
32cd756a 10679 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10680 struct cpuacct, css);
10681}
10682
10683/* return cpu accounting group to which this task belongs */
10684static inline struct cpuacct *task_ca(struct task_struct *tsk)
10685{
10686 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10687 struct cpuacct, css);
10688}
10689
10690/* create a new cpu accounting group */
10691static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10692 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10693{
10694 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10695 int i;
d842de87
SV
10696
10697 if (!ca)
ef12fefa 10698 goto out;
d842de87
SV
10699
10700 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10701 if (!ca->cpuusage)
10702 goto out_free_ca;
10703
10704 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10705 if (percpu_counter_init(&ca->cpustat[i], 0))
10706 goto out_free_counters;
d842de87 10707
934352f2
BR
10708 if (cgrp->parent)
10709 ca->parent = cgroup_ca(cgrp->parent);
10710
d842de87 10711 return &ca->css;
ef12fefa
BR
10712
10713out_free_counters:
10714 while (--i >= 0)
10715 percpu_counter_destroy(&ca->cpustat[i]);
10716 free_percpu(ca->cpuusage);
10717out_free_ca:
10718 kfree(ca);
10719out:
10720 return ERR_PTR(-ENOMEM);
d842de87
SV
10721}
10722
10723/* destroy an existing cpu accounting group */
41a2d6cf 10724static void
32cd756a 10725cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10726{
32cd756a 10727 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10728 int i;
d842de87 10729
ef12fefa
BR
10730 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10731 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10732 free_percpu(ca->cpuusage);
10733 kfree(ca);
10734}
10735
720f5498
KC
10736static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10737{
b36128c8 10738 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10739 u64 data;
10740
10741#ifndef CONFIG_64BIT
10742 /*
10743 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10744 */
05fa785c 10745 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10746 data = *cpuusage;
05fa785c 10747 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10748#else
10749 data = *cpuusage;
10750#endif
10751
10752 return data;
10753}
10754
10755static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10756{
b36128c8 10757 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10758
10759#ifndef CONFIG_64BIT
10760 /*
10761 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10762 */
05fa785c 10763 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 10764 *cpuusage = val;
05fa785c 10765 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
10766#else
10767 *cpuusage = val;
10768#endif
10769}
10770
d842de87 10771/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10772static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10773{
32cd756a 10774 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10775 u64 totalcpuusage = 0;
10776 int i;
10777
720f5498
KC
10778 for_each_present_cpu(i)
10779 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10780
10781 return totalcpuusage;
10782}
10783
0297b803
DG
10784static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10785 u64 reset)
10786{
10787 struct cpuacct *ca = cgroup_ca(cgrp);
10788 int err = 0;
10789 int i;
10790
10791 if (reset) {
10792 err = -EINVAL;
10793 goto out;
10794 }
10795
720f5498
KC
10796 for_each_present_cpu(i)
10797 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10798
0297b803
DG
10799out:
10800 return err;
10801}
10802
e9515c3c
KC
10803static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10804 struct seq_file *m)
10805{
10806 struct cpuacct *ca = cgroup_ca(cgroup);
10807 u64 percpu;
10808 int i;
10809
10810 for_each_present_cpu(i) {
10811 percpu = cpuacct_cpuusage_read(ca, i);
10812 seq_printf(m, "%llu ", (unsigned long long) percpu);
10813 }
10814 seq_printf(m, "\n");
10815 return 0;
10816}
10817
ef12fefa
BR
10818static const char *cpuacct_stat_desc[] = {
10819 [CPUACCT_STAT_USER] = "user",
10820 [CPUACCT_STAT_SYSTEM] = "system",
10821};
10822
10823static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10824 struct cgroup_map_cb *cb)
10825{
10826 struct cpuacct *ca = cgroup_ca(cgrp);
10827 int i;
10828
10829 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10830 s64 val = percpu_counter_read(&ca->cpustat[i]);
10831 val = cputime64_to_clock_t(val);
10832 cb->fill(cb, cpuacct_stat_desc[i], val);
10833 }
10834 return 0;
10835}
10836
d842de87
SV
10837static struct cftype files[] = {
10838 {
10839 .name = "usage",
f4c753b7
PM
10840 .read_u64 = cpuusage_read,
10841 .write_u64 = cpuusage_write,
d842de87 10842 },
e9515c3c
KC
10843 {
10844 .name = "usage_percpu",
10845 .read_seq_string = cpuacct_percpu_seq_read,
10846 },
ef12fefa
BR
10847 {
10848 .name = "stat",
10849 .read_map = cpuacct_stats_show,
10850 },
d842de87
SV
10851};
10852
32cd756a 10853static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10854{
32cd756a 10855 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10856}
10857
10858/*
10859 * charge this task's execution time to its accounting group.
10860 *
10861 * called with rq->lock held.
10862 */
10863static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10864{
10865 struct cpuacct *ca;
934352f2 10866 int cpu;
d842de87 10867
c40c6f85 10868 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10869 return;
10870
934352f2 10871 cpu = task_cpu(tsk);
a18b83b7
BR
10872
10873 rcu_read_lock();
10874
d842de87 10875 ca = task_ca(tsk);
d842de87 10876
934352f2 10877 for (; ca; ca = ca->parent) {
b36128c8 10878 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10879 *cpuusage += cputime;
10880 }
a18b83b7
BR
10881
10882 rcu_read_unlock();
d842de87
SV
10883}
10884
ef12fefa
BR
10885/*
10886 * Charge the system/user time to the task's accounting group.
10887 */
10888static void cpuacct_update_stats(struct task_struct *tsk,
10889 enum cpuacct_stat_index idx, cputime_t val)
10890{
10891 struct cpuacct *ca;
10892
10893 if (unlikely(!cpuacct_subsys.active))
10894 return;
10895
10896 rcu_read_lock();
10897 ca = task_ca(tsk);
10898
10899 do {
10900 percpu_counter_add(&ca->cpustat[idx], val);
10901 ca = ca->parent;
10902 } while (ca);
10903 rcu_read_unlock();
10904}
10905
d842de87
SV
10906struct cgroup_subsys cpuacct_subsys = {
10907 .name = "cpuacct",
10908 .create = cpuacct_create,
10909 .destroy = cpuacct_destroy,
10910 .populate = cpuacct_populate,
10911 .subsys_id = cpuacct_subsys_id,
10912};
10913#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
10914
10915#ifndef CONFIG_SMP
10916
10917int rcu_expedited_torture_stats(char *page)
10918{
10919 return 0;
10920}
10921EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10922
10923void synchronize_sched_expedited(void)
10924{
10925}
10926EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10927
10928#else /* #ifndef CONFIG_SMP */
10929
10930static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10931static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10932
10933#define RCU_EXPEDITED_STATE_POST -2
10934#define RCU_EXPEDITED_STATE_IDLE -1
10935
10936static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10937
10938int rcu_expedited_torture_stats(char *page)
10939{
10940 int cnt = 0;
10941 int cpu;
10942
10943 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10944 for_each_online_cpu(cpu) {
10945 cnt += sprintf(&page[cnt], " %d:%d",
10946 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10947 }
10948 cnt += sprintf(&page[cnt], "\n");
10949 return cnt;
10950}
10951EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10952
10953static long synchronize_sched_expedited_count;
10954
10955/*
10956 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10957 * approach to force grace period to end quickly. This consumes
10958 * significant time on all CPUs, and is thus not recommended for
10959 * any sort of common-case code.
10960 *
10961 * Note that it is illegal to call this function while holding any
10962 * lock that is acquired by a CPU-hotplug notifier. Failing to
10963 * observe this restriction will result in deadlock.
10964 */
10965void synchronize_sched_expedited(void)
10966{
10967 int cpu;
10968 unsigned long flags;
10969 bool need_full_sync = 0;
10970 struct rq *rq;
10971 struct migration_req *req;
10972 long snap;
10973 int trycount = 0;
10974
10975 smp_mb(); /* ensure prior mod happens before capturing snap. */
10976 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10977 get_online_cpus();
10978 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10979 put_online_cpus();
10980 if (trycount++ < 10)
10981 udelay(trycount * num_online_cpus());
10982 else {
10983 synchronize_sched();
10984 return;
10985 }
10986 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10987 smp_mb(); /* ensure test happens before caller kfree */
10988 return;
10989 }
10990 get_online_cpus();
10991 }
10992 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10993 for_each_online_cpu(cpu) {
10994 rq = cpu_rq(cpu);
10995 req = &per_cpu(rcu_migration_req, cpu);
10996 init_completion(&req->done);
10997 req->task = NULL;
10998 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 10999 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 11000 list_add(&req->list, &rq->migration_queue);
05fa785c 11001 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11002 wake_up_process(rq->migration_thread);
11003 }
11004 for_each_online_cpu(cpu) {
11005 rcu_expedited_state = cpu;
11006 req = &per_cpu(rcu_migration_req, cpu);
11007 rq = cpu_rq(cpu);
11008 wait_for_completion(&req->done);
05fa785c 11009 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
11010 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11011 need_full_sync = 1;
11012 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 11013 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
11014 }
11015 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 11016 synchronize_sched_expedited_count++;
03b042bf
PM
11017 mutex_unlock(&rcu_sched_expedited_mutex);
11018 put_online_cpus();
11019 if (need_full_sync)
11020 synchronize_sched();
11021}
11022EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11023
11024#endif /* #else #ifndef CONFIG_SMP */