sched: fix the task_group hierarchy for UID grouping
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
1da177e4 71
5517d86b 72#include <asm/tlb.h>
838225b4 73#include <asm/irq_regs.h>
1da177e4 74
b035b6de
AD
75/*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80unsigned long long __attribute__((weak)) sched_clock(void)
81{
d6322faf 82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
83}
84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
5517d86b
ED
124#ifdef CONFIG_SMP
125/*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130{
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132}
133
134/*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139{
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142}
143#endif
144
e05606d3
IM
145static inline int rt_policy(int policy)
146{
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150}
151
152static inline int task_has_rt_policy(struct task_struct *p)
153{
154 return rt_policy(p->policy);
155}
156
1da177e4 157/*
6aa645ea 158 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 159 */
6aa645ea
IM
160struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163};
164
d0b27fa7 165struct rt_bandwidth {
ea736ed5
IM
166 /* nests inside the rq lock: */
167 spinlock_t rt_runtime_lock;
168 ktime_t rt_period;
169 u64 rt_runtime;
170 struct hrtimer rt_period_timer;
d0b27fa7
PZ
171};
172
173static struct rt_bandwidth def_rt_bandwidth;
174
175static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
176
177static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
178{
179 struct rt_bandwidth *rt_b =
180 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 ktime_t now;
182 int overrun;
183 int idle = 0;
184
185 for (;;) {
186 now = hrtimer_cb_get_time(timer);
187 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
188
189 if (!overrun)
190 break;
191
192 idle = do_sched_rt_period_timer(rt_b, overrun);
193 }
194
195 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196}
197
198static
199void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
200{
201 rt_b->rt_period = ns_to_ktime(period);
202 rt_b->rt_runtime = runtime;
203
ac086bc2
PZ
204 spin_lock_init(&rt_b->rt_runtime_lock);
205
d0b27fa7
PZ
206 hrtimer_init(&rt_b->rt_period_timer,
207 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
208 rt_b->rt_period_timer.function = sched_rt_period_timer;
209 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
210}
211
212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213{
214 ktime_t now;
215
216 if (rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234}
235
236#ifdef CONFIG_RT_GROUP_SCHED
237static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238{
239 hrtimer_cancel(&rt_b->rt_period_timer);
240}
241#endif
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
29f59db3
SV
274};
275
354d60c2 276#ifdef CONFIG_USER_SCHED
eff766a6
PZ
277
278/*
279 * Root task group.
280 * Every UID task group (including init_task_group aka UID-0) will
281 * be a child to this group.
282 */
283struct task_group root_task_group;
284
052f1dc7 285#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
286/* Default task group's sched entity on each cpu */
287static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
288/* Default task group's cfs_rq on each cpu */
289static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
290#endif
291
292#ifdef CONFIG_RT_GROUP_SCHED
293static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
294static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 295#endif
eff766a6
PZ
296#else
297#define root_task_group init_task_group
354d60c2 298#endif
6f505b16 299
8ed36996 300/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
301 * a task group's cpu shares.
302 */
8ed36996 303static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 304
a1835615
SV
305/* doms_cur_mutex serializes access to doms_cur[] array */
306static DEFINE_MUTEX(doms_cur_mutex);
307
052f1dc7 308#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
309#ifdef CONFIG_USER_SCHED
310# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311#else
312# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313#endif
314
052f1dc7
PZ
315static int init_task_group_load = INIT_TASK_GROUP_LOAD;
316#endif
317
29f59db3 318/* Default task group.
3a252015 319 * Every task in system belong to this group at bootup.
29f59db3 320 */
434d53b0 321struct task_group init_task_group;
29f59db3
SV
322
323/* return group to which a task belongs */
4cf86d77 324static inline struct task_group *task_group(struct task_struct *p)
29f59db3 325{
4cf86d77 326 struct task_group *tg;
9b5b7751 327
052f1dc7 328#ifdef CONFIG_USER_SCHED
24e377a8 329 tg = p->user->tg;
052f1dc7 330#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
331 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
332 struct task_group, css);
24e377a8 333#else
41a2d6cf 334 tg = &init_task_group;
24e377a8 335#endif
9b5b7751 336 return tg;
29f59db3
SV
337}
338
339/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 340static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 341{
052f1dc7 342#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
343 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
344 p->se.parent = task_group(p)->se[cpu];
052f1dc7 345#endif
6f505b16 346
052f1dc7 347#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
348 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
349 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 350#endif
29f59db3
SV
351}
352
a1835615
SV
353static inline void lock_doms_cur(void)
354{
355 mutex_lock(&doms_cur_mutex);
356}
357
358static inline void unlock_doms_cur(void)
359{
360 mutex_unlock(&doms_cur_mutex);
361}
362
29f59db3
SV
363#else
364
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
366static inline void lock_doms_cur(void) { }
367static inline void unlock_doms_cur(void) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
6aa645ea
IM
378
379 struct rb_root tasks_timeline;
380 struct rb_node *rb_leftmost;
381 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
382 /* 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
aa2ac252 385 struct sched_entity *curr, *next;
ddc97297
PZ
386
387 unsigned long nr_spread_over;
388
62160e3f 389#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
390 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
391
41a2d6cf
IM
392 /*
393 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
394 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
395 * (like users, containers etc.)
396 *
397 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
398 * list is used during load balance.
399 */
41a2d6cf
IM
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
402#endif
403};
1da177e4 404
6aa645ea
IM
405/* Real-Time classes' related field in a runqueue: */
406struct rt_rq {
407 struct rt_prio_array active;
63489e45 408 unsigned long rt_nr_running;
052f1dc7 409#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
410 int highest_prio; /* highest queued rt task prio */
411#endif
fa85ae24 412#ifdef CONFIG_SMP
73fe6aae 413 unsigned long rt_nr_migratory;
a22d7fc1 414 int overloaded;
fa85ae24 415#endif
6f505b16 416 int rt_throttled;
fa85ae24 417 u64 rt_time;
ac086bc2 418 u64 rt_runtime;
ea736ed5 419 /* Nests inside the rq lock: */
ac086bc2 420 spinlock_t rt_runtime_lock;
6f505b16 421
052f1dc7 422#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
423 unsigned long rt_nr_boosted;
424
6f505b16
PZ
425 struct rq *rq;
426 struct list_head leaf_rt_rq_list;
427 struct task_group *tg;
428 struct sched_rt_entity *rt_se;
429#endif
6aa645ea
IM
430};
431
57d885fe
GH
432#ifdef CONFIG_SMP
433
434/*
435 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
436 * variables. Each exclusive cpuset essentially defines an island domain by
437 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
438 * exclusive cpuset is created, we also create and attach a new root-domain
439 * object.
440 *
57d885fe
GH
441 */
442struct root_domain {
443 atomic_t refcount;
444 cpumask_t span;
445 cpumask_t online;
637f5085 446
0eab9146 447 /*
637f5085
GH
448 * The "RT overload" flag: it gets set if a CPU has more than
449 * one runnable RT task.
450 */
451 cpumask_t rto_mask;
0eab9146 452 atomic_t rto_count;
57d885fe
GH
453};
454
dc938520
GH
455/*
456 * By default the system creates a single root-domain with all cpus as
457 * members (mimicking the global state we have today).
458 */
57d885fe
GH
459static struct root_domain def_root_domain;
460
461#endif
462
1da177e4
LT
463/*
464 * This is the main, per-CPU runqueue data structure.
465 *
466 * Locking rule: those places that want to lock multiple runqueues
467 * (such as the load balancing or the thread migration code), lock
468 * acquire operations must be ordered by ascending &runqueue.
469 */
70b97a7f 470struct rq {
d8016491
IM
471 /* runqueue lock: */
472 spinlock_t lock;
1da177e4
LT
473
474 /*
475 * nr_running and cpu_load should be in the same cacheline because
476 * remote CPUs use both these fields when doing load calculation.
477 */
478 unsigned long nr_running;
6aa645ea
IM
479 #define CPU_LOAD_IDX_MAX 5
480 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 481 unsigned char idle_at_tick;
46cb4b7c 482#ifdef CONFIG_NO_HZ
15934a37 483 unsigned long last_tick_seen;
46cb4b7c
SS
484 unsigned char in_nohz_recently;
485#endif
d8016491
IM
486 /* capture load from *all* tasks on this cpu: */
487 struct load_weight load;
6aa645ea
IM
488 unsigned long nr_load_updates;
489 u64 nr_switches;
490
491 struct cfs_rq cfs;
6f505b16 492 struct rt_rq rt;
6f505b16 493
6aa645ea 494#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
495 /* list of leaf cfs_rq on this cpu: */
496 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
497#endif
498#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 499 struct list_head leaf_rt_rq_list;
1da177e4 500#endif
1da177e4
LT
501
502 /*
503 * This is part of a global counter where only the total sum
504 * over all CPUs matters. A task can increase this counter on
505 * one CPU and if it got migrated afterwards it may decrease
506 * it on another CPU. Always updated under the runqueue lock:
507 */
508 unsigned long nr_uninterruptible;
509
36c8b586 510 struct task_struct *curr, *idle;
c9819f45 511 unsigned long next_balance;
1da177e4 512 struct mm_struct *prev_mm;
6aa645ea 513
6aa645ea
IM
514 u64 clock, prev_clock_raw;
515 s64 clock_max_delta;
516
cc203d24 517 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
518 u64 idle_clock;
519 unsigned int clock_deep_idle_events;
529c7726 520 u64 tick_timestamp;
6aa645ea 521
1da177e4
LT
522 atomic_t nr_iowait;
523
524#ifdef CONFIG_SMP
0eab9146 525 struct root_domain *rd;
1da177e4
LT
526 struct sched_domain *sd;
527
528 /* For active balancing */
529 int active_balance;
530 int push_cpu;
d8016491
IM
531 /* cpu of this runqueue: */
532 int cpu;
1da177e4 533
36c8b586 534 struct task_struct *migration_thread;
1da177e4
LT
535 struct list_head migration_queue;
536#endif
537
8f4d37ec
PZ
538#ifdef CONFIG_SCHED_HRTICK
539 unsigned long hrtick_flags;
540 ktime_t hrtick_expire;
541 struct hrtimer hrtick_timer;
542#endif
543
1da177e4
LT
544#ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547
548 /* sys_sched_yield() stats */
480b9434
KC
549 unsigned int yld_exp_empty;
550 unsigned int yld_act_empty;
551 unsigned int yld_both_empty;
552 unsigned int yld_count;
1da177e4
LT
553
554 /* schedule() stats */
480b9434
KC
555 unsigned int sched_switch;
556 unsigned int sched_count;
557 unsigned int sched_goidle;
1da177e4
LT
558
559 /* try_to_wake_up() stats */
480b9434
KC
560 unsigned int ttwu_count;
561 unsigned int ttwu_local;
b8efb561
IM
562
563 /* BKL stats */
480b9434 564 unsigned int bkl_count;
1da177e4 565#endif
fcb99371 566 struct lock_class_key rq_lock_key;
1da177e4
LT
567};
568
f34e3b61 569static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 570
dd41f596
IM
571static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572{
573 rq->curr->sched_class->check_preempt_curr(rq, p);
574}
575
0a2966b4
CL
576static inline int cpu_of(struct rq *rq)
577{
578#ifdef CONFIG_SMP
579 return rq->cpu;
580#else
581 return 0;
582#endif
583}
584
15934a37
GC
585#ifdef CONFIG_NO_HZ
586static inline bool nohz_on(int cpu)
587{
588 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
589}
590
591static inline u64 max_skipped_ticks(struct rq *rq)
592{
593 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
594}
595
596static inline void update_last_tick_seen(struct rq *rq)
597{
598 rq->last_tick_seen = jiffies;
599}
600#else
601static inline u64 max_skipped_ticks(struct rq *rq)
602{
603 return 1;
604}
605
606static inline void update_last_tick_seen(struct rq *rq)
607{
608}
609#endif
610
20d315d4 611/*
b04a0f4c
IM
612 * Update the per-runqueue clock, as finegrained as the platform can give
613 * us, but without assuming monotonicity, etc.:
20d315d4 614 */
b04a0f4c 615static void __update_rq_clock(struct rq *rq)
20d315d4
IM
616{
617 u64 prev_raw = rq->prev_clock_raw;
618 u64 now = sched_clock();
619 s64 delta = now - prev_raw;
620 u64 clock = rq->clock;
621
b04a0f4c
IM
622#ifdef CONFIG_SCHED_DEBUG
623 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
624#endif
20d315d4
IM
625 /*
626 * Protect against sched_clock() occasionally going backwards:
627 */
628 if (unlikely(delta < 0)) {
629 clock++;
630 rq->clock_warps++;
631 } else {
632 /*
633 * Catch too large forward jumps too:
634 */
15934a37
GC
635 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
636 u64 max_time = rq->tick_timestamp + max_jump;
637
638 if (unlikely(clock + delta > max_time)) {
639 if (clock < max_time)
640 clock = max_time;
529c7726
IM
641 else
642 clock++;
20d315d4
IM
643 rq->clock_overflows++;
644 } else {
645 if (unlikely(delta > rq->clock_max_delta))
646 rq->clock_max_delta = delta;
647 clock += delta;
648 }
649 }
650
651 rq->prev_clock_raw = now;
652 rq->clock = clock;
b04a0f4c 653}
20d315d4 654
b04a0f4c
IM
655static void update_rq_clock(struct rq *rq)
656{
657 if (likely(smp_processor_id() == cpu_of(rq)))
658 __update_rq_clock(rq);
20d315d4
IM
659}
660
674311d5
NP
661/*
662 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 663 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
664 *
665 * The domain tree of any CPU may only be accessed from within
666 * preempt-disabled sections.
667 */
48f24c4d
IM
668#define for_each_domain(cpu, __sd) \
669 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
670
671#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
672#define this_rq() (&__get_cpu_var(runqueues))
673#define task_rq(p) cpu_rq(task_cpu(p))
674#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
685/*
686 * Debugging: various feature bits
687 */
688enum {
bbdba7c0 689 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
690 SCHED_FEAT_WAKEUP_PREEMPT = 2,
691 SCHED_FEAT_START_DEBIT = 4,
d25ce4cd
IM
692 SCHED_FEAT_AFFINE_WAKEUPS = 8,
693 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
02e2b83b
IM
694 SCHED_FEAT_SYNC_WAKEUPS = 32,
695 SCHED_FEAT_HRTICK = 64,
696 SCHED_FEAT_DOUBLE_TICK = 128,
112f53f5 697 SCHED_FEAT_NORMALIZED_SLEEPER = 256,
bf5c91ba
IM
698};
699
700const_debug unsigned int sysctl_sched_features =
8401f775 701 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 702 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 703 SCHED_FEAT_START_DEBIT * 1 |
d25ce4cd
IM
704 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
705 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
02e2b83b 706 SCHED_FEAT_SYNC_WAKEUPS * 1 |
8f4d37ec 707 SCHED_FEAT_HRTICK * 1 |
112f53f5
PZ
708 SCHED_FEAT_DOUBLE_TICK * 0 |
709 SCHED_FEAT_NORMALIZED_SLEEPER * 1;
bf5c91ba
IM
710
711#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
712
b82d9fdd
PZ
713/*
714 * Number of tasks to iterate in a single balance run.
715 * Limited because this is done with IRQs disabled.
716 */
717const_debug unsigned int sysctl_sched_nr_migrate = 32;
718
fa85ae24 719/*
9f0c1e56 720 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
721 * default: 1s
722 */
9f0c1e56 723unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 724
6892b75e
IM
725static __read_mostly int scheduler_running;
726
9f0c1e56
PZ
727/*
728 * part of the period that we allow rt tasks to run in us.
729 * default: 0.95s
730 */
731int sysctl_sched_rt_runtime = 950000;
fa85ae24 732
d0b27fa7
PZ
733static inline u64 global_rt_period(void)
734{
735 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
736}
737
738static inline u64 global_rt_runtime(void)
739{
740 if (sysctl_sched_rt_period < 0)
741 return RUNTIME_INF;
742
743 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
744}
fa85ae24 745
27ec4407
IM
746static const unsigned long long time_sync_thresh = 100000;
747
748static DEFINE_PER_CPU(unsigned long long, time_offset);
749static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
750
e436d800 751/*
27ec4407
IM
752 * Global lock which we take every now and then to synchronize
753 * the CPUs time. This method is not warp-safe, but it's good
754 * enough to synchronize slowly diverging time sources and thus
755 * it's good enough for tracing:
e436d800 756 */
27ec4407
IM
757static DEFINE_SPINLOCK(time_sync_lock);
758static unsigned long long prev_global_time;
759
760static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
761{
762 unsigned long flags;
763
764 spin_lock_irqsave(&time_sync_lock, flags);
765
766 if (time < prev_global_time) {
767 per_cpu(time_offset, cpu) += prev_global_time - time;
768 time = prev_global_time;
769 } else {
770 prev_global_time = time;
771 }
772
773 spin_unlock_irqrestore(&time_sync_lock, flags);
774
775 return time;
776}
777
778static unsigned long long __cpu_clock(int cpu)
e436d800 779{
e436d800
IM
780 unsigned long long now;
781 unsigned long flags;
b04a0f4c 782 struct rq *rq;
e436d800 783
8ced5f69
IM
784 /*
785 * Only call sched_clock() if the scheduler has already been
786 * initialized (some code might call cpu_clock() very early):
787 */
6892b75e
IM
788 if (unlikely(!scheduler_running))
789 return 0;
790
791 local_irq_save(flags);
792 rq = cpu_rq(cpu);
793 update_rq_clock(rq);
b04a0f4c 794 now = rq->clock;
2cd4d0ea 795 local_irq_restore(flags);
e436d800
IM
796
797 return now;
798}
27ec4407
IM
799
800/*
801 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
802 * clock constructed from sched_clock():
803 */
804unsigned long long cpu_clock(int cpu)
805{
806 unsigned long long prev_cpu_time, time, delta_time;
807
808 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
809 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
810 delta_time = time-prev_cpu_time;
811
812 if (unlikely(delta_time > time_sync_thresh))
813 time = __sync_cpu_clock(time, cpu);
814
815 return time;
816}
a58f6f25 817EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 818
1da177e4 819#ifndef prepare_arch_switch
4866cde0
NP
820# define prepare_arch_switch(next) do { } while (0)
821#endif
822#ifndef finish_arch_switch
823# define finish_arch_switch(prev) do { } while (0)
824#endif
825
051a1d1a
DA
826static inline int task_current(struct rq *rq, struct task_struct *p)
827{
828 return rq->curr == p;
829}
830
4866cde0 831#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 832static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 833{
051a1d1a 834 return task_current(rq, p);
4866cde0
NP
835}
836
70b97a7f 837static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
838{
839}
840
70b97a7f 841static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 842{
da04c035
IM
843#ifdef CONFIG_DEBUG_SPINLOCK
844 /* this is a valid case when another task releases the spinlock */
845 rq->lock.owner = current;
846#endif
8a25d5de
IM
847 /*
848 * If we are tracking spinlock dependencies then we have to
849 * fix up the runqueue lock - which gets 'carried over' from
850 * prev into current:
851 */
852 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
853
4866cde0
NP
854 spin_unlock_irq(&rq->lock);
855}
856
857#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
859{
860#ifdef CONFIG_SMP
861 return p->oncpu;
862#else
051a1d1a 863 return task_current(rq, p);
4866cde0
NP
864#endif
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869#ifdef CONFIG_SMP
870 /*
871 * We can optimise this out completely for !SMP, because the
872 * SMP rebalancing from interrupt is the only thing that cares
873 * here.
874 */
875 next->oncpu = 1;
876#endif
877#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
878 spin_unlock_irq(&rq->lock);
879#else
880 spin_unlock(&rq->lock);
881#endif
882}
883
70b97a7f 884static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
885{
886#ifdef CONFIG_SMP
887 /*
888 * After ->oncpu is cleared, the task can be moved to a different CPU.
889 * We must ensure this doesn't happen until the switch is completely
890 * finished.
891 */
892 smp_wmb();
893 prev->oncpu = 0;
894#endif
895#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
896 local_irq_enable();
1da177e4 897#endif
4866cde0
NP
898}
899#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 900
b29739f9
IM
901/*
902 * __task_rq_lock - lock the runqueue a given task resides on.
903 * Must be called interrupts disabled.
904 */
70b97a7f 905static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
906 __acquires(rq->lock)
907{
3a5c359a
AK
908 for (;;) {
909 struct rq *rq = task_rq(p);
910 spin_lock(&rq->lock);
911 if (likely(rq == task_rq(p)))
912 return rq;
b29739f9 913 spin_unlock(&rq->lock);
b29739f9 914 }
b29739f9
IM
915}
916
1da177e4
LT
917/*
918 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 919 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
920 * explicitly disabling preemption.
921 */
70b97a7f 922static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
923 __acquires(rq->lock)
924{
70b97a7f 925 struct rq *rq;
1da177e4 926
3a5c359a
AK
927 for (;;) {
928 local_irq_save(*flags);
929 rq = task_rq(p);
930 spin_lock(&rq->lock);
931 if (likely(rq == task_rq(p)))
932 return rq;
1da177e4 933 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 934 }
1da177e4
LT
935}
936
a9957449 937static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
938 __releases(rq->lock)
939{
940 spin_unlock(&rq->lock);
941}
942
70b97a7f 943static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
944 __releases(rq->lock)
945{
946 spin_unlock_irqrestore(&rq->lock, *flags);
947}
948
1da177e4 949/*
cc2a73b5 950 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 951 */
a9957449 952static struct rq *this_rq_lock(void)
1da177e4
LT
953 __acquires(rq->lock)
954{
70b97a7f 955 struct rq *rq;
1da177e4
LT
956
957 local_irq_disable();
958 rq = this_rq();
959 spin_lock(&rq->lock);
960
961 return rq;
962}
963
1b9f19c2 964/*
2aa44d05 965 * We are going deep-idle (irqs are disabled):
1b9f19c2 966 */
2aa44d05 967void sched_clock_idle_sleep_event(void)
1b9f19c2 968{
2aa44d05
IM
969 struct rq *rq = cpu_rq(smp_processor_id());
970
971 spin_lock(&rq->lock);
972 __update_rq_clock(rq);
973 spin_unlock(&rq->lock);
974 rq->clock_deep_idle_events++;
975}
976EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
977
978/*
979 * We just idled delta nanoseconds (called with irqs disabled):
980 */
981void sched_clock_idle_wakeup_event(u64 delta_ns)
982{
983 struct rq *rq = cpu_rq(smp_processor_id());
984 u64 now = sched_clock();
1b9f19c2 985
2aa44d05
IM
986 rq->idle_clock += delta_ns;
987 /*
988 * Override the previous timestamp and ignore all
989 * sched_clock() deltas that occured while we idled,
990 * and use the PM-provided delta_ns to advance the
991 * rq clock:
992 */
993 spin_lock(&rq->lock);
994 rq->prev_clock_raw = now;
995 rq->clock += delta_ns;
996 spin_unlock(&rq->lock);
782daeee 997 touch_softlockup_watchdog();
1b9f19c2 998}
2aa44d05 999EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 1000
8f4d37ec
PZ
1001static void __resched_task(struct task_struct *p, int tif_bit);
1002
1003static inline void resched_task(struct task_struct *p)
1004{
1005 __resched_task(p, TIF_NEED_RESCHED);
1006}
1007
1008#ifdef CONFIG_SCHED_HRTICK
1009/*
1010 * Use HR-timers to deliver accurate preemption points.
1011 *
1012 * Its all a bit involved since we cannot program an hrt while holding the
1013 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1014 * reschedule event.
1015 *
1016 * When we get rescheduled we reprogram the hrtick_timer outside of the
1017 * rq->lock.
1018 */
1019static inline void resched_hrt(struct task_struct *p)
1020{
1021 __resched_task(p, TIF_HRTICK_RESCHED);
1022}
1023
1024static inline void resched_rq(struct rq *rq)
1025{
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&rq->lock, flags);
1029 resched_task(rq->curr);
1030 spin_unlock_irqrestore(&rq->lock, flags);
1031}
1032
1033enum {
1034 HRTICK_SET, /* re-programm hrtick_timer */
1035 HRTICK_RESET, /* not a new slice */
1036};
1037
1038/*
1039 * Use hrtick when:
1040 * - enabled by features
1041 * - hrtimer is actually high res
1042 */
1043static inline int hrtick_enabled(struct rq *rq)
1044{
1045 if (!sched_feat(HRTICK))
1046 return 0;
1047 return hrtimer_is_hres_active(&rq->hrtick_timer);
1048}
1049
1050/*
1051 * Called to set the hrtick timer state.
1052 *
1053 * called with rq->lock held and irqs disabled
1054 */
1055static void hrtick_start(struct rq *rq, u64 delay, int reset)
1056{
1057 assert_spin_locked(&rq->lock);
1058
1059 /*
1060 * preempt at: now + delay
1061 */
1062 rq->hrtick_expire =
1063 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1064 /*
1065 * indicate we need to program the timer
1066 */
1067 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1068 if (reset)
1069 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1070
1071 /*
1072 * New slices are called from the schedule path and don't need a
1073 * forced reschedule.
1074 */
1075 if (reset)
1076 resched_hrt(rq->curr);
1077}
1078
1079static void hrtick_clear(struct rq *rq)
1080{
1081 if (hrtimer_active(&rq->hrtick_timer))
1082 hrtimer_cancel(&rq->hrtick_timer);
1083}
1084
1085/*
1086 * Update the timer from the possible pending state.
1087 */
1088static void hrtick_set(struct rq *rq)
1089{
1090 ktime_t time;
1091 int set, reset;
1092 unsigned long flags;
1093
1094 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1095
1096 spin_lock_irqsave(&rq->lock, flags);
1097 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1098 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1099 time = rq->hrtick_expire;
1100 clear_thread_flag(TIF_HRTICK_RESCHED);
1101 spin_unlock_irqrestore(&rq->lock, flags);
1102
1103 if (set) {
1104 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1105 if (reset && !hrtimer_active(&rq->hrtick_timer))
1106 resched_rq(rq);
1107 } else
1108 hrtick_clear(rq);
1109}
1110
1111/*
1112 * High-resolution timer tick.
1113 * Runs from hardirq context with interrupts disabled.
1114 */
1115static enum hrtimer_restart hrtick(struct hrtimer *timer)
1116{
1117 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1118
1119 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1120
1121 spin_lock(&rq->lock);
1122 __update_rq_clock(rq);
1123 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1124 spin_unlock(&rq->lock);
1125
1126 return HRTIMER_NORESTART;
1127}
1128
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131 rq->hrtick_flags = 0;
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1135}
1136
1137void hrtick_resched(void)
1138{
1139 struct rq *rq;
1140 unsigned long flags;
1141
1142 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1143 return;
1144
1145 local_irq_save(flags);
1146 rq = cpu_rq(smp_processor_id());
1147 hrtick_set(rq);
1148 local_irq_restore(flags);
1149}
1150#else
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
1155static inline void hrtick_set(struct rq *rq)
1156{
1157}
1158
1159static inline void init_rq_hrtick(struct rq *rq)
1160{
1161}
1162
1163void hrtick_resched(void)
1164{
1165}
1166#endif
1167
c24d20db
IM
1168/*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175#ifdef CONFIG_SMP
1176
1177#ifndef tsk_is_polling
1178#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179#endif
1180
8f4d37ec 1181static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1182{
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
8f4d37ec 1187 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1188 return;
1189
8f4d37ec 1190 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200}
1201
1202static void resched_cpu(int cpu)
1203{
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211}
06d8308c
TG
1212
1213#ifdef CONFIG_NO_HZ
1214/*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224void wake_up_idle_cpu(int cpu)
1225{
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252}
1253#endif
1254
c24d20db 1255#else
8f4d37ec 1256static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1257{
1258 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1259 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1260}
1261#endif
1262
45bf76df
IM
1263#if BITS_PER_LONG == 32
1264# define WMULT_CONST (~0UL)
1265#else
1266# define WMULT_CONST (1UL << 32)
1267#endif
1268
1269#define WMULT_SHIFT 32
1270
194081eb
IM
1271/*
1272 * Shift right and round:
1273 */
cf2ab469 1274#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1275
cb1c4fc9 1276static unsigned long
45bf76df
IM
1277calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1278 struct load_weight *lw)
1279{
1280 u64 tmp;
1281
1282 if (unlikely(!lw->inv_weight))
27d11726 1283 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1284
1285 tmp = (u64)delta_exec * weight;
1286 /*
1287 * Check whether we'd overflow the 64-bit multiplication:
1288 */
194081eb 1289 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1290 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1291 WMULT_SHIFT/2);
1292 else
cf2ab469 1293 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1294
ecf691da 1295 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1296}
1297
1298static inline unsigned long
1299calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1300{
1301 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1302}
1303
1091985b 1304static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1305{
1306 lw->weight += inc;
e89996ae 1307 lw->inv_weight = 0;
45bf76df
IM
1308}
1309
1091985b 1310static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1311{
1312 lw->weight -= dec;
e89996ae 1313 lw->inv_weight = 0;
45bf76df
IM
1314}
1315
2dd73a4f
PW
1316/*
1317 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1318 * of tasks with abnormal "nice" values across CPUs the contribution that
1319 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1320 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1321 * scaled version of the new time slice allocation that they receive on time
1322 * slice expiry etc.
1323 */
1324
dd41f596
IM
1325#define WEIGHT_IDLEPRIO 2
1326#define WMULT_IDLEPRIO (1 << 31)
1327
1328/*
1329 * Nice levels are multiplicative, with a gentle 10% change for every
1330 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1331 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1332 * that remained on nice 0.
1333 *
1334 * The "10% effect" is relative and cumulative: from _any_ nice level,
1335 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1336 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1337 * If a task goes up by ~10% and another task goes down by ~10% then
1338 * the relative distance between them is ~25%.)
dd41f596
IM
1339 */
1340static const int prio_to_weight[40] = {
254753dc
IM
1341 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1342 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1343 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1344 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1345 /* 0 */ 1024, 820, 655, 526, 423,
1346 /* 5 */ 335, 272, 215, 172, 137,
1347 /* 10 */ 110, 87, 70, 56, 45,
1348 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1349};
1350
5714d2de
IM
1351/*
1352 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1353 *
1354 * In cases where the weight does not change often, we can use the
1355 * precalculated inverse to speed up arithmetics by turning divisions
1356 * into multiplications:
1357 */
dd41f596 1358static const u32 prio_to_wmult[40] = {
254753dc
IM
1359 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1360 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1361 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1362 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1363 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1364 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1365 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1366 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1367};
2dd73a4f 1368
dd41f596
IM
1369static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1370
1371/*
1372 * runqueue iterator, to support SMP load-balancing between different
1373 * scheduling classes, without having to expose their internal data
1374 * structures to the load-balancing proper:
1375 */
1376struct rq_iterator {
1377 void *arg;
1378 struct task_struct *(*start)(void *);
1379 struct task_struct *(*next)(void *);
1380};
1381
e1d1484f
PW
1382#ifdef CONFIG_SMP
1383static unsigned long
1384balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1385 unsigned long max_load_move, struct sched_domain *sd,
1386 enum cpu_idle_type idle, int *all_pinned,
1387 int *this_best_prio, struct rq_iterator *iterator);
1388
1389static int
1390iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1391 struct sched_domain *sd, enum cpu_idle_type idle,
1392 struct rq_iterator *iterator);
e1d1484f 1393#endif
dd41f596 1394
d842de87
SV
1395#ifdef CONFIG_CGROUP_CPUACCT
1396static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1397#else
1398static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1399#endif
1400
e7693a36
GH
1401#ifdef CONFIG_SMP
1402static unsigned long source_load(int cpu, int type);
1403static unsigned long target_load(int cpu, int type);
1404static unsigned long cpu_avg_load_per_task(int cpu);
1405static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1406#endif /* CONFIG_SMP */
1407
dd41f596 1408#include "sched_stats.h"
dd41f596 1409#include "sched_idletask.c"
5522d5d5
IM
1410#include "sched_fair.c"
1411#include "sched_rt.c"
dd41f596
IM
1412#ifdef CONFIG_SCHED_DEBUG
1413# include "sched_debug.c"
1414#endif
1415
1416#define sched_class_highest (&rt_sched_class)
1417
62fb1851
PZ
1418static inline void inc_load(struct rq *rq, const struct task_struct *p)
1419{
1420 update_load_add(&rq->load, p->se.load.weight);
1421}
1422
1423static inline void dec_load(struct rq *rq, const struct task_struct *p)
1424{
1425 update_load_sub(&rq->load, p->se.load.weight);
1426}
1427
1428static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1429{
1430 rq->nr_running++;
62fb1851 1431 inc_load(rq, p);
9c217245
IM
1432}
1433
62fb1851 1434static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1435{
1436 rq->nr_running--;
62fb1851 1437 dec_load(rq, p);
9c217245
IM
1438}
1439
45bf76df
IM
1440static void set_load_weight(struct task_struct *p)
1441{
1442 if (task_has_rt_policy(p)) {
dd41f596
IM
1443 p->se.load.weight = prio_to_weight[0] * 2;
1444 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1445 return;
1446 }
45bf76df 1447
dd41f596
IM
1448 /*
1449 * SCHED_IDLE tasks get minimal weight:
1450 */
1451 if (p->policy == SCHED_IDLE) {
1452 p->se.load.weight = WEIGHT_IDLEPRIO;
1453 p->se.load.inv_weight = WMULT_IDLEPRIO;
1454 return;
1455 }
71f8bd46 1456
dd41f596
IM
1457 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1458 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1459}
1460
8159f87e 1461static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1462{
dd41f596 1463 sched_info_queued(p);
fd390f6a 1464 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1465 p->se.on_rq = 1;
71f8bd46
IM
1466}
1467
69be72c1 1468static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1469{
f02231e5 1470 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1471 p->se.on_rq = 0;
71f8bd46
IM
1472}
1473
14531189 1474/*
dd41f596 1475 * __normal_prio - return the priority that is based on the static prio
14531189 1476 */
14531189
IM
1477static inline int __normal_prio(struct task_struct *p)
1478{
dd41f596 1479 return p->static_prio;
14531189
IM
1480}
1481
b29739f9
IM
1482/*
1483 * Calculate the expected normal priority: i.e. priority
1484 * without taking RT-inheritance into account. Might be
1485 * boosted by interactivity modifiers. Changes upon fork,
1486 * setprio syscalls, and whenever the interactivity
1487 * estimator recalculates.
1488 */
36c8b586 1489static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1490{
1491 int prio;
1492
e05606d3 1493 if (task_has_rt_policy(p))
b29739f9
IM
1494 prio = MAX_RT_PRIO-1 - p->rt_priority;
1495 else
1496 prio = __normal_prio(p);
1497 return prio;
1498}
1499
1500/*
1501 * Calculate the current priority, i.e. the priority
1502 * taken into account by the scheduler. This value might
1503 * be boosted by RT tasks, or might be boosted by
1504 * interactivity modifiers. Will be RT if the task got
1505 * RT-boosted. If not then it returns p->normal_prio.
1506 */
36c8b586 1507static int effective_prio(struct task_struct *p)
b29739f9
IM
1508{
1509 p->normal_prio = normal_prio(p);
1510 /*
1511 * If we are RT tasks or we were boosted to RT priority,
1512 * keep the priority unchanged. Otherwise, update priority
1513 * to the normal priority:
1514 */
1515 if (!rt_prio(p->prio))
1516 return p->normal_prio;
1517 return p->prio;
1518}
1519
1da177e4 1520/*
dd41f596 1521 * activate_task - move a task to the runqueue.
1da177e4 1522 */
dd41f596 1523static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1524{
d9514f6c 1525 if (task_contributes_to_load(p))
dd41f596 1526 rq->nr_uninterruptible--;
1da177e4 1527
8159f87e 1528 enqueue_task(rq, p, wakeup);
62fb1851 1529 inc_nr_running(p, rq);
1da177e4
LT
1530}
1531
1da177e4
LT
1532/*
1533 * deactivate_task - remove a task from the runqueue.
1534 */
2e1cb74a 1535static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1536{
d9514f6c 1537 if (task_contributes_to_load(p))
dd41f596
IM
1538 rq->nr_uninterruptible++;
1539
69be72c1 1540 dequeue_task(rq, p, sleep);
62fb1851 1541 dec_nr_running(p, rq);
1da177e4
LT
1542}
1543
1da177e4
LT
1544/**
1545 * task_curr - is this task currently executing on a CPU?
1546 * @p: the task in question.
1547 */
36c8b586 1548inline int task_curr(const struct task_struct *p)
1da177e4
LT
1549{
1550 return cpu_curr(task_cpu(p)) == p;
1551}
1552
2dd73a4f
PW
1553/* Used instead of source_load when we know the type == 0 */
1554unsigned long weighted_cpuload(const int cpu)
1555{
495eca49 1556 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1557}
1558
1559static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1560{
6f505b16 1561 set_task_rq(p, cpu);
dd41f596 1562#ifdef CONFIG_SMP
ce96b5ac
DA
1563 /*
1564 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1565 * successfuly executed on another CPU. We must ensure that updates of
1566 * per-task data have been completed by this moment.
1567 */
1568 smp_wmb();
dd41f596 1569 task_thread_info(p)->cpu = cpu;
dd41f596 1570#endif
2dd73a4f
PW
1571}
1572
cb469845
SR
1573static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1574 const struct sched_class *prev_class,
1575 int oldprio, int running)
1576{
1577 if (prev_class != p->sched_class) {
1578 if (prev_class->switched_from)
1579 prev_class->switched_from(rq, p, running);
1580 p->sched_class->switched_to(rq, p, running);
1581 } else
1582 p->sched_class->prio_changed(rq, p, oldprio, running);
1583}
1584
1da177e4 1585#ifdef CONFIG_SMP
c65cc870 1586
cc367732
IM
1587/*
1588 * Is this task likely cache-hot:
1589 */
e7693a36 1590static int
cc367732
IM
1591task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1592{
1593 s64 delta;
1594
f540a608
IM
1595 /*
1596 * Buddy candidates are cache hot:
1597 */
d25ce4cd 1598 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1599 return 1;
1600
cc367732
IM
1601 if (p->sched_class != &fair_sched_class)
1602 return 0;
1603
6bc1665b
IM
1604 if (sysctl_sched_migration_cost == -1)
1605 return 1;
1606 if (sysctl_sched_migration_cost == 0)
1607 return 0;
1608
cc367732
IM
1609 delta = now - p->se.exec_start;
1610
1611 return delta < (s64)sysctl_sched_migration_cost;
1612}
1613
1614
dd41f596 1615void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1616{
dd41f596
IM
1617 int old_cpu = task_cpu(p);
1618 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1619 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1620 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1621 u64 clock_offset;
dd41f596
IM
1622
1623 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1624
1625#ifdef CONFIG_SCHEDSTATS
1626 if (p->se.wait_start)
1627 p->se.wait_start -= clock_offset;
dd41f596
IM
1628 if (p->se.sleep_start)
1629 p->se.sleep_start -= clock_offset;
1630 if (p->se.block_start)
1631 p->se.block_start -= clock_offset;
cc367732
IM
1632 if (old_cpu != new_cpu) {
1633 schedstat_inc(p, se.nr_migrations);
1634 if (task_hot(p, old_rq->clock, NULL))
1635 schedstat_inc(p, se.nr_forced2_migrations);
1636 }
6cfb0d5d 1637#endif
2830cf8c
SV
1638 p->se.vruntime -= old_cfsrq->min_vruntime -
1639 new_cfsrq->min_vruntime;
dd41f596
IM
1640
1641 __set_task_cpu(p, new_cpu);
c65cc870
IM
1642}
1643
70b97a7f 1644struct migration_req {
1da177e4 1645 struct list_head list;
1da177e4 1646
36c8b586 1647 struct task_struct *task;
1da177e4
LT
1648 int dest_cpu;
1649
1da177e4 1650 struct completion done;
70b97a7f 1651};
1da177e4
LT
1652
1653/*
1654 * The task's runqueue lock must be held.
1655 * Returns true if you have to wait for migration thread.
1656 */
36c8b586 1657static int
70b97a7f 1658migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1659{
70b97a7f 1660 struct rq *rq = task_rq(p);
1da177e4
LT
1661
1662 /*
1663 * If the task is not on a runqueue (and not running), then
1664 * it is sufficient to simply update the task's cpu field.
1665 */
dd41f596 1666 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1667 set_task_cpu(p, dest_cpu);
1668 return 0;
1669 }
1670
1671 init_completion(&req->done);
1da177e4
LT
1672 req->task = p;
1673 req->dest_cpu = dest_cpu;
1674 list_add(&req->list, &rq->migration_queue);
48f24c4d 1675
1da177e4
LT
1676 return 1;
1677}
1678
1679/*
1680 * wait_task_inactive - wait for a thread to unschedule.
1681 *
1682 * The caller must ensure that the task *will* unschedule sometime soon,
1683 * else this function might spin for a *long* time. This function can't
1684 * be called with interrupts off, or it may introduce deadlock with
1685 * smp_call_function() if an IPI is sent by the same process we are
1686 * waiting to become inactive.
1687 */
36c8b586 1688void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1689{
1690 unsigned long flags;
dd41f596 1691 int running, on_rq;
70b97a7f 1692 struct rq *rq;
1da177e4 1693
3a5c359a
AK
1694 for (;;) {
1695 /*
1696 * We do the initial early heuristics without holding
1697 * any task-queue locks at all. We'll only try to get
1698 * the runqueue lock when things look like they will
1699 * work out!
1700 */
1701 rq = task_rq(p);
fa490cfd 1702
3a5c359a
AK
1703 /*
1704 * If the task is actively running on another CPU
1705 * still, just relax and busy-wait without holding
1706 * any locks.
1707 *
1708 * NOTE! Since we don't hold any locks, it's not
1709 * even sure that "rq" stays as the right runqueue!
1710 * But we don't care, since "task_running()" will
1711 * return false if the runqueue has changed and p
1712 * is actually now running somewhere else!
1713 */
1714 while (task_running(rq, p))
1715 cpu_relax();
fa490cfd 1716
3a5c359a
AK
1717 /*
1718 * Ok, time to look more closely! We need the rq
1719 * lock now, to be *sure*. If we're wrong, we'll
1720 * just go back and repeat.
1721 */
1722 rq = task_rq_lock(p, &flags);
1723 running = task_running(rq, p);
1724 on_rq = p->se.on_rq;
1725 task_rq_unlock(rq, &flags);
fa490cfd 1726
3a5c359a
AK
1727 /*
1728 * Was it really running after all now that we
1729 * checked with the proper locks actually held?
1730 *
1731 * Oops. Go back and try again..
1732 */
1733 if (unlikely(running)) {
1734 cpu_relax();
1735 continue;
1736 }
fa490cfd 1737
3a5c359a
AK
1738 /*
1739 * It's not enough that it's not actively running,
1740 * it must be off the runqueue _entirely_, and not
1741 * preempted!
1742 *
1743 * So if it wa still runnable (but just not actively
1744 * running right now), it's preempted, and we should
1745 * yield - it could be a while.
1746 */
1747 if (unlikely(on_rq)) {
1748 schedule_timeout_uninterruptible(1);
1749 continue;
1750 }
fa490cfd 1751
3a5c359a
AK
1752 /*
1753 * Ahh, all good. It wasn't running, and it wasn't
1754 * runnable, which means that it will never become
1755 * running in the future either. We're all done!
1756 */
1757 break;
1758 }
1da177e4
LT
1759}
1760
1761/***
1762 * kick_process - kick a running thread to enter/exit the kernel
1763 * @p: the to-be-kicked thread
1764 *
1765 * Cause a process which is running on another CPU to enter
1766 * kernel-mode, without any delay. (to get signals handled.)
1767 *
1768 * NOTE: this function doesnt have to take the runqueue lock,
1769 * because all it wants to ensure is that the remote task enters
1770 * the kernel. If the IPI races and the task has been migrated
1771 * to another CPU then no harm is done and the purpose has been
1772 * achieved as well.
1773 */
36c8b586 1774void kick_process(struct task_struct *p)
1da177e4
LT
1775{
1776 int cpu;
1777
1778 preempt_disable();
1779 cpu = task_cpu(p);
1780 if ((cpu != smp_processor_id()) && task_curr(p))
1781 smp_send_reschedule(cpu);
1782 preempt_enable();
1783}
1784
1785/*
2dd73a4f
PW
1786 * Return a low guess at the load of a migration-source cpu weighted
1787 * according to the scheduling class and "nice" value.
1da177e4
LT
1788 *
1789 * We want to under-estimate the load of migration sources, to
1790 * balance conservatively.
1791 */
a9957449 1792static unsigned long source_load(int cpu, int type)
1da177e4 1793{
70b97a7f 1794 struct rq *rq = cpu_rq(cpu);
dd41f596 1795 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1796
3b0bd9bc 1797 if (type == 0)
dd41f596 1798 return total;
b910472d 1799
dd41f596 1800 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1801}
1802
1803/*
2dd73a4f
PW
1804 * Return a high guess at the load of a migration-target cpu weighted
1805 * according to the scheduling class and "nice" value.
1da177e4 1806 */
a9957449 1807static unsigned long target_load(int cpu, int type)
1da177e4 1808{
70b97a7f 1809 struct rq *rq = cpu_rq(cpu);
dd41f596 1810 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1811
7897986b 1812 if (type == 0)
dd41f596 1813 return total;
3b0bd9bc 1814
dd41f596 1815 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1816}
1817
1818/*
1819 * Return the average load per task on the cpu's run queue
1820 */
e7693a36 1821static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1822{
70b97a7f 1823 struct rq *rq = cpu_rq(cpu);
dd41f596 1824 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1825 unsigned long n = rq->nr_running;
1826
dd41f596 1827 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1828}
1829
147cbb4b
NP
1830/*
1831 * find_idlest_group finds and returns the least busy CPU group within the
1832 * domain.
1833 */
1834static struct sched_group *
1835find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1836{
1837 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1838 unsigned long min_load = ULONG_MAX, this_load = 0;
1839 int load_idx = sd->forkexec_idx;
1840 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1841
1842 do {
1843 unsigned long load, avg_load;
1844 int local_group;
1845 int i;
1846
da5a5522
BD
1847 /* Skip over this group if it has no CPUs allowed */
1848 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1849 continue;
da5a5522 1850
147cbb4b 1851 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1852
1853 /* Tally up the load of all CPUs in the group */
1854 avg_load = 0;
1855
1856 for_each_cpu_mask(i, group->cpumask) {
1857 /* Bias balancing toward cpus of our domain */
1858 if (local_group)
1859 load = source_load(i, load_idx);
1860 else
1861 load = target_load(i, load_idx);
1862
1863 avg_load += load;
1864 }
1865
1866 /* Adjust by relative CPU power of the group */
5517d86b
ED
1867 avg_load = sg_div_cpu_power(group,
1868 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1869
1870 if (local_group) {
1871 this_load = avg_load;
1872 this = group;
1873 } else if (avg_load < min_load) {
1874 min_load = avg_load;
1875 idlest = group;
1876 }
3a5c359a 1877 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1878
1879 if (!idlest || 100*this_load < imbalance*min_load)
1880 return NULL;
1881 return idlest;
1882}
1883
1884/*
0feaece9 1885 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1886 */
95cdf3b7 1887static int
7c16ec58
MT
1888find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1889 cpumask_t *tmp)
147cbb4b
NP
1890{
1891 unsigned long load, min_load = ULONG_MAX;
1892 int idlest = -1;
1893 int i;
1894
da5a5522 1895 /* Traverse only the allowed CPUs */
7c16ec58 1896 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 1897
7c16ec58 1898 for_each_cpu_mask(i, *tmp) {
2dd73a4f 1899 load = weighted_cpuload(i);
147cbb4b
NP
1900
1901 if (load < min_load || (load == min_load && i == this_cpu)) {
1902 min_load = load;
1903 idlest = i;
1904 }
1905 }
1906
1907 return idlest;
1908}
1909
476d139c
NP
1910/*
1911 * sched_balance_self: balance the current task (running on cpu) in domains
1912 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1913 * SD_BALANCE_EXEC.
1914 *
1915 * Balance, ie. select the least loaded group.
1916 *
1917 * Returns the target CPU number, or the same CPU if no balancing is needed.
1918 *
1919 * preempt must be disabled.
1920 */
1921static int sched_balance_self(int cpu, int flag)
1922{
1923 struct task_struct *t = current;
1924 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1925
c96d145e 1926 for_each_domain(cpu, tmp) {
9761eea8
IM
1927 /*
1928 * If power savings logic is enabled for a domain, stop there.
1929 */
5c45bf27
SS
1930 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1931 break;
476d139c
NP
1932 if (tmp->flags & flag)
1933 sd = tmp;
c96d145e 1934 }
476d139c
NP
1935
1936 while (sd) {
7c16ec58 1937 cpumask_t span, tmpmask;
476d139c 1938 struct sched_group *group;
1a848870
SS
1939 int new_cpu, weight;
1940
1941 if (!(sd->flags & flag)) {
1942 sd = sd->child;
1943 continue;
1944 }
476d139c
NP
1945
1946 span = sd->span;
1947 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1948 if (!group) {
1949 sd = sd->child;
1950 continue;
1951 }
476d139c 1952
7c16ec58 1953 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
1954 if (new_cpu == -1 || new_cpu == cpu) {
1955 /* Now try balancing at a lower domain level of cpu */
1956 sd = sd->child;
1957 continue;
1958 }
476d139c 1959
1a848870 1960 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1961 cpu = new_cpu;
476d139c
NP
1962 sd = NULL;
1963 weight = cpus_weight(span);
1964 for_each_domain(cpu, tmp) {
1965 if (weight <= cpus_weight(tmp->span))
1966 break;
1967 if (tmp->flags & flag)
1968 sd = tmp;
1969 }
1970 /* while loop will break here if sd == NULL */
1971 }
1972
1973 return cpu;
1974}
1975
1976#endif /* CONFIG_SMP */
1da177e4 1977
1da177e4
LT
1978/***
1979 * try_to_wake_up - wake up a thread
1980 * @p: the to-be-woken-up thread
1981 * @state: the mask of task states that can be woken
1982 * @sync: do a synchronous wakeup?
1983 *
1984 * Put it on the run-queue if it's not already there. The "current"
1985 * thread is always on the run-queue (except when the actual
1986 * re-schedule is in progress), and as such you're allowed to do
1987 * the simpler "current->state = TASK_RUNNING" to mark yourself
1988 * runnable without the overhead of this.
1989 *
1990 * returns failure only if the task is already active.
1991 */
36c8b586 1992static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1993{
cc367732 1994 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1995 unsigned long flags;
1996 long old_state;
70b97a7f 1997 struct rq *rq;
1da177e4 1998
b85d0667
IM
1999 if (!sched_feat(SYNC_WAKEUPS))
2000 sync = 0;
2001
04e2f174 2002 smp_wmb();
1da177e4
LT
2003 rq = task_rq_lock(p, &flags);
2004 old_state = p->state;
2005 if (!(old_state & state))
2006 goto out;
2007
dd41f596 2008 if (p->se.on_rq)
1da177e4
LT
2009 goto out_running;
2010
2011 cpu = task_cpu(p);
cc367732 2012 orig_cpu = cpu;
1da177e4
LT
2013 this_cpu = smp_processor_id();
2014
2015#ifdef CONFIG_SMP
2016 if (unlikely(task_running(rq, p)))
2017 goto out_activate;
2018
5d2f5a61
DA
2019 cpu = p->sched_class->select_task_rq(p, sync);
2020 if (cpu != orig_cpu) {
2021 set_task_cpu(p, cpu);
1da177e4
LT
2022 task_rq_unlock(rq, &flags);
2023 /* might preempt at this point */
2024 rq = task_rq_lock(p, &flags);
2025 old_state = p->state;
2026 if (!(old_state & state))
2027 goto out;
dd41f596 2028 if (p->se.on_rq)
1da177e4
LT
2029 goto out_running;
2030
2031 this_cpu = smp_processor_id();
2032 cpu = task_cpu(p);
2033 }
2034
e7693a36
GH
2035#ifdef CONFIG_SCHEDSTATS
2036 schedstat_inc(rq, ttwu_count);
2037 if (cpu == this_cpu)
2038 schedstat_inc(rq, ttwu_local);
2039 else {
2040 struct sched_domain *sd;
2041 for_each_domain(this_cpu, sd) {
2042 if (cpu_isset(cpu, sd->span)) {
2043 schedstat_inc(sd, ttwu_wake_remote);
2044 break;
2045 }
2046 }
2047 }
e7693a36
GH
2048#endif
2049
1da177e4
LT
2050out_activate:
2051#endif /* CONFIG_SMP */
cc367732
IM
2052 schedstat_inc(p, se.nr_wakeups);
2053 if (sync)
2054 schedstat_inc(p, se.nr_wakeups_sync);
2055 if (orig_cpu != cpu)
2056 schedstat_inc(p, se.nr_wakeups_migrate);
2057 if (cpu == this_cpu)
2058 schedstat_inc(p, se.nr_wakeups_local);
2059 else
2060 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2061 update_rq_clock(rq);
dd41f596 2062 activate_task(rq, p, 1);
1da177e4
LT
2063 success = 1;
2064
2065out_running:
4ae7d5ce
IM
2066 check_preempt_curr(rq, p);
2067
1da177e4 2068 p->state = TASK_RUNNING;
9a897c5a
SR
2069#ifdef CONFIG_SMP
2070 if (p->sched_class->task_wake_up)
2071 p->sched_class->task_wake_up(rq, p);
2072#endif
1da177e4
LT
2073out:
2074 task_rq_unlock(rq, &flags);
2075
2076 return success;
2077}
2078
7ad5b3a5 2079int wake_up_process(struct task_struct *p)
1da177e4 2080{
d9514f6c 2081 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2082}
1da177e4
LT
2083EXPORT_SYMBOL(wake_up_process);
2084
7ad5b3a5 2085int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2086{
2087 return try_to_wake_up(p, state, 0);
2088}
2089
1da177e4
LT
2090/*
2091 * Perform scheduler related setup for a newly forked process p.
2092 * p is forked by current.
dd41f596
IM
2093 *
2094 * __sched_fork() is basic setup used by init_idle() too:
2095 */
2096static void __sched_fork(struct task_struct *p)
2097{
dd41f596
IM
2098 p->se.exec_start = 0;
2099 p->se.sum_exec_runtime = 0;
f6cf891c 2100 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2101 p->se.last_wakeup = 0;
2102 p->se.avg_overlap = 0;
6cfb0d5d
IM
2103
2104#ifdef CONFIG_SCHEDSTATS
2105 p->se.wait_start = 0;
dd41f596
IM
2106 p->se.sum_sleep_runtime = 0;
2107 p->se.sleep_start = 0;
dd41f596
IM
2108 p->se.block_start = 0;
2109 p->se.sleep_max = 0;
2110 p->se.block_max = 0;
2111 p->se.exec_max = 0;
eba1ed4b 2112 p->se.slice_max = 0;
dd41f596 2113 p->se.wait_max = 0;
6cfb0d5d 2114#endif
476d139c 2115
fa717060 2116 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2117 p->se.on_rq = 0;
476d139c 2118
e107be36
AK
2119#ifdef CONFIG_PREEMPT_NOTIFIERS
2120 INIT_HLIST_HEAD(&p->preempt_notifiers);
2121#endif
2122
1da177e4
LT
2123 /*
2124 * We mark the process as running here, but have not actually
2125 * inserted it onto the runqueue yet. This guarantees that
2126 * nobody will actually run it, and a signal or other external
2127 * event cannot wake it up and insert it on the runqueue either.
2128 */
2129 p->state = TASK_RUNNING;
dd41f596
IM
2130}
2131
2132/*
2133 * fork()/clone()-time setup:
2134 */
2135void sched_fork(struct task_struct *p, int clone_flags)
2136{
2137 int cpu = get_cpu();
2138
2139 __sched_fork(p);
2140
2141#ifdef CONFIG_SMP
2142 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2143#endif
02e4bac2 2144 set_task_cpu(p, cpu);
b29739f9
IM
2145
2146 /*
2147 * Make sure we do not leak PI boosting priority to the child:
2148 */
2149 p->prio = current->normal_prio;
2ddbf952
HS
2150 if (!rt_prio(p->prio))
2151 p->sched_class = &fair_sched_class;
b29739f9 2152
52f17b6c 2153#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2154 if (likely(sched_info_on()))
52f17b6c 2155 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2156#endif
d6077cb8 2157#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2158 p->oncpu = 0;
2159#endif
1da177e4 2160#ifdef CONFIG_PREEMPT
4866cde0 2161 /* Want to start with kernel preemption disabled. */
a1261f54 2162 task_thread_info(p)->preempt_count = 1;
1da177e4 2163#endif
476d139c 2164 put_cpu();
1da177e4
LT
2165}
2166
2167/*
2168 * wake_up_new_task - wake up a newly created task for the first time.
2169 *
2170 * This function will do some initial scheduler statistics housekeeping
2171 * that must be done for every newly created context, then puts the task
2172 * on the runqueue and wakes it.
2173 */
7ad5b3a5 2174void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2175{
2176 unsigned long flags;
dd41f596 2177 struct rq *rq;
1da177e4
LT
2178
2179 rq = task_rq_lock(p, &flags);
147cbb4b 2180 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2181 update_rq_clock(rq);
1da177e4
LT
2182
2183 p->prio = effective_prio(p);
2184
b9dca1e0 2185 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2186 activate_task(rq, p, 0);
1da177e4 2187 } else {
1da177e4 2188 /*
dd41f596
IM
2189 * Let the scheduling class do new task startup
2190 * management (if any):
1da177e4 2191 */
ee0827d8 2192 p->sched_class->task_new(rq, p);
62fb1851 2193 inc_nr_running(p, rq);
1da177e4 2194 }
dd41f596 2195 check_preempt_curr(rq, p);
9a897c5a
SR
2196#ifdef CONFIG_SMP
2197 if (p->sched_class->task_wake_up)
2198 p->sched_class->task_wake_up(rq, p);
2199#endif
dd41f596 2200 task_rq_unlock(rq, &flags);
1da177e4
LT
2201}
2202
e107be36
AK
2203#ifdef CONFIG_PREEMPT_NOTIFIERS
2204
2205/**
421cee29
RD
2206 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2207 * @notifier: notifier struct to register
e107be36
AK
2208 */
2209void preempt_notifier_register(struct preempt_notifier *notifier)
2210{
2211 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2212}
2213EXPORT_SYMBOL_GPL(preempt_notifier_register);
2214
2215/**
2216 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2217 * @notifier: notifier struct to unregister
e107be36
AK
2218 *
2219 * This is safe to call from within a preemption notifier.
2220 */
2221void preempt_notifier_unregister(struct preempt_notifier *notifier)
2222{
2223 hlist_del(&notifier->link);
2224}
2225EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2226
2227static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2228{
2229 struct preempt_notifier *notifier;
2230 struct hlist_node *node;
2231
2232 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2233 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2234}
2235
2236static void
2237fire_sched_out_preempt_notifiers(struct task_struct *curr,
2238 struct task_struct *next)
2239{
2240 struct preempt_notifier *notifier;
2241 struct hlist_node *node;
2242
2243 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2244 notifier->ops->sched_out(notifier, next);
2245}
2246
2247#else
2248
2249static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2250{
2251}
2252
2253static void
2254fire_sched_out_preempt_notifiers(struct task_struct *curr,
2255 struct task_struct *next)
2256{
2257}
2258
2259#endif
2260
4866cde0
NP
2261/**
2262 * prepare_task_switch - prepare to switch tasks
2263 * @rq: the runqueue preparing to switch
421cee29 2264 * @prev: the current task that is being switched out
4866cde0
NP
2265 * @next: the task we are going to switch to.
2266 *
2267 * This is called with the rq lock held and interrupts off. It must
2268 * be paired with a subsequent finish_task_switch after the context
2269 * switch.
2270 *
2271 * prepare_task_switch sets up locking and calls architecture specific
2272 * hooks.
2273 */
e107be36
AK
2274static inline void
2275prepare_task_switch(struct rq *rq, struct task_struct *prev,
2276 struct task_struct *next)
4866cde0 2277{
e107be36 2278 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2279 prepare_lock_switch(rq, next);
2280 prepare_arch_switch(next);
2281}
2282
1da177e4
LT
2283/**
2284 * finish_task_switch - clean up after a task-switch
344babaa 2285 * @rq: runqueue associated with task-switch
1da177e4
LT
2286 * @prev: the thread we just switched away from.
2287 *
4866cde0
NP
2288 * finish_task_switch must be called after the context switch, paired
2289 * with a prepare_task_switch call before the context switch.
2290 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2291 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2292 *
2293 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2294 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2295 * with the lock held can cause deadlocks; see schedule() for
2296 * details.)
2297 */
a9957449 2298static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2299 __releases(rq->lock)
2300{
1da177e4 2301 struct mm_struct *mm = rq->prev_mm;
55a101f8 2302 long prev_state;
1da177e4
LT
2303
2304 rq->prev_mm = NULL;
2305
2306 /*
2307 * A task struct has one reference for the use as "current".
c394cc9f 2308 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2309 * schedule one last time. The schedule call will never return, and
2310 * the scheduled task must drop that reference.
c394cc9f 2311 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2312 * still held, otherwise prev could be scheduled on another cpu, die
2313 * there before we look at prev->state, and then the reference would
2314 * be dropped twice.
2315 * Manfred Spraul <manfred@colorfullife.com>
2316 */
55a101f8 2317 prev_state = prev->state;
4866cde0
NP
2318 finish_arch_switch(prev);
2319 finish_lock_switch(rq, prev);
9a897c5a
SR
2320#ifdef CONFIG_SMP
2321 if (current->sched_class->post_schedule)
2322 current->sched_class->post_schedule(rq);
2323#endif
e8fa1362 2324
e107be36 2325 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2326 if (mm)
2327 mmdrop(mm);
c394cc9f 2328 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2329 /*
2330 * Remove function-return probe instances associated with this
2331 * task and put them back on the free list.
9761eea8 2332 */
c6fd91f0 2333 kprobe_flush_task(prev);
1da177e4 2334 put_task_struct(prev);
c6fd91f0 2335 }
1da177e4
LT
2336}
2337
2338/**
2339 * schedule_tail - first thing a freshly forked thread must call.
2340 * @prev: the thread we just switched away from.
2341 */
36c8b586 2342asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2343 __releases(rq->lock)
2344{
70b97a7f
IM
2345 struct rq *rq = this_rq();
2346
4866cde0
NP
2347 finish_task_switch(rq, prev);
2348#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2349 /* In this case, finish_task_switch does not reenable preemption */
2350 preempt_enable();
2351#endif
1da177e4 2352 if (current->set_child_tid)
b488893a 2353 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2354}
2355
2356/*
2357 * context_switch - switch to the new MM and the new
2358 * thread's register state.
2359 */
dd41f596 2360static inline void
70b97a7f 2361context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2362 struct task_struct *next)
1da177e4 2363{
dd41f596 2364 struct mm_struct *mm, *oldmm;
1da177e4 2365
e107be36 2366 prepare_task_switch(rq, prev, next);
dd41f596
IM
2367 mm = next->mm;
2368 oldmm = prev->active_mm;
9226d125
ZA
2369 /*
2370 * For paravirt, this is coupled with an exit in switch_to to
2371 * combine the page table reload and the switch backend into
2372 * one hypercall.
2373 */
2374 arch_enter_lazy_cpu_mode();
2375
dd41f596 2376 if (unlikely(!mm)) {
1da177e4
LT
2377 next->active_mm = oldmm;
2378 atomic_inc(&oldmm->mm_count);
2379 enter_lazy_tlb(oldmm, next);
2380 } else
2381 switch_mm(oldmm, mm, next);
2382
dd41f596 2383 if (unlikely(!prev->mm)) {
1da177e4 2384 prev->active_mm = NULL;
1da177e4
LT
2385 rq->prev_mm = oldmm;
2386 }
3a5f5e48
IM
2387 /*
2388 * Since the runqueue lock will be released by the next
2389 * task (which is an invalid locking op but in the case
2390 * of the scheduler it's an obvious special-case), so we
2391 * do an early lockdep release here:
2392 */
2393#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2394 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2395#endif
1da177e4
LT
2396
2397 /* Here we just switch the register state and the stack. */
2398 switch_to(prev, next, prev);
2399
dd41f596
IM
2400 barrier();
2401 /*
2402 * this_rq must be evaluated again because prev may have moved
2403 * CPUs since it called schedule(), thus the 'rq' on its stack
2404 * frame will be invalid.
2405 */
2406 finish_task_switch(this_rq(), prev);
1da177e4
LT
2407}
2408
2409/*
2410 * nr_running, nr_uninterruptible and nr_context_switches:
2411 *
2412 * externally visible scheduler statistics: current number of runnable
2413 * threads, current number of uninterruptible-sleeping threads, total
2414 * number of context switches performed since bootup.
2415 */
2416unsigned long nr_running(void)
2417{
2418 unsigned long i, sum = 0;
2419
2420 for_each_online_cpu(i)
2421 sum += cpu_rq(i)->nr_running;
2422
2423 return sum;
2424}
2425
2426unsigned long nr_uninterruptible(void)
2427{
2428 unsigned long i, sum = 0;
2429
0a945022 2430 for_each_possible_cpu(i)
1da177e4
LT
2431 sum += cpu_rq(i)->nr_uninterruptible;
2432
2433 /*
2434 * Since we read the counters lockless, it might be slightly
2435 * inaccurate. Do not allow it to go below zero though:
2436 */
2437 if (unlikely((long)sum < 0))
2438 sum = 0;
2439
2440 return sum;
2441}
2442
2443unsigned long long nr_context_switches(void)
2444{
cc94abfc
SR
2445 int i;
2446 unsigned long long sum = 0;
1da177e4 2447
0a945022 2448 for_each_possible_cpu(i)
1da177e4
LT
2449 sum += cpu_rq(i)->nr_switches;
2450
2451 return sum;
2452}
2453
2454unsigned long nr_iowait(void)
2455{
2456 unsigned long i, sum = 0;
2457
0a945022 2458 for_each_possible_cpu(i)
1da177e4
LT
2459 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2460
2461 return sum;
2462}
2463
db1b1fef
JS
2464unsigned long nr_active(void)
2465{
2466 unsigned long i, running = 0, uninterruptible = 0;
2467
2468 for_each_online_cpu(i) {
2469 running += cpu_rq(i)->nr_running;
2470 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2471 }
2472
2473 if (unlikely((long)uninterruptible < 0))
2474 uninterruptible = 0;
2475
2476 return running + uninterruptible;
2477}
2478
48f24c4d 2479/*
dd41f596
IM
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC).
48f24c4d 2482 */
dd41f596 2483static void update_cpu_load(struct rq *this_rq)
48f24c4d 2484{
495eca49 2485 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2486 int i, scale;
2487
2488 this_rq->nr_load_updates++;
dd41f596
IM
2489
2490 /* Update our load: */
2491 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2492 unsigned long old_load, new_load;
2493
2494 /* scale is effectively 1 << i now, and >> i divides by scale */
2495
2496 old_load = this_rq->cpu_load[i];
2497 new_load = this_load;
a25707f3
IM
2498 /*
2499 * Round up the averaging division if load is increasing. This
2500 * prevents us from getting stuck on 9 if the load is 10, for
2501 * example.
2502 */
2503 if (new_load > old_load)
2504 new_load += scale-1;
dd41f596
IM
2505 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2506 }
48f24c4d
IM
2507}
2508
dd41f596
IM
2509#ifdef CONFIG_SMP
2510
1da177e4
LT
2511/*
2512 * double_rq_lock - safely lock two runqueues
2513 *
2514 * Note this does not disable interrupts like task_rq_lock,
2515 * you need to do so manually before calling.
2516 */
70b97a7f 2517static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2518 __acquires(rq1->lock)
2519 __acquires(rq2->lock)
2520{
054b9108 2521 BUG_ON(!irqs_disabled());
1da177e4
LT
2522 if (rq1 == rq2) {
2523 spin_lock(&rq1->lock);
2524 __acquire(rq2->lock); /* Fake it out ;) */
2525 } else {
c96d145e 2526 if (rq1 < rq2) {
1da177e4
LT
2527 spin_lock(&rq1->lock);
2528 spin_lock(&rq2->lock);
2529 } else {
2530 spin_lock(&rq2->lock);
2531 spin_lock(&rq1->lock);
2532 }
2533 }
6e82a3be
IM
2534 update_rq_clock(rq1);
2535 update_rq_clock(rq2);
1da177e4
LT
2536}
2537
2538/*
2539 * double_rq_unlock - safely unlock two runqueues
2540 *
2541 * Note this does not restore interrupts like task_rq_unlock,
2542 * you need to do so manually after calling.
2543 */
70b97a7f 2544static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2545 __releases(rq1->lock)
2546 __releases(rq2->lock)
2547{
2548 spin_unlock(&rq1->lock);
2549 if (rq1 != rq2)
2550 spin_unlock(&rq2->lock);
2551 else
2552 __release(rq2->lock);
2553}
2554
2555/*
2556 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2557 */
e8fa1362 2558static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2559 __releases(this_rq->lock)
2560 __acquires(busiest->lock)
2561 __acquires(this_rq->lock)
2562{
e8fa1362
SR
2563 int ret = 0;
2564
054b9108
KK
2565 if (unlikely(!irqs_disabled())) {
2566 /* printk() doesn't work good under rq->lock */
2567 spin_unlock(&this_rq->lock);
2568 BUG_ON(1);
2569 }
1da177e4 2570 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2571 if (busiest < this_rq) {
1da177e4
LT
2572 spin_unlock(&this_rq->lock);
2573 spin_lock(&busiest->lock);
2574 spin_lock(&this_rq->lock);
e8fa1362 2575 ret = 1;
1da177e4
LT
2576 } else
2577 spin_lock(&busiest->lock);
2578 }
e8fa1362 2579 return ret;
1da177e4
LT
2580}
2581
1da177e4
LT
2582/*
2583 * If dest_cpu is allowed for this process, migrate the task to it.
2584 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2585 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2586 * the cpu_allowed mask is restored.
2587 */
36c8b586 2588static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2589{
70b97a7f 2590 struct migration_req req;
1da177e4 2591 unsigned long flags;
70b97a7f 2592 struct rq *rq;
1da177e4
LT
2593
2594 rq = task_rq_lock(p, &flags);
2595 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2596 || unlikely(cpu_is_offline(dest_cpu)))
2597 goto out;
2598
2599 /* force the process onto the specified CPU */
2600 if (migrate_task(p, dest_cpu, &req)) {
2601 /* Need to wait for migration thread (might exit: take ref). */
2602 struct task_struct *mt = rq->migration_thread;
36c8b586 2603
1da177e4
LT
2604 get_task_struct(mt);
2605 task_rq_unlock(rq, &flags);
2606 wake_up_process(mt);
2607 put_task_struct(mt);
2608 wait_for_completion(&req.done);
36c8b586 2609
1da177e4
LT
2610 return;
2611 }
2612out:
2613 task_rq_unlock(rq, &flags);
2614}
2615
2616/*
476d139c
NP
2617 * sched_exec - execve() is a valuable balancing opportunity, because at
2618 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2619 */
2620void sched_exec(void)
2621{
1da177e4 2622 int new_cpu, this_cpu = get_cpu();
476d139c 2623 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2624 put_cpu();
476d139c
NP
2625 if (new_cpu != this_cpu)
2626 sched_migrate_task(current, new_cpu);
1da177e4
LT
2627}
2628
2629/*
2630 * pull_task - move a task from a remote runqueue to the local runqueue.
2631 * Both runqueues must be locked.
2632 */
dd41f596
IM
2633static void pull_task(struct rq *src_rq, struct task_struct *p,
2634 struct rq *this_rq, int this_cpu)
1da177e4 2635{
2e1cb74a 2636 deactivate_task(src_rq, p, 0);
1da177e4 2637 set_task_cpu(p, this_cpu);
dd41f596 2638 activate_task(this_rq, p, 0);
1da177e4
LT
2639 /*
2640 * Note that idle threads have a prio of MAX_PRIO, for this test
2641 * to be always true for them.
2642 */
dd41f596 2643 check_preempt_curr(this_rq, p);
1da177e4
LT
2644}
2645
2646/*
2647 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2648 */
858119e1 2649static
70b97a7f 2650int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2651 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2652 int *all_pinned)
1da177e4
LT
2653{
2654 /*
2655 * We do not migrate tasks that are:
2656 * 1) running (obviously), or
2657 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2658 * 3) are cache-hot on their current CPU.
2659 */
cc367732
IM
2660 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2661 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2662 return 0;
cc367732 2663 }
81026794
NP
2664 *all_pinned = 0;
2665
cc367732
IM
2666 if (task_running(rq, p)) {
2667 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2668 return 0;
cc367732 2669 }
1da177e4 2670
da84d961
IM
2671 /*
2672 * Aggressive migration if:
2673 * 1) task is cache cold, or
2674 * 2) too many balance attempts have failed.
2675 */
2676
6bc1665b
IM
2677 if (!task_hot(p, rq->clock, sd) ||
2678 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2679#ifdef CONFIG_SCHEDSTATS
cc367732 2680 if (task_hot(p, rq->clock, sd)) {
da84d961 2681 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2682 schedstat_inc(p, se.nr_forced_migrations);
2683 }
da84d961
IM
2684#endif
2685 return 1;
2686 }
2687
cc367732
IM
2688 if (task_hot(p, rq->clock, sd)) {
2689 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2690 return 0;
cc367732 2691 }
1da177e4
LT
2692 return 1;
2693}
2694
e1d1484f
PW
2695static unsigned long
2696balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2697 unsigned long max_load_move, struct sched_domain *sd,
2698 enum cpu_idle_type idle, int *all_pinned,
2699 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2700{
b82d9fdd 2701 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2702 struct task_struct *p;
2703 long rem_load_move = max_load_move;
1da177e4 2704
e1d1484f 2705 if (max_load_move == 0)
1da177e4
LT
2706 goto out;
2707
81026794
NP
2708 pinned = 1;
2709
1da177e4 2710 /*
dd41f596 2711 * Start the load-balancing iterator:
1da177e4 2712 */
dd41f596
IM
2713 p = iterator->start(iterator->arg);
2714next:
b82d9fdd 2715 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2716 goto out;
50ddd969 2717 /*
b82d9fdd 2718 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2719 * skip a task if it will be the highest priority task (i.e. smallest
2720 * prio value) on its new queue regardless of its load weight
2721 */
dd41f596
IM
2722 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2723 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2724 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2725 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2726 p = iterator->next(iterator->arg);
2727 goto next;
1da177e4
LT
2728 }
2729
dd41f596 2730 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2731 pulled++;
dd41f596 2732 rem_load_move -= p->se.load.weight;
1da177e4 2733
2dd73a4f 2734 /*
b82d9fdd 2735 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2736 */
e1d1484f 2737 if (rem_load_move > 0) {
a4ac01c3
PW
2738 if (p->prio < *this_best_prio)
2739 *this_best_prio = p->prio;
dd41f596
IM
2740 p = iterator->next(iterator->arg);
2741 goto next;
1da177e4
LT
2742 }
2743out:
2744 /*
e1d1484f 2745 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2746 * so we can safely collect pull_task() stats here rather than
2747 * inside pull_task().
2748 */
2749 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2750
2751 if (all_pinned)
2752 *all_pinned = pinned;
e1d1484f
PW
2753
2754 return max_load_move - rem_load_move;
1da177e4
LT
2755}
2756
dd41f596 2757/*
43010659
PW
2758 * move_tasks tries to move up to max_load_move weighted load from busiest to
2759 * this_rq, as part of a balancing operation within domain "sd".
2760 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2761 *
2762 * Called with both runqueues locked.
2763 */
2764static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2765 unsigned long max_load_move,
dd41f596
IM
2766 struct sched_domain *sd, enum cpu_idle_type idle,
2767 int *all_pinned)
2768{
5522d5d5 2769 const struct sched_class *class = sched_class_highest;
43010659 2770 unsigned long total_load_moved = 0;
a4ac01c3 2771 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2772
2773 do {
43010659
PW
2774 total_load_moved +=
2775 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2776 max_load_move - total_load_moved,
a4ac01c3 2777 sd, idle, all_pinned, &this_best_prio);
dd41f596 2778 class = class->next;
43010659 2779 } while (class && max_load_move > total_load_moved);
dd41f596 2780
43010659
PW
2781 return total_load_moved > 0;
2782}
2783
e1d1484f
PW
2784static int
2785iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2786 struct sched_domain *sd, enum cpu_idle_type idle,
2787 struct rq_iterator *iterator)
2788{
2789 struct task_struct *p = iterator->start(iterator->arg);
2790 int pinned = 0;
2791
2792 while (p) {
2793 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2794 pull_task(busiest, p, this_rq, this_cpu);
2795 /*
2796 * Right now, this is only the second place pull_task()
2797 * is called, so we can safely collect pull_task()
2798 * stats here rather than inside pull_task().
2799 */
2800 schedstat_inc(sd, lb_gained[idle]);
2801
2802 return 1;
2803 }
2804 p = iterator->next(iterator->arg);
2805 }
2806
2807 return 0;
2808}
2809
43010659
PW
2810/*
2811 * move_one_task tries to move exactly one task from busiest to this_rq, as
2812 * part of active balancing operations within "domain".
2813 * Returns 1 if successful and 0 otherwise.
2814 *
2815 * Called with both runqueues locked.
2816 */
2817static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2818 struct sched_domain *sd, enum cpu_idle_type idle)
2819{
5522d5d5 2820 const struct sched_class *class;
43010659
PW
2821
2822 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2823 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2824 return 1;
2825
2826 return 0;
dd41f596
IM
2827}
2828
1da177e4
LT
2829/*
2830 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2831 * domain. It calculates and returns the amount of weighted load which
2832 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2833 */
2834static struct sched_group *
2835find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 2836 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 2837 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
2838{
2839 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2840 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2841 unsigned long max_pull;
2dd73a4f
PW
2842 unsigned long busiest_load_per_task, busiest_nr_running;
2843 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2844 int load_idx, group_imb = 0;
5c45bf27
SS
2845#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2846 int power_savings_balance = 1;
2847 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2848 unsigned long min_nr_running = ULONG_MAX;
2849 struct sched_group *group_min = NULL, *group_leader = NULL;
2850#endif
1da177e4
LT
2851
2852 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2853 busiest_load_per_task = busiest_nr_running = 0;
2854 this_load_per_task = this_nr_running = 0;
d15bcfdb 2855 if (idle == CPU_NOT_IDLE)
7897986b 2856 load_idx = sd->busy_idx;
d15bcfdb 2857 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2858 load_idx = sd->newidle_idx;
2859 else
2860 load_idx = sd->idle_idx;
1da177e4
LT
2861
2862 do {
908a7c1b 2863 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2864 int local_group;
2865 int i;
908a7c1b 2866 int __group_imb = 0;
783609c6 2867 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2868 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2869
2870 local_group = cpu_isset(this_cpu, group->cpumask);
2871
783609c6
SS
2872 if (local_group)
2873 balance_cpu = first_cpu(group->cpumask);
2874
1da177e4 2875 /* Tally up the load of all CPUs in the group */
2dd73a4f 2876 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2877 max_cpu_load = 0;
2878 min_cpu_load = ~0UL;
1da177e4
LT
2879
2880 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2881 struct rq *rq;
2882
2883 if (!cpu_isset(i, *cpus))
2884 continue;
2885
2886 rq = cpu_rq(i);
2dd73a4f 2887
9439aab8 2888 if (*sd_idle && rq->nr_running)
5969fe06
NP
2889 *sd_idle = 0;
2890
1da177e4 2891 /* Bias balancing toward cpus of our domain */
783609c6
SS
2892 if (local_group) {
2893 if (idle_cpu(i) && !first_idle_cpu) {
2894 first_idle_cpu = 1;
2895 balance_cpu = i;
2896 }
2897
a2000572 2898 load = target_load(i, load_idx);
908a7c1b 2899 } else {
a2000572 2900 load = source_load(i, load_idx);
908a7c1b
KC
2901 if (load > max_cpu_load)
2902 max_cpu_load = load;
2903 if (min_cpu_load > load)
2904 min_cpu_load = load;
2905 }
1da177e4
LT
2906
2907 avg_load += load;
2dd73a4f 2908 sum_nr_running += rq->nr_running;
dd41f596 2909 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2910 }
2911
783609c6
SS
2912 /*
2913 * First idle cpu or the first cpu(busiest) in this sched group
2914 * is eligible for doing load balancing at this and above
9439aab8
SS
2915 * domains. In the newly idle case, we will allow all the cpu's
2916 * to do the newly idle load balance.
783609c6 2917 */
9439aab8
SS
2918 if (idle != CPU_NEWLY_IDLE && local_group &&
2919 balance_cpu != this_cpu && balance) {
783609c6
SS
2920 *balance = 0;
2921 goto ret;
2922 }
2923
1da177e4 2924 total_load += avg_load;
5517d86b 2925 total_pwr += group->__cpu_power;
1da177e4
LT
2926
2927 /* Adjust by relative CPU power of the group */
5517d86b
ED
2928 avg_load = sg_div_cpu_power(group,
2929 avg_load * SCHED_LOAD_SCALE);
1da177e4 2930
908a7c1b
KC
2931 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2932 __group_imb = 1;
2933
5517d86b 2934 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2935
1da177e4
LT
2936 if (local_group) {
2937 this_load = avg_load;
2938 this = group;
2dd73a4f
PW
2939 this_nr_running = sum_nr_running;
2940 this_load_per_task = sum_weighted_load;
2941 } else if (avg_load > max_load &&
908a7c1b 2942 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2943 max_load = avg_load;
2944 busiest = group;
2dd73a4f
PW
2945 busiest_nr_running = sum_nr_running;
2946 busiest_load_per_task = sum_weighted_load;
908a7c1b 2947 group_imb = __group_imb;
1da177e4 2948 }
5c45bf27
SS
2949
2950#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2951 /*
2952 * Busy processors will not participate in power savings
2953 * balance.
2954 */
dd41f596
IM
2955 if (idle == CPU_NOT_IDLE ||
2956 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2957 goto group_next;
5c45bf27
SS
2958
2959 /*
2960 * If the local group is idle or completely loaded
2961 * no need to do power savings balance at this domain
2962 */
2963 if (local_group && (this_nr_running >= group_capacity ||
2964 !this_nr_running))
2965 power_savings_balance = 0;
2966
dd41f596 2967 /*
5c45bf27
SS
2968 * If a group is already running at full capacity or idle,
2969 * don't include that group in power savings calculations
dd41f596
IM
2970 */
2971 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2972 || !sum_nr_running)
dd41f596 2973 goto group_next;
5c45bf27 2974
dd41f596 2975 /*
5c45bf27 2976 * Calculate the group which has the least non-idle load.
dd41f596
IM
2977 * This is the group from where we need to pick up the load
2978 * for saving power
2979 */
2980 if ((sum_nr_running < min_nr_running) ||
2981 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2982 first_cpu(group->cpumask) <
2983 first_cpu(group_min->cpumask))) {
dd41f596
IM
2984 group_min = group;
2985 min_nr_running = sum_nr_running;
5c45bf27
SS
2986 min_load_per_task = sum_weighted_load /
2987 sum_nr_running;
dd41f596 2988 }
5c45bf27 2989
dd41f596 2990 /*
5c45bf27 2991 * Calculate the group which is almost near its
dd41f596
IM
2992 * capacity but still has some space to pick up some load
2993 * from other group and save more power
2994 */
2995 if (sum_nr_running <= group_capacity - 1) {
2996 if (sum_nr_running > leader_nr_running ||
2997 (sum_nr_running == leader_nr_running &&
2998 first_cpu(group->cpumask) >
2999 first_cpu(group_leader->cpumask))) {
3000 group_leader = group;
3001 leader_nr_running = sum_nr_running;
3002 }
48f24c4d 3003 }
5c45bf27
SS
3004group_next:
3005#endif
1da177e4
LT
3006 group = group->next;
3007 } while (group != sd->groups);
3008
2dd73a4f 3009 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3010 goto out_balanced;
3011
3012 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3013
3014 if (this_load >= avg_load ||
3015 100*max_load <= sd->imbalance_pct*this_load)
3016 goto out_balanced;
3017
2dd73a4f 3018 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3019 if (group_imb)
3020 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3021
1da177e4
LT
3022 /*
3023 * We're trying to get all the cpus to the average_load, so we don't
3024 * want to push ourselves above the average load, nor do we wish to
3025 * reduce the max loaded cpu below the average load, as either of these
3026 * actions would just result in more rebalancing later, and ping-pong
3027 * tasks around. Thus we look for the minimum possible imbalance.
3028 * Negative imbalances (*we* are more loaded than anyone else) will
3029 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3030 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3031 * appear as very large values with unsigned longs.
3032 */
2dd73a4f
PW
3033 if (max_load <= busiest_load_per_task)
3034 goto out_balanced;
3035
3036 /*
3037 * In the presence of smp nice balancing, certain scenarios can have
3038 * max load less than avg load(as we skip the groups at or below
3039 * its cpu_power, while calculating max_load..)
3040 */
3041 if (max_load < avg_load) {
3042 *imbalance = 0;
3043 goto small_imbalance;
3044 }
0c117f1b
SS
3045
3046 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3047 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3048
1da177e4 3049 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3050 *imbalance = min(max_pull * busiest->__cpu_power,
3051 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3052 / SCHED_LOAD_SCALE;
3053
2dd73a4f
PW
3054 /*
3055 * if *imbalance is less than the average load per runnable task
3056 * there is no gaurantee that any tasks will be moved so we'll have
3057 * a think about bumping its value to force at least one task to be
3058 * moved
3059 */
7fd0d2dd 3060 if (*imbalance < busiest_load_per_task) {
48f24c4d 3061 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3062 unsigned int imbn;
3063
3064small_imbalance:
3065 pwr_move = pwr_now = 0;
3066 imbn = 2;
3067 if (this_nr_running) {
3068 this_load_per_task /= this_nr_running;
3069 if (busiest_load_per_task > this_load_per_task)
3070 imbn = 1;
3071 } else
3072 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3073
dd41f596
IM
3074 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3075 busiest_load_per_task * imbn) {
2dd73a4f 3076 *imbalance = busiest_load_per_task;
1da177e4
LT
3077 return busiest;
3078 }
3079
3080 /*
3081 * OK, we don't have enough imbalance to justify moving tasks,
3082 * however we may be able to increase total CPU power used by
3083 * moving them.
3084 */
3085
5517d86b
ED
3086 pwr_now += busiest->__cpu_power *
3087 min(busiest_load_per_task, max_load);
3088 pwr_now += this->__cpu_power *
3089 min(this_load_per_task, this_load);
1da177e4
LT
3090 pwr_now /= SCHED_LOAD_SCALE;
3091
3092 /* Amount of load we'd subtract */
5517d86b
ED
3093 tmp = sg_div_cpu_power(busiest,
3094 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3095 if (max_load > tmp)
5517d86b 3096 pwr_move += busiest->__cpu_power *
2dd73a4f 3097 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3098
3099 /* Amount of load we'd add */
5517d86b 3100 if (max_load * busiest->__cpu_power <
33859f7f 3101 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3102 tmp = sg_div_cpu_power(this,
3103 max_load * busiest->__cpu_power);
1da177e4 3104 else
5517d86b
ED
3105 tmp = sg_div_cpu_power(this,
3106 busiest_load_per_task * SCHED_LOAD_SCALE);
3107 pwr_move += this->__cpu_power *
3108 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3109 pwr_move /= SCHED_LOAD_SCALE;
3110
3111 /* Move if we gain throughput */
7fd0d2dd
SS
3112 if (pwr_move > pwr_now)
3113 *imbalance = busiest_load_per_task;
1da177e4
LT
3114 }
3115
1da177e4
LT
3116 return busiest;
3117
3118out_balanced:
5c45bf27 3119#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3120 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3121 goto ret;
1da177e4 3122
5c45bf27
SS
3123 if (this == group_leader && group_leader != group_min) {
3124 *imbalance = min_load_per_task;
3125 return group_min;
3126 }
5c45bf27 3127#endif
783609c6 3128ret:
1da177e4
LT
3129 *imbalance = 0;
3130 return NULL;
3131}
3132
3133/*
3134 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3135 */
70b97a7f 3136static struct rq *
d15bcfdb 3137find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3138 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3139{
70b97a7f 3140 struct rq *busiest = NULL, *rq;
2dd73a4f 3141 unsigned long max_load = 0;
1da177e4
LT
3142 int i;
3143
3144 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3145 unsigned long wl;
0a2966b4
CL
3146
3147 if (!cpu_isset(i, *cpus))
3148 continue;
3149
48f24c4d 3150 rq = cpu_rq(i);
dd41f596 3151 wl = weighted_cpuload(i);
2dd73a4f 3152
dd41f596 3153 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3154 continue;
1da177e4 3155
dd41f596
IM
3156 if (wl > max_load) {
3157 max_load = wl;
48f24c4d 3158 busiest = rq;
1da177e4
LT
3159 }
3160 }
3161
3162 return busiest;
3163}
3164
77391d71
NP
3165/*
3166 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3167 * so long as it is large enough.
3168 */
3169#define MAX_PINNED_INTERVAL 512
3170
1da177e4
LT
3171/*
3172 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3173 * tasks if there is an imbalance.
1da177e4 3174 */
70b97a7f 3175static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3176 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3177 int *balance, cpumask_t *cpus)
1da177e4 3178{
43010659 3179 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3180 struct sched_group *group;
1da177e4 3181 unsigned long imbalance;
70b97a7f 3182 struct rq *busiest;
fe2eea3f 3183 unsigned long flags;
5969fe06 3184
7c16ec58
MT
3185 cpus_setall(*cpus);
3186
89c4710e
SS
3187 /*
3188 * When power savings policy is enabled for the parent domain, idle
3189 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3190 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3191 * portraying it as CPU_NOT_IDLE.
89c4710e 3192 */
d15bcfdb 3193 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3194 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3195 sd_idle = 1;
1da177e4 3196
2d72376b 3197 schedstat_inc(sd, lb_count[idle]);
1da177e4 3198
0a2966b4
CL
3199redo:
3200 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3201 cpus, balance);
783609c6 3202
06066714 3203 if (*balance == 0)
783609c6 3204 goto out_balanced;
783609c6 3205
1da177e4
LT
3206 if (!group) {
3207 schedstat_inc(sd, lb_nobusyg[idle]);
3208 goto out_balanced;
3209 }
3210
7c16ec58 3211 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3212 if (!busiest) {
3213 schedstat_inc(sd, lb_nobusyq[idle]);
3214 goto out_balanced;
3215 }
3216
db935dbd 3217 BUG_ON(busiest == this_rq);
1da177e4
LT
3218
3219 schedstat_add(sd, lb_imbalance[idle], imbalance);
3220
43010659 3221 ld_moved = 0;
1da177e4
LT
3222 if (busiest->nr_running > 1) {
3223 /*
3224 * Attempt to move tasks. If find_busiest_group has found
3225 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3226 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3227 * correctly treated as an imbalance.
3228 */
fe2eea3f 3229 local_irq_save(flags);
e17224bf 3230 double_rq_lock(this_rq, busiest);
43010659 3231 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3232 imbalance, sd, idle, &all_pinned);
e17224bf 3233 double_rq_unlock(this_rq, busiest);
fe2eea3f 3234 local_irq_restore(flags);
81026794 3235
46cb4b7c
SS
3236 /*
3237 * some other cpu did the load balance for us.
3238 */
43010659 3239 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3240 resched_cpu(this_cpu);
3241
81026794 3242 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3243 if (unlikely(all_pinned)) {
7c16ec58
MT
3244 cpu_clear(cpu_of(busiest), *cpus);
3245 if (!cpus_empty(*cpus))
0a2966b4 3246 goto redo;
81026794 3247 goto out_balanced;
0a2966b4 3248 }
1da177e4 3249 }
81026794 3250
43010659 3251 if (!ld_moved) {
1da177e4
LT
3252 schedstat_inc(sd, lb_failed[idle]);
3253 sd->nr_balance_failed++;
3254
3255 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3256
fe2eea3f 3257 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3258
3259 /* don't kick the migration_thread, if the curr
3260 * task on busiest cpu can't be moved to this_cpu
3261 */
3262 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3263 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3264 all_pinned = 1;
3265 goto out_one_pinned;
3266 }
3267
1da177e4
LT
3268 if (!busiest->active_balance) {
3269 busiest->active_balance = 1;
3270 busiest->push_cpu = this_cpu;
81026794 3271 active_balance = 1;
1da177e4 3272 }
fe2eea3f 3273 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3274 if (active_balance)
1da177e4
LT
3275 wake_up_process(busiest->migration_thread);
3276
3277 /*
3278 * We've kicked active balancing, reset the failure
3279 * counter.
3280 */
39507451 3281 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3282 }
81026794 3283 } else
1da177e4
LT
3284 sd->nr_balance_failed = 0;
3285
81026794 3286 if (likely(!active_balance)) {
1da177e4
LT
3287 /* We were unbalanced, so reset the balancing interval */
3288 sd->balance_interval = sd->min_interval;
81026794
NP
3289 } else {
3290 /*
3291 * If we've begun active balancing, start to back off. This
3292 * case may not be covered by the all_pinned logic if there
3293 * is only 1 task on the busy runqueue (because we don't call
3294 * move_tasks).
3295 */
3296 if (sd->balance_interval < sd->max_interval)
3297 sd->balance_interval *= 2;
1da177e4
LT
3298 }
3299
43010659 3300 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3302 return -1;
43010659 3303 return ld_moved;
1da177e4
LT
3304
3305out_balanced:
1da177e4
LT
3306 schedstat_inc(sd, lb_balanced[idle]);
3307
16cfb1c0 3308 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3309
3310out_one_pinned:
1da177e4 3311 /* tune up the balancing interval */
77391d71
NP
3312 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3313 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3314 sd->balance_interval *= 2;
3315
48f24c4d 3316 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3317 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3318 return -1;
1da177e4
LT
3319 return 0;
3320}
3321
3322/*
3323 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3324 * tasks if there is an imbalance.
3325 *
d15bcfdb 3326 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3327 * this_rq is locked.
3328 */
48f24c4d 3329static int
7c16ec58
MT
3330load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3331 cpumask_t *cpus)
1da177e4
LT
3332{
3333 struct sched_group *group;
70b97a7f 3334 struct rq *busiest = NULL;
1da177e4 3335 unsigned long imbalance;
43010659 3336 int ld_moved = 0;
5969fe06 3337 int sd_idle = 0;
969bb4e4 3338 int all_pinned = 0;
7c16ec58
MT
3339
3340 cpus_setall(*cpus);
5969fe06 3341
89c4710e
SS
3342 /*
3343 * When power savings policy is enabled for the parent domain, idle
3344 * sibling can pick up load irrespective of busy siblings. In this case,
3345 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3346 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3347 */
3348 if (sd->flags & SD_SHARE_CPUPOWER &&
3349 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3350 sd_idle = 1;
1da177e4 3351
2d72376b 3352 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3353redo:
d15bcfdb 3354 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3355 &sd_idle, cpus, NULL);
1da177e4 3356 if (!group) {
d15bcfdb 3357 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3358 goto out_balanced;
1da177e4
LT
3359 }
3360
7c16ec58 3361 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3362 if (!busiest) {
d15bcfdb 3363 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3364 goto out_balanced;
1da177e4
LT
3365 }
3366
db935dbd
NP
3367 BUG_ON(busiest == this_rq);
3368
d15bcfdb 3369 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3370
43010659 3371 ld_moved = 0;
d6d5cfaf
NP
3372 if (busiest->nr_running > 1) {
3373 /* Attempt to move tasks */
3374 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3375 /* this_rq->clock is already updated */
3376 update_rq_clock(busiest);
43010659 3377 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3378 imbalance, sd, CPU_NEWLY_IDLE,
3379 &all_pinned);
d6d5cfaf 3380 spin_unlock(&busiest->lock);
0a2966b4 3381
969bb4e4 3382 if (unlikely(all_pinned)) {
7c16ec58
MT
3383 cpu_clear(cpu_of(busiest), *cpus);
3384 if (!cpus_empty(*cpus))
0a2966b4
CL
3385 goto redo;
3386 }
d6d5cfaf
NP
3387 }
3388
43010659 3389 if (!ld_moved) {
d15bcfdb 3390 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3391 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3392 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3393 return -1;
3394 } else
16cfb1c0 3395 sd->nr_balance_failed = 0;
1da177e4 3396
43010659 3397 return ld_moved;
16cfb1c0
NP
3398
3399out_balanced:
d15bcfdb 3400 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3403 return -1;
16cfb1c0 3404 sd->nr_balance_failed = 0;
48f24c4d 3405
16cfb1c0 3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * idle_balance is called by schedule() if this_cpu is about to become
3411 * idle. Attempts to pull tasks from other CPUs.
3412 */
70b97a7f 3413static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3414{
3415 struct sched_domain *sd;
dd41f596
IM
3416 int pulled_task = -1;
3417 unsigned long next_balance = jiffies + HZ;
7c16ec58 3418 cpumask_t tmpmask;
1da177e4
LT
3419
3420 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3421 unsigned long interval;
3422
3423 if (!(sd->flags & SD_LOAD_BALANCE))
3424 continue;
3425
3426 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3427 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3428 pulled_task = load_balance_newidle(this_cpu, this_rq,
3429 sd, &tmpmask);
92c4ca5c
CL
3430
3431 interval = msecs_to_jiffies(sd->balance_interval);
3432 if (time_after(next_balance, sd->last_balance + interval))
3433 next_balance = sd->last_balance + interval;
3434 if (pulled_task)
3435 break;
1da177e4 3436 }
dd41f596 3437 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3438 /*
3439 * We are going idle. next_balance may be set based on
3440 * a busy processor. So reset next_balance.
3441 */
3442 this_rq->next_balance = next_balance;
dd41f596 3443 }
1da177e4
LT
3444}
3445
3446/*
3447 * active_load_balance is run by migration threads. It pushes running tasks
3448 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3449 * running on each physical CPU where possible, and avoids physical /
3450 * logical imbalances.
3451 *
3452 * Called with busiest_rq locked.
3453 */
70b97a7f 3454static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3455{
39507451 3456 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3457 struct sched_domain *sd;
3458 struct rq *target_rq;
39507451 3459
48f24c4d 3460 /* Is there any task to move? */
39507451 3461 if (busiest_rq->nr_running <= 1)
39507451
NP
3462 return;
3463
3464 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3465
3466 /*
39507451 3467 * This condition is "impossible", if it occurs
41a2d6cf 3468 * we need to fix it. Originally reported by
39507451 3469 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3470 */
39507451 3471 BUG_ON(busiest_rq == target_rq);
1da177e4 3472
39507451
NP
3473 /* move a task from busiest_rq to target_rq */
3474 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3475 update_rq_clock(busiest_rq);
3476 update_rq_clock(target_rq);
39507451
NP
3477
3478 /* Search for an sd spanning us and the target CPU. */
c96d145e 3479 for_each_domain(target_cpu, sd) {
39507451 3480 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3481 cpu_isset(busiest_cpu, sd->span))
39507451 3482 break;
c96d145e 3483 }
39507451 3484
48f24c4d 3485 if (likely(sd)) {
2d72376b 3486 schedstat_inc(sd, alb_count);
39507451 3487
43010659
PW
3488 if (move_one_task(target_rq, target_cpu, busiest_rq,
3489 sd, CPU_IDLE))
48f24c4d
IM
3490 schedstat_inc(sd, alb_pushed);
3491 else
3492 schedstat_inc(sd, alb_failed);
3493 }
39507451 3494 spin_unlock(&target_rq->lock);
1da177e4
LT
3495}
3496
46cb4b7c
SS
3497#ifdef CONFIG_NO_HZ
3498static struct {
3499 atomic_t load_balancer;
41a2d6cf 3500 cpumask_t cpu_mask;
46cb4b7c
SS
3501} nohz ____cacheline_aligned = {
3502 .load_balancer = ATOMIC_INIT(-1),
3503 .cpu_mask = CPU_MASK_NONE,
3504};
3505
7835b98b 3506/*
46cb4b7c
SS
3507 * This routine will try to nominate the ilb (idle load balancing)
3508 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3509 * load balancing on behalf of all those cpus. If all the cpus in the system
3510 * go into this tickless mode, then there will be no ilb owner (as there is
3511 * no need for one) and all the cpus will sleep till the next wakeup event
3512 * arrives...
3513 *
3514 * For the ilb owner, tick is not stopped. And this tick will be used
3515 * for idle load balancing. ilb owner will still be part of
3516 * nohz.cpu_mask..
7835b98b 3517 *
46cb4b7c
SS
3518 * While stopping the tick, this cpu will become the ilb owner if there
3519 * is no other owner. And will be the owner till that cpu becomes busy
3520 * or if all cpus in the system stop their ticks at which point
3521 * there is no need for ilb owner.
3522 *
3523 * When the ilb owner becomes busy, it nominates another owner, during the
3524 * next busy scheduler_tick()
3525 */
3526int select_nohz_load_balancer(int stop_tick)
3527{
3528 int cpu = smp_processor_id();
3529
3530 if (stop_tick) {
3531 cpu_set(cpu, nohz.cpu_mask);
3532 cpu_rq(cpu)->in_nohz_recently = 1;
3533
3534 /*
3535 * If we are going offline and still the leader, give up!
3536 */
3537 if (cpu_is_offline(cpu) &&
3538 atomic_read(&nohz.load_balancer) == cpu) {
3539 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3540 BUG();
3541 return 0;
3542 }
3543
3544 /* time for ilb owner also to sleep */
3545 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3546 if (atomic_read(&nohz.load_balancer) == cpu)
3547 atomic_set(&nohz.load_balancer, -1);
3548 return 0;
3549 }
3550
3551 if (atomic_read(&nohz.load_balancer) == -1) {
3552 /* make me the ilb owner */
3553 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3554 return 1;
3555 } else if (atomic_read(&nohz.load_balancer) == cpu)
3556 return 1;
3557 } else {
3558 if (!cpu_isset(cpu, nohz.cpu_mask))
3559 return 0;
3560
3561 cpu_clear(cpu, nohz.cpu_mask);
3562
3563 if (atomic_read(&nohz.load_balancer) == cpu)
3564 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3565 BUG();
3566 }
3567 return 0;
3568}
3569#endif
3570
3571static DEFINE_SPINLOCK(balancing);
3572
3573/*
7835b98b
CL
3574 * It checks each scheduling domain to see if it is due to be balanced,
3575 * and initiates a balancing operation if so.
3576 *
3577 * Balancing parameters are set up in arch_init_sched_domains.
3578 */
a9957449 3579static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3580{
46cb4b7c
SS
3581 int balance = 1;
3582 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3583 unsigned long interval;
3584 struct sched_domain *sd;
46cb4b7c 3585 /* Earliest time when we have to do rebalance again */
c9819f45 3586 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3587 int update_next_balance = 0;
7c16ec58 3588 cpumask_t tmp;
1da177e4 3589
46cb4b7c 3590 for_each_domain(cpu, sd) {
1da177e4
LT
3591 if (!(sd->flags & SD_LOAD_BALANCE))
3592 continue;
3593
3594 interval = sd->balance_interval;
d15bcfdb 3595 if (idle != CPU_IDLE)
1da177e4
LT
3596 interval *= sd->busy_factor;
3597
3598 /* scale ms to jiffies */
3599 interval = msecs_to_jiffies(interval);
3600 if (unlikely(!interval))
3601 interval = 1;
dd41f596
IM
3602 if (interval > HZ*NR_CPUS/10)
3603 interval = HZ*NR_CPUS/10;
3604
1da177e4 3605
08c183f3
CL
3606 if (sd->flags & SD_SERIALIZE) {
3607 if (!spin_trylock(&balancing))
3608 goto out;
3609 }
3610
c9819f45 3611 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3612 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3613 /*
3614 * We've pulled tasks over so either we're no
5969fe06
NP
3615 * longer idle, or one of our SMT siblings is
3616 * not idle.
3617 */
d15bcfdb 3618 idle = CPU_NOT_IDLE;
1da177e4 3619 }
1bd77f2d 3620 sd->last_balance = jiffies;
1da177e4 3621 }
08c183f3
CL
3622 if (sd->flags & SD_SERIALIZE)
3623 spin_unlock(&balancing);
3624out:
f549da84 3625 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3626 next_balance = sd->last_balance + interval;
f549da84
SS
3627 update_next_balance = 1;
3628 }
783609c6
SS
3629
3630 /*
3631 * Stop the load balance at this level. There is another
3632 * CPU in our sched group which is doing load balancing more
3633 * actively.
3634 */
3635 if (!balance)
3636 break;
1da177e4 3637 }
f549da84
SS
3638
3639 /*
3640 * next_balance will be updated only when there is a need.
3641 * When the cpu is attached to null domain for ex, it will not be
3642 * updated.
3643 */
3644 if (likely(update_next_balance))
3645 rq->next_balance = next_balance;
46cb4b7c
SS
3646}
3647
3648/*
3649 * run_rebalance_domains is triggered when needed from the scheduler tick.
3650 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3651 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3652 */
3653static void run_rebalance_domains(struct softirq_action *h)
3654{
dd41f596
IM
3655 int this_cpu = smp_processor_id();
3656 struct rq *this_rq = cpu_rq(this_cpu);
3657 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3658 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3659
dd41f596 3660 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3661
3662#ifdef CONFIG_NO_HZ
3663 /*
3664 * If this cpu is the owner for idle load balancing, then do the
3665 * balancing on behalf of the other idle cpus whose ticks are
3666 * stopped.
3667 */
dd41f596
IM
3668 if (this_rq->idle_at_tick &&
3669 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3670 cpumask_t cpus = nohz.cpu_mask;
3671 struct rq *rq;
3672 int balance_cpu;
3673
dd41f596 3674 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3675 for_each_cpu_mask(balance_cpu, cpus) {
3676 /*
3677 * If this cpu gets work to do, stop the load balancing
3678 * work being done for other cpus. Next load
3679 * balancing owner will pick it up.
3680 */
3681 if (need_resched())
3682 break;
3683
de0cf899 3684 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3685
3686 rq = cpu_rq(balance_cpu);
dd41f596
IM
3687 if (time_after(this_rq->next_balance, rq->next_balance))
3688 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3689 }
3690 }
3691#endif
3692}
3693
3694/*
3695 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3696 *
3697 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3698 * idle load balancing owner or decide to stop the periodic load balancing,
3699 * if the whole system is idle.
3700 */
dd41f596 3701static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3702{
46cb4b7c
SS
3703#ifdef CONFIG_NO_HZ
3704 /*
3705 * If we were in the nohz mode recently and busy at the current
3706 * scheduler tick, then check if we need to nominate new idle
3707 * load balancer.
3708 */
3709 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3710 rq->in_nohz_recently = 0;
3711
3712 if (atomic_read(&nohz.load_balancer) == cpu) {
3713 cpu_clear(cpu, nohz.cpu_mask);
3714 atomic_set(&nohz.load_balancer, -1);
3715 }
3716
3717 if (atomic_read(&nohz.load_balancer) == -1) {
3718 /*
3719 * simple selection for now: Nominate the
3720 * first cpu in the nohz list to be the next
3721 * ilb owner.
3722 *
3723 * TBD: Traverse the sched domains and nominate
3724 * the nearest cpu in the nohz.cpu_mask.
3725 */
3726 int ilb = first_cpu(nohz.cpu_mask);
3727
434d53b0 3728 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3729 resched_cpu(ilb);
3730 }
3731 }
3732
3733 /*
3734 * If this cpu is idle and doing idle load balancing for all the
3735 * cpus with ticks stopped, is it time for that to stop?
3736 */
3737 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3738 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3739 resched_cpu(cpu);
3740 return;
3741 }
3742
3743 /*
3744 * If this cpu is idle and the idle load balancing is done by
3745 * someone else, then no need raise the SCHED_SOFTIRQ
3746 */
3747 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3748 cpu_isset(cpu, nohz.cpu_mask))
3749 return;
3750#endif
3751 if (time_after_eq(jiffies, rq->next_balance))
3752 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3753}
dd41f596
IM
3754
3755#else /* CONFIG_SMP */
3756
1da177e4
LT
3757/*
3758 * on UP we do not need to balance between CPUs:
3759 */
70b97a7f 3760static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3761{
3762}
dd41f596 3763
1da177e4
LT
3764#endif
3765
1da177e4
LT
3766DEFINE_PER_CPU(struct kernel_stat, kstat);
3767
3768EXPORT_PER_CPU_SYMBOL(kstat);
3769
3770/*
41b86e9c
IM
3771 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3772 * that have not yet been banked in case the task is currently running.
1da177e4 3773 */
41b86e9c 3774unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3775{
1da177e4 3776 unsigned long flags;
41b86e9c
IM
3777 u64 ns, delta_exec;
3778 struct rq *rq;
48f24c4d 3779
41b86e9c
IM
3780 rq = task_rq_lock(p, &flags);
3781 ns = p->se.sum_exec_runtime;
051a1d1a 3782 if (task_current(rq, p)) {
a8e504d2
IM
3783 update_rq_clock(rq);
3784 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3785 if ((s64)delta_exec > 0)
3786 ns += delta_exec;
3787 }
3788 task_rq_unlock(rq, &flags);
48f24c4d 3789
1da177e4
LT
3790 return ns;
3791}
3792
1da177e4
LT
3793/*
3794 * Account user cpu time to a process.
3795 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3796 * @cputime: the cpu time spent in user space since the last update
3797 */
3798void account_user_time(struct task_struct *p, cputime_t cputime)
3799{
3800 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3801 cputime64_t tmp;
3802
3803 p->utime = cputime_add(p->utime, cputime);
3804
3805 /* Add user time to cpustat. */
3806 tmp = cputime_to_cputime64(cputime);
3807 if (TASK_NICE(p) > 0)
3808 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3809 else
3810 cpustat->user = cputime64_add(cpustat->user, tmp);
3811}
3812
94886b84
LV
3813/*
3814 * Account guest cpu time to a process.
3815 * @p: the process that the cpu time gets accounted to
3816 * @cputime: the cpu time spent in virtual machine since the last update
3817 */
f7402e03 3818static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3819{
3820 cputime64_t tmp;
3821 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3822
3823 tmp = cputime_to_cputime64(cputime);
3824
3825 p->utime = cputime_add(p->utime, cputime);
3826 p->gtime = cputime_add(p->gtime, cputime);
3827
3828 cpustat->user = cputime64_add(cpustat->user, tmp);
3829 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3830}
3831
c66f08be
MN
3832/*
3833 * Account scaled user cpu time to a process.
3834 * @p: the process that the cpu time gets accounted to
3835 * @cputime: the cpu time spent in user space since the last update
3836 */
3837void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3838{
3839 p->utimescaled = cputime_add(p->utimescaled, cputime);
3840}
3841
1da177e4
LT
3842/*
3843 * Account system cpu time to a process.
3844 * @p: the process that the cpu time gets accounted to
3845 * @hardirq_offset: the offset to subtract from hardirq_count()
3846 * @cputime: the cpu time spent in kernel space since the last update
3847 */
3848void account_system_time(struct task_struct *p, int hardirq_offset,
3849 cputime_t cputime)
3850{
3851 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3852 struct rq *rq = this_rq();
1da177e4
LT
3853 cputime64_t tmp;
3854
9778385d
CB
3855 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3856 return account_guest_time(p, cputime);
94886b84 3857
1da177e4
LT
3858 p->stime = cputime_add(p->stime, cputime);
3859
3860 /* Add system time to cpustat. */
3861 tmp = cputime_to_cputime64(cputime);
3862 if (hardirq_count() - hardirq_offset)
3863 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3864 else if (softirq_count())
3865 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3866 else if (p != rq->idle)
1da177e4 3867 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3868 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3869 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3870 else
3871 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3872 /* Account for system time used */
3873 acct_update_integrals(p);
1da177e4
LT
3874}
3875
c66f08be
MN
3876/*
3877 * Account scaled system cpu time to a process.
3878 * @p: the process that the cpu time gets accounted to
3879 * @hardirq_offset: the offset to subtract from hardirq_count()
3880 * @cputime: the cpu time spent in kernel space since the last update
3881 */
3882void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3883{
3884 p->stimescaled = cputime_add(p->stimescaled, cputime);
3885}
3886
1da177e4
LT
3887/*
3888 * Account for involuntary wait time.
3889 * @p: the process from which the cpu time has been stolen
3890 * @steal: the cpu time spent in involuntary wait
3891 */
3892void account_steal_time(struct task_struct *p, cputime_t steal)
3893{
3894 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3895 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3896 struct rq *rq = this_rq();
1da177e4
LT
3897
3898 if (p == rq->idle) {
3899 p->stime = cputime_add(p->stime, steal);
3900 if (atomic_read(&rq->nr_iowait) > 0)
3901 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3902 else
3903 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3904 } else
1da177e4
LT
3905 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3906}
3907
7835b98b
CL
3908/*
3909 * This function gets called by the timer code, with HZ frequency.
3910 * We call it with interrupts disabled.
3911 *
3912 * It also gets called by the fork code, when changing the parent's
3913 * timeslices.
3914 */
3915void scheduler_tick(void)
3916{
7835b98b
CL
3917 int cpu = smp_processor_id();
3918 struct rq *rq = cpu_rq(cpu);
dd41f596 3919 struct task_struct *curr = rq->curr;
529c7726 3920 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3921
3922 spin_lock(&rq->lock);
546fe3c9 3923 __update_rq_clock(rq);
529c7726
IM
3924 /*
3925 * Let rq->clock advance by at least TICK_NSEC:
3926 */
cc203d24 3927 if (unlikely(rq->clock < next_tick)) {
529c7726 3928 rq->clock = next_tick;
cc203d24
GC
3929 rq->clock_underflows++;
3930 }
529c7726 3931 rq->tick_timestamp = rq->clock;
15934a37 3932 update_last_tick_seen(rq);
f1a438d8 3933 update_cpu_load(rq);
fa85ae24 3934 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 3935 spin_unlock(&rq->lock);
7835b98b 3936
e418e1c2 3937#ifdef CONFIG_SMP
dd41f596
IM
3938 rq->idle_at_tick = idle_cpu(cpu);
3939 trigger_load_balance(rq, cpu);
e418e1c2 3940#endif
1da177e4
LT
3941}
3942
1da177e4
LT
3943#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3944
43627582 3945void __kprobes add_preempt_count(int val)
1da177e4
LT
3946{
3947 /*
3948 * Underflow?
3949 */
9a11b49a
IM
3950 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3951 return;
1da177e4
LT
3952 preempt_count() += val;
3953 /*
3954 * Spinlock count overflowing soon?
3955 */
33859f7f
MOS
3956 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3957 PREEMPT_MASK - 10);
1da177e4
LT
3958}
3959EXPORT_SYMBOL(add_preempt_count);
3960
43627582 3961void __kprobes sub_preempt_count(int val)
1da177e4
LT
3962{
3963 /*
3964 * Underflow?
3965 */
9a11b49a
IM
3966 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3967 return;
1da177e4
LT
3968 /*
3969 * Is the spinlock portion underflowing?
3970 */
9a11b49a
IM
3971 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3972 !(preempt_count() & PREEMPT_MASK)))
3973 return;
3974
1da177e4
LT
3975 preempt_count() -= val;
3976}
3977EXPORT_SYMBOL(sub_preempt_count);
3978
3979#endif
3980
3981/*
dd41f596 3982 * Print scheduling while atomic bug:
1da177e4 3983 */
dd41f596 3984static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3985{
838225b4
SS
3986 struct pt_regs *regs = get_irq_regs();
3987
3988 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3989 prev->comm, prev->pid, preempt_count());
3990
dd41f596
IM
3991 debug_show_held_locks(prev);
3992 if (irqs_disabled())
3993 print_irqtrace_events(prev);
838225b4
SS
3994
3995 if (regs)
3996 show_regs(regs);
3997 else
3998 dump_stack();
dd41f596 3999}
1da177e4 4000
dd41f596
IM
4001/*
4002 * Various schedule()-time debugging checks and statistics:
4003 */
4004static inline void schedule_debug(struct task_struct *prev)
4005{
1da177e4 4006 /*
41a2d6cf 4007 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4008 * schedule() atomically, we ignore that path for now.
4009 * Otherwise, whine if we are scheduling when we should not be.
4010 */
dd41f596
IM
4011 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4012 __schedule_bug(prev);
4013
1da177e4
LT
4014 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4015
2d72376b 4016 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4017#ifdef CONFIG_SCHEDSTATS
4018 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4019 schedstat_inc(this_rq(), bkl_count);
4020 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4021 }
4022#endif
dd41f596
IM
4023}
4024
4025/*
4026 * Pick up the highest-prio task:
4027 */
4028static inline struct task_struct *
ff95f3df 4029pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4030{
5522d5d5 4031 const struct sched_class *class;
dd41f596 4032 struct task_struct *p;
1da177e4
LT
4033
4034 /*
dd41f596
IM
4035 * Optimization: we know that if all tasks are in
4036 * the fair class we can call that function directly:
1da177e4 4037 */
dd41f596 4038 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4039 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4040 if (likely(p))
4041 return p;
1da177e4
LT
4042 }
4043
dd41f596
IM
4044 class = sched_class_highest;
4045 for ( ; ; ) {
fb8d4724 4046 p = class->pick_next_task(rq);
dd41f596
IM
4047 if (p)
4048 return p;
4049 /*
4050 * Will never be NULL as the idle class always
4051 * returns a non-NULL p:
4052 */
4053 class = class->next;
4054 }
4055}
1da177e4 4056
dd41f596
IM
4057/*
4058 * schedule() is the main scheduler function.
4059 */
4060asmlinkage void __sched schedule(void)
4061{
4062 struct task_struct *prev, *next;
67ca7bde 4063 unsigned long *switch_count;
dd41f596 4064 struct rq *rq;
dd41f596
IM
4065 int cpu;
4066
4067need_resched:
4068 preempt_disable();
4069 cpu = smp_processor_id();
4070 rq = cpu_rq(cpu);
4071 rcu_qsctr_inc(cpu);
4072 prev = rq->curr;
4073 switch_count = &prev->nivcsw;
4074
4075 release_kernel_lock(prev);
4076need_resched_nonpreemptible:
4077
4078 schedule_debug(prev);
1da177e4 4079
8f4d37ec
PZ
4080 hrtick_clear(rq);
4081
1e819950
IM
4082 /*
4083 * Do the rq-clock update outside the rq lock:
4084 */
4085 local_irq_disable();
c1b3da3e 4086 __update_rq_clock(rq);
1e819950
IM
4087 spin_lock(&rq->lock);
4088 clear_tsk_need_resched(prev);
1da177e4 4089
1da177e4 4090 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4091 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4092 signal_pending(prev))) {
1da177e4 4093 prev->state = TASK_RUNNING;
dd41f596 4094 } else {
2e1cb74a 4095 deactivate_task(rq, prev, 1);
1da177e4 4096 }
dd41f596 4097 switch_count = &prev->nvcsw;
1da177e4
LT
4098 }
4099
9a897c5a
SR
4100#ifdef CONFIG_SMP
4101 if (prev->sched_class->pre_schedule)
4102 prev->sched_class->pre_schedule(rq, prev);
4103#endif
f65eda4f 4104
dd41f596 4105 if (unlikely(!rq->nr_running))
1da177e4 4106 idle_balance(cpu, rq);
1da177e4 4107
31ee529c 4108 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4109 next = pick_next_task(rq, prev);
1da177e4
LT
4110
4111 sched_info_switch(prev, next);
dd41f596 4112
1da177e4 4113 if (likely(prev != next)) {
1da177e4
LT
4114 rq->nr_switches++;
4115 rq->curr = next;
4116 ++*switch_count;
4117
dd41f596 4118 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4119 /*
4120 * the context switch might have flipped the stack from under
4121 * us, hence refresh the local variables.
4122 */
4123 cpu = smp_processor_id();
4124 rq = cpu_rq(cpu);
1da177e4
LT
4125 } else
4126 spin_unlock_irq(&rq->lock);
4127
8f4d37ec
PZ
4128 hrtick_set(rq);
4129
4130 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4131 goto need_resched_nonpreemptible;
8f4d37ec 4132
1da177e4
LT
4133 preempt_enable_no_resched();
4134 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4135 goto need_resched;
4136}
1da177e4
LT
4137EXPORT_SYMBOL(schedule);
4138
4139#ifdef CONFIG_PREEMPT
4140/*
2ed6e34f 4141 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4142 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4143 * occur there and call schedule directly.
4144 */
4145asmlinkage void __sched preempt_schedule(void)
4146{
4147 struct thread_info *ti = current_thread_info();
1da177e4
LT
4148 struct task_struct *task = current;
4149 int saved_lock_depth;
6478d880 4150
1da177e4
LT
4151 /*
4152 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4153 * we do not want to preempt the current task. Just return..
1da177e4 4154 */
beed33a8 4155 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4156 return;
4157
3a5c359a
AK
4158 do {
4159 add_preempt_count(PREEMPT_ACTIVE);
4160
4161 /*
4162 * We keep the big kernel semaphore locked, but we
4163 * clear ->lock_depth so that schedule() doesnt
4164 * auto-release the semaphore:
4165 */
3a5c359a
AK
4166 saved_lock_depth = task->lock_depth;
4167 task->lock_depth = -1;
3a5c359a 4168 schedule();
3a5c359a 4169 task->lock_depth = saved_lock_depth;
3a5c359a 4170 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4171
3a5c359a
AK
4172 /*
4173 * Check again in case we missed a preemption opportunity
4174 * between schedule and now.
4175 */
4176 barrier();
4177 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4178}
1da177e4
LT
4179EXPORT_SYMBOL(preempt_schedule);
4180
4181/*
2ed6e34f 4182 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4183 * off of irq context.
4184 * Note, that this is called and return with irqs disabled. This will
4185 * protect us against recursive calling from irq.
4186 */
4187asmlinkage void __sched preempt_schedule_irq(void)
4188{
4189 struct thread_info *ti = current_thread_info();
1da177e4
LT
4190 struct task_struct *task = current;
4191 int saved_lock_depth;
6478d880 4192
2ed6e34f 4193 /* Catch callers which need to be fixed */
1da177e4
LT
4194 BUG_ON(ti->preempt_count || !irqs_disabled());
4195
3a5c359a
AK
4196 do {
4197 add_preempt_count(PREEMPT_ACTIVE);
4198
4199 /*
4200 * We keep the big kernel semaphore locked, but we
4201 * clear ->lock_depth so that schedule() doesnt
4202 * auto-release the semaphore:
4203 */
3a5c359a
AK
4204 saved_lock_depth = task->lock_depth;
4205 task->lock_depth = -1;
3a5c359a
AK
4206 local_irq_enable();
4207 schedule();
4208 local_irq_disable();
3a5c359a 4209 task->lock_depth = saved_lock_depth;
3a5c359a 4210 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4211
3a5c359a
AK
4212 /*
4213 * Check again in case we missed a preemption opportunity
4214 * between schedule and now.
4215 */
4216 barrier();
4217 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4218}
4219
4220#endif /* CONFIG_PREEMPT */
4221
95cdf3b7
IM
4222int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4223 void *key)
1da177e4 4224{
48f24c4d 4225 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4226}
1da177e4
LT
4227EXPORT_SYMBOL(default_wake_function);
4228
4229/*
41a2d6cf
IM
4230 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4231 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4232 * number) then we wake all the non-exclusive tasks and one exclusive task.
4233 *
4234 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4235 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4236 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4237 */
4238static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4239 int nr_exclusive, int sync, void *key)
4240{
2e45874c 4241 wait_queue_t *curr, *next;
1da177e4 4242
2e45874c 4243 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4244 unsigned flags = curr->flags;
4245
1da177e4 4246 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4247 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4248 break;
4249 }
4250}
4251
4252/**
4253 * __wake_up - wake up threads blocked on a waitqueue.
4254 * @q: the waitqueue
4255 * @mode: which threads
4256 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4257 * @key: is directly passed to the wakeup function
1da177e4 4258 */
7ad5b3a5 4259void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4260 int nr_exclusive, void *key)
1da177e4
LT
4261{
4262 unsigned long flags;
4263
4264 spin_lock_irqsave(&q->lock, flags);
4265 __wake_up_common(q, mode, nr_exclusive, 0, key);
4266 spin_unlock_irqrestore(&q->lock, flags);
4267}
1da177e4
LT
4268EXPORT_SYMBOL(__wake_up);
4269
4270/*
4271 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4272 */
7ad5b3a5 4273void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4274{
4275 __wake_up_common(q, mode, 1, 0, NULL);
4276}
4277
4278/**
67be2dd1 4279 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4280 * @q: the waitqueue
4281 * @mode: which threads
4282 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4283 *
4284 * The sync wakeup differs that the waker knows that it will schedule
4285 * away soon, so while the target thread will be woken up, it will not
4286 * be migrated to another CPU - ie. the two threads are 'synchronized'
4287 * with each other. This can prevent needless bouncing between CPUs.
4288 *
4289 * On UP it can prevent extra preemption.
4290 */
7ad5b3a5 4291void
95cdf3b7 4292__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4293{
4294 unsigned long flags;
4295 int sync = 1;
4296
4297 if (unlikely(!q))
4298 return;
4299
4300 if (unlikely(!nr_exclusive))
4301 sync = 0;
4302
4303 spin_lock_irqsave(&q->lock, flags);
4304 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4305 spin_unlock_irqrestore(&q->lock, flags);
4306}
4307EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4308
b15136e9 4309void complete(struct completion *x)
1da177e4
LT
4310{
4311 unsigned long flags;
4312
4313 spin_lock_irqsave(&x->wait.lock, flags);
4314 x->done++;
d9514f6c 4315 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4316 spin_unlock_irqrestore(&x->wait.lock, flags);
4317}
4318EXPORT_SYMBOL(complete);
4319
b15136e9 4320void complete_all(struct completion *x)
1da177e4
LT
4321{
4322 unsigned long flags;
4323
4324 spin_lock_irqsave(&x->wait.lock, flags);
4325 x->done += UINT_MAX/2;
d9514f6c 4326 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4327 spin_unlock_irqrestore(&x->wait.lock, flags);
4328}
4329EXPORT_SYMBOL(complete_all);
4330
8cbbe86d
AK
4331static inline long __sched
4332do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4333{
1da177e4
LT
4334 if (!x->done) {
4335 DECLARE_WAITQUEUE(wait, current);
4336
4337 wait.flags |= WQ_FLAG_EXCLUSIVE;
4338 __add_wait_queue_tail(&x->wait, &wait);
4339 do {
009e577e
MW
4340 if ((state == TASK_INTERRUPTIBLE &&
4341 signal_pending(current)) ||
4342 (state == TASK_KILLABLE &&
4343 fatal_signal_pending(current))) {
8cbbe86d
AK
4344 __remove_wait_queue(&x->wait, &wait);
4345 return -ERESTARTSYS;
4346 }
4347 __set_current_state(state);
1da177e4
LT
4348 spin_unlock_irq(&x->wait.lock);
4349 timeout = schedule_timeout(timeout);
4350 spin_lock_irq(&x->wait.lock);
4351 if (!timeout) {
4352 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4353 return timeout;
1da177e4
LT
4354 }
4355 } while (!x->done);
4356 __remove_wait_queue(&x->wait, &wait);
4357 }
4358 x->done--;
1da177e4
LT
4359 return timeout;
4360}
1da177e4 4361
8cbbe86d
AK
4362static long __sched
4363wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4364{
1da177e4
LT
4365 might_sleep();
4366
4367 spin_lock_irq(&x->wait.lock);
8cbbe86d 4368 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4369 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4370 return timeout;
4371}
1da177e4 4372
b15136e9 4373void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4374{
4375 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4376}
8cbbe86d 4377EXPORT_SYMBOL(wait_for_completion);
1da177e4 4378
b15136e9 4379unsigned long __sched
8cbbe86d 4380wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4381{
8cbbe86d 4382 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4383}
8cbbe86d 4384EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4385
8cbbe86d 4386int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4387{
51e97990
AK
4388 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4389 if (t == -ERESTARTSYS)
4390 return t;
4391 return 0;
0fec171c 4392}
8cbbe86d 4393EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4394
b15136e9 4395unsigned long __sched
8cbbe86d
AK
4396wait_for_completion_interruptible_timeout(struct completion *x,
4397 unsigned long timeout)
0fec171c 4398{
8cbbe86d 4399 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4400}
8cbbe86d 4401EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4402
009e577e
MW
4403int __sched wait_for_completion_killable(struct completion *x)
4404{
4405 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4406 if (t == -ERESTARTSYS)
4407 return t;
4408 return 0;
4409}
4410EXPORT_SYMBOL(wait_for_completion_killable);
4411
8cbbe86d
AK
4412static long __sched
4413sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4414{
0fec171c
IM
4415 unsigned long flags;
4416 wait_queue_t wait;
4417
4418 init_waitqueue_entry(&wait, current);
1da177e4 4419
8cbbe86d 4420 __set_current_state(state);
1da177e4 4421
8cbbe86d
AK
4422 spin_lock_irqsave(&q->lock, flags);
4423 __add_wait_queue(q, &wait);
4424 spin_unlock(&q->lock);
4425 timeout = schedule_timeout(timeout);
4426 spin_lock_irq(&q->lock);
4427 __remove_wait_queue(q, &wait);
4428 spin_unlock_irqrestore(&q->lock, flags);
4429
4430 return timeout;
4431}
4432
4433void __sched interruptible_sleep_on(wait_queue_head_t *q)
4434{
4435 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4436}
1da177e4
LT
4437EXPORT_SYMBOL(interruptible_sleep_on);
4438
0fec171c 4439long __sched
95cdf3b7 4440interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4441{
8cbbe86d 4442 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4443}
1da177e4
LT
4444EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4445
0fec171c 4446void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4447{
8cbbe86d 4448 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4449}
1da177e4
LT
4450EXPORT_SYMBOL(sleep_on);
4451
0fec171c 4452long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4453{
8cbbe86d 4454 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4455}
1da177e4
LT
4456EXPORT_SYMBOL(sleep_on_timeout);
4457
b29739f9
IM
4458#ifdef CONFIG_RT_MUTEXES
4459
4460/*
4461 * rt_mutex_setprio - set the current priority of a task
4462 * @p: task
4463 * @prio: prio value (kernel-internal form)
4464 *
4465 * This function changes the 'effective' priority of a task. It does
4466 * not touch ->normal_prio like __setscheduler().
4467 *
4468 * Used by the rt_mutex code to implement priority inheritance logic.
4469 */
36c8b586 4470void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4471{
4472 unsigned long flags;
83b699ed 4473 int oldprio, on_rq, running;
70b97a7f 4474 struct rq *rq;
cb469845 4475 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4476
4477 BUG_ON(prio < 0 || prio > MAX_PRIO);
4478
4479 rq = task_rq_lock(p, &flags);
a8e504d2 4480 update_rq_clock(rq);
b29739f9 4481
d5f9f942 4482 oldprio = p->prio;
dd41f596 4483 on_rq = p->se.on_rq;
051a1d1a 4484 running = task_current(rq, p);
0e1f3483 4485 if (on_rq)
69be72c1 4486 dequeue_task(rq, p, 0);
0e1f3483
HS
4487 if (running)
4488 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4489
4490 if (rt_prio(prio))
4491 p->sched_class = &rt_sched_class;
4492 else
4493 p->sched_class = &fair_sched_class;
4494
b29739f9
IM
4495 p->prio = prio;
4496
0e1f3483
HS
4497 if (running)
4498 p->sched_class->set_curr_task(rq);
dd41f596 4499 if (on_rq) {
8159f87e 4500 enqueue_task(rq, p, 0);
cb469845
SR
4501
4502 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4503 }
4504 task_rq_unlock(rq, &flags);
4505}
4506
4507#endif
4508
36c8b586 4509void set_user_nice(struct task_struct *p, long nice)
1da177e4 4510{
dd41f596 4511 int old_prio, delta, on_rq;
1da177e4 4512 unsigned long flags;
70b97a7f 4513 struct rq *rq;
1da177e4
LT
4514
4515 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4516 return;
4517 /*
4518 * We have to be careful, if called from sys_setpriority(),
4519 * the task might be in the middle of scheduling on another CPU.
4520 */
4521 rq = task_rq_lock(p, &flags);
a8e504d2 4522 update_rq_clock(rq);
1da177e4
LT
4523 /*
4524 * The RT priorities are set via sched_setscheduler(), but we still
4525 * allow the 'normal' nice value to be set - but as expected
4526 * it wont have any effect on scheduling until the task is
dd41f596 4527 * SCHED_FIFO/SCHED_RR:
1da177e4 4528 */
e05606d3 4529 if (task_has_rt_policy(p)) {
1da177e4
LT
4530 p->static_prio = NICE_TO_PRIO(nice);
4531 goto out_unlock;
4532 }
dd41f596 4533 on_rq = p->se.on_rq;
62fb1851 4534 if (on_rq) {
69be72c1 4535 dequeue_task(rq, p, 0);
62fb1851
PZ
4536 dec_load(rq, p);
4537 }
1da177e4 4538
1da177e4 4539 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4540 set_load_weight(p);
b29739f9
IM
4541 old_prio = p->prio;
4542 p->prio = effective_prio(p);
4543 delta = p->prio - old_prio;
1da177e4 4544
dd41f596 4545 if (on_rq) {
8159f87e 4546 enqueue_task(rq, p, 0);
62fb1851 4547 inc_load(rq, p);
1da177e4 4548 /*
d5f9f942
AM
4549 * If the task increased its priority or is running and
4550 * lowered its priority, then reschedule its CPU:
1da177e4 4551 */
d5f9f942 4552 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4553 resched_task(rq->curr);
4554 }
4555out_unlock:
4556 task_rq_unlock(rq, &flags);
4557}
1da177e4
LT
4558EXPORT_SYMBOL(set_user_nice);
4559
e43379f1
MM
4560/*
4561 * can_nice - check if a task can reduce its nice value
4562 * @p: task
4563 * @nice: nice value
4564 */
36c8b586 4565int can_nice(const struct task_struct *p, const int nice)
e43379f1 4566{
024f4747
MM
4567 /* convert nice value [19,-20] to rlimit style value [1,40] */
4568 int nice_rlim = 20 - nice;
48f24c4d 4569
e43379f1
MM
4570 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4571 capable(CAP_SYS_NICE));
4572}
4573
1da177e4
LT
4574#ifdef __ARCH_WANT_SYS_NICE
4575
4576/*
4577 * sys_nice - change the priority of the current process.
4578 * @increment: priority increment
4579 *
4580 * sys_setpriority is a more generic, but much slower function that
4581 * does similar things.
4582 */
4583asmlinkage long sys_nice(int increment)
4584{
48f24c4d 4585 long nice, retval;
1da177e4
LT
4586
4587 /*
4588 * Setpriority might change our priority at the same moment.
4589 * We don't have to worry. Conceptually one call occurs first
4590 * and we have a single winner.
4591 */
e43379f1
MM
4592 if (increment < -40)
4593 increment = -40;
1da177e4
LT
4594 if (increment > 40)
4595 increment = 40;
4596
4597 nice = PRIO_TO_NICE(current->static_prio) + increment;
4598 if (nice < -20)
4599 nice = -20;
4600 if (nice > 19)
4601 nice = 19;
4602
e43379f1
MM
4603 if (increment < 0 && !can_nice(current, nice))
4604 return -EPERM;
4605
1da177e4
LT
4606 retval = security_task_setnice(current, nice);
4607 if (retval)
4608 return retval;
4609
4610 set_user_nice(current, nice);
4611 return 0;
4612}
4613
4614#endif
4615
4616/**
4617 * task_prio - return the priority value of a given task.
4618 * @p: the task in question.
4619 *
4620 * This is the priority value as seen by users in /proc.
4621 * RT tasks are offset by -200. Normal tasks are centered
4622 * around 0, value goes from -16 to +15.
4623 */
36c8b586 4624int task_prio(const struct task_struct *p)
1da177e4
LT
4625{
4626 return p->prio - MAX_RT_PRIO;
4627}
4628
4629/**
4630 * task_nice - return the nice value of a given task.
4631 * @p: the task in question.
4632 */
36c8b586 4633int task_nice(const struct task_struct *p)
1da177e4
LT
4634{
4635 return TASK_NICE(p);
4636}
150d8bed 4637EXPORT_SYMBOL(task_nice);
1da177e4
LT
4638
4639/**
4640 * idle_cpu - is a given cpu idle currently?
4641 * @cpu: the processor in question.
4642 */
4643int idle_cpu(int cpu)
4644{
4645 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4646}
4647
1da177e4
LT
4648/**
4649 * idle_task - return the idle task for a given cpu.
4650 * @cpu: the processor in question.
4651 */
36c8b586 4652struct task_struct *idle_task(int cpu)
1da177e4
LT
4653{
4654 return cpu_rq(cpu)->idle;
4655}
4656
4657/**
4658 * find_process_by_pid - find a process with a matching PID value.
4659 * @pid: the pid in question.
4660 */
a9957449 4661static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4662{
228ebcbe 4663 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4664}
4665
4666/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4667static void
4668__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4669{
dd41f596 4670 BUG_ON(p->se.on_rq);
48f24c4d 4671
1da177e4 4672 p->policy = policy;
dd41f596
IM
4673 switch (p->policy) {
4674 case SCHED_NORMAL:
4675 case SCHED_BATCH:
4676 case SCHED_IDLE:
4677 p->sched_class = &fair_sched_class;
4678 break;
4679 case SCHED_FIFO:
4680 case SCHED_RR:
4681 p->sched_class = &rt_sched_class;
4682 break;
4683 }
4684
1da177e4 4685 p->rt_priority = prio;
b29739f9
IM
4686 p->normal_prio = normal_prio(p);
4687 /* we are holding p->pi_lock already */
4688 p->prio = rt_mutex_getprio(p);
2dd73a4f 4689 set_load_weight(p);
1da177e4
LT
4690}
4691
4692/**
72fd4a35 4693 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4694 * @p: the task in question.
4695 * @policy: new policy.
4696 * @param: structure containing the new RT priority.
5fe1d75f 4697 *
72fd4a35 4698 * NOTE that the task may be already dead.
1da177e4 4699 */
95cdf3b7
IM
4700int sched_setscheduler(struct task_struct *p, int policy,
4701 struct sched_param *param)
1da177e4 4702{
83b699ed 4703 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4704 unsigned long flags;
cb469845 4705 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4706 struct rq *rq;
1da177e4 4707
66e5393a
SR
4708 /* may grab non-irq protected spin_locks */
4709 BUG_ON(in_interrupt());
1da177e4
LT
4710recheck:
4711 /* double check policy once rq lock held */
4712 if (policy < 0)
4713 policy = oldpolicy = p->policy;
4714 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4715 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4716 policy != SCHED_IDLE)
b0a9499c 4717 return -EINVAL;
1da177e4
LT
4718 /*
4719 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4720 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4721 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4722 */
4723 if (param->sched_priority < 0 ||
95cdf3b7 4724 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4725 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4726 return -EINVAL;
e05606d3 4727 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4728 return -EINVAL;
4729
37e4ab3f
OC
4730 /*
4731 * Allow unprivileged RT tasks to decrease priority:
4732 */
4733 if (!capable(CAP_SYS_NICE)) {
e05606d3 4734 if (rt_policy(policy)) {
8dc3e909 4735 unsigned long rlim_rtprio;
8dc3e909
ON
4736
4737 if (!lock_task_sighand(p, &flags))
4738 return -ESRCH;
4739 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4740 unlock_task_sighand(p, &flags);
4741
4742 /* can't set/change the rt policy */
4743 if (policy != p->policy && !rlim_rtprio)
4744 return -EPERM;
4745
4746 /* can't increase priority */
4747 if (param->sched_priority > p->rt_priority &&
4748 param->sched_priority > rlim_rtprio)
4749 return -EPERM;
4750 }
dd41f596
IM
4751 /*
4752 * Like positive nice levels, dont allow tasks to
4753 * move out of SCHED_IDLE either:
4754 */
4755 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4756 return -EPERM;
5fe1d75f 4757
37e4ab3f
OC
4758 /* can't change other user's priorities */
4759 if ((current->euid != p->euid) &&
4760 (current->euid != p->uid))
4761 return -EPERM;
4762 }
1da177e4 4763
b68aa230
PZ
4764#ifdef CONFIG_RT_GROUP_SCHED
4765 /*
4766 * Do not allow realtime tasks into groups that have no runtime
4767 * assigned.
4768 */
d0b27fa7 4769 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4770 return -EPERM;
4771#endif
4772
1da177e4
LT
4773 retval = security_task_setscheduler(p, policy, param);
4774 if (retval)
4775 return retval;
b29739f9
IM
4776 /*
4777 * make sure no PI-waiters arrive (or leave) while we are
4778 * changing the priority of the task:
4779 */
4780 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4781 /*
4782 * To be able to change p->policy safely, the apropriate
4783 * runqueue lock must be held.
4784 */
b29739f9 4785 rq = __task_rq_lock(p);
1da177e4
LT
4786 /* recheck policy now with rq lock held */
4787 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4788 policy = oldpolicy = -1;
b29739f9
IM
4789 __task_rq_unlock(rq);
4790 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4791 goto recheck;
4792 }
2daa3577 4793 update_rq_clock(rq);
dd41f596 4794 on_rq = p->se.on_rq;
051a1d1a 4795 running = task_current(rq, p);
0e1f3483 4796 if (on_rq)
2e1cb74a 4797 deactivate_task(rq, p, 0);
0e1f3483
HS
4798 if (running)
4799 p->sched_class->put_prev_task(rq, p);
f6b53205 4800
1da177e4 4801 oldprio = p->prio;
dd41f596 4802 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4803
0e1f3483
HS
4804 if (running)
4805 p->sched_class->set_curr_task(rq);
dd41f596
IM
4806 if (on_rq) {
4807 activate_task(rq, p, 0);
cb469845
SR
4808
4809 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4810 }
b29739f9
IM
4811 __task_rq_unlock(rq);
4812 spin_unlock_irqrestore(&p->pi_lock, flags);
4813
95e02ca9
TG
4814 rt_mutex_adjust_pi(p);
4815
1da177e4
LT
4816 return 0;
4817}
4818EXPORT_SYMBOL_GPL(sched_setscheduler);
4819
95cdf3b7
IM
4820static int
4821do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4822{
1da177e4
LT
4823 struct sched_param lparam;
4824 struct task_struct *p;
36c8b586 4825 int retval;
1da177e4
LT
4826
4827 if (!param || pid < 0)
4828 return -EINVAL;
4829 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4830 return -EFAULT;
5fe1d75f
ON
4831
4832 rcu_read_lock();
4833 retval = -ESRCH;
1da177e4 4834 p = find_process_by_pid(pid);
5fe1d75f
ON
4835 if (p != NULL)
4836 retval = sched_setscheduler(p, policy, &lparam);
4837 rcu_read_unlock();
36c8b586 4838
1da177e4
LT
4839 return retval;
4840}
4841
4842/**
4843 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4844 * @pid: the pid in question.
4845 * @policy: new policy.
4846 * @param: structure containing the new RT priority.
4847 */
41a2d6cf
IM
4848asmlinkage long
4849sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4850{
c21761f1
JB
4851 /* negative values for policy are not valid */
4852 if (policy < 0)
4853 return -EINVAL;
4854
1da177e4
LT
4855 return do_sched_setscheduler(pid, policy, param);
4856}
4857
4858/**
4859 * sys_sched_setparam - set/change the RT priority of a thread
4860 * @pid: the pid in question.
4861 * @param: structure containing the new RT priority.
4862 */
4863asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4864{
4865 return do_sched_setscheduler(pid, -1, param);
4866}
4867
4868/**
4869 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4870 * @pid: the pid in question.
4871 */
4872asmlinkage long sys_sched_getscheduler(pid_t pid)
4873{
36c8b586 4874 struct task_struct *p;
3a5c359a 4875 int retval;
1da177e4
LT
4876
4877 if (pid < 0)
3a5c359a 4878 return -EINVAL;
1da177e4
LT
4879
4880 retval = -ESRCH;
4881 read_lock(&tasklist_lock);
4882 p = find_process_by_pid(pid);
4883 if (p) {
4884 retval = security_task_getscheduler(p);
4885 if (!retval)
4886 retval = p->policy;
4887 }
4888 read_unlock(&tasklist_lock);
1da177e4
LT
4889 return retval;
4890}
4891
4892/**
4893 * sys_sched_getscheduler - get the RT priority of a thread
4894 * @pid: the pid in question.
4895 * @param: structure containing the RT priority.
4896 */
4897asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4898{
4899 struct sched_param lp;
36c8b586 4900 struct task_struct *p;
3a5c359a 4901 int retval;
1da177e4
LT
4902
4903 if (!param || pid < 0)
3a5c359a 4904 return -EINVAL;
1da177e4
LT
4905
4906 read_lock(&tasklist_lock);
4907 p = find_process_by_pid(pid);
4908 retval = -ESRCH;
4909 if (!p)
4910 goto out_unlock;
4911
4912 retval = security_task_getscheduler(p);
4913 if (retval)
4914 goto out_unlock;
4915
4916 lp.sched_priority = p->rt_priority;
4917 read_unlock(&tasklist_lock);
4918
4919 /*
4920 * This one might sleep, we cannot do it with a spinlock held ...
4921 */
4922 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4923
1da177e4
LT
4924 return retval;
4925
4926out_unlock:
4927 read_unlock(&tasklist_lock);
4928 return retval;
4929}
4930
b53e921b 4931long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 4932{
1da177e4 4933 cpumask_t cpus_allowed;
b53e921b 4934 cpumask_t new_mask = *in_mask;
36c8b586
IM
4935 struct task_struct *p;
4936 int retval;
1da177e4 4937
95402b38 4938 get_online_cpus();
1da177e4
LT
4939 read_lock(&tasklist_lock);
4940
4941 p = find_process_by_pid(pid);
4942 if (!p) {
4943 read_unlock(&tasklist_lock);
95402b38 4944 put_online_cpus();
1da177e4
LT
4945 return -ESRCH;
4946 }
4947
4948 /*
4949 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4950 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4951 * usage count and then drop tasklist_lock.
4952 */
4953 get_task_struct(p);
4954 read_unlock(&tasklist_lock);
4955
4956 retval = -EPERM;
4957 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4958 !capable(CAP_SYS_NICE))
4959 goto out_unlock;
4960
e7834f8f
DQ
4961 retval = security_task_setscheduler(p, 0, NULL);
4962 if (retval)
4963 goto out_unlock;
4964
f9a86fcb 4965 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 4966 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4967 again:
7c16ec58 4968 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 4969
8707d8b8 4970 if (!retval) {
f9a86fcb 4971 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
4972 if (!cpus_subset(new_mask, cpus_allowed)) {
4973 /*
4974 * We must have raced with a concurrent cpuset
4975 * update. Just reset the cpus_allowed to the
4976 * cpuset's cpus_allowed
4977 */
4978 new_mask = cpus_allowed;
4979 goto again;
4980 }
4981 }
1da177e4
LT
4982out_unlock:
4983 put_task_struct(p);
95402b38 4984 put_online_cpus();
1da177e4
LT
4985 return retval;
4986}
4987
4988static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4989 cpumask_t *new_mask)
4990{
4991 if (len < sizeof(cpumask_t)) {
4992 memset(new_mask, 0, sizeof(cpumask_t));
4993 } else if (len > sizeof(cpumask_t)) {
4994 len = sizeof(cpumask_t);
4995 }
4996 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4997}
4998
4999/**
5000 * sys_sched_setaffinity - set the cpu affinity of a process
5001 * @pid: pid of the process
5002 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5003 * @user_mask_ptr: user-space pointer to the new cpu mask
5004 */
5005asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5006 unsigned long __user *user_mask_ptr)
5007{
5008 cpumask_t new_mask;
5009 int retval;
5010
5011 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5012 if (retval)
5013 return retval;
5014
b53e921b 5015 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5016}
5017
5018/*
5019 * Represents all cpu's present in the system
5020 * In systems capable of hotplug, this map could dynamically grow
5021 * as new cpu's are detected in the system via any platform specific
5022 * method, such as ACPI for e.g.
5023 */
5024
4cef0c61 5025cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5026EXPORT_SYMBOL(cpu_present_map);
5027
5028#ifndef CONFIG_SMP
4cef0c61 5029cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5030EXPORT_SYMBOL(cpu_online_map);
5031
4cef0c61 5032cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5033EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5034#endif
5035
5036long sched_getaffinity(pid_t pid, cpumask_t *mask)
5037{
36c8b586 5038 struct task_struct *p;
1da177e4 5039 int retval;
1da177e4 5040
95402b38 5041 get_online_cpus();
1da177e4
LT
5042 read_lock(&tasklist_lock);
5043
5044 retval = -ESRCH;
5045 p = find_process_by_pid(pid);
5046 if (!p)
5047 goto out_unlock;
5048
e7834f8f
DQ
5049 retval = security_task_getscheduler(p);
5050 if (retval)
5051 goto out_unlock;
5052
2f7016d9 5053 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5054
5055out_unlock:
5056 read_unlock(&tasklist_lock);
95402b38 5057 put_online_cpus();
1da177e4 5058
9531b62f 5059 return retval;
1da177e4
LT
5060}
5061
5062/**
5063 * sys_sched_getaffinity - get the cpu affinity of a process
5064 * @pid: pid of the process
5065 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5066 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5067 */
5068asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5069 unsigned long __user *user_mask_ptr)
5070{
5071 int ret;
5072 cpumask_t mask;
5073
5074 if (len < sizeof(cpumask_t))
5075 return -EINVAL;
5076
5077 ret = sched_getaffinity(pid, &mask);
5078 if (ret < 0)
5079 return ret;
5080
5081 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5082 return -EFAULT;
5083
5084 return sizeof(cpumask_t);
5085}
5086
5087/**
5088 * sys_sched_yield - yield the current processor to other threads.
5089 *
dd41f596
IM
5090 * This function yields the current CPU to other tasks. If there are no
5091 * other threads running on this CPU then this function will return.
1da177e4
LT
5092 */
5093asmlinkage long sys_sched_yield(void)
5094{
70b97a7f 5095 struct rq *rq = this_rq_lock();
1da177e4 5096
2d72376b 5097 schedstat_inc(rq, yld_count);
4530d7ab 5098 current->sched_class->yield_task(rq);
1da177e4
LT
5099
5100 /*
5101 * Since we are going to call schedule() anyway, there's
5102 * no need to preempt or enable interrupts:
5103 */
5104 __release(rq->lock);
8a25d5de 5105 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5106 _raw_spin_unlock(&rq->lock);
5107 preempt_enable_no_resched();
5108
5109 schedule();
5110
5111 return 0;
5112}
5113
e7b38404 5114static void __cond_resched(void)
1da177e4 5115{
8e0a43d8
IM
5116#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5117 __might_sleep(__FILE__, __LINE__);
5118#endif
5bbcfd90
IM
5119 /*
5120 * The BKS might be reacquired before we have dropped
5121 * PREEMPT_ACTIVE, which could trigger a second
5122 * cond_resched() call.
5123 */
1da177e4
LT
5124 do {
5125 add_preempt_count(PREEMPT_ACTIVE);
5126 schedule();
5127 sub_preempt_count(PREEMPT_ACTIVE);
5128 } while (need_resched());
5129}
5130
02b67cc3
HX
5131#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5132int __sched _cond_resched(void)
1da177e4 5133{
9414232f
IM
5134 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5135 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5136 __cond_resched();
5137 return 1;
5138 }
5139 return 0;
5140}
02b67cc3
HX
5141EXPORT_SYMBOL(_cond_resched);
5142#endif
1da177e4
LT
5143
5144/*
5145 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5146 * call schedule, and on return reacquire the lock.
5147 *
41a2d6cf 5148 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5149 * operations here to prevent schedule() from being called twice (once via
5150 * spin_unlock(), once by hand).
5151 */
95cdf3b7 5152int cond_resched_lock(spinlock_t *lock)
1da177e4 5153{
95c354fe 5154 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5155 int ret = 0;
5156
95c354fe 5157 if (spin_needbreak(lock) || resched) {
1da177e4 5158 spin_unlock(lock);
95c354fe
NP
5159 if (resched && need_resched())
5160 __cond_resched();
5161 else
5162 cpu_relax();
6df3cecb 5163 ret = 1;
1da177e4 5164 spin_lock(lock);
1da177e4 5165 }
6df3cecb 5166 return ret;
1da177e4 5167}
1da177e4
LT
5168EXPORT_SYMBOL(cond_resched_lock);
5169
5170int __sched cond_resched_softirq(void)
5171{
5172 BUG_ON(!in_softirq());
5173
9414232f 5174 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5175 local_bh_enable();
1da177e4
LT
5176 __cond_resched();
5177 local_bh_disable();
5178 return 1;
5179 }
5180 return 0;
5181}
1da177e4
LT
5182EXPORT_SYMBOL(cond_resched_softirq);
5183
1da177e4
LT
5184/**
5185 * yield - yield the current processor to other threads.
5186 *
72fd4a35 5187 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5188 * thread runnable and calls sys_sched_yield().
5189 */
5190void __sched yield(void)
5191{
5192 set_current_state(TASK_RUNNING);
5193 sys_sched_yield();
5194}
1da177e4
LT
5195EXPORT_SYMBOL(yield);
5196
5197/*
41a2d6cf 5198 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5199 * that process accounting knows that this is a task in IO wait state.
5200 *
5201 * But don't do that if it is a deliberate, throttling IO wait (this task
5202 * has set its backing_dev_info: the queue against which it should throttle)
5203 */
5204void __sched io_schedule(void)
5205{
70b97a7f 5206 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5207
0ff92245 5208 delayacct_blkio_start();
1da177e4
LT
5209 atomic_inc(&rq->nr_iowait);
5210 schedule();
5211 atomic_dec(&rq->nr_iowait);
0ff92245 5212 delayacct_blkio_end();
1da177e4 5213}
1da177e4
LT
5214EXPORT_SYMBOL(io_schedule);
5215
5216long __sched io_schedule_timeout(long timeout)
5217{
70b97a7f 5218 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5219 long ret;
5220
0ff92245 5221 delayacct_blkio_start();
1da177e4
LT
5222 atomic_inc(&rq->nr_iowait);
5223 ret = schedule_timeout(timeout);
5224 atomic_dec(&rq->nr_iowait);
0ff92245 5225 delayacct_blkio_end();
1da177e4
LT
5226 return ret;
5227}
5228
5229/**
5230 * sys_sched_get_priority_max - return maximum RT priority.
5231 * @policy: scheduling class.
5232 *
5233 * this syscall returns the maximum rt_priority that can be used
5234 * by a given scheduling class.
5235 */
5236asmlinkage long sys_sched_get_priority_max(int policy)
5237{
5238 int ret = -EINVAL;
5239
5240 switch (policy) {
5241 case SCHED_FIFO:
5242 case SCHED_RR:
5243 ret = MAX_USER_RT_PRIO-1;
5244 break;
5245 case SCHED_NORMAL:
b0a9499c 5246 case SCHED_BATCH:
dd41f596 5247 case SCHED_IDLE:
1da177e4
LT
5248 ret = 0;
5249 break;
5250 }
5251 return ret;
5252}
5253
5254/**
5255 * sys_sched_get_priority_min - return minimum RT priority.
5256 * @policy: scheduling class.
5257 *
5258 * this syscall returns the minimum rt_priority that can be used
5259 * by a given scheduling class.
5260 */
5261asmlinkage long sys_sched_get_priority_min(int policy)
5262{
5263 int ret = -EINVAL;
5264
5265 switch (policy) {
5266 case SCHED_FIFO:
5267 case SCHED_RR:
5268 ret = 1;
5269 break;
5270 case SCHED_NORMAL:
b0a9499c 5271 case SCHED_BATCH:
dd41f596 5272 case SCHED_IDLE:
1da177e4
LT
5273 ret = 0;
5274 }
5275 return ret;
5276}
5277
5278/**
5279 * sys_sched_rr_get_interval - return the default timeslice of a process.
5280 * @pid: pid of the process.
5281 * @interval: userspace pointer to the timeslice value.
5282 *
5283 * this syscall writes the default timeslice value of a given process
5284 * into the user-space timespec buffer. A value of '0' means infinity.
5285 */
5286asmlinkage
5287long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5288{
36c8b586 5289 struct task_struct *p;
a4ec24b4 5290 unsigned int time_slice;
3a5c359a 5291 int retval;
1da177e4 5292 struct timespec t;
1da177e4
LT
5293
5294 if (pid < 0)
3a5c359a 5295 return -EINVAL;
1da177e4
LT
5296
5297 retval = -ESRCH;
5298 read_lock(&tasklist_lock);
5299 p = find_process_by_pid(pid);
5300 if (!p)
5301 goto out_unlock;
5302
5303 retval = security_task_getscheduler(p);
5304 if (retval)
5305 goto out_unlock;
5306
77034937
IM
5307 /*
5308 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5309 * tasks that are on an otherwise idle runqueue:
5310 */
5311 time_slice = 0;
5312 if (p->policy == SCHED_RR) {
a4ec24b4 5313 time_slice = DEF_TIMESLICE;
1868f958 5314 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5315 struct sched_entity *se = &p->se;
5316 unsigned long flags;
5317 struct rq *rq;
5318
5319 rq = task_rq_lock(p, &flags);
77034937
IM
5320 if (rq->cfs.load.weight)
5321 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5322 task_rq_unlock(rq, &flags);
5323 }
1da177e4 5324 read_unlock(&tasklist_lock);
a4ec24b4 5325 jiffies_to_timespec(time_slice, &t);
1da177e4 5326 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5327 return retval;
3a5c359a 5328
1da177e4
LT
5329out_unlock:
5330 read_unlock(&tasklist_lock);
5331 return retval;
5332}
5333
2ed6e34f 5334static const char stat_nam[] = "RSDTtZX";
36c8b586 5335
82a1fcb9 5336void sched_show_task(struct task_struct *p)
1da177e4 5337{
1da177e4 5338 unsigned long free = 0;
36c8b586 5339 unsigned state;
1da177e4 5340
1da177e4 5341 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5342 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5343 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5344#if BITS_PER_LONG == 32
1da177e4 5345 if (state == TASK_RUNNING)
cc4ea795 5346 printk(KERN_CONT " running ");
1da177e4 5347 else
cc4ea795 5348 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5349#else
5350 if (state == TASK_RUNNING)
cc4ea795 5351 printk(KERN_CONT " running task ");
1da177e4 5352 else
cc4ea795 5353 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5354#endif
5355#ifdef CONFIG_DEBUG_STACK_USAGE
5356 {
10ebffde 5357 unsigned long *n = end_of_stack(p);
1da177e4
LT
5358 while (!*n)
5359 n++;
10ebffde 5360 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5361 }
5362#endif
ba25f9dc 5363 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5364 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5365
5fb5e6de 5366 show_stack(p, NULL);
1da177e4
LT
5367}
5368
e59e2ae2 5369void show_state_filter(unsigned long state_filter)
1da177e4 5370{
36c8b586 5371 struct task_struct *g, *p;
1da177e4 5372
4bd77321
IM
5373#if BITS_PER_LONG == 32
5374 printk(KERN_INFO
5375 " task PC stack pid father\n");
1da177e4 5376#else
4bd77321
IM
5377 printk(KERN_INFO
5378 " task PC stack pid father\n");
1da177e4
LT
5379#endif
5380 read_lock(&tasklist_lock);
5381 do_each_thread(g, p) {
5382 /*
5383 * reset the NMI-timeout, listing all files on a slow
5384 * console might take alot of time:
5385 */
5386 touch_nmi_watchdog();
39bc89fd 5387 if (!state_filter || (p->state & state_filter))
82a1fcb9 5388 sched_show_task(p);
1da177e4
LT
5389 } while_each_thread(g, p);
5390
04c9167f
JF
5391 touch_all_softlockup_watchdogs();
5392
dd41f596
IM
5393#ifdef CONFIG_SCHED_DEBUG
5394 sysrq_sched_debug_show();
5395#endif
1da177e4 5396 read_unlock(&tasklist_lock);
e59e2ae2
IM
5397 /*
5398 * Only show locks if all tasks are dumped:
5399 */
5400 if (state_filter == -1)
5401 debug_show_all_locks();
1da177e4
LT
5402}
5403
1df21055
IM
5404void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5405{
dd41f596 5406 idle->sched_class = &idle_sched_class;
1df21055
IM
5407}
5408
f340c0d1
IM
5409/**
5410 * init_idle - set up an idle thread for a given CPU
5411 * @idle: task in question
5412 * @cpu: cpu the idle task belongs to
5413 *
5414 * NOTE: this function does not set the idle thread's NEED_RESCHED
5415 * flag, to make booting more robust.
5416 */
5c1e1767 5417void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5418{
70b97a7f 5419 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5420 unsigned long flags;
5421
dd41f596
IM
5422 __sched_fork(idle);
5423 idle->se.exec_start = sched_clock();
5424
b29739f9 5425 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5426 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5427 __set_task_cpu(idle, cpu);
1da177e4
LT
5428
5429 spin_lock_irqsave(&rq->lock, flags);
5430 rq->curr = rq->idle = idle;
4866cde0
NP
5431#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5432 idle->oncpu = 1;
5433#endif
1da177e4
LT
5434 spin_unlock_irqrestore(&rq->lock, flags);
5435
5436 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5437 task_thread_info(idle)->preempt_count = 0;
6478d880 5438
dd41f596
IM
5439 /*
5440 * The idle tasks have their own, simple scheduling class:
5441 */
5442 idle->sched_class = &idle_sched_class;
1da177e4
LT
5443}
5444
5445/*
5446 * In a system that switches off the HZ timer nohz_cpu_mask
5447 * indicates which cpus entered this state. This is used
5448 * in the rcu update to wait only for active cpus. For system
5449 * which do not switch off the HZ timer nohz_cpu_mask should
5450 * always be CPU_MASK_NONE.
5451 */
5452cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5453
19978ca6
IM
5454/*
5455 * Increase the granularity value when there are more CPUs,
5456 * because with more CPUs the 'effective latency' as visible
5457 * to users decreases. But the relationship is not linear,
5458 * so pick a second-best guess by going with the log2 of the
5459 * number of CPUs.
5460 *
5461 * This idea comes from the SD scheduler of Con Kolivas:
5462 */
5463static inline void sched_init_granularity(void)
5464{
5465 unsigned int factor = 1 + ilog2(num_online_cpus());
5466 const unsigned long limit = 200000000;
5467
5468 sysctl_sched_min_granularity *= factor;
5469 if (sysctl_sched_min_granularity > limit)
5470 sysctl_sched_min_granularity = limit;
5471
5472 sysctl_sched_latency *= factor;
5473 if (sysctl_sched_latency > limit)
5474 sysctl_sched_latency = limit;
5475
5476 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5477}
5478
1da177e4
LT
5479#ifdef CONFIG_SMP
5480/*
5481 * This is how migration works:
5482 *
70b97a7f 5483 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5484 * runqueue and wake up that CPU's migration thread.
5485 * 2) we down() the locked semaphore => thread blocks.
5486 * 3) migration thread wakes up (implicitly it forces the migrated
5487 * thread off the CPU)
5488 * 4) it gets the migration request and checks whether the migrated
5489 * task is still in the wrong runqueue.
5490 * 5) if it's in the wrong runqueue then the migration thread removes
5491 * it and puts it into the right queue.
5492 * 6) migration thread up()s the semaphore.
5493 * 7) we wake up and the migration is done.
5494 */
5495
5496/*
5497 * Change a given task's CPU affinity. Migrate the thread to a
5498 * proper CPU and schedule it away if the CPU it's executing on
5499 * is removed from the allowed bitmask.
5500 *
5501 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5502 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5503 * call is not atomic; no spinlocks may be held.
5504 */
cd8ba7cd 5505int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5506{
70b97a7f 5507 struct migration_req req;
1da177e4 5508 unsigned long flags;
70b97a7f 5509 struct rq *rq;
48f24c4d 5510 int ret = 0;
1da177e4
LT
5511
5512 rq = task_rq_lock(p, &flags);
cd8ba7cd 5513 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5514 ret = -EINVAL;
5515 goto out;
5516 }
5517
73fe6aae 5518 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5519 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5520 else {
cd8ba7cd
MT
5521 p->cpus_allowed = *new_mask;
5522 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5523 }
5524
1da177e4 5525 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5526 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5527 goto out;
5528
cd8ba7cd 5529 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5530 /* Need help from migration thread: drop lock and wait. */
5531 task_rq_unlock(rq, &flags);
5532 wake_up_process(rq->migration_thread);
5533 wait_for_completion(&req.done);
5534 tlb_migrate_finish(p->mm);
5535 return 0;
5536 }
5537out:
5538 task_rq_unlock(rq, &flags);
48f24c4d 5539
1da177e4
LT
5540 return ret;
5541}
cd8ba7cd 5542EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5543
5544/*
41a2d6cf 5545 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5546 * this because either it can't run here any more (set_cpus_allowed()
5547 * away from this CPU, or CPU going down), or because we're
5548 * attempting to rebalance this task on exec (sched_exec).
5549 *
5550 * So we race with normal scheduler movements, but that's OK, as long
5551 * as the task is no longer on this CPU.
efc30814
KK
5552 *
5553 * Returns non-zero if task was successfully migrated.
1da177e4 5554 */
efc30814 5555static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5556{
70b97a7f 5557 struct rq *rq_dest, *rq_src;
dd41f596 5558 int ret = 0, on_rq;
1da177e4
LT
5559
5560 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5561 return ret;
1da177e4
LT
5562
5563 rq_src = cpu_rq(src_cpu);
5564 rq_dest = cpu_rq(dest_cpu);
5565
5566 double_rq_lock(rq_src, rq_dest);
5567 /* Already moved. */
5568 if (task_cpu(p) != src_cpu)
5569 goto out;
5570 /* Affinity changed (again). */
5571 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5572 goto out;
5573
dd41f596 5574 on_rq = p->se.on_rq;
6e82a3be 5575 if (on_rq)
2e1cb74a 5576 deactivate_task(rq_src, p, 0);
6e82a3be 5577
1da177e4 5578 set_task_cpu(p, dest_cpu);
dd41f596
IM
5579 if (on_rq) {
5580 activate_task(rq_dest, p, 0);
5581 check_preempt_curr(rq_dest, p);
1da177e4 5582 }
efc30814 5583 ret = 1;
1da177e4
LT
5584out:
5585 double_rq_unlock(rq_src, rq_dest);
efc30814 5586 return ret;
1da177e4
LT
5587}
5588
5589/*
5590 * migration_thread - this is a highprio system thread that performs
5591 * thread migration by bumping thread off CPU then 'pushing' onto
5592 * another runqueue.
5593 */
95cdf3b7 5594static int migration_thread(void *data)
1da177e4 5595{
1da177e4 5596 int cpu = (long)data;
70b97a7f 5597 struct rq *rq;
1da177e4
LT
5598
5599 rq = cpu_rq(cpu);
5600 BUG_ON(rq->migration_thread != current);
5601
5602 set_current_state(TASK_INTERRUPTIBLE);
5603 while (!kthread_should_stop()) {
70b97a7f 5604 struct migration_req *req;
1da177e4 5605 struct list_head *head;
1da177e4 5606
1da177e4
LT
5607 spin_lock_irq(&rq->lock);
5608
5609 if (cpu_is_offline(cpu)) {
5610 spin_unlock_irq(&rq->lock);
5611 goto wait_to_die;
5612 }
5613
5614 if (rq->active_balance) {
5615 active_load_balance(rq, cpu);
5616 rq->active_balance = 0;
5617 }
5618
5619 head = &rq->migration_queue;
5620
5621 if (list_empty(head)) {
5622 spin_unlock_irq(&rq->lock);
5623 schedule();
5624 set_current_state(TASK_INTERRUPTIBLE);
5625 continue;
5626 }
70b97a7f 5627 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5628 list_del_init(head->next);
5629
674311d5
NP
5630 spin_unlock(&rq->lock);
5631 __migrate_task(req->task, cpu, req->dest_cpu);
5632 local_irq_enable();
1da177e4
LT
5633
5634 complete(&req->done);
5635 }
5636 __set_current_state(TASK_RUNNING);
5637 return 0;
5638
5639wait_to_die:
5640 /* Wait for kthread_stop */
5641 set_current_state(TASK_INTERRUPTIBLE);
5642 while (!kthread_should_stop()) {
5643 schedule();
5644 set_current_state(TASK_INTERRUPTIBLE);
5645 }
5646 __set_current_state(TASK_RUNNING);
5647 return 0;
5648}
5649
5650#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5651
5652static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5653{
5654 int ret;
5655
5656 local_irq_disable();
5657 ret = __migrate_task(p, src_cpu, dest_cpu);
5658 local_irq_enable();
5659 return ret;
5660}
5661
054b9108 5662/*
3a4fa0a2 5663 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5664 * NOTE: interrupts should be disabled by the caller
5665 */
48f24c4d 5666static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5667{
efc30814 5668 unsigned long flags;
1da177e4 5669 cpumask_t mask;
70b97a7f
IM
5670 struct rq *rq;
5671 int dest_cpu;
1da177e4 5672
3a5c359a
AK
5673 do {
5674 /* On same node? */
5675 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5676 cpus_and(mask, mask, p->cpus_allowed);
5677 dest_cpu = any_online_cpu(mask);
5678
5679 /* On any allowed CPU? */
434d53b0 5680 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5681 dest_cpu = any_online_cpu(p->cpus_allowed);
5682
5683 /* No more Mr. Nice Guy. */
434d53b0 5684 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5685 cpumask_t cpus_allowed;
5686
5687 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5688 /*
5689 * Try to stay on the same cpuset, where the
5690 * current cpuset may be a subset of all cpus.
5691 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5692 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5693 * called within calls to cpuset_lock/cpuset_unlock.
5694 */
3a5c359a 5695 rq = task_rq_lock(p, &flags);
470fd646 5696 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5697 dest_cpu = any_online_cpu(p->cpus_allowed);
5698 task_rq_unlock(rq, &flags);
1da177e4 5699
3a5c359a
AK
5700 /*
5701 * Don't tell them about moving exiting tasks or
5702 * kernel threads (both mm NULL), since they never
5703 * leave kernel.
5704 */
41a2d6cf 5705 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5706 printk(KERN_INFO "process %d (%s) no "
5707 "longer affine to cpu%d\n",
41a2d6cf
IM
5708 task_pid_nr(p), p->comm, dead_cpu);
5709 }
3a5c359a 5710 }
f7b4cddc 5711 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5712}
5713
5714/*
5715 * While a dead CPU has no uninterruptible tasks queued at this point,
5716 * it might still have a nonzero ->nr_uninterruptible counter, because
5717 * for performance reasons the counter is not stricly tracking tasks to
5718 * their home CPUs. So we just add the counter to another CPU's counter,
5719 * to keep the global sum constant after CPU-down:
5720 */
70b97a7f 5721static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5722{
7c16ec58 5723 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5724 unsigned long flags;
5725
5726 local_irq_save(flags);
5727 double_rq_lock(rq_src, rq_dest);
5728 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5729 rq_src->nr_uninterruptible = 0;
5730 double_rq_unlock(rq_src, rq_dest);
5731 local_irq_restore(flags);
5732}
5733
5734/* Run through task list and migrate tasks from the dead cpu. */
5735static void migrate_live_tasks(int src_cpu)
5736{
48f24c4d 5737 struct task_struct *p, *t;
1da177e4 5738
f7b4cddc 5739 read_lock(&tasklist_lock);
1da177e4 5740
48f24c4d
IM
5741 do_each_thread(t, p) {
5742 if (p == current)
1da177e4
LT
5743 continue;
5744
48f24c4d
IM
5745 if (task_cpu(p) == src_cpu)
5746 move_task_off_dead_cpu(src_cpu, p);
5747 } while_each_thread(t, p);
1da177e4 5748
f7b4cddc 5749 read_unlock(&tasklist_lock);
1da177e4
LT
5750}
5751
dd41f596
IM
5752/*
5753 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5754 * It does so by boosting its priority to highest possible.
5755 * Used by CPU offline code.
1da177e4
LT
5756 */
5757void sched_idle_next(void)
5758{
48f24c4d 5759 int this_cpu = smp_processor_id();
70b97a7f 5760 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5761 struct task_struct *p = rq->idle;
5762 unsigned long flags;
5763
5764 /* cpu has to be offline */
48f24c4d 5765 BUG_ON(cpu_online(this_cpu));
1da177e4 5766
48f24c4d
IM
5767 /*
5768 * Strictly not necessary since rest of the CPUs are stopped by now
5769 * and interrupts disabled on the current cpu.
1da177e4
LT
5770 */
5771 spin_lock_irqsave(&rq->lock, flags);
5772
dd41f596 5773 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5774
94bc9a7b
DA
5775 update_rq_clock(rq);
5776 activate_task(rq, p, 0);
1da177e4
LT
5777
5778 spin_unlock_irqrestore(&rq->lock, flags);
5779}
5780
48f24c4d
IM
5781/*
5782 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5783 * offline.
5784 */
5785void idle_task_exit(void)
5786{
5787 struct mm_struct *mm = current->active_mm;
5788
5789 BUG_ON(cpu_online(smp_processor_id()));
5790
5791 if (mm != &init_mm)
5792 switch_mm(mm, &init_mm, current);
5793 mmdrop(mm);
5794}
5795
054b9108 5796/* called under rq->lock with disabled interrupts */
36c8b586 5797static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5798{
70b97a7f 5799 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5800
5801 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5802 BUG_ON(!p->exit_state);
1da177e4
LT
5803
5804 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5805 BUG_ON(p->state == TASK_DEAD);
1da177e4 5806
48f24c4d 5807 get_task_struct(p);
1da177e4
LT
5808
5809 /*
5810 * Drop lock around migration; if someone else moves it,
41a2d6cf 5811 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5812 * fine.
5813 */
f7b4cddc 5814 spin_unlock_irq(&rq->lock);
48f24c4d 5815 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5816 spin_lock_irq(&rq->lock);
1da177e4 5817
48f24c4d 5818 put_task_struct(p);
1da177e4
LT
5819}
5820
5821/* release_task() removes task from tasklist, so we won't find dead tasks. */
5822static void migrate_dead_tasks(unsigned int dead_cpu)
5823{
70b97a7f 5824 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5825 struct task_struct *next;
48f24c4d 5826
dd41f596
IM
5827 for ( ; ; ) {
5828 if (!rq->nr_running)
5829 break;
a8e504d2 5830 update_rq_clock(rq);
ff95f3df 5831 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5832 if (!next)
5833 break;
5834 migrate_dead(dead_cpu, next);
e692ab53 5835
1da177e4
LT
5836 }
5837}
5838#endif /* CONFIG_HOTPLUG_CPU */
5839
e692ab53
NP
5840#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5841
5842static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5843 {
5844 .procname = "sched_domain",
c57baf1e 5845 .mode = 0555,
e0361851 5846 },
38605cae 5847 {0, },
e692ab53
NP
5848};
5849
5850static struct ctl_table sd_ctl_root[] = {
e0361851 5851 {
c57baf1e 5852 .ctl_name = CTL_KERN,
e0361851 5853 .procname = "kernel",
c57baf1e 5854 .mode = 0555,
e0361851
AD
5855 .child = sd_ctl_dir,
5856 },
38605cae 5857 {0, },
e692ab53
NP
5858};
5859
5860static struct ctl_table *sd_alloc_ctl_entry(int n)
5861{
5862 struct ctl_table *entry =
5cf9f062 5863 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5864
e692ab53
NP
5865 return entry;
5866}
5867
6382bc90
MM
5868static void sd_free_ctl_entry(struct ctl_table **tablep)
5869{
cd790076 5870 struct ctl_table *entry;
6382bc90 5871
cd790076
MM
5872 /*
5873 * In the intermediate directories, both the child directory and
5874 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5875 * will always be set. In the lowest directory the names are
cd790076
MM
5876 * static strings and all have proc handlers.
5877 */
5878 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5879 if (entry->child)
5880 sd_free_ctl_entry(&entry->child);
cd790076
MM
5881 if (entry->proc_handler == NULL)
5882 kfree(entry->procname);
5883 }
6382bc90
MM
5884
5885 kfree(*tablep);
5886 *tablep = NULL;
5887}
5888
e692ab53 5889static void
e0361851 5890set_table_entry(struct ctl_table *entry,
e692ab53
NP
5891 const char *procname, void *data, int maxlen,
5892 mode_t mode, proc_handler *proc_handler)
5893{
e692ab53
NP
5894 entry->procname = procname;
5895 entry->data = data;
5896 entry->maxlen = maxlen;
5897 entry->mode = mode;
5898 entry->proc_handler = proc_handler;
5899}
5900
5901static struct ctl_table *
5902sd_alloc_ctl_domain_table(struct sched_domain *sd)
5903{
ace8b3d6 5904 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5905
ad1cdc1d
MM
5906 if (table == NULL)
5907 return NULL;
5908
e0361851 5909 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5910 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5911 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5912 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5913 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5914 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5915 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5916 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5917 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5918 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5919 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5920 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5921 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5922 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5923 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5924 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5925 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5926 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5927 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5928 &sd->cache_nice_tries,
5929 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5930 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5931 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5932 /* &table[11] is terminator */
e692ab53
NP
5933
5934 return table;
5935}
5936
9a4e7159 5937static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5938{
5939 struct ctl_table *entry, *table;
5940 struct sched_domain *sd;
5941 int domain_num = 0, i;
5942 char buf[32];
5943
5944 for_each_domain(cpu, sd)
5945 domain_num++;
5946 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5947 if (table == NULL)
5948 return NULL;
e692ab53
NP
5949
5950 i = 0;
5951 for_each_domain(cpu, sd) {
5952 snprintf(buf, 32, "domain%d", i);
e692ab53 5953 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5954 entry->mode = 0555;
e692ab53
NP
5955 entry->child = sd_alloc_ctl_domain_table(sd);
5956 entry++;
5957 i++;
5958 }
5959 return table;
5960}
5961
5962static struct ctl_table_header *sd_sysctl_header;
6382bc90 5963static void register_sched_domain_sysctl(void)
e692ab53
NP
5964{
5965 int i, cpu_num = num_online_cpus();
5966 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5967 char buf[32];
5968
7378547f
MM
5969 WARN_ON(sd_ctl_dir[0].child);
5970 sd_ctl_dir[0].child = entry;
5971
ad1cdc1d
MM
5972 if (entry == NULL)
5973 return;
5974
97b6ea7b 5975 for_each_online_cpu(i) {
e692ab53 5976 snprintf(buf, 32, "cpu%d", i);
e692ab53 5977 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5978 entry->mode = 0555;
e692ab53 5979 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5980 entry++;
e692ab53 5981 }
7378547f
MM
5982
5983 WARN_ON(sd_sysctl_header);
e692ab53
NP
5984 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5985}
6382bc90 5986
7378547f 5987/* may be called multiple times per register */
6382bc90
MM
5988static void unregister_sched_domain_sysctl(void)
5989{
7378547f
MM
5990 if (sd_sysctl_header)
5991 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5992 sd_sysctl_header = NULL;
7378547f
MM
5993 if (sd_ctl_dir[0].child)
5994 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5995}
e692ab53 5996#else
6382bc90
MM
5997static void register_sched_domain_sysctl(void)
5998{
5999}
6000static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6001{
6002}
6003#endif
6004
1da177e4
LT
6005/*
6006 * migration_call - callback that gets triggered when a CPU is added.
6007 * Here we can start up the necessary migration thread for the new CPU.
6008 */
48f24c4d
IM
6009static int __cpuinit
6010migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6011{
1da177e4 6012 struct task_struct *p;
48f24c4d 6013 int cpu = (long)hcpu;
1da177e4 6014 unsigned long flags;
70b97a7f 6015 struct rq *rq;
1da177e4
LT
6016
6017 switch (action) {
5be9361c 6018
1da177e4 6019 case CPU_UP_PREPARE:
8bb78442 6020 case CPU_UP_PREPARE_FROZEN:
dd41f596 6021 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6022 if (IS_ERR(p))
6023 return NOTIFY_BAD;
1da177e4
LT
6024 kthread_bind(p, cpu);
6025 /* Must be high prio: stop_machine expects to yield to it. */
6026 rq = task_rq_lock(p, &flags);
dd41f596 6027 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6028 task_rq_unlock(rq, &flags);
6029 cpu_rq(cpu)->migration_thread = p;
6030 break;
48f24c4d 6031
1da177e4 6032 case CPU_ONLINE:
8bb78442 6033 case CPU_ONLINE_FROZEN:
3a4fa0a2 6034 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6035 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6036
6037 /* Update our root-domain */
6038 rq = cpu_rq(cpu);
6039 spin_lock_irqsave(&rq->lock, flags);
6040 if (rq->rd) {
6041 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6042 cpu_set(cpu, rq->rd->online);
6043 }
6044 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6045 break;
48f24c4d 6046
1da177e4
LT
6047#ifdef CONFIG_HOTPLUG_CPU
6048 case CPU_UP_CANCELED:
8bb78442 6049 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6050 if (!cpu_rq(cpu)->migration_thread)
6051 break;
41a2d6cf 6052 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6053 kthread_bind(cpu_rq(cpu)->migration_thread,
6054 any_online_cpu(cpu_online_map));
1da177e4
LT
6055 kthread_stop(cpu_rq(cpu)->migration_thread);
6056 cpu_rq(cpu)->migration_thread = NULL;
6057 break;
48f24c4d 6058
1da177e4 6059 case CPU_DEAD:
8bb78442 6060 case CPU_DEAD_FROZEN:
470fd646 6061 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6062 migrate_live_tasks(cpu);
6063 rq = cpu_rq(cpu);
6064 kthread_stop(rq->migration_thread);
6065 rq->migration_thread = NULL;
6066 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6067 spin_lock_irq(&rq->lock);
a8e504d2 6068 update_rq_clock(rq);
2e1cb74a 6069 deactivate_task(rq, rq->idle, 0);
1da177e4 6070 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6071 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6072 rq->idle->sched_class = &idle_sched_class;
1da177e4 6073 migrate_dead_tasks(cpu);
d2da272a 6074 spin_unlock_irq(&rq->lock);
470fd646 6075 cpuset_unlock();
1da177e4
LT
6076 migrate_nr_uninterruptible(rq);
6077 BUG_ON(rq->nr_running != 0);
6078
41a2d6cf
IM
6079 /*
6080 * No need to migrate the tasks: it was best-effort if
6081 * they didn't take sched_hotcpu_mutex. Just wake up
6082 * the requestors.
6083 */
1da177e4
LT
6084 spin_lock_irq(&rq->lock);
6085 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6086 struct migration_req *req;
6087
1da177e4 6088 req = list_entry(rq->migration_queue.next,
70b97a7f 6089 struct migration_req, list);
1da177e4
LT
6090 list_del_init(&req->list);
6091 complete(&req->done);
6092 }
6093 spin_unlock_irq(&rq->lock);
6094 break;
57d885fe 6095
08f503b0
GH
6096 case CPU_DYING:
6097 case CPU_DYING_FROZEN:
57d885fe
GH
6098 /* Update our root-domain */
6099 rq = cpu_rq(cpu);
6100 spin_lock_irqsave(&rq->lock, flags);
6101 if (rq->rd) {
6102 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6103 cpu_clear(cpu, rq->rd->online);
6104 }
6105 spin_unlock_irqrestore(&rq->lock, flags);
6106 break;
1da177e4
LT
6107#endif
6108 }
6109 return NOTIFY_OK;
6110}
6111
6112/* Register at highest priority so that task migration (migrate_all_tasks)
6113 * happens before everything else.
6114 */
26c2143b 6115static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6116 .notifier_call = migration_call,
6117 .priority = 10
6118};
6119
e6fe6649 6120void __init migration_init(void)
1da177e4
LT
6121{
6122 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6123 int err;
48f24c4d
IM
6124
6125 /* Start one for the boot CPU: */
07dccf33
AM
6126 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6127 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6128 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6129 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6130}
6131#endif
6132
6133#ifdef CONFIG_SMP
476f3534 6134
3e9830dc 6135#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6136
7c16ec58
MT
6137static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6138 cpumask_t *groupmask)
1da177e4 6139{
4dcf6aff 6140 struct sched_group *group = sd->groups;
434d53b0 6141 char str[256];
1da177e4 6142
434d53b0 6143 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6144 cpus_clear(*groupmask);
4dcf6aff
IM
6145
6146 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6147
6148 if (!(sd->flags & SD_LOAD_BALANCE)) {
6149 printk("does not load-balance\n");
6150 if (sd->parent)
6151 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6152 " has parent");
6153 return -1;
41c7ce9a
NP
6154 }
6155
4dcf6aff
IM
6156 printk(KERN_CONT "span %s\n", str);
6157
6158 if (!cpu_isset(cpu, sd->span)) {
6159 printk(KERN_ERR "ERROR: domain->span does not contain "
6160 "CPU%d\n", cpu);
6161 }
6162 if (!cpu_isset(cpu, group->cpumask)) {
6163 printk(KERN_ERR "ERROR: domain->groups does not contain"
6164 " CPU%d\n", cpu);
6165 }
1da177e4 6166
4dcf6aff 6167 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6168 do {
4dcf6aff
IM
6169 if (!group) {
6170 printk("\n");
6171 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6172 break;
6173 }
6174
4dcf6aff
IM
6175 if (!group->__cpu_power) {
6176 printk(KERN_CONT "\n");
6177 printk(KERN_ERR "ERROR: domain->cpu_power not "
6178 "set\n");
6179 break;
6180 }
1da177e4 6181
4dcf6aff
IM
6182 if (!cpus_weight(group->cpumask)) {
6183 printk(KERN_CONT "\n");
6184 printk(KERN_ERR "ERROR: empty group\n");
6185 break;
6186 }
1da177e4 6187
7c16ec58 6188 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6189 printk(KERN_CONT "\n");
6190 printk(KERN_ERR "ERROR: repeated CPUs\n");
6191 break;
6192 }
1da177e4 6193
7c16ec58 6194 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6195
434d53b0 6196 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6197 printk(KERN_CONT " %s", str);
1da177e4 6198
4dcf6aff
IM
6199 group = group->next;
6200 } while (group != sd->groups);
6201 printk(KERN_CONT "\n");
1da177e4 6202
7c16ec58 6203 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6205
7c16ec58 6206 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6207 printk(KERN_ERR "ERROR: parent span is not a superset "
6208 "of domain->span\n");
6209 return 0;
6210}
1da177e4 6211
4dcf6aff
IM
6212static void sched_domain_debug(struct sched_domain *sd, int cpu)
6213{
7c16ec58 6214 cpumask_t *groupmask;
4dcf6aff 6215 int level = 0;
1da177e4 6216
4dcf6aff
IM
6217 if (!sd) {
6218 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6219 return;
6220 }
1da177e4 6221
4dcf6aff
IM
6222 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6223
7c16ec58
MT
6224 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6225 if (!groupmask) {
6226 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6227 return;
6228 }
6229
4dcf6aff 6230 for (;;) {
7c16ec58 6231 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6232 break;
1da177e4
LT
6233 level++;
6234 sd = sd->parent;
33859f7f 6235 if (!sd)
4dcf6aff
IM
6236 break;
6237 }
7c16ec58 6238 kfree(groupmask);
1da177e4
LT
6239}
6240#else
48f24c4d 6241# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6242#endif
6243
1a20ff27 6244static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6245{
6246 if (cpus_weight(sd->span) == 1)
6247 return 1;
6248
6249 /* Following flags need at least 2 groups */
6250 if (sd->flags & (SD_LOAD_BALANCE |
6251 SD_BALANCE_NEWIDLE |
6252 SD_BALANCE_FORK |
89c4710e
SS
6253 SD_BALANCE_EXEC |
6254 SD_SHARE_CPUPOWER |
6255 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6256 if (sd->groups != sd->groups->next)
6257 return 0;
6258 }
6259
6260 /* Following flags don't use groups */
6261 if (sd->flags & (SD_WAKE_IDLE |
6262 SD_WAKE_AFFINE |
6263 SD_WAKE_BALANCE))
6264 return 0;
6265
6266 return 1;
6267}
6268
48f24c4d
IM
6269static int
6270sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6271{
6272 unsigned long cflags = sd->flags, pflags = parent->flags;
6273
6274 if (sd_degenerate(parent))
6275 return 1;
6276
6277 if (!cpus_equal(sd->span, parent->span))
6278 return 0;
6279
6280 /* Does parent contain flags not in child? */
6281 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6282 if (cflags & SD_WAKE_AFFINE)
6283 pflags &= ~SD_WAKE_BALANCE;
6284 /* Flags needing groups don't count if only 1 group in parent */
6285 if (parent->groups == parent->groups->next) {
6286 pflags &= ~(SD_LOAD_BALANCE |
6287 SD_BALANCE_NEWIDLE |
6288 SD_BALANCE_FORK |
89c4710e
SS
6289 SD_BALANCE_EXEC |
6290 SD_SHARE_CPUPOWER |
6291 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6292 }
6293 if (~cflags & pflags)
6294 return 0;
6295
6296 return 1;
6297}
6298
57d885fe
GH
6299static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6300{
6301 unsigned long flags;
6302 const struct sched_class *class;
6303
6304 spin_lock_irqsave(&rq->lock, flags);
6305
6306 if (rq->rd) {
6307 struct root_domain *old_rd = rq->rd;
6308
0eab9146 6309 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6310 if (class->leave_domain)
6311 class->leave_domain(rq);
0eab9146 6312 }
57d885fe 6313
dc938520
GH
6314 cpu_clear(rq->cpu, old_rd->span);
6315 cpu_clear(rq->cpu, old_rd->online);
6316
57d885fe
GH
6317 if (atomic_dec_and_test(&old_rd->refcount))
6318 kfree(old_rd);
6319 }
6320
6321 atomic_inc(&rd->refcount);
6322 rq->rd = rd;
6323
dc938520 6324 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6325 if (cpu_isset(rq->cpu, cpu_online_map))
6326 cpu_set(rq->cpu, rd->online);
dc938520 6327
0eab9146 6328 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6329 if (class->join_domain)
6330 class->join_domain(rq);
0eab9146 6331 }
57d885fe
GH
6332
6333 spin_unlock_irqrestore(&rq->lock, flags);
6334}
6335
dc938520 6336static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6337{
6338 memset(rd, 0, sizeof(*rd));
6339
dc938520
GH
6340 cpus_clear(rd->span);
6341 cpus_clear(rd->online);
57d885fe
GH
6342}
6343
6344static void init_defrootdomain(void)
6345{
dc938520 6346 init_rootdomain(&def_root_domain);
57d885fe
GH
6347 atomic_set(&def_root_domain.refcount, 1);
6348}
6349
dc938520 6350static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6351{
6352 struct root_domain *rd;
6353
6354 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6355 if (!rd)
6356 return NULL;
6357
dc938520 6358 init_rootdomain(rd);
57d885fe
GH
6359
6360 return rd;
6361}
6362
1da177e4 6363/*
0eab9146 6364 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6365 * hold the hotplug lock.
6366 */
0eab9146
IM
6367static void
6368cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6369{
70b97a7f 6370 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6371 struct sched_domain *tmp;
6372
6373 /* Remove the sched domains which do not contribute to scheduling. */
6374 for (tmp = sd; tmp; tmp = tmp->parent) {
6375 struct sched_domain *parent = tmp->parent;
6376 if (!parent)
6377 break;
1a848870 6378 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6379 tmp->parent = parent->parent;
1a848870
SS
6380 if (parent->parent)
6381 parent->parent->child = tmp;
6382 }
245af2c7
SS
6383 }
6384
1a848870 6385 if (sd && sd_degenerate(sd)) {
245af2c7 6386 sd = sd->parent;
1a848870
SS
6387 if (sd)
6388 sd->child = NULL;
6389 }
1da177e4
LT
6390
6391 sched_domain_debug(sd, cpu);
6392
57d885fe 6393 rq_attach_root(rq, rd);
674311d5 6394 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6395}
6396
6397/* cpus with isolated domains */
67af63a6 6398static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6399
6400/* Setup the mask of cpus configured for isolated domains */
6401static int __init isolated_cpu_setup(char *str)
6402{
6403 int ints[NR_CPUS], i;
6404
6405 str = get_options(str, ARRAY_SIZE(ints), ints);
6406 cpus_clear(cpu_isolated_map);
6407 for (i = 1; i <= ints[0]; i++)
6408 if (ints[i] < NR_CPUS)
6409 cpu_set(ints[i], cpu_isolated_map);
6410 return 1;
6411}
6412
8927f494 6413__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6414
6415/*
6711cab4
SS
6416 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6417 * to a function which identifies what group(along with sched group) a CPU
6418 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6419 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6420 *
6421 * init_sched_build_groups will build a circular linked list of the groups
6422 * covered by the given span, and will set each group's ->cpumask correctly,
6423 * and ->cpu_power to 0.
6424 */
a616058b 6425static void
7c16ec58 6426init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6427 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6428 struct sched_group **sg,
6429 cpumask_t *tmpmask),
6430 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6431{
6432 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6433 int i;
6434
7c16ec58
MT
6435 cpus_clear(*covered);
6436
6437 for_each_cpu_mask(i, *span) {
6711cab4 6438 struct sched_group *sg;
7c16ec58 6439 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6440 int j;
6441
7c16ec58 6442 if (cpu_isset(i, *covered))
1da177e4
LT
6443 continue;
6444
7c16ec58 6445 cpus_clear(sg->cpumask);
5517d86b 6446 sg->__cpu_power = 0;
1da177e4 6447
7c16ec58
MT
6448 for_each_cpu_mask(j, *span) {
6449 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6450 continue;
6451
7c16ec58 6452 cpu_set(j, *covered);
1da177e4
LT
6453 cpu_set(j, sg->cpumask);
6454 }
6455 if (!first)
6456 first = sg;
6457 if (last)
6458 last->next = sg;
6459 last = sg;
6460 }
6461 last->next = first;
6462}
6463
9c1cfda2 6464#define SD_NODES_PER_DOMAIN 16
1da177e4 6465
9c1cfda2 6466#ifdef CONFIG_NUMA
198e2f18 6467
9c1cfda2
JH
6468/**
6469 * find_next_best_node - find the next node to include in a sched_domain
6470 * @node: node whose sched_domain we're building
6471 * @used_nodes: nodes already in the sched_domain
6472 *
41a2d6cf 6473 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6474 * finds the closest node not already in the @used_nodes map.
6475 *
6476 * Should use nodemask_t.
6477 */
c5f59f08 6478static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6479{
6480 int i, n, val, min_val, best_node = 0;
6481
6482 min_val = INT_MAX;
6483
6484 for (i = 0; i < MAX_NUMNODES; i++) {
6485 /* Start at @node */
6486 n = (node + i) % MAX_NUMNODES;
6487
6488 if (!nr_cpus_node(n))
6489 continue;
6490
6491 /* Skip already used nodes */
c5f59f08 6492 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6493 continue;
6494
6495 /* Simple min distance search */
6496 val = node_distance(node, n);
6497
6498 if (val < min_val) {
6499 min_val = val;
6500 best_node = n;
6501 }
6502 }
6503
c5f59f08 6504 node_set(best_node, *used_nodes);
9c1cfda2
JH
6505 return best_node;
6506}
6507
6508/**
6509 * sched_domain_node_span - get a cpumask for a node's sched_domain
6510 * @node: node whose cpumask we're constructing
9c1cfda2 6511 *
41a2d6cf 6512 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6513 * should be one that prevents unnecessary balancing, but also spreads tasks
6514 * out optimally.
6515 */
4bdbaad3 6516static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6517{
c5f59f08 6518 nodemask_t used_nodes;
c5f59f08 6519 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6520 int i;
9c1cfda2 6521
4bdbaad3 6522 cpus_clear(*span);
c5f59f08 6523 nodes_clear(used_nodes);
9c1cfda2 6524
4bdbaad3 6525 cpus_or(*span, *span, *nodemask);
c5f59f08 6526 node_set(node, used_nodes);
9c1cfda2
JH
6527
6528 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6529 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6530
c5f59f08 6531 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6532 cpus_or(*span, *span, *nodemask);
9c1cfda2 6533 }
9c1cfda2
JH
6534}
6535#endif
6536
5c45bf27 6537int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6538
9c1cfda2 6539/*
48f24c4d 6540 * SMT sched-domains:
9c1cfda2 6541 */
1da177e4
LT
6542#ifdef CONFIG_SCHED_SMT
6543static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6544static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6545
41a2d6cf 6546static int
7c16ec58
MT
6547cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6548 cpumask_t *unused)
1da177e4 6549{
6711cab4
SS
6550 if (sg)
6551 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6552 return cpu;
6553}
6554#endif
6555
48f24c4d
IM
6556/*
6557 * multi-core sched-domains:
6558 */
1e9f28fa
SS
6559#ifdef CONFIG_SCHED_MC
6560static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6561static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6562#endif
6563
6564#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6565static int
7c16ec58
MT
6566cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6567 cpumask_t *mask)
1e9f28fa 6568{
6711cab4 6569 int group;
7c16ec58
MT
6570
6571 *mask = per_cpu(cpu_sibling_map, cpu);
6572 cpus_and(*mask, *mask, *cpu_map);
6573 group = first_cpu(*mask);
6711cab4
SS
6574 if (sg)
6575 *sg = &per_cpu(sched_group_core, group);
6576 return group;
1e9f28fa
SS
6577}
6578#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6579static int
7c16ec58
MT
6580cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6581 cpumask_t *unused)
1e9f28fa 6582{
6711cab4
SS
6583 if (sg)
6584 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6585 return cpu;
6586}
6587#endif
6588
1da177e4 6589static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6590static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6591
41a2d6cf 6592static int
7c16ec58
MT
6593cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6594 cpumask_t *mask)
1da177e4 6595{
6711cab4 6596 int group;
48f24c4d 6597#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6598 *mask = cpu_coregroup_map(cpu);
6599 cpus_and(*mask, *mask, *cpu_map);
6600 group = first_cpu(*mask);
1e9f28fa 6601#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6602 *mask = per_cpu(cpu_sibling_map, cpu);
6603 cpus_and(*mask, *mask, *cpu_map);
6604 group = first_cpu(*mask);
1da177e4 6605#else
6711cab4 6606 group = cpu;
1da177e4 6607#endif
6711cab4
SS
6608 if (sg)
6609 *sg = &per_cpu(sched_group_phys, group);
6610 return group;
1da177e4
LT
6611}
6612
6613#ifdef CONFIG_NUMA
1da177e4 6614/*
9c1cfda2
JH
6615 * The init_sched_build_groups can't handle what we want to do with node
6616 * groups, so roll our own. Now each node has its own list of groups which
6617 * gets dynamically allocated.
1da177e4 6618 */
9c1cfda2 6619static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6620static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6621
9c1cfda2 6622static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6623static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6624
6711cab4 6625static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6626 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6627{
6711cab4
SS
6628 int group;
6629
7c16ec58
MT
6630 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6631 cpus_and(*nodemask, *nodemask, *cpu_map);
6632 group = first_cpu(*nodemask);
6711cab4
SS
6633
6634 if (sg)
6635 *sg = &per_cpu(sched_group_allnodes, group);
6636 return group;
1da177e4 6637}
6711cab4 6638
08069033
SS
6639static void init_numa_sched_groups_power(struct sched_group *group_head)
6640{
6641 struct sched_group *sg = group_head;
6642 int j;
6643
6644 if (!sg)
6645 return;
3a5c359a
AK
6646 do {
6647 for_each_cpu_mask(j, sg->cpumask) {
6648 struct sched_domain *sd;
08069033 6649
3a5c359a
AK
6650 sd = &per_cpu(phys_domains, j);
6651 if (j != first_cpu(sd->groups->cpumask)) {
6652 /*
6653 * Only add "power" once for each
6654 * physical package.
6655 */
6656 continue;
6657 }
08069033 6658
3a5c359a
AK
6659 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6660 }
6661 sg = sg->next;
6662 } while (sg != group_head);
08069033 6663}
1da177e4
LT
6664#endif
6665
a616058b 6666#ifdef CONFIG_NUMA
51888ca2 6667/* Free memory allocated for various sched_group structures */
7c16ec58 6668static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6669{
a616058b 6670 int cpu, i;
51888ca2
SV
6671
6672 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6673 struct sched_group **sched_group_nodes
6674 = sched_group_nodes_bycpu[cpu];
6675
51888ca2
SV
6676 if (!sched_group_nodes)
6677 continue;
6678
6679 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6680 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6681
7c16ec58
MT
6682 *nodemask = node_to_cpumask(i);
6683 cpus_and(*nodemask, *nodemask, *cpu_map);
6684 if (cpus_empty(*nodemask))
51888ca2
SV
6685 continue;
6686
6687 if (sg == NULL)
6688 continue;
6689 sg = sg->next;
6690next_sg:
6691 oldsg = sg;
6692 sg = sg->next;
6693 kfree(oldsg);
6694 if (oldsg != sched_group_nodes[i])
6695 goto next_sg;
6696 }
6697 kfree(sched_group_nodes);
6698 sched_group_nodes_bycpu[cpu] = NULL;
6699 }
51888ca2 6700}
a616058b 6701#else
7c16ec58 6702static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6703{
6704}
6705#endif
51888ca2 6706
89c4710e
SS
6707/*
6708 * Initialize sched groups cpu_power.
6709 *
6710 * cpu_power indicates the capacity of sched group, which is used while
6711 * distributing the load between different sched groups in a sched domain.
6712 * Typically cpu_power for all the groups in a sched domain will be same unless
6713 * there are asymmetries in the topology. If there are asymmetries, group
6714 * having more cpu_power will pickup more load compared to the group having
6715 * less cpu_power.
6716 *
6717 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6718 * the maximum number of tasks a group can handle in the presence of other idle
6719 * or lightly loaded groups in the same sched domain.
6720 */
6721static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6722{
6723 struct sched_domain *child;
6724 struct sched_group *group;
6725
6726 WARN_ON(!sd || !sd->groups);
6727
6728 if (cpu != first_cpu(sd->groups->cpumask))
6729 return;
6730
6731 child = sd->child;
6732
5517d86b
ED
6733 sd->groups->__cpu_power = 0;
6734
89c4710e
SS
6735 /*
6736 * For perf policy, if the groups in child domain share resources
6737 * (for example cores sharing some portions of the cache hierarchy
6738 * or SMT), then set this domain groups cpu_power such that each group
6739 * can handle only one task, when there are other idle groups in the
6740 * same sched domain.
6741 */
6742 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6743 (child->flags &
6744 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6745 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6746 return;
6747 }
6748
89c4710e
SS
6749 /*
6750 * add cpu_power of each child group to this groups cpu_power
6751 */
6752 group = child->groups;
6753 do {
5517d86b 6754 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6755 group = group->next;
6756 } while (group != child->groups);
6757}
6758
7c16ec58
MT
6759/*
6760 * Initializers for schedule domains
6761 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6762 */
6763
6764#define SD_INIT(sd, type) sd_init_##type(sd)
6765#define SD_INIT_FUNC(type) \
6766static noinline void sd_init_##type(struct sched_domain *sd) \
6767{ \
6768 memset(sd, 0, sizeof(*sd)); \
6769 *sd = SD_##type##_INIT; \
6770}
6771
6772SD_INIT_FUNC(CPU)
6773#ifdef CONFIG_NUMA
6774 SD_INIT_FUNC(ALLNODES)
6775 SD_INIT_FUNC(NODE)
6776#endif
6777#ifdef CONFIG_SCHED_SMT
6778 SD_INIT_FUNC(SIBLING)
6779#endif
6780#ifdef CONFIG_SCHED_MC
6781 SD_INIT_FUNC(MC)
6782#endif
6783
6784/*
6785 * To minimize stack usage kmalloc room for cpumasks and share the
6786 * space as the usage in build_sched_domains() dictates. Used only
6787 * if the amount of space is significant.
6788 */
6789struct allmasks {
6790 cpumask_t tmpmask; /* make this one first */
6791 union {
6792 cpumask_t nodemask;
6793 cpumask_t this_sibling_map;
6794 cpumask_t this_core_map;
6795 };
6796 cpumask_t send_covered;
6797
6798#ifdef CONFIG_NUMA
6799 cpumask_t domainspan;
6800 cpumask_t covered;
6801 cpumask_t notcovered;
6802#endif
6803};
6804
6805#if NR_CPUS > 128
6806#define SCHED_CPUMASK_ALLOC 1
6807#define SCHED_CPUMASK_FREE(v) kfree(v)
6808#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6809#else
6810#define SCHED_CPUMASK_ALLOC 0
6811#define SCHED_CPUMASK_FREE(v)
6812#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6813#endif
6814
6815#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6816 ((unsigned long)(a) + offsetof(struct allmasks, v))
6817
1da177e4 6818/*
1a20ff27
DG
6819 * Build sched domains for a given set of cpus and attach the sched domains
6820 * to the individual cpus
1da177e4 6821 */
51888ca2 6822static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6823{
6824 int i;
57d885fe 6825 struct root_domain *rd;
7c16ec58
MT
6826 SCHED_CPUMASK_DECLARE(allmasks);
6827 cpumask_t *tmpmask;
d1b55138
JH
6828#ifdef CONFIG_NUMA
6829 struct sched_group **sched_group_nodes = NULL;
6711cab4 6830 int sd_allnodes = 0;
d1b55138
JH
6831
6832 /*
6833 * Allocate the per-node list of sched groups
6834 */
5cf9f062 6835 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6836 GFP_KERNEL);
d1b55138
JH
6837 if (!sched_group_nodes) {
6838 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6839 return -ENOMEM;
d1b55138 6840 }
d1b55138 6841#endif
1da177e4 6842
dc938520 6843 rd = alloc_rootdomain();
57d885fe
GH
6844 if (!rd) {
6845 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
6846#ifdef CONFIG_NUMA
6847 kfree(sched_group_nodes);
6848#endif
57d885fe
GH
6849 return -ENOMEM;
6850 }
6851
7c16ec58
MT
6852#if SCHED_CPUMASK_ALLOC
6853 /* get space for all scratch cpumask variables */
6854 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6855 if (!allmasks) {
6856 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6857 kfree(rd);
6858#ifdef CONFIG_NUMA
6859 kfree(sched_group_nodes);
6860#endif
6861 return -ENOMEM;
6862 }
6863#endif
6864 tmpmask = (cpumask_t *)allmasks;
6865
6866
6867#ifdef CONFIG_NUMA
6868 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6869#endif
6870
1da177e4 6871 /*
1a20ff27 6872 * Set up domains for cpus specified by the cpu_map.
1da177e4 6873 */
1a20ff27 6874 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6875 struct sched_domain *sd = NULL, *p;
7c16ec58 6876 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 6877
7c16ec58
MT
6878 *nodemask = node_to_cpumask(cpu_to_node(i));
6879 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
6880
6881#ifdef CONFIG_NUMA
dd41f596 6882 if (cpus_weight(*cpu_map) >
7c16ec58 6883 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 6884 sd = &per_cpu(allnodes_domains, i);
7c16ec58 6885 SD_INIT(sd, ALLNODES);
9c1cfda2 6886 sd->span = *cpu_map;
7c16ec58 6887 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 6888 p = sd;
6711cab4 6889 sd_allnodes = 1;
9c1cfda2
JH
6890 } else
6891 p = NULL;
6892
1da177e4 6893 sd = &per_cpu(node_domains, i);
7c16ec58 6894 SD_INIT(sd, NODE);
4bdbaad3 6895 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 6896 sd->parent = p;
1a848870
SS
6897 if (p)
6898 p->child = sd;
9c1cfda2 6899 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6900#endif
6901
6902 p = sd;
6903 sd = &per_cpu(phys_domains, i);
7c16ec58
MT
6904 SD_INIT(sd, CPU);
6905 sd->span = *nodemask;
1da177e4 6906 sd->parent = p;
1a848870
SS
6907 if (p)
6908 p->child = sd;
7c16ec58 6909 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 6910
1e9f28fa
SS
6911#ifdef CONFIG_SCHED_MC
6912 p = sd;
6913 sd = &per_cpu(core_domains, i);
7c16ec58 6914 SD_INIT(sd, MC);
1e9f28fa
SS
6915 sd->span = cpu_coregroup_map(i);
6916 cpus_and(sd->span, sd->span, *cpu_map);
6917 sd->parent = p;
1a848870 6918 p->child = sd;
7c16ec58 6919 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
6920#endif
6921
1da177e4
LT
6922#ifdef CONFIG_SCHED_SMT
6923 p = sd;
6924 sd = &per_cpu(cpu_domains, i);
7c16ec58 6925 SD_INIT(sd, SIBLING);
d5a7430d 6926 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6927 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6928 sd->parent = p;
1a848870 6929 p->child = sd;
7c16ec58 6930 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
6931#endif
6932 }
6933
6934#ifdef CONFIG_SCHED_SMT
6935 /* Set up CPU (sibling) groups */
9c1cfda2 6936 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6937 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
6938 SCHED_CPUMASK_VAR(send_covered, allmasks);
6939
6940 *this_sibling_map = per_cpu(cpu_sibling_map, i);
6941 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
6942 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
6943 continue;
6944
dd41f596 6945 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
6946 &cpu_to_cpu_group,
6947 send_covered, tmpmask);
1da177e4
LT
6948 }
6949#endif
6950
1e9f28fa
SS
6951#ifdef CONFIG_SCHED_MC
6952 /* Set up multi-core groups */
6953 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
6954 SCHED_CPUMASK_VAR(this_core_map, allmasks);
6955 SCHED_CPUMASK_VAR(send_covered, allmasks);
6956
6957 *this_core_map = cpu_coregroup_map(i);
6958 cpus_and(*this_core_map, *this_core_map, *cpu_map);
6959 if (i != first_cpu(*this_core_map))
1e9f28fa 6960 continue;
7c16ec58 6961
dd41f596 6962 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
6963 &cpu_to_core_group,
6964 send_covered, tmpmask);
1e9f28fa
SS
6965 }
6966#endif
6967
1da177e4
LT
6968 /* Set up physical groups */
6969 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
6970 SCHED_CPUMASK_VAR(nodemask, allmasks);
6971 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 6972
7c16ec58
MT
6973 *nodemask = node_to_cpumask(i);
6974 cpus_and(*nodemask, *nodemask, *cpu_map);
6975 if (cpus_empty(*nodemask))
1da177e4
LT
6976 continue;
6977
7c16ec58
MT
6978 init_sched_build_groups(nodemask, cpu_map,
6979 &cpu_to_phys_group,
6980 send_covered, tmpmask);
1da177e4
LT
6981 }
6982
6983#ifdef CONFIG_NUMA
6984 /* Set up node groups */
7c16ec58
MT
6985 if (sd_allnodes) {
6986 SCHED_CPUMASK_VAR(send_covered, allmasks);
6987
6988 init_sched_build_groups(cpu_map, cpu_map,
6989 &cpu_to_allnodes_group,
6990 send_covered, tmpmask);
6991 }
9c1cfda2
JH
6992
6993 for (i = 0; i < MAX_NUMNODES; i++) {
6994 /* Set up node groups */
6995 struct sched_group *sg, *prev;
7c16ec58
MT
6996 SCHED_CPUMASK_VAR(nodemask, allmasks);
6997 SCHED_CPUMASK_VAR(domainspan, allmasks);
6998 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
6999 int j;
7000
7c16ec58
MT
7001 *nodemask = node_to_cpumask(i);
7002 cpus_clear(*covered);
7003
7004 cpus_and(*nodemask, *nodemask, *cpu_map);
7005 if (cpus_empty(*nodemask)) {
d1b55138 7006 sched_group_nodes[i] = NULL;
9c1cfda2 7007 continue;
d1b55138 7008 }
9c1cfda2 7009
4bdbaad3 7010 sched_domain_node_span(i, domainspan);
7c16ec58 7011 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7012
15f0b676 7013 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7014 if (!sg) {
7015 printk(KERN_WARNING "Can not alloc domain group for "
7016 "node %d\n", i);
7017 goto error;
7018 }
9c1cfda2 7019 sched_group_nodes[i] = sg;
7c16ec58 7020 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7021 struct sched_domain *sd;
9761eea8 7022
9c1cfda2
JH
7023 sd = &per_cpu(node_domains, j);
7024 sd->groups = sg;
9c1cfda2 7025 }
5517d86b 7026 sg->__cpu_power = 0;
7c16ec58 7027 sg->cpumask = *nodemask;
51888ca2 7028 sg->next = sg;
7c16ec58 7029 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7030 prev = sg;
7031
7032 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7033 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7034 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7035 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7036
7c16ec58
MT
7037 cpus_complement(*notcovered, *covered);
7038 cpus_and(*tmpmask, *notcovered, *cpu_map);
7039 cpus_and(*tmpmask, *tmpmask, *domainspan);
7040 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7041 break;
7042
7c16ec58
MT
7043 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7044 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7045 continue;
7046
15f0b676
SV
7047 sg = kmalloc_node(sizeof(struct sched_group),
7048 GFP_KERNEL, i);
9c1cfda2
JH
7049 if (!sg) {
7050 printk(KERN_WARNING
7051 "Can not alloc domain group for node %d\n", j);
51888ca2 7052 goto error;
9c1cfda2 7053 }
5517d86b 7054 sg->__cpu_power = 0;
7c16ec58 7055 sg->cpumask = *tmpmask;
51888ca2 7056 sg->next = prev->next;
7c16ec58 7057 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7058 prev->next = sg;
7059 prev = sg;
7060 }
9c1cfda2 7061 }
1da177e4
LT
7062#endif
7063
7064 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7065#ifdef CONFIG_SCHED_SMT
1a20ff27 7066 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7067 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7068
89c4710e 7069 init_sched_groups_power(i, sd);
5c45bf27 7070 }
1da177e4 7071#endif
1e9f28fa 7072#ifdef CONFIG_SCHED_MC
5c45bf27 7073 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7074 struct sched_domain *sd = &per_cpu(core_domains, i);
7075
89c4710e 7076 init_sched_groups_power(i, sd);
5c45bf27
SS
7077 }
7078#endif
1e9f28fa 7079
5c45bf27 7080 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7081 struct sched_domain *sd = &per_cpu(phys_domains, i);
7082
89c4710e 7083 init_sched_groups_power(i, sd);
1da177e4
LT
7084 }
7085
9c1cfda2 7086#ifdef CONFIG_NUMA
08069033
SS
7087 for (i = 0; i < MAX_NUMNODES; i++)
7088 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7089
6711cab4
SS
7090 if (sd_allnodes) {
7091 struct sched_group *sg;
f712c0c7 7092
7c16ec58
MT
7093 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7094 tmpmask);
f712c0c7
SS
7095 init_numa_sched_groups_power(sg);
7096 }
9c1cfda2
JH
7097#endif
7098
1da177e4 7099 /* Attach the domains */
1a20ff27 7100 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7101 struct sched_domain *sd;
7102#ifdef CONFIG_SCHED_SMT
7103 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7104#elif defined(CONFIG_SCHED_MC)
7105 sd = &per_cpu(core_domains, i);
1da177e4
LT
7106#else
7107 sd = &per_cpu(phys_domains, i);
7108#endif
57d885fe 7109 cpu_attach_domain(sd, rd, i);
1da177e4 7110 }
51888ca2 7111
7c16ec58 7112 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7113 return 0;
7114
a616058b 7115#ifdef CONFIG_NUMA
51888ca2 7116error:
7c16ec58
MT
7117 free_sched_groups(cpu_map, tmpmask);
7118 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7119 return -ENOMEM;
a616058b 7120#endif
1da177e4 7121}
029190c5
PJ
7122
7123static cpumask_t *doms_cur; /* current sched domains */
7124static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7125
7126/*
7127 * Special case: If a kmalloc of a doms_cur partition (array of
7128 * cpumask_t) fails, then fallback to a single sched domain,
7129 * as determined by the single cpumask_t fallback_doms.
7130 */
7131static cpumask_t fallback_doms;
7132
22e52b07
HC
7133void __attribute__((weak)) arch_update_cpu_topology(void)
7134{
7135}
7136
1a20ff27 7137/*
41a2d6cf 7138 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7139 * For now this just excludes isolated cpus, but could be used to
7140 * exclude other special cases in the future.
1a20ff27 7141 */
51888ca2 7142static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7143{
7378547f
MM
7144 int err;
7145
22e52b07 7146 arch_update_cpu_topology();
029190c5
PJ
7147 ndoms_cur = 1;
7148 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7149 if (!doms_cur)
7150 doms_cur = &fallback_doms;
7151 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 7152 err = build_sched_domains(doms_cur);
6382bc90 7153 register_sched_domain_sysctl();
7378547f
MM
7154
7155 return err;
1a20ff27
DG
7156}
7157
7c16ec58
MT
7158static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7159 cpumask_t *tmpmask)
1da177e4 7160{
7c16ec58 7161 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7162}
1da177e4 7163
1a20ff27
DG
7164/*
7165 * Detach sched domains from a group of cpus specified in cpu_map
7166 * These cpus will now be attached to the NULL domain
7167 */
858119e1 7168static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7169{
7c16ec58 7170 cpumask_t tmpmask;
1a20ff27
DG
7171 int i;
7172
6382bc90
MM
7173 unregister_sched_domain_sysctl();
7174
1a20ff27 7175 for_each_cpu_mask(i, *cpu_map)
57d885fe 7176 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7177 synchronize_sched();
7c16ec58 7178 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7179}
7180
029190c5
PJ
7181/*
7182 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7183 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7184 * doms_new[] to the current sched domain partitioning, doms_cur[].
7185 * It destroys each deleted domain and builds each new domain.
7186 *
7187 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7188 * The masks don't intersect (don't overlap.) We should setup one
7189 * sched domain for each mask. CPUs not in any of the cpumasks will
7190 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7191 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7192 * it as it is.
7193 *
41a2d6cf
IM
7194 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7195 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7196 * failed the kmalloc call, then it can pass in doms_new == NULL,
7197 * and partition_sched_domains() will fallback to the single partition
7198 * 'fallback_doms'.
7199 *
7200 * Call with hotplug lock held
7201 */
7202void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7203{
7204 int i, j;
7205
a1835615
SV
7206 lock_doms_cur();
7207
7378547f
MM
7208 /* always unregister in case we don't destroy any domains */
7209 unregister_sched_domain_sysctl();
7210
029190c5
PJ
7211 if (doms_new == NULL) {
7212 ndoms_new = 1;
7213 doms_new = &fallback_doms;
7214 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7215 }
7216
7217 /* Destroy deleted domains */
7218 for (i = 0; i < ndoms_cur; i++) {
7219 for (j = 0; j < ndoms_new; j++) {
7220 if (cpus_equal(doms_cur[i], doms_new[j]))
7221 goto match1;
7222 }
7223 /* no match - a current sched domain not in new doms_new[] */
7224 detach_destroy_domains(doms_cur + i);
7225match1:
7226 ;
7227 }
7228
7229 /* Build new domains */
7230 for (i = 0; i < ndoms_new; i++) {
7231 for (j = 0; j < ndoms_cur; j++) {
7232 if (cpus_equal(doms_new[i], doms_cur[j]))
7233 goto match2;
7234 }
7235 /* no match - add a new doms_new */
7236 build_sched_domains(doms_new + i);
7237match2:
7238 ;
7239 }
7240
7241 /* Remember the new sched domains */
7242 if (doms_cur != &fallback_doms)
7243 kfree(doms_cur);
7244 doms_cur = doms_new;
7245 ndoms_cur = ndoms_new;
7378547f
MM
7246
7247 register_sched_domain_sysctl();
a1835615
SV
7248
7249 unlock_doms_cur();
029190c5
PJ
7250}
7251
5c45bf27 7252#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7253int arch_reinit_sched_domains(void)
5c45bf27
SS
7254{
7255 int err;
7256
95402b38 7257 get_online_cpus();
5c45bf27
SS
7258 detach_destroy_domains(&cpu_online_map);
7259 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7260 put_online_cpus();
5c45bf27
SS
7261
7262 return err;
7263}
7264
7265static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7266{
7267 int ret;
7268
7269 if (buf[0] != '0' && buf[0] != '1')
7270 return -EINVAL;
7271
7272 if (smt)
7273 sched_smt_power_savings = (buf[0] == '1');
7274 else
7275 sched_mc_power_savings = (buf[0] == '1');
7276
7277 ret = arch_reinit_sched_domains();
7278
7279 return ret ? ret : count;
7280}
7281
5c45bf27
SS
7282#ifdef CONFIG_SCHED_MC
7283static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7284{
7285 return sprintf(page, "%u\n", sched_mc_power_savings);
7286}
48f24c4d
IM
7287static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7288 const char *buf, size_t count)
5c45bf27
SS
7289{
7290 return sched_power_savings_store(buf, count, 0);
7291}
6707de00
AB
7292static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7293 sched_mc_power_savings_store);
5c45bf27
SS
7294#endif
7295
7296#ifdef CONFIG_SCHED_SMT
7297static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7298{
7299 return sprintf(page, "%u\n", sched_smt_power_savings);
7300}
48f24c4d
IM
7301static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7302 const char *buf, size_t count)
5c45bf27
SS
7303{
7304 return sched_power_savings_store(buf, count, 1);
7305}
6707de00
AB
7306static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7307 sched_smt_power_savings_store);
7308#endif
7309
7310int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7311{
7312 int err = 0;
7313
7314#ifdef CONFIG_SCHED_SMT
7315 if (smt_capable())
7316 err = sysfs_create_file(&cls->kset.kobj,
7317 &attr_sched_smt_power_savings.attr);
7318#endif
7319#ifdef CONFIG_SCHED_MC
7320 if (!err && mc_capable())
7321 err = sysfs_create_file(&cls->kset.kobj,
7322 &attr_sched_mc_power_savings.attr);
7323#endif
7324 return err;
7325}
5c45bf27
SS
7326#endif
7327
1da177e4 7328/*
41a2d6cf 7329 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7330 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7331 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7332 * which will prevent rebalancing while the sched domains are recalculated.
7333 */
7334static int update_sched_domains(struct notifier_block *nfb,
7335 unsigned long action, void *hcpu)
7336{
1da177e4
LT
7337 switch (action) {
7338 case CPU_UP_PREPARE:
8bb78442 7339 case CPU_UP_PREPARE_FROZEN:
1da177e4 7340 case CPU_DOWN_PREPARE:
8bb78442 7341 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7342 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7343 return NOTIFY_OK;
7344
7345 case CPU_UP_CANCELED:
8bb78442 7346 case CPU_UP_CANCELED_FROZEN:
1da177e4 7347 case CPU_DOWN_FAILED:
8bb78442 7348 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7349 case CPU_ONLINE:
8bb78442 7350 case CPU_ONLINE_FROZEN:
1da177e4 7351 case CPU_DEAD:
8bb78442 7352 case CPU_DEAD_FROZEN:
1da177e4
LT
7353 /*
7354 * Fall through and re-initialise the domains.
7355 */
7356 break;
7357 default:
7358 return NOTIFY_DONE;
7359 }
7360
7361 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7362 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7363
7364 return NOTIFY_OK;
7365}
1da177e4
LT
7366
7367void __init sched_init_smp(void)
7368{
5c1e1767
NP
7369 cpumask_t non_isolated_cpus;
7370
434d53b0
MT
7371#if defined(CONFIG_NUMA)
7372 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7373 GFP_KERNEL);
7374 BUG_ON(sched_group_nodes_bycpu == NULL);
7375#endif
95402b38 7376 get_online_cpus();
1a20ff27 7377 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7378 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7379 if (cpus_empty(non_isolated_cpus))
7380 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7381 put_online_cpus();
1da177e4
LT
7382 /* XXX: Theoretical race here - CPU may be hotplugged now */
7383 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7384
7385 /* Move init over to a non-isolated CPU */
7c16ec58 7386 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7387 BUG();
19978ca6 7388 sched_init_granularity();
1da177e4
LT
7389}
7390#else
7391void __init sched_init_smp(void)
7392{
434d53b0
MT
7393#if defined(CONFIG_NUMA)
7394 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7395 GFP_KERNEL);
7396 BUG_ON(sched_group_nodes_bycpu == NULL);
7397#endif
19978ca6 7398 sched_init_granularity();
1da177e4
LT
7399}
7400#endif /* CONFIG_SMP */
7401
7402int in_sched_functions(unsigned long addr)
7403{
1da177e4
LT
7404 return in_lock_functions(addr) ||
7405 (addr >= (unsigned long)__sched_text_start
7406 && addr < (unsigned long)__sched_text_end);
7407}
7408
a9957449 7409static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7410{
7411 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7412#ifdef CONFIG_FAIR_GROUP_SCHED
7413 cfs_rq->rq = rq;
7414#endif
67e9fb2a 7415 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7416}
7417
fa85ae24
PZ
7418static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7419{
7420 struct rt_prio_array *array;
7421 int i;
7422
7423 array = &rt_rq->active;
7424 for (i = 0; i < MAX_RT_PRIO; i++) {
7425 INIT_LIST_HEAD(array->queue + i);
7426 __clear_bit(i, array->bitmap);
7427 }
7428 /* delimiter for bitsearch: */
7429 __set_bit(MAX_RT_PRIO, array->bitmap);
7430
052f1dc7 7431#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7432 rt_rq->highest_prio = MAX_RT_PRIO;
7433#endif
fa85ae24
PZ
7434#ifdef CONFIG_SMP
7435 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7436 rt_rq->overloaded = 0;
7437#endif
7438
7439 rt_rq->rt_time = 0;
7440 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7441 rt_rq->rt_runtime = 0;
7442 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7443
052f1dc7 7444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7445 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7446 rt_rq->rq = rq;
7447#endif
fa85ae24
PZ
7448}
7449
6f505b16 7450#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7451static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7452 struct sched_entity *se, int cpu, int add,
7453 struct sched_entity *parent)
6f505b16 7454{
ec7dc8ac 7455 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7456 tg->cfs_rq[cpu] = cfs_rq;
7457 init_cfs_rq(cfs_rq, rq);
7458 cfs_rq->tg = tg;
7459 if (add)
7460 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7461
7462 tg->se[cpu] = se;
354d60c2
DG
7463 /* se could be NULL for init_task_group */
7464 if (!se)
7465 return;
7466
ec7dc8ac
DG
7467 if (!parent)
7468 se->cfs_rq = &rq->cfs;
7469 else
7470 se->cfs_rq = parent->my_q;
7471
6f505b16
PZ
7472 se->my_q = cfs_rq;
7473 se->load.weight = tg->shares;
7474 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
ec7dc8ac 7475 se->parent = parent;
6f505b16 7476}
052f1dc7 7477#endif
6f505b16 7478
052f1dc7 7479#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7480static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7481 struct sched_rt_entity *rt_se, int cpu, int add,
7482 struct sched_rt_entity *parent)
6f505b16 7483{
ec7dc8ac
DG
7484 struct rq *rq = cpu_rq(cpu);
7485
6f505b16
PZ
7486 tg->rt_rq[cpu] = rt_rq;
7487 init_rt_rq(rt_rq, rq);
7488 rt_rq->tg = tg;
7489 rt_rq->rt_se = rt_se;
ac086bc2 7490 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7491 if (add)
7492 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7493
7494 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7495 if (!rt_se)
7496 return;
7497
ec7dc8ac
DG
7498 if (!parent)
7499 rt_se->rt_rq = &rq->rt;
7500 else
7501 rt_se->rt_rq = parent->my_q;
7502
6f505b16
PZ
7503 rt_se->rt_rq = &rq->rt;
7504 rt_se->my_q = rt_rq;
ec7dc8ac 7505 rt_se->parent = parent;
6f505b16
PZ
7506 INIT_LIST_HEAD(&rt_se->run_list);
7507}
7508#endif
7509
1da177e4
LT
7510void __init sched_init(void)
7511{
dd41f596 7512 int i, j;
434d53b0
MT
7513 unsigned long alloc_size = 0, ptr;
7514
7515#ifdef CONFIG_FAIR_GROUP_SCHED
7516 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7517#endif
7518#ifdef CONFIG_RT_GROUP_SCHED
7519 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7520#endif
7521#ifdef CONFIG_USER_SCHED
7522 alloc_size *= 2;
434d53b0
MT
7523#endif
7524 /*
7525 * As sched_init() is called before page_alloc is setup,
7526 * we use alloc_bootmem().
7527 */
7528 if (alloc_size) {
7529 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
7530
7531#ifdef CONFIG_FAIR_GROUP_SCHED
7532 init_task_group.se = (struct sched_entity **)ptr;
7533 ptr += nr_cpu_ids * sizeof(void **);
7534
7535 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7536 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7537
7538#ifdef CONFIG_USER_SCHED
7539 root_task_group.se = (struct sched_entity **)ptr;
7540 ptr += nr_cpu_ids * sizeof(void **);
7541
7542 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7543 ptr += nr_cpu_ids * sizeof(void **);
7544#endif
434d53b0
MT
7545#endif
7546#ifdef CONFIG_RT_GROUP_SCHED
7547 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7548 ptr += nr_cpu_ids * sizeof(void **);
7549
7550 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7551 ptr += nr_cpu_ids * sizeof(void **);
7552
7553#ifdef CONFIG_USER_SCHED
7554 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7555 ptr += nr_cpu_ids * sizeof(void **);
7556
7557 root_task_group.rt_rq = (struct rt_rq **)ptr;
7558 ptr += nr_cpu_ids * sizeof(void **);
7559#endif
434d53b0
MT
7560#endif
7561 }
dd41f596 7562
57d885fe
GH
7563#ifdef CONFIG_SMP
7564 init_defrootdomain();
7565#endif
7566
d0b27fa7
PZ
7567 init_rt_bandwidth(&def_rt_bandwidth,
7568 global_rt_period(), global_rt_runtime());
7569
7570#ifdef CONFIG_RT_GROUP_SCHED
7571 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7572 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7573#ifdef CONFIG_USER_SCHED
7574 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7575 global_rt_period(), RUNTIME_INF);
7576#endif
d0b27fa7
PZ
7577#endif
7578
052f1dc7 7579#ifdef CONFIG_GROUP_SCHED
6f505b16
PZ
7580 list_add(&init_task_group.list, &task_groups);
7581#endif
7582
0a945022 7583 for_each_possible_cpu(i) {
70b97a7f 7584 struct rq *rq;
1da177e4
LT
7585
7586 rq = cpu_rq(i);
7587 spin_lock_init(&rq->lock);
fcb99371 7588 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7589 rq->nr_running = 0;
dd41f596 7590 rq->clock = 1;
15934a37 7591 update_last_tick_seen(rq);
dd41f596 7592 init_cfs_rq(&rq->cfs, rq);
6f505b16 7593 init_rt_rq(&rq->rt, rq);
dd41f596 7594#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7595 init_task_group.shares = init_task_group_load;
6f505b16 7596 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7597#ifdef CONFIG_CGROUP_SCHED
7598 /*
7599 * How much cpu bandwidth does init_task_group get?
7600 *
7601 * In case of task-groups formed thr' the cgroup filesystem, it
7602 * gets 100% of the cpu resources in the system. This overall
7603 * system cpu resource is divided among the tasks of
7604 * init_task_group and its child task-groups in a fair manner,
7605 * based on each entity's (task or task-group's) weight
7606 * (se->load.weight).
7607 *
7608 * In other words, if init_task_group has 10 tasks of weight
7609 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7610 * then A0's share of the cpu resource is:
7611 *
7612 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7613 *
7614 * We achieve this by letting init_task_group's tasks sit
7615 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7616 */
ec7dc8ac 7617 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7618#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7619 root_task_group.shares = NICE_0_LOAD;
7620 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7621 /*
7622 * In case of task-groups formed thr' the user id of tasks,
7623 * init_task_group represents tasks belonging to root user.
7624 * Hence it forms a sibling of all subsequent groups formed.
7625 * In this case, init_task_group gets only a fraction of overall
7626 * system cpu resource, based on the weight assigned to root
7627 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7628 * by letting tasks of init_task_group sit in a separate cfs_rq
7629 * (init_cfs_rq) and having one entity represent this group of
7630 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7631 */
ec7dc8ac 7632 init_tg_cfs_entry(&init_task_group,
6f505b16 7633 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7634 &per_cpu(init_sched_entity, i), i, 1,
7635 root_task_group.se[i]);
6f505b16 7636
052f1dc7 7637#endif
354d60c2
DG
7638#endif /* CONFIG_FAIR_GROUP_SCHED */
7639
7640 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7641#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7642 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7643#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7644 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7645#elif defined CONFIG_USER_SCHED
eff766a6 7646 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7647 init_tg_rt_entry(&init_task_group,
6f505b16 7648 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7649 &per_cpu(init_sched_rt_entity, i), i, 1,
7650 root_task_group.rt_se[i]);
354d60c2 7651#endif
dd41f596 7652#endif
1da177e4 7653
dd41f596
IM
7654 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7655 rq->cpu_load[j] = 0;
1da177e4 7656#ifdef CONFIG_SMP
41c7ce9a 7657 rq->sd = NULL;
57d885fe 7658 rq->rd = NULL;
1da177e4 7659 rq->active_balance = 0;
dd41f596 7660 rq->next_balance = jiffies;
1da177e4 7661 rq->push_cpu = 0;
0a2966b4 7662 rq->cpu = i;
1da177e4
LT
7663 rq->migration_thread = NULL;
7664 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7665 rq_attach_root(rq, &def_root_domain);
1da177e4 7666#endif
8f4d37ec 7667 init_rq_hrtick(rq);
1da177e4 7668 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7669 }
7670
2dd73a4f 7671 set_load_weight(&init_task);
b50f60ce 7672
e107be36
AK
7673#ifdef CONFIG_PREEMPT_NOTIFIERS
7674 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7675#endif
7676
c9819f45
CL
7677#ifdef CONFIG_SMP
7678 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7679#endif
7680
b50f60ce
HC
7681#ifdef CONFIG_RT_MUTEXES
7682 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7683#endif
7684
1da177e4
LT
7685 /*
7686 * The boot idle thread does lazy MMU switching as well:
7687 */
7688 atomic_inc(&init_mm.mm_count);
7689 enter_lazy_tlb(&init_mm, current);
7690
7691 /*
7692 * Make us the idle thread. Technically, schedule() should not be
7693 * called from this thread, however somewhere below it might be,
7694 * but because we are the idle thread, we just pick up running again
7695 * when this runqueue becomes "idle".
7696 */
7697 init_idle(current, smp_processor_id());
dd41f596
IM
7698 /*
7699 * During early bootup we pretend to be a normal task:
7700 */
7701 current->sched_class = &fair_sched_class;
6892b75e
IM
7702
7703 scheduler_running = 1;
1da177e4
LT
7704}
7705
7706#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7707void __might_sleep(char *file, int line)
7708{
48f24c4d 7709#ifdef in_atomic
1da177e4
LT
7710 static unsigned long prev_jiffy; /* ratelimiting */
7711
7712 if ((in_atomic() || irqs_disabled()) &&
7713 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7714 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7715 return;
7716 prev_jiffy = jiffies;
91368d73 7717 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
7718 " context at %s:%d\n", file, line);
7719 printk("in_atomic():%d, irqs_disabled():%d\n",
7720 in_atomic(), irqs_disabled());
a4c410f0 7721 debug_show_held_locks(current);
3117df04
IM
7722 if (irqs_disabled())
7723 print_irqtrace_events(current);
1da177e4
LT
7724 dump_stack();
7725 }
7726#endif
7727}
7728EXPORT_SYMBOL(__might_sleep);
7729#endif
7730
7731#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7732static void normalize_task(struct rq *rq, struct task_struct *p)
7733{
7734 int on_rq;
7735 update_rq_clock(rq);
7736 on_rq = p->se.on_rq;
7737 if (on_rq)
7738 deactivate_task(rq, p, 0);
7739 __setscheduler(rq, p, SCHED_NORMAL, 0);
7740 if (on_rq) {
7741 activate_task(rq, p, 0);
7742 resched_task(rq->curr);
7743 }
7744}
7745
1da177e4
LT
7746void normalize_rt_tasks(void)
7747{
a0f98a1c 7748 struct task_struct *g, *p;
1da177e4 7749 unsigned long flags;
70b97a7f 7750 struct rq *rq;
1da177e4 7751
4cf5d77a 7752 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7753 do_each_thread(g, p) {
178be793
IM
7754 /*
7755 * Only normalize user tasks:
7756 */
7757 if (!p->mm)
7758 continue;
7759
6cfb0d5d 7760 p->se.exec_start = 0;
6cfb0d5d 7761#ifdef CONFIG_SCHEDSTATS
dd41f596 7762 p->se.wait_start = 0;
dd41f596 7763 p->se.sleep_start = 0;
dd41f596 7764 p->se.block_start = 0;
6cfb0d5d 7765#endif
dd41f596
IM
7766 task_rq(p)->clock = 0;
7767
7768 if (!rt_task(p)) {
7769 /*
7770 * Renice negative nice level userspace
7771 * tasks back to 0:
7772 */
7773 if (TASK_NICE(p) < 0 && p->mm)
7774 set_user_nice(p, 0);
1da177e4 7775 continue;
dd41f596 7776 }
1da177e4 7777
4cf5d77a 7778 spin_lock(&p->pi_lock);
b29739f9 7779 rq = __task_rq_lock(p);
1da177e4 7780
178be793 7781 normalize_task(rq, p);
3a5e4dc1 7782
b29739f9 7783 __task_rq_unlock(rq);
4cf5d77a 7784 spin_unlock(&p->pi_lock);
a0f98a1c
IM
7785 } while_each_thread(g, p);
7786
4cf5d77a 7787 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7788}
7789
7790#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7791
7792#ifdef CONFIG_IA64
7793/*
7794 * These functions are only useful for the IA64 MCA handling.
7795 *
7796 * They can only be called when the whole system has been
7797 * stopped - every CPU needs to be quiescent, and no scheduling
7798 * activity can take place. Using them for anything else would
7799 * be a serious bug, and as a result, they aren't even visible
7800 * under any other configuration.
7801 */
7802
7803/**
7804 * curr_task - return the current task for a given cpu.
7805 * @cpu: the processor in question.
7806 *
7807 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7808 */
36c8b586 7809struct task_struct *curr_task(int cpu)
1df5c10a
LT
7810{
7811 return cpu_curr(cpu);
7812}
7813
7814/**
7815 * set_curr_task - set the current task for a given cpu.
7816 * @cpu: the processor in question.
7817 * @p: the task pointer to set.
7818 *
7819 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7820 * are serviced on a separate stack. It allows the architecture to switch the
7821 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7822 * must be called with all CPU's synchronized, and interrupts disabled, the
7823 * and caller must save the original value of the current task (see
7824 * curr_task() above) and restore that value before reenabling interrupts and
7825 * re-starting the system.
7826 *
7827 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7828 */
36c8b586 7829void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7830{
7831 cpu_curr(cpu) = p;
7832}
7833
7834#endif
29f59db3 7835
bccbe08a
PZ
7836#ifdef CONFIG_FAIR_GROUP_SCHED
7837static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7838{
7839 int i;
7840
7841 for_each_possible_cpu(i) {
7842 if (tg->cfs_rq)
7843 kfree(tg->cfs_rq[i]);
7844 if (tg->se)
7845 kfree(tg->se[i]);
6f505b16
PZ
7846 }
7847
7848 kfree(tg->cfs_rq);
7849 kfree(tg->se);
6f505b16
PZ
7850}
7851
ec7dc8ac
DG
7852static
7853int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7854{
29f59db3 7855 struct cfs_rq *cfs_rq;
ec7dc8ac 7856 struct sched_entity *se, *parent_se;
9b5b7751 7857 struct rq *rq;
29f59db3
SV
7858 int i;
7859
434d53b0 7860 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7861 if (!tg->cfs_rq)
7862 goto err;
434d53b0 7863 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7864 if (!tg->se)
7865 goto err;
052f1dc7
PZ
7866
7867 tg->shares = NICE_0_LOAD;
29f59db3
SV
7868
7869 for_each_possible_cpu(i) {
9b5b7751 7870 rq = cpu_rq(i);
29f59db3 7871
6f505b16
PZ
7872 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7873 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7874 if (!cfs_rq)
7875 goto err;
7876
6f505b16
PZ
7877 se = kmalloc_node(sizeof(struct sched_entity),
7878 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
7879 if (!se)
7880 goto err;
7881
ec7dc8ac
DG
7882 parent_se = parent ? parent->se[i] : NULL;
7883 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
7884 }
7885
7886 return 1;
7887
7888 err:
7889 return 0;
7890}
7891
7892static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7893{
7894 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7895 &cpu_rq(cpu)->leaf_cfs_rq_list);
7896}
7897
7898static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7899{
7900 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7901}
7902#else
7903static inline void free_fair_sched_group(struct task_group *tg)
7904{
7905}
7906
ec7dc8ac
DG
7907static inline
7908int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7909{
7910 return 1;
7911}
7912
7913static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7914{
7915}
7916
7917static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7918{
7919}
052f1dc7
PZ
7920#endif
7921
7922#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
7923static void free_rt_sched_group(struct task_group *tg)
7924{
7925 int i;
7926
d0b27fa7
PZ
7927 destroy_rt_bandwidth(&tg->rt_bandwidth);
7928
bccbe08a
PZ
7929 for_each_possible_cpu(i) {
7930 if (tg->rt_rq)
7931 kfree(tg->rt_rq[i]);
7932 if (tg->rt_se)
7933 kfree(tg->rt_se[i]);
7934 }
7935
7936 kfree(tg->rt_rq);
7937 kfree(tg->rt_se);
7938}
7939
ec7dc8ac
DG
7940static
7941int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7942{
7943 struct rt_rq *rt_rq;
ec7dc8ac 7944 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
7945 struct rq *rq;
7946 int i;
7947
434d53b0 7948 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7949 if (!tg->rt_rq)
7950 goto err;
434d53b0 7951 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
7952 if (!tg->rt_se)
7953 goto err;
7954
d0b27fa7
PZ
7955 init_rt_bandwidth(&tg->rt_bandwidth,
7956 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
7957
7958 for_each_possible_cpu(i) {
7959 rq = cpu_rq(i);
7960
6f505b16
PZ
7961 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7962 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7963 if (!rt_rq)
7964 goto err;
29f59db3 7965
6f505b16
PZ
7966 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7967 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7968 if (!rt_se)
7969 goto err;
29f59db3 7970
ec7dc8ac
DG
7971 parent_se = parent ? parent->rt_se[i] : NULL;
7972 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
7973 }
7974
bccbe08a
PZ
7975 return 1;
7976
7977 err:
7978 return 0;
7979}
7980
7981static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7982{
7983 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7984 &cpu_rq(cpu)->leaf_rt_rq_list);
7985}
7986
7987static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7988{
7989 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7990}
7991#else
7992static inline void free_rt_sched_group(struct task_group *tg)
7993{
7994}
7995
ec7dc8ac
DG
7996static inline
7997int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
7998{
7999 return 1;
8000}
8001
8002static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8003{
8004}
8005
8006static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8007{
8008}
8009#endif
8010
d0b27fa7 8011#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8012static void free_sched_group(struct task_group *tg)
8013{
8014 free_fair_sched_group(tg);
8015 free_rt_sched_group(tg);
8016 kfree(tg);
8017}
8018
8019/* allocate runqueue etc for a new task group */
ec7dc8ac 8020struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8021{
8022 struct task_group *tg;
8023 unsigned long flags;
8024 int i;
8025
8026 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8027 if (!tg)
8028 return ERR_PTR(-ENOMEM);
8029
ec7dc8ac 8030 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8031 goto err;
8032
ec7dc8ac 8033 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8034 goto err;
8035
8ed36996 8036 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8037 for_each_possible_cpu(i) {
bccbe08a
PZ
8038 register_fair_sched_group(tg, i);
8039 register_rt_sched_group(tg, i);
9b5b7751 8040 }
6f505b16 8041 list_add_rcu(&tg->list, &task_groups);
8ed36996 8042 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8043
9b5b7751 8044 return tg;
29f59db3
SV
8045
8046err:
6f505b16 8047 free_sched_group(tg);
29f59db3
SV
8048 return ERR_PTR(-ENOMEM);
8049}
8050
9b5b7751 8051/* rcu callback to free various structures associated with a task group */
6f505b16 8052static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8053{
29f59db3 8054 /* now it should be safe to free those cfs_rqs */
6f505b16 8055 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8056}
8057
9b5b7751 8058/* Destroy runqueue etc associated with a task group */
4cf86d77 8059void sched_destroy_group(struct task_group *tg)
29f59db3 8060{
8ed36996 8061 unsigned long flags;
9b5b7751 8062 int i;
29f59db3 8063
8ed36996 8064 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8065 for_each_possible_cpu(i) {
bccbe08a
PZ
8066 unregister_fair_sched_group(tg, i);
8067 unregister_rt_sched_group(tg, i);
9b5b7751 8068 }
6f505b16 8069 list_del_rcu(&tg->list);
8ed36996 8070 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8071
9b5b7751 8072 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8073 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8074}
8075
9b5b7751 8076/* change task's runqueue when it moves between groups.
3a252015
IM
8077 * The caller of this function should have put the task in its new group
8078 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8079 * reflect its new group.
9b5b7751
SV
8080 */
8081void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8082{
8083 int on_rq, running;
8084 unsigned long flags;
8085 struct rq *rq;
8086
8087 rq = task_rq_lock(tsk, &flags);
8088
29f59db3
SV
8089 update_rq_clock(rq);
8090
051a1d1a 8091 running = task_current(rq, tsk);
29f59db3
SV
8092 on_rq = tsk->se.on_rq;
8093
0e1f3483 8094 if (on_rq)
29f59db3 8095 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8096 if (unlikely(running))
8097 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8098
6f505b16 8099 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8100
810b3817
PZ
8101#ifdef CONFIG_FAIR_GROUP_SCHED
8102 if (tsk->sched_class->moved_group)
8103 tsk->sched_class->moved_group(tsk);
8104#endif
8105
0e1f3483
HS
8106 if (unlikely(running))
8107 tsk->sched_class->set_curr_task(rq);
8108 if (on_rq)
7074badb 8109 enqueue_task(rq, tsk, 0);
29f59db3 8110
29f59db3
SV
8111 task_rq_unlock(rq, &flags);
8112}
d0b27fa7 8113#endif
29f59db3 8114
052f1dc7 8115#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
8116static void set_se_shares(struct sched_entity *se, unsigned long shares)
8117{
8118 struct cfs_rq *cfs_rq = se->cfs_rq;
8119 struct rq *rq = cfs_rq->rq;
8120 int on_rq;
8121
62fb1851 8122 spin_lock_irq(&rq->lock);
29f59db3
SV
8123
8124 on_rq = se->on_rq;
62fb1851 8125 if (on_rq)
29f59db3
SV
8126 dequeue_entity(cfs_rq, se, 0);
8127
8128 se->load.weight = shares;
8129 se->load.inv_weight = div64_64((1ULL<<32), shares);
8130
62fb1851 8131 if (on_rq)
29f59db3 8132 enqueue_entity(cfs_rq, se, 0);
62fb1851
PZ
8133
8134 spin_unlock_irq(&rq->lock);
29f59db3
SV
8135}
8136
8ed36996
PZ
8137static DEFINE_MUTEX(shares_mutex);
8138
4cf86d77 8139int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8140{
8141 int i;
8ed36996 8142 unsigned long flags;
c61935fd 8143
ec7dc8ac
DG
8144 /*
8145 * We can't change the weight of the root cgroup.
8146 */
8147 if (!tg->se[0])
8148 return -EINVAL;
8149
62fb1851
PZ
8150 /*
8151 * A weight of 0 or 1 can cause arithmetics problems.
8152 * (The default weight is 1024 - so there's no practical
8153 * limitation from this.)
8154 */
8155 if (shares < 2)
8156 shares = 2;
8157
8ed36996 8158 mutex_lock(&shares_mutex);
9b5b7751 8159 if (tg->shares == shares)
5cb350ba 8160 goto done;
29f59db3 8161
8ed36996 8162 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8163 for_each_possible_cpu(i)
8164 unregister_fair_sched_group(tg, i);
8ed36996 8165 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8166
8167 /* wait for any ongoing reference to this group to finish */
8168 synchronize_sched();
8169
8170 /*
8171 * Now we are free to modify the group's share on each cpu
8172 * w/o tripping rebalance_share or load_balance_fair.
8173 */
9b5b7751 8174 tg->shares = shares;
62fb1851 8175 for_each_possible_cpu(i)
9b5b7751 8176 set_se_shares(tg->se[i], shares);
29f59db3 8177
6b2d7700
SV
8178 /*
8179 * Enable load balance activity on this group, by inserting it back on
8180 * each cpu's rq->leaf_cfs_rq_list.
8181 */
8ed36996 8182 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8183 for_each_possible_cpu(i)
8184 register_fair_sched_group(tg, i);
8ed36996 8185 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8186done:
8ed36996 8187 mutex_unlock(&shares_mutex);
9b5b7751 8188 return 0;
29f59db3
SV
8189}
8190
5cb350ba
DG
8191unsigned long sched_group_shares(struct task_group *tg)
8192{
8193 return tg->shares;
8194}
052f1dc7 8195#endif
5cb350ba 8196
052f1dc7 8197#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8198/*
9f0c1e56 8199 * Ensure that the real time constraints are schedulable.
6f505b16 8200 */
9f0c1e56
PZ
8201static DEFINE_MUTEX(rt_constraints_mutex);
8202
8203static unsigned long to_ratio(u64 period, u64 runtime)
8204{
8205 if (runtime == RUNTIME_INF)
8206 return 1ULL << 16;
8207
2692a240 8208 return div64_64(runtime << 16, period);
9f0c1e56
PZ
8209}
8210
8211static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8212{
8213 struct task_group *tgi;
8214 unsigned long total = 0;
9f0c1e56 8215 unsigned long global_ratio =
d0b27fa7 8216 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8217
8218 rcu_read_lock();
9f0c1e56
PZ
8219 list_for_each_entry_rcu(tgi, &task_groups, list) {
8220 if (tgi == tg)
8221 continue;
6f505b16 8222
d0b27fa7
PZ
8223 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8224 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8225 }
8226 rcu_read_unlock();
6f505b16 8227
9f0c1e56 8228 return total + to_ratio(period, runtime) < global_ratio;
6f505b16
PZ
8229}
8230
521f1a24
DG
8231/* Must be called with tasklist_lock held */
8232static inline int tg_has_rt_tasks(struct task_group *tg)
8233{
8234 struct task_struct *g, *p;
8235 do_each_thread(g, p) {
8236 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8237 return 1;
8238 } while_each_thread(g, p);
8239 return 0;
8240}
8241
d0b27fa7
PZ
8242static int tg_set_bandwidth(struct task_group *tg,
8243 u64 rt_period, u64 rt_runtime)
6f505b16 8244{
ac086bc2 8245 int i, err = 0;
9f0c1e56 8246
9f0c1e56 8247 mutex_lock(&rt_constraints_mutex);
521f1a24 8248 read_lock(&tasklist_lock);
ac086bc2 8249 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8250 err = -EBUSY;
8251 goto unlock;
8252 }
9f0c1e56
PZ
8253 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8254 err = -EINVAL;
8255 goto unlock;
8256 }
ac086bc2
PZ
8257
8258 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8259 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8260 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8261
8262 for_each_possible_cpu(i) {
8263 struct rt_rq *rt_rq = tg->rt_rq[i];
8264
8265 spin_lock(&rt_rq->rt_runtime_lock);
8266 rt_rq->rt_runtime = rt_runtime;
8267 spin_unlock(&rt_rq->rt_runtime_lock);
8268 }
8269 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8270 unlock:
521f1a24 8271 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8272 mutex_unlock(&rt_constraints_mutex);
8273
8274 return err;
6f505b16
PZ
8275}
8276
d0b27fa7
PZ
8277int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8278{
8279 u64 rt_runtime, rt_period;
8280
8281 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8282 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8283 if (rt_runtime_us < 0)
8284 rt_runtime = RUNTIME_INF;
8285
8286 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8287}
8288
9f0c1e56
PZ
8289long sched_group_rt_runtime(struct task_group *tg)
8290{
8291 u64 rt_runtime_us;
8292
d0b27fa7 8293 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8294 return -1;
8295
d0b27fa7 8296 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8297 do_div(rt_runtime_us, NSEC_PER_USEC);
8298 return rt_runtime_us;
8299}
d0b27fa7
PZ
8300
8301int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8302{
8303 u64 rt_runtime, rt_period;
8304
8305 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8306 rt_runtime = tg->rt_bandwidth.rt_runtime;
8307
8308 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8309}
8310
8311long sched_group_rt_period(struct task_group *tg)
8312{
8313 u64 rt_period_us;
8314
8315 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8316 do_div(rt_period_us, NSEC_PER_USEC);
8317 return rt_period_us;
8318}
8319
8320static int sched_rt_global_constraints(void)
8321{
8322 int ret = 0;
8323
8324 mutex_lock(&rt_constraints_mutex);
8325 if (!__rt_schedulable(NULL, 1, 0))
8326 ret = -EINVAL;
8327 mutex_unlock(&rt_constraints_mutex);
8328
8329 return ret;
8330}
8331#else
8332static int sched_rt_global_constraints(void)
8333{
ac086bc2
PZ
8334 unsigned long flags;
8335 int i;
8336
8337 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8338 for_each_possible_cpu(i) {
8339 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8340
8341 spin_lock(&rt_rq->rt_runtime_lock);
8342 rt_rq->rt_runtime = global_rt_runtime();
8343 spin_unlock(&rt_rq->rt_runtime_lock);
8344 }
8345 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8346
d0b27fa7
PZ
8347 return 0;
8348}
052f1dc7 8349#endif
d0b27fa7
PZ
8350
8351int sched_rt_handler(struct ctl_table *table, int write,
8352 struct file *filp, void __user *buffer, size_t *lenp,
8353 loff_t *ppos)
8354{
8355 int ret;
8356 int old_period, old_runtime;
8357 static DEFINE_MUTEX(mutex);
8358
8359 mutex_lock(&mutex);
8360 old_period = sysctl_sched_rt_period;
8361 old_runtime = sysctl_sched_rt_runtime;
8362
8363 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8364
8365 if (!ret && write) {
8366 ret = sched_rt_global_constraints();
8367 if (ret) {
8368 sysctl_sched_rt_period = old_period;
8369 sysctl_sched_rt_runtime = old_runtime;
8370 } else {
8371 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8372 def_rt_bandwidth.rt_period =
8373 ns_to_ktime(global_rt_period());
8374 }
8375 }
8376 mutex_unlock(&mutex);
8377
8378 return ret;
8379}
68318b8e 8380
052f1dc7 8381#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8382
8383/* return corresponding task_group object of a cgroup */
2b01dfe3 8384static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8385{
2b01dfe3
PM
8386 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8387 struct task_group, css);
68318b8e
SV
8388}
8389
8390static struct cgroup_subsys_state *
2b01dfe3 8391cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8392{
ec7dc8ac 8393 struct task_group *tg, *parent;
68318b8e 8394
2b01dfe3 8395 if (!cgrp->parent) {
68318b8e 8396 /* This is early initialization for the top cgroup */
2b01dfe3 8397 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8398 return &init_task_group.css;
8399 }
8400
ec7dc8ac
DG
8401 parent = cgroup_tg(cgrp->parent);
8402 tg = sched_create_group(parent);
68318b8e
SV
8403 if (IS_ERR(tg))
8404 return ERR_PTR(-ENOMEM);
8405
8406 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8407 tg->css.cgroup = cgrp;
68318b8e
SV
8408
8409 return &tg->css;
8410}
8411
41a2d6cf
IM
8412static void
8413cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8414{
2b01dfe3 8415 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8416
8417 sched_destroy_group(tg);
8418}
8419
41a2d6cf
IM
8420static int
8421cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8422 struct task_struct *tsk)
68318b8e 8423{
b68aa230
PZ
8424#ifdef CONFIG_RT_GROUP_SCHED
8425 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8426 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8427 return -EINVAL;
8428#else
68318b8e
SV
8429 /* We don't support RT-tasks being in separate groups */
8430 if (tsk->sched_class != &fair_sched_class)
8431 return -EINVAL;
b68aa230 8432#endif
68318b8e
SV
8433
8434 return 0;
8435}
8436
8437static void
2b01dfe3 8438cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8439 struct cgroup *old_cont, struct task_struct *tsk)
8440{
8441 sched_move_task(tsk);
8442}
8443
052f1dc7 8444#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8445static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8446 u64 shareval)
68318b8e 8447{
2b01dfe3 8448 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8449}
8450
2b01dfe3 8451static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8452{
2b01dfe3 8453 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8454
8455 return (u64) tg->shares;
8456}
052f1dc7 8457#endif
68318b8e 8458
052f1dc7 8459#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 8460static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
8461 struct file *file,
8462 const char __user *userbuf,
8463 size_t nbytes, loff_t *unused_ppos)
6f505b16 8464{
9f0c1e56
PZ
8465 char buffer[64];
8466 int retval = 0;
8467 s64 val;
8468 char *end;
8469
8470 if (!nbytes)
8471 return -EINVAL;
8472 if (nbytes >= sizeof(buffer))
8473 return -E2BIG;
8474 if (copy_from_user(buffer, userbuf, nbytes))
8475 return -EFAULT;
8476
8477 buffer[nbytes] = 0; /* nul-terminate */
8478
8479 /* strip newline if necessary */
8480 if (nbytes && (buffer[nbytes-1] == '\n'))
8481 buffer[nbytes-1] = 0;
8482 val = simple_strtoll(buffer, &end, 0);
8483 if (*end)
8484 return -EINVAL;
8485
8486 /* Pass to subsystem */
8487 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8488 if (!retval)
8489 retval = nbytes;
8490 return retval;
6f505b16
PZ
8491}
8492
9f0c1e56
PZ
8493static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8494 struct file *file,
8495 char __user *buf, size_t nbytes,
8496 loff_t *ppos)
6f505b16 8497{
9f0c1e56
PZ
8498 char tmp[64];
8499 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8500 int len = sprintf(tmp, "%ld\n", val);
6f505b16 8501
9f0c1e56 8502 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 8503}
d0b27fa7
PZ
8504
8505static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8506 u64 rt_period_us)
8507{
8508 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8509}
8510
8511static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8512{
8513 return sched_group_rt_period(cgroup_tg(cgrp));
8514}
052f1dc7 8515#endif
6f505b16 8516
fe5c7cc2 8517static struct cftype cpu_files[] = {
052f1dc7 8518#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8519 {
8520 .name = "shares",
8521 .read_uint = cpu_shares_read_uint,
8522 .write_uint = cpu_shares_write_uint,
8523 },
052f1dc7
PZ
8524#endif
8525#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8526 {
9f0c1e56
PZ
8527 .name = "rt_runtime_us",
8528 .read = cpu_rt_runtime_read,
8529 .write = cpu_rt_runtime_write,
6f505b16 8530 },
d0b27fa7
PZ
8531 {
8532 .name = "rt_period_us",
8533 .read_uint = cpu_rt_period_read_uint,
8534 .write_uint = cpu_rt_period_write_uint,
8535 },
052f1dc7 8536#endif
68318b8e
SV
8537};
8538
8539static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8540{
fe5c7cc2 8541 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8542}
8543
8544struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8545 .name = "cpu",
8546 .create = cpu_cgroup_create,
8547 .destroy = cpu_cgroup_destroy,
8548 .can_attach = cpu_cgroup_can_attach,
8549 .attach = cpu_cgroup_attach,
8550 .populate = cpu_cgroup_populate,
8551 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8552 .early_init = 1,
8553};
8554
052f1dc7 8555#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8556
8557#ifdef CONFIG_CGROUP_CPUACCT
8558
8559/*
8560 * CPU accounting code for task groups.
8561 *
8562 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8563 * (balbir@in.ibm.com).
8564 */
8565
8566/* track cpu usage of a group of tasks */
8567struct cpuacct {
8568 struct cgroup_subsys_state css;
8569 /* cpuusage holds pointer to a u64-type object on every cpu */
8570 u64 *cpuusage;
8571};
8572
8573struct cgroup_subsys cpuacct_subsys;
8574
8575/* return cpu accounting group corresponding to this container */
32cd756a 8576static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8577{
32cd756a 8578 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8579 struct cpuacct, css);
8580}
8581
8582/* return cpu accounting group to which this task belongs */
8583static inline struct cpuacct *task_ca(struct task_struct *tsk)
8584{
8585 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8586 struct cpuacct, css);
8587}
8588
8589/* create a new cpu accounting group */
8590static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8591 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8592{
8593 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8594
8595 if (!ca)
8596 return ERR_PTR(-ENOMEM);
8597
8598 ca->cpuusage = alloc_percpu(u64);
8599 if (!ca->cpuusage) {
8600 kfree(ca);
8601 return ERR_PTR(-ENOMEM);
8602 }
8603
8604 return &ca->css;
8605}
8606
8607/* destroy an existing cpu accounting group */
41a2d6cf 8608static void
32cd756a 8609cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8610{
32cd756a 8611 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8612
8613 free_percpu(ca->cpuusage);
8614 kfree(ca);
8615}
8616
8617/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8618static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8619{
32cd756a 8620 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8621 u64 totalcpuusage = 0;
8622 int i;
8623
8624 for_each_possible_cpu(i) {
8625 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8626
8627 /*
8628 * Take rq->lock to make 64-bit addition safe on 32-bit
8629 * platforms.
8630 */
8631 spin_lock_irq(&cpu_rq(i)->lock);
8632 totalcpuusage += *cpuusage;
8633 spin_unlock_irq(&cpu_rq(i)->lock);
8634 }
8635
8636 return totalcpuusage;
8637}
8638
0297b803
DG
8639static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8640 u64 reset)
8641{
8642 struct cpuacct *ca = cgroup_ca(cgrp);
8643 int err = 0;
8644 int i;
8645
8646 if (reset) {
8647 err = -EINVAL;
8648 goto out;
8649 }
8650
8651 for_each_possible_cpu(i) {
8652 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8653
8654 spin_lock_irq(&cpu_rq(i)->lock);
8655 *cpuusage = 0;
8656 spin_unlock_irq(&cpu_rq(i)->lock);
8657 }
8658out:
8659 return err;
8660}
8661
d842de87
SV
8662static struct cftype files[] = {
8663 {
8664 .name = "usage",
8665 .read_uint = cpuusage_read,
0297b803 8666 .write_uint = cpuusage_write,
d842de87
SV
8667 },
8668};
8669
32cd756a 8670static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8671{
32cd756a 8672 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8673}
8674
8675/*
8676 * charge this task's execution time to its accounting group.
8677 *
8678 * called with rq->lock held.
8679 */
8680static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8681{
8682 struct cpuacct *ca;
8683
8684 if (!cpuacct_subsys.active)
8685 return;
8686
8687 ca = task_ca(tsk);
8688 if (ca) {
8689 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8690
8691 *cpuusage += cputime;
8692 }
8693}
8694
8695struct cgroup_subsys cpuacct_subsys = {
8696 .name = "cpuacct",
8697 .create = cpuacct_create,
8698 .destroy = cpuacct_destroy,
8699 .populate = cpuacct_populate,
8700 .subsys_id = cpuacct_subsys_id,
8701};
8702#endif /* CONFIG_CGROUP_CPUACCT */