sched: Optimize unused cgroup configuration
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4
LT
618 /* For active balancing */
619 int active_balance;
620 int push_cpu;
d8016491
IM
621 /* cpu of this runqueue: */
622 int cpu;
1f11eb6a 623 int online;
1da177e4 624
a8a51d5e 625 unsigned long avg_load_per_task;
1da177e4 626
36c8b586 627 struct task_struct *migration_thread;
1da177e4
LT
628 struct list_head migration_queue;
629#endif
630
dce48a84
TG
631 /* calc_load related fields */
632 unsigned long calc_load_update;
633 long calc_load_active;
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 696#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 697
aa9c4c0f 698inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
699{
700 rq->clock = sched_clock_cpu(cpu_of(rq));
701}
702
bf5c91ba
IM
703/*
704 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
705 */
706#ifdef CONFIG_SCHED_DEBUG
707# define const_debug __read_mostly
708#else
709# define const_debug static const
710#endif
711
017730c1
IM
712/**
713 * runqueue_is_locked
714 *
715 * Returns true if the current cpu runqueue is locked.
716 * This interface allows printk to be called with the runqueue lock
717 * held and know whether or not it is OK to wake up the klogd.
718 */
719int runqueue_is_locked(void)
720{
721 int cpu = get_cpu();
722 struct rq *rq = cpu_rq(cpu);
723 int ret;
724
725 ret = spin_is_locked(&rq->lock);
726 put_cpu();
727 return ret;
728}
729
bf5c91ba
IM
730/*
731 * Debugging: various feature bits
732 */
f00b45c1
PZ
733
734#define SCHED_FEAT(name, enabled) \
735 __SCHED_FEAT_##name ,
736
bf5c91ba 737enum {
f00b45c1 738#include "sched_features.h"
bf5c91ba
IM
739};
740
f00b45c1
PZ
741#undef SCHED_FEAT
742
743#define SCHED_FEAT(name, enabled) \
744 (1UL << __SCHED_FEAT_##name) * enabled |
745
bf5c91ba 746const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
747#include "sched_features.h"
748 0;
749
750#undef SCHED_FEAT
751
752#ifdef CONFIG_SCHED_DEBUG
753#define SCHED_FEAT(name, enabled) \
754 #name ,
755
983ed7a6 756static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
757#include "sched_features.h"
758 NULL
759};
760
761#undef SCHED_FEAT
762
34f3a814 763static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 764{
f00b45c1
PZ
765 int i;
766
767 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
768 if (!(sysctl_sched_features & (1UL << i)))
769 seq_puts(m, "NO_");
770 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 771 }
34f3a814 772 seq_puts(m, "\n");
f00b45c1 773
34f3a814 774 return 0;
f00b45c1
PZ
775}
776
777static ssize_t
778sched_feat_write(struct file *filp, const char __user *ubuf,
779 size_t cnt, loff_t *ppos)
780{
781 char buf[64];
782 char *cmp = buf;
783 int neg = 0;
784 int i;
785
786 if (cnt > 63)
787 cnt = 63;
788
789 if (copy_from_user(&buf, ubuf, cnt))
790 return -EFAULT;
791
792 buf[cnt] = 0;
793
c24b7c52 794 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
795 neg = 1;
796 cmp += 3;
797 }
798
799 for (i = 0; sched_feat_names[i]; i++) {
800 int len = strlen(sched_feat_names[i]);
801
802 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
803 if (neg)
804 sysctl_sched_features &= ~(1UL << i);
805 else
806 sysctl_sched_features |= (1UL << i);
807 break;
808 }
809 }
810
811 if (!sched_feat_names[i])
812 return -EINVAL;
813
814 filp->f_pos += cnt;
815
816 return cnt;
817}
818
34f3a814
LZ
819static int sched_feat_open(struct inode *inode, struct file *filp)
820{
821 return single_open(filp, sched_feat_show, NULL);
822}
823
f00b45c1 824static struct file_operations sched_feat_fops = {
34f3a814
LZ
825 .open = sched_feat_open,
826 .write = sched_feat_write,
827 .read = seq_read,
828 .llseek = seq_lseek,
829 .release = single_release,
f00b45c1
PZ
830};
831
832static __init int sched_init_debug(void)
833{
f00b45c1
PZ
834 debugfs_create_file("sched_features", 0644, NULL, NULL,
835 &sched_feat_fops);
836
837 return 0;
838}
839late_initcall(sched_init_debug);
840
841#endif
842
843#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 844
b82d9fdd
PZ
845/*
846 * Number of tasks to iterate in a single balance run.
847 * Limited because this is done with IRQs disabled.
848 */
849const_debug unsigned int sysctl_sched_nr_migrate = 32;
850
2398f2c6
PZ
851/*
852 * ratelimit for updating the group shares.
55cd5340 853 * default: 0.25ms
2398f2c6 854 */
55cd5340 855unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 856
ffda12a1
PZ
857/*
858 * Inject some fuzzyness into changing the per-cpu group shares
859 * this avoids remote rq-locks at the expense of fairness.
860 * default: 4
861 */
862unsigned int sysctl_sched_shares_thresh = 4;
863
fa85ae24 864/*
9f0c1e56 865 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
866 * default: 1s
867 */
9f0c1e56 868unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 869
6892b75e
IM
870static __read_mostly int scheduler_running;
871
9f0c1e56
PZ
872/*
873 * part of the period that we allow rt tasks to run in us.
874 * default: 0.95s
875 */
876int sysctl_sched_rt_runtime = 950000;
fa85ae24 877
d0b27fa7
PZ
878static inline u64 global_rt_period(void)
879{
880 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
881}
882
883static inline u64 global_rt_runtime(void)
884{
e26873bb 885 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
886 return RUNTIME_INF;
887
888 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
889}
fa85ae24 890
1da177e4 891#ifndef prepare_arch_switch
4866cde0
NP
892# define prepare_arch_switch(next) do { } while (0)
893#endif
894#ifndef finish_arch_switch
895# define finish_arch_switch(prev) do { } while (0)
896#endif
897
051a1d1a
DA
898static inline int task_current(struct rq *rq, struct task_struct *p)
899{
900 return rq->curr == p;
901}
902
4866cde0 903#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 904static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 905{
051a1d1a 906 return task_current(rq, p);
4866cde0
NP
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911}
912
70b97a7f 913static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 914{
da04c035
IM
915#ifdef CONFIG_DEBUG_SPINLOCK
916 /* this is a valid case when another task releases the spinlock */
917 rq->lock.owner = current;
918#endif
8a25d5de
IM
919 /*
920 * If we are tracking spinlock dependencies then we have to
921 * fix up the runqueue lock - which gets 'carried over' from
922 * prev into current:
923 */
924 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
925
4866cde0
NP
926 spin_unlock_irq(&rq->lock);
927}
928
929#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 930static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
931{
932#ifdef CONFIG_SMP
933 return p->oncpu;
934#else
051a1d1a 935 return task_current(rq, p);
4866cde0
NP
936#endif
937}
938
70b97a7f 939static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
940{
941#ifdef CONFIG_SMP
942 /*
943 * We can optimise this out completely for !SMP, because the
944 * SMP rebalancing from interrupt is the only thing that cares
945 * here.
946 */
947 next->oncpu = 1;
948#endif
949#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
950 spin_unlock_irq(&rq->lock);
951#else
952 spin_unlock(&rq->lock);
953#endif
954}
955
70b97a7f 956static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
957{
958#ifdef CONFIG_SMP
959 /*
960 * After ->oncpu is cleared, the task can be moved to a different CPU.
961 * We must ensure this doesn't happen until the switch is completely
962 * finished.
963 */
964 smp_wmb();
965 prev->oncpu = 0;
966#endif
967#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
968 local_irq_enable();
1da177e4 969#endif
4866cde0
NP
970}
971#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 972
b29739f9
IM
973/*
974 * __task_rq_lock - lock the runqueue a given task resides on.
975 * Must be called interrupts disabled.
976 */
70b97a7f 977static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
978 __acquires(rq->lock)
979{
3a5c359a
AK
980 for (;;) {
981 struct rq *rq = task_rq(p);
982 spin_lock(&rq->lock);
983 if (likely(rq == task_rq(p)))
984 return rq;
b29739f9 985 spin_unlock(&rq->lock);
b29739f9 986 }
b29739f9
IM
987}
988
1da177e4
LT
989/*
990 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 991 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
992 * explicitly disabling preemption.
993 */
70b97a7f 994static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4 998
3a5c359a
AK
999 for (;;) {
1000 local_irq_save(*flags);
1001 rq = task_rq(p);
1002 spin_lock(&rq->lock);
1003 if (likely(rq == task_rq(p)))
1004 return rq;
1da177e4 1005 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1006 }
1da177e4
LT
1007}
1008
ad474cac
ON
1009void task_rq_unlock_wait(struct task_struct *p)
1010{
1011 struct rq *rq = task_rq(p);
1012
1013 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1014 spin_unlock_wait(&rq->lock);
1015}
1016
a9957449 1017static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1018 __releases(rq->lock)
1019{
1020 spin_unlock(&rq->lock);
1021}
1022
70b97a7f 1023static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1024 __releases(rq->lock)
1025{
1026 spin_unlock_irqrestore(&rq->lock, *flags);
1027}
1028
1da177e4 1029/*
cc2a73b5 1030 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1031 */
a9957449 1032static struct rq *this_rq_lock(void)
1da177e4
LT
1033 __acquires(rq->lock)
1034{
70b97a7f 1035 struct rq *rq;
1da177e4
LT
1036
1037 local_irq_disable();
1038 rq = this_rq();
1039 spin_lock(&rq->lock);
1040
1041 return rq;
1042}
1043
8f4d37ec
PZ
1044#ifdef CONFIG_SCHED_HRTICK
1045/*
1046 * Use HR-timers to deliver accurate preemption points.
1047 *
1048 * Its all a bit involved since we cannot program an hrt while holding the
1049 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1050 * reschedule event.
1051 *
1052 * When we get rescheduled we reprogram the hrtick_timer outside of the
1053 * rq->lock.
1054 */
8f4d37ec
PZ
1055
1056/*
1057 * Use hrtick when:
1058 * - enabled by features
1059 * - hrtimer is actually high res
1060 */
1061static inline int hrtick_enabled(struct rq *rq)
1062{
1063 if (!sched_feat(HRTICK))
1064 return 0;
ba42059f 1065 if (!cpu_active(cpu_of(rq)))
b328ca18 1066 return 0;
8f4d37ec
PZ
1067 return hrtimer_is_hres_active(&rq->hrtick_timer);
1068}
1069
8f4d37ec
PZ
1070static void hrtick_clear(struct rq *rq)
1071{
1072 if (hrtimer_active(&rq->hrtick_timer))
1073 hrtimer_cancel(&rq->hrtick_timer);
1074}
1075
8f4d37ec
PZ
1076/*
1077 * High-resolution timer tick.
1078 * Runs from hardirq context with interrupts disabled.
1079 */
1080static enum hrtimer_restart hrtick(struct hrtimer *timer)
1081{
1082 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1083
1084 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085
1086 spin_lock(&rq->lock);
3e51f33f 1087 update_rq_clock(rq);
8f4d37ec
PZ
1088 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1089 spin_unlock(&rq->lock);
1090
1091 return HRTIMER_NORESTART;
1092}
1093
95e904c7 1094#ifdef CONFIG_SMP
31656519
PZ
1095/*
1096 * called from hardirq (IPI) context
1097 */
1098static void __hrtick_start(void *arg)
b328ca18 1099{
31656519 1100 struct rq *rq = arg;
b328ca18 1101
31656519
PZ
1102 spin_lock(&rq->lock);
1103 hrtimer_restart(&rq->hrtick_timer);
1104 rq->hrtick_csd_pending = 0;
1105 spin_unlock(&rq->lock);
b328ca18
PZ
1106}
1107
31656519
PZ
1108/*
1109 * Called to set the hrtick timer state.
1110 *
1111 * called with rq->lock held and irqs disabled
1112 */
1113static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1114{
31656519
PZ
1115 struct hrtimer *timer = &rq->hrtick_timer;
1116 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1117
cc584b21 1118 hrtimer_set_expires(timer, time);
31656519
PZ
1119
1120 if (rq == this_rq()) {
1121 hrtimer_restart(timer);
1122 } else if (!rq->hrtick_csd_pending) {
6e275637 1123 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1124 rq->hrtick_csd_pending = 1;
1125 }
b328ca18
PZ
1126}
1127
1128static int
1129hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1130{
1131 int cpu = (int)(long)hcpu;
1132
1133 switch (action) {
1134 case CPU_UP_CANCELED:
1135 case CPU_UP_CANCELED_FROZEN:
1136 case CPU_DOWN_PREPARE:
1137 case CPU_DOWN_PREPARE_FROZEN:
1138 case CPU_DEAD:
1139 case CPU_DEAD_FROZEN:
31656519 1140 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1141 return NOTIFY_OK;
1142 }
1143
1144 return NOTIFY_DONE;
1145}
1146
fa748203 1147static __init void init_hrtick(void)
b328ca18
PZ
1148{
1149 hotcpu_notifier(hotplug_hrtick, 0);
1150}
31656519
PZ
1151#else
1152/*
1153 * Called to set the hrtick timer state.
1154 *
1155 * called with rq->lock held and irqs disabled
1156 */
1157static void hrtick_start(struct rq *rq, u64 delay)
1158{
7f1e2ca9 1159 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1160 HRTIMER_MODE_REL_PINNED, 0);
31656519 1161}
b328ca18 1162
006c75f1 1163static inline void init_hrtick(void)
8f4d37ec 1164{
8f4d37ec 1165}
31656519 1166#endif /* CONFIG_SMP */
8f4d37ec 1167
31656519 1168static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1169{
31656519
PZ
1170#ifdef CONFIG_SMP
1171 rq->hrtick_csd_pending = 0;
8f4d37ec 1172
31656519
PZ
1173 rq->hrtick_csd.flags = 0;
1174 rq->hrtick_csd.func = __hrtick_start;
1175 rq->hrtick_csd.info = rq;
1176#endif
8f4d37ec 1177
31656519
PZ
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
8f4d37ec 1180}
006c75f1 1181#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1182static inline void hrtick_clear(struct rq *rq)
1183{
1184}
1185
8f4d37ec
PZ
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
b328ca18
PZ
1190static inline void init_hrtick(void)
1191{
1192}
006c75f1 1193#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1194
c24d20db
IM
1195/*
1196 * resched_task - mark a task 'to be rescheduled now'.
1197 *
1198 * On UP this means the setting of the need_resched flag, on SMP it
1199 * might also involve a cross-CPU call to trigger the scheduler on
1200 * the target CPU.
1201 */
1202#ifdef CONFIG_SMP
1203
1204#ifndef tsk_is_polling
1205#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1206#endif
1207
31656519 1208static void resched_task(struct task_struct *p)
c24d20db
IM
1209{
1210 int cpu;
1211
1212 assert_spin_locked(&task_rq(p)->lock);
1213
5ed0cec0 1214 if (test_tsk_need_resched(p))
c24d20db
IM
1215 return;
1216
5ed0cec0 1217 set_tsk_need_resched(p);
c24d20db
IM
1218
1219 cpu = task_cpu(p);
1220 if (cpu == smp_processor_id())
1221 return;
1222
1223 /* NEED_RESCHED must be visible before we test polling */
1224 smp_mb();
1225 if (!tsk_is_polling(p))
1226 smp_send_reschedule(cpu);
1227}
1228
1229static void resched_cpu(int cpu)
1230{
1231 struct rq *rq = cpu_rq(cpu);
1232 unsigned long flags;
1233
1234 if (!spin_trylock_irqsave(&rq->lock, flags))
1235 return;
1236 resched_task(cpu_curr(cpu));
1237 spin_unlock_irqrestore(&rq->lock, flags);
1238}
06d8308c
TG
1239
1240#ifdef CONFIG_NO_HZ
1241/*
1242 * When add_timer_on() enqueues a timer into the timer wheel of an
1243 * idle CPU then this timer might expire before the next timer event
1244 * which is scheduled to wake up that CPU. In case of a completely
1245 * idle system the next event might even be infinite time into the
1246 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1247 * leaves the inner idle loop so the newly added timer is taken into
1248 * account when the CPU goes back to idle and evaluates the timer
1249 * wheel for the next timer event.
1250 */
1251void wake_up_idle_cpu(int cpu)
1252{
1253 struct rq *rq = cpu_rq(cpu);
1254
1255 if (cpu == smp_processor_id())
1256 return;
1257
1258 /*
1259 * This is safe, as this function is called with the timer
1260 * wheel base lock of (cpu) held. When the CPU is on the way
1261 * to idle and has not yet set rq->curr to idle then it will
1262 * be serialized on the timer wheel base lock and take the new
1263 * timer into account automatically.
1264 */
1265 if (rq->curr != rq->idle)
1266 return;
1267
1268 /*
1269 * We can set TIF_RESCHED on the idle task of the other CPU
1270 * lockless. The worst case is that the other CPU runs the
1271 * idle task through an additional NOOP schedule()
1272 */
5ed0cec0 1273 set_tsk_need_resched(rq->idle);
06d8308c
TG
1274
1275 /* NEED_RESCHED must be visible before we test polling */
1276 smp_mb();
1277 if (!tsk_is_polling(rq->idle))
1278 smp_send_reschedule(cpu);
1279}
6d6bc0ad 1280#endif /* CONFIG_NO_HZ */
06d8308c 1281
6d6bc0ad 1282#else /* !CONFIG_SMP */
31656519 1283static void resched_task(struct task_struct *p)
c24d20db
IM
1284{
1285 assert_spin_locked(&task_rq(p)->lock);
31656519 1286 set_tsk_need_resched(p);
c24d20db 1287}
6d6bc0ad 1288#endif /* CONFIG_SMP */
c24d20db 1289
45bf76df
IM
1290#if BITS_PER_LONG == 32
1291# define WMULT_CONST (~0UL)
1292#else
1293# define WMULT_CONST (1UL << 32)
1294#endif
1295
1296#define WMULT_SHIFT 32
1297
194081eb
IM
1298/*
1299 * Shift right and round:
1300 */
cf2ab469 1301#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1302
a7be37ac
PZ
1303/*
1304 * delta *= weight / lw
1305 */
cb1c4fc9 1306static unsigned long
45bf76df
IM
1307calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1308 struct load_weight *lw)
1309{
1310 u64 tmp;
1311
7a232e03
LJ
1312 if (!lw->inv_weight) {
1313 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1314 lw->inv_weight = 1;
1315 else
1316 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1317 / (lw->weight+1);
1318 }
45bf76df
IM
1319
1320 tmp = (u64)delta_exec * weight;
1321 /*
1322 * Check whether we'd overflow the 64-bit multiplication:
1323 */
194081eb 1324 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1325 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1326 WMULT_SHIFT/2);
1327 else
cf2ab469 1328 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1329
ecf691da 1330 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1331}
1332
1091985b 1333static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1334{
1335 lw->weight += inc;
e89996ae 1336 lw->inv_weight = 0;
45bf76df
IM
1337}
1338
1091985b 1339static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1340{
1341 lw->weight -= dec;
e89996ae 1342 lw->inv_weight = 0;
45bf76df
IM
1343}
1344
2dd73a4f
PW
1345/*
1346 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1347 * of tasks with abnormal "nice" values across CPUs the contribution that
1348 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1349 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1350 * scaled version of the new time slice allocation that they receive on time
1351 * slice expiry etc.
1352 */
1353
cce7ade8
PZ
1354#define WEIGHT_IDLEPRIO 3
1355#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1356
1357/*
1358 * Nice levels are multiplicative, with a gentle 10% change for every
1359 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1360 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1361 * that remained on nice 0.
1362 *
1363 * The "10% effect" is relative and cumulative: from _any_ nice level,
1364 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1365 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1366 * If a task goes up by ~10% and another task goes down by ~10% then
1367 * the relative distance between them is ~25%.)
dd41f596
IM
1368 */
1369static const int prio_to_weight[40] = {
254753dc
IM
1370 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1371 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1372 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1373 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1374 /* 0 */ 1024, 820, 655, 526, 423,
1375 /* 5 */ 335, 272, 215, 172, 137,
1376 /* 10 */ 110, 87, 70, 56, 45,
1377 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1378};
1379
5714d2de
IM
1380/*
1381 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 *
1383 * In cases where the weight does not change often, we can use the
1384 * precalculated inverse to speed up arithmetics by turning divisions
1385 * into multiplications:
1386 */
dd41f596 1387static const u32 prio_to_wmult[40] = {
254753dc
IM
1388 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1389 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1390 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1391 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1392 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1393 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1394 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1395 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1396};
2dd73a4f 1397
dd41f596
IM
1398static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1399
1400/*
1401 * runqueue iterator, to support SMP load-balancing between different
1402 * scheduling classes, without having to expose their internal data
1403 * structures to the load-balancing proper:
1404 */
1405struct rq_iterator {
1406 void *arg;
1407 struct task_struct *(*start)(void *);
1408 struct task_struct *(*next)(void *);
1409};
1410
e1d1484f
PW
1411#ifdef CONFIG_SMP
1412static unsigned long
1413balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 unsigned long max_load_move, struct sched_domain *sd,
1415 enum cpu_idle_type idle, int *all_pinned,
1416 int *this_best_prio, struct rq_iterator *iterator);
1417
1418static int
1419iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1420 struct sched_domain *sd, enum cpu_idle_type idle,
1421 struct rq_iterator *iterator);
e1d1484f 1422#endif
dd41f596 1423
ef12fefa
BR
1424/* Time spent by the tasks of the cpu accounting group executing in ... */
1425enum cpuacct_stat_index {
1426 CPUACCT_STAT_USER, /* ... user mode */
1427 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428
1429 CPUACCT_STAT_NSTATS,
1430};
1431
d842de87
SV
1432#ifdef CONFIG_CGROUP_CPUACCT
1433static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1434static void cpuacct_update_stats(struct task_struct *tsk,
1435 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1436#else
1437static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1438static inline void cpuacct_update_stats(struct task_struct *tsk,
1439 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1440#endif
1441
18d95a28
PZ
1442static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443{
1444 update_load_add(&rq->load, load);
1445}
1446
1447static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448{
1449 update_load_sub(&rq->load, load);
1450}
1451
7940ca36 1452#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1453typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1454
1455/*
1456 * Iterate the full tree, calling @down when first entering a node and @up when
1457 * leaving it for the final time.
1458 */
eb755805 1459static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1460{
1461 struct task_group *parent, *child;
eb755805 1462 int ret;
c09595f6
PZ
1463
1464 rcu_read_lock();
1465 parent = &root_task_group;
1466down:
eb755805
PZ
1467 ret = (*down)(parent, data);
1468 if (ret)
1469 goto out_unlock;
c09595f6
PZ
1470 list_for_each_entry_rcu(child, &parent->children, siblings) {
1471 parent = child;
1472 goto down;
1473
1474up:
1475 continue;
1476 }
eb755805
PZ
1477 ret = (*up)(parent, data);
1478 if (ret)
1479 goto out_unlock;
c09595f6
PZ
1480
1481 child = parent;
1482 parent = parent->parent;
1483 if (parent)
1484 goto up;
eb755805 1485out_unlock:
c09595f6 1486 rcu_read_unlock();
eb755805
PZ
1487
1488 return ret;
c09595f6
PZ
1489}
1490
eb755805
PZ
1491static int tg_nop(struct task_group *tg, void *data)
1492{
1493 return 0;
c09595f6 1494}
eb755805
PZ
1495#endif
1496
1497#ifdef CONFIG_SMP
1498static unsigned long source_load(int cpu, int type);
1499static unsigned long target_load(int cpu, int type);
1500static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1501
1502static unsigned long cpu_avg_load_per_task(int cpu)
1503{
1504 struct rq *rq = cpu_rq(cpu);
af6d596f 1505 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1506
4cd42620
SR
1507 if (nr_running)
1508 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1509 else
1510 rq->avg_load_per_task = 0;
eb755805
PZ
1511
1512 return rq->avg_load_per_task;
1513}
1514
1515#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1516
c09595f6
PZ
1517static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1518
1519/*
1520 * Calculate and set the cpu's group shares.
1521 */
1522static void
ffda12a1
PZ
1523update_group_shares_cpu(struct task_group *tg, int cpu,
1524 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1525{
c09595f6 1526 unsigned long rq_weight;
a5004278
PZ
1527 unsigned long shares;
1528 int boost = 0;
c09595f6 1529
c8cba857 1530 if (!tg->se[cpu])
c09595f6
PZ
1531 return;
1532
ec4e0e2f 1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
a5004278
PZ
1534 if (!rq_weight) {
1535 boost = 1;
1536 rq_weight = NICE_0_LOAD;
1537 }
c8cba857 1538
c09595f6
PZ
1539 /*
1540 * \Sum shares * rq_weight
1541 * shares = -----------------------
1542 * \Sum rq_weight
1543 *
1544 */
ec4e0e2f 1545 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1546 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1547
ffda12a1
PZ
1548 if (abs(shares - tg->se[cpu]->load.weight) >
1549 sysctl_sched_shares_thresh) {
1550 struct rq *rq = cpu_rq(cpu);
1551 unsigned long flags;
c09595f6 1552
ffda12a1 1553 spin_lock_irqsave(&rq->lock, flags);
a5004278 1554 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1555 __set_se_shares(tg->se[cpu], shares);
1556 spin_unlock_irqrestore(&rq->lock, flags);
1557 }
18d95a28 1558}
c09595f6
PZ
1559
1560/*
c8cba857
PZ
1561 * Re-compute the task group their per cpu shares over the given domain.
1562 * This needs to be done in a bottom-up fashion because the rq weight of a
1563 * parent group depends on the shares of its child groups.
c09595f6 1564 */
eb755805 1565static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1566{
a5004278 1567 unsigned long weight, rq_weight = 0, eff_weight = 0;
c8cba857 1568 unsigned long shares = 0;
eb755805 1569 struct sched_domain *sd = data;
c8cba857 1570 int i;
c09595f6 1571
758b2cdc 1572 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1573 /*
1574 * If there are currently no tasks on the cpu pretend there
1575 * is one of average load so that when a new task gets to
1576 * run here it will not get delayed by group starvation.
1577 */
1578 weight = tg->cfs_rq[i]->load.weight;
a5004278
PZ
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
1581
ec4e0e2f
KC
1582 if (!weight)
1583 weight = NICE_0_LOAD;
1584
a5004278 1585 eff_weight += weight;
c8cba857 1586 shares += tg->cfs_rq[i]->shares;
c09595f6 1587 }
c09595f6 1588
c8cba857
PZ
1589 if ((!shares && rq_weight) || shares > tg->shares)
1590 shares = tg->shares;
1591
1592 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1593 shares = tg->shares;
c09595f6 1594
a5004278
PZ
1595 for_each_cpu(i, sched_domain_span(sd)) {
1596 unsigned long sd_rq_weight = rq_weight;
1597
1598 if (!tg->cfs_rq[i]->rq_weight)
1599 sd_rq_weight = eff_weight;
1600
1601 update_group_shares_cpu(tg, i, shares, sd_rq_weight);
1602 }
eb755805
PZ
1603
1604 return 0;
c09595f6
PZ
1605}
1606
1607/*
c8cba857
PZ
1608 * Compute the cpu's hierarchical load factor for each task group.
1609 * This needs to be done in a top-down fashion because the load of a child
1610 * group is a fraction of its parents load.
c09595f6 1611 */
eb755805 1612static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1613{
c8cba857 1614 unsigned long load;
eb755805 1615 long cpu = (long)data;
c09595f6 1616
c8cba857
PZ
1617 if (!tg->parent) {
1618 load = cpu_rq(cpu)->load.weight;
1619 } else {
1620 load = tg->parent->cfs_rq[cpu]->h_load;
1621 load *= tg->cfs_rq[cpu]->shares;
1622 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1623 }
c09595f6 1624
c8cba857 1625 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1626
eb755805 1627 return 0;
c09595f6
PZ
1628}
1629
c8cba857 1630static void update_shares(struct sched_domain *sd)
4d8d595d 1631{
e7097159
PZ
1632 s64 elapsed;
1633 u64 now;
1634
1635 if (root_task_group_empty())
1636 return;
1637
1638 now = cpu_clock(raw_smp_processor_id());
1639 elapsed = now - sd->last_update;
2398f2c6
PZ
1640
1641 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1642 sd->last_update = now;
eb755805 1643 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1644 }
4d8d595d
PZ
1645}
1646
3e5459b4
PZ
1647static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1648{
e7097159
PZ
1649 if (root_task_group_empty())
1650 return;
1651
3e5459b4
PZ
1652 spin_unlock(&rq->lock);
1653 update_shares(sd);
1654 spin_lock(&rq->lock);
1655}
1656
eb755805 1657static void update_h_load(long cpu)
c09595f6 1658{
e7097159
PZ
1659 if (root_task_group_empty())
1660 return;
1661
eb755805 1662 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1663}
1664
c09595f6
PZ
1665#else
1666
c8cba857 1667static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1668{
1669}
1670
3e5459b4
PZ
1671static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1672{
1673}
1674
18d95a28
PZ
1675#endif
1676
8f45e2b5
GH
1677#ifdef CONFIG_PREEMPT
1678
70574a99 1679/*
8f45e2b5
GH
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
70574a99 1686 */
8f45e2b5
GH
1687static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691{
1692 spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696}
1697
1698#else
1699/*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710{
1711 int ret = 0;
1712
70574a99
AD
1713 if (unlikely(!spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 spin_unlock(&this_rq->lock);
1716 spin_lock(&busiest->lock);
1717 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1718 ret = 1;
1719 } else
1720 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1721 }
1722 return ret;
1723}
1724
8f45e2b5
GH
1725#endif /* CONFIG_PREEMPT */
1726
1727/*
1728 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1729 */
1730static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1731{
1732 if (unlikely(!irqs_disabled())) {
1733 /* printk() doesn't work good under rq->lock */
1734 spin_unlock(&this_rq->lock);
1735 BUG_ON(1);
1736 }
1737
1738 return _double_lock_balance(this_rq, busiest);
1739}
1740
70574a99
AD
1741static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(busiest->lock)
1743{
1744 spin_unlock(&busiest->lock);
1745 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1746}
18d95a28
PZ
1747#endif
1748
30432094 1749#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1750static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1751{
30432094 1752#ifdef CONFIG_SMP
34e83e85
IM
1753 cfs_rq->shares = shares;
1754#endif
1755}
30432094 1756#endif
e7693a36 1757
dce48a84
TG
1758static void calc_load_account_active(struct rq *this_rq);
1759
dd41f596 1760#include "sched_stats.h"
dd41f596 1761#include "sched_idletask.c"
5522d5d5
IM
1762#include "sched_fair.c"
1763#include "sched_rt.c"
dd41f596
IM
1764#ifdef CONFIG_SCHED_DEBUG
1765# include "sched_debug.c"
1766#endif
1767
1768#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1769#define for_each_class(class) \
1770 for (class = sched_class_highest; class; class = class->next)
dd41f596 1771
c09595f6 1772static void inc_nr_running(struct rq *rq)
9c217245
IM
1773{
1774 rq->nr_running++;
9c217245
IM
1775}
1776
c09595f6 1777static void dec_nr_running(struct rq *rq)
9c217245
IM
1778{
1779 rq->nr_running--;
9c217245
IM
1780}
1781
45bf76df
IM
1782static void set_load_weight(struct task_struct *p)
1783{
1784 if (task_has_rt_policy(p)) {
dd41f596
IM
1785 p->se.load.weight = prio_to_weight[0] * 2;
1786 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1787 return;
1788 }
45bf76df 1789
dd41f596
IM
1790 /*
1791 * SCHED_IDLE tasks get minimal weight:
1792 */
1793 if (p->policy == SCHED_IDLE) {
1794 p->se.load.weight = WEIGHT_IDLEPRIO;
1795 p->se.load.inv_weight = WMULT_IDLEPRIO;
1796 return;
1797 }
71f8bd46 1798
dd41f596
IM
1799 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1800 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1801}
1802
2087a1ad
GH
1803static void update_avg(u64 *avg, u64 sample)
1804{
1805 s64 diff = sample - *avg;
1806 *avg += diff >> 3;
1807}
1808
8159f87e 1809static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1810{
831451ac
PZ
1811 if (wakeup)
1812 p->se.start_runtime = p->se.sum_exec_runtime;
1813
dd41f596 1814 sched_info_queued(p);
fd390f6a 1815 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1816 p->se.on_rq = 1;
71f8bd46
IM
1817}
1818
69be72c1 1819static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1820{
831451ac
PZ
1821 if (sleep) {
1822 if (p->se.last_wakeup) {
1823 update_avg(&p->se.avg_overlap,
1824 p->se.sum_exec_runtime - p->se.last_wakeup);
1825 p->se.last_wakeup = 0;
1826 } else {
1827 update_avg(&p->se.avg_wakeup,
1828 sysctl_sched_wakeup_granularity);
1829 }
2087a1ad
GH
1830 }
1831
46ac22ba 1832 sched_info_dequeued(p);
f02231e5 1833 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1834 p->se.on_rq = 0;
71f8bd46
IM
1835}
1836
14531189 1837/*
dd41f596 1838 * __normal_prio - return the priority that is based on the static prio
14531189 1839 */
14531189
IM
1840static inline int __normal_prio(struct task_struct *p)
1841{
dd41f596 1842 return p->static_prio;
14531189
IM
1843}
1844
b29739f9
IM
1845/*
1846 * Calculate the expected normal priority: i.e. priority
1847 * without taking RT-inheritance into account. Might be
1848 * boosted by interactivity modifiers. Changes upon fork,
1849 * setprio syscalls, and whenever the interactivity
1850 * estimator recalculates.
1851 */
36c8b586 1852static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1853{
1854 int prio;
1855
e05606d3 1856 if (task_has_rt_policy(p))
b29739f9
IM
1857 prio = MAX_RT_PRIO-1 - p->rt_priority;
1858 else
1859 prio = __normal_prio(p);
1860 return prio;
1861}
1862
1863/*
1864 * Calculate the current priority, i.e. the priority
1865 * taken into account by the scheduler. This value might
1866 * be boosted by RT tasks, or might be boosted by
1867 * interactivity modifiers. Will be RT if the task got
1868 * RT-boosted. If not then it returns p->normal_prio.
1869 */
36c8b586 1870static int effective_prio(struct task_struct *p)
b29739f9
IM
1871{
1872 p->normal_prio = normal_prio(p);
1873 /*
1874 * If we are RT tasks or we were boosted to RT priority,
1875 * keep the priority unchanged. Otherwise, update priority
1876 * to the normal priority:
1877 */
1878 if (!rt_prio(p->prio))
1879 return p->normal_prio;
1880 return p->prio;
1881}
1882
1da177e4 1883/*
dd41f596 1884 * activate_task - move a task to the runqueue.
1da177e4 1885 */
dd41f596 1886static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1887{
d9514f6c 1888 if (task_contributes_to_load(p))
dd41f596 1889 rq->nr_uninterruptible--;
1da177e4 1890
8159f87e 1891 enqueue_task(rq, p, wakeup);
c09595f6 1892 inc_nr_running(rq);
1da177e4
LT
1893}
1894
1da177e4
LT
1895/*
1896 * deactivate_task - remove a task from the runqueue.
1897 */
2e1cb74a 1898static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1899{
d9514f6c 1900 if (task_contributes_to_load(p))
dd41f596
IM
1901 rq->nr_uninterruptible++;
1902
69be72c1 1903 dequeue_task(rq, p, sleep);
c09595f6 1904 dec_nr_running(rq);
1da177e4
LT
1905}
1906
1da177e4
LT
1907/**
1908 * task_curr - is this task currently executing on a CPU?
1909 * @p: the task in question.
1910 */
36c8b586 1911inline int task_curr(const struct task_struct *p)
1da177e4
LT
1912{
1913 return cpu_curr(task_cpu(p)) == p;
1914}
1915
dd41f596
IM
1916static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1917{
6f505b16 1918 set_task_rq(p, cpu);
dd41f596 1919#ifdef CONFIG_SMP
ce96b5ac
DA
1920 /*
1921 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1922 * successfuly executed on another CPU. We must ensure that updates of
1923 * per-task data have been completed by this moment.
1924 */
1925 smp_wmb();
dd41f596 1926 task_thread_info(p)->cpu = cpu;
dd41f596 1927#endif
2dd73a4f
PW
1928}
1929
cb469845
SR
1930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1931 const struct sched_class *prev_class,
1932 int oldprio, int running)
1933{
1934 if (prev_class != p->sched_class) {
1935 if (prev_class->switched_from)
1936 prev_class->switched_from(rq, p, running);
1937 p->sched_class->switched_to(rq, p, running);
1938 } else
1939 p->sched_class->prio_changed(rq, p, oldprio, running);
1940}
1941
1da177e4 1942#ifdef CONFIG_SMP
c65cc870 1943
e958b360
TG
1944/* Used instead of source_load when we know the type == 0 */
1945static unsigned long weighted_cpuload(const int cpu)
1946{
1947 return cpu_rq(cpu)->load.weight;
1948}
1949
cc367732
IM
1950/*
1951 * Is this task likely cache-hot:
1952 */
e7693a36 1953static int
cc367732
IM
1954task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1955{
1956 s64 delta;
1957
f540a608
IM
1958 /*
1959 * Buddy candidates are cache hot:
1960 */
4793241b
PZ
1961 if (sched_feat(CACHE_HOT_BUDDY) &&
1962 (&p->se == cfs_rq_of(&p->se)->next ||
1963 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1964 return 1;
1965
cc367732
IM
1966 if (p->sched_class != &fair_sched_class)
1967 return 0;
1968
6bc1665b
IM
1969 if (sysctl_sched_migration_cost == -1)
1970 return 1;
1971 if (sysctl_sched_migration_cost == 0)
1972 return 0;
1973
cc367732
IM
1974 delta = now - p->se.exec_start;
1975
1976 return delta < (s64)sysctl_sched_migration_cost;
1977}
1978
1979
dd41f596 1980void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1981{
dd41f596
IM
1982 int old_cpu = task_cpu(p);
1983 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1984 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1985 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1986 u64 clock_offset;
dd41f596
IM
1987
1988 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1989
de1d7286 1990 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1991
6cfb0d5d
IM
1992#ifdef CONFIG_SCHEDSTATS
1993 if (p->se.wait_start)
1994 p->se.wait_start -= clock_offset;
dd41f596
IM
1995 if (p->se.sleep_start)
1996 p->se.sleep_start -= clock_offset;
1997 if (p->se.block_start)
1998 p->se.block_start -= clock_offset;
6c594c21 1999#endif
cc367732 2000 if (old_cpu != new_cpu) {
6c594c21 2001 p->se.nr_migrations++;
23a185ca 2002 new_rq->nr_migrations_in++;
6c594c21 2003#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2004 if (task_hot(p, old_rq->clock, NULL))
2005 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2006#endif
e5289d4a
PZ
2007 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2008 1, 1, NULL, 0);
6c594c21 2009 }
2830cf8c
SV
2010 p->se.vruntime -= old_cfsrq->min_vruntime -
2011 new_cfsrq->min_vruntime;
dd41f596
IM
2012
2013 __set_task_cpu(p, new_cpu);
c65cc870
IM
2014}
2015
70b97a7f 2016struct migration_req {
1da177e4 2017 struct list_head list;
1da177e4 2018
36c8b586 2019 struct task_struct *task;
1da177e4
LT
2020 int dest_cpu;
2021
1da177e4 2022 struct completion done;
70b97a7f 2023};
1da177e4
LT
2024
2025/*
2026 * The task's runqueue lock must be held.
2027 * Returns true if you have to wait for migration thread.
2028 */
36c8b586 2029static int
70b97a7f 2030migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2031{
70b97a7f 2032 struct rq *rq = task_rq(p);
1da177e4
LT
2033
2034 /*
2035 * If the task is not on a runqueue (and not running), then
2036 * it is sufficient to simply update the task's cpu field.
2037 */
dd41f596 2038 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2039 set_task_cpu(p, dest_cpu);
2040 return 0;
2041 }
2042
2043 init_completion(&req->done);
1da177e4
LT
2044 req->task = p;
2045 req->dest_cpu = dest_cpu;
2046 list_add(&req->list, &rq->migration_queue);
48f24c4d 2047
1da177e4
LT
2048 return 1;
2049}
2050
a26b89f0
MM
2051/*
2052 * wait_task_context_switch - wait for a thread to complete at least one
2053 * context switch.
2054 *
2055 * @p must not be current.
2056 */
2057void wait_task_context_switch(struct task_struct *p)
2058{
2059 unsigned long nvcsw, nivcsw, flags;
2060 int running;
2061 struct rq *rq;
2062
2063 nvcsw = p->nvcsw;
2064 nivcsw = p->nivcsw;
2065 for (;;) {
2066 /*
2067 * The runqueue is assigned before the actual context
2068 * switch. We need to take the runqueue lock.
2069 *
2070 * We could check initially without the lock but it is
2071 * very likely that we need to take the lock in every
2072 * iteration.
2073 */
2074 rq = task_rq_lock(p, &flags);
2075 running = task_running(rq, p);
2076 task_rq_unlock(rq, &flags);
2077
2078 if (likely(!running))
2079 break;
2080 /*
2081 * The switch count is incremented before the actual
2082 * context switch. We thus wait for two switches to be
2083 * sure at least one completed.
2084 */
2085 if ((p->nvcsw - nvcsw) > 1)
2086 break;
2087 if ((p->nivcsw - nivcsw) > 1)
2088 break;
2089
2090 cpu_relax();
2091 }
2092}
2093
1da177e4
LT
2094/*
2095 * wait_task_inactive - wait for a thread to unschedule.
2096 *
85ba2d86
RM
2097 * If @match_state is nonzero, it's the @p->state value just checked and
2098 * not expected to change. If it changes, i.e. @p might have woken up,
2099 * then return zero. When we succeed in waiting for @p to be off its CPU,
2100 * we return a positive number (its total switch count). If a second call
2101 * a short while later returns the same number, the caller can be sure that
2102 * @p has remained unscheduled the whole time.
2103 *
1da177e4
LT
2104 * The caller must ensure that the task *will* unschedule sometime soon,
2105 * else this function might spin for a *long* time. This function can't
2106 * be called with interrupts off, or it may introduce deadlock with
2107 * smp_call_function() if an IPI is sent by the same process we are
2108 * waiting to become inactive.
2109 */
85ba2d86 2110unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2111{
2112 unsigned long flags;
dd41f596 2113 int running, on_rq;
85ba2d86 2114 unsigned long ncsw;
70b97a7f 2115 struct rq *rq;
1da177e4 2116
3a5c359a
AK
2117 for (;;) {
2118 /*
2119 * We do the initial early heuristics without holding
2120 * any task-queue locks at all. We'll only try to get
2121 * the runqueue lock when things look like they will
2122 * work out!
2123 */
2124 rq = task_rq(p);
fa490cfd 2125
3a5c359a
AK
2126 /*
2127 * If the task is actively running on another CPU
2128 * still, just relax and busy-wait without holding
2129 * any locks.
2130 *
2131 * NOTE! Since we don't hold any locks, it's not
2132 * even sure that "rq" stays as the right runqueue!
2133 * But we don't care, since "task_running()" will
2134 * return false if the runqueue has changed and p
2135 * is actually now running somewhere else!
2136 */
85ba2d86
RM
2137 while (task_running(rq, p)) {
2138 if (match_state && unlikely(p->state != match_state))
2139 return 0;
3a5c359a 2140 cpu_relax();
85ba2d86 2141 }
fa490cfd 2142
3a5c359a
AK
2143 /*
2144 * Ok, time to look more closely! We need the rq
2145 * lock now, to be *sure*. If we're wrong, we'll
2146 * just go back and repeat.
2147 */
2148 rq = task_rq_lock(p, &flags);
0a16b607 2149 trace_sched_wait_task(rq, p);
3a5c359a
AK
2150 running = task_running(rq, p);
2151 on_rq = p->se.on_rq;
85ba2d86 2152 ncsw = 0;
f31e11d8 2153 if (!match_state || p->state == match_state)
93dcf55f 2154 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2155 task_rq_unlock(rq, &flags);
fa490cfd 2156
85ba2d86
RM
2157 /*
2158 * If it changed from the expected state, bail out now.
2159 */
2160 if (unlikely(!ncsw))
2161 break;
2162
3a5c359a
AK
2163 /*
2164 * Was it really running after all now that we
2165 * checked with the proper locks actually held?
2166 *
2167 * Oops. Go back and try again..
2168 */
2169 if (unlikely(running)) {
2170 cpu_relax();
2171 continue;
2172 }
fa490cfd 2173
3a5c359a
AK
2174 /*
2175 * It's not enough that it's not actively running,
2176 * it must be off the runqueue _entirely_, and not
2177 * preempted!
2178 *
80dd99b3 2179 * So if it was still runnable (but just not actively
3a5c359a
AK
2180 * running right now), it's preempted, and we should
2181 * yield - it could be a while.
2182 */
2183 if (unlikely(on_rq)) {
2184 schedule_timeout_uninterruptible(1);
2185 continue;
2186 }
fa490cfd 2187
3a5c359a
AK
2188 /*
2189 * Ahh, all good. It wasn't running, and it wasn't
2190 * runnable, which means that it will never become
2191 * running in the future either. We're all done!
2192 */
2193 break;
2194 }
85ba2d86
RM
2195
2196 return ncsw;
1da177e4
LT
2197}
2198
2199/***
2200 * kick_process - kick a running thread to enter/exit the kernel
2201 * @p: the to-be-kicked thread
2202 *
2203 * Cause a process which is running on another CPU to enter
2204 * kernel-mode, without any delay. (to get signals handled.)
2205 *
2206 * NOTE: this function doesnt have to take the runqueue lock,
2207 * because all it wants to ensure is that the remote task enters
2208 * the kernel. If the IPI races and the task has been migrated
2209 * to another CPU then no harm is done and the purpose has been
2210 * achieved as well.
2211 */
36c8b586 2212void kick_process(struct task_struct *p)
1da177e4
LT
2213{
2214 int cpu;
2215
2216 preempt_disable();
2217 cpu = task_cpu(p);
2218 if ((cpu != smp_processor_id()) && task_curr(p))
2219 smp_send_reschedule(cpu);
2220 preempt_enable();
2221}
b43e3521 2222EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2223
2224/*
2dd73a4f
PW
2225 * Return a low guess at the load of a migration-source cpu weighted
2226 * according to the scheduling class and "nice" value.
1da177e4
LT
2227 *
2228 * We want to under-estimate the load of migration sources, to
2229 * balance conservatively.
2230 */
a9957449 2231static unsigned long source_load(int cpu, int type)
1da177e4 2232{
70b97a7f 2233 struct rq *rq = cpu_rq(cpu);
dd41f596 2234 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2235
93b75217 2236 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2237 return total;
b910472d 2238
dd41f596 2239 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2240}
2241
2242/*
2dd73a4f
PW
2243 * Return a high guess at the load of a migration-target cpu weighted
2244 * according to the scheduling class and "nice" value.
1da177e4 2245 */
a9957449 2246static unsigned long target_load(int cpu, int type)
1da177e4 2247{
70b97a7f 2248 struct rq *rq = cpu_rq(cpu);
dd41f596 2249 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2250
93b75217 2251 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2252 return total;
3b0bd9bc 2253
dd41f596 2254 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2255}
2256
147cbb4b
NP
2257/*
2258 * find_idlest_group finds and returns the least busy CPU group within the
2259 * domain.
2260 */
2261static struct sched_group *
2262find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2263{
2264 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2265 unsigned long min_load = ULONG_MAX, this_load = 0;
2266 int load_idx = sd->forkexec_idx;
2267 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2268
2269 do {
2270 unsigned long load, avg_load;
2271 int local_group;
2272 int i;
2273
da5a5522 2274 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2275 if (!cpumask_intersects(sched_group_cpus(group),
2276 &p->cpus_allowed))
3a5c359a 2277 continue;
da5a5522 2278
758b2cdc
RR
2279 local_group = cpumask_test_cpu(this_cpu,
2280 sched_group_cpus(group));
147cbb4b
NP
2281
2282 /* Tally up the load of all CPUs in the group */
2283 avg_load = 0;
2284
758b2cdc 2285 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2286 /* Bias balancing toward cpus of our domain */
2287 if (local_group)
2288 load = source_load(i, load_idx);
2289 else
2290 load = target_load(i, load_idx);
2291
2292 avg_load += load;
2293 }
2294
2295 /* Adjust by relative CPU power of the group */
5517d86b
ED
2296 avg_load = sg_div_cpu_power(group,
2297 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2298
2299 if (local_group) {
2300 this_load = avg_load;
2301 this = group;
2302 } else if (avg_load < min_load) {
2303 min_load = avg_load;
2304 idlest = group;
2305 }
3a5c359a 2306 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2307
2308 if (!idlest || 100*this_load < imbalance*min_load)
2309 return NULL;
2310 return idlest;
2311}
2312
2313/*
0feaece9 2314 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2315 */
95cdf3b7 2316static int
758b2cdc 2317find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2318{
2319 unsigned long load, min_load = ULONG_MAX;
2320 int idlest = -1;
2321 int i;
2322
da5a5522 2323 /* Traverse only the allowed CPUs */
758b2cdc 2324 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2325 load = weighted_cpuload(i);
147cbb4b
NP
2326
2327 if (load < min_load || (load == min_load && i == this_cpu)) {
2328 min_load = load;
2329 idlest = i;
2330 }
2331 }
2332
2333 return idlest;
2334}
2335
476d139c
NP
2336/*
2337 * sched_balance_self: balance the current task (running on cpu) in domains
2338 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2339 * SD_BALANCE_EXEC.
2340 *
2341 * Balance, ie. select the least loaded group.
2342 *
2343 * Returns the target CPU number, or the same CPU if no balancing is needed.
2344 *
2345 * preempt must be disabled.
2346 */
2347static int sched_balance_self(int cpu, int flag)
2348{
2349 struct task_struct *t = current;
2350 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2351
c96d145e 2352 for_each_domain(cpu, tmp) {
9761eea8
IM
2353 /*
2354 * If power savings logic is enabled for a domain, stop there.
2355 */
5c45bf27
SS
2356 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2357 break;
476d139c
NP
2358 if (tmp->flags & flag)
2359 sd = tmp;
c96d145e 2360 }
476d139c 2361
039a1c41
PZ
2362 if (sd)
2363 update_shares(sd);
2364
476d139c 2365 while (sd) {
476d139c 2366 struct sched_group *group;
1a848870
SS
2367 int new_cpu, weight;
2368
2369 if (!(sd->flags & flag)) {
2370 sd = sd->child;
2371 continue;
2372 }
476d139c 2373
476d139c 2374 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2375 if (!group) {
2376 sd = sd->child;
2377 continue;
2378 }
476d139c 2379
758b2cdc 2380 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2381 if (new_cpu == -1 || new_cpu == cpu) {
2382 /* Now try balancing at a lower domain level of cpu */
2383 sd = sd->child;
2384 continue;
2385 }
476d139c 2386
1a848870 2387 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2388 cpu = new_cpu;
758b2cdc 2389 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2390 sd = NULL;
476d139c 2391 for_each_domain(cpu, tmp) {
758b2cdc 2392 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2393 break;
2394 if (tmp->flags & flag)
2395 sd = tmp;
2396 }
2397 /* while loop will break here if sd == NULL */
2398 }
2399
2400 return cpu;
2401}
2402
2403#endif /* CONFIG_SMP */
1da177e4 2404
0793a61d
TG
2405/**
2406 * task_oncpu_function_call - call a function on the cpu on which a task runs
2407 * @p: the task to evaluate
2408 * @func: the function to be called
2409 * @info: the function call argument
2410 *
2411 * Calls the function @func when the task is currently running. This might
2412 * be on the current CPU, which just calls the function directly
2413 */
2414void task_oncpu_function_call(struct task_struct *p,
2415 void (*func) (void *info), void *info)
2416{
2417 int cpu;
2418
2419 preempt_disable();
2420 cpu = task_cpu(p);
2421 if (task_curr(p))
2422 smp_call_function_single(cpu, func, info, 1);
2423 preempt_enable();
2424}
2425
1da177e4
LT
2426/***
2427 * try_to_wake_up - wake up a thread
2428 * @p: the to-be-woken-up thread
2429 * @state: the mask of task states that can be woken
2430 * @sync: do a synchronous wakeup?
2431 *
2432 * Put it on the run-queue if it's not already there. The "current"
2433 * thread is always on the run-queue (except when the actual
2434 * re-schedule is in progress), and as such you're allowed to do
2435 * the simpler "current->state = TASK_RUNNING" to mark yourself
2436 * runnable without the overhead of this.
2437 *
2438 * returns failure only if the task is already active.
2439 */
36c8b586 2440static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2441{
cc367732 2442 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2443 unsigned long flags;
2444 long old_state;
70b97a7f 2445 struct rq *rq;
1da177e4 2446
b85d0667
IM
2447 if (!sched_feat(SYNC_WAKEUPS))
2448 sync = 0;
2449
2398f2c6 2450#ifdef CONFIG_SMP
57310a98 2451 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2452 struct sched_domain *sd;
2453
2454 this_cpu = raw_smp_processor_id();
2455 cpu = task_cpu(p);
2456
2457 for_each_domain(this_cpu, sd) {
758b2cdc 2458 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2459 update_shares(sd);
2460 break;
2461 }
2462 }
2463 }
2464#endif
2465
04e2f174 2466 smp_wmb();
1da177e4 2467 rq = task_rq_lock(p, &flags);
03e89e45 2468 update_rq_clock(rq);
1da177e4
LT
2469 old_state = p->state;
2470 if (!(old_state & state))
2471 goto out;
2472
dd41f596 2473 if (p->se.on_rq)
1da177e4
LT
2474 goto out_running;
2475
2476 cpu = task_cpu(p);
cc367732 2477 orig_cpu = cpu;
1da177e4
LT
2478 this_cpu = smp_processor_id();
2479
2480#ifdef CONFIG_SMP
2481 if (unlikely(task_running(rq, p)))
2482 goto out_activate;
2483
5d2f5a61
DA
2484 cpu = p->sched_class->select_task_rq(p, sync);
2485 if (cpu != orig_cpu) {
2486 set_task_cpu(p, cpu);
1da177e4
LT
2487 task_rq_unlock(rq, &flags);
2488 /* might preempt at this point */
2489 rq = task_rq_lock(p, &flags);
2490 old_state = p->state;
2491 if (!(old_state & state))
2492 goto out;
dd41f596 2493 if (p->se.on_rq)
1da177e4
LT
2494 goto out_running;
2495
2496 this_cpu = smp_processor_id();
2497 cpu = task_cpu(p);
2498 }
2499
e7693a36
GH
2500#ifdef CONFIG_SCHEDSTATS
2501 schedstat_inc(rq, ttwu_count);
2502 if (cpu == this_cpu)
2503 schedstat_inc(rq, ttwu_local);
2504 else {
2505 struct sched_domain *sd;
2506 for_each_domain(this_cpu, sd) {
758b2cdc 2507 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2508 schedstat_inc(sd, ttwu_wake_remote);
2509 break;
2510 }
2511 }
2512 }
6d6bc0ad 2513#endif /* CONFIG_SCHEDSTATS */
e7693a36 2514
1da177e4
LT
2515out_activate:
2516#endif /* CONFIG_SMP */
cc367732
IM
2517 schedstat_inc(p, se.nr_wakeups);
2518 if (sync)
2519 schedstat_inc(p, se.nr_wakeups_sync);
2520 if (orig_cpu != cpu)
2521 schedstat_inc(p, se.nr_wakeups_migrate);
2522 if (cpu == this_cpu)
2523 schedstat_inc(p, se.nr_wakeups_local);
2524 else
2525 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2526 activate_task(rq, p, 1);
1da177e4
LT
2527 success = 1;
2528
831451ac
PZ
2529 /*
2530 * Only attribute actual wakeups done by this task.
2531 */
2532 if (!in_interrupt()) {
2533 struct sched_entity *se = &current->se;
2534 u64 sample = se->sum_exec_runtime;
2535
2536 if (se->last_wakeup)
2537 sample -= se->last_wakeup;
2538 else
2539 sample -= se->start_runtime;
2540 update_avg(&se->avg_wakeup, sample);
2541
2542 se->last_wakeup = se->sum_exec_runtime;
2543 }
2544
1da177e4 2545out_running:
468a15bb 2546 trace_sched_wakeup(rq, p, success);
15afe09b 2547 check_preempt_curr(rq, p, sync);
4ae7d5ce 2548
1da177e4 2549 p->state = TASK_RUNNING;
9a897c5a
SR
2550#ifdef CONFIG_SMP
2551 if (p->sched_class->task_wake_up)
2552 p->sched_class->task_wake_up(rq, p);
2553#endif
1da177e4
LT
2554out:
2555 task_rq_unlock(rq, &flags);
2556
2557 return success;
2558}
2559
50fa610a
DH
2560/**
2561 * wake_up_process - Wake up a specific process
2562 * @p: The process to be woken up.
2563 *
2564 * Attempt to wake up the nominated process and move it to the set of runnable
2565 * processes. Returns 1 if the process was woken up, 0 if it was already
2566 * running.
2567 *
2568 * It may be assumed that this function implies a write memory barrier before
2569 * changing the task state if and only if any tasks are woken up.
2570 */
7ad5b3a5 2571int wake_up_process(struct task_struct *p)
1da177e4 2572{
d9514f6c 2573 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2574}
1da177e4
LT
2575EXPORT_SYMBOL(wake_up_process);
2576
7ad5b3a5 2577int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2578{
2579 return try_to_wake_up(p, state, 0);
2580}
2581
1da177e4
LT
2582/*
2583 * Perform scheduler related setup for a newly forked process p.
2584 * p is forked by current.
dd41f596
IM
2585 *
2586 * __sched_fork() is basic setup used by init_idle() too:
2587 */
2588static void __sched_fork(struct task_struct *p)
2589{
dd41f596
IM
2590 p->se.exec_start = 0;
2591 p->se.sum_exec_runtime = 0;
f6cf891c 2592 p->se.prev_sum_exec_runtime = 0;
6c594c21 2593 p->se.nr_migrations = 0;
4ae7d5ce
IM
2594 p->se.last_wakeup = 0;
2595 p->se.avg_overlap = 0;
831451ac
PZ
2596 p->se.start_runtime = 0;
2597 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2598
2599#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2600 p->se.wait_start = 0;
2601 p->se.wait_max = 0;
2602 p->se.wait_count = 0;
2603 p->se.wait_sum = 0;
2604
2605 p->se.sleep_start = 0;
2606 p->se.sleep_max = 0;
2607 p->se.sum_sleep_runtime = 0;
2608
2609 p->se.block_start = 0;
2610 p->se.block_max = 0;
2611 p->se.exec_max = 0;
2612 p->se.slice_max = 0;
2613
2614 p->se.nr_migrations_cold = 0;
2615 p->se.nr_failed_migrations_affine = 0;
2616 p->se.nr_failed_migrations_running = 0;
2617 p->se.nr_failed_migrations_hot = 0;
2618 p->se.nr_forced_migrations = 0;
2619 p->se.nr_forced2_migrations = 0;
2620
2621 p->se.nr_wakeups = 0;
2622 p->se.nr_wakeups_sync = 0;
2623 p->se.nr_wakeups_migrate = 0;
2624 p->se.nr_wakeups_local = 0;
2625 p->se.nr_wakeups_remote = 0;
2626 p->se.nr_wakeups_affine = 0;
2627 p->se.nr_wakeups_affine_attempts = 0;
2628 p->se.nr_wakeups_passive = 0;
2629 p->se.nr_wakeups_idle = 0;
2630
6cfb0d5d 2631#endif
476d139c 2632
fa717060 2633 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2634 p->se.on_rq = 0;
4a55bd5e 2635 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2636
e107be36
AK
2637#ifdef CONFIG_PREEMPT_NOTIFIERS
2638 INIT_HLIST_HEAD(&p->preempt_notifiers);
2639#endif
2640
1da177e4
LT
2641 /*
2642 * We mark the process as running here, but have not actually
2643 * inserted it onto the runqueue yet. This guarantees that
2644 * nobody will actually run it, and a signal or other external
2645 * event cannot wake it up and insert it on the runqueue either.
2646 */
2647 p->state = TASK_RUNNING;
dd41f596
IM
2648}
2649
2650/*
2651 * fork()/clone()-time setup:
2652 */
2653void sched_fork(struct task_struct *p, int clone_flags)
2654{
2655 int cpu = get_cpu();
2656
2657 __sched_fork(p);
2658
2659#ifdef CONFIG_SMP
2660 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2661#endif
02e4bac2 2662 set_task_cpu(p, cpu);
b29739f9
IM
2663
2664 /*
b9dc29e7 2665 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2666 */
b9dc29e7 2667 p->prio = current->normal_prio;
ca94c442 2668
b9dc29e7
MG
2669 /*
2670 * Revert to default priority/policy on fork if requested.
2671 */
2672 if (unlikely(p->sched_reset_on_fork)) {
2673 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2674 p->policy = SCHED_NORMAL;
2675
2676 if (p->normal_prio < DEFAULT_PRIO)
2677 p->prio = DEFAULT_PRIO;
2678
6c697bdf
MG
2679 if (PRIO_TO_NICE(p->static_prio) < 0) {
2680 p->static_prio = NICE_TO_PRIO(0);
2681 set_load_weight(p);
2682 }
2683
b9dc29e7
MG
2684 /*
2685 * We don't need the reset flag anymore after the fork. It has
2686 * fulfilled its duty:
2687 */
2688 p->sched_reset_on_fork = 0;
2689 }
ca94c442 2690
2ddbf952
HS
2691 if (!rt_prio(p->prio))
2692 p->sched_class = &fair_sched_class;
b29739f9 2693
52f17b6c 2694#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2695 if (likely(sched_info_on()))
52f17b6c 2696 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2697#endif
d6077cb8 2698#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2699 p->oncpu = 0;
2700#endif
1da177e4 2701#ifdef CONFIG_PREEMPT
4866cde0 2702 /* Want to start with kernel preemption disabled. */
a1261f54 2703 task_thread_info(p)->preempt_count = 1;
1da177e4 2704#endif
917b627d
GH
2705 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2706
476d139c 2707 put_cpu();
1da177e4
LT
2708}
2709
2710/*
2711 * wake_up_new_task - wake up a newly created task for the first time.
2712 *
2713 * This function will do some initial scheduler statistics housekeeping
2714 * that must be done for every newly created context, then puts the task
2715 * on the runqueue and wakes it.
2716 */
7ad5b3a5 2717void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2718{
2719 unsigned long flags;
dd41f596 2720 struct rq *rq;
1da177e4
LT
2721
2722 rq = task_rq_lock(p, &flags);
147cbb4b 2723 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2724 update_rq_clock(rq);
1da177e4
LT
2725
2726 p->prio = effective_prio(p);
2727
b9dca1e0 2728 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2729 activate_task(rq, p, 0);
1da177e4 2730 } else {
1da177e4 2731 /*
dd41f596
IM
2732 * Let the scheduling class do new task startup
2733 * management (if any):
1da177e4 2734 */
ee0827d8 2735 p->sched_class->task_new(rq, p);
c09595f6 2736 inc_nr_running(rq);
1da177e4 2737 }
c71dd42d 2738 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2739 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2740#ifdef CONFIG_SMP
2741 if (p->sched_class->task_wake_up)
2742 p->sched_class->task_wake_up(rq, p);
2743#endif
dd41f596 2744 task_rq_unlock(rq, &flags);
1da177e4
LT
2745}
2746
e107be36
AK
2747#ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749/**
80dd99b3 2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2751 * @notifier: notifier struct to register
e107be36
AK
2752 */
2753void preempt_notifier_register(struct preempt_notifier *notifier)
2754{
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756}
2757EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759/**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2761 * @notifier: notifier struct to unregister
e107be36
AK
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766{
2767 hlist_del(&notifier->link);
2768}
2769EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772{
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778}
2779
2780static void
2781fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783{
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789}
2790
6d6bc0ad 2791#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2792
2793static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794{
2795}
2796
2797static void
2798fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800{
2801}
2802
6d6bc0ad 2803#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2804
4866cde0
NP
2805/**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
421cee29 2808 * @prev: the current task that is being switched out
4866cde0
NP
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
e107be36
AK
2818static inline void
2819prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
4866cde0 2821{
e107be36 2822 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2823 prepare_lock_switch(rq, next);
2824 prepare_arch_switch(next);
2825}
2826
1da177e4
LT
2827/**
2828 * finish_task_switch - clean up after a task-switch
344babaa 2829 * @rq: runqueue associated with task-switch
1da177e4
LT
2830 * @prev: the thread we just switched away from.
2831 *
4866cde0
NP
2832 * finish_task_switch must be called after the context switch, paired
2833 * with a prepare_task_switch call before the context switch.
2834 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2835 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2836 *
2837 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2838 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2839 * with the lock held can cause deadlocks; see schedule() for
2840 * details.)
2841 */
a9957449 2842static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2843 __releases(rq->lock)
2844{
1da177e4 2845 struct mm_struct *mm = rq->prev_mm;
55a101f8 2846 long prev_state;
967fc046
GH
2847#ifdef CONFIG_SMP
2848 int post_schedule = 0;
2849
2850 if (current->sched_class->needs_post_schedule)
2851 post_schedule = current->sched_class->needs_post_schedule(rq);
2852#endif
1da177e4
LT
2853
2854 rq->prev_mm = NULL;
2855
2856 /*
2857 * A task struct has one reference for the use as "current".
c394cc9f 2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
c394cc9f 2861 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2864 * be dropped twice.
2865 * Manfred Spraul <manfred@colorfullife.com>
2866 */
55a101f8 2867 prev_state = prev->state;
4866cde0 2868 finish_arch_switch(prev);
0793a61d 2869 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2870 finish_lock_switch(rq, prev);
9a897c5a 2871#ifdef CONFIG_SMP
967fc046 2872 if (post_schedule)
9a897c5a
SR
2873 current->sched_class->post_schedule(rq);
2874#endif
e8fa1362 2875
e107be36 2876 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2877 if (mm)
2878 mmdrop(mm);
c394cc9f 2879 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2880 /*
2881 * Remove function-return probe instances associated with this
2882 * task and put them back on the free list.
9761eea8 2883 */
c6fd91f0 2884 kprobe_flush_task(prev);
1da177e4 2885 put_task_struct(prev);
c6fd91f0 2886 }
1da177e4
LT
2887}
2888
2889/**
2890 * schedule_tail - first thing a freshly forked thread must call.
2891 * @prev: the thread we just switched away from.
2892 */
36c8b586 2893asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2894 __releases(rq->lock)
2895{
70b97a7f
IM
2896 struct rq *rq = this_rq();
2897
4866cde0
NP
2898 finish_task_switch(rq, prev);
2899#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2900 /* In this case, finish_task_switch does not reenable preemption */
2901 preempt_enable();
2902#endif
1da177e4 2903 if (current->set_child_tid)
b488893a 2904 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2905}
2906
2907/*
2908 * context_switch - switch to the new MM and the new
2909 * thread's register state.
2910 */
dd41f596 2911static inline void
70b97a7f 2912context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2913 struct task_struct *next)
1da177e4 2914{
dd41f596 2915 struct mm_struct *mm, *oldmm;
1da177e4 2916
e107be36 2917 prepare_task_switch(rq, prev, next);
0a16b607 2918 trace_sched_switch(rq, prev, next);
dd41f596
IM
2919 mm = next->mm;
2920 oldmm = prev->active_mm;
9226d125
ZA
2921 /*
2922 * For paravirt, this is coupled with an exit in switch_to to
2923 * combine the page table reload and the switch backend into
2924 * one hypercall.
2925 */
224101ed 2926 arch_start_context_switch(prev);
9226d125 2927
dd41f596 2928 if (unlikely(!mm)) {
1da177e4
LT
2929 next->active_mm = oldmm;
2930 atomic_inc(&oldmm->mm_count);
2931 enter_lazy_tlb(oldmm, next);
2932 } else
2933 switch_mm(oldmm, mm, next);
2934
dd41f596 2935 if (unlikely(!prev->mm)) {
1da177e4 2936 prev->active_mm = NULL;
1da177e4
LT
2937 rq->prev_mm = oldmm;
2938 }
3a5f5e48
IM
2939 /*
2940 * Since the runqueue lock will be released by the next
2941 * task (which is an invalid locking op but in the case
2942 * of the scheduler it's an obvious special-case), so we
2943 * do an early lockdep release here:
2944 */
2945#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2946 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2947#endif
1da177e4
LT
2948
2949 /* Here we just switch the register state and the stack. */
2950 switch_to(prev, next, prev);
2951
dd41f596
IM
2952 barrier();
2953 /*
2954 * this_rq must be evaluated again because prev may have moved
2955 * CPUs since it called schedule(), thus the 'rq' on its stack
2956 * frame will be invalid.
2957 */
2958 finish_task_switch(this_rq(), prev);
1da177e4
LT
2959}
2960
2961/*
2962 * nr_running, nr_uninterruptible and nr_context_switches:
2963 *
2964 * externally visible scheduler statistics: current number of runnable
2965 * threads, current number of uninterruptible-sleeping threads, total
2966 * number of context switches performed since bootup.
2967 */
2968unsigned long nr_running(void)
2969{
2970 unsigned long i, sum = 0;
2971
2972 for_each_online_cpu(i)
2973 sum += cpu_rq(i)->nr_running;
2974
2975 return sum;
2976}
2977
2978unsigned long nr_uninterruptible(void)
2979{
2980 unsigned long i, sum = 0;
2981
0a945022 2982 for_each_possible_cpu(i)
1da177e4
LT
2983 sum += cpu_rq(i)->nr_uninterruptible;
2984
2985 /*
2986 * Since we read the counters lockless, it might be slightly
2987 * inaccurate. Do not allow it to go below zero though:
2988 */
2989 if (unlikely((long)sum < 0))
2990 sum = 0;
2991
2992 return sum;
2993}
2994
2995unsigned long long nr_context_switches(void)
2996{
cc94abfc
SR
2997 int i;
2998 unsigned long long sum = 0;
1da177e4 2999
0a945022 3000 for_each_possible_cpu(i)
1da177e4
LT
3001 sum += cpu_rq(i)->nr_switches;
3002
3003 return sum;
3004}
3005
3006unsigned long nr_iowait(void)
3007{
3008 unsigned long i, sum = 0;
3009
0a945022 3010 for_each_possible_cpu(i)
1da177e4
LT
3011 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3012
3013 return sum;
3014}
3015
dce48a84
TG
3016/* Variables and functions for calc_load */
3017static atomic_long_t calc_load_tasks;
3018static unsigned long calc_load_update;
3019unsigned long avenrun[3];
3020EXPORT_SYMBOL(avenrun);
3021
2d02494f
TG
3022/**
3023 * get_avenrun - get the load average array
3024 * @loads: pointer to dest load array
3025 * @offset: offset to add
3026 * @shift: shift count to shift the result left
3027 *
3028 * These values are estimates at best, so no need for locking.
3029 */
3030void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3031{
3032 loads[0] = (avenrun[0] + offset) << shift;
3033 loads[1] = (avenrun[1] + offset) << shift;
3034 loads[2] = (avenrun[2] + offset) << shift;
3035}
3036
dce48a84
TG
3037static unsigned long
3038calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3039{
dce48a84
TG
3040 load *= exp;
3041 load += active * (FIXED_1 - exp);
3042 return load >> FSHIFT;
3043}
db1b1fef 3044
dce48a84
TG
3045/*
3046 * calc_load - update the avenrun load estimates 10 ticks after the
3047 * CPUs have updated calc_load_tasks.
3048 */
3049void calc_global_load(void)
3050{
3051 unsigned long upd = calc_load_update + 10;
3052 long active;
3053
3054 if (time_before(jiffies, upd))
3055 return;
db1b1fef 3056
dce48a84
TG
3057 active = atomic_long_read(&calc_load_tasks);
3058 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3059
dce48a84
TG
3060 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3061 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3062 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3063
3064 calc_load_update += LOAD_FREQ;
3065}
3066
3067/*
3068 * Either called from update_cpu_load() or from a cpu going idle
3069 */
3070static void calc_load_account_active(struct rq *this_rq)
3071{
3072 long nr_active, delta;
3073
3074 nr_active = this_rq->nr_running;
3075 nr_active += (long) this_rq->nr_uninterruptible;
3076
3077 if (nr_active != this_rq->calc_load_active) {
3078 delta = nr_active - this_rq->calc_load_active;
3079 this_rq->calc_load_active = nr_active;
3080 atomic_long_add(delta, &calc_load_tasks);
3081 }
db1b1fef
JS
3082}
3083
23a185ca
PM
3084/*
3085 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3086 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3087 */
23a185ca
PM
3088u64 cpu_nr_migrations(int cpu)
3089{
3090 return cpu_rq(cpu)->nr_migrations_in;
3091}
3092
48f24c4d 3093/*
dd41f596
IM
3094 * Update rq->cpu_load[] statistics. This function is usually called every
3095 * scheduler tick (TICK_NSEC).
48f24c4d 3096 */
dd41f596 3097static void update_cpu_load(struct rq *this_rq)
48f24c4d 3098{
495eca49 3099 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3100 int i, scale;
3101
3102 this_rq->nr_load_updates++;
dd41f596
IM
3103
3104 /* Update our load: */
3105 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3106 unsigned long old_load, new_load;
3107
3108 /* scale is effectively 1 << i now, and >> i divides by scale */
3109
3110 old_load = this_rq->cpu_load[i];
3111 new_load = this_load;
a25707f3
IM
3112 /*
3113 * Round up the averaging division if load is increasing. This
3114 * prevents us from getting stuck on 9 if the load is 10, for
3115 * example.
3116 */
3117 if (new_load > old_load)
3118 new_load += scale-1;
dd41f596
IM
3119 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3120 }
dce48a84
TG
3121
3122 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3123 this_rq->calc_load_update += LOAD_FREQ;
3124 calc_load_account_active(this_rq);
3125 }
48f24c4d
IM
3126}
3127
dd41f596
IM
3128#ifdef CONFIG_SMP
3129
1da177e4
LT
3130/*
3131 * double_rq_lock - safely lock two runqueues
3132 *
3133 * Note this does not disable interrupts like task_rq_lock,
3134 * you need to do so manually before calling.
3135 */
70b97a7f 3136static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3137 __acquires(rq1->lock)
3138 __acquires(rq2->lock)
3139{
054b9108 3140 BUG_ON(!irqs_disabled());
1da177e4
LT
3141 if (rq1 == rq2) {
3142 spin_lock(&rq1->lock);
3143 __acquire(rq2->lock); /* Fake it out ;) */
3144 } else {
c96d145e 3145 if (rq1 < rq2) {
1da177e4 3146 spin_lock(&rq1->lock);
5e710e37 3147 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3148 } else {
3149 spin_lock(&rq2->lock);
5e710e37 3150 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3151 }
3152 }
6e82a3be
IM
3153 update_rq_clock(rq1);
3154 update_rq_clock(rq2);
1da177e4
LT
3155}
3156
3157/*
3158 * double_rq_unlock - safely unlock two runqueues
3159 *
3160 * Note this does not restore interrupts like task_rq_unlock,
3161 * you need to do so manually after calling.
3162 */
70b97a7f 3163static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3164 __releases(rq1->lock)
3165 __releases(rq2->lock)
3166{
3167 spin_unlock(&rq1->lock);
3168 if (rq1 != rq2)
3169 spin_unlock(&rq2->lock);
3170 else
3171 __release(rq2->lock);
3172}
3173
1da177e4
LT
3174/*
3175 * If dest_cpu is allowed for this process, migrate the task to it.
3176 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3177 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3178 * the cpu_allowed mask is restored.
3179 */
36c8b586 3180static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3181{
70b97a7f 3182 struct migration_req req;
1da177e4 3183 unsigned long flags;
70b97a7f 3184 struct rq *rq;
1da177e4
LT
3185
3186 rq = task_rq_lock(p, &flags);
96f874e2 3187 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3188 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3189 goto out;
3190
3191 /* force the process onto the specified CPU */
3192 if (migrate_task(p, dest_cpu, &req)) {
3193 /* Need to wait for migration thread (might exit: take ref). */
3194 struct task_struct *mt = rq->migration_thread;
36c8b586 3195
1da177e4
LT
3196 get_task_struct(mt);
3197 task_rq_unlock(rq, &flags);
3198 wake_up_process(mt);
3199 put_task_struct(mt);
3200 wait_for_completion(&req.done);
36c8b586 3201
1da177e4
LT
3202 return;
3203 }
3204out:
3205 task_rq_unlock(rq, &flags);
3206}
3207
3208/*
476d139c
NP
3209 * sched_exec - execve() is a valuable balancing opportunity, because at
3210 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3211 */
3212void sched_exec(void)
3213{
1da177e4 3214 int new_cpu, this_cpu = get_cpu();
476d139c 3215 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3216 put_cpu();
476d139c
NP
3217 if (new_cpu != this_cpu)
3218 sched_migrate_task(current, new_cpu);
1da177e4
LT
3219}
3220
3221/*
3222 * pull_task - move a task from a remote runqueue to the local runqueue.
3223 * Both runqueues must be locked.
3224 */
dd41f596
IM
3225static void pull_task(struct rq *src_rq, struct task_struct *p,
3226 struct rq *this_rq, int this_cpu)
1da177e4 3227{
2e1cb74a 3228 deactivate_task(src_rq, p, 0);
1da177e4 3229 set_task_cpu(p, this_cpu);
dd41f596 3230 activate_task(this_rq, p, 0);
1da177e4
LT
3231 /*
3232 * Note that idle threads have a prio of MAX_PRIO, for this test
3233 * to be always true for them.
3234 */
15afe09b 3235 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3236}
3237
3238/*
3239 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3240 */
858119e1 3241static
70b97a7f 3242int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3243 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3244 int *all_pinned)
1da177e4 3245{
708dc512 3246 int tsk_cache_hot = 0;
1da177e4
LT
3247 /*
3248 * We do not migrate tasks that are:
3249 * 1) running (obviously), or
3250 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3251 * 3) are cache-hot on their current CPU.
3252 */
96f874e2 3253 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3254 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3255 return 0;
cc367732 3256 }
81026794
NP
3257 *all_pinned = 0;
3258
cc367732
IM
3259 if (task_running(rq, p)) {
3260 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3261 return 0;
cc367732 3262 }
1da177e4 3263
da84d961
IM
3264 /*
3265 * Aggressive migration if:
3266 * 1) task is cache cold, or
3267 * 2) too many balance attempts have failed.
3268 */
3269
708dc512
LH
3270 tsk_cache_hot = task_hot(p, rq->clock, sd);
3271 if (!tsk_cache_hot ||
3272 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3273#ifdef CONFIG_SCHEDSTATS
708dc512 3274 if (tsk_cache_hot) {
da84d961 3275 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3276 schedstat_inc(p, se.nr_forced_migrations);
3277 }
da84d961
IM
3278#endif
3279 return 1;
3280 }
3281
708dc512 3282 if (tsk_cache_hot) {
cc367732 3283 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3284 return 0;
cc367732 3285 }
1da177e4
LT
3286 return 1;
3287}
3288
e1d1484f
PW
3289static unsigned long
3290balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3291 unsigned long max_load_move, struct sched_domain *sd,
3292 enum cpu_idle_type idle, int *all_pinned,
3293 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3294{
051c6764 3295 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3296 struct task_struct *p;
3297 long rem_load_move = max_load_move;
1da177e4 3298
e1d1484f 3299 if (max_load_move == 0)
1da177e4
LT
3300 goto out;
3301
81026794
NP
3302 pinned = 1;
3303
1da177e4 3304 /*
dd41f596 3305 * Start the load-balancing iterator:
1da177e4 3306 */
dd41f596
IM
3307 p = iterator->start(iterator->arg);
3308next:
b82d9fdd 3309 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3310 goto out;
051c6764
PZ
3311
3312 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3313 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3314 p = iterator->next(iterator->arg);
3315 goto next;
1da177e4
LT
3316 }
3317
dd41f596 3318 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3319 pulled++;
dd41f596 3320 rem_load_move -= p->se.load.weight;
1da177e4 3321
7e96fa58
GH
3322#ifdef CONFIG_PREEMPT
3323 /*
3324 * NEWIDLE balancing is a source of latency, so preemptible kernels
3325 * will stop after the first task is pulled to minimize the critical
3326 * section.
3327 */
3328 if (idle == CPU_NEWLY_IDLE)
3329 goto out;
3330#endif
3331
2dd73a4f 3332 /*
b82d9fdd 3333 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3334 */
e1d1484f 3335 if (rem_load_move > 0) {
a4ac01c3
PW
3336 if (p->prio < *this_best_prio)
3337 *this_best_prio = p->prio;
dd41f596
IM
3338 p = iterator->next(iterator->arg);
3339 goto next;
1da177e4
LT
3340 }
3341out:
3342 /*
e1d1484f 3343 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3344 * so we can safely collect pull_task() stats here rather than
3345 * inside pull_task().
3346 */
3347 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3348
3349 if (all_pinned)
3350 *all_pinned = pinned;
e1d1484f
PW
3351
3352 return max_load_move - rem_load_move;
1da177e4
LT
3353}
3354
dd41f596 3355/*
43010659
PW
3356 * move_tasks tries to move up to max_load_move weighted load from busiest to
3357 * this_rq, as part of a balancing operation within domain "sd".
3358 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3359 *
3360 * Called with both runqueues locked.
3361 */
3362static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3363 unsigned long max_load_move,
dd41f596
IM
3364 struct sched_domain *sd, enum cpu_idle_type idle,
3365 int *all_pinned)
3366{
5522d5d5 3367 const struct sched_class *class = sched_class_highest;
43010659 3368 unsigned long total_load_moved = 0;
a4ac01c3 3369 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3370
3371 do {
43010659
PW
3372 total_load_moved +=
3373 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3374 max_load_move - total_load_moved,
a4ac01c3 3375 sd, idle, all_pinned, &this_best_prio);
dd41f596 3376 class = class->next;
c4acb2c0 3377
7e96fa58
GH
3378#ifdef CONFIG_PREEMPT
3379 /*
3380 * NEWIDLE balancing is a source of latency, so preemptible
3381 * kernels will stop after the first task is pulled to minimize
3382 * the critical section.
3383 */
c4acb2c0
GH
3384 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3385 break;
7e96fa58 3386#endif
43010659 3387 } while (class && max_load_move > total_load_moved);
dd41f596 3388
43010659
PW
3389 return total_load_moved > 0;
3390}
3391
e1d1484f
PW
3392static int
3393iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3394 struct sched_domain *sd, enum cpu_idle_type idle,
3395 struct rq_iterator *iterator)
3396{
3397 struct task_struct *p = iterator->start(iterator->arg);
3398 int pinned = 0;
3399
3400 while (p) {
3401 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3402 pull_task(busiest, p, this_rq, this_cpu);
3403 /*
3404 * Right now, this is only the second place pull_task()
3405 * is called, so we can safely collect pull_task()
3406 * stats here rather than inside pull_task().
3407 */
3408 schedstat_inc(sd, lb_gained[idle]);
3409
3410 return 1;
3411 }
3412 p = iterator->next(iterator->arg);
3413 }
3414
3415 return 0;
3416}
3417
43010659
PW
3418/*
3419 * move_one_task tries to move exactly one task from busiest to this_rq, as
3420 * part of active balancing operations within "domain".
3421 * Returns 1 if successful and 0 otherwise.
3422 *
3423 * Called with both runqueues locked.
3424 */
3425static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3426 struct sched_domain *sd, enum cpu_idle_type idle)
3427{
5522d5d5 3428 const struct sched_class *class;
43010659
PW
3429
3430 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3431 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3432 return 1;
3433
3434 return 0;
dd41f596 3435}
67bb6c03 3436/********** Helpers for find_busiest_group ************************/
1da177e4 3437/*
222d656d
GS
3438 * sd_lb_stats - Structure to store the statistics of a sched_domain
3439 * during load balancing.
1da177e4 3440 */
222d656d
GS
3441struct sd_lb_stats {
3442 struct sched_group *busiest; /* Busiest group in this sd */
3443 struct sched_group *this; /* Local group in this sd */
3444 unsigned long total_load; /* Total load of all groups in sd */
3445 unsigned long total_pwr; /* Total power of all groups in sd */
3446 unsigned long avg_load; /* Average load across all groups in sd */
3447
3448 /** Statistics of this group */
3449 unsigned long this_load;
3450 unsigned long this_load_per_task;
3451 unsigned long this_nr_running;
3452
3453 /* Statistics of the busiest group */
3454 unsigned long max_load;
3455 unsigned long busiest_load_per_task;
3456 unsigned long busiest_nr_running;
3457
3458 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3459#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3460 int power_savings_balance; /* Is powersave balance needed for this sd */
3461 struct sched_group *group_min; /* Least loaded group in sd */
3462 struct sched_group *group_leader; /* Group which relieves group_min */
3463 unsigned long min_load_per_task; /* load_per_task in group_min */
3464 unsigned long leader_nr_running; /* Nr running of group_leader */
3465 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3466#endif
222d656d 3467};
1da177e4 3468
d5ac537e 3469/*
381be78f
GS
3470 * sg_lb_stats - stats of a sched_group required for load_balancing
3471 */
3472struct sg_lb_stats {
3473 unsigned long avg_load; /*Avg load across the CPUs of the group */
3474 unsigned long group_load; /* Total load over the CPUs of the group */
3475 unsigned long sum_nr_running; /* Nr tasks running in the group */
3476 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3477 unsigned long group_capacity;
3478 int group_imb; /* Is there an imbalance in the group ? */
3479};
408ed066 3480
67bb6c03
GS
3481/**
3482 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3483 * @group: The group whose first cpu is to be returned.
3484 */
3485static inline unsigned int group_first_cpu(struct sched_group *group)
3486{
3487 return cpumask_first(sched_group_cpus(group));
3488}
3489
3490/**
3491 * get_sd_load_idx - Obtain the load index for a given sched domain.
3492 * @sd: The sched_domain whose load_idx is to be obtained.
3493 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3494 */
3495static inline int get_sd_load_idx(struct sched_domain *sd,
3496 enum cpu_idle_type idle)
3497{
3498 int load_idx;
3499
3500 switch (idle) {
3501 case CPU_NOT_IDLE:
7897986b 3502 load_idx = sd->busy_idx;
67bb6c03
GS
3503 break;
3504
3505 case CPU_NEWLY_IDLE:
7897986b 3506 load_idx = sd->newidle_idx;
67bb6c03
GS
3507 break;
3508 default:
7897986b 3509 load_idx = sd->idle_idx;
67bb6c03
GS
3510 break;
3511 }
1da177e4 3512
67bb6c03
GS
3513 return load_idx;
3514}
1da177e4 3515
1da177e4 3516
c071df18
GS
3517#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3518/**
3519 * init_sd_power_savings_stats - Initialize power savings statistics for
3520 * the given sched_domain, during load balancing.
3521 *
3522 * @sd: Sched domain whose power-savings statistics are to be initialized.
3523 * @sds: Variable containing the statistics for sd.
3524 * @idle: Idle status of the CPU at which we're performing load-balancing.
3525 */
3526static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3527 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3528{
3529 /*
3530 * Busy processors will not participate in power savings
3531 * balance.
3532 */
3533 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3534 sds->power_savings_balance = 0;
3535 else {
3536 sds->power_savings_balance = 1;
3537 sds->min_nr_running = ULONG_MAX;
3538 sds->leader_nr_running = 0;
3539 }
3540}
783609c6 3541
c071df18
GS
3542/**
3543 * update_sd_power_savings_stats - Update the power saving stats for a
3544 * sched_domain while performing load balancing.
3545 *
3546 * @group: sched_group belonging to the sched_domain under consideration.
3547 * @sds: Variable containing the statistics of the sched_domain
3548 * @local_group: Does group contain the CPU for which we're performing
3549 * load balancing ?
3550 * @sgs: Variable containing the statistics of the group.
3551 */
3552static inline void update_sd_power_savings_stats(struct sched_group *group,
3553 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3554{
408ed066 3555
c071df18
GS
3556 if (!sds->power_savings_balance)
3557 return;
1da177e4 3558
c071df18
GS
3559 /*
3560 * If the local group is idle or completely loaded
3561 * no need to do power savings balance at this domain
3562 */
3563 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3564 !sds->this_nr_running))
3565 sds->power_savings_balance = 0;
2dd73a4f 3566
c071df18
GS
3567 /*
3568 * If a group is already running at full capacity or idle,
3569 * don't include that group in power savings calculations
3570 */
3571 if (!sds->power_savings_balance ||
3572 sgs->sum_nr_running >= sgs->group_capacity ||
3573 !sgs->sum_nr_running)
3574 return;
5969fe06 3575
c071df18
GS
3576 /*
3577 * Calculate the group which has the least non-idle load.
3578 * This is the group from where we need to pick up the load
3579 * for saving power
3580 */
3581 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3582 (sgs->sum_nr_running == sds->min_nr_running &&
3583 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3584 sds->group_min = group;
3585 sds->min_nr_running = sgs->sum_nr_running;
3586 sds->min_load_per_task = sgs->sum_weighted_load /
3587 sgs->sum_nr_running;
3588 }
783609c6 3589
c071df18
GS
3590 /*
3591 * Calculate the group which is almost near its
3592 * capacity but still has some space to pick up some load
3593 * from other group and save more power
3594 */
3595 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3596 return;
1da177e4 3597
c071df18
GS
3598 if (sgs->sum_nr_running > sds->leader_nr_running ||
3599 (sgs->sum_nr_running == sds->leader_nr_running &&
3600 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3601 sds->group_leader = group;
3602 sds->leader_nr_running = sgs->sum_nr_running;
3603 }
3604}
408ed066 3605
c071df18 3606/**
d5ac537e 3607 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3608 * @sds: Variable containing the statistics of the sched_domain
3609 * under consideration.
3610 * @this_cpu: Cpu at which we're currently performing load-balancing.
3611 * @imbalance: Variable to store the imbalance.
3612 *
d5ac537e
RD
3613 * Description:
3614 * Check if we have potential to perform some power-savings balance.
3615 * If yes, set the busiest group to be the least loaded group in the
3616 * sched_domain, so that it's CPUs can be put to idle.
3617 *
c071df18
GS
3618 * Returns 1 if there is potential to perform power-savings balance.
3619 * Else returns 0.
3620 */
3621static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3622 int this_cpu, unsigned long *imbalance)
3623{
3624 if (!sds->power_savings_balance)
3625 return 0;
1da177e4 3626
c071df18
GS
3627 if (sds->this != sds->group_leader ||
3628 sds->group_leader == sds->group_min)
3629 return 0;
783609c6 3630
c071df18
GS
3631 *imbalance = sds->min_load_per_task;
3632 sds->busiest = sds->group_min;
1da177e4 3633
c071df18
GS
3634 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3635 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3636 group_first_cpu(sds->group_leader);
3637 }
3638
3639 return 1;
1da177e4 3640
c071df18
GS
3641}
3642#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3643static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3644 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3645{
3646 return;
3647}
408ed066 3648
c071df18
GS
3649static inline void update_sd_power_savings_stats(struct sched_group *group,
3650 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3651{
3652 return;
3653}
3654
3655static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3656 int this_cpu, unsigned long *imbalance)
3657{
3658 return 0;
3659}
3660#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3661
3662
1f8c553d
GS
3663/**
3664 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3665 * @group: sched_group whose statistics are to be updated.
3666 * @this_cpu: Cpu for which load balance is currently performed.
3667 * @idle: Idle status of this_cpu
3668 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3669 * @sd_idle: Idle status of the sched_domain containing group.
3670 * @local_group: Does group contain this_cpu.
3671 * @cpus: Set of cpus considered for load balancing.
3672 * @balance: Should we balance.
3673 * @sgs: variable to hold the statistics for this group.
3674 */
3675static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3676 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3677 int local_group, const struct cpumask *cpus,
3678 int *balance, struct sg_lb_stats *sgs)
3679{
3680 unsigned long load, max_cpu_load, min_cpu_load;
3681 int i;
3682 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3683 unsigned long sum_avg_load_per_task;
3684 unsigned long avg_load_per_task;
3685
3686 if (local_group)
3687 balance_cpu = group_first_cpu(group);
3688
3689 /* Tally up the load of all CPUs in the group */
3690 sum_avg_load_per_task = avg_load_per_task = 0;
3691 max_cpu_load = 0;
3692 min_cpu_load = ~0UL;
408ed066 3693
1f8c553d
GS
3694 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3695 struct rq *rq = cpu_rq(i);
908a7c1b 3696
1f8c553d
GS
3697 if (*sd_idle && rq->nr_running)
3698 *sd_idle = 0;
5c45bf27 3699
1f8c553d 3700 /* Bias balancing toward cpus of our domain */
1da177e4 3701 if (local_group) {
1f8c553d
GS
3702 if (idle_cpu(i) && !first_idle_cpu) {
3703 first_idle_cpu = 1;
3704 balance_cpu = i;
3705 }
3706
3707 load = target_load(i, load_idx);
3708 } else {
3709 load = source_load(i, load_idx);
3710 if (load > max_cpu_load)
3711 max_cpu_load = load;
3712 if (min_cpu_load > load)
3713 min_cpu_load = load;
1da177e4 3714 }
5c45bf27 3715
1f8c553d
GS
3716 sgs->group_load += load;
3717 sgs->sum_nr_running += rq->nr_running;
3718 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3719
1f8c553d
GS
3720 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3721 }
5c45bf27 3722
1f8c553d
GS
3723 /*
3724 * First idle cpu or the first cpu(busiest) in this sched group
3725 * is eligible for doing load balancing at this and above
3726 * domains. In the newly idle case, we will allow all the cpu's
3727 * to do the newly idle load balance.
3728 */
3729 if (idle != CPU_NEWLY_IDLE && local_group &&
3730 balance_cpu != this_cpu && balance) {
3731 *balance = 0;
3732 return;
3733 }
5c45bf27 3734
1f8c553d
GS
3735 /* Adjust by relative CPU power of the group */
3736 sgs->avg_load = sg_div_cpu_power(group,
3737 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3738
1f8c553d
GS
3739
3740 /*
3741 * Consider the group unbalanced when the imbalance is larger
3742 * than the average weight of two tasks.
3743 *
3744 * APZ: with cgroup the avg task weight can vary wildly and
3745 * might not be a suitable number - should we keep a
3746 * normalized nr_running number somewhere that negates
3747 * the hierarchy?
3748 */
3749 avg_load_per_task = sg_div_cpu_power(group,
3750 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3751
3752 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3753 sgs->group_imb = 1;
3754
3755 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3756
3757}
dd41f596 3758
37abe198
GS
3759/**
3760 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3761 * @sd: sched_domain whose statistics are to be updated.
3762 * @this_cpu: Cpu for which load balance is currently performed.
3763 * @idle: Idle status of this_cpu
3764 * @sd_idle: Idle status of the sched_domain containing group.
3765 * @cpus: Set of cpus considered for load balancing.
3766 * @balance: Should we balance.
3767 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3768 */
37abe198
GS
3769static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3770 enum cpu_idle_type idle, int *sd_idle,
3771 const struct cpumask *cpus, int *balance,
3772 struct sd_lb_stats *sds)
1da177e4 3773{
222d656d 3774 struct sched_group *group = sd->groups;
37abe198 3775 struct sg_lb_stats sgs;
222d656d
GS
3776 int load_idx;
3777
c071df18 3778 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3779 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3780
3781 do {
1da177e4 3782 int local_group;
1da177e4 3783
758b2cdc
RR
3784 local_group = cpumask_test_cpu(this_cpu,
3785 sched_group_cpus(group));
381be78f 3786 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3787 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3788 local_group, cpus, balance, &sgs);
1da177e4 3789
37abe198
GS
3790 if (local_group && balance && !(*balance))
3791 return;
783609c6 3792
37abe198
GS
3793 sds->total_load += sgs.group_load;
3794 sds->total_pwr += group->__cpu_power;
1da177e4 3795
1da177e4 3796 if (local_group) {
37abe198
GS
3797 sds->this_load = sgs.avg_load;
3798 sds->this = group;
3799 sds->this_nr_running = sgs.sum_nr_running;
3800 sds->this_load_per_task = sgs.sum_weighted_load;
3801 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3802 (sgs.sum_nr_running > sgs.group_capacity ||
3803 sgs.group_imb)) {
37abe198
GS
3804 sds->max_load = sgs.avg_load;
3805 sds->busiest = group;
3806 sds->busiest_nr_running = sgs.sum_nr_running;
3807 sds->busiest_load_per_task = sgs.sum_weighted_load;
3808 sds->group_imb = sgs.group_imb;
48f24c4d 3809 }
5c45bf27 3810
c071df18 3811 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3812 group = group->next;
3813 } while (group != sd->groups);
3814
37abe198 3815}
1da177e4 3816
2e6f44ae
GS
3817/**
3818 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3819 * amongst the groups of a sched_domain, during
3820 * load balancing.
2e6f44ae
GS
3821 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3822 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3823 * @imbalance: Variable to store the imbalance.
3824 */
3825static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3826 int this_cpu, unsigned long *imbalance)
3827{
3828 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3829 unsigned int imbn = 2;
3830
3831 if (sds->this_nr_running) {
3832 sds->this_load_per_task /= sds->this_nr_running;
3833 if (sds->busiest_load_per_task >
3834 sds->this_load_per_task)
3835 imbn = 1;
3836 } else
3837 sds->this_load_per_task =
3838 cpu_avg_load_per_task(this_cpu);
1da177e4 3839
2e6f44ae
GS
3840 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3841 sds->busiest_load_per_task * imbn) {
3842 *imbalance = sds->busiest_load_per_task;
3843 return;
3844 }
908a7c1b 3845
1da177e4 3846 /*
2e6f44ae
GS
3847 * OK, we don't have enough imbalance to justify moving tasks,
3848 * however we may be able to increase total CPU power used by
3849 * moving them.
1da177e4 3850 */
2dd73a4f 3851
2e6f44ae
GS
3852 pwr_now += sds->busiest->__cpu_power *
3853 min(sds->busiest_load_per_task, sds->max_load);
3854 pwr_now += sds->this->__cpu_power *
3855 min(sds->this_load_per_task, sds->this_load);
3856 pwr_now /= SCHED_LOAD_SCALE;
3857
3858 /* Amount of load we'd subtract */
3859 tmp = sg_div_cpu_power(sds->busiest,
3860 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3861 if (sds->max_load > tmp)
3862 pwr_move += sds->busiest->__cpu_power *
3863 min(sds->busiest_load_per_task, sds->max_load - tmp);
3864
3865 /* Amount of load we'd add */
3866 if (sds->max_load * sds->busiest->__cpu_power <
3867 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3868 tmp = sg_div_cpu_power(sds->this,
3869 sds->max_load * sds->busiest->__cpu_power);
3870 else
3871 tmp = sg_div_cpu_power(sds->this,
3872 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3873 pwr_move += sds->this->__cpu_power *
3874 min(sds->this_load_per_task, sds->this_load + tmp);
3875 pwr_move /= SCHED_LOAD_SCALE;
3876
3877 /* Move if we gain throughput */
3878 if (pwr_move > pwr_now)
3879 *imbalance = sds->busiest_load_per_task;
3880}
dbc523a3
GS
3881
3882/**
3883 * calculate_imbalance - Calculate the amount of imbalance present within the
3884 * groups of a given sched_domain during load balance.
3885 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3886 * @this_cpu: Cpu for which currently load balance is being performed.
3887 * @imbalance: The variable to store the imbalance.
3888 */
3889static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3890 unsigned long *imbalance)
3891{
3892 unsigned long max_pull;
2dd73a4f
PW
3893 /*
3894 * In the presence of smp nice balancing, certain scenarios can have
3895 * max load less than avg load(as we skip the groups at or below
3896 * its cpu_power, while calculating max_load..)
3897 */
dbc523a3 3898 if (sds->max_load < sds->avg_load) {
2dd73a4f 3899 *imbalance = 0;
dbc523a3 3900 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3901 }
0c117f1b
SS
3902
3903 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3904 max_pull = min(sds->max_load - sds->avg_load,
3905 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3906
1da177e4 3907 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3908 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3909 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3910 / SCHED_LOAD_SCALE;
3911
2dd73a4f
PW
3912 /*
3913 * if *imbalance is less than the average load per runnable task
3914 * there is no gaurantee that any tasks will be moved so we'll have
3915 * a think about bumping its value to force at least one task to be
3916 * moved
3917 */
dbc523a3
GS
3918 if (*imbalance < sds->busiest_load_per_task)
3919 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3920
dbc523a3 3921}
37abe198 3922/******* find_busiest_group() helpers end here *********************/
1da177e4 3923
b7bb4c9b
GS
3924/**
3925 * find_busiest_group - Returns the busiest group within the sched_domain
3926 * if there is an imbalance. If there isn't an imbalance, and
3927 * the user has opted for power-savings, it returns a group whose
3928 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3929 * such a group exists.
3930 *
3931 * Also calculates the amount of weighted load which should be moved
3932 * to restore balance.
3933 *
3934 * @sd: The sched_domain whose busiest group is to be returned.
3935 * @this_cpu: The cpu for which load balancing is currently being performed.
3936 * @imbalance: Variable which stores amount of weighted load which should
3937 * be moved to restore balance/put a group to idle.
3938 * @idle: The idle status of this_cpu.
3939 * @sd_idle: The idleness of sd
3940 * @cpus: The set of CPUs under consideration for load-balancing.
3941 * @balance: Pointer to a variable indicating if this_cpu
3942 * is the appropriate cpu to perform load balancing at this_level.
3943 *
3944 * Returns: - the busiest group if imbalance exists.
3945 * - If no imbalance and user has opted for power-savings balance,
3946 * return the least loaded group whose CPUs can be
3947 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3948 */
3949static struct sched_group *
3950find_busiest_group(struct sched_domain *sd, int this_cpu,
3951 unsigned long *imbalance, enum cpu_idle_type idle,
3952 int *sd_idle, const struct cpumask *cpus, int *balance)
3953{
3954 struct sd_lb_stats sds;
1da177e4 3955
37abe198 3956 memset(&sds, 0, sizeof(sds));
1da177e4 3957
37abe198
GS
3958 /*
3959 * Compute the various statistics relavent for load balancing at
3960 * this level.
3961 */
3962 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3963 balance, &sds);
3964
b7bb4c9b
GS
3965 /* Cases where imbalance does not exist from POV of this_cpu */
3966 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3967 * at this level.
3968 * 2) There is no busy sibling group to pull from.
3969 * 3) This group is the busiest group.
3970 * 4) This group is more busy than the avg busieness at this
3971 * sched_domain.
3972 * 5) The imbalance is within the specified limit.
3973 * 6) Any rebalance would lead to ping-pong
3974 */
37abe198
GS
3975 if (balance && !(*balance))
3976 goto ret;
1da177e4 3977
b7bb4c9b
GS
3978 if (!sds.busiest || sds.busiest_nr_running == 0)
3979 goto out_balanced;
1da177e4 3980
b7bb4c9b 3981 if (sds.this_load >= sds.max_load)
1da177e4 3982 goto out_balanced;
1da177e4 3983
222d656d 3984 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3985
b7bb4c9b
GS
3986 if (sds.this_load >= sds.avg_load)
3987 goto out_balanced;
3988
3989 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3990 goto out_balanced;
3991
222d656d
GS
3992 sds.busiest_load_per_task /= sds.busiest_nr_running;
3993 if (sds.group_imb)
3994 sds.busiest_load_per_task =
3995 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3996
1da177e4
LT
3997 /*
3998 * We're trying to get all the cpus to the average_load, so we don't
3999 * want to push ourselves above the average load, nor do we wish to
4000 * reduce the max loaded cpu below the average load, as either of these
4001 * actions would just result in more rebalancing later, and ping-pong
4002 * tasks around. Thus we look for the minimum possible imbalance.
4003 * Negative imbalances (*we* are more loaded than anyone else) will
4004 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4005 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4006 * appear as very large values with unsigned longs.
4007 */
222d656d 4008 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4009 goto out_balanced;
4010
dbc523a3
GS
4011 /* Looks like there is an imbalance. Compute it */
4012 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4013 return sds.busiest;
1da177e4
LT
4014
4015out_balanced:
c071df18
GS
4016 /*
4017 * There is no obvious imbalance. But check if we can do some balancing
4018 * to save power.
4019 */
4020 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4021 return sds.busiest;
783609c6 4022ret:
1da177e4
LT
4023 *imbalance = 0;
4024 return NULL;
4025}
4026
4027/*
4028 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4029 */
70b97a7f 4030static struct rq *
d15bcfdb 4031find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4032 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4033{
70b97a7f 4034 struct rq *busiest = NULL, *rq;
2dd73a4f 4035 unsigned long max_load = 0;
1da177e4
LT
4036 int i;
4037
758b2cdc 4038 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4039 unsigned long wl;
0a2966b4 4040
96f874e2 4041 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4042 continue;
4043
48f24c4d 4044 rq = cpu_rq(i);
dd41f596 4045 wl = weighted_cpuload(i);
2dd73a4f 4046
dd41f596 4047 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4048 continue;
1da177e4 4049
dd41f596
IM
4050 if (wl > max_load) {
4051 max_load = wl;
48f24c4d 4052 busiest = rq;
1da177e4
LT
4053 }
4054 }
4055
4056 return busiest;
4057}
4058
77391d71
NP
4059/*
4060 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4061 * so long as it is large enough.
4062 */
4063#define MAX_PINNED_INTERVAL 512
4064
df7c8e84
RR
4065/* Working cpumask for load_balance and load_balance_newidle. */
4066static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4067
1da177e4
LT
4068/*
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
1da177e4 4071 */
70b97a7f 4072static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4073 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4074 int *balance)
1da177e4 4075{
43010659 4076 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4077 struct sched_group *group;
1da177e4 4078 unsigned long imbalance;
70b97a7f 4079 struct rq *busiest;
fe2eea3f 4080 unsigned long flags;
df7c8e84 4081 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4082
96f874e2 4083 cpumask_setall(cpus);
7c16ec58 4084
89c4710e
SS
4085 /*
4086 * When power savings policy is enabled for the parent domain, idle
4087 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4088 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4089 * portraying it as CPU_NOT_IDLE.
89c4710e 4090 */
d15bcfdb 4091 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4092 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4093 sd_idle = 1;
1da177e4 4094
2d72376b 4095 schedstat_inc(sd, lb_count[idle]);
1da177e4 4096
0a2966b4 4097redo:
c8cba857 4098 update_shares(sd);
0a2966b4 4099 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4100 cpus, balance);
783609c6 4101
06066714 4102 if (*balance == 0)
783609c6 4103 goto out_balanced;
783609c6 4104
1da177e4
LT
4105 if (!group) {
4106 schedstat_inc(sd, lb_nobusyg[idle]);
4107 goto out_balanced;
4108 }
4109
7c16ec58 4110 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4111 if (!busiest) {
4112 schedstat_inc(sd, lb_nobusyq[idle]);
4113 goto out_balanced;
4114 }
4115
db935dbd 4116 BUG_ON(busiest == this_rq);
1da177e4
LT
4117
4118 schedstat_add(sd, lb_imbalance[idle], imbalance);
4119
43010659 4120 ld_moved = 0;
1da177e4
LT
4121 if (busiest->nr_running > 1) {
4122 /*
4123 * Attempt to move tasks. If find_busiest_group has found
4124 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4125 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4126 * correctly treated as an imbalance.
4127 */
fe2eea3f 4128 local_irq_save(flags);
e17224bf 4129 double_rq_lock(this_rq, busiest);
43010659 4130 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4131 imbalance, sd, idle, &all_pinned);
e17224bf 4132 double_rq_unlock(this_rq, busiest);
fe2eea3f 4133 local_irq_restore(flags);
81026794 4134
46cb4b7c
SS
4135 /*
4136 * some other cpu did the load balance for us.
4137 */
43010659 4138 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4139 resched_cpu(this_cpu);
4140
81026794 4141 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4142 if (unlikely(all_pinned)) {
96f874e2
RR
4143 cpumask_clear_cpu(cpu_of(busiest), cpus);
4144 if (!cpumask_empty(cpus))
0a2966b4 4145 goto redo;
81026794 4146 goto out_balanced;
0a2966b4 4147 }
1da177e4 4148 }
81026794 4149
43010659 4150 if (!ld_moved) {
1da177e4
LT
4151 schedstat_inc(sd, lb_failed[idle]);
4152 sd->nr_balance_failed++;
4153
4154 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4155
fe2eea3f 4156 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4157
4158 /* don't kick the migration_thread, if the curr
4159 * task on busiest cpu can't be moved to this_cpu
4160 */
96f874e2
RR
4161 if (!cpumask_test_cpu(this_cpu,
4162 &busiest->curr->cpus_allowed)) {
fe2eea3f 4163 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4164 all_pinned = 1;
4165 goto out_one_pinned;
4166 }
4167
1da177e4
LT
4168 if (!busiest->active_balance) {
4169 busiest->active_balance = 1;
4170 busiest->push_cpu = this_cpu;
81026794 4171 active_balance = 1;
1da177e4 4172 }
fe2eea3f 4173 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4174 if (active_balance)
1da177e4
LT
4175 wake_up_process(busiest->migration_thread);
4176
4177 /*
4178 * We've kicked active balancing, reset the failure
4179 * counter.
4180 */
39507451 4181 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4182 }
81026794 4183 } else
1da177e4
LT
4184 sd->nr_balance_failed = 0;
4185
81026794 4186 if (likely(!active_balance)) {
1da177e4
LT
4187 /* We were unbalanced, so reset the balancing interval */
4188 sd->balance_interval = sd->min_interval;
81026794
NP
4189 } else {
4190 /*
4191 * If we've begun active balancing, start to back off. This
4192 * case may not be covered by the all_pinned logic if there
4193 * is only 1 task on the busy runqueue (because we don't call
4194 * move_tasks).
4195 */
4196 if (sd->balance_interval < sd->max_interval)
4197 sd->balance_interval *= 2;
1da177e4
LT
4198 }
4199
43010659 4200 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4202 ld_moved = -1;
4203
4204 goto out;
1da177e4
LT
4205
4206out_balanced:
1da177e4
LT
4207 schedstat_inc(sd, lb_balanced[idle]);
4208
16cfb1c0 4209 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4210
4211out_one_pinned:
1da177e4 4212 /* tune up the balancing interval */
77391d71
NP
4213 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4214 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4215 sd->balance_interval *= 2;
4216
48f24c4d 4217 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4218 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4219 ld_moved = -1;
4220 else
4221 ld_moved = 0;
4222out:
c8cba857
PZ
4223 if (ld_moved)
4224 update_shares(sd);
c09595f6 4225 return ld_moved;
1da177e4
LT
4226}
4227
4228/*
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4231 *
d15bcfdb 4232 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4233 * this_rq is locked.
4234 */
48f24c4d 4235static int
df7c8e84 4236load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4237{
4238 struct sched_group *group;
70b97a7f 4239 struct rq *busiest = NULL;
1da177e4 4240 unsigned long imbalance;
43010659 4241 int ld_moved = 0;
5969fe06 4242 int sd_idle = 0;
969bb4e4 4243 int all_pinned = 0;
df7c8e84 4244 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4245
96f874e2 4246 cpumask_setall(cpus);
5969fe06 4247
89c4710e
SS
4248 /*
4249 * When power savings policy is enabled for the parent domain, idle
4250 * sibling can pick up load irrespective of busy siblings. In this case,
4251 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4252 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4253 */
4254 if (sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4256 sd_idle = 1;
1da177e4 4257
2d72376b 4258 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4259redo:
3e5459b4 4260 update_shares_locked(this_rq, sd);
d15bcfdb 4261 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4262 &sd_idle, cpus, NULL);
1da177e4 4263 if (!group) {
d15bcfdb 4264 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4265 goto out_balanced;
1da177e4
LT
4266 }
4267
7c16ec58 4268 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4269 if (!busiest) {
d15bcfdb 4270 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4271 goto out_balanced;
1da177e4
LT
4272 }
4273
db935dbd
NP
4274 BUG_ON(busiest == this_rq);
4275
d15bcfdb 4276 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4277
43010659 4278 ld_moved = 0;
d6d5cfaf
NP
4279 if (busiest->nr_running > 1) {
4280 /* Attempt to move tasks */
4281 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4282 /* this_rq->clock is already updated */
4283 update_rq_clock(busiest);
43010659 4284 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4285 imbalance, sd, CPU_NEWLY_IDLE,
4286 &all_pinned);
1b12bbc7 4287 double_unlock_balance(this_rq, busiest);
0a2966b4 4288
969bb4e4 4289 if (unlikely(all_pinned)) {
96f874e2
RR
4290 cpumask_clear_cpu(cpu_of(busiest), cpus);
4291 if (!cpumask_empty(cpus))
0a2966b4
CL
4292 goto redo;
4293 }
d6d5cfaf
NP
4294 }
4295
43010659 4296 if (!ld_moved) {
36dffab6 4297 int active_balance = 0;
ad273b32 4298
d15bcfdb 4299 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4300 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4302 return -1;
ad273b32
VS
4303
4304 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4305 return -1;
4306
4307 if (sd->nr_balance_failed++ < 2)
4308 return -1;
4309
4310 /*
4311 * The only task running in a non-idle cpu can be moved to this
4312 * cpu in an attempt to completely freeup the other CPU
4313 * package. The same method used to move task in load_balance()
4314 * have been extended for load_balance_newidle() to speedup
4315 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4316 *
4317 * The package power saving logic comes from
4318 * find_busiest_group(). If there are no imbalance, then
4319 * f_b_g() will return NULL. However when sched_mc={1,2} then
4320 * f_b_g() will select a group from which a running task may be
4321 * pulled to this cpu in order to make the other package idle.
4322 * If there is no opportunity to make a package idle and if
4323 * there are no imbalance, then f_b_g() will return NULL and no
4324 * action will be taken in load_balance_newidle().
4325 *
4326 * Under normal task pull operation due to imbalance, there
4327 * will be more than one task in the source run queue and
4328 * move_tasks() will succeed. ld_moved will be true and this
4329 * active balance code will not be triggered.
4330 */
4331
4332 /* Lock busiest in correct order while this_rq is held */
4333 double_lock_balance(this_rq, busiest);
4334
4335 /*
4336 * don't kick the migration_thread, if the curr
4337 * task on busiest cpu can't be moved to this_cpu
4338 */
6ca09dfc 4339 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4340 double_unlock_balance(this_rq, busiest);
4341 all_pinned = 1;
4342 return ld_moved;
4343 }
4344
4345 if (!busiest->active_balance) {
4346 busiest->active_balance = 1;
4347 busiest->push_cpu = this_cpu;
4348 active_balance = 1;
4349 }
4350
4351 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4352 /*
4353 * Should not call ttwu while holding a rq->lock
4354 */
4355 spin_unlock(&this_rq->lock);
ad273b32
VS
4356 if (active_balance)
4357 wake_up_process(busiest->migration_thread);
da8d5089 4358 spin_lock(&this_rq->lock);
ad273b32 4359
5969fe06 4360 } else
16cfb1c0 4361 sd->nr_balance_failed = 0;
1da177e4 4362
3e5459b4 4363 update_shares_locked(this_rq, sd);
43010659 4364 return ld_moved;
16cfb1c0
NP
4365
4366out_balanced:
d15bcfdb 4367 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4370 return -1;
16cfb1c0 4371 sd->nr_balance_failed = 0;
48f24c4d 4372
16cfb1c0 4373 return 0;
1da177e4
LT
4374}
4375
4376/*
4377 * idle_balance is called by schedule() if this_cpu is about to become
4378 * idle. Attempts to pull tasks from other CPUs.
4379 */
70b97a7f 4380static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4381{
4382 struct sched_domain *sd;
efbe027e 4383 int pulled_task = 0;
dd41f596 4384 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4385
4386 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4387 unsigned long interval;
4388
4389 if (!(sd->flags & SD_LOAD_BALANCE))
4390 continue;
4391
4392 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4393 /* If we've pulled tasks over stop searching: */
7c16ec58 4394 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4395 sd);
92c4ca5c
CL
4396
4397 interval = msecs_to_jiffies(sd->balance_interval);
4398 if (time_after(next_balance, sd->last_balance + interval))
4399 next_balance = sd->last_balance + interval;
4400 if (pulled_task)
4401 break;
1da177e4 4402 }
dd41f596 4403 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4404 /*
4405 * We are going idle. next_balance may be set based on
4406 * a busy processor. So reset next_balance.
4407 */
4408 this_rq->next_balance = next_balance;
dd41f596 4409 }
1da177e4
LT
4410}
4411
4412/*
4413 * active_load_balance is run by migration threads. It pushes running tasks
4414 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4415 * running on each physical CPU where possible, and avoids physical /
4416 * logical imbalances.
4417 *
4418 * Called with busiest_rq locked.
4419 */
70b97a7f 4420static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4421{
39507451 4422 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4423 struct sched_domain *sd;
4424 struct rq *target_rq;
39507451 4425
48f24c4d 4426 /* Is there any task to move? */
39507451 4427 if (busiest_rq->nr_running <= 1)
39507451
NP
4428 return;
4429
4430 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4431
4432 /*
39507451 4433 * This condition is "impossible", if it occurs
41a2d6cf 4434 * we need to fix it. Originally reported by
39507451 4435 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4436 */
39507451 4437 BUG_ON(busiest_rq == target_rq);
1da177e4 4438
39507451
NP
4439 /* move a task from busiest_rq to target_rq */
4440 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4441 update_rq_clock(busiest_rq);
4442 update_rq_clock(target_rq);
39507451
NP
4443
4444 /* Search for an sd spanning us and the target CPU. */
c96d145e 4445 for_each_domain(target_cpu, sd) {
39507451 4446 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4447 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4448 break;
c96d145e 4449 }
39507451 4450
48f24c4d 4451 if (likely(sd)) {
2d72376b 4452 schedstat_inc(sd, alb_count);
39507451 4453
43010659
PW
4454 if (move_one_task(target_rq, target_cpu, busiest_rq,
4455 sd, CPU_IDLE))
48f24c4d
IM
4456 schedstat_inc(sd, alb_pushed);
4457 else
4458 schedstat_inc(sd, alb_failed);
4459 }
1b12bbc7 4460 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4461}
4462
46cb4b7c
SS
4463#ifdef CONFIG_NO_HZ
4464static struct {
4465 atomic_t load_balancer;
7d1e6a9b 4466 cpumask_var_t cpu_mask;
f711f609 4467 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4468} nohz ____cacheline_aligned = {
4469 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4470};
4471
eea08f32
AB
4472int get_nohz_load_balancer(void)
4473{
4474 return atomic_read(&nohz.load_balancer);
4475}
4476
f711f609
GS
4477#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4478/**
4479 * lowest_flag_domain - Return lowest sched_domain containing flag.
4480 * @cpu: The cpu whose lowest level of sched domain is to
4481 * be returned.
4482 * @flag: The flag to check for the lowest sched_domain
4483 * for the given cpu.
4484 *
4485 * Returns the lowest sched_domain of a cpu which contains the given flag.
4486 */
4487static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4488{
4489 struct sched_domain *sd;
4490
4491 for_each_domain(cpu, sd)
4492 if (sd && (sd->flags & flag))
4493 break;
4494
4495 return sd;
4496}
4497
4498/**
4499 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4500 * @cpu: The cpu whose domains we're iterating over.
4501 * @sd: variable holding the value of the power_savings_sd
4502 * for cpu.
4503 * @flag: The flag to filter the sched_domains to be iterated.
4504 *
4505 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4506 * set, starting from the lowest sched_domain to the highest.
4507 */
4508#define for_each_flag_domain(cpu, sd, flag) \
4509 for (sd = lowest_flag_domain(cpu, flag); \
4510 (sd && (sd->flags & flag)); sd = sd->parent)
4511
4512/**
4513 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4514 * @ilb_group: group to be checked for semi-idleness
4515 *
4516 * Returns: 1 if the group is semi-idle. 0 otherwise.
4517 *
4518 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4519 * and atleast one non-idle CPU. This helper function checks if the given
4520 * sched_group is semi-idle or not.
4521 */
4522static inline int is_semi_idle_group(struct sched_group *ilb_group)
4523{
4524 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4525 sched_group_cpus(ilb_group));
4526
4527 /*
4528 * A sched_group is semi-idle when it has atleast one busy cpu
4529 * and atleast one idle cpu.
4530 */
4531 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4532 return 0;
4533
4534 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4535 return 0;
4536
4537 return 1;
4538}
4539/**
4540 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4541 * @cpu: The cpu which is nominating a new idle_load_balancer.
4542 *
4543 * Returns: Returns the id of the idle load balancer if it exists,
4544 * Else, returns >= nr_cpu_ids.
4545 *
4546 * This algorithm picks the idle load balancer such that it belongs to a
4547 * semi-idle powersavings sched_domain. The idea is to try and avoid
4548 * completely idle packages/cores just for the purpose of idle load balancing
4549 * when there are other idle cpu's which are better suited for that job.
4550 */
4551static int find_new_ilb(int cpu)
4552{
4553 struct sched_domain *sd;
4554 struct sched_group *ilb_group;
4555
4556 /*
4557 * Have idle load balancer selection from semi-idle packages only
4558 * when power-aware load balancing is enabled
4559 */
4560 if (!(sched_smt_power_savings || sched_mc_power_savings))
4561 goto out_done;
4562
4563 /*
4564 * Optimize for the case when we have no idle CPUs or only one
4565 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4566 */
4567 if (cpumask_weight(nohz.cpu_mask) < 2)
4568 goto out_done;
4569
4570 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4571 ilb_group = sd->groups;
4572
4573 do {
4574 if (is_semi_idle_group(ilb_group))
4575 return cpumask_first(nohz.ilb_grp_nohz_mask);
4576
4577 ilb_group = ilb_group->next;
4578
4579 } while (ilb_group != sd->groups);
4580 }
4581
4582out_done:
4583 return cpumask_first(nohz.cpu_mask);
4584}
4585#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4586static inline int find_new_ilb(int call_cpu)
4587{
6e29ec57 4588 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4589}
4590#endif
4591
7835b98b 4592/*
46cb4b7c
SS
4593 * This routine will try to nominate the ilb (idle load balancing)
4594 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4595 * load balancing on behalf of all those cpus. If all the cpus in the system
4596 * go into this tickless mode, then there will be no ilb owner (as there is
4597 * no need for one) and all the cpus will sleep till the next wakeup event
4598 * arrives...
4599 *
4600 * For the ilb owner, tick is not stopped. And this tick will be used
4601 * for idle load balancing. ilb owner will still be part of
4602 * nohz.cpu_mask..
7835b98b 4603 *
46cb4b7c
SS
4604 * While stopping the tick, this cpu will become the ilb owner if there
4605 * is no other owner. And will be the owner till that cpu becomes busy
4606 * or if all cpus in the system stop their ticks at which point
4607 * there is no need for ilb owner.
4608 *
4609 * When the ilb owner becomes busy, it nominates another owner, during the
4610 * next busy scheduler_tick()
4611 */
4612int select_nohz_load_balancer(int stop_tick)
4613{
4614 int cpu = smp_processor_id();
4615
4616 if (stop_tick) {
46cb4b7c
SS
4617 cpu_rq(cpu)->in_nohz_recently = 1;
4618
483b4ee6
SS
4619 if (!cpu_active(cpu)) {
4620 if (atomic_read(&nohz.load_balancer) != cpu)
4621 return 0;
4622
4623 /*
4624 * If we are going offline and still the leader,
4625 * give up!
4626 */
46cb4b7c
SS
4627 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4628 BUG();
483b4ee6 4629
46cb4b7c
SS
4630 return 0;
4631 }
4632
483b4ee6
SS
4633 cpumask_set_cpu(cpu, nohz.cpu_mask);
4634
46cb4b7c 4635 /* time for ilb owner also to sleep */
7d1e6a9b 4636 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4637 if (atomic_read(&nohz.load_balancer) == cpu)
4638 atomic_set(&nohz.load_balancer, -1);
4639 return 0;
4640 }
4641
4642 if (atomic_read(&nohz.load_balancer) == -1) {
4643 /* make me the ilb owner */
4644 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4645 return 1;
e790fb0b
GS
4646 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4647 int new_ilb;
4648
4649 if (!(sched_smt_power_savings ||
4650 sched_mc_power_savings))
4651 return 1;
4652 /*
4653 * Check to see if there is a more power-efficient
4654 * ilb.
4655 */
4656 new_ilb = find_new_ilb(cpu);
4657 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4658 atomic_set(&nohz.load_balancer, -1);
4659 resched_cpu(new_ilb);
4660 return 0;
4661 }
46cb4b7c 4662 return 1;
e790fb0b 4663 }
46cb4b7c 4664 } else {
7d1e6a9b 4665 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4666 return 0;
4667
7d1e6a9b 4668 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4669
4670 if (atomic_read(&nohz.load_balancer) == cpu)
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4673 }
4674 return 0;
4675}
4676#endif
4677
4678static DEFINE_SPINLOCK(balancing);
4679
4680/*
7835b98b
CL
4681 * It checks each scheduling domain to see if it is due to be balanced,
4682 * and initiates a balancing operation if so.
4683 *
4684 * Balancing parameters are set up in arch_init_sched_domains.
4685 */
a9957449 4686static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4687{
46cb4b7c
SS
4688 int balance = 1;
4689 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4690 unsigned long interval;
4691 struct sched_domain *sd;
46cb4b7c 4692 /* Earliest time when we have to do rebalance again */
c9819f45 4693 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4694 int update_next_balance = 0;
d07355f5 4695 int need_serialize;
1da177e4 4696
46cb4b7c 4697 for_each_domain(cpu, sd) {
1da177e4
LT
4698 if (!(sd->flags & SD_LOAD_BALANCE))
4699 continue;
4700
4701 interval = sd->balance_interval;
d15bcfdb 4702 if (idle != CPU_IDLE)
1da177e4
LT
4703 interval *= sd->busy_factor;
4704
4705 /* scale ms to jiffies */
4706 interval = msecs_to_jiffies(interval);
4707 if (unlikely(!interval))
4708 interval = 1;
dd41f596
IM
4709 if (interval > HZ*NR_CPUS/10)
4710 interval = HZ*NR_CPUS/10;
4711
d07355f5 4712 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4713
d07355f5 4714 if (need_serialize) {
08c183f3
CL
4715 if (!spin_trylock(&balancing))
4716 goto out;
4717 }
4718
c9819f45 4719 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4720 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4721 /*
4722 * We've pulled tasks over so either we're no
5969fe06
NP
4723 * longer idle, or one of our SMT siblings is
4724 * not idle.
4725 */
d15bcfdb 4726 idle = CPU_NOT_IDLE;
1da177e4 4727 }
1bd77f2d 4728 sd->last_balance = jiffies;
1da177e4 4729 }
d07355f5 4730 if (need_serialize)
08c183f3
CL
4731 spin_unlock(&balancing);
4732out:
f549da84 4733 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4734 next_balance = sd->last_balance + interval;
f549da84
SS
4735 update_next_balance = 1;
4736 }
783609c6
SS
4737
4738 /*
4739 * Stop the load balance at this level. There is another
4740 * CPU in our sched group which is doing load balancing more
4741 * actively.
4742 */
4743 if (!balance)
4744 break;
1da177e4 4745 }
f549da84
SS
4746
4747 /*
4748 * next_balance will be updated only when there is a need.
4749 * When the cpu is attached to null domain for ex, it will not be
4750 * updated.
4751 */
4752 if (likely(update_next_balance))
4753 rq->next_balance = next_balance;
46cb4b7c
SS
4754}
4755
4756/*
4757 * run_rebalance_domains is triggered when needed from the scheduler tick.
4758 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4759 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4760 */
4761static void run_rebalance_domains(struct softirq_action *h)
4762{
dd41f596
IM
4763 int this_cpu = smp_processor_id();
4764 struct rq *this_rq = cpu_rq(this_cpu);
4765 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4766 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4767
dd41f596 4768 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4769
4770#ifdef CONFIG_NO_HZ
4771 /*
4772 * If this cpu is the owner for idle load balancing, then do the
4773 * balancing on behalf of the other idle cpus whose ticks are
4774 * stopped.
4775 */
dd41f596
IM
4776 if (this_rq->idle_at_tick &&
4777 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4778 struct rq *rq;
4779 int balance_cpu;
4780
7d1e6a9b
RR
4781 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4782 if (balance_cpu == this_cpu)
4783 continue;
4784
46cb4b7c
SS
4785 /*
4786 * If this cpu gets work to do, stop the load balancing
4787 * work being done for other cpus. Next load
4788 * balancing owner will pick it up.
4789 */
4790 if (need_resched())
4791 break;
4792
de0cf899 4793 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4794
4795 rq = cpu_rq(balance_cpu);
dd41f596
IM
4796 if (time_after(this_rq->next_balance, rq->next_balance))
4797 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4798 }
4799 }
4800#endif
4801}
4802
8a0be9ef
FW
4803static inline int on_null_domain(int cpu)
4804{
4805 return !rcu_dereference(cpu_rq(cpu)->sd);
4806}
4807
46cb4b7c
SS
4808/*
4809 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4810 *
4811 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4812 * idle load balancing owner or decide to stop the periodic load balancing,
4813 * if the whole system is idle.
4814 */
dd41f596 4815static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4816{
46cb4b7c
SS
4817#ifdef CONFIG_NO_HZ
4818 /*
4819 * If we were in the nohz mode recently and busy at the current
4820 * scheduler tick, then check if we need to nominate new idle
4821 * load balancer.
4822 */
4823 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4824 rq->in_nohz_recently = 0;
4825
4826 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4827 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4828 atomic_set(&nohz.load_balancer, -1);
4829 }
4830
4831 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4832 int ilb = find_new_ilb(cpu);
46cb4b7c 4833
434d53b0 4834 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4835 resched_cpu(ilb);
4836 }
4837 }
4838
4839 /*
4840 * If this cpu is idle and doing idle load balancing for all the
4841 * cpus with ticks stopped, is it time for that to stop?
4842 */
4843 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4844 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4845 resched_cpu(cpu);
4846 return;
4847 }
4848
4849 /*
4850 * If this cpu is idle and the idle load balancing is done by
4851 * someone else, then no need raise the SCHED_SOFTIRQ
4852 */
4853 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4854 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4855 return;
4856#endif
8a0be9ef
FW
4857 /* Don't need to rebalance while attached to NULL domain */
4858 if (time_after_eq(jiffies, rq->next_balance) &&
4859 likely(!on_null_domain(cpu)))
46cb4b7c 4860 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4861}
dd41f596
IM
4862
4863#else /* CONFIG_SMP */
4864
1da177e4
LT
4865/*
4866 * on UP we do not need to balance between CPUs:
4867 */
70b97a7f 4868static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4869{
4870}
dd41f596 4871
1da177e4
LT
4872#endif
4873
1da177e4
LT
4874DEFINE_PER_CPU(struct kernel_stat, kstat);
4875
4876EXPORT_PER_CPU_SYMBOL(kstat);
4877
4878/*
c5f8d995 4879 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4880 * @p in case that task is currently running.
c5f8d995
HS
4881 *
4882 * Called with task_rq_lock() held on @rq.
1da177e4 4883 */
c5f8d995
HS
4884static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4885{
4886 u64 ns = 0;
4887
4888 if (task_current(rq, p)) {
4889 update_rq_clock(rq);
4890 ns = rq->clock - p->se.exec_start;
4891 if ((s64)ns < 0)
4892 ns = 0;
4893 }
4894
4895 return ns;
4896}
4897
bb34d92f 4898unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4899{
1da177e4 4900 unsigned long flags;
41b86e9c 4901 struct rq *rq;
bb34d92f 4902 u64 ns = 0;
48f24c4d 4903
41b86e9c 4904 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4905 ns = do_task_delta_exec(p, rq);
4906 task_rq_unlock(rq, &flags);
1508487e 4907
c5f8d995
HS
4908 return ns;
4909}
f06febc9 4910
c5f8d995
HS
4911/*
4912 * Return accounted runtime for the task.
4913 * In case the task is currently running, return the runtime plus current's
4914 * pending runtime that have not been accounted yet.
4915 */
4916unsigned long long task_sched_runtime(struct task_struct *p)
4917{
4918 unsigned long flags;
4919 struct rq *rq;
4920 u64 ns = 0;
4921
4922 rq = task_rq_lock(p, &flags);
4923 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4924 task_rq_unlock(rq, &flags);
4925
4926 return ns;
4927}
48f24c4d 4928
c5f8d995
HS
4929/*
4930 * Return sum_exec_runtime for the thread group.
4931 * In case the task is currently running, return the sum plus current's
4932 * pending runtime that have not been accounted yet.
4933 *
4934 * Note that the thread group might have other running tasks as well,
4935 * so the return value not includes other pending runtime that other
4936 * running tasks might have.
4937 */
4938unsigned long long thread_group_sched_runtime(struct task_struct *p)
4939{
4940 struct task_cputime totals;
4941 unsigned long flags;
4942 struct rq *rq;
4943 u64 ns;
4944
4945 rq = task_rq_lock(p, &flags);
4946 thread_group_cputime(p, &totals);
4947 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4948 task_rq_unlock(rq, &flags);
48f24c4d 4949
1da177e4
LT
4950 return ns;
4951}
4952
1da177e4
LT
4953/*
4954 * Account user cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
1da177e4 4956 * @cputime: the cpu time spent in user space since the last update
457533a7 4957 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4958 */
457533a7
MS
4959void account_user_time(struct task_struct *p, cputime_t cputime,
4960 cputime_t cputime_scaled)
1da177e4
LT
4961{
4962 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4963 cputime64_t tmp;
4964
457533a7 4965 /* Add user time to process. */
1da177e4 4966 p->utime = cputime_add(p->utime, cputime);
457533a7 4967 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4968 account_group_user_time(p, cputime);
1da177e4
LT
4969
4970 /* Add user time to cpustat. */
4971 tmp = cputime_to_cputime64(cputime);
4972 if (TASK_NICE(p) > 0)
4973 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4974 else
4975 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4976
4977 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4978 /* Account for user time used */
4979 acct_update_integrals(p);
1da177e4
LT
4980}
4981
94886b84
LV
4982/*
4983 * Account guest cpu time to a process.
4984 * @p: the process that the cpu time gets accounted to
4985 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4986 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4987 */
457533a7
MS
4988static void account_guest_time(struct task_struct *p, cputime_t cputime,
4989 cputime_t cputime_scaled)
94886b84
LV
4990{
4991 cputime64_t tmp;
4992 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4993
4994 tmp = cputime_to_cputime64(cputime);
4995
457533a7 4996 /* Add guest time to process. */
94886b84 4997 p->utime = cputime_add(p->utime, cputime);
457533a7 4998 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4999 account_group_user_time(p, cputime);
94886b84
LV
5000 p->gtime = cputime_add(p->gtime, cputime);
5001
457533a7 5002 /* Add guest time to cpustat. */
94886b84
LV
5003 cpustat->user = cputime64_add(cpustat->user, tmp);
5004 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5005}
5006
1da177e4
LT
5007/*
5008 * Account system cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @hardirq_offset: the offset to subtract from hardirq_count()
5011 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5012 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5013 */
5014void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5015 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5016{
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5018 cputime64_t tmp;
5019
983ed7a6 5020 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5021 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5022 return;
5023 }
94886b84 5024
457533a7 5025 /* Add system time to process. */
1da177e4 5026 p->stime = cputime_add(p->stime, cputime);
457533a7 5027 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5028 account_group_system_time(p, cputime);
1da177e4
LT
5029
5030 /* Add system time to cpustat. */
5031 tmp = cputime_to_cputime64(cputime);
5032 if (hardirq_count() - hardirq_offset)
5033 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5034 else if (softirq_count())
5035 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5036 else
79741dd3
MS
5037 cpustat->system = cputime64_add(cpustat->system, tmp);
5038
ef12fefa
BR
5039 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5040
1da177e4
LT
5041 /* Account for system time used */
5042 acct_update_integrals(p);
1da177e4
LT
5043}
5044
c66f08be 5045/*
1da177e4 5046 * Account for involuntary wait time.
1da177e4 5047 * @steal: the cpu time spent in involuntary wait
c66f08be 5048 */
79741dd3 5049void account_steal_time(cputime_t cputime)
c66f08be 5050{
79741dd3
MS
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5052 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5053
5054 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5055}
5056
1da177e4 5057/*
79741dd3
MS
5058 * Account for idle time.
5059 * @cputime: the cpu time spent in idle wait
1da177e4 5060 */
79741dd3 5061void account_idle_time(cputime_t cputime)
1da177e4
LT
5062{
5063 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5064 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5065 struct rq *rq = this_rq();
1da177e4 5066
79741dd3
MS
5067 if (atomic_read(&rq->nr_iowait) > 0)
5068 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5069 else
5070 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5071}
5072
79741dd3
MS
5073#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5074
5075/*
5076 * Account a single tick of cpu time.
5077 * @p: the process that the cpu time gets accounted to
5078 * @user_tick: indicates if the tick is a user or a system tick
5079 */
5080void account_process_tick(struct task_struct *p, int user_tick)
5081{
5082 cputime_t one_jiffy = jiffies_to_cputime(1);
5083 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5084 struct rq *rq = this_rq();
5085
5086 if (user_tick)
5087 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5088 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5089 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5090 one_jiffy_scaled);
5091 else
5092 account_idle_time(one_jiffy);
5093}
5094
5095/*
5096 * Account multiple ticks of steal time.
5097 * @p: the process from which the cpu time has been stolen
5098 * @ticks: number of stolen ticks
5099 */
5100void account_steal_ticks(unsigned long ticks)
5101{
5102 account_steal_time(jiffies_to_cputime(ticks));
5103}
5104
5105/*
5106 * Account multiple ticks of idle time.
5107 * @ticks: number of stolen ticks
5108 */
5109void account_idle_ticks(unsigned long ticks)
5110{
5111 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5112}
5113
79741dd3
MS
5114#endif
5115
49048622
BS
5116/*
5117 * Use precise platform statistics if available:
5118 */
5119#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5120cputime_t task_utime(struct task_struct *p)
5121{
5122 return p->utime;
5123}
5124
5125cputime_t task_stime(struct task_struct *p)
5126{
5127 return p->stime;
5128}
5129#else
5130cputime_t task_utime(struct task_struct *p)
5131{
5132 clock_t utime = cputime_to_clock_t(p->utime),
5133 total = utime + cputime_to_clock_t(p->stime);
5134 u64 temp;
5135
5136 /*
5137 * Use CFS's precise accounting:
5138 */
5139 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5140
5141 if (total) {
5142 temp *= utime;
5143 do_div(temp, total);
5144 }
5145 utime = (clock_t)temp;
5146
5147 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5148 return p->prev_utime;
5149}
5150
5151cputime_t task_stime(struct task_struct *p)
5152{
5153 clock_t stime;
5154
5155 /*
5156 * Use CFS's precise accounting. (we subtract utime from
5157 * the total, to make sure the total observed by userspace
5158 * grows monotonically - apps rely on that):
5159 */
5160 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5161 cputime_to_clock_t(task_utime(p));
5162
5163 if (stime >= 0)
5164 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5165
5166 return p->prev_stime;
5167}
5168#endif
5169
5170inline cputime_t task_gtime(struct task_struct *p)
5171{
5172 return p->gtime;
5173}
5174
7835b98b
CL
5175/*
5176 * This function gets called by the timer code, with HZ frequency.
5177 * We call it with interrupts disabled.
5178 *
5179 * It also gets called by the fork code, when changing the parent's
5180 * timeslices.
5181 */
5182void scheduler_tick(void)
5183{
7835b98b
CL
5184 int cpu = smp_processor_id();
5185 struct rq *rq = cpu_rq(cpu);
dd41f596 5186 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5187
5188 sched_clock_tick();
dd41f596
IM
5189
5190 spin_lock(&rq->lock);
3e51f33f 5191 update_rq_clock(rq);
f1a438d8 5192 update_cpu_load(rq);
fa85ae24 5193 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5194 spin_unlock(&rq->lock);
7835b98b 5195
e220d2dc
PZ
5196 perf_counter_task_tick(curr, cpu);
5197
e418e1c2 5198#ifdef CONFIG_SMP
dd41f596
IM
5199 rq->idle_at_tick = idle_cpu(cpu);
5200 trigger_load_balance(rq, cpu);
e418e1c2 5201#endif
1da177e4
LT
5202}
5203
132380a0 5204notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5205{
5206 if (in_lock_functions(addr)) {
5207 addr = CALLER_ADDR2;
5208 if (in_lock_functions(addr))
5209 addr = CALLER_ADDR3;
5210 }
5211 return addr;
5212}
1da177e4 5213
7e49fcce
SR
5214#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5215 defined(CONFIG_PREEMPT_TRACER))
5216
43627582 5217void __kprobes add_preempt_count(int val)
1da177e4 5218{
6cd8a4bb 5219#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5220 /*
5221 * Underflow?
5222 */
9a11b49a
IM
5223 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5224 return;
6cd8a4bb 5225#endif
1da177e4 5226 preempt_count() += val;
6cd8a4bb 5227#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5228 /*
5229 * Spinlock count overflowing soon?
5230 */
33859f7f
MOS
5231 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5232 PREEMPT_MASK - 10);
6cd8a4bb
SR
5233#endif
5234 if (preempt_count() == val)
5235 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5236}
5237EXPORT_SYMBOL(add_preempt_count);
5238
43627582 5239void __kprobes sub_preempt_count(int val)
1da177e4 5240{
6cd8a4bb 5241#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5242 /*
5243 * Underflow?
5244 */
01e3eb82 5245 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5246 return;
1da177e4
LT
5247 /*
5248 * Is the spinlock portion underflowing?
5249 */
9a11b49a
IM
5250 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5251 !(preempt_count() & PREEMPT_MASK)))
5252 return;
6cd8a4bb 5253#endif
9a11b49a 5254
6cd8a4bb
SR
5255 if (preempt_count() == val)
5256 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5257 preempt_count() -= val;
5258}
5259EXPORT_SYMBOL(sub_preempt_count);
5260
5261#endif
5262
5263/*
dd41f596 5264 * Print scheduling while atomic bug:
1da177e4 5265 */
dd41f596 5266static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5267{
838225b4
SS
5268 struct pt_regs *regs = get_irq_regs();
5269
5270 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5271 prev->comm, prev->pid, preempt_count());
5272
dd41f596 5273 debug_show_held_locks(prev);
e21f5b15 5274 print_modules();
dd41f596
IM
5275 if (irqs_disabled())
5276 print_irqtrace_events(prev);
838225b4
SS
5277
5278 if (regs)
5279 show_regs(regs);
5280 else
5281 dump_stack();
dd41f596 5282}
1da177e4 5283
dd41f596
IM
5284/*
5285 * Various schedule()-time debugging checks and statistics:
5286 */
5287static inline void schedule_debug(struct task_struct *prev)
5288{
1da177e4 5289 /*
41a2d6cf 5290 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5291 * schedule() atomically, we ignore that path for now.
5292 * Otherwise, whine if we are scheduling when we should not be.
5293 */
3f33a7ce 5294 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5295 __schedule_bug(prev);
5296
1da177e4
LT
5297 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5298
2d72376b 5299 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5300#ifdef CONFIG_SCHEDSTATS
5301 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5302 schedstat_inc(this_rq(), bkl_count);
5303 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5304 }
5305#endif
dd41f596
IM
5306}
5307
df1c99d4
MG
5308static void put_prev_task(struct rq *rq, struct task_struct *prev)
5309{
5310 if (prev->state == TASK_RUNNING) {
5311 u64 runtime = prev->se.sum_exec_runtime;
5312
5313 runtime -= prev->se.prev_sum_exec_runtime;
5314 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5315
5316 /*
5317 * In order to avoid avg_overlap growing stale when we are
5318 * indeed overlapping and hence not getting put to sleep, grow
5319 * the avg_overlap on preemption.
5320 *
5321 * We use the average preemption runtime because that
5322 * correlates to the amount of cache footprint a task can
5323 * build up.
5324 */
5325 update_avg(&prev->se.avg_overlap, runtime);
5326 }
5327 prev->sched_class->put_prev_task(rq, prev);
5328}
5329
dd41f596
IM
5330/*
5331 * Pick up the highest-prio task:
5332 */
5333static inline struct task_struct *
b67802ea 5334pick_next_task(struct rq *rq)
dd41f596 5335{
5522d5d5 5336 const struct sched_class *class;
dd41f596 5337 struct task_struct *p;
1da177e4
LT
5338
5339 /*
dd41f596
IM
5340 * Optimization: we know that if all tasks are in
5341 * the fair class we can call that function directly:
1da177e4 5342 */
dd41f596 5343 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5344 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5345 if (likely(p))
5346 return p;
1da177e4
LT
5347 }
5348
dd41f596
IM
5349 class = sched_class_highest;
5350 for ( ; ; ) {
fb8d4724 5351 p = class->pick_next_task(rq);
dd41f596
IM
5352 if (p)
5353 return p;
5354 /*
5355 * Will never be NULL as the idle class always
5356 * returns a non-NULL p:
5357 */
5358 class = class->next;
5359 }
5360}
1da177e4 5361
dd41f596
IM
5362/*
5363 * schedule() is the main scheduler function.
5364 */
ff743345 5365asmlinkage void __sched schedule(void)
dd41f596
IM
5366{
5367 struct task_struct *prev, *next;
67ca7bde 5368 unsigned long *switch_count;
dd41f596 5369 struct rq *rq;
31656519 5370 int cpu;
dd41f596 5371
ff743345
PZ
5372need_resched:
5373 preempt_disable();
dd41f596
IM
5374 cpu = smp_processor_id();
5375 rq = cpu_rq(cpu);
5376 rcu_qsctr_inc(cpu);
5377 prev = rq->curr;
5378 switch_count = &prev->nivcsw;
5379
5380 release_kernel_lock(prev);
5381need_resched_nonpreemptible:
5382
5383 schedule_debug(prev);
1da177e4 5384
31656519 5385 if (sched_feat(HRTICK))
f333fdc9 5386 hrtick_clear(rq);
8f4d37ec 5387
8cd162ce 5388 spin_lock_irq(&rq->lock);
3e51f33f 5389 update_rq_clock(rq);
1e819950 5390 clear_tsk_need_resched(prev);
1da177e4 5391
1da177e4 5392 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5393 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5394 prev->state = TASK_RUNNING;
16882c1e 5395 else
2e1cb74a 5396 deactivate_task(rq, prev, 1);
dd41f596 5397 switch_count = &prev->nvcsw;
1da177e4
LT
5398 }
5399
9a897c5a
SR
5400#ifdef CONFIG_SMP
5401 if (prev->sched_class->pre_schedule)
5402 prev->sched_class->pre_schedule(rq, prev);
5403#endif
f65eda4f 5404
dd41f596 5405 if (unlikely(!rq->nr_running))
1da177e4 5406 idle_balance(cpu, rq);
1da177e4 5407
df1c99d4 5408 put_prev_task(rq, prev);
b67802ea 5409 next = pick_next_task(rq);
1da177e4 5410
1da177e4 5411 if (likely(prev != next)) {
673a90a1 5412 sched_info_switch(prev, next);
564c2b21 5413 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5414
1da177e4
LT
5415 rq->nr_switches++;
5416 rq->curr = next;
5417 ++*switch_count;
5418
dd41f596 5419 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5420 /*
5421 * the context switch might have flipped the stack from under
5422 * us, hence refresh the local variables.
5423 */
5424 cpu = smp_processor_id();
5425 rq = cpu_rq(cpu);
1da177e4
LT
5426 } else
5427 spin_unlock_irq(&rq->lock);
5428
8f4d37ec 5429 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5430 goto need_resched_nonpreemptible;
8f4d37ec 5431
1da177e4 5432 preempt_enable_no_resched();
ff743345 5433 if (need_resched())
1da177e4
LT
5434 goto need_resched;
5435}
1da177e4
LT
5436EXPORT_SYMBOL(schedule);
5437
0d66bf6d
PZ
5438#ifdef CONFIG_SMP
5439/*
5440 * Look out! "owner" is an entirely speculative pointer
5441 * access and not reliable.
5442 */
5443int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5444{
5445 unsigned int cpu;
5446 struct rq *rq;
5447
5448 if (!sched_feat(OWNER_SPIN))
5449 return 0;
5450
5451#ifdef CONFIG_DEBUG_PAGEALLOC
5452 /*
5453 * Need to access the cpu field knowing that
5454 * DEBUG_PAGEALLOC could have unmapped it if
5455 * the mutex owner just released it and exited.
5456 */
5457 if (probe_kernel_address(&owner->cpu, cpu))
5458 goto out;
5459#else
5460 cpu = owner->cpu;
5461#endif
5462
5463 /*
5464 * Even if the access succeeded (likely case),
5465 * the cpu field may no longer be valid.
5466 */
5467 if (cpu >= nr_cpumask_bits)
5468 goto out;
5469
5470 /*
5471 * We need to validate that we can do a
5472 * get_cpu() and that we have the percpu area.
5473 */
5474 if (!cpu_online(cpu))
5475 goto out;
5476
5477 rq = cpu_rq(cpu);
5478
5479 for (;;) {
5480 /*
5481 * Owner changed, break to re-assess state.
5482 */
5483 if (lock->owner != owner)
5484 break;
5485
5486 /*
5487 * Is that owner really running on that cpu?
5488 */
5489 if (task_thread_info(rq->curr) != owner || need_resched())
5490 return 0;
5491
5492 cpu_relax();
5493 }
5494out:
5495 return 1;
5496}
5497#endif
5498
1da177e4
LT
5499#ifdef CONFIG_PREEMPT
5500/*
2ed6e34f 5501 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5502 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5503 * occur there and call schedule directly.
5504 */
5505asmlinkage void __sched preempt_schedule(void)
5506{
5507 struct thread_info *ti = current_thread_info();
6478d880 5508
1da177e4
LT
5509 /*
5510 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5511 * we do not want to preempt the current task. Just return..
1da177e4 5512 */
beed33a8 5513 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5514 return;
5515
3a5c359a
AK
5516 do {
5517 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5518 schedule();
3a5c359a 5519 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5520
3a5c359a
AK
5521 /*
5522 * Check again in case we missed a preemption opportunity
5523 * between schedule and now.
5524 */
5525 barrier();
5ed0cec0 5526 } while (need_resched());
1da177e4 5527}
1da177e4
LT
5528EXPORT_SYMBOL(preempt_schedule);
5529
5530/*
2ed6e34f 5531 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5532 * off of irq context.
5533 * Note, that this is called and return with irqs disabled. This will
5534 * protect us against recursive calling from irq.
5535 */
5536asmlinkage void __sched preempt_schedule_irq(void)
5537{
5538 struct thread_info *ti = current_thread_info();
6478d880 5539
2ed6e34f 5540 /* Catch callers which need to be fixed */
1da177e4
LT
5541 BUG_ON(ti->preempt_count || !irqs_disabled());
5542
3a5c359a
AK
5543 do {
5544 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5545 local_irq_enable();
5546 schedule();
5547 local_irq_disable();
3a5c359a 5548 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5549
3a5c359a
AK
5550 /*
5551 * Check again in case we missed a preemption opportunity
5552 * between schedule and now.
5553 */
5554 barrier();
5ed0cec0 5555 } while (need_resched());
1da177e4
LT
5556}
5557
5558#endif /* CONFIG_PREEMPT */
5559
95cdf3b7
IM
5560int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5561 void *key)
1da177e4 5562{
48f24c4d 5563 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5564}
1da177e4
LT
5565EXPORT_SYMBOL(default_wake_function);
5566
5567/*
41a2d6cf
IM
5568 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5569 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5570 * number) then we wake all the non-exclusive tasks and one exclusive task.
5571 *
5572 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5573 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5574 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5575 */
78ddb08f 5576static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5577 int nr_exclusive, int sync, void *key)
1da177e4 5578{
2e45874c 5579 wait_queue_t *curr, *next;
1da177e4 5580
2e45874c 5581 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5582 unsigned flags = curr->flags;
5583
1da177e4 5584 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5585 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5586 break;
5587 }
5588}
5589
5590/**
5591 * __wake_up - wake up threads blocked on a waitqueue.
5592 * @q: the waitqueue
5593 * @mode: which threads
5594 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5595 * @key: is directly passed to the wakeup function
50fa610a
DH
5596 *
5597 * It may be assumed that this function implies a write memory barrier before
5598 * changing the task state if and only if any tasks are woken up.
1da177e4 5599 */
7ad5b3a5 5600void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5601 int nr_exclusive, void *key)
1da177e4
LT
5602{
5603 unsigned long flags;
5604
5605 spin_lock_irqsave(&q->lock, flags);
5606 __wake_up_common(q, mode, nr_exclusive, 0, key);
5607 spin_unlock_irqrestore(&q->lock, flags);
5608}
1da177e4
LT
5609EXPORT_SYMBOL(__wake_up);
5610
5611/*
5612 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5613 */
7ad5b3a5 5614void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5615{
5616 __wake_up_common(q, mode, 1, 0, NULL);
5617}
5618
4ede816a
DL
5619void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5620{
5621 __wake_up_common(q, mode, 1, 0, key);
5622}
5623
1da177e4 5624/**
4ede816a 5625 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5626 * @q: the waitqueue
5627 * @mode: which threads
5628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5629 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5630 *
5631 * The sync wakeup differs that the waker knows that it will schedule
5632 * away soon, so while the target thread will be woken up, it will not
5633 * be migrated to another CPU - ie. the two threads are 'synchronized'
5634 * with each other. This can prevent needless bouncing between CPUs.
5635 *
5636 * On UP it can prevent extra preemption.
50fa610a
DH
5637 *
5638 * It may be assumed that this function implies a write memory barrier before
5639 * changing the task state if and only if any tasks are woken up.
1da177e4 5640 */
4ede816a
DL
5641void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5642 int nr_exclusive, void *key)
1da177e4
LT
5643{
5644 unsigned long flags;
5645 int sync = 1;
5646
5647 if (unlikely(!q))
5648 return;
5649
5650 if (unlikely(!nr_exclusive))
5651 sync = 0;
5652
5653 spin_lock_irqsave(&q->lock, flags);
4ede816a 5654 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5655 spin_unlock_irqrestore(&q->lock, flags);
5656}
4ede816a
DL
5657EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5658
5659/*
5660 * __wake_up_sync - see __wake_up_sync_key()
5661 */
5662void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5663{
5664 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5665}
1da177e4
LT
5666EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5667
65eb3dc6
KD
5668/**
5669 * complete: - signals a single thread waiting on this completion
5670 * @x: holds the state of this particular completion
5671 *
5672 * This will wake up a single thread waiting on this completion. Threads will be
5673 * awakened in the same order in which they were queued.
5674 *
5675 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5676 *
5677 * It may be assumed that this function implies a write memory barrier before
5678 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5679 */
b15136e9 5680void complete(struct completion *x)
1da177e4
LT
5681{
5682 unsigned long flags;
5683
5684 spin_lock_irqsave(&x->wait.lock, flags);
5685 x->done++;
d9514f6c 5686 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5687 spin_unlock_irqrestore(&x->wait.lock, flags);
5688}
5689EXPORT_SYMBOL(complete);
5690
65eb3dc6
KD
5691/**
5692 * complete_all: - signals all threads waiting on this completion
5693 * @x: holds the state of this particular completion
5694 *
5695 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5696 *
5697 * It may be assumed that this function implies a write memory barrier before
5698 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5699 */
b15136e9 5700void complete_all(struct completion *x)
1da177e4
LT
5701{
5702 unsigned long flags;
5703
5704 spin_lock_irqsave(&x->wait.lock, flags);
5705 x->done += UINT_MAX/2;
d9514f6c 5706 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5707 spin_unlock_irqrestore(&x->wait.lock, flags);
5708}
5709EXPORT_SYMBOL(complete_all);
5710
8cbbe86d
AK
5711static inline long __sched
5712do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5713{
1da177e4
LT
5714 if (!x->done) {
5715 DECLARE_WAITQUEUE(wait, current);
5716
5717 wait.flags |= WQ_FLAG_EXCLUSIVE;
5718 __add_wait_queue_tail(&x->wait, &wait);
5719 do {
94d3d824 5720 if (signal_pending_state(state, current)) {
ea71a546
ON
5721 timeout = -ERESTARTSYS;
5722 break;
8cbbe86d
AK
5723 }
5724 __set_current_state(state);
1da177e4
LT
5725 spin_unlock_irq(&x->wait.lock);
5726 timeout = schedule_timeout(timeout);
5727 spin_lock_irq(&x->wait.lock);
ea71a546 5728 } while (!x->done && timeout);
1da177e4 5729 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5730 if (!x->done)
5731 return timeout;
1da177e4
LT
5732 }
5733 x->done--;
ea71a546 5734 return timeout ?: 1;
1da177e4 5735}
1da177e4 5736
8cbbe86d
AK
5737static long __sched
5738wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5739{
1da177e4
LT
5740 might_sleep();
5741
5742 spin_lock_irq(&x->wait.lock);
8cbbe86d 5743 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5744 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5745 return timeout;
5746}
1da177e4 5747
65eb3dc6
KD
5748/**
5749 * wait_for_completion: - waits for completion of a task
5750 * @x: holds the state of this particular completion
5751 *
5752 * This waits to be signaled for completion of a specific task. It is NOT
5753 * interruptible and there is no timeout.
5754 *
5755 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5756 * and interrupt capability. Also see complete().
5757 */
b15136e9 5758void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5759{
5760 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5761}
8cbbe86d 5762EXPORT_SYMBOL(wait_for_completion);
1da177e4 5763
65eb3dc6
KD
5764/**
5765 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5766 * @x: holds the state of this particular completion
5767 * @timeout: timeout value in jiffies
5768 *
5769 * This waits for either a completion of a specific task to be signaled or for a
5770 * specified timeout to expire. The timeout is in jiffies. It is not
5771 * interruptible.
5772 */
b15136e9 5773unsigned long __sched
8cbbe86d 5774wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5775{
8cbbe86d 5776 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5777}
8cbbe86d 5778EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5779
65eb3dc6
KD
5780/**
5781 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5782 * @x: holds the state of this particular completion
5783 *
5784 * This waits for completion of a specific task to be signaled. It is
5785 * interruptible.
5786 */
8cbbe86d 5787int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5788{
51e97990
AK
5789 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5790 if (t == -ERESTARTSYS)
5791 return t;
5792 return 0;
0fec171c 5793}
8cbbe86d 5794EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5795
65eb3dc6
KD
5796/**
5797 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5798 * @x: holds the state of this particular completion
5799 * @timeout: timeout value in jiffies
5800 *
5801 * This waits for either a completion of a specific task to be signaled or for a
5802 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5803 */
b15136e9 5804unsigned long __sched
8cbbe86d
AK
5805wait_for_completion_interruptible_timeout(struct completion *x,
5806 unsigned long timeout)
0fec171c 5807{
8cbbe86d 5808 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5809}
8cbbe86d 5810EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5811
65eb3dc6
KD
5812/**
5813 * wait_for_completion_killable: - waits for completion of a task (killable)
5814 * @x: holds the state of this particular completion
5815 *
5816 * This waits to be signaled for completion of a specific task. It can be
5817 * interrupted by a kill signal.
5818 */
009e577e
MW
5819int __sched wait_for_completion_killable(struct completion *x)
5820{
5821 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5822 if (t == -ERESTARTSYS)
5823 return t;
5824 return 0;
5825}
5826EXPORT_SYMBOL(wait_for_completion_killable);
5827
be4de352
DC
5828/**
5829 * try_wait_for_completion - try to decrement a completion without blocking
5830 * @x: completion structure
5831 *
5832 * Returns: 0 if a decrement cannot be done without blocking
5833 * 1 if a decrement succeeded.
5834 *
5835 * If a completion is being used as a counting completion,
5836 * attempt to decrement the counter without blocking. This
5837 * enables us to avoid waiting if the resource the completion
5838 * is protecting is not available.
5839 */
5840bool try_wait_for_completion(struct completion *x)
5841{
5842 int ret = 1;
5843
5844 spin_lock_irq(&x->wait.lock);
5845 if (!x->done)
5846 ret = 0;
5847 else
5848 x->done--;
5849 spin_unlock_irq(&x->wait.lock);
5850 return ret;
5851}
5852EXPORT_SYMBOL(try_wait_for_completion);
5853
5854/**
5855 * completion_done - Test to see if a completion has any waiters
5856 * @x: completion structure
5857 *
5858 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5859 * 1 if there are no waiters.
5860 *
5861 */
5862bool completion_done(struct completion *x)
5863{
5864 int ret = 1;
5865
5866 spin_lock_irq(&x->wait.lock);
5867 if (!x->done)
5868 ret = 0;
5869 spin_unlock_irq(&x->wait.lock);
5870 return ret;
5871}
5872EXPORT_SYMBOL(completion_done);
5873
8cbbe86d
AK
5874static long __sched
5875sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5876{
0fec171c
IM
5877 unsigned long flags;
5878 wait_queue_t wait;
5879
5880 init_waitqueue_entry(&wait, current);
1da177e4 5881
8cbbe86d 5882 __set_current_state(state);
1da177e4 5883
8cbbe86d
AK
5884 spin_lock_irqsave(&q->lock, flags);
5885 __add_wait_queue(q, &wait);
5886 spin_unlock(&q->lock);
5887 timeout = schedule_timeout(timeout);
5888 spin_lock_irq(&q->lock);
5889 __remove_wait_queue(q, &wait);
5890 spin_unlock_irqrestore(&q->lock, flags);
5891
5892 return timeout;
5893}
5894
5895void __sched interruptible_sleep_on(wait_queue_head_t *q)
5896{
5897 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5898}
1da177e4
LT
5899EXPORT_SYMBOL(interruptible_sleep_on);
5900
0fec171c 5901long __sched
95cdf3b7 5902interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5903{
8cbbe86d 5904 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5905}
1da177e4
LT
5906EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5907
0fec171c 5908void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5909{
8cbbe86d 5910 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5911}
1da177e4
LT
5912EXPORT_SYMBOL(sleep_on);
5913
0fec171c 5914long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5915{
8cbbe86d 5916 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5917}
1da177e4
LT
5918EXPORT_SYMBOL(sleep_on_timeout);
5919
b29739f9
IM
5920#ifdef CONFIG_RT_MUTEXES
5921
5922/*
5923 * rt_mutex_setprio - set the current priority of a task
5924 * @p: task
5925 * @prio: prio value (kernel-internal form)
5926 *
5927 * This function changes the 'effective' priority of a task. It does
5928 * not touch ->normal_prio like __setscheduler().
5929 *
5930 * Used by the rt_mutex code to implement priority inheritance logic.
5931 */
36c8b586 5932void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5933{
5934 unsigned long flags;
83b699ed 5935 int oldprio, on_rq, running;
70b97a7f 5936 struct rq *rq;
cb469845 5937 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5938
5939 BUG_ON(prio < 0 || prio > MAX_PRIO);
5940
5941 rq = task_rq_lock(p, &flags);
a8e504d2 5942 update_rq_clock(rq);
b29739f9 5943
d5f9f942 5944 oldprio = p->prio;
dd41f596 5945 on_rq = p->se.on_rq;
051a1d1a 5946 running = task_current(rq, p);
0e1f3483 5947 if (on_rq)
69be72c1 5948 dequeue_task(rq, p, 0);
0e1f3483
HS
5949 if (running)
5950 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5951
5952 if (rt_prio(prio))
5953 p->sched_class = &rt_sched_class;
5954 else
5955 p->sched_class = &fair_sched_class;
5956
b29739f9
IM
5957 p->prio = prio;
5958
0e1f3483
HS
5959 if (running)
5960 p->sched_class->set_curr_task(rq);
dd41f596 5961 if (on_rq) {
8159f87e 5962 enqueue_task(rq, p, 0);
cb469845
SR
5963
5964 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5965 }
5966 task_rq_unlock(rq, &flags);
5967}
5968
5969#endif
5970
36c8b586 5971void set_user_nice(struct task_struct *p, long nice)
1da177e4 5972{
dd41f596 5973 int old_prio, delta, on_rq;
1da177e4 5974 unsigned long flags;
70b97a7f 5975 struct rq *rq;
1da177e4
LT
5976
5977 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5978 return;
5979 /*
5980 * We have to be careful, if called from sys_setpriority(),
5981 * the task might be in the middle of scheduling on another CPU.
5982 */
5983 rq = task_rq_lock(p, &flags);
a8e504d2 5984 update_rq_clock(rq);
1da177e4
LT
5985 /*
5986 * The RT priorities are set via sched_setscheduler(), but we still
5987 * allow the 'normal' nice value to be set - but as expected
5988 * it wont have any effect on scheduling until the task is
dd41f596 5989 * SCHED_FIFO/SCHED_RR:
1da177e4 5990 */
e05606d3 5991 if (task_has_rt_policy(p)) {
1da177e4
LT
5992 p->static_prio = NICE_TO_PRIO(nice);
5993 goto out_unlock;
5994 }
dd41f596 5995 on_rq = p->se.on_rq;
c09595f6 5996 if (on_rq)
69be72c1 5997 dequeue_task(rq, p, 0);
1da177e4 5998
1da177e4 5999 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6000 set_load_weight(p);
b29739f9
IM
6001 old_prio = p->prio;
6002 p->prio = effective_prio(p);
6003 delta = p->prio - old_prio;
1da177e4 6004
dd41f596 6005 if (on_rq) {
8159f87e 6006 enqueue_task(rq, p, 0);
1da177e4 6007 /*
d5f9f942
AM
6008 * If the task increased its priority or is running and
6009 * lowered its priority, then reschedule its CPU:
1da177e4 6010 */
d5f9f942 6011 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6012 resched_task(rq->curr);
6013 }
6014out_unlock:
6015 task_rq_unlock(rq, &flags);
6016}
1da177e4
LT
6017EXPORT_SYMBOL(set_user_nice);
6018
e43379f1
MM
6019/*
6020 * can_nice - check if a task can reduce its nice value
6021 * @p: task
6022 * @nice: nice value
6023 */
36c8b586 6024int can_nice(const struct task_struct *p, const int nice)
e43379f1 6025{
024f4747
MM
6026 /* convert nice value [19,-20] to rlimit style value [1,40] */
6027 int nice_rlim = 20 - nice;
48f24c4d 6028
e43379f1
MM
6029 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6030 capable(CAP_SYS_NICE));
6031}
6032
1da177e4
LT
6033#ifdef __ARCH_WANT_SYS_NICE
6034
6035/*
6036 * sys_nice - change the priority of the current process.
6037 * @increment: priority increment
6038 *
6039 * sys_setpriority is a more generic, but much slower function that
6040 * does similar things.
6041 */
5add95d4 6042SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6043{
48f24c4d 6044 long nice, retval;
1da177e4
LT
6045
6046 /*
6047 * Setpriority might change our priority at the same moment.
6048 * We don't have to worry. Conceptually one call occurs first
6049 * and we have a single winner.
6050 */
e43379f1
MM
6051 if (increment < -40)
6052 increment = -40;
1da177e4
LT
6053 if (increment > 40)
6054 increment = 40;
6055
2b8f836f 6056 nice = TASK_NICE(current) + increment;
1da177e4
LT
6057 if (nice < -20)
6058 nice = -20;
6059 if (nice > 19)
6060 nice = 19;
6061
e43379f1
MM
6062 if (increment < 0 && !can_nice(current, nice))
6063 return -EPERM;
6064
1da177e4
LT
6065 retval = security_task_setnice(current, nice);
6066 if (retval)
6067 return retval;
6068
6069 set_user_nice(current, nice);
6070 return 0;
6071}
6072
6073#endif
6074
6075/**
6076 * task_prio - return the priority value of a given task.
6077 * @p: the task in question.
6078 *
6079 * This is the priority value as seen by users in /proc.
6080 * RT tasks are offset by -200. Normal tasks are centered
6081 * around 0, value goes from -16 to +15.
6082 */
36c8b586 6083int task_prio(const struct task_struct *p)
1da177e4
LT
6084{
6085 return p->prio - MAX_RT_PRIO;
6086}
6087
6088/**
6089 * task_nice - return the nice value of a given task.
6090 * @p: the task in question.
6091 */
36c8b586 6092int task_nice(const struct task_struct *p)
1da177e4
LT
6093{
6094 return TASK_NICE(p);
6095}
150d8bed 6096EXPORT_SYMBOL(task_nice);
1da177e4
LT
6097
6098/**
6099 * idle_cpu - is a given cpu idle currently?
6100 * @cpu: the processor in question.
6101 */
6102int idle_cpu(int cpu)
6103{
6104 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6105}
6106
1da177e4
LT
6107/**
6108 * idle_task - return the idle task for a given cpu.
6109 * @cpu: the processor in question.
6110 */
36c8b586 6111struct task_struct *idle_task(int cpu)
1da177e4
LT
6112{
6113 return cpu_rq(cpu)->idle;
6114}
6115
6116/**
6117 * find_process_by_pid - find a process with a matching PID value.
6118 * @pid: the pid in question.
6119 */
a9957449 6120static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6121{
228ebcbe 6122 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6123}
6124
6125/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6126static void
6127__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6128{
dd41f596 6129 BUG_ON(p->se.on_rq);
48f24c4d 6130
1da177e4 6131 p->policy = policy;
dd41f596
IM
6132 switch (p->policy) {
6133 case SCHED_NORMAL:
6134 case SCHED_BATCH:
6135 case SCHED_IDLE:
6136 p->sched_class = &fair_sched_class;
6137 break;
6138 case SCHED_FIFO:
6139 case SCHED_RR:
6140 p->sched_class = &rt_sched_class;
6141 break;
6142 }
6143
1da177e4 6144 p->rt_priority = prio;
b29739f9
IM
6145 p->normal_prio = normal_prio(p);
6146 /* we are holding p->pi_lock already */
6147 p->prio = rt_mutex_getprio(p);
2dd73a4f 6148 set_load_weight(p);
1da177e4
LT
6149}
6150
c69e8d9c
DH
6151/*
6152 * check the target process has a UID that matches the current process's
6153 */
6154static bool check_same_owner(struct task_struct *p)
6155{
6156 const struct cred *cred = current_cred(), *pcred;
6157 bool match;
6158
6159 rcu_read_lock();
6160 pcred = __task_cred(p);
6161 match = (cred->euid == pcred->euid ||
6162 cred->euid == pcred->uid);
6163 rcu_read_unlock();
6164 return match;
6165}
6166
961ccddd
RR
6167static int __sched_setscheduler(struct task_struct *p, int policy,
6168 struct sched_param *param, bool user)
1da177e4 6169{
83b699ed 6170 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6171 unsigned long flags;
cb469845 6172 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6173 struct rq *rq;
ca94c442 6174 int reset_on_fork;
1da177e4 6175
66e5393a
SR
6176 /* may grab non-irq protected spin_locks */
6177 BUG_ON(in_interrupt());
1da177e4
LT
6178recheck:
6179 /* double check policy once rq lock held */
ca94c442
LP
6180 if (policy < 0) {
6181 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6182 policy = oldpolicy = p->policy;
ca94c442
LP
6183 } else {
6184 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6185 policy &= ~SCHED_RESET_ON_FORK;
6186
6187 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6188 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6189 policy != SCHED_IDLE)
6190 return -EINVAL;
6191 }
6192
1da177e4
LT
6193 /*
6194 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6195 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6196 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6197 */
6198 if (param->sched_priority < 0 ||
95cdf3b7 6199 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6200 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6201 return -EINVAL;
e05606d3 6202 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6203 return -EINVAL;
6204
37e4ab3f
OC
6205 /*
6206 * Allow unprivileged RT tasks to decrease priority:
6207 */
961ccddd 6208 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6209 if (rt_policy(policy)) {
8dc3e909 6210 unsigned long rlim_rtprio;
8dc3e909
ON
6211
6212 if (!lock_task_sighand(p, &flags))
6213 return -ESRCH;
6214 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6215 unlock_task_sighand(p, &flags);
6216
6217 /* can't set/change the rt policy */
6218 if (policy != p->policy && !rlim_rtprio)
6219 return -EPERM;
6220
6221 /* can't increase priority */
6222 if (param->sched_priority > p->rt_priority &&
6223 param->sched_priority > rlim_rtprio)
6224 return -EPERM;
6225 }
dd41f596
IM
6226 /*
6227 * Like positive nice levels, dont allow tasks to
6228 * move out of SCHED_IDLE either:
6229 */
6230 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6231 return -EPERM;
5fe1d75f 6232
37e4ab3f 6233 /* can't change other user's priorities */
c69e8d9c 6234 if (!check_same_owner(p))
37e4ab3f 6235 return -EPERM;
ca94c442
LP
6236
6237 /* Normal users shall not reset the sched_reset_on_fork flag */
6238 if (p->sched_reset_on_fork && !reset_on_fork)
6239 return -EPERM;
37e4ab3f 6240 }
1da177e4 6241
725aad24 6242 if (user) {
b68aa230 6243#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6244 /*
6245 * Do not allow realtime tasks into groups that have no runtime
6246 * assigned.
6247 */
9a7e0b18
PZ
6248 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6249 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6250 return -EPERM;
b68aa230
PZ
6251#endif
6252
725aad24
JF
6253 retval = security_task_setscheduler(p, policy, param);
6254 if (retval)
6255 return retval;
6256 }
6257
b29739f9
IM
6258 /*
6259 * make sure no PI-waiters arrive (or leave) while we are
6260 * changing the priority of the task:
6261 */
6262 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6263 /*
6264 * To be able to change p->policy safely, the apropriate
6265 * runqueue lock must be held.
6266 */
b29739f9 6267 rq = __task_rq_lock(p);
1da177e4
LT
6268 /* recheck policy now with rq lock held */
6269 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6270 policy = oldpolicy = -1;
b29739f9
IM
6271 __task_rq_unlock(rq);
6272 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6273 goto recheck;
6274 }
2daa3577 6275 update_rq_clock(rq);
dd41f596 6276 on_rq = p->se.on_rq;
051a1d1a 6277 running = task_current(rq, p);
0e1f3483 6278 if (on_rq)
2e1cb74a 6279 deactivate_task(rq, p, 0);
0e1f3483
HS
6280 if (running)
6281 p->sched_class->put_prev_task(rq, p);
f6b53205 6282
ca94c442
LP
6283 p->sched_reset_on_fork = reset_on_fork;
6284
1da177e4 6285 oldprio = p->prio;
dd41f596 6286 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6287
0e1f3483
HS
6288 if (running)
6289 p->sched_class->set_curr_task(rq);
dd41f596
IM
6290 if (on_rq) {
6291 activate_task(rq, p, 0);
cb469845
SR
6292
6293 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6294 }
b29739f9
IM
6295 __task_rq_unlock(rq);
6296 spin_unlock_irqrestore(&p->pi_lock, flags);
6297
95e02ca9
TG
6298 rt_mutex_adjust_pi(p);
6299
1da177e4
LT
6300 return 0;
6301}
961ccddd
RR
6302
6303/**
6304 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6305 * @p: the task in question.
6306 * @policy: new policy.
6307 * @param: structure containing the new RT priority.
6308 *
6309 * NOTE that the task may be already dead.
6310 */
6311int sched_setscheduler(struct task_struct *p, int policy,
6312 struct sched_param *param)
6313{
6314 return __sched_setscheduler(p, policy, param, true);
6315}
1da177e4
LT
6316EXPORT_SYMBOL_GPL(sched_setscheduler);
6317
961ccddd
RR
6318/**
6319 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6320 * @p: the task in question.
6321 * @policy: new policy.
6322 * @param: structure containing the new RT priority.
6323 *
6324 * Just like sched_setscheduler, only don't bother checking if the
6325 * current context has permission. For example, this is needed in
6326 * stop_machine(): we create temporary high priority worker threads,
6327 * but our caller might not have that capability.
6328 */
6329int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6330 struct sched_param *param)
6331{
6332 return __sched_setscheduler(p, policy, param, false);
6333}
6334
95cdf3b7
IM
6335static int
6336do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6337{
1da177e4
LT
6338 struct sched_param lparam;
6339 struct task_struct *p;
36c8b586 6340 int retval;
1da177e4
LT
6341
6342 if (!param || pid < 0)
6343 return -EINVAL;
6344 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6345 return -EFAULT;
5fe1d75f
ON
6346
6347 rcu_read_lock();
6348 retval = -ESRCH;
1da177e4 6349 p = find_process_by_pid(pid);
5fe1d75f
ON
6350 if (p != NULL)
6351 retval = sched_setscheduler(p, policy, &lparam);
6352 rcu_read_unlock();
36c8b586 6353
1da177e4
LT
6354 return retval;
6355}
6356
6357/**
6358 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6359 * @pid: the pid in question.
6360 * @policy: new policy.
6361 * @param: structure containing the new RT priority.
6362 */
5add95d4
HC
6363SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6364 struct sched_param __user *, param)
1da177e4 6365{
c21761f1
JB
6366 /* negative values for policy are not valid */
6367 if (policy < 0)
6368 return -EINVAL;
6369
1da177e4
LT
6370 return do_sched_setscheduler(pid, policy, param);
6371}
6372
6373/**
6374 * sys_sched_setparam - set/change the RT priority of a thread
6375 * @pid: the pid in question.
6376 * @param: structure containing the new RT priority.
6377 */
5add95d4 6378SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6379{
6380 return do_sched_setscheduler(pid, -1, param);
6381}
6382
6383/**
6384 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6385 * @pid: the pid in question.
6386 */
5add95d4 6387SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6388{
36c8b586 6389 struct task_struct *p;
3a5c359a 6390 int retval;
1da177e4
LT
6391
6392 if (pid < 0)
3a5c359a 6393 return -EINVAL;
1da177e4
LT
6394
6395 retval = -ESRCH;
6396 read_lock(&tasklist_lock);
6397 p = find_process_by_pid(pid);
6398 if (p) {
6399 retval = security_task_getscheduler(p);
6400 if (!retval)
ca94c442
LP
6401 retval = p->policy
6402 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6403 }
6404 read_unlock(&tasklist_lock);
1da177e4
LT
6405 return retval;
6406}
6407
6408/**
ca94c442 6409 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6410 * @pid: the pid in question.
6411 * @param: structure containing the RT priority.
6412 */
5add95d4 6413SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6414{
6415 struct sched_param lp;
36c8b586 6416 struct task_struct *p;
3a5c359a 6417 int retval;
1da177e4
LT
6418
6419 if (!param || pid < 0)
3a5c359a 6420 return -EINVAL;
1da177e4
LT
6421
6422 read_lock(&tasklist_lock);
6423 p = find_process_by_pid(pid);
6424 retval = -ESRCH;
6425 if (!p)
6426 goto out_unlock;
6427
6428 retval = security_task_getscheduler(p);
6429 if (retval)
6430 goto out_unlock;
6431
6432 lp.sched_priority = p->rt_priority;
6433 read_unlock(&tasklist_lock);
6434
6435 /*
6436 * This one might sleep, we cannot do it with a spinlock held ...
6437 */
6438 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6439
1da177e4
LT
6440 return retval;
6441
6442out_unlock:
6443 read_unlock(&tasklist_lock);
6444 return retval;
6445}
6446
96f874e2 6447long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6448{
5a16f3d3 6449 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6450 struct task_struct *p;
6451 int retval;
1da177e4 6452
95402b38 6453 get_online_cpus();
1da177e4
LT
6454 read_lock(&tasklist_lock);
6455
6456 p = find_process_by_pid(pid);
6457 if (!p) {
6458 read_unlock(&tasklist_lock);
95402b38 6459 put_online_cpus();
1da177e4
LT
6460 return -ESRCH;
6461 }
6462
6463 /*
6464 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6465 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6466 * usage count and then drop tasklist_lock.
6467 */
6468 get_task_struct(p);
6469 read_unlock(&tasklist_lock);
6470
5a16f3d3
RR
6471 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6472 retval = -ENOMEM;
6473 goto out_put_task;
6474 }
6475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6476 retval = -ENOMEM;
6477 goto out_free_cpus_allowed;
6478 }
1da177e4 6479 retval = -EPERM;
c69e8d9c 6480 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6481 goto out_unlock;
6482
e7834f8f
DQ
6483 retval = security_task_setscheduler(p, 0, NULL);
6484 if (retval)
6485 goto out_unlock;
6486
5a16f3d3
RR
6487 cpuset_cpus_allowed(p, cpus_allowed);
6488 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6489 again:
5a16f3d3 6490 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6491
8707d8b8 6492 if (!retval) {
5a16f3d3
RR
6493 cpuset_cpus_allowed(p, cpus_allowed);
6494 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6495 /*
6496 * We must have raced with a concurrent cpuset
6497 * update. Just reset the cpus_allowed to the
6498 * cpuset's cpus_allowed
6499 */
5a16f3d3 6500 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6501 goto again;
6502 }
6503 }
1da177e4 6504out_unlock:
5a16f3d3
RR
6505 free_cpumask_var(new_mask);
6506out_free_cpus_allowed:
6507 free_cpumask_var(cpus_allowed);
6508out_put_task:
1da177e4 6509 put_task_struct(p);
95402b38 6510 put_online_cpus();
1da177e4
LT
6511 return retval;
6512}
6513
6514static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6515 struct cpumask *new_mask)
1da177e4 6516{
96f874e2
RR
6517 if (len < cpumask_size())
6518 cpumask_clear(new_mask);
6519 else if (len > cpumask_size())
6520 len = cpumask_size();
6521
1da177e4
LT
6522 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6523}
6524
6525/**
6526 * sys_sched_setaffinity - set the cpu affinity of a process
6527 * @pid: pid of the process
6528 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6529 * @user_mask_ptr: user-space pointer to the new cpu mask
6530 */
5add95d4
HC
6531SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6532 unsigned long __user *, user_mask_ptr)
1da177e4 6533{
5a16f3d3 6534 cpumask_var_t new_mask;
1da177e4
LT
6535 int retval;
6536
5a16f3d3
RR
6537 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6538 return -ENOMEM;
1da177e4 6539
5a16f3d3
RR
6540 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6541 if (retval == 0)
6542 retval = sched_setaffinity(pid, new_mask);
6543 free_cpumask_var(new_mask);
6544 return retval;
1da177e4
LT
6545}
6546
96f874e2 6547long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6548{
36c8b586 6549 struct task_struct *p;
1da177e4 6550 int retval;
1da177e4 6551
95402b38 6552 get_online_cpus();
1da177e4
LT
6553 read_lock(&tasklist_lock);
6554
6555 retval = -ESRCH;
6556 p = find_process_by_pid(pid);
6557 if (!p)
6558 goto out_unlock;
6559
e7834f8f
DQ
6560 retval = security_task_getscheduler(p);
6561 if (retval)
6562 goto out_unlock;
6563
96f874e2 6564 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6565
6566out_unlock:
6567 read_unlock(&tasklist_lock);
95402b38 6568 put_online_cpus();
1da177e4 6569
9531b62f 6570 return retval;
1da177e4
LT
6571}
6572
6573/**
6574 * sys_sched_getaffinity - get the cpu affinity of a process
6575 * @pid: pid of the process
6576 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6577 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6578 */
5add95d4
HC
6579SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6580 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6581{
6582 int ret;
f17c8607 6583 cpumask_var_t mask;
1da177e4 6584
f17c8607 6585 if (len < cpumask_size())
1da177e4
LT
6586 return -EINVAL;
6587
f17c8607
RR
6588 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6589 return -ENOMEM;
1da177e4 6590
f17c8607
RR
6591 ret = sched_getaffinity(pid, mask);
6592 if (ret == 0) {
6593 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6594 ret = -EFAULT;
6595 else
6596 ret = cpumask_size();
6597 }
6598 free_cpumask_var(mask);
1da177e4 6599
f17c8607 6600 return ret;
1da177e4
LT
6601}
6602
6603/**
6604 * sys_sched_yield - yield the current processor to other threads.
6605 *
dd41f596
IM
6606 * This function yields the current CPU to other tasks. If there are no
6607 * other threads running on this CPU then this function will return.
1da177e4 6608 */
5add95d4 6609SYSCALL_DEFINE0(sched_yield)
1da177e4 6610{
70b97a7f 6611 struct rq *rq = this_rq_lock();
1da177e4 6612
2d72376b 6613 schedstat_inc(rq, yld_count);
4530d7ab 6614 current->sched_class->yield_task(rq);
1da177e4
LT
6615
6616 /*
6617 * Since we are going to call schedule() anyway, there's
6618 * no need to preempt or enable interrupts:
6619 */
6620 __release(rq->lock);
8a25d5de 6621 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6622 _raw_spin_unlock(&rq->lock);
6623 preempt_enable_no_resched();
6624
6625 schedule();
6626
6627 return 0;
6628}
6629
d86ee480
PZ
6630static inline int should_resched(void)
6631{
6632 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6633}
6634
e7b38404 6635static void __cond_resched(void)
1da177e4 6636{
e7aaaa69
FW
6637 add_preempt_count(PREEMPT_ACTIVE);
6638 schedule();
6639 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6640}
6641
02b67cc3 6642int __sched _cond_resched(void)
1da177e4 6643{
d86ee480 6644 if (should_resched()) {
1da177e4
LT
6645 __cond_resched();
6646 return 1;
6647 }
6648 return 0;
6649}
02b67cc3 6650EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6651
6652/*
613afbf8 6653 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6654 * call schedule, and on return reacquire the lock.
6655 *
41a2d6cf 6656 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6657 * operations here to prevent schedule() from being called twice (once via
6658 * spin_unlock(), once by hand).
6659 */
613afbf8 6660int __cond_resched_lock(spinlock_t *lock)
1da177e4 6661{
d86ee480 6662 int resched = should_resched();
6df3cecb
JK
6663 int ret = 0;
6664
95c354fe 6665 if (spin_needbreak(lock) || resched) {
1da177e4 6666 spin_unlock(lock);
d86ee480 6667 if (resched)
95c354fe
NP
6668 __cond_resched();
6669 else
6670 cpu_relax();
6df3cecb 6671 ret = 1;
1da177e4 6672 spin_lock(lock);
1da177e4 6673 }
6df3cecb 6674 return ret;
1da177e4 6675}
613afbf8 6676EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6677
613afbf8 6678int __sched __cond_resched_softirq(void)
1da177e4
LT
6679{
6680 BUG_ON(!in_softirq());
6681
d86ee480 6682 if (should_resched()) {
98d82567 6683 local_bh_enable();
1da177e4
LT
6684 __cond_resched();
6685 local_bh_disable();
6686 return 1;
6687 }
6688 return 0;
6689}
613afbf8 6690EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6691
1da177e4
LT
6692/**
6693 * yield - yield the current processor to other threads.
6694 *
72fd4a35 6695 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6696 * thread runnable and calls sys_sched_yield().
6697 */
6698void __sched yield(void)
6699{
6700 set_current_state(TASK_RUNNING);
6701 sys_sched_yield();
6702}
1da177e4
LT
6703EXPORT_SYMBOL(yield);
6704
6705/*
41a2d6cf 6706 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6707 * that process accounting knows that this is a task in IO wait state.
6708 *
6709 * But don't do that if it is a deliberate, throttling IO wait (this task
6710 * has set its backing_dev_info: the queue against which it should throttle)
6711 */
6712void __sched io_schedule(void)
6713{
54d35f29 6714 struct rq *rq = raw_rq();
1da177e4 6715
0ff92245 6716 delayacct_blkio_start();
1da177e4
LT
6717 atomic_inc(&rq->nr_iowait);
6718 schedule();
6719 atomic_dec(&rq->nr_iowait);
0ff92245 6720 delayacct_blkio_end();
1da177e4 6721}
1da177e4
LT
6722EXPORT_SYMBOL(io_schedule);
6723
6724long __sched io_schedule_timeout(long timeout)
6725{
54d35f29 6726 struct rq *rq = raw_rq();
1da177e4
LT
6727 long ret;
6728
0ff92245 6729 delayacct_blkio_start();
1da177e4
LT
6730 atomic_inc(&rq->nr_iowait);
6731 ret = schedule_timeout(timeout);
6732 atomic_dec(&rq->nr_iowait);
0ff92245 6733 delayacct_blkio_end();
1da177e4
LT
6734 return ret;
6735}
6736
6737/**
6738 * sys_sched_get_priority_max - return maximum RT priority.
6739 * @policy: scheduling class.
6740 *
6741 * this syscall returns the maximum rt_priority that can be used
6742 * by a given scheduling class.
6743 */
5add95d4 6744SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6745{
6746 int ret = -EINVAL;
6747
6748 switch (policy) {
6749 case SCHED_FIFO:
6750 case SCHED_RR:
6751 ret = MAX_USER_RT_PRIO-1;
6752 break;
6753 case SCHED_NORMAL:
b0a9499c 6754 case SCHED_BATCH:
dd41f596 6755 case SCHED_IDLE:
1da177e4
LT
6756 ret = 0;
6757 break;
6758 }
6759 return ret;
6760}
6761
6762/**
6763 * sys_sched_get_priority_min - return minimum RT priority.
6764 * @policy: scheduling class.
6765 *
6766 * this syscall returns the minimum rt_priority that can be used
6767 * by a given scheduling class.
6768 */
5add95d4 6769SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6770{
6771 int ret = -EINVAL;
6772
6773 switch (policy) {
6774 case SCHED_FIFO:
6775 case SCHED_RR:
6776 ret = 1;
6777 break;
6778 case SCHED_NORMAL:
b0a9499c 6779 case SCHED_BATCH:
dd41f596 6780 case SCHED_IDLE:
1da177e4
LT
6781 ret = 0;
6782 }
6783 return ret;
6784}
6785
6786/**
6787 * sys_sched_rr_get_interval - return the default timeslice of a process.
6788 * @pid: pid of the process.
6789 * @interval: userspace pointer to the timeslice value.
6790 *
6791 * this syscall writes the default timeslice value of a given process
6792 * into the user-space timespec buffer. A value of '0' means infinity.
6793 */
17da2bd9 6794SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6795 struct timespec __user *, interval)
1da177e4 6796{
36c8b586 6797 struct task_struct *p;
a4ec24b4 6798 unsigned int time_slice;
3a5c359a 6799 int retval;
1da177e4 6800 struct timespec t;
1da177e4
LT
6801
6802 if (pid < 0)
3a5c359a 6803 return -EINVAL;
1da177e4
LT
6804
6805 retval = -ESRCH;
6806 read_lock(&tasklist_lock);
6807 p = find_process_by_pid(pid);
6808 if (!p)
6809 goto out_unlock;
6810
6811 retval = security_task_getscheduler(p);
6812 if (retval)
6813 goto out_unlock;
6814
77034937
IM
6815 /*
6816 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6817 * tasks that are on an otherwise idle runqueue:
6818 */
6819 time_slice = 0;
6820 if (p->policy == SCHED_RR) {
a4ec24b4 6821 time_slice = DEF_TIMESLICE;
1868f958 6822 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6823 struct sched_entity *se = &p->se;
6824 unsigned long flags;
6825 struct rq *rq;
6826
6827 rq = task_rq_lock(p, &flags);
77034937
IM
6828 if (rq->cfs.load.weight)
6829 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6830 task_rq_unlock(rq, &flags);
6831 }
1da177e4 6832 read_unlock(&tasklist_lock);
a4ec24b4 6833 jiffies_to_timespec(time_slice, &t);
1da177e4 6834 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6835 return retval;
3a5c359a 6836
1da177e4
LT
6837out_unlock:
6838 read_unlock(&tasklist_lock);
6839 return retval;
6840}
6841
7c731e0a 6842static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6843
82a1fcb9 6844void sched_show_task(struct task_struct *p)
1da177e4 6845{
1da177e4 6846 unsigned long free = 0;
36c8b586 6847 unsigned state;
1da177e4 6848
1da177e4 6849 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6850 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6851 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6852#if BITS_PER_LONG == 32
1da177e4 6853 if (state == TASK_RUNNING)
cc4ea795 6854 printk(KERN_CONT " running ");
1da177e4 6855 else
cc4ea795 6856 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6857#else
6858 if (state == TASK_RUNNING)
cc4ea795 6859 printk(KERN_CONT " running task ");
1da177e4 6860 else
cc4ea795 6861 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6862#endif
6863#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6864 free = stack_not_used(p);
1da177e4 6865#endif
aa47b7e0
DR
6866 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6867 task_pid_nr(p), task_pid_nr(p->real_parent),
6868 (unsigned long)task_thread_info(p)->flags);
1da177e4 6869
5fb5e6de 6870 show_stack(p, NULL);
1da177e4
LT
6871}
6872
e59e2ae2 6873void show_state_filter(unsigned long state_filter)
1da177e4 6874{
36c8b586 6875 struct task_struct *g, *p;
1da177e4 6876
4bd77321
IM
6877#if BITS_PER_LONG == 32
6878 printk(KERN_INFO
6879 " task PC stack pid father\n");
1da177e4 6880#else
4bd77321
IM
6881 printk(KERN_INFO
6882 " task PC stack pid father\n");
1da177e4
LT
6883#endif
6884 read_lock(&tasklist_lock);
6885 do_each_thread(g, p) {
6886 /*
6887 * reset the NMI-timeout, listing all files on a slow
6888 * console might take alot of time:
6889 */
6890 touch_nmi_watchdog();
39bc89fd 6891 if (!state_filter || (p->state & state_filter))
82a1fcb9 6892 sched_show_task(p);
1da177e4
LT
6893 } while_each_thread(g, p);
6894
04c9167f
JF
6895 touch_all_softlockup_watchdogs();
6896
dd41f596
IM
6897#ifdef CONFIG_SCHED_DEBUG
6898 sysrq_sched_debug_show();
6899#endif
1da177e4 6900 read_unlock(&tasklist_lock);
e59e2ae2
IM
6901 /*
6902 * Only show locks if all tasks are dumped:
6903 */
6904 if (state_filter == -1)
6905 debug_show_all_locks();
1da177e4
LT
6906}
6907
1df21055
IM
6908void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6909{
dd41f596 6910 idle->sched_class = &idle_sched_class;
1df21055
IM
6911}
6912
f340c0d1
IM
6913/**
6914 * init_idle - set up an idle thread for a given CPU
6915 * @idle: task in question
6916 * @cpu: cpu the idle task belongs to
6917 *
6918 * NOTE: this function does not set the idle thread's NEED_RESCHED
6919 * flag, to make booting more robust.
6920 */
5c1e1767 6921void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6922{
70b97a7f 6923 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6924 unsigned long flags;
6925
5cbd54ef
IM
6926 spin_lock_irqsave(&rq->lock, flags);
6927
dd41f596
IM
6928 __sched_fork(idle);
6929 idle->se.exec_start = sched_clock();
6930
b29739f9 6931 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6932 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6933 __set_task_cpu(idle, cpu);
1da177e4 6934
1da177e4 6935 rq->curr = rq->idle = idle;
4866cde0
NP
6936#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6937 idle->oncpu = 1;
6938#endif
1da177e4
LT
6939 spin_unlock_irqrestore(&rq->lock, flags);
6940
6941 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6942#if defined(CONFIG_PREEMPT)
6943 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6944#else
a1261f54 6945 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6946#endif
dd41f596
IM
6947 /*
6948 * The idle tasks have their own, simple scheduling class:
6949 */
6950 idle->sched_class = &idle_sched_class;
fb52607a 6951 ftrace_graph_init_task(idle);
1da177e4
LT
6952}
6953
6954/*
6955 * In a system that switches off the HZ timer nohz_cpu_mask
6956 * indicates which cpus entered this state. This is used
6957 * in the rcu update to wait only for active cpus. For system
6958 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6959 * always be CPU_BITS_NONE.
1da177e4 6960 */
6a7b3dc3 6961cpumask_var_t nohz_cpu_mask;
1da177e4 6962
19978ca6
IM
6963/*
6964 * Increase the granularity value when there are more CPUs,
6965 * because with more CPUs the 'effective latency' as visible
6966 * to users decreases. But the relationship is not linear,
6967 * so pick a second-best guess by going with the log2 of the
6968 * number of CPUs.
6969 *
6970 * This idea comes from the SD scheduler of Con Kolivas:
6971 */
6972static inline void sched_init_granularity(void)
6973{
6974 unsigned int factor = 1 + ilog2(num_online_cpus());
6975 const unsigned long limit = 200000000;
6976
6977 sysctl_sched_min_granularity *= factor;
6978 if (sysctl_sched_min_granularity > limit)
6979 sysctl_sched_min_granularity = limit;
6980
6981 sysctl_sched_latency *= factor;
6982 if (sysctl_sched_latency > limit)
6983 sysctl_sched_latency = limit;
6984
6985 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6986
6987 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6988}
6989
1da177e4
LT
6990#ifdef CONFIG_SMP
6991/*
6992 * This is how migration works:
6993 *
70b97a7f 6994 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6995 * runqueue and wake up that CPU's migration thread.
6996 * 2) we down() the locked semaphore => thread blocks.
6997 * 3) migration thread wakes up (implicitly it forces the migrated
6998 * thread off the CPU)
6999 * 4) it gets the migration request and checks whether the migrated
7000 * task is still in the wrong runqueue.
7001 * 5) if it's in the wrong runqueue then the migration thread removes
7002 * it and puts it into the right queue.
7003 * 6) migration thread up()s the semaphore.
7004 * 7) we wake up and the migration is done.
7005 */
7006
7007/*
7008 * Change a given task's CPU affinity. Migrate the thread to a
7009 * proper CPU and schedule it away if the CPU it's executing on
7010 * is removed from the allowed bitmask.
7011 *
7012 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7013 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7014 * call is not atomic; no spinlocks may be held.
7015 */
96f874e2 7016int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7017{
70b97a7f 7018 struct migration_req req;
1da177e4 7019 unsigned long flags;
70b97a7f 7020 struct rq *rq;
48f24c4d 7021 int ret = 0;
1da177e4
LT
7022
7023 rq = task_rq_lock(p, &flags);
96f874e2 7024 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7025 ret = -EINVAL;
7026 goto out;
7027 }
7028
9985b0ba 7029 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7030 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7031 ret = -EINVAL;
7032 goto out;
7033 }
7034
73fe6aae 7035 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7036 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7037 else {
96f874e2
RR
7038 cpumask_copy(&p->cpus_allowed, new_mask);
7039 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7040 }
7041
1da177e4 7042 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7043 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7044 goto out;
7045
1e5ce4f4 7046 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
7047 /* Need help from migration thread: drop lock and wait. */
7048 task_rq_unlock(rq, &flags);
7049 wake_up_process(rq->migration_thread);
7050 wait_for_completion(&req.done);
7051 tlb_migrate_finish(p->mm);
7052 return 0;
7053 }
7054out:
7055 task_rq_unlock(rq, &flags);
48f24c4d 7056
1da177e4
LT
7057 return ret;
7058}
cd8ba7cd 7059EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7060
7061/*
41a2d6cf 7062 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7063 * this because either it can't run here any more (set_cpus_allowed()
7064 * away from this CPU, or CPU going down), or because we're
7065 * attempting to rebalance this task on exec (sched_exec).
7066 *
7067 * So we race with normal scheduler movements, but that's OK, as long
7068 * as the task is no longer on this CPU.
efc30814
KK
7069 *
7070 * Returns non-zero if task was successfully migrated.
1da177e4 7071 */
efc30814 7072static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7073{
70b97a7f 7074 struct rq *rq_dest, *rq_src;
dd41f596 7075 int ret = 0, on_rq;
1da177e4 7076
e761b772 7077 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7078 return ret;
1da177e4
LT
7079
7080 rq_src = cpu_rq(src_cpu);
7081 rq_dest = cpu_rq(dest_cpu);
7082
7083 double_rq_lock(rq_src, rq_dest);
7084 /* Already moved. */
7085 if (task_cpu(p) != src_cpu)
b1e38734 7086 goto done;
1da177e4 7087 /* Affinity changed (again). */
96f874e2 7088 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7089 goto fail;
1da177e4 7090
dd41f596 7091 on_rq = p->se.on_rq;
6e82a3be 7092 if (on_rq)
2e1cb74a 7093 deactivate_task(rq_src, p, 0);
6e82a3be 7094
1da177e4 7095 set_task_cpu(p, dest_cpu);
dd41f596
IM
7096 if (on_rq) {
7097 activate_task(rq_dest, p, 0);
15afe09b 7098 check_preempt_curr(rq_dest, p, 0);
1da177e4 7099 }
b1e38734 7100done:
efc30814 7101 ret = 1;
b1e38734 7102fail:
1da177e4 7103 double_rq_unlock(rq_src, rq_dest);
efc30814 7104 return ret;
1da177e4
LT
7105}
7106
7107/*
7108 * migration_thread - this is a highprio system thread that performs
7109 * thread migration by bumping thread off CPU then 'pushing' onto
7110 * another runqueue.
7111 */
95cdf3b7 7112static int migration_thread(void *data)
1da177e4 7113{
1da177e4 7114 int cpu = (long)data;
70b97a7f 7115 struct rq *rq;
1da177e4
LT
7116
7117 rq = cpu_rq(cpu);
7118 BUG_ON(rq->migration_thread != current);
7119
7120 set_current_state(TASK_INTERRUPTIBLE);
7121 while (!kthread_should_stop()) {
70b97a7f 7122 struct migration_req *req;
1da177e4 7123 struct list_head *head;
1da177e4 7124
1da177e4
LT
7125 spin_lock_irq(&rq->lock);
7126
7127 if (cpu_is_offline(cpu)) {
7128 spin_unlock_irq(&rq->lock);
371cbb38 7129 break;
1da177e4
LT
7130 }
7131
7132 if (rq->active_balance) {
7133 active_load_balance(rq, cpu);
7134 rq->active_balance = 0;
7135 }
7136
7137 head = &rq->migration_queue;
7138
7139 if (list_empty(head)) {
7140 spin_unlock_irq(&rq->lock);
7141 schedule();
7142 set_current_state(TASK_INTERRUPTIBLE);
7143 continue;
7144 }
70b97a7f 7145 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7146 list_del_init(head->next);
7147
674311d5
NP
7148 spin_unlock(&rq->lock);
7149 __migrate_task(req->task, cpu, req->dest_cpu);
7150 local_irq_enable();
1da177e4
LT
7151
7152 complete(&req->done);
7153 }
7154 __set_current_state(TASK_RUNNING);
1da177e4 7155
1da177e4
LT
7156 return 0;
7157}
7158
7159#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7160
7161static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7162{
7163 int ret;
7164
7165 local_irq_disable();
7166 ret = __migrate_task(p, src_cpu, dest_cpu);
7167 local_irq_enable();
7168 return ret;
7169}
7170
054b9108 7171/*
3a4fa0a2 7172 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7173 */
48f24c4d 7174static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7175{
70b97a7f 7176 int dest_cpu;
6ca09dfc 7177 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7178
7179again:
7180 /* Look for allowed, online CPU in same node. */
7181 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7182 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7183 goto move;
7184
7185 /* Any allowed, online CPU? */
7186 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7187 if (dest_cpu < nr_cpu_ids)
7188 goto move;
7189
7190 /* No more Mr. Nice Guy. */
7191 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7192 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7193 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7194
e76bd8d9
RR
7195 /*
7196 * Don't tell them about moving exiting tasks or
7197 * kernel threads (both mm NULL), since they never
7198 * leave kernel.
7199 */
7200 if (p->mm && printk_ratelimit()) {
7201 printk(KERN_INFO "process %d (%s) no "
7202 "longer affine to cpu%d\n",
7203 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7204 }
e76bd8d9
RR
7205 }
7206
7207move:
7208 /* It can have affinity changed while we were choosing. */
7209 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7210 goto again;
1da177e4
LT
7211}
7212
7213/*
7214 * While a dead CPU has no uninterruptible tasks queued at this point,
7215 * it might still have a nonzero ->nr_uninterruptible counter, because
7216 * for performance reasons the counter is not stricly tracking tasks to
7217 * their home CPUs. So we just add the counter to another CPU's counter,
7218 * to keep the global sum constant after CPU-down:
7219 */
70b97a7f 7220static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7221{
1e5ce4f4 7222 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7223 unsigned long flags;
7224
7225 local_irq_save(flags);
7226 double_rq_lock(rq_src, rq_dest);
7227 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7228 rq_src->nr_uninterruptible = 0;
7229 double_rq_unlock(rq_src, rq_dest);
7230 local_irq_restore(flags);
7231}
7232
7233/* Run through task list and migrate tasks from the dead cpu. */
7234static void migrate_live_tasks(int src_cpu)
7235{
48f24c4d 7236 struct task_struct *p, *t;
1da177e4 7237
f7b4cddc 7238 read_lock(&tasklist_lock);
1da177e4 7239
48f24c4d
IM
7240 do_each_thread(t, p) {
7241 if (p == current)
1da177e4
LT
7242 continue;
7243
48f24c4d
IM
7244 if (task_cpu(p) == src_cpu)
7245 move_task_off_dead_cpu(src_cpu, p);
7246 } while_each_thread(t, p);
1da177e4 7247
f7b4cddc 7248 read_unlock(&tasklist_lock);
1da177e4
LT
7249}
7250
dd41f596
IM
7251/*
7252 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7253 * It does so by boosting its priority to highest possible.
7254 * Used by CPU offline code.
1da177e4
LT
7255 */
7256void sched_idle_next(void)
7257{
48f24c4d 7258 int this_cpu = smp_processor_id();
70b97a7f 7259 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7260 struct task_struct *p = rq->idle;
7261 unsigned long flags;
7262
7263 /* cpu has to be offline */
48f24c4d 7264 BUG_ON(cpu_online(this_cpu));
1da177e4 7265
48f24c4d
IM
7266 /*
7267 * Strictly not necessary since rest of the CPUs are stopped by now
7268 * and interrupts disabled on the current cpu.
1da177e4
LT
7269 */
7270 spin_lock_irqsave(&rq->lock, flags);
7271
dd41f596 7272 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7273
94bc9a7b
DA
7274 update_rq_clock(rq);
7275 activate_task(rq, p, 0);
1da177e4
LT
7276
7277 spin_unlock_irqrestore(&rq->lock, flags);
7278}
7279
48f24c4d
IM
7280/*
7281 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7282 * offline.
7283 */
7284void idle_task_exit(void)
7285{
7286 struct mm_struct *mm = current->active_mm;
7287
7288 BUG_ON(cpu_online(smp_processor_id()));
7289
7290 if (mm != &init_mm)
7291 switch_mm(mm, &init_mm, current);
7292 mmdrop(mm);
7293}
7294
054b9108 7295/* called under rq->lock with disabled interrupts */
36c8b586 7296static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7297{
70b97a7f 7298 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7299
7300 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7301 BUG_ON(!p->exit_state);
1da177e4
LT
7302
7303 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7304 BUG_ON(p->state == TASK_DEAD);
1da177e4 7305
48f24c4d 7306 get_task_struct(p);
1da177e4
LT
7307
7308 /*
7309 * Drop lock around migration; if someone else moves it,
41a2d6cf 7310 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7311 * fine.
7312 */
f7b4cddc 7313 spin_unlock_irq(&rq->lock);
48f24c4d 7314 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7315 spin_lock_irq(&rq->lock);
1da177e4 7316
48f24c4d 7317 put_task_struct(p);
1da177e4
LT
7318}
7319
7320/* release_task() removes task from tasklist, so we won't find dead tasks. */
7321static void migrate_dead_tasks(unsigned int dead_cpu)
7322{
70b97a7f 7323 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7324 struct task_struct *next;
48f24c4d 7325
dd41f596
IM
7326 for ( ; ; ) {
7327 if (!rq->nr_running)
7328 break;
a8e504d2 7329 update_rq_clock(rq);
b67802ea 7330 next = pick_next_task(rq);
dd41f596
IM
7331 if (!next)
7332 break;
79c53799 7333 next->sched_class->put_prev_task(rq, next);
dd41f596 7334 migrate_dead(dead_cpu, next);
e692ab53 7335
1da177e4
LT
7336 }
7337}
dce48a84
TG
7338
7339/*
7340 * remove the tasks which were accounted by rq from calc_load_tasks.
7341 */
7342static void calc_global_load_remove(struct rq *rq)
7343{
7344 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7345 rq->calc_load_active = 0;
dce48a84 7346}
1da177e4
LT
7347#endif /* CONFIG_HOTPLUG_CPU */
7348
e692ab53
NP
7349#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7350
7351static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7352 {
7353 .procname = "sched_domain",
c57baf1e 7354 .mode = 0555,
e0361851 7355 },
38605cae 7356 {0, },
e692ab53
NP
7357};
7358
7359static struct ctl_table sd_ctl_root[] = {
e0361851 7360 {
c57baf1e 7361 .ctl_name = CTL_KERN,
e0361851 7362 .procname = "kernel",
c57baf1e 7363 .mode = 0555,
e0361851
AD
7364 .child = sd_ctl_dir,
7365 },
38605cae 7366 {0, },
e692ab53
NP
7367};
7368
7369static struct ctl_table *sd_alloc_ctl_entry(int n)
7370{
7371 struct ctl_table *entry =
5cf9f062 7372 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7373
e692ab53
NP
7374 return entry;
7375}
7376
6382bc90
MM
7377static void sd_free_ctl_entry(struct ctl_table **tablep)
7378{
cd790076 7379 struct ctl_table *entry;
6382bc90 7380
cd790076
MM
7381 /*
7382 * In the intermediate directories, both the child directory and
7383 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7384 * will always be set. In the lowest directory the names are
cd790076
MM
7385 * static strings and all have proc handlers.
7386 */
7387 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7388 if (entry->child)
7389 sd_free_ctl_entry(&entry->child);
cd790076
MM
7390 if (entry->proc_handler == NULL)
7391 kfree(entry->procname);
7392 }
6382bc90
MM
7393
7394 kfree(*tablep);
7395 *tablep = NULL;
7396}
7397
e692ab53 7398static void
e0361851 7399set_table_entry(struct ctl_table *entry,
e692ab53
NP
7400 const char *procname, void *data, int maxlen,
7401 mode_t mode, proc_handler *proc_handler)
7402{
e692ab53
NP
7403 entry->procname = procname;
7404 entry->data = data;
7405 entry->maxlen = maxlen;
7406 entry->mode = mode;
7407 entry->proc_handler = proc_handler;
7408}
7409
7410static struct ctl_table *
7411sd_alloc_ctl_domain_table(struct sched_domain *sd)
7412{
a5d8c348 7413 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7414
ad1cdc1d
MM
7415 if (table == NULL)
7416 return NULL;
7417
e0361851 7418 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7419 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7420 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7421 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7422 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7423 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7424 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7425 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7426 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7427 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7428 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7429 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7430 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7431 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7432 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7433 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7434 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7435 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7436 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7437 &sd->cache_nice_tries,
7438 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7439 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7440 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7441 set_table_entry(&table[11], "name", sd->name,
7442 CORENAME_MAX_SIZE, 0444, proc_dostring);
7443 /* &table[12] is terminator */
e692ab53
NP
7444
7445 return table;
7446}
7447
9a4e7159 7448static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7449{
7450 struct ctl_table *entry, *table;
7451 struct sched_domain *sd;
7452 int domain_num = 0, i;
7453 char buf[32];
7454
7455 for_each_domain(cpu, sd)
7456 domain_num++;
7457 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7458 if (table == NULL)
7459 return NULL;
e692ab53
NP
7460
7461 i = 0;
7462 for_each_domain(cpu, sd) {
7463 snprintf(buf, 32, "domain%d", i);
e692ab53 7464 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7465 entry->mode = 0555;
e692ab53
NP
7466 entry->child = sd_alloc_ctl_domain_table(sd);
7467 entry++;
7468 i++;
7469 }
7470 return table;
7471}
7472
7473static struct ctl_table_header *sd_sysctl_header;
6382bc90 7474static void register_sched_domain_sysctl(void)
e692ab53
NP
7475{
7476 int i, cpu_num = num_online_cpus();
7477 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7478 char buf[32];
7479
7378547f
MM
7480 WARN_ON(sd_ctl_dir[0].child);
7481 sd_ctl_dir[0].child = entry;
7482
ad1cdc1d
MM
7483 if (entry == NULL)
7484 return;
7485
97b6ea7b 7486 for_each_online_cpu(i) {
e692ab53 7487 snprintf(buf, 32, "cpu%d", i);
e692ab53 7488 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7489 entry->mode = 0555;
e692ab53 7490 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7491 entry++;
e692ab53 7492 }
7378547f
MM
7493
7494 WARN_ON(sd_sysctl_header);
e692ab53
NP
7495 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7496}
6382bc90 7497
7378547f 7498/* may be called multiple times per register */
6382bc90
MM
7499static void unregister_sched_domain_sysctl(void)
7500{
7378547f
MM
7501 if (sd_sysctl_header)
7502 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7503 sd_sysctl_header = NULL;
7378547f
MM
7504 if (sd_ctl_dir[0].child)
7505 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7506}
e692ab53 7507#else
6382bc90
MM
7508static void register_sched_domain_sysctl(void)
7509{
7510}
7511static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7512{
7513}
7514#endif
7515
1f11eb6a
GH
7516static void set_rq_online(struct rq *rq)
7517{
7518 if (!rq->online) {
7519 const struct sched_class *class;
7520
c6c4927b 7521 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7522 rq->online = 1;
7523
7524 for_each_class(class) {
7525 if (class->rq_online)
7526 class->rq_online(rq);
7527 }
7528 }
7529}
7530
7531static void set_rq_offline(struct rq *rq)
7532{
7533 if (rq->online) {
7534 const struct sched_class *class;
7535
7536 for_each_class(class) {
7537 if (class->rq_offline)
7538 class->rq_offline(rq);
7539 }
7540
c6c4927b 7541 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7542 rq->online = 0;
7543 }
7544}
7545
1da177e4
LT
7546/*
7547 * migration_call - callback that gets triggered when a CPU is added.
7548 * Here we can start up the necessary migration thread for the new CPU.
7549 */
48f24c4d
IM
7550static int __cpuinit
7551migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7552{
1da177e4 7553 struct task_struct *p;
48f24c4d 7554 int cpu = (long)hcpu;
1da177e4 7555 unsigned long flags;
70b97a7f 7556 struct rq *rq;
1da177e4
LT
7557
7558 switch (action) {
5be9361c 7559
1da177e4 7560 case CPU_UP_PREPARE:
8bb78442 7561 case CPU_UP_PREPARE_FROZEN:
dd41f596 7562 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7563 if (IS_ERR(p))
7564 return NOTIFY_BAD;
1da177e4
LT
7565 kthread_bind(p, cpu);
7566 /* Must be high prio: stop_machine expects to yield to it. */
7567 rq = task_rq_lock(p, &flags);
dd41f596 7568 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7569 task_rq_unlock(rq, &flags);
371cbb38 7570 get_task_struct(p);
1da177e4 7571 cpu_rq(cpu)->migration_thread = p;
a468d389 7572 rq->calc_load_update = calc_load_update;
1da177e4 7573 break;
48f24c4d 7574
1da177e4 7575 case CPU_ONLINE:
8bb78442 7576 case CPU_ONLINE_FROZEN:
3a4fa0a2 7577 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7578 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7579
7580 /* Update our root-domain */
7581 rq = cpu_rq(cpu);
7582 spin_lock_irqsave(&rq->lock, flags);
7583 if (rq->rd) {
c6c4927b 7584 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7585
7586 set_rq_online(rq);
1f94ef59
GH
7587 }
7588 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7589 break;
48f24c4d 7590
1da177e4
LT
7591#ifdef CONFIG_HOTPLUG_CPU
7592 case CPU_UP_CANCELED:
8bb78442 7593 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7594 if (!cpu_rq(cpu)->migration_thread)
7595 break;
41a2d6cf 7596 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7597 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7598 cpumask_any(cpu_online_mask));
1da177e4 7599 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7600 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7601 cpu_rq(cpu)->migration_thread = NULL;
7602 break;
48f24c4d 7603
1da177e4 7604 case CPU_DEAD:
8bb78442 7605 case CPU_DEAD_FROZEN:
470fd646 7606 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7607 migrate_live_tasks(cpu);
7608 rq = cpu_rq(cpu);
7609 kthread_stop(rq->migration_thread);
371cbb38 7610 put_task_struct(rq->migration_thread);
1da177e4
LT
7611 rq->migration_thread = NULL;
7612 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7613 spin_lock_irq(&rq->lock);
a8e504d2 7614 update_rq_clock(rq);
2e1cb74a 7615 deactivate_task(rq, rq->idle, 0);
1da177e4 7616 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7617 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7618 rq->idle->sched_class = &idle_sched_class;
1da177e4 7619 migrate_dead_tasks(cpu);
d2da272a 7620 spin_unlock_irq(&rq->lock);
470fd646 7621 cpuset_unlock();
1da177e4
LT
7622 migrate_nr_uninterruptible(rq);
7623 BUG_ON(rq->nr_running != 0);
dce48a84 7624 calc_global_load_remove(rq);
41a2d6cf
IM
7625 /*
7626 * No need to migrate the tasks: it was best-effort if
7627 * they didn't take sched_hotcpu_mutex. Just wake up
7628 * the requestors.
7629 */
1da177e4
LT
7630 spin_lock_irq(&rq->lock);
7631 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7632 struct migration_req *req;
7633
1da177e4 7634 req = list_entry(rq->migration_queue.next,
70b97a7f 7635 struct migration_req, list);
1da177e4 7636 list_del_init(&req->list);
9a2bd244 7637 spin_unlock_irq(&rq->lock);
1da177e4 7638 complete(&req->done);
9a2bd244 7639 spin_lock_irq(&rq->lock);
1da177e4
LT
7640 }
7641 spin_unlock_irq(&rq->lock);
7642 break;
57d885fe 7643
08f503b0
GH
7644 case CPU_DYING:
7645 case CPU_DYING_FROZEN:
57d885fe
GH
7646 /* Update our root-domain */
7647 rq = cpu_rq(cpu);
7648 spin_lock_irqsave(&rq->lock, flags);
7649 if (rq->rd) {
c6c4927b 7650 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7651 set_rq_offline(rq);
57d885fe
GH
7652 }
7653 spin_unlock_irqrestore(&rq->lock, flags);
7654 break;
1da177e4
LT
7655#endif
7656 }
7657 return NOTIFY_OK;
7658}
7659
f38b0820
PM
7660/*
7661 * Register at high priority so that task migration (migrate_all_tasks)
7662 * happens before everything else. This has to be lower priority than
7663 * the notifier in the perf_counter subsystem, though.
1da177e4 7664 */
26c2143b 7665static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7666 .notifier_call = migration_call,
7667 .priority = 10
7668};
7669
7babe8db 7670static int __init migration_init(void)
1da177e4
LT
7671{
7672 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7673 int err;
48f24c4d
IM
7674
7675 /* Start one for the boot CPU: */
07dccf33
AM
7676 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7677 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7678 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7679 register_cpu_notifier(&migration_notifier);
7babe8db 7680
a004cd42 7681 return 0;
1da177e4 7682}
7babe8db 7683early_initcall(migration_init);
1da177e4
LT
7684#endif
7685
7686#ifdef CONFIG_SMP
476f3534 7687
3e9830dc 7688#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7689
7c16ec58 7690static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7691 struct cpumask *groupmask)
1da177e4 7692{
4dcf6aff 7693 struct sched_group *group = sd->groups;
434d53b0 7694 char str[256];
1da177e4 7695
968ea6d8 7696 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7697 cpumask_clear(groupmask);
4dcf6aff
IM
7698
7699 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7700
7701 if (!(sd->flags & SD_LOAD_BALANCE)) {
7702 printk("does not load-balance\n");
7703 if (sd->parent)
7704 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7705 " has parent");
7706 return -1;
41c7ce9a
NP
7707 }
7708
eefd796a 7709 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7710
758b2cdc 7711 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7712 printk(KERN_ERR "ERROR: domain->span does not contain "
7713 "CPU%d\n", cpu);
7714 }
758b2cdc 7715 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7716 printk(KERN_ERR "ERROR: domain->groups does not contain"
7717 " CPU%d\n", cpu);
7718 }
1da177e4 7719
4dcf6aff 7720 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7721 do {
4dcf6aff
IM
7722 if (!group) {
7723 printk("\n");
7724 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7725 break;
7726 }
7727
4dcf6aff
IM
7728 if (!group->__cpu_power) {
7729 printk(KERN_CONT "\n");
7730 printk(KERN_ERR "ERROR: domain->cpu_power not "
7731 "set\n");
7732 break;
7733 }
1da177e4 7734
758b2cdc 7735 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7736 printk(KERN_CONT "\n");
7737 printk(KERN_ERR "ERROR: empty group\n");
7738 break;
7739 }
1da177e4 7740
758b2cdc 7741 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7742 printk(KERN_CONT "\n");
7743 printk(KERN_ERR "ERROR: repeated CPUs\n");
7744 break;
7745 }
1da177e4 7746
758b2cdc 7747 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7748
968ea6d8 7749 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7750
7751 printk(KERN_CONT " %s", str);
7752 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7753 printk(KERN_CONT " (__cpu_power = %d)",
7754 group->__cpu_power);
7755 }
1da177e4 7756
4dcf6aff
IM
7757 group = group->next;
7758 } while (group != sd->groups);
7759 printk(KERN_CONT "\n");
1da177e4 7760
758b2cdc 7761 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7762 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7763
758b2cdc
RR
7764 if (sd->parent &&
7765 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7766 printk(KERN_ERR "ERROR: parent span is not a superset "
7767 "of domain->span\n");
7768 return 0;
7769}
1da177e4 7770
4dcf6aff
IM
7771static void sched_domain_debug(struct sched_domain *sd, int cpu)
7772{
d5dd3db1 7773 cpumask_var_t groupmask;
4dcf6aff 7774 int level = 0;
1da177e4 7775
4dcf6aff
IM
7776 if (!sd) {
7777 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7778 return;
7779 }
1da177e4 7780
4dcf6aff
IM
7781 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7782
d5dd3db1 7783 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7784 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7785 return;
7786 }
7787
4dcf6aff 7788 for (;;) {
7c16ec58 7789 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7790 break;
1da177e4
LT
7791 level++;
7792 sd = sd->parent;
33859f7f 7793 if (!sd)
4dcf6aff
IM
7794 break;
7795 }
d5dd3db1 7796 free_cpumask_var(groupmask);
1da177e4 7797}
6d6bc0ad 7798#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7799# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7800#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7801
1a20ff27 7802static int sd_degenerate(struct sched_domain *sd)
245af2c7 7803{
758b2cdc 7804 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7805 return 1;
7806
7807 /* Following flags need at least 2 groups */
7808 if (sd->flags & (SD_LOAD_BALANCE |
7809 SD_BALANCE_NEWIDLE |
7810 SD_BALANCE_FORK |
89c4710e
SS
7811 SD_BALANCE_EXEC |
7812 SD_SHARE_CPUPOWER |
7813 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7814 if (sd->groups != sd->groups->next)
7815 return 0;
7816 }
7817
7818 /* Following flags don't use groups */
7819 if (sd->flags & (SD_WAKE_IDLE |
7820 SD_WAKE_AFFINE |
7821 SD_WAKE_BALANCE))
7822 return 0;
7823
7824 return 1;
7825}
7826
48f24c4d
IM
7827static int
7828sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7829{
7830 unsigned long cflags = sd->flags, pflags = parent->flags;
7831
7832 if (sd_degenerate(parent))
7833 return 1;
7834
758b2cdc 7835 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7836 return 0;
7837
7838 /* Does parent contain flags not in child? */
7839 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7840 if (cflags & SD_WAKE_AFFINE)
7841 pflags &= ~SD_WAKE_BALANCE;
7842 /* Flags needing groups don't count if only 1 group in parent */
7843 if (parent->groups == parent->groups->next) {
7844 pflags &= ~(SD_LOAD_BALANCE |
7845 SD_BALANCE_NEWIDLE |
7846 SD_BALANCE_FORK |
89c4710e
SS
7847 SD_BALANCE_EXEC |
7848 SD_SHARE_CPUPOWER |
7849 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7850 if (nr_node_ids == 1)
7851 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7852 }
7853 if (~cflags & pflags)
7854 return 0;
7855
7856 return 1;
7857}
7858
c6c4927b
RR
7859static void free_rootdomain(struct root_domain *rd)
7860{
68e74568
RR
7861 cpupri_cleanup(&rd->cpupri);
7862
c6c4927b
RR
7863 free_cpumask_var(rd->rto_mask);
7864 free_cpumask_var(rd->online);
7865 free_cpumask_var(rd->span);
7866 kfree(rd);
7867}
7868
57d885fe
GH
7869static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7870{
a0490fa3 7871 struct root_domain *old_rd = NULL;
57d885fe 7872 unsigned long flags;
57d885fe
GH
7873
7874 spin_lock_irqsave(&rq->lock, flags);
7875
7876 if (rq->rd) {
a0490fa3 7877 old_rd = rq->rd;
57d885fe 7878
c6c4927b 7879 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7880 set_rq_offline(rq);
57d885fe 7881
c6c4927b 7882 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7883
a0490fa3
IM
7884 /*
7885 * If we dont want to free the old_rt yet then
7886 * set old_rd to NULL to skip the freeing later
7887 * in this function:
7888 */
7889 if (!atomic_dec_and_test(&old_rd->refcount))
7890 old_rd = NULL;
57d885fe
GH
7891 }
7892
7893 atomic_inc(&rd->refcount);
7894 rq->rd = rd;
7895
c6c4927b
RR
7896 cpumask_set_cpu(rq->cpu, rd->span);
7897 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7898 set_rq_online(rq);
57d885fe
GH
7899
7900 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7901
7902 if (old_rd)
7903 free_rootdomain(old_rd);
57d885fe
GH
7904}
7905
fd5e1b5d 7906static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7907{
36b7b6d4
PE
7908 gfp_t gfp = GFP_KERNEL;
7909
57d885fe
GH
7910 memset(rd, 0, sizeof(*rd));
7911
36b7b6d4
PE
7912 if (bootmem)
7913 gfp = GFP_NOWAIT;
c6c4927b 7914
36b7b6d4 7915 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7916 goto out;
36b7b6d4 7917 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7918 goto free_span;
36b7b6d4 7919 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7920 goto free_online;
6e0534f2 7921
0fb53029 7922 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7923 goto free_rto_mask;
c6c4927b 7924 return 0;
6e0534f2 7925
68e74568
RR
7926free_rto_mask:
7927 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7928free_online:
7929 free_cpumask_var(rd->online);
7930free_span:
7931 free_cpumask_var(rd->span);
0c910d28 7932out:
c6c4927b 7933 return -ENOMEM;
57d885fe
GH
7934}
7935
7936static void init_defrootdomain(void)
7937{
c6c4927b
RR
7938 init_rootdomain(&def_root_domain, true);
7939
57d885fe
GH
7940 atomic_set(&def_root_domain.refcount, 1);
7941}
7942
dc938520 7943static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7944{
7945 struct root_domain *rd;
7946
7947 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7948 if (!rd)
7949 return NULL;
7950
c6c4927b
RR
7951 if (init_rootdomain(rd, false) != 0) {
7952 kfree(rd);
7953 return NULL;
7954 }
57d885fe
GH
7955
7956 return rd;
7957}
7958
1da177e4 7959/*
0eab9146 7960 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7961 * hold the hotplug lock.
7962 */
0eab9146
IM
7963static void
7964cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7965{
70b97a7f 7966 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7967 struct sched_domain *tmp;
7968
7969 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7970 for (tmp = sd; tmp; ) {
245af2c7
SS
7971 struct sched_domain *parent = tmp->parent;
7972 if (!parent)
7973 break;
f29c9b1c 7974
1a848870 7975 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7976 tmp->parent = parent->parent;
1a848870
SS
7977 if (parent->parent)
7978 parent->parent->child = tmp;
f29c9b1c
LZ
7979 } else
7980 tmp = tmp->parent;
245af2c7
SS
7981 }
7982
1a848870 7983 if (sd && sd_degenerate(sd)) {
245af2c7 7984 sd = sd->parent;
1a848870
SS
7985 if (sd)
7986 sd->child = NULL;
7987 }
1da177e4
LT
7988
7989 sched_domain_debug(sd, cpu);
7990
57d885fe 7991 rq_attach_root(rq, rd);
674311d5 7992 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7993}
7994
7995/* cpus with isolated domains */
dcc30a35 7996static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7997
7998/* Setup the mask of cpus configured for isolated domains */
7999static int __init isolated_cpu_setup(char *str)
8000{
968ea6d8 8001 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8002 return 1;
8003}
8004
8927f494 8005__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8006
8007/*
6711cab4
SS
8008 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8009 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8010 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8011 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8012 *
8013 * init_sched_build_groups will build a circular linked list of the groups
8014 * covered by the given span, and will set each group's ->cpumask correctly,
8015 * and ->cpu_power to 0.
8016 */
a616058b 8017static void
96f874e2
RR
8018init_sched_build_groups(const struct cpumask *span,
8019 const struct cpumask *cpu_map,
8020 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8021 struct sched_group **sg,
96f874e2
RR
8022 struct cpumask *tmpmask),
8023 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8024{
8025 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8026 int i;
8027
96f874e2 8028 cpumask_clear(covered);
7c16ec58 8029
abcd083a 8030 for_each_cpu(i, span) {
6711cab4 8031 struct sched_group *sg;
7c16ec58 8032 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8033 int j;
8034
758b2cdc 8035 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8036 continue;
8037
758b2cdc 8038 cpumask_clear(sched_group_cpus(sg));
5517d86b 8039 sg->__cpu_power = 0;
1da177e4 8040
abcd083a 8041 for_each_cpu(j, span) {
7c16ec58 8042 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8043 continue;
8044
96f874e2 8045 cpumask_set_cpu(j, covered);
758b2cdc 8046 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8047 }
8048 if (!first)
8049 first = sg;
8050 if (last)
8051 last->next = sg;
8052 last = sg;
8053 }
8054 last->next = first;
8055}
8056
9c1cfda2 8057#define SD_NODES_PER_DOMAIN 16
1da177e4 8058
9c1cfda2 8059#ifdef CONFIG_NUMA
198e2f18 8060
9c1cfda2
JH
8061/**
8062 * find_next_best_node - find the next node to include in a sched_domain
8063 * @node: node whose sched_domain we're building
8064 * @used_nodes: nodes already in the sched_domain
8065 *
41a2d6cf 8066 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8067 * finds the closest node not already in the @used_nodes map.
8068 *
8069 * Should use nodemask_t.
8070 */
c5f59f08 8071static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8072{
8073 int i, n, val, min_val, best_node = 0;
8074
8075 min_val = INT_MAX;
8076
076ac2af 8077 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8078 /* Start at @node */
076ac2af 8079 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8080
8081 if (!nr_cpus_node(n))
8082 continue;
8083
8084 /* Skip already used nodes */
c5f59f08 8085 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8086 continue;
8087
8088 /* Simple min distance search */
8089 val = node_distance(node, n);
8090
8091 if (val < min_val) {
8092 min_val = val;
8093 best_node = n;
8094 }
8095 }
8096
c5f59f08 8097 node_set(best_node, *used_nodes);
9c1cfda2
JH
8098 return best_node;
8099}
8100
8101/**
8102 * sched_domain_node_span - get a cpumask for a node's sched_domain
8103 * @node: node whose cpumask we're constructing
73486722 8104 * @span: resulting cpumask
9c1cfda2 8105 *
41a2d6cf 8106 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8107 * should be one that prevents unnecessary balancing, but also spreads tasks
8108 * out optimally.
8109 */
96f874e2 8110static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8111{
c5f59f08 8112 nodemask_t used_nodes;
48f24c4d 8113 int i;
9c1cfda2 8114
6ca09dfc 8115 cpumask_clear(span);
c5f59f08 8116 nodes_clear(used_nodes);
9c1cfda2 8117
6ca09dfc 8118 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8119 node_set(node, used_nodes);
9c1cfda2
JH
8120
8121 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8122 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8123
6ca09dfc 8124 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8125 }
9c1cfda2 8126}
6d6bc0ad 8127#endif /* CONFIG_NUMA */
9c1cfda2 8128
5c45bf27 8129int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8130
6c99e9ad
RR
8131/*
8132 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8133 *
8134 * ( See the the comments in include/linux/sched.h:struct sched_group
8135 * and struct sched_domain. )
6c99e9ad
RR
8136 */
8137struct static_sched_group {
8138 struct sched_group sg;
8139 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8140};
8141
8142struct static_sched_domain {
8143 struct sched_domain sd;
8144 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8145};
8146
9c1cfda2 8147/*
48f24c4d 8148 * SMT sched-domains:
9c1cfda2 8149 */
1da177e4 8150#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8151static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8152static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8153
41a2d6cf 8154static int
96f874e2
RR
8155cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8156 struct sched_group **sg, struct cpumask *unused)
1da177e4 8157{
6711cab4 8158 if (sg)
6c99e9ad 8159 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8160 return cpu;
8161}
6d6bc0ad 8162#endif /* CONFIG_SCHED_SMT */
1da177e4 8163
48f24c4d
IM
8164/*
8165 * multi-core sched-domains:
8166 */
1e9f28fa 8167#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8168static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8169static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8170#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8171
8172#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8173static int
96f874e2
RR
8174cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8175 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8176{
6711cab4 8177 int group;
7c16ec58 8178
c69fc56d 8179 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8180 group = cpumask_first(mask);
6711cab4 8181 if (sg)
6c99e9ad 8182 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8183 return group;
1e9f28fa
SS
8184}
8185#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8186static int
96f874e2
RR
8187cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8188 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8189{
6711cab4 8190 if (sg)
6c99e9ad 8191 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8192 return cpu;
8193}
8194#endif
8195
6c99e9ad
RR
8196static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8197static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8198
41a2d6cf 8199static int
96f874e2
RR
8200cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8201 struct sched_group **sg, struct cpumask *mask)
1da177e4 8202{
6711cab4 8203 int group;
48f24c4d 8204#ifdef CONFIG_SCHED_MC
6ca09dfc 8205 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8206 group = cpumask_first(mask);
1e9f28fa 8207#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8208 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8209 group = cpumask_first(mask);
1da177e4 8210#else
6711cab4 8211 group = cpu;
1da177e4 8212#endif
6711cab4 8213 if (sg)
6c99e9ad 8214 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8215 return group;
1da177e4
LT
8216}
8217
8218#ifdef CONFIG_NUMA
1da177e4 8219/*
9c1cfda2
JH
8220 * The init_sched_build_groups can't handle what we want to do with node
8221 * groups, so roll our own. Now each node has its own list of groups which
8222 * gets dynamically allocated.
1da177e4 8223 */
62ea9ceb 8224static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8225static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8226
62ea9ceb 8227static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8228static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8229
96f874e2
RR
8230static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8231 struct sched_group **sg,
8232 struct cpumask *nodemask)
9c1cfda2 8233{
6711cab4
SS
8234 int group;
8235
6ca09dfc 8236 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8237 group = cpumask_first(nodemask);
6711cab4
SS
8238
8239 if (sg)
6c99e9ad 8240 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8241 return group;
1da177e4 8242}
6711cab4 8243
08069033
SS
8244static void init_numa_sched_groups_power(struct sched_group *group_head)
8245{
8246 struct sched_group *sg = group_head;
8247 int j;
8248
8249 if (!sg)
8250 return;
3a5c359a 8251 do {
758b2cdc 8252 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8253 struct sched_domain *sd;
08069033 8254
6c99e9ad 8255 sd = &per_cpu(phys_domains, j).sd;
13318a71 8256 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8257 /*
8258 * Only add "power" once for each
8259 * physical package.
8260 */
8261 continue;
8262 }
08069033 8263
3a5c359a
AK
8264 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8265 }
8266 sg = sg->next;
8267 } while (sg != group_head);
08069033 8268}
6d6bc0ad 8269#endif /* CONFIG_NUMA */
1da177e4 8270
a616058b 8271#ifdef CONFIG_NUMA
51888ca2 8272/* Free memory allocated for various sched_group structures */
96f874e2
RR
8273static void free_sched_groups(const struct cpumask *cpu_map,
8274 struct cpumask *nodemask)
51888ca2 8275{
a616058b 8276 int cpu, i;
51888ca2 8277
abcd083a 8278 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8279 struct sched_group **sched_group_nodes
8280 = sched_group_nodes_bycpu[cpu];
8281
51888ca2
SV
8282 if (!sched_group_nodes)
8283 continue;
8284
076ac2af 8285 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8286 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8287
6ca09dfc 8288 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8289 if (cpumask_empty(nodemask))
51888ca2
SV
8290 continue;
8291
8292 if (sg == NULL)
8293 continue;
8294 sg = sg->next;
8295next_sg:
8296 oldsg = sg;
8297 sg = sg->next;
8298 kfree(oldsg);
8299 if (oldsg != sched_group_nodes[i])
8300 goto next_sg;
8301 }
8302 kfree(sched_group_nodes);
8303 sched_group_nodes_bycpu[cpu] = NULL;
8304 }
51888ca2 8305}
6d6bc0ad 8306#else /* !CONFIG_NUMA */
96f874e2
RR
8307static void free_sched_groups(const struct cpumask *cpu_map,
8308 struct cpumask *nodemask)
a616058b
SS
8309{
8310}
6d6bc0ad 8311#endif /* CONFIG_NUMA */
51888ca2 8312
89c4710e
SS
8313/*
8314 * Initialize sched groups cpu_power.
8315 *
8316 * cpu_power indicates the capacity of sched group, which is used while
8317 * distributing the load between different sched groups in a sched domain.
8318 * Typically cpu_power for all the groups in a sched domain will be same unless
8319 * there are asymmetries in the topology. If there are asymmetries, group
8320 * having more cpu_power will pickup more load compared to the group having
8321 * less cpu_power.
8322 *
8323 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8324 * the maximum number of tasks a group can handle in the presence of other idle
8325 * or lightly loaded groups in the same sched domain.
8326 */
8327static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8328{
8329 struct sched_domain *child;
8330 struct sched_group *group;
8331
8332 WARN_ON(!sd || !sd->groups);
8333
13318a71 8334 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8335 return;
8336
8337 child = sd->child;
8338
5517d86b
ED
8339 sd->groups->__cpu_power = 0;
8340
89c4710e
SS
8341 /*
8342 * For perf policy, if the groups in child domain share resources
8343 * (for example cores sharing some portions of the cache hierarchy
8344 * or SMT), then set this domain groups cpu_power such that each group
8345 * can handle only one task, when there are other idle groups in the
8346 * same sched domain.
8347 */
8348 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8349 (child->flags &
8350 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8351 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8352 return;
8353 }
8354
89c4710e
SS
8355 /*
8356 * add cpu_power of each child group to this groups cpu_power
8357 */
8358 group = child->groups;
8359 do {
5517d86b 8360 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8361 group = group->next;
8362 } while (group != child->groups);
8363}
8364
7c16ec58
MT
8365/*
8366 * Initializers for schedule domains
8367 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8368 */
8369
a5d8c348
IM
8370#ifdef CONFIG_SCHED_DEBUG
8371# define SD_INIT_NAME(sd, type) sd->name = #type
8372#else
8373# define SD_INIT_NAME(sd, type) do { } while (0)
8374#endif
8375
7c16ec58 8376#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8377
7c16ec58
MT
8378#define SD_INIT_FUNC(type) \
8379static noinline void sd_init_##type(struct sched_domain *sd) \
8380{ \
8381 memset(sd, 0, sizeof(*sd)); \
8382 *sd = SD_##type##_INIT; \
1d3504fc 8383 sd->level = SD_LV_##type; \
a5d8c348 8384 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8385}
8386
8387SD_INIT_FUNC(CPU)
8388#ifdef CONFIG_NUMA
8389 SD_INIT_FUNC(ALLNODES)
8390 SD_INIT_FUNC(NODE)
8391#endif
8392#ifdef CONFIG_SCHED_SMT
8393 SD_INIT_FUNC(SIBLING)
8394#endif
8395#ifdef CONFIG_SCHED_MC
8396 SD_INIT_FUNC(MC)
8397#endif
8398
1d3504fc
HS
8399static int default_relax_domain_level = -1;
8400
8401static int __init setup_relax_domain_level(char *str)
8402{
30e0e178
LZ
8403 unsigned long val;
8404
8405 val = simple_strtoul(str, NULL, 0);
8406 if (val < SD_LV_MAX)
8407 default_relax_domain_level = val;
8408
1d3504fc
HS
8409 return 1;
8410}
8411__setup("relax_domain_level=", setup_relax_domain_level);
8412
8413static void set_domain_attribute(struct sched_domain *sd,
8414 struct sched_domain_attr *attr)
8415{
8416 int request;
8417
8418 if (!attr || attr->relax_domain_level < 0) {
8419 if (default_relax_domain_level < 0)
8420 return;
8421 else
8422 request = default_relax_domain_level;
8423 } else
8424 request = attr->relax_domain_level;
8425 if (request < sd->level) {
8426 /* turn off idle balance on this domain */
8427 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8428 } else {
8429 /* turn on idle balance on this domain */
8430 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8431 }
8432}
8433
1da177e4 8434/*
1a20ff27
DG
8435 * Build sched domains for a given set of cpus and attach the sched domains
8436 * to the individual cpus
1da177e4 8437 */
96f874e2 8438static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8439 struct sched_domain_attr *attr)
1da177e4 8440{
3404c8d9 8441 int i, err = -ENOMEM;
57d885fe 8442 struct root_domain *rd;
3404c8d9
RR
8443 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8444 tmpmask;
d1b55138 8445#ifdef CONFIG_NUMA
3404c8d9 8446 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8447 struct sched_group **sched_group_nodes = NULL;
6711cab4 8448 int sd_allnodes = 0;
d1b55138 8449
3404c8d9
RR
8450 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8451 goto out;
8452 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8453 goto free_domainspan;
8454 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8455 goto free_covered;
8456#endif
8457
8458 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8459 goto free_notcovered;
8460 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8461 goto free_nodemask;
8462 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8463 goto free_this_sibling_map;
8464 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8465 goto free_this_core_map;
8466 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8467 goto free_send_covered;
8468
8469#ifdef CONFIG_NUMA
d1b55138
JH
8470 /*
8471 * Allocate the per-node list of sched groups
8472 */
076ac2af 8473 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8474 GFP_KERNEL);
d1b55138
JH
8475 if (!sched_group_nodes) {
8476 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8477 goto free_tmpmask;
d1b55138 8478 }
d1b55138 8479#endif
1da177e4 8480
dc938520 8481 rd = alloc_rootdomain();
57d885fe
GH
8482 if (!rd) {
8483 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8484 goto free_sched_groups;
57d885fe
GH
8485 }
8486
7c16ec58 8487#ifdef CONFIG_NUMA
96f874e2 8488 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8489#endif
8490
1da177e4 8491 /*
1a20ff27 8492 * Set up domains for cpus specified by the cpu_map.
1da177e4 8493 */
abcd083a 8494 for_each_cpu(i, cpu_map) {
1da177e4 8495 struct sched_domain *sd = NULL, *p;
1da177e4 8496
6ca09dfc 8497 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8498
8499#ifdef CONFIG_NUMA
96f874e2
RR
8500 if (cpumask_weight(cpu_map) >
8501 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8502 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8503 SD_INIT(sd, ALLNODES);
1d3504fc 8504 set_domain_attribute(sd, attr);
758b2cdc 8505 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8506 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8507 p = sd;
6711cab4 8508 sd_allnodes = 1;
9c1cfda2
JH
8509 } else
8510 p = NULL;
8511
62ea9ceb 8512 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8513 SD_INIT(sd, NODE);
1d3504fc 8514 set_domain_attribute(sd, attr);
758b2cdc 8515 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8516 sd->parent = p;
1a848870
SS
8517 if (p)
8518 p->child = sd;
758b2cdc
RR
8519 cpumask_and(sched_domain_span(sd),
8520 sched_domain_span(sd), cpu_map);
1da177e4
LT
8521#endif
8522
8523 p = sd;
6c99e9ad 8524 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8525 SD_INIT(sd, CPU);
1d3504fc 8526 set_domain_attribute(sd, attr);
758b2cdc 8527 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8528 sd->parent = p;
1a848870
SS
8529 if (p)
8530 p->child = sd;
7c16ec58 8531 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8532
1e9f28fa
SS
8533#ifdef CONFIG_SCHED_MC
8534 p = sd;
6c99e9ad 8535 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8536 SD_INIT(sd, MC);
1d3504fc 8537 set_domain_attribute(sd, attr);
6ca09dfc
MT
8538 cpumask_and(sched_domain_span(sd), cpu_map,
8539 cpu_coregroup_mask(i));
1e9f28fa 8540 sd->parent = p;
1a848870 8541 p->child = sd;
7c16ec58 8542 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8543#endif
8544
1da177e4
LT
8545#ifdef CONFIG_SCHED_SMT
8546 p = sd;
6c99e9ad 8547 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8548 SD_INIT(sd, SIBLING);
1d3504fc 8549 set_domain_attribute(sd, attr);
758b2cdc 8550 cpumask_and(sched_domain_span(sd),
c69fc56d 8551 topology_thread_cpumask(i), cpu_map);
1da177e4 8552 sd->parent = p;
1a848870 8553 p->child = sd;
7c16ec58 8554 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8555#endif
8556 }
8557
8558#ifdef CONFIG_SCHED_SMT
8559 /* Set up CPU (sibling) groups */
abcd083a 8560 for_each_cpu(i, cpu_map) {
96f874e2 8561 cpumask_and(this_sibling_map,
c69fc56d 8562 topology_thread_cpumask(i), cpu_map);
96f874e2 8563 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8564 continue;
8565
dd41f596 8566 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8567 &cpu_to_cpu_group,
8568 send_covered, tmpmask);
1da177e4
LT
8569 }
8570#endif
8571
1e9f28fa
SS
8572#ifdef CONFIG_SCHED_MC
8573 /* Set up multi-core groups */
abcd083a 8574 for_each_cpu(i, cpu_map) {
6ca09dfc 8575 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8576 if (i != cpumask_first(this_core_map))
1e9f28fa 8577 continue;
7c16ec58 8578
dd41f596 8579 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8580 &cpu_to_core_group,
8581 send_covered, tmpmask);
1e9f28fa
SS
8582 }
8583#endif
8584
1da177e4 8585 /* Set up physical groups */
076ac2af 8586 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8587 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8588 if (cpumask_empty(nodemask))
1da177e4
LT
8589 continue;
8590
7c16ec58
MT
8591 init_sched_build_groups(nodemask, cpu_map,
8592 &cpu_to_phys_group,
8593 send_covered, tmpmask);
1da177e4
LT
8594 }
8595
8596#ifdef CONFIG_NUMA
8597 /* Set up node groups */
7c16ec58 8598 if (sd_allnodes) {
7c16ec58
MT
8599 init_sched_build_groups(cpu_map, cpu_map,
8600 &cpu_to_allnodes_group,
8601 send_covered, tmpmask);
8602 }
9c1cfda2 8603
076ac2af 8604 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8605 /* Set up node groups */
8606 struct sched_group *sg, *prev;
9c1cfda2
JH
8607 int j;
8608
96f874e2 8609 cpumask_clear(covered);
6ca09dfc 8610 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8611 if (cpumask_empty(nodemask)) {
d1b55138 8612 sched_group_nodes[i] = NULL;
9c1cfda2 8613 continue;
d1b55138 8614 }
9c1cfda2 8615
4bdbaad3 8616 sched_domain_node_span(i, domainspan);
96f874e2 8617 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8618
6c99e9ad
RR
8619 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8620 GFP_KERNEL, i);
51888ca2
SV
8621 if (!sg) {
8622 printk(KERN_WARNING "Can not alloc domain group for "
8623 "node %d\n", i);
8624 goto error;
8625 }
9c1cfda2 8626 sched_group_nodes[i] = sg;
abcd083a 8627 for_each_cpu(j, nodemask) {
9c1cfda2 8628 struct sched_domain *sd;
9761eea8 8629
62ea9ceb 8630 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8631 sd->groups = sg;
9c1cfda2 8632 }
5517d86b 8633 sg->__cpu_power = 0;
758b2cdc 8634 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8635 sg->next = sg;
96f874e2 8636 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8637 prev = sg;
8638
076ac2af 8639 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8640 int n = (i + j) % nr_node_ids;
9c1cfda2 8641
96f874e2
RR
8642 cpumask_complement(notcovered, covered);
8643 cpumask_and(tmpmask, notcovered, cpu_map);
8644 cpumask_and(tmpmask, tmpmask, domainspan);
8645 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8646 break;
8647
6ca09dfc 8648 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8649 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8650 continue;
8651
6c99e9ad
RR
8652 sg = kmalloc_node(sizeof(struct sched_group) +
8653 cpumask_size(),
15f0b676 8654 GFP_KERNEL, i);
9c1cfda2
JH
8655 if (!sg) {
8656 printk(KERN_WARNING
8657 "Can not alloc domain group for node %d\n", j);
51888ca2 8658 goto error;
9c1cfda2 8659 }
5517d86b 8660 sg->__cpu_power = 0;
758b2cdc 8661 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8662 sg->next = prev->next;
96f874e2 8663 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8664 prev->next = sg;
8665 prev = sg;
8666 }
9c1cfda2 8667 }
1da177e4
LT
8668#endif
8669
8670 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8671#ifdef CONFIG_SCHED_SMT
abcd083a 8672 for_each_cpu(i, cpu_map) {
6c99e9ad 8673 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8674
89c4710e 8675 init_sched_groups_power(i, sd);
5c45bf27 8676 }
1da177e4 8677#endif
1e9f28fa 8678#ifdef CONFIG_SCHED_MC
abcd083a 8679 for_each_cpu(i, cpu_map) {
6c99e9ad 8680 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8681
89c4710e 8682 init_sched_groups_power(i, sd);
5c45bf27
SS
8683 }
8684#endif
1e9f28fa 8685
abcd083a 8686 for_each_cpu(i, cpu_map) {
6c99e9ad 8687 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8688
89c4710e 8689 init_sched_groups_power(i, sd);
1da177e4
LT
8690 }
8691
9c1cfda2 8692#ifdef CONFIG_NUMA
076ac2af 8693 for (i = 0; i < nr_node_ids; i++)
08069033 8694 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8695
6711cab4
SS
8696 if (sd_allnodes) {
8697 struct sched_group *sg;
f712c0c7 8698
96f874e2 8699 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8700 tmpmask);
f712c0c7
SS
8701 init_numa_sched_groups_power(sg);
8702 }
9c1cfda2
JH
8703#endif
8704
1da177e4 8705 /* Attach the domains */
abcd083a 8706 for_each_cpu(i, cpu_map) {
1da177e4
LT
8707 struct sched_domain *sd;
8708#ifdef CONFIG_SCHED_SMT
6c99e9ad 8709 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8710#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8711 sd = &per_cpu(core_domains, i).sd;
1da177e4 8712#else
6c99e9ad 8713 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8714#endif
57d885fe 8715 cpu_attach_domain(sd, rd, i);
1da177e4 8716 }
51888ca2 8717
3404c8d9
RR
8718 err = 0;
8719
8720free_tmpmask:
8721 free_cpumask_var(tmpmask);
8722free_send_covered:
8723 free_cpumask_var(send_covered);
8724free_this_core_map:
8725 free_cpumask_var(this_core_map);
8726free_this_sibling_map:
8727 free_cpumask_var(this_sibling_map);
8728free_nodemask:
8729 free_cpumask_var(nodemask);
8730free_notcovered:
8731#ifdef CONFIG_NUMA
8732 free_cpumask_var(notcovered);
8733free_covered:
8734 free_cpumask_var(covered);
8735free_domainspan:
8736 free_cpumask_var(domainspan);
8737out:
8738#endif
8739 return err;
8740
8741free_sched_groups:
8742#ifdef CONFIG_NUMA
8743 kfree(sched_group_nodes);
8744#endif
8745 goto free_tmpmask;
51888ca2 8746
a616058b 8747#ifdef CONFIG_NUMA
51888ca2 8748error:
7c16ec58 8749 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8750 free_rootdomain(rd);
3404c8d9 8751 goto free_tmpmask;
a616058b 8752#endif
1da177e4 8753}
029190c5 8754
96f874e2 8755static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8756{
8757 return __build_sched_domains(cpu_map, NULL);
8758}
8759
96f874e2 8760static struct cpumask *doms_cur; /* current sched domains */
029190c5 8761static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8762static struct sched_domain_attr *dattr_cur;
8763 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8764
8765/*
8766 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8767 * cpumask) fails, then fallback to a single sched domain,
8768 * as determined by the single cpumask fallback_doms.
029190c5 8769 */
4212823f 8770static cpumask_var_t fallback_doms;
029190c5 8771
ee79d1bd
HC
8772/*
8773 * arch_update_cpu_topology lets virtualized architectures update the
8774 * cpu core maps. It is supposed to return 1 if the topology changed
8775 * or 0 if it stayed the same.
8776 */
8777int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8778{
ee79d1bd 8779 return 0;
22e52b07
HC
8780}
8781
1a20ff27 8782/*
41a2d6cf 8783 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8784 * For now this just excludes isolated cpus, but could be used to
8785 * exclude other special cases in the future.
1a20ff27 8786 */
96f874e2 8787static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8788{
7378547f
MM
8789 int err;
8790
22e52b07 8791 arch_update_cpu_topology();
029190c5 8792 ndoms_cur = 1;
96f874e2 8793 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8794 if (!doms_cur)
4212823f 8795 doms_cur = fallback_doms;
dcc30a35 8796 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8797 dattr_cur = NULL;
7378547f 8798 err = build_sched_domains(doms_cur);
6382bc90 8799 register_sched_domain_sysctl();
7378547f
MM
8800
8801 return err;
1a20ff27
DG
8802}
8803
96f874e2
RR
8804static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8805 struct cpumask *tmpmask)
1da177e4 8806{
7c16ec58 8807 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8808}
1da177e4 8809
1a20ff27
DG
8810/*
8811 * Detach sched domains from a group of cpus specified in cpu_map
8812 * These cpus will now be attached to the NULL domain
8813 */
96f874e2 8814static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8815{
96f874e2
RR
8816 /* Save because hotplug lock held. */
8817 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8818 int i;
8819
abcd083a 8820 for_each_cpu(i, cpu_map)
57d885fe 8821 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8822 synchronize_sched();
96f874e2 8823 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8824}
8825
1d3504fc
HS
8826/* handle null as "default" */
8827static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8828 struct sched_domain_attr *new, int idx_new)
8829{
8830 struct sched_domain_attr tmp;
8831
8832 /* fast path */
8833 if (!new && !cur)
8834 return 1;
8835
8836 tmp = SD_ATTR_INIT;
8837 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8838 new ? (new + idx_new) : &tmp,
8839 sizeof(struct sched_domain_attr));
8840}
8841
029190c5
PJ
8842/*
8843 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8844 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8845 * doms_new[] to the current sched domain partitioning, doms_cur[].
8846 * It destroys each deleted domain and builds each new domain.
8847 *
96f874e2 8848 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8849 * The masks don't intersect (don't overlap.) We should setup one
8850 * sched domain for each mask. CPUs not in any of the cpumasks will
8851 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8852 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8853 * it as it is.
8854 *
41a2d6cf
IM
8855 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8856 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8857 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8858 * ndoms_new == 1, and partition_sched_domains() will fallback to
8859 * the single partition 'fallback_doms', it also forces the domains
8860 * to be rebuilt.
029190c5 8861 *
96f874e2 8862 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8863 * ndoms_new == 0 is a special case for destroying existing domains,
8864 * and it will not create the default domain.
dfb512ec 8865 *
029190c5
PJ
8866 * Call with hotplug lock held
8867 */
96f874e2
RR
8868/* FIXME: Change to struct cpumask *doms_new[] */
8869void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8870 struct sched_domain_attr *dattr_new)
029190c5 8871{
dfb512ec 8872 int i, j, n;
d65bd5ec 8873 int new_topology;
029190c5 8874
712555ee 8875 mutex_lock(&sched_domains_mutex);
a1835615 8876
7378547f
MM
8877 /* always unregister in case we don't destroy any domains */
8878 unregister_sched_domain_sysctl();
8879
d65bd5ec
HC
8880 /* Let architecture update cpu core mappings. */
8881 new_topology = arch_update_cpu_topology();
8882
dfb512ec 8883 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8884
8885 /* Destroy deleted domains */
8886 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8887 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8888 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8889 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8890 goto match1;
8891 }
8892 /* no match - a current sched domain not in new doms_new[] */
8893 detach_destroy_domains(doms_cur + i);
8894match1:
8895 ;
8896 }
8897
e761b772
MK
8898 if (doms_new == NULL) {
8899 ndoms_cur = 0;
4212823f 8900 doms_new = fallback_doms;
dcc30a35 8901 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8902 WARN_ON_ONCE(dattr_new);
e761b772
MK
8903 }
8904
029190c5
PJ
8905 /* Build new domains */
8906 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8907 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8908 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8909 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8910 goto match2;
8911 }
8912 /* no match - add a new doms_new */
1d3504fc
HS
8913 __build_sched_domains(doms_new + i,
8914 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8915match2:
8916 ;
8917 }
8918
8919 /* Remember the new sched domains */
4212823f 8920 if (doms_cur != fallback_doms)
029190c5 8921 kfree(doms_cur);
1d3504fc 8922 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8923 doms_cur = doms_new;
1d3504fc 8924 dattr_cur = dattr_new;
029190c5 8925 ndoms_cur = ndoms_new;
7378547f
MM
8926
8927 register_sched_domain_sysctl();
a1835615 8928
712555ee 8929 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8930}
8931
5c45bf27 8932#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8933static void arch_reinit_sched_domains(void)
5c45bf27 8934{
95402b38 8935 get_online_cpus();
dfb512ec
MK
8936
8937 /* Destroy domains first to force the rebuild */
8938 partition_sched_domains(0, NULL, NULL);
8939
e761b772 8940 rebuild_sched_domains();
95402b38 8941 put_online_cpus();
5c45bf27
SS
8942}
8943
8944static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8945{
afb8a9b7 8946 unsigned int level = 0;
5c45bf27 8947
afb8a9b7
GS
8948 if (sscanf(buf, "%u", &level) != 1)
8949 return -EINVAL;
8950
8951 /*
8952 * level is always be positive so don't check for
8953 * level < POWERSAVINGS_BALANCE_NONE which is 0
8954 * What happens on 0 or 1 byte write,
8955 * need to check for count as well?
8956 */
8957
8958 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8959 return -EINVAL;
8960
8961 if (smt)
afb8a9b7 8962 sched_smt_power_savings = level;
5c45bf27 8963 else
afb8a9b7 8964 sched_mc_power_savings = level;
5c45bf27 8965
c70f22d2 8966 arch_reinit_sched_domains();
5c45bf27 8967
c70f22d2 8968 return count;
5c45bf27
SS
8969}
8970
5c45bf27 8971#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8972static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8973 char *page)
5c45bf27
SS
8974{
8975 return sprintf(page, "%u\n", sched_mc_power_savings);
8976}
f718cd4a 8977static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8978 const char *buf, size_t count)
5c45bf27
SS
8979{
8980 return sched_power_savings_store(buf, count, 0);
8981}
f718cd4a
AK
8982static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8983 sched_mc_power_savings_show,
8984 sched_mc_power_savings_store);
5c45bf27
SS
8985#endif
8986
8987#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8988static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8989 char *page)
5c45bf27
SS
8990{
8991 return sprintf(page, "%u\n", sched_smt_power_savings);
8992}
f718cd4a 8993static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8994 const char *buf, size_t count)
5c45bf27
SS
8995{
8996 return sched_power_savings_store(buf, count, 1);
8997}
f718cd4a
AK
8998static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8999 sched_smt_power_savings_show,
6707de00
AB
9000 sched_smt_power_savings_store);
9001#endif
9002
39aac648 9003int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9004{
9005 int err = 0;
9006
9007#ifdef CONFIG_SCHED_SMT
9008 if (smt_capable())
9009 err = sysfs_create_file(&cls->kset.kobj,
9010 &attr_sched_smt_power_savings.attr);
9011#endif
9012#ifdef CONFIG_SCHED_MC
9013 if (!err && mc_capable())
9014 err = sysfs_create_file(&cls->kset.kobj,
9015 &attr_sched_mc_power_savings.attr);
9016#endif
9017 return err;
9018}
6d6bc0ad 9019#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9020
e761b772 9021#ifndef CONFIG_CPUSETS
1da177e4 9022/*
e761b772
MK
9023 * Add online and remove offline CPUs from the scheduler domains.
9024 * When cpusets are enabled they take over this function.
1da177e4
LT
9025 */
9026static int update_sched_domains(struct notifier_block *nfb,
9027 unsigned long action, void *hcpu)
e761b772
MK
9028{
9029 switch (action) {
9030 case CPU_ONLINE:
9031 case CPU_ONLINE_FROZEN:
9032 case CPU_DEAD:
9033 case CPU_DEAD_FROZEN:
dfb512ec 9034 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9035 return NOTIFY_OK;
9036
9037 default:
9038 return NOTIFY_DONE;
9039 }
9040}
9041#endif
9042
9043static int update_runtime(struct notifier_block *nfb,
9044 unsigned long action, void *hcpu)
1da177e4 9045{
7def2be1
PZ
9046 int cpu = (int)(long)hcpu;
9047
1da177e4 9048 switch (action) {
1da177e4 9049 case CPU_DOWN_PREPARE:
8bb78442 9050 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9051 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9052 return NOTIFY_OK;
9053
1da177e4 9054 case CPU_DOWN_FAILED:
8bb78442 9055 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9056 case CPU_ONLINE:
8bb78442 9057 case CPU_ONLINE_FROZEN:
7def2be1 9058 enable_runtime(cpu_rq(cpu));
e761b772
MK
9059 return NOTIFY_OK;
9060
1da177e4
LT
9061 default:
9062 return NOTIFY_DONE;
9063 }
1da177e4 9064}
1da177e4
LT
9065
9066void __init sched_init_smp(void)
9067{
dcc30a35
RR
9068 cpumask_var_t non_isolated_cpus;
9069
9070 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9071
434d53b0
MT
9072#if defined(CONFIG_NUMA)
9073 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9074 GFP_KERNEL);
9075 BUG_ON(sched_group_nodes_bycpu == NULL);
9076#endif
95402b38 9077 get_online_cpus();
712555ee 9078 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9079 arch_init_sched_domains(cpu_online_mask);
9080 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9081 if (cpumask_empty(non_isolated_cpus))
9082 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9083 mutex_unlock(&sched_domains_mutex);
95402b38 9084 put_online_cpus();
e761b772
MK
9085
9086#ifndef CONFIG_CPUSETS
1da177e4
LT
9087 /* XXX: Theoretical race here - CPU may be hotplugged now */
9088 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9089#endif
9090
9091 /* RT runtime code needs to handle some hotplug events */
9092 hotcpu_notifier(update_runtime, 0);
9093
b328ca18 9094 init_hrtick();
5c1e1767
NP
9095
9096 /* Move init over to a non-isolated CPU */
dcc30a35 9097 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9098 BUG();
19978ca6 9099 sched_init_granularity();
dcc30a35 9100 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9101
9102 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9103 init_sched_rt_class();
1da177e4
LT
9104}
9105#else
9106void __init sched_init_smp(void)
9107{
19978ca6 9108 sched_init_granularity();
1da177e4
LT
9109}
9110#endif /* CONFIG_SMP */
9111
cd1bb94b
AB
9112const_debug unsigned int sysctl_timer_migration = 1;
9113
1da177e4
LT
9114int in_sched_functions(unsigned long addr)
9115{
1da177e4
LT
9116 return in_lock_functions(addr) ||
9117 (addr >= (unsigned long)__sched_text_start
9118 && addr < (unsigned long)__sched_text_end);
9119}
9120
a9957449 9121static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9122{
9123 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9124 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9125#ifdef CONFIG_FAIR_GROUP_SCHED
9126 cfs_rq->rq = rq;
9127#endif
67e9fb2a 9128 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9129}
9130
fa85ae24
PZ
9131static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9132{
9133 struct rt_prio_array *array;
9134 int i;
9135
9136 array = &rt_rq->active;
9137 for (i = 0; i < MAX_RT_PRIO; i++) {
9138 INIT_LIST_HEAD(array->queue + i);
9139 __clear_bit(i, array->bitmap);
9140 }
9141 /* delimiter for bitsearch: */
9142 __set_bit(MAX_RT_PRIO, array->bitmap);
9143
052f1dc7 9144#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9145 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9146#ifdef CONFIG_SMP
e864c499 9147 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9148#endif
48d5e258 9149#endif
fa85ae24
PZ
9150#ifdef CONFIG_SMP
9151 rt_rq->rt_nr_migratory = 0;
fa85ae24 9152 rt_rq->overloaded = 0;
c20b08e3 9153 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9154#endif
9155
9156 rt_rq->rt_time = 0;
9157 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9158 rt_rq->rt_runtime = 0;
9159 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9160
052f1dc7 9161#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9162 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9163 rt_rq->rq = rq;
9164#endif
fa85ae24
PZ
9165}
9166
6f505b16 9167#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9168static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9169 struct sched_entity *se, int cpu, int add,
9170 struct sched_entity *parent)
6f505b16 9171{
ec7dc8ac 9172 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9173 tg->cfs_rq[cpu] = cfs_rq;
9174 init_cfs_rq(cfs_rq, rq);
9175 cfs_rq->tg = tg;
9176 if (add)
9177 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9178
9179 tg->se[cpu] = se;
354d60c2
DG
9180 /* se could be NULL for init_task_group */
9181 if (!se)
9182 return;
9183
ec7dc8ac
DG
9184 if (!parent)
9185 se->cfs_rq = &rq->cfs;
9186 else
9187 se->cfs_rq = parent->my_q;
9188
6f505b16
PZ
9189 se->my_q = cfs_rq;
9190 se->load.weight = tg->shares;
e05510d0 9191 se->load.inv_weight = 0;
ec7dc8ac 9192 se->parent = parent;
6f505b16 9193}
052f1dc7 9194#endif
6f505b16 9195
052f1dc7 9196#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9197static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9198 struct sched_rt_entity *rt_se, int cpu, int add,
9199 struct sched_rt_entity *parent)
6f505b16 9200{
ec7dc8ac
DG
9201 struct rq *rq = cpu_rq(cpu);
9202
6f505b16
PZ
9203 tg->rt_rq[cpu] = rt_rq;
9204 init_rt_rq(rt_rq, rq);
9205 rt_rq->tg = tg;
9206 rt_rq->rt_se = rt_se;
ac086bc2 9207 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9208 if (add)
9209 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9210
9211 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9212 if (!rt_se)
9213 return;
9214
ec7dc8ac
DG
9215 if (!parent)
9216 rt_se->rt_rq = &rq->rt;
9217 else
9218 rt_se->rt_rq = parent->my_q;
9219
6f505b16 9220 rt_se->my_q = rt_rq;
ec7dc8ac 9221 rt_se->parent = parent;
6f505b16
PZ
9222 INIT_LIST_HEAD(&rt_se->run_list);
9223}
9224#endif
9225
1da177e4
LT
9226void __init sched_init(void)
9227{
dd41f596 9228 int i, j;
434d53b0
MT
9229 unsigned long alloc_size = 0, ptr;
9230
9231#ifdef CONFIG_FAIR_GROUP_SCHED
9232 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9233#endif
9234#ifdef CONFIG_RT_GROUP_SCHED
9235 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9236#endif
9237#ifdef CONFIG_USER_SCHED
9238 alloc_size *= 2;
df7c8e84
RR
9239#endif
9240#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9241 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9242#endif
9243 /*
9244 * As sched_init() is called before page_alloc is setup,
9245 * we use alloc_bootmem().
9246 */
9247 if (alloc_size) {
36b7b6d4 9248 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9249
9250#ifdef CONFIG_FAIR_GROUP_SCHED
9251 init_task_group.se = (struct sched_entity **)ptr;
9252 ptr += nr_cpu_ids * sizeof(void **);
9253
9254 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9255 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9256
9257#ifdef CONFIG_USER_SCHED
9258 root_task_group.se = (struct sched_entity **)ptr;
9259 ptr += nr_cpu_ids * sizeof(void **);
9260
9261 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9262 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9263#endif /* CONFIG_USER_SCHED */
9264#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9265#ifdef CONFIG_RT_GROUP_SCHED
9266 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9267 ptr += nr_cpu_ids * sizeof(void **);
9268
9269 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9270 ptr += nr_cpu_ids * sizeof(void **);
9271
9272#ifdef CONFIG_USER_SCHED
9273 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9274 ptr += nr_cpu_ids * sizeof(void **);
9275
9276 root_task_group.rt_rq = (struct rt_rq **)ptr;
9277 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9278#endif /* CONFIG_USER_SCHED */
9279#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9280#ifdef CONFIG_CPUMASK_OFFSTACK
9281 for_each_possible_cpu(i) {
9282 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9283 ptr += cpumask_size();
9284 }
9285#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9286 }
dd41f596 9287
57d885fe
GH
9288#ifdef CONFIG_SMP
9289 init_defrootdomain();
9290#endif
9291
d0b27fa7
PZ
9292 init_rt_bandwidth(&def_rt_bandwidth,
9293 global_rt_period(), global_rt_runtime());
9294
9295#ifdef CONFIG_RT_GROUP_SCHED
9296 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9297 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9298#ifdef CONFIG_USER_SCHED
9299 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9300 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9301#endif /* CONFIG_USER_SCHED */
9302#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9303
052f1dc7 9304#ifdef CONFIG_GROUP_SCHED
6f505b16 9305 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9306 INIT_LIST_HEAD(&init_task_group.children);
9307
9308#ifdef CONFIG_USER_SCHED
9309 INIT_LIST_HEAD(&root_task_group.children);
9310 init_task_group.parent = &root_task_group;
9311 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9312#endif /* CONFIG_USER_SCHED */
9313#endif /* CONFIG_GROUP_SCHED */
6f505b16 9314
0a945022 9315 for_each_possible_cpu(i) {
70b97a7f 9316 struct rq *rq;
1da177e4
LT
9317
9318 rq = cpu_rq(i);
9319 spin_lock_init(&rq->lock);
7897986b 9320 rq->nr_running = 0;
dce48a84
TG
9321 rq->calc_load_active = 0;
9322 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9323 init_cfs_rq(&rq->cfs, rq);
6f505b16 9324 init_rt_rq(&rq->rt, rq);
dd41f596 9325#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9326 init_task_group.shares = init_task_group_load;
6f505b16 9327 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9328#ifdef CONFIG_CGROUP_SCHED
9329 /*
9330 * How much cpu bandwidth does init_task_group get?
9331 *
9332 * In case of task-groups formed thr' the cgroup filesystem, it
9333 * gets 100% of the cpu resources in the system. This overall
9334 * system cpu resource is divided among the tasks of
9335 * init_task_group and its child task-groups in a fair manner,
9336 * based on each entity's (task or task-group's) weight
9337 * (se->load.weight).
9338 *
9339 * In other words, if init_task_group has 10 tasks of weight
9340 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9341 * then A0's share of the cpu resource is:
9342 *
0d905bca 9343 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9344 *
9345 * We achieve this by letting init_task_group's tasks sit
9346 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9347 */
ec7dc8ac 9348 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9349#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9350 root_task_group.shares = NICE_0_LOAD;
9351 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9352 /*
9353 * In case of task-groups formed thr' the user id of tasks,
9354 * init_task_group represents tasks belonging to root user.
9355 * Hence it forms a sibling of all subsequent groups formed.
9356 * In this case, init_task_group gets only a fraction of overall
9357 * system cpu resource, based on the weight assigned to root
9358 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9359 * by letting tasks of init_task_group sit in a separate cfs_rq
9360 * (init_cfs_rq) and having one entity represent this group of
9361 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9362 */
ec7dc8ac 9363 init_tg_cfs_entry(&init_task_group,
6f505b16 9364 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9365 &per_cpu(init_sched_entity, i), i, 1,
9366 root_task_group.se[i]);
6f505b16 9367
052f1dc7 9368#endif
354d60c2
DG
9369#endif /* CONFIG_FAIR_GROUP_SCHED */
9370
9371 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9373 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9374#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9375 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9376#elif defined CONFIG_USER_SCHED
eff766a6 9377 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9378 init_tg_rt_entry(&init_task_group,
6f505b16 9379 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9380 &per_cpu(init_sched_rt_entity, i), i, 1,
9381 root_task_group.rt_se[i]);
354d60c2 9382#endif
dd41f596 9383#endif
1da177e4 9384
dd41f596
IM
9385 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9386 rq->cpu_load[j] = 0;
1da177e4 9387#ifdef CONFIG_SMP
41c7ce9a 9388 rq->sd = NULL;
57d885fe 9389 rq->rd = NULL;
1da177e4 9390 rq->active_balance = 0;
dd41f596 9391 rq->next_balance = jiffies;
1da177e4 9392 rq->push_cpu = 0;
0a2966b4 9393 rq->cpu = i;
1f11eb6a 9394 rq->online = 0;
1da177e4
LT
9395 rq->migration_thread = NULL;
9396 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9397 rq_attach_root(rq, &def_root_domain);
1da177e4 9398#endif
8f4d37ec 9399 init_rq_hrtick(rq);
1da177e4 9400 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9401 }
9402
2dd73a4f 9403 set_load_weight(&init_task);
b50f60ce 9404
e107be36
AK
9405#ifdef CONFIG_PREEMPT_NOTIFIERS
9406 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9407#endif
9408
c9819f45 9409#ifdef CONFIG_SMP
962cf36c 9410 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9411#endif
9412
b50f60ce
HC
9413#ifdef CONFIG_RT_MUTEXES
9414 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9415#endif
9416
1da177e4
LT
9417 /*
9418 * The boot idle thread does lazy MMU switching as well:
9419 */
9420 atomic_inc(&init_mm.mm_count);
9421 enter_lazy_tlb(&init_mm, current);
9422
9423 /*
9424 * Make us the idle thread. Technically, schedule() should not be
9425 * called from this thread, however somewhere below it might be,
9426 * but because we are the idle thread, we just pick up running again
9427 * when this runqueue becomes "idle".
9428 */
9429 init_idle(current, smp_processor_id());
dce48a84
TG
9430
9431 calc_load_update = jiffies + LOAD_FREQ;
9432
dd41f596
IM
9433 /*
9434 * During early bootup we pretend to be a normal task:
9435 */
9436 current->sched_class = &fair_sched_class;
6892b75e 9437
6a7b3dc3 9438 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9439 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9440#ifdef CONFIG_SMP
7d1e6a9b 9441#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9442 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9443 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9444#endif
4bdddf8f 9445 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9446#endif /* SMP */
6a7b3dc3 9447
0d905bca
IM
9448 perf_counter_init();
9449
6892b75e 9450 scheduler_running = 1;
1da177e4
LT
9451}
9452
9453#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9454static inline int preempt_count_equals(int preempt_offset)
9455{
9456 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9457
9458 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9459}
9460
9461void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9462{
48f24c4d 9463#ifdef in_atomic
1da177e4
LT
9464 static unsigned long prev_jiffy; /* ratelimiting */
9465
e4aafea2
FW
9466 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9467 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9468 return;
9469 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9470 return;
9471 prev_jiffy = jiffies;
9472
9473 printk(KERN_ERR
9474 "BUG: sleeping function called from invalid context at %s:%d\n",
9475 file, line);
9476 printk(KERN_ERR
9477 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9478 in_atomic(), irqs_disabled(),
9479 current->pid, current->comm);
9480
9481 debug_show_held_locks(current);
9482 if (irqs_disabled())
9483 print_irqtrace_events(current);
9484 dump_stack();
1da177e4
LT
9485#endif
9486}
9487EXPORT_SYMBOL(__might_sleep);
9488#endif
9489
9490#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9491static void normalize_task(struct rq *rq, struct task_struct *p)
9492{
9493 int on_rq;
3e51f33f 9494
3a5e4dc1
AK
9495 update_rq_clock(rq);
9496 on_rq = p->se.on_rq;
9497 if (on_rq)
9498 deactivate_task(rq, p, 0);
9499 __setscheduler(rq, p, SCHED_NORMAL, 0);
9500 if (on_rq) {
9501 activate_task(rq, p, 0);
9502 resched_task(rq->curr);
9503 }
9504}
9505
1da177e4
LT
9506void normalize_rt_tasks(void)
9507{
a0f98a1c 9508 struct task_struct *g, *p;
1da177e4 9509 unsigned long flags;
70b97a7f 9510 struct rq *rq;
1da177e4 9511
4cf5d77a 9512 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9513 do_each_thread(g, p) {
178be793
IM
9514 /*
9515 * Only normalize user tasks:
9516 */
9517 if (!p->mm)
9518 continue;
9519
6cfb0d5d 9520 p->se.exec_start = 0;
6cfb0d5d 9521#ifdef CONFIG_SCHEDSTATS
dd41f596 9522 p->se.wait_start = 0;
dd41f596 9523 p->se.sleep_start = 0;
dd41f596 9524 p->se.block_start = 0;
6cfb0d5d 9525#endif
dd41f596
IM
9526
9527 if (!rt_task(p)) {
9528 /*
9529 * Renice negative nice level userspace
9530 * tasks back to 0:
9531 */
9532 if (TASK_NICE(p) < 0 && p->mm)
9533 set_user_nice(p, 0);
1da177e4 9534 continue;
dd41f596 9535 }
1da177e4 9536
4cf5d77a 9537 spin_lock(&p->pi_lock);
b29739f9 9538 rq = __task_rq_lock(p);
1da177e4 9539
178be793 9540 normalize_task(rq, p);
3a5e4dc1 9541
b29739f9 9542 __task_rq_unlock(rq);
4cf5d77a 9543 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9544 } while_each_thread(g, p);
9545
4cf5d77a 9546 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9547}
9548
9549#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9550
9551#ifdef CONFIG_IA64
9552/*
9553 * These functions are only useful for the IA64 MCA handling.
9554 *
9555 * They can only be called when the whole system has been
9556 * stopped - every CPU needs to be quiescent, and no scheduling
9557 * activity can take place. Using them for anything else would
9558 * be a serious bug, and as a result, they aren't even visible
9559 * under any other configuration.
9560 */
9561
9562/**
9563 * curr_task - return the current task for a given cpu.
9564 * @cpu: the processor in question.
9565 *
9566 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9567 */
36c8b586 9568struct task_struct *curr_task(int cpu)
1df5c10a
LT
9569{
9570 return cpu_curr(cpu);
9571}
9572
9573/**
9574 * set_curr_task - set the current task for a given cpu.
9575 * @cpu: the processor in question.
9576 * @p: the task pointer to set.
9577 *
9578 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9579 * are serviced on a separate stack. It allows the architecture to switch the
9580 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9581 * must be called with all CPU's synchronized, and interrupts disabled, the
9582 * and caller must save the original value of the current task (see
9583 * curr_task() above) and restore that value before reenabling interrupts and
9584 * re-starting the system.
9585 *
9586 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9587 */
36c8b586 9588void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9589{
9590 cpu_curr(cpu) = p;
9591}
9592
9593#endif
29f59db3 9594
bccbe08a
PZ
9595#ifdef CONFIG_FAIR_GROUP_SCHED
9596static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9597{
9598 int i;
9599
9600 for_each_possible_cpu(i) {
9601 if (tg->cfs_rq)
9602 kfree(tg->cfs_rq[i]);
9603 if (tg->se)
9604 kfree(tg->se[i]);
6f505b16
PZ
9605 }
9606
9607 kfree(tg->cfs_rq);
9608 kfree(tg->se);
6f505b16
PZ
9609}
9610
ec7dc8ac
DG
9611static
9612int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9613{
29f59db3 9614 struct cfs_rq *cfs_rq;
eab17229 9615 struct sched_entity *se;
9b5b7751 9616 struct rq *rq;
29f59db3
SV
9617 int i;
9618
434d53b0 9619 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9620 if (!tg->cfs_rq)
9621 goto err;
434d53b0 9622 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9623 if (!tg->se)
9624 goto err;
052f1dc7
PZ
9625
9626 tg->shares = NICE_0_LOAD;
29f59db3
SV
9627
9628 for_each_possible_cpu(i) {
9b5b7751 9629 rq = cpu_rq(i);
29f59db3 9630
eab17229
LZ
9631 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9632 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9633 if (!cfs_rq)
9634 goto err;
9635
eab17229
LZ
9636 se = kzalloc_node(sizeof(struct sched_entity),
9637 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9638 if (!se)
9639 goto err;
9640
eab17229 9641 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9642 }
9643
9644 return 1;
9645
9646 err:
9647 return 0;
9648}
9649
9650static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9651{
9652 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9653 &cpu_rq(cpu)->leaf_cfs_rq_list);
9654}
9655
9656static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9657{
9658 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9659}
6d6bc0ad 9660#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9661static inline void free_fair_sched_group(struct task_group *tg)
9662{
9663}
9664
ec7dc8ac
DG
9665static inline
9666int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9667{
9668 return 1;
9669}
9670
9671static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9672{
9673}
9674
9675static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9676{
9677}
6d6bc0ad 9678#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9679
9680#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9681static void free_rt_sched_group(struct task_group *tg)
9682{
9683 int i;
9684
d0b27fa7
PZ
9685 destroy_rt_bandwidth(&tg->rt_bandwidth);
9686
bccbe08a
PZ
9687 for_each_possible_cpu(i) {
9688 if (tg->rt_rq)
9689 kfree(tg->rt_rq[i]);
9690 if (tg->rt_se)
9691 kfree(tg->rt_se[i]);
9692 }
9693
9694 kfree(tg->rt_rq);
9695 kfree(tg->rt_se);
9696}
9697
ec7dc8ac
DG
9698static
9699int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9700{
9701 struct rt_rq *rt_rq;
eab17229 9702 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9703 struct rq *rq;
9704 int i;
9705
434d53b0 9706 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9707 if (!tg->rt_rq)
9708 goto err;
434d53b0 9709 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9710 if (!tg->rt_se)
9711 goto err;
9712
d0b27fa7
PZ
9713 init_rt_bandwidth(&tg->rt_bandwidth,
9714 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9715
9716 for_each_possible_cpu(i) {
9717 rq = cpu_rq(i);
9718
eab17229
LZ
9719 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9720 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9721 if (!rt_rq)
9722 goto err;
29f59db3 9723
eab17229
LZ
9724 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9725 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9726 if (!rt_se)
9727 goto err;
29f59db3 9728
eab17229 9729 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9730 }
9731
bccbe08a
PZ
9732 return 1;
9733
9734 err:
9735 return 0;
9736}
9737
9738static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9739{
9740 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9741 &cpu_rq(cpu)->leaf_rt_rq_list);
9742}
9743
9744static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9745{
9746 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9747}
6d6bc0ad 9748#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9749static inline void free_rt_sched_group(struct task_group *tg)
9750{
9751}
9752
ec7dc8ac
DG
9753static inline
9754int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9755{
9756 return 1;
9757}
9758
9759static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9760{
9761}
9762
9763static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9764{
9765}
6d6bc0ad 9766#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9767
d0b27fa7 9768#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9769static void free_sched_group(struct task_group *tg)
9770{
9771 free_fair_sched_group(tg);
9772 free_rt_sched_group(tg);
9773 kfree(tg);
9774}
9775
9776/* allocate runqueue etc for a new task group */
ec7dc8ac 9777struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9778{
9779 struct task_group *tg;
9780 unsigned long flags;
9781 int i;
9782
9783 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9784 if (!tg)
9785 return ERR_PTR(-ENOMEM);
9786
ec7dc8ac 9787 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9788 goto err;
9789
ec7dc8ac 9790 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9791 goto err;
9792
8ed36996 9793 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9794 for_each_possible_cpu(i) {
bccbe08a
PZ
9795 register_fair_sched_group(tg, i);
9796 register_rt_sched_group(tg, i);
9b5b7751 9797 }
6f505b16 9798 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9799
9800 WARN_ON(!parent); /* root should already exist */
9801
9802 tg->parent = parent;
f473aa5e 9803 INIT_LIST_HEAD(&tg->children);
09f2724a 9804 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9805 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9806
9b5b7751 9807 return tg;
29f59db3
SV
9808
9809err:
6f505b16 9810 free_sched_group(tg);
29f59db3
SV
9811 return ERR_PTR(-ENOMEM);
9812}
9813
9b5b7751 9814/* rcu callback to free various structures associated with a task group */
6f505b16 9815static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9816{
29f59db3 9817 /* now it should be safe to free those cfs_rqs */
6f505b16 9818 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9819}
9820
9b5b7751 9821/* Destroy runqueue etc associated with a task group */
4cf86d77 9822void sched_destroy_group(struct task_group *tg)
29f59db3 9823{
8ed36996 9824 unsigned long flags;
9b5b7751 9825 int i;
29f59db3 9826
8ed36996 9827 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9828 for_each_possible_cpu(i) {
bccbe08a
PZ
9829 unregister_fair_sched_group(tg, i);
9830 unregister_rt_sched_group(tg, i);
9b5b7751 9831 }
6f505b16 9832 list_del_rcu(&tg->list);
f473aa5e 9833 list_del_rcu(&tg->siblings);
8ed36996 9834 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9835
9b5b7751 9836 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9837 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9838}
9839
9b5b7751 9840/* change task's runqueue when it moves between groups.
3a252015
IM
9841 * The caller of this function should have put the task in its new group
9842 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9843 * reflect its new group.
9b5b7751
SV
9844 */
9845void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9846{
9847 int on_rq, running;
9848 unsigned long flags;
9849 struct rq *rq;
9850
9851 rq = task_rq_lock(tsk, &flags);
9852
29f59db3
SV
9853 update_rq_clock(rq);
9854
051a1d1a 9855 running = task_current(rq, tsk);
29f59db3
SV
9856 on_rq = tsk->se.on_rq;
9857
0e1f3483 9858 if (on_rq)
29f59db3 9859 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9860 if (unlikely(running))
9861 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9862
6f505b16 9863 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9864
810b3817
PZ
9865#ifdef CONFIG_FAIR_GROUP_SCHED
9866 if (tsk->sched_class->moved_group)
9867 tsk->sched_class->moved_group(tsk);
9868#endif
9869
0e1f3483
HS
9870 if (unlikely(running))
9871 tsk->sched_class->set_curr_task(rq);
9872 if (on_rq)
7074badb 9873 enqueue_task(rq, tsk, 0);
29f59db3 9874
29f59db3
SV
9875 task_rq_unlock(rq, &flags);
9876}
6d6bc0ad 9877#endif /* CONFIG_GROUP_SCHED */
29f59db3 9878
052f1dc7 9879#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9880static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9881{
9882 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9883 int on_rq;
9884
29f59db3 9885 on_rq = se->on_rq;
62fb1851 9886 if (on_rq)
29f59db3
SV
9887 dequeue_entity(cfs_rq, se, 0);
9888
9889 se->load.weight = shares;
e05510d0 9890 se->load.inv_weight = 0;
29f59db3 9891
62fb1851 9892 if (on_rq)
29f59db3 9893 enqueue_entity(cfs_rq, se, 0);
c09595f6 9894}
62fb1851 9895
c09595f6
PZ
9896static void set_se_shares(struct sched_entity *se, unsigned long shares)
9897{
9898 struct cfs_rq *cfs_rq = se->cfs_rq;
9899 struct rq *rq = cfs_rq->rq;
9900 unsigned long flags;
9901
9902 spin_lock_irqsave(&rq->lock, flags);
9903 __set_se_shares(se, shares);
9904 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9905}
9906
8ed36996
PZ
9907static DEFINE_MUTEX(shares_mutex);
9908
4cf86d77 9909int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9910{
9911 int i;
8ed36996 9912 unsigned long flags;
c61935fd 9913
ec7dc8ac
DG
9914 /*
9915 * We can't change the weight of the root cgroup.
9916 */
9917 if (!tg->se[0])
9918 return -EINVAL;
9919
18d95a28
PZ
9920 if (shares < MIN_SHARES)
9921 shares = MIN_SHARES;
cb4ad1ff
MX
9922 else if (shares > MAX_SHARES)
9923 shares = MAX_SHARES;
62fb1851 9924
8ed36996 9925 mutex_lock(&shares_mutex);
9b5b7751 9926 if (tg->shares == shares)
5cb350ba 9927 goto done;
29f59db3 9928
8ed36996 9929 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9930 for_each_possible_cpu(i)
9931 unregister_fair_sched_group(tg, i);
f473aa5e 9932 list_del_rcu(&tg->siblings);
8ed36996 9933 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9934
9935 /* wait for any ongoing reference to this group to finish */
9936 synchronize_sched();
9937
9938 /*
9939 * Now we are free to modify the group's share on each cpu
9940 * w/o tripping rebalance_share or load_balance_fair.
9941 */
9b5b7751 9942 tg->shares = shares;
c09595f6
PZ
9943 for_each_possible_cpu(i) {
9944 /*
9945 * force a rebalance
9946 */
9947 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9948 set_se_shares(tg->se[i], shares);
c09595f6 9949 }
29f59db3 9950
6b2d7700
SV
9951 /*
9952 * Enable load balance activity on this group, by inserting it back on
9953 * each cpu's rq->leaf_cfs_rq_list.
9954 */
8ed36996 9955 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9956 for_each_possible_cpu(i)
9957 register_fair_sched_group(tg, i);
f473aa5e 9958 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9959 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9960done:
8ed36996 9961 mutex_unlock(&shares_mutex);
9b5b7751 9962 return 0;
29f59db3
SV
9963}
9964
5cb350ba
DG
9965unsigned long sched_group_shares(struct task_group *tg)
9966{
9967 return tg->shares;
9968}
052f1dc7 9969#endif
5cb350ba 9970
052f1dc7 9971#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9972/*
9f0c1e56 9973 * Ensure that the real time constraints are schedulable.
6f505b16 9974 */
9f0c1e56
PZ
9975static DEFINE_MUTEX(rt_constraints_mutex);
9976
9977static unsigned long to_ratio(u64 period, u64 runtime)
9978{
9979 if (runtime == RUNTIME_INF)
9a7e0b18 9980 return 1ULL << 20;
9f0c1e56 9981
9a7e0b18 9982 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9983}
9984
9a7e0b18
PZ
9985/* Must be called with tasklist_lock held */
9986static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9987{
9a7e0b18 9988 struct task_struct *g, *p;
b40b2e8e 9989
9a7e0b18
PZ
9990 do_each_thread(g, p) {
9991 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9992 return 1;
9993 } while_each_thread(g, p);
b40b2e8e 9994
9a7e0b18
PZ
9995 return 0;
9996}
b40b2e8e 9997
9a7e0b18
PZ
9998struct rt_schedulable_data {
9999 struct task_group *tg;
10000 u64 rt_period;
10001 u64 rt_runtime;
10002};
b40b2e8e 10003
9a7e0b18
PZ
10004static int tg_schedulable(struct task_group *tg, void *data)
10005{
10006 struct rt_schedulable_data *d = data;
10007 struct task_group *child;
10008 unsigned long total, sum = 0;
10009 u64 period, runtime;
b40b2e8e 10010
9a7e0b18
PZ
10011 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10012 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10013
9a7e0b18
PZ
10014 if (tg == d->tg) {
10015 period = d->rt_period;
10016 runtime = d->rt_runtime;
b40b2e8e 10017 }
b40b2e8e 10018
98a4826b
PZ
10019#ifdef CONFIG_USER_SCHED
10020 if (tg == &root_task_group) {
10021 period = global_rt_period();
10022 runtime = global_rt_runtime();
10023 }
10024#endif
10025
4653f803
PZ
10026 /*
10027 * Cannot have more runtime than the period.
10028 */
10029 if (runtime > period && runtime != RUNTIME_INF)
10030 return -EINVAL;
6f505b16 10031
4653f803
PZ
10032 /*
10033 * Ensure we don't starve existing RT tasks.
10034 */
9a7e0b18
PZ
10035 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10036 return -EBUSY;
6f505b16 10037
9a7e0b18 10038 total = to_ratio(period, runtime);
6f505b16 10039
4653f803
PZ
10040 /*
10041 * Nobody can have more than the global setting allows.
10042 */
10043 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10044 return -EINVAL;
6f505b16 10045
4653f803
PZ
10046 /*
10047 * The sum of our children's runtime should not exceed our own.
10048 */
9a7e0b18
PZ
10049 list_for_each_entry_rcu(child, &tg->children, siblings) {
10050 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10051 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10052
9a7e0b18
PZ
10053 if (child == d->tg) {
10054 period = d->rt_period;
10055 runtime = d->rt_runtime;
10056 }
6f505b16 10057
9a7e0b18 10058 sum += to_ratio(period, runtime);
9f0c1e56 10059 }
6f505b16 10060
9a7e0b18
PZ
10061 if (sum > total)
10062 return -EINVAL;
10063
10064 return 0;
6f505b16
PZ
10065}
10066
9a7e0b18 10067static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10068{
9a7e0b18
PZ
10069 struct rt_schedulable_data data = {
10070 .tg = tg,
10071 .rt_period = period,
10072 .rt_runtime = runtime,
10073 };
10074
10075 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10076}
10077
d0b27fa7
PZ
10078static int tg_set_bandwidth(struct task_group *tg,
10079 u64 rt_period, u64 rt_runtime)
6f505b16 10080{
ac086bc2 10081 int i, err = 0;
9f0c1e56 10082
9f0c1e56 10083 mutex_lock(&rt_constraints_mutex);
521f1a24 10084 read_lock(&tasklist_lock);
9a7e0b18
PZ
10085 err = __rt_schedulable(tg, rt_period, rt_runtime);
10086 if (err)
9f0c1e56 10087 goto unlock;
ac086bc2
PZ
10088
10089 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10090 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10091 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10092
10093 for_each_possible_cpu(i) {
10094 struct rt_rq *rt_rq = tg->rt_rq[i];
10095
10096 spin_lock(&rt_rq->rt_runtime_lock);
10097 rt_rq->rt_runtime = rt_runtime;
10098 spin_unlock(&rt_rq->rt_runtime_lock);
10099 }
10100 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10101 unlock:
521f1a24 10102 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10103 mutex_unlock(&rt_constraints_mutex);
10104
10105 return err;
6f505b16
PZ
10106}
10107
d0b27fa7
PZ
10108int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10109{
10110 u64 rt_runtime, rt_period;
10111
10112 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10113 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10114 if (rt_runtime_us < 0)
10115 rt_runtime = RUNTIME_INF;
10116
10117 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10118}
10119
9f0c1e56
PZ
10120long sched_group_rt_runtime(struct task_group *tg)
10121{
10122 u64 rt_runtime_us;
10123
d0b27fa7 10124 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10125 return -1;
10126
d0b27fa7 10127 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10128 do_div(rt_runtime_us, NSEC_PER_USEC);
10129 return rt_runtime_us;
10130}
d0b27fa7
PZ
10131
10132int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10133{
10134 u64 rt_runtime, rt_period;
10135
10136 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10137 rt_runtime = tg->rt_bandwidth.rt_runtime;
10138
619b0488
R
10139 if (rt_period == 0)
10140 return -EINVAL;
10141
d0b27fa7
PZ
10142 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10143}
10144
10145long sched_group_rt_period(struct task_group *tg)
10146{
10147 u64 rt_period_us;
10148
10149 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10150 do_div(rt_period_us, NSEC_PER_USEC);
10151 return rt_period_us;
10152}
10153
10154static int sched_rt_global_constraints(void)
10155{
4653f803 10156 u64 runtime, period;
d0b27fa7
PZ
10157 int ret = 0;
10158
ec5d4989
HS
10159 if (sysctl_sched_rt_period <= 0)
10160 return -EINVAL;
10161
4653f803
PZ
10162 runtime = global_rt_runtime();
10163 period = global_rt_period();
10164
10165 /*
10166 * Sanity check on the sysctl variables.
10167 */
10168 if (runtime > period && runtime != RUNTIME_INF)
10169 return -EINVAL;
10b612f4 10170
d0b27fa7 10171 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10172 read_lock(&tasklist_lock);
4653f803 10173 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10174 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10175 mutex_unlock(&rt_constraints_mutex);
10176
10177 return ret;
10178}
54e99124
DG
10179
10180int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10181{
10182 /* Don't accept realtime tasks when there is no way for them to run */
10183 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10184 return 0;
10185
10186 return 1;
10187}
10188
6d6bc0ad 10189#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10190static int sched_rt_global_constraints(void)
10191{
ac086bc2
PZ
10192 unsigned long flags;
10193 int i;
10194
ec5d4989
HS
10195 if (sysctl_sched_rt_period <= 0)
10196 return -EINVAL;
10197
60aa605d
PZ
10198 /*
10199 * There's always some RT tasks in the root group
10200 * -- migration, kstopmachine etc..
10201 */
10202 if (sysctl_sched_rt_runtime == 0)
10203 return -EBUSY;
10204
ac086bc2
PZ
10205 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10206 for_each_possible_cpu(i) {
10207 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10208
10209 spin_lock(&rt_rq->rt_runtime_lock);
10210 rt_rq->rt_runtime = global_rt_runtime();
10211 spin_unlock(&rt_rq->rt_runtime_lock);
10212 }
10213 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10214
d0b27fa7
PZ
10215 return 0;
10216}
6d6bc0ad 10217#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10218
10219int sched_rt_handler(struct ctl_table *table, int write,
10220 struct file *filp, void __user *buffer, size_t *lenp,
10221 loff_t *ppos)
10222{
10223 int ret;
10224 int old_period, old_runtime;
10225 static DEFINE_MUTEX(mutex);
10226
10227 mutex_lock(&mutex);
10228 old_period = sysctl_sched_rt_period;
10229 old_runtime = sysctl_sched_rt_runtime;
10230
10231 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10232
10233 if (!ret && write) {
10234 ret = sched_rt_global_constraints();
10235 if (ret) {
10236 sysctl_sched_rt_period = old_period;
10237 sysctl_sched_rt_runtime = old_runtime;
10238 } else {
10239 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10240 def_rt_bandwidth.rt_period =
10241 ns_to_ktime(global_rt_period());
10242 }
10243 }
10244 mutex_unlock(&mutex);
10245
10246 return ret;
10247}
68318b8e 10248
052f1dc7 10249#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10250
10251/* return corresponding task_group object of a cgroup */
2b01dfe3 10252static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10253{
2b01dfe3
PM
10254 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10255 struct task_group, css);
68318b8e
SV
10256}
10257
10258static struct cgroup_subsys_state *
2b01dfe3 10259cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10260{
ec7dc8ac 10261 struct task_group *tg, *parent;
68318b8e 10262
2b01dfe3 10263 if (!cgrp->parent) {
68318b8e 10264 /* This is early initialization for the top cgroup */
68318b8e
SV
10265 return &init_task_group.css;
10266 }
10267
ec7dc8ac
DG
10268 parent = cgroup_tg(cgrp->parent);
10269 tg = sched_create_group(parent);
68318b8e
SV
10270 if (IS_ERR(tg))
10271 return ERR_PTR(-ENOMEM);
10272
68318b8e
SV
10273 return &tg->css;
10274}
10275
41a2d6cf
IM
10276static void
10277cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10278{
2b01dfe3 10279 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10280
10281 sched_destroy_group(tg);
10282}
10283
41a2d6cf
IM
10284static int
10285cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10286 struct task_struct *tsk)
68318b8e 10287{
b68aa230 10288#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10289 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10290 return -EINVAL;
10291#else
68318b8e
SV
10292 /* We don't support RT-tasks being in separate groups */
10293 if (tsk->sched_class != &fair_sched_class)
10294 return -EINVAL;
b68aa230 10295#endif
68318b8e
SV
10296
10297 return 0;
10298}
10299
10300static void
2b01dfe3 10301cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10302 struct cgroup *old_cont, struct task_struct *tsk)
10303{
10304 sched_move_task(tsk);
10305}
10306
052f1dc7 10307#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10308static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10309 u64 shareval)
68318b8e 10310{
2b01dfe3 10311 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10312}
10313
f4c753b7 10314static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10315{
2b01dfe3 10316 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10317
10318 return (u64) tg->shares;
10319}
6d6bc0ad 10320#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10321
052f1dc7 10322#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10323static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10324 s64 val)
6f505b16 10325{
06ecb27c 10326 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10327}
10328
06ecb27c 10329static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10330{
06ecb27c 10331 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10332}
d0b27fa7
PZ
10333
10334static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10335 u64 rt_period_us)
10336{
10337 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10338}
10339
10340static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10341{
10342 return sched_group_rt_period(cgroup_tg(cgrp));
10343}
6d6bc0ad 10344#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10345
fe5c7cc2 10346static struct cftype cpu_files[] = {
052f1dc7 10347#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10348 {
10349 .name = "shares",
f4c753b7
PM
10350 .read_u64 = cpu_shares_read_u64,
10351 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10352 },
052f1dc7
PZ
10353#endif
10354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10355 {
9f0c1e56 10356 .name = "rt_runtime_us",
06ecb27c
PM
10357 .read_s64 = cpu_rt_runtime_read,
10358 .write_s64 = cpu_rt_runtime_write,
6f505b16 10359 },
d0b27fa7
PZ
10360 {
10361 .name = "rt_period_us",
f4c753b7
PM
10362 .read_u64 = cpu_rt_period_read_uint,
10363 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10364 },
052f1dc7 10365#endif
68318b8e
SV
10366};
10367
10368static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10369{
fe5c7cc2 10370 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10371}
10372
10373struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10374 .name = "cpu",
10375 .create = cpu_cgroup_create,
10376 .destroy = cpu_cgroup_destroy,
10377 .can_attach = cpu_cgroup_can_attach,
10378 .attach = cpu_cgroup_attach,
10379 .populate = cpu_cgroup_populate,
10380 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10381 .early_init = 1,
10382};
10383
052f1dc7 10384#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10385
10386#ifdef CONFIG_CGROUP_CPUACCT
10387
10388/*
10389 * CPU accounting code for task groups.
10390 *
10391 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10392 * (balbir@in.ibm.com).
10393 */
10394
934352f2 10395/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10396struct cpuacct {
10397 struct cgroup_subsys_state css;
10398 /* cpuusage holds pointer to a u64-type object on every cpu */
10399 u64 *cpuusage;
ef12fefa 10400 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10401 struct cpuacct *parent;
d842de87
SV
10402};
10403
10404struct cgroup_subsys cpuacct_subsys;
10405
10406/* return cpu accounting group corresponding to this container */
32cd756a 10407static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10408{
32cd756a 10409 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10410 struct cpuacct, css);
10411}
10412
10413/* return cpu accounting group to which this task belongs */
10414static inline struct cpuacct *task_ca(struct task_struct *tsk)
10415{
10416 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10417 struct cpuacct, css);
10418}
10419
10420/* create a new cpu accounting group */
10421static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10422 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10423{
10424 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10425 int i;
d842de87
SV
10426
10427 if (!ca)
ef12fefa 10428 goto out;
d842de87
SV
10429
10430 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10431 if (!ca->cpuusage)
10432 goto out_free_ca;
10433
10434 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10435 if (percpu_counter_init(&ca->cpustat[i], 0))
10436 goto out_free_counters;
d842de87 10437
934352f2
BR
10438 if (cgrp->parent)
10439 ca->parent = cgroup_ca(cgrp->parent);
10440
d842de87 10441 return &ca->css;
ef12fefa
BR
10442
10443out_free_counters:
10444 while (--i >= 0)
10445 percpu_counter_destroy(&ca->cpustat[i]);
10446 free_percpu(ca->cpuusage);
10447out_free_ca:
10448 kfree(ca);
10449out:
10450 return ERR_PTR(-ENOMEM);
d842de87
SV
10451}
10452
10453/* destroy an existing cpu accounting group */
41a2d6cf 10454static void
32cd756a 10455cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10456{
32cd756a 10457 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10458 int i;
d842de87 10459
ef12fefa
BR
10460 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10461 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10462 free_percpu(ca->cpuusage);
10463 kfree(ca);
10464}
10465
720f5498
KC
10466static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10467{
b36128c8 10468 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10469 u64 data;
10470
10471#ifndef CONFIG_64BIT
10472 /*
10473 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10474 */
10475 spin_lock_irq(&cpu_rq(cpu)->lock);
10476 data = *cpuusage;
10477 spin_unlock_irq(&cpu_rq(cpu)->lock);
10478#else
10479 data = *cpuusage;
10480#endif
10481
10482 return data;
10483}
10484
10485static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10486{
b36128c8 10487 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10488
10489#ifndef CONFIG_64BIT
10490 /*
10491 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10492 */
10493 spin_lock_irq(&cpu_rq(cpu)->lock);
10494 *cpuusage = val;
10495 spin_unlock_irq(&cpu_rq(cpu)->lock);
10496#else
10497 *cpuusage = val;
10498#endif
10499}
10500
d842de87 10501/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10502static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10503{
32cd756a 10504 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10505 u64 totalcpuusage = 0;
10506 int i;
10507
720f5498
KC
10508 for_each_present_cpu(i)
10509 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10510
10511 return totalcpuusage;
10512}
10513
0297b803
DG
10514static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10515 u64 reset)
10516{
10517 struct cpuacct *ca = cgroup_ca(cgrp);
10518 int err = 0;
10519 int i;
10520
10521 if (reset) {
10522 err = -EINVAL;
10523 goto out;
10524 }
10525
720f5498
KC
10526 for_each_present_cpu(i)
10527 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10528
0297b803
DG
10529out:
10530 return err;
10531}
10532
e9515c3c
KC
10533static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10534 struct seq_file *m)
10535{
10536 struct cpuacct *ca = cgroup_ca(cgroup);
10537 u64 percpu;
10538 int i;
10539
10540 for_each_present_cpu(i) {
10541 percpu = cpuacct_cpuusage_read(ca, i);
10542 seq_printf(m, "%llu ", (unsigned long long) percpu);
10543 }
10544 seq_printf(m, "\n");
10545 return 0;
10546}
10547
ef12fefa
BR
10548static const char *cpuacct_stat_desc[] = {
10549 [CPUACCT_STAT_USER] = "user",
10550 [CPUACCT_STAT_SYSTEM] = "system",
10551};
10552
10553static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10554 struct cgroup_map_cb *cb)
10555{
10556 struct cpuacct *ca = cgroup_ca(cgrp);
10557 int i;
10558
10559 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10560 s64 val = percpu_counter_read(&ca->cpustat[i]);
10561 val = cputime64_to_clock_t(val);
10562 cb->fill(cb, cpuacct_stat_desc[i], val);
10563 }
10564 return 0;
10565}
10566
d842de87
SV
10567static struct cftype files[] = {
10568 {
10569 .name = "usage",
f4c753b7
PM
10570 .read_u64 = cpuusage_read,
10571 .write_u64 = cpuusage_write,
d842de87 10572 },
e9515c3c
KC
10573 {
10574 .name = "usage_percpu",
10575 .read_seq_string = cpuacct_percpu_seq_read,
10576 },
ef12fefa
BR
10577 {
10578 .name = "stat",
10579 .read_map = cpuacct_stats_show,
10580 },
d842de87
SV
10581};
10582
32cd756a 10583static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10584{
32cd756a 10585 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10586}
10587
10588/*
10589 * charge this task's execution time to its accounting group.
10590 *
10591 * called with rq->lock held.
10592 */
10593static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10594{
10595 struct cpuacct *ca;
934352f2 10596 int cpu;
d842de87 10597
c40c6f85 10598 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10599 return;
10600
934352f2 10601 cpu = task_cpu(tsk);
a18b83b7
BR
10602
10603 rcu_read_lock();
10604
d842de87 10605 ca = task_ca(tsk);
d842de87 10606
934352f2 10607 for (; ca; ca = ca->parent) {
b36128c8 10608 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10609 *cpuusage += cputime;
10610 }
a18b83b7
BR
10611
10612 rcu_read_unlock();
d842de87
SV
10613}
10614
ef12fefa
BR
10615/*
10616 * Charge the system/user time to the task's accounting group.
10617 */
10618static void cpuacct_update_stats(struct task_struct *tsk,
10619 enum cpuacct_stat_index idx, cputime_t val)
10620{
10621 struct cpuacct *ca;
10622
10623 if (unlikely(!cpuacct_subsys.active))
10624 return;
10625
10626 rcu_read_lock();
10627 ca = task_ca(tsk);
10628
10629 do {
10630 percpu_counter_add(&ca->cpustat[idx], val);
10631 ca = ca->parent;
10632 } while (ca);
10633 rcu_read_unlock();
10634}
10635
d842de87
SV
10636struct cgroup_subsys cpuacct_subsys = {
10637 .name = "cpuacct",
10638 .create = cpuacct_create,
10639 .destroy = cpuacct_destroy,
10640 .populate = cpuacct_populate,
10641 .subsys_id = cpuacct_subsys_id,
10642};
10643#endif /* CONFIG_CGROUP_CPUACCT */