Merge commit 'v2.6.29-rc1' into sched/urgent
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
212}
213
c8bfff6d
KH
214static inline int rt_bandwidth_enabled(void)
215{
216 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
221 ktime_t now;
222
0b148fa0 223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
d0b27fa7
PZ
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240}
241
242#ifdef CONFIG_RT_GROUP_SCHED
243static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244{
245 hrtimer_cancel(&rt_b->rt_period_timer);
246}
247#endif
248
712555ee
HC
249/*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253static DEFINE_MUTEX(sched_domains_mutex);
254
052f1dc7 255#ifdef CONFIG_GROUP_SCHED
29f59db3 256
68318b8e
SV
257#include <linux/cgroup.h>
258
29f59db3
SV
259struct cfs_rq;
260
6f505b16
PZ
261static LIST_HEAD(task_groups);
262
29f59db3 263/* task group related information */
4cf86d77 264struct task_group {
052f1dc7 265#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
266 struct cgroup_subsys_state css;
267#endif
052f1dc7 268
6c415b92
AB
269#ifdef CONFIG_USER_SCHED
270 uid_t uid;
271#endif
272
052f1dc7 273#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
052f1dc7
PZ
279#endif
280
281#ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
d0b27fa7 285 struct rt_bandwidth rt_bandwidth;
052f1dc7 286#endif
6b2d7700 287
ae8393e5 288 struct rcu_head rcu;
6f505b16 289 struct list_head list;
f473aa5e
PZ
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
29f59db3
SV
294};
295
354d60c2 296#ifdef CONFIG_USER_SCHED
eff766a6 297
6c415b92
AB
298/* Helper function to pass uid information to create_sched_user() */
299void set_tg_uid(struct user_struct *user)
300{
301 user->tg->uid = user->uid;
302}
303
eff766a6
PZ
304/*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309struct task_group root_task_group;
310
052f1dc7 311#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
312/* Default task group's sched entity on each cpu */
313static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314/* Default task group's cfs_rq on each cpu */
315static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 316#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
317
318#ifdef CONFIG_RT_GROUP_SCHED
319static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 321#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 322#else /* !CONFIG_USER_SCHED */
eff766a6 323#define root_task_group init_task_group
9a7e0b18 324#endif /* CONFIG_USER_SCHED */
6f505b16 325
8ed36996 326/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
327 * a task group's cpu shares.
328 */
8ed36996 329static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 330
052f1dc7 331#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
332#ifdef CONFIG_USER_SCHED
333# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 334#else /* !CONFIG_USER_SCHED */
052f1dc7 335# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 336#endif /* CONFIG_USER_SCHED */
052f1dc7 337
cb4ad1ff 338/*
2e084786
LJ
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
cb4ad1ff
MX
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
18d95a28 346#define MIN_SHARES 2
2e084786 347#define MAX_SHARES (1UL << 18)
18d95a28 348
052f1dc7
PZ
349static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350#endif
351
29f59db3 352/* Default task group.
3a252015 353 * Every task in system belong to this group at bootup.
29f59db3 354 */
434d53b0 355struct task_group init_task_group;
29f59db3
SV
356
357/* return group to which a task belongs */
4cf86d77 358static inline struct task_group *task_group(struct task_struct *p)
29f59db3 359{
4cf86d77 360 struct task_group *tg;
9b5b7751 361
052f1dc7 362#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
052f1dc7 366#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
24e377a8 369#else
41a2d6cf 370 tg = &init_task_group;
24e377a8 371#endif
9b5b7751 372 return tg;
29f59db3
SV
373}
374
375/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 376static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 377{
052f1dc7 378#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
052f1dc7 381#endif
6f505b16 382
052f1dc7 383#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 386#endif
29f59db3
SV
387}
388
389#else
390
6f505b16 391static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
392static inline struct task_group *task_group(struct task_struct *p)
393{
394 return NULL;
395}
29f59db3 396
052f1dc7 397#endif /* CONFIG_GROUP_SCHED */
29f59db3 398
6aa645ea
IM
399/* CFS-related fields in a runqueue */
400struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
6aa645ea 404 u64 exec_clock;
e9acbff6 405 u64 min_vruntime;
6aa645ea
IM
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
4a55bd5e
PZ
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
4793241b 417 struct sched_entity *curr, *next, *last;
ddc97297 418
5ac5c4d6 419 unsigned int nr_spread_over;
ddc97297 420
62160e3f 421#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
41a2d6cf
IM
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
41a2d6cf
IM
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
434
435#ifdef CONFIG_SMP
c09595f6 436 /*
c8cba857 437 * the part of load.weight contributed by tasks
c09595f6 438 */
c8cba857 439 unsigned long task_weight;
c09595f6 440
c8cba857
PZ
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
c09595f6 448
c8cba857
PZ
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
f1d239f7
PZ
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
c09595f6 458#endif
6aa645ea
IM
459#endif
460};
1da177e4 461
6aa645ea
IM
462/* Real-Time classes' related field in a runqueue: */
463struct rt_rq {
464 struct rt_prio_array active;
63489e45 465 unsigned long rt_nr_running;
052f1dc7 466#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
467 int highest_prio; /* highest queued rt task prio */
468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a22d7fc1 471 int overloaded;
fa85ae24 472#endif
6f505b16 473 int rt_throttled;
fa85ae24 474 u64 rt_time;
ac086bc2 475 u64 rt_runtime;
ea736ed5 476 /* Nests inside the rq lock: */
ac086bc2 477 spinlock_t rt_runtime_lock;
6f505b16 478
052f1dc7 479#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
480 unsigned long rt_nr_boosted;
481
6f505b16
PZ
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486#endif
6aa645ea
IM
487};
488
57d885fe
GH
489#ifdef CONFIG_SMP
490
491/*
492 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
57d885fe
GH
498 */
499struct root_domain {
500 atomic_t refcount;
c6c4927b
RR
501 cpumask_var_t span;
502 cpumask_var_t online;
637f5085 503
0eab9146 504 /*
637f5085
GH
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
c6c4927b 508 cpumask_var_t rto_mask;
0eab9146 509 atomic_t rto_count;
6e0534f2
GH
510#ifdef CONFIG_SMP
511 struct cpupri cpupri;
512#endif
7a09b1a2
VS
513#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520#endif
57d885fe
GH
521};
522
dc938520
GH
523/*
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
526 */
57d885fe
GH
527static struct root_domain def_root_domain;
528
529#endif
530
1da177e4
LT
531/*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
70b97a7f 538struct rq {
d8016491
IM
539 /* runqueue lock: */
540 spinlock_t lock;
1da177e4
LT
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned long nr_running;
6aa645ea
IM
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 549 unsigned char idle_at_tick;
46cb4b7c 550#ifdef CONFIG_NO_HZ
15934a37 551 unsigned long last_tick_seen;
46cb4b7c
SS
552 unsigned char in_nohz_recently;
553#endif
d8016491
IM
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load;
6aa645ea
IM
556 unsigned long nr_load_updates;
557 u64 nr_switches;
558
559 struct cfs_rq cfs;
6f505b16 560 struct rt_rq rt;
6f505b16 561
6aa645ea 562#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
565#endif
566#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 567 struct list_head leaf_rt_rq_list;
1da177e4 568#endif
1da177e4
LT
569
570 /*
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
575 */
576 unsigned long nr_uninterruptible;
577
36c8b586 578 struct task_struct *curr, *idle;
c9819f45 579 unsigned long next_balance;
1da177e4 580 struct mm_struct *prev_mm;
6aa645ea 581
3e51f33f 582 u64 clock;
6aa645ea 583
1da177e4
LT
584 atomic_t nr_iowait;
585
586#ifdef CONFIG_SMP
0eab9146 587 struct root_domain *rd;
1da177e4
LT
588 struct sched_domain *sd;
589
590 /* For active balancing */
591 int active_balance;
592 int push_cpu;
d8016491
IM
593 /* cpu of this runqueue: */
594 int cpu;
1f11eb6a 595 int online;
1da177e4 596
a8a51d5e 597 unsigned long avg_load_per_task;
1da177e4 598
36c8b586 599 struct task_struct *migration_thread;
1da177e4
LT
600 struct list_head migration_queue;
601#endif
602
8f4d37ec 603#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
604#ifdef CONFIG_SMP
605 int hrtick_csd_pending;
606 struct call_single_data hrtick_csd;
607#endif
8f4d37ec
PZ
608 struct hrtimer hrtick_timer;
609#endif
610
1da177e4
LT
611#ifdef CONFIG_SCHEDSTATS
612 /* latency stats */
613 struct sched_info rq_sched_info;
9c2c4802
KC
614 unsigned long long rq_cpu_time;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
616
617 /* sys_sched_yield() stats */
480b9434
KC
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
3e51f33f
PZ
668static inline void update_rq_clock(struct rq *rq)
669{
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671}
672
bf5c91ba
IM
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
017730c1
IM
682/**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(void)
690{
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698}
699
bf5c91ba
IM
700/*
701 * Debugging: various feature bits
702 */
f00b45c1
PZ
703
704#define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
bf5c91ba 707enum {
f00b45c1 708#include "sched_features.h"
bf5c91ba
IM
709};
710
f00b45c1
PZ
711#undef SCHED_FEAT
712
713#define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
bf5c91ba 716const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
717#include "sched_features.h"
718 0;
719
720#undef SCHED_FEAT
721
722#ifdef CONFIG_SCHED_DEBUG
723#define SCHED_FEAT(name, enabled) \
724 #name ,
725
983ed7a6 726static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
727#include "sched_features.h"
728 NULL
729};
730
731#undef SCHED_FEAT
732
34f3a814 733static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 734{
f00b45c1
PZ
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 741 }
34f3a814 742 seq_puts(m, "\n");
f00b45c1 743
34f3a814 744 return 0;
f00b45c1
PZ
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
34f3a814
LZ
789static int sched_feat_open(struct inode *inode, struct file *filp)
790{
791 return single_open(filp, sched_feat_show, NULL);
792}
793
f00b45c1 794static struct file_operations sched_feat_fops = {
34f3a814
LZ
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
f00b45c1
PZ
800};
801
802static __init int sched_init_debug(void)
803{
f00b45c1
PZ
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808}
809late_initcall(sched_init_debug);
810
811#endif
812
813#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 814
b82d9fdd
PZ
815/*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
2398f2c6
PZ
821/*
822 * ratelimit for updating the group shares.
55cd5340 823 * default: 0.25ms
2398f2c6 824 */
55cd5340 825unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 826
ffda12a1
PZ
827/*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832unsigned int sysctl_sched_shares_thresh = 4;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
31656519 1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1184 return;
1185
31656519 1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
6d6bc0ad 1251#else /* !CONFIG_SMP */
31656519 1252static void resched_task(struct task_struct *p)
c24d20db
IM
1253{
1254 assert_spin_locked(&task_rq(p)->lock);
31656519 1255 set_tsk_need_resched(p);
c24d20db 1256}
6d6bc0ad 1257#endif /* CONFIG_SMP */
c24d20db 1258
45bf76df
IM
1259#if BITS_PER_LONG == 32
1260# define WMULT_CONST (~0UL)
1261#else
1262# define WMULT_CONST (1UL << 32)
1263#endif
1264
1265#define WMULT_SHIFT 32
1266
194081eb
IM
1267/*
1268 * Shift right and round:
1269 */
cf2ab469 1270#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1271
a7be37ac
PZ
1272/*
1273 * delta *= weight / lw
1274 */
cb1c4fc9 1275static unsigned long
45bf76df
IM
1276calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278{
1279 u64 tmp;
1280
7a232e03
LJ
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
45bf76df
IM
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
194081eb 1293 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1295 WMULT_SHIFT/2);
1296 else
cf2ab469 1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1298
ecf691da 1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1303{
1304 lw->weight += inc;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
1091985b 1308static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1309{
1310 lw->weight -= dec;
e89996ae 1311 lw->inv_weight = 0;
45bf76df
IM
1312}
1313
2dd73a4f
PW
1314/*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
dd41f596
IM
1323#define WEIGHT_IDLEPRIO 2
1324#define WMULT_IDLEPRIO (1 << 31)
1325
1326/*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
dd41f596
IM
1337 */
1338static const int prio_to_weight[40] = {
254753dc
IM
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1347};
1348
5714d2de
IM
1349/*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
dd41f596 1356static const u32 prio_to_wmult[40] = {
254753dc
IM
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1365};
2dd73a4f 1366
dd41f596
IM
1367static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369/*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378};
1379
e1d1484f
PW
1380#ifdef CONFIG_SMP
1381static unsigned long
1382balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387static int
1388iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
e1d1484f 1391#endif
dd41f596 1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395#else
1396static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397#endif
1398
18d95a28
PZ
1399static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400{
1401 update_load_add(&rq->load, load);
1402}
1403
1404static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405{
1406 update_load_sub(&rq->load, load);
1407}
1408
7940ca36 1409#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1410typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1411
1412/*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
eb755805 1416static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1417{
1418 struct task_group *parent, *child;
eb755805 1419 int ret;
c09595f6
PZ
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423down:
eb755805
PZ
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
c09595f6
PZ
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431up:
1432 continue;
1433 }
eb755805
PZ
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
eb755805 1442out_unlock:
c09595f6 1443 rcu_read_unlock();
eb755805
PZ
1444
1445 return ret;
c09595f6
PZ
1446}
1447
eb755805
PZ
1448static int tg_nop(struct task_group *tg, void *data)
1449{
1450 return 0;
c09595f6 1451}
eb755805
PZ
1452#endif
1453
1454#ifdef CONFIG_SMP
1455static unsigned long source_load(int cpu, int type);
1456static unsigned long target_load(int cpu, int type);
1457static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459static unsigned long cpu_avg_load_per_task(int cpu)
1460{
1461 struct rq *rq = cpu_rq(cpu);
af6d596f 1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1463
4cd42620
SR
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1466 else
1467 rq->avg_load_per_task = 0;
eb755805
PZ
1468
1469 return rq->avg_load_per_task;
1470}
1471
1472#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1473
c09595f6
PZ
1474static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476/*
1477 * Calculate and set the cpu's group shares.
1478 */
1479static void
ffda12a1
PZ
1480update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1482{
c09595f6
PZ
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
c8cba857 1486 if (!tg->se[cpu])
c09595f6
PZ
1487 return;
1488
ec4e0e2f 1489 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1490
c09595f6
PZ
1491 /*
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1494 * \Sum rq_weight
1495 *
1496 */
ec4e0e2f 1497 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1498 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1499
ffda12a1
PZ
1500 if (abs(shares - tg->se[cpu]->load.weight) >
1501 sysctl_sched_shares_thresh) {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long flags;
c09595f6 1504
ffda12a1 1505 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1506 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1507
ffda12a1
PZ
1508 __set_se_shares(tg->se[cpu], shares);
1509 spin_unlock_irqrestore(&rq->lock, flags);
1510 }
18d95a28 1511}
c09595f6
PZ
1512
1513/*
c8cba857
PZ
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
c09595f6 1517 */
eb755805 1518static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1519{
ec4e0e2f 1520 unsigned long weight, rq_weight = 0;
c8cba857 1521 unsigned long shares = 0;
eb755805 1522 struct sched_domain *sd = data;
c8cba857 1523 int i;
c09595f6 1524
758b2cdc 1525 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1526 /*
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1530 */
1531 weight = tg->cfs_rq[i]->load.weight;
1532 if (!weight)
1533 weight = NICE_0_LOAD;
1534
1535 tg->cfs_rq[i]->rq_weight = weight;
1536 rq_weight += weight;
c8cba857 1537 shares += tg->cfs_rq[i]->shares;
c09595f6 1538 }
c09595f6 1539
c8cba857
PZ
1540 if ((!shares && rq_weight) || shares > tg->shares)
1541 shares = tg->shares;
1542
1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1544 shares = tg->shares;
c09595f6 1545
758b2cdc 1546 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1547 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1548
1549 return 0;
c09595f6
PZ
1550}
1551
1552/*
c8cba857
PZ
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
c09595f6 1556 */
eb755805 1557static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1558{
c8cba857 1559 unsigned long load;
eb755805 1560 long cpu = (long)data;
c09595f6 1561
c8cba857
PZ
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->cfs_rq[cpu]->shares;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
c09595f6 1569
c8cba857 1570 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1571
eb755805 1572 return 0;
c09595f6
PZ
1573}
1574
c8cba857 1575static void update_shares(struct sched_domain *sd)
4d8d595d 1576{
2398f2c6
PZ
1577 u64 now = cpu_clock(raw_smp_processor_id());
1578 s64 elapsed = now - sd->last_update;
1579
1580 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1581 sd->last_update = now;
eb755805 1582 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1583 }
4d8d595d
PZ
1584}
1585
3e5459b4
PZ
1586static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1587{
1588 spin_unlock(&rq->lock);
1589 update_shares(sd);
1590 spin_lock(&rq->lock);
1591}
1592
eb755805 1593static void update_h_load(long cpu)
c09595f6 1594{
eb755805 1595 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1596}
1597
c09595f6
PZ
1598#else
1599
c8cba857 1600static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1601{
1602}
1603
3e5459b4
PZ
1604static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1605{
1606}
1607
18d95a28
PZ
1608#endif
1609
70574a99
AD
1610/*
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1612 */
1613static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617{
1618 int ret = 0;
1619
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq->lock);
1623 BUG_ON(1);
1624 }
1625 if (unlikely(!spin_trylock(&busiest->lock))) {
1626 if (busiest < this_rq) {
1627 spin_unlock(&this_rq->lock);
1628 spin_lock(&busiest->lock);
1629 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1630 ret = 1;
1631 } else
1632 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1633 }
1634 return ret;
1635}
1636
1637static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639{
1640 spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642}
18d95a28
PZ
1643#endif
1644
30432094 1645#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1646static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1647{
30432094 1648#ifdef CONFIG_SMP
34e83e85
IM
1649 cfs_rq->shares = shares;
1650#endif
1651}
30432094 1652#endif
e7693a36 1653
dd41f596 1654#include "sched_stats.h"
dd41f596 1655#include "sched_idletask.c"
5522d5d5
IM
1656#include "sched_fair.c"
1657#include "sched_rt.c"
dd41f596
IM
1658#ifdef CONFIG_SCHED_DEBUG
1659# include "sched_debug.c"
1660#endif
1661
1662#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1663#define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
dd41f596 1665
c09595f6 1666static void inc_nr_running(struct rq *rq)
9c217245
IM
1667{
1668 rq->nr_running++;
9c217245
IM
1669}
1670
c09595f6 1671static void dec_nr_running(struct rq *rq)
9c217245
IM
1672{
1673 rq->nr_running--;
9c217245
IM
1674}
1675
45bf76df
IM
1676static void set_load_weight(struct task_struct *p)
1677{
1678 if (task_has_rt_policy(p)) {
dd41f596
IM
1679 p->se.load.weight = prio_to_weight[0] * 2;
1680 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1681 return;
1682 }
45bf76df 1683
dd41f596
IM
1684 /*
1685 * SCHED_IDLE tasks get minimal weight:
1686 */
1687 if (p->policy == SCHED_IDLE) {
1688 p->se.load.weight = WEIGHT_IDLEPRIO;
1689 p->se.load.inv_weight = WMULT_IDLEPRIO;
1690 return;
1691 }
71f8bd46 1692
dd41f596
IM
1693 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1694 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1695}
1696
2087a1ad
GH
1697static void update_avg(u64 *avg, u64 sample)
1698{
1699 s64 diff = sample - *avg;
1700 *avg += diff >> 3;
1701}
1702
8159f87e 1703static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1704{
dd41f596 1705 sched_info_queued(p);
fd390f6a 1706 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1707 p->se.on_rq = 1;
71f8bd46
IM
1708}
1709
69be72c1 1710static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1711{
2087a1ad
GH
1712 if (sleep && p->se.last_wakeup) {
1713 update_avg(&p->se.avg_overlap,
1714 p->se.sum_exec_runtime - p->se.last_wakeup);
1715 p->se.last_wakeup = 0;
1716 }
1717
46ac22ba 1718 sched_info_dequeued(p);
f02231e5 1719 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1720 p->se.on_rq = 0;
71f8bd46
IM
1721}
1722
14531189 1723/*
dd41f596 1724 * __normal_prio - return the priority that is based on the static prio
14531189 1725 */
14531189
IM
1726static inline int __normal_prio(struct task_struct *p)
1727{
dd41f596 1728 return p->static_prio;
14531189
IM
1729}
1730
b29739f9
IM
1731/*
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1737 */
36c8b586 1738static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1739{
1740 int prio;
1741
e05606d3 1742 if (task_has_rt_policy(p))
b29739f9
IM
1743 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 else
1745 prio = __normal_prio(p);
1746 return prio;
1747}
1748
1749/*
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1755 */
36c8b586 1756static int effective_prio(struct task_struct *p)
b29739f9
IM
1757{
1758 p->normal_prio = normal_prio(p);
1759 /*
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1763 */
1764 if (!rt_prio(p->prio))
1765 return p->normal_prio;
1766 return p->prio;
1767}
1768
1da177e4 1769/*
dd41f596 1770 * activate_task - move a task to the runqueue.
1da177e4 1771 */
dd41f596 1772static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1773{
d9514f6c 1774 if (task_contributes_to_load(p))
dd41f596 1775 rq->nr_uninterruptible--;
1da177e4 1776
8159f87e 1777 enqueue_task(rq, p, wakeup);
c09595f6 1778 inc_nr_running(rq);
1da177e4
LT
1779}
1780
1da177e4
LT
1781/*
1782 * deactivate_task - remove a task from the runqueue.
1783 */
2e1cb74a 1784static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1785{
d9514f6c 1786 if (task_contributes_to_load(p))
dd41f596
IM
1787 rq->nr_uninterruptible++;
1788
69be72c1 1789 dequeue_task(rq, p, sleep);
c09595f6 1790 dec_nr_running(rq);
1da177e4
LT
1791}
1792
1da177e4
LT
1793/**
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1796 */
36c8b586 1797inline int task_curr(const struct task_struct *p)
1da177e4
LT
1798{
1799 return cpu_curr(task_cpu(p)) == p;
1800}
1801
dd41f596
IM
1802static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803{
6f505b16 1804 set_task_rq(p, cpu);
dd41f596 1805#ifdef CONFIG_SMP
ce96b5ac
DA
1806 /*
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1810 */
1811 smp_wmb();
dd41f596 1812 task_thread_info(p)->cpu = cpu;
dd41f596 1813#endif
2dd73a4f
PW
1814}
1815
cb469845
SR
1816static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1817 const struct sched_class *prev_class,
1818 int oldprio, int running)
1819{
1820 if (prev_class != p->sched_class) {
1821 if (prev_class->switched_from)
1822 prev_class->switched_from(rq, p, running);
1823 p->sched_class->switched_to(rq, p, running);
1824 } else
1825 p->sched_class->prio_changed(rq, p, oldprio, running);
1826}
1827
1da177e4 1828#ifdef CONFIG_SMP
c65cc870 1829
e958b360
TG
1830/* Used instead of source_load when we know the type == 0 */
1831static unsigned long weighted_cpuload(const int cpu)
1832{
1833 return cpu_rq(cpu)->load.weight;
1834}
1835
cc367732
IM
1836/*
1837 * Is this task likely cache-hot:
1838 */
e7693a36 1839static int
cc367732
IM
1840task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1841{
1842 s64 delta;
1843
f540a608
IM
1844 /*
1845 * Buddy candidates are cache hot:
1846 */
4793241b
PZ
1847 if (sched_feat(CACHE_HOT_BUDDY) &&
1848 (&p->se == cfs_rq_of(&p->se)->next ||
1849 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1850 return 1;
1851
cc367732
IM
1852 if (p->sched_class != &fair_sched_class)
1853 return 0;
1854
6bc1665b
IM
1855 if (sysctl_sched_migration_cost == -1)
1856 return 1;
1857 if (sysctl_sched_migration_cost == 0)
1858 return 0;
1859
cc367732
IM
1860 delta = now - p->se.exec_start;
1861
1862 return delta < (s64)sysctl_sched_migration_cost;
1863}
1864
1865
dd41f596 1866void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1867{
dd41f596
IM
1868 int old_cpu = task_cpu(p);
1869 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1870 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1871 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1872 u64 clock_offset;
dd41f596
IM
1873
1874 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1875
cbc34ed1
PZ
1876 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1877
6cfb0d5d
IM
1878#ifdef CONFIG_SCHEDSTATS
1879 if (p->se.wait_start)
1880 p->se.wait_start -= clock_offset;
dd41f596
IM
1881 if (p->se.sleep_start)
1882 p->se.sleep_start -= clock_offset;
1883 if (p->se.block_start)
1884 p->se.block_start -= clock_offset;
cc367732
IM
1885 if (old_cpu != new_cpu) {
1886 schedstat_inc(p, se.nr_migrations);
1887 if (task_hot(p, old_rq->clock, NULL))
1888 schedstat_inc(p, se.nr_forced2_migrations);
1889 }
6cfb0d5d 1890#endif
2830cf8c
SV
1891 p->se.vruntime -= old_cfsrq->min_vruntime -
1892 new_cfsrq->min_vruntime;
dd41f596
IM
1893
1894 __set_task_cpu(p, new_cpu);
c65cc870
IM
1895}
1896
70b97a7f 1897struct migration_req {
1da177e4 1898 struct list_head list;
1da177e4 1899
36c8b586 1900 struct task_struct *task;
1da177e4
LT
1901 int dest_cpu;
1902
1da177e4 1903 struct completion done;
70b97a7f 1904};
1da177e4
LT
1905
1906/*
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1909 */
36c8b586 1910static int
70b97a7f 1911migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1912{
70b97a7f 1913 struct rq *rq = task_rq(p);
1da177e4
LT
1914
1915 /*
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1918 */
dd41f596 1919 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1920 set_task_cpu(p, dest_cpu);
1921 return 0;
1922 }
1923
1924 init_completion(&req->done);
1da177e4
LT
1925 req->task = p;
1926 req->dest_cpu = dest_cpu;
1927 list_add(&req->list, &rq->migration_queue);
48f24c4d 1928
1da177e4
LT
1929 return 1;
1930}
1931
1932/*
1933 * wait_task_inactive - wait for a thread to unschedule.
1934 *
85ba2d86
RM
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1941 *
1da177e4
LT
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1947 */
85ba2d86 1948unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1949{
1950 unsigned long flags;
dd41f596 1951 int running, on_rq;
85ba2d86 1952 unsigned long ncsw;
70b97a7f 1953 struct rq *rq;
1da177e4 1954
3a5c359a
AK
1955 for (;;) {
1956 /*
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1960 * work out!
1961 */
1962 rq = task_rq(p);
fa490cfd 1963
3a5c359a
AK
1964 /*
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1967 * any locks.
1968 *
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1974 */
85ba2d86
RM
1975 while (task_running(rq, p)) {
1976 if (match_state && unlikely(p->state != match_state))
1977 return 0;
3a5c359a 1978 cpu_relax();
85ba2d86 1979 }
fa490cfd 1980
3a5c359a
AK
1981 /*
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1985 */
1986 rq = task_rq_lock(p, &flags);
0a16b607 1987 trace_sched_wait_task(rq, p);
3a5c359a
AK
1988 running = task_running(rq, p);
1989 on_rq = p->se.on_rq;
85ba2d86 1990 ncsw = 0;
f31e11d8 1991 if (!match_state || p->state == match_state)
93dcf55f 1992 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1993 task_rq_unlock(rq, &flags);
fa490cfd 1994
85ba2d86
RM
1995 /*
1996 * If it changed from the expected state, bail out now.
1997 */
1998 if (unlikely(!ncsw))
1999 break;
2000
3a5c359a
AK
2001 /*
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2004 *
2005 * Oops. Go back and try again..
2006 */
2007 if (unlikely(running)) {
2008 cpu_relax();
2009 continue;
2010 }
fa490cfd 2011
3a5c359a
AK
2012 /*
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2015 * preempted!
2016 *
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2020 */
2021 if (unlikely(on_rq)) {
2022 schedule_timeout_uninterruptible(1);
2023 continue;
2024 }
fa490cfd 2025
3a5c359a
AK
2026 /*
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2030 */
2031 break;
2032 }
85ba2d86
RM
2033
2034 return ncsw;
1da177e4
LT
2035}
2036
2037/***
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2040 *
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2043 *
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2048 * achieved as well.
2049 */
36c8b586 2050void kick_process(struct task_struct *p)
1da177e4
LT
2051{
2052 int cpu;
2053
2054 preempt_disable();
2055 cpu = task_cpu(p);
2056 if ((cpu != smp_processor_id()) && task_curr(p))
2057 smp_send_reschedule(cpu);
2058 preempt_enable();
2059}
2060
2061/*
2dd73a4f
PW
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
1da177e4
LT
2064 *
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2067 */
a9957449 2068static unsigned long source_load(int cpu, int type)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = cpu_rq(cpu);
dd41f596 2071 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2072
93b75217 2073 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2074 return total;
b910472d 2075
dd41f596 2076 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2077}
2078
2079/*
2dd73a4f
PW
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
1da177e4 2082 */
a9957449 2083static unsigned long target_load(int cpu, int type)
1da177e4 2084{
70b97a7f 2085 struct rq *rq = cpu_rq(cpu);
dd41f596 2086 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2087
93b75217 2088 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2089 return total;
3b0bd9bc 2090
dd41f596 2091 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2092}
2093
147cbb4b
NP
2094/*
2095 * find_idlest_group finds and returns the least busy CPU group within the
2096 * domain.
2097 */
2098static struct sched_group *
2099find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2100{
2101 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2102 unsigned long min_load = ULONG_MAX, this_load = 0;
2103 int load_idx = sd->forkexec_idx;
2104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2105
2106 do {
2107 unsigned long load, avg_load;
2108 int local_group;
2109 int i;
2110
da5a5522 2111 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
3a5c359a 2114 continue;
da5a5522 2115
758b2cdc
RR
2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
147cbb4b
NP
2118
2119 /* Tally up the load of all CPUs in the group */
2120 avg_load = 0;
2121
758b2cdc 2122 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2123 /* Bias balancing toward cpus of our domain */
2124 if (local_group)
2125 load = source_load(i, load_idx);
2126 else
2127 load = target_load(i, load_idx);
2128
2129 avg_load += load;
2130 }
2131
2132 /* Adjust by relative CPU power of the group */
5517d86b
ED
2133 avg_load = sg_div_cpu_power(group,
2134 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2135
2136 if (local_group) {
2137 this_load = avg_load;
2138 this = group;
2139 } else if (avg_load < min_load) {
2140 min_load = avg_load;
2141 idlest = group;
2142 }
3a5c359a 2143 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2144
2145 if (!idlest || 100*this_load < imbalance*min_load)
2146 return NULL;
2147 return idlest;
2148}
2149
2150/*
0feaece9 2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2152 */
95cdf3b7 2153static int
758b2cdc 2154find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2155{
2156 unsigned long load, min_load = ULONG_MAX;
2157 int idlest = -1;
2158 int i;
2159
da5a5522 2160 /* Traverse only the allowed CPUs */
758b2cdc 2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2162 load = weighted_cpuload(i);
147cbb4b
NP
2163
2164 if (load < min_load || (load == min_load && i == this_cpu)) {
2165 min_load = load;
2166 idlest = i;
2167 }
2168 }
2169
2170 return idlest;
2171}
2172
476d139c
NP
2173/*
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2176 * SD_BALANCE_EXEC.
2177 *
2178 * Balance, ie. select the least loaded group.
2179 *
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2181 *
2182 * preempt must be disabled.
2183 */
2184static int sched_balance_self(int cpu, int flag)
2185{
2186 struct task_struct *t = current;
2187 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2188
c96d145e 2189 for_each_domain(cpu, tmp) {
9761eea8
IM
2190 /*
2191 * If power savings logic is enabled for a domain, stop there.
2192 */
5c45bf27
SS
2193 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2194 break;
476d139c
NP
2195 if (tmp->flags & flag)
2196 sd = tmp;
c96d145e 2197 }
476d139c 2198
039a1c41
PZ
2199 if (sd)
2200 update_shares(sd);
2201
476d139c 2202 while (sd) {
476d139c 2203 struct sched_group *group;
1a848870
SS
2204 int new_cpu, weight;
2205
2206 if (!(sd->flags & flag)) {
2207 sd = sd->child;
2208 continue;
2209 }
476d139c 2210
476d139c 2211 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2212 if (!group) {
2213 sd = sd->child;
2214 continue;
2215 }
476d139c 2216
758b2cdc 2217 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2218 if (new_cpu == -1 || new_cpu == cpu) {
2219 /* Now try balancing at a lower domain level of cpu */
2220 sd = sd->child;
2221 continue;
2222 }
476d139c 2223
1a848870 2224 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2225 cpu = new_cpu;
758b2cdc 2226 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2227 sd = NULL;
476d139c 2228 for_each_domain(cpu, tmp) {
758b2cdc 2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2230 break;
2231 if (tmp->flags & flag)
2232 sd = tmp;
2233 }
2234 /* while loop will break here if sd == NULL */
2235 }
2236
2237 return cpu;
2238}
2239
2240#endif /* CONFIG_SMP */
1da177e4 2241
1da177e4
LT
2242/***
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2247 *
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2253 *
2254 * returns failure only if the task is already active.
2255 */
36c8b586 2256static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2257{
cc367732 2258 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2259 unsigned long flags;
2260 long old_state;
70b97a7f 2261 struct rq *rq;
1da177e4 2262
b85d0667
IM
2263 if (!sched_feat(SYNC_WAKEUPS))
2264 sync = 0;
2265
2398f2c6
PZ
2266#ifdef CONFIG_SMP
2267 if (sched_feat(LB_WAKEUP_UPDATE)) {
2268 struct sched_domain *sd;
2269
2270 this_cpu = raw_smp_processor_id();
2271 cpu = task_cpu(p);
2272
2273 for_each_domain(this_cpu, sd) {
758b2cdc 2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2275 update_shares(sd);
2276 break;
2277 }
2278 }
2279 }
2280#endif
2281
04e2f174 2282 smp_wmb();
1da177e4 2283 rq = task_rq_lock(p, &flags);
03e89e45 2284 update_rq_clock(rq);
1da177e4
LT
2285 old_state = p->state;
2286 if (!(old_state & state))
2287 goto out;
2288
dd41f596 2289 if (p->se.on_rq)
1da177e4
LT
2290 goto out_running;
2291
2292 cpu = task_cpu(p);
cc367732 2293 orig_cpu = cpu;
1da177e4
LT
2294 this_cpu = smp_processor_id();
2295
2296#ifdef CONFIG_SMP
2297 if (unlikely(task_running(rq, p)))
2298 goto out_activate;
2299
5d2f5a61
DA
2300 cpu = p->sched_class->select_task_rq(p, sync);
2301 if (cpu != orig_cpu) {
2302 set_task_cpu(p, cpu);
1da177e4
LT
2303 task_rq_unlock(rq, &flags);
2304 /* might preempt at this point */
2305 rq = task_rq_lock(p, &flags);
2306 old_state = p->state;
2307 if (!(old_state & state))
2308 goto out;
dd41f596 2309 if (p->se.on_rq)
1da177e4
LT
2310 goto out_running;
2311
2312 this_cpu = smp_processor_id();
2313 cpu = task_cpu(p);
2314 }
2315
e7693a36
GH
2316#ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq, ttwu_count);
2318 if (cpu == this_cpu)
2319 schedstat_inc(rq, ttwu_local);
2320 else {
2321 struct sched_domain *sd;
2322 for_each_domain(this_cpu, sd) {
758b2cdc 2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2324 schedstat_inc(sd, ttwu_wake_remote);
2325 break;
2326 }
2327 }
2328 }
6d6bc0ad 2329#endif /* CONFIG_SCHEDSTATS */
e7693a36 2330
1da177e4
LT
2331out_activate:
2332#endif /* CONFIG_SMP */
cc367732
IM
2333 schedstat_inc(p, se.nr_wakeups);
2334 if (sync)
2335 schedstat_inc(p, se.nr_wakeups_sync);
2336 if (orig_cpu != cpu)
2337 schedstat_inc(p, se.nr_wakeups_migrate);
2338 if (cpu == this_cpu)
2339 schedstat_inc(p, se.nr_wakeups_local);
2340 else
2341 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2342 activate_task(rq, p, 1);
1da177e4
LT
2343 success = 1;
2344
2345out_running:
468a15bb 2346 trace_sched_wakeup(rq, p, success);
15afe09b 2347 check_preempt_curr(rq, p, sync);
4ae7d5ce 2348
1da177e4 2349 p->state = TASK_RUNNING;
9a897c5a
SR
2350#ifdef CONFIG_SMP
2351 if (p->sched_class->task_wake_up)
2352 p->sched_class->task_wake_up(rq, p);
2353#endif
1da177e4 2354out:
2087a1ad
GH
2355 current->se.last_wakeup = current->se.sum_exec_runtime;
2356
1da177e4
LT
2357 task_rq_unlock(rq, &flags);
2358
2359 return success;
2360}
2361
7ad5b3a5 2362int wake_up_process(struct task_struct *p)
1da177e4 2363{
d9514f6c 2364 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2365}
1da177e4
LT
2366EXPORT_SYMBOL(wake_up_process);
2367
7ad5b3a5 2368int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2369{
2370 return try_to_wake_up(p, state, 0);
2371}
2372
1da177e4
LT
2373/*
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
dd41f596
IM
2376 *
2377 * __sched_fork() is basic setup used by init_idle() too:
2378 */
2379static void __sched_fork(struct task_struct *p)
2380{
dd41f596
IM
2381 p->se.exec_start = 0;
2382 p->se.sum_exec_runtime = 0;
f6cf891c 2383 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2384 p->se.last_wakeup = 0;
2385 p->se.avg_overlap = 0;
6cfb0d5d
IM
2386
2387#ifdef CONFIG_SCHEDSTATS
2388 p->se.wait_start = 0;
dd41f596
IM
2389 p->se.sum_sleep_runtime = 0;
2390 p->se.sleep_start = 0;
dd41f596
IM
2391 p->se.block_start = 0;
2392 p->se.sleep_max = 0;
2393 p->se.block_max = 0;
2394 p->se.exec_max = 0;
eba1ed4b 2395 p->se.slice_max = 0;
dd41f596 2396 p->se.wait_max = 0;
6cfb0d5d 2397#endif
476d139c 2398
fa717060 2399 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2400 p->se.on_rq = 0;
4a55bd5e 2401 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2402
e107be36
AK
2403#ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p->preempt_notifiers);
2405#endif
2406
1da177e4
LT
2407 /*
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_RUNNING;
dd41f596
IM
2414}
2415
2416/*
2417 * fork()/clone()-time setup:
2418 */
2419void sched_fork(struct task_struct *p, int clone_flags)
2420{
2421 int cpu = get_cpu();
2422
2423 __sched_fork(p);
2424
2425#ifdef CONFIG_SMP
2426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2427#endif
02e4bac2 2428 set_task_cpu(p, cpu);
b29739f9
IM
2429
2430 /*
2431 * Make sure we do not leak PI boosting priority to the child:
2432 */
2433 p->prio = current->normal_prio;
2ddbf952
HS
2434 if (!rt_prio(p->prio))
2435 p->sched_class = &fair_sched_class;
b29739f9 2436
52f17b6c 2437#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2438 if (likely(sched_info_on()))
52f17b6c 2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2440#endif
d6077cb8 2441#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2442 p->oncpu = 0;
2443#endif
1da177e4 2444#ifdef CONFIG_PREEMPT
4866cde0 2445 /* Want to start with kernel preemption disabled. */
a1261f54 2446 task_thread_info(p)->preempt_count = 1;
1da177e4 2447#endif
476d139c 2448 put_cpu();
1da177e4
LT
2449}
2450
2451/*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
7ad5b3a5 2458void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2459{
2460 unsigned long flags;
dd41f596 2461 struct rq *rq;
1da177e4
LT
2462
2463 rq = task_rq_lock(p, &flags);
147cbb4b 2464 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2465 update_rq_clock(rq);
1da177e4
LT
2466
2467 p->prio = effective_prio(p);
2468
b9dca1e0 2469 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2470 activate_task(rq, p, 0);
1da177e4 2471 } else {
1da177e4 2472 /*
dd41f596
IM
2473 * Let the scheduling class do new task startup
2474 * management (if any):
1da177e4 2475 */
ee0827d8 2476 p->sched_class->task_new(rq, p);
c09595f6 2477 inc_nr_running(rq);
1da177e4 2478 }
c71dd42d 2479 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2480 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2481#ifdef CONFIG_SMP
2482 if (p->sched_class->task_wake_up)
2483 p->sched_class->task_wake_up(rq, p);
2484#endif
dd41f596 2485 task_rq_unlock(rq, &flags);
1da177e4
LT
2486}
2487
e107be36
AK
2488#ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490/**
421cee29
RD
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
e107be36
AK
2493 */
2494void preempt_notifier_register(struct preempt_notifier *notifier)
2495{
2496 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2497}
2498EXPORT_SYMBOL_GPL(preempt_notifier_register);
2499
2500/**
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2502 * @notifier: notifier struct to unregister
e107be36
AK
2503 *
2504 * This is safe to call from within a preemption notifier.
2505 */
2506void preempt_notifier_unregister(struct preempt_notifier *notifier)
2507{
2508 hlist_del(&notifier->link);
2509}
2510EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2511
2512static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513{
2514 struct preempt_notifier *notifier;
2515 struct hlist_node *node;
2516
2517 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2519}
2520
2521static void
2522fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524{
2525 struct preempt_notifier *notifier;
2526 struct hlist_node *node;
2527
2528 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_out(notifier, next);
2530}
2531
6d6bc0ad 2532#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2533
2534static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2535{
2536}
2537
2538static void
2539fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541{
2542}
2543
6d6bc0ad 2544#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2545
4866cde0
NP
2546/**
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
421cee29 2549 * @prev: the current task that is being switched out
4866cde0
NP
2550 * @next: the task we are going to switch to.
2551 *
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2554 * switch.
2555 *
2556 * prepare_task_switch sets up locking and calls architecture specific
2557 * hooks.
2558 */
e107be36
AK
2559static inline void
2560prepare_task_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
4866cde0 2562{
e107be36 2563 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
1da177e4
LT
2568/**
2569 * finish_task_switch - clean up after a task-switch
344babaa 2570 * @rq: runqueue associated with task-switch
1da177e4
LT
2571 * @prev: the thread we just switched away from.
2572 *
4866cde0
NP
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2577 *
2578 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2579 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2580 * with the lock held can cause deadlocks; see schedule() for
2581 * details.)
2582 */
a9957449 2583static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2584 __releases(rq->lock)
2585{
1da177e4 2586 struct mm_struct *mm = rq->prev_mm;
55a101f8 2587 long prev_state;
1da177e4
LT
2588
2589 rq->prev_mm = NULL;
2590
2591 /*
2592 * A task struct has one reference for the use as "current".
c394cc9f 2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
c394cc9f 2596 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2599 * be dropped twice.
2600 * Manfred Spraul <manfred@colorfullife.com>
2601 */
55a101f8 2602 prev_state = prev->state;
4866cde0
NP
2603 finish_arch_switch(prev);
2604 finish_lock_switch(rq, prev);
9a897c5a
SR
2605#ifdef CONFIG_SMP
2606 if (current->sched_class->post_schedule)
2607 current->sched_class->post_schedule(rq);
2608#endif
e8fa1362 2609
e107be36 2610 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2611 if (mm)
2612 mmdrop(mm);
c394cc9f 2613 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
9761eea8 2617 */
c6fd91f0 2618 kprobe_flush_task(prev);
1da177e4 2619 put_task_struct(prev);
c6fd91f0 2620 }
1da177e4
LT
2621}
2622
2623/**
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2626 */
36c8b586 2627asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2628 __releases(rq->lock)
2629{
70b97a7f
IM
2630 struct rq *rq = this_rq();
2631
4866cde0
NP
2632 finish_task_switch(rq, prev);
2633#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2635 preempt_enable();
2636#endif
1da177e4 2637 if (current->set_child_tid)
b488893a 2638 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2639}
2640
2641/*
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2644 */
dd41f596 2645static inline void
70b97a7f 2646context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2647 struct task_struct *next)
1da177e4 2648{
dd41f596 2649 struct mm_struct *mm, *oldmm;
1da177e4 2650
e107be36 2651 prepare_task_switch(rq, prev, next);
0a16b607 2652 trace_sched_switch(rq, prev, next);
dd41f596
IM
2653 mm = next->mm;
2654 oldmm = prev->active_mm;
9226d125
ZA
2655 /*
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2658 * one hypercall.
2659 */
2660 arch_enter_lazy_cpu_mode();
2661
dd41f596 2662 if (unlikely(!mm)) {
1da177e4
LT
2663 next->active_mm = oldmm;
2664 atomic_inc(&oldmm->mm_count);
2665 enter_lazy_tlb(oldmm, next);
2666 } else
2667 switch_mm(oldmm, mm, next);
2668
dd41f596 2669 if (unlikely(!prev->mm)) {
1da177e4 2670 prev->active_mm = NULL;
1da177e4
LT
2671 rq->prev_mm = oldmm;
2672 }
3a5f5e48
IM
2673 /*
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2678 */
2679#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2681#endif
1da177e4
LT
2682
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev, next, prev);
2685
dd41f596
IM
2686 barrier();
2687 /*
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2691 */
2692 finish_task_switch(this_rq(), prev);
1da177e4
LT
2693}
2694
2695/*
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2697 *
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2701 */
2702unsigned long nr_running(void)
2703{
2704 unsigned long i, sum = 0;
2705
2706 for_each_online_cpu(i)
2707 sum += cpu_rq(i)->nr_running;
2708
2709 return sum;
2710}
2711
2712unsigned long nr_uninterruptible(void)
2713{
2714 unsigned long i, sum = 0;
2715
0a945022 2716 for_each_possible_cpu(i)
1da177e4
LT
2717 sum += cpu_rq(i)->nr_uninterruptible;
2718
2719 /*
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2722 */
2723 if (unlikely((long)sum < 0))
2724 sum = 0;
2725
2726 return sum;
2727}
2728
2729unsigned long long nr_context_switches(void)
2730{
cc94abfc
SR
2731 int i;
2732 unsigned long long sum = 0;
1da177e4 2733
0a945022 2734 for_each_possible_cpu(i)
1da177e4
LT
2735 sum += cpu_rq(i)->nr_switches;
2736
2737 return sum;
2738}
2739
2740unsigned long nr_iowait(void)
2741{
2742 unsigned long i, sum = 0;
2743
0a945022 2744 for_each_possible_cpu(i)
1da177e4
LT
2745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746
2747 return sum;
2748}
2749
db1b1fef
JS
2750unsigned long nr_active(void)
2751{
2752 unsigned long i, running = 0, uninterruptible = 0;
2753
2754 for_each_online_cpu(i) {
2755 running += cpu_rq(i)->nr_running;
2756 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2757 }
2758
2759 if (unlikely((long)uninterruptible < 0))
2760 uninterruptible = 0;
2761
2762 return running + uninterruptible;
2763}
2764
48f24c4d 2765/*
dd41f596
IM
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
48f24c4d 2768 */
dd41f596 2769static void update_cpu_load(struct rq *this_rq)
48f24c4d 2770{
495eca49 2771 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2772 int i, scale;
2773
2774 this_rq->nr_load_updates++;
dd41f596
IM
2775
2776 /* Update our load: */
2777 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2778 unsigned long old_load, new_load;
2779
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2781
2782 old_load = this_rq->cpu_load[i];
2783 new_load = this_load;
a25707f3
IM
2784 /*
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2787 * example.
2788 */
2789 if (new_load > old_load)
2790 new_load += scale-1;
dd41f596
IM
2791 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2792 }
48f24c4d
IM
2793}
2794
dd41f596
IM
2795#ifdef CONFIG_SMP
2796
1da177e4
LT
2797/*
2798 * double_rq_lock - safely lock two runqueues
2799 *
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2802 */
70b97a7f 2803static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2804 __acquires(rq1->lock)
2805 __acquires(rq2->lock)
2806{
054b9108 2807 BUG_ON(!irqs_disabled());
1da177e4
LT
2808 if (rq1 == rq2) {
2809 spin_lock(&rq1->lock);
2810 __acquire(rq2->lock); /* Fake it out ;) */
2811 } else {
c96d145e 2812 if (rq1 < rq2) {
1da177e4 2813 spin_lock(&rq1->lock);
5e710e37 2814 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2815 } else {
2816 spin_lock(&rq2->lock);
5e710e37 2817 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2818 }
2819 }
6e82a3be
IM
2820 update_rq_clock(rq1);
2821 update_rq_clock(rq2);
1da177e4
LT
2822}
2823
2824/*
2825 * double_rq_unlock - safely unlock two runqueues
2826 *
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2829 */
70b97a7f 2830static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2831 __releases(rq1->lock)
2832 __releases(rq2->lock)
2833{
2834 spin_unlock(&rq1->lock);
2835 if (rq1 != rq2)
2836 spin_unlock(&rq2->lock);
2837 else
2838 __release(rq2->lock);
2839}
2840
1da177e4
LT
2841/*
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2845 * the cpu_allowed mask is restored.
2846 */
36c8b586 2847static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2848{
70b97a7f 2849 struct migration_req req;
1da177e4 2850 unsigned long flags;
70b97a7f 2851 struct rq *rq;
1da177e4
LT
2852
2853 rq = task_rq_lock(p, &flags);
96f874e2 2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2855 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2856 goto out;
2857
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
36c8b586 2862
1da177e4
LT
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
36c8b586 2868
1da177e4
LT
2869 return;
2870 }
2871out:
2872 task_rq_unlock(rq, &flags);
2873}
2874
2875/*
476d139c
NP
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2878 */
2879void sched_exec(void)
2880{
1da177e4 2881 int new_cpu, this_cpu = get_cpu();
476d139c 2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2883 put_cpu();
476d139c
NP
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
1da177e4
LT
2886}
2887
2888/*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
dd41f596
IM
2892static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
1da177e4 2894{
2e1cb74a 2895 deactivate_task(src_rq, p, 0);
1da177e4 2896 set_task_cpu(p, this_cpu);
dd41f596 2897 activate_task(this_rq, p, 0);
1da177e4
LT
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
15afe09b 2902 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2903}
2904
2905/*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
858119e1 2908static
70b97a7f 2909int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2910 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2911 int *all_pinned)
1da177e4
LT
2912{
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
96f874e2 2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2920 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2921 return 0;
cc367732 2922 }
81026794
NP
2923 *all_pinned = 0;
2924
cc367732
IM
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2927 return 0;
cc367732 2928 }
1da177e4 2929
da84d961
IM
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
6bc1665b
IM
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2938#ifdef CONFIG_SCHEDSTATS
cc367732 2939 if (task_hot(p, rq->clock, sd)) {
da84d961 2940 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
da84d961
IM
2943#endif
2944 return 1;
2945 }
2946
cc367732
IM
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2949 return 0;
cc367732 2950 }
1da177e4
LT
2951 return 1;
2952}
2953
e1d1484f
PW
2954static unsigned long
2955balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2959{
051c6764 2960 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
1da177e4 2963
e1d1484f 2964 if (max_load_move == 0)
1da177e4
LT
2965 goto out;
2966
81026794
NP
2967 pinned = 1;
2968
1da177e4 2969 /*
dd41f596 2970 * Start the load-balancing iterator:
1da177e4 2971 */
dd41f596
IM
2972 p = iterator->start(iterator->arg);
2973next:
b82d9fdd 2974 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2975 goto out;
051c6764
PZ
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2979 p = iterator->next(iterator->arg);
2980 goto next;
1da177e4
LT
2981 }
2982
dd41f596 2983 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2984 pulled++;
dd41f596 2985 rem_load_move -= p->se.load.weight;
1da177e4 2986
2dd73a4f 2987 /*
b82d9fdd 2988 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2989 */
e1d1484f 2990 if (rem_load_move > 0) {
a4ac01c3
PW
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
dd41f596
IM
2993 p = iterator->next(iterator->arg);
2994 goto next;
1da177e4
LT
2995 }
2996out:
2997 /*
e1d1484f 2998 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
e1d1484f
PW
3006
3007 return max_load_move - rem_load_move;
1da177e4
LT
3008}
3009
dd41f596 3010/*
43010659
PW
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3014 *
3015 * Called with both runqueues locked.
3016 */
3017static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3018 unsigned long max_load_move,
dd41f596
IM
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021{
5522d5d5 3022 const struct sched_class *class = sched_class_highest;
43010659 3023 unsigned long total_load_moved = 0;
a4ac01c3 3024 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3025
3026 do {
43010659
PW
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3029 max_load_move - total_load_moved,
a4ac01c3 3030 sd, idle, all_pinned, &this_best_prio);
dd41f596 3031 class = class->next;
c4acb2c0
GH
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
43010659 3036 } while (class && max_load_move > total_load_moved);
dd41f596 3037
43010659
PW
3038 return total_load_moved > 0;
3039}
3040
e1d1484f
PW
3041static int
3042iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045{
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065}
3066
43010659
PW
3067/*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076{
5522d5d5 3077 const struct sched_class *class;
43010659
PW
3078
3079 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3081 return 1;
3082
3083 return 0;
dd41f596
IM
3084}
3085
1da177e4
LT
3086/*
3087 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3090 */
3091static struct sched_group *
3092find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3093 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3094 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3095{
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3098 unsigned long max_pull;
2dd73a4f
PW
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3101 int load_idx, group_imb = 0;
5c45bf27
SS
3102#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107#endif
1da177e4
LT
3108
3109 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
408ed066 3112
d15bcfdb 3113 if (idle == CPU_NOT_IDLE)
7897986b 3114 load_idx = sd->busy_idx;
d15bcfdb 3115 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
1da177e4
LT
3119
3120 do {
908a7c1b 3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3122 int local_group;
3123 int i;
908a7c1b 3124 int __group_imb = 0;
783609c6 3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3126 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
1da177e4 3129
758b2cdc
RR
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
1da177e4 3132
783609c6 3133 if (local_group)
758b2cdc 3134 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3135
1da177e4 3136 /* Tally up the load of all CPUs in the group */
2dd73a4f 3137 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
908a7c1b
KC
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
1da177e4 3142
758b2cdc
RR
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
2dd73a4f 3145
9439aab8 3146 if (*sd_idle && rq->nr_running)
5969fe06
NP
3147 *sd_idle = 0;
3148
1da177e4 3149 /* Bias balancing toward cpus of our domain */
783609c6
SS
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
a2000572 3156 load = target_load(i, load_idx);
908a7c1b 3157 } else {
a2000572 3158 load = source_load(i, load_idx);
908a7c1b
KC
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
1da177e4
LT
3164
3165 avg_load += load;
2dd73a4f 3166 sum_nr_running += rq->nr_running;
dd41f596 3167 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3170 }
3171
783609c6
SS
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
9439aab8
SS
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
783609c6 3177 */
9439aab8
SS
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
783609c6
SS
3180 *balance = 0;
3181 goto ret;
3182 }
3183
1da177e4 3184 total_load += avg_load;
5517d86b 3185 total_pwr += group->__cpu_power;
1da177e4
LT
3186
3187 /* Adjust by relative CPU power of the group */
5517d86b
ED
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
1da177e4 3190
408ed066
PZ
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3205 __group_imb = 1;
3206
5517d86b 3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3208
1da177e4
LT
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
2dd73a4f
PW
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
908a7c1b 3215 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3216 max_load = avg_load;
3217 busiest = group;
2dd73a4f
PW
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
908a7c1b 3220 group_imb = __group_imb;
1da177e4 3221 }
5c45bf27
SS
3222
3223#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
dd41f596
IM
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
5c45bf27
SS
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
dd41f596 3240 /*
5c45bf27
SS
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
dd41f596
IM
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3245 || !sum_nr_running)
dd41f596 3246 goto group_next;
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which has the least non-idle load.
dd41f596
IM
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
d5679bd1 3255 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3256 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
5c45bf27
SS
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
dd41f596 3261 }
5c45bf27 3262
dd41f596 3263 /*
5c45bf27 3264 * Calculate the group which is almost near its
dd41f596
IM
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
d5679bd1 3271 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3272 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
48f24c4d 3276 }
5c45bf27
SS
3277group_next:
3278#endif
1da177e4
LT
3279 group = group->next;
3280 } while (group != sd->groups);
3281
2dd73a4f 3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
2dd73a4f 3291 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
1da177e4
LT
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3303 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3304 * appear as very large values with unsigned longs.
3305 */
2dd73a4f
PW
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
0c117f1b
SS
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3321
1da177e4 3322 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3325 / SCHED_LOAD_SCALE;
3326
2dd73a4f
PW
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
7fd0d2dd 3333 if (*imbalance < busiest_load_per_task) {
48f24c4d 3334 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3335 unsigned int imbn;
3336
3337small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
408ed066 3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3346
01c8c57d 3347 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3348 busiest_load_per_task * imbn) {
2dd73a4f 3349 *imbalance = busiest_load_per_task;
1da177e4
LT
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
5517d86b
ED
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
1da177e4
LT
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
5517d86b
ED
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3368 if (max_load > tmp)
5517d86b 3369 pwr_move += busiest->__cpu_power *
2dd73a4f 3370 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3371
3372 /* Amount of load we'd add */
5517d86b 3373 if (max_load * busiest->__cpu_power <
33859f7f 3374 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
1da177e4 3377 else
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
7fd0d2dd
SS
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
1da177e4
LT
3387 }
3388
1da177e4
LT
3389 return busiest;
3390
3391out_balanced:
5c45bf27 3392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3394 goto ret;
1da177e4 3395
5c45bf27
SS
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
7a09b1a2
VS
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3400 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3401 }
5c45bf27
SS
3402 return group_min;
3403 }
5c45bf27 3404#endif
783609c6 3405ret:
1da177e4
LT
3406 *imbalance = 0;
3407 return NULL;
3408}
3409
3410/*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
70b97a7f 3413static struct rq *
d15bcfdb 3414find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3415 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3416{
70b97a7f 3417 struct rq *busiest = NULL, *rq;
2dd73a4f 3418 unsigned long max_load = 0;
1da177e4
LT
3419 int i;
3420
758b2cdc 3421 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3422 unsigned long wl;
0a2966b4 3423
96f874e2 3424 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3425 continue;
3426
48f24c4d 3427 rq = cpu_rq(i);
dd41f596 3428 wl = weighted_cpuload(i);
2dd73a4f 3429
dd41f596 3430 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3431 continue;
1da177e4 3432
dd41f596
IM
3433 if (wl > max_load) {
3434 max_load = wl;
48f24c4d 3435 busiest = rq;
1da177e4
LT
3436 }
3437 }
3438
3439 return busiest;
3440}
3441
77391d71
NP
3442/*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446#define MAX_PINNED_INTERVAL 512
3447
1da177e4
LT
3448/*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
1da177e4 3451 */
70b97a7f 3452static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3453 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3454 int *balance, struct cpumask *cpus)
1da177e4 3455{
43010659 3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3457 struct sched_group *group;
1da177e4 3458 unsigned long imbalance;
70b97a7f 3459 struct rq *busiest;
fe2eea3f 3460 unsigned long flags;
5969fe06 3461
96f874e2 3462 cpumask_setall(cpus);
7c16ec58 3463
89c4710e
SS
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3468 * portraying it as CPU_NOT_IDLE.
89c4710e 3469 */
d15bcfdb 3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3472 sd_idle = 1;
1da177e4 3473
2d72376b 3474 schedstat_inc(sd, lb_count[idle]);
1da177e4 3475
0a2966b4 3476redo:
c8cba857 3477 update_shares(sd);
0a2966b4 3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3479 cpus, balance);
783609c6 3480
06066714 3481 if (*balance == 0)
783609c6 3482 goto out_balanced;
783609c6 3483
1da177e4
LT
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
7c16ec58 3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
db935dbd 3495 BUG_ON(busiest == this_rq);
1da177e4
LT
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
43010659 3499 ld_moved = 0;
1da177e4
LT
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3504 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3505 * correctly treated as an imbalance.
3506 */
fe2eea3f 3507 local_irq_save(flags);
e17224bf 3508 double_rq_lock(this_rq, busiest);
43010659 3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3510 imbalance, sd, idle, &all_pinned);
e17224bf 3511 double_rq_unlock(this_rq, busiest);
fe2eea3f 3512 local_irq_restore(flags);
81026794 3513
46cb4b7c
SS
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
43010659 3517 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3518 resched_cpu(this_cpu);
3519
81026794 3520 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3521 if (unlikely(all_pinned)) {
96f874e2
RR
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
0a2966b4 3524 goto redo;
81026794 3525 goto out_balanced;
0a2966b4 3526 }
1da177e4 3527 }
81026794 3528
43010659 3529 if (!ld_moved) {
1da177e4
LT
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3534
fe2eea3f 3535 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
96f874e2
RR
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
fe2eea3f 3542 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
1da177e4
LT
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
81026794 3550 active_balance = 1;
1da177e4 3551 }
fe2eea3f 3552 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3553 if (active_balance)
1da177e4
LT
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
39507451 3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3561 }
81026794 3562 } else
1da177e4
LT
3563 sd->nr_balance_failed = 0;
3564
81026794 3565 if (likely(!active_balance)) {
1da177e4
LT
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
81026794
NP
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
1da177e4
LT
3577 }
3578
43010659 3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3581 ld_moved = -1;
3582
3583 goto out;
1da177e4
LT
3584
3585out_balanced:
1da177e4
LT
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
16cfb1c0 3588 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3589
3590out_one_pinned:
1da177e4 3591 /* tune up the balancing interval */
77391d71
NP
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3594 sd->balance_interval *= 2;
3595
48f24c4d 3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601out:
c8cba857
PZ
3602 if (ld_moved)
3603 update_shares(sd);
c09595f6 3604 return ld_moved;
1da177e4
LT
3605}
3606
3607/*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
d15bcfdb 3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3612 * this_rq is locked.
3613 */
48f24c4d 3614static int
7c16ec58 3615load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3616 struct cpumask *cpus)
1da177e4
LT
3617{
3618 struct sched_group *group;
70b97a7f 3619 struct rq *busiest = NULL;
1da177e4 3620 unsigned long imbalance;
43010659 3621 int ld_moved = 0;
5969fe06 3622 int sd_idle = 0;
969bb4e4 3623 int all_pinned = 0;
7c16ec58 3624
96f874e2 3625 cpumask_setall(cpus);
5969fe06 3626
89c4710e
SS
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3631 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3635 sd_idle = 1;
1da177e4 3636
2d72376b 3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3638redo:
3e5459b4 3639 update_shares_locked(this_rq, sd);
d15bcfdb 3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3641 &sd_idle, cpus, NULL);
1da177e4 3642 if (!group) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
7c16ec58 3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3648 if (!busiest) {
d15bcfdb 3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3650 goto out_balanced;
1da177e4
LT
3651 }
3652
db935dbd
NP
3653 BUG_ON(busiest == this_rq);
3654
d15bcfdb 3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3656
43010659 3657 ld_moved = 0;
d6d5cfaf
NP
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
43010659 3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
1b12bbc7 3666 double_unlock_balance(this_rq, busiest);
0a2966b4 3667
969bb4e4 3668 if (unlikely(all_pinned)) {
96f874e2
RR
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
0a2966b4
CL
3671 goto redo;
3672 }
d6d5cfaf
NP
3673 }
3674
43010659 3675 if (!ld_moved) {
36dffab6 3676 int active_balance = 0;
ad273b32 3677
d15bcfdb 3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3681 return -1;
ad273b32
VS
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
6ca09dfc 3718 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3731 /*
3732 * Should not call ttwu while holding a rq->lock
3733 */
3734 spin_unlock(&this_rq->lock);
ad273b32
VS
3735 if (active_balance)
3736 wake_up_process(busiest->migration_thread);
da8d5089 3737 spin_lock(&this_rq->lock);
ad273b32 3738
5969fe06 3739 } else
16cfb1c0 3740 sd->nr_balance_failed = 0;
1da177e4 3741
3e5459b4 3742 update_shares_locked(this_rq, sd);
43010659 3743 return ld_moved;
16cfb1c0
NP
3744
3745out_balanced:
d15bcfdb 3746 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3747 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3748 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3749 return -1;
16cfb1c0 3750 sd->nr_balance_failed = 0;
48f24c4d 3751
16cfb1c0 3752 return 0;
1da177e4
LT
3753}
3754
3755/*
3756 * idle_balance is called by schedule() if this_cpu is about to become
3757 * idle. Attempts to pull tasks from other CPUs.
3758 */
70b97a7f 3759static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3760{
3761 struct sched_domain *sd;
efbe027e 3762 int pulled_task = 0;
dd41f596 3763 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3764 cpumask_var_t tmpmask;
3765
3766 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3767 return;
1da177e4
LT
3768
3769 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3770 unsigned long interval;
3771
3772 if (!(sd->flags & SD_LOAD_BALANCE))
3773 continue;
3774
3775 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3776 /* If we've pulled tasks over stop searching: */
7c16ec58 3777 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3778 sd, tmpmask);
92c4ca5c
CL
3779
3780 interval = msecs_to_jiffies(sd->balance_interval);
3781 if (time_after(next_balance, sd->last_balance + interval))
3782 next_balance = sd->last_balance + interval;
3783 if (pulled_task)
3784 break;
1da177e4 3785 }
dd41f596 3786 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3787 /*
3788 * We are going idle. next_balance may be set based on
3789 * a busy processor. So reset next_balance.
3790 */
3791 this_rq->next_balance = next_balance;
dd41f596 3792 }
4d2732c6 3793 free_cpumask_var(tmpmask);
1da177e4
LT
3794}
3795
3796/*
3797 * active_load_balance is run by migration threads. It pushes running tasks
3798 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3799 * running on each physical CPU where possible, and avoids physical /
3800 * logical imbalances.
3801 *
3802 * Called with busiest_rq locked.
3803 */
70b97a7f 3804static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3805{
39507451 3806 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3807 struct sched_domain *sd;
3808 struct rq *target_rq;
39507451 3809
48f24c4d 3810 /* Is there any task to move? */
39507451 3811 if (busiest_rq->nr_running <= 1)
39507451
NP
3812 return;
3813
3814 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3815
3816 /*
39507451 3817 * This condition is "impossible", if it occurs
41a2d6cf 3818 * we need to fix it. Originally reported by
39507451 3819 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3820 */
39507451 3821 BUG_ON(busiest_rq == target_rq);
1da177e4 3822
39507451
NP
3823 /* move a task from busiest_rq to target_rq */
3824 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3825 update_rq_clock(busiest_rq);
3826 update_rq_clock(target_rq);
39507451
NP
3827
3828 /* Search for an sd spanning us and the target CPU. */
c96d145e 3829 for_each_domain(target_cpu, sd) {
39507451 3830 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3831 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3832 break;
c96d145e 3833 }
39507451 3834
48f24c4d 3835 if (likely(sd)) {
2d72376b 3836 schedstat_inc(sd, alb_count);
39507451 3837
43010659
PW
3838 if (move_one_task(target_rq, target_cpu, busiest_rq,
3839 sd, CPU_IDLE))
48f24c4d
IM
3840 schedstat_inc(sd, alb_pushed);
3841 else
3842 schedstat_inc(sd, alb_failed);
3843 }
1b12bbc7 3844 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3845}
3846
46cb4b7c
SS
3847#ifdef CONFIG_NO_HZ
3848static struct {
3849 atomic_t load_balancer;
7d1e6a9b 3850 cpumask_var_t cpu_mask;
46cb4b7c
SS
3851} nohz ____cacheline_aligned = {
3852 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3853};
3854
7835b98b 3855/*
46cb4b7c
SS
3856 * This routine will try to nominate the ilb (idle load balancing)
3857 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3858 * load balancing on behalf of all those cpus. If all the cpus in the system
3859 * go into this tickless mode, then there will be no ilb owner (as there is
3860 * no need for one) and all the cpus will sleep till the next wakeup event
3861 * arrives...
3862 *
3863 * For the ilb owner, tick is not stopped. And this tick will be used
3864 * for idle load balancing. ilb owner will still be part of
3865 * nohz.cpu_mask..
7835b98b 3866 *
46cb4b7c
SS
3867 * While stopping the tick, this cpu will become the ilb owner if there
3868 * is no other owner. And will be the owner till that cpu becomes busy
3869 * or if all cpus in the system stop their ticks at which point
3870 * there is no need for ilb owner.
3871 *
3872 * When the ilb owner becomes busy, it nominates another owner, during the
3873 * next busy scheduler_tick()
3874 */
3875int select_nohz_load_balancer(int stop_tick)
3876{
3877 int cpu = smp_processor_id();
3878
3879 if (stop_tick) {
7d1e6a9b 3880 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3881 cpu_rq(cpu)->in_nohz_recently = 1;
3882
3883 /*
3884 * If we are going offline and still the leader, give up!
3885 */
e761b772 3886 if (!cpu_active(cpu) &&
46cb4b7c
SS
3887 atomic_read(&nohz.load_balancer) == cpu) {
3888 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3889 BUG();
3890 return 0;
3891 }
3892
3893 /* time for ilb owner also to sleep */
7d1e6a9b 3894 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3895 if (atomic_read(&nohz.load_balancer) == cpu)
3896 atomic_set(&nohz.load_balancer, -1);
3897 return 0;
3898 }
3899
3900 if (atomic_read(&nohz.load_balancer) == -1) {
3901 /* make me the ilb owner */
3902 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3903 return 1;
3904 } else if (atomic_read(&nohz.load_balancer) == cpu)
3905 return 1;
3906 } else {
7d1e6a9b 3907 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3908 return 0;
3909
7d1e6a9b 3910 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3911
3912 if (atomic_read(&nohz.load_balancer) == cpu)
3913 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3914 BUG();
3915 }
3916 return 0;
3917}
3918#endif
3919
3920static DEFINE_SPINLOCK(balancing);
3921
3922/*
7835b98b
CL
3923 * It checks each scheduling domain to see if it is due to be balanced,
3924 * and initiates a balancing operation if so.
3925 *
3926 * Balancing parameters are set up in arch_init_sched_domains.
3927 */
a9957449 3928static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3929{
46cb4b7c
SS
3930 int balance = 1;
3931 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3932 unsigned long interval;
3933 struct sched_domain *sd;
46cb4b7c 3934 /* Earliest time when we have to do rebalance again */
c9819f45 3935 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3936 int update_next_balance = 0;
d07355f5 3937 int need_serialize;
a0e90245
RR
3938 cpumask_var_t tmp;
3939
3940 /* Fails alloc? Rebalancing probably not a priority right now. */
3941 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3942 return;
1da177e4 3943
46cb4b7c 3944 for_each_domain(cpu, sd) {
1da177e4
LT
3945 if (!(sd->flags & SD_LOAD_BALANCE))
3946 continue;
3947
3948 interval = sd->balance_interval;
d15bcfdb 3949 if (idle != CPU_IDLE)
1da177e4
LT
3950 interval *= sd->busy_factor;
3951
3952 /* scale ms to jiffies */
3953 interval = msecs_to_jiffies(interval);
3954 if (unlikely(!interval))
3955 interval = 1;
dd41f596
IM
3956 if (interval > HZ*NR_CPUS/10)
3957 interval = HZ*NR_CPUS/10;
3958
d07355f5 3959 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3960
d07355f5 3961 if (need_serialize) {
08c183f3
CL
3962 if (!spin_trylock(&balancing))
3963 goto out;
3964 }
3965
c9819f45 3966 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3967 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3968 /*
3969 * We've pulled tasks over so either we're no
5969fe06
NP
3970 * longer idle, or one of our SMT siblings is
3971 * not idle.
3972 */
d15bcfdb 3973 idle = CPU_NOT_IDLE;
1da177e4 3974 }
1bd77f2d 3975 sd->last_balance = jiffies;
1da177e4 3976 }
d07355f5 3977 if (need_serialize)
08c183f3
CL
3978 spin_unlock(&balancing);
3979out:
f549da84 3980 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3981 next_balance = sd->last_balance + interval;
f549da84
SS
3982 update_next_balance = 1;
3983 }
783609c6
SS
3984
3985 /*
3986 * Stop the load balance at this level. There is another
3987 * CPU in our sched group which is doing load balancing more
3988 * actively.
3989 */
3990 if (!balance)
3991 break;
1da177e4 3992 }
f549da84
SS
3993
3994 /*
3995 * next_balance will be updated only when there is a need.
3996 * When the cpu is attached to null domain for ex, it will not be
3997 * updated.
3998 */
3999 if (likely(update_next_balance))
4000 rq->next_balance = next_balance;
a0e90245
RR
4001
4002 free_cpumask_var(tmp);
46cb4b7c
SS
4003}
4004
4005/*
4006 * run_rebalance_domains is triggered when needed from the scheduler tick.
4007 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4008 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4009 */
4010static void run_rebalance_domains(struct softirq_action *h)
4011{
dd41f596
IM
4012 int this_cpu = smp_processor_id();
4013 struct rq *this_rq = cpu_rq(this_cpu);
4014 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4015 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4016
dd41f596 4017 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4018
4019#ifdef CONFIG_NO_HZ
4020 /*
4021 * If this cpu is the owner for idle load balancing, then do the
4022 * balancing on behalf of the other idle cpus whose ticks are
4023 * stopped.
4024 */
dd41f596
IM
4025 if (this_rq->idle_at_tick &&
4026 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4027 struct rq *rq;
4028 int balance_cpu;
4029
7d1e6a9b
RR
4030 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4031 if (balance_cpu == this_cpu)
4032 continue;
4033
46cb4b7c
SS
4034 /*
4035 * If this cpu gets work to do, stop the load balancing
4036 * work being done for other cpus. Next load
4037 * balancing owner will pick it up.
4038 */
4039 if (need_resched())
4040 break;
4041
de0cf899 4042 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4043
4044 rq = cpu_rq(balance_cpu);
dd41f596
IM
4045 if (time_after(this_rq->next_balance, rq->next_balance))
4046 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4047 }
4048 }
4049#endif
4050}
4051
4052/*
4053 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4054 *
4055 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4056 * idle load balancing owner or decide to stop the periodic load balancing,
4057 * if the whole system is idle.
4058 */
dd41f596 4059static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4060{
46cb4b7c
SS
4061#ifdef CONFIG_NO_HZ
4062 /*
4063 * If we were in the nohz mode recently and busy at the current
4064 * scheduler tick, then check if we need to nominate new idle
4065 * load balancer.
4066 */
4067 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4068 rq->in_nohz_recently = 0;
4069
4070 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4071 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4072 atomic_set(&nohz.load_balancer, -1);
4073 }
4074
4075 if (atomic_read(&nohz.load_balancer) == -1) {
4076 /*
4077 * simple selection for now: Nominate the
4078 * first cpu in the nohz list to be the next
4079 * ilb owner.
4080 *
4081 * TBD: Traverse the sched domains and nominate
4082 * the nearest cpu in the nohz.cpu_mask.
4083 */
7d1e6a9b 4084 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4085
434d53b0 4086 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4087 resched_cpu(ilb);
4088 }
4089 }
4090
4091 /*
4092 * If this cpu is idle and doing idle load balancing for all the
4093 * cpus with ticks stopped, is it time for that to stop?
4094 */
4095 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4096 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4097 resched_cpu(cpu);
4098 return;
4099 }
4100
4101 /*
4102 * If this cpu is idle and the idle load balancing is done by
4103 * someone else, then no need raise the SCHED_SOFTIRQ
4104 */
4105 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4106 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4107 return;
4108#endif
4109 if (time_after_eq(jiffies, rq->next_balance))
4110 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4111}
dd41f596
IM
4112
4113#else /* CONFIG_SMP */
4114
1da177e4
LT
4115/*
4116 * on UP we do not need to balance between CPUs:
4117 */
70b97a7f 4118static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4119{
4120}
dd41f596 4121
1da177e4
LT
4122#endif
4123
1da177e4
LT
4124DEFINE_PER_CPU(struct kernel_stat, kstat);
4125
4126EXPORT_PER_CPU_SYMBOL(kstat);
4127
4128/*
f06febc9
FM
4129 * Return any ns on the sched_clock that have not yet been banked in
4130 * @p in case that task is currently running.
1da177e4 4131 */
bb34d92f 4132unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4133{
1da177e4 4134 unsigned long flags;
41b86e9c 4135 struct rq *rq;
bb34d92f 4136 u64 ns = 0;
48f24c4d 4137
41b86e9c 4138 rq = task_rq_lock(p, &flags);
1508487e 4139
051a1d1a 4140 if (task_current(rq, p)) {
f06febc9
FM
4141 u64 delta_exec;
4142
a8e504d2
IM
4143 update_rq_clock(rq);
4144 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4145 if ((s64)delta_exec > 0)
bb34d92f 4146 ns = delta_exec;
41b86e9c 4147 }
48f24c4d 4148
41b86e9c 4149 task_rq_unlock(rq, &flags);
48f24c4d 4150
1da177e4
LT
4151 return ns;
4152}
4153
1da177e4
LT
4154/*
4155 * Account user cpu time to a process.
4156 * @p: the process that the cpu time gets accounted to
1da177e4 4157 * @cputime: the cpu time spent in user space since the last update
457533a7 4158 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4159 */
457533a7
MS
4160void account_user_time(struct task_struct *p, cputime_t cputime,
4161 cputime_t cputime_scaled)
1da177e4
LT
4162{
4163 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4164 cputime64_t tmp;
4165
457533a7 4166 /* Add user time to process. */
1da177e4 4167 p->utime = cputime_add(p->utime, cputime);
457533a7 4168 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4169 account_group_user_time(p, cputime);
1da177e4
LT
4170
4171 /* Add user time to cpustat. */
4172 tmp = cputime_to_cputime64(cputime);
4173 if (TASK_NICE(p) > 0)
4174 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4175 else
4176 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4177 /* Account for user time used */
4178 acct_update_integrals(p);
1da177e4
LT
4179}
4180
94886b84
LV
4181/*
4182 * Account guest cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4185 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4186 */
457533a7
MS
4187static void account_guest_time(struct task_struct *p, cputime_t cputime,
4188 cputime_t cputime_scaled)
94886b84
LV
4189{
4190 cputime64_t tmp;
4191 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4192
4193 tmp = cputime_to_cputime64(cputime);
4194
457533a7 4195 /* Add guest time to process. */
94886b84 4196 p->utime = cputime_add(p->utime, cputime);
457533a7 4197 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4198 account_group_user_time(p, cputime);
94886b84
LV
4199 p->gtime = cputime_add(p->gtime, cputime);
4200
457533a7 4201 /* Add guest time to cpustat. */
94886b84
LV
4202 cpustat->user = cputime64_add(cpustat->user, tmp);
4203 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4204}
4205
1da177e4
LT
4206/*
4207 * Account system cpu time to a process.
4208 * @p: the process that the cpu time gets accounted to
4209 * @hardirq_offset: the offset to subtract from hardirq_count()
4210 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4211 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4212 */
4213void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4214 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4215{
4216 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4217 cputime64_t tmp;
4218
983ed7a6 4219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4220 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4221 return;
4222 }
94886b84 4223
457533a7 4224 /* Add system time to process. */
1da177e4 4225 p->stime = cputime_add(p->stime, cputime);
457533a7 4226 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4227 account_group_system_time(p, cputime);
1da177e4
LT
4228
4229 /* Add system time to cpustat. */
4230 tmp = cputime_to_cputime64(cputime);
4231 if (hardirq_count() - hardirq_offset)
4232 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4233 else if (softirq_count())
4234 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4235 else
79741dd3
MS
4236 cpustat->system = cputime64_add(cpustat->system, tmp);
4237
1da177e4
LT
4238 /* Account for system time used */
4239 acct_update_integrals(p);
1da177e4
LT
4240}
4241
c66f08be 4242/*
1da177e4 4243 * Account for involuntary wait time.
1da177e4 4244 * @steal: the cpu time spent in involuntary wait
c66f08be 4245 */
79741dd3 4246void account_steal_time(cputime_t cputime)
c66f08be 4247{
79741dd3
MS
4248 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4249 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4250
4251 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4252}
4253
1da177e4 4254/*
79741dd3
MS
4255 * Account for idle time.
4256 * @cputime: the cpu time spent in idle wait
1da177e4 4257 */
79741dd3 4258void account_idle_time(cputime_t cputime)
1da177e4
LT
4259{
4260 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4261 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4262 struct rq *rq = this_rq();
1da177e4 4263
79741dd3
MS
4264 if (atomic_read(&rq->nr_iowait) > 0)
4265 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4266 else
4267 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4268}
4269
79741dd3
MS
4270#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4271
4272/*
4273 * Account a single tick of cpu time.
4274 * @p: the process that the cpu time gets accounted to
4275 * @user_tick: indicates if the tick is a user or a system tick
4276 */
4277void account_process_tick(struct task_struct *p, int user_tick)
4278{
4279 cputime_t one_jiffy = jiffies_to_cputime(1);
4280 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4281 struct rq *rq = this_rq();
4282
4283 if (user_tick)
4284 account_user_time(p, one_jiffy, one_jiffy_scaled);
4285 else if (p != rq->idle)
4286 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4287 one_jiffy_scaled);
4288 else
4289 account_idle_time(one_jiffy);
4290}
4291
4292/*
4293 * Account multiple ticks of steal time.
4294 * @p: the process from which the cpu time has been stolen
4295 * @ticks: number of stolen ticks
4296 */
4297void account_steal_ticks(unsigned long ticks)
4298{
4299 account_steal_time(jiffies_to_cputime(ticks));
4300}
4301
4302/*
4303 * Account multiple ticks of idle time.
4304 * @ticks: number of stolen ticks
4305 */
4306void account_idle_ticks(unsigned long ticks)
4307{
4308 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4309}
4310
79741dd3
MS
4311#endif
4312
49048622
BS
4313/*
4314 * Use precise platform statistics if available:
4315 */
4316#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4317cputime_t task_utime(struct task_struct *p)
4318{
4319 return p->utime;
4320}
4321
4322cputime_t task_stime(struct task_struct *p)
4323{
4324 return p->stime;
4325}
4326#else
4327cputime_t task_utime(struct task_struct *p)
4328{
4329 clock_t utime = cputime_to_clock_t(p->utime),
4330 total = utime + cputime_to_clock_t(p->stime);
4331 u64 temp;
4332
4333 /*
4334 * Use CFS's precise accounting:
4335 */
4336 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4337
4338 if (total) {
4339 temp *= utime;
4340 do_div(temp, total);
4341 }
4342 utime = (clock_t)temp;
4343
4344 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4345 return p->prev_utime;
4346}
4347
4348cputime_t task_stime(struct task_struct *p)
4349{
4350 clock_t stime;
4351
4352 /*
4353 * Use CFS's precise accounting. (we subtract utime from
4354 * the total, to make sure the total observed by userspace
4355 * grows monotonically - apps rely on that):
4356 */
4357 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4358 cputime_to_clock_t(task_utime(p));
4359
4360 if (stime >= 0)
4361 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4362
4363 return p->prev_stime;
4364}
4365#endif
4366
4367inline cputime_t task_gtime(struct task_struct *p)
4368{
4369 return p->gtime;
4370}
4371
7835b98b
CL
4372/*
4373 * This function gets called by the timer code, with HZ frequency.
4374 * We call it with interrupts disabled.
4375 *
4376 * It also gets called by the fork code, when changing the parent's
4377 * timeslices.
4378 */
4379void scheduler_tick(void)
4380{
7835b98b
CL
4381 int cpu = smp_processor_id();
4382 struct rq *rq = cpu_rq(cpu);
dd41f596 4383 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4384
4385 sched_clock_tick();
dd41f596
IM
4386
4387 spin_lock(&rq->lock);
3e51f33f 4388 update_rq_clock(rq);
f1a438d8 4389 update_cpu_load(rq);
fa85ae24 4390 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4391 spin_unlock(&rq->lock);
7835b98b 4392
e418e1c2 4393#ifdef CONFIG_SMP
dd41f596
IM
4394 rq->idle_at_tick = idle_cpu(cpu);
4395 trigger_load_balance(rq, cpu);
e418e1c2 4396#endif
1da177e4
LT
4397}
4398
6cd8a4bb
SR
4399#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4400 defined(CONFIG_PREEMPT_TRACER))
4401
4402static inline unsigned long get_parent_ip(unsigned long addr)
4403{
4404 if (in_lock_functions(addr)) {
4405 addr = CALLER_ADDR2;
4406 if (in_lock_functions(addr))
4407 addr = CALLER_ADDR3;
4408 }
4409 return addr;
4410}
1da177e4 4411
43627582 4412void __kprobes add_preempt_count(int val)
1da177e4 4413{
6cd8a4bb 4414#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4415 /*
4416 * Underflow?
4417 */
9a11b49a
IM
4418 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4419 return;
6cd8a4bb 4420#endif
1da177e4 4421 preempt_count() += val;
6cd8a4bb 4422#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4423 /*
4424 * Spinlock count overflowing soon?
4425 */
33859f7f
MOS
4426 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4427 PREEMPT_MASK - 10);
6cd8a4bb
SR
4428#endif
4429 if (preempt_count() == val)
4430 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4431}
4432EXPORT_SYMBOL(add_preempt_count);
4433
43627582 4434void __kprobes sub_preempt_count(int val)
1da177e4 4435{
6cd8a4bb 4436#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4437 /*
4438 * Underflow?
4439 */
7317d7b8 4440 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4441 return;
1da177e4
LT
4442 /*
4443 * Is the spinlock portion underflowing?
4444 */
9a11b49a
IM
4445 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4446 !(preempt_count() & PREEMPT_MASK)))
4447 return;
6cd8a4bb 4448#endif
9a11b49a 4449
6cd8a4bb
SR
4450 if (preempt_count() == val)
4451 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4452 preempt_count() -= val;
4453}
4454EXPORT_SYMBOL(sub_preempt_count);
4455
4456#endif
4457
4458/*
dd41f596 4459 * Print scheduling while atomic bug:
1da177e4 4460 */
dd41f596 4461static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4462{
838225b4
SS
4463 struct pt_regs *regs = get_irq_regs();
4464
4465 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4466 prev->comm, prev->pid, preempt_count());
4467
dd41f596 4468 debug_show_held_locks(prev);
e21f5b15 4469 print_modules();
dd41f596
IM
4470 if (irqs_disabled())
4471 print_irqtrace_events(prev);
838225b4
SS
4472
4473 if (regs)
4474 show_regs(regs);
4475 else
4476 dump_stack();
dd41f596 4477}
1da177e4 4478
dd41f596
IM
4479/*
4480 * Various schedule()-time debugging checks and statistics:
4481 */
4482static inline void schedule_debug(struct task_struct *prev)
4483{
1da177e4 4484 /*
41a2d6cf 4485 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4486 * schedule() atomically, we ignore that path for now.
4487 * Otherwise, whine if we are scheduling when we should not be.
4488 */
3f33a7ce 4489 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4490 __schedule_bug(prev);
4491
1da177e4
LT
4492 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4493
2d72376b 4494 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4495#ifdef CONFIG_SCHEDSTATS
4496 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4497 schedstat_inc(this_rq(), bkl_count);
4498 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4499 }
4500#endif
dd41f596
IM
4501}
4502
4503/*
4504 * Pick up the highest-prio task:
4505 */
4506static inline struct task_struct *
ff95f3df 4507pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4508{
5522d5d5 4509 const struct sched_class *class;
dd41f596 4510 struct task_struct *p;
1da177e4
LT
4511
4512 /*
dd41f596
IM
4513 * Optimization: we know that if all tasks are in
4514 * the fair class we can call that function directly:
1da177e4 4515 */
dd41f596 4516 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4517 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4518 if (likely(p))
4519 return p;
1da177e4
LT
4520 }
4521
dd41f596
IM
4522 class = sched_class_highest;
4523 for ( ; ; ) {
fb8d4724 4524 p = class->pick_next_task(rq);
dd41f596
IM
4525 if (p)
4526 return p;
4527 /*
4528 * Will never be NULL as the idle class always
4529 * returns a non-NULL p:
4530 */
4531 class = class->next;
4532 }
4533}
1da177e4 4534
dd41f596
IM
4535/*
4536 * schedule() is the main scheduler function.
4537 */
4538asmlinkage void __sched schedule(void)
4539{
4540 struct task_struct *prev, *next;
67ca7bde 4541 unsigned long *switch_count;
dd41f596 4542 struct rq *rq;
31656519 4543 int cpu;
dd41f596
IM
4544
4545need_resched:
4546 preempt_disable();
4547 cpu = smp_processor_id();
4548 rq = cpu_rq(cpu);
4549 rcu_qsctr_inc(cpu);
4550 prev = rq->curr;
4551 switch_count = &prev->nivcsw;
4552
4553 release_kernel_lock(prev);
4554need_resched_nonpreemptible:
4555
4556 schedule_debug(prev);
1da177e4 4557
31656519 4558 if (sched_feat(HRTICK))
f333fdc9 4559 hrtick_clear(rq);
8f4d37ec 4560
8cd162ce 4561 spin_lock_irq(&rq->lock);
3e51f33f 4562 update_rq_clock(rq);
1e819950 4563 clear_tsk_need_resched(prev);
1da177e4 4564
1da177e4 4565 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4566 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4567 prev->state = TASK_RUNNING;
16882c1e 4568 else
2e1cb74a 4569 deactivate_task(rq, prev, 1);
dd41f596 4570 switch_count = &prev->nvcsw;
1da177e4
LT
4571 }
4572
9a897c5a
SR
4573#ifdef CONFIG_SMP
4574 if (prev->sched_class->pre_schedule)
4575 prev->sched_class->pre_schedule(rq, prev);
4576#endif
f65eda4f 4577
dd41f596 4578 if (unlikely(!rq->nr_running))
1da177e4 4579 idle_balance(cpu, rq);
1da177e4 4580
31ee529c 4581 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4582 next = pick_next_task(rq, prev);
1da177e4 4583
1da177e4 4584 if (likely(prev != next)) {
673a90a1
DS
4585 sched_info_switch(prev, next);
4586
1da177e4
LT
4587 rq->nr_switches++;
4588 rq->curr = next;
4589 ++*switch_count;
4590
dd41f596 4591 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4592 /*
4593 * the context switch might have flipped the stack from under
4594 * us, hence refresh the local variables.
4595 */
4596 cpu = smp_processor_id();
4597 rq = cpu_rq(cpu);
1da177e4
LT
4598 } else
4599 spin_unlock_irq(&rq->lock);
4600
8f4d37ec 4601 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4602 goto need_resched_nonpreemptible;
8f4d37ec 4603
1da177e4
LT
4604 preempt_enable_no_resched();
4605 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4606 goto need_resched;
4607}
1da177e4
LT
4608EXPORT_SYMBOL(schedule);
4609
4610#ifdef CONFIG_PREEMPT
4611/*
2ed6e34f 4612 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4613 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4614 * occur there and call schedule directly.
4615 */
4616asmlinkage void __sched preempt_schedule(void)
4617{
4618 struct thread_info *ti = current_thread_info();
6478d880 4619
1da177e4
LT
4620 /*
4621 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4622 * we do not want to preempt the current task. Just return..
1da177e4 4623 */
beed33a8 4624 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4625 return;
4626
3a5c359a
AK
4627 do {
4628 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4629 schedule();
3a5c359a 4630 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4631
3a5c359a
AK
4632 /*
4633 * Check again in case we missed a preemption opportunity
4634 * between schedule and now.
4635 */
4636 barrier();
4637 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4638}
1da177e4
LT
4639EXPORT_SYMBOL(preempt_schedule);
4640
4641/*
2ed6e34f 4642 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4643 * off of irq context.
4644 * Note, that this is called and return with irqs disabled. This will
4645 * protect us against recursive calling from irq.
4646 */
4647asmlinkage void __sched preempt_schedule_irq(void)
4648{
4649 struct thread_info *ti = current_thread_info();
6478d880 4650
2ed6e34f 4651 /* Catch callers which need to be fixed */
1da177e4
LT
4652 BUG_ON(ti->preempt_count || !irqs_disabled());
4653
3a5c359a
AK
4654 do {
4655 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4656 local_irq_enable();
4657 schedule();
4658 local_irq_disable();
3a5c359a 4659 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4660
3a5c359a
AK
4661 /*
4662 * Check again in case we missed a preemption opportunity
4663 * between schedule and now.
4664 */
4665 barrier();
4666 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4667}
4668
4669#endif /* CONFIG_PREEMPT */
4670
95cdf3b7
IM
4671int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4672 void *key)
1da177e4 4673{
48f24c4d 4674 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4675}
1da177e4
LT
4676EXPORT_SYMBOL(default_wake_function);
4677
4678/*
41a2d6cf
IM
4679 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4680 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4681 * number) then we wake all the non-exclusive tasks and one exclusive task.
4682 *
4683 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4684 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4685 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4686 */
4687static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4688 int nr_exclusive, int sync, void *key)
4689{
2e45874c 4690 wait_queue_t *curr, *next;
1da177e4 4691
2e45874c 4692 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4693 unsigned flags = curr->flags;
4694
1da177e4 4695 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4696 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4697 break;
4698 }
4699}
4700
4701/**
4702 * __wake_up - wake up threads blocked on a waitqueue.
4703 * @q: the waitqueue
4704 * @mode: which threads
4705 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4706 * @key: is directly passed to the wakeup function
1da177e4 4707 */
7ad5b3a5 4708void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4709 int nr_exclusive, void *key)
1da177e4
LT
4710{
4711 unsigned long flags;
4712
4713 spin_lock_irqsave(&q->lock, flags);
4714 __wake_up_common(q, mode, nr_exclusive, 0, key);
4715 spin_unlock_irqrestore(&q->lock, flags);
4716}
1da177e4
LT
4717EXPORT_SYMBOL(__wake_up);
4718
4719/*
4720 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4721 */
7ad5b3a5 4722void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4723{
4724 __wake_up_common(q, mode, 1, 0, NULL);
4725}
4726
4727/**
67be2dd1 4728 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4729 * @q: the waitqueue
4730 * @mode: which threads
4731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4732 *
4733 * The sync wakeup differs that the waker knows that it will schedule
4734 * away soon, so while the target thread will be woken up, it will not
4735 * be migrated to another CPU - ie. the two threads are 'synchronized'
4736 * with each other. This can prevent needless bouncing between CPUs.
4737 *
4738 * On UP it can prevent extra preemption.
4739 */
7ad5b3a5 4740void
95cdf3b7 4741__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4742{
4743 unsigned long flags;
4744 int sync = 1;
4745
4746 if (unlikely(!q))
4747 return;
4748
4749 if (unlikely(!nr_exclusive))
4750 sync = 0;
4751
4752 spin_lock_irqsave(&q->lock, flags);
4753 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4754 spin_unlock_irqrestore(&q->lock, flags);
4755}
4756EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4757
65eb3dc6
KD
4758/**
4759 * complete: - signals a single thread waiting on this completion
4760 * @x: holds the state of this particular completion
4761 *
4762 * This will wake up a single thread waiting on this completion. Threads will be
4763 * awakened in the same order in which they were queued.
4764 *
4765 * See also complete_all(), wait_for_completion() and related routines.
4766 */
b15136e9 4767void complete(struct completion *x)
1da177e4
LT
4768{
4769 unsigned long flags;
4770
4771 spin_lock_irqsave(&x->wait.lock, flags);
4772 x->done++;
d9514f6c 4773 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4774 spin_unlock_irqrestore(&x->wait.lock, flags);
4775}
4776EXPORT_SYMBOL(complete);
4777
65eb3dc6
KD
4778/**
4779 * complete_all: - signals all threads waiting on this completion
4780 * @x: holds the state of this particular completion
4781 *
4782 * This will wake up all threads waiting on this particular completion event.
4783 */
b15136e9 4784void complete_all(struct completion *x)
1da177e4
LT
4785{
4786 unsigned long flags;
4787
4788 spin_lock_irqsave(&x->wait.lock, flags);
4789 x->done += UINT_MAX/2;
d9514f6c 4790 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4791 spin_unlock_irqrestore(&x->wait.lock, flags);
4792}
4793EXPORT_SYMBOL(complete_all);
4794
8cbbe86d
AK
4795static inline long __sched
4796do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4797{
1da177e4
LT
4798 if (!x->done) {
4799 DECLARE_WAITQUEUE(wait, current);
4800
4801 wait.flags |= WQ_FLAG_EXCLUSIVE;
4802 __add_wait_queue_tail(&x->wait, &wait);
4803 do {
94d3d824 4804 if (signal_pending_state(state, current)) {
ea71a546
ON
4805 timeout = -ERESTARTSYS;
4806 break;
8cbbe86d
AK
4807 }
4808 __set_current_state(state);
1da177e4
LT
4809 spin_unlock_irq(&x->wait.lock);
4810 timeout = schedule_timeout(timeout);
4811 spin_lock_irq(&x->wait.lock);
ea71a546 4812 } while (!x->done && timeout);
1da177e4 4813 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4814 if (!x->done)
4815 return timeout;
1da177e4
LT
4816 }
4817 x->done--;
ea71a546 4818 return timeout ?: 1;
1da177e4 4819}
1da177e4 4820
8cbbe86d
AK
4821static long __sched
4822wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4823{
1da177e4
LT
4824 might_sleep();
4825
4826 spin_lock_irq(&x->wait.lock);
8cbbe86d 4827 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4828 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4829 return timeout;
4830}
1da177e4 4831
65eb3dc6
KD
4832/**
4833 * wait_for_completion: - waits for completion of a task
4834 * @x: holds the state of this particular completion
4835 *
4836 * This waits to be signaled for completion of a specific task. It is NOT
4837 * interruptible and there is no timeout.
4838 *
4839 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4840 * and interrupt capability. Also see complete().
4841 */
b15136e9 4842void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4843{
4844 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4845}
8cbbe86d 4846EXPORT_SYMBOL(wait_for_completion);
1da177e4 4847
65eb3dc6
KD
4848/**
4849 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4852 *
4853 * This waits for either a completion of a specific task to be signaled or for a
4854 * specified timeout to expire. The timeout is in jiffies. It is not
4855 * interruptible.
4856 */
b15136e9 4857unsigned long __sched
8cbbe86d 4858wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4859{
8cbbe86d 4860 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4861}
8cbbe86d 4862EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4863
65eb3dc6
KD
4864/**
4865 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4866 * @x: holds the state of this particular completion
4867 *
4868 * This waits for completion of a specific task to be signaled. It is
4869 * interruptible.
4870 */
8cbbe86d 4871int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4872{
51e97990
AK
4873 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4874 if (t == -ERESTARTSYS)
4875 return t;
4876 return 0;
0fec171c 4877}
8cbbe86d 4878EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4879
65eb3dc6
KD
4880/**
4881 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4882 * @x: holds the state of this particular completion
4883 * @timeout: timeout value in jiffies
4884 *
4885 * This waits for either a completion of a specific task to be signaled or for a
4886 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4887 */
b15136e9 4888unsigned long __sched
8cbbe86d
AK
4889wait_for_completion_interruptible_timeout(struct completion *x,
4890 unsigned long timeout)
0fec171c 4891{
8cbbe86d 4892 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4893}
8cbbe86d 4894EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4895
65eb3dc6
KD
4896/**
4897 * wait_for_completion_killable: - waits for completion of a task (killable)
4898 * @x: holds the state of this particular completion
4899 *
4900 * This waits to be signaled for completion of a specific task. It can be
4901 * interrupted by a kill signal.
4902 */
009e577e
MW
4903int __sched wait_for_completion_killable(struct completion *x)
4904{
4905 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4906 if (t == -ERESTARTSYS)
4907 return t;
4908 return 0;
4909}
4910EXPORT_SYMBOL(wait_for_completion_killable);
4911
be4de352
DC
4912/**
4913 * try_wait_for_completion - try to decrement a completion without blocking
4914 * @x: completion structure
4915 *
4916 * Returns: 0 if a decrement cannot be done without blocking
4917 * 1 if a decrement succeeded.
4918 *
4919 * If a completion is being used as a counting completion,
4920 * attempt to decrement the counter without blocking. This
4921 * enables us to avoid waiting if the resource the completion
4922 * is protecting is not available.
4923 */
4924bool try_wait_for_completion(struct completion *x)
4925{
4926 int ret = 1;
4927
4928 spin_lock_irq(&x->wait.lock);
4929 if (!x->done)
4930 ret = 0;
4931 else
4932 x->done--;
4933 spin_unlock_irq(&x->wait.lock);
4934 return ret;
4935}
4936EXPORT_SYMBOL(try_wait_for_completion);
4937
4938/**
4939 * completion_done - Test to see if a completion has any waiters
4940 * @x: completion structure
4941 *
4942 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4943 * 1 if there are no waiters.
4944 *
4945 */
4946bool completion_done(struct completion *x)
4947{
4948 int ret = 1;
4949
4950 spin_lock_irq(&x->wait.lock);
4951 if (!x->done)
4952 ret = 0;
4953 spin_unlock_irq(&x->wait.lock);
4954 return ret;
4955}
4956EXPORT_SYMBOL(completion_done);
4957
8cbbe86d
AK
4958static long __sched
4959sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4960{
0fec171c
IM
4961 unsigned long flags;
4962 wait_queue_t wait;
4963
4964 init_waitqueue_entry(&wait, current);
1da177e4 4965
8cbbe86d 4966 __set_current_state(state);
1da177e4 4967
8cbbe86d
AK
4968 spin_lock_irqsave(&q->lock, flags);
4969 __add_wait_queue(q, &wait);
4970 spin_unlock(&q->lock);
4971 timeout = schedule_timeout(timeout);
4972 spin_lock_irq(&q->lock);
4973 __remove_wait_queue(q, &wait);
4974 spin_unlock_irqrestore(&q->lock, flags);
4975
4976 return timeout;
4977}
4978
4979void __sched interruptible_sleep_on(wait_queue_head_t *q)
4980{
4981 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4982}
1da177e4
LT
4983EXPORT_SYMBOL(interruptible_sleep_on);
4984
0fec171c 4985long __sched
95cdf3b7 4986interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4987{
8cbbe86d 4988 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4989}
1da177e4
LT
4990EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4991
0fec171c 4992void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4993{
8cbbe86d 4994 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4995}
1da177e4
LT
4996EXPORT_SYMBOL(sleep_on);
4997
0fec171c 4998long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4999{
8cbbe86d 5000 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5001}
1da177e4
LT
5002EXPORT_SYMBOL(sleep_on_timeout);
5003
b29739f9
IM
5004#ifdef CONFIG_RT_MUTEXES
5005
5006/*
5007 * rt_mutex_setprio - set the current priority of a task
5008 * @p: task
5009 * @prio: prio value (kernel-internal form)
5010 *
5011 * This function changes the 'effective' priority of a task. It does
5012 * not touch ->normal_prio like __setscheduler().
5013 *
5014 * Used by the rt_mutex code to implement priority inheritance logic.
5015 */
36c8b586 5016void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5017{
5018 unsigned long flags;
83b699ed 5019 int oldprio, on_rq, running;
70b97a7f 5020 struct rq *rq;
cb469845 5021 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5022
5023 BUG_ON(prio < 0 || prio > MAX_PRIO);
5024
5025 rq = task_rq_lock(p, &flags);
a8e504d2 5026 update_rq_clock(rq);
b29739f9 5027
d5f9f942 5028 oldprio = p->prio;
dd41f596 5029 on_rq = p->se.on_rq;
051a1d1a 5030 running = task_current(rq, p);
0e1f3483 5031 if (on_rq)
69be72c1 5032 dequeue_task(rq, p, 0);
0e1f3483
HS
5033 if (running)
5034 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5035
5036 if (rt_prio(prio))
5037 p->sched_class = &rt_sched_class;
5038 else
5039 p->sched_class = &fair_sched_class;
5040
b29739f9
IM
5041 p->prio = prio;
5042
0e1f3483
HS
5043 if (running)
5044 p->sched_class->set_curr_task(rq);
dd41f596 5045 if (on_rq) {
8159f87e 5046 enqueue_task(rq, p, 0);
cb469845
SR
5047
5048 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5049 }
5050 task_rq_unlock(rq, &flags);
5051}
5052
5053#endif
5054
36c8b586 5055void set_user_nice(struct task_struct *p, long nice)
1da177e4 5056{
dd41f596 5057 int old_prio, delta, on_rq;
1da177e4 5058 unsigned long flags;
70b97a7f 5059 struct rq *rq;
1da177e4
LT
5060
5061 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5062 return;
5063 /*
5064 * We have to be careful, if called from sys_setpriority(),
5065 * the task might be in the middle of scheduling on another CPU.
5066 */
5067 rq = task_rq_lock(p, &flags);
a8e504d2 5068 update_rq_clock(rq);
1da177e4
LT
5069 /*
5070 * The RT priorities are set via sched_setscheduler(), but we still
5071 * allow the 'normal' nice value to be set - but as expected
5072 * it wont have any effect on scheduling until the task is
dd41f596 5073 * SCHED_FIFO/SCHED_RR:
1da177e4 5074 */
e05606d3 5075 if (task_has_rt_policy(p)) {
1da177e4
LT
5076 p->static_prio = NICE_TO_PRIO(nice);
5077 goto out_unlock;
5078 }
dd41f596 5079 on_rq = p->se.on_rq;
c09595f6 5080 if (on_rq)
69be72c1 5081 dequeue_task(rq, p, 0);
1da177e4 5082
1da177e4 5083 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5084 set_load_weight(p);
b29739f9
IM
5085 old_prio = p->prio;
5086 p->prio = effective_prio(p);
5087 delta = p->prio - old_prio;
1da177e4 5088
dd41f596 5089 if (on_rq) {
8159f87e 5090 enqueue_task(rq, p, 0);
1da177e4 5091 /*
d5f9f942
AM
5092 * If the task increased its priority or is running and
5093 * lowered its priority, then reschedule its CPU:
1da177e4 5094 */
d5f9f942 5095 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5096 resched_task(rq->curr);
5097 }
5098out_unlock:
5099 task_rq_unlock(rq, &flags);
5100}
1da177e4
LT
5101EXPORT_SYMBOL(set_user_nice);
5102
e43379f1
MM
5103/*
5104 * can_nice - check if a task can reduce its nice value
5105 * @p: task
5106 * @nice: nice value
5107 */
36c8b586 5108int can_nice(const struct task_struct *p, const int nice)
e43379f1 5109{
024f4747
MM
5110 /* convert nice value [19,-20] to rlimit style value [1,40] */
5111 int nice_rlim = 20 - nice;
48f24c4d 5112
e43379f1
MM
5113 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5114 capable(CAP_SYS_NICE));
5115}
5116
1da177e4
LT
5117#ifdef __ARCH_WANT_SYS_NICE
5118
5119/*
5120 * sys_nice - change the priority of the current process.
5121 * @increment: priority increment
5122 *
5123 * sys_setpriority is a more generic, but much slower function that
5124 * does similar things.
5125 */
5126asmlinkage long sys_nice(int increment)
5127{
48f24c4d 5128 long nice, retval;
1da177e4
LT
5129
5130 /*
5131 * Setpriority might change our priority at the same moment.
5132 * We don't have to worry. Conceptually one call occurs first
5133 * and we have a single winner.
5134 */
e43379f1
MM
5135 if (increment < -40)
5136 increment = -40;
1da177e4
LT
5137 if (increment > 40)
5138 increment = 40;
5139
5140 nice = PRIO_TO_NICE(current->static_prio) + increment;
5141 if (nice < -20)
5142 nice = -20;
5143 if (nice > 19)
5144 nice = 19;
5145
e43379f1
MM
5146 if (increment < 0 && !can_nice(current, nice))
5147 return -EPERM;
5148
1da177e4
LT
5149 retval = security_task_setnice(current, nice);
5150 if (retval)
5151 return retval;
5152
5153 set_user_nice(current, nice);
5154 return 0;
5155}
5156
5157#endif
5158
5159/**
5160 * task_prio - return the priority value of a given task.
5161 * @p: the task in question.
5162 *
5163 * This is the priority value as seen by users in /proc.
5164 * RT tasks are offset by -200. Normal tasks are centered
5165 * around 0, value goes from -16 to +15.
5166 */
36c8b586 5167int task_prio(const struct task_struct *p)
1da177e4
LT
5168{
5169 return p->prio - MAX_RT_PRIO;
5170}
5171
5172/**
5173 * task_nice - return the nice value of a given task.
5174 * @p: the task in question.
5175 */
36c8b586 5176int task_nice(const struct task_struct *p)
1da177e4
LT
5177{
5178 return TASK_NICE(p);
5179}
150d8bed 5180EXPORT_SYMBOL(task_nice);
1da177e4
LT
5181
5182/**
5183 * idle_cpu - is a given cpu idle currently?
5184 * @cpu: the processor in question.
5185 */
5186int idle_cpu(int cpu)
5187{
5188 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5189}
5190
1da177e4
LT
5191/**
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5194 */
36c8b586 5195struct task_struct *idle_task(int cpu)
1da177e4
LT
5196{
5197 return cpu_rq(cpu)->idle;
5198}
5199
5200/**
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5203 */
a9957449 5204static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5205{
228ebcbe 5206 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5207}
5208
5209/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5210static void
5211__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5212{
dd41f596 5213 BUG_ON(p->se.on_rq);
48f24c4d 5214
1da177e4 5215 p->policy = policy;
dd41f596
IM
5216 switch (p->policy) {
5217 case SCHED_NORMAL:
5218 case SCHED_BATCH:
5219 case SCHED_IDLE:
5220 p->sched_class = &fair_sched_class;
5221 break;
5222 case SCHED_FIFO:
5223 case SCHED_RR:
5224 p->sched_class = &rt_sched_class;
5225 break;
5226 }
5227
1da177e4 5228 p->rt_priority = prio;
b29739f9
IM
5229 p->normal_prio = normal_prio(p);
5230 /* we are holding p->pi_lock already */
5231 p->prio = rt_mutex_getprio(p);
2dd73a4f 5232 set_load_weight(p);
1da177e4
LT
5233}
5234
c69e8d9c
DH
5235/*
5236 * check the target process has a UID that matches the current process's
5237 */
5238static bool check_same_owner(struct task_struct *p)
5239{
5240 const struct cred *cred = current_cred(), *pcred;
5241 bool match;
5242
5243 rcu_read_lock();
5244 pcred = __task_cred(p);
5245 match = (cred->euid == pcred->euid ||
5246 cred->euid == pcred->uid);
5247 rcu_read_unlock();
5248 return match;
5249}
5250
961ccddd
RR
5251static int __sched_setscheduler(struct task_struct *p, int policy,
5252 struct sched_param *param, bool user)
1da177e4 5253{
83b699ed 5254 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5255 unsigned long flags;
cb469845 5256 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5257 struct rq *rq;
1da177e4 5258
66e5393a
SR
5259 /* may grab non-irq protected spin_locks */
5260 BUG_ON(in_interrupt());
1da177e4
LT
5261recheck:
5262 /* double check policy once rq lock held */
5263 if (policy < 0)
5264 policy = oldpolicy = p->policy;
5265 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5266 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5267 policy != SCHED_IDLE)
b0a9499c 5268 return -EINVAL;
1da177e4
LT
5269 /*
5270 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5272 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5273 */
5274 if (param->sched_priority < 0 ||
95cdf3b7 5275 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5276 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5277 return -EINVAL;
e05606d3 5278 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5279 return -EINVAL;
5280
37e4ab3f
OC
5281 /*
5282 * Allow unprivileged RT tasks to decrease priority:
5283 */
961ccddd 5284 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5285 if (rt_policy(policy)) {
8dc3e909 5286 unsigned long rlim_rtprio;
8dc3e909
ON
5287
5288 if (!lock_task_sighand(p, &flags))
5289 return -ESRCH;
5290 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5291 unlock_task_sighand(p, &flags);
5292
5293 /* can't set/change the rt policy */
5294 if (policy != p->policy && !rlim_rtprio)
5295 return -EPERM;
5296
5297 /* can't increase priority */
5298 if (param->sched_priority > p->rt_priority &&
5299 param->sched_priority > rlim_rtprio)
5300 return -EPERM;
5301 }
dd41f596
IM
5302 /*
5303 * Like positive nice levels, dont allow tasks to
5304 * move out of SCHED_IDLE either:
5305 */
5306 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5307 return -EPERM;
5fe1d75f 5308
37e4ab3f 5309 /* can't change other user's priorities */
c69e8d9c 5310 if (!check_same_owner(p))
37e4ab3f
OC
5311 return -EPERM;
5312 }
1da177e4 5313
725aad24 5314 if (user) {
b68aa230 5315#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5316 /*
5317 * Do not allow realtime tasks into groups that have no runtime
5318 * assigned.
5319 */
9a7e0b18
PZ
5320 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5321 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5322 return -EPERM;
b68aa230
PZ
5323#endif
5324
725aad24
JF
5325 retval = security_task_setscheduler(p, policy, param);
5326 if (retval)
5327 return retval;
5328 }
5329
b29739f9
IM
5330 /*
5331 * make sure no PI-waiters arrive (or leave) while we are
5332 * changing the priority of the task:
5333 */
5334 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5335 /*
5336 * To be able to change p->policy safely, the apropriate
5337 * runqueue lock must be held.
5338 */
b29739f9 5339 rq = __task_rq_lock(p);
1da177e4
LT
5340 /* recheck policy now with rq lock held */
5341 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5342 policy = oldpolicy = -1;
b29739f9
IM
5343 __task_rq_unlock(rq);
5344 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5345 goto recheck;
5346 }
2daa3577 5347 update_rq_clock(rq);
dd41f596 5348 on_rq = p->se.on_rq;
051a1d1a 5349 running = task_current(rq, p);
0e1f3483 5350 if (on_rq)
2e1cb74a 5351 deactivate_task(rq, p, 0);
0e1f3483
HS
5352 if (running)
5353 p->sched_class->put_prev_task(rq, p);
f6b53205 5354
1da177e4 5355 oldprio = p->prio;
dd41f596 5356 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5357
0e1f3483
HS
5358 if (running)
5359 p->sched_class->set_curr_task(rq);
dd41f596
IM
5360 if (on_rq) {
5361 activate_task(rq, p, 0);
cb469845
SR
5362
5363 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5364 }
b29739f9
IM
5365 __task_rq_unlock(rq);
5366 spin_unlock_irqrestore(&p->pi_lock, flags);
5367
95e02ca9
TG
5368 rt_mutex_adjust_pi(p);
5369
1da177e4
LT
5370 return 0;
5371}
961ccddd
RR
5372
5373/**
5374 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5375 * @p: the task in question.
5376 * @policy: new policy.
5377 * @param: structure containing the new RT priority.
5378 *
5379 * NOTE that the task may be already dead.
5380 */
5381int sched_setscheduler(struct task_struct *p, int policy,
5382 struct sched_param *param)
5383{
5384 return __sched_setscheduler(p, policy, param, true);
5385}
1da177e4
LT
5386EXPORT_SYMBOL_GPL(sched_setscheduler);
5387
961ccddd
RR
5388/**
5389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5390 * @p: the task in question.
5391 * @policy: new policy.
5392 * @param: structure containing the new RT priority.
5393 *
5394 * Just like sched_setscheduler, only don't bother checking if the
5395 * current context has permission. For example, this is needed in
5396 * stop_machine(): we create temporary high priority worker threads,
5397 * but our caller might not have that capability.
5398 */
5399int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5400 struct sched_param *param)
5401{
5402 return __sched_setscheduler(p, policy, param, false);
5403}
5404
95cdf3b7
IM
5405static int
5406do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5407{
1da177e4
LT
5408 struct sched_param lparam;
5409 struct task_struct *p;
36c8b586 5410 int retval;
1da177e4
LT
5411
5412 if (!param || pid < 0)
5413 return -EINVAL;
5414 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5415 return -EFAULT;
5fe1d75f
ON
5416
5417 rcu_read_lock();
5418 retval = -ESRCH;
1da177e4 5419 p = find_process_by_pid(pid);
5fe1d75f
ON
5420 if (p != NULL)
5421 retval = sched_setscheduler(p, policy, &lparam);
5422 rcu_read_unlock();
36c8b586 5423
1da177e4
LT
5424 return retval;
5425}
5426
5427/**
5428 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5429 * @pid: the pid in question.
5430 * @policy: new policy.
5431 * @param: structure containing the new RT priority.
5432 */
41a2d6cf
IM
5433asmlinkage long
5434sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5435{
c21761f1
JB
5436 /* negative values for policy are not valid */
5437 if (policy < 0)
5438 return -EINVAL;
5439
1da177e4
LT
5440 return do_sched_setscheduler(pid, policy, param);
5441}
5442
5443/**
5444 * sys_sched_setparam - set/change the RT priority of a thread
5445 * @pid: the pid in question.
5446 * @param: structure containing the new RT priority.
5447 */
5448asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5449{
5450 return do_sched_setscheduler(pid, -1, param);
5451}
5452
5453/**
5454 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5455 * @pid: the pid in question.
5456 */
5457asmlinkage long sys_sched_getscheduler(pid_t pid)
5458{
36c8b586 5459 struct task_struct *p;
3a5c359a 5460 int retval;
1da177e4
LT
5461
5462 if (pid < 0)
3a5c359a 5463 return -EINVAL;
1da177e4
LT
5464
5465 retval = -ESRCH;
5466 read_lock(&tasklist_lock);
5467 p = find_process_by_pid(pid);
5468 if (p) {
5469 retval = security_task_getscheduler(p);
5470 if (!retval)
5471 retval = p->policy;
5472 }
5473 read_unlock(&tasklist_lock);
1da177e4
LT
5474 return retval;
5475}
5476
5477/**
5478 * sys_sched_getscheduler - get the RT priority of a thread
5479 * @pid: the pid in question.
5480 * @param: structure containing the RT priority.
5481 */
5482asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5483{
5484 struct sched_param lp;
36c8b586 5485 struct task_struct *p;
3a5c359a 5486 int retval;
1da177e4
LT
5487
5488 if (!param || pid < 0)
3a5c359a 5489 return -EINVAL;
1da177e4
LT
5490
5491 read_lock(&tasklist_lock);
5492 p = find_process_by_pid(pid);
5493 retval = -ESRCH;
5494 if (!p)
5495 goto out_unlock;
5496
5497 retval = security_task_getscheduler(p);
5498 if (retval)
5499 goto out_unlock;
5500
5501 lp.sched_priority = p->rt_priority;
5502 read_unlock(&tasklist_lock);
5503
5504 /*
5505 * This one might sleep, we cannot do it with a spinlock held ...
5506 */
5507 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5508
1da177e4
LT
5509 return retval;
5510
5511out_unlock:
5512 read_unlock(&tasklist_lock);
5513 return retval;
5514}
5515
96f874e2 5516long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5517{
5a16f3d3 5518 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5519 struct task_struct *p;
5520 int retval;
1da177e4 5521
95402b38 5522 get_online_cpus();
1da177e4
LT
5523 read_lock(&tasklist_lock);
5524
5525 p = find_process_by_pid(pid);
5526 if (!p) {
5527 read_unlock(&tasklist_lock);
95402b38 5528 put_online_cpus();
1da177e4
LT
5529 return -ESRCH;
5530 }
5531
5532 /*
5533 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5534 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5535 * usage count and then drop tasklist_lock.
5536 */
5537 get_task_struct(p);
5538 read_unlock(&tasklist_lock);
5539
5a16f3d3
RR
5540 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5541 retval = -ENOMEM;
5542 goto out_put_task;
5543 }
5544 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5545 retval = -ENOMEM;
5546 goto out_free_cpus_allowed;
5547 }
1da177e4 5548 retval = -EPERM;
c69e8d9c 5549 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5550 goto out_unlock;
5551
e7834f8f
DQ
5552 retval = security_task_setscheduler(p, 0, NULL);
5553 if (retval)
5554 goto out_unlock;
5555
5a16f3d3
RR
5556 cpuset_cpus_allowed(p, cpus_allowed);
5557 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5558 again:
5a16f3d3 5559 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5560
8707d8b8 5561 if (!retval) {
5a16f3d3
RR
5562 cpuset_cpus_allowed(p, cpus_allowed);
5563 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5564 /*
5565 * We must have raced with a concurrent cpuset
5566 * update. Just reset the cpus_allowed to the
5567 * cpuset's cpus_allowed
5568 */
5a16f3d3 5569 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5570 goto again;
5571 }
5572 }
1da177e4 5573out_unlock:
5a16f3d3
RR
5574 free_cpumask_var(new_mask);
5575out_free_cpus_allowed:
5576 free_cpumask_var(cpus_allowed);
5577out_put_task:
1da177e4 5578 put_task_struct(p);
95402b38 5579 put_online_cpus();
1da177e4
LT
5580 return retval;
5581}
5582
5583static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5584 struct cpumask *new_mask)
1da177e4 5585{
96f874e2
RR
5586 if (len < cpumask_size())
5587 cpumask_clear(new_mask);
5588 else if (len > cpumask_size())
5589 len = cpumask_size();
5590
1da177e4
LT
5591 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5592}
5593
5594/**
5595 * sys_sched_setaffinity - set the cpu affinity of a process
5596 * @pid: pid of the process
5597 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5598 * @user_mask_ptr: user-space pointer to the new cpu mask
5599 */
5600asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5601 unsigned long __user *user_mask_ptr)
5602{
5a16f3d3 5603 cpumask_var_t new_mask;
1da177e4
LT
5604 int retval;
5605
5a16f3d3
RR
5606 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5607 return -ENOMEM;
1da177e4 5608
5a16f3d3
RR
5609 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5610 if (retval == 0)
5611 retval = sched_setaffinity(pid, new_mask);
5612 free_cpumask_var(new_mask);
5613 return retval;
1da177e4
LT
5614}
5615
96f874e2 5616long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5617{
36c8b586 5618 struct task_struct *p;
1da177e4 5619 int retval;
1da177e4 5620
95402b38 5621 get_online_cpus();
1da177e4
LT
5622 read_lock(&tasklist_lock);
5623
5624 retval = -ESRCH;
5625 p = find_process_by_pid(pid);
5626 if (!p)
5627 goto out_unlock;
5628
e7834f8f
DQ
5629 retval = security_task_getscheduler(p);
5630 if (retval)
5631 goto out_unlock;
5632
96f874e2 5633 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5634
5635out_unlock:
5636 read_unlock(&tasklist_lock);
95402b38 5637 put_online_cpus();
1da177e4 5638
9531b62f 5639 return retval;
1da177e4
LT
5640}
5641
5642/**
5643 * sys_sched_getaffinity - get the cpu affinity of a process
5644 * @pid: pid of the process
5645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5647 */
5648asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5649 unsigned long __user *user_mask_ptr)
5650{
5651 int ret;
f17c8607 5652 cpumask_var_t mask;
1da177e4 5653
f17c8607 5654 if (len < cpumask_size())
1da177e4
LT
5655 return -EINVAL;
5656
f17c8607
RR
5657 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5658 return -ENOMEM;
1da177e4 5659
f17c8607
RR
5660 ret = sched_getaffinity(pid, mask);
5661 if (ret == 0) {
5662 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5663 ret = -EFAULT;
5664 else
5665 ret = cpumask_size();
5666 }
5667 free_cpumask_var(mask);
1da177e4 5668
f17c8607 5669 return ret;
1da177e4
LT
5670}
5671
5672/**
5673 * sys_sched_yield - yield the current processor to other threads.
5674 *
dd41f596
IM
5675 * This function yields the current CPU to other tasks. If there are no
5676 * other threads running on this CPU then this function will return.
1da177e4
LT
5677 */
5678asmlinkage long sys_sched_yield(void)
5679{
70b97a7f 5680 struct rq *rq = this_rq_lock();
1da177e4 5681
2d72376b 5682 schedstat_inc(rq, yld_count);
4530d7ab 5683 current->sched_class->yield_task(rq);
1da177e4
LT
5684
5685 /*
5686 * Since we are going to call schedule() anyway, there's
5687 * no need to preempt or enable interrupts:
5688 */
5689 __release(rq->lock);
8a25d5de 5690 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5691 _raw_spin_unlock(&rq->lock);
5692 preempt_enable_no_resched();
5693
5694 schedule();
5695
5696 return 0;
5697}
5698
e7b38404 5699static void __cond_resched(void)
1da177e4 5700{
8e0a43d8
IM
5701#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5702 __might_sleep(__FILE__, __LINE__);
5703#endif
5bbcfd90
IM
5704 /*
5705 * The BKS might be reacquired before we have dropped
5706 * PREEMPT_ACTIVE, which could trigger a second
5707 * cond_resched() call.
5708 */
1da177e4
LT
5709 do {
5710 add_preempt_count(PREEMPT_ACTIVE);
5711 schedule();
5712 sub_preempt_count(PREEMPT_ACTIVE);
5713 } while (need_resched());
5714}
5715
02b67cc3 5716int __sched _cond_resched(void)
1da177e4 5717{
9414232f
IM
5718 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5719 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5720 __cond_resched();
5721 return 1;
5722 }
5723 return 0;
5724}
02b67cc3 5725EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5726
5727/*
5728 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5729 * call schedule, and on return reacquire the lock.
5730 *
41a2d6cf 5731 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5732 * operations here to prevent schedule() from being called twice (once via
5733 * spin_unlock(), once by hand).
5734 */
95cdf3b7 5735int cond_resched_lock(spinlock_t *lock)
1da177e4 5736{
95c354fe 5737 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5738 int ret = 0;
5739
95c354fe 5740 if (spin_needbreak(lock) || resched) {
1da177e4 5741 spin_unlock(lock);
95c354fe
NP
5742 if (resched && need_resched())
5743 __cond_resched();
5744 else
5745 cpu_relax();
6df3cecb 5746 ret = 1;
1da177e4 5747 spin_lock(lock);
1da177e4 5748 }
6df3cecb 5749 return ret;
1da177e4 5750}
1da177e4
LT
5751EXPORT_SYMBOL(cond_resched_lock);
5752
5753int __sched cond_resched_softirq(void)
5754{
5755 BUG_ON(!in_softirq());
5756
9414232f 5757 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5758 local_bh_enable();
1da177e4
LT
5759 __cond_resched();
5760 local_bh_disable();
5761 return 1;
5762 }
5763 return 0;
5764}
1da177e4
LT
5765EXPORT_SYMBOL(cond_resched_softirq);
5766
1da177e4
LT
5767/**
5768 * yield - yield the current processor to other threads.
5769 *
72fd4a35 5770 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5771 * thread runnable and calls sys_sched_yield().
5772 */
5773void __sched yield(void)
5774{
5775 set_current_state(TASK_RUNNING);
5776 sys_sched_yield();
5777}
1da177e4
LT
5778EXPORT_SYMBOL(yield);
5779
5780/*
41a2d6cf 5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5782 * that process accounting knows that this is a task in IO wait state.
5783 *
5784 * But don't do that if it is a deliberate, throttling IO wait (this task
5785 * has set its backing_dev_info: the queue against which it should throttle)
5786 */
5787void __sched io_schedule(void)
5788{
70b97a7f 5789 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5790
0ff92245 5791 delayacct_blkio_start();
1da177e4
LT
5792 atomic_inc(&rq->nr_iowait);
5793 schedule();
5794 atomic_dec(&rq->nr_iowait);
0ff92245 5795 delayacct_blkio_end();
1da177e4 5796}
1da177e4
LT
5797EXPORT_SYMBOL(io_schedule);
5798
5799long __sched io_schedule_timeout(long timeout)
5800{
70b97a7f 5801 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5802 long ret;
5803
0ff92245 5804 delayacct_blkio_start();
1da177e4
LT
5805 atomic_inc(&rq->nr_iowait);
5806 ret = schedule_timeout(timeout);
5807 atomic_dec(&rq->nr_iowait);
0ff92245 5808 delayacct_blkio_end();
1da177e4
LT
5809 return ret;
5810}
5811
5812/**
5813 * sys_sched_get_priority_max - return maximum RT priority.
5814 * @policy: scheduling class.
5815 *
5816 * this syscall returns the maximum rt_priority that can be used
5817 * by a given scheduling class.
5818 */
5819asmlinkage long sys_sched_get_priority_max(int policy)
5820{
5821 int ret = -EINVAL;
5822
5823 switch (policy) {
5824 case SCHED_FIFO:
5825 case SCHED_RR:
5826 ret = MAX_USER_RT_PRIO-1;
5827 break;
5828 case SCHED_NORMAL:
b0a9499c 5829 case SCHED_BATCH:
dd41f596 5830 case SCHED_IDLE:
1da177e4
LT
5831 ret = 0;
5832 break;
5833 }
5834 return ret;
5835}
5836
5837/**
5838 * sys_sched_get_priority_min - return minimum RT priority.
5839 * @policy: scheduling class.
5840 *
5841 * this syscall returns the minimum rt_priority that can be used
5842 * by a given scheduling class.
5843 */
5844asmlinkage long sys_sched_get_priority_min(int policy)
5845{
5846 int ret = -EINVAL;
5847
5848 switch (policy) {
5849 case SCHED_FIFO:
5850 case SCHED_RR:
5851 ret = 1;
5852 break;
5853 case SCHED_NORMAL:
b0a9499c 5854 case SCHED_BATCH:
dd41f596 5855 case SCHED_IDLE:
1da177e4
LT
5856 ret = 0;
5857 }
5858 return ret;
5859}
5860
5861/**
5862 * sys_sched_rr_get_interval - return the default timeslice of a process.
5863 * @pid: pid of the process.
5864 * @interval: userspace pointer to the timeslice value.
5865 *
5866 * this syscall writes the default timeslice value of a given process
5867 * into the user-space timespec buffer. A value of '0' means infinity.
5868 */
5869asmlinkage
5870long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5871{
36c8b586 5872 struct task_struct *p;
a4ec24b4 5873 unsigned int time_slice;
3a5c359a 5874 int retval;
1da177e4 5875 struct timespec t;
1da177e4
LT
5876
5877 if (pid < 0)
3a5c359a 5878 return -EINVAL;
1da177e4
LT
5879
5880 retval = -ESRCH;
5881 read_lock(&tasklist_lock);
5882 p = find_process_by_pid(pid);
5883 if (!p)
5884 goto out_unlock;
5885
5886 retval = security_task_getscheduler(p);
5887 if (retval)
5888 goto out_unlock;
5889
77034937
IM
5890 /*
5891 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5892 * tasks that are on an otherwise idle runqueue:
5893 */
5894 time_slice = 0;
5895 if (p->policy == SCHED_RR) {
a4ec24b4 5896 time_slice = DEF_TIMESLICE;
1868f958 5897 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5898 struct sched_entity *se = &p->se;
5899 unsigned long flags;
5900 struct rq *rq;
5901
5902 rq = task_rq_lock(p, &flags);
77034937
IM
5903 if (rq->cfs.load.weight)
5904 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5905 task_rq_unlock(rq, &flags);
5906 }
1da177e4 5907 read_unlock(&tasklist_lock);
a4ec24b4 5908 jiffies_to_timespec(time_slice, &t);
1da177e4 5909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5910 return retval;
3a5c359a 5911
1da177e4
LT
5912out_unlock:
5913 read_unlock(&tasklist_lock);
5914 return retval;
5915}
5916
7c731e0a 5917static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5918
82a1fcb9 5919void sched_show_task(struct task_struct *p)
1da177e4 5920{
1da177e4 5921 unsigned long free = 0;
36c8b586 5922 unsigned state;
1da177e4 5923
1da177e4 5924 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5925 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5926 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5927#if BITS_PER_LONG == 32
1da177e4 5928 if (state == TASK_RUNNING)
cc4ea795 5929 printk(KERN_CONT " running ");
1da177e4 5930 else
cc4ea795 5931 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5932#else
5933 if (state == TASK_RUNNING)
cc4ea795 5934 printk(KERN_CONT " running task ");
1da177e4 5935 else
cc4ea795 5936 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5937#endif
5938#ifdef CONFIG_DEBUG_STACK_USAGE
5939 {
10ebffde 5940 unsigned long *n = end_of_stack(p);
1da177e4
LT
5941 while (!*n)
5942 n++;
10ebffde 5943 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5944 }
5945#endif
ba25f9dc 5946 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5947 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5948
5fb5e6de 5949 show_stack(p, NULL);
1da177e4
LT
5950}
5951
e59e2ae2 5952void show_state_filter(unsigned long state_filter)
1da177e4 5953{
36c8b586 5954 struct task_struct *g, *p;
1da177e4 5955
4bd77321
IM
5956#if BITS_PER_LONG == 32
5957 printk(KERN_INFO
5958 " task PC stack pid father\n");
1da177e4 5959#else
4bd77321
IM
5960 printk(KERN_INFO
5961 " task PC stack pid father\n");
1da177e4
LT
5962#endif
5963 read_lock(&tasklist_lock);
5964 do_each_thread(g, p) {
5965 /*
5966 * reset the NMI-timeout, listing all files on a slow
5967 * console might take alot of time:
5968 */
5969 touch_nmi_watchdog();
39bc89fd 5970 if (!state_filter || (p->state & state_filter))
82a1fcb9 5971 sched_show_task(p);
1da177e4
LT
5972 } while_each_thread(g, p);
5973
04c9167f
JF
5974 touch_all_softlockup_watchdogs();
5975
dd41f596
IM
5976#ifdef CONFIG_SCHED_DEBUG
5977 sysrq_sched_debug_show();
5978#endif
1da177e4 5979 read_unlock(&tasklist_lock);
e59e2ae2
IM
5980 /*
5981 * Only show locks if all tasks are dumped:
5982 */
5983 if (state_filter == -1)
5984 debug_show_all_locks();
1da177e4
LT
5985}
5986
1df21055
IM
5987void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5988{
dd41f596 5989 idle->sched_class = &idle_sched_class;
1df21055
IM
5990}
5991
f340c0d1
IM
5992/**
5993 * init_idle - set up an idle thread for a given CPU
5994 * @idle: task in question
5995 * @cpu: cpu the idle task belongs to
5996 *
5997 * NOTE: this function does not set the idle thread's NEED_RESCHED
5998 * flag, to make booting more robust.
5999 */
5c1e1767 6000void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6001{
70b97a7f 6002 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6003 unsigned long flags;
6004
5cbd54ef
IM
6005 spin_lock_irqsave(&rq->lock, flags);
6006
dd41f596
IM
6007 __sched_fork(idle);
6008 idle->se.exec_start = sched_clock();
6009
b29739f9 6010 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6011 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6012 __set_task_cpu(idle, cpu);
1da177e4 6013
1da177e4 6014 rq->curr = rq->idle = idle;
4866cde0
NP
6015#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6016 idle->oncpu = 1;
6017#endif
1da177e4
LT
6018 spin_unlock_irqrestore(&rq->lock, flags);
6019
6020 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6021#if defined(CONFIG_PREEMPT)
6022 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6023#else
a1261f54 6024 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6025#endif
dd41f596
IM
6026 /*
6027 * The idle tasks have their own, simple scheduling class:
6028 */
6029 idle->sched_class = &idle_sched_class;
fb52607a 6030 ftrace_graph_init_task(idle);
1da177e4
LT
6031}
6032
6033/*
6034 * In a system that switches off the HZ timer nohz_cpu_mask
6035 * indicates which cpus entered this state. This is used
6036 * in the rcu update to wait only for active cpus. For system
6037 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6038 * always be CPU_BITS_NONE.
1da177e4 6039 */
6a7b3dc3 6040cpumask_var_t nohz_cpu_mask;
1da177e4 6041
19978ca6
IM
6042/*
6043 * Increase the granularity value when there are more CPUs,
6044 * because with more CPUs the 'effective latency' as visible
6045 * to users decreases. But the relationship is not linear,
6046 * so pick a second-best guess by going with the log2 of the
6047 * number of CPUs.
6048 *
6049 * This idea comes from the SD scheduler of Con Kolivas:
6050 */
6051static inline void sched_init_granularity(void)
6052{
6053 unsigned int factor = 1 + ilog2(num_online_cpus());
6054 const unsigned long limit = 200000000;
6055
6056 sysctl_sched_min_granularity *= factor;
6057 if (sysctl_sched_min_granularity > limit)
6058 sysctl_sched_min_granularity = limit;
6059
6060 sysctl_sched_latency *= factor;
6061 if (sysctl_sched_latency > limit)
6062 sysctl_sched_latency = limit;
6063
6064 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6065
6066 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6067}
6068
1da177e4
LT
6069#ifdef CONFIG_SMP
6070/*
6071 * This is how migration works:
6072 *
70b97a7f 6073 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6074 * runqueue and wake up that CPU's migration thread.
6075 * 2) we down() the locked semaphore => thread blocks.
6076 * 3) migration thread wakes up (implicitly it forces the migrated
6077 * thread off the CPU)
6078 * 4) it gets the migration request and checks whether the migrated
6079 * task is still in the wrong runqueue.
6080 * 5) if it's in the wrong runqueue then the migration thread removes
6081 * it and puts it into the right queue.
6082 * 6) migration thread up()s the semaphore.
6083 * 7) we wake up and the migration is done.
6084 */
6085
6086/*
6087 * Change a given task's CPU affinity. Migrate the thread to a
6088 * proper CPU and schedule it away if the CPU it's executing on
6089 * is removed from the allowed bitmask.
6090 *
6091 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6092 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6093 * call is not atomic; no spinlocks may be held.
6094 */
96f874e2 6095int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6096{
70b97a7f 6097 struct migration_req req;
1da177e4 6098 unsigned long flags;
70b97a7f 6099 struct rq *rq;
48f24c4d 6100 int ret = 0;
1da177e4
LT
6101
6102 rq = task_rq_lock(p, &flags);
96f874e2 6103 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6104 ret = -EINVAL;
6105 goto out;
6106 }
6107
9985b0ba 6108 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6109 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6110 ret = -EINVAL;
6111 goto out;
6112 }
6113
73fe6aae 6114 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6115 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6116 else {
96f874e2
RR
6117 cpumask_copy(&p->cpus_allowed, new_mask);
6118 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6119 }
6120
1da177e4 6121 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6122 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6123 goto out;
6124
1e5ce4f4 6125 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6126 /* Need help from migration thread: drop lock and wait. */
6127 task_rq_unlock(rq, &flags);
6128 wake_up_process(rq->migration_thread);
6129 wait_for_completion(&req.done);
6130 tlb_migrate_finish(p->mm);
6131 return 0;
6132 }
6133out:
6134 task_rq_unlock(rq, &flags);
48f24c4d 6135
1da177e4
LT
6136 return ret;
6137}
cd8ba7cd 6138EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6139
6140/*
41a2d6cf 6141 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6142 * this because either it can't run here any more (set_cpus_allowed()
6143 * away from this CPU, or CPU going down), or because we're
6144 * attempting to rebalance this task on exec (sched_exec).
6145 *
6146 * So we race with normal scheduler movements, but that's OK, as long
6147 * as the task is no longer on this CPU.
efc30814
KK
6148 *
6149 * Returns non-zero if task was successfully migrated.
1da177e4 6150 */
efc30814 6151static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6152{
70b97a7f 6153 struct rq *rq_dest, *rq_src;
dd41f596 6154 int ret = 0, on_rq;
1da177e4 6155
e761b772 6156 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6157 return ret;
1da177e4
LT
6158
6159 rq_src = cpu_rq(src_cpu);
6160 rq_dest = cpu_rq(dest_cpu);
6161
6162 double_rq_lock(rq_src, rq_dest);
6163 /* Already moved. */
6164 if (task_cpu(p) != src_cpu)
b1e38734 6165 goto done;
1da177e4 6166 /* Affinity changed (again). */
96f874e2 6167 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6168 goto fail;
1da177e4 6169
dd41f596 6170 on_rq = p->se.on_rq;
6e82a3be 6171 if (on_rq)
2e1cb74a 6172 deactivate_task(rq_src, p, 0);
6e82a3be 6173
1da177e4 6174 set_task_cpu(p, dest_cpu);
dd41f596
IM
6175 if (on_rq) {
6176 activate_task(rq_dest, p, 0);
15afe09b 6177 check_preempt_curr(rq_dest, p, 0);
1da177e4 6178 }
b1e38734 6179done:
efc30814 6180 ret = 1;
b1e38734 6181fail:
1da177e4 6182 double_rq_unlock(rq_src, rq_dest);
efc30814 6183 return ret;
1da177e4
LT
6184}
6185
6186/*
6187 * migration_thread - this is a highprio system thread that performs
6188 * thread migration by bumping thread off CPU then 'pushing' onto
6189 * another runqueue.
6190 */
95cdf3b7 6191static int migration_thread(void *data)
1da177e4 6192{
1da177e4 6193 int cpu = (long)data;
70b97a7f 6194 struct rq *rq;
1da177e4
LT
6195
6196 rq = cpu_rq(cpu);
6197 BUG_ON(rq->migration_thread != current);
6198
6199 set_current_state(TASK_INTERRUPTIBLE);
6200 while (!kthread_should_stop()) {
70b97a7f 6201 struct migration_req *req;
1da177e4 6202 struct list_head *head;
1da177e4 6203
1da177e4
LT
6204 spin_lock_irq(&rq->lock);
6205
6206 if (cpu_is_offline(cpu)) {
6207 spin_unlock_irq(&rq->lock);
6208 goto wait_to_die;
6209 }
6210
6211 if (rq->active_balance) {
6212 active_load_balance(rq, cpu);
6213 rq->active_balance = 0;
6214 }
6215
6216 head = &rq->migration_queue;
6217
6218 if (list_empty(head)) {
6219 spin_unlock_irq(&rq->lock);
6220 schedule();
6221 set_current_state(TASK_INTERRUPTIBLE);
6222 continue;
6223 }
70b97a7f 6224 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6225 list_del_init(head->next);
6226
674311d5
NP
6227 spin_unlock(&rq->lock);
6228 __migrate_task(req->task, cpu, req->dest_cpu);
6229 local_irq_enable();
1da177e4
LT
6230
6231 complete(&req->done);
6232 }
6233 __set_current_state(TASK_RUNNING);
6234 return 0;
6235
6236wait_to_die:
6237 /* Wait for kthread_stop */
6238 set_current_state(TASK_INTERRUPTIBLE);
6239 while (!kthread_should_stop()) {
6240 schedule();
6241 set_current_state(TASK_INTERRUPTIBLE);
6242 }
6243 __set_current_state(TASK_RUNNING);
6244 return 0;
6245}
6246
6247#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6248
6249static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6250{
6251 int ret;
6252
6253 local_irq_disable();
6254 ret = __migrate_task(p, src_cpu, dest_cpu);
6255 local_irq_enable();
6256 return ret;
6257}
6258
054b9108 6259/*
3a4fa0a2 6260 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6261 */
48f24c4d 6262static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6263{
70b97a7f 6264 int dest_cpu;
6ca09dfc 6265 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6266
6267again:
6268 /* Look for allowed, online CPU in same node. */
6269 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6270 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6271 goto move;
6272
6273 /* Any allowed, online CPU? */
6274 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6275 if (dest_cpu < nr_cpu_ids)
6276 goto move;
6277
6278 /* No more Mr. Nice Guy. */
6279 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6280 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6281 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6282
e76bd8d9
RR
6283 /*
6284 * Don't tell them about moving exiting tasks or
6285 * kernel threads (both mm NULL), since they never
6286 * leave kernel.
6287 */
6288 if (p->mm && printk_ratelimit()) {
6289 printk(KERN_INFO "process %d (%s) no "
6290 "longer affine to cpu%d\n",
6291 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6292 }
e76bd8d9
RR
6293 }
6294
6295move:
6296 /* It can have affinity changed while we were choosing. */
6297 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6298 goto again;
1da177e4
LT
6299}
6300
6301/*
6302 * While a dead CPU has no uninterruptible tasks queued at this point,
6303 * it might still have a nonzero ->nr_uninterruptible counter, because
6304 * for performance reasons the counter is not stricly tracking tasks to
6305 * their home CPUs. So we just add the counter to another CPU's counter,
6306 * to keep the global sum constant after CPU-down:
6307 */
70b97a7f 6308static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6309{
1e5ce4f4 6310 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6311 unsigned long flags;
6312
6313 local_irq_save(flags);
6314 double_rq_lock(rq_src, rq_dest);
6315 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6316 rq_src->nr_uninterruptible = 0;
6317 double_rq_unlock(rq_src, rq_dest);
6318 local_irq_restore(flags);
6319}
6320
6321/* Run through task list and migrate tasks from the dead cpu. */
6322static void migrate_live_tasks(int src_cpu)
6323{
48f24c4d 6324 struct task_struct *p, *t;
1da177e4 6325
f7b4cddc 6326 read_lock(&tasklist_lock);
1da177e4 6327
48f24c4d
IM
6328 do_each_thread(t, p) {
6329 if (p == current)
1da177e4
LT
6330 continue;
6331
48f24c4d
IM
6332 if (task_cpu(p) == src_cpu)
6333 move_task_off_dead_cpu(src_cpu, p);
6334 } while_each_thread(t, p);
1da177e4 6335
f7b4cddc 6336 read_unlock(&tasklist_lock);
1da177e4
LT
6337}
6338
dd41f596
IM
6339/*
6340 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6341 * It does so by boosting its priority to highest possible.
6342 * Used by CPU offline code.
1da177e4
LT
6343 */
6344void sched_idle_next(void)
6345{
48f24c4d 6346 int this_cpu = smp_processor_id();
70b97a7f 6347 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6348 struct task_struct *p = rq->idle;
6349 unsigned long flags;
6350
6351 /* cpu has to be offline */
48f24c4d 6352 BUG_ON(cpu_online(this_cpu));
1da177e4 6353
48f24c4d
IM
6354 /*
6355 * Strictly not necessary since rest of the CPUs are stopped by now
6356 * and interrupts disabled on the current cpu.
1da177e4
LT
6357 */
6358 spin_lock_irqsave(&rq->lock, flags);
6359
dd41f596 6360 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6361
94bc9a7b
DA
6362 update_rq_clock(rq);
6363 activate_task(rq, p, 0);
1da177e4
LT
6364
6365 spin_unlock_irqrestore(&rq->lock, flags);
6366}
6367
48f24c4d
IM
6368/*
6369 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6370 * offline.
6371 */
6372void idle_task_exit(void)
6373{
6374 struct mm_struct *mm = current->active_mm;
6375
6376 BUG_ON(cpu_online(smp_processor_id()));
6377
6378 if (mm != &init_mm)
6379 switch_mm(mm, &init_mm, current);
6380 mmdrop(mm);
6381}
6382
054b9108 6383/* called under rq->lock with disabled interrupts */
36c8b586 6384static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6385{
70b97a7f 6386 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6387
6388 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6389 BUG_ON(!p->exit_state);
1da177e4
LT
6390
6391 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6392 BUG_ON(p->state == TASK_DEAD);
1da177e4 6393
48f24c4d 6394 get_task_struct(p);
1da177e4
LT
6395
6396 /*
6397 * Drop lock around migration; if someone else moves it,
41a2d6cf 6398 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6399 * fine.
6400 */
f7b4cddc 6401 spin_unlock_irq(&rq->lock);
48f24c4d 6402 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6403 spin_lock_irq(&rq->lock);
1da177e4 6404
48f24c4d 6405 put_task_struct(p);
1da177e4
LT
6406}
6407
6408/* release_task() removes task from tasklist, so we won't find dead tasks. */
6409static void migrate_dead_tasks(unsigned int dead_cpu)
6410{
70b97a7f 6411 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6412 struct task_struct *next;
48f24c4d 6413
dd41f596
IM
6414 for ( ; ; ) {
6415 if (!rq->nr_running)
6416 break;
a8e504d2 6417 update_rq_clock(rq);
ff95f3df 6418 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6419 if (!next)
6420 break;
79c53799 6421 next->sched_class->put_prev_task(rq, next);
dd41f596 6422 migrate_dead(dead_cpu, next);
e692ab53 6423
1da177e4
LT
6424 }
6425}
6426#endif /* CONFIG_HOTPLUG_CPU */
6427
e692ab53
NP
6428#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6429
6430static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6431 {
6432 .procname = "sched_domain",
c57baf1e 6433 .mode = 0555,
e0361851 6434 },
38605cae 6435 {0, },
e692ab53
NP
6436};
6437
6438static struct ctl_table sd_ctl_root[] = {
e0361851 6439 {
c57baf1e 6440 .ctl_name = CTL_KERN,
e0361851 6441 .procname = "kernel",
c57baf1e 6442 .mode = 0555,
e0361851
AD
6443 .child = sd_ctl_dir,
6444 },
38605cae 6445 {0, },
e692ab53
NP
6446};
6447
6448static struct ctl_table *sd_alloc_ctl_entry(int n)
6449{
6450 struct ctl_table *entry =
5cf9f062 6451 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6452
e692ab53
NP
6453 return entry;
6454}
6455
6382bc90
MM
6456static void sd_free_ctl_entry(struct ctl_table **tablep)
6457{
cd790076 6458 struct ctl_table *entry;
6382bc90 6459
cd790076
MM
6460 /*
6461 * In the intermediate directories, both the child directory and
6462 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6463 * will always be set. In the lowest directory the names are
cd790076
MM
6464 * static strings and all have proc handlers.
6465 */
6466 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6467 if (entry->child)
6468 sd_free_ctl_entry(&entry->child);
cd790076
MM
6469 if (entry->proc_handler == NULL)
6470 kfree(entry->procname);
6471 }
6382bc90
MM
6472
6473 kfree(*tablep);
6474 *tablep = NULL;
6475}
6476
e692ab53 6477static void
e0361851 6478set_table_entry(struct ctl_table *entry,
e692ab53
NP
6479 const char *procname, void *data, int maxlen,
6480 mode_t mode, proc_handler *proc_handler)
6481{
e692ab53
NP
6482 entry->procname = procname;
6483 entry->data = data;
6484 entry->maxlen = maxlen;
6485 entry->mode = mode;
6486 entry->proc_handler = proc_handler;
6487}
6488
6489static struct ctl_table *
6490sd_alloc_ctl_domain_table(struct sched_domain *sd)
6491{
a5d8c348 6492 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6493
ad1cdc1d
MM
6494 if (table == NULL)
6495 return NULL;
6496
e0361851 6497 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6498 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6499 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6500 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6501 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6502 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6503 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6504 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6505 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6506 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6507 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6508 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6509 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6510 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6511 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6512 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6513 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6514 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6515 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6516 &sd->cache_nice_tries,
6517 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6518 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6519 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6520 set_table_entry(&table[11], "name", sd->name,
6521 CORENAME_MAX_SIZE, 0444, proc_dostring);
6522 /* &table[12] is terminator */
e692ab53
NP
6523
6524 return table;
6525}
6526
9a4e7159 6527static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6528{
6529 struct ctl_table *entry, *table;
6530 struct sched_domain *sd;
6531 int domain_num = 0, i;
6532 char buf[32];
6533
6534 for_each_domain(cpu, sd)
6535 domain_num++;
6536 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6537 if (table == NULL)
6538 return NULL;
e692ab53
NP
6539
6540 i = 0;
6541 for_each_domain(cpu, sd) {
6542 snprintf(buf, 32, "domain%d", i);
e692ab53 6543 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6544 entry->mode = 0555;
e692ab53
NP
6545 entry->child = sd_alloc_ctl_domain_table(sd);
6546 entry++;
6547 i++;
6548 }
6549 return table;
6550}
6551
6552static struct ctl_table_header *sd_sysctl_header;
6382bc90 6553static void register_sched_domain_sysctl(void)
e692ab53
NP
6554{
6555 int i, cpu_num = num_online_cpus();
6556 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6557 char buf[32];
6558
7378547f
MM
6559 WARN_ON(sd_ctl_dir[0].child);
6560 sd_ctl_dir[0].child = entry;
6561
ad1cdc1d
MM
6562 if (entry == NULL)
6563 return;
6564
97b6ea7b 6565 for_each_online_cpu(i) {
e692ab53 6566 snprintf(buf, 32, "cpu%d", i);
e692ab53 6567 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6568 entry->mode = 0555;
e692ab53 6569 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6570 entry++;
e692ab53 6571 }
7378547f
MM
6572
6573 WARN_ON(sd_sysctl_header);
e692ab53
NP
6574 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6575}
6382bc90 6576
7378547f 6577/* may be called multiple times per register */
6382bc90
MM
6578static void unregister_sched_domain_sysctl(void)
6579{
7378547f
MM
6580 if (sd_sysctl_header)
6581 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6582 sd_sysctl_header = NULL;
7378547f
MM
6583 if (sd_ctl_dir[0].child)
6584 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6585}
e692ab53 6586#else
6382bc90
MM
6587static void register_sched_domain_sysctl(void)
6588{
6589}
6590static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6591{
6592}
6593#endif
6594
1f11eb6a
GH
6595static void set_rq_online(struct rq *rq)
6596{
6597 if (!rq->online) {
6598 const struct sched_class *class;
6599
c6c4927b 6600 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6601 rq->online = 1;
6602
6603 for_each_class(class) {
6604 if (class->rq_online)
6605 class->rq_online(rq);
6606 }
6607 }
6608}
6609
6610static void set_rq_offline(struct rq *rq)
6611{
6612 if (rq->online) {
6613 const struct sched_class *class;
6614
6615 for_each_class(class) {
6616 if (class->rq_offline)
6617 class->rq_offline(rq);
6618 }
6619
c6c4927b 6620 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6621 rq->online = 0;
6622 }
6623}
6624
1da177e4
LT
6625/*
6626 * migration_call - callback that gets triggered when a CPU is added.
6627 * Here we can start up the necessary migration thread for the new CPU.
6628 */
48f24c4d
IM
6629static int __cpuinit
6630migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6631{
1da177e4 6632 struct task_struct *p;
48f24c4d 6633 int cpu = (long)hcpu;
1da177e4 6634 unsigned long flags;
70b97a7f 6635 struct rq *rq;
1da177e4
LT
6636
6637 switch (action) {
5be9361c 6638
1da177e4 6639 case CPU_UP_PREPARE:
8bb78442 6640 case CPU_UP_PREPARE_FROZEN:
dd41f596 6641 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6642 if (IS_ERR(p))
6643 return NOTIFY_BAD;
1da177e4
LT
6644 kthread_bind(p, cpu);
6645 /* Must be high prio: stop_machine expects to yield to it. */
6646 rq = task_rq_lock(p, &flags);
dd41f596 6647 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6648 task_rq_unlock(rq, &flags);
6649 cpu_rq(cpu)->migration_thread = p;
6650 break;
48f24c4d 6651
1da177e4 6652 case CPU_ONLINE:
8bb78442 6653 case CPU_ONLINE_FROZEN:
3a4fa0a2 6654 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6655 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6656
6657 /* Update our root-domain */
6658 rq = cpu_rq(cpu);
6659 spin_lock_irqsave(&rq->lock, flags);
6660 if (rq->rd) {
c6c4927b 6661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6662
6663 set_rq_online(rq);
1f94ef59
GH
6664 }
6665 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6666 break;
48f24c4d 6667
1da177e4
LT
6668#ifdef CONFIG_HOTPLUG_CPU
6669 case CPU_UP_CANCELED:
8bb78442 6670 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6671 if (!cpu_rq(cpu)->migration_thread)
6672 break;
41a2d6cf 6673 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6674 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6675 cpumask_any(cpu_online_mask));
1da177e4
LT
6676 kthread_stop(cpu_rq(cpu)->migration_thread);
6677 cpu_rq(cpu)->migration_thread = NULL;
6678 break;
48f24c4d 6679
1da177e4 6680 case CPU_DEAD:
8bb78442 6681 case CPU_DEAD_FROZEN:
470fd646 6682 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6683 migrate_live_tasks(cpu);
6684 rq = cpu_rq(cpu);
6685 kthread_stop(rq->migration_thread);
6686 rq->migration_thread = NULL;
6687 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6688 spin_lock_irq(&rq->lock);
a8e504d2 6689 update_rq_clock(rq);
2e1cb74a 6690 deactivate_task(rq, rq->idle, 0);
1da177e4 6691 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6692 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6693 rq->idle->sched_class = &idle_sched_class;
1da177e4 6694 migrate_dead_tasks(cpu);
d2da272a 6695 spin_unlock_irq(&rq->lock);
470fd646 6696 cpuset_unlock();
1da177e4
LT
6697 migrate_nr_uninterruptible(rq);
6698 BUG_ON(rq->nr_running != 0);
6699
41a2d6cf
IM
6700 /*
6701 * No need to migrate the tasks: it was best-effort if
6702 * they didn't take sched_hotcpu_mutex. Just wake up
6703 * the requestors.
6704 */
1da177e4
LT
6705 spin_lock_irq(&rq->lock);
6706 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6707 struct migration_req *req;
6708
1da177e4 6709 req = list_entry(rq->migration_queue.next,
70b97a7f 6710 struct migration_req, list);
1da177e4 6711 list_del_init(&req->list);
9a2bd244 6712 spin_unlock_irq(&rq->lock);
1da177e4 6713 complete(&req->done);
9a2bd244 6714 spin_lock_irq(&rq->lock);
1da177e4
LT
6715 }
6716 spin_unlock_irq(&rq->lock);
6717 break;
57d885fe 6718
08f503b0
GH
6719 case CPU_DYING:
6720 case CPU_DYING_FROZEN:
57d885fe
GH
6721 /* Update our root-domain */
6722 rq = cpu_rq(cpu);
6723 spin_lock_irqsave(&rq->lock, flags);
6724 if (rq->rd) {
c6c4927b 6725 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6726 set_rq_offline(rq);
57d885fe
GH
6727 }
6728 spin_unlock_irqrestore(&rq->lock, flags);
6729 break;
1da177e4
LT
6730#endif
6731 }
6732 return NOTIFY_OK;
6733}
6734
6735/* Register at highest priority so that task migration (migrate_all_tasks)
6736 * happens before everything else.
6737 */
26c2143b 6738static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6739 .notifier_call = migration_call,
6740 .priority = 10
6741};
6742
7babe8db 6743static int __init migration_init(void)
1da177e4
LT
6744{
6745 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6746 int err;
48f24c4d
IM
6747
6748 /* Start one for the boot CPU: */
07dccf33
AM
6749 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6750 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6751 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6752 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6753
6754 return err;
1da177e4 6755}
7babe8db 6756early_initcall(migration_init);
1da177e4
LT
6757#endif
6758
6759#ifdef CONFIG_SMP
476f3534 6760
3e9830dc 6761#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6762
7c16ec58 6763static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6764 struct cpumask *groupmask)
1da177e4 6765{
4dcf6aff 6766 struct sched_group *group = sd->groups;
434d53b0 6767 char str[256];
1da177e4 6768
968ea6d8 6769 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6770 cpumask_clear(groupmask);
4dcf6aff
IM
6771
6772 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6773
6774 if (!(sd->flags & SD_LOAD_BALANCE)) {
6775 printk("does not load-balance\n");
6776 if (sd->parent)
6777 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6778 " has parent");
6779 return -1;
41c7ce9a
NP
6780 }
6781
eefd796a 6782 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6783
758b2cdc 6784 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6785 printk(KERN_ERR "ERROR: domain->span does not contain "
6786 "CPU%d\n", cpu);
6787 }
758b2cdc 6788 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6789 printk(KERN_ERR "ERROR: domain->groups does not contain"
6790 " CPU%d\n", cpu);
6791 }
1da177e4 6792
4dcf6aff 6793 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6794 do {
4dcf6aff
IM
6795 if (!group) {
6796 printk("\n");
6797 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6798 break;
6799 }
6800
4dcf6aff
IM
6801 if (!group->__cpu_power) {
6802 printk(KERN_CONT "\n");
6803 printk(KERN_ERR "ERROR: domain->cpu_power not "
6804 "set\n");
6805 break;
6806 }
1da177e4 6807
758b2cdc 6808 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6809 printk(KERN_CONT "\n");
6810 printk(KERN_ERR "ERROR: empty group\n");
6811 break;
6812 }
1da177e4 6813
758b2cdc 6814 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6815 printk(KERN_CONT "\n");
6816 printk(KERN_ERR "ERROR: repeated CPUs\n");
6817 break;
6818 }
1da177e4 6819
758b2cdc 6820 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6821
968ea6d8 6822 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6823 printk(KERN_CONT " %s", str);
1da177e4 6824
4dcf6aff
IM
6825 group = group->next;
6826 } while (group != sd->groups);
6827 printk(KERN_CONT "\n");
1da177e4 6828
758b2cdc 6829 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6830 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6831
758b2cdc
RR
6832 if (sd->parent &&
6833 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6834 printk(KERN_ERR "ERROR: parent span is not a superset "
6835 "of domain->span\n");
6836 return 0;
6837}
1da177e4 6838
4dcf6aff
IM
6839static void sched_domain_debug(struct sched_domain *sd, int cpu)
6840{
d5dd3db1 6841 cpumask_var_t groupmask;
4dcf6aff 6842 int level = 0;
1da177e4 6843
4dcf6aff
IM
6844 if (!sd) {
6845 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6846 return;
6847 }
1da177e4 6848
4dcf6aff
IM
6849 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6850
d5dd3db1 6851 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6852 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6853 return;
6854 }
6855
4dcf6aff 6856 for (;;) {
7c16ec58 6857 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6858 break;
1da177e4
LT
6859 level++;
6860 sd = sd->parent;
33859f7f 6861 if (!sd)
4dcf6aff
IM
6862 break;
6863 }
d5dd3db1 6864 free_cpumask_var(groupmask);
1da177e4 6865}
6d6bc0ad 6866#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6867# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6868#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6869
1a20ff27 6870static int sd_degenerate(struct sched_domain *sd)
245af2c7 6871{
758b2cdc 6872 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6873 return 1;
6874
6875 /* Following flags need at least 2 groups */
6876 if (sd->flags & (SD_LOAD_BALANCE |
6877 SD_BALANCE_NEWIDLE |
6878 SD_BALANCE_FORK |
89c4710e
SS
6879 SD_BALANCE_EXEC |
6880 SD_SHARE_CPUPOWER |
6881 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6882 if (sd->groups != sd->groups->next)
6883 return 0;
6884 }
6885
6886 /* Following flags don't use groups */
6887 if (sd->flags & (SD_WAKE_IDLE |
6888 SD_WAKE_AFFINE |
6889 SD_WAKE_BALANCE))
6890 return 0;
6891
6892 return 1;
6893}
6894
48f24c4d
IM
6895static int
6896sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6897{
6898 unsigned long cflags = sd->flags, pflags = parent->flags;
6899
6900 if (sd_degenerate(parent))
6901 return 1;
6902
758b2cdc 6903 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6904 return 0;
6905
6906 /* Does parent contain flags not in child? */
6907 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6908 if (cflags & SD_WAKE_AFFINE)
6909 pflags &= ~SD_WAKE_BALANCE;
6910 /* Flags needing groups don't count if only 1 group in parent */
6911 if (parent->groups == parent->groups->next) {
6912 pflags &= ~(SD_LOAD_BALANCE |
6913 SD_BALANCE_NEWIDLE |
6914 SD_BALANCE_FORK |
89c4710e
SS
6915 SD_BALANCE_EXEC |
6916 SD_SHARE_CPUPOWER |
6917 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6918 if (nr_node_ids == 1)
6919 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6920 }
6921 if (~cflags & pflags)
6922 return 0;
6923
6924 return 1;
6925}
6926
c6c4927b
RR
6927static void free_rootdomain(struct root_domain *rd)
6928{
68e74568
RR
6929 cpupri_cleanup(&rd->cpupri);
6930
c6c4927b
RR
6931 free_cpumask_var(rd->rto_mask);
6932 free_cpumask_var(rd->online);
6933 free_cpumask_var(rd->span);
6934 kfree(rd);
6935}
6936
57d885fe
GH
6937static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6938{
6939 unsigned long flags;
57d885fe
GH
6940
6941 spin_lock_irqsave(&rq->lock, flags);
6942
6943 if (rq->rd) {
6944 struct root_domain *old_rd = rq->rd;
6945
c6c4927b 6946 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6947 set_rq_offline(rq);
57d885fe 6948
c6c4927b 6949 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6950
57d885fe 6951 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6952 free_rootdomain(old_rd);
57d885fe
GH
6953 }
6954
6955 atomic_inc(&rd->refcount);
6956 rq->rd = rd;
6957
c6c4927b
RR
6958 cpumask_set_cpu(rq->cpu, rd->span);
6959 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6960 set_rq_online(rq);
57d885fe
GH
6961
6962 spin_unlock_irqrestore(&rq->lock, flags);
6963}
6964
db2f59c8 6965static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6966{
6967 memset(rd, 0, sizeof(*rd));
6968
c6c4927b
RR
6969 if (bootmem) {
6970 alloc_bootmem_cpumask_var(&def_root_domain.span);
6971 alloc_bootmem_cpumask_var(&def_root_domain.online);
6972 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6973 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6974 return 0;
6975 }
6976
6977 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6978 goto out;
c6c4927b
RR
6979 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6980 goto free_span;
6981 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6982 goto free_online;
6e0534f2 6983
68e74568
RR
6984 if (cpupri_init(&rd->cpupri, false) != 0)
6985 goto free_rto_mask;
c6c4927b 6986 return 0;
6e0534f2 6987
68e74568
RR
6988free_rto_mask:
6989 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6990free_online:
6991 free_cpumask_var(rd->online);
6992free_span:
6993 free_cpumask_var(rd->span);
0c910d28 6994out:
c6c4927b 6995 return -ENOMEM;
57d885fe
GH
6996}
6997
6998static void init_defrootdomain(void)
6999{
c6c4927b
RR
7000 init_rootdomain(&def_root_domain, true);
7001
57d885fe
GH
7002 atomic_set(&def_root_domain.refcount, 1);
7003}
7004
dc938520 7005static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7006{
7007 struct root_domain *rd;
7008
7009 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7010 if (!rd)
7011 return NULL;
7012
c6c4927b
RR
7013 if (init_rootdomain(rd, false) != 0) {
7014 kfree(rd);
7015 return NULL;
7016 }
57d885fe
GH
7017
7018 return rd;
7019}
7020
1da177e4 7021/*
0eab9146 7022 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7023 * hold the hotplug lock.
7024 */
0eab9146
IM
7025static void
7026cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7027{
70b97a7f 7028 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7029 struct sched_domain *tmp;
7030
7031 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7032 for (tmp = sd; tmp; ) {
245af2c7
SS
7033 struct sched_domain *parent = tmp->parent;
7034 if (!parent)
7035 break;
f29c9b1c 7036
1a848870 7037 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7038 tmp->parent = parent->parent;
1a848870
SS
7039 if (parent->parent)
7040 parent->parent->child = tmp;
f29c9b1c
LZ
7041 } else
7042 tmp = tmp->parent;
245af2c7
SS
7043 }
7044
1a848870 7045 if (sd && sd_degenerate(sd)) {
245af2c7 7046 sd = sd->parent;
1a848870
SS
7047 if (sd)
7048 sd->child = NULL;
7049 }
1da177e4
LT
7050
7051 sched_domain_debug(sd, cpu);
7052
57d885fe 7053 rq_attach_root(rq, rd);
674311d5 7054 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7055}
7056
7057/* cpus with isolated domains */
dcc30a35 7058static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7059
7060/* Setup the mask of cpus configured for isolated domains */
7061static int __init isolated_cpu_setup(char *str)
7062{
968ea6d8 7063 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7064 return 1;
7065}
7066
8927f494 7067__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7068
7069/*
6711cab4
SS
7070 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7071 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7072 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7073 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7074 *
7075 * init_sched_build_groups will build a circular linked list of the groups
7076 * covered by the given span, and will set each group's ->cpumask correctly,
7077 * and ->cpu_power to 0.
7078 */
a616058b 7079static void
96f874e2
RR
7080init_sched_build_groups(const struct cpumask *span,
7081 const struct cpumask *cpu_map,
7082 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7083 struct sched_group **sg,
96f874e2
RR
7084 struct cpumask *tmpmask),
7085 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7086{
7087 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7088 int i;
7089
96f874e2 7090 cpumask_clear(covered);
7c16ec58 7091
abcd083a 7092 for_each_cpu(i, span) {
6711cab4 7093 struct sched_group *sg;
7c16ec58 7094 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7095 int j;
7096
758b2cdc 7097 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7098 continue;
7099
758b2cdc 7100 cpumask_clear(sched_group_cpus(sg));
5517d86b 7101 sg->__cpu_power = 0;
1da177e4 7102
abcd083a 7103 for_each_cpu(j, span) {
7c16ec58 7104 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7105 continue;
7106
96f874e2 7107 cpumask_set_cpu(j, covered);
758b2cdc 7108 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7109 }
7110 if (!first)
7111 first = sg;
7112 if (last)
7113 last->next = sg;
7114 last = sg;
7115 }
7116 last->next = first;
7117}
7118
9c1cfda2 7119#define SD_NODES_PER_DOMAIN 16
1da177e4 7120
9c1cfda2 7121#ifdef CONFIG_NUMA
198e2f18 7122
9c1cfda2
JH
7123/**
7124 * find_next_best_node - find the next node to include in a sched_domain
7125 * @node: node whose sched_domain we're building
7126 * @used_nodes: nodes already in the sched_domain
7127 *
41a2d6cf 7128 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7129 * finds the closest node not already in the @used_nodes map.
7130 *
7131 * Should use nodemask_t.
7132 */
c5f59f08 7133static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7134{
7135 int i, n, val, min_val, best_node = 0;
7136
7137 min_val = INT_MAX;
7138
076ac2af 7139 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7140 /* Start at @node */
076ac2af 7141 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7142
7143 if (!nr_cpus_node(n))
7144 continue;
7145
7146 /* Skip already used nodes */
c5f59f08 7147 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7148 continue;
7149
7150 /* Simple min distance search */
7151 val = node_distance(node, n);
7152
7153 if (val < min_val) {
7154 min_val = val;
7155 best_node = n;
7156 }
7157 }
7158
c5f59f08 7159 node_set(best_node, *used_nodes);
9c1cfda2
JH
7160 return best_node;
7161}
7162
7163/**
7164 * sched_domain_node_span - get a cpumask for a node's sched_domain
7165 * @node: node whose cpumask we're constructing
73486722 7166 * @span: resulting cpumask
9c1cfda2 7167 *
41a2d6cf 7168 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7169 * should be one that prevents unnecessary balancing, but also spreads tasks
7170 * out optimally.
7171 */
96f874e2 7172static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7173{
c5f59f08 7174 nodemask_t used_nodes;
48f24c4d 7175 int i;
9c1cfda2 7176
6ca09dfc 7177 cpumask_clear(span);
c5f59f08 7178 nodes_clear(used_nodes);
9c1cfda2 7179
6ca09dfc 7180 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7181 node_set(node, used_nodes);
9c1cfda2
JH
7182
7183 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7184 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7185
6ca09dfc 7186 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7187 }
9c1cfda2 7188}
6d6bc0ad 7189#endif /* CONFIG_NUMA */
9c1cfda2 7190
5c45bf27 7191int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7192
6c99e9ad
RR
7193/*
7194 * The cpus mask in sched_group and sched_domain hangs off the end.
7195 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7196 * for nr_cpu_ids < CONFIG_NR_CPUS.
7197 */
7198struct static_sched_group {
7199 struct sched_group sg;
7200 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7201};
7202
7203struct static_sched_domain {
7204 struct sched_domain sd;
7205 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7206};
7207
9c1cfda2 7208/*
48f24c4d 7209 * SMT sched-domains:
9c1cfda2 7210 */
1da177e4 7211#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7212static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7213static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7214
41a2d6cf 7215static int
96f874e2
RR
7216cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7217 struct sched_group **sg, struct cpumask *unused)
1da177e4 7218{
6711cab4 7219 if (sg)
6c99e9ad 7220 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7221 return cpu;
7222}
6d6bc0ad 7223#endif /* CONFIG_SCHED_SMT */
1da177e4 7224
48f24c4d
IM
7225/*
7226 * multi-core sched-domains:
7227 */
1e9f28fa 7228#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7229static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7230static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7231#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7232
7233#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7234static int
96f874e2
RR
7235cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7236 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7237{
6711cab4 7238 int group;
7c16ec58 7239
96f874e2
RR
7240 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7241 group = cpumask_first(mask);
6711cab4 7242 if (sg)
6c99e9ad 7243 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7244 return group;
1e9f28fa
SS
7245}
7246#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7247static int
96f874e2
RR
7248cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7249 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7250{
6711cab4 7251 if (sg)
6c99e9ad 7252 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7253 return cpu;
7254}
7255#endif
7256
6c99e9ad
RR
7257static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7258static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7259
41a2d6cf 7260static int
96f874e2
RR
7261cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7262 struct sched_group **sg, struct cpumask *mask)
1da177e4 7263{
6711cab4 7264 int group;
48f24c4d 7265#ifdef CONFIG_SCHED_MC
6ca09dfc 7266 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7267 group = cpumask_first(mask);
1e9f28fa 7268#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7269 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7270 group = cpumask_first(mask);
1da177e4 7271#else
6711cab4 7272 group = cpu;
1da177e4 7273#endif
6711cab4 7274 if (sg)
6c99e9ad 7275 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7276 return group;
1da177e4
LT
7277}
7278
7279#ifdef CONFIG_NUMA
1da177e4 7280/*
9c1cfda2
JH
7281 * The init_sched_build_groups can't handle what we want to do with node
7282 * groups, so roll our own. Now each node has its own list of groups which
7283 * gets dynamically allocated.
1da177e4 7284 */
62ea9ceb 7285static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7286static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7287
62ea9ceb 7288static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7289static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7290
96f874e2
RR
7291static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7292 struct sched_group **sg,
7293 struct cpumask *nodemask)
9c1cfda2 7294{
6711cab4
SS
7295 int group;
7296
6ca09dfc 7297 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7298 group = cpumask_first(nodemask);
6711cab4
SS
7299
7300 if (sg)
6c99e9ad 7301 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7302 return group;
1da177e4 7303}
6711cab4 7304
08069033
SS
7305static void init_numa_sched_groups_power(struct sched_group *group_head)
7306{
7307 struct sched_group *sg = group_head;
7308 int j;
7309
7310 if (!sg)
7311 return;
3a5c359a 7312 do {
758b2cdc 7313 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7314 struct sched_domain *sd;
08069033 7315
6c99e9ad 7316 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7317 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7318 /*
7319 * Only add "power" once for each
7320 * physical package.
7321 */
7322 continue;
7323 }
08069033 7324
3a5c359a
AK
7325 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7326 }
7327 sg = sg->next;
7328 } while (sg != group_head);
08069033 7329}
6d6bc0ad 7330#endif /* CONFIG_NUMA */
1da177e4 7331
a616058b 7332#ifdef CONFIG_NUMA
51888ca2 7333/* Free memory allocated for various sched_group structures */
96f874e2
RR
7334static void free_sched_groups(const struct cpumask *cpu_map,
7335 struct cpumask *nodemask)
51888ca2 7336{
a616058b 7337 int cpu, i;
51888ca2 7338
abcd083a 7339 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7340 struct sched_group **sched_group_nodes
7341 = sched_group_nodes_bycpu[cpu];
7342
51888ca2
SV
7343 if (!sched_group_nodes)
7344 continue;
7345
076ac2af 7346 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7347 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7348
6ca09dfc 7349 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7350 if (cpumask_empty(nodemask))
51888ca2
SV
7351 continue;
7352
7353 if (sg == NULL)
7354 continue;
7355 sg = sg->next;
7356next_sg:
7357 oldsg = sg;
7358 sg = sg->next;
7359 kfree(oldsg);
7360 if (oldsg != sched_group_nodes[i])
7361 goto next_sg;
7362 }
7363 kfree(sched_group_nodes);
7364 sched_group_nodes_bycpu[cpu] = NULL;
7365 }
51888ca2 7366}
6d6bc0ad 7367#else /* !CONFIG_NUMA */
96f874e2
RR
7368static void free_sched_groups(const struct cpumask *cpu_map,
7369 struct cpumask *nodemask)
a616058b
SS
7370{
7371}
6d6bc0ad 7372#endif /* CONFIG_NUMA */
51888ca2 7373
89c4710e
SS
7374/*
7375 * Initialize sched groups cpu_power.
7376 *
7377 * cpu_power indicates the capacity of sched group, which is used while
7378 * distributing the load between different sched groups in a sched domain.
7379 * Typically cpu_power for all the groups in a sched domain will be same unless
7380 * there are asymmetries in the topology. If there are asymmetries, group
7381 * having more cpu_power will pickup more load compared to the group having
7382 * less cpu_power.
7383 *
7384 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7385 * the maximum number of tasks a group can handle in the presence of other idle
7386 * or lightly loaded groups in the same sched domain.
7387 */
7388static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7389{
7390 struct sched_domain *child;
7391 struct sched_group *group;
7392
7393 WARN_ON(!sd || !sd->groups);
7394
758b2cdc 7395 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7396 return;
7397
7398 child = sd->child;
7399
5517d86b
ED
7400 sd->groups->__cpu_power = 0;
7401
89c4710e
SS
7402 /*
7403 * For perf policy, if the groups in child domain share resources
7404 * (for example cores sharing some portions of the cache hierarchy
7405 * or SMT), then set this domain groups cpu_power such that each group
7406 * can handle only one task, when there are other idle groups in the
7407 * same sched domain.
7408 */
7409 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7410 (child->flags &
7411 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7412 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7413 return;
7414 }
7415
89c4710e
SS
7416 /*
7417 * add cpu_power of each child group to this groups cpu_power
7418 */
7419 group = child->groups;
7420 do {
5517d86b 7421 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7422 group = group->next;
7423 } while (group != child->groups);
7424}
7425
7c16ec58
MT
7426/*
7427 * Initializers for schedule domains
7428 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7429 */
7430
a5d8c348
IM
7431#ifdef CONFIG_SCHED_DEBUG
7432# define SD_INIT_NAME(sd, type) sd->name = #type
7433#else
7434# define SD_INIT_NAME(sd, type) do { } while (0)
7435#endif
7436
7c16ec58 7437#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7438
7c16ec58
MT
7439#define SD_INIT_FUNC(type) \
7440static noinline void sd_init_##type(struct sched_domain *sd) \
7441{ \
7442 memset(sd, 0, sizeof(*sd)); \
7443 *sd = SD_##type##_INIT; \
1d3504fc 7444 sd->level = SD_LV_##type; \
a5d8c348 7445 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7446}
7447
7448SD_INIT_FUNC(CPU)
7449#ifdef CONFIG_NUMA
7450 SD_INIT_FUNC(ALLNODES)
7451 SD_INIT_FUNC(NODE)
7452#endif
7453#ifdef CONFIG_SCHED_SMT
7454 SD_INIT_FUNC(SIBLING)
7455#endif
7456#ifdef CONFIG_SCHED_MC
7457 SD_INIT_FUNC(MC)
7458#endif
7459
1d3504fc
HS
7460static int default_relax_domain_level = -1;
7461
7462static int __init setup_relax_domain_level(char *str)
7463{
30e0e178
LZ
7464 unsigned long val;
7465
7466 val = simple_strtoul(str, NULL, 0);
7467 if (val < SD_LV_MAX)
7468 default_relax_domain_level = val;
7469
1d3504fc
HS
7470 return 1;
7471}
7472__setup("relax_domain_level=", setup_relax_domain_level);
7473
7474static void set_domain_attribute(struct sched_domain *sd,
7475 struct sched_domain_attr *attr)
7476{
7477 int request;
7478
7479 if (!attr || attr->relax_domain_level < 0) {
7480 if (default_relax_domain_level < 0)
7481 return;
7482 else
7483 request = default_relax_domain_level;
7484 } else
7485 request = attr->relax_domain_level;
7486 if (request < sd->level) {
7487 /* turn off idle balance on this domain */
7488 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7489 } else {
7490 /* turn on idle balance on this domain */
7491 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7492 }
7493}
7494
1da177e4 7495/*
1a20ff27
DG
7496 * Build sched domains for a given set of cpus and attach the sched domains
7497 * to the individual cpus
1da177e4 7498 */
96f874e2 7499static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7500 struct sched_domain_attr *attr)
1da177e4 7501{
3404c8d9 7502 int i, err = -ENOMEM;
57d885fe 7503 struct root_domain *rd;
3404c8d9
RR
7504 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7505 tmpmask;
d1b55138 7506#ifdef CONFIG_NUMA
3404c8d9 7507 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7508 struct sched_group **sched_group_nodes = NULL;
6711cab4 7509 int sd_allnodes = 0;
d1b55138 7510
3404c8d9
RR
7511 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7512 goto out;
7513 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7514 goto free_domainspan;
7515 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7516 goto free_covered;
7517#endif
7518
7519 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7520 goto free_notcovered;
7521 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7522 goto free_nodemask;
7523 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7524 goto free_this_sibling_map;
7525 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7526 goto free_this_core_map;
7527 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7528 goto free_send_covered;
7529
7530#ifdef CONFIG_NUMA
d1b55138
JH
7531 /*
7532 * Allocate the per-node list of sched groups
7533 */
076ac2af 7534 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7535 GFP_KERNEL);
d1b55138
JH
7536 if (!sched_group_nodes) {
7537 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7538 goto free_tmpmask;
d1b55138 7539 }
d1b55138 7540#endif
1da177e4 7541
dc938520 7542 rd = alloc_rootdomain();
57d885fe
GH
7543 if (!rd) {
7544 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7545 goto free_sched_groups;
57d885fe
GH
7546 }
7547
7c16ec58 7548#ifdef CONFIG_NUMA
96f874e2 7549 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7550#endif
7551
1da177e4 7552 /*
1a20ff27 7553 * Set up domains for cpus specified by the cpu_map.
1da177e4 7554 */
abcd083a 7555 for_each_cpu(i, cpu_map) {
1da177e4 7556 struct sched_domain *sd = NULL, *p;
1da177e4 7557
6ca09dfc 7558 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7559
7560#ifdef CONFIG_NUMA
96f874e2
RR
7561 if (cpumask_weight(cpu_map) >
7562 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7563 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7564 SD_INIT(sd, ALLNODES);
1d3504fc 7565 set_domain_attribute(sd, attr);
758b2cdc 7566 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7567 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7568 p = sd;
6711cab4 7569 sd_allnodes = 1;
9c1cfda2
JH
7570 } else
7571 p = NULL;
7572
62ea9ceb 7573 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7574 SD_INIT(sd, NODE);
1d3504fc 7575 set_domain_attribute(sd, attr);
758b2cdc 7576 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7577 sd->parent = p;
1a848870
SS
7578 if (p)
7579 p->child = sd;
758b2cdc
RR
7580 cpumask_and(sched_domain_span(sd),
7581 sched_domain_span(sd), cpu_map);
1da177e4
LT
7582#endif
7583
7584 p = sd;
6c99e9ad 7585 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7586 SD_INIT(sd, CPU);
1d3504fc 7587 set_domain_attribute(sd, attr);
758b2cdc 7588 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7589 sd->parent = p;
1a848870
SS
7590 if (p)
7591 p->child = sd;
7c16ec58 7592 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7593
1e9f28fa
SS
7594#ifdef CONFIG_SCHED_MC
7595 p = sd;
6c99e9ad 7596 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7597 SD_INIT(sd, MC);
1d3504fc 7598 set_domain_attribute(sd, attr);
6ca09dfc
MT
7599 cpumask_and(sched_domain_span(sd), cpu_map,
7600 cpu_coregroup_mask(i));
1e9f28fa 7601 sd->parent = p;
1a848870 7602 p->child = sd;
7c16ec58 7603 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7604#endif
7605
1da177e4
LT
7606#ifdef CONFIG_SCHED_SMT
7607 p = sd;
6c99e9ad 7608 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7609 SD_INIT(sd, SIBLING);
1d3504fc 7610 set_domain_attribute(sd, attr);
758b2cdc
RR
7611 cpumask_and(sched_domain_span(sd),
7612 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7613 sd->parent = p;
1a848870 7614 p->child = sd;
7c16ec58 7615 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7616#endif
7617 }
7618
7619#ifdef CONFIG_SCHED_SMT
7620 /* Set up CPU (sibling) groups */
abcd083a 7621 for_each_cpu(i, cpu_map) {
96f874e2
RR
7622 cpumask_and(this_sibling_map,
7623 &per_cpu(cpu_sibling_map, i), cpu_map);
7624 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7625 continue;
7626
dd41f596 7627 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7628 &cpu_to_cpu_group,
7629 send_covered, tmpmask);
1da177e4
LT
7630 }
7631#endif
7632
1e9f28fa
SS
7633#ifdef CONFIG_SCHED_MC
7634 /* Set up multi-core groups */
abcd083a 7635 for_each_cpu(i, cpu_map) {
6ca09dfc 7636 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7637 if (i != cpumask_first(this_core_map))
1e9f28fa 7638 continue;
7c16ec58 7639
dd41f596 7640 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7641 &cpu_to_core_group,
7642 send_covered, tmpmask);
1e9f28fa
SS
7643 }
7644#endif
7645
1da177e4 7646 /* Set up physical groups */
076ac2af 7647 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7648 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7649 if (cpumask_empty(nodemask))
1da177e4
LT
7650 continue;
7651
7c16ec58
MT
7652 init_sched_build_groups(nodemask, cpu_map,
7653 &cpu_to_phys_group,
7654 send_covered, tmpmask);
1da177e4
LT
7655 }
7656
7657#ifdef CONFIG_NUMA
7658 /* Set up node groups */
7c16ec58 7659 if (sd_allnodes) {
7c16ec58
MT
7660 init_sched_build_groups(cpu_map, cpu_map,
7661 &cpu_to_allnodes_group,
7662 send_covered, tmpmask);
7663 }
9c1cfda2 7664
076ac2af 7665 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7666 /* Set up node groups */
7667 struct sched_group *sg, *prev;
9c1cfda2
JH
7668 int j;
7669
96f874e2 7670 cpumask_clear(covered);
6ca09dfc 7671 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7672 if (cpumask_empty(nodemask)) {
d1b55138 7673 sched_group_nodes[i] = NULL;
9c1cfda2 7674 continue;
d1b55138 7675 }
9c1cfda2 7676
4bdbaad3 7677 sched_domain_node_span(i, domainspan);
96f874e2 7678 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7679
6c99e9ad
RR
7680 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7681 GFP_KERNEL, i);
51888ca2
SV
7682 if (!sg) {
7683 printk(KERN_WARNING "Can not alloc domain group for "
7684 "node %d\n", i);
7685 goto error;
7686 }
9c1cfda2 7687 sched_group_nodes[i] = sg;
abcd083a 7688 for_each_cpu(j, nodemask) {
9c1cfda2 7689 struct sched_domain *sd;
9761eea8 7690
62ea9ceb 7691 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7692 sd->groups = sg;
9c1cfda2 7693 }
5517d86b 7694 sg->__cpu_power = 0;
758b2cdc 7695 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7696 sg->next = sg;
96f874e2 7697 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7698 prev = sg;
7699
076ac2af 7700 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7701 int n = (i + j) % nr_node_ids;
9c1cfda2 7702
96f874e2
RR
7703 cpumask_complement(notcovered, covered);
7704 cpumask_and(tmpmask, notcovered, cpu_map);
7705 cpumask_and(tmpmask, tmpmask, domainspan);
7706 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7707 break;
7708
6ca09dfc 7709 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7710 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7711 continue;
7712
6c99e9ad
RR
7713 sg = kmalloc_node(sizeof(struct sched_group) +
7714 cpumask_size(),
15f0b676 7715 GFP_KERNEL, i);
9c1cfda2
JH
7716 if (!sg) {
7717 printk(KERN_WARNING
7718 "Can not alloc domain group for node %d\n", j);
51888ca2 7719 goto error;
9c1cfda2 7720 }
5517d86b 7721 sg->__cpu_power = 0;
758b2cdc 7722 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7723 sg->next = prev->next;
96f874e2 7724 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7725 prev->next = sg;
7726 prev = sg;
7727 }
9c1cfda2 7728 }
1da177e4
LT
7729#endif
7730
7731 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7732#ifdef CONFIG_SCHED_SMT
abcd083a 7733 for_each_cpu(i, cpu_map) {
6c99e9ad 7734 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7735
89c4710e 7736 init_sched_groups_power(i, sd);
5c45bf27 7737 }
1da177e4 7738#endif
1e9f28fa 7739#ifdef CONFIG_SCHED_MC
abcd083a 7740 for_each_cpu(i, cpu_map) {
6c99e9ad 7741 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7742
89c4710e 7743 init_sched_groups_power(i, sd);
5c45bf27
SS
7744 }
7745#endif
1e9f28fa 7746
abcd083a 7747 for_each_cpu(i, cpu_map) {
6c99e9ad 7748 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7749
89c4710e 7750 init_sched_groups_power(i, sd);
1da177e4
LT
7751 }
7752
9c1cfda2 7753#ifdef CONFIG_NUMA
076ac2af 7754 for (i = 0; i < nr_node_ids; i++)
08069033 7755 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7756
6711cab4
SS
7757 if (sd_allnodes) {
7758 struct sched_group *sg;
f712c0c7 7759
96f874e2 7760 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7761 tmpmask);
f712c0c7
SS
7762 init_numa_sched_groups_power(sg);
7763 }
9c1cfda2
JH
7764#endif
7765
1da177e4 7766 /* Attach the domains */
abcd083a 7767 for_each_cpu(i, cpu_map) {
1da177e4
LT
7768 struct sched_domain *sd;
7769#ifdef CONFIG_SCHED_SMT
6c99e9ad 7770 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7771#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7772 sd = &per_cpu(core_domains, i).sd;
1da177e4 7773#else
6c99e9ad 7774 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7775#endif
57d885fe 7776 cpu_attach_domain(sd, rd, i);
1da177e4 7777 }
51888ca2 7778
3404c8d9
RR
7779 err = 0;
7780
7781free_tmpmask:
7782 free_cpumask_var(tmpmask);
7783free_send_covered:
7784 free_cpumask_var(send_covered);
7785free_this_core_map:
7786 free_cpumask_var(this_core_map);
7787free_this_sibling_map:
7788 free_cpumask_var(this_sibling_map);
7789free_nodemask:
7790 free_cpumask_var(nodemask);
7791free_notcovered:
7792#ifdef CONFIG_NUMA
7793 free_cpumask_var(notcovered);
7794free_covered:
7795 free_cpumask_var(covered);
7796free_domainspan:
7797 free_cpumask_var(domainspan);
7798out:
7799#endif
7800 return err;
7801
7802free_sched_groups:
7803#ifdef CONFIG_NUMA
7804 kfree(sched_group_nodes);
7805#endif
7806 goto free_tmpmask;
51888ca2 7807
a616058b 7808#ifdef CONFIG_NUMA
51888ca2 7809error:
7c16ec58 7810 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7811 free_rootdomain(rd);
3404c8d9 7812 goto free_tmpmask;
a616058b 7813#endif
1da177e4 7814}
029190c5 7815
96f874e2 7816static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7817{
7818 return __build_sched_domains(cpu_map, NULL);
7819}
7820
96f874e2 7821static struct cpumask *doms_cur; /* current sched domains */
029190c5 7822static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7823static struct sched_domain_attr *dattr_cur;
7824 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7825
7826/*
7827 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7828 * cpumask) fails, then fallback to a single sched domain,
7829 * as determined by the single cpumask fallback_doms.
029190c5 7830 */
4212823f 7831static cpumask_var_t fallback_doms;
029190c5 7832
ee79d1bd
HC
7833/*
7834 * arch_update_cpu_topology lets virtualized architectures update the
7835 * cpu core maps. It is supposed to return 1 if the topology changed
7836 * or 0 if it stayed the same.
7837 */
7838int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7839{
ee79d1bd 7840 return 0;
22e52b07
HC
7841}
7842
1a20ff27 7843/*
41a2d6cf 7844 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7845 * For now this just excludes isolated cpus, but could be used to
7846 * exclude other special cases in the future.
1a20ff27 7847 */
96f874e2 7848static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7849{
7378547f
MM
7850 int err;
7851
22e52b07 7852 arch_update_cpu_topology();
029190c5 7853 ndoms_cur = 1;
96f874e2 7854 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7855 if (!doms_cur)
4212823f 7856 doms_cur = fallback_doms;
dcc30a35 7857 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7858 dattr_cur = NULL;
7378547f 7859 err = build_sched_domains(doms_cur);
6382bc90 7860 register_sched_domain_sysctl();
7378547f
MM
7861
7862 return err;
1a20ff27
DG
7863}
7864
96f874e2
RR
7865static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7866 struct cpumask *tmpmask)
1da177e4 7867{
7c16ec58 7868 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7869}
1da177e4 7870
1a20ff27
DG
7871/*
7872 * Detach sched domains from a group of cpus specified in cpu_map
7873 * These cpus will now be attached to the NULL domain
7874 */
96f874e2 7875static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7876{
96f874e2
RR
7877 /* Save because hotplug lock held. */
7878 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7879 int i;
7880
abcd083a 7881 for_each_cpu(i, cpu_map)
57d885fe 7882 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7883 synchronize_sched();
96f874e2 7884 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7885}
7886
1d3504fc
HS
7887/* handle null as "default" */
7888static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7889 struct sched_domain_attr *new, int idx_new)
7890{
7891 struct sched_domain_attr tmp;
7892
7893 /* fast path */
7894 if (!new && !cur)
7895 return 1;
7896
7897 tmp = SD_ATTR_INIT;
7898 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7899 new ? (new + idx_new) : &tmp,
7900 sizeof(struct sched_domain_attr));
7901}
7902
029190c5
PJ
7903/*
7904 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7905 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7906 * doms_new[] to the current sched domain partitioning, doms_cur[].
7907 * It destroys each deleted domain and builds each new domain.
7908 *
96f874e2 7909 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7910 * The masks don't intersect (don't overlap.) We should setup one
7911 * sched domain for each mask. CPUs not in any of the cpumasks will
7912 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7913 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7914 * it as it is.
7915 *
41a2d6cf
IM
7916 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7917 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7918 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7919 * ndoms_new == 1, and partition_sched_domains() will fallback to
7920 * the single partition 'fallback_doms', it also forces the domains
7921 * to be rebuilt.
029190c5 7922 *
96f874e2 7923 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7924 * ndoms_new == 0 is a special case for destroying existing domains,
7925 * and it will not create the default domain.
dfb512ec 7926 *
029190c5
PJ
7927 * Call with hotplug lock held
7928 */
96f874e2
RR
7929/* FIXME: Change to struct cpumask *doms_new[] */
7930void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7931 struct sched_domain_attr *dattr_new)
029190c5 7932{
dfb512ec 7933 int i, j, n;
d65bd5ec 7934 int new_topology;
029190c5 7935
712555ee 7936 mutex_lock(&sched_domains_mutex);
a1835615 7937
7378547f
MM
7938 /* always unregister in case we don't destroy any domains */
7939 unregister_sched_domain_sysctl();
7940
d65bd5ec
HC
7941 /* Let architecture update cpu core mappings. */
7942 new_topology = arch_update_cpu_topology();
7943
dfb512ec 7944 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7945
7946 /* Destroy deleted domains */
7947 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7948 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7949 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7950 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7951 goto match1;
7952 }
7953 /* no match - a current sched domain not in new doms_new[] */
7954 detach_destroy_domains(doms_cur + i);
7955match1:
7956 ;
7957 }
7958
e761b772
MK
7959 if (doms_new == NULL) {
7960 ndoms_cur = 0;
4212823f 7961 doms_new = fallback_doms;
dcc30a35 7962 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7963 WARN_ON_ONCE(dattr_new);
e761b772
MK
7964 }
7965
029190c5
PJ
7966 /* Build new domains */
7967 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7968 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7969 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7970 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7971 goto match2;
7972 }
7973 /* no match - add a new doms_new */
1d3504fc
HS
7974 __build_sched_domains(doms_new + i,
7975 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7976match2:
7977 ;
7978 }
7979
7980 /* Remember the new sched domains */
4212823f 7981 if (doms_cur != fallback_doms)
029190c5 7982 kfree(doms_cur);
1d3504fc 7983 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7984 doms_cur = doms_new;
1d3504fc 7985 dattr_cur = dattr_new;
029190c5 7986 ndoms_cur = ndoms_new;
7378547f
MM
7987
7988 register_sched_domain_sysctl();
a1835615 7989
712555ee 7990 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7991}
7992
5c45bf27 7993#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7994static void arch_reinit_sched_domains(void)
5c45bf27 7995{
95402b38 7996 get_online_cpus();
dfb512ec
MK
7997
7998 /* Destroy domains first to force the rebuild */
7999 partition_sched_domains(0, NULL, NULL);
8000
e761b772 8001 rebuild_sched_domains();
95402b38 8002 put_online_cpus();
5c45bf27
SS
8003}
8004
8005static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8006{
afb8a9b7 8007 unsigned int level = 0;
5c45bf27 8008
afb8a9b7
GS
8009 if (sscanf(buf, "%u", &level) != 1)
8010 return -EINVAL;
8011
8012 /*
8013 * level is always be positive so don't check for
8014 * level < POWERSAVINGS_BALANCE_NONE which is 0
8015 * What happens on 0 or 1 byte write,
8016 * need to check for count as well?
8017 */
8018
8019 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8020 return -EINVAL;
8021
8022 if (smt)
afb8a9b7 8023 sched_smt_power_savings = level;
5c45bf27 8024 else
afb8a9b7 8025 sched_mc_power_savings = level;
5c45bf27 8026
c70f22d2 8027 arch_reinit_sched_domains();
5c45bf27 8028
c70f22d2 8029 return count;
5c45bf27
SS
8030}
8031
5c45bf27 8032#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8033static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8034 char *page)
5c45bf27
SS
8035{
8036 return sprintf(page, "%u\n", sched_mc_power_savings);
8037}
f718cd4a 8038static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8039 const char *buf, size_t count)
5c45bf27
SS
8040{
8041 return sched_power_savings_store(buf, count, 0);
8042}
f718cd4a
AK
8043static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8044 sched_mc_power_savings_show,
8045 sched_mc_power_savings_store);
5c45bf27
SS
8046#endif
8047
8048#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8049static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8050 char *page)
5c45bf27
SS
8051{
8052 return sprintf(page, "%u\n", sched_smt_power_savings);
8053}
f718cd4a 8054static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8055 const char *buf, size_t count)
5c45bf27
SS
8056{
8057 return sched_power_savings_store(buf, count, 1);
8058}
f718cd4a
AK
8059static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8060 sched_smt_power_savings_show,
6707de00
AB
8061 sched_smt_power_savings_store);
8062#endif
8063
39aac648 8064int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8065{
8066 int err = 0;
8067
8068#ifdef CONFIG_SCHED_SMT
8069 if (smt_capable())
8070 err = sysfs_create_file(&cls->kset.kobj,
8071 &attr_sched_smt_power_savings.attr);
8072#endif
8073#ifdef CONFIG_SCHED_MC
8074 if (!err && mc_capable())
8075 err = sysfs_create_file(&cls->kset.kobj,
8076 &attr_sched_mc_power_savings.attr);
8077#endif
8078 return err;
8079}
6d6bc0ad 8080#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8081
e761b772 8082#ifndef CONFIG_CPUSETS
1da177e4 8083/*
e761b772
MK
8084 * Add online and remove offline CPUs from the scheduler domains.
8085 * When cpusets are enabled they take over this function.
1da177e4
LT
8086 */
8087static int update_sched_domains(struct notifier_block *nfb,
8088 unsigned long action, void *hcpu)
e761b772
MK
8089{
8090 switch (action) {
8091 case CPU_ONLINE:
8092 case CPU_ONLINE_FROZEN:
8093 case CPU_DEAD:
8094 case CPU_DEAD_FROZEN:
dfb512ec 8095 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8096 return NOTIFY_OK;
8097
8098 default:
8099 return NOTIFY_DONE;
8100 }
8101}
8102#endif
8103
8104static int update_runtime(struct notifier_block *nfb,
8105 unsigned long action, void *hcpu)
1da177e4 8106{
7def2be1
PZ
8107 int cpu = (int)(long)hcpu;
8108
1da177e4 8109 switch (action) {
1da177e4 8110 case CPU_DOWN_PREPARE:
8bb78442 8111 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8112 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8113 return NOTIFY_OK;
8114
1da177e4 8115 case CPU_DOWN_FAILED:
8bb78442 8116 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8117 case CPU_ONLINE:
8bb78442 8118 case CPU_ONLINE_FROZEN:
7def2be1 8119 enable_runtime(cpu_rq(cpu));
e761b772
MK
8120 return NOTIFY_OK;
8121
1da177e4
LT
8122 default:
8123 return NOTIFY_DONE;
8124 }
1da177e4 8125}
1da177e4
LT
8126
8127void __init sched_init_smp(void)
8128{
dcc30a35
RR
8129 cpumask_var_t non_isolated_cpus;
8130
8131 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8132
434d53b0
MT
8133#if defined(CONFIG_NUMA)
8134 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8135 GFP_KERNEL);
8136 BUG_ON(sched_group_nodes_bycpu == NULL);
8137#endif
95402b38 8138 get_online_cpus();
712555ee 8139 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8140 arch_init_sched_domains(cpu_online_mask);
8141 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8142 if (cpumask_empty(non_isolated_cpus))
8143 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8144 mutex_unlock(&sched_domains_mutex);
95402b38 8145 put_online_cpus();
e761b772
MK
8146
8147#ifndef CONFIG_CPUSETS
1da177e4
LT
8148 /* XXX: Theoretical race here - CPU may be hotplugged now */
8149 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8150#endif
8151
8152 /* RT runtime code needs to handle some hotplug events */
8153 hotcpu_notifier(update_runtime, 0);
8154
b328ca18 8155 init_hrtick();
5c1e1767
NP
8156
8157 /* Move init over to a non-isolated CPU */
dcc30a35 8158 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8159 BUG();
19978ca6 8160 sched_init_granularity();
dcc30a35 8161 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8162
8163 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8164 init_sched_rt_class();
1da177e4
LT
8165}
8166#else
8167void __init sched_init_smp(void)
8168{
19978ca6 8169 sched_init_granularity();
1da177e4
LT
8170}
8171#endif /* CONFIG_SMP */
8172
8173int in_sched_functions(unsigned long addr)
8174{
1da177e4
LT
8175 return in_lock_functions(addr) ||
8176 (addr >= (unsigned long)__sched_text_start
8177 && addr < (unsigned long)__sched_text_end);
8178}
8179
a9957449 8180static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8181{
8182 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8183 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8184#ifdef CONFIG_FAIR_GROUP_SCHED
8185 cfs_rq->rq = rq;
8186#endif
67e9fb2a 8187 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8188}
8189
fa85ae24
PZ
8190static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8191{
8192 struct rt_prio_array *array;
8193 int i;
8194
8195 array = &rt_rq->active;
8196 for (i = 0; i < MAX_RT_PRIO; i++) {
8197 INIT_LIST_HEAD(array->queue + i);
8198 __clear_bit(i, array->bitmap);
8199 }
8200 /* delimiter for bitsearch: */
8201 __set_bit(MAX_RT_PRIO, array->bitmap);
8202
052f1dc7 8203#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8204 rt_rq->highest_prio = MAX_RT_PRIO;
8205#endif
fa85ae24
PZ
8206#ifdef CONFIG_SMP
8207 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8208 rt_rq->overloaded = 0;
8209#endif
8210
8211 rt_rq->rt_time = 0;
8212 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8213 rt_rq->rt_runtime = 0;
8214 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8215
052f1dc7 8216#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8217 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8218 rt_rq->rq = rq;
8219#endif
fa85ae24
PZ
8220}
8221
6f505b16 8222#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8223static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8224 struct sched_entity *se, int cpu, int add,
8225 struct sched_entity *parent)
6f505b16 8226{
ec7dc8ac 8227 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8228 tg->cfs_rq[cpu] = cfs_rq;
8229 init_cfs_rq(cfs_rq, rq);
8230 cfs_rq->tg = tg;
8231 if (add)
8232 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8233
8234 tg->se[cpu] = se;
354d60c2
DG
8235 /* se could be NULL for init_task_group */
8236 if (!se)
8237 return;
8238
ec7dc8ac
DG
8239 if (!parent)
8240 se->cfs_rq = &rq->cfs;
8241 else
8242 se->cfs_rq = parent->my_q;
8243
6f505b16
PZ
8244 se->my_q = cfs_rq;
8245 se->load.weight = tg->shares;
e05510d0 8246 se->load.inv_weight = 0;
ec7dc8ac 8247 se->parent = parent;
6f505b16 8248}
052f1dc7 8249#endif
6f505b16 8250
052f1dc7 8251#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8252static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8253 struct sched_rt_entity *rt_se, int cpu, int add,
8254 struct sched_rt_entity *parent)
6f505b16 8255{
ec7dc8ac
DG
8256 struct rq *rq = cpu_rq(cpu);
8257
6f505b16
PZ
8258 tg->rt_rq[cpu] = rt_rq;
8259 init_rt_rq(rt_rq, rq);
8260 rt_rq->tg = tg;
8261 rt_rq->rt_se = rt_se;
ac086bc2 8262 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8263 if (add)
8264 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8265
8266 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8267 if (!rt_se)
8268 return;
8269
ec7dc8ac
DG
8270 if (!parent)
8271 rt_se->rt_rq = &rq->rt;
8272 else
8273 rt_se->rt_rq = parent->my_q;
8274
6f505b16 8275 rt_se->my_q = rt_rq;
ec7dc8ac 8276 rt_se->parent = parent;
6f505b16
PZ
8277 INIT_LIST_HEAD(&rt_se->run_list);
8278}
8279#endif
8280
1da177e4
LT
8281void __init sched_init(void)
8282{
dd41f596 8283 int i, j;
434d53b0
MT
8284 unsigned long alloc_size = 0, ptr;
8285
8286#ifdef CONFIG_FAIR_GROUP_SCHED
8287 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8288#endif
8289#ifdef CONFIG_RT_GROUP_SCHED
8290 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8291#endif
8292#ifdef CONFIG_USER_SCHED
8293 alloc_size *= 2;
434d53b0
MT
8294#endif
8295 /*
8296 * As sched_init() is called before page_alloc is setup,
8297 * we use alloc_bootmem().
8298 */
8299 if (alloc_size) {
5a9d3225 8300 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8301
8302#ifdef CONFIG_FAIR_GROUP_SCHED
8303 init_task_group.se = (struct sched_entity **)ptr;
8304 ptr += nr_cpu_ids * sizeof(void **);
8305
8306 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8307 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8308
8309#ifdef CONFIG_USER_SCHED
8310 root_task_group.se = (struct sched_entity **)ptr;
8311 ptr += nr_cpu_ids * sizeof(void **);
8312
8313 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8314 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8315#endif /* CONFIG_USER_SCHED */
8316#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8317#ifdef CONFIG_RT_GROUP_SCHED
8318 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
8320
8321 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8322 ptr += nr_cpu_ids * sizeof(void **);
8323
8324#ifdef CONFIG_USER_SCHED
8325 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8326 ptr += nr_cpu_ids * sizeof(void **);
8327
8328 root_task_group.rt_rq = (struct rt_rq **)ptr;
8329 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8330#endif /* CONFIG_USER_SCHED */
8331#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8332 }
dd41f596 8333
57d885fe
GH
8334#ifdef CONFIG_SMP
8335 init_defrootdomain();
8336#endif
8337
d0b27fa7
PZ
8338 init_rt_bandwidth(&def_rt_bandwidth,
8339 global_rt_period(), global_rt_runtime());
8340
8341#ifdef CONFIG_RT_GROUP_SCHED
8342 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8343 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8344#ifdef CONFIG_USER_SCHED
8345 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8346 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8347#endif /* CONFIG_USER_SCHED */
8348#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8349
052f1dc7 8350#ifdef CONFIG_GROUP_SCHED
6f505b16 8351 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8352 INIT_LIST_HEAD(&init_task_group.children);
8353
8354#ifdef CONFIG_USER_SCHED
8355 INIT_LIST_HEAD(&root_task_group.children);
8356 init_task_group.parent = &root_task_group;
8357 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8358#endif /* CONFIG_USER_SCHED */
8359#endif /* CONFIG_GROUP_SCHED */
6f505b16 8360
0a945022 8361 for_each_possible_cpu(i) {
70b97a7f 8362 struct rq *rq;
1da177e4
LT
8363
8364 rq = cpu_rq(i);
8365 spin_lock_init(&rq->lock);
7897986b 8366 rq->nr_running = 0;
dd41f596 8367 init_cfs_rq(&rq->cfs, rq);
6f505b16 8368 init_rt_rq(&rq->rt, rq);
dd41f596 8369#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8370 init_task_group.shares = init_task_group_load;
6f505b16 8371 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8372#ifdef CONFIG_CGROUP_SCHED
8373 /*
8374 * How much cpu bandwidth does init_task_group get?
8375 *
8376 * In case of task-groups formed thr' the cgroup filesystem, it
8377 * gets 100% of the cpu resources in the system. This overall
8378 * system cpu resource is divided among the tasks of
8379 * init_task_group and its child task-groups in a fair manner,
8380 * based on each entity's (task or task-group's) weight
8381 * (se->load.weight).
8382 *
8383 * In other words, if init_task_group has 10 tasks of weight
8384 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8385 * then A0's share of the cpu resource is:
8386 *
8387 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8388 *
8389 * We achieve this by letting init_task_group's tasks sit
8390 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8391 */
ec7dc8ac 8392 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8393#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8394 root_task_group.shares = NICE_0_LOAD;
8395 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8396 /*
8397 * In case of task-groups formed thr' the user id of tasks,
8398 * init_task_group represents tasks belonging to root user.
8399 * Hence it forms a sibling of all subsequent groups formed.
8400 * In this case, init_task_group gets only a fraction of overall
8401 * system cpu resource, based on the weight assigned to root
8402 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8403 * by letting tasks of init_task_group sit in a separate cfs_rq
8404 * (init_cfs_rq) and having one entity represent this group of
8405 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8406 */
ec7dc8ac 8407 init_tg_cfs_entry(&init_task_group,
6f505b16 8408 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8409 &per_cpu(init_sched_entity, i), i, 1,
8410 root_task_group.se[i]);
6f505b16 8411
052f1dc7 8412#endif
354d60c2
DG
8413#endif /* CONFIG_FAIR_GROUP_SCHED */
8414
8415 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8416#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8417 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8418#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8419 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8420#elif defined CONFIG_USER_SCHED
eff766a6 8421 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8422 init_tg_rt_entry(&init_task_group,
6f505b16 8423 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8424 &per_cpu(init_sched_rt_entity, i), i, 1,
8425 root_task_group.rt_se[i]);
354d60c2 8426#endif
dd41f596 8427#endif
1da177e4 8428
dd41f596
IM
8429 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8430 rq->cpu_load[j] = 0;
1da177e4 8431#ifdef CONFIG_SMP
41c7ce9a 8432 rq->sd = NULL;
57d885fe 8433 rq->rd = NULL;
1da177e4 8434 rq->active_balance = 0;
dd41f596 8435 rq->next_balance = jiffies;
1da177e4 8436 rq->push_cpu = 0;
0a2966b4 8437 rq->cpu = i;
1f11eb6a 8438 rq->online = 0;
1da177e4
LT
8439 rq->migration_thread = NULL;
8440 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8441 rq_attach_root(rq, &def_root_domain);
1da177e4 8442#endif
8f4d37ec 8443 init_rq_hrtick(rq);
1da177e4 8444 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8445 }
8446
2dd73a4f 8447 set_load_weight(&init_task);
b50f60ce 8448
e107be36
AK
8449#ifdef CONFIG_PREEMPT_NOTIFIERS
8450 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8451#endif
8452
c9819f45 8453#ifdef CONFIG_SMP
962cf36c 8454 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8455#endif
8456
b50f60ce
HC
8457#ifdef CONFIG_RT_MUTEXES
8458 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8459#endif
8460
1da177e4
LT
8461 /*
8462 * The boot idle thread does lazy MMU switching as well:
8463 */
8464 atomic_inc(&init_mm.mm_count);
8465 enter_lazy_tlb(&init_mm, current);
8466
8467 /*
8468 * Make us the idle thread. Technically, schedule() should not be
8469 * called from this thread, however somewhere below it might be,
8470 * but because we are the idle thread, we just pick up running again
8471 * when this runqueue becomes "idle".
8472 */
8473 init_idle(current, smp_processor_id());
dd41f596
IM
8474 /*
8475 * During early bootup we pretend to be a normal task:
8476 */
8477 current->sched_class = &fair_sched_class;
6892b75e 8478
6a7b3dc3
RR
8479 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8480 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8481#ifdef CONFIG_SMP
7d1e6a9b
RR
8482#ifdef CONFIG_NO_HZ
8483 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8484#endif
dcc30a35 8485 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8486#endif /* SMP */
6a7b3dc3 8487
6892b75e 8488 scheduler_running = 1;
1da177e4
LT
8489}
8490
8491#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8492void __might_sleep(char *file, int line)
8493{
48f24c4d 8494#ifdef in_atomic
1da177e4
LT
8495 static unsigned long prev_jiffy; /* ratelimiting */
8496
aef745fc
IM
8497 if ((!in_atomic() && !irqs_disabled()) ||
8498 system_state != SYSTEM_RUNNING || oops_in_progress)
8499 return;
8500 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8501 return;
8502 prev_jiffy = jiffies;
8503
8504 printk(KERN_ERR
8505 "BUG: sleeping function called from invalid context at %s:%d\n",
8506 file, line);
8507 printk(KERN_ERR
8508 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8509 in_atomic(), irqs_disabled(),
8510 current->pid, current->comm);
8511
8512 debug_show_held_locks(current);
8513 if (irqs_disabled())
8514 print_irqtrace_events(current);
8515 dump_stack();
1da177e4
LT
8516#endif
8517}
8518EXPORT_SYMBOL(__might_sleep);
8519#endif
8520
8521#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8522static void normalize_task(struct rq *rq, struct task_struct *p)
8523{
8524 int on_rq;
3e51f33f 8525
3a5e4dc1
AK
8526 update_rq_clock(rq);
8527 on_rq = p->se.on_rq;
8528 if (on_rq)
8529 deactivate_task(rq, p, 0);
8530 __setscheduler(rq, p, SCHED_NORMAL, 0);
8531 if (on_rq) {
8532 activate_task(rq, p, 0);
8533 resched_task(rq->curr);
8534 }
8535}
8536
1da177e4
LT
8537void normalize_rt_tasks(void)
8538{
a0f98a1c 8539 struct task_struct *g, *p;
1da177e4 8540 unsigned long flags;
70b97a7f 8541 struct rq *rq;
1da177e4 8542
4cf5d77a 8543 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8544 do_each_thread(g, p) {
178be793
IM
8545 /*
8546 * Only normalize user tasks:
8547 */
8548 if (!p->mm)
8549 continue;
8550
6cfb0d5d 8551 p->se.exec_start = 0;
6cfb0d5d 8552#ifdef CONFIG_SCHEDSTATS
dd41f596 8553 p->se.wait_start = 0;
dd41f596 8554 p->se.sleep_start = 0;
dd41f596 8555 p->se.block_start = 0;
6cfb0d5d 8556#endif
dd41f596
IM
8557
8558 if (!rt_task(p)) {
8559 /*
8560 * Renice negative nice level userspace
8561 * tasks back to 0:
8562 */
8563 if (TASK_NICE(p) < 0 && p->mm)
8564 set_user_nice(p, 0);
1da177e4 8565 continue;
dd41f596 8566 }
1da177e4 8567
4cf5d77a 8568 spin_lock(&p->pi_lock);
b29739f9 8569 rq = __task_rq_lock(p);
1da177e4 8570
178be793 8571 normalize_task(rq, p);
3a5e4dc1 8572
b29739f9 8573 __task_rq_unlock(rq);
4cf5d77a 8574 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8575 } while_each_thread(g, p);
8576
4cf5d77a 8577 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8578}
8579
8580#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8581
8582#ifdef CONFIG_IA64
8583/*
8584 * These functions are only useful for the IA64 MCA handling.
8585 *
8586 * They can only be called when the whole system has been
8587 * stopped - every CPU needs to be quiescent, and no scheduling
8588 * activity can take place. Using them for anything else would
8589 * be a serious bug, and as a result, they aren't even visible
8590 * under any other configuration.
8591 */
8592
8593/**
8594 * curr_task - return the current task for a given cpu.
8595 * @cpu: the processor in question.
8596 *
8597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8598 */
36c8b586 8599struct task_struct *curr_task(int cpu)
1df5c10a
LT
8600{
8601 return cpu_curr(cpu);
8602}
8603
8604/**
8605 * set_curr_task - set the current task for a given cpu.
8606 * @cpu: the processor in question.
8607 * @p: the task pointer to set.
8608 *
8609 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8610 * are serviced on a separate stack. It allows the architecture to switch the
8611 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8612 * must be called with all CPU's synchronized, and interrupts disabled, the
8613 * and caller must save the original value of the current task (see
8614 * curr_task() above) and restore that value before reenabling interrupts and
8615 * re-starting the system.
8616 *
8617 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8618 */
36c8b586 8619void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8620{
8621 cpu_curr(cpu) = p;
8622}
8623
8624#endif
29f59db3 8625
bccbe08a
PZ
8626#ifdef CONFIG_FAIR_GROUP_SCHED
8627static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8628{
8629 int i;
8630
8631 for_each_possible_cpu(i) {
8632 if (tg->cfs_rq)
8633 kfree(tg->cfs_rq[i]);
8634 if (tg->se)
8635 kfree(tg->se[i]);
6f505b16
PZ
8636 }
8637
8638 kfree(tg->cfs_rq);
8639 kfree(tg->se);
6f505b16
PZ
8640}
8641
ec7dc8ac
DG
8642static
8643int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8644{
29f59db3 8645 struct cfs_rq *cfs_rq;
eab17229 8646 struct sched_entity *se;
9b5b7751 8647 struct rq *rq;
29f59db3
SV
8648 int i;
8649
434d53b0 8650 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8651 if (!tg->cfs_rq)
8652 goto err;
434d53b0 8653 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8654 if (!tg->se)
8655 goto err;
052f1dc7
PZ
8656
8657 tg->shares = NICE_0_LOAD;
29f59db3
SV
8658
8659 for_each_possible_cpu(i) {
9b5b7751 8660 rq = cpu_rq(i);
29f59db3 8661
eab17229
LZ
8662 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8663 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8664 if (!cfs_rq)
8665 goto err;
8666
eab17229
LZ
8667 se = kzalloc_node(sizeof(struct sched_entity),
8668 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8669 if (!se)
8670 goto err;
8671
eab17229 8672 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8673 }
8674
8675 return 1;
8676
8677 err:
8678 return 0;
8679}
8680
8681static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8682{
8683 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8684 &cpu_rq(cpu)->leaf_cfs_rq_list);
8685}
8686
8687static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8688{
8689 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8690}
6d6bc0ad 8691#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8692static inline void free_fair_sched_group(struct task_group *tg)
8693{
8694}
8695
ec7dc8ac
DG
8696static inline
8697int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8698{
8699 return 1;
8700}
8701
8702static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8703{
8704}
8705
8706static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8707{
8708}
6d6bc0ad 8709#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8710
8711#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8712static void free_rt_sched_group(struct task_group *tg)
8713{
8714 int i;
8715
d0b27fa7
PZ
8716 destroy_rt_bandwidth(&tg->rt_bandwidth);
8717
bccbe08a
PZ
8718 for_each_possible_cpu(i) {
8719 if (tg->rt_rq)
8720 kfree(tg->rt_rq[i]);
8721 if (tg->rt_se)
8722 kfree(tg->rt_se[i]);
8723 }
8724
8725 kfree(tg->rt_rq);
8726 kfree(tg->rt_se);
8727}
8728
ec7dc8ac
DG
8729static
8730int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8731{
8732 struct rt_rq *rt_rq;
eab17229 8733 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8734 struct rq *rq;
8735 int i;
8736
434d53b0 8737 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8738 if (!tg->rt_rq)
8739 goto err;
434d53b0 8740 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8741 if (!tg->rt_se)
8742 goto err;
8743
d0b27fa7
PZ
8744 init_rt_bandwidth(&tg->rt_bandwidth,
8745 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8746
8747 for_each_possible_cpu(i) {
8748 rq = cpu_rq(i);
8749
eab17229
LZ
8750 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8751 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8752 if (!rt_rq)
8753 goto err;
29f59db3 8754
eab17229
LZ
8755 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8756 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8757 if (!rt_se)
8758 goto err;
29f59db3 8759
eab17229 8760 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8761 }
8762
bccbe08a
PZ
8763 return 1;
8764
8765 err:
8766 return 0;
8767}
8768
8769static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8770{
8771 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8772 &cpu_rq(cpu)->leaf_rt_rq_list);
8773}
8774
8775static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8776{
8777 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8778}
6d6bc0ad 8779#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8780static inline void free_rt_sched_group(struct task_group *tg)
8781{
8782}
8783
ec7dc8ac
DG
8784static inline
8785int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8786{
8787 return 1;
8788}
8789
8790static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8791{
8792}
8793
8794static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8795{
8796}
6d6bc0ad 8797#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8798
d0b27fa7 8799#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8800static void free_sched_group(struct task_group *tg)
8801{
8802 free_fair_sched_group(tg);
8803 free_rt_sched_group(tg);
8804 kfree(tg);
8805}
8806
8807/* allocate runqueue etc for a new task group */
ec7dc8ac 8808struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8809{
8810 struct task_group *tg;
8811 unsigned long flags;
8812 int i;
8813
8814 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8815 if (!tg)
8816 return ERR_PTR(-ENOMEM);
8817
ec7dc8ac 8818 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8819 goto err;
8820
ec7dc8ac 8821 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8822 goto err;
8823
8ed36996 8824 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8825 for_each_possible_cpu(i) {
bccbe08a
PZ
8826 register_fair_sched_group(tg, i);
8827 register_rt_sched_group(tg, i);
9b5b7751 8828 }
6f505b16 8829 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8830
8831 WARN_ON(!parent); /* root should already exist */
8832
8833 tg->parent = parent;
f473aa5e 8834 INIT_LIST_HEAD(&tg->children);
09f2724a 8835 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8836 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8837
9b5b7751 8838 return tg;
29f59db3
SV
8839
8840err:
6f505b16 8841 free_sched_group(tg);
29f59db3
SV
8842 return ERR_PTR(-ENOMEM);
8843}
8844
9b5b7751 8845/* rcu callback to free various structures associated with a task group */
6f505b16 8846static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8847{
29f59db3 8848 /* now it should be safe to free those cfs_rqs */
6f505b16 8849 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8850}
8851
9b5b7751 8852/* Destroy runqueue etc associated with a task group */
4cf86d77 8853void sched_destroy_group(struct task_group *tg)
29f59db3 8854{
8ed36996 8855 unsigned long flags;
9b5b7751 8856 int i;
29f59db3 8857
8ed36996 8858 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8859 for_each_possible_cpu(i) {
bccbe08a
PZ
8860 unregister_fair_sched_group(tg, i);
8861 unregister_rt_sched_group(tg, i);
9b5b7751 8862 }
6f505b16 8863 list_del_rcu(&tg->list);
f473aa5e 8864 list_del_rcu(&tg->siblings);
8ed36996 8865 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8866
9b5b7751 8867 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8868 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8869}
8870
9b5b7751 8871/* change task's runqueue when it moves between groups.
3a252015
IM
8872 * The caller of this function should have put the task in its new group
8873 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8874 * reflect its new group.
9b5b7751
SV
8875 */
8876void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8877{
8878 int on_rq, running;
8879 unsigned long flags;
8880 struct rq *rq;
8881
8882 rq = task_rq_lock(tsk, &flags);
8883
29f59db3
SV
8884 update_rq_clock(rq);
8885
051a1d1a 8886 running = task_current(rq, tsk);
29f59db3
SV
8887 on_rq = tsk->se.on_rq;
8888
0e1f3483 8889 if (on_rq)
29f59db3 8890 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8891 if (unlikely(running))
8892 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8893
6f505b16 8894 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8895
810b3817
PZ
8896#ifdef CONFIG_FAIR_GROUP_SCHED
8897 if (tsk->sched_class->moved_group)
8898 tsk->sched_class->moved_group(tsk);
8899#endif
8900
0e1f3483
HS
8901 if (unlikely(running))
8902 tsk->sched_class->set_curr_task(rq);
8903 if (on_rq)
7074badb 8904 enqueue_task(rq, tsk, 0);
29f59db3 8905
29f59db3
SV
8906 task_rq_unlock(rq, &flags);
8907}
6d6bc0ad 8908#endif /* CONFIG_GROUP_SCHED */
29f59db3 8909
052f1dc7 8910#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8911static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8912{
8913 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8914 int on_rq;
8915
29f59db3 8916 on_rq = se->on_rq;
62fb1851 8917 if (on_rq)
29f59db3
SV
8918 dequeue_entity(cfs_rq, se, 0);
8919
8920 se->load.weight = shares;
e05510d0 8921 se->load.inv_weight = 0;
29f59db3 8922
62fb1851 8923 if (on_rq)
29f59db3 8924 enqueue_entity(cfs_rq, se, 0);
c09595f6 8925}
62fb1851 8926
c09595f6
PZ
8927static void set_se_shares(struct sched_entity *se, unsigned long shares)
8928{
8929 struct cfs_rq *cfs_rq = se->cfs_rq;
8930 struct rq *rq = cfs_rq->rq;
8931 unsigned long flags;
8932
8933 spin_lock_irqsave(&rq->lock, flags);
8934 __set_se_shares(se, shares);
8935 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8936}
8937
8ed36996
PZ
8938static DEFINE_MUTEX(shares_mutex);
8939
4cf86d77 8940int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8941{
8942 int i;
8ed36996 8943 unsigned long flags;
c61935fd 8944
ec7dc8ac
DG
8945 /*
8946 * We can't change the weight of the root cgroup.
8947 */
8948 if (!tg->se[0])
8949 return -EINVAL;
8950
18d95a28
PZ
8951 if (shares < MIN_SHARES)
8952 shares = MIN_SHARES;
cb4ad1ff
MX
8953 else if (shares > MAX_SHARES)
8954 shares = MAX_SHARES;
62fb1851 8955
8ed36996 8956 mutex_lock(&shares_mutex);
9b5b7751 8957 if (tg->shares == shares)
5cb350ba 8958 goto done;
29f59db3 8959
8ed36996 8960 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8961 for_each_possible_cpu(i)
8962 unregister_fair_sched_group(tg, i);
f473aa5e 8963 list_del_rcu(&tg->siblings);
8ed36996 8964 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8965
8966 /* wait for any ongoing reference to this group to finish */
8967 synchronize_sched();
8968
8969 /*
8970 * Now we are free to modify the group's share on each cpu
8971 * w/o tripping rebalance_share or load_balance_fair.
8972 */
9b5b7751 8973 tg->shares = shares;
c09595f6
PZ
8974 for_each_possible_cpu(i) {
8975 /*
8976 * force a rebalance
8977 */
8978 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8979 set_se_shares(tg->se[i], shares);
c09595f6 8980 }
29f59db3 8981
6b2d7700
SV
8982 /*
8983 * Enable load balance activity on this group, by inserting it back on
8984 * each cpu's rq->leaf_cfs_rq_list.
8985 */
8ed36996 8986 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8987 for_each_possible_cpu(i)
8988 register_fair_sched_group(tg, i);
f473aa5e 8989 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8990 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8991done:
8ed36996 8992 mutex_unlock(&shares_mutex);
9b5b7751 8993 return 0;
29f59db3
SV
8994}
8995
5cb350ba
DG
8996unsigned long sched_group_shares(struct task_group *tg)
8997{
8998 return tg->shares;
8999}
052f1dc7 9000#endif
5cb350ba 9001
052f1dc7 9002#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9003/*
9f0c1e56 9004 * Ensure that the real time constraints are schedulable.
6f505b16 9005 */
9f0c1e56
PZ
9006static DEFINE_MUTEX(rt_constraints_mutex);
9007
9008static unsigned long to_ratio(u64 period, u64 runtime)
9009{
9010 if (runtime == RUNTIME_INF)
9a7e0b18 9011 return 1ULL << 20;
9f0c1e56 9012
9a7e0b18 9013 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9014}
9015
9a7e0b18
PZ
9016/* Must be called with tasklist_lock held */
9017static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9018{
9a7e0b18 9019 struct task_struct *g, *p;
b40b2e8e 9020
9a7e0b18
PZ
9021 do_each_thread(g, p) {
9022 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9023 return 1;
9024 } while_each_thread(g, p);
b40b2e8e 9025
9a7e0b18
PZ
9026 return 0;
9027}
b40b2e8e 9028
9a7e0b18
PZ
9029struct rt_schedulable_data {
9030 struct task_group *tg;
9031 u64 rt_period;
9032 u64 rt_runtime;
9033};
b40b2e8e 9034
9a7e0b18
PZ
9035static int tg_schedulable(struct task_group *tg, void *data)
9036{
9037 struct rt_schedulable_data *d = data;
9038 struct task_group *child;
9039 unsigned long total, sum = 0;
9040 u64 period, runtime;
b40b2e8e 9041
9a7e0b18
PZ
9042 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9043 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9044
9a7e0b18
PZ
9045 if (tg == d->tg) {
9046 period = d->rt_period;
9047 runtime = d->rt_runtime;
b40b2e8e 9048 }
b40b2e8e 9049
4653f803
PZ
9050 /*
9051 * Cannot have more runtime than the period.
9052 */
9053 if (runtime > period && runtime != RUNTIME_INF)
9054 return -EINVAL;
6f505b16 9055
4653f803
PZ
9056 /*
9057 * Ensure we don't starve existing RT tasks.
9058 */
9a7e0b18
PZ
9059 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9060 return -EBUSY;
6f505b16 9061
9a7e0b18 9062 total = to_ratio(period, runtime);
6f505b16 9063
4653f803
PZ
9064 /*
9065 * Nobody can have more than the global setting allows.
9066 */
9067 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9068 return -EINVAL;
6f505b16 9069
4653f803
PZ
9070 /*
9071 * The sum of our children's runtime should not exceed our own.
9072 */
9a7e0b18
PZ
9073 list_for_each_entry_rcu(child, &tg->children, siblings) {
9074 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9075 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9076
9a7e0b18
PZ
9077 if (child == d->tg) {
9078 period = d->rt_period;
9079 runtime = d->rt_runtime;
9080 }
6f505b16 9081
9a7e0b18 9082 sum += to_ratio(period, runtime);
9f0c1e56 9083 }
6f505b16 9084
9a7e0b18
PZ
9085 if (sum > total)
9086 return -EINVAL;
9087
9088 return 0;
6f505b16
PZ
9089}
9090
9a7e0b18 9091static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9092{
9a7e0b18
PZ
9093 struct rt_schedulable_data data = {
9094 .tg = tg,
9095 .rt_period = period,
9096 .rt_runtime = runtime,
9097 };
9098
9099 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9100}
9101
d0b27fa7
PZ
9102static int tg_set_bandwidth(struct task_group *tg,
9103 u64 rt_period, u64 rt_runtime)
6f505b16 9104{
ac086bc2 9105 int i, err = 0;
9f0c1e56 9106
9f0c1e56 9107 mutex_lock(&rt_constraints_mutex);
521f1a24 9108 read_lock(&tasklist_lock);
9a7e0b18
PZ
9109 err = __rt_schedulable(tg, rt_period, rt_runtime);
9110 if (err)
9f0c1e56 9111 goto unlock;
ac086bc2
PZ
9112
9113 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9114 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9115 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9116
9117 for_each_possible_cpu(i) {
9118 struct rt_rq *rt_rq = tg->rt_rq[i];
9119
9120 spin_lock(&rt_rq->rt_runtime_lock);
9121 rt_rq->rt_runtime = rt_runtime;
9122 spin_unlock(&rt_rq->rt_runtime_lock);
9123 }
9124 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9125 unlock:
521f1a24 9126 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9127 mutex_unlock(&rt_constraints_mutex);
9128
9129 return err;
6f505b16
PZ
9130}
9131
d0b27fa7
PZ
9132int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9133{
9134 u64 rt_runtime, rt_period;
9135
9136 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9137 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9138 if (rt_runtime_us < 0)
9139 rt_runtime = RUNTIME_INF;
9140
9141 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9142}
9143
9f0c1e56
PZ
9144long sched_group_rt_runtime(struct task_group *tg)
9145{
9146 u64 rt_runtime_us;
9147
d0b27fa7 9148 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9149 return -1;
9150
d0b27fa7 9151 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9152 do_div(rt_runtime_us, NSEC_PER_USEC);
9153 return rt_runtime_us;
9154}
d0b27fa7
PZ
9155
9156int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9157{
9158 u64 rt_runtime, rt_period;
9159
9160 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9161 rt_runtime = tg->rt_bandwidth.rt_runtime;
9162
619b0488
R
9163 if (rt_period == 0)
9164 return -EINVAL;
9165
d0b27fa7
PZ
9166 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9167}
9168
9169long sched_group_rt_period(struct task_group *tg)
9170{
9171 u64 rt_period_us;
9172
9173 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9174 do_div(rt_period_us, NSEC_PER_USEC);
9175 return rt_period_us;
9176}
9177
9178static int sched_rt_global_constraints(void)
9179{
4653f803 9180 u64 runtime, period;
d0b27fa7
PZ
9181 int ret = 0;
9182
ec5d4989
HS
9183 if (sysctl_sched_rt_period <= 0)
9184 return -EINVAL;
9185
4653f803
PZ
9186 runtime = global_rt_runtime();
9187 period = global_rt_period();
9188
9189 /*
9190 * Sanity check on the sysctl variables.
9191 */
9192 if (runtime > period && runtime != RUNTIME_INF)
9193 return -EINVAL;
10b612f4 9194
d0b27fa7 9195 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9196 read_lock(&tasklist_lock);
4653f803 9197 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9198 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9199 mutex_unlock(&rt_constraints_mutex);
9200
9201 return ret;
9202}
6d6bc0ad 9203#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9204static int sched_rt_global_constraints(void)
9205{
ac086bc2
PZ
9206 unsigned long flags;
9207 int i;
9208
ec5d4989
HS
9209 if (sysctl_sched_rt_period <= 0)
9210 return -EINVAL;
9211
ac086bc2
PZ
9212 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9213 for_each_possible_cpu(i) {
9214 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9215
9216 spin_lock(&rt_rq->rt_runtime_lock);
9217 rt_rq->rt_runtime = global_rt_runtime();
9218 spin_unlock(&rt_rq->rt_runtime_lock);
9219 }
9220 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9221
d0b27fa7
PZ
9222 return 0;
9223}
6d6bc0ad 9224#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9225
9226int sched_rt_handler(struct ctl_table *table, int write,
9227 struct file *filp, void __user *buffer, size_t *lenp,
9228 loff_t *ppos)
9229{
9230 int ret;
9231 int old_period, old_runtime;
9232 static DEFINE_MUTEX(mutex);
9233
9234 mutex_lock(&mutex);
9235 old_period = sysctl_sched_rt_period;
9236 old_runtime = sysctl_sched_rt_runtime;
9237
9238 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9239
9240 if (!ret && write) {
9241 ret = sched_rt_global_constraints();
9242 if (ret) {
9243 sysctl_sched_rt_period = old_period;
9244 sysctl_sched_rt_runtime = old_runtime;
9245 } else {
9246 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9247 def_rt_bandwidth.rt_period =
9248 ns_to_ktime(global_rt_period());
9249 }
9250 }
9251 mutex_unlock(&mutex);
9252
9253 return ret;
9254}
68318b8e 9255
052f1dc7 9256#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9257
9258/* return corresponding task_group object of a cgroup */
2b01dfe3 9259static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9260{
2b01dfe3
PM
9261 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9262 struct task_group, css);
68318b8e
SV
9263}
9264
9265static struct cgroup_subsys_state *
2b01dfe3 9266cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9267{
ec7dc8ac 9268 struct task_group *tg, *parent;
68318b8e 9269
2b01dfe3 9270 if (!cgrp->parent) {
68318b8e 9271 /* This is early initialization for the top cgroup */
68318b8e
SV
9272 return &init_task_group.css;
9273 }
9274
ec7dc8ac
DG
9275 parent = cgroup_tg(cgrp->parent);
9276 tg = sched_create_group(parent);
68318b8e
SV
9277 if (IS_ERR(tg))
9278 return ERR_PTR(-ENOMEM);
9279
68318b8e
SV
9280 return &tg->css;
9281}
9282
41a2d6cf
IM
9283static void
9284cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9285{
2b01dfe3 9286 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9287
9288 sched_destroy_group(tg);
9289}
9290
41a2d6cf
IM
9291static int
9292cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9293 struct task_struct *tsk)
68318b8e 9294{
b68aa230
PZ
9295#ifdef CONFIG_RT_GROUP_SCHED
9296 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9297 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9298 return -EINVAL;
9299#else
68318b8e
SV
9300 /* We don't support RT-tasks being in separate groups */
9301 if (tsk->sched_class != &fair_sched_class)
9302 return -EINVAL;
b68aa230 9303#endif
68318b8e
SV
9304
9305 return 0;
9306}
9307
9308static void
2b01dfe3 9309cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9310 struct cgroup *old_cont, struct task_struct *tsk)
9311{
9312 sched_move_task(tsk);
9313}
9314
052f1dc7 9315#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9316static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9317 u64 shareval)
68318b8e 9318{
2b01dfe3 9319 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9320}
9321
f4c753b7 9322static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9323{
2b01dfe3 9324 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9325
9326 return (u64) tg->shares;
9327}
6d6bc0ad 9328#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9329
052f1dc7 9330#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9331static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9332 s64 val)
6f505b16 9333{
06ecb27c 9334 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9335}
9336
06ecb27c 9337static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9338{
06ecb27c 9339 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9340}
d0b27fa7
PZ
9341
9342static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9343 u64 rt_period_us)
9344{
9345 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9346}
9347
9348static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9349{
9350 return sched_group_rt_period(cgroup_tg(cgrp));
9351}
6d6bc0ad 9352#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9353
fe5c7cc2 9354static struct cftype cpu_files[] = {
052f1dc7 9355#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9356 {
9357 .name = "shares",
f4c753b7
PM
9358 .read_u64 = cpu_shares_read_u64,
9359 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9360 },
052f1dc7
PZ
9361#endif
9362#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9363 {
9f0c1e56 9364 .name = "rt_runtime_us",
06ecb27c
PM
9365 .read_s64 = cpu_rt_runtime_read,
9366 .write_s64 = cpu_rt_runtime_write,
6f505b16 9367 },
d0b27fa7
PZ
9368 {
9369 .name = "rt_period_us",
f4c753b7
PM
9370 .read_u64 = cpu_rt_period_read_uint,
9371 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9372 },
052f1dc7 9373#endif
68318b8e
SV
9374};
9375
9376static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9377{
fe5c7cc2 9378 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9379}
9380
9381struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9382 .name = "cpu",
9383 .create = cpu_cgroup_create,
9384 .destroy = cpu_cgroup_destroy,
9385 .can_attach = cpu_cgroup_can_attach,
9386 .attach = cpu_cgroup_attach,
9387 .populate = cpu_cgroup_populate,
9388 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9389 .early_init = 1,
9390};
9391
052f1dc7 9392#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9393
9394#ifdef CONFIG_CGROUP_CPUACCT
9395
9396/*
9397 * CPU accounting code for task groups.
9398 *
9399 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9400 * (balbir@in.ibm.com).
9401 */
9402
934352f2 9403/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9404struct cpuacct {
9405 struct cgroup_subsys_state css;
9406 /* cpuusage holds pointer to a u64-type object on every cpu */
9407 u64 *cpuusage;
934352f2 9408 struct cpuacct *parent;
d842de87
SV
9409};
9410
9411struct cgroup_subsys cpuacct_subsys;
9412
9413/* return cpu accounting group corresponding to this container */
32cd756a 9414static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9415{
32cd756a 9416 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9417 struct cpuacct, css);
9418}
9419
9420/* return cpu accounting group to which this task belongs */
9421static inline struct cpuacct *task_ca(struct task_struct *tsk)
9422{
9423 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9424 struct cpuacct, css);
9425}
9426
9427/* create a new cpu accounting group */
9428static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9429 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9430{
9431 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9432
9433 if (!ca)
9434 return ERR_PTR(-ENOMEM);
9435
9436 ca->cpuusage = alloc_percpu(u64);
9437 if (!ca->cpuusage) {
9438 kfree(ca);
9439 return ERR_PTR(-ENOMEM);
9440 }
9441
934352f2
BR
9442 if (cgrp->parent)
9443 ca->parent = cgroup_ca(cgrp->parent);
9444
d842de87
SV
9445 return &ca->css;
9446}
9447
9448/* destroy an existing cpu accounting group */
41a2d6cf 9449static void
32cd756a 9450cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9451{
32cd756a 9452 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9453
9454 free_percpu(ca->cpuusage);
9455 kfree(ca);
9456}
9457
720f5498
KC
9458static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9459{
9460 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9461 u64 data;
9462
9463#ifndef CONFIG_64BIT
9464 /*
9465 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9466 */
9467 spin_lock_irq(&cpu_rq(cpu)->lock);
9468 data = *cpuusage;
9469 spin_unlock_irq(&cpu_rq(cpu)->lock);
9470#else
9471 data = *cpuusage;
9472#endif
9473
9474 return data;
9475}
9476
9477static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9478{
9479 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9480
9481#ifndef CONFIG_64BIT
9482 /*
9483 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9484 */
9485 spin_lock_irq(&cpu_rq(cpu)->lock);
9486 *cpuusage = val;
9487 spin_unlock_irq(&cpu_rq(cpu)->lock);
9488#else
9489 *cpuusage = val;
9490#endif
9491}
9492
d842de87 9493/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9494static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9495{
32cd756a 9496 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9497 u64 totalcpuusage = 0;
9498 int i;
9499
720f5498
KC
9500 for_each_present_cpu(i)
9501 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9502
9503 return totalcpuusage;
9504}
9505
0297b803
DG
9506static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9507 u64 reset)
9508{
9509 struct cpuacct *ca = cgroup_ca(cgrp);
9510 int err = 0;
9511 int i;
9512
9513 if (reset) {
9514 err = -EINVAL;
9515 goto out;
9516 }
9517
720f5498
KC
9518 for_each_present_cpu(i)
9519 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9520
0297b803
DG
9521out:
9522 return err;
9523}
9524
e9515c3c
KC
9525static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9526 struct seq_file *m)
9527{
9528 struct cpuacct *ca = cgroup_ca(cgroup);
9529 u64 percpu;
9530 int i;
9531
9532 for_each_present_cpu(i) {
9533 percpu = cpuacct_cpuusage_read(ca, i);
9534 seq_printf(m, "%llu ", (unsigned long long) percpu);
9535 }
9536 seq_printf(m, "\n");
9537 return 0;
9538}
9539
d842de87
SV
9540static struct cftype files[] = {
9541 {
9542 .name = "usage",
f4c753b7
PM
9543 .read_u64 = cpuusage_read,
9544 .write_u64 = cpuusage_write,
d842de87 9545 },
e9515c3c
KC
9546 {
9547 .name = "usage_percpu",
9548 .read_seq_string = cpuacct_percpu_seq_read,
9549 },
9550
d842de87
SV
9551};
9552
32cd756a 9553static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9554{
32cd756a 9555 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9556}
9557
9558/*
9559 * charge this task's execution time to its accounting group.
9560 *
9561 * called with rq->lock held.
9562 */
9563static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9564{
9565 struct cpuacct *ca;
934352f2 9566 int cpu;
d842de87
SV
9567
9568 if (!cpuacct_subsys.active)
9569 return;
9570
934352f2 9571 cpu = task_cpu(tsk);
d842de87 9572 ca = task_ca(tsk);
d842de87 9573
934352f2
BR
9574 for (; ca; ca = ca->parent) {
9575 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9576 *cpuusage += cputime;
9577 }
9578}
9579
9580struct cgroup_subsys cpuacct_subsys = {
9581 .name = "cpuacct",
9582 .create = cpuacct_create,
9583 .destroy = cpuacct_destroy,
9584 .populate = cpuacct_populate,
9585 .subsys_id = cpuacct_subsys_id,
9586};
9587#endif /* CONFIG_CGROUP_CPUACCT */