sched, timers: move calc_load() to scheduler
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
7f1e2ca9
PZ
234 unsigned long delta;
235 ktime_t soft, hard;
236
d0b27fa7
PZ
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250}
251
252#ifdef CONFIG_RT_GROUP_SCHED
253static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254{
255 hrtimer_cancel(&rt_b->rt_period_timer);
256}
257#endif
258
712555ee
HC
259/*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263static DEFINE_MUTEX(sched_domains_mutex);
264
052f1dc7 265#ifdef CONFIG_GROUP_SCHED
29f59db3 266
68318b8e
SV
267#include <linux/cgroup.h>
268
29f59db3
SV
269struct cfs_rq;
270
6f505b16
PZ
271static LIST_HEAD(task_groups);
272
29f59db3 273/* task group related information */
4cf86d77 274struct task_group {
052f1dc7 275#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
276 struct cgroup_subsys_state css;
277#endif
052f1dc7 278
6c415b92
AB
279#ifdef CONFIG_USER_SCHED
280 uid_t uid;
281#endif
282
052f1dc7 283#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
052f1dc7
PZ
289#endif
290
291#ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
d0b27fa7 295 struct rt_bandwidth rt_bandwidth;
052f1dc7 296#endif
6b2d7700 297
ae8393e5 298 struct rcu_head rcu;
6f505b16 299 struct list_head list;
f473aa5e
PZ
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
29f59db3
SV
304};
305
354d60c2 306#ifdef CONFIG_USER_SCHED
eff766a6 307
6c415b92
AB
308/* Helper function to pass uid information to create_sched_user() */
309void set_tg_uid(struct user_struct *user)
310{
311 user->tg->uid = user->uid;
312}
313
eff766a6
PZ
314/*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319struct task_group root_task_group;
320
052f1dc7 321#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
322/* Default task group's sched entity on each cpu */
323static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324/* Default task group's cfs_rq on each cpu */
325static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 326#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
327
328#ifdef CONFIG_RT_GROUP_SCHED
329static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 331#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 332#else /* !CONFIG_USER_SCHED */
eff766a6 333#define root_task_group init_task_group
9a7e0b18 334#endif /* CONFIG_USER_SCHED */
6f505b16 335
8ed36996 336/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
337 * a task group's cpu shares.
338 */
8ed36996 339static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 340
57310a98
PZ
341#ifdef CONFIG_SMP
342static int root_task_group_empty(void)
343{
344 return list_empty(&root_task_group.children);
345}
346#endif
347
052f1dc7 348#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
349#ifdef CONFIG_USER_SCHED
350# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 351#else /* !CONFIG_USER_SCHED */
052f1dc7 352# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 353#endif /* CONFIG_USER_SCHED */
052f1dc7 354
cb4ad1ff 355/*
2e084786
LJ
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
cb4ad1ff
MX
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
18d95a28 363#define MIN_SHARES 2
2e084786 364#define MAX_SHARES (1UL << 18)
18d95a28 365
052f1dc7
PZ
366static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367#endif
368
29f59db3 369/* Default task group.
3a252015 370 * Every task in system belong to this group at bootup.
29f59db3 371 */
434d53b0 372struct task_group init_task_group;
29f59db3
SV
373
374/* return group to which a task belongs */
4cf86d77 375static inline struct task_group *task_group(struct task_struct *p)
29f59db3 376{
4cf86d77 377 struct task_group *tg;
9b5b7751 378
052f1dc7 379#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
052f1dc7 383#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
24e377a8 386#else
41a2d6cf 387 tg = &init_task_group;
24e377a8 388#endif
9b5b7751 389 return tg;
29f59db3
SV
390}
391
392/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 393static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 394{
052f1dc7 395#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
052f1dc7 398#endif
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 403#endif
29f59db3
SV
404}
405
406#else
407
57310a98
PZ
408#ifdef CONFIG_SMP
409static int root_task_group_empty(void)
410{
411 return 1;
412}
413#endif
414
6f505b16 415static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
416static inline struct task_group *task_group(struct task_struct *p)
417{
418 return NULL;
419}
29f59db3 420
052f1dc7 421#endif /* CONFIG_GROUP_SCHED */
29f59db3 422
6aa645ea
IM
423/* CFS-related fields in a runqueue */
424struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
6aa645ea 428 u64 exec_clock;
e9acbff6 429 u64 min_vruntime;
6aa645ea
IM
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
4a55bd5e
PZ
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
4793241b 441 struct sched_entity *curr, *next, *last;
ddc97297 442
5ac5c4d6 443 unsigned int nr_spread_over;
ddc97297 444
62160e3f 445#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
41a2d6cf
IM
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
41a2d6cf
IM
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
458
459#ifdef CONFIG_SMP
c09595f6 460 /*
c8cba857 461 * the part of load.weight contributed by tasks
c09595f6 462 */
c8cba857 463 unsigned long task_weight;
c09595f6 464
c8cba857
PZ
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
c09595f6 472
c8cba857
PZ
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
f1d239f7
PZ
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
c09595f6 482#endif
6aa645ea
IM
483#endif
484};
1da177e4 485
6aa645ea
IM
486/* Real-Time classes' related field in a runqueue: */
487struct rt_rq {
488 struct rt_prio_array active;
63489e45 489 unsigned long rt_nr_running;
052f1dc7 490#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
491 struct {
492 int curr; /* highest queued rt task prio */
398a153b 493#ifdef CONFIG_SMP
e864c499 494 int next; /* next highest */
398a153b 495#endif
e864c499 496 } highest_prio;
6f505b16 497#endif
fa85ae24 498#ifdef CONFIG_SMP
73fe6aae 499 unsigned long rt_nr_migratory;
a22d7fc1 500 int overloaded;
917b627d 501 struct plist_head pushable_tasks;
fa85ae24 502#endif
6f505b16 503 int rt_throttled;
fa85ae24 504 u64 rt_time;
ac086bc2 505 u64 rt_runtime;
ea736ed5 506 /* Nests inside the rq lock: */
ac086bc2 507 spinlock_t rt_runtime_lock;
6f505b16 508
052f1dc7 509#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
510 unsigned long rt_nr_boosted;
511
6f505b16
PZ
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516#endif
6aa645ea
IM
517};
518
57d885fe
GH
519#ifdef CONFIG_SMP
520
521/*
522 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
57d885fe
GH
528 */
529struct root_domain {
530 atomic_t refcount;
c6c4927b
RR
531 cpumask_var_t span;
532 cpumask_var_t online;
637f5085 533
0eab9146 534 /*
637f5085
GH
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
c6c4927b 538 cpumask_var_t rto_mask;
0eab9146 539 atomic_t rto_count;
6e0534f2
GH
540#ifdef CONFIG_SMP
541 struct cpupri cpupri;
542#endif
7a09b1a2
VS
543#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550#endif
57d885fe
GH
551};
552
dc938520
GH
553/*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
57d885fe
GH
557static struct root_domain def_root_domain;
558
559#endif
560
1da177e4
LT
561/*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
70b97a7f 568struct rq {
d8016491
IM
569 /* runqueue lock: */
570 spinlock_t lock;
1da177e4
LT
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
6aa645ea
IM
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 579#ifdef CONFIG_NO_HZ
15934a37 580 unsigned long last_tick_seen;
46cb4b7c
SS
581 unsigned char in_nohz_recently;
582#endif
d8016491
IM
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
6aa645ea
IM
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
6f505b16 589 struct rt_rq rt;
6f505b16 590
6aa645ea 591#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
594#endif
595#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 596 struct list_head leaf_rt_rq_list;
1da177e4 597#endif
1da177e4
LT
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
36c8b586 607 struct task_struct *curr, *idle;
c9819f45 608 unsigned long next_balance;
1da177e4 609 struct mm_struct *prev_mm;
6aa645ea 610
3e51f33f 611 u64 clock;
6aa645ea 612
1da177e4
LT
613 atomic_t nr_iowait;
614
615#ifdef CONFIG_SMP
0eab9146 616 struct root_domain *rd;
1da177e4
LT
617 struct sched_domain *sd;
618
a0a522ce 619 unsigned char idle_at_tick;
1da177e4
LT
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
d8016491
IM
623 /* cpu of this runqueue: */
624 int cpu;
1f11eb6a 625 int online;
1da177e4 626
a8a51d5e 627 unsigned long avg_load_per_task;
1da177e4 628
36c8b586 629 struct task_struct *migration_thread;
1da177e4
LT
630 struct list_head migration_queue;
631#endif
632
dce48a84
TG
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
636
8f4d37ec 637#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
638#ifdef CONFIG_SMP
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
641#endif
8f4d37ec
PZ
642 struct hrtimer hrtick_timer;
643#endif
644
1da177e4
LT
645#ifdef CONFIG_SCHEDSTATS
646 /* latency stats */
647 struct sched_info rq_sched_info;
9c2c4802
KC
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
650
651 /* sys_sched_yield() stats */
480b9434 652 unsigned int yld_count;
1da177e4
LT
653
654 /* schedule() stats */
480b9434
KC
655 unsigned int sched_switch;
656 unsigned int sched_count;
657 unsigned int sched_goidle;
1da177e4
LT
658
659 /* try_to_wake_up() stats */
480b9434
KC
660 unsigned int ttwu_count;
661 unsigned int ttwu_local;
b8efb561
IM
662
663 /* BKL stats */
480b9434 664 unsigned int bkl_count;
1da177e4
LT
665#endif
666};
667
f34e3b61 668static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 669
15afe09b 670static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 671{
15afe09b 672 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
673}
674
0a2966b4
CL
675static inline int cpu_of(struct rq *rq)
676{
677#ifdef CONFIG_SMP
678 return rq->cpu;
679#else
680 return 0;
681#endif
682}
683
674311d5
NP
684/*
685 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 686 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
687 *
688 * The domain tree of any CPU may only be accessed from within
689 * preempt-disabled sections.
690 */
48f24c4d
IM
691#define for_each_domain(cpu, __sd) \
692 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
693
694#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
695#define this_rq() (&__get_cpu_var(runqueues))
696#define task_rq(p) cpu_rq(task_cpu(p))
697#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
698
3e51f33f
PZ
699static inline void update_rq_clock(struct rq *rq)
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9
PZ
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
c09595f6
PZ
1518static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520/*
1521 * Calculate and set the cpu's group shares.
1522 */
1523static void
ffda12a1
PZ
1524update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1526{
c09595f6
PZ
1527 unsigned long shares;
1528 unsigned long rq_weight;
1529
c8cba857 1530 if (!tg->se[cpu])
c09595f6
PZ
1531 return;
1532
ec4e0e2f 1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1534
c09595f6
PZ
1535 /*
1536 * \Sum shares * rq_weight
1537 * shares = -----------------------
1538 * \Sum rq_weight
1539 *
1540 */
ec4e0e2f 1541 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1542 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1543
ffda12a1
PZ
1544 if (abs(shares - tg->se[cpu]->load.weight) >
1545 sysctl_sched_shares_thresh) {
1546 struct rq *rq = cpu_rq(cpu);
1547 unsigned long flags;
c09595f6 1548
ffda12a1 1549 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1550 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1551
ffda12a1
PZ
1552 __set_se_shares(tg->se[cpu], shares);
1553 spin_unlock_irqrestore(&rq->lock, flags);
1554 }
18d95a28 1555}
c09595f6
PZ
1556
1557/*
c8cba857
PZ
1558 * Re-compute the task group their per cpu shares over the given domain.
1559 * This needs to be done in a bottom-up fashion because the rq weight of a
1560 * parent group depends on the shares of its child groups.
c09595f6 1561 */
eb755805 1562static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1563{
ec4e0e2f 1564 unsigned long weight, rq_weight = 0;
c8cba857 1565 unsigned long shares = 0;
eb755805 1566 struct sched_domain *sd = data;
c8cba857 1567 int i;
c09595f6 1568
758b2cdc 1569 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1570 /*
1571 * If there are currently no tasks on the cpu pretend there
1572 * is one of average load so that when a new task gets to
1573 * run here it will not get delayed by group starvation.
1574 */
1575 weight = tg->cfs_rq[i]->load.weight;
1576 if (!weight)
1577 weight = NICE_0_LOAD;
1578
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
c8cba857 1581 shares += tg->cfs_rq[i]->shares;
c09595f6 1582 }
c09595f6 1583
c8cba857
PZ
1584 if ((!shares && rq_weight) || shares > tg->shares)
1585 shares = tg->shares;
1586
1587 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1588 shares = tg->shares;
c09595f6 1589
758b2cdc 1590 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1591 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1592
1593 return 0;
c09595f6
PZ
1594}
1595
1596/*
c8cba857
PZ
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
c09595f6 1600 */
eb755805 1601static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1602{
c8cba857 1603 unsigned long load;
eb755805 1604 long cpu = (long)data;
c09595f6 1605
c8cba857
PZ
1606 if (!tg->parent) {
1607 load = cpu_rq(cpu)->load.weight;
1608 } else {
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 }
c09595f6 1613
c8cba857 1614 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1615
eb755805 1616 return 0;
c09595f6
PZ
1617}
1618
c8cba857 1619static void update_shares(struct sched_domain *sd)
4d8d595d 1620{
2398f2c6
PZ
1621 u64 now = cpu_clock(raw_smp_processor_id());
1622 s64 elapsed = now - sd->last_update;
1623
1624 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1625 sd->last_update = now;
eb755805 1626 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1627 }
4d8d595d
PZ
1628}
1629
3e5459b4
PZ
1630static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1631{
1632 spin_unlock(&rq->lock);
1633 update_shares(sd);
1634 spin_lock(&rq->lock);
1635}
1636
eb755805 1637static void update_h_load(long cpu)
c09595f6 1638{
eb755805 1639 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1640}
1641
c09595f6
PZ
1642#else
1643
c8cba857 1644static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1645{
1646}
1647
3e5459b4
PZ
1648static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649{
1650}
1651
18d95a28
PZ
1652#endif
1653
8f45e2b5
GH
1654#ifdef CONFIG_PREEMPT
1655
70574a99 1656/*
8f45e2b5
GH
1657 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1658 * way at the expense of forcing extra atomic operations in all
1659 * invocations. This assures that the double_lock is acquired using the
1660 * same underlying policy as the spinlock_t on this architecture, which
1661 * reduces latency compared to the unfair variant below. However, it
1662 * also adds more overhead and therefore may reduce throughput.
70574a99 1663 */
8f45e2b5
GH
1664static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665 __releases(this_rq->lock)
1666 __acquires(busiest->lock)
1667 __acquires(this_rq->lock)
1668{
1669 spin_unlock(&this_rq->lock);
1670 double_rq_lock(this_rq, busiest);
1671
1672 return 1;
1673}
1674
1675#else
1676/*
1677 * Unfair double_lock_balance: Optimizes throughput at the expense of
1678 * latency by eliminating extra atomic operations when the locks are
1679 * already in proper order on entry. This favors lower cpu-ids and will
1680 * grant the double lock to lower cpus over higher ids under contention,
1681 * regardless of entry order into the function.
1682 */
1683static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1684 __releases(this_rq->lock)
1685 __acquires(busiest->lock)
1686 __acquires(this_rq->lock)
1687{
1688 int ret = 0;
1689
70574a99
AD
1690 if (unlikely(!spin_trylock(&busiest->lock))) {
1691 if (busiest < this_rq) {
1692 spin_unlock(&this_rq->lock);
1693 spin_lock(&busiest->lock);
1694 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1695 ret = 1;
1696 } else
1697 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 return ret;
1700}
1701
8f45e2b5
GH
1702#endif /* CONFIG_PREEMPT */
1703
1704/*
1705 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1706 */
1707static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708{
1709 if (unlikely(!irqs_disabled())) {
1710 /* printk() doesn't work good under rq->lock */
1711 spin_unlock(&this_rq->lock);
1712 BUG_ON(1);
1713 }
1714
1715 return _double_lock_balance(this_rq, busiest);
1716}
1717
70574a99
AD
1718static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(busiest->lock)
1720{
1721 spin_unlock(&busiest->lock);
1722 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1723}
18d95a28
PZ
1724#endif
1725
30432094 1726#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1727static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1728{
30432094 1729#ifdef CONFIG_SMP
34e83e85
IM
1730 cfs_rq->shares = shares;
1731#endif
1732}
30432094 1733#endif
e7693a36 1734
dce48a84
TG
1735static void calc_load_account_active(struct rq *this_rq);
1736
dd41f596 1737#include "sched_stats.h"
dd41f596 1738#include "sched_idletask.c"
5522d5d5
IM
1739#include "sched_fair.c"
1740#include "sched_rt.c"
dd41f596
IM
1741#ifdef CONFIG_SCHED_DEBUG
1742# include "sched_debug.c"
1743#endif
1744
1745#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1746#define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
dd41f596 1748
c09595f6 1749static void inc_nr_running(struct rq *rq)
9c217245
IM
1750{
1751 rq->nr_running++;
9c217245
IM
1752}
1753
c09595f6 1754static void dec_nr_running(struct rq *rq)
9c217245
IM
1755{
1756 rq->nr_running--;
9c217245
IM
1757}
1758
45bf76df
IM
1759static void set_load_weight(struct task_struct *p)
1760{
1761 if (task_has_rt_policy(p)) {
dd41f596
IM
1762 p->se.load.weight = prio_to_weight[0] * 2;
1763 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1764 return;
1765 }
45bf76df 1766
dd41f596
IM
1767 /*
1768 * SCHED_IDLE tasks get minimal weight:
1769 */
1770 if (p->policy == SCHED_IDLE) {
1771 p->se.load.weight = WEIGHT_IDLEPRIO;
1772 p->se.load.inv_weight = WMULT_IDLEPRIO;
1773 return;
1774 }
71f8bd46 1775
dd41f596
IM
1776 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1777 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1778}
1779
2087a1ad
GH
1780static void update_avg(u64 *avg, u64 sample)
1781{
1782 s64 diff = sample - *avg;
1783 *avg += diff >> 3;
1784}
1785
8159f87e 1786static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1787{
831451ac
PZ
1788 if (wakeup)
1789 p->se.start_runtime = p->se.sum_exec_runtime;
1790
dd41f596 1791 sched_info_queued(p);
fd390f6a 1792 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1793 p->se.on_rq = 1;
71f8bd46
IM
1794}
1795
69be72c1 1796static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1797{
831451ac
PZ
1798 if (sleep) {
1799 if (p->se.last_wakeup) {
1800 update_avg(&p->se.avg_overlap,
1801 p->se.sum_exec_runtime - p->se.last_wakeup);
1802 p->se.last_wakeup = 0;
1803 } else {
1804 update_avg(&p->se.avg_wakeup,
1805 sysctl_sched_wakeup_granularity);
1806 }
2087a1ad
GH
1807 }
1808
46ac22ba 1809 sched_info_dequeued(p);
f02231e5 1810 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1811 p->se.on_rq = 0;
71f8bd46
IM
1812}
1813
14531189 1814/*
dd41f596 1815 * __normal_prio - return the priority that is based on the static prio
14531189 1816 */
14531189
IM
1817static inline int __normal_prio(struct task_struct *p)
1818{
dd41f596 1819 return p->static_prio;
14531189
IM
1820}
1821
b29739f9
IM
1822/*
1823 * Calculate the expected normal priority: i.e. priority
1824 * without taking RT-inheritance into account. Might be
1825 * boosted by interactivity modifiers. Changes upon fork,
1826 * setprio syscalls, and whenever the interactivity
1827 * estimator recalculates.
1828 */
36c8b586 1829static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1830{
1831 int prio;
1832
e05606d3 1833 if (task_has_rt_policy(p))
b29739f9
IM
1834 prio = MAX_RT_PRIO-1 - p->rt_priority;
1835 else
1836 prio = __normal_prio(p);
1837 return prio;
1838}
1839
1840/*
1841 * Calculate the current priority, i.e. the priority
1842 * taken into account by the scheduler. This value might
1843 * be boosted by RT tasks, or might be boosted by
1844 * interactivity modifiers. Will be RT if the task got
1845 * RT-boosted. If not then it returns p->normal_prio.
1846 */
36c8b586 1847static int effective_prio(struct task_struct *p)
b29739f9
IM
1848{
1849 p->normal_prio = normal_prio(p);
1850 /*
1851 * If we are RT tasks or we were boosted to RT priority,
1852 * keep the priority unchanged. Otherwise, update priority
1853 * to the normal priority:
1854 */
1855 if (!rt_prio(p->prio))
1856 return p->normal_prio;
1857 return p->prio;
1858}
1859
1da177e4 1860/*
dd41f596 1861 * activate_task - move a task to the runqueue.
1da177e4 1862 */
dd41f596 1863static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1864{
d9514f6c 1865 if (task_contributes_to_load(p))
dd41f596 1866 rq->nr_uninterruptible--;
1da177e4 1867
8159f87e 1868 enqueue_task(rq, p, wakeup);
c09595f6 1869 inc_nr_running(rq);
1da177e4
LT
1870}
1871
1da177e4
LT
1872/*
1873 * deactivate_task - remove a task from the runqueue.
1874 */
2e1cb74a 1875static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1876{
d9514f6c 1877 if (task_contributes_to_load(p))
dd41f596
IM
1878 rq->nr_uninterruptible++;
1879
69be72c1 1880 dequeue_task(rq, p, sleep);
c09595f6 1881 dec_nr_running(rq);
1da177e4
LT
1882}
1883
1da177e4
LT
1884/**
1885 * task_curr - is this task currently executing on a CPU?
1886 * @p: the task in question.
1887 */
36c8b586 1888inline int task_curr(const struct task_struct *p)
1da177e4
LT
1889{
1890 return cpu_curr(task_cpu(p)) == p;
1891}
1892
dd41f596
IM
1893static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1894{
6f505b16 1895 set_task_rq(p, cpu);
dd41f596 1896#ifdef CONFIG_SMP
ce96b5ac
DA
1897 /*
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfuly executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1901 */
1902 smp_wmb();
dd41f596 1903 task_thread_info(p)->cpu = cpu;
dd41f596 1904#endif
2dd73a4f
PW
1905}
1906
cb469845
SR
1907static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1908 const struct sched_class *prev_class,
1909 int oldprio, int running)
1910{
1911 if (prev_class != p->sched_class) {
1912 if (prev_class->switched_from)
1913 prev_class->switched_from(rq, p, running);
1914 p->sched_class->switched_to(rq, p, running);
1915 } else
1916 p->sched_class->prio_changed(rq, p, oldprio, running);
1917}
1918
1da177e4 1919#ifdef CONFIG_SMP
c65cc870 1920
e958b360
TG
1921/* Used instead of source_load when we know the type == 0 */
1922static unsigned long weighted_cpuload(const int cpu)
1923{
1924 return cpu_rq(cpu)->load.weight;
1925}
1926
cc367732
IM
1927/*
1928 * Is this task likely cache-hot:
1929 */
e7693a36 1930static int
cc367732
IM
1931task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1932{
1933 s64 delta;
1934
f540a608
IM
1935 /*
1936 * Buddy candidates are cache hot:
1937 */
4793241b
PZ
1938 if (sched_feat(CACHE_HOT_BUDDY) &&
1939 (&p->se == cfs_rq_of(&p->se)->next ||
1940 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1941 return 1;
1942
cc367732
IM
1943 if (p->sched_class != &fair_sched_class)
1944 return 0;
1945
6bc1665b
IM
1946 if (sysctl_sched_migration_cost == -1)
1947 return 1;
1948 if (sysctl_sched_migration_cost == 0)
1949 return 0;
1950
cc367732
IM
1951 delta = now - p->se.exec_start;
1952
1953 return delta < (s64)sysctl_sched_migration_cost;
1954}
1955
1956
dd41f596 1957void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1958{
dd41f596
IM
1959 int old_cpu = task_cpu(p);
1960 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1961 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1962 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1963 u64 clock_offset;
dd41f596
IM
1964
1965 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1966
cbc34ed1
PZ
1967 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1968
6cfb0d5d
IM
1969#ifdef CONFIG_SCHEDSTATS
1970 if (p->se.wait_start)
1971 p->se.wait_start -= clock_offset;
dd41f596
IM
1972 if (p->se.sleep_start)
1973 p->se.sleep_start -= clock_offset;
1974 if (p->se.block_start)
1975 p->se.block_start -= clock_offset;
cc367732
IM
1976 if (old_cpu != new_cpu) {
1977 schedstat_inc(p, se.nr_migrations);
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 }
6cfb0d5d 1981#endif
2830cf8c
SV
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
dd41f596
IM
1984
1985 __set_task_cpu(p, new_cpu);
c65cc870
IM
1986}
1987
70b97a7f 1988struct migration_req {
1da177e4 1989 struct list_head list;
1da177e4 1990
36c8b586 1991 struct task_struct *task;
1da177e4
LT
1992 int dest_cpu;
1993
1da177e4 1994 struct completion done;
70b97a7f 1995};
1da177e4
LT
1996
1997/*
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2000 */
36c8b586 2001static int
70b97a7f 2002migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2003{
70b97a7f 2004 struct rq *rq = task_rq(p);
1da177e4
LT
2005
2006 /*
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2009 */
dd41f596 2010 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2011 set_task_cpu(p, dest_cpu);
2012 return 0;
2013 }
2014
2015 init_completion(&req->done);
1da177e4
LT
2016 req->task = p;
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
48f24c4d 2019
1da177e4
LT
2020 return 1;
2021}
2022
2023/*
2024 * wait_task_inactive - wait for a thread to unschedule.
2025 *
85ba2d86
RM
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2032 *
1da177e4
LT
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2038 */
85ba2d86 2039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2040{
2041 unsigned long flags;
dd41f596 2042 int running, on_rq;
85ba2d86 2043 unsigned long ncsw;
70b97a7f 2044 struct rq *rq;
1da177e4 2045
3a5c359a
AK
2046 for (;;) {
2047 /*
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2051 * work out!
2052 */
2053 rq = task_rq(p);
fa490cfd 2054
3a5c359a
AK
2055 /*
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2058 * any locks.
2059 *
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2065 */
85ba2d86
RM
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2068 return 0;
3a5c359a 2069 cpu_relax();
85ba2d86 2070 }
fa490cfd 2071
3a5c359a
AK
2072 /*
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2076 */
2077 rq = task_rq_lock(p, &flags);
0a16b607 2078 trace_sched_wait_task(rq, p);
3a5c359a
AK
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
85ba2d86 2081 ncsw = 0;
f31e11d8 2082 if (!match_state || p->state == match_state)
93dcf55f 2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2084 task_rq_unlock(rq, &flags);
fa490cfd 2085
85ba2d86
RM
2086 /*
2087 * If it changed from the expected state, bail out now.
2088 */
2089 if (unlikely(!ncsw))
2090 break;
2091
3a5c359a
AK
2092 /*
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2095 *
2096 * Oops. Go back and try again..
2097 */
2098 if (unlikely(running)) {
2099 cpu_relax();
2100 continue;
2101 }
fa490cfd 2102
3a5c359a
AK
2103 /*
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2106 * preempted!
2107 *
80dd99b3 2108 * So if it was still runnable (but just not actively
3a5c359a
AK
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2111 */
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2114 continue;
2115 }
fa490cfd 2116
3a5c359a
AK
2117 /*
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2121 */
2122 break;
2123 }
85ba2d86
RM
2124
2125 return ncsw;
1da177e4
LT
2126}
2127
2128/***
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2131 *
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2134 *
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2139 * achieved as well.
2140 */
36c8b586 2141void kick_process(struct task_struct *p)
1da177e4
LT
2142{
2143 int cpu;
2144
2145 preempt_disable();
2146 cpu = task_cpu(p);
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2149 preempt_enable();
2150}
2151
2152/*
2dd73a4f
PW
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
1da177e4
LT
2155 *
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2158 */
a9957449 2159static unsigned long source_load(int cpu, int type)
1da177e4 2160{
70b97a7f 2161 struct rq *rq = cpu_rq(cpu);
dd41f596 2162 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2163
93b75217 2164 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2165 return total;
b910472d 2166
dd41f596 2167 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2168}
2169
2170/*
2dd73a4f
PW
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
1da177e4 2173 */
a9957449 2174static unsigned long target_load(int cpu, int type)
1da177e4 2175{
70b97a7f 2176 struct rq *rq = cpu_rq(cpu);
dd41f596 2177 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2178
93b75217 2179 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2180 return total;
3b0bd9bc 2181
dd41f596 2182 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2183}
2184
147cbb4b
NP
2185/*
2186 * find_idlest_group finds and returns the least busy CPU group within the
2187 * domain.
2188 */
2189static struct sched_group *
2190find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2191{
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2196
2197 do {
2198 unsigned long load, avg_load;
2199 int local_group;
2200 int i;
2201
da5a5522 2202 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2203 if (!cpumask_intersects(sched_group_cpus(group),
2204 &p->cpus_allowed))
3a5c359a 2205 continue;
da5a5522 2206
758b2cdc
RR
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
147cbb4b
NP
2209
2210 /* Tally up the load of all CPUs in the group */
2211 avg_load = 0;
2212
758b2cdc 2213 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2214 /* Bias balancing toward cpus of our domain */
2215 if (local_group)
2216 load = source_load(i, load_idx);
2217 else
2218 load = target_load(i, load_idx);
2219
2220 avg_load += load;
2221 }
2222
2223 /* Adjust by relative CPU power of the group */
5517d86b
ED
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2226
2227 if (local_group) {
2228 this_load = avg_load;
2229 this = group;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2232 idlest = group;
2233 }
3a5c359a 2234 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2235
2236 if (!idlest || 100*this_load < imbalance*min_load)
2237 return NULL;
2238 return idlest;
2239}
2240
2241/*
0feaece9 2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2243 */
95cdf3b7 2244static int
758b2cdc 2245find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2246{
2247 unsigned long load, min_load = ULONG_MAX;
2248 int idlest = -1;
2249 int i;
2250
da5a5522 2251 /* Traverse only the allowed CPUs */
758b2cdc 2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2253 load = weighted_cpuload(i);
147cbb4b
NP
2254
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2256 min_load = load;
2257 idlest = i;
2258 }
2259 }
2260
2261 return idlest;
2262}
2263
476d139c
NP
2264/*
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2267 * SD_BALANCE_EXEC.
2268 *
2269 * Balance, ie. select the least loaded group.
2270 *
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2272 *
2273 * preempt must be disabled.
2274 */
2275static int sched_balance_self(int cpu, int flag)
2276{
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2279
c96d145e 2280 for_each_domain(cpu, tmp) {
9761eea8
IM
2281 /*
2282 * If power savings logic is enabled for a domain, stop there.
2283 */
5c45bf27
SS
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2285 break;
476d139c
NP
2286 if (tmp->flags & flag)
2287 sd = tmp;
c96d145e 2288 }
476d139c 2289
039a1c41
PZ
2290 if (sd)
2291 update_shares(sd);
2292
476d139c 2293 while (sd) {
476d139c 2294 struct sched_group *group;
1a848870
SS
2295 int new_cpu, weight;
2296
2297 if (!(sd->flags & flag)) {
2298 sd = sd->child;
2299 continue;
2300 }
476d139c 2301
476d139c 2302 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2303 if (!group) {
2304 sd = sd->child;
2305 continue;
2306 }
476d139c 2307
758b2cdc 2308 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2311 sd = sd->child;
2312 continue;
2313 }
476d139c 2314
1a848870 2315 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2316 cpu = new_cpu;
758b2cdc 2317 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2318 sd = NULL;
476d139c 2319 for_each_domain(cpu, tmp) {
758b2cdc 2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2321 break;
2322 if (tmp->flags & flag)
2323 sd = tmp;
2324 }
2325 /* while loop will break here if sd == NULL */
2326 }
2327
2328 return cpu;
2329}
2330
2331#endif /* CONFIG_SMP */
1da177e4 2332
1da177e4
LT
2333/***
2334 * try_to_wake_up - wake up a thread
2335 * @p: the to-be-woken-up thread
2336 * @state: the mask of task states that can be woken
2337 * @sync: do a synchronous wakeup?
2338 *
2339 * Put it on the run-queue if it's not already there. The "current"
2340 * thread is always on the run-queue (except when the actual
2341 * re-schedule is in progress), and as such you're allowed to do
2342 * the simpler "current->state = TASK_RUNNING" to mark yourself
2343 * runnable without the overhead of this.
2344 *
2345 * returns failure only if the task is already active.
2346 */
36c8b586 2347static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2348{
cc367732 2349 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2350 unsigned long flags;
2351 long old_state;
70b97a7f 2352 struct rq *rq;
1da177e4 2353
b85d0667
IM
2354 if (!sched_feat(SYNC_WAKEUPS))
2355 sync = 0;
2356
2398f2c6 2357#ifdef CONFIG_SMP
57310a98 2358 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2359 struct sched_domain *sd;
2360
2361 this_cpu = raw_smp_processor_id();
2362 cpu = task_cpu(p);
2363
2364 for_each_domain(this_cpu, sd) {
758b2cdc 2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2366 update_shares(sd);
2367 break;
2368 }
2369 }
2370 }
2371#endif
2372
04e2f174 2373 smp_wmb();
1da177e4 2374 rq = task_rq_lock(p, &flags);
03e89e45 2375 update_rq_clock(rq);
1da177e4
LT
2376 old_state = p->state;
2377 if (!(old_state & state))
2378 goto out;
2379
dd41f596 2380 if (p->se.on_rq)
1da177e4
LT
2381 goto out_running;
2382
2383 cpu = task_cpu(p);
cc367732 2384 orig_cpu = cpu;
1da177e4
LT
2385 this_cpu = smp_processor_id();
2386
2387#ifdef CONFIG_SMP
2388 if (unlikely(task_running(rq, p)))
2389 goto out_activate;
2390
5d2f5a61
DA
2391 cpu = p->sched_class->select_task_rq(p, sync);
2392 if (cpu != orig_cpu) {
2393 set_task_cpu(p, cpu);
1da177e4
LT
2394 task_rq_unlock(rq, &flags);
2395 /* might preempt at this point */
2396 rq = task_rq_lock(p, &flags);
2397 old_state = p->state;
2398 if (!(old_state & state))
2399 goto out;
dd41f596 2400 if (p->se.on_rq)
1da177e4
LT
2401 goto out_running;
2402
2403 this_cpu = smp_processor_id();
2404 cpu = task_cpu(p);
2405 }
2406
e7693a36
GH
2407#ifdef CONFIG_SCHEDSTATS
2408 schedstat_inc(rq, ttwu_count);
2409 if (cpu == this_cpu)
2410 schedstat_inc(rq, ttwu_local);
2411 else {
2412 struct sched_domain *sd;
2413 for_each_domain(this_cpu, sd) {
758b2cdc 2414 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2415 schedstat_inc(sd, ttwu_wake_remote);
2416 break;
2417 }
2418 }
2419 }
6d6bc0ad 2420#endif /* CONFIG_SCHEDSTATS */
e7693a36 2421
1da177e4
LT
2422out_activate:
2423#endif /* CONFIG_SMP */
cc367732
IM
2424 schedstat_inc(p, se.nr_wakeups);
2425 if (sync)
2426 schedstat_inc(p, se.nr_wakeups_sync);
2427 if (orig_cpu != cpu)
2428 schedstat_inc(p, se.nr_wakeups_migrate);
2429 if (cpu == this_cpu)
2430 schedstat_inc(p, se.nr_wakeups_local);
2431 else
2432 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2433 activate_task(rq, p, 1);
1da177e4
LT
2434 success = 1;
2435
831451ac
PZ
2436 /*
2437 * Only attribute actual wakeups done by this task.
2438 */
2439 if (!in_interrupt()) {
2440 struct sched_entity *se = &current->se;
2441 u64 sample = se->sum_exec_runtime;
2442
2443 if (se->last_wakeup)
2444 sample -= se->last_wakeup;
2445 else
2446 sample -= se->start_runtime;
2447 update_avg(&se->avg_wakeup, sample);
2448
2449 se->last_wakeup = se->sum_exec_runtime;
2450 }
2451
1da177e4 2452out_running:
468a15bb 2453 trace_sched_wakeup(rq, p, success);
15afe09b 2454 check_preempt_curr(rq, p, sync);
4ae7d5ce 2455
1da177e4 2456 p->state = TASK_RUNNING;
9a897c5a
SR
2457#ifdef CONFIG_SMP
2458 if (p->sched_class->task_wake_up)
2459 p->sched_class->task_wake_up(rq, p);
2460#endif
1da177e4
LT
2461out:
2462 task_rq_unlock(rq, &flags);
2463
2464 return success;
2465}
2466
7ad5b3a5 2467int wake_up_process(struct task_struct *p)
1da177e4 2468{
d9514f6c 2469 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2470}
1da177e4
LT
2471EXPORT_SYMBOL(wake_up_process);
2472
7ad5b3a5 2473int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2474{
2475 return try_to_wake_up(p, state, 0);
2476}
2477
1da177e4
LT
2478/*
2479 * Perform scheduler related setup for a newly forked process p.
2480 * p is forked by current.
dd41f596
IM
2481 *
2482 * __sched_fork() is basic setup used by init_idle() too:
2483 */
2484static void __sched_fork(struct task_struct *p)
2485{
dd41f596
IM
2486 p->se.exec_start = 0;
2487 p->se.sum_exec_runtime = 0;
f6cf891c 2488 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2489 p->se.last_wakeup = 0;
2490 p->se.avg_overlap = 0;
831451ac
PZ
2491 p->se.start_runtime = 0;
2492 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2493
2494#ifdef CONFIG_SCHEDSTATS
2495 p->se.wait_start = 0;
dd41f596
IM
2496 p->se.sum_sleep_runtime = 0;
2497 p->se.sleep_start = 0;
dd41f596
IM
2498 p->se.block_start = 0;
2499 p->se.sleep_max = 0;
2500 p->se.block_max = 0;
2501 p->se.exec_max = 0;
eba1ed4b 2502 p->se.slice_max = 0;
dd41f596 2503 p->se.wait_max = 0;
6cfb0d5d 2504#endif
476d139c 2505
fa717060 2506 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2507 p->se.on_rq = 0;
4a55bd5e 2508 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2509
e107be36
AK
2510#ifdef CONFIG_PREEMPT_NOTIFIERS
2511 INIT_HLIST_HEAD(&p->preempt_notifiers);
2512#endif
2513
1da177e4
LT
2514 /*
2515 * We mark the process as running here, but have not actually
2516 * inserted it onto the runqueue yet. This guarantees that
2517 * nobody will actually run it, and a signal or other external
2518 * event cannot wake it up and insert it on the runqueue either.
2519 */
2520 p->state = TASK_RUNNING;
dd41f596
IM
2521}
2522
2523/*
2524 * fork()/clone()-time setup:
2525 */
2526void sched_fork(struct task_struct *p, int clone_flags)
2527{
2528 int cpu = get_cpu();
2529
2530 __sched_fork(p);
2531
2532#ifdef CONFIG_SMP
2533 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2534#endif
02e4bac2 2535 set_task_cpu(p, cpu);
b29739f9
IM
2536
2537 /*
2538 * Make sure we do not leak PI boosting priority to the child:
2539 */
2540 p->prio = current->normal_prio;
2ddbf952
HS
2541 if (!rt_prio(p->prio))
2542 p->sched_class = &fair_sched_class;
b29739f9 2543
52f17b6c 2544#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2545 if (likely(sched_info_on()))
52f17b6c 2546 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2547#endif
d6077cb8 2548#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2549 p->oncpu = 0;
2550#endif
1da177e4 2551#ifdef CONFIG_PREEMPT
4866cde0 2552 /* Want to start with kernel preemption disabled. */
a1261f54 2553 task_thread_info(p)->preempt_count = 1;
1da177e4 2554#endif
917b627d
GH
2555 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2556
476d139c 2557 put_cpu();
1da177e4
LT
2558}
2559
2560/*
2561 * wake_up_new_task - wake up a newly created task for the first time.
2562 *
2563 * This function will do some initial scheduler statistics housekeeping
2564 * that must be done for every newly created context, then puts the task
2565 * on the runqueue and wakes it.
2566 */
7ad5b3a5 2567void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2568{
2569 unsigned long flags;
dd41f596 2570 struct rq *rq;
1da177e4
LT
2571
2572 rq = task_rq_lock(p, &flags);
147cbb4b 2573 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2574 update_rq_clock(rq);
1da177e4
LT
2575
2576 p->prio = effective_prio(p);
2577
b9dca1e0 2578 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2579 activate_task(rq, p, 0);
1da177e4 2580 } else {
1da177e4 2581 /*
dd41f596
IM
2582 * Let the scheduling class do new task startup
2583 * management (if any):
1da177e4 2584 */
ee0827d8 2585 p->sched_class->task_new(rq, p);
c09595f6 2586 inc_nr_running(rq);
1da177e4 2587 }
c71dd42d 2588 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2589 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2590#ifdef CONFIG_SMP
2591 if (p->sched_class->task_wake_up)
2592 p->sched_class->task_wake_up(rq, p);
2593#endif
dd41f596 2594 task_rq_unlock(rq, &flags);
1da177e4
LT
2595}
2596
e107be36
AK
2597#ifdef CONFIG_PREEMPT_NOTIFIERS
2598
2599/**
80dd99b3 2600 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2601 * @notifier: notifier struct to register
e107be36
AK
2602 */
2603void preempt_notifier_register(struct preempt_notifier *notifier)
2604{
2605 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_register);
2608
2609/**
2610 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2611 * @notifier: notifier struct to unregister
e107be36
AK
2612 *
2613 * This is safe to call from within a preemption notifier.
2614 */
2615void preempt_notifier_unregister(struct preempt_notifier *notifier)
2616{
2617 hlist_del(&notifier->link);
2618}
2619EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2620
2621static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622{
2623 struct preempt_notifier *notifier;
2624 struct hlist_node *node;
2625
2626 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2627 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2628}
2629
2630static void
2631fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
2633{
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2636
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_out(notifier, next);
2639}
2640
6d6bc0ad 2641#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2642
2643static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644{
2645}
2646
2647static void
2648fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
2650{
2651}
2652
6d6bc0ad 2653#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2654
4866cde0
NP
2655/**
2656 * prepare_task_switch - prepare to switch tasks
2657 * @rq: the runqueue preparing to switch
421cee29 2658 * @prev: the current task that is being switched out
4866cde0
NP
2659 * @next: the task we are going to switch to.
2660 *
2661 * This is called with the rq lock held and interrupts off. It must
2662 * be paired with a subsequent finish_task_switch after the context
2663 * switch.
2664 *
2665 * prepare_task_switch sets up locking and calls architecture specific
2666 * hooks.
2667 */
e107be36
AK
2668static inline void
2669prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 struct task_struct *next)
4866cde0 2671{
e107be36 2672 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2673 prepare_lock_switch(rq, next);
2674 prepare_arch_switch(next);
2675}
2676
1da177e4
LT
2677/**
2678 * finish_task_switch - clean up after a task-switch
344babaa 2679 * @rq: runqueue associated with task-switch
1da177e4
LT
2680 * @prev: the thread we just switched away from.
2681 *
4866cde0
NP
2682 * finish_task_switch must be called after the context switch, paired
2683 * with a prepare_task_switch call before the context switch.
2684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2685 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2686 *
2687 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2688 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2689 * with the lock held can cause deadlocks; see schedule() for
2690 * details.)
2691 */
a9957449 2692static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2693 __releases(rq->lock)
2694{
1da177e4 2695 struct mm_struct *mm = rq->prev_mm;
55a101f8 2696 long prev_state;
967fc046
GH
2697#ifdef CONFIG_SMP
2698 int post_schedule = 0;
2699
2700 if (current->sched_class->needs_post_schedule)
2701 post_schedule = current->sched_class->needs_post_schedule(rq);
2702#endif
1da177e4
LT
2703
2704 rq->prev_mm = NULL;
2705
2706 /*
2707 * A task struct has one reference for the use as "current".
c394cc9f 2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
c394cc9f 2711 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2712 * still held, otherwise prev could be scheduled on another cpu, die
2713 * there before we look at prev->state, and then the reference would
2714 * be dropped twice.
2715 * Manfred Spraul <manfred@colorfullife.com>
2716 */
55a101f8 2717 prev_state = prev->state;
4866cde0
NP
2718 finish_arch_switch(prev);
2719 finish_lock_switch(rq, prev);
9a897c5a 2720#ifdef CONFIG_SMP
967fc046 2721 if (post_schedule)
9a897c5a
SR
2722 current->sched_class->post_schedule(rq);
2723#endif
e8fa1362 2724
e107be36 2725 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2726 if (mm)
2727 mmdrop(mm);
c394cc9f 2728 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2729 /*
2730 * Remove function-return probe instances associated with this
2731 * task and put them back on the free list.
9761eea8 2732 */
c6fd91f0 2733 kprobe_flush_task(prev);
1da177e4 2734 put_task_struct(prev);
c6fd91f0 2735 }
1da177e4
LT
2736}
2737
2738/**
2739 * schedule_tail - first thing a freshly forked thread must call.
2740 * @prev: the thread we just switched away from.
2741 */
36c8b586 2742asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2743 __releases(rq->lock)
2744{
70b97a7f
IM
2745 struct rq *rq = this_rq();
2746
4866cde0
NP
2747 finish_task_switch(rq, prev);
2748#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2749 /* In this case, finish_task_switch does not reenable preemption */
2750 preempt_enable();
2751#endif
1da177e4 2752 if (current->set_child_tid)
b488893a 2753 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2754}
2755
2756/*
2757 * context_switch - switch to the new MM and the new
2758 * thread's register state.
2759 */
dd41f596 2760static inline void
70b97a7f 2761context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2762 struct task_struct *next)
1da177e4 2763{
dd41f596 2764 struct mm_struct *mm, *oldmm;
1da177e4 2765
e107be36 2766 prepare_task_switch(rq, prev, next);
0a16b607 2767 trace_sched_switch(rq, prev, next);
dd41f596
IM
2768 mm = next->mm;
2769 oldmm = prev->active_mm;
9226d125
ZA
2770 /*
2771 * For paravirt, this is coupled with an exit in switch_to to
2772 * combine the page table reload and the switch backend into
2773 * one hypercall.
2774 */
2775 arch_enter_lazy_cpu_mode();
2776
dd41f596 2777 if (unlikely(!mm)) {
1da177e4
LT
2778 next->active_mm = oldmm;
2779 atomic_inc(&oldmm->mm_count);
2780 enter_lazy_tlb(oldmm, next);
2781 } else
2782 switch_mm(oldmm, mm, next);
2783
dd41f596 2784 if (unlikely(!prev->mm)) {
1da177e4 2785 prev->active_mm = NULL;
1da177e4
LT
2786 rq->prev_mm = oldmm;
2787 }
3a5f5e48
IM
2788 /*
2789 * Since the runqueue lock will be released by the next
2790 * task (which is an invalid locking op but in the case
2791 * of the scheduler it's an obvious special-case), so we
2792 * do an early lockdep release here:
2793 */
2794#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2795 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2796#endif
1da177e4
LT
2797
2798 /* Here we just switch the register state and the stack. */
2799 switch_to(prev, next, prev);
2800
dd41f596
IM
2801 barrier();
2802 /*
2803 * this_rq must be evaluated again because prev may have moved
2804 * CPUs since it called schedule(), thus the 'rq' on its stack
2805 * frame will be invalid.
2806 */
2807 finish_task_switch(this_rq(), prev);
1da177e4
LT
2808}
2809
2810/*
2811 * nr_running, nr_uninterruptible and nr_context_switches:
2812 *
2813 * externally visible scheduler statistics: current number of runnable
2814 * threads, current number of uninterruptible-sleeping threads, total
2815 * number of context switches performed since bootup.
2816 */
2817unsigned long nr_running(void)
2818{
2819 unsigned long i, sum = 0;
2820
2821 for_each_online_cpu(i)
2822 sum += cpu_rq(i)->nr_running;
2823
2824 return sum;
2825}
2826
2827unsigned long nr_uninterruptible(void)
2828{
2829 unsigned long i, sum = 0;
2830
0a945022 2831 for_each_possible_cpu(i)
1da177e4
LT
2832 sum += cpu_rq(i)->nr_uninterruptible;
2833
2834 /*
2835 * Since we read the counters lockless, it might be slightly
2836 * inaccurate. Do not allow it to go below zero though:
2837 */
2838 if (unlikely((long)sum < 0))
2839 sum = 0;
2840
2841 return sum;
2842}
2843
2844unsigned long long nr_context_switches(void)
2845{
cc94abfc
SR
2846 int i;
2847 unsigned long long sum = 0;
1da177e4 2848
0a945022 2849 for_each_possible_cpu(i)
1da177e4
LT
2850 sum += cpu_rq(i)->nr_switches;
2851
2852 return sum;
2853}
2854
2855unsigned long nr_iowait(void)
2856{
2857 unsigned long i, sum = 0;
2858
0a945022 2859 for_each_possible_cpu(i)
1da177e4
LT
2860 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2861
2862 return sum;
2863}
2864
dce48a84
TG
2865/* Variables and functions for calc_load */
2866static atomic_long_t calc_load_tasks;
2867static unsigned long calc_load_update;
2868unsigned long avenrun[3];
2869EXPORT_SYMBOL(avenrun);
2870
2871static unsigned long
2872calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2873{
dce48a84
TG
2874 load *= exp;
2875 load += active * (FIXED_1 - exp);
2876 return load >> FSHIFT;
2877}
db1b1fef 2878
dce48a84
TG
2879/*
2880 * calc_load - update the avenrun load estimates 10 ticks after the
2881 * CPUs have updated calc_load_tasks.
2882 */
2883void calc_global_load(void)
2884{
2885 unsigned long upd = calc_load_update + 10;
2886 long active;
2887
2888 if (time_before(jiffies, upd))
2889 return;
db1b1fef 2890
dce48a84
TG
2891 active = atomic_long_read(&calc_load_tasks);
2892 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2893
dce48a84
TG
2894 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2895 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2896 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2897
2898 calc_load_update += LOAD_FREQ;
2899}
2900
2901/*
2902 * Either called from update_cpu_load() or from a cpu going idle
2903 */
2904static void calc_load_account_active(struct rq *this_rq)
2905{
2906 long nr_active, delta;
2907
2908 nr_active = this_rq->nr_running;
2909 nr_active += (long) this_rq->nr_uninterruptible;
2910
2911 if (nr_active != this_rq->calc_load_active) {
2912 delta = nr_active - this_rq->calc_load_active;
2913 this_rq->calc_load_active = nr_active;
2914 atomic_long_add(delta, &calc_load_tasks);
2915 }
db1b1fef
JS
2916}
2917
48f24c4d 2918/*
dd41f596
IM
2919 * Update rq->cpu_load[] statistics. This function is usually called every
2920 * scheduler tick (TICK_NSEC).
48f24c4d 2921 */
dd41f596 2922static void update_cpu_load(struct rq *this_rq)
48f24c4d 2923{
495eca49 2924 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2925 int i, scale;
2926
2927 this_rq->nr_load_updates++;
dd41f596
IM
2928
2929 /* Update our load: */
2930 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2931 unsigned long old_load, new_load;
2932
2933 /* scale is effectively 1 << i now, and >> i divides by scale */
2934
2935 old_load = this_rq->cpu_load[i];
2936 new_load = this_load;
a25707f3
IM
2937 /*
2938 * Round up the averaging division if load is increasing. This
2939 * prevents us from getting stuck on 9 if the load is 10, for
2940 * example.
2941 */
2942 if (new_load > old_load)
2943 new_load += scale-1;
dd41f596
IM
2944 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2945 }
dce48a84
TG
2946
2947 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
2948 this_rq->calc_load_update += LOAD_FREQ;
2949 calc_load_account_active(this_rq);
2950 }
48f24c4d
IM
2951}
2952
dd41f596
IM
2953#ifdef CONFIG_SMP
2954
1da177e4
LT
2955/*
2956 * double_rq_lock - safely lock two runqueues
2957 *
2958 * Note this does not disable interrupts like task_rq_lock,
2959 * you need to do so manually before calling.
2960 */
70b97a7f 2961static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2962 __acquires(rq1->lock)
2963 __acquires(rq2->lock)
2964{
054b9108 2965 BUG_ON(!irqs_disabled());
1da177e4
LT
2966 if (rq1 == rq2) {
2967 spin_lock(&rq1->lock);
2968 __acquire(rq2->lock); /* Fake it out ;) */
2969 } else {
c96d145e 2970 if (rq1 < rq2) {
1da177e4 2971 spin_lock(&rq1->lock);
5e710e37 2972 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2973 } else {
2974 spin_lock(&rq2->lock);
5e710e37 2975 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2976 }
2977 }
6e82a3be
IM
2978 update_rq_clock(rq1);
2979 update_rq_clock(rq2);
1da177e4
LT
2980}
2981
2982/*
2983 * double_rq_unlock - safely unlock two runqueues
2984 *
2985 * Note this does not restore interrupts like task_rq_unlock,
2986 * you need to do so manually after calling.
2987 */
70b97a7f 2988static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2989 __releases(rq1->lock)
2990 __releases(rq2->lock)
2991{
2992 spin_unlock(&rq1->lock);
2993 if (rq1 != rq2)
2994 spin_unlock(&rq2->lock);
2995 else
2996 __release(rq2->lock);
2997}
2998
1da177e4
LT
2999/*
3000 * If dest_cpu is allowed for this process, migrate the task to it.
3001 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3002 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3003 * the cpu_allowed mask is restored.
3004 */
36c8b586 3005static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3006{
70b97a7f 3007 struct migration_req req;
1da177e4 3008 unsigned long flags;
70b97a7f 3009 struct rq *rq;
1da177e4
LT
3010
3011 rq = task_rq_lock(p, &flags);
96f874e2 3012 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3013 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3014 goto out;
3015
3016 /* force the process onto the specified CPU */
3017 if (migrate_task(p, dest_cpu, &req)) {
3018 /* Need to wait for migration thread (might exit: take ref). */
3019 struct task_struct *mt = rq->migration_thread;
36c8b586 3020
1da177e4
LT
3021 get_task_struct(mt);
3022 task_rq_unlock(rq, &flags);
3023 wake_up_process(mt);
3024 put_task_struct(mt);
3025 wait_for_completion(&req.done);
36c8b586 3026
1da177e4
LT
3027 return;
3028 }
3029out:
3030 task_rq_unlock(rq, &flags);
3031}
3032
3033/*
476d139c
NP
3034 * sched_exec - execve() is a valuable balancing opportunity, because at
3035 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3036 */
3037void sched_exec(void)
3038{
1da177e4 3039 int new_cpu, this_cpu = get_cpu();
476d139c 3040 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3041 put_cpu();
476d139c
NP
3042 if (new_cpu != this_cpu)
3043 sched_migrate_task(current, new_cpu);
1da177e4
LT
3044}
3045
3046/*
3047 * pull_task - move a task from a remote runqueue to the local runqueue.
3048 * Both runqueues must be locked.
3049 */
dd41f596
IM
3050static void pull_task(struct rq *src_rq, struct task_struct *p,
3051 struct rq *this_rq, int this_cpu)
1da177e4 3052{
2e1cb74a 3053 deactivate_task(src_rq, p, 0);
1da177e4 3054 set_task_cpu(p, this_cpu);
dd41f596 3055 activate_task(this_rq, p, 0);
1da177e4
LT
3056 /*
3057 * Note that idle threads have a prio of MAX_PRIO, for this test
3058 * to be always true for them.
3059 */
15afe09b 3060 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3061}
3062
3063/*
3064 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3065 */
858119e1 3066static
70b97a7f 3067int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3068 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3069 int *all_pinned)
1da177e4 3070{
708dc512 3071 int tsk_cache_hot = 0;
1da177e4
LT
3072 /*
3073 * We do not migrate tasks that are:
3074 * 1) running (obviously), or
3075 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3076 * 3) are cache-hot on their current CPU.
3077 */
96f874e2 3078 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3079 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3080 return 0;
cc367732 3081 }
81026794
NP
3082 *all_pinned = 0;
3083
cc367732
IM
3084 if (task_running(rq, p)) {
3085 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3086 return 0;
cc367732 3087 }
1da177e4 3088
da84d961
IM
3089 /*
3090 * Aggressive migration if:
3091 * 1) task is cache cold, or
3092 * 2) too many balance attempts have failed.
3093 */
3094
708dc512
LH
3095 tsk_cache_hot = task_hot(p, rq->clock, sd);
3096 if (!tsk_cache_hot ||
3097 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3098#ifdef CONFIG_SCHEDSTATS
708dc512 3099 if (tsk_cache_hot) {
da84d961 3100 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3101 schedstat_inc(p, se.nr_forced_migrations);
3102 }
da84d961
IM
3103#endif
3104 return 1;
3105 }
3106
708dc512 3107 if (tsk_cache_hot) {
cc367732 3108 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3109 return 0;
cc367732 3110 }
1da177e4
LT
3111 return 1;
3112}
3113
e1d1484f
PW
3114static unsigned long
3115balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3116 unsigned long max_load_move, struct sched_domain *sd,
3117 enum cpu_idle_type idle, int *all_pinned,
3118 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3119{
051c6764 3120 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3121 struct task_struct *p;
3122 long rem_load_move = max_load_move;
1da177e4 3123
e1d1484f 3124 if (max_load_move == 0)
1da177e4
LT
3125 goto out;
3126
81026794
NP
3127 pinned = 1;
3128
1da177e4 3129 /*
dd41f596 3130 * Start the load-balancing iterator:
1da177e4 3131 */
dd41f596
IM
3132 p = iterator->start(iterator->arg);
3133next:
b82d9fdd 3134 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3135 goto out;
051c6764
PZ
3136
3137 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3138 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3139 p = iterator->next(iterator->arg);
3140 goto next;
1da177e4
LT
3141 }
3142
dd41f596 3143 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3144 pulled++;
dd41f596 3145 rem_load_move -= p->se.load.weight;
1da177e4 3146
7e96fa58
GH
3147#ifdef CONFIG_PREEMPT
3148 /*
3149 * NEWIDLE balancing is a source of latency, so preemptible kernels
3150 * will stop after the first task is pulled to minimize the critical
3151 * section.
3152 */
3153 if (idle == CPU_NEWLY_IDLE)
3154 goto out;
3155#endif
3156
2dd73a4f 3157 /*
b82d9fdd 3158 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3159 */
e1d1484f 3160 if (rem_load_move > 0) {
a4ac01c3
PW
3161 if (p->prio < *this_best_prio)
3162 *this_best_prio = p->prio;
dd41f596
IM
3163 p = iterator->next(iterator->arg);
3164 goto next;
1da177e4
LT
3165 }
3166out:
3167 /*
e1d1484f 3168 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3169 * so we can safely collect pull_task() stats here rather than
3170 * inside pull_task().
3171 */
3172 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3173
3174 if (all_pinned)
3175 *all_pinned = pinned;
e1d1484f
PW
3176
3177 return max_load_move - rem_load_move;
1da177e4
LT
3178}
3179
dd41f596 3180/*
43010659
PW
3181 * move_tasks tries to move up to max_load_move weighted load from busiest to
3182 * this_rq, as part of a balancing operation within domain "sd".
3183 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3184 *
3185 * Called with both runqueues locked.
3186 */
3187static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3188 unsigned long max_load_move,
dd41f596
IM
3189 struct sched_domain *sd, enum cpu_idle_type idle,
3190 int *all_pinned)
3191{
5522d5d5 3192 const struct sched_class *class = sched_class_highest;
43010659 3193 unsigned long total_load_moved = 0;
a4ac01c3 3194 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3195
3196 do {
43010659
PW
3197 total_load_moved +=
3198 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3199 max_load_move - total_load_moved,
a4ac01c3 3200 sd, idle, all_pinned, &this_best_prio);
dd41f596 3201 class = class->next;
c4acb2c0 3202
7e96fa58
GH
3203#ifdef CONFIG_PREEMPT
3204 /*
3205 * NEWIDLE balancing is a source of latency, so preemptible
3206 * kernels will stop after the first task is pulled to minimize
3207 * the critical section.
3208 */
c4acb2c0
GH
3209 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3210 break;
7e96fa58 3211#endif
43010659 3212 } while (class && max_load_move > total_load_moved);
dd41f596 3213
43010659
PW
3214 return total_load_moved > 0;
3215}
3216
e1d1484f
PW
3217static int
3218iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3219 struct sched_domain *sd, enum cpu_idle_type idle,
3220 struct rq_iterator *iterator)
3221{
3222 struct task_struct *p = iterator->start(iterator->arg);
3223 int pinned = 0;
3224
3225 while (p) {
3226 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3227 pull_task(busiest, p, this_rq, this_cpu);
3228 /*
3229 * Right now, this is only the second place pull_task()
3230 * is called, so we can safely collect pull_task()
3231 * stats here rather than inside pull_task().
3232 */
3233 schedstat_inc(sd, lb_gained[idle]);
3234
3235 return 1;
3236 }
3237 p = iterator->next(iterator->arg);
3238 }
3239
3240 return 0;
3241}
3242
43010659
PW
3243/*
3244 * move_one_task tries to move exactly one task from busiest to this_rq, as
3245 * part of active balancing operations within "domain".
3246 * Returns 1 if successful and 0 otherwise.
3247 *
3248 * Called with both runqueues locked.
3249 */
3250static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3251 struct sched_domain *sd, enum cpu_idle_type idle)
3252{
5522d5d5 3253 const struct sched_class *class;
43010659
PW
3254
3255 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3256 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3257 return 1;
3258
3259 return 0;
dd41f596 3260}
67bb6c03 3261/********** Helpers for find_busiest_group ************************/
1da177e4 3262/*
222d656d
GS
3263 * sd_lb_stats - Structure to store the statistics of a sched_domain
3264 * during load balancing.
1da177e4 3265 */
222d656d
GS
3266struct sd_lb_stats {
3267 struct sched_group *busiest; /* Busiest group in this sd */
3268 struct sched_group *this; /* Local group in this sd */
3269 unsigned long total_load; /* Total load of all groups in sd */
3270 unsigned long total_pwr; /* Total power of all groups in sd */
3271 unsigned long avg_load; /* Average load across all groups in sd */
3272
3273 /** Statistics of this group */
3274 unsigned long this_load;
3275 unsigned long this_load_per_task;
3276 unsigned long this_nr_running;
3277
3278 /* Statistics of the busiest group */
3279 unsigned long max_load;
3280 unsigned long busiest_load_per_task;
3281 unsigned long busiest_nr_running;
3282
3283 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3284#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3285 int power_savings_balance; /* Is powersave balance needed for this sd */
3286 struct sched_group *group_min; /* Least loaded group in sd */
3287 struct sched_group *group_leader; /* Group which relieves group_min */
3288 unsigned long min_load_per_task; /* load_per_task in group_min */
3289 unsigned long leader_nr_running; /* Nr running of group_leader */
3290 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3291#endif
222d656d 3292};
1da177e4 3293
d5ac537e 3294/*
381be78f
GS
3295 * sg_lb_stats - stats of a sched_group required for load_balancing
3296 */
3297struct sg_lb_stats {
3298 unsigned long avg_load; /*Avg load across the CPUs of the group */
3299 unsigned long group_load; /* Total load over the CPUs of the group */
3300 unsigned long sum_nr_running; /* Nr tasks running in the group */
3301 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3302 unsigned long group_capacity;
3303 int group_imb; /* Is there an imbalance in the group ? */
3304};
408ed066 3305
67bb6c03
GS
3306/**
3307 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3308 * @group: The group whose first cpu is to be returned.
3309 */
3310static inline unsigned int group_first_cpu(struct sched_group *group)
3311{
3312 return cpumask_first(sched_group_cpus(group));
3313}
3314
3315/**
3316 * get_sd_load_idx - Obtain the load index for a given sched domain.
3317 * @sd: The sched_domain whose load_idx is to be obtained.
3318 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3319 */
3320static inline int get_sd_load_idx(struct sched_domain *sd,
3321 enum cpu_idle_type idle)
3322{
3323 int load_idx;
3324
3325 switch (idle) {
3326 case CPU_NOT_IDLE:
7897986b 3327 load_idx = sd->busy_idx;
67bb6c03
GS
3328 break;
3329
3330 case CPU_NEWLY_IDLE:
7897986b 3331 load_idx = sd->newidle_idx;
67bb6c03
GS
3332 break;
3333 default:
7897986b 3334 load_idx = sd->idle_idx;
67bb6c03
GS
3335 break;
3336 }
1da177e4 3337
67bb6c03
GS
3338 return load_idx;
3339}
1da177e4 3340
1da177e4 3341
c071df18
GS
3342#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3343/**
3344 * init_sd_power_savings_stats - Initialize power savings statistics for
3345 * the given sched_domain, during load balancing.
3346 *
3347 * @sd: Sched domain whose power-savings statistics are to be initialized.
3348 * @sds: Variable containing the statistics for sd.
3349 * @idle: Idle status of the CPU at which we're performing load-balancing.
3350 */
3351static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3352 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3353{
3354 /*
3355 * Busy processors will not participate in power savings
3356 * balance.
3357 */
3358 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3359 sds->power_savings_balance = 0;
3360 else {
3361 sds->power_savings_balance = 1;
3362 sds->min_nr_running = ULONG_MAX;
3363 sds->leader_nr_running = 0;
3364 }
3365}
783609c6 3366
c071df18
GS
3367/**
3368 * update_sd_power_savings_stats - Update the power saving stats for a
3369 * sched_domain while performing load balancing.
3370 *
3371 * @group: sched_group belonging to the sched_domain under consideration.
3372 * @sds: Variable containing the statistics of the sched_domain
3373 * @local_group: Does group contain the CPU for which we're performing
3374 * load balancing ?
3375 * @sgs: Variable containing the statistics of the group.
3376 */
3377static inline void update_sd_power_savings_stats(struct sched_group *group,
3378 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3379{
408ed066 3380
c071df18
GS
3381 if (!sds->power_savings_balance)
3382 return;
1da177e4 3383
c071df18
GS
3384 /*
3385 * If the local group is idle or completely loaded
3386 * no need to do power savings balance at this domain
3387 */
3388 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3389 !sds->this_nr_running))
3390 sds->power_savings_balance = 0;
2dd73a4f 3391
c071df18
GS
3392 /*
3393 * If a group is already running at full capacity or idle,
3394 * don't include that group in power savings calculations
3395 */
3396 if (!sds->power_savings_balance ||
3397 sgs->sum_nr_running >= sgs->group_capacity ||
3398 !sgs->sum_nr_running)
3399 return;
5969fe06 3400
c071df18
GS
3401 /*
3402 * Calculate the group which has the least non-idle load.
3403 * This is the group from where we need to pick up the load
3404 * for saving power
3405 */
3406 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3407 (sgs->sum_nr_running == sds->min_nr_running &&
3408 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3409 sds->group_min = group;
3410 sds->min_nr_running = sgs->sum_nr_running;
3411 sds->min_load_per_task = sgs->sum_weighted_load /
3412 sgs->sum_nr_running;
3413 }
783609c6 3414
c071df18
GS
3415 /*
3416 * Calculate the group which is almost near its
3417 * capacity but still has some space to pick up some load
3418 * from other group and save more power
3419 */
3420 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3421 return;
1da177e4 3422
c071df18
GS
3423 if (sgs->sum_nr_running > sds->leader_nr_running ||
3424 (sgs->sum_nr_running == sds->leader_nr_running &&
3425 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3426 sds->group_leader = group;
3427 sds->leader_nr_running = sgs->sum_nr_running;
3428 }
3429}
408ed066 3430
c071df18 3431/**
d5ac537e 3432 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3433 * @sds: Variable containing the statistics of the sched_domain
3434 * under consideration.
3435 * @this_cpu: Cpu at which we're currently performing load-balancing.
3436 * @imbalance: Variable to store the imbalance.
3437 *
d5ac537e
RD
3438 * Description:
3439 * Check if we have potential to perform some power-savings balance.
3440 * If yes, set the busiest group to be the least loaded group in the
3441 * sched_domain, so that it's CPUs can be put to idle.
3442 *
c071df18
GS
3443 * Returns 1 if there is potential to perform power-savings balance.
3444 * Else returns 0.
3445 */
3446static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3447 int this_cpu, unsigned long *imbalance)
3448{
3449 if (!sds->power_savings_balance)
3450 return 0;
1da177e4 3451
c071df18
GS
3452 if (sds->this != sds->group_leader ||
3453 sds->group_leader == sds->group_min)
3454 return 0;
783609c6 3455
c071df18
GS
3456 *imbalance = sds->min_load_per_task;
3457 sds->busiest = sds->group_min;
1da177e4 3458
c071df18
GS
3459 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3460 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3461 group_first_cpu(sds->group_leader);
3462 }
3463
3464 return 1;
1da177e4 3465
c071df18
GS
3466}
3467#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3468static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3469 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3470{
3471 return;
3472}
408ed066 3473
c071df18
GS
3474static inline void update_sd_power_savings_stats(struct sched_group *group,
3475 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3476{
3477 return;
3478}
3479
3480static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3481 int this_cpu, unsigned long *imbalance)
3482{
3483 return 0;
3484}
3485#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3486
3487
1f8c553d
GS
3488/**
3489 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3490 * @group: sched_group whose statistics are to be updated.
3491 * @this_cpu: Cpu for which load balance is currently performed.
3492 * @idle: Idle status of this_cpu
3493 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3494 * @sd_idle: Idle status of the sched_domain containing group.
3495 * @local_group: Does group contain this_cpu.
3496 * @cpus: Set of cpus considered for load balancing.
3497 * @balance: Should we balance.
3498 * @sgs: variable to hold the statistics for this group.
3499 */
3500static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3501 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3502 int local_group, const struct cpumask *cpus,
3503 int *balance, struct sg_lb_stats *sgs)
3504{
3505 unsigned long load, max_cpu_load, min_cpu_load;
3506 int i;
3507 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3508 unsigned long sum_avg_load_per_task;
3509 unsigned long avg_load_per_task;
3510
3511 if (local_group)
3512 balance_cpu = group_first_cpu(group);
3513
3514 /* Tally up the load of all CPUs in the group */
3515 sum_avg_load_per_task = avg_load_per_task = 0;
3516 max_cpu_load = 0;
3517 min_cpu_load = ~0UL;
408ed066 3518
1f8c553d
GS
3519 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3520 struct rq *rq = cpu_rq(i);
908a7c1b 3521
1f8c553d
GS
3522 if (*sd_idle && rq->nr_running)
3523 *sd_idle = 0;
5c45bf27 3524
1f8c553d 3525 /* Bias balancing toward cpus of our domain */
1da177e4 3526 if (local_group) {
1f8c553d
GS
3527 if (idle_cpu(i) && !first_idle_cpu) {
3528 first_idle_cpu = 1;
3529 balance_cpu = i;
3530 }
3531
3532 load = target_load(i, load_idx);
3533 } else {
3534 load = source_load(i, load_idx);
3535 if (load > max_cpu_load)
3536 max_cpu_load = load;
3537 if (min_cpu_load > load)
3538 min_cpu_load = load;
1da177e4 3539 }
5c45bf27 3540
1f8c553d
GS
3541 sgs->group_load += load;
3542 sgs->sum_nr_running += rq->nr_running;
3543 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3544
1f8c553d
GS
3545 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3546 }
5c45bf27 3547
1f8c553d
GS
3548 /*
3549 * First idle cpu or the first cpu(busiest) in this sched group
3550 * is eligible for doing load balancing at this and above
3551 * domains. In the newly idle case, we will allow all the cpu's
3552 * to do the newly idle load balance.
3553 */
3554 if (idle != CPU_NEWLY_IDLE && local_group &&
3555 balance_cpu != this_cpu && balance) {
3556 *balance = 0;
3557 return;
3558 }
5c45bf27 3559
1f8c553d
GS
3560 /* Adjust by relative CPU power of the group */
3561 sgs->avg_load = sg_div_cpu_power(group,
3562 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3563
1f8c553d
GS
3564
3565 /*
3566 * Consider the group unbalanced when the imbalance is larger
3567 * than the average weight of two tasks.
3568 *
3569 * APZ: with cgroup the avg task weight can vary wildly and
3570 * might not be a suitable number - should we keep a
3571 * normalized nr_running number somewhere that negates
3572 * the hierarchy?
3573 */
3574 avg_load_per_task = sg_div_cpu_power(group,
3575 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3576
3577 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3578 sgs->group_imb = 1;
3579
3580 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3581
3582}
dd41f596 3583
37abe198
GS
3584/**
3585 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3586 * @sd: sched_domain whose statistics are to be updated.
3587 * @this_cpu: Cpu for which load balance is currently performed.
3588 * @idle: Idle status of this_cpu
3589 * @sd_idle: Idle status of the sched_domain containing group.
3590 * @cpus: Set of cpus considered for load balancing.
3591 * @balance: Should we balance.
3592 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3593 */
37abe198
GS
3594static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3595 enum cpu_idle_type idle, int *sd_idle,
3596 const struct cpumask *cpus, int *balance,
3597 struct sd_lb_stats *sds)
1da177e4 3598{
222d656d 3599 struct sched_group *group = sd->groups;
37abe198 3600 struct sg_lb_stats sgs;
222d656d
GS
3601 int load_idx;
3602
c071df18 3603 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3604 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3605
3606 do {
1da177e4 3607 int local_group;
1da177e4 3608
758b2cdc
RR
3609 local_group = cpumask_test_cpu(this_cpu,
3610 sched_group_cpus(group));
381be78f 3611 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3612 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3613 local_group, cpus, balance, &sgs);
1da177e4 3614
37abe198
GS
3615 if (local_group && balance && !(*balance))
3616 return;
783609c6 3617
37abe198
GS
3618 sds->total_load += sgs.group_load;
3619 sds->total_pwr += group->__cpu_power;
1da177e4 3620
1da177e4 3621 if (local_group) {
37abe198
GS
3622 sds->this_load = sgs.avg_load;
3623 sds->this = group;
3624 sds->this_nr_running = sgs.sum_nr_running;
3625 sds->this_load_per_task = sgs.sum_weighted_load;
3626 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3627 (sgs.sum_nr_running > sgs.group_capacity ||
3628 sgs.group_imb)) {
37abe198
GS
3629 sds->max_load = sgs.avg_load;
3630 sds->busiest = group;
3631 sds->busiest_nr_running = sgs.sum_nr_running;
3632 sds->busiest_load_per_task = sgs.sum_weighted_load;
3633 sds->group_imb = sgs.group_imb;
48f24c4d 3634 }
5c45bf27 3635
c071df18 3636 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3637 group = group->next;
3638 } while (group != sd->groups);
3639
37abe198 3640}
1da177e4 3641
2e6f44ae
GS
3642/**
3643 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3644 * amongst the groups of a sched_domain, during
3645 * load balancing.
2e6f44ae
GS
3646 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3647 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3648 * @imbalance: Variable to store the imbalance.
3649 */
3650static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3651 int this_cpu, unsigned long *imbalance)
3652{
3653 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3654 unsigned int imbn = 2;
3655
3656 if (sds->this_nr_running) {
3657 sds->this_load_per_task /= sds->this_nr_running;
3658 if (sds->busiest_load_per_task >
3659 sds->this_load_per_task)
3660 imbn = 1;
3661 } else
3662 sds->this_load_per_task =
3663 cpu_avg_load_per_task(this_cpu);
1da177e4 3664
2e6f44ae
GS
3665 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3666 sds->busiest_load_per_task * imbn) {
3667 *imbalance = sds->busiest_load_per_task;
3668 return;
3669 }
908a7c1b 3670
1da177e4 3671 /*
2e6f44ae
GS
3672 * OK, we don't have enough imbalance to justify moving tasks,
3673 * however we may be able to increase total CPU power used by
3674 * moving them.
1da177e4 3675 */
2dd73a4f 3676
2e6f44ae
GS
3677 pwr_now += sds->busiest->__cpu_power *
3678 min(sds->busiest_load_per_task, sds->max_load);
3679 pwr_now += sds->this->__cpu_power *
3680 min(sds->this_load_per_task, sds->this_load);
3681 pwr_now /= SCHED_LOAD_SCALE;
3682
3683 /* Amount of load we'd subtract */
3684 tmp = sg_div_cpu_power(sds->busiest,
3685 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3686 if (sds->max_load > tmp)
3687 pwr_move += sds->busiest->__cpu_power *
3688 min(sds->busiest_load_per_task, sds->max_load - tmp);
3689
3690 /* Amount of load we'd add */
3691 if (sds->max_load * sds->busiest->__cpu_power <
3692 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3693 tmp = sg_div_cpu_power(sds->this,
3694 sds->max_load * sds->busiest->__cpu_power);
3695 else
3696 tmp = sg_div_cpu_power(sds->this,
3697 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3698 pwr_move += sds->this->__cpu_power *
3699 min(sds->this_load_per_task, sds->this_load + tmp);
3700 pwr_move /= SCHED_LOAD_SCALE;
3701
3702 /* Move if we gain throughput */
3703 if (pwr_move > pwr_now)
3704 *imbalance = sds->busiest_load_per_task;
3705}
dbc523a3
GS
3706
3707/**
3708 * calculate_imbalance - Calculate the amount of imbalance present within the
3709 * groups of a given sched_domain during load balance.
3710 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3711 * @this_cpu: Cpu for which currently load balance is being performed.
3712 * @imbalance: The variable to store the imbalance.
3713 */
3714static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3715 unsigned long *imbalance)
3716{
3717 unsigned long max_pull;
2dd73a4f
PW
3718 /*
3719 * In the presence of smp nice balancing, certain scenarios can have
3720 * max load less than avg load(as we skip the groups at or below
3721 * its cpu_power, while calculating max_load..)
3722 */
dbc523a3 3723 if (sds->max_load < sds->avg_load) {
2dd73a4f 3724 *imbalance = 0;
dbc523a3 3725 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3726 }
0c117f1b
SS
3727
3728 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3729 max_pull = min(sds->max_load - sds->avg_load,
3730 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3731
1da177e4 3732 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3733 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3734 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3735 / SCHED_LOAD_SCALE;
3736
2dd73a4f
PW
3737 /*
3738 * if *imbalance is less than the average load per runnable task
3739 * there is no gaurantee that any tasks will be moved so we'll have
3740 * a think about bumping its value to force at least one task to be
3741 * moved
3742 */
dbc523a3
GS
3743 if (*imbalance < sds->busiest_load_per_task)
3744 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3745
dbc523a3 3746}
37abe198 3747/******* find_busiest_group() helpers end here *********************/
1da177e4 3748
b7bb4c9b
GS
3749/**
3750 * find_busiest_group - Returns the busiest group within the sched_domain
3751 * if there is an imbalance. If there isn't an imbalance, and
3752 * the user has opted for power-savings, it returns a group whose
3753 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3754 * such a group exists.
3755 *
3756 * Also calculates the amount of weighted load which should be moved
3757 * to restore balance.
3758 *
3759 * @sd: The sched_domain whose busiest group is to be returned.
3760 * @this_cpu: The cpu for which load balancing is currently being performed.
3761 * @imbalance: Variable which stores amount of weighted load which should
3762 * be moved to restore balance/put a group to idle.
3763 * @idle: The idle status of this_cpu.
3764 * @sd_idle: The idleness of sd
3765 * @cpus: The set of CPUs under consideration for load-balancing.
3766 * @balance: Pointer to a variable indicating if this_cpu
3767 * is the appropriate cpu to perform load balancing at this_level.
3768 *
3769 * Returns: - the busiest group if imbalance exists.
3770 * - If no imbalance and user has opted for power-savings balance,
3771 * return the least loaded group whose CPUs can be
3772 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3773 */
3774static struct sched_group *
3775find_busiest_group(struct sched_domain *sd, int this_cpu,
3776 unsigned long *imbalance, enum cpu_idle_type idle,
3777 int *sd_idle, const struct cpumask *cpus, int *balance)
3778{
3779 struct sd_lb_stats sds;
1da177e4 3780
37abe198 3781 memset(&sds, 0, sizeof(sds));
1da177e4 3782
37abe198
GS
3783 /*
3784 * Compute the various statistics relavent for load balancing at
3785 * this level.
3786 */
3787 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3788 balance, &sds);
3789
b7bb4c9b
GS
3790 /* Cases where imbalance does not exist from POV of this_cpu */
3791 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3792 * at this level.
3793 * 2) There is no busy sibling group to pull from.
3794 * 3) This group is the busiest group.
3795 * 4) This group is more busy than the avg busieness at this
3796 * sched_domain.
3797 * 5) The imbalance is within the specified limit.
3798 * 6) Any rebalance would lead to ping-pong
3799 */
37abe198
GS
3800 if (balance && !(*balance))
3801 goto ret;
1da177e4 3802
b7bb4c9b
GS
3803 if (!sds.busiest || sds.busiest_nr_running == 0)
3804 goto out_balanced;
1da177e4 3805
b7bb4c9b 3806 if (sds.this_load >= sds.max_load)
1da177e4 3807 goto out_balanced;
1da177e4 3808
222d656d 3809 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3810
b7bb4c9b
GS
3811 if (sds.this_load >= sds.avg_load)
3812 goto out_balanced;
3813
3814 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3815 goto out_balanced;
3816
222d656d
GS
3817 sds.busiest_load_per_task /= sds.busiest_nr_running;
3818 if (sds.group_imb)
3819 sds.busiest_load_per_task =
3820 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3821
1da177e4
LT
3822 /*
3823 * We're trying to get all the cpus to the average_load, so we don't
3824 * want to push ourselves above the average load, nor do we wish to
3825 * reduce the max loaded cpu below the average load, as either of these
3826 * actions would just result in more rebalancing later, and ping-pong
3827 * tasks around. Thus we look for the minimum possible imbalance.
3828 * Negative imbalances (*we* are more loaded than anyone else) will
3829 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3830 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3831 * appear as very large values with unsigned longs.
3832 */
222d656d 3833 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3834 goto out_balanced;
3835
dbc523a3
GS
3836 /* Looks like there is an imbalance. Compute it */
3837 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3838 return sds.busiest;
1da177e4
LT
3839
3840out_balanced:
c071df18
GS
3841 /*
3842 * There is no obvious imbalance. But check if we can do some balancing
3843 * to save power.
3844 */
3845 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3846 return sds.busiest;
783609c6 3847ret:
1da177e4
LT
3848 *imbalance = 0;
3849 return NULL;
3850}
3851
3852/*
3853 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3854 */
70b97a7f 3855static struct rq *
d15bcfdb 3856find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3857 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3858{
70b97a7f 3859 struct rq *busiest = NULL, *rq;
2dd73a4f 3860 unsigned long max_load = 0;
1da177e4
LT
3861 int i;
3862
758b2cdc 3863 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3864 unsigned long wl;
0a2966b4 3865
96f874e2 3866 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3867 continue;
3868
48f24c4d 3869 rq = cpu_rq(i);
dd41f596 3870 wl = weighted_cpuload(i);
2dd73a4f 3871
dd41f596 3872 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3873 continue;
1da177e4 3874
dd41f596
IM
3875 if (wl > max_load) {
3876 max_load = wl;
48f24c4d 3877 busiest = rq;
1da177e4
LT
3878 }
3879 }
3880
3881 return busiest;
3882}
3883
77391d71
NP
3884/*
3885 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3886 * so long as it is large enough.
3887 */
3888#define MAX_PINNED_INTERVAL 512
3889
df7c8e84
RR
3890/* Working cpumask for load_balance and load_balance_newidle. */
3891static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3892
1da177e4
LT
3893/*
3894 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3895 * tasks if there is an imbalance.
1da177e4 3896 */
70b97a7f 3897static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3898 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3899 int *balance)
1da177e4 3900{
43010659 3901 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3902 struct sched_group *group;
1da177e4 3903 unsigned long imbalance;
70b97a7f 3904 struct rq *busiest;
fe2eea3f 3905 unsigned long flags;
df7c8e84 3906 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3907
96f874e2 3908 cpumask_setall(cpus);
7c16ec58 3909
89c4710e
SS
3910 /*
3911 * When power savings policy is enabled for the parent domain, idle
3912 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3913 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3914 * portraying it as CPU_NOT_IDLE.
89c4710e 3915 */
d15bcfdb 3916 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3917 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3918 sd_idle = 1;
1da177e4 3919
2d72376b 3920 schedstat_inc(sd, lb_count[idle]);
1da177e4 3921
0a2966b4 3922redo:
c8cba857 3923 update_shares(sd);
0a2966b4 3924 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3925 cpus, balance);
783609c6 3926
06066714 3927 if (*balance == 0)
783609c6 3928 goto out_balanced;
783609c6 3929
1da177e4
LT
3930 if (!group) {
3931 schedstat_inc(sd, lb_nobusyg[idle]);
3932 goto out_balanced;
3933 }
3934
7c16ec58 3935 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3936 if (!busiest) {
3937 schedstat_inc(sd, lb_nobusyq[idle]);
3938 goto out_balanced;
3939 }
3940
db935dbd 3941 BUG_ON(busiest == this_rq);
1da177e4
LT
3942
3943 schedstat_add(sd, lb_imbalance[idle], imbalance);
3944
43010659 3945 ld_moved = 0;
1da177e4
LT
3946 if (busiest->nr_running > 1) {
3947 /*
3948 * Attempt to move tasks. If find_busiest_group has found
3949 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3950 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3951 * correctly treated as an imbalance.
3952 */
fe2eea3f 3953 local_irq_save(flags);
e17224bf 3954 double_rq_lock(this_rq, busiest);
43010659 3955 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3956 imbalance, sd, idle, &all_pinned);
e17224bf 3957 double_rq_unlock(this_rq, busiest);
fe2eea3f 3958 local_irq_restore(flags);
81026794 3959
46cb4b7c
SS
3960 /*
3961 * some other cpu did the load balance for us.
3962 */
43010659 3963 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3964 resched_cpu(this_cpu);
3965
81026794 3966 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3967 if (unlikely(all_pinned)) {
96f874e2
RR
3968 cpumask_clear_cpu(cpu_of(busiest), cpus);
3969 if (!cpumask_empty(cpus))
0a2966b4 3970 goto redo;
81026794 3971 goto out_balanced;
0a2966b4 3972 }
1da177e4 3973 }
81026794 3974
43010659 3975 if (!ld_moved) {
1da177e4
LT
3976 schedstat_inc(sd, lb_failed[idle]);
3977 sd->nr_balance_failed++;
3978
3979 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3980
fe2eea3f 3981 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3982
3983 /* don't kick the migration_thread, if the curr
3984 * task on busiest cpu can't be moved to this_cpu
3985 */
96f874e2
RR
3986 if (!cpumask_test_cpu(this_cpu,
3987 &busiest->curr->cpus_allowed)) {
fe2eea3f 3988 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3989 all_pinned = 1;
3990 goto out_one_pinned;
3991 }
3992
1da177e4
LT
3993 if (!busiest->active_balance) {
3994 busiest->active_balance = 1;
3995 busiest->push_cpu = this_cpu;
81026794 3996 active_balance = 1;
1da177e4 3997 }
fe2eea3f 3998 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3999 if (active_balance)
1da177e4
LT
4000 wake_up_process(busiest->migration_thread);
4001
4002 /*
4003 * We've kicked active balancing, reset the failure
4004 * counter.
4005 */
39507451 4006 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4007 }
81026794 4008 } else
1da177e4
LT
4009 sd->nr_balance_failed = 0;
4010
81026794 4011 if (likely(!active_balance)) {
1da177e4
LT
4012 /* We were unbalanced, so reset the balancing interval */
4013 sd->balance_interval = sd->min_interval;
81026794
NP
4014 } else {
4015 /*
4016 * If we've begun active balancing, start to back off. This
4017 * case may not be covered by the all_pinned logic if there
4018 * is only 1 task on the busy runqueue (because we don't call
4019 * move_tasks).
4020 */
4021 if (sd->balance_interval < sd->max_interval)
4022 sd->balance_interval *= 2;
1da177e4
LT
4023 }
4024
43010659 4025 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4026 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4027 ld_moved = -1;
4028
4029 goto out;
1da177e4
LT
4030
4031out_balanced:
1da177e4
LT
4032 schedstat_inc(sd, lb_balanced[idle]);
4033
16cfb1c0 4034 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4035
4036out_one_pinned:
1da177e4 4037 /* tune up the balancing interval */
77391d71
NP
4038 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4039 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4040 sd->balance_interval *= 2;
4041
48f24c4d 4042 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4043 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4044 ld_moved = -1;
4045 else
4046 ld_moved = 0;
4047out:
c8cba857
PZ
4048 if (ld_moved)
4049 update_shares(sd);
c09595f6 4050 return ld_moved;
1da177e4
LT
4051}
4052
4053/*
4054 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4055 * tasks if there is an imbalance.
4056 *
d15bcfdb 4057 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4058 * this_rq is locked.
4059 */
48f24c4d 4060static int
df7c8e84 4061load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4062{
4063 struct sched_group *group;
70b97a7f 4064 struct rq *busiest = NULL;
1da177e4 4065 unsigned long imbalance;
43010659 4066 int ld_moved = 0;
5969fe06 4067 int sd_idle = 0;
969bb4e4 4068 int all_pinned = 0;
df7c8e84 4069 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4070
96f874e2 4071 cpumask_setall(cpus);
5969fe06 4072
89c4710e
SS
4073 /*
4074 * When power savings policy is enabled for the parent domain, idle
4075 * sibling can pick up load irrespective of busy siblings. In this case,
4076 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4077 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4078 */
4079 if (sd->flags & SD_SHARE_CPUPOWER &&
4080 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4081 sd_idle = 1;
1da177e4 4082
2d72376b 4083 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4084redo:
3e5459b4 4085 update_shares_locked(this_rq, sd);
d15bcfdb 4086 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4087 &sd_idle, cpus, NULL);
1da177e4 4088 if (!group) {
d15bcfdb 4089 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4090 goto out_balanced;
1da177e4
LT
4091 }
4092
7c16ec58 4093 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4094 if (!busiest) {
d15bcfdb 4095 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4096 goto out_balanced;
1da177e4
LT
4097 }
4098
db935dbd
NP
4099 BUG_ON(busiest == this_rq);
4100
d15bcfdb 4101 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4102
43010659 4103 ld_moved = 0;
d6d5cfaf
NP
4104 if (busiest->nr_running > 1) {
4105 /* Attempt to move tasks */
4106 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4107 /* this_rq->clock is already updated */
4108 update_rq_clock(busiest);
43010659 4109 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4110 imbalance, sd, CPU_NEWLY_IDLE,
4111 &all_pinned);
1b12bbc7 4112 double_unlock_balance(this_rq, busiest);
0a2966b4 4113
969bb4e4 4114 if (unlikely(all_pinned)) {
96f874e2
RR
4115 cpumask_clear_cpu(cpu_of(busiest), cpus);
4116 if (!cpumask_empty(cpus))
0a2966b4
CL
4117 goto redo;
4118 }
d6d5cfaf
NP
4119 }
4120
43010659 4121 if (!ld_moved) {
36dffab6 4122 int active_balance = 0;
ad273b32 4123
d15bcfdb 4124 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4125 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4126 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4127 return -1;
ad273b32
VS
4128
4129 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4130 return -1;
4131
4132 if (sd->nr_balance_failed++ < 2)
4133 return -1;
4134
4135 /*
4136 * The only task running in a non-idle cpu can be moved to this
4137 * cpu in an attempt to completely freeup the other CPU
4138 * package. The same method used to move task in load_balance()
4139 * have been extended for load_balance_newidle() to speedup
4140 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4141 *
4142 * The package power saving logic comes from
4143 * find_busiest_group(). If there are no imbalance, then
4144 * f_b_g() will return NULL. However when sched_mc={1,2} then
4145 * f_b_g() will select a group from which a running task may be
4146 * pulled to this cpu in order to make the other package idle.
4147 * If there is no opportunity to make a package idle and if
4148 * there are no imbalance, then f_b_g() will return NULL and no
4149 * action will be taken in load_balance_newidle().
4150 *
4151 * Under normal task pull operation due to imbalance, there
4152 * will be more than one task in the source run queue and
4153 * move_tasks() will succeed. ld_moved will be true and this
4154 * active balance code will not be triggered.
4155 */
4156
4157 /* Lock busiest in correct order while this_rq is held */
4158 double_lock_balance(this_rq, busiest);
4159
4160 /*
4161 * don't kick the migration_thread, if the curr
4162 * task on busiest cpu can't be moved to this_cpu
4163 */
6ca09dfc 4164 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4165 double_unlock_balance(this_rq, busiest);
4166 all_pinned = 1;
4167 return ld_moved;
4168 }
4169
4170 if (!busiest->active_balance) {
4171 busiest->active_balance = 1;
4172 busiest->push_cpu = this_cpu;
4173 active_balance = 1;
4174 }
4175
4176 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4177 /*
4178 * Should not call ttwu while holding a rq->lock
4179 */
4180 spin_unlock(&this_rq->lock);
ad273b32
VS
4181 if (active_balance)
4182 wake_up_process(busiest->migration_thread);
da8d5089 4183 spin_lock(&this_rq->lock);
ad273b32 4184
5969fe06 4185 } else
16cfb1c0 4186 sd->nr_balance_failed = 0;
1da177e4 4187
3e5459b4 4188 update_shares_locked(this_rq, sd);
43010659 4189 return ld_moved;
16cfb1c0
NP
4190
4191out_balanced:
d15bcfdb 4192 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4193 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4194 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4195 return -1;
16cfb1c0 4196 sd->nr_balance_failed = 0;
48f24c4d 4197
16cfb1c0 4198 return 0;
1da177e4
LT
4199}
4200
4201/*
4202 * idle_balance is called by schedule() if this_cpu is about to become
4203 * idle. Attempts to pull tasks from other CPUs.
4204 */
70b97a7f 4205static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4206{
4207 struct sched_domain *sd;
efbe027e 4208 int pulled_task = 0;
dd41f596 4209 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4210
4211 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4212 unsigned long interval;
4213
4214 if (!(sd->flags & SD_LOAD_BALANCE))
4215 continue;
4216
4217 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4218 /* If we've pulled tasks over stop searching: */
7c16ec58 4219 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4220 sd);
92c4ca5c
CL
4221
4222 interval = msecs_to_jiffies(sd->balance_interval);
4223 if (time_after(next_balance, sd->last_balance + interval))
4224 next_balance = sd->last_balance + interval;
4225 if (pulled_task)
4226 break;
1da177e4 4227 }
dd41f596 4228 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4229 /*
4230 * We are going idle. next_balance may be set based on
4231 * a busy processor. So reset next_balance.
4232 */
4233 this_rq->next_balance = next_balance;
dd41f596 4234 }
1da177e4
LT
4235}
4236
4237/*
4238 * active_load_balance is run by migration threads. It pushes running tasks
4239 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4240 * running on each physical CPU where possible, and avoids physical /
4241 * logical imbalances.
4242 *
4243 * Called with busiest_rq locked.
4244 */
70b97a7f 4245static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4246{
39507451 4247 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4248 struct sched_domain *sd;
4249 struct rq *target_rq;
39507451 4250
48f24c4d 4251 /* Is there any task to move? */
39507451 4252 if (busiest_rq->nr_running <= 1)
39507451
NP
4253 return;
4254
4255 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4256
4257 /*
39507451 4258 * This condition is "impossible", if it occurs
41a2d6cf 4259 * we need to fix it. Originally reported by
39507451 4260 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4261 */
39507451 4262 BUG_ON(busiest_rq == target_rq);
1da177e4 4263
39507451
NP
4264 /* move a task from busiest_rq to target_rq */
4265 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4266 update_rq_clock(busiest_rq);
4267 update_rq_clock(target_rq);
39507451
NP
4268
4269 /* Search for an sd spanning us and the target CPU. */
c96d145e 4270 for_each_domain(target_cpu, sd) {
39507451 4271 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4272 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4273 break;
c96d145e 4274 }
39507451 4275
48f24c4d 4276 if (likely(sd)) {
2d72376b 4277 schedstat_inc(sd, alb_count);
39507451 4278
43010659
PW
4279 if (move_one_task(target_rq, target_cpu, busiest_rq,
4280 sd, CPU_IDLE))
48f24c4d
IM
4281 schedstat_inc(sd, alb_pushed);
4282 else
4283 schedstat_inc(sd, alb_failed);
4284 }
1b12bbc7 4285 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4286}
4287
46cb4b7c
SS
4288#ifdef CONFIG_NO_HZ
4289static struct {
4290 atomic_t load_balancer;
7d1e6a9b 4291 cpumask_var_t cpu_mask;
f711f609 4292 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4293} nohz ____cacheline_aligned = {
4294 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4295};
4296
f711f609
GS
4297#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4298/**
4299 * lowest_flag_domain - Return lowest sched_domain containing flag.
4300 * @cpu: The cpu whose lowest level of sched domain is to
4301 * be returned.
4302 * @flag: The flag to check for the lowest sched_domain
4303 * for the given cpu.
4304 *
4305 * Returns the lowest sched_domain of a cpu which contains the given flag.
4306 */
4307static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4308{
4309 struct sched_domain *sd;
4310
4311 for_each_domain(cpu, sd)
4312 if (sd && (sd->flags & flag))
4313 break;
4314
4315 return sd;
4316}
4317
4318/**
4319 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4320 * @cpu: The cpu whose domains we're iterating over.
4321 * @sd: variable holding the value of the power_savings_sd
4322 * for cpu.
4323 * @flag: The flag to filter the sched_domains to be iterated.
4324 *
4325 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4326 * set, starting from the lowest sched_domain to the highest.
4327 */
4328#define for_each_flag_domain(cpu, sd, flag) \
4329 for (sd = lowest_flag_domain(cpu, flag); \
4330 (sd && (sd->flags & flag)); sd = sd->parent)
4331
4332/**
4333 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4334 * @ilb_group: group to be checked for semi-idleness
4335 *
4336 * Returns: 1 if the group is semi-idle. 0 otherwise.
4337 *
4338 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4339 * and atleast one non-idle CPU. This helper function checks if the given
4340 * sched_group is semi-idle or not.
4341 */
4342static inline int is_semi_idle_group(struct sched_group *ilb_group)
4343{
4344 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4345 sched_group_cpus(ilb_group));
4346
4347 /*
4348 * A sched_group is semi-idle when it has atleast one busy cpu
4349 * and atleast one idle cpu.
4350 */
4351 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4352 return 0;
4353
4354 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4355 return 0;
4356
4357 return 1;
4358}
4359/**
4360 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4361 * @cpu: The cpu which is nominating a new idle_load_balancer.
4362 *
4363 * Returns: Returns the id of the idle load balancer if it exists,
4364 * Else, returns >= nr_cpu_ids.
4365 *
4366 * This algorithm picks the idle load balancer such that it belongs to a
4367 * semi-idle powersavings sched_domain. The idea is to try and avoid
4368 * completely idle packages/cores just for the purpose of idle load balancing
4369 * when there are other idle cpu's which are better suited for that job.
4370 */
4371static int find_new_ilb(int cpu)
4372{
4373 struct sched_domain *sd;
4374 struct sched_group *ilb_group;
4375
4376 /*
4377 * Have idle load balancer selection from semi-idle packages only
4378 * when power-aware load balancing is enabled
4379 */
4380 if (!(sched_smt_power_savings || sched_mc_power_savings))
4381 goto out_done;
4382
4383 /*
4384 * Optimize for the case when we have no idle CPUs or only one
4385 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4386 */
4387 if (cpumask_weight(nohz.cpu_mask) < 2)
4388 goto out_done;
4389
4390 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4391 ilb_group = sd->groups;
4392
4393 do {
4394 if (is_semi_idle_group(ilb_group))
4395 return cpumask_first(nohz.ilb_grp_nohz_mask);
4396
4397 ilb_group = ilb_group->next;
4398
4399 } while (ilb_group != sd->groups);
4400 }
4401
4402out_done:
4403 return cpumask_first(nohz.cpu_mask);
4404}
4405#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4406static inline int find_new_ilb(int call_cpu)
4407{
6e29ec57 4408 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4409}
4410#endif
4411
7835b98b 4412/*
46cb4b7c
SS
4413 * This routine will try to nominate the ilb (idle load balancing)
4414 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4415 * load balancing on behalf of all those cpus. If all the cpus in the system
4416 * go into this tickless mode, then there will be no ilb owner (as there is
4417 * no need for one) and all the cpus will sleep till the next wakeup event
4418 * arrives...
4419 *
4420 * For the ilb owner, tick is not stopped. And this tick will be used
4421 * for idle load balancing. ilb owner will still be part of
4422 * nohz.cpu_mask..
7835b98b 4423 *
46cb4b7c
SS
4424 * While stopping the tick, this cpu will become the ilb owner if there
4425 * is no other owner. And will be the owner till that cpu becomes busy
4426 * or if all cpus in the system stop their ticks at which point
4427 * there is no need for ilb owner.
4428 *
4429 * When the ilb owner becomes busy, it nominates another owner, during the
4430 * next busy scheduler_tick()
4431 */
4432int select_nohz_load_balancer(int stop_tick)
4433{
4434 int cpu = smp_processor_id();
4435
4436 if (stop_tick) {
46cb4b7c
SS
4437 cpu_rq(cpu)->in_nohz_recently = 1;
4438
483b4ee6
SS
4439 if (!cpu_active(cpu)) {
4440 if (atomic_read(&nohz.load_balancer) != cpu)
4441 return 0;
4442
4443 /*
4444 * If we are going offline and still the leader,
4445 * give up!
4446 */
46cb4b7c
SS
4447 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4448 BUG();
483b4ee6 4449
46cb4b7c
SS
4450 return 0;
4451 }
4452
483b4ee6
SS
4453 cpumask_set_cpu(cpu, nohz.cpu_mask);
4454
46cb4b7c 4455 /* time for ilb owner also to sleep */
7d1e6a9b 4456 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4457 if (atomic_read(&nohz.load_balancer) == cpu)
4458 atomic_set(&nohz.load_balancer, -1);
4459 return 0;
4460 }
4461
4462 if (atomic_read(&nohz.load_balancer) == -1) {
4463 /* make me the ilb owner */
4464 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4465 return 1;
e790fb0b
GS
4466 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4467 int new_ilb;
4468
4469 if (!(sched_smt_power_savings ||
4470 sched_mc_power_savings))
4471 return 1;
4472 /*
4473 * Check to see if there is a more power-efficient
4474 * ilb.
4475 */
4476 new_ilb = find_new_ilb(cpu);
4477 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4478 atomic_set(&nohz.load_balancer, -1);
4479 resched_cpu(new_ilb);
4480 return 0;
4481 }
46cb4b7c 4482 return 1;
e790fb0b 4483 }
46cb4b7c 4484 } else {
7d1e6a9b 4485 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4486 return 0;
4487
7d1e6a9b 4488 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4489
4490 if (atomic_read(&nohz.load_balancer) == cpu)
4491 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4492 BUG();
4493 }
4494 return 0;
4495}
4496#endif
4497
4498static DEFINE_SPINLOCK(balancing);
4499
4500/*
7835b98b
CL
4501 * It checks each scheduling domain to see if it is due to be balanced,
4502 * and initiates a balancing operation if so.
4503 *
4504 * Balancing parameters are set up in arch_init_sched_domains.
4505 */
a9957449 4506static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4507{
46cb4b7c
SS
4508 int balance = 1;
4509 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4510 unsigned long interval;
4511 struct sched_domain *sd;
46cb4b7c 4512 /* Earliest time when we have to do rebalance again */
c9819f45 4513 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4514 int update_next_balance = 0;
d07355f5 4515 int need_serialize;
1da177e4 4516
46cb4b7c 4517 for_each_domain(cpu, sd) {
1da177e4
LT
4518 if (!(sd->flags & SD_LOAD_BALANCE))
4519 continue;
4520
4521 interval = sd->balance_interval;
d15bcfdb 4522 if (idle != CPU_IDLE)
1da177e4
LT
4523 interval *= sd->busy_factor;
4524
4525 /* scale ms to jiffies */
4526 interval = msecs_to_jiffies(interval);
4527 if (unlikely(!interval))
4528 interval = 1;
dd41f596
IM
4529 if (interval > HZ*NR_CPUS/10)
4530 interval = HZ*NR_CPUS/10;
4531
d07355f5 4532 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4533
d07355f5 4534 if (need_serialize) {
08c183f3
CL
4535 if (!spin_trylock(&balancing))
4536 goto out;
4537 }
4538
c9819f45 4539 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4540 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4541 /*
4542 * We've pulled tasks over so either we're no
5969fe06
NP
4543 * longer idle, or one of our SMT siblings is
4544 * not idle.
4545 */
d15bcfdb 4546 idle = CPU_NOT_IDLE;
1da177e4 4547 }
1bd77f2d 4548 sd->last_balance = jiffies;
1da177e4 4549 }
d07355f5 4550 if (need_serialize)
08c183f3
CL
4551 spin_unlock(&balancing);
4552out:
f549da84 4553 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4554 next_balance = sd->last_balance + interval;
f549da84
SS
4555 update_next_balance = 1;
4556 }
783609c6
SS
4557
4558 /*
4559 * Stop the load balance at this level. There is another
4560 * CPU in our sched group which is doing load balancing more
4561 * actively.
4562 */
4563 if (!balance)
4564 break;
1da177e4 4565 }
f549da84
SS
4566
4567 /*
4568 * next_balance will be updated only when there is a need.
4569 * When the cpu is attached to null domain for ex, it will not be
4570 * updated.
4571 */
4572 if (likely(update_next_balance))
4573 rq->next_balance = next_balance;
46cb4b7c
SS
4574}
4575
4576/*
4577 * run_rebalance_domains is triggered when needed from the scheduler tick.
4578 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4579 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4580 */
4581static void run_rebalance_domains(struct softirq_action *h)
4582{
dd41f596
IM
4583 int this_cpu = smp_processor_id();
4584 struct rq *this_rq = cpu_rq(this_cpu);
4585 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4586 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4587
dd41f596 4588 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4589
4590#ifdef CONFIG_NO_HZ
4591 /*
4592 * If this cpu is the owner for idle load balancing, then do the
4593 * balancing on behalf of the other idle cpus whose ticks are
4594 * stopped.
4595 */
dd41f596
IM
4596 if (this_rq->idle_at_tick &&
4597 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4598 struct rq *rq;
4599 int balance_cpu;
4600
7d1e6a9b
RR
4601 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4602 if (balance_cpu == this_cpu)
4603 continue;
4604
46cb4b7c
SS
4605 /*
4606 * If this cpu gets work to do, stop the load balancing
4607 * work being done for other cpus. Next load
4608 * balancing owner will pick it up.
4609 */
4610 if (need_resched())
4611 break;
4612
de0cf899 4613 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4614
4615 rq = cpu_rq(balance_cpu);
dd41f596
IM
4616 if (time_after(this_rq->next_balance, rq->next_balance))
4617 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4618 }
4619 }
4620#endif
4621}
4622
8a0be9ef
FW
4623static inline int on_null_domain(int cpu)
4624{
4625 return !rcu_dereference(cpu_rq(cpu)->sd);
4626}
4627
46cb4b7c
SS
4628/*
4629 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4630 *
4631 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4632 * idle load balancing owner or decide to stop the periodic load balancing,
4633 * if the whole system is idle.
4634 */
dd41f596 4635static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4636{
46cb4b7c
SS
4637#ifdef CONFIG_NO_HZ
4638 /*
4639 * If we were in the nohz mode recently and busy at the current
4640 * scheduler tick, then check if we need to nominate new idle
4641 * load balancer.
4642 */
4643 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4644 rq->in_nohz_recently = 0;
4645
4646 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4647 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4648 atomic_set(&nohz.load_balancer, -1);
4649 }
4650
4651 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4652 int ilb = find_new_ilb(cpu);
46cb4b7c 4653
434d53b0 4654 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4655 resched_cpu(ilb);
4656 }
4657 }
4658
4659 /*
4660 * If this cpu is idle and doing idle load balancing for all the
4661 * cpus with ticks stopped, is it time for that to stop?
4662 */
4663 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4664 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4665 resched_cpu(cpu);
4666 return;
4667 }
4668
4669 /*
4670 * If this cpu is idle and the idle load balancing is done by
4671 * someone else, then no need raise the SCHED_SOFTIRQ
4672 */
4673 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4674 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4675 return;
4676#endif
8a0be9ef
FW
4677 /* Don't need to rebalance while attached to NULL domain */
4678 if (time_after_eq(jiffies, rq->next_balance) &&
4679 likely(!on_null_domain(cpu)))
46cb4b7c 4680 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4681}
dd41f596
IM
4682
4683#else /* CONFIG_SMP */
4684
1da177e4
LT
4685/*
4686 * on UP we do not need to balance between CPUs:
4687 */
70b97a7f 4688static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4689{
4690}
dd41f596 4691
1da177e4
LT
4692#endif
4693
1da177e4
LT
4694DEFINE_PER_CPU(struct kernel_stat, kstat);
4695
4696EXPORT_PER_CPU_SYMBOL(kstat);
4697
4698/*
c5f8d995 4699 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4700 * @p in case that task is currently running.
c5f8d995
HS
4701 *
4702 * Called with task_rq_lock() held on @rq.
1da177e4 4703 */
c5f8d995
HS
4704static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4705{
4706 u64 ns = 0;
4707
4708 if (task_current(rq, p)) {
4709 update_rq_clock(rq);
4710 ns = rq->clock - p->se.exec_start;
4711 if ((s64)ns < 0)
4712 ns = 0;
4713 }
4714
4715 return ns;
4716}
4717
bb34d92f 4718unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4719{
1da177e4 4720 unsigned long flags;
41b86e9c 4721 struct rq *rq;
bb34d92f 4722 u64 ns = 0;
48f24c4d 4723
41b86e9c 4724 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4725 ns = do_task_delta_exec(p, rq);
4726 task_rq_unlock(rq, &flags);
1508487e 4727
c5f8d995
HS
4728 return ns;
4729}
f06febc9 4730
c5f8d995
HS
4731/*
4732 * Return accounted runtime for the task.
4733 * In case the task is currently running, return the runtime plus current's
4734 * pending runtime that have not been accounted yet.
4735 */
4736unsigned long long task_sched_runtime(struct task_struct *p)
4737{
4738 unsigned long flags;
4739 struct rq *rq;
4740 u64 ns = 0;
4741
4742 rq = task_rq_lock(p, &flags);
4743 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4744 task_rq_unlock(rq, &flags);
4745
4746 return ns;
4747}
48f24c4d 4748
c5f8d995
HS
4749/*
4750 * Return sum_exec_runtime for the thread group.
4751 * In case the task is currently running, return the sum plus current's
4752 * pending runtime that have not been accounted yet.
4753 *
4754 * Note that the thread group might have other running tasks as well,
4755 * so the return value not includes other pending runtime that other
4756 * running tasks might have.
4757 */
4758unsigned long long thread_group_sched_runtime(struct task_struct *p)
4759{
4760 struct task_cputime totals;
4761 unsigned long flags;
4762 struct rq *rq;
4763 u64 ns;
4764
4765 rq = task_rq_lock(p, &flags);
4766 thread_group_cputime(p, &totals);
4767 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4768 task_rq_unlock(rq, &flags);
48f24c4d 4769
1da177e4
LT
4770 return ns;
4771}
4772
1da177e4
LT
4773/*
4774 * Account user cpu time to a process.
4775 * @p: the process that the cpu time gets accounted to
1da177e4 4776 * @cputime: the cpu time spent in user space since the last update
457533a7 4777 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4778 */
457533a7
MS
4779void account_user_time(struct task_struct *p, cputime_t cputime,
4780 cputime_t cputime_scaled)
1da177e4
LT
4781{
4782 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4783 cputime64_t tmp;
4784
457533a7 4785 /* Add user time to process. */
1da177e4 4786 p->utime = cputime_add(p->utime, cputime);
457533a7 4787 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4788 account_group_user_time(p, cputime);
1da177e4
LT
4789
4790 /* Add user time to cpustat. */
4791 tmp = cputime_to_cputime64(cputime);
4792 if (TASK_NICE(p) > 0)
4793 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4794 else
4795 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4796
4797 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4798 /* Account for user time used */
4799 acct_update_integrals(p);
1da177e4
LT
4800}
4801
94886b84
LV
4802/*
4803 * Account guest cpu time to a process.
4804 * @p: the process that the cpu time gets accounted to
4805 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4806 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4807 */
457533a7
MS
4808static void account_guest_time(struct task_struct *p, cputime_t cputime,
4809 cputime_t cputime_scaled)
94886b84
LV
4810{
4811 cputime64_t tmp;
4812 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4813
4814 tmp = cputime_to_cputime64(cputime);
4815
457533a7 4816 /* Add guest time to process. */
94886b84 4817 p->utime = cputime_add(p->utime, cputime);
457533a7 4818 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4819 account_group_user_time(p, cputime);
94886b84
LV
4820 p->gtime = cputime_add(p->gtime, cputime);
4821
457533a7 4822 /* Add guest time to cpustat. */
94886b84
LV
4823 cpustat->user = cputime64_add(cpustat->user, tmp);
4824 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4825}
4826
1da177e4
LT
4827/*
4828 * Account system cpu time to a process.
4829 * @p: the process that the cpu time gets accounted to
4830 * @hardirq_offset: the offset to subtract from hardirq_count()
4831 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4832 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4833 */
4834void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4835 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4836{
4837 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4838 cputime64_t tmp;
4839
983ed7a6 4840 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4841 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4842 return;
4843 }
94886b84 4844
457533a7 4845 /* Add system time to process. */
1da177e4 4846 p->stime = cputime_add(p->stime, cputime);
457533a7 4847 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4848 account_group_system_time(p, cputime);
1da177e4
LT
4849
4850 /* Add system time to cpustat. */
4851 tmp = cputime_to_cputime64(cputime);
4852 if (hardirq_count() - hardirq_offset)
4853 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4854 else if (softirq_count())
4855 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4856 else
79741dd3
MS
4857 cpustat->system = cputime64_add(cpustat->system, tmp);
4858
ef12fefa
BR
4859 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4860
1da177e4
LT
4861 /* Account for system time used */
4862 acct_update_integrals(p);
1da177e4
LT
4863}
4864
c66f08be 4865/*
1da177e4 4866 * Account for involuntary wait time.
1da177e4 4867 * @steal: the cpu time spent in involuntary wait
c66f08be 4868 */
79741dd3 4869void account_steal_time(cputime_t cputime)
c66f08be 4870{
79741dd3
MS
4871 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4872 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4873
4874 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4875}
4876
1da177e4 4877/*
79741dd3
MS
4878 * Account for idle time.
4879 * @cputime: the cpu time spent in idle wait
1da177e4 4880 */
79741dd3 4881void account_idle_time(cputime_t cputime)
1da177e4
LT
4882{
4883 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4884 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4885 struct rq *rq = this_rq();
1da177e4 4886
79741dd3
MS
4887 if (atomic_read(&rq->nr_iowait) > 0)
4888 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4889 else
4890 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4891}
4892
79741dd3
MS
4893#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4894
4895/*
4896 * Account a single tick of cpu time.
4897 * @p: the process that the cpu time gets accounted to
4898 * @user_tick: indicates if the tick is a user or a system tick
4899 */
4900void account_process_tick(struct task_struct *p, int user_tick)
4901{
4902 cputime_t one_jiffy = jiffies_to_cputime(1);
4903 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4904 struct rq *rq = this_rq();
4905
4906 if (user_tick)
4907 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4908 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4909 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4910 one_jiffy_scaled);
4911 else
4912 account_idle_time(one_jiffy);
4913}
4914
4915/*
4916 * Account multiple ticks of steal time.
4917 * @p: the process from which the cpu time has been stolen
4918 * @ticks: number of stolen ticks
4919 */
4920void account_steal_ticks(unsigned long ticks)
4921{
4922 account_steal_time(jiffies_to_cputime(ticks));
4923}
4924
4925/*
4926 * Account multiple ticks of idle time.
4927 * @ticks: number of stolen ticks
4928 */
4929void account_idle_ticks(unsigned long ticks)
4930{
4931 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4932}
4933
79741dd3
MS
4934#endif
4935
49048622
BS
4936/*
4937 * Use precise platform statistics if available:
4938 */
4939#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4940cputime_t task_utime(struct task_struct *p)
4941{
4942 return p->utime;
4943}
4944
4945cputime_t task_stime(struct task_struct *p)
4946{
4947 return p->stime;
4948}
4949#else
4950cputime_t task_utime(struct task_struct *p)
4951{
4952 clock_t utime = cputime_to_clock_t(p->utime),
4953 total = utime + cputime_to_clock_t(p->stime);
4954 u64 temp;
4955
4956 /*
4957 * Use CFS's precise accounting:
4958 */
4959 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4960
4961 if (total) {
4962 temp *= utime;
4963 do_div(temp, total);
4964 }
4965 utime = (clock_t)temp;
4966
4967 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4968 return p->prev_utime;
4969}
4970
4971cputime_t task_stime(struct task_struct *p)
4972{
4973 clock_t stime;
4974
4975 /*
4976 * Use CFS's precise accounting. (we subtract utime from
4977 * the total, to make sure the total observed by userspace
4978 * grows monotonically - apps rely on that):
4979 */
4980 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4981 cputime_to_clock_t(task_utime(p));
4982
4983 if (stime >= 0)
4984 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4985
4986 return p->prev_stime;
4987}
4988#endif
4989
4990inline cputime_t task_gtime(struct task_struct *p)
4991{
4992 return p->gtime;
4993}
4994
7835b98b
CL
4995/*
4996 * This function gets called by the timer code, with HZ frequency.
4997 * We call it with interrupts disabled.
4998 *
4999 * It also gets called by the fork code, when changing the parent's
5000 * timeslices.
5001 */
5002void scheduler_tick(void)
5003{
7835b98b
CL
5004 int cpu = smp_processor_id();
5005 struct rq *rq = cpu_rq(cpu);
dd41f596 5006 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5007
5008 sched_clock_tick();
dd41f596
IM
5009
5010 spin_lock(&rq->lock);
3e51f33f 5011 update_rq_clock(rq);
f1a438d8 5012 update_cpu_load(rq);
fa85ae24 5013 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5014 spin_unlock(&rq->lock);
7835b98b 5015
e418e1c2 5016#ifdef CONFIG_SMP
dd41f596
IM
5017 rq->idle_at_tick = idle_cpu(cpu);
5018 trigger_load_balance(rq, cpu);
e418e1c2 5019#endif
1da177e4
LT
5020}
5021
132380a0 5022notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5023{
5024 if (in_lock_functions(addr)) {
5025 addr = CALLER_ADDR2;
5026 if (in_lock_functions(addr))
5027 addr = CALLER_ADDR3;
5028 }
5029 return addr;
5030}
1da177e4 5031
7e49fcce
SR
5032#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5033 defined(CONFIG_PREEMPT_TRACER))
5034
43627582 5035void __kprobes add_preempt_count(int val)
1da177e4 5036{
6cd8a4bb 5037#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5038 /*
5039 * Underflow?
5040 */
9a11b49a
IM
5041 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5042 return;
6cd8a4bb 5043#endif
1da177e4 5044 preempt_count() += val;
6cd8a4bb 5045#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5046 /*
5047 * Spinlock count overflowing soon?
5048 */
33859f7f
MOS
5049 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5050 PREEMPT_MASK - 10);
6cd8a4bb
SR
5051#endif
5052 if (preempt_count() == val)
5053 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5054}
5055EXPORT_SYMBOL(add_preempt_count);
5056
43627582 5057void __kprobes sub_preempt_count(int val)
1da177e4 5058{
6cd8a4bb 5059#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5060 /*
5061 * Underflow?
5062 */
01e3eb82 5063 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5064 return;
1da177e4
LT
5065 /*
5066 * Is the spinlock portion underflowing?
5067 */
9a11b49a
IM
5068 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5069 !(preempt_count() & PREEMPT_MASK)))
5070 return;
6cd8a4bb 5071#endif
9a11b49a 5072
6cd8a4bb
SR
5073 if (preempt_count() == val)
5074 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5075 preempt_count() -= val;
5076}
5077EXPORT_SYMBOL(sub_preempt_count);
5078
5079#endif
5080
5081/*
dd41f596 5082 * Print scheduling while atomic bug:
1da177e4 5083 */
dd41f596 5084static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5085{
838225b4
SS
5086 struct pt_regs *regs = get_irq_regs();
5087
5088 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5089 prev->comm, prev->pid, preempt_count());
5090
dd41f596 5091 debug_show_held_locks(prev);
e21f5b15 5092 print_modules();
dd41f596
IM
5093 if (irqs_disabled())
5094 print_irqtrace_events(prev);
838225b4
SS
5095
5096 if (regs)
5097 show_regs(regs);
5098 else
5099 dump_stack();
dd41f596 5100}
1da177e4 5101
dd41f596
IM
5102/*
5103 * Various schedule()-time debugging checks and statistics:
5104 */
5105static inline void schedule_debug(struct task_struct *prev)
5106{
1da177e4 5107 /*
41a2d6cf 5108 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5109 * schedule() atomically, we ignore that path for now.
5110 * Otherwise, whine if we are scheduling when we should not be.
5111 */
3f33a7ce 5112 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5113 __schedule_bug(prev);
5114
1da177e4
LT
5115 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5116
2d72376b 5117 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5118#ifdef CONFIG_SCHEDSTATS
5119 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5120 schedstat_inc(this_rq(), bkl_count);
5121 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5122 }
5123#endif
dd41f596
IM
5124}
5125
df1c99d4
MG
5126static void put_prev_task(struct rq *rq, struct task_struct *prev)
5127{
5128 if (prev->state == TASK_RUNNING) {
5129 u64 runtime = prev->se.sum_exec_runtime;
5130
5131 runtime -= prev->se.prev_sum_exec_runtime;
5132 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5133
5134 /*
5135 * In order to avoid avg_overlap growing stale when we are
5136 * indeed overlapping and hence not getting put to sleep, grow
5137 * the avg_overlap on preemption.
5138 *
5139 * We use the average preemption runtime because that
5140 * correlates to the amount of cache footprint a task can
5141 * build up.
5142 */
5143 update_avg(&prev->se.avg_overlap, runtime);
5144 }
5145 prev->sched_class->put_prev_task(rq, prev);
5146}
5147
dd41f596
IM
5148/*
5149 * Pick up the highest-prio task:
5150 */
5151static inline struct task_struct *
b67802ea 5152pick_next_task(struct rq *rq)
dd41f596 5153{
5522d5d5 5154 const struct sched_class *class;
dd41f596 5155 struct task_struct *p;
1da177e4
LT
5156
5157 /*
dd41f596
IM
5158 * Optimization: we know that if all tasks are in
5159 * the fair class we can call that function directly:
1da177e4 5160 */
dd41f596 5161 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5162 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5163 if (likely(p))
5164 return p;
1da177e4
LT
5165 }
5166
dd41f596
IM
5167 class = sched_class_highest;
5168 for ( ; ; ) {
fb8d4724 5169 p = class->pick_next_task(rq);
dd41f596
IM
5170 if (p)
5171 return p;
5172 /*
5173 * Will never be NULL as the idle class always
5174 * returns a non-NULL p:
5175 */
5176 class = class->next;
5177 }
5178}
1da177e4 5179
dd41f596
IM
5180/*
5181 * schedule() is the main scheduler function.
5182 */
ff743345 5183asmlinkage void __sched schedule(void)
dd41f596
IM
5184{
5185 struct task_struct *prev, *next;
67ca7bde 5186 unsigned long *switch_count;
dd41f596 5187 struct rq *rq;
31656519 5188 int cpu;
dd41f596 5189
ff743345
PZ
5190need_resched:
5191 preempt_disable();
dd41f596
IM
5192 cpu = smp_processor_id();
5193 rq = cpu_rq(cpu);
5194 rcu_qsctr_inc(cpu);
5195 prev = rq->curr;
5196 switch_count = &prev->nivcsw;
5197
5198 release_kernel_lock(prev);
5199need_resched_nonpreemptible:
5200
5201 schedule_debug(prev);
1da177e4 5202
31656519 5203 if (sched_feat(HRTICK))
f333fdc9 5204 hrtick_clear(rq);
8f4d37ec 5205
8cd162ce 5206 spin_lock_irq(&rq->lock);
3e51f33f 5207 update_rq_clock(rq);
1e819950 5208 clear_tsk_need_resched(prev);
1da177e4 5209
1da177e4 5210 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5211 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5212 prev->state = TASK_RUNNING;
16882c1e 5213 else
2e1cb74a 5214 deactivate_task(rq, prev, 1);
dd41f596 5215 switch_count = &prev->nvcsw;
1da177e4
LT
5216 }
5217
9a897c5a
SR
5218#ifdef CONFIG_SMP
5219 if (prev->sched_class->pre_schedule)
5220 prev->sched_class->pre_schedule(rq, prev);
5221#endif
f65eda4f 5222
dd41f596 5223 if (unlikely(!rq->nr_running))
1da177e4 5224 idle_balance(cpu, rq);
1da177e4 5225
df1c99d4 5226 put_prev_task(rq, prev);
b67802ea 5227 next = pick_next_task(rq);
1da177e4 5228
1da177e4 5229 if (likely(prev != next)) {
673a90a1
DS
5230 sched_info_switch(prev, next);
5231
1da177e4
LT
5232 rq->nr_switches++;
5233 rq->curr = next;
5234 ++*switch_count;
5235
dd41f596 5236 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5237 /*
5238 * the context switch might have flipped the stack from under
5239 * us, hence refresh the local variables.
5240 */
5241 cpu = smp_processor_id();
5242 rq = cpu_rq(cpu);
1da177e4
LT
5243 } else
5244 spin_unlock_irq(&rq->lock);
5245
8f4d37ec 5246 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5247 goto need_resched_nonpreemptible;
8f4d37ec 5248
1da177e4 5249 preempt_enable_no_resched();
ff743345 5250 if (need_resched())
1da177e4
LT
5251 goto need_resched;
5252}
1da177e4
LT
5253EXPORT_SYMBOL(schedule);
5254
0d66bf6d
PZ
5255#ifdef CONFIG_SMP
5256/*
5257 * Look out! "owner" is an entirely speculative pointer
5258 * access and not reliable.
5259 */
5260int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5261{
5262 unsigned int cpu;
5263 struct rq *rq;
5264
5265 if (!sched_feat(OWNER_SPIN))
5266 return 0;
5267
5268#ifdef CONFIG_DEBUG_PAGEALLOC
5269 /*
5270 * Need to access the cpu field knowing that
5271 * DEBUG_PAGEALLOC could have unmapped it if
5272 * the mutex owner just released it and exited.
5273 */
5274 if (probe_kernel_address(&owner->cpu, cpu))
5275 goto out;
5276#else
5277 cpu = owner->cpu;
5278#endif
5279
5280 /*
5281 * Even if the access succeeded (likely case),
5282 * the cpu field may no longer be valid.
5283 */
5284 if (cpu >= nr_cpumask_bits)
5285 goto out;
5286
5287 /*
5288 * We need to validate that we can do a
5289 * get_cpu() and that we have the percpu area.
5290 */
5291 if (!cpu_online(cpu))
5292 goto out;
5293
5294 rq = cpu_rq(cpu);
5295
5296 for (;;) {
5297 /*
5298 * Owner changed, break to re-assess state.
5299 */
5300 if (lock->owner != owner)
5301 break;
5302
5303 /*
5304 * Is that owner really running on that cpu?
5305 */
5306 if (task_thread_info(rq->curr) != owner || need_resched())
5307 return 0;
5308
5309 cpu_relax();
5310 }
5311out:
5312 return 1;
5313}
5314#endif
5315
1da177e4
LT
5316#ifdef CONFIG_PREEMPT
5317/*
2ed6e34f 5318 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5319 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5320 * occur there and call schedule directly.
5321 */
5322asmlinkage void __sched preempt_schedule(void)
5323{
5324 struct thread_info *ti = current_thread_info();
6478d880 5325
1da177e4
LT
5326 /*
5327 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5328 * we do not want to preempt the current task. Just return..
1da177e4 5329 */
beed33a8 5330 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5331 return;
5332
3a5c359a
AK
5333 do {
5334 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5335 schedule();
3a5c359a 5336 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5337
3a5c359a
AK
5338 /*
5339 * Check again in case we missed a preemption opportunity
5340 * between schedule and now.
5341 */
5342 barrier();
5ed0cec0 5343 } while (need_resched());
1da177e4 5344}
1da177e4
LT
5345EXPORT_SYMBOL(preempt_schedule);
5346
5347/*
2ed6e34f 5348 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5349 * off of irq context.
5350 * Note, that this is called and return with irqs disabled. This will
5351 * protect us against recursive calling from irq.
5352 */
5353asmlinkage void __sched preempt_schedule_irq(void)
5354{
5355 struct thread_info *ti = current_thread_info();
6478d880 5356
2ed6e34f 5357 /* Catch callers which need to be fixed */
1da177e4
LT
5358 BUG_ON(ti->preempt_count || !irqs_disabled());
5359
3a5c359a
AK
5360 do {
5361 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5362 local_irq_enable();
5363 schedule();
5364 local_irq_disable();
3a5c359a 5365 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5366
3a5c359a
AK
5367 /*
5368 * Check again in case we missed a preemption opportunity
5369 * between schedule and now.
5370 */
5371 barrier();
5ed0cec0 5372 } while (need_resched());
1da177e4
LT
5373}
5374
5375#endif /* CONFIG_PREEMPT */
5376
95cdf3b7
IM
5377int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5378 void *key)
1da177e4 5379{
48f24c4d 5380 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5381}
1da177e4
LT
5382EXPORT_SYMBOL(default_wake_function);
5383
5384/*
41a2d6cf
IM
5385 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5386 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5387 * number) then we wake all the non-exclusive tasks and one exclusive task.
5388 *
5389 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5390 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5391 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5392 */
78ddb08f 5393static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5394 int nr_exclusive, int sync, void *key)
1da177e4 5395{
2e45874c 5396 wait_queue_t *curr, *next;
1da177e4 5397
2e45874c 5398 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5399 unsigned flags = curr->flags;
5400
1da177e4 5401 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5402 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5403 break;
5404 }
5405}
5406
5407/**
5408 * __wake_up - wake up threads blocked on a waitqueue.
5409 * @q: the waitqueue
5410 * @mode: which threads
5411 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5412 * @key: is directly passed to the wakeup function
1da177e4 5413 */
7ad5b3a5 5414void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5415 int nr_exclusive, void *key)
1da177e4
LT
5416{
5417 unsigned long flags;
5418
5419 spin_lock_irqsave(&q->lock, flags);
5420 __wake_up_common(q, mode, nr_exclusive, 0, key);
5421 spin_unlock_irqrestore(&q->lock, flags);
5422}
1da177e4
LT
5423EXPORT_SYMBOL(__wake_up);
5424
5425/*
5426 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5427 */
7ad5b3a5 5428void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5429{
5430 __wake_up_common(q, mode, 1, 0, NULL);
5431}
5432
4ede816a
DL
5433void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5434{
5435 __wake_up_common(q, mode, 1, 0, key);
5436}
5437
1da177e4 5438/**
4ede816a 5439 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5440 * @q: the waitqueue
5441 * @mode: which threads
5442 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5443 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5444 *
5445 * The sync wakeup differs that the waker knows that it will schedule
5446 * away soon, so while the target thread will be woken up, it will not
5447 * be migrated to another CPU - ie. the two threads are 'synchronized'
5448 * with each other. This can prevent needless bouncing between CPUs.
5449 *
5450 * On UP it can prevent extra preemption.
5451 */
4ede816a
DL
5452void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5453 int nr_exclusive, void *key)
1da177e4
LT
5454{
5455 unsigned long flags;
5456 int sync = 1;
5457
5458 if (unlikely(!q))
5459 return;
5460
5461 if (unlikely(!nr_exclusive))
5462 sync = 0;
5463
5464 spin_lock_irqsave(&q->lock, flags);
4ede816a 5465 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5466 spin_unlock_irqrestore(&q->lock, flags);
5467}
4ede816a
DL
5468EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5469
5470/*
5471 * __wake_up_sync - see __wake_up_sync_key()
5472 */
5473void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5474{
5475 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5476}
1da177e4
LT
5477EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5478
65eb3dc6
KD
5479/**
5480 * complete: - signals a single thread waiting on this completion
5481 * @x: holds the state of this particular completion
5482 *
5483 * This will wake up a single thread waiting on this completion. Threads will be
5484 * awakened in the same order in which they were queued.
5485 *
5486 * See also complete_all(), wait_for_completion() and related routines.
5487 */
b15136e9 5488void complete(struct completion *x)
1da177e4
LT
5489{
5490 unsigned long flags;
5491
5492 spin_lock_irqsave(&x->wait.lock, flags);
5493 x->done++;
d9514f6c 5494 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5495 spin_unlock_irqrestore(&x->wait.lock, flags);
5496}
5497EXPORT_SYMBOL(complete);
5498
65eb3dc6
KD
5499/**
5500 * complete_all: - signals all threads waiting on this completion
5501 * @x: holds the state of this particular completion
5502 *
5503 * This will wake up all threads waiting on this particular completion event.
5504 */
b15136e9 5505void complete_all(struct completion *x)
1da177e4
LT
5506{
5507 unsigned long flags;
5508
5509 spin_lock_irqsave(&x->wait.lock, flags);
5510 x->done += UINT_MAX/2;
d9514f6c 5511 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5512 spin_unlock_irqrestore(&x->wait.lock, flags);
5513}
5514EXPORT_SYMBOL(complete_all);
5515
8cbbe86d
AK
5516static inline long __sched
5517do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5518{
1da177e4
LT
5519 if (!x->done) {
5520 DECLARE_WAITQUEUE(wait, current);
5521
5522 wait.flags |= WQ_FLAG_EXCLUSIVE;
5523 __add_wait_queue_tail(&x->wait, &wait);
5524 do {
94d3d824 5525 if (signal_pending_state(state, current)) {
ea71a546
ON
5526 timeout = -ERESTARTSYS;
5527 break;
8cbbe86d
AK
5528 }
5529 __set_current_state(state);
1da177e4
LT
5530 spin_unlock_irq(&x->wait.lock);
5531 timeout = schedule_timeout(timeout);
5532 spin_lock_irq(&x->wait.lock);
ea71a546 5533 } while (!x->done && timeout);
1da177e4 5534 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5535 if (!x->done)
5536 return timeout;
1da177e4
LT
5537 }
5538 x->done--;
ea71a546 5539 return timeout ?: 1;
1da177e4 5540}
1da177e4 5541
8cbbe86d
AK
5542static long __sched
5543wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5544{
1da177e4
LT
5545 might_sleep();
5546
5547 spin_lock_irq(&x->wait.lock);
8cbbe86d 5548 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5549 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5550 return timeout;
5551}
1da177e4 5552
65eb3dc6
KD
5553/**
5554 * wait_for_completion: - waits for completion of a task
5555 * @x: holds the state of this particular completion
5556 *
5557 * This waits to be signaled for completion of a specific task. It is NOT
5558 * interruptible and there is no timeout.
5559 *
5560 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5561 * and interrupt capability. Also see complete().
5562 */
b15136e9 5563void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5564{
5565 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5566}
8cbbe86d 5567EXPORT_SYMBOL(wait_for_completion);
1da177e4 5568
65eb3dc6
KD
5569/**
5570 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5571 * @x: holds the state of this particular completion
5572 * @timeout: timeout value in jiffies
5573 *
5574 * This waits for either a completion of a specific task to be signaled or for a
5575 * specified timeout to expire. The timeout is in jiffies. It is not
5576 * interruptible.
5577 */
b15136e9 5578unsigned long __sched
8cbbe86d 5579wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5580{
8cbbe86d 5581 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5582}
8cbbe86d 5583EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5584
65eb3dc6
KD
5585/**
5586 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5587 * @x: holds the state of this particular completion
5588 *
5589 * This waits for completion of a specific task to be signaled. It is
5590 * interruptible.
5591 */
8cbbe86d 5592int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5593{
51e97990
AK
5594 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5595 if (t == -ERESTARTSYS)
5596 return t;
5597 return 0;
0fec171c 5598}
8cbbe86d 5599EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5600
65eb3dc6
KD
5601/**
5602 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5603 * @x: holds the state of this particular completion
5604 * @timeout: timeout value in jiffies
5605 *
5606 * This waits for either a completion of a specific task to be signaled or for a
5607 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5608 */
b15136e9 5609unsigned long __sched
8cbbe86d
AK
5610wait_for_completion_interruptible_timeout(struct completion *x,
5611 unsigned long timeout)
0fec171c 5612{
8cbbe86d 5613 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5614}
8cbbe86d 5615EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5616
65eb3dc6
KD
5617/**
5618 * wait_for_completion_killable: - waits for completion of a task (killable)
5619 * @x: holds the state of this particular completion
5620 *
5621 * This waits to be signaled for completion of a specific task. It can be
5622 * interrupted by a kill signal.
5623 */
009e577e
MW
5624int __sched wait_for_completion_killable(struct completion *x)
5625{
5626 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5627 if (t == -ERESTARTSYS)
5628 return t;
5629 return 0;
5630}
5631EXPORT_SYMBOL(wait_for_completion_killable);
5632
be4de352
DC
5633/**
5634 * try_wait_for_completion - try to decrement a completion without blocking
5635 * @x: completion structure
5636 *
5637 * Returns: 0 if a decrement cannot be done without blocking
5638 * 1 if a decrement succeeded.
5639 *
5640 * If a completion is being used as a counting completion,
5641 * attempt to decrement the counter without blocking. This
5642 * enables us to avoid waiting if the resource the completion
5643 * is protecting is not available.
5644 */
5645bool try_wait_for_completion(struct completion *x)
5646{
5647 int ret = 1;
5648
5649 spin_lock_irq(&x->wait.lock);
5650 if (!x->done)
5651 ret = 0;
5652 else
5653 x->done--;
5654 spin_unlock_irq(&x->wait.lock);
5655 return ret;
5656}
5657EXPORT_SYMBOL(try_wait_for_completion);
5658
5659/**
5660 * completion_done - Test to see if a completion has any waiters
5661 * @x: completion structure
5662 *
5663 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5664 * 1 if there are no waiters.
5665 *
5666 */
5667bool completion_done(struct completion *x)
5668{
5669 int ret = 1;
5670
5671 spin_lock_irq(&x->wait.lock);
5672 if (!x->done)
5673 ret = 0;
5674 spin_unlock_irq(&x->wait.lock);
5675 return ret;
5676}
5677EXPORT_SYMBOL(completion_done);
5678
8cbbe86d
AK
5679static long __sched
5680sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5681{
0fec171c
IM
5682 unsigned long flags;
5683 wait_queue_t wait;
5684
5685 init_waitqueue_entry(&wait, current);
1da177e4 5686
8cbbe86d 5687 __set_current_state(state);
1da177e4 5688
8cbbe86d
AK
5689 spin_lock_irqsave(&q->lock, flags);
5690 __add_wait_queue(q, &wait);
5691 spin_unlock(&q->lock);
5692 timeout = schedule_timeout(timeout);
5693 spin_lock_irq(&q->lock);
5694 __remove_wait_queue(q, &wait);
5695 spin_unlock_irqrestore(&q->lock, flags);
5696
5697 return timeout;
5698}
5699
5700void __sched interruptible_sleep_on(wait_queue_head_t *q)
5701{
5702 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5703}
1da177e4
LT
5704EXPORT_SYMBOL(interruptible_sleep_on);
5705
0fec171c 5706long __sched
95cdf3b7 5707interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5708{
8cbbe86d 5709 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5710}
1da177e4
LT
5711EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5712
0fec171c 5713void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5714{
8cbbe86d 5715 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5716}
1da177e4
LT
5717EXPORT_SYMBOL(sleep_on);
5718
0fec171c 5719long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5720{
8cbbe86d 5721 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5722}
1da177e4
LT
5723EXPORT_SYMBOL(sleep_on_timeout);
5724
b29739f9
IM
5725#ifdef CONFIG_RT_MUTEXES
5726
5727/*
5728 * rt_mutex_setprio - set the current priority of a task
5729 * @p: task
5730 * @prio: prio value (kernel-internal form)
5731 *
5732 * This function changes the 'effective' priority of a task. It does
5733 * not touch ->normal_prio like __setscheduler().
5734 *
5735 * Used by the rt_mutex code to implement priority inheritance logic.
5736 */
36c8b586 5737void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5738{
5739 unsigned long flags;
83b699ed 5740 int oldprio, on_rq, running;
70b97a7f 5741 struct rq *rq;
cb469845 5742 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5743
5744 BUG_ON(prio < 0 || prio > MAX_PRIO);
5745
5746 rq = task_rq_lock(p, &flags);
a8e504d2 5747 update_rq_clock(rq);
b29739f9 5748
d5f9f942 5749 oldprio = p->prio;
dd41f596 5750 on_rq = p->se.on_rq;
051a1d1a 5751 running = task_current(rq, p);
0e1f3483 5752 if (on_rq)
69be72c1 5753 dequeue_task(rq, p, 0);
0e1f3483
HS
5754 if (running)
5755 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5756
5757 if (rt_prio(prio))
5758 p->sched_class = &rt_sched_class;
5759 else
5760 p->sched_class = &fair_sched_class;
5761
b29739f9
IM
5762 p->prio = prio;
5763
0e1f3483
HS
5764 if (running)
5765 p->sched_class->set_curr_task(rq);
dd41f596 5766 if (on_rq) {
8159f87e 5767 enqueue_task(rq, p, 0);
cb469845
SR
5768
5769 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5770 }
5771 task_rq_unlock(rq, &flags);
5772}
5773
5774#endif
5775
36c8b586 5776void set_user_nice(struct task_struct *p, long nice)
1da177e4 5777{
dd41f596 5778 int old_prio, delta, on_rq;
1da177e4 5779 unsigned long flags;
70b97a7f 5780 struct rq *rq;
1da177e4
LT
5781
5782 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5783 return;
5784 /*
5785 * We have to be careful, if called from sys_setpriority(),
5786 * the task might be in the middle of scheduling on another CPU.
5787 */
5788 rq = task_rq_lock(p, &flags);
a8e504d2 5789 update_rq_clock(rq);
1da177e4
LT
5790 /*
5791 * The RT priorities are set via sched_setscheduler(), but we still
5792 * allow the 'normal' nice value to be set - but as expected
5793 * it wont have any effect on scheduling until the task is
dd41f596 5794 * SCHED_FIFO/SCHED_RR:
1da177e4 5795 */
e05606d3 5796 if (task_has_rt_policy(p)) {
1da177e4
LT
5797 p->static_prio = NICE_TO_PRIO(nice);
5798 goto out_unlock;
5799 }
dd41f596 5800 on_rq = p->se.on_rq;
c09595f6 5801 if (on_rq)
69be72c1 5802 dequeue_task(rq, p, 0);
1da177e4 5803
1da177e4 5804 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5805 set_load_weight(p);
b29739f9
IM
5806 old_prio = p->prio;
5807 p->prio = effective_prio(p);
5808 delta = p->prio - old_prio;
1da177e4 5809
dd41f596 5810 if (on_rq) {
8159f87e 5811 enqueue_task(rq, p, 0);
1da177e4 5812 /*
d5f9f942
AM
5813 * If the task increased its priority or is running and
5814 * lowered its priority, then reschedule its CPU:
1da177e4 5815 */
d5f9f942 5816 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5817 resched_task(rq->curr);
5818 }
5819out_unlock:
5820 task_rq_unlock(rq, &flags);
5821}
1da177e4
LT
5822EXPORT_SYMBOL(set_user_nice);
5823
e43379f1
MM
5824/*
5825 * can_nice - check if a task can reduce its nice value
5826 * @p: task
5827 * @nice: nice value
5828 */
36c8b586 5829int can_nice(const struct task_struct *p, const int nice)
e43379f1 5830{
024f4747
MM
5831 /* convert nice value [19,-20] to rlimit style value [1,40] */
5832 int nice_rlim = 20 - nice;
48f24c4d 5833
e43379f1
MM
5834 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5835 capable(CAP_SYS_NICE));
5836}
5837
1da177e4
LT
5838#ifdef __ARCH_WANT_SYS_NICE
5839
5840/*
5841 * sys_nice - change the priority of the current process.
5842 * @increment: priority increment
5843 *
5844 * sys_setpriority is a more generic, but much slower function that
5845 * does similar things.
5846 */
5add95d4 5847SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5848{
48f24c4d 5849 long nice, retval;
1da177e4
LT
5850
5851 /*
5852 * Setpriority might change our priority at the same moment.
5853 * We don't have to worry. Conceptually one call occurs first
5854 * and we have a single winner.
5855 */
e43379f1
MM
5856 if (increment < -40)
5857 increment = -40;
1da177e4
LT
5858 if (increment > 40)
5859 increment = 40;
5860
2b8f836f 5861 nice = TASK_NICE(current) + increment;
1da177e4
LT
5862 if (nice < -20)
5863 nice = -20;
5864 if (nice > 19)
5865 nice = 19;
5866
e43379f1
MM
5867 if (increment < 0 && !can_nice(current, nice))
5868 return -EPERM;
5869
1da177e4
LT
5870 retval = security_task_setnice(current, nice);
5871 if (retval)
5872 return retval;
5873
5874 set_user_nice(current, nice);
5875 return 0;
5876}
5877
5878#endif
5879
5880/**
5881 * task_prio - return the priority value of a given task.
5882 * @p: the task in question.
5883 *
5884 * This is the priority value as seen by users in /proc.
5885 * RT tasks are offset by -200. Normal tasks are centered
5886 * around 0, value goes from -16 to +15.
5887 */
36c8b586 5888int task_prio(const struct task_struct *p)
1da177e4
LT
5889{
5890 return p->prio - MAX_RT_PRIO;
5891}
5892
5893/**
5894 * task_nice - return the nice value of a given task.
5895 * @p: the task in question.
5896 */
36c8b586 5897int task_nice(const struct task_struct *p)
1da177e4
LT
5898{
5899 return TASK_NICE(p);
5900}
150d8bed 5901EXPORT_SYMBOL(task_nice);
1da177e4
LT
5902
5903/**
5904 * idle_cpu - is a given cpu idle currently?
5905 * @cpu: the processor in question.
5906 */
5907int idle_cpu(int cpu)
5908{
5909 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5910}
5911
1da177e4
LT
5912/**
5913 * idle_task - return the idle task for a given cpu.
5914 * @cpu: the processor in question.
5915 */
36c8b586 5916struct task_struct *idle_task(int cpu)
1da177e4
LT
5917{
5918 return cpu_rq(cpu)->idle;
5919}
5920
5921/**
5922 * find_process_by_pid - find a process with a matching PID value.
5923 * @pid: the pid in question.
5924 */
a9957449 5925static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5926{
228ebcbe 5927 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5928}
5929
5930/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5931static void
5932__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5933{
dd41f596 5934 BUG_ON(p->se.on_rq);
48f24c4d 5935
1da177e4 5936 p->policy = policy;
dd41f596
IM
5937 switch (p->policy) {
5938 case SCHED_NORMAL:
5939 case SCHED_BATCH:
5940 case SCHED_IDLE:
5941 p->sched_class = &fair_sched_class;
5942 break;
5943 case SCHED_FIFO:
5944 case SCHED_RR:
5945 p->sched_class = &rt_sched_class;
5946 break;
5947 }
5948
1da177e4 5949 p->rt_priority = prio;
b29739f9
IM
5950 p->normal_prio = normal_prio(p);
5951 /* we are holding p->pi_lock already */
5952 p->prio = rt_mutex_getprio(p);
2dd73a4f 5953 set_load_weight(p);
1da177e4
LT
5954}
5955
c69e8d9c
DH
5956/*
5957 * check the target process has a UID that matches the current process's
5958 */
5959static bool check_same_owner(struct task_struct *p)
5960{
5961 const struct cred *cred = current_cred(), *pcred;
5962 bool match;
5963
5964 rcu_read_lock();
5965 pcred = __task_cred(p);
5966 match = (cred->euid == pcred->euid ||
5967 cred->euid == pcred->uid);
5968 rcu_read_unlock();
5969 return match;
5970}
5971
961ccddd
RR
5972static int __sched_setscheduler(struct task_struct *p, int policy,
5973 struct sched_param *param, bool user)
1da177e4 5974{
83b699ed 5975 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5976 unsigned long flags;
cb469845 5977 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5978 struct rq *rq;
1da177e4 5979
66e5393a
SR
5980 /* may grab non-irq protected spin_locks */
5981 BUG_ON(in_interrupt());
1da177e4
LT
5982recheck:
5983 /* double check policy once rq lock held */
5984 if (policy < 0)
5985 policy = oldpolicy = p->policy;
5986 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5987 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5988 policy != SCHED_IDLE)
b0a9499c 5989 return -EINVAL;
1da177e4
LT
5990 /*
5991 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5992 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5993 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5994 */
5995 if (param->sched_priority < 0 ||
95cdf3b7 5996 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5997 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5998 return -EINVAL;
e05606d3 5999 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6000 return -EINVAL;
6001
37e4ab3f
OC
6002 /*
6003 * Allow unprivileged RT tasks to decrease priority:
6004 */
961ccddd 6005 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6006 if (rt_policy(policy)) {
8dc3e909 6007 unsigned long rlim_rtprio;
8dc3e909
ON
6008
6009 if (!lock_task_sighand(p, &flags))
6010 return -ESRCH;
6011 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6012 unlock_task_sighand(p, &flags);
6013
6014 /* can't set/change the rt policy */
6015 if (policy != p->policy && !rlim_rtprio)
6016 return -EPERM;
6017
6018 /* can't increase priority */
6019 if (param->sched_priority > p->rt_priority &&
6020 param->sched_priority > rlim_rtprio)
6021 return -EPERM;
6022 }
dd41f596
IM
6023 /*
6024 * Like positive nice levels, dont allow tasks to
6025 * move out of SCHED_IDLE either:
6026 */
6027 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6028 return -EPERM;
5fe1d75f 6029
37e4ab3f 6030 /* can't change other user's priorities */
c69e8d9c 6031 if (!check_same_owner(p))
37e4ab3f
OC
6032 return -EPERM;
6033 }
1da177e4 6034
725aad24 6035 if (user) {
b68aa230 6036#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6037 /*
6038 * Do not allow realtime tasks into groups that have no runtime
6039 * assigned.
6040 */
9a7e0b18
PZ
6041 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6042 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6043 return -EPERM;
b68aa230
PZ
6044#endif
6045
725aad24
JF
6046 retval = security_task_setscheduler(p, policy, param);
6047 if (retval)
6048 return retval;
6049 }
6050
b29739f9
IM
6051 /*
6052 * make sure no PI-waiters arrive (or leave) while we are
6053 * changing the priority of the task:
6054 */
6055 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6056 /*
6057 * To be able to change p->policy safely, the apropriate
6058 * runqueue lock must be held.
6059 */
b29739f9 6060 rq = __task_rq_lock(p);
1da177e4
LT
6061 /* recheck policy now with rq lock held */
6062 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6063 policy = oldpolicy = -1;
b29739f9
IM
6064 __task_rq_unlock(rq);
6065 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6066 goto recheck;
6067 }
2daa3577 6068 update_rq_clock(rq);
dd41f596 6069 on_rq = p->se.on_rq;
051a1d1a 6070 running = task_current(rq, p);
0e1f3483 6071 if (on_rq)
2e1cb74a 6072 deactivate_task(rq, p, 0);
0e1f3483
HS
6073 if (running)
6074 p->sched_class->put_prev_task(rq, p);
f6b53205 6075
1da177e4 6076 oldprio = p->prio;
dd41f596 6077 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6078
0e1f3483
HS
6079 if (running)
6080 p->sched_class->set_curr_task(rq);
dd41f596
IM
6081 if (on_rq) {
6082 activate_task(rq, p, 0);
cb469845
SR
6083
6084 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6085 }
b29739f9
IM
6086 __task_rq_unlock(rq);
6087 spin_unlock_irqrestore(&p->pi_lock, flags);
6088
95e02ca9
TG
6089 rt_mutex_adjust_pi(p);
6090
1da177e4
LT
6091 return 0;
6092}
961ccddd
RR
6093
6094/**
6095 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6096 * @p: the task in question.
6097 * @policy: new policy.
6098 * @param: structure containing the new RT priority.
6099 *
6100 * NOTE that the task may be already dead.
6101 */
6102int sched_setscheduler(struct task_struct *p, int policy,
6103 struct sched_param *param)
6104{
6105 return __sched_setscheduler(p, policy, param, true);
6106}
1da177e4
LT
6107EXPORT_SYMBOL_GPL(sched_setscheduler);
6108
961ccddd
RR
6109/**
6110 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6111 * @p: the task in question.
6112 * @policy: new policy.
6113 * @param: structure containing the new RT priority.
6114 *
6115 * Just like sched_setscheduler, only don't bother checking if the
6116 * current context has permission. For example, this is needed in
6117 * stop_machine(): we create temporary high priority worker threads,
6118 * but our caller might not have that capability.
6119 */
6120int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6121 struct sched_param *param)
6122{
6123 return __sched_setscheduler(p, policy, param, false);
6124}
6125
95cdf3b7
IM
6126static int
6127do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6128{
1da177e4
LT
6129 struct sched_param lparam;
6130 struct task_struct *p;
36c8b586 6131 int retval;
1da177e4
LT
6132
6133 if (!param || pid < 0)
6134 return -EINVAL;
6135 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6136 return -EFAULT;
5fe1d75f
ON
6137
6138 rcu_read_lock();
6139 retval = -ESRCH;
1da177e4 6140 p = find_process_by_pid(pid);
5fe1d75f
ON
6141 if (p != NULL)
6142 retval = sched_setscheduler(p, policy, &lparam);
6143 rcu_read_unlock();
36c8b586 6144
1da177e4
LT
6145 return retval;
6146}
6147
6148/**
6149 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6150 * @pid: the pid in question.
6151 * @policy: new policy.
6152 * @param: structure containing the new RT priority.
6153 */
5add95d4
HC
6154SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6155 struct sched_param __user *, param)
1da177e4 6156{
c21761f1
JB
6157 /* negative values for policy are not valid */
6158 if (policy < 0)
6159 return -EINVAL;
6160
1da177e4
LT
6161 return do_sched_setscheduler(pid, policy, param);
6162}
6163
6164/**
6165 * sys_sched_setparam - set/change the RT priority of a thread
6166 * @pid: the pid in question.
6167 * @param: structure containing the new RT priority.
6168 */
5add95d4 6169SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6170{
6171 return do_sched_setscheduler(pid, -1, param);
6172}
6173
6174/**
6175 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6176 * @pid: the pid in question.
6177 */
5add95d4 6178SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6179{
36c8b586 6180 struct task_struct *p;
3a5c359a 6181 int retval;
1da177e4
LT
6182
6183 if (pid < 0)
3a5c359a 6184 return -EINVAL;
1da177e4
LT
6185
6186 retval = -ESRCH;
6187 read_lock(&tasklist_lock);
6188 p = find_process_by_pid(pid);
6189 if (p) {
6190 retval = security_task_getscheduler(p);
6191 if (!retval)
6192 retval = p->policy;
6193 }
6194 read_unlock(&tasklist_lock);
1da177e4
LT
6195 return retval;
6196}
6197
6198/**
6199 * sys_sched_getscheduler - get the RT priority of a thread
6200 * @pid: the pid in question.
6201 * @param: structure containing the RT priority.
6202 */
5add95d4 6203SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6204{
6205 struct sched_param lp;
36c8b586 6206 struct task_struct *p;
3a5c359a 6207 int retval;
1da177e4
LT
6208
6209 if (!param || pid < 0)
3a5c359a 6210 return -EINVAL;
1da177e4
LT
6211
6212 read_lock(&tasklist_lock);
6213 p = find_process_by_pid(pid);
6214 retval = -ESRCH;
6215 if (!p)
6216 goto out_unlock;
6217
6218 retval = security_task_getscheduler(p);
6219 if (retval)
6220 goto out_unlock;
6221
6222 lp.sched_priority = p->rt_priority;
6223 read_unlock(&tasklist_lock);
6224
6225 /*
6226 * This one might sleep, we cannot do it with a spinlock held ...
6227 */
6228 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6229
1da177e4
LT
6230 return retval;
6231
6232out_unlock:
6233 read_unlock(&tasklist_lock);
6234 return retval;
6235}
6236
96f874e2 6237long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6238{
5a16f3d3 6239 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6240 struct task_struct *p;
6241 int retval;
1da177e4 6242
95402b38 6243 get_online_cpus();
1da177e4
LT
6244 read_lock(&tasklist_lock);
6245
6246 p = find_process_by_pid(pid);
6247 if (!p) {
6248 read_unlock(&tasklist_lock);
95402b38 6249 put_online_cpus();
1da177e4
LT
6250 return -ESRCH;
6251 }
6252
6253 /*
6254 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6255 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6256 * usage count and then drop tasklist_lock.
6257 */
6258 get_task_struct(p);
6259 read_unlock(&tasklist_lock);
6260
5a16f3d3
RR
6261 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6262 retval = -ENOMEM;
6263 goto out_put_task;
6264 }
6265 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6266 retval = -ENOMEM;
6267 goto out_free_cpus_allowed;
6268 }
1da177e4 6269 retval = -EPERM;
c69e8d9c 6270 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6271 goto out_unlock;
6272
e7834f8f
DQ
6273 retval = security_task_setscheduler(p, 0, NULL);
6274 if (retval)
6275 goto out_unlock;
6276
5a16f3d3
RR
6277 cpuset_cpus_allowed(p, cpus_allowed);
6278 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6279 again:
5a16f3d3 6280 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6281
8707d8b8 6282 if (!retval) {
5a16f3d3
RR
6283 cpuset_cpus_allowed(p, cpus_allowed);
6284 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6285 /*
6286 * We must have raced with a concurrent cpuset
6287 * update. Just reset the cpus_allowed to the
6288 * cpuset's cpus_allowed
6289 */
5a16f3d3 6290 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6291 goto again;
6292 }
6293 }
1da177e4 6294out_unlock:
5a16f3d3
RR
6295 free_cpumask_var(new_mask);
6296out_free_cpus_allowed:
6297 free_cpumask_var(cpus_allowed);
6298out_put_task:
1da177e4 6299 put_task_struct(p);
95402b38 6300 put_online_cpus();
1da177e4
LT
6301 return retval;
6302}
6303
6304static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6305 struct cpumask *new_mask)
1da177e4 6306{
96f874e2
RR
6307 if (len < cpumask_size())
6308 cpumask_clear(new_mask);
6309 else if (len > cpumask_size())
6310 len = cpumask_size();
6311
1da177e4
LT
6312 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6313}
6314
6315/**
6316 * sys_sched_setaffinity - set the cpu affinity of a process
6317 * @pid: pid of the process
6318 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6319 * @user_mask_ptr: user-space pointer to the new cpu mask
6320 */
5add95d4
HC
6321SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6322 unsigned long __user *, user_mask_ptr)
1da177e4 6323{
5a16f3d3 6324 cpumask_var_t new_mask;
1da177e4
LT
6325 int retval;
6326
5a16f3d3
RR
6327 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6328 return -ENOMEM;
1da177e4 6329
5a16f3d3
RR
6330 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6331 if (retval == 0)
6332 retval = sched_setaffinity(pid, new_mask);
6333 free_cpumask_var(new_mask);
6334 return retval;
1da177e4
LT
6335}
6336
96f874e2 6337long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6338{
36c8b586 6339 struct task_struct *p;
1da177e4 6340 int retval;
1da177e4 6341
95402b38 6342 get_online_cpus();
1da177e4
LT
6343 read_lock(&tasklist_lock);
6344
6345 retval = -ESRCH;
6346 p = find_process_by_pid(pid);
6347 if (!p)
6348 goto out_unlock;
6349
e7834f8f
DQ
6350 retval = security_task_getscheduler(p);
6351 if (retval)
6352 goto out_unlock;
6353
96f874e2 6354 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6355
6356out_unlock:
6357 read_unlock(&tasklist_lock);
95402b38 6358 put_online_cpus();
1da177e4 6359
9531b62f 6360 return retval;
1da177e4
LT
6361}
6362
6363/**
6364 * sys_sched_getaffinity - get the cpu affinity of a process
6365 * @pid: pid of the process
6366 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6367 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6368 */
5add95d4
HC
6369SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6370 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6371{
6372 int ret;
f17c8607 6373 cpumask_var_t mask;
1da177e4 6374
f17c8607 6375 if (len < cpumask_size())
1da177e4
LT
6376 return -EINVAL;
6377
f17c8607
RR
6378 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6379 return -ENOMEM;
1da177e4 6380
f17c8607
RR
6381 ret = sched_getaffinity(pid, mask);
6382 if (ret == 0) {
6383 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6384 ret = -EFAULT;
6385 else
6386 ret = cpumask_size();
6387 }
6388 free_cpumask_var(mask);
1da177e4 6389
f17c8607 6390 return ret;
1da177e4
LT
6391}
6392
6393/**
6394 * sys_sched_yield - yield the current processor to other threads.
6395 *
dd41f596
IM
6396 * This function yields the current CPU to other tasks. If there are no
6397 * other threads running on this CPU then this function will return.
1da177e4 6398 */
5add95d4 6399SYSCALL_DEFINE0(sched_yield)
1da177e4 6400{
70b97a7f 6401 struct rq *rq = this_rq_lock();
1da177e4 6402
2d72376b 6403 schedstat_inc(rq, yld_count);
4530d7ab 6404 current->sched_class->yield_task(rq);
1da177e4
LT
6405
6406 /*
6407 * Since we are going to call schedule() anyway, there's
6408 * no need to preempt or enable interrupts:
6409 */
6410 __release(rq->lock);
8a25d5de 6411 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6412 _raw_spin_unlock(&rq->lock);
6413 preempt_enable_no_resched();
6414
6415 schedule();
6416
6417 return 0;
6418}
6419
e7b38404 6420static void __cond_resched(void)
1da177e4 6421{
8e0a43d8
IM
6422#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6423 __might_sleep(__FILE__, __LINE__);
6424#endif
5bbcfd90
IM
6425 /*
6426 * The BKS might be reacquired before we have dropped
6427 * PREEMPT_ACTIVE, which could trigger a second
6428 * cond_resched() call.
6429 */
1da177e4
LT
6430 do {
6431 add_preempt_count(PREEMPT_ACTIVE);
6432 schedule();
6433 sub_preempt_count(PREEMPT_ACTIVE);
6434 } while (need_resched());
6435}
6436
02b67cc3 6437int __sched _cond_resched(void)
1da177e4 6438{
9414232f
IM
6439 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6440 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6441 __cond_resched();
6442 return 1;
6443 }
6444 return 0;
6445}
02b67cc3 6446EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6447
6448/*
6449 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6450 * call schedule, and on return reacquire the lock.
6451 *
41a2d6cf 6452 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6453 * operations here to prevent schedule() from being called twice (once via
6454 * spin_unlock(), once by hand).
6455 */
95cdf3b7 6456int cond_resched_lock(spinlock_t *lock)
1da177e4 6457{
95c354fe 6458 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6459 int ret = 0;
6460
95c354fe 6461 if (spin_needbreak(lock) || resched) {
1da177e4 6462 spin_unlock(lock);
95c354fe
NP
6463 if (resched && need_resched())
6464 __cond_resched();
6465 else
6466 cpu_relax();
6df3cecb 6467 ret = 1;
1da177e4 6468 spin_lock(lock);
1da177e4 6469 }
6df3cecb 6470 return ret;
1da177e4 6471}
1da177e4
LT
6472EXPORT_SYMBOL(cond_resched_lock);
6473
6474int __sched cond_resched_softirq(void)
6475{
6476 BUG_ON(!in_softirq());
6477
9414232f 6478 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6479 local_bh_enable();
1da177e4
LT
6480 __cond_resched();
6481 local_bh_disable();
6482 return 1;
6483 }
6484 return 0;
6485}
1da177e4
LT
6486EXPORT_SYMBOL(cond_resched_softirq);
6487
1da177e4
LT
6488/**
6489 * yield - yield the current processor to other threads.
6490 *
72fd4a35 6491 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6492 * thread runnable and calls sys_sched_yield().
6493 */
6494void __sched yield(void)
6495{
6496 set_current_state(TASK_RUNNING);
6497 sys_sched_yield();
6498}
1da177e4
LT
6499EXPORT_SYMBOL(yield);
6500
6501/*
41a2d6cf 6502 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6503 * that process accounting knows that this is a task in IO wait state.
6504 *
6505 * But don't do that if it is a deliberate, throttling IO wait (this task
6506 * has set its backing_dev_info: the queue against which it should throttle)
6507 */
6508void __sched io_schedule(void)
6509{
70b97a7f 6510 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6511
0ff92245 6512 delayacct_blkio_start();
1da177e4
LT
6513 atomic_inc(&rq->nr_iowait);
6514 schedule();
6515 atomic_dec(&rq->nr_iowait);
0ff92245 6516 delayacct_blkio_end();
1da177e4 6517}
1da177e4
LT
6518EXPORT_SYMBOL(io_schedule);
6519
6520long __sched io_schedule_timeout(long timeout)
6521{
70b97a7f 6522 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6523 long ret;
6524
0ff92245 6525 delayacct_blkio_start();
1da177e4
LT
6526 atomic_inc(&rq->nr_iowait);
6527 ret = schedule_timeout(timeout);
6528 atomic_dec(&rq->nr_iowait);
0ff92245 6529 delayacct_blkio_end();
1da177e4
LT
6530 return ret;
6531}
6532
6533/**
6534 * sys_sched_get_priority_max - return maximum RT priority.
6535 * @policy: scheduling class.
6536 *
6537 * this syscall returns the maximum rt_priority that can be used
6538 * by a given scheduling class.
6539 */
5add95d4 6540SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6541{
6542 int ret = -EINVAL;
6543
6544 switch (policy) {
6545 case SCHED_FIFO:
6546 case SCHED_RR:
6547 ret = MAX_USER_RT_PRIO-1;
6548 break;
6549 case SCHED_NORMAL:
b0a9499c 6550 case SCHED_BATCH:
dd41f596 6551 case SCHED_IDLE:
1da177e4
LT
6552 ret = 0;
6553 break;
6554 }
6555 return ret;
6556}
6557
6558/**
6559 * sys_sched_get_priority_min - return minimum RT priority.
6560 * @policy: scheduling class.
6561 *
6562 * this syscall returns the minimum rt_priority that can be used
6563 * by a given scheduling class.
6564 */
5add95d4 6565SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6566{
6567 int ret = -EINVAL;
6568
6569 switch (policy) {
6570 case SCHED_FIFO:
6571 case SCHED_RR:
6572 ret = 1;
6573 break;
6574 case SCHED_NORMAL:
b0a9499c 6575 case SCHED_BATCH:
dd41f596 6576 case SCHED_IDLE:
1da177e4
LT
6577 ret = 0;
6578 }
6579 return ret;
6580}
6581
6582/**
6583 * sys_sched_rr_get_interval - return the default timeslice of a process.
6584 * @pid: pid of the process.
6585 * @interval: userspace pointer to the timeslice value.
6586 *
6587 * this syscall writes the default timeslice value of a given process
6588 * into the user-space timespec buffer. A value of '0' means infinity.
6589 */
17da2bd9 6590SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6591 struct timespec __user *, interval)
1da177e4 6592{
36c8b586 6593 struct task_struct *p;
a4ec24b4 6594 unsigned int time_slice;
3a5c359a 6595 int retval;
1da177e4 6596 struct timespec t;
1da177e4
LT
6597
6598 if (pid < 0)
3a5c359a 6599 return -EINVAL;
1da177e4
LT
6600
6601 retval = -ESRCH;
6602 read_lock(&tasklist_lock);
6603 p = find_process_by_pid(pid);
6604 if (!p)
6605 goto out_unlock;
6606
6607 retval = security_task_getscheduler(p);
6608 if (retval)
6609 goto out_unlock;
6610
77034937
IM
6611 /*
6612 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6613 * tasks that are on an otherwise idle runqueue:
6614 */
6615 time_slice = 0;
6616 if (p->policy == SCHED_RR) {
a4ec24b4 6617 time_slice = DEF_TIMESLICE;
1868f958 6618 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6619 struct sched_entity *se = &p->se;
6620 unsigned long flags;
6621 struct rq *rq;
6622
6623 rq = task_rq_lock(p, &flags);
77034937
IM
6624 if (rq->cfs.load.weight)
6625 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6626 task_rq_unlock(rq, &flags);
6627 }
1da177e4 6628 read_unlock(&tasklist_lock);
a4ec24b4 6629 jiffies_to_timespec(time_slice, &t);
1da177e4 6630 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6631 return retval;
3a5c359a 6632
1da177e4
LT
6633out_unlock:
6634 read_unlock(&tasklist_lock);
6635 return retval;
6636}
6637
7c731e0a 6638static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6639
82a1fcb9 6640void sched_show_task(struct task_struct *p)
1da177e4 6641{
1da177e4 6642 unsigned long free = 0;
36c8b586 6643 unsigned state;
1da177e4 6644
1da177e4 6645 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6646 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6647 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6648#if BITS_PER_LONG == 32
1da177e4 6649 if (state == TASK_RUNNING)
cc4ea795 6650 printk(KERN_CONT " running ");
1da177e4 6651 else
cc4ea795 6652 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6653#else
6654 if (state == TASK_RUNNING)
cc4ea795 6655 printk(KERN_CONT " running task ");
1da177e4 6656 else
cc4ea795 6657 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6658#endif
6659#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6660 free = stack_not_used(p);
1da177e4 6661#endif
aa47b7e0
DR
6662 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6663 task_pid_nr(p), task_pid_nr(p->real_parent),
6664 (unsigned long)task_thread_info(p)->flags);
1da177e4 6665
5fb5e6de 6666 show_stack(p, NULL);
1da177e4
LT
6667}
6668
e59e2ae2 6669void show_state_filter(unsigned long state_filter)
1da177e4 6670{
36c8b586 6671 struct task_struct *g, *p;
1da177e4 6672
4bd77321
IM
6673#if BITS_PER_LONG == 32
6674 printk(KERN_INFO
6675 " task PC stack pid father\n");
1da177e4 6676#else
4bd77321
IM
6677 printk(KERN_INFO
6678 " task PC stack pid father\n");
1da177e4
LT
6679#endif
6680 read_lock(&tasklist_lock);
6681 do_each_thread(g, p) {
6682 /*
6683 * reset the NMI-timeout, listing all files on a slow
6684 * console might take alot of time:
6685 */
6686 touch_nmi_watchdog();
39bc89fd 6687 if (!state_filter || (p->state & state_filter))
82a1fcb9 6688 sched_show_task(p);
1da177e4
LT
6689 } while_each_thread(g, p);
6690
04c9167f
JF
6691 touch_all_softlockup_watchdogs();
6692
dd41f596
IM
6693#ifdef CONFIG_SCHED_DEBUG
6694 sysrq_sched_debug_show();
6695#endif
1da177e4 6696 read_unlock(&tasklist_lock);
e59e2ae2
IM
6697 /*
6698 * Only show locks if all tasks are dumped:
6699 */
6700 if (state_filter == -1)
6701 debug_show_all_locks();
1da177e4
LT
6702}
6703
1df21055
IM
6704void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6705{
dd41f596 6706 idle->sched_class = &idle_sched_class;
1df21055
IM
6707}
6708
f340c0d1
IM
6709/**
6710 * init_idle - set up an idle thread for a given CPU
6711 * @idle: task in question
6712 * @cpu: cpu the idle task belongs to
6713 *
6714 * NOTE: this function does not set the idle thread's NEED_RESCHED
6715 * flag, to make booting more robust.
6716 */
5c1e1767 6717void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6718{
70b97a7f 6719 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6720 unsigned long flags;
6721
5cbd54ef
IM
6722 spin_lock_irqsave(&rq->lock, flags);
6723
dd41f596
IM
6724 __sched_fork(idle);
6725 idle->se.exec_start = sched_clock();
6726
b29739f9 6727 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6728 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6729 __set_task_cpu(idle, cpu);
1da177e4 6730
1da177e4 6731 rq->curr = rq->idle = idle;
4866cde0
NP
6732#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6733 idle->oncpu = 1;
6734#endif
1da177e4
LT
6735 spin_unlock_irqrestore(&rq->lock, flags);
6736
6737 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6738#if defined(CONFIG_PREEMPT)
6739 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6740#else
a1261f54 6741 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6742#endif
dd41f596
IM
6743 /*
6744 * The idle tasks have their own, simple scheduling class:
6745 */
6746 idle->sched_class = &idle_sched_class;
fb52607a 6747 ftrace_graph_init_task(idle);
1da177e4
LT
6748}
6749
6750/*
6751 * In a system that switches off the HZ timer nohz_cpu_mask
6752 * indicates which cpus entered this state. This is used
6753 * in the rcu update to wait only for active cpus. For system
6754 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6755 * always be CPU_BITS_NONE.
1da177e4 6756 */
6a7b3dc3 6757cpumask_var_t nohz_cpu_mask;
1da177e4 6758
19978ca6
IM
6759/*
6760 * Increase the granularity value when there are more CPUs,
6761 * because with more CPUs the 'effective latency' as visible
6762 * to users decreases. But the relationship is not linear,
6763 * so pick a second-best guess by going with the log2 of the
6764 * number of CPUs.
6765 *
6766 * This idea comes from the SD scheduler of Con Kolivas:
6767 */
6768static inline void sched_init_granularity(void)
6769{
6770 unsigned int factor = 1 + ilog2(num_online_cpus());
6771 const unsigned long limit = 200000000;
6772
6773 sysctl_sched_min_granularity *= factor;
6774 if (sysctl_sched_min_granularity > limit)
6775 sysctl_sched_min_granularity = limit;
6776
6777 sysctl_sched_latency *= factor;
6778 if (sysctl_sched_latency > limit)
6779 sysctl_sched_latency = limit;
6780
6781 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6782
6783 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6784}
6785
1da177e4
LT
6786#ifdef CONFIG_SMP
6787/*
6788 * This is how migration works:
6789 *
70b97a7f 6790 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6791 * runqueue and wake up that CPU's migration thread.
6792 * 2) we down() the locked semaphore => thread blocks.
6793 * 3) migration thread wakes up (implicitly it forces the migrated
6794 * thread off the CPU)
6795 * 4) it gets the migration request and checks whether the migrated
6796 * task is still in the wrong runqueue.
6797 * 5) if it's in the wrong runqueue then the migration thread removes
6798 * it and puts it into the right queue.
6799 * 6) migration thread up()s the semaphore.
6800 * 7) we wake up and the migration is done.
6801 */
6802
6803/*
6804 * Change a given task's CPU affinity. Migrate the thread to a
6805 * proper CPU and schedule it away if the CPU it's executing on
6806 * is removed from the allowed bitmask.
6807 *
6808 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6809 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6810 * call is not atomic; no spinlocks may be held.
6811 */
96f874e2 6812int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6813{
70b97a7f 6814 struct migration_req req;
1da177e4 6815 unsigned long flags;
70b97a7f 6816 struct rq *rq;
48f24c4d 6817 int ret = 0;
1da177e4
LT
6818
6819 rq = task_rq_lock(p, &flags);
96f874e2 6820 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6821 ret = -EINVAL;
6822 goto out;
6823 }
6824
9985b0ba 6825 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6826 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6827 ret = -EINVAL;
6828 goto out;
6829 }
6830
73fe6aae 6831 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6832 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6833 else {
96f874e2
RR
6834 cpumask_copy(&p->cpus_allowed, new_mask);
6835 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6836 }
6837
1da177e4 6838 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6839 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6840 goto out;
6841
1e5ce4f4 6842 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6843 /* Need help from migration thread: drop lock and wait. */
6844 task_rq_unlock(rq, &flags);
6845 wake_up_process(rq->migration_thread);
6846 wait_for_completion(&req.done);
6847 tlb_migrate_finish(p->mm);
6848 return 0;
6849 }
6850out:
6851 task_rq_unlock(rq, &flags);
48f24c4d 6852
1da177e4
LT
6853 return ret;
6854}
cd8ba7cd 6855EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6856
6857/*
41a2d6cf 6858 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6859 * this because either it can't run here any more (set_cpus_allowed()
6860 * away from this CPU, or CPU going down), or because we're
6861 * attempting to rebalance this task on exec (sched_exec).
6862 *
6863 * So we race with normal scheduler movements, but that's OK, as long
6864 * as the task is no longer on this CPU.
efc30814
KK
6865 *
6866 * Returns non-zero if task was successfully migrated.
1da177e4 6867 */
efc30814 6868static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6869{
70b97a7f 6870 struct rq *rq_dest, *rq_src;
dd41f596 6871 int ret = 0, on_rq;
1da177e4 6872
e761b772 6873 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6874 return ret;
1da177e4
LT
6875
6876 rq_src = cpu_rq(src_cpu);
6877 rq_dest = cpu_rq(dest_cpu);
6878
6879 double_rq_lock(rq_src, rq_dest);
6880 /* Already moved. */
6881 if (task_cpu(p) != src_cpu)
b1e38734 6882 goto done;
1da177e4 6883 /* Affinity changed (again). */
96f874e2 6884 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6885 goto fail;
1da177e4 6886
dd41f596 6887 on_rq = p->se.on_rq;
6e82a3be 6888 if (on_rq)
2e1cb74a 6889 deactivate_task(rq_src, p, 0);
6e82a3be 6890
1da177e4 6891 set_task_cpu(p, dest_cpu);
dd41f596
IM
6892 if (on_rq) {
6893 activate_task(rq_dest, p, 0);
15afe09b 6894 check_preempt_curr(rq_dest, p, 0);
1da177e4 6895 }
b1e38734 6896done:
efc30814 6897 ret = 1;
b1e38734 6898fail:
1da177e4 6899 double_rq_unlock(rq_src, rq_dest);
efc30814 6900 return ret;
1da177e4
LT
6901}
6902
6903/*
6904 * migration_thread - this is a highprio system thread that performs
6905 * thread migration by bumping thread off CPU then 'pushing' onto
6906 * another runqueue.
6907 */
95cdf3b7 6908static int migration_thread(void *data)
1da177e4 6909{
1da177e4 6910 int cpu = (long)data;
70b97a7f 6911 struct rq *rq;
1da177e4
LT
6912
6913 rq = cpu_rq(cpu);
6914 BUG_ON(rq->migration_thread != current);
6915
6916 set_current_state(TASK_INTERRUPTIBLE);
6917 while (!kthread_should_stop()) {
70b97a7f 6918 struct migration_req *req;
1da177e4 6919 struct list_head *head;
1da177e4 6920
1da177e4
LT
6921 spin_lock_irq(&rq->lock);
6922
6923 if (cpu_is_offline(cpu)) {
6924 spin_unlock_irq(&rq->lock);
6925 goto wait_to_die;
6926 }
6927
6928 if (rq->active_balance) {
6929 active_load_balance(rq, cpu);
6930 rq->active_balance = 0;
6931 }
6932
6933 head = &rq->migration_queue;
6934
6935 if (list_empty(head)) {
6936 spin_unlock_irq(&rq->lock);
6937 schedule();
6938 set_current_state(TASK_INTERRUPTIBLE);
6939 continue;
6940 }
70b97a7f 6941 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6942 list_del_init(head->next);
6943
674311d5
NP
6944 spin_unlock(&rq->lock);
6945 __migrate_task(req->task, cpu, req->dest_cpu);
6946 local_irq_enable();
1da177e4
LT
6947
6948 complete(&req->done);
6949 }
6950 __set_current_state(TASK_RUNNING);
6951 return 0;
6952
6953wait_to_die:
6954 /* Wait for kthread_stop */
6955 set_current_state(TASK_INTERRUPTIBLE);
6956 while (!kthread_should_stop()) {
6957 schedule();
6958 set_current_state(TASK_INTERRUPTIBLE);
6959 }
6960 __set_current_state(TASK_RUNNING);
6961 return 0;
6962}
6963
6964#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6965
6966static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6967{
6968 int ret;
6969
6970 local_irq_disable();
6971 ret = __migrate_task(p, src_cpu, dest_cpu);
6972 local_irq_enable();
6973 return ret;
6974}
6975
054b9108 6976/*
3a4fa0a2 6977 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6978 */
48f24c4d 6979static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6980{
70b97a7f 6981 int dest_cpu;
6ca09dfc 6982 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6983
6984again:
6985 /* Look for allowed, online CPU in same node. */
6986 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6987 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6988 goto move;
6989
6990 /* Any allowed, online CPU? */
6991 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6992 if (dest_cpu < nr_cpu_ids)
6993 goto move;
6994
6995 /* No more Mr. Nice Guy. */
6996 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6997 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6998 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6999
e76bd8d9
RR
7000 /*
7001 * Don't tell them about moving exiting tasks or
7002 * kernel threads (both mm NULL), since they never
7003 * leave kernel.
7004 */
7005 if (p->mm && printk_ratelimit()) {
7006 printk(KERN_INFO "process %d (%s) no "
7007 "longer affine to cpu%d\n",
7008 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7009 }
e76bd8d9
RR
7010 }
7011
7012move:
7013 /* It can have affinity changed while we were choosing. */
7014 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7015 goto again;
1da177e4
LT
7016}
7017
7018/*
7019 * While a dead CPU has no uninterruptible tasks queued at this point,
7020 * it might still have a nonzero ->nr_uninterruptible counter, because
7021 * for performance reasons the counter is not stricly tracking tasks to
7022 * their home CPUs. So we just add the counter to another CPU's counter,
7023 * to keep the global sum constant after CPU-down:
7024 */
70b97a7f 7025static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7026{
1e5ce4f4 7027 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7028 unsigned long flags;
7029
7030 local_irq_save(flags);
7031 double_rq_lock(rq_src, rq_dest);
7032 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7033 rq_src->nr_uninterruptible = 0;
7034 double_rq_unlock(rq_src, rq_dest);
7035 local_irq_restore(flags);
7036}
7037
7038/* Run through task list and migrate tasks from the dead cpu. */
7039static void migrate_live_tasks(int src_cpu)
7040{
48f24c4d 7041 struct task_struct *p, *t;
1da177e4 7042
f7b4cddc 7043 read_lock(&tasklist_lock);
1da177e4 7044
48f24c4d
IM
7045 do_each_thread(t, p) {
7046 if (p == current)
1da177e4
LT
7047 continue;
7048
48f24c4d
IM
7049 if (task_cpu(p) == src_cpu)
7050 move_task_off_dead_cpu(src_cpu, p);
7051 } while_each_thread(t, p);
1da177e4 7052
f7b4cddc 7053 read_unlock(&tasklist_lock);
1da177e4
LT
7054}
7055
dd41f596
IM
7056/*
7057 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7058 * It does so by boosting its priority to highest possible.
7059 * Used by CPU offline code.
1da177e4
LT
7060 */
7061void sched_idle_next(void)
7062{
48f24c4d 7063 int this_cpu = smp_processor_id();
70b97a7f 7064 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7065 struct task_struct *p = rq->idle;
7066 unsigned long flags;
7067
7068 /* cpu has to be offline */
48f24c4d 7069 BUG_ON(cpu_online(this_cpu));
1da177e4 7070
48f24c4d
IM
7071 /*
7072 * Strictly not necessary since rest of the CPUs are stopped by now
7073 * and interrupts disabled on the current cpu.
1da177e4
LT
7074 */
7075 spin_lock_irqsave(&rq->lock, flags);
7076
dd41f596 7077 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7078
94bc9a7b
DA
7079 update_rq_clock(rq);
7080 activate_task(rq, p, 0);
1da177e4
LT
7081
7082 spin_unlock_irqrestore(&rq->lock, flags);
7083}
7084
48f24c4d
IM
7085/*
7086 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7087 * offline.
7088 */
7089void idle_task_exit(void)
7090{
7091 struct mm_struct *mm = current->active_mm;
7092
7093 BUG_ON(cpu_online(smp_processor_id()));
7094
7095 if (mm != &init_mm)
7096 switch_mm(mm, &init_mm, current);
7097 mmdrop(mm);
7098}
7099
054b9108 7100/* called under rq->lock with disabled interrupts */
36c8b586 7101static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7102{
70b97a7f 7103 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7104
7105 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7106 BUG_ON(!p->exit_state);
1da177e4
LT
7107
7108 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7109 BUG_ON(p->state == TASK_DEAD);
1da177e4 7110
48f24c4d 7111 get_task_struct(p);
1da177e4
LT
7112
7113 /*
7114 * Drop lock around migration; if someone else moves it,
41a2d6cf 7115 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7116 * fine.
7117 */
f7b4cddc 7118 spin_unlock_irq(&rq->lock);
48f24c4d 7119 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7120 spin_lock_irq(&rq->lock);
1da177e4 7121
48f24c4d 7122 put_task_struct(p);
1da177e4
LT
7123}
7124
7125/* release_task() removes task from tasklist, so we won't find dead tasks. */
7126static void migrate_dead_tasks(unsigned int dead_cpu)
7127{
70b97a7f 7128 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7129 struct task_struct *next;
48f24c4d 7130
dd41f596
IM
7131 for ( ; ; ) {
7132 if (!rq->nr_running)
7133 break;
a8e504d2 7134 update_rq_clock(rq);
b67802ea 7135 next = pick_next_task(rq);
dd41f596
IM
7136 if (!next)
7137 break;
79c53799 7138 next->sched_class->put_prev_task(rq, next);
dd41f596 7139 migrate_dead(dead_cpu, next);
e692ab53 7140
1da177e4
LT
7141 }
7142}
dce48a84
TG
7143
7144/*
7145 * remove the tasks which were accounted by rq from calc_load_tasks.
7146 */
7147static void calc_global_load_remove(struct rq *rq)
7148{
7149 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7150}
1da177e4
LT
7151#endif /* CONFIG_HOTPLUG_CPU */
7152
e692ab53
NP
7153#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7154
7155static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7156 {
7157 .procname = "sched_domain",
c57baf1e 7158 .mode = 0555,
e0361851 7159 },
38605cae 7160 {0, },
e692ab53
NP
7161};
7162
7163static struct ctl_table sd_ctl_root[] = {
e0361851 7164 {
c57baf1e 7165 .ctl_name = CTL_KERN,
e0361851 7166 .procname = "kernel",
c57baf1e 7167 .mode = 0555,
e0361851
AD
7168 .child = sd_ctl_dir,
7169 },
38605cae 7170 {0, },
e692ab53
NP
7171};
7172
7173static struct ctl_table *sd_alloc_ctl_entry(int n)
7174{
7175 struct ctl_table *entry =
5cf9f062 7176 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7177
e692ab53
NP
7178 return entry;
7179}
7180
6382bc90
MM
7181static void sd_free_ctl_entry(struct ctl_table **tablep)
7182{
cd790076 7183 struct ctl_table *entry;
6382bc90 7184
cd790076
MM
7185 /*
7186 * In the intermediate directories, both the child directory and
7187 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7188 * will always be set. In the lowest directory the names are
cd790076
MM
7189 * static strings and all have proc handlers.
7190 */
7191 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7192 if (entry->child)
7193 sd_free_ctl_entry(&entry->child);
cd790076
MM
7194 if (entry->proc_handler == NULL)
7195 kfree(entry->procname);
7196 }
6382bc90
MM
7197
7198 kfree(*tablep);
7199 *tablep = NULL;
7200}
7201
e692ab53 7202static void
e0361851 7203set_table_entry(struct ctl_table *entry,
e692ab53
NP
7204 const char *procname, void *data, int maxlen,
7205 mode_t mode, proc_handler *proc_handler)
7206{
e692ab53
NP
7207 entry->procname = procname;
7208 entry->data = data;
7209 entry->maxlen = maxlen;
7210 entry->mode = mode;
7211 entry->proc_handler = proc_handler;
7212}
7213
7214static struct ctl_table *
7215sd_alloc_ctl_domain_table(struct sched_domain *sd)
7216{
a5d8c348 7217 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7218
ad1cdc1d
MM
7219 if (table == NULL)
7220 return NULL;
7221
e0361851 7222 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7223 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7224 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7225 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7226 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7227 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7228 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7229 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7230 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7231 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7232 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7233 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7234 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7235 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7236 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7237 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7238 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7239 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7240 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7241 &sd->cache_nice_tries,
7242 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7243 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7244 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7245 set_table_entry(&table[11], "name", sd->name,
7246 CORENAME_MAX_SIZE, 0444, proc_dostring);
7247 /* &table[12] is terminator */
e692ab53
NP
7248
7249 return table;
7250}
7251
9a4e7159 7252static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7253{
7254 struct ctl_table *entry, *table;
7255 struct sched_domain *sd;
7256 int domain_num = 0, i;
7257 char buf[32];
7258
7259 for_each_domain(cpu, sd)
7260 domain_num++;
7261 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7262 if (table == NULL)
7263 return NULL;
e692ab53
NP
7264
7265 i = 0;
7266 for_each_domain(cpu, sd) {
7267 snprintf(buf, 32, "domain%d", i);
e692ab53 7268 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7269 entry->mode = 0555;
e692ab53
NP
7270 entry->child = sd_alloc_ctl_domain_table(sd);
7271 entry++;
7272 i++;
7273 }
7274 return table;
7275}
7276
7277static struct ctl_table_header *sd_sysctl_header;
6382bc90 7278static void register_sched_domain_sysctl(void)
e692ab53
NP
7279{
7280 int i, cpu_num = num_online_cpus();
7281 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7282 char buf[32];
7283
7378547f
MM
7284 WARN_ON(sd_ctl_dir[0].child);
7285 sd_ctl_dir[0].child = entry;
7286
ad1cdc1d
MM
7287 if (entry == NULL)
7288 return;
7289
97b6ea7b 7290 for_each_online_cpu(i) {
e692ab53 7291 snprintf(buf, 32, "cpu%d", i);
e692ab53 7292 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7293 entry->mode = 0555;
e692ab53 7294 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7295 entry++;
e692ab53 7296 }
7378547f
MM
7297
7298 WARN_ON(sd_sysctl_header);
e692ab53
NP
7299 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7300}
6382bc90 7301
7378547f 7302/* may be called multiple times per register */
6382bc90
MM
7303static void unregister_sched_domain_sysctl(void)
7304{
7378547f
MM
7305 if (sd_sysctl_header)
7306 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7307 sd_sysctl_header = NULL;
7378547f
MM
7308 if (sd_ctl_dir[0].child)
7309 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7310}
e692ab53 7311#else
6382bc90
MM
7312static void register_sched_domain_sysctl(void)
7313{
7314}
7315static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7316{
7317}
7318#endif
7319
1f11eb6a
GH
7320static void set_rq_online(struct rq *rq)
7321{
7322 if (!rq->online) {
7323 const struct sched_class *class;
7324
c6c4927b 7325 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7326 rq->online = 1;
7327
7328 for_each_class(class) {
7329 if (class->rq_online)
7330 class->rq_online(rq);
7331 }
7332 }
7333}
7334
7335static void set_rq_offline(struct rq *rq)
7336{
7337 if (rq->online) {
7338 const struct sched_class *class;
7339
7340 for_each_class(class) {
7341 if (class->rq_offline)
7342 class->rq_offline(rq);
7343 }
7344
c6c4927b 7345 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7346 rq->online = 0;
7347 }
7348}
7349
1da177e4
LT
7350/*
7351 * migration_call - callback that gets triggered when a CPU is added.
7352 * Here we can start up the necessary migration thread for the new CPU.
7353 */
48f24c4d
IM
7354static int __cpuinit
7355migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7356{
1da177e4 7357 struct task_struct *p;
48f24c4d 7358 int cpu = (long)hcpu;
1da177e4 7359 unsigned long flags;
70b97a7f 7360 struct rq *rq;
1da177e4
LT
7361
7362 switch (action) {
5be9361c 7363
1da177e4 7364 case CPU_UP_PREPARE:
8bb78442 7365 case CPU_UP_PREPARE_FROZEN:
dd41f596 7366 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7367 if (IS_ERR(p))
7368 return NOTIFY_BAD;
1da177e4
LT
7369 kthread_bind(p, cpu);
7370 /* Must be high prio: stop_machine expects to yield to it. */
7371 rq = task_rq_lock(p, &flags);
dd41f596 7372 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7373 task_rq_unlock(rq, &flags);
7374 cpu_rq(cpu)->migration_thread = p;
7375 break;
48f24c4d 7376
1da177e4 7377 case CPU_ONLINE:
8bb78442 7378 case CPU_ONLINE_FROZEN:
3a4fa0a2 7379 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7380 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7381
7382 /* Update our root-domain */
7383 rq = cpu_rq(cpu);
7384 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7385 rq->calc_load_update = calc_load_update;
7386 rq->calc_load_active = 0;
1f94ef59 7387 if (rq->rd) {
c6c4927b 7388 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7389
7390 set_rq_online(rq);
1f94ef59
GH
7391 }
7392 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7393 break;
48f24c4d 7394
1da177e4
LT
7395#ifdef CONFIG_HOTPLUG_CPU
7396 case CPU_UP_CANCELED:
8bb78442 7397 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7398 if (!cpu_rq(cpu)->migration_thread)
7399 break;
41a2d6cf 7400 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7401 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7402 cpumask_any(cpu_online_mask));
1da177e4
LT
7403 kthread_stop(cpu_rq(cpu)->migration_thread);
7404 cpu_rq(cpu)->migration_thread = NULL;
7405 break;
48f24c4d 7406
1da177e4 7407 case CPU_DEAD:
8bb78442 7408 case CPU_DEAD_FROZEN:
470fd646 7409 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7410 migrate_live_tasks(cpu);
7411 rq = cpu_rq(cpu);
7412 kthread_stop(rq->migration_thread);
7413 rq->migration_thread = NULL;
7414 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7415 spin_lock_irq(&rq->lock);
a8e504d2 7416 update_rq_clock(rq);
2e1cb74a 7417 deactivate_task(rq, rq->idle, 0);
1da177e4 7418 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7419 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7420 rq->idle->sched_class = &idle_sched_class;
1da177e4 7421 migrate_dead_tasks(cpu);
d2da272a 7422 spin_unlock_irq(&rq->lock);
470fd646 7423 cpuset_unlock();
1da177e4
LT
7424 migrate_nr_uninterruptible(rq);
7425 BUG_ON(rq->nr_running != 0);
dce48a84 7426 calc_global_load_remove(rq);
41a2d6cf
IM
7427 /*
7428 * No need to migrate the tasks: it was best-effort if
7429 * they didn't take sched_hotcpu_mutex. Just wake up
7430 * the requestors.
7431 */
1da177e4
LT
7432 spin_lock_irq(&rq->lock);
7433 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7434 struct migration_req *req;
7435
1da177e4 7436 req = list_entry(rq->migration_queue.next,
70b97a7f 7437 struct migration_req, list);
1da177e4 7438 list_del_init(&req->list);
9a2bd244 7439 spin_unlock_irq(&rq->lock);
1da177e4 7440 complete(&req->done);
9a2bd244 7441 spin_lock_irq(&rq->lock);
1da177e4
LT
7442 }
7443 spin_unlock_irq(&rq->lock);
7444 break;
57d885fe 7445
08f503b0
GH
7446 case CPU_DYING:
7447 case CPU_DYING_FROZEN:
57d885fe
GH
7448 /* Update our root-domain */
7449 rq = cpu_rq(cpu);
7450 spin_lock_irqsave(&rq->lock, flags);
7451 if (rq->rd) {
c6c4927b 7452 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7453 set_rq_offline(rq);
57d885fe
GH
7454 }
7455 spin_unlock_irqrestore(&rq->lock, flags);
7456 break;
1da177e4
LT
7457#endif
7458 }
7459 return NOTIFY_OK;
7460}
7461
7462/* Register at highest priority so that task migration (migrate_all_tasks)
7463 * happens before everything else.
7464 */
26c2143b 7465static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7466 .notifier_call = migration_call,
7467 .priority = 10
7468};
7469
7babe8db 7470static int __init migration_init(void)
1da177e4
LT
7471{
7472 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7473 int err;
48f24c4d
IM
7474
7475 /* Start one for the boot CPU: */
07dccf33
AM
7476 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7477 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7478 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7479 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7480
7481 return err;
1da177e4 7482}
7babe8db 7483early_initcall(migration_init);
1da177e4
LT
7484#endif
7485
7486#ifdef CONFIG_SMP
476f3534 7487
3e9830dc 7488#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7489
7c16ec58 7490static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7491 struct cpumask *groupmask)
1da177e4 7492{
4dcf6aff 7493 struct sched_group *group = sd->groups;
434d53b0 7494 char str[256];
1da177e4 7495
968ea6d8 7496 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7497 cpumask_clear(groupmask);
4dcf6aff
IM
7498
7499 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7500
7501 if (!(sd->flags & SD_LOAD_BALANCE)) {
7502 printk("does not load-balance\n");
7503 if (sd->parent)
7504 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7505 " has parent");
7506 return -1;
41c7ce9a
NP
7507 }
7508
eefd796a 7509 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7510
758b2cdc 7511 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7512 printk(KERN_ERR "ERROR: domain->span does not contain "
7513 "CPU%d\n", cpu);
7514 }
758b2cdc 7515 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7516 printk(KERN_ERR "ERROR: domain->groups does not contain"
7517 " CPU%d\n", cpu);
7518 }
1da177e4 7519
4dcf6aff 7520 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7521 do {
4dcf6aff
IM
7522 if (!group) {
7523 printk("\n");
7524 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7525 break;
7526 }
7527
4dcf6aff
IM
7528 if (!group->__cpu_power) {
7529 printk(KERN_CONT "\n");
7530 printk(KERN_ERR "ERROR: domain->cpu_power not "
7531 "set\n");
7532 break;
7533 }
1da177e4 7534
758b2cdc 7535 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7536 printk(KERN_CONT "\n");
7537 printk(KERN_ERR "ERROR: empty group\n");
7538 break;
7539 }
1da177e4 7540
758b2cdc 7541 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7542 printk(KERN_CONT "\n");
7543 printk(KERN_ERR "ERROR: repeated CPUs\n");
7544 break;
7545 }
1da177e4 7546
758b2cdc 7547 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7548
968ea6d8 7549 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7550
7551 printk(KERN_CONT " %s", str);
7552 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7553 printk(KERN_CONT " (__cpu_power = %d)",
7554 group->__cpu_power);
7555 }
1da177e4 7556
4dcf6aff
IM
7557 group = group->next;
7558 } while (group != sd->groups);
7559 printk(KERN_CONT "\n");
1da177e4 7560
758b2cdc 7561 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7562 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7563
758b2cdc
RR
7564 if (sd->parent &&
7565 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7566 printk(KERN_ERR "ERROR: parent span is not a superset "
7567 "of domain->span\n");
7568 return 0;
7569}
1da177e4 7570
4dcf6aff
IM
7571static void sched_domain_debug(struct sched_domain *sd, int cpu)
7572{
d5dd3db1 7573 cpumask_var_t groupmask;
4dcf6aff 7574 int level = 0;
1da177e4 7575
4dcf6aff
IM
7576 if (!sd) {
7577 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7578 return;
7579 }
1da177e4 7580
4dcf6aff
IM
7581 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7582
d5dd3db1 7583 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7584 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7585 return;
7586 }
7587
4dcf6aff 7588 for (;;) {
7c16ec58 7589 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7590 break;
1da177e4
LT
7591 level++;
7592 sd = sd->parent;
33859f7f 7593 if (!sd)
4dcf6aff
IM
7594 break;
7595 }
d5dd3db1 7596 free_cpumask_var(groupmask);
1da177e4 7597}
6d6bc0ad 7598#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7599# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7600#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7601
1a20ff27 7602static int sd_degenerate(struct sched_domain *sd)
245af2c7 7603{
758b2cdc 7604 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7605 return 1;
7606
7607 /* Following flags need at least 2 groups */
7608 if (sd->flags & (SD_LOAD_BALANCE |
7609 SD_BALANCE_NEWIDLE |
7610 SD_BALANCE_FORK |
89c4710e
SS
7611 SD_BALANCE_EXEC |
7612 SD_SHARE_CPUPOWER |
7613 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7614 if (sd->groups != sd->groups->next)
7615 return 0;
7616 }
7617
7618 /* Following flags don't use groups */
7619 if (sd->flags & (SD_WAKE_IDLE |
7620 SD_WAKE_AFFINE |
7621 SD_WAKE_BALANCE))
7622 return 0;
7623
7624 return 1;
7625}
7626
48f24c4d
IM
7627static int
7628sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7629{
7630 unsigned long cflags = sd->flags, pflags = parent->flags;
7631
7632 if (sd_degenerate(parent))
7633 return 1;
7634
758b2cdc 7635 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7636 return 0;
7637
7638 /* Does parent contain flags not in child? */
7639 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7640 if (cflags & SD_WAKE_AFFINE)
7641 pflags &= ~SD_WAKE_BALANCE;
7642 /* Flags needing groups don't count if only 1 group in parent */
7643 if (parent->groups == parent->groups->next) {
7644 pflags &= ~(SD_LOAD_BALANCE |
7645 SD_BALANCE_NEWIDLE |
7646 SD_BALANCE_FORK |
89c4710e
SS
7647 SD_BALANCE_EXEC |
7648 SD_SHARE_CPUPOWER |
7649 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7650 if (nr_node_ids == 1)
7651 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7652 }
7653 if (~cflags & pflags)
7654 return 0;
7655
7656 return 1;
7657}
7658
c6c4927b
RR
7659static void free_rootdomain(struct root_domain *rd)
7660{
68e74568
RR
7661 cpupri_cleanup(&rd->cpupri);
7662
c6c4927b
RR
7663 free_cpumask_var(rd->rto_mask);
7664 free_cpumask_var(rd->online);
7665 free_cpumask_var(rd->span);
7666 kfree(rd);
7667}
7668
57d885fe
GH
7669static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7670{
a0490fa3 7671 struct root_domain *old_rd = NULL;
57d885fe 7672 unsigned long flags;
57d885fe
GH
7673
7674 spin_lock_irqsave(&rq->lock, flags);
7675
7676 if (rq->rd) {
a0490fa3 7677 old_rd = rq->rd;
57d885fe 7678
c6c4927b 7679 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7680 set_rq_offline(rq);
57d885fe 7681
c6c4927b 7682 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7683
a0490fa3
IM
7684 /*
7685 * If we dont want to free the old_rt yet then
7686 * set old_rd to NULL to skip the freeing later
7687 * in this function:
7688 */
7689 if (!atomic_dec_and_test(&old_rd->refcount))
7690 old_rd = NULL;
57d885fe
GH
7691 }
7692
7693 atomic_inc(&rd->refcount);
7694 rq->rd = rd;
7695
c6c4927b
RR
7696 cpumask_set_cpu(rq->cpu, rd->span);
7697 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7698 set_rq_online(rq);
57d885fe
GH
7699
7700 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7701
7702 if (old_rd)
7703 free_rootdomain(old_rd);
57d885fe
GH
7704}
7705
db2f59c8 7706static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7707{
7708 memset(rd, 0, sizeof(*rd));
7709
c6c4927b
RR
7710 if (bootmem) {
7711 alloc_bootmem_cpumask_var(&def_root_domain.span);
7712 alloc_bootmem_cpumask_var(&def_root_domain.online);
7713 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7714 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7715 return 0;
7716 }
7717
7718 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7719 goto out;
c6c4927b
RR
7720 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7721 goto free_span;
7722 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7723 goto free_online;
6e0534f2 7724
68e74568
RR
7725 if (cpupri_init(&rd->cpupri, false) != 0)
7726 goto free_rto_mask;
c6c4927b 7727 return 0;
6e0534f2 7728
68e74568
RR
7729free_rto_mask:
7730 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7731free_online:
7732 free_cpumask_var(rd->online);
7733free_span:
7734 free_cpumask_var(rd->span);
0c910d28 7735out:
c6c4927b 7736 return -ENOMEM;
57d885fe
GH
7737}
7738
7739static void init_defrootdomain(void)
7740{
c6c4927b
RR
7741 init_rootdomain(&def_root_domain, true);
7742
57d885fe
GH
7743 atomic_set(&def_root_domain.refcount, 1);
7744}
7745
dc938520 7746static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7747{
7748 struct root_domain *rd;
7749
7750 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7751 if (!rd)
7752 return NULL;
7753
c6c4927b
RR
7754 if (init_rootdomain(rd, false) != 0) {
7755 kfree(rd);
7756 return NULL;
7757 }
57d885fe
GH
7758
7759 return rd;
7760}
7761
1da177e4 7762/*
0eab9146 7763 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7764 * hold the hotplug lock.
7765 */
0eab9146
IM
7766static void
7767cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7768{
70b97a7f 7769 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7770 struct sched_domain *tmp;
7771
7772 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7773 for (tmp = sd; tmp; ) {
245af2c7
SS
7774 struct sched_domain *parent = tmp->parent;
7775 if (!parent)
7776 break;
f29c9b1c 7777
1a848870 7778 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7779 tmp->parent = parent->parent;
1a848870
SS
7780 if (parent->parent)
7781 parent->parent->child = tmp;
f29c9b1c
LZ
7782 } else
7783 tmp = tmp->parent;
245af2c7
SS
7784 }
7785
1a848870 7786 if (sd && sd_degenerate(sd)) {
245af2c7 7787 sd = sd->parent;
1a848870
SS
7788 if (sd)
7789 sd->child = NULL;
7790 }
1da177e4
LT
7791
7792 sched_domain_debug(sd, cpu);
7793
57d885fe 7794 rq_attach_root(rq, rd);
674311d5 7795 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7796}
7797
7798/* cpus with isolated domains */
dcc30a35 7799static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7800
7801/* Setup the mask of cpus configured for isolated domains */
7802static int __init isolated_cpu_setup(char *str)
7803{
968ea6d8 7804 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7805 return 1;
7806}
7807
8927f494 7808__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7809
7810/*
6711cab4
SS
7811 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7812 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7813 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7814 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7815 *
7816 * init_sched_build_groups will build a circular linked list of the groups
7817 * covered by the given span, and will set each group's ->cpumask correctly,
7818 * and ->cpu_power to 0.
7819 */
a616058b 7820static void
96f874e2
RR
7821init_sched_build_groups(const struct cpumask *span,
7822 const struct cpumask *cpu_map,
7823 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7824 struct sched_group **sg,
96f874e2
RR
7825 struct cpumask *tmpmask),
7826 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7827{
7828 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7829 int i;
7830
96f874e2 7831 cpumask_clear(covered);
7c16ec58 7832
abcd083a 7833 for_each_cpu(i, span) {
6711cab4 7834 struct sched_group *sg;
7c16ec58 7835 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7836 int j;
7837
758b2cdc 7838 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7839 continue;
7840
758b2cdc 7841 cpumask_clear(sched_group_cpus(sg));
5517d86b 7842 sg->__cpu_power = 0;
1da177e4 7843
abcd083a 7844 for_each_cpu(j, span) {
7c16ec58 7845 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7846 continue;
7847
96f874e2 7848 cpumask_set_cpu(j, covered);
758b2cdc 7849 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7850 }
7851 if (!first)
7852 first = sg;
7853 if (last)
7854 last->next = sg;
7855 last = sg;
7856 }
7857 last->next = first;
7858}
7859
9c1cfda2 7860#define SD_NODES_PER_DOMAIN 16
1da177e4 7861
9c1cfda2 7862#ifdef CONFIG_NUMA
198e2f18 7863
9c1cfda2
JH
7864/**
7865 * find_next_best_node - find the next node to include in a sched_domain
7866 * @node: node whose sched_domain we're building
7867 * @used_nodes: nodes already in the sched_domain
7868 *
41a2d6cf 7869 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7870 * finds the closest node not already in the @used_nodes map.
7871 *
7872 * Should use nodemask_t.
7873 */
c5f59f08 7874static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7875{
7876 int i, n, val, min_val, best_node = 0;
7877
7878 min_val = INT_MAX;
7879
076ac2af 7880 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7881 /* Start at @node */
076ac2af 7882 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7883
7884 if (!nr_cpus_node(n))
7885 continue;
7886
7887 /* Skip already used nodes */
c5f59f08 7888 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7889 continue;
7890
7891 /* Simple min distance search */
7892 val = node_distance(node, n);
7893
7894 if (val < min_val) {
7895 min_val = val;
7896 best_node = n;
7897 }
7898 }
7899
c5f59f08 7900 node_set(best_node, *used_nodes);
9c1cfda2
JH
7901 return best_node;
7902}
7903
7904/**
7905 * sched_domain_node_span - get a cpumask for a node's sched_domain
7906 * @node: node whose cpumask we're constructing
73486722 7907 * @span: resulting cpumask
9c1cfda2 7908 *
41a2d6cf 7909 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7910 * should be one that prevents unnecessary balancing, but also spreads tasks
7911 * out optimally.
7912 */
96f874e2 7913static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7914{
c5f59f08 7915 nodemask_t used_nodes;
48f24c4d 7916 int i;
9c1cfda2 7917
6ca09dfc 7918 cpumask_clear(span);
c5f59f08 7919 nodes_clear(used_nodes);
9c1cfda2 7920
6ca09dfc 7921 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7922 node_set(node, used_nodes);
9c1cfda2
JH
7923
7924 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7925 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7926
6ca09dfc 7927 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7928 }
9c1cfda2 7929}
6d6bc0ad 7930#endif /* CONFIG_NUMA */
9c1cfda2 7931
5c45bf27 7932int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7933
6c99e9ad
RR
7934/*
7935 * The cpus mask in sched_group and sched_domain hangs off the end.
7936 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7937 * for nr_cpu_ids < CONFIG_NR_CPUS.
7938 */
7939struct static_sched_group {
7940 struct sched_group sg;
7941 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7942};
7943
7944struct static_sched_domain {
7945 struct sched_domain sd;
7946 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7947};
7948
9c1cfda2 7949/*
48f24c4d 7950 * SMT sched-domains:
9c1cfda2 7951 */
1da177e4 7952#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7953static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7954static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7955
41a2d6cf 7956static int
96f874e2
RR
7957cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7958 struct sched_group **sg, struct cpumask *unused)
1da177e4 7959{
6711cab4 7960 if (sg)
6c99e9ad 7961 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7962 return cpu;
7963}
6d6bc0ad 7964#endif /* CONFIG_SCHED_SMT */
1da177e4 7965
48f24c4d
IM
7966/*
7967 * multi-core sched-domains:
7968 */
1e9f28fa 7969#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7970static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7971static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7972#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7973
7974#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7975static int
96f874e2
RR
7976cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7977 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7978{
6711cab4 7979 int group;
7c16ec58 7980
c69fc56d 7981 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7982 group = cpumask_first(mask);
6711cab4 7983 if (sg)
6c99e9ad 7984 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7985 return group;
1e9f28fa
SS
7986}
7987#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7988static int
96f874e2
RR
7989cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7990 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7991{
6711cab4 7992 if (sg)
6c99e9ad 7993 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7994 return cpu;
7995}
7996#endif
7997
6c99e9ad
RR
7998static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7999static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8000
41a2d6cf 8001static int
96f874e2
RR
8002cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8003 struct sched_group **sg, struct cpumask *mask)
1da177e4 8004{
6711cab4 8005 int group;
48f24c4d 8006#ifdef CONFIG_SCHED_MC
6ca09dfc 8007 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8008 group = cpumask_first(mask);
1e9f28fa 8009#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8010 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8011 group = cpumask_first(mask);
1da177e4 8012#else
6711cab4 8013 group = cpu;
1da177e4 8014#endif
6711cab4 8015 if (sg)
6c99e9ad 8016 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8017 return group;
1da177e4
LT
8018}
8019
8020#ifdef CONFIG_NUMA
1da177e4 8021/*
9c1cfda2
JH
8022 * The init_sched_build_groups can't handle what we want to do with node
8023 * groups, so roll our own. Now each node has its own list of groups which
8024 * gets dynamically allocated.
1da177e4 8025 */
62ea9ceb 8026static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8027static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8028
62ea9ceb 8029static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8030static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8031
96f874e2
RR
8032static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8033 struct sched_group **sg,
8034 struct cpumask *nodemask)
9c1cfda2 8035{
6711cab4
SS
8036 int group;
8037
6ca09dfc 8038 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8039 group = cpumask_first(nodemask);
6711cab4
SS
8040
8041 if (sg)
6c99e9ad 8042 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8043 return group;
1da177e4 8044}
6711cab4 8045
08069033
SS
8046static void init_numa_sched_groups_power(struct sched_group *group_head)
8047{
8048 struct sched_group *sg = group_head;
8049 int j;
8050
8051 if (!sg)
8052 return;
3a5c359a 8053 do {
758b2cdc 8054 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8055 struct sched_domain *sd;
08069033 8056
6c99e9ad 8057 sd = &per_cpu(phys_domains, j).sd;
13318a71 8058 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8059 /*
8060 * Only add "power" once for each
8061 * physical package.
8062 */
8063 continue;
8064 }
08069033 8065
3a5c359a
AK
8066 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8067 }
8068 sg = sg->next;
8069 } while (sg != group_head);
08069033 8070}
6d6bc0ad 8071#endif /* CONFIG_NUMA */
1da177e4 8072
a616058b 8073#ifdef CONFIG_NUMA
51888ca2 8074/* Free memory allocated for various sched_group structures */
96f874e2
RR
8075static void free_sched_groups(const struct cpumask *cpu_map,
8076 struct cpumask *nodemask)
51888ca2 8077{
a616058b 8078 int cpu, i;
51888ca2 8079
abcd083a 8080 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8081 struct sched_group **sched_group_nodes
8082 = sched_group_nodes_bycpu[cpu];
8083
51888ca2
SV
8084 if (!sched_group_nodes)
8085 continue;
8086
076ac2af 8087 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8088 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8089
6ca09dfc 8090 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8091 if (cpumask_empty(nodemask))
51888ca2
SV
8092 continue;
8093
8094 if (sg == NULL)
8095 continue;
8096 sg = sg->next;
8097next_sg:
8098 oldsg = sg;
8099 sg = sg->next;
8100 kfree(oldsg);
8101 if (oldsg != sched_group_nodes[i])
8102 goto next_sg;
8103 }
8104 kfree(sched_group_nodes);
8105 sched_group_nodes_bycpu[cpu] = NULL;
8106 }
51888ca2 8107}
6d6bc0ad 8108#else /* !CONFIG_NUMA */
96f874e2
RR
8109static void free_sched_groups(const struct cpumask *cpu_map,
8110 struct cpumask *nodemask)
a616058b
SS
8111{
8112}
6d6bc0ad 8113#endif /* CONFIG_NUMA */
51888ca2 8114
89c4710e
SS
8115/*
8116 * Initialize sched groups cpu_power.
8117 *
8118 * cpu_power indicates the capacity of sched group, which is used while
8119 * distributing the load between different sched groups in a sched domain.
8120 * Typically cpu_power for all the groups in a sched domain will be same unless
8121 * there are asymmetries in the topology. If there are asymmetries, group
8122 * having more cpu_power will pickup more load compared to the group having
8123 * less cpu_power.
8124 *
8125 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8126 * the maximum number of tasks a group can handle in the presence of other idle
8127 * or lightly loaded groups in the same sched domain.
8128 */
8129static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8130{
8131 struct sched_domain *child;
8132 struct sched_group *group;
8133
8134 WARN_ON(!sd || !sd->groups);
8135
13318a71 8136 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8137 return;
8138
8139 child = sd->child;
8140
5517d86b
ED
8141 sd->groups->__cpu_power = 0;
8142
89c4710e
SS
8143 /*
8144 * For perf policy, if the groups in child domain share resources
8145 * (for example cores sharing some portions of the cache hierarchy
8146 * or SMT), then set this domain groups cpu_power such that each group
8147 * can handle only one task, when there are other idle groups in the
8148 * same sched domain.
8149 */
8150 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8151 (child->flags &
8152 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8153 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8154 return;
8155 }
8156
89c4710e
SS
8157 /*
8158 * add cpu_power of each child group to this groups cpu_power
8159 */
8160 group = child->groups;
8161 do {
5517d86b 8162 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8163 group = group->next;
8164 } while (group != child->groups);
8165}
8166
7c16ec58
MT
8167/*
8168 * Initializers for schedule domains
8169 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8170 */
8171
a5d8c348
IM
8172#ifdef CONFIG_SCHED_DEBUG
8173# define SD_INIT_NAME(sd, type) sd->name = #type
8174#else
8175# define SD_INIT_NAME(sd, type) do { } while (0)
8176#endif
8177
7c16ec58 8178#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8179
7c16ec58
MT
8180#define SD_INIT_FUNC(type) \
8181static noinline void sd_init_##type(struct sched_domain *sd) \
8182{ \
8183 memset(sd, 0, sizeof(*sd)); \
8184 *sd = SD_##type##_INIT; \
1d3504fc 8185 sd->level = SD_LV_##type; \
a5d8c348 8186 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8187}
8188
8189SD_INIT_FUNC(CPU)
8190#ifdef CONFIG_NUMA
8191 SD_INIT_FUNC(ALLNODES)
8192 SD_INIT_FUNC(NODE)
8193#endif
8194#ifdef CONFIG_SCHED_SMT
8195 SD_INIT_FUNC(SIBLING)
8196#endif
8197#ifdef CONFIG_SCHED_MC
8198 SD_INIT_FUNC(MC)
8199#endif
8200
1d3504fc
HS
8201static int default_relax_domain_level = -1;
8202
8203static int __init setup_relax_domain_level(char *str)
8204{
30e0e178
LZ
8205 unsigned long val;
8206
8207 val = simple_strtoul(str, NULL, 0);
8208 if (val < SD_LV_MAX)
8209 default_relax_domain_level = val;
8210
1d3504fc
HS
8211 return 1;
8212}
8213__setup("relax_domain_level=", setup_relax_domain_level);
8214
8215static void set_domain_attribute(struct sched_domain *sd,
8216 struct sched_domain_attr *attr)
8217{
8218 int request;
8219
8220 if (!attr || attr->relax_domain_level < 0) {
8221 if (default_relax_domain_level < 0)
8222 return;
8223 else
8224 request = default_relax_domain_level;
8225 } else
8226 request = attr->relax_domain_level;
8227 if (request < sd->level) {
8228 /* turn off idle balance on this domain */
8229 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8230 } else {
8231 /* turn on idle balance on this domain */
8232 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8233 }
8234}
8235
1da177e4 8236/*
1a20ff27
DG
8237 * Build sched domains for a given set of cpus and attach the sched domains
8238 * to the individual cpus
1da177e4 8239 */
96f874e2 8240static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8241 struct sched_domain_attr *attr)
1da177e4 8242{
3404c8d9 8243 int i, err = -ENOMEM;
57d885fe 8244 struct root_domain *rd;
3404c8d9
RR
8245 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8246 tmpmask;
d1b55138 8247#ifdef CONFIG_NUMA
3404c8d9 8248 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8249 struct sched_group **sched_group_nodes = NULL;
6711cab4 8250 int sd_allnodes = 0;
d1b55138 8251
3404c8d9
RR
8252 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8253 goto out;
8254 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8255 goto free_domainspan;
8256 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8257 goto free_covered;
8258#endif
8259
8260 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8261 goto free_notcovered;
8262 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8263 goto free_nodemask;
8264 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8265 goto free_this_sibling_map;
8266 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8267 goto free_this_core_map;
8268 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8269 goto free_send_covered;
8270
8271#ifdef CONFIG_NUMA
d1b55138
JH
8272 /*
8273 * Allocate the per-node list of sched groups
8274 */
076ac2af 8275 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8276 GFP_KERNEL);
d1b55138
JH
8277 if (!sched_group_nodes) {
8278 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8279 goto free_tmpmask;
d1b55138 8280 }
d1b55138 8281#endif
1da177e4 8282
dc938520 8283 rd = alloc_rootdomain();
57d885fe
GH
8284 if (!rd) {
8285 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8286 goto free_sched_groups;
57d885fe
GH
8287 }
8288
7c16ec58 8289#ifdef CONFIG_NUMA
96f874e2 8290 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8291#endif
8292
1da177e4 8293 /*
1a20ff27 8294 * Set up domains for cpus specified by the cpu_map.
1da177e4 8295 */
abcd083a 8296 for_each_cpu(i, cpu_map) {
1da177e4 8297 struct sched_domain *sd = NULL, *p;
1da177e4 8298
6ca09dfc 8299 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8300
8301#ifdef CONFIG_NUMA
96f874e2
RR
8302 if (cpumask_weight(cpu_map) >
8303 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8304 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8305 SD_INIT(sd, ALLNODES);
1d3504fc 8306 set_domain_attribute(sd, attr);
758b2cdc 8307 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8308 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8309 p = sd;
6711cab4 8310 sd_allnodes = 1;
9c1cfda2
JH
8311 } else
8312 p = NULL;
8313
62ea9ceb 8314 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8315 SD_INIT(sd, NODE);
1d3504fc 8316 set_domain_attribute(sd, attr);
758b2cdc 8317 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8318 sd->parent = p;
1a848870
SS
8319 if (p)
8320 p->child = sd;
758b2cdc
RR
8321 cpumask_and(sched_domain_span(sd),
8322 sched_domain_span(sd), cpu_map);
1da177e4
LT
8323#endif
8324
8325 p = sd;
6c99e9ad 8326 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8327 SD_INIT(sd, CPU);
1d3504fc 8328 set_domain_attribute(sd, attr);
758b2cdc 8329 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8330 sd->parent = p;
1a848870
SS
8331 if (p)
8332 p->child = sd;
7c16ec58 8333 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8334
1e9f28fa
SS
8335#ifdef CONFIG_SCHED_MC
8336 p = sd;
6c99e9ad 8337 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8338 SD_INIT(sd, MC);
1d3504fc 8339 set_domain_attribute(sd, attr);
6ca09dfc
MT
8340 cpumask_and(sched_domain_span(sd), cpu_map,
8341 cpu_coregroup_mask(i));
1e9f28fa 8342 sd->parent = p;
1a848870 8343 p->child = sd;
7c16ec58 8344 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8345#endif
8346
1da177e4
LT
8347#ifdef CONFIG_SCHED_SMT
8348 p = sd;
6c99e9ad 8349 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8350 SD_INIT(sd, SIBLING);
1d3504fc 8351 set_domain_attribute(sd, attr);
758b2cdc 8352 cpumask_and(sched_domain_span(sd),
c69fc56d 8353 topology_thread_cpumask(i), cpu_map);
1da177e4 8354 sd->parent = p;
1a848870 8355 p->child = sd;
7c16ec58 8356 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8357#endif
8358 }
8359
8360#ifdef CONFIG_SCHED_SMT
8361 /* Set up CPU (sibling) groups */
abcd083a 8362 for_each_cpu(i, cpu_map) {
96f874e2 8363 cpumask_and(this_sibling_map,
c69fc56d 8364 topology_thread_cpumask(i), cpu_map);
96f874e2 8365 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8366 continue;
8367
dd41f596 8368 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8369 &cpu_to_cpu_group,
8370 send_covered, tmpmask);
1da177e4
LT
8371 }
8372#endif
8373
1e9f28fa
SS
8374#ifdef CONFIG_SCHED_MC
8375 /* Set up multi-core groups */
abcd083a 8376 for_each_cpu(i, cpu_map) {
6ca09dfc 8377 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8378 if (i != cpumask_first(this_core_map))
1e9f28fa 8379 continue;
7c16ec58 8380
dd41f596 8381 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8382 &cpu_to_core_group,
8383 send_covered, tmpmask);
1e9f28fa
SS
8384 }
8385#endif
8386
1da177e4 8387 /* Set up physical groups */
076ac2af 8388 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8389 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8390 if (cpumask_empty(nodemask))
1da177e4
LT
8391 continue;
8392
7c16ec58
MT
8393 init_sched_build_groups(nodemask, cpu_map,
8394 &cpu_to_phys_group,
8395 send_covered, tmpmask);
1da177e4
LT
8396 }
8397
8398#ifdef CONFIG_NUMA
8399 /* Set up node groups */
7c16ec58 8400 if (sd_allnodes) {
7c16ec58
MT
8401 init_sched_build_groups(cpu_map, cpu_map,
8402 &cpu_to_allnodes_group,
8403 send_covered, tmpmask);
8404 }
9c1cfda2 8405
076ac2af 8406 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8407 /* Set up node groups */
8408 struct sched_group *sg, *prev;
9c1cfda2
JH
8409 int j;
8410
96f874e2 8411 cpumask_clear(covered);
6ca09dfc 8412 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8413 if (cpumask_empty(nodemask)) {
d1b55138 8414 sched_group_nodes[i] = NULL;
9c1cfda2 8415 continue;
d1b55138 8416 }
9c1cfda2 8417
4bdbaad3 8418 sched_domain_node_span(i, domainspan);
96f874e2 8419 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8420
6c99e9ad
RR
8421 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8422 GFP_KERNEL, i);
51888ca2
SV
8423 if (!sg) {
8424 printk(KERN_WARNING "Can not alloc domain group for "
8425 "node %d\n", i);
8426 goto error;
8427 }
9c1cfda2 8428 sched_group_nodes[i] = sg;
abcd083a 8429 for_each_cpu(j, nodemask) {
9c1cfda2 8430 struct sched_domain *sd;
9761eea8 8431
62ea9ceb 8432 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8433 sd->groups = sg;
9c1cfda2 8434 }
5517d86b 8435 sg->__cpu_power = 0;
758b2cdc 8436 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8437 sg->next = sg;
96f874e2 8438 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8439 prev = sg;
8440
076ac2af 8441 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8442 int n = (i + j) % nr_node_ids;
9c1cfda2 8443
96f874e2
RR
8444 cpumask_complement(notcovered, covered);
8445 cpumask_and(tmpmask, notcovered, cpu_map);
8446 cpumask_and(tmpmask, tmpmask, domainspan);
8447 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8448 break;
8449
6ca09dfc 8450 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8451 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8452 continue;
8453
6c99e9ad
RR
8454 sg = kmalloc_node(sizeof(struct sched_group) +
8455 cpumask_size(),
15f0b676 8456 GFP_KERNEL, i);
9c1cfda2
JH
8457 if (!sg) {
8458 printk(KERN_WARNING
8459 "Can not alloc domain group for node %d\n", j);
51888ca2 8460 goto error;
9c1cfda2 8461 }
5517d86b 8462 sg->__cpu_power = 0;
758b2cdc 8463 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8464 sg->next = prev->next;
96f874e2 8465 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8466 prev->next = sg;
8467 prev = sg;
8468 }
9c1cfda2 8469 }
1da177e4
LT
8470#endif
8471
8472 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8473#ifdef CONFIG_SCHED_SMT
abcd083a 8474 for_each_cpu(i, cpu_map) {
6c99e9ad 8475 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8476
89c4710e 8477 init_sched_groups_power(i, sd);
5c45bf27 8478 }
1da177e4 8479#endif
1e9f28fa 8480#ifdef CONFIG_SCHED_MC
abcd083a 8481 for_each_cpu(i, cpu_map) {
6c99e9ad 8482 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8483
89c4710e 8484 init_sched_groups_power(i, sd);
5c45bf27
SS
8485 }
8486#endif
1e9f28fa 8487
abcd083a 8488 for_each_cpu(i, cpu_map) {
6c99e9ad 8489 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8490
89c4710e 8491 init_sched_groups_power(i, sd);
1da177e4
LT
8492 }
8493
9c1cfda2 8494#ifdef CONFIG_NUMA
076ac2af 8495 for (i = 0; i < nr_node_ids; i++)
08069033 8496 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8497
6711cab4
SS
8498 if (sd_allnodes) {
8499 struct sched_group *sg;
f712c0c7 8500
96f874e2 8501 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8502 tmpmask);
f712c0c7
SS
8503 init_numa_sched_groups_power(sg);
8504 }
9c1cfda2
JH
8505#endif
8506
1da177e4 8507 /* Attach the domains */
abcd083a 8508 for_each_cpu(i, cpu_map) {
1da177e4
LT
8509 struct sched_domain *sd;
8510#ifdef CONFIG_SCHED_SMT
6c99e9ad 8511 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8512#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8513 sd = &per_cpu(core_domains, i).sd;
1da177e4 8514#else
6c99e9ad 8515 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8516#endif
57d885fe 8517 cpu_attach_domain(sd, rd, i);
1da177e4 8518 }
51888ca2 8519
3404c8d9
RR
8520 err = 0;
8521
8522free_tmpmask:
8523 free_cpumask_var(tmpmask);
8524free_send_covered:
8525 free_cpumask_var(send_covered);
8526free_this_core_map:
8527 free_cpumask_var(this_core_map);
8528free_this_sibling_map:
8529 free_cpumask_var(this_sibling_map);
8530free_nodemask:
8531 free_cpumask_var(nodemask);
8532free_notcovered:
8533#ifdef CONFIG_NUMA
8534 free_cpumask_var(notcovered);
8535free_covered:
8536 free_cpumask_var(covered);
8537free_domainspan:
8538 free_cpumask_var(domainspan);
8539out:
8540#endif
8541 return err;
8542
8543free_sched_groups:
8544#ifdef CONFIG_NUMA
8545 kfree(sched_group_nodes);
8546#endif
8547 goto free_tmpmask;
51888ca2 8548
a616058b 8549#ifdef CONFIG_NUMA
51888ca2 8550error:
7c16ec58 8551 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8552 free_rootdomain(rd);
3404c8d9 8553 goto free_tmpmask;
a616058b 8554#endif
1da177e4 8555}
029190c5 8556
96f874e2 8557static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8558{
8559 return __build_sched_domains(cpu_map, NULL);
8560}
8561
96f874e2 8562static struct cpumask *doms_cur; /* current sched domains */
029190c5 8563static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8564static struct sched_domain_attr *dattr_cur;
8565 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8566
8567/*
8568 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8569 * cpumask) fails, then fallback to a single sched domain,
8570 * as determined by the single cpumask fallback_doms.
029190c5 8571 */
4212823f 8572static cpumask_var_t fallback_doms;
029190c5 8573
ee79d1bd
HC
8574/*
8575 * arch_update_cpu_topology lets virtualized architectures update the
8576 * cpu core maps. It is supposed to return 1 if the topology changed
8577 * or 0 if it stayed the same.
8578 */
8579int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8580{
ee79d1bd 8581 return 0;
22e52b07
HC
8582}
8583
1a20ff27 8584/*
41a2d6cf 8585 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8586 * For now this just excludes isolated cpus, but could be used to
8587 * exclude other special cases in the future.
1a20ff27 8588 */
96f874e2 8589static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8590{
7378547f
MM
8591 int err;
8592
22e52b07 8593 arch_update_cpu_topology();
029190c5 8594 ndoms_cur = 1;
96f874e2 8595 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8596 if (!doms_cur)
4212823f 8597 doms_cur = fallback_doms;
dcc30a35 8598 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8599 dattr_cur = NULL;
7378547f 8600 err = build_sched_domains(doms_cur);
6382bc90 8601 register_sched_domain_sysctl();
7378547f
MM
8602
8603 return err;
1a20ff27
DG
8604}
8605
96f874e2
RR
8606static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8607 struct cpumask *tmpmask)
1da177e4 8608{
7c16ec58 8609 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8610}
1da177e4 8611
1a20ff27
DG
8612/*
8613 * Detach sched domains from a group of cpus specified in cpu_map
8614 * These cpus will now be attached to the NULL domain
8615 */
96f874e2 8616static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8617{
96f874e2
RR
8618 /* Save because hotplug lock held. */
8619 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8620 int i;
8621
abcd083a 8622 for_each_cpu(i, cpu_map)
57d885fe 8623 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8624 synchronize_sched();
96f874e2 8625 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8626}
8627
1d3504fc
HS
8628/* handle null as "default" */
8629static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8630 struct sched_domain_attr *new, int idx_new)
8631{
8632 struct sched_domain_attr tmp;
8633
8634 /* fast path */
8635 if (!new && !cur)
8636 return 1;
8637
8638 tmp = SD_ATTR_INIT;
8639 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8640 new ? (new + idx_new) : &tmp,
8641 sizeof(struct sched_domain_attr));
8642}
8643
029190c5
PJ
8644/*
8645 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8646 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8647 * doms_new[] to the current sched domain partitioning, doms_cur[].
8648 * It destroys each deleted domain and builds each new domain.
8649 *
96f874e2 8650 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8651 * The masks don't intersect (don't overlap.) We should setup one
8652 * sched domain for each mask. CPUs not in any of the cpumasks will
8653 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8654 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8655 * it as it is.
8656 *
41a2d6cf
IM
8657 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8658 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8659 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8660 * ndoms_new == 1, and partition_sched_domains() will fallback to
8661 * the single partition 'fallback_doms', it also forces the domains
8662 * to be rebuilt.
029190c5 8663 *
96f874e2 8664 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8665 * ndoms_new == 0 is a special case for destroying existing domains,
8666 * and it will not create the default domain.
dfb512ec 8667 *
029190c5
PJ
8668 * Call with hotplug lock held
8669 */
96f874e2
RR
8670/* FIXME: Change to struct cpumask *doms_new[] */
8671void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8672 struct sched_domain_attr *dattr_new)
029190c5 8673{
dfb512ec 8674 int i, j, n;
d65bd5ec 8675 int new_topology;
029190c5 8676
712555ee 8677 mutex_lock(&sched_domains_mutex);
a1835615 8678
7378547f
MM
8679 /* always unregister in case we don't destroy any domains */
8680 unregister_sched_domain_sysctl();
8681
d65bd5ec
HC
8682 /* Let architecture update cpu core mappings. */
8683 new_topology = arch_update_cpu_topology();
8684
dfb512ec 8685 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8686
8687 /* Destroy deleted domains */
8688 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8689 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8690 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8691 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8692 goto match1;
8693 }
8694 /* no match - a current sched domain not in new doms_new[] */
8695 detach_destroy_domains(doms_cur + i);
8696match1:
8697 ;
8698 }
8699
e761b772
MK
8700 if (doms_new == NULL) {
8701 ndoms_cur = 0;
4212823f 8702 doms_new = fallback_doms;
dcc30a35 8703 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8704 WARN_ON_ONCE(dattr_new);
e761b772
MK
8705 }
8706
029190c5
PJ
8707 /* Build new domains */
8708 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8709 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8710 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8711 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8712 goto match2;
8713 }
8714 /* no match - add a new doms_new */
1d3504fc
HS
8715 __build_sched_domains(doms_new + i,
8716 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8717match2:
8718 ;
8719 }
8720
8721 /* Remember the new sched domains */
4212823f 8722 if (doms_cur != fallback_doms)
029190c5 8723 kfree(doms_cur);
1d3504fc 8724 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8725 doms_cur = doms_new;
1d3504fc 8726 dattr_cur = dattr_new;
029190c5 8727 ndoms_cur = ndoms_new;
7378547f
MM
8728
8729 register_sched_domain_sysctl();
a1835615 8730
712555ee 8731 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8732}
8733
5c45bf27 8734#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8735static void arch_reinit_sched_domains(void)
5c45bf27 8736{
95402b38 8737 get_online_cpus();
dfb512ec
MK
8738
8739 /* Destroy domains first to force the rebuild */
8740 partition_sched_domains(0, NULL, NULL);
8741
e761b772 8742 rebuild_sched_domains();
95402b38 8743 put_online_cpus();
5c45bf27
SS
8744}
8745
8746static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8747{
afb8a9b7 8748 unsigned int level = 0;
5c45bf27 8749
afb8a9b7
GS
8750 if (sscanf(buf, "%u", &level) != 1)
8751 return -EINVAL;
8752
8753 /*
8754 * level is always be positive so don't check for
8755 * level < POWERSAVINGS_BALANCE_NONE which is 0
8756 * What happens on 0 or 1 byte write,
8757 * need to check for count as well?
8758 */
8759
8760 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8761 return -EINVAL;
8762
8763 if (smt)
afb8a9b7 8764 sched_smt_power_savings = level;
5c45bf27 8765 else
afb8a9b7 8766 sched_mc_power_savings = level;
5c45bf27 8767
c70f22d2 8768 arch_reinit_sched_domains();
5c45bf27 8769
c70f22d2 8770 return count;
5c45bf27
SS
8771}
8772
5c45bf27 8773#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8774static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8775 char *page)
5c45bf27
SS
8776{
8777 return sprintf(page, "%u\n", sched_mc_power_savings);
8778}
f718cd4a 8779static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8780 const char *buf, size_t count)
5c45bf27
SS
8781{
8782 return sched_power_savings_store(buf, count, 0);
8783}
f718cd4a
AK
8784static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8785 sched_mc_power_savings_show,
8786 sched_mc_power_savings_store);
5c45bf27
SS
8787#endif
8788
8789#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8790static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8791 char *page)
5c45bf27
SS
8792{
8793 return sprintf(page, "%u\n", sched_smt_power_savings);
8794}
f718cd4a 8795static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8796 const char *buf, size_t count)
5c45bf27
SS
8797{
8798 return sched_power_savings_store(buf, count, 1);
8799}
f718cd4a
AK
8800static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8801 sched_smt_power_savings_show,
6707de00
AB
8802 sched_smt_power_savings_store);
8803#endif
8804
39aac648 8805int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8806{
8807 int err = 0;
8808
8809#ifdef CONFIG_SCHED_SMT
8810 if (smt_capable())
8811 err = sysfs_create_file(&cls->kset.kobj,
8812 &attr_sched_smt_power_savings.attr);
8813#endif
8814#ifdef CONFIG_SCHED_MC
8815 if (!err && mc_capable())
8816 err = sysfs_create_file(&cls->kset.kobj,
8817 &attr_sched_mc_power_savings.attr);
8818#endif
8819 return err;
8820}
6d6bc0ad 8821#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8822
e761b772 8823#ifndef CONFIG_CPUSETS
1da177e4 8824/*
e761b772
MK
8825 * Add online and remove offline CPUs from the scheduler domains.
8826 * When cpusets are enabled they take over this function.
1da177e4
LT
8827 */
8828static int update_sched_domains(struct notifier_block *nfb,
8829 unsigned long action, void *hcpu)
e761b772
MK
8830{
8831 switch (action) {
8832 case CPU_ONLINE:
8833 case CPU_ONLINE_FROZEN:
8834 case CPU_DEAD:
8835 case CPU_DEAD_FROZEN:
dfb512ec 8836 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8837 return NOTIFY_OK;
8838
8839 default:
8840 return NOTIFY_DONE;
8841 }
8842}
8843#endif
8844
8845static int update_runtime(struct notifier_block *nfb,
8846 unsigned long action, void *hcpu)
1da177e4 8847{
7def2be1
PZ
8848 int cpu = (int)(long)hcpu;
8849
1da177e4 8850 switch (action) {
1da177e4 8851 case CPU_DOWN_PREPARE:
8bb78442 8852 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8853 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8854 return NOTIFY_OK;
8855
1da177e4 8856 case CPU_DOWN_FAILED:
8bb78442 8857 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8858 case CPU_ONLINE:
8bb78442 8859 case CPU_ONLINE_FROZEN:
7def2be1 8860 enable_runtime(cpu_rq(cpu));
e761b772
MK
8861 return NOTIFY_OK;
8862
1da177e4
LT
8863 default:
8864 return NOTIFY_DONE;
8865 }
1da177e4 8866}
1da177e4
LT
8867
8868void __init sched_init_smp(void)
8869{
dcc30a35
RR
8870 cpumask_var_t non_isolated_cpus;
8871
8872 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8873
434d53b0
MT
8874#if defined(CONFIG_NUMA)
8875 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8876 GFP_KERNEL);
8877 BUG_ON(sched_group_nodes_bycpu == NULL);
8878#endif
95402b38 8879 get_online_cpus();
712555ee 8880 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8881 arch_init_sched_domains(cpu_online_mask);
8882 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8883 if (cpumask_empty(non_isolated_cpus))
8884 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8885 mutex_unlock(&sched_domains_mutex);
95402b38 8886 put_online_cpus();
e761b772
MK
8887
8888#ifndef CONFIG_CPUSETS
1da177e4
LT
8889 /* XXX: Theoretical race here - CPU may be hotplugged now */
8890 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8891#endif
8892
8893 /* RT runtime code needs to handle some hotplug events */
8894 hotcpu_notifier(update_runtime, 0);
8895
b328ca18 8896 init_hrtick();
5c1e1767
NP
8897
8898 /* Move init over to a non-isolated CPU */
dcc30a35 8899 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8900 BUG();
19978ca6 8901 sched_init_granularity();
dcc30a35 8902 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8903
8904 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8905 init_sched_rt_class();
1da177e4
LT
8906}
8907#else
8908void __init sched_init_smp(void)
8909{
19978ca6 8910 sched_init_granularity();
1da177e4
LT
8911}
8912#endif /* CONFIG_SMP */
8913
8914int in_sched_functions(unsigned long addr)
8915{
1da177e4
LT
8916 return in_lock_functions(addr) ||
8917 (addr >= (unsigned long)__sched_text_start
8918 && addr < (unsigned long)__sched_text_end);
8919}
8920
a9957449 8921static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8922{
8923 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8924 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8925#ifdef CONFIG_FAIR_GROUP_SCHED
8926 cfs_rq->rq = rq;
8927#endif
67e9fb2a 8928 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8929}
8930
fa85ae24
PZ
8931static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8932{
8933 struct rt_prio_array *array;
8934 int i;
8935
8936 array = &rt_rq->active;
8937 for (i = 0; i < MAX_RT_PRIO; i++) {
8938 INIT_LIST_HEAD(array->queue + i);
8939 __clear_bit(i, array->bitmap);
8940 }
8941 /* delimiter for bitsearch: */
8942 __set_bit(MAX_RT_PRIO, array->bitmap);
8943
052f1dc7 8944#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8945 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8946#ifdef CONFIG_SMP
e864c499 8947 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8948#endif
48d5e258 8949#endif
fa85ae24
PZ
8950#ifdef CONFIG_SMP
8951 rt_rq->rt_nr_migratory = 0;
fa85ae24 8952 rt_rq->overloaded = 0;
917b627d 8953 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8954#endif
8955
8956 rt_rq->rt_time = 0;
8957 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8958 rt_rq->rt_runtime = 0;
8959 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8960
052f1dc7 8961#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8962 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8963 rt_rq->rq = rq;
8964#endif
fa85ae24
PZ
8965}
8966
6f505b16 8967#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8968static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8969 struct sched_entity *se, int cpu, int add,
8970 struct sched_entity *parent)
6f505b16 8971{
ec7dc8ac 8972 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8973 tg->cfs_rq[cpu] = cfs_rq;
8974 init_cfs_rq(cfs_rq, rq);
8975 cfs_rq->tg = tg;
8976 if (add)
8977 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8978
8979 tg->se[cpu] = se;
354d60c2
DG
8980 /* se could be NULL for init_task_group */
8981 if (!se)
8982 return;
8983
ec7dc8ac
DG
8984 if (!parent)
8985 se->cfs_rq = &rq->cfs;
8986 else
8987 se->cfs_rq = parent->my_q;
8988
6f505b16
PZ
8989 se->my_q = cfs_rq;
8990 se->load.weight = tg->shares;
e05510d0 8991 se->load.inv_weight = 0;
ec7dc8ac 8992 se->parent = parent;
6f505b16 8993}
052f1dc7 8994#endif
6f505b16 8995
052f1dc7 8996#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8997static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8998 struct sched_rt_entity *rt_se, int cpu, int add,
8999 struct sched_rt_entity *parent)
6f505b16 9000{
ec7dc8ac
DG
9001 struct rq *rq = cpu_rq(cpu);
9002
6f505b16
PZ
9003 tg->rt_rq[cpu] = rt_rq;
9004 init_rt_rq(rt_rq, rq);
9005 rt_rq->tg = tg;
9006 rt_rq->rt_se = rt_se;
ac086bc2 9007 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9008 if (add)
9009 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9010
9011 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9012 if (!rt_se)
9013 return;
9014
ec7dc8ac
DG
9015 if (!parent)
9016 rt_se->rt_rq = &rq->rt;
9017 else
9018 rt_se->rt_rq = parent->my_q;
9019
6f505b16 9020 rt_se->my_q = rt_rq;
ec7dc8ac 9021 rt_se->parent = parent;
6f505b16
PZ
9022 INIT_LIST_HEAD(&rt_se->run_list);
9023}
9024#endif
9025
1da177e4
LT
9026void __init sched_init(void)
9027{
dd41f596 9028 int i, j;
434d53b0
MT
9029 unsigned long alloc_size = 0, ptr;
9030
9031#ifdef CONFIG_FAIR_GROUP_SCHED
9032 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9033#endif
9034#ifdef CONFIG_RT_GROUP_SCHED
9035 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9036#endif
9037#ifdef CONFIG_USER_SCHED
9038 alloc_size *= 2;
df7c8e84
RR
9039#endif
9040#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9041 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9042#endif
9043 /*
9044 * As sched_init() is called before page_alloc is setup,
9045 * we use alloc_bootmem().
9046 */
9047 if (alloc_size) {
5a9d3225 9048 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
9049
9050#ifdef CONFIG_FAIR_GROUP_SCHED
9051 init_task_group.se = (struct sched_entity **)ptr;
9052 ptr += nr_cpu_ids * sizeof(void **);
9053
9054 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9055 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9056
9057#ifdef CONFIG_USER_SCHED
9058 root_task_group.se = (struct sched_entity **)ptr;
9059 ptr += nr_cpu_ids * sizeof(void **);
9060
9061 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9062 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9063#endif /* CONFIG_USER_SCHED */
9064#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9065#ifdef CONFIG_RT_GROUP_SCHED
9066 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9067 ptr += nr_cpu_ids * sizeof(void **);
9068
9069 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9070 ptr += nr_cpu_ids * sizeof(void **);
9071
9072#ifdef CONFIG_USER_SCHED
9073 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9074 ptr += nr_cpu_ids * sizeof(void **);
9075
9076 root_task_group.rt_rq = (struct rt_rq **)ptr;
9077 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9078#endif /* CONFIG_USER_SCHED */
9079#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9080#ifdef CONFIG_CPUMASK_OFFSTACK
9081 for_each_possible_cpu(i) {
9082 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9083 ptr += cpumask_size();
9084 }
9085#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9086 }
dd41f596 9087
57d885fe
GH
9088#ifdef CONFIG_SMP
9089 init_defrootdomain();
9090#endif
9091
d0b27fa7
PZ
9092 init_rt_bandwidth(&def_rt_bandwidth,
9093 global_rt_period(), global_rt_runtime());
9094
9095#ifdef CONFIG_RT_GROUP_SCHED
9096 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9097 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9098#ifdef CONFIG_USER_SCHED
9099 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9100 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9101#endif /* CONFIG_USER_SCHED */
9102#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9103
052f1dc7 9104#ifdef CONFIG_GROUP_SCHED
6f505b16 9105 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9106 INIT_LIST_HEAD(&init_task_group.children);
9107
9108#ifdef CONFIG_USER_SCHED
9109 INIT_LIST_HEAD(&root_task_group.children);
9110 init_task_group.parent = &root_task_group;
9111 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9112#endif /* CONFIG_USER_SCHED */
9113#endif /* CONFIG_GROUP_SCHED */
6f505b16 9114
0a945022 9115 for_each_possible_cpu(i) {
70b97a7f 9116 struct rq *rq;
1da177e4
LT
9117
9118 rq = cpu_rq(i);
9119 spin_lock_init(&rq->lock);
7897986b 9120 rq->nr_running = 0;
dce48a84
TG
9121 rq->calc_load_active = 0;
9122 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9123 init_cfs_rq(&rq->cfs, rq);
6f505b16 9124 init_rt_rq(&rq->rt, rq);
dd41f596 9125#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9126 init_task_group.shares = init_task_group_load;
6f505b16 9127 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9128#ifdef CONFIG_CGROUP_SCHED
9129 /*
9130 * How much cpu bandwidth does init_task_group get?
9131 *
9132 * In case of task-groups formed thr' the cgroup filesystem, it
9133 * gets 100% of the cpu resources in the system. This overall
9134 * system cpu resource is divided among the tasks of
9135 * init_task_group and its child task-groups in a fair manner,
9136 * based on each entity's (task or task-group's) weight
9137 * (se->load.weight).
9138 *
9139 * In other words, if init_task_group has 10 tasks of weight
9140 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9141 * then A0's share of the cpu resource is:
9142 *
9143 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9144 *
9145 * We achieve this by letting init_task_group's tasks sit
9146 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9147 */
ec7dc8ac 9148 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9149#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9150 root_task_group.shares = NICE_0_LOAD;
9151 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9152 /*
9153 * In case of task-groups formed thr' the user id of tasks,
9154 * init_task_group represents tasks belonging to root user.
9155 * Hence it forms a sibling of all subsequent groups formed.
9156 * In this case, init_task_group gets only a fraction of overall
9157 * system cpu resource, based on the weight assigned to root
9158 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9159 * by letting tasks of init_task_group sit in a separate cfs_rq
9160 * (init_cfs_rq) and having one entity represent this group of
9161 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9162 */
ec7dc8ac 9163 init_tg_cfs_entry(&init_task_group,
6f505b16 9164 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9165 &per_cpu(init_sched_entity, i), i, 1,
9166 root_task_group.se[i]);
6f505b16 9167
052f1dc7 9168#endif
354d60c2
DG
9169#endif /* CONFIG_FAIR_GROUP_SCHED */
9170
9171 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9172#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9173 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9174#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9175 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9176#elif defined CONFIG_USER_SCHED
eff766a6 9177 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9178 init_tg_rt_entry(&init_task_group,
6f505b16 9179 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9180 &per_cpu(init_sched_rt_entity, i), i, 1,
9181 root_task_group.rt_se[i]);
354d60c2 9182#endif
dd41f596 9183#endif
1da177e4 9184
dd41f596
IM
9185 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9186 rq->cpu_load[j] = 0;
1da177e4 9187#ifdef CONFIG_SMP
41c7ce9a 9188 rq->sd = NULL;
57d885fe 9189 rq->rd = NULL;
1da177e4 9190 rq->active_balance = 0;
dd41f596 9191 rq->next_balance = jiffies;
1da177e4 9192 rq->push_cpu = 0;
0a2966b4 9193 rq->cpu = i;
1f11eb6a 9194 rq->online = 0;
1da177e4
LT
9195 rq->migration_thread = NULL;
9196 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9197 rq_attach_root(rq, &def_root_domain);
1da177e4 9198#endif
8f4d37ec 9199 init_rq_hrtick(rq);
1da177e4 9200 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9201 }
9202
2dd73a4f 9203 set_load_weight(&init_task);
b50f60ce 9204
e107be36
AK
9205#ifdef CONFIG_PREEMPT_NOTIFIERS
9206 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9207#endif
9208
c9819f45 9209#ifdef CONFIG_SMP
962cf36c 9210 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9211#endif
9212
b50f60ce
HC
9213#ifdef CONFIG_RT_MUTEXES
9214 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9215#endif
9216
1da177e4
LT
9217 /*
9218 * The boot idle thread does lazy MMU switching as well:
9219 */
9220 atomic_inc(&init_mm.mm_count);
9221 enter_lazy_tlb(&init_mm, current);
9222
9223 /*
9224 * Make us the idle thread. Technically, schedule() should not be
9225 * called from this thread, however somewhere below it might be,
9226 * but because we are the idle thread, we just pick up running again
9227 * when this runqueue becomes "idle".
9228 */
9229 init_idle(current, smp_processor_id());
dce48a84
TG
9230
9231 calc_load_update = jiffies + LOAD_FREQ;
9232
dd41f596
IM
9233 /*
9234 * During early bootup we pretend to be a normal task:
9235 */
9236 current->sched_class = &fair_sched_class;
6892b75e 9237
6a7b3dc3
RR
9238 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9239 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9240#ifdef CONFIG_SMP
7d1e6a9b
RR
9241#ifdef CONFIG_NO_HZ
9242 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
f711f609 9243 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
7d1e6a9b 9244#endif
dcc30a35 9245 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9246#endif /* SMP */
6a7b3dc3 9247
6892b75e 9248 scheduler_running = 1;
1da177e4
LT
9249}
9250
9251#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9252void __might_sleep(char *file, int line)
9253{
48f24c4d 9254#ifdef in_atomic
1da177e4
LT
9255 static unsigned long prev_jiffy; /* ratelimiting */
9256
aef745fc
IM
9257 if ((!in_atomic() && !irqs_disabled()) ||
9258 system_state != SYSTEM_RUNNING || oops_in_progress)
9259 return;
9260 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9261 return;
9262 prev_jiffy = jiffies;
9263
9264 printk(KERN_ERR
9265 "BUG: sleeping function called from invalid context at %s:%d\n",
9266 file, line);
9267 printk(KERN_ERR
9268 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9269 in_atomic(), irqs_disabled(),
9270 current->pid, current->comm);
9271
9272 debug_show_held_locks(current);
9273 if (irqs_disabled())
9274 print_irqtrace_events(current);
9275 dump_stack();
1da177e4
LT
9276#endif
9277}
9278EXPORT_SYMBOL(__might_sleep);
9279#endif
9280
9281#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9282static void normalize_task(struct rq *rq, struct task_struct *p)
9283{
9284 int on_rq;
3e51f33f 9285
3a5e4dc1
AK
9286 update_rq_clock(rq);
9287 on_rq = p->se.on_rq;
9288 if (on_rq)
9289 deactivate_task(rq, p, 0);
9290 __setscheduler(rq, p, SCHED_NORMAL, 0);
9291 if (on_rq) {
9292 activate_task(rq, p, 0);
9293 resched_task(rq->curr);
9294 }
9295}
9296
1da177e4
LT
9297void normalize_rt_tasks(void)
9298{
a0f98a1c 9299 struct task_struct *g, *p;
1da177e4 9300 unsigned long flags;
70b97a7f 9301 struct rq *rq;
1da177e4 9302
4cf5d77a 9303 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9304 do_each_thread(g, p) {
178be793
IM
9305 /*
9306 * Only normalize user tasks:
9307 */
9308 if (!p->mm)
9309 continue;
9310
6cfb0d5d 9311 p->se.exec_start = 0;
6cfb0d5d 9312#ifdef CONFIG_SCHEDSTATS
dd41f596 9313 p->se.wait_start = 0;
dd41f596 9314 p->se.sleep_start = 0;
dd41f596 9315 p->se.block_start = 0;
6cfb0d5d 9316#endif
dd41f596
IM
9317
9318 if (!rt_task(p)) {
9319 /*
9320 * Renice negative nice level userspace
9321 * tasks back to 0:
9322 */
9323 if (TASK_NICE(p) < 0 && p->mm)
9324 set_user_nice(p, 0);
1da177e4 9325 continue;
dd41f596 9326 }
1da177e4 9327
4cf5d77a 9328 spin_lock(&p->pi_lock);
b29739f9 9329 rq = __task_rq_lock(p);
1da177e4 9330
178be793 9331 normalize_task(rq, p);
3a5e4dc1 9332
b29739f9 9333 __task_rq_unlock(rq);
4cf5d77a 9334 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9335 } while_each_thread(g, p);
9336
4cf5d77a 9337 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9338}
9339
9340#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9341
9342#ifdef CONFIG_IA64
9343/*
9344 * These functions are only useful for the IA64 MCA handling.
9345 *
9346 * They can only be called when the whole system has been
9347 * stopped - every CPU needs to be quiescent, and no scheduling
9348 * activity can take place. Using them for anything else would
9349 * be a serious bug, and as a result, they aren't even visible
9350 * under any other configuration.
9351 */
9352
9353/**
9354 * curr_task - return the current task for a given cpu.
9355 * @cpu: the processor in question.
9356 *
9357 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9358 */
36c8b586 9359struct task_struct *curr_task(int cpu)
1df5c10a
LT
9360{
9361 return cpu_curr(cpu);
9362}
9363
9364/**
9365 * set_curr_task - set the current task for a given cpu.
9366 * @cpu: the processor in question.
9367 * @p: the task pointer to set.
9368 *
9369 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9370 * are serviced on a separate stack. It allows the architecture to switch the
9371 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9372 * must be called with all CPU's synchronized, and interrupts disabled, the
9373 * and caller must save the original value of the current task (see
9374 * curr_task() above) and restore that value before reenabling interrupts and
9375 * re-starting the system.
9376 *
9377 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9378 */
36c8b586 9379void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9380{
9381 cpu_curr(cpu) = p;
9382}
9383
9384#endif
29f59db3 9385
bccbe08a
PZ
9386#ifdef CONFIG_FAIR_GROUP_SCHED
9387static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9388{
9389 int i;
9390
9391 for_each_possible_cpu(i) {
9392 if (tg->cfs_rq)
9393 kfree(tg->cfs_rq[i]);
9394 if (tg->se)
9395 kfree(tg->se[i]);
6f505b16
PZ
9396 }
9397
9398 kfree(tg->cfs_rq);
9399 kfree(tg->se);
6f505b16
PZ
9400}
9401
ec7dc8ac
DG
9402static
9403int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9404{
29f59db3 9405 struct cfs_rq *cfs_rq;
eab17229 9406 struct sched_entity *se;
9b5b7751 9407 struct rq *rq;
29f59db3
SV
9408 int i;
9409
434d53b0 9410 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9411 if (!tg->cfs_rq)
9412 goto err;
434d53b0 9413 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9414 if (!tg->se)
9415 goto err;
052f1dc7
PZ
9416
9417 tg->shares = NICE_0_LOAD;
29f59db3
SV
9418
9419 for_each_possible_cpu(i) {
9b5b7751 9420 rq = cpu_rq(i);
29f59db3 9421
eab17229
LZ
9422 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9423 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9424 if (!cfs_rq)
9425 goto err;
9426
eab17229
LZ
9427 se = kzalloc_node(sizeof(struct sched_entity),
9428 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9429 if (!se)
9430 goto err;
9431
eab17229 9432 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9433 }
9434
9435 return 1;
9436
9437 err:
9438 return 0;
9439}
9440
9441static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9442{
9443 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9444 &cpu_rq(cpu)->leaf_cfs_rq_list);
9445}
9446
9447static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9448{
9449 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9450}
6d6bc0ad 9451#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9452static inline void free_fair_sched_group(struct task_group *tg)
9453{
9454}
9455
ec7dc8ac
DG
9456static inline
9457int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9458{
9459 return 1;
9460}
9461
9462static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9463{
9464}
9465
9466static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9467{
9468}
6d6bc0ad 9469#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9470
9471#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9472static void free_rt_sched_group(struct task_group *tg)
9473{
9474 int i;
9475
d0b27fa7
PZ
9476 destroy_rt_bandwidth(&tg->rt_bandwidth);
9477
bccbe08a
PZ
9478 for_each_possible_cpu(i) {
9479 if (tg->rt_rq)
9480 kfree(tg->rt_rq[i]);
9481 if (tg->rt_se)
9482 kfree(tg->rt_se[i]);
9483 }
9484
9485 kfree(tg->rt_rq);
9486 kfree(tg->rt_se);
9487}
9488
ec7dc8ac
DG
9489static
9490int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9491{
9492 struct rt_rq *rt_rq;
eab17229 9493 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9494 struct rq *rq;
9495 int i;
9496
434d53b0 9497 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9498 if (!tg->rt_rq)
9499 goto err;
434d53b0 9500 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9501 if (!tg->rt_se)
9502 goto err;
9503
d0b27fa7
PZ
9504 init_rt_bandwidth(&tg->rt_bandwidth,
9505 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9506
9507 for_each_possible_cpu(i) {
9508 rq = cpu_rq(i);
9509
eab17229
LZ
9510 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9511 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9512 if (!rt_rq)
9513 goto err;
29f59db3 9514
eab17229
LZ
9515 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9516 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9517 if (!rt_se)
9518 goto err;
29f59db3 9519
eab17229 9520 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9521 }
9522
bccbe08a
PZ
9523 return 1;
9524
9525 err:
9526 return 0;
9527}
9528
9529static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9530{
9531 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9532 &cpu_rq(cpu)->leaf_rt_rq_list);
9533}
9534
9535static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9536{
9537 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9538}
6d6bc0ad 9539#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9540static inline void free_rt_sched_group(struct task_group *tg)
9541{
9542}
9543
ec7dc8ac
DG
9544static inline
9545int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9546{
9547 return 1;
9548}
9549
9550static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9551{
9552}
9553
9554static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9555{
9556}
6d6bc0ad 9557#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9558
d0b27fa7 9559#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9560static void free_sched_group(struct task_group *tg)
9561{
9562 free_fair_sched_group(tg);
9563 free_rt_sched_group(tg);
9564 kfree(tg);
9565}
9566
9567/* allocate runqueue etc for a new task group */
ec7dc8ac 9568struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9569{
9570 struct task_group *tg;
9571 unsigned long flags;
9572 int i;
9573
9574 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9575 if (!tg)
9576 return ERR_PTR(-ENOMEM);
9577
ec7dc8ac 9578 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9579 goto err;
9580
ec7dc8ac 9581 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9582 goto err;
9583
8ed36996 9584 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9585 for_each_possible_cpu(i) {
bccbe08a
PZ
9586 register_fair_sched_group(tg, i);
9587 register_rt_sched_group(tg, i);
9b5b7751 9588 }
6f505b16 9589 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9590
9591 WARN_ON(!parent); /* root should already exist */
9592
9593 tg->parent = parent;
f473aa5e 9594 INIT_LIST_HEAD(&tg->children);
09f2724a 9595 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9596 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9597
9b5b7751 9598 return tg;
29f59db3
SV
9599
9600err:
6f505b16 9601 free_sched_group(tg);
29f59db3
SV
9602 return ERR_PTR(-ENOMEM);
9603}
9604
9b5b7751 9605/* rcu callback to free various structures associated with a task group */
6f505b16 9606static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9607{
29f59db3 9608 /* now it should be safe to free those cfs_rqs */
6f505b16 9609 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9610}
9611
9b5b7751 9612/* Destroy runqueue etc associated with a task group */
4cf86d77 9613void sched_destroy_group(struct task_group *tg)
29f59db3 9614{
8ed36996 9615 unsigned long flags;
9b5b7751 9616 int i;
29f59db3 9617
8ed36996 9618 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9619 for_each_possible_cpu(i) {
bccbe08a
PZ
9620 unregister_fair_sched_group(tg, i);
9621 unregister_rt_sched_group(tg, i);
9b5b7751 9622 }
6f505b16 9623 list_del_rcu(&tg->list);
f473aa5e 9624 list_del_rcu(&tg->siblings);
8ed36996 9625 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9626
9b5b7751 9627 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9628 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9629}
9630
9b5b7751 9631/* change task's runqueue when it moves between groups.
3a252015
IM
9632 * The caller of this function should have put the task in its new group
9633 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9634 * reflect its new group.
9b5b7751
SV
9635 */
9636void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9637{
9638 int on_rq, running;
9639 unsigned long flags;
9640 struct rq *rq;
9641
9642 rq = task_rq_lock(tsk, &flags);
9643
29f59db3
SV
9644 update_rq_clock(rq);
9645
051a1d1a 9646 running = task_current(rq, tsk);
29f59db3
SV
9647 on_rq = tsk->se.on_rq;
9648
0e1f3483 9649 if (on_rq)
29f59db3 9650 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9651 if (unlikely(running))
9652 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9653
6f505b16 9654 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9655
810b3817
PZ
9656#ifdef CONFIG_FAIR_GROUP_SCHED
9657 if (tsk->sched_class->moved_group)
9658 tsk->sched_class->moved_group(tsk);
9659#endif
9660
0e1f3483
HS
9661 if (unlikely(running))
9662 tsk->sched_class->set_curr_task(rq);
9663 if (on_rq)
7074badb 9664 enqueue_task(rq, tsk, 0);
29f59db3 9665
29f59db3
SV
9666 task_rq_unlock(rq, &flags);
9667}
6d6bc0ad 9668#endif /* CONFIG_GROUP_SCHED */
29f59db3 9669
052f1dc7 9670#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9671static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9672{
9673 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9674 int on_rq;
9675
29f59db3 9676 on_rq = se->on_rq;
62fb1851 9677 if (on_rq)
29f59db3
SV
9678 dequeue_entity(cfs_rq, se, 0);
9679
9680 se->load.weight = shares;
e05510d0 9681 se->load.inv_weight = 0;
29f59db3 9682
62fb1851 9683 if (on_rq)
29f59db3 9684 enqueue_entity(cfs_rq, se, 0);
c09595f6 9685}
62fb1851 9686
c09595f6
PZ
9687static void set_se_shares(struct sched_entity *se, unsigned long shares)
9688{
9689 struct cfs_rq *cfs_rq = se->cfs_rq;
9690 struct rq *rq = cfs_rq->rq;
9691 unsigned long flags;
9692
9693 spin_lock_irqsave(&rq->lock, flags);
9694 __set_se_shares(se, shares);
9695 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9696}
9697
8ed36996
PZ
9698static DEFINE_MUTEX(shares_mutex);
9699
4cf86d77 9700int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9701{
9702 int i;
8ed36996 9703 unsigned long flags;
c61935fd 9704
ec7dc8ac
DG
9705 /*
9706 * We can't change the weight of the root cgroup.
9707 */
9708 if (!tg->se[0])
9709 return -EINVAL;
9710
18d95a28
PZ
9711 if (shares < MIN_SHARES)
9712 shares = MIN_SHARES;
cb4ad1ff
MX
9713 else if (shares > MAX_SHARES)
9714 shares = MAX_SHARES;
62fb1851 9715
8ed36996 9716 mutex_lock(&shares_mutex);
9b5b7751 9717 if (tg->shares == shares)
5cb350ba 9718 goto done;
29f59db3 9719
8ed36996 9720 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9721 for_each_possible_cpu(i)
9722 unregister_fair_sched_group(tg, i);
f473aa5e 9723 list_del_rcu(&tg->siblings);
8ed36996 9724 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9725
9726 /* wait for any ongoing reference to this group to finish */
9727 synchronize_sched();
9728
9729 /*
9730 * Now we are free to modify the group's share on each cpu
9731 * w/o tripping rebalance_share or load_balance_fair.
9732 */
9b5b7751 9733 tg->shares = shares;
c09595f6
PZ
9734 for_each_possible_cpu(i) {
9735 /*
9736 * force a rebalance
9737 */
9738 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9739 set_se_shares(tg->se[i], shares);
c09595f6 9740 }
29f59db3 9741
6b2d7700
SV
9742 /*
9743 * Enable load balance activity on this group, by inserting it back on
9744 * each cpu's rq->leaf_cfs_rq_list.
9745 */
8ed36996 9746 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9747 for_each_possible_cpu(i)
9748 register_fair_sched_group(tg, i);
f473aa5e 9749 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9750 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9751done:
8ed36996 9752 mutex_unlock(&shares_mutex);
9b5b7751 9753 return 0;
29f59db3
SV
9754}
9755
5cb350ba
DG
9756unsigned long sched_group_shares(struct task_group *tg)
9757{
9758 return tg->shares;
9759}
052f1dc7 9760#endif
5cb350ba 9761
052f1dc7 9762#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9763/*
9f0c1e56 9764 * Ensure that the real time constraints are schedulable.
6f505b16 9765 */
9f0c1e56
PZ
9766static DEFINE_MUTEX(rt_constraints_mutex);
9767
9768static unsigned long to_ratio(u64 period, u64 runtime)
9769{
9770 if (runtime == RUNTIME_INF)
9a7e0b18 9771 return 1ULL << 20;
9f0c1e56 9772
9a7e0b18 9773 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9774}
9775
9a7e0b18
PZ
9776/* Must be called with tasklist_lock held */
9777static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9778{
9a7e0b18 9779 struct task_struct *g, *p;
b40b2e8e 9780
9a7e0b18
PZ
9781 do_each_thread(g, p) {
9782 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9783 return 1;
9784 } while_each_thread(g, p);
b40b2e8e 9785
9a7e0b18
PZ
9786 return 0;
9787}
b40b2e8e 9788
9a7e0b18
PZ
9789struct rt_schedulable_data {
9790 struct task_group *tg;
9791 u64 rt_period;
9792 u64 rt_runtime;
9793};
b40b2e8e 9794
9a7e0b18
PZ
9795static int tg_schedulable(struct task_group *tg, void *data)
9796{
9797 struct rt_schedulable_data *d = data;
9798 struct task_group *child;
9799 unsigned long total, sum = 0;
9800 u64 period, runtime;
b40b2e8e 9801
9a7e0b18
PZ
9802 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9803 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9804
9a7e0b18
PZ
9805 if (tg == d->tg) {
9806 period = d->rt_period;
9807 runtime = d->rt_runtime;
b40b2e8e 9808 }
b40b2e8e 9809
98a4826b
PZ
9810#ifdef CONFIG_USER_SCHED
9811 if (tg == &root_task_group) {
9812 period = global_rt_period();
9813 runtime = global_rt_runtime();
9814 }
9815#endif
9816
4653f803
PZ
9817 /*
9818 * Cannot have more runtime than the period.
9819 */
9820 if (runtime > period && runtime != RUNTIME_INF)
9821 return -EINVAL;
6f505b16 9822
4653f803
PZ
9823 /*
9824 * Ensure we don't starve existing RT tasks.
9825 */
9a7e0b18
PZ
9826 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9827 return -EBUSY;
6f505b16 9828
9a7e0b18 9829 total = to_ratio(period, runtime);
6f505b16 9830
4653f803
PZ
9831 /*
9832 * Nobody can have more than the global setting allows.
9833 */
9834 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9835 return -EINVAL;
6f505b16 9836
4653f803
PZ
9837 /*
9838 * The sum of our children's runtime should not exceed our own.
9839 */
9a7e0b18
PZ
9840 list_for_each_entry_rcu(child, &tg->children, siblings) {
9841 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9842 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9843
9a7e0b18
PZ
9844 if (child == d->tg) {
9845 period = d->rt_period;
9846 runtime = d->rt_runtime;
9847 }
6f505b16 9848
9a7e0b18 9849 sum += to_ratio(period, runtime);
9f0c1e56 9850 }
6f505b16 9851
9a7e0b18
PZ
9852 if (sum > total)
9853 return -EINVAL;
9854
9855 return 0;
6f505b16
PZ
9856}
9857
9a7e0b18 9858static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9859{
9a7e0b18
PZ
9860 struct rt_schedulable_data data = {
9861 .tg = tg,
9862 .rt_period = period,
9863 .rt_runtime = runtime,
9864 };
9865
9866 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9867}
9868
d0b27fa7
PZ
9869static int tg_set_bandwidth(struct task_group *tg,
9870 u64 rt_period, u64 rt_runtime)
6f505b16 9871{
ac086bc2 9872 int i, err = 0;
9f0c1e56 9873
9f0c1e56 9874 mutex_lock(&rt_constraints_mutex);
521f1a24 9875 read_lock(&tasklist_lock);
9a7e0b18
PZ
9876 err = __rt_schedulable(tg, rt_period, rt_runtime);
9877 if (err)
9f0c1e56 9878 goto unlock;
ac086bc2
PZ
9879
9880 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9881 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9882 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9883
9884 for_each_possible_cpu(i) {
9885 struct rt_rq *rt_rq = tg->rt_rq[i];
9886
9887 spin_lock(&rt_rq->rt_runtime_lock);
9888 rt_rq->rt_runtime = rt_runtime;
9889 spin_unlock(&rt_rq->rt_runtime_lock);
9890 }
9891 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9892 unlock:
521f1a24 9893 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9894 mutex_unlock(&rt_constraints_mutex);
9895
9896 return err;
6f505b16
PZ
9897}
9898
d0b27fa7
PZ
9899int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9900{
9901 u64 rt_runtime, rt_period;
9902
9903 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9904 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9905 if (rt_runtime_us < 0)
9906 rt_runtime = RUNTIME_INF;
9907
9908 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9909}
9910
9f0c1e56
PZ
9911long sched_group_rt_runtime(struct task_group *tg)
9912{
9913 u64 rt_runtime_us;
9914
d0b27fa7 9915 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9916 return -1;
9917
d0b27fa7 9918 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9919 do_div(rt_runtime_us, NSEC_PER_USEC);
9920 return rt_runtime_us;
9921}
d0b27fa7
PZ
9922
9923int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9924{
9925 u64 rt_runtime, rt_period;
9926
9927 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9928 rt_runtime = tg->rt_bandwidth.rt_runtime;
9929
619b0488
R
9930 if (rt_period == 0)
9931 return -EINVAL;
9932
d0b27fa7
PZ
9933 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9934}
9935
9936long sched_group_rt_period(struct task_group *tg)
9937{
9938 u64 rt_period_us;
9939
9940 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9941 do_div(rt_period_us, NSEC_PER_USEC);
9942 return rt_period_us;
9943}
9944
9945static int sched_rt_global_constraints(void)
9946{
4653f803 9947 u64 runtime, period;
d0b27fa7
PZ
9948 int ret = 0;
9949
ec5d4989
HS
9950 if (sysctl_sched_rt_period <= 0)
9951 return -EINVAL;
9952
4653f803
PZ
9953 runtime = global_rt_runtime();
9954 period = global_rt_period();
9955
9956 /*
9957 * Sanity check on the sysctl variables.
9958 */
9959 if (runtime > period && runtime != RUNTIME_INF)
9960 return -EINVAL;
10b612f4 9961
d0b27fa7 9962 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9963 read_lock(&tasklist_lock);
4653f803 9964 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9965 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9966 mutex_unlock(&rt_constraints_mutex);
9967
9968 return ret;
9969}
54e99124
DG
9970
9971int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9972{
9973 /* Don't accept realtime tasks when there is no way for them to run */
9974 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9975 return 0;
9976
9977 return 1;
9978}
9979
6d6bc0ad 9980#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9981static int sched_rt_global_constraints(void)
9982{
ac086bc2
PZ
9983 unsigned long flags;
9984 int i;
9985
ec5d4989
HS
9986 if (sysctl_sched_rt_period <= 0)
9987 return -EINVAL;
9988
60aa605d
PZ
9989 /*
9990 * There's always some RT tasks in the root group
9991 * -- migration, kstopmachine etc..
9992 */
9993 if (sysctl_sched_rt_runtime == 0)
9994 return -EBUSY;
9995
ac086bc2
PZ
9996 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9997 for_each_possible_cpu(i) {
9998 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9999
10000 spin_lock(&rt_rq->rt_runtime_lock);
10001 rt_rq->rt_runtime = global_rt_runtime();
10002 spin_unlock(&rt_rq->rt_runtime_lock);
10003 }
10004 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10005
d0b27fa7
PZ
10006 return 0;
10007}
6d6bc0ad 10008#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10009
10010int sched_rt_handler(struct ctl_table *table, int write,
10011 struct file *filp, void __user *buffer, size_t *lenp,
10012 loff_t *ppos)
10013{
10014 int ret;
10015 int old_period, old_runtime;
10016 static DEFINE_MUTEX(mutex);
10017
10018 mutex_lock(&mutex);
10019 old_period = sysctl_sched_rt_period;
10020 old_runtime = sysctl_sched_rt_runtime;
10021
10022 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10023
10024 if (!ret && write) {
10025 ret = sched_rt_global_constraints();
10026 if (ret) {
10027 sysctl_sched_rt_period = old_period;
10028 sysctl_sched_rt_runtime = old_runtime;
10029 } else {
10030 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10031 def_rt_bandwidth.rt_period =
10032 ns_to_ktime(global_rt_period());
10033 }
10034 }
10035 mutex_unlock(&mutex);
10036
10037 return ret;
10038}
68318b8e 10039
052f1dc7 10040#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10041
10042/* return corresponding task_group object of a cgroup */
2b01dfe3 10043static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10044{
2b01dfe3
PM
10045 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10046 struct task_group, css);
68318b8e
SV
10047}
10048
10049static struct cgroup_subsys_state *
2b01dfe3 10050cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10051{
ec7dc8ac 10052 struct task_group *tg, *parent;
68318b8e 10053
2b01dfe3 10054 if (!cgrp->parent) {
68318b8e 10055 /* This is early initialization for the top cgroup */
68318b8e
SV
10056 return &init_task_group.css;
10057 }
10058
ec7dc8ac
DG
10059 parent = cgroup_tg(cgrp->parent);
10060 tg = sched_create_group(parent);
68318b8e
SV
10061 if (IS_ERR(tg))
10062 return ERR_PTR(-ENOMEM);
10063
68318b8e
SV
10064 return &tg->css;
10065}
10066
41a2d6cf
IM
10067static void
10068cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10069{
2b01dfe3 10070 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10071
10072 sched_destroy_group(tg);
10073}
10074
41a2d6cf
IM
10075static int
10076cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10077 struct task_struct *tsk)
68318b8e 10078{
b68aa230 10079#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10080 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10081 return -EINVAL;
10082#else
68318b8e
SV
10083 /* We don't support RT-tasks being in separate groups */
10084 if (tsk->sched_class != &fair_sched_class)
10085 return -EINVAL;
b68aa230 10086#endif
68318b8e
SV
10087
10088 return 0;
10089}
10090
10091static void
2b01dfe3 10092cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10093 struct cgroup *old_cont, struct task_struct *tsk)
10094{
10095 sched_move_task(tsk);
10096}
10097
052f1dc7 10098#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10099static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10100 u64 shareval)
68318b8e 10101{
2b01dfe3 10102 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10103}
10104
f4c753b7 10105static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10106{
2b01dfe3 10107 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10108
10109 return (u64) tg->shares;
10110}
6d6bc0ad 10111#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10112
052f1dc7 10113#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10114static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10115 s64 val)
6f505b16 10116{
06ecb27c 10117 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10118}
10119
06ecb27c 10120static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10121{
06ecb27c 10122 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10123}
d0b27fa7
PZ
10124
10125static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10126 u64 rt_period_us)
10127{
10128 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10129}
10130
10131static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10132{
10133 return sched_group_rt_period(cgroup_tg(cgrp));
10134}
6d6bc0ad 10135#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10136
fe5c7cc2 10137static struct cftype cpu_files[] = {
052f1dc7 10138#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10139 {
10140 .name = "shares",
f4c753b7
PM
10141 .read_u64 = cpu_shares_read_u64,
10142 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10143 },
052f1dc7
PZ
10144#endif
10145#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10146 {
9f0c1e56 10147 .name = "rt_runtime_us",
06ecb27c
PM
10148 .read_s64 = cpu_rt_runtime_read,
10149 .write_s64 = cpu_rt_runtime_write,
6f505b16 10150 },
d0b27fa7
PZ
10151 {
10152 .name = "rt_period_us",
f4c753b7
PM
10153 .read_u64 = cpu_rt_period_read_uint,
10154 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10155 },
052f1dc7 10156#endif
68318b8e
SV
10157};
10158
10159static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10160{
fe5c7cc2 10161 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10162}
10163
10164struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10165 .name = "cpu",
10166 .create = cpu_cgroup_create,
10167 .destroy = cpu_cgroup_destroy,
10168 .can_attach = cpu_cgroup_can_attach,
10169 .attach = cpu_cgroup_attach,
10170 .populate = cpu_cgroup_populate,
10171 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10172 .early_init = 1,
10173};
10174
052f1dc7 10175#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10176
10177#ifdef CONFIG_CGROUP_CPUACCT
10178
10179/*
10180 * CPU accounting code for task groups.
10181 *
10182 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10183 * (balbir@in.ibm.com).
10184 */
10185
934352f2 10186/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10187struct cpuacct {
10188 struct cgroup_subsys_state css;
10189 /* cpuusage holds pointer to a u64-type object on every cpu */
10190 u64 *cpuusage;
ef12fefa 10191 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10192 struct cpuacct *parent;
d842de87
SV
10193};
10194
10195struct cgroup_subsys cpuacct_subsys;
10196
10197/* return cpu accounting group corresponding to this container */
32cd756a 10198static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10199{
32cd756a 10200 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10201 struct cpuacct, css);
10202}
10203
10204/* return cpu accounting group to which this task belongs */
10205static inline struct cpuacct *task_ca(struct task_struct *tsk)
10206{
10207 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10208 struct cpuacct, css);
10209}
10210
10211/* create a new cpu accounting group */
10212static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10213 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10214{
10215 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10216 int i;
d842de87
SV
10217
10218 if (!ca)
ef12fefa 10219 goto out;
d842de87
SV
10220
10221 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10222 if (!ca->cpuusage)
10223 goto out_free_ca;
10224
10225 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10226 if (percpu_counter_init(&ca->cpustat[i], 0))
10227 goto out_free_counters;
d842de87 10228
934352f2
BR
10229 if (cgrp->parent)
10230 ca->parent = cgroup_ca(cgrp->parent);
10231
d842de87 10232 return &ca->css;
ef12fefa
BR
10233
10234out_free_counters:
10235 while (--i >= 0)
10236 percpu_counter_destroy(&ca->cpustat[i]);
10237 free_percpu(ca->cpuusage);
10238out_free_ca:
10239 kfree(ca);
10240out:
10241 return ERR_PTR(-ENOMEM);
d842de87
SV
10242}
10243
10244/* destroy an existing cpu accounting group */
41a2d6cf 10245static void
32cd756a 10246cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10247{
32cd756a 10248 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10249 int i;
d842de87 10250
ef12fefa
BR
10251 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10252 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10253 free_percpu(ca->cpuusage);
10254 kfree(ca);
10255}
10256
720f5498
KC
10257static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10258{
b36128c8 10259 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10260 u64 data;
10261
10262#ifndef CONFIG_64BIT
10263 /*
10264 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10265 */
10266 spin_lock_irq(&cpu_rq(cpu)->lock);
10267 data = *cpuusage;
10268 spin_unlock_irq(&cpu_rq(cpu)->lock);
10269#else
10270 data = *cpuusage;
10271#endif
10272
10273 return data;
10274}
10275
10276static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10277{
b36128c8 10278 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10279
10280#ifndef CONFIG_64BIT
10281 /*
10282 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10283 */
10284 spin_lock_irq(&cpu_rq(cpu)->lock);
10285 *cpuusage = val;
10286 spin_unlock_irq(&cpu_rq(cpu)->lock);
10287#else
10288 *cpuusage = val;
10289#endif
10290}
10291
d842de87 10292/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10293static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10294{
32cd756a 10295 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10296 u64 totalcpuusage = 0;
10297 int i;
10298
720f5498
KC
10299 for_each_present_cpu(i)
10300 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10301
10302 return totalcpuusage;
10303}
10304
0297b803
DG
10305static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10306 u64 reset)
10307{
10308 struct cpuacct *ca = cgroup_ca(cgrp);
10309 int err = 0;
10310 int i;
10311
10312 if (reset) {
10313 err = -EINVAL;
10314 goto out;
10315 }
10316
720f5498
KC
10317 for_each_present_cpu(i)
10318 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10319
0297b803
DG
10320out:
10321 return err;
10322}
10323
e9515c3c
KC
10324static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10325 struct seq_file *m)
10326{
10327 struct cpuacct *ca = cgroup_ca(cgroup);
10328 u64 percpu;
10329 int i;
10330
10331 for_each_present_cpu(i) {
10332 percpu = cpuacct_cpuusage_read(ca, i);
10333 seq_printf(m, "%llu ", (unsigned long long) percpu);
10334 }
10335 seq_printf(m, "\n");
10336 return 0;
10337}
10338
ef12fefa
BR
10339static const char *cpuacct_stat_desc[] = {
10340 [CPUACCT_STAT_USER] = "user",
10341 [CPUACCT_STAT_SYSTEM] = "system",
10342};
10343
10344static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10345 struct cgroup_map_cb *cb)
10346{
10347 struct cpuacct *ca = cgroup_ca(cgrp);
10348 int i;
10349
10350 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10351 s64 val = percpu_counter_read(&ca->cpustat[i]);
10352 val = cputime64_to_clock_t(val);
10353 cb->fill(cb, cpuacct_stat_desc[i], val);
10354 }
10355 return 0;
10356}
10357
d842de87
SV
10358static struct cftype files[] = {
10359 {
10360 .name = "usage",
f4c753b7
PM
10361 .read_u64 = cpuusage_read,
10362 .write_u64 = cpuusage_write,
d842de87 10363 },
e9515c3c
KC
10364 {
10365 .name = "usage_percpu",
10366 .read_seq_string = cpuacct_percpu_seq_read,
10367 },
ef12fefa
BR
10368 {
10369 .name = "stat",
10370 .read_map = cpuacct_stats_show,
10371 },
d842de87
SV
10372};
10373
32cd756a 10374static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10375{
32cd756a 10376 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10377}
10378
10379/*
10380 * charge this task's execution time to its accounting group.
10381 *
10382 * called with rq->lock held.
10383 */
10384static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10385{
10386 struct cpuacct *ca;
934352f2 10387 int cpu;
d842de87 10388
c40c6f85 10389 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10390 return;
10391
934352f2 10392 cpu = task_cpu(tsk);
a18b83b7
BR
10393
10394 rcu_read_lock();
10395
d842de87 10396 ca = task_ca(tsk);
d842de87 10397
934352f2 10398 for (; ca; ca = ca->parent) {
b36128c8 10399 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10400 *cpuusage += cputime;
10401 }
a18b83b7
BR
10402
10403 rcu_read_unlock();
d842de87
SV
10404}
10405
ef12fefa
BR
10406/*
10407 * Charge the system/user time to the task's accounting group.
10408 */
10409static void cpuacct_update_stats(struct task_struct *tsk,
10410 enum cpuacct_stat_index idx, cputime_t val)
10411{
10412 struct cpuacct *ca;
10413
10414 if (unlikely(!cpuacct_subsys.active))
10415 return;
10416
10417 rcu_read_lock();
10418 ca = task_ca(tsk);
10419
10420 do {
10421 percpu_counter_add(&ca->cpustat[idx], val);
10422 ca = ca->parent;
10423 } while (ca);
10424 rcu_read_unlock();
10425}
10426
d842de87
SV
10427struct cgroup_subsys cpuacct_subsys = {
10428 .name = "cpuacct",
10429 .create = cpuacct_create,
10430 .destroy = cpuacct_destroy,
10431 .populate = cpuacct_populate,
10432 .subsys_id = cpuacct_subsys_id,
10433};
10434#endif /* CONFIG_CGROUP_CPUACCT */