[PATCH] sched: add above_background_load() function
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
56#include <linux/syscalls.h>
57#include <linux/times.h>
8f0ab514 58#include <linux/tsacct_kern.h>
c6fd91f0 59#include <linux/kprobes.h>
0ff92245 60#include <linux/delayacct.h>
5517d86b 61#include <linux/reciprocal_div.h>
dff06c15 62#include <linux/unistd.h>
1da177e4 63
5517d86b 64#include <asm/tlb.h>
1da177e4 65
b035b6de
AD
66/*
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
70 */
71unsigned long long __attribute__((weak)) sched_clock(void)
72{
73 return (unsigned long long)jiffies * (1000000000 / HZ);
74}
75
1da177e4
LT
76/*
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
79 * and back.
80 */
81#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
84
85/*
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
89 */
90#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
93
94/*
95 * Some helpers for converting nanosecond timing to jiffy resolution
96 */
97#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
109 */
110#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
634fa8c9
IM
134#define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
136
91fcdd4e 137/*
634fa8c9 138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 139 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 140 */
634fa8c9 141static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 142{
634fa8c9
IM
143 if (static_prio == NICE_TO_PRIO(19))
144 return 1;
145
146 if (static_prio < NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
148 else
149 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
150}
151
e05606d3
IM
152static inline int rt_policy(int policy)
153{
154 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
155 return 1;
156 return 0;
157}
158
159static inline int task_has_rt_policy(struct task_struct *p)
160{
161 return rt_policy(p->policy);
162}
163
1da177e4 164/*
6aa645ea 165 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 166 */
6aa645ea
IM
167struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
170};
171
172struct load_stat {
173 struct load_weight load;
174 u64 load_update_start, load_update_last;
175 unsigned long delta_fair, delta_exec, delta_stat;
176};
177
178/* CFS-related fields in a runqueue */
179struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
188
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
192#ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
198
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
202 *
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
205 */
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207#endif
208};
1da177e4 209
6aa645ea
IM
210/* Real-Time classes' related field in a runqueue: */
211struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215};
216
1da177e4
LT
217/*
218 * This is the main, per-CPU runqueue data structure.
219 *
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
223 */
70b97a7f 224struct rq {
6aa645ea 225 spinlock_t lock; /* runqueue lock */
1da177e4
LT
226
227 /*
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
230 */
231 unsigned long nr_running;
6aa645ea
IM
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 234 unsigned char idle_at_tick;
46cb4b7c
SS
235#ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237#endif
6aa645ea
IM
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
241
242 struct cfs_rq cfs;
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 245#endif
6aa645ea 246 struct rt_rq rt;
1da177e4
LT
247
248 /*
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
253 */
254 unsigned long nr_uninterruptible;
255
36c8b586 256 struct task_struct *curr, *idle;
c9819f45 257 unsigned long next_balance;
1da177e4 258 struct mm_struct *prev_mm;
6aa645ea 259
6aa645ea
IM
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
262
263 unsigned int clock_warps, clock_overflows;
264 unsigned int clock_unstable_events;
265
1da177e4
LT
266 atomic_t nr_iowait;
267
268#ifdef CONFIG_SMP
269 struct sched_domain *sd;
270
271 /* For active balancing */
272 int active_balance;
273 int push_cpu;
0a2966b4 274 int cpu; /* cpu of this runqueue */
1da177e4 275
36c8b586 276 struct task_struct *migration_thread;
1da177e4
LT
277 struct list_head migration_queue;
278#endif
279
280#ifdef CONFIG_SCHEDSTATS
281 /* latency stats */
282 struct sched_info rq_sched_info;
283
284 /* sys_sched_yield() stats */
285 unsigned long yld_exp_empty;
286 unsigned long yld_act_empty;
287 unsigned long yld_both_empty;
288 unsigned long yld_cnt;
289
290 /* schedule() stats */
291 unsigned long sched_switch;
292 unsigned long sched_cnt;
293 unsigned long sched_goidle;
294
295 /* try_to_wake_up() stats */
296 unsigned long ttwu_cnt;
297 unsigned long ttwu_local;
298#endif
fcb99371 299 struct lock_class_key rq_lock_key;
1da177e4
LT
300};
301
f34e3b61 302static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 303static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 304
dd41f596
IM
305static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
306{
307 rq->curr->sched_class->check_preempt_curr(rq, p);
308}
309
0a2966b4
CL
310static inline int cpu_of(struct rq *rq)
311{
312#ifdef CONFIG_SMP
313 return rq->cpu;
314#else
315 return 0;
316#endif
317}
318
20d315d4
IM
319/*
320 * Per-runqueue clock, as finegrained as the platform can give us:
321 */
322static unsigned long long __rq_clock(struct rq *rq)
323{
324 u64 prev_raw = rq->prev_clock_raw;
325 u64 now = sched_clock();
326 s64 delta = now - prev_raw;
327 u64 clock = rq->clock;
328
329 /*
330 * Protect against sched_clock() occasionally going backwards:
331 */
332 if (unlikely(delta < 0)) {
333 clock++;
334 rq->clock_warps++;
335 } else {
336 /*
337 * Catch too large forward jumps too:
338 */
339 if (unlikely(delta > 2*TICK_NSEC)) {
340 clock++;
341 rq->clock_overflows++;
342 } else {
343 if (unlikely(delta > rq->clock_max_delta))
344 rq->clock_max_delta = delta;
345 clock += delta;
346 }
347 }
348
349 rq->prev_clock_raw = now;
350 rq->clock = clock;
351
352 return clock;
353}
354
355static inline unsigned long long rq_clock(struct rq *rq)
356{
357 int this_cpu = smp_processor_id();
358
359 if (this_cpu == cpu_of(rq))
360 return __rq_clock(rq);
361
362 return rq->clock;
363}
364
674311d5
NP
365/*
366 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 367 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
368 *
369 * The domain tree of any CPU may only be accessed from within
370 * preempt-disabled sections.
371 */
48f24c4d
IM
372#define for_each_domain(cpu, __sd) \
373 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
374
375#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
376#define this_rq() (&__get_cpu_var(runqueues))
377#define task_rq(p) cpu_rq(task_cpu(p))
378#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
379
e436d800
IM
380/*
381 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
382 * clock constructed from sched_clock():
383 */
384unsigned long long cpu_clock(int cpu)
385{
e436d800
IM
386 unsigned long long now;
387 unsigned long flags;
388
2cd4d0ea
IM
389 local_irq_save(flags);
390 now = rq_clock(cpu_rq(cpu));
391 local_irq_restore(flags);
e436d800
IM
392
393 return now;
394}
395
138a8aeb
IM
396#ifdef CONFIG_FAIR_GROUP_SCHED
397/* Change a task's ->cfs_rq if it moves across CPUs */
398static inline void set_task_cfs_rq(struct task_struct *p)
399{
400 p->se.cfs_rq = &task_rq(p)->cfs;
401}
402#else
403static inline void set_task_cfs_rq(struct task_struct *p)
404{
405}
406#endif
407
1da177e4 408#ifndef prepare_arch_switch
4866cde0
NP
409# define prepare_arch_switch(next) do { } while (0)
410#endif
411#ifndef finish_arch_switch
412# define finish_arch_switch(prev) do { } while (0)
413#endif
414
415#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 416static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
417{
418 return rq->curr == p;
419}
420
70b97a7f 421static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
422{
423}
424
70b97a7f 425static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 426{
da04c035
IM
427#ifdef CONFIG_DEBUG_SPINLOCK
428 /* this is a valid case when another task releases the spinlock */
429 rq->lock.owner = current;
430#endif
8a25d5de
IM
431 /*
432 * If we are tracking spinlock dependencies then we have to
433 * fix up the runqueue lock - which gets 'carried over' from
434 * prev into current:
435 */
436 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
437
4866cde0
NP
438 spin_unlock_irq(&rq->lock);
439}
440
441#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 442static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
443{
444#ifdef CONFIG_SMP
445 return p->oncpu;
446#else
447 return rq->curr == p;
448#endif
449}
450
70b97a7f 451static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
452{
453#ifdef CONFIG_SMP
454 /*
455 * We can optimise this out completely for !SMP, because the
456 * SMP rebalancing from interrupt is the only thing that cares
457 * here.
458 */
459 next->oncpu = 1;
460#endif
461#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
462 spin_unlock_irq(&rq->lock);
463#else
464 spin_unlock(&rq->lock);
465#endif
466}
467
70b97a7f 468static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
469{
470#ifdef CONFIG_SMP
471 /*
472 * After ->oncpu is cleared, the task can be moved to a different CPU.
473 * We must ensure this doesn't happen until the switch is completely
474 * finished.
475 */
476 smp_wmb();
477 prev->oncpu = 0;
478#endif
479#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
480 local_irq_enable();
1da177e4 481#endif
4866cde0
NP
482}
483#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 484
b29739f9
IM
485/*
486 * __task_rq_lock - lock the runqueue a given task resides on.
487 * Must be called interrupts disabled.
488 */
70b97a7f 489static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
490 __acquires(rq->lock)
491{
70b97a7f 492 struct rq *rq;
b29739f9
IM
493
494repeat_lock_task:
495 rq = task_rq(p);
496 spin_lock(&rq->lock);
497 if (unlikely(rq != task_rq(p))) {
498 spin_unlock(&rq->lock);
499 goto repeat_lock_task;
500 }
501 return rq;
502}
503
1da177e4
LT
504/*
505 * task_rq_lock - lock the runqueue a given task resides on and disable
506 * interrupts. Note the ordering: we can safely lookup the task_rq without
507 * explicitly disabling preemption.
508 */
70b97a7f 509static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
510 __acquires(rq->lock)
511{
70b97a7f 512 struct rq *rq;
1da177e4
LT
513
514repeat_lock_task:
515 local_irq_save(*flags);
516 rq = task_rq(p);
517 spin_lock(&rq->lock);
518 if (unlikely(rq != task_rq(p))) {
519 spin_unlock_irqrestore(&rq->lock, *flags);
520 goto repeat_lock_task;
521 }
522 return rq;
523}
524
70b97a7f 525static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
526 __releases(rq->lock)
527{
528 spin_unlock(&rq->lock);
529}
530
70b97a7f 531static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
532 __releases(rq->lock)
533{
534 spin_unlock_irqrestore(&rq->lock, *flags);
535}
536
1da177e4 537/*
cc2a73b5 538 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 539 */
70b97a7f 540static inline struct rq *this_rq_lock(void)
1da177e4
LT
541 __acquires(rq->lock)
542{
70b97a7f 543 struct rq *rq;
1da177e4
LT
544
545 local_irq_disable();
546 rq = this_rq();
547 spin_lock(&rq->lock);
548
549 return rq;
550}
551
1b9f19c2
IM
552/*
553 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
554 */
555void sched_clock_unstable_event(void)
556{
557 unsigned long flags;
558 struct rq *rq;
559
560 rq = task_rq_lock(current, &flags);
561 rq->prev_clock_raw = sched_clock();
562 rq->clock_unstable_events++;
563 task_rq_unlock(rq, &flags);
564}
565
c24d20db
IM
566/*
567 * resched_task - mark a task 'to be rescheduled now'.
568 *
569 * On UP this means the setting of the need_resched flag, on SMP it
570 * might also involve a cross-CPU call to trigger the scheduler on
571 * the target CPU.
572 */
573#ifdef CONFIG_SMP
574
575#ifndef tsk_is_polling
576#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
577#endif
578
579static void resched_task(struct task_struct *p)
580{
581 int cpu;
582
583 assert_spin_locked(&task_rq(p)->lock);
584
585 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
586 return;
587
588 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
589
590 cpu = task_cpu(p);
591 if (cpu == smp_processor_id())
592 return;
593
594 /* NEED_RESCHED must be visible before we test polling */
595 smp_mb();
596 if (!tsk_is_polling(p))
597 smp_send_reschedule(cpu);
598}
599
600static void resched_cpu(int cpu)
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
605 if (!spin_trylock_irqsave(&rq->lock, flags))
606 return;
607 resched_task(cpu_curr(cpu));
608 spin_unlock_irqrestore(&rq->lock, flags);
609}
610#else
611static inline void resched_task(struct task_struct *p)
612{
613 assert_spin_locked(&task_rq(p)->lock);
614 set_tsk_need_resched(p);
615}
616#endif
617
45bf76df
IM
618static u64 div64_likely32(u64 divident, unsigned long divisor)
619{
620#if BITS_PER_LONG == 32
621 if (likely(divident <= 0xffffffffULL))
622 return (u32)divident / divisor;
623 do_div(divident, divisor);
624
625 return divident;
626#else
627 return divident / divisor;
628#endif
629}
630
631#if BITS_PER_LONG == 32
632# define WMULT_CONST (~0UL)
633#else
634# define WMULT_CONST (1UL << 32)
635#endif
636
637#define WMULT_SHIFT 32
638
639static inline unsigned long
640calc_delta_mine(unsigned long delta_exec, unsigned long weight,
641 struct load_weight *lw)
642{
643 u64 tmp;
644
645 if (unlikely(!lw->inv_weight))
646 lw->inv_weight = WMULT_CONST / lw->weight;
647
648 tmp = (u64)delta_exec * weight;
649 /*
650 * Check whether we'd overflow the 64-bit multiplication:
651 */
652 if (unlikely(tmp > WMULT_CONST)) {
653 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
654 >> (WMULT_SHIFT/2);
655 } else {
656 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
657 }
658
659 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
660}
661
662static inline unsigned long
663calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
664{
665 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
666}
667
668static void update_load_add(struct load_weight *lw, unsigned long inc)
669{
670 lw->weight += inc;
671 lw->inv_weight = 0;
672}
673
674static void update_load_sub(struct load_weight *lw, unsigned long dec)
675{
676 lw->weight -= dec;
677 lw->inv_weight = 0;
678}
679
680static void __update_curr_load(struct rq *rq, struct load_stat *ls)
681{
682 if (rq->curr != rq->idle && ls->load.weight) {
683 ls->delta_exec += ls->delta_stat;
684 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
685 ls->delta_stat = 0;
686 }
687}
688
689/*
690 * Update delta_exec, delta_fair fields for rq.
691 *
692 * delta_fair clock advances at a rate inversely proportional to
693 * total load (rq->ls.load.weight) on the runqueue, while
694 * delta_exec advances at the same rate as wall-clock (provided
695 * cpu is not idle).
696 *
697 * delta_exec / delta_fair is a measure of the (smoothened) load on this
698 * runqueue over any given interval. This (smoothened) load is used
699 * during load balance.
700 *
701 * This function is called /before/ updating rq->ls.load
702 * and when switching tasks.
703 */
704static void update_curr_load(struct rq *rq, u64 now)
705{
706 struct load_stat *ls = &rq->ls;
707 u64 start;
708
709 start = ls->load_update_start;
710 ls->load_update_start = now;
711 ls->delta_stat += now - start;
712 /*
713 * Stagger updates to ls->delta_fair. Very frequent updates
714 * can be expensive.
715 */
716 if (ls->delta_stat >= sysctl_sched_stat_granularity)
717 __update_curr_load(rq, ls);
718}
719
2dd73a4f
PW
720/*
721 * To aid in avoiding the subversion of "niceness" due to uneven distribution
722 * of tasks with abnormal "nice" values across CPUs the contribution that
723 * each task makes to its run queue's load is weighted according to its
724 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
725 * scaled version of the new time slice allocation that they receive on time
726 * slice expiry etc.
727 */
728
729/*
730 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
731 * If static_prio_timeslice() is ever changed to break this assumption then
732 * this code will need modification
733 */
734#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
dd41f596 735#define load_weight(lp) \
2dd73a4f
PW
736 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
737#define PRIO_TO_LOAD_WEIGHT(prio) \
dd41f596 738 load_weight(static_prio_timeslice(prio))
2dd73a4f 739#define RTPRIO_TO_LOAD_WEIGHT(rp) \
dd41f596
IM
740 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
741
742#define WEIGHT_IDLEPRIO 2
743#define WMULT_IDLEPRIO (1 << 31)
744
745/*
746 * Nice levels are multiplicative, with a gentle 10% change for every
747 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
748 * nice 1, it will get ~10% less CPU time than another CPU-bound task
749 * that remained on nice 0.
750 *
751 * The "10% effect" is relative and cumulative: from _any_ nice level,
752 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
753 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
754 * If a task goes up by ~10% and another task goes down by ~10% then
755 * the relative distance between them is ~25%.)
dd41f596
IM
756 */
757static const int prio_to_weight[40] = {
758/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
759/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
760/* 0 */ NICE_0_LOAD /* 1024 */,
761/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
762/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
763};
764
5714d2de
IM
765/*
766 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
767 *
768 * In cases where the weight does not change often, we can use the
769 * precalculated inverse to speed up arithmetics by turning divisions
770 * into multiplications:
771 */
dd41f596 772static const u32 prio_to_wmult[40] = {
e4af30be
IM
773/* -20 */ 48356, 60446, 75558, 94446, 118058,
774/* -15 */ 147573, 184467, 230589, 288233, 360285,
775/* -10 */ 450347, 562979, 703746, 879575, 1099582,
776/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
777/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
778/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
779/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
780/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 781};
2dd73a4f 782
36c8b586 783static inline void
dd41f596 784inc_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 785{
dd41f596
IM
786 update_curr_load(rq, now);
787 update_load_add(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
788}
789
36c8b586 790static inline void
dd41f596 791dec_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 792{
dd41f596
IM
793 update_curr_load(rq, now);
794 update_load_sub(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
795}
796
dd41f596 797static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
798{
799 rq->nr_running++;
dd41f596 800 inc_load(rq, p, now);
2dd73a4f
PW
801}
802
dd41f596 803static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
804{
805 rq->nr_running--;
dd41f596 806 dec_load(rq, p, now);
2dd73a4f
PW
807}
808
dd41f596
IM
809static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
810
811/*
812 * runqueue iterator, to support SMP load-balancing between different
813 * scheduling classes, without having to expose their internal data
814 * structures to the load-balancing proper:
815 */
816struct rq_iterator {
817 void *arg;
818 struct task_struct *(*start)(void *);
819 struct task_struct *(*next)(void *);
820};
821
822static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
823 unsigned long max_nr_move, unsigned long max_load_move,
824 struct sched_domain *sd, enum cpu_idle_type idle,
825 int *all_pinned, unsigned long *load_moved,
826 int this_best_prio, int best_prio, int best_prio_seen,
827 struct rq_iterator *iterator);
828
829#include "sched_stats.h"
830#include "sched_rt.c"
831#include "sched_fair.c"
832#include "sched_idletask.c"
833#ifdef CONFIG_SCHED_DEBUG
834# include "sched_debug.c"
835#endif
836
837#define sched_class_highest (&rt_sched_class)
838
45bf76df
IM
839static void set_load_weight(struct task_struct *p)
840{
dd41f596
IM
841 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
842 p->se.wait_runtime = 0;
843
45bf76df 844 if (task_has_rt_policy(p)) {
dd41f596
IM
845 p->se.load.weight = prio_to_weight[0] * 2;
846 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
847 return;
848 }
45bf76df 849
dd41f596
IM
850 /*
851 * SCHED_IDLE tasks get minimal weight:
852 */
853 if (p->policy == SCHED_IDLE) {
854 p->se.load.weight = WEIGHT_IDLEPRIO;
855 p->se.load.inv_weight = WMULT_IDLEPRIO;
856 return;
857 }
71f8bd46 858
dd41f596
IM
859 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
860 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
861}
862
dd41f596
IM
863static void
864enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 865{
dd41f596
IM
866 sched_info_queued(p);
867 p->sched_class->enqueue_task(rq, p, wakeup, now);
868 p->se.on_rq = 1;
71f8bd46
IM
869}
870
dd41f596
IM
871static void
872dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 873{
dd41f596
IM
874 p->sched_class->dequeue_task(rq, p, sleep, now);
875 p->se.on_rq = 0;
71f8bd46
IM
876}
877
14531189 878/*
dd41f596 879 * __normal_prio - return the priority that is based on the static prio
14531189 880 */
14531189
IM
881static inline int __normal_prio(struct task_struct *p)
882{
dd41f596 883 return p->static_prio;
14531189
IM
884}
885
b29739f9
IM
886/*
887 * Calculate the expected normal priority: i.e. priority
888 * without taking RT-inheritance into account. Might be
889 * boosted by interactivity modifiers. Changes upon fork,
890 * setprio syscalls, and whenever the interactivity
891 * estimator recalculates.
892 */
36c8b586 893static inline int normal_prio(struct task_struct *p)
b29739f9
IM
894{
895 int prio;
896
e05606d3 897 if (task_has_rt_policy(p))
b29739f9
IM
898 prio = MAX_RT_PRIO-1 - p->rt_priority;
899 else
900 prio = __normal_prio(p);
901 return prio;
902}
903
904/*
905 * Calculate the current priority, i.e. the priority
906 * taken into account by the scheduler. This value might
907 * be boosted by RT tasks, or might be boosted by
908 * interactivity modifiers. Will be RT if the task got
909 * RT-boosted. If not then it returns p->normal_prio.
910 */
36c8b586 911static int effective_prio(struct task_struct *p)
b29739f9
IM
912{
913 p->normal_prio = normal_prio(p);
914 /*
915 * If we are RT tasks or we were boosted to RT priority,
916 * keep the priority unchanged. Otherwise, update priority
917 * to the normal priority:
918 */
919 if (!rt_prio(p->prio))
920 return p->normal_prio;
921 return p->prio;
922}
923
1da177e4 924/*
dd41f596 925 * activate_task - move a task to the runqueue.
1da177e4 926 */
dd41f596 927static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 928{
dd41f596 929 u64 now = rq_clock(rq);
d425b274 930
dd41f596
IM
931 if (p->state == TASK_UNINTERRUPTIBLE)
932 rq->nr_uninterruptible--;
1da177e4 933
dd41f596
IM
934 enqueue_task(rq, p, wakeup, now);
935 inc_nr_running(p, rq, now);
1da177e4
LT
936}
937
938/*
dd41f596 939 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 940 */
dd41f596 941static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 942{
dd41f596 943 u64 now = rq_clock(rq);
1da177e4 944
dd41f596
IM
945 if (p->state == TASK_UNINTERRUPTIBLE)
946 rq->nr_uninterruptible--;
ece8a684 947
dd41f596
IM
948 enqueue_task(rq, p, 0, now);
949 inc_nr_running(p, rq, now);
1da177e4
LT
950}
951
952/*
953 * deactivate_task - remove a task from the runqueue.
954 */
dd41f596 955static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 956{
dd41f596
IM
957 u64 now = rq_clock(rq);
958
959 if (p->state == TASK_UNINTERRUPTIBLE)
960 rq->nr_uninterruptible++;
961
962 dequeue_task(rq, p, sleep, now);
963 dec_nr_running(p, rq, now);
1da177e4
LT
964}
965
1da177e4
LT
966/**
967 * task_curr - is this task currently executing on a CPU?
968 * @p: the task in question.
969 */
36c8b586 970inline int task_curr(const struct task_struct *p)
1da177e4
LT
971{
972 return cpu_curr(task_cpu(p)) == p;
973}
974
2dd73a4f
PW
975/* Used instead of source_load when we know the type == 0 */
976unsigned long weighted_cpuload(const int cpu)
977{
dd41f596
IM
978 return cpu_rq(cpu)->ls.load.weight;
979}
980
981static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
982{
983#ifdef CONFIG_SMP
984 task_thread_info(p)->cpu = cpu;
985 set_task_cfs_rq(p);
986#endif
2dd73a4f
PW
987}
988
1da177e4 989#ifdef CONFIG_SMP
c65cc870 990
dd41f596 991void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 992{
dd41f596
IM
993 int old_cpu = task_cpu(p);
994 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
995 u64 clock_offset, fair_clock_offset;
996
997 clock_offset = old_rq->clock - new_rq->clock;
998 fair_clock_offset = old_rq->cfs.fair_clock -
999 new_rq->cfs.fair_clock;
1000 if (p->se.wait_start)
1001 p->se.wait_start -= clock_offset;
1002 if (p->se.wait_start_fair)
1003 p->se.wait_start_fair -= fair_clock_offset;
1004 if (p->se.sleep_start)
1005 p->se.sleep_start -= clock_offset;
1006 if (p->se.block_start)
1007 p->se.block_start -= clock_offset;
1008 if (p->se.sleep_start_fair)
1009 p->se.sleep_start_fair -= fair_clock_offset;
1010
1011 __set_task_cpu(p, new_cpu);
c65cc870
IM
1012}
1013
70b97a7f 1014struct migration_req {
1da177e4 1015 struct list_head list;
1da177e4 1016
36c8b586 1017 struct task_struct *task;
1da177e4
LT
1018 int dest_cpu;
1019
1da177e4 1020 struct completion done;
70b97a7f 1021};
1da177e4
LT
1022
1023/*
1024 * The task's runqueue lock must be held.
1025 * Returns true if you have to wait for migration thread.
1026 */
36c8b586 1027static int
70b97a7f 1028migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1029{
70b97a7f 1030 struct rq *rq = task_rq(p);
1da177e4
LT
1031
1032 /*
1033 * If the task is not on a runqueue (and not running), then
1034 * it is sufficient to simply update the task's cpu field.
1035 */
dd41f596 1036 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1037 set_task_cpu(p, dest_cpu);
1038 return 0;
1039 }
1040
1041 init_completion(&req->done);
1da177e4
LT
1042 req->task = p;
1043 req->dest_cpu = dest_cpu;
1044 list_add(&req->list, &rq->migration_queue);
48f24c4d 1045
1da177e4
LT
1046 return 1;
1047}
1048
1049/*
1050 * wait_task_inactive - wait for a thread to unschedule.
1051 *
1052 * The caller must ensure that the task *will* unschedule sometime soon,
1053 * else this function might spin for a *long* time. This function can't
1054 * be called with interrupts off, or it may introduce deadlock with
1055 * smp_call_function() if an IPI is sent by the same process we are
1056 * waiting to become inactive.
1057 */
36c8b586 1058void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1059{
1060 unsigned long flags;
dd41f596 1061 int running, on_rq;
70b97a7f 1062 struct rq *rq;
1da177e4
LT
1063
1064repeat:
fa490cfd
LT
1065 /*
1066 * We do the initial early heuristics without holding
1067 * any task-queue locks at all. We'll only try to get
1068 * the runqueue lock when things look like they will
1069 * work out!
1070 */
1071 rq = task_rq(p);
1072
1073 /*
1074 * If the task is actively running on another CPU
1075 * still, just relax and busy-wait without holding
1076 * any locks.
1077 *
1078 * NOTE! Since we don't hold any locks, it's not
1079 * even sure that "rq" stays as the right runqueue!
1080 * But we don't care, since "task_running()" will
1081 * return false if the runqueue has changed and p
1082 * is actually now running somewhere else!
1083 */
1084 while (task_running(rq, p))
1085 cpu_relax();
1086
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1da177e4 1092 rq = task_rq_lock(p, &flags);
fa490cfd 1093 running = task_running(rq, p);
dd41f596 1094 on_rq = p->se.on_rq;
fa490cfd
LT
1095 task_rq_unlock(rq, &flags);
1096
1097 /*
1098 * Was it really running after all now that we
1099 * checked with the proper locks actually held?
1100 *
1101 * Oops. Go back and try again..
1102 */
1103 if (unlikely(running)) {
1da177e4 1104 cpu_relax();
1da177e4
LT
1105 goto repeat;
1106 }
fa490cfd
LT
1107
1108 /*
1109 * It's not enough that it's not actively running,
1110 * it must be off the runqueue _entirely_, and not
1111 * preempted!
1112 *
1113 * So if it wa still runnable (but just not actively
1114 * running right now), it's preempted, and we should
1115 * yield - it could be a while.
1116 */
dd41f596 1117 if (unlikely(on_rq)) {
fa490cfd
LT
1118 yield();
1119 goto repeat;
1120 }
1121
1122 /*
1123 * Ahh, all good. It wasn't running, and it wasn't
1124 * runnable, which means that it will never become
1125 * running in the future either. We're all done!
1126 */
1da177e4
LT
1127}
1128
1129/***
1130 * kick_process - kick a running thread to enter/exit the kernel
1131 * @p: the to-be-kicked thread
1132 *
1133 * Cause a process which is running on another CPU to enter
1134 * kernel-mode, without any delay. (to get signals handled.)
1135 *
1136 * NOTE: this function doesnt have to take the runqueue lock,
1137 * because all it wants to ensure is that the remote task enters
1138 * the kernel. If the IPI races and the task has been migrated
1139 * to another CPU then no harm is done and the purpose has been
1140 * achieved as well.
1141 */
36c8b586 1142void kick_process(struct task_struct *p)
1da177e4
LT
1143{
1144 int cpu;
1145
1146 preempt_disable();
1147 cpu = task_cpu(p);
1148 if ((cpu != smp_processor_id()) && task_curr(p))
1149 smp_send_reschedule(cpu);
1150 preempt_enable();
1151}
1152
1153/*
2dd73a4f
PW
1154 * Return a low guess at the load of a migration-source cpu weighted
1155 * according to the scheduling class and "nice" value.
1da177e4
LT
1156 *
1157 * We want to under-estimate the load of migration sources, to
1158 * balance conservatively.
1159 */
a2000572 1160static inline unsigned long source_load(int cpu, int type)
1da177e4 1161{
70b97a7f 1162 struct rq *rq = cpu_rq(cpu);
dd41f596 1163 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1164
3b0bd9bc 1165 if (type == 0)
dd41f596 1166 return total;
b910472d 1167
dd41f596 1168 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1169}
1170
1171/*
2dd73a4f
PW
1172 * Return a high guess at the load of a migration-target cpu weighted
1173 * according to the scheduling class and "nice" value.
1da177e4 1174 */
a2000572 1175static inline unsigned long target_load(int cpu, int type)
1da177e4 1176{
70b97a7f 1177 struct rq *rq = cpu_rq(cpu);
dd41f596 1178 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1179
7897986b 1180 if (type == 0)
dd41f596 1181 return total;
3b0bd9bc 1182
dd41f596 1183 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1184}
1185
1186/*
1187 * Return the average load per task on the cpu's run queue
1188 */
1189static inline unsigned long cpu_avg_load_per_task(int cpu)
1190{
70b97a7f 1191 struct rq *rq = cpu_rq(cpu);
dd41f596 1192 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1193 unsigned long n = rq->nr_running;
1194
dd41f596 1195 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1196}
1197
147cbb4b
NP
1198/*
1199 * find_idlest_group finds and returns the least busy CPU group within the
1200 * domain.
1201 */
1202static struct sched_group *
1203find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1204{
1205 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1206 unsigned long min_load = ULONG_MAX, this_load = 0;
1207 int load_idx = sd->forkexec_idx;
1208 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1209
1210 do {
1211 unsigned long load, avg_load;
1212 int local_group;
1213 int i;
1214
da5a5522
BD
1215 /* Skip over this group if it has no CPUs allowed */
1216 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1217 goto nextgroup;
1218
147cbb4b 1219 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1220
1221 /* Tally up the load of all CPUs in the group */
1222 avg_load = 0;
1223
1224 for_each_cpu_mask(i, group->cpumask) {
1225 /* Bias balancing toward cpus of our domain */
1226 if (local_group)
1227 load = source_load(i, load_idx);
1228 else
1229 load = target_load(i, load_idx);
1230
1231 avg_load += load;
1232 }
1233
1234 /* Adjust by relative CPU power of the group */
5517d86b
ED
1235 avg_load = sg_div_cpu_power(group,
1236 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1237
1238 if (local_group) {
1239 this_load = avg_load;
1240 this = group;
1241 } else if (avg_load < min_load) {
1242 min_load = avg_load;
1243 idlest = group;
1244 }
da5a5522 1245nextgroup:
147cbb4b
NP
1246 group = group->next;
1247 } while (group != sd->groups);
1248
1249 if (!idlest || 100*this_load < imbalance*min_load)
1250 return NULL;
1251 return idlest;
1252}
1253
1254/*
0feaece9 1255 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1256 */
95cdf3b7
IM
1257static int
1258find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1259{
da5a5522 1260 cpumask_t tmp;
147cbb4b
NP
1261 unsigned long load, min_load = ULONG_MAX;
1262 int idlest = -1;
1263 int i;
1264
da5a5522
BD
1265 /* Traverse only the allowed CPUs */
1266 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1267
1268 for_each_cpu_mask(i, tmp) {
2dd73a4f 1269 load = weighted_cpuload(i);
147cbb4b
NP
1270
1271 if (load < min_load || (load == min_load && i == this_cpu)) {
1272 min_load = load;
1273 idlest = i;
1274 }
1275 }
1276
1277 return idlest;
1278}
1279
476d139c
NP
1280/*
1281 * sched_balance_self: balance the current task (running on cpu) in domains
1282 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1283 * SD_BALANCE_EXEC.
1284 *
1285 * Balance, ie. select the least loaded group.
1286 *
1287 * Returns the target CPU number, or the same CPU if no balancing is needed.
1288 *
1289 * preempt must be disabled.
1290 */
1291static int sched_balance_self(int cpu, int flag)
1292{
1293 struct task_struct *t = current;
1294 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1295
c96d145e 1296 for_each_domain(cpu, tmp) {
9761eea8
IM
1297 /*
1298 * If power savings logic is enabled for a domain, stop there.
1299 */
5c45bf27
SS
1300 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1301 break;
476d139c
NP
1302 if (tmp->flags & flag)
1303 sd = tmp;
c96d145e 1304 }
476d139c
NP
1305
1306 while (sd) {
1307 cpumask_t span;
1308 struct sched_group *group;
1a848870
SS
1309 int new_cpu, weight;
1310
1311 if (!(sd->flags & flag)) {
1312 sd = sd->child;
1313 continue;
1314 }
476d139c
NP
1315
1316 span = sd->span;
1317 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1318 if (!group) {
1319 sd = sd->child;
1320 continue;
1321 }
476d139c 1322
da5a5522 1323 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1324 if (new_cpu == -1 || new_cpu == cpu) {
1325 /* Now try balancing at a lower domain level of cpu */
1326 sd = sd->child;
1327 continue;
1328 }
476d139c 1329
1a848870 1330 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1331 cpu = new_cpu;
476d139c
NP
1332 sd = NULL;
1333 weight = cpus_weight(span);
1334 for_each_domain(cpu, tmp) {
1335 if (weight <= cpus_weight(tmp->span))
1336 break;
1337 if (tmp->flags & flag)
1338 sd = tmp;
1339 }
1340 /* while loop will break here if sd == NULL */
1341 }
1342
1343 return cpu;
1344}
1345
1346#endif /* CONFIG_SMP */
1da177e4
LT
1347
1348/*
1349 * wake_idle() will wake a task on an idle cpu if task->cpu is
1350 * not idle and an idle cpu is available. The span of cpus to
1351 * search starts with cpus closest then further out as needed,
1352 * so we always favor a closer, idle cpu.
1353 *
1354 * Returns the CPU we should wake onto.
1355 */
1356#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1357static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1358{
1359 cpumask_t tmp;
1360 struct sched_domain *sd;
1361 int i;
1362
4953198b
SS
1363 /*
1364 * If it is idle, then it is the best cpu to run this task.
1365 *
1366 * This cpu is also the best, if it has more than one task already.
1367 * Siblings must be also busy(in most cases) as they didn't already
1368 * pickup the extra load from this cpu and hence we need not check
1369 * sibling runqueue info. This will avoid the checks and cache miss
1370 * penalities associated with that.
1371 */
1372 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1373 return cpu;
1374
1375 for_each_domain(cpu, sd) {
1376 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1377 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1378 for_each_cpu_mask(i, tmp) {
1379 if (idle_cpu(i))
1380 return i;
1381 }
9761eea8 1382 } else {
e0f364f4 1383 break;
9761eea8 1384 }
1da177e4
LT
1385 }
1386 return cpu;
1387}
1388#else
36c8b586 1389static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1390{
1391 return cpu;
1392}
1393#endif
1394
1395/***
1396 * try_to_wake_up - wake up a thread
1397 * @p: the to-be-woken-up thread
1398 * @state: the mask of task states that can be woken
1399 * @sync: do a synchronous wakeup?
1400 *
1401 * Put it on the run-queue if it's not already there. The "current"
1402 * thread is always on the run-queue (except when the actual
1403 * re-schedule is in progress), and as such you're allowed to do
1404 * the simpler "current->state = TASK_RUNNING" to mark yourself
1405 * runnable without the overhead of this.
1406 *
1407 * returns failure only if the task is already active.
1408 */
36c8b586 1409static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1410{
1411 int cpu, this_cpu, success = 0;
1412 unsigned long flags;
1413 long old_state;
70b97a7f 1414 struct rq *rq;
1da177e4 1415#ifdef CONFIG_SMP
7897986b 1416 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1417 unsigned long load, this_load;
1da177e4
LT
1418 int new_cpu;
1419#endif
1420
1421 rq = task_rq_lock(p, &flags);
1422 old_state = p->state;
1423 if (!(old_state & state))
1424 goto out;
1425
dd41f596 1426 if (p->se.on_rq)
1da177e4
LT
1427 goto out_running;
1428
1429 cpu = task_cpu(p);
1430 this_cpu = smp_processor_id();
1431
1432#ifdef CONFIG_SMP
1433 if (unlikely(task_running(rq, p)))
1434 goto out_activate;
1435
7897986b
NP
1436 new_cpu = cpu;
1437
1da177e4
LT
1438 schedstat_inc(rq, ttwu_cnt);
1439 if (cpu == this_cpu) {
1440 schedstat_inc(rq, ttwu_local);
7897986b
NP
1441 goto out_set_cpu;
1442 }
1443
1444 for_each_domain(this_cpu, sd) {
1445 if (cpu_isset(cpu, sd->span)) {
1446 schedstat_inc(sd, ttwu_wake_remote);
1447 this_sd = sd;
1448 break;
1da177e4
LT
1449 }
1450 }
1da177e4 1451
7897986b 1452 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1453 goto out_set_cpu;
1454
1da177e4 1455 /*
7897986b 1456 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1457 */
7897986b
NP
1458 if (this_sd) {
1459 int idx = this_sd->wake_idx;
1460 unsigned int imbalance;
1da177e4 1461
a3f21bce
NP
1462 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1463
7897986b
NP
1464 load = source_load(cpu, idx);
1465 this_load = target_load(this_cpu, idx);
1da177e4 1466
7897986b
NP
1467 new_cpu = this_cpu; /* Wake to this CPU if we can */
1468
a3f21bce
NP
1469 if (this_sd->flags & SD_WAKE_AFFINE) {
1470 unsigned long tl = this_load;
33859f7f
MOS
1471 unsigned long tl_per_task;
1472
1473 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1474
1da177e4 1475 /*
a3f21bce
NP
1476 * If sync wakeup then subtract the (maximum possible)
1477 * effect of the currently running task from the load
1478 * of the current CPU:
1da177e4 1479 */
a3f21bce 1480 if (sync)
dd41f596 1481 tl -= current->se.load.weight;
a3f21bce
NP
1482
1483 if ((tl <= load &&
2dd73a4f 1484 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1485 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1486 /*
1487 * This domain has SD_WAKE_AFFINE and
1488 * p is cache cold in this domain, and
1489 * there is no bad imbalance.
1490 */
1491 schedstat_inc(this_sd, ttwu_move_affine);
1492 goto out_set_cpu;
1493 }
1494 }
1495
1496 /*
1497 * Start passive balancing when half the imbalance_pct
1498 * limit is reached.
1499 */
1500 if (this_sd->flags & SD_WAKE_BALANCE) {
1501 if (imbalance*this_load <= 100*load) {
1502 schedstat_inc(this_sd, ttwu_move_balance);
1503 goto out_set_cpu;
1504 }
1da177e4
LT
1505 }
1506 }
1507
1508 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1509out_set_cpu:
1510 new_cpu = wake_idle(new_cpu, p);
1511 if (new_cpu != cpu) {
1512 set_task_cpu(p, new_cpu);
1513 task_rq_unlock(rq, &flags);
1514 /* might preempt at this point */
1515 rq = task_rq_lock(p, &flags);
1516 old_state = p->state;
1517 if (!(old_state & state))
1518 goto out;
dd41f596 1519 if (p->se.on_rq)
1da177e4
LT
1520 goto out_running;
1521
1522 this_cpu = smp_processor_id();
1523 cpu = task_cpu(p);
1524 }
1525
1526out_activate:
1527#endif /* CONFIG_SMP */
dd41f596 1528 activate_task(rq, p, 1);
1da177e4
LT
1529 /*
1530 * Sync wakeups (i.e. those types of wakeups where the waker
1531 * has indicated that it will leave the CPU in short order)
1532 * don't trigger a preemption, if the woken up task will run on
1533 * this cpu. (in this case the 'I will reschedule' promise of
1534 * the waker guarantees that the freshly woken up task is going
1535 * to be considered on this CPU.)
1536 */
dd41f596
IM
1537 if (!sync || cpu != this_cpu)
1538 check_preempt_curr(rq, p);
1da177e4
LT
1539 success = 1;
1540
1541out_running:
1542 p->state = TASK_RUNNING;
1543out:
1544 task_rq_unlock(rq, &flags);
1545
1546 return success;
1547}
1548
36c8b586 1549int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1550{
1551 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1552 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1553}
1da177e4
LT
1554EXPORT_SYMBOL(wake_up_process);
1555
36c8b586 1556int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1557{
1558 return try_to_wake_up(p, state, 0);
1559}
1560
1da177e4
LT
1561/*
1562 * Perform scheduler related setup for a newly forked process p.
1563 * p is forked by current.
dd41f596
IM
1564 *
1565 * __sched_fork() is basic setup used by init_idle() too:
1566 */
1567static void __sched_fork(struct task_struct *p)
1568{
1569 p->se.wait_start_fair = 0;
1570 p->se.wait_start = 0;
1571 p->se.exec_start = 0;
1572 p->se.sum_exec_runtime = 0;
1573 p->se.delta_exec = 0;
1574 p->se.delta_fair_run = 0;
1575 p->se.delta_fair_sleep = 0;
1576 p->se.wait_runtime = 0;
1577 p->se.sum_wait_runtime = 0;
1578 p->se.sum_sleep_runtime = 0;
1579 p->se.sleep_start = 0;
1580 p->se.sleep_start_fair = 0;
1581 p->se.block_start = 0;
1582 p->se.sleep_max = 0;
1583 p->se.block_max = 0;
1584 p->se.exec_max = 0;
1585 p->se.wait_max = 0;
1586 p->se.wait_runtime_overruns = 0;
1587 p->se.wait_runtime_underruns = 0;
476d139c 1588
dd41f596
IM
1589 INIT_LIST_HEAD(&p->run_list);
1590 p->se.on_rq = 0;
476d139c 1591
e107be36
AK
1592#ifdef CONFIG_PREEMPT_NOTIFIERS
1593 INIT_HLIST_HEAD(&p->preempt_notifiers);
1594#endif
1595
1da177e4
LT
1596 /*
1597 * We mark the process as running here, but have not actually
1598 * inserted it onto the runqueue yet. This guarantees that
1599 * nobody will actually run it, and a signal or other external
1600 * event cannot wake it up and insert it on the runqueue either.
1601 */
1602 p->state = TASK_RUNNING;
dd41f596
IM
1603}
1604
1605/*
1606 * fork()/clone()-time setup:
1607 */
1608void sched_fork(struct task_struct *p, int clone_flags)
1609{
1610 int cpu = get_cpu();
1611
1612 __sched_fork(p);
1613
1614#ifdef CONFIG_SMP
1615 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1616#endif
1617 __set_task_cpu(p, cpu);
b29739f9
IM
1618
1619 /*
1620 * Make sure we do not leak PI boosting priority to the child:
1621 */
1622 p->prio = current->normal_prio;
1623
52f17b6c 1624#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1625 if (likely(sched_info_on()))
52f17b6c 1626 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1627#endif
d6077cb8 1628#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1629 p->oncpu = 0;
1630#endif
1da177e4 1631#ifdef CONFIG_PREEMPT
4866cde0 1632 /* Want to start with kernel preemption disabled. */
a1261f54 1633 task_thread_info(p)->preempt_count = 1;
1da177e4 1634#endif
476d139c 1635 put_cpu();
1da177e4
LT
1636}
1637
dd41f596
IM
1638/*
1639 * After fork, child runs first. (default) If set to 0 then
1640 * parent will (try to) run first.
1641 */
1642unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1643
1da177e4
LT
1644/*
1645 * wake_up_new_task - wake up a newly created task for the first time.
1646 *
1647 * This function will do some initial scheduler statistics housekeeping
1648 * that must be done for every newly created context, then puts the task
1649 * on the runqueue and wakes it.
1650 */
36c8b586 1651void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1652{
1653 unsigned long flags;
dd41f596
IM
1654 struct rq *rq;
1655 int this_cpu;
1da177e4
LT
1656
1657 rq = task_rq_lock(p, &flags);
147cbb4b 1658 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1659 this_cpu = smp_processor_id(); /* parent's CPU */
1da177e4
LT
1660
1661 p->prio = effective_prio(p);
1662
dd41f596
IM
1663 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1664 task_cpu(p) != this_cpu || !current->se.on_rq) {
1665 activate_task(rq, p, 0);
1da177e4 1666 } else {
1da177e4 1667 /*
dd41f596
IM
1668 * Let the scheduling class do new task startup
1669 * management (if any):
1da177e4 1670 */
dd41f596 1671 p->sched_class->task_new(rq, p);
1da177e4 1672 }
dd41f596
IM
1673 check_preempt_curr(rq, p);
1674 task_rq_unlock(rq, &flags);
1da177e4
LT
1675}
1676
e107be36
AK
1677#ifdef CONFIG_PREEMPT_NOTIFIERS
1678
1679/**
1680 * preempt_notifier_register - tell me when current is being being preempted
1681 * and rescheduled
1682 */
1683void preempt_notifier_register(struct preempt_notifier *notifier)
1684{
1685 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1686}
1687EXPORT_SYMBOL_GPL(preempt_notifier_register);
1688
1689/**
1690 * preempt_notifier_unregister - no longer interested in preemption notifications
1691 *
1692 * This is safe to call from within a preemption notifier.
1693 */
1694void preempt_notifier_unregister(struct preempt_notifier *notifier)
1695{
1696 hlist_del(&notifier->link);
1697}
1698EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1699
1700static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1701{
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1704
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1707}
1708
1709static void
1710fire_sched_out_preempt_notifiers(struct task_struct *curr,
1711 struct task_struct *next)
1712{
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1715
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_out(notifier, next);
1718}
1719
1720#else
1721
1722static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1723{
1724}
1725
1726static void
1727fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1729{
1730}
1731
1732#endif
1733
4866cde0
NP
1734/**
1735 * prepare_task_switch - prepare to switch tasks
1736 * @rq: the runqueue preparing to switch
1737 * @next: the task we are going to switch to.
1738 *
1739 * This is called with the rq lock held and interrupts off. It must
1740 * be paired with a subsequent finish_task_switch after the context
1741 * switch.
1742 *
1743 * prepare_task_switch sets up locking and calls architecture specific
1744 * hooks.
1745 */
e107be36
AK
1746static inline void
1747prepare_task_switch(struct rq *rq, struct task_struct *prev,
1748 struct task_struct *next)
4866cde0 1749{
e107be36 1750 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1751 prepare_lock_switch(rq, next);
1752 prepare_arch_switch(next);
1753}
1754
1da177e4
LT
1755/**
1756 * finish_task_switch - clean up after a task-switch
344babaa 1757 * @rq: runqueue associated with task-switch
1da177e4
LT
1758 * @prev: the thread we just switched away from.
1759 *
4866cde0
NP
1760 * finish_task_switch must be called after the context switch, paired
1761 * with a prepare_task_switch call before the context switch.
1762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1763 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1764 *
1765 * Note that we may have delayed dropping an mm in context_switch(). If
1766 * so, we finish that here outside of the runqueue lock. (Doing it
1767 * with the lock held can cause deadlocks; see schedule() for
1768 * details.)
1769 */
70b97a7f 1770static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1771 __releases(rq->lock)
1772{
1da177e4 1773 struct mm_struct *mm = rq->prev_mm;
55a101f8 1774 long prev_state;
1da177e4
LT
1775
1776 rq->prev_mm = NULL;
1777
1778 /*
1779 * A task struct has one reference for the use as "current".
c394cc9f 1780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1781 * schedule one last time. The schedule call will never return, and
1782 * the scheduled task must drop that reference.
c394cc9f 1783 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1784 * still held, otherwise prev could be scheduled on another cpu, die
1785 * there before we look at prev->state, and then the reference would
1786 * be dropped twice.
1787 * Manfred Spraul <manfred@colorfullife.com>
1788 */
55a101f8 1789 prev_state = prev->state;
4866cde0
NP
1790 finish_arch_switch(prev);
1791 finish_lock_switch(rq, prev);
e107be36 1792 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1793 if (mm)
1794 mmdrop(mm);
c394cc9f 1795 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1796 /*
1797 * Remove function-return probe instances associated with this
1798 * task and put them back on the free list.
9761eea8 1799 */
c6fd91f0 1800 kprobe_flush_task(prev);
1da177e4 1801 put_task_struct(prev);
c6fd91f0 1802 }
1da177e4
LT
1803}
1804
1805/**
1806 * schedule_tail - first thing a freshly forked thread must call.
1807 * @prev: the thread we just switched away from.
1808 */
36c8b586 1809asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1810 __releases(rq->lock)
1811{
70b97a7f
IM
1812 struct rq *rq = this_rq();
1813
4866cde0
NP
1814 finish_task_switch(rq, prev);
1815#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1816 /* In this case, finish_task_switch does not reenable preemption */
1817 preempt_enable();
1818#endif
1da177e4
LT
1819 if (current->set_child_tid)
1820 put_user(current->pid, current->set_child_tid);
1821}
1822
1823/*
1824 * context_switch - switch to the new MM and the new
1825 * thread's register state.
1826 */
dd41f596 1827static inline void
70b97a7f 1828context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1829 struct task_struct *next)
1da177e4 1830{
dd41f596 1831 struct mm_struct *mm, *oldmm;
1da177e4 1832
e107be36 1833 prepare_task_switch(rq, prev, next);
dd41f596
IM
1834 mm = next->mm;
1835 oldmm = prev->active_mm;
9226d125
ZA
1836 /*
1837 * For paravirt, this is coupled with an exit in switch_to to
1838 * combine the page table reload and the switch backend into
1839 * one hypercall.
1840 */
1841 arch_enter_lazy_cpu_mode();
1842
dd41f596 1843 if (unlikely(!mm)) {
1da177e4
LT
1844 next->active_mm = oldmm;
1845 atomic_inc(&oldmm->mm_count);
1846 enter_lazy_tlb(oldmm, next);
1847 } else
1848 switch_mm(oldmm, mm, next);
1849
dd41f596 1850 if (unlikely(!prev->mm)) {
1da177e4 1851 prev->active_mm = NULL;
1da177e4
LT
1852 rq->prev_mm = oldmm;
1853 }
3a5f5e48
IM
1854 /*
1855 * Since the runqueue lock will be released by the next
1856 * task (which is an invalid locking op but in the case
1857 * of the scheduler it's an obvious special-case), so we
1858 * do an early lockdep release here:
1859 */
1860#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1862#endif
1da177e4
LT
1863
1864 /* Here we just switch the register state and the stack. */
1865 switch_to(prev, next, prev);
1866
dd41f596
IM
1867 barrier();
1868 /*
1869 * this_rq must be evaluated again because prev may have moved
1870 * CPUs since it called schedule(), thus the 'rq' on its stack
1871 * frame will be invalid.
1872 */
1873 finish_task_switch(this_rq(), prev);
1da177e4
LT
1874}
1875
1876/*
1877 * nr_running, nr_uninterruptible and nr_context_switches:
1878 *
1879 * externally visible scheduler statistics: current number of runnable
1880 * threads, current number of uninterruptible-sleeping threads, total
1881 * number of context switches performed since bootup.
1882 */
1883unsigned long nr_running(void)
1884{
1885 unsigned long i, sum = 0;
1886
1887 for_each_online_cpu(i)
1888 sum += cpu_rq(i)->nr_running;
1889
1890 return sum;
1891}
1892
1893unsigned long nr_uninterruptible(void)
1894{
1895 unsigned long i, sum = 0;
1896
0a945022 1897 for_each_possible_cpu(i)
1da177e4
LT
1898 sum += cpu_rq(i)->nr_uninterruptible;
1899
1900 /*
1901 * Since we read the counters lockless, it might be slightly
1902 * inaccurate. Do not allow it to go below zero though:
1903 */
1904 if (unlikely((long)sum < 0))
1905 sum = 0;
1906
1907 return sum;
1908}
1909
1910unsigned long long nr_context_switches(void)
1911{
cc94abfc
SR
1912 int i;
1913 unsigned long long sum = 0;
1da177e4 1914
0a945022 1915 for_each_possible_cpu(i)
1da177e4
LT
1916 sum += cpu_rq(i)->nr_switches;
1917
1918 return sum;
1919}
1920
1921unsigned long nr_iowait(void)
1922{
1923 unsigned long i, sum = 0;
1924
0a945022 1925 for_each_possible_cpu(i)
1da177e4
LT
1926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1927
1928 return sum;
1929}
1930
db1b1fef
JS
1931unsigned long nr_active(void)
1932{
1933 unsigned long i, running = 0, uninterruptible = 0;
1934
1935 for_each_online_cpu(i) {
1936 running += cpu_rq(i)->nr_running;
1937 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1938 }
1939
1940 if (unlikely((long)uninterruptible < 0))
1941 uninterruptible = 0;
1942
1943 return running + uninterruptible;
1944}
1945
48f24c4d 1946/*
dd41f596
IM
1947 * Update rq->cpu_load[] statistics. This function is usually called every
1948 * scheduler tick (TICK_NSEC).
48f24c4d 1949 */
dd41f596 1950static void update_cpu_load(struct rq *this_rq)
48f24c4d 1951{
dd41f596
IM
1952 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1953 unsigned long total_load = this_rq->ls.load.weight;
1954 unsigned long this_load = total_load;
1955 struct load_stat *ls = &this_rq->ls;
1956 u64 now = __rq_clock(this_rq);
1957 int i, scale;
1958
1959 this_rq->nr_load_updates++;
1960 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1961 goto do_avg;
1962
1963 /* Update delta_fair/delta_exec fields first */
1964 update_curr_load(this_rq, now);
1965
1966 fair_delta64 = ls->delta_fair + 1;
1967 ls->delta_fair = 0;
1968
1969 exec_delta64 = ls->delta_exec + 1;
1970 ls->delta_exec = 0;
1971
1972 sample_interval64 = now - ls->load_update_last;
1973 ls->load_update_last = now;
1974
1975 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1976 sample_interval64 = TICK_NSEC;
1977
1978 if (exec_delta64 > sample_interval64)
1979 exec_delta64 = sample_interval64;
1980
1981 idle_delta64 = sample_interval64 - exec_delta64;
1982
1983 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1984 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1985
1986 this_load = (unsigned long)tmp64;
1987
1988do_avg:
1989
1990 /* Update our load: */
1991 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1992 unsigned long old_load, new_load;
1993
1994 /* scale is effectively 1 << i now, and >> i divides by scale */
1995
1996 old_load = this_rq->cpu_load[i];
1997 new_load = this_load;
1998
1999 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2000 }
48f24c4d
IM
2001}
2002
dd41f596
IM
2003#ifdef CONFIG_SMP
2004
1da177e4
LT
2005/*
2006 * double_rq_lock - safely lock two runqueues
2007 *
2008 * Note this does not disable interrupts like task_rq_lock,
2009 * you need to do so manually before calling.
2010 */
70b97a7f 2011static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2012 __acquires(rq1->lock)
2013 __acquires(rq2->lock)
2014{
054b9108 2015 BUG_ON(!irqs_disabled());
1da177e4
LT
2016 if (rq1 == rq2) {
2017 spin_lock(&rq1->lock);
2018 __acquire(rq2->lock); /* Fake it out ;) */
2019 } else {
c96d145e 2020 if (rq1 < rq2) {
1da177e4
LT
2021 spin_lock(&rq1->lock);
2022 spin_lock(&rq2->lock);
2023 } else {
2024 spin_lock(&rq2->lock);
2025 spin_lock(&rq1->lock);
2026 }
2027 }
2028}
2029
2030/*
2031 * double_rq_unlock - safely unlock two runqueues
2032 *
2033 * Note this does not restore interrupts like task_rq_unlock,
2034 * you need to do so manually after calling.
2035 */
70b97a7f 2036static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2037 __releases(rq1->lock)
2038 __releases(rq2->lock)
2039{
2040 spin_unlock(&rq1->lock);
2041 if (rq1 != rq2)
2042 spin_unlock(&rq2->lock);
2043 else
2044 __release(rq2->lock);
2045}
2046
2047/*
2048 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2049 */
70b97a7f 2050static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2051 __releases(this_rq->lock)
2052 __acquires(busiest->lock)
2053 __acquires(this_rq->lock)
2054{
054b9108
KK
2055 if (unlikely(!irqs_disabled())) {
2056 /* printk() doesn't work good under rq->lock */
2057 spin_unlock(&this_rq->lock);
2058 BUG_ON(1);
2059 }
1da177e4 2060 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2061 if (busiest < this_rq) {
1da177e4
LT
2062 spin_unlock(&this_rq->lock);
2063 spin_lock(&busiest->lock);
2064 spin_lock(&this_rq->lock);
2065 } else
2066 spin_lock(&busiest->lock);
2067 }
2068}
2069
1da177e4
LT
2070/*
2071 * If dest_cpu is allowed for this process, migrate the task to it.
2072 * This is accomplished by forcing the cpu_allowed mask to only
2073 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2074 * the cpu_allowed mask is restored.
2075 */
36c8b586 2076static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2077{
70b97a7f 2078 struct migration_req req;
1da177e4 2079 unsigned long flags;
70b97a7f 2080 struct rq *rq;
1da177e4
LT
2081
2082 rq = task_rq_lock(p, &flags);
2083 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2084 || unlikely(cpu_is_offline(dest_cpu)))
2085 goto out;
2086
2087 /* force the process onto the specified CPU */
2088 if (migrate_task(p, dest_cpu, &req)) {
2089 /* Need to wait for migration thread (might exit: take ref). */
2090 struct task_struct *mt = rq->migration_thread;
36c8b586 2091
1da177e4
LT
2092 get_task_struct(mt);
2093 task_rq_unlock(rq, &flags);
2094 wake_up_process(mt);
2095 put_task_struct(mt);
2096 wait_for_completion(&req.done);
36c8b586 2097
1da177e4
LT
2098 return;
2099 }
2100out:
2101 task_rq_unlock(rq, &flags);
2102}
2103
2104/*
476d139c
NP
2105 * sched_exec - execve() is a valuable balancing opportunity, because at
2106 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2107 */
2108void sched_exec(void)
2109{
1da177e4 2110 int new_cpu, this_cpu = get_cpu();
476d139c 2111 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2112 put_cpu();
476d139c
NP
2113 if (new_cpu != this_cpu)
2114 sched_migrate_task(current, new_cpu);
1da177e4
LT
2115}
2116
2117/*
2118 * pull_task - move a task from a remote runqueue to the local runqueue.
2119 * Both runqueues must be locked.
2120 */
dd41f596
IM
2121static void pull_task(struct rq *src_rq, struct task_struct *p,
2122 struct rq *this_rq, int this_cpu)
1da177e4 2123{
dd41f596 2124 deactivate_task(src_rq, p, 0);
1da177e4 2125 set_task_cpu(p, this_cpu);
dd41f596 2126 activate_task(this_rq, p, 0);
1da177e4
LT
2127 /*
2128 * Note that idle threads have a prio of MAX_PRIO, for this test
2129 * to be always true for them.
2130 */
dd41f596 2131 check_preempt_curr(this_rq, p);
1da177e4
LT
2132}
2133
2134/*
2135 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2136 */
858119e1 2137static
70b97a7f 2138int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2139 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2140 int *all_pinned)
1da177e4
LT
2141{
2142 /*
2143 * We do not migrate tasks that are:
2144 * 1) running (obviously), or
2145 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2146 * 3) are cache-hot on their current CPU.
2147 */
1da177e4
LT
2148 if (!cpu_isset(this_cpu, p->cpus_allowed))
2149 return 0;
81026794
NP
2150 *all_pinned = 0;
2151
2152 if (task_running(rq, p))
2153 return 0;
1da177e4
LT
2154
2155 /*
dd41f596 2156 * Aggressive migration if too many balance attempts have failed:
1da177e4 2157 */
dd41f596 2158 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2159 return 1;
2160
1da177e4
LT
2161 return 1;
2162}
2163
dd41f596 2164static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2165 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2166 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2167 int *all_pinned, unsigned long *load_moved,
2168 int this_best_prio, int best_prio, int best_prio_seen,
2169 struct rq_iterator *iterator)
1da177e4 2170{
dd41f596
IM
2171 int pulled = 0, pinned = 0, skip_for_load;
2172 struct task_struct *p;
2173 long rem_load_move = max_load_move;
1da177e4 2174
2dd73a4f 2175 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2176 goto out;
2177
81026794
NP
2178 pinned = 1;
2179
1da177e4 2180 /*
dd41f596 2181 * Start the load-balancing iterator:
1da177e4 2182 */
dd41f596
IM
2183 p = iterator->start(iterator->arg);
2184next:
2185 if (!p)
1da177e4 2186 goto out;
50ddd969
PW
2187 /*
2188 * To help distribute high priority tasks accross CPUs we don't
2189 * skip a task if it will be the highest priority task (i.e. smallest
2190 * prio value) on its new queue regardless of its load weight
2191 */
dd41f596
IM
2192 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2193 SCHED_LOAD_SCALE_FUZZ;
2194 if (skip_for_load && p->prio < this_best_prio)
2195 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2196 if (skip_for_load ||
dd41f596 2197 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2198
dd41f596
IM
2199 best_prio_seen |= p->prio == best_prio;
2200 p = iterator->next(iterator->arg);
2201 goto next;
1da177e4
LT
2202 }
2203
dd41f596 2204 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2205 pulled++;
dd41f596 2206 rem_load_move -= p->se.load.weight;
1da177e4 2207
2dd73a4f
PW
2208 /*
2209 * We only want to steal up to the prescribed number of tasks
2210 * and the prescribed amount of weighted load.
2211 */
2212 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2213 if (p->prio < this_best_prio)
2214 this_best_prio = p->prio;
2215 p = iterator->next(iterator->arg);
2216 goto next;
1da177e4
LT
2217 }
2218out:
2219 /*
2220 * Right now, this is the only place pull_task() is called,
2221 * so we can safely collect pull_task() stats here rather than
2222 * inside pull_task().
2223 */
2224 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2225
2226 if (all_pinned)
2227 *all_pinned = pinned;
dd41f596 2228 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2229 return pulled;
2230}
2231
dd41f596
IM
2232/*
2233 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2234 * load from busiest to this_rq, as part of a balancing operation within
2235 * "domain". Returns the number of tasks moved.
2236 *
2237 * Called with both runqueues locked.
2238 */
2239static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2240 unsigned long max_nr_move, unsigned long max_load_move,
2241 struct sched_domain *sd, enum cpu_idle_type idle,
2242 int *all_pinned)
2243{
2244 struct sched_class *class = sched_class_highest;
2245 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2246 long rem_load_move = max_load_move;
2247
2248 do {
2249 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2250 max_nr_move, (unsigned long)rem_load_move,
2251 sd, idle, all_pinned, &load_moved);
2252 total_nr_moved += nr_moved;
2253 max_nr_move -= nr_moved;
2254 rem_load_move -= load_moved;
2255 class = class->next;
2256 } while (class && max_nr_move && rem_load_move > 0);
2257
2258 return total_nr_moved;
2259}
2260
1da177e4
LT
2261/*
2262 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2263 * domain. It calculates and returns the amount of weighted load which
2264 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2265 */
2266static struct sched_group *
2267find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2268 unsigned long *imbalance, enum cpu_idle_type idle,
2269 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2270{
2271 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2272 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2273 unsigned long max_pull;
2dd73a4f
PW
2274 unsigned long busiest_load_per_task, busiest_nr_running;
2275 unsigned long this_load_per_task, this_nr_running;
7897986b 2276 int load_idx;
5c45bf27
SS
2277#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2278 int power_savings_balance = 1;
2279 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2280 unsigned long min_nr_running = ULONG_MAX;
2281 struct sched_group *group_min = NULL, *group_leader = NULL;
2282#endif
1da177e4
LT
2283
2284 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2285 busiest_load_per_task = busiest_nr_running = 0;
2286 this_load_per_task = this_nr_running = 0;
d15bcfdb 2287 if (idle == CPU_NOT_IDLE)
7897986b 2288 load_idx = sd->busy_idx;
d15bcfdb 2289 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2290 load_idx = sd->newidle_idx;
2291 else
2292 load_idx = sd->idle_idx;
1da177e4
LT
2293
2294 do {
5c45bf27 2295 unsigned long load, group_capacity;
1da177e4
LT
2296 int local_group;
2297 int i;
783609c6 2298 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2299 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2300
2301 local_group = cpu_isset(this_cpu, group->cpumask);
2302
783609c6
SS
2303 if (local_group)
2304 balance_cpu = first_cpu(group->cpumask);
2305
1da177e4 2306 /* Tally up the load of all CPUs in the group */
2dd73a4f 2307 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2308
2309 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2310 struct rq *rq;
2311
2312 if (!cpu_isset(i, *cpus))
2313 continue;
2314
2315 rq = cpu_rq(i);
2dd73a4f 2316
9439aab8 2317 if (*sd_idle && rq->nr_running)
5969fe06
NP
2318 *sd_idle = 0;
2319
1da177e4 2320 /* Bias balancing toward cpus of our domain */
783609c6
SS
2321 if (local_group) {
2322 if (idle_cpu(i) && !first_idle_cpu) {
2323 first_idle_cpu = 1;
2324 balance_cpu = i;
2325 }
2326
a2000572 2327 load = target_load(i, load_idx);
783609c6 2328 } else
a2000572 2329 load = source_load(i, load_idx);
1da177e4
LT
2330
2331 avg_load += load;
2dd73a4f 2332 sum_nr_running += rq->nr_running;
dd41f596 2333 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2334 }
2335
783609c6
SS
2336 /*
2337 * First idle cpu or the first cpu(busiest) in this sched group
2338 * is eligible for doing load balancing at this and above
9439aab8
SS
2339 * domains. In the newly idle case, we will allow all the cpu's
2340 * to do the newly idle load balance.
783609c6 2341 */
9439aab8
SS
2342 if (idle != CPU_NEWLY_IDLE && local_group &&
2343 balance_cpu != this_cpu && balance) {
783609c6
SS
2344 *balance = 0;
2345 goto ret;
2346 }
2347
1da177e4 2348 total_load += avg_load;
5517d86b 2349 total_pwr += group->__cpu_power;
1da177e4
LT
2350
2351 /* Adjust by relative CPU power of the group */
5517d86b
ED
2352 avg_load = sg_div_cpu_power(group,
2353 avg_load * SCHED_LOAD_SCALE);
1da177e4 2354
5517d86b 2355 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2356
1da177e4
LT
2357 if (local_group) {
2358 this_load = avg_load;
2359 this = group;
2dd73a4f
PW
2360 this_nr_running = sum_nr_running;
2361 this_load_per_task = sum_weighted_load;
2362 } else if (avg_load > max_load &&
5c45bf27 2363 sum_nr_running > group_capacity) {
1da177e4
LT
2364 max_load = avg_load;
2365 busiest = group;
2dd73a4f
PW
2366 busiest_nr_running = sum_nr_running;
2367 busiest_load_per_task = sum_weighted_load;
1da177e4 2368 }
5c45bf27
SS
2369
2370#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2371 /*
2372 * Busy processors will not participate in power savings
2373 * balance.
2374 */
dd41f596
IM
2375 if (idle == CPU_NOT_IDLE ||
2376 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2377 goto group_next;
5c45bf27
SS
2378
2379 /*
2380 * If the local group is idle or completely loaded
2381 * no need to do power savings balance at this domain
2382 */
2383 if (local_group && (this_nr_running >= group_capacity ||
2384 !this_nr_running))
2385 power_savings_balance = 0;
2386
dd41f596 2387 /*
5c45bf27
SS
2388 * If a group is already running at full capacity or idle,
2389 * don't include that group in power savings calculations
dd41f596
IM
2390 */
2391 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2392 || !sum_nr_running)
dd41f596 2393 goto group_next;
5c45bf27 2394
dd41f596 2395 /*
5c45bf27 2396 * Calculate the group which has the least non-idle load.
dd41f596
IM
2397 * This is the group from where we need to pick up the load
2398 * for saving power
2399 */
2400 if ((sum_nr_running < min_nr_running) ||
2401 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2402 first_cpu(group->cpumask) <
2403 first_cpu(group_min->cpumask))) {
dd41f596
IM
2404 group_min = group;
2405 min_nr_running = sum_nr_running;
5c45bf27
SS
2406 min_load_per_task = sum_weighted_load /
2407 sum_nr_running;
dd41f596 2408 }
5c45bf27 2409
dd41f596 2410 /*
5c45bf27 2411 * Calculate the group which is almost near its
dd41f596
IM
2412 * capacity but still has some space to pick up some load
2413 * from other group and save more power
2414 */
2415 if (sum_nr_running <= group_capacity - 1) {
2416 if (sum_nr_running > leader_nr_running ||
2417 (sum_nr_running == leader_nr_running &&
2418 first_cpu(group->cpumask) >
2419 first_cpu(group_leader->cpumask))) {
2420 group_leader = group;
2421 leader_nr_running = sum_nr_running;
2422 }
48f24c4d 2423 }
5c45bf27
SS
2424group_next:
2425#endif
1da177e4
LT
2426 group = group->next;
2427 } while (group != sd->groups);
2428
2dd73a4f 2429 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2430 goto out_balanced;
2431
2432 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2433
2434 if (this_load >= avg_load ||
2435 100*max_load <= sd->imbalance_pct*this_load)
2436 goto out_balanced;
2437
2dd73a4f 2438 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2439 /*
2440 * We're trying to get all the cpus to the average_load, so we don't
2441 * want to push ourselves above the average load, nor do we wish to
2442 * reduce the max loaded cpu below the average load, as either of these
2443 * actions would just result in more rebalancing later, and ping-pong
2444 * tasks around. Thus we look for the minimum possible imbalance.
2445 * Negative imbalances (*we* are more loaded than anyone else) will
2446 * be counted as no imbalance for these purposes -- we can't fix that
2447 * by pulling tasks to us. Be careful of negative numbers as they'll
2448 * appear as very large values with unsigned longs.
2449 */
2dd73a4f
PW
2450 if (max_load <= busiest_load_per_task)
2451 goto out_balanced;
2452
2453 /*
2454 * In the presence of smp nice balancing, certain scenarios can have
2455 * max load less than avg load(as we skip the groups at or below
2456 * its cpu_power, while calculating max_load..)
2457 */
2458 if (max_load < avg_load) {
2459 *imbalance = 0;
2460 goto small_imbalance;
2461 }
0c117f1b
SS
2462
2463 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2464 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2465
1da177e4 2466 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2467 *imbalance = min(max_pull * busiest->__cpu_power,
2468 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2469 / SCHED_LOAD_SCALE;
2470
2dd73a4f
PW
2471 /*
2472 * if *imbalance is less than the average load per runnable task
2473 * there is no gaurantee that any tasks will be moved so we'll have
2474 * a think about bumping its value to force at least one task to be
2475 * moved
2476 */
dd41f596 2477 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2478 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2479 unsigned int imbn;
2480
2481small_imbalance:
2482 pwr_move = pwr_now = 0;
2483 imbn = 2;
2484 if (this_nr_running) {
2485 this_load_per_task /= this_nr_running;
2486 if (busiest_load_per_task > this_load_per_task)
2487 imbn = 1;
2488 } else
2489 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2490
dd41f596
IM
2491 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2492 busiest_load_per_task * imbn) {
2dd73a4f 2493 *imbalance = busiest_load_per_task;
1da177e4
LT
2494 return busiest;
2495 }
2496
2497 /*
2498 * OK, we don't have enough imbalance to justify moving tasks,
2499 * however we may be able to increase total CPU power used by
2500 * moving them.
2501 */
2502
5517d86b
ED
2503 pwr_now += busiest->__cpu_power *
2504 min(busiest_load_per_task, max_load);
2505 pwr_now += this->__cpu_power *
2506 min(this_load_per_task, this_load);
1da177e4
LT
2507 pwr_now /= SCHED_LOAD_SCALE;
2508
2509 /* Amount of load we'd subtract */
5517d86b
ED
2510 tmp = sg_div_cpu_power(busiest,
2511 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2512 if (max_load > tmp)
5517d86b 2513 pwr_move += busiest->__cpu_power *
2dd73a4f 2514 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2515
2516 /* Amount of load we'd add */
5517d86b 2517 if (max_load * busiest->__cpu_power <
33859f7f 2518 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2519 tmp = sg_div_cpu_power(this,
2520 max_load * busiest->__cpu_power);
1da177e4 2521 else
5517d86b
ED
2522 tmp = sg_div_cpu_power(this,
2523 busiest_load_per_task * SCHED_LOAD_SCALE);
2524 pwr_move += this->__cpu_power *
2525 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2526 pwr_move /= SCHED_LOAD_SCALE;
2527
2528 /* Move if we gain throughput */
2529 if (pwr_move <= pwr_now)
2530 goto out_balanced;
2531
2dd73a4f 2532 *imbalance = busiest_load_per_task;
1da177e4
LT
2533 }
2534
1da177e4
LT
2535 return busiest;
2536
2537out_balanced:
5c45bf27 2538#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2539 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2540 goto ret;
1da177e4 2541
5c45bf27
SS
2542 if (this == group_leader && group_leader != group_min) {
2543 *imbalance = min_load_per_task;
2544 return group_min;
2545 }
5c45bf27 2546#endif
783609c6 2547ret:
1da177e4
LT
2548 *imbalance = 0;
2549 return NULL;
2550}
2551
2552/*
2553 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2554 */
70b97a7f 2555static struct rq *
d15bcfdb 2556find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2557 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2558{
70b97a7f 2559 struct rq *busiest = NULL, *rq;
2dd73a4f 2560 unsigned long max_load = 0;
1da177e4
LT
2561 int i;
2562
2563 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2564 unsigned long wl;
0a2966b4
CL
2565
2566 if (!cpu_isset(i, *cpus))
2567 continue;
2568
48f24c4d 2569 rq = cpu_rq(i);
dd41f596 2570 wl = weighted_cpuload(i);
2dd73a4f 2571
dd41f596 2572 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2573 continue;
1da177e4 2574
dd41f596
IM
2575 if (wl > max_load) {
2576 max_load = wl;
48f24c4d 2577 busiest = rq;
1da177e4
LT
2578 }
2579 }
2580
2581 return busiest;
2582}
2583
77391d71
NP
2584/*
2585 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2586 * so long as it is large enough.
2587 */
2588#define MAX_PINNED_INTERVAL 512
2589
48f24c4d
IM
2590static inline unsigned long minus_1_or_zero(unsigned long n)
2591{
2592 return n > 0 ? n - 1 : 0;
2593}
2594
1da177e4
LT
2595/*
2596 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2597 * tasks if there is an imbalance.
1da177e4 2598 */
70b97a7f 2599static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2600 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2601 int *balance)
1da177e4 2602{
48f24c4d 2603 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2604 struct sched_group *group;
1da177e4 2605 unsigned long imbalance;
70b97a7f 2606 struct rq *busiest;
0a2966b4 2607 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2608 unsigned long flags;
5969fe06 2609
89c4710e
SS
2610 /*
2611 * When power savings policy is enabled for the parent domain, idle
2612 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2613 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2614 * portraying it as CPU_NOT_IDLE.
89c4710e 2615 */
d15bcfdb 2616 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2617 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2618 sd_idle = 1;
1da177e4 2619
1da177e4
LT
2620 schedstat_inc(sd, lb_cnt[idle]);
2621
0a2966b4
CL
2622redo:
2623 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2624 &cpus, balance);
2625
06066714 2626 if (*balance == 0)
783609c6 2627 goto out_balanced;
783609c6 2628
1da177e4
LT
2629 if (!group) {
2630 schedstat_inc(sd, lb_nobusyg[idle]);
2631 goto out_balanced;
2632 }
2633
0a2966b4 2634 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2635 if (!busiest) {
2636 schedstat_inc(sd, lb_nobusyq[idle]);
2637 goto out_balanced;
2638 }
2639
db935dbd 2640 BUG_ON(busiest == this_rq);
1da177e4
LT
2641
2642 schedstat_add(sd, lb_imbalance[idle], imbalance);
2643
2644 nr_moved = 0;
2645 if (busiest->nr_running > 1) {
2646 /*
2647 * Attempt to move tasks. If find_busiest_group has found
2648 * an imbalance but busiest->nr_running <= 1, the group is
2649 * still unbalanced. nr_moved simply stays zero, so it is
2650 * correctly treated as an imbalance.
2651 */
fe2eea3f 2652 local_irq_save(flags);
e17224bf 2653 double_rq_lock(this_rq, busiest);
1da177e4 2654 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2655 minus_1_or_zero(busiest->nr_running),
2656 imbalance, sd, idle, &all_pinned);
e17224bf 2657 double_rq_unlock(this_rq, busiest);
fe2eea3f 2658 local_irq_restore(flags);
81026794 2659
46cb4b7c
SS
2660 /*
2661 * some other cpu did the load balance for us.
2662 */
2663 if (nr_moved && this_cpu != smp_processor_id())
2664 resched_cpu(this_cpu);
2665
81026794 2666 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2667 if (unlikely(all_pinned)) {
2668 cpu_clear(cpu_of(busiest), cpus);
2669 if (!cpus_empty(cpus))
2670 goto redo;
81026794 2671 goto out_balanced;
0a2966b4 2672 }
1da177e4 2673 }
81026794 2674
1da177e4
LT
2675 if (!nr_moved) {
2676 schedstat_inc(sd, lb_failed[idle]);
2677 sd->nr_balance_failed++;
2678
2679 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2680
fe2eea3f 2681 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2682
2683 /* don't kick the migration_thread, if the curr
2684 * task on busiest cpu can't be moved to this_cpu
2685 */
2686 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2687 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2688 all_pinned = 1;
2689 goto out_one_pinned;
2690 }
2691
1da177e4
LT
2692 if (!busiest->active_balance) {
2693 busiest->active_balance = 1;
2694 busiest->push_cpu = this_cpu;
81026794 2695 active_balance = 1;
1da177e4 2696 }
fe2eea3f 2697 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2698 if (active_balance)
1da177e4
LT
2699 wake_up_process(busiest->migration_thread);
2700
2701 /*
2702 * We've kicked active balancing, reset the failure
2703 * counter.
2704 */
39507451 2705 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2706 }
81026794 2707 } else
1da177e4
LT
2708 sd->nr_balance_failed = 0;
2709
81026794 2710 if (likely(!active_balance)) {
1da177e4
LT
2711 /* We were unbalanced, so reset the balancing interval */
2712 sd->balance_interval = sd->min_interval;
81026794
NP
2713 } else {
2714 /*
2715 * If we've begun active balancing, start to back off. This
2716 * case may not be covered by the all_pinned logic if there
2717 * is only 1 task on the busy runqueue (because we don't call
2718 * move_tasks).
2719 */
2720 if (sd->balance_interval < sd->max_interval)
2721 sd->balance_interval *= 2;
1da177e4
LT
2722 }
2723
5c45bf27 2724 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2725 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2726 return -1;
1da177e4
LT
2727 return nr_moved;
2728
2729out_balanced:
1da177e4
LT
2730 schedstat_inc(sd, lb_balanced[idle]);
2731
16cfb1c0 2732 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2733
2734out_one_pinned:
1da177e4 2735 /* tune up the balancing interval */
77391d71
NP
2736 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2737 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2738 sd->balance_interval *= 2;
2739
48f24c4d 2740 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2742 return -1;
1da177e4
LT
2743 return 0;
2744}
2745
2746/*
2747 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2748 * tasks if there is an imbalance.
2749 *
d15bcfdb 2750 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2751 * this_rq is locked.
2752 */
48f24c4d 2753static int
70b97a7f 2754load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2755{
2756 struct sched_group *group;
70b97a7f 2757 struct rq *busiest = NULL;
1da177e4
LT
2758 unsigned long imbalance;
2759 int nr_moved = 0;
5969fe06 2760 int sd_idle = 0;
969bb4e4 2761 int all_pinned = 0;
0a2966b4 2762 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2763
89c4710e
SS
2764 /*
2765 * When power savings policy is enabled for the parent domain, idle
2766 * sibling can pick up load irrespective of busy siblings. In this case,
2767 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2768 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2769 */
2770 if (sd->flags & SD_SHARE_CPUPOWER &&
2771 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2772 sd_idle = 1;
1da177e4 2773
d15bcfdb 2774 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2775redo:
d15bcfdb 2776 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2777 &sd_idle, &cpus, NULL);
1da177e4 2778 if (!group) {
d15bcfdb 2779 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2780 goto out_balanced;
1da177e4
LT
2781 }
2782
d15bcfdb 2783 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2784 &cpus);
db935dbd 2785 if (!busiest) {
d15bcfdb 2786 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2787 goto out_balanced;
1da177e4
LT
2788 }
2789
db935dbd
NP
2790 BUG_ON(busiest == this_rq);
2791
d15bcfdb 2792 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2793
2794 nr_moved = 0;
2795 if (busiest->nr_running > 1) {
2796 /* Attempt to move tasks */
2797 double_lock_balance(this_rq, busiest);
2798 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2799 minus_1_or_zero(busiest->nr_running),
969bb4e4
SS
2800 imbalance, sd, CPU_NEWLY_IDLE,
2801 &all_pinned);
d6d5cfaf 2802 spin_unlock(&busiest->lock);
0a2966b4 2803
969bb4e4 2804 if (unlikely(all_pinned)) {
0a2966b4
CL
2805 cpu_clear(cpu_of(busiest), cpus);
2806 if (!cpus_empty(cpus))
2807 goto redo;
2808 }
d6d5cfaf
NP
2809 }
2810
5969fe06 2811 if (!nr_moved) {
d15bcfdb 2812 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2813 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2814 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2815 return -1;
2816 } else
16cfb1c0 2817 sd->nr_balance_failed = 0;
1da177e4 2818
1da177e4 2819 return nr_moved;
16cfb1c0
NP
2820
2821out_balanced:
d15bcfdb 2822 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2823 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2824 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2825 return -1;
16cfb1c0 2826 sd->nr_balance_failed = 0;
48f24c4d 2827
16cfb1c0 2828 return 0;
1da177e4
LT
2829}
2830
2831/*
2832 * idle_balance is called by schedule() if this_cpu is about to become
2833 * idle. Attempts to pull tasks from other CPUs.
2834 */
70b97a7f 2835static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2836{
2837 struct sched_domain *sd;
dd41f596
IM
2838 int pulled_task = -1;
2839 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2840
2841 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2842 unsigned long interval;
2843
2844 if (!(sd->flags & SD_LOAD_BALANCE))
2845 continue;
2846
2847 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2848 /* If we've pulled tasks over stop searching: */
1bd77f2d 2849 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2850 this_rq, sd);
2851
2852 interval = msecs_to_jiffies(sd->balance_interval);
2853 if (time_after(next_balance, sd->last_balance + interval))
2854 next_balance = sd->last_balance + interval;
2855 if (pulled_task)
2856 break;
1da177e4 2857 }
dd41f596 2858 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2859 /*
2860 * We are going idle. next_balance may be set based on
2861 * a busy processor. So reset next_balance.
2862 */
2863 this_rq->next_balance = next_balance;
dd41f596 2864 }
1da177e4
LT
2865}
2866
2867/*
2868 * active_load_balance is run by migration threads. It pushes running tasks
2869 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2870 * running on each physical CPU where possible, and avoids physical /
2871 * logical imbalances.
2872 *
2873 * Called with busiest_rq locked.
2874 */
70b97a7f 2875static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2876{
39507451 2877 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2878 struct sched_domain *sd;
2879 struct rq *target_rq;
39507451 2880
48f24c4d 2881 /* Is there any task to move? */
39507451 2882 if (busiest_rq->nr_running <= 1)
39507451
NP
2883 return;
2884
2885 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2886
2887 /*
39507451
NP
2888 * This condition is "impossible", if it occurs
2889 * we need to fix it. Originally reported by
2890 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2891 */
39507451 2892 BUG_ON(busiest_rq == target_rq);
1da177e4 2893
39507451
NP
2894 /* move a task from busiest_rq to target_rq */
2895 double_lock_balance(busiest_rq, target_rq);
2896
2897 /* Search for an sd spanning us and the target CPU. */
c96d145e 2898 for_each_domain(target_cpu, sd) {
39507451 2899 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2900 cpu_isset(busiest_cpu, sd->span))
39507451 2901 break;
c96d145e 2902 }
39507451 2903
48f24c4d
IM
2904 if (likely(sd)) {
2905 schedstat_inc(sd, alb_cnt);
39507451 2906
48f24c4d 2907 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
d15bcfdb 2908 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
48f24c4d
IM
2909 NULL))
2910 schedstat_inc(sd, alb_pushed);
2911 else
2912 schedstat_inc(sd, alb_failed);
2913 }
39507451 2914 spin_unlock(&target_rq->lock);
1da177e4
LT
2915}
2916
46cb4b7c
SS
2917#ifdef CONFIG_NO_HZ
2918static struct {
2919 atomic_t load_balancer;
2920 cpumask_t cpu_mask;
2921} nohz ____cacheline_aligned = {
2922 .load_balancer = ATOMIC_INIT(-1),
2923 .cpu_mask = CPU_MASK_NONE,
2924};
2925
7835b98b 2926/*
46cb4b7c
SS
2927 * This routine will try to nominate the ilb (idle load balancing)
2928 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2929 * load balancing on behalf of all those cpus. If all the cpus in the system
2930 * go into this tickless mode, then there will be no ilb owner (as there is
2931 * no need for one) and all the cpus will sleep till the next wakeup event
2932 * arrives...
2933 *
2934 * For the ilb owner, tick is not stopped. And this tick will be used
2935 * for idle load balancing. ilb owner will still be part of
2936 * nohz.cpu_mask..
7835b98b 2937 *
46cb4b7c
SS
2938 * While stopping the tick, this cpu will become the ilb owner if there
2939 * is no other owner. And will be the owner till that cpu becomes busy
2940 * or if all cpus in the system stop their ticks at which point
2941 * there is no need for ilb owner.
2942 *
2943 * When the ilb owner becomes busy, it nominates another owner, during the
2944 * next busy scheduler_tick()
2945 */
2946int select_nohz_load_balancer(int stop_tick)
2947{
2948 int cpu = smp_processor_id();
2949
2950 if (stop_tick) {
2951 cpu_set(cpu, nohz.cpu_mask);
2952 cpu_rq(cpu)->in_nohz_recently = 1;
2953
2954 /*
2955 * If we are going offline and still the leader, give up!
2956 */
2957 if (cpu_is_offline(cpu) &&
2958 atomic_read(&nohz.load_balancer) == cpu) {
2959 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2960 BUG();
2961 return 0;
2962 }
2963
2964 /* time for ilb owner also to sleep */
2965 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2966 if (atomic_read(&nohz.load_balancer) == cpu)
2967 atomic_set(&nohz.load_balancer, -1);
2968 return 0;
2969 }
2970
2971 if (atomic_read(&nohz.load_balancer) == -1) {
2972 /* make me the ilb owner */
2973 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2974 return 1;
2975 } else if (atomic_read(&nohz.load_balancer) == cpu)
2976 return 1;
2977 } else {
2978 if (!cpu_isset(cpu, nohz.cpu_mask))
2979 return 0;
2980
2981 cpu_clear(cpu, nohz.cpu_mask);
2982
2983 if (atomic_read(&nohz.load_balancer) == cpu)
2984 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2985 BUG();
2986 }
2987 return 0;
2988}
2989#endif
2990
2991static DEFINE_SPINLOCK(balancing);
2992
2993/*
7835b98b
CL
2994 * It checks each scheduling domain to see if it is due to be balanced,
2995 * and initiates a balancing operation if so.
2996 *
2997 * Balancing parameters are set up in arch_init_sched_domains.
2998 */
d15bcfdb 2999static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3000{
46cb4b7c
SS
3001 int balance = 1;
3002 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3003 unsigned long interval;
3004 struct sched_domain *sd;
46cb4b7c 3005 /* Earliest time when we have to do rebalance again */
c9819f45 3006 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3007
46cb4b7c 3008 for_each_domain(cpu, sd) {
1da177e4
LT
3009 if (!(sd->flags & SD_LOAD_BALANCE))
3010 continue;
3011
3012 interval = sd->balance_interval;
d15bcfdb 3013 if (idle != CPU_IDLE)
1da177e4
LT
3014 interval *= sd->busy_factor;
3015
3016 /* scale ms to jiffies */
3017 interval = msecs_to_jiffies(interval);
3018 if (unlikely(!interval))
3019 interval = 1;
dd41f596
IM
3020 if (interval > HZ*NR_CPUS/10)
3021 interval = HZ*NR_CPUS/10;
3022
1da177e4 3023
08c183f3
CL
3024 if (sd->flags & SD_SERIALIZE) {
3025 if (!spin_trylock(&balancing))
3026 goto out;
3027 }
3028
c9819f45 3029 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3030 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3031 /*
3032 * We've pulled tasks over so either we're no
5969fe06
NP
3033 * longer idle, or one of our SMT siblings is
3034 * not idle.
3035 */
d15bcfdb 3036 idle = CPU_NOT_IDLE;
1da177e4 3037 }
1bd77f2d 3038 sd->last_balance = jiffies;
1da177e4 3039 }
08c183f3
CL
3040 if (sd->flags & SD_SERIALIZE)
3041 spin_unlock(&balancing);
3042out:
c9819f45
CL
3043 if (time_after(next_balance, sd->last_balance + interval))
3044 next_balance = sd->last_balance + interval;
783609c6
SS
3045
3046 /*
3047 * Stop the load balance at this level. There is another
3048 * CPU in our sched group which is doing load balancing more
3049 * actively.
3050 */
3051 if (!balance)
3052 break;
1da177e4 3053 }
46cb4b7c
SS
3054 rq->next_balance = next_balance;
3055}
3056
3057/*
3058 * run_rebalance_domains is triggered when needed from the scheduler tick.
3059 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3060 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3061 */
3062static void run_rebalance_domains(struct softirq_action *h)
3063{
dd41f596
IM
3064 int this_cpu = smp_processor_id();
3065 struct rq *this_rq = cpu_rq(this_cpu);
3066 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3067 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3068
dd41f596 3069 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3070
3071#ifdef CONFIG_NO_HZ
3072 /*
3073 * If this cpu is the owner for idle load balancing, then do the
3074 * balancing on behalf of the other idle cpus whose ticks are
3075 * stopped.
3076 */
dd41f596
IM
3077 if (this_rq->idle_at_tick &&
3078 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3079 cpumask_t cpus = nohz.cpu_mask;
3080 struct rq *rq;
3081 int balance_cpu;
3082
dd41f596 3083 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3084 for_each_cpu_mask(balance_cpu, cpus) {
3085 /*
3086 * If this cpu gets work to do, stop the load balancing
3087 * work being done for other cpus. Next load
3088 * balancing owner will pick it up.
3089 */
3090 if (need_resched())
3091 break;
3092
dd41f596 3093 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3094
3095 rq = cpu_rq(balance_cpu);
dd41f596
IM
3096 if (time_after(this_rq->next_balance, rq->next_balance))
3097 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3098 }
3099 }
3100#endif
3101}
3102
3103/*
3104 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3105 *
3106 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3107 * idle load balancing owner or decide to stop the periodic load balancing,
3108 * if the whole system is idle.
3109 */
dd41f596 3110static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3111{
46cb4b7c
SS
3112#ifdef CONFIG_NO_HZ
3113 /*
3114 * If we were in the nohz mode recently and busy at the current
3115 * scheduler tick, then check if we need to nominate new idle
3116 * load balancer.
3117 */
3118 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3119 rq->in_nohz_recently = 0;
3120
3121 if (atomic_read(&nohz.load_balancer) == cpu) {
3122 cpu_clear(cpu, nohz.cpu_mask);
3123 atomic_set(&nohz.load_balancer, -1);
3124 }
3125
3126 if (atomic_read(&nohz.load_balancer) == -1) {
3127 /*
3128 * simple selection for now: Nominate the
3129 * first cpu in the nohz list to be the next
3130 * ilb owner.
3131 *
3132 * TBD: Traverse the sched domains and nominate
3133 * the nearest cpu in the nohz.cpu_mask.
3134 */
3135 int ilb = first_cpu(nohz.cpu_mask);
3136
3137 if (ilb != NR_CPUS)
3138 resched_cpu(ilb);
3139 }
3140 }
3141
3142 /*
3143 * If this cpu is idle and doing idle load balancing for all the
3144 * cpus with ticks stopped, is it time for that to stop?
3145 */
3146 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3147 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3148 resched_cpu(cpu);
3149 return;
3150 }
3151
3152 /*
3153 * If this cpu is idle and the idle load balancing is done by
3154 * someone else, then no need raise the SCHED_SOFTIRQ
3155 */
3156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3157 cpu_isset(cpu, nohz.cpu_mask))
3158 return;
3159#endif
3160 if (time_after_eq(jiffies, rq->next_balance))
3161 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3162}
dd41f596
IM
3163
3164#else /* CONFIG_SMP */
3165
1da177e4
LT
3166/*
3167 * on UP we do not need to balance between CPUs:
3168 */
70b97a7f 3169static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3170{
3171}
dd41f596
IM
3172
3173/* Avoid "used but not defined" warning on UP */
3174static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3175 unsigned long max_nr_move, unsigned long max_load_move,
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *all_pinned, unsigned long *load_moved,
3178 int this_best_prio, int best_prio, int best_prio_seen,
3179 struct rq_iterator *iterator)
3180{
3181 *load_moved = 0;
3182
3183 return 0;
3184}
3185
1da177e4
LT
3186#endif
3187
1da177e4
LT
3188DEFINE_PER_CPU(struct kernel_stat, kstat);
3189
3190EXPORT_PER_CPU_SYMBOL(kstat);
3191
3192/*
41b86e9c
IM
3193 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3194 * that have not yet been banked in case the task is currently running.
1da177e4 3195 */
41b86e9c 3196unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3197{
1da177e4 3198 unsigned long flags;
41b86e9c
IM
3199 u64 ns, delta_exec;
3200 struct rq *rq;
48f24c4d 3201
41b86e9c
IM
3202 rq = task_rq_lock(p, &flags);
3203 ns = p->se.sum_exec_runtime;
3204 if (rq->curr == p) {
3205 delta_exec = rq_clock(rq) - p->se.exec_start;
3206 if ((s64)delta_exec > 0)
3207 ns += delta_exec;
3208 }
3209 task_rq_unlock(rq, &flags);
48f24c4d 3210
1da177e4
LT
3211 return ns;
3212}
3213
1da177e4
LT
3214/*
3215 * Account user cpu time to a process.
3216 * @p: the process that the cpu time gets accounted to
3217 * @hardirq_offset: the offset to subtract from hardirq_count()
3218 * @cputime: the cpu time spent in user space since the last update
3219 */
3220void account_user_time(struct task_struct *p, cputime_t cputime)
3221{
3222 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3223 cputime64_t tmp;
3224
3225 p->utime = cputime_add(p->utime, cputime);
3226
3227 /* Add user time to cpustat. */
3228 tmp = cputime_to_cputime64(cputime);
3229 if (TASK_NICE(p) > 0)
3230 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3231 else
3232 cpustat->user = cputime64_add(cpustat->user, tmp);
3233}
3234
3235/*
3236 * Account system cpu time to a process.
3237 * @p: the process that the cpu time gets accounted to
3238 * @hardirq_offset: the offset to subtract from hardirq_count()
3239 * @cputime: the cpu time spent in kernel space since the last update
3240 */
3241void account_system_time(struct task_struct *p, int hardirq_offset,
3242 cputime_t cputime)
3243{
3244 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3245 struct rq *rq = this_rq();
1da177e4
LT
3246 cputime64_t tmp;
3247
3248 p->stime = cputime_add(p->stime, cputime);
3249
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3256 else if (p != rq->idle)
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3258 else if (atomic_read(&rq->nr_iowait) > 0)
3259 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3260 else
3261 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3262 /* Account for system time used */
3263 acct_update_integrals(p);
1da177e4
LT
3264}
3265
3266/*
3267 * Account for involuntary wait time.
3268 * @p: the process from which the cpu time has been stolen
3269 * @steal: the cpu time spent in involuntary wait
3270 */
3271void account_steal_time(struct task_struct *p, cputime_t steal)
3272{
3273 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3274 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3275 struct rq *rq = this_rq();
1da177e4
LT
3276
3277 if (p == rq->idle) {
3278 p->stime = cputime_add(p->stime, steal);
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3283 } else
3284 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3285}
3286
7835b98b
CL
3287/*
3288 * This function gets called by the timer code, with HZ frequency.
3289 * We call it with interrupts disabled.
3290 *
3291 * It also gets called by the fork code, when changing the parent's
3292 * timeslices.
3293 */
3294void scheduler_tick(void)
3295{
7835b98b
CL
3296 int cpu = smp_processor_id();
3297 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3298 struct task_struct *curr = rq->curr;
3299
3300 spin_lock(&rq->lock);
3301 if (curr != rq->idle) /* FIXME: needed? */
3302 curr->sched_class->task_tick(rq, curr);
3303 update_cpu_load(rq);
3304 spin_unlock(&rq->lock);
7835b98b 3305
e418e1c2 3306#ifdef CONFIG_SMP
dd41f596
IM
3307 rq->idle_at_tick = idle_cpu(cpu);
3308 trigger_load_balance(rq, cpu);
e418e1c2 3309#endif
1da177e4
LT
3310}
3311
1da177e4
LT
3312#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3313
3314void fastcall add_preempt_count(int val)
3315{
3316 /*
3317 * Underflow?
3318 */
9a11b49a
IM
3319 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3320 return;
1da177e4
LT
3321 preempt_count() += val;
3322 /*
3323 * Spinlock count overflowing soon?
3324 */
33859f7f
MOS
3325 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3326 PREEMPT_MASK - 10);
1da177e4
LT
3327}
3328EXPORT_SYMBOL(add_preempt_count);
3329
3330void fastcall sub_preempt_count(int val)
3331{
3332 /*
3333 * Underflow?
3334 */
9a11b49a
IM
3335 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3336 return;
1da177e4
LT
3337 /*
3338 * Is the spinlock portion underflowing?
3339 */
9a11b49a
IM
3340 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3341 !(preempt_count() & PREEMPT_MASK)))
3342 return;
3343
1da177e4
LT
3344 preempt_count() -= val;
3345}
3346EXPORT_SYMBOL(sub_preempt_count);
3347
3348#endif
3349
3350/*
dd41f596 3351 * Print scheduling while atomic bug:
1da177e4 3352 */
dd41f596 3353static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3354{
dd41f596
IM
3355 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3356 prev->comm, preempt_count(), prev->pid);
3357 debug_show_held_locks(prev);
3358 if (irqs_disabled())
3359 print_irqtrace_events(prev);
3360 dump_stack();
3361}
1da177e4 3362
dd41f596
IM
3363/*
3364 * Various schedule()-time debugging checks and statistics:
3365 */
3366static inline void schedule_debug(struct task_struct *prev)
3367{
1da177e4
LT
3368 /*
3369 * Test if we are atomic. Since do_exit() needs to call into
3370 * schedule() atomically, we ignore that path for now.
3371 * Otherwise, whine if we are scheduling when we should not be.
3372 */
dd41f596
IM
3373 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3374 __schedule_bug(prev);
3375
1da177e4
LT
3376 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3377
dd41f596
IM
3378 schedstat_inc(this_rq(), sched_cnt);
3379}
3380
3381/*
3382 * Pick up the highest-prio task:
3383 */
3384static inline struct task_struct *
3385pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3386{
3387 struct sched_class *class;
3388 struct task_struct *p;
1da177e4
LT
3389
3390 /*
dd41f596
IM
3391 * Optimization: we know that if all tasks are in
3392 * the fair class we can call that function directly:
1da177e4 3393 */
dd41f596
IM
3394 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3395 p = fair_sched_class.pick_next_task(rq, now);
3396 if (likely(p))
3397 return p;
1da177e4
LT
3398 }
3399
dd41f596
IM
3400 class = sched_class_highest;
3401 for ( ; ; ) {
3402 p = class->pick_next_task(rq, now);
3403 if (p)
3404 return p;
3405 /*
3406 * Will never be NULL as the idle class always
3407 * returns a non-NULL p:
3408 */
3409 class = class->next;
3410 }
3411}
1da177e4 3412
dd41f596
IM
3413/*
3414 * schedule() is the main scheduler function.
3415 */
3416asmlinkage void __sched schedule(void)
3417{
3418 struct task_struct *prev, *next;
3419 long *switch_count;
3420 struct rq *rq;
3421 u64 now;
3422 int cpu;
3423
3424need_resched:
3425 preempt_disable();
3426 cpu = smp_processor_id();
3427 rq = cpu_rq(cpu);
3428 rcu_qsctr_inc(cpu);
3429 prev = rq->curr;
3430 switch_count = &prev->nivcsw;
3431
3432 release_kernel_lock(prev);
3433need_resched_nonpreemptible:
3434
3435 schedule_debug(prev);
1da177e4
LT
3436
3437 spin_lock_irq(&rq->lock);
dd41f596 3438 clear_tsk_need_resched(prev);
1da177e4 3439
1da177e4 3440 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3441 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3442 unlikely(signal_pending(prev)))) {
1da177e4 3443 prev->state = TASK_RUNNING;
dd41f596
IM
3444 } else {
3445 deactivate_task(rq, prev, 1);
1da177e4 3446 }
dd41f596 3447 switch_count = &prev->nvcsw;
1da177e4
LT
3448 }
3449
dd41f596 3450 if (unlikely(!rq->nr_running))
1da177e4 3451 idle_balance(cpu, rq);
1da177e4 3452
dd41f596
IM
3453 now = __rq_clock(rq);
3454 prev->sched_class->put_prev_task(rq, prev, now);
3455 next = pick_next_task(rq, prev, now);
1da177e4
LT
3456
3457 sched_info_switch(prev, next);
dd41f596 3458
1da177e4 3459 if (likely(prev != next)) {
1da177e4
LT
3460 rq->nr_switches++;
3461 rq->curr = next;
3462 ++*switch_count;
3463
dd41f596 3464 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3465 } else
3466 spin_unlock_irq(&rq->lock);
3467
dd41f596
IM
3468 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3469 cpu = smp_processor_id();
3470 rq = cpu_rq(cpu);
1da177e4 3471 goto need_resched_nonpreemptible;
dd41f596 3472 }
1da177e4
LT
3473 preempt_enable_no_resched();
3474 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3475 goto need_resched;
3476}
1da177e4
LT
3477EXPORT_SYMBOL(schedule);
3478
3479#ifdef CONFIG_PREEMPT
3480/*
2ed6e34f 3481 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3482 * off of preempt_enable. Kernel preemptions off return from interrupt
3483 * occur there and call schedule directly.
3484 */
3485asmlinkage void __sched preempt_schedule(void)
3486{
3487 struct thread_info *ti = current_thread_info();
3488#ifdef CONFIG_PREEMPT_BKL
3489 struct task_struct *task = current;
3490 int saved_lock_depth;
3491#endif
3492 /*
3493 * If there is a non-zero preempt_count or interrupts are disabled,
3494 * we do not want to preempt the current task. Just return..
3495 */
beed33a8 3496 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3497 return;
3498
3499need_resched:
3500 add_preempt_count(PREEMPT_ACTIVE);
3501 /*
3502 * We keep the big kernel semaphore locked, but we
3503 * clear ->lock_depth so that schedule() doesnt
3504 * auto-release the semaphore:
3505 */
3506#ifdef CONFIG_PREEMPT_BKL
3507 saved_lock_depth = task->lock_depth;
3508 task->lock_depth = -1;
3509#endif
3510 schedule();
3511#ifdef CONFIG_PREEMPT_BKL
3512 task->lock_depth = saved_lock_depth;
3513#endif
3514 sub_preempt_count(PREEMPT_ACTIVE);
3515
3516 /* we could miss a preemption opportunity between schedule and now */
3517 barrier();
3518 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3519 goto need_resched;
3520}
1da177e4
LT
3521EXPORT_SYMBOL(preempt_schedule);
3522
3523/*
2ed6e34f 3524 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3525 * off of irq context.
3526 * Note, that this is called and return with irqs disabled. This will
3527 * protect us against recursive calling from irq.
3528 */
3529asmlinkage void __sched preempt_schedule_irq(void)
3530{
3531 struct thread_info *ti = current_thread_info();
3532#ifdef CONFIG_PREEMPT_BKL
3533 struct task_struct *task = current;
3534 int saved_lock_depth;
3535#endif
2ed6e34f 3536 /* Catch callers which need to be fixed */
1da177e4
LT
3537 BUG_ON(ti->preempt_count || !irqs_disabled());
3538
3539need_resched:
3540 add_preempt_count(PREEMPT_ACTIVE);
3541 /*
3542 * We keep the big kernel semaphore locked, but we
3543 * clear ->lock_depth so that schedule() doesnt
3544 * auto-release the semaphore:
3545 */
3546#ifdef CONFIG_PREEMPT_BKL
3547 saved_lock_depth = task->lock_depth;
3548 task->lock_depth = -1;
3549#endif
3550 local_irq_enable();
3551 schedule();
3552 local_irq_disable();
3553#ifdef CONFIG_PREEMPT_BKL
3554 task->lock_depth = saved_lock_depth;
3555#endif
3556 sub_preempt_count(PREEMPT_ACTIVE);
3557
3558 /* we could miss a preemption opportunity between schedule and now */
3559 barrier();
3560 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3561 goto need_resched;
3562}
3563
3564#endif /* CONFIG_PREEMPT */
3565
95cdf3b7
IM
3566int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3567 void *key)
1da177e4 3568{
48f24c4d 3569 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3570}
1da177e4
LT
3571EXPORT_SYMBOL(default_wake_function);
3572
3573/*
3574 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3575 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3576 * number) then we wake all the non-exclusive tasks and one exclusive task.
3577 *
3578 * There are circumstances in which we can try to wake a task which has already
3579 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3580 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3581 */
3582static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3583 int nr_exclusive, int sync, void *key)
3584{
3585 struct list_head *tmp, *next;
3586
3587 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3588 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3589 unsigned flags = curr->flags;
3590
1da177e4 3591 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3592 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3593 break;
3594 }
3595}
3596
3597/**
3598 * __wake_up - wake up threads blocked on a waitqueue.
3599 * @q: the waitqueue
3600 * @mode: which threads
3601 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3602 * @key: is directly passed to the wakeup function
1da177e4
LT
3603 */
3604void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3605 int nr_exclusive, void *key)
1da177e4
LT
3606{
3607 unsigned long flags;
3608
3609 spin_lock_irqsave(&q->lock, flags);
3610 __wake_up_common(q, mode, nr_exclusive, 0, key);
3611 spin_unlock_irqrestore(&q->lock, flags);
3612}
1da177e4
LT
3613EXPORT_SYMBOL(__wake_up);
3614
3615/*
3616 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3617 */
3618void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3619{
3620 __wake_up_common(q, mode, 1, 0, NULL);
3621}
3622
3623/**
67be2dd1 3624 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3625 * @q: the waitqueue
3626 * @mode: which threads
3627 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3628 *
3629 * The sync wakeup differs that the waker knows that it will schedule
3630 * away soon, so while the target thread will be woken up, it will not
3631 * be migrated to another CPU - ie. the two threads are 'synchronized'
3632 * with each other. This can prevent needless bouncing between CPUs.
3633 *
3634 * On UP it can prevent extra preemption.
3635 */
95cdf3b7
IM
3636void fastcall
3637__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3638{
3639 unsigned long flags;
3640 int sync = 1;
3641
3642 if (unlikely(!q))
3643 return;
3644
3645 if (unlikely(!nr_exclusive))
3646 sync = 0;
3647
3648 spin_lock_irqsave(&q->lock, flags);
3649 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3650 spin_unlock_irqrestore(&q->lock, flags);
3651}
3652EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3653
3654void fastcall complete(struct completion *x)
3655{
3656 unsigned long flags;
3657
3658 spin_lock_irqsave(&x->wait.lock, flags);
3659 x->done++;
3660 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3661 1, 0, NULL);
3662 spin_unlock_irqrestore(&x->wait.lock, flags);
3663}
3664EXPORT_SYMBOL(complete);
3665
3666void fastcall complete_all(struct completion *x)
3667{
3668 unsigned long flags;
3669
3670 spin_lock_irqsave(&x->wait.lock, flags);
3671 x->done += UINT_MAX/2;
3672 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3673 0, 0, NULL);
3674 spin_unlock_irqrestore(&x->wait.lock, flags);
3675}
3676EXPORT_SYMBOL(complete_all);
3677
3678void fastcall __sched wait_for_completion(struct completion *x)
3679{
3680 might_sleep();
48f24c4d 3681
1da177e4
LT
3682 spin_lock_irq(&x->wait.lock);
3683 if (!x->done) {
3684 DECLARE_WAITQUEUE(wait, current);
3685
3686 wait.flags |= WQ_FLAG_EXCLUSIVE;
3687 __add_wait_queue_tail(&x->wait, &wait);
3688 do {
3689 __set_current_state(TASK_UNINTERRUPTIBLE);
3690 spin_unlock_irq(&x->wait.lock);
3691 schedule();
3692 spin_lock_irq(&x->wait.lock);
3693 } while (!x->done);
3694 __remove_wait_queue(&x->wait, &wait);
3695 }
3696 x->done--;
3697 spin_unlock_irq(&x->wait.lock);
3698}
3699EXPORT_SYMBOL(wait_for_completion);
3700
3701unsigned long fastcall __sched
3702wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3703{
3704 might_sleep();
3705
3706 spin_lock_irq(&x->wait.lock);
3707 if (!x->done) {
3708 DECLARE_WAITQUEUE(wait, current);
3709
3710 wait.flags |= WQ_FLAG_EXCLUSIVE;
3711 __add_wait_queue_tail(&x->wait, &wait);
3712 do {
3713 __set_current_state(TASK_UNINTERRUPTIBLE);
3714 spin_unlock_irq(&x->wait.lock);
3715 timeout = schedule_timeout(timeout);
3716 spin_lock_irq(&x->wait.lock);
3717 if (!timeout) {
3718 __remove_wait_queue(&x->wait, &wait);
3719 goto out;
3720 }
3721 } while (!x->done);
3722 __remove_wait_queue(&x->wait, &wait);
3723 }
3724 x->done--;
3725out:
3726 spin_unlock_irq(&x->wait.lock);
3727 return timeout;
3728}
3729EXPORT_SYMBOL(wait_for_completion_timeout);
3730
3731int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3732{
3733 int ret = 0;
3734
3735 might_sleep();
3736
3737 spin_lock_irq(&x->wait.lock);
3738 if (!x->done) {
3739 DECLARE_WAITQUEUE(wait, current);
3740
3741 wait.flags |= WQ_FLAG_EXCLUSIVE;
3742 __add_wait_queue_tail(&x->wait, &wait);
3743 do {
3744 if (signal_pending(current)) {
3745 ret = -ERESTARTSYS;
3746 __remove_wait_queue(&x->wait, &wait);
3747 goto out;
3748 }
3749 __set_current_state(TASK_INTERRUPTIBLE);
3750 spin_unlock_irq(&x->wait.lock);
3751 schedule();
3752 spin_lock_irq(&x->wait.lock);
3753 } while (!x->done);
3754 __remove_wait_queue(&x->wait, &wait);
3755 }
3756 x->done--;
3757out:
3758 spin_unlock_irq(&x->wait.lock);
3759
3760 return ret;
3761}
3762EXPORT_SYMBOL(wait_for_completion_interruptible);
3763
3764unsigned long fastcall __sched
3765wait_for_completion_interruptible_timeout(struct completion *x,
3766 unsigned long timeout)
3767{
3768 might_sleep();
3769
3770 spin_lock_irq(&x->wait.lock);
3771 if (!x->done) {
3772 DECLARE_WAITQUEUE(wait, current);
3773
3774 wait.flags |= WQ_FLAG_EXCLUSIVE;
3775 __add_wait_queue_tail(&x->wait, &wait);
3776 do {
3777 if (signal_pending(current)) {
3778 timeout = -ERESTARTSYS;
3779 __remove_wait_queue(&x->wait, &wait);
3780 goto out;
3781 }
3782 __set_current_state(TASK_INTERRUPTIBLE);
3783 spin_unlock_irq(&x->wait.lock);
3784 timeout = schedule_timeout(timeout);
3785 spin_lock_irq(&x->wait.lock);
3786 if (!timeout) {
3787 __remove_wait_queue(&x->wait, &wait);
3788 goto out;
3789 }
3790 } while (!x->done);
3791 __remove_wait_queue(&x->wait, &wait);
3792 }
3793 x->done--;
3794out:
3795 spin_unlock_irq(&x->wait.lock);
3796 return timeout;
3797}
3798EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3799
0fec171c
IM
3800static inline void
3801sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3802{
3803 spin_lock_irqsave(&q->lock, *flags);
3804 __add_wait_queue(q, wait);
1da177e4 3805 spin_unlock(&q->lock);
0fec171c 3806}
1da177e4 3807
0fec171c
IM
3808static inline void
3809sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3810{
3811 spin_lock_irq(&q->lock);
3812 __remove_wait_queue(q, wait);
3813 spin_unlock_irqrestore(&q->lock, *flags);
3814}
1da177e4 3815
0fec171c 3816void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3817{
0fec171c
IM
3818 unsigned long flags;
3819 wait_queue_t wait;
3820
3821 init_waitqueue_entry(&wait, current);
1da177e4
LT
3822
3823 current->state = TASK_INTERRUPTIBLE;
3824
0fec171c 3825 sleep_on_head(q, &wait, &flags);
1da177e4 3826 schedule();
0fec171c 3827 sleep_on_tail(q, &wait, &flags);
1da177e4 3828}
1da177e4
LT
3829EXPORT_SYMBOL(interruptible_sleep_on);
3830
0fec171c 3831long __sched
95cdf3b7 3832interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3833{
0fec171c
IM
3834 unsigned long flags;
3835 wait_queue_t wait;
3836
3837 init_waitqueue_entry(&wait, current);
1da177e4
LT
3838
3839 current->state = TASK_INTERRUPTIBLE;
3840
0fec171c 3841 sleep_on_head(q, &wait, &flags);
1da177e4 3842 timeout = schedule_timeout(timeout);
0fec171c 3843 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3844
3845 return timeout;
3846}
1da177e4
LT
3847EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3848
0fec171c 3849void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3850{
0fec171c
IM
3851 unsigned long flags;
3852 wait_queue_t wait;
3853
3854 init_waitqueue_entry(&wait, current);
1da177e4
LT
3855
3856 current->state = TASK_UNINTERRUPTIBLE;
3857
0fec171c 3858 sleep_on_head(q, &wait, &flags);
1da177e4 3859 schedule();
0fec171c 3860 sleep_on_tail(q, &wait, &flags);
1da177e4 3861}
1da177e4
LT
3862EXPORT_SYMBOL(sleep_on);
3863
0fec171c 3864long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3865{
0fec171c
IM
3866 unsigned long flags;
3867 wait_queue_t wait;
3868
3869 init_waitqueue_entry(&wait, current);
1da177e4
LT
3870
3871 current->state = TASK_UNINTERRUPTIBLE;
3872
0fec171c 3873 sleep_on_head(q, &wait, &flags);
1da177e4 3874 timeout = schedule_timeout(timeout);
0fec171c 3875 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3876
3877 return timeout;
3878}
1da177e4
LT
3879EXPORT_SYMBOL(sleep_on_timeout);
3880
b29739f9
IM
3881#ifdef CONFIG_RT_MUTEXES
3882
3883/*
3884 * rt_mutex_setprio - set the current priority of a task
3885 * @p: task
3886 * @prio: prio value (kernel-internal form)
3887 *
3888 * This function changes the 'effective' priority of a task. It does
3889 * not touch ->normal_prio like __setscheduler().
3890 *
3891 * Used by the rt_mutex code to implement priority inheritance logic.
3892 */
36c8b586 3893void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3894{
3895 unsigned long flags;
dd41f596 3896 int oldprio, on_rq;
70b97a7f 3897 struct rq *rq;
dd41f596 3898 u64 now;
b29739f9
IM
3899
3900 BUG_ON(prio < 0 || prio > MAX_PRIO);
3901
3902 rq = task_rq_lock(p, &flags);
dd41f596 3903 now = rq_clock(rq);
b29739f9 3904
d5f9f942 3905 oldprio = p->prio;
dd41f596
IM
3906 on_rq = p->se.on_rq;
3907 if (on_rq)
3908 dequeue_task(rq, p, 0, now);
3909
3910 if (rt_prio(prio))
3911 p->sched_class = &rt_sched_class;
3912 else
3913 p->sched_class = &fair_sched_class;
3914
b29739f9
IM
3915 p->prio = prio;
3916
dd41f596
IM
3917 if (on_rq) {
3918 enqueue_task(rq, p, 0, now);
b29739f9
IM
3919 /*
3920 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3921 * our priority decreased, or if we are not currently running on
3922 * this runqueue and our priority is higher than the current's
b29739f9 3923 */
d5f9f942
AM
3924 if (task_running(rq, p)) {
3925 if (p->prio > oldprio)
3926 resched_task(rq->curr);
dd41f596
IM
3927 } else {
3928 check_preempt_curr(rq, p);
3929 }
b29739f9
IM
3930 }
3931 task_rq_unlock(rq, &flags);
3932}
3933
3934#endif
3935
36c8b586 3936void set_user_nice(struct task_struct *p, long nice)
1da177e4 3937{
dd41f596 3938 int old_prio, delta, on_rq;
1da177e4 3939 unsigned long flags;
70b97a7f 3940 struct rq *rq;
dd41f596 3941 u64 now;
1da177e4
LT
3942
3943 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3944 return;
3945 /*
3946 * We have to be careful, if called from sys_setpriority(),
3947 * the task might be in the middle of scheduling on another CPU.
3948 */
3949 rq = task_rq_lock(p, &flags);
dd41f596 3950 now = rq_clock(rq);
1da177e4
LT
3951 /*
3952 * The RT priorities are set via sched_setscheduler(), but we still
3953 * allow the 'normal' nice value to be set - but as expected
3954 * it wont have any effect on scheduling until the task is
dd41f596 3955 * SCHED_FIFO/SCHED_RR:
1da177e4 3956 */
e05606d3 3957 if (task_has_rt_policy(p)) {
1da177e4
LT
3958 p->static_prio = NICE_TO_PRIO(nice);
3959 goto out_unlock;
3960 }
dd41f596
IM
3961 on_rq = p->se.on_rq;
3962 if (on_rq) {
3963 dequeue_task(rq, p, 0, now);
3964 dec_load(rq, p, now);
2dd73a4f 3965 }
1da177e4 3966
1da177e4 3967 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3968 set_load_weight(p);
b29739f9
IM
3969 old_prio = p->prio;
3970 p->prio = effective_prio(p);
3971 delta = p->prio - old_prio;
1da177e4 3972
dd41f596
IM
3973 if (on_rq) {
3974 enqueue_task(rq, p, 0, now);
3975 inc_load(rq, p, now);
1da177e4 3976 /*
d5f9f942
AM
3977 * If the task increased its priority or is running and
3978 * lowered its priority, then reschedule its CPU:
1da177e4 3979 */
d5f9f942 3980 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3981 resched_task(rq->curr);
3982 }
3983out_unlock:
3984 task_rq_unlock(rq, &flags);
3985}
1da177e4
LT
3986EXPORT_SYMBOL(set_user_nice);
3987
e43379f1
MM
3988/*
3989 * can_nice - check if a task can reduce its nice value
3990 * @p: task
3991 * @nice: nice value
3992 */
36c8b586 3993int can_nice(const struct task_struct *p, const int nice)
e43379f1 3994{
024f4747
MM
3995 /* convert nice value [19,-20] to rlimit style value [1,40] */
3996 int nice_rlim = 20 - nice;
48f24c4d 3997
e43379f1
MM
3998 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3999 capable(CAP_SYS_NICE));
4000}
4001
1da177e4
LT
4002#ifdef __ARCH_WANT_SYS_NICE
4003
4004/*
4005 * sys_nice - change the priority of the current process.
4006 * @increment: priority increment
4007 *
4008 * sys_setpriority is a more generic, but much slower function that
4009 * does similar things.
4010 */
4011asmlinkage long sys_nice(int increment)
4012{
48f24c4d 4013 long nice, retval;
1da177e4
LT
4014
4015 /*
4016 * Setpriority might change our priority at the same moment.
4017 * We don't have to worry. Conceptually one call occurs first
4018 * and we have a single winner.
4019 */
e43379f1
MM
4020 if (increment < -40)
4021 increment = -40;
1da177e4
LT
4022 if (increment > 40)
4023 increment = 40;
4024
4025 nice = PRIO_TO_NICE(current->static_prio) + increment;
4026 if (nice < -20)
4027 nice = -20;
4028 if (nice > 19)
4029 nice = 19;
4030
e43379f1
MM
4031 if (increment < 0 && !can_nice(current, nice))
4032 return -EPERM;
4033
1da177e4
LT
4034 retval = security_task_setnice(current, nice);
4035 if (retval)
4036 return retval;
4037
4038 set_user_nice(current, nice);
4039 return 0;
4040}
4041
4042#endif
4043
4044/**
4045 * task_prio - return the priority value of a given task.
4046 * @p: the task in question.
4047 *
4048 * This is the priority value as seen by users in /proc.
4049 * RT tasks are offset by -200. Normal tasks are centered
4050 * around 0, value goes from -16 to +15.
4051 */
36c8b586 4052int task_prio(const struct task_struct *p)
1da177e4
LT
4053{
4054 return p->prio - MAX_RT_PRIO;
4055}
4056
4057/**
4058 * task_nice - return the nice value of a given task.
4059 * @p: the task in question.
4060 */
36c8b586 4061int task_nice(const struct task_struct *p)
1da177e4
LT
4062{
4063 return TASK_NICE(p);
4064}
1da177e4 4065EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4066
4067/**
4068 * idle_cpu - is a given cpu idle currently?
4069 * @cpu: the processor in question.
4070 */
4071int idle_cpu(int cpu)
4072{
4073 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4074}
4075
1da177e4
LT
4076/**
4077 * idle_task - return the idle task for a given cpu.
4078 * @cpu: the processor in question.
4079 */
36c8b586 4080struct task_struct *idle_task(int cpu)
1da177e4
LT
4081{
4082 return cpu_rq(cpu)->idle;
4083}
4084
4085/**
4086 * find_process_by_pid - find a process with a matching PID value.
4087 * @pid: the pid in question.
4088 */
36c8b586 4089static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4090{
4091 return pid ? find_task_by_pid(pid) : current;
4092}
4093
4094/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4095static void
4096__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4097{
dd41f596 4098 BUG_ON(p->se.on_rq);
48f24c4d 4099
1da177e4 4100 p->policy = policy;
dd41f596
IM
4101 switch (p->policy) {
4102 case SCHED_NORMAL:
4103 case SCHED_BATCH:
4104 case SCHED_IDLE:
4105 p->sched_class = &fair_sched_class;
4106 break;
4107 case SCHED_FIFO:
4108 case SCHED_RR:
4109 p->sched_class = &rt_sched_class;
4110 break;
4111 }
4112
1da177e4 4113 p->rt_priority = prio;
b29739f9
IM
4114 p->normal_prio = normal_prio(p);
4115 /* we are holding p->pi_lock already */
4116 p->prio = rt_mutex_getprio(p);
2dd73a4f 4117 set_load_weight(p);
1da177e4
LT
4118}
4119
4120/**
72fd4a35 4121 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4122 * @p: the task in question.
4123 * @policy: new policy.
4124 * @param: structure containing the new RT priority.
5fe1d75f 4125 *
72fd4a35 4126 * NOTE that the task may be already dead.
1da177e4 4127 */
95cdf3b7
IM
4128int sched_setscheduler(struct task_struct *p, int policy,
4129 struct sched_param *param)
1da177e4 4130{
dd41f596 4131 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4132 unsigned long flags;
70b97a7f 4133 struct rq *rq;
1da177e4 4134
66e5393a
SR
4135 /* may grab non-irq protected spin_locks */
4136 BUG_ON(in_interrupt());
1da177e4
LT
4137recheck:
4138 /* double check policy once rq lock held */
4139 if (policy < 0)
4140 policy = oldpolicy = p->policy;
4141 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4142 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4143 policy != SCHED_IDLE)
b0a9499c 4144 return -EINVAL;
1da177e4
LT
4145 /*
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4149 */
4150 if (param->sched_priority < 0 ||
95cdf3b7 4151 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4152 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4153 return -EINVAL;
e05606d3 4154 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4155 return -EINVAL;
4156
37e4ab3f
OC
4157 /*
4158 * Allow unprivileged RT tasks to decrease priority:
4159 */
4160 if (!capable(CAP_SYS_NICE)) {
e05606d3 4161 if (rt_policy(policy)) {
8dc3e909 4162 unsigned long rlim_rtprio;
8dc3e909
ON
4163
4164 if (!lock_task_sighand(p, &flags))
4165 return -ESRCH;
4166 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4167 unlock_task_sighand(p, &flags);
4168
4169 /* can't set/change the rt policy */
4170 if (policy != p->policy && !rlim_rtprio)
4171 return -EPERM;
4172
4173 /* can't increase priority */
4174 if (param->sched_priority > p->rt_priority &&
4175 param->sched_priority > rlim_rtprio)
4176 return -EPERM;
4177 }
dd41f596
IM
4178 /*
4179 * Like positive nice levels, dont allow tasks to
4180 * move out of SCHED_IDLE either:
4181 */
4182 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4183 return -EPERM;
5fe1d75f 4184
37e4ab3f
OC
4185 /* can't change other user's priorities */
4186 if ((current->euid != p->euid) &&
4187 (current->euid != p->uid))
4188 return -EPERM;
4189 }
1da177e4
LT
4190
4191 retval = security_task_setscheduler(p, policy, param);
4192 if (retval)
4193 return retval;
b29739f9
IM
4194 /*
4195 * make sure no PI-waiters arrive (or leave) while we are
4196 * changing the priority of the task:
4197 */
4198 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4199 /*
4200 * To be able to change p->policy safely, the apropriate
4201 * runqueue lock must be held.
4202 */
b29739f9 4203 rq = __task_rq_lock(p);
1da177e4
LT
4204 /* recheck policy now with rq lock held */
4205 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4206 policy = oldpolicy = -1;
b29739f9
IM
4207 __task_rq_unlock(rq);
4208 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4209 goto recheck;
4210 }
dd41f596
IM
4211 on_rq = p->se.on_rq;
4212 if (on_rq)
4213 deactivate_task(rq, p, 0);
1da177e4 4214 oldprio = p->prio;
dd41f596
IM
4215 __setscheduler(rq, p, policy, param->sched_priority);
4216 if (on_rq) {
4217 activate_task(rq, p, 0);
1da177e4
LT
4218 /*
4219 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4220 * our priority decreased, or if we are not currently running on
4221 * this runqueue and our priority is higher than the current's
1da177e4 4222 */
d5f9f942
AM
4223 if (task_running(rq, p)) {
4224 if (p->prio > oldprio)
4225 resched_task(rq->curr);
dd41f596
IM
4226 } else {
4227 check_preempt_curr(rq, p);
4228 }
1da177e4 4229 }
b29739f9
IM
4230 __task_rq_unlock(rq);
4231 spin_unlock_irqrestore(&p->pi_lock, flags);
4232
95e02ca9
TG
4233 rt_mutex_adjust_pi(p);
4234
1da177e4
LT
4235 return 0;
4236}
4237EXPORT_SYMBOL_GPL(sched_setscheduler);
4238
95cdf3b7
IM
4239static int
4240do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4241{
1da177e4
LT
4242 struct sched_param lparam;
4243 struct task_struct *p;
36c8b586 4244 int retval;
1da177e4
LT
4245
4246 if (!param || pid < 0)
4247 return -EINVAL;
4248 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4249 return -EFAULT;
5fe1d75f
ON
4250
4251 rcu_read_lock();
4252 retval = -ESRCH;
1da177e4 4253 p = find_process_by_pid(pid);
5fe1d75f
ON
4254 if (p != NULL)
4255 retval = sched_setscheduler(p, policy, &lparam);
4256 rcu_read_unlock();
36c8b586 4257
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
4262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4263 * @pid: the pid in question.
4264 * @policy: new policy.
4265 * @param: structure containing the new RT priority.
4266 */
4267asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4268 struct sched_param __user *param)
4269{
c21761f1
JB
4270 /* negative values for policy are not valid */
4271 if (policy < 0)
4272 return -EINVAL;
4273
1da177e4
LT
4274 return do_sched_setscheduler(pid, policy, param);
4275}
4276
4277/**
4278 * sys_sched_setparam - set/change the RT priority of a thread
4279 * @pid: the pid in question.
4280 * @param: structure containing the new RT priority.
4281 */
4282asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4283{
4284 return do_sched_setscheduler(pid, -1, param);
4285}
4286
4287/**
4288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4289 * @pid: the pid in question.
4290 */
4291asmlinkage long sys_sched_getscheduler(pid_t pid)
4292{
36c8b586 4293 struct task_struct *p;
1da177e4 4294 int retval = -EINVAL;
1da177e4
LT
4295
4296 if (pid < 0)
4297 goto out_nounlock;
4298
4299 retval = -ESRCH;
4300 read_lock(&tasklist_lock);
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
4305 retval = p->policy;
4306 }
4307 read_unlock(&tasklist_lock);
4308
4309out_nounlock:
4310 return retval;
4311}
4312
4313/**
4314 * sys_sched_getscheduler - get the RT priority of a thread
4315 * @pid: the pid in question.
4316 * @param: structure containing the RT priority.
4317 */
4318asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4319{
4320 struct sched_param lp;
36c8b586 4321 struct task_struct *p;
1da177e4 4322 int retval = -EINVAL;
1da177e4
LT
4323
4324 if (!param || pid < 0)
4325 goto out_nounlock;
4326
4327 read_lock(&tasklist_lock);
4328 p = find_process_by_pid(pid);
4329 retval = -ESRCH;
4330 if (!p)
4331 goto out_unlock;
4332
4333 retval = security_task_getscheduler(p);
4334 if (retval)
4335 goto out_unlock;
4336
4337 lp.sched_priority = p->rt_priority;
4338 read_unlock(&tasklist_lock);
4339
4340 /*
4341 * This one might sleep, we cannot do it with a spinlock held ...
4342 */
4343 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4344
4345out_nounlock:
4346 return retval;
4347
4348out_unlock:
4349 read_unlock(&tasklist_lock);
4350 return retval;
4351}
4352
4353long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4354{
1da177e4 4355 cpumask_t cpus_allowed;
36c8b586
IM
4356 struct task_struct *p;
4357 int retval;
1da177e4 4358
5be9361c 4359 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4360 read_lock(&tasklist_lock);
4361
4362 p = find_process_by_pid(pid);
4363 if (!p) {
4364 read_unlock(&tasklist_lock);
5be9361c 4365 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4366 return -ESRCH;
4367 }
4368
4369 /*
4370 * It is not safe to call set_cpus_allowed with the
4371 * tasklist_lock held. We will bump the task_struct's
4372 * usage count and then drop tasklist_lock.
4373 */
4374 get_task_struct(p);
4375 read_unlock(&tasklist_lock);
4376
4377 retval = -EPERM;
4378 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4379 !capable(CAP_SYS_NICE))
4380 goto out_unlock;
4381
e7834f8f
DQ
4382 retval = security_task_setscheduler(p, 0, NULL);
4383 if (retval)
4384 goto out_unlock;
4385
1da177e4
LT
4386 cpus_allowed = cpuset_cpus_allowed(p);
4387 cpus_and(new_mask, new_mask, cpus_allowed);
4388 retval = set_cpus_allowed(p, new_mask);
4389
4390out_unlock:
4391 put_task_struct(p);
5be9361c 4392 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4393 return retval;
4394}
4395
4396static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4397 cpumask_t *new_mask)
4398{
4399 if (len < sizeof(cpumask_t)) {
4400 memset(new_mask, 0, sizeof(cpumask_t));
4401 } else if (len > sizeof(cpumask_t)) {
4402 len = sizeof(cpumask_t);
4403 }
4404 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4405}
4406
4407/**
4408 * sys_sched_setaffinity - set the cpu affinity of a process
4409 * @pid: pid of the process
4410 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4411 * @user_mask_ptr: user-space pointer to the new cpu mask
4412 */
4413asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4414 unsigned long __user *user_mask_ptr)
4415{
4416 cpumask_t new_mask;
4417 int retval;
4418
4419 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4420 if (retval)
4421 return retval;
4422
4423 return sched_setaffinity(pid, new_mask);
4424}
4425
4426/*
4427 * Represents all cpu's present in the system
4428 * In systems capable of hotplug, this map could dynamically grow
4429 * as new cpu's are detected in the system via any platform specific
4430 * method, such as ACPI for e.g.
4431 */
4432
4cef0c61 4433cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4434EXPORT_SYMBOL(cpu_present_map);
4435
4436#ifndef CONFIG_SMP
4cef0c61 4437cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4438EXPORT_SYMBOL(cpu_online_map);
4439
4cef0c61 4440cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4441EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4442#endif
4443
4444long sched_getaffinity(pid_t pid, cpumask_t *mask)
4445{
36c8b586 4446 struct task_struct *p;
1da177e4 4447 int retval;
1da177e4 4448
5be9361c 4449 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4450 read_lock(&tasklist_lock);
4451
4452 retval = -ESRCH;
4453 p = find_process_by_pid(pid);
4454 if (!p)
4455 goto out_unlock;
4456
e7834f8f
DQ
4457 retval = security_task_getscheduler(p);
4458 if (retval)
4459 goto out_unlock;
4460
2f7016d9 4461 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4462
4463out_unlock:
4464 read_unlock(&tasklist_lock);
5be9361c 4465 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4466 if (retval)
4467 return retval;
4468
4469 return 0;
4470}
4471
4472/**
4473 * sys_sched_getaffinity - get the cpu affinity of a process
4474 * @pid: pid of the process
4475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4476 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4477 */
4478asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4479 unsigned long __user *user_mask_ptr)
4480{
4481 int ret;
4482 cpumask_t mask;
4483
4484 if (len < sizeof(cpumask_t))
4485 return -EINVAL;
4486
4487 ret = sched_getaffinity(pid, &mask);
4488 if (ret < 0)
4489 return ret;
4490
4491 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4492 return -EFAULT;
4493
4494 return sizeof(cpumask_t);
4495}
4496
4497/**
4498 * sys_sched_yield - yield the current processor to other threads.
4499 *
dd41f596
IM
4500 * This function yields the current CPU to other tasks. If there are no
4501 * other threads running on this CPU then this function will return.
1da177e4
LT
4502 */
4503asmlinkage long sys_sched_yield(void)
4504{
70b97a7f 4505 struct rq *rq = this_rq_lock();
1da177e4
LT
4506
4507 schedstat_inc(rq, yld_cnt);
dd41f596 4508 if (unlikely(rq->nr_running == 1))
1da177e4 4509 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4510 else
4511 current->sched_class->yield_task(rq, current);
1da177e4
LT
4512
4513 /*
4514 * Since we are going to call schedule() anyway, there's
4515 * no need to preempt or enable interrupts:
4516 */
4517 __release(rq->lock);
8a25d5de 4518 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4519 _raw_spin_unlock(&rq->lock);
4520 preempt_enable_no_resched();
4521
4522 schedule();
4523
4524 return 0;
4525}
4526
e7b38404 4527static void __cond_resched(void)
1da177e4 4528{
8e0a43d8
IM
4529#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4530 __might_sleep(__FILE__, __LINE__);
4531#endif
5bbcfd90
IM
4532 /*
4533 * The BKS might be reacquired before we have dropped
4534 * PREEMPT_ACTIVE, which could trigger a second
4535 * cond_resched() call.
4536 */
1da177e4
LT
4537 do {
4538 add_preempt_count(PREEMPT_ACTIVE);
4539 schedule();
4540 sub_preempt_count(PREEMPT_ACTIVE);
4541 } while (need_resched());
4542}
4543
4544int __sched cond_resched(void)
4545{
9414232f
IM
4546 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4547 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4548 __cond_resched();
4549 return 1;
4550 }
4551 return 0;
4552}
1da177e4
LT
4553EXPORT_SYMBOL(cond_resched);
4554
4555/*
4556 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4557 * call schedule, and on return reacquire the lock.
4558 *
4559 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4560 * operations here to prevent schedule() from being called twice (once via
4561 * spin_unlock(), once by hand).
4562 */
95cdf3b7 4563int cond_resched_lock(spinlock_t *lock)
1da177e4 4564{
6df3cecb
JK
4565 int ret = 0;
4566
1da177e4
LT
4567 if (need_lockbreak(lock)) {
4568 spin_unlock(lock);
4569 cpu_relax();
6df3cecb 4570 ret = 1;
1da177e4
LT
4571 spin_lock(lock);
4572 }
9414232f 4573 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4574 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4575 _raw_spin_unlock(lock);
4576 preempt_enable_no_resched();
4577 __cond_resched();
6df3cecb 4578 ret = 1;
1da177e4 4579 spin_lock(lock);
1da177e4 4580 }
6df3cecb 4581 return ret;
1da177e4 4582}
1da177e4
LT
4583EXPORT_SYMBOL(cond_resched_lock);
4584
4585int __sched cond_resched_softirq(void)
4586{
4587 BUG_ON(!in_softirq());
4588
9414232f 4589 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4590 local_bh_enable();
1da177e4
LT
4591 __cond_resched();
4592 local_bh_disable();
4593 return 1;
4594 }
4595 return 0;
4596}
1da177e4
LT
4597EXPORT_SYMBOL(cond_resched_softirq);
4598
1da177e4
LT
4599/**
4600 * yield - yield the current processor to other threads.
4601 *
72fd4a35 4602 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4603 * thread runnable and calls sys_sched_yield().
4604 */
4605void __sched yield(void)
4606{
4607 set_current_state(TASK_RUNNING);
4608 sys_sched_yield();
4609}
1da177e4
LT
4610EXPORT_SYMBOL(yield);
4611
4612/*
4613 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4614 * that process accounting knows that this is a task in IO wait state.
4615 *
4616 * But don't do that if it is a deliberate, throttling IO wait (this task
4617 * has set its backing_dev_info: the queue against which it should throttle)
4618 */
4619void __sched io_schedule(void)
4620{
70b97a7f 4621 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4622
0ff92245 4623 delayacct_blkio_start();
1da177e4
LT
4624 atomic_inc(&rq->nr_iowait);
4625 schedule();
4626 atomic_dec(&rq->nr_iowait);
0ff92245 4627 delayacct_blkio_end();
1da177e4 4628}
1da177e4
LT
4629EXPORT_SYMBOL(io_schedule);
4630
4631long __sched io_schedule_timeout(long timeout)
4632{
70b97a7f 4633 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4634 long ret;
4635
0ff92245 4636 delayacct_blkio_start();
1da177e4
LT
4637 atomic_inc(&rq->nr_iowait);
4638 ret = schedule_timeout(timeout);
4639 atomic_dec(&rq->nr_iowait);
0ff92245 4640 delayacct_blkio_end();
1da177e4
LT
4641 return ret;
4642}
4643
4644/**
4645 * sys_sched_get_priority_max - return maximum RT priority.
4646 * @policy: scheduling class.
4647 *
4648 * this syscall returns the maximum rt_priority that can be used
4649 * by a given scheduling class.
4650 */
4651asmlinkage long sys_sched_get_priority_max(int policy)
4652{
4653 int ret = -EINVAL;
4654
4655 switch (policy) {
4656 case SCHED_FIFO:
4657 case SCHED_RR:
4658 ret = MAX_USER_RT_PRIO-1;
4659 break;
4660 case SCHED_NORMAL:
b0a9499c 4661 case SCHED_BATCH:
dd41f596 4662 case SCHED_IDLE:
1da177e4
LT
4663 ret = 0;
4664 break;
4665 }
4666 return ret;
4667}
4668
4669/**
4670 * sys_sched_get_priority_min - return minimum RT priority.
4671 * @policy: scheduling class.
4672 *
4673 * this syscall returns the minimum rt_priority that can be used
4674 * by a given scheduling class.
4675 */
4676asmlinkage long sys_sched_get_priority_min(int policy)
4677{
4678 int ret = -EINVAL;
4679
4680 switch (policy) {
4681 case SCHED_FIFO:
4682 case SCHED_RR:
4683 ret = 1;
4684 break;
4685 case SCHED_NORMAL:
b0a9499c 4686 case SCHED_BATCH:
dd41f596 4687 case SCHED_IDLE:
1da177e4
LT
4688 ret = 0;
4689 }
4690 return ret;
4691}
4692
4693/**
4694 * sys_sched_rr_get_interval - return the default timeslice of a process.
4695 * @pid: pid of the process.
4696 * @interval: userspace pointer to the timeslice value.
4697 *
4698 * this syscall writes the default timeslice value of a given process
4699 * into the user-space timespec buffer. A value of '0' means infinity.
4700 */
4701asmlinkage
4702long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4703{
36c8b586 4704 struct task_struct *p;
1da177e4
LT
4705 int retval = -EINVAL;
4706 struct timespec t;
1da177e4
LT
4707
4708 if (pid < 0)
4709 goto out_nounlock;
4710
4711 retval = -ESRCH;
4712 read_lock(&tasklist_lock);
4713 p = find_process_by_pid(pid);
4714 if (!p)
4715 goto out_unlock;
4716
4717 retval = security_task_getscheduler(p);
4718 if (retval)
4719 goto out_unlock;
4720
b78709cf 4721 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4722 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4723 read_unlock(&tasklist_lock);
4724 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4725out_nounlock:
4726 return retval;
4727out_unlock:
4728 read_unlock(&tasklist_lock);
4729 return retval;
4730}
4731
2ed6e34f 4732static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4733
4734static void show_task(struct task_struct *p)
1da177e4 4735{
1da177e4 4736 unsigned long free = 0;
36c8b586 4737 unsigned state;
1da177e4 4738
1da177e4 4739 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4740 printk("%-13.13s %c", p->comm,
4741 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4742#if BITS_PER_LONG == 32
1da177e4 4743 if (state == TASK_RUNNING)
4bd77321 4744 printk(" running ");
1da177e4 4745 else
4bd77321 4746 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4747#else
4748 if (state == TASK_RUNNING)
4bd77321 4749 printk(" running task ");
1da177e4
LT
4750 else
4751 printk(" %016lx ", thread_saved_pc(p));
4752#endif
4753#ifdef CONFIG_DEBUG_STACK_USAGE
4754 {
10ebffde 4755 unsigned long *n = end_of_stack(p);
1da177e4
LT
4756 while (!*n)
4757 n++;
10ebffde 4758 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4759 }
4760#endif
4bd77321 4761 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4762
4763 if (state != TASK_RUNNING)
4764 show_stack(p, NULL);
4765}
4766
e59e2ae2 4767void show_state_filter(unsigned long state_filter)
1da177e4 4768{
36c8b586 4769 struct task_struct *g, *p;
1da177e4 4770
4bd77321
IM
4771#if BITS_PER_LONG == 32
4772 printk(KERN_INFO
4773 " task PC stack pid father\n");
1da177e4 4774#else
4bd77321
IM
4775 printk(KERN_INFO
4776 " task PC stack pid father\n");
1da177e4
LT
4777#endif
4778 read_lock(&tasklist_lock);
4779 do_each_thread(g, p) {
4780 /*
4781 * reset the NMI-timeout, listing all files on a slow
4782 * console might take alot of time:
4783 */
4784 touch_nmi_watchdog();
39bc89fd 4785 if (!state_filter || (p->state & state_filter))
e59e2ae2 4786 show_task(p);
1da177e4
LT
4787 } while_each_thread(g, p);
4788
04c9167f
JF
4789 touch_all_softlockup_watchdogs();
4790
dd41f596
IM
4791#ifdef CONFIG_SCHED_DEBUG
4792 sysrq_sched_debug_show();
4793#endif
1da177e4 4794 read_unlock(&tasklist_lock);
e59e2ae2
IM
4795 /*
4796 * Only show locks if all tasks are dumped:
4797 */
4798 if (state_filter == -1)
4799 debug_show_all_locks();
1da177e4
LT
4800}
4801
1df21055
IM
4802void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4803{
dd41f596 4804 idle->sched_class = &idle_sched_class;
1df21055
IM
4805}
4806
f340c0d1
IM
4807/**
4808 * init_idle - set up an idle thread for a given CPU
4809 * @idle: task in question
4810 * @cpu: cpu the idle task belongs to
4811 *
4812 * NOTE: this function does not set the idle thread's NEED_RESCHED
4813 * flag, to make booting more robust.
4814 */
5c1e1767 4815void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4816{
70b97a7f 4817 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4818 unsigned long flags;
4819
dd41f596
IM
4820 __sched_fork(idle);
4821 idle->se.exec_start = sched_clock();
4822
b29739f9 4823 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4824 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4825 __set_task_cpu(idle, cpu);
1da177e4
LT
4826
4827 spin_lock_irqsave(&rq->lock, flags);
4828 rq->curr = rq->idle = idle;
4866cde0
NP
4829#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4830 idle->oncpu = 1;
4831#endif
1da177e4
LT
4832 spin_unlock_irqrestore(&rq->lock, flags);
4833
4834 /* Set the preempt count _outside_ the spinlocks! */
4835#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4836 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4837#else
a1261f54 4838 task_thread_info(idle)->preempt_count = 0;
1da177e4 4839#endif
dd41f596
IM
4840 /*
4841 * The idle tasks have their own, simple scheduling class:
4842 */
4843 idle->sched_class = &idle_sched_class;
1da177e4
LT
4844}
4845
4846/*
4847 * In a system that switches off the HZ timer nohz_cpu_mask
4848 * indicates which cpus entered this state. This is used
4849 * in the rcu update to wait only for active cpus. For system
4850 * which do not switch off the HZ timer nohz_cpu_mask should
4851 * always be CPU_MASK_NONE.
4852 */
4853cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4854
dd41f596
IM
4855/*
4856 * Increase the granularity value when there are more CPUs,
4857 * because with more CPUs the 'effective latency' as visible
4858 * to users decreases. But the relationship is not linear,
4859 * so pick a second-best guess by going with the log2 of the
4860 * number of CPUs.
4861 *
4862 * This idea comes from the SD scheduler of Con Kolivas:
4863 */
4864static inline void sched_init_granularity(void)
4865{
4866 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4867 const unsigned long gran_limit = 100000000;
dd41f596
IM
4868
4869 sysctl_sched_granularity *= factor;
4870 if (sysctl_sched_granularity > gran_limit)
4871 sysctl_sched_granularity = gran_limit;
4872
4873 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4874 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4875}
4876
1da177e4
LT
4877#ifdef CONFIG_SMP
4878/*
4879 * This is how migration works:
4880 *
70b97a7f 4881 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4882 * runqueue and wake up that CPU's migration thread.
4883 * 2) we down() the locked semaphore => thread blocks.
4884 * 3) migration thread wakes up (implicitly it forces the migrated
4885 * thread off the CPU)
4886 * 4) it gets the migration request and checks whether the migrated
4887 * task is still in the wrong runqueue.
4888 * 5) if it's in the wrong runqueue then the migration thread removes
4889 * it and puts it into the right queue.
4890 * 6) migration thread up()s the semaphore.
4891 * 7) we wake up and the migration is done.
4892 */
4893
4894/*
4895 * Change a given task's CPU affinity. Migrate the thread to a
4896 * proper CPU and schedule it away if the CPU it's executing on
4897 * is removed from the allowed bitmask.
4898 *
4899 * NOTE: the caller must have a valid reference to the task, the
4900 * task must not exit() & deallocate itself prematurely. The
4901 * call is not atomic; no spinlocks may be held.
4902 */
36c8b586 4903int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4904{
70b97a7f 4905 struct migration_req req;
1da177e4 4906 unsigned long flags;
70b97a7f 4907 struct rq *rq;
48f24c4d 4908 int ret = 0;
1da177e4
LT
4909
4910 rq = task_rq_lock(p, &flags);
4911 if (!cpus_intersects(new_mask, cpu_online_map)) {
4912 ret = -EINVAL;
4913 goto out;
4914 }
4915
4916 p->cpus_allowed = new_mask;
4917 /* Can the task run on the task's current CPU? If so, we're done */
4918 if (cpu_isset(task_cpu(p), new_mask))
4919 goto out;
4920
4921 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4922 /* Need help from migration thread: drop lock and wait. */
4923 task_rq_unlock(rq, &flags);
4924 wake_up_process(rq->migration_thread);
4925 wait_for_completion(&req.done);
4926 tlb_migrate_finish(p->mm);
4927 return 0;
4928 }
4929out:
4930 task_rq_unlock(rq, &flags);
48f24c4d 4931
1da177e4
LT
4932 return ret;
4933}
1da177e4
LT
4934EXPORT_SYMBOL_GPL(set_cpus_allowed);
4935
4936/*
4937 * Move (not current) task off this cpu, onto dest cpu. We're doing
4938 * this because either it can't run here any more (set_cpus_allowed()
4939 * away from this CPU, or CPU going down), or because we're
4940 * attempting to rebalance this task on exec (sched_exec).
4941 *
4942 * So we race with normal scheduler movements, but that's OK, as long
4943 * as the task is no longer on this CPU.
efc30814
KK
4944 *
4945 * Returns non-zero if task was successfully migrated.
1da177e4 4946 */
efc30814 4947static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4948{
70b97a7f 4949 struct rq *rq_dest, *rq_src;
dd41f596 4950 int ret = 0, on_rq;
1da177e4
LT
4951
4952 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4953 return ret;
1da177e4
LT
4954
4955 rq_src = cpu_rq(src_cpu);
4956 rq_dest = cpu_rq(dest_cpu);
4957
4958 double_rq_lock(rq_src, rq_dest);
4959 /* Already moved. */
4960 if (task_cpu(p) != src_cpu)
4961 goto out;
4962 /* Affinity changed (again). */
4963 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4964 goto out;
4965
dd41f596
IM
4966 on_rq = p->se.on_rq;
4967 if (on_rq)
4968 deactivate_task(rq_src, p, 0);
1da177e4 4969 set_task_cpu(p, dest_cpu);
dd41f596
IM
4970 if (on_rq) {
4971 activate_task(rq_dest, p, 0);
4972 check_preempt_curr(rq_dest, p);
1da177e4 4973 }
efc30814 4974 ret = 1;
1da177e4
LT
4975out:
4976 double_rq_unlock(rq_src, rq_dest);
efc30814 4977 return ret;
1da177e4
LT
4978}
4979
4980/*
4981 * migration_thread - this is a highprio system thread that performs
4982 * thread migration by bumping thread off CPU then 'pushing' onto
4983 * another runqueue.
4984 */
95cdf3b7 4985static int migration_thread(void *data)
1da177e4 4986{
1da177e4 4987 int cpu = (long)data;
70b97a7f 4988 struct rq *rq;
1da177e4
LT
4989
4990 rq = cpu_rq(cpu);
4991 BUG_ON(rq->migration_thread != current);
4992
4993 set_current_state(TASK_INTERRUPTIBLE);
4994 while (!kthread_should_stop()) {
70b97a7f 4995 struct migration_req *req;
1da177e4 4996 struct list_head *head;
1da177e4 4997
1da177e4
LT
4998 spin_lock_irq(&rq->lock);
4999
5000 if (cpu_is_offline(cpu)) {
5001 spin_unlock_irq(&rq->lock);
5002 goto wait_to_die;
5003 }
5004
5005 if (rq->active_balance) {
5006 active_load_balance(rq, cpu);
5007 rq->active_balance = 0;
5008 }
5009
5010 head = &rq->migration_queue;
5011
5012 if (list_empty(head)) {
5013 spin_unlock_irq(&rq->lock);
5014 schedule();
5015 set_current_state(TASK_INTERRUPTIBLE);
5016 continue;
5017 }
70b97a7f 5018 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5019 list_del_init(head->next);
5020
674311d5
NP
5021 spin_unlock(&rq->lock);
5022 __migrate_task(req->task, cpu, req->dest_cpu);
5023 local_irq_enable();
1da177e4
LT
5024
5025 complete(&req->done);
5026 }
5027 __set_current_state(TASK_RUNNING);
5028 return 0;
5029
5030wait_to_die:
5031 /* Wait for kthread_stop */
5032 set_current_state(TASK_INTERRUPTIBLE);
5033 while (!kthread_should_stop()) {
5034 schedule();
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 }
5037 __set_current_state(TASK_RUNNING);
5038 return 0;
5039}
5040
5041#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5042/*
5043 * Figure out where task on dead CPU should go, use force if neccessary.
5044 * NOTE: interrupts should be disabled by the caller
5045 */
48f24c4d 5046static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5047{
efc30814 5048 unsigned long flags;
1da177e4 5049 cpumask_t mask;
70b97a7f
IM
5050 struct rq *rq;
5051 int dest_cpu;
1da177e4 5052
efc30814 5053restart:
1da177e4
LT
5054 /* On same node? */
5055 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5056 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5057 dest_cpu = any_online_cpu(mask);
5058
5059 /* On any allowed CPU? */
5060 if (dest_cpu == NR_CPUS)
48f24c4d 5061 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5062
5063 /* No more Mr. Nice Guy. */
5064 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5065 rq = task_rq_lock(p, &flags);
5066 cpus_setall(p->cpus_allowed);
5067 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5068 task_rq_unlock(rq, &flags);
1da177e4
LT
5069
5070 /*
5071 * Don't tell them about moving exiting tasks or
5072 * kernel threads (both mm NULL), since they never
5073 * leave kernel.
5074 */
48f24c4d 5075 if (p->mm && printk_ratelimit())
1da177e4
LT
5076 printk(KERN_INFO "process %d (%s) no "
5077 "longer affine to cpu%d\n",
48f24c4d 5078 p->pid, p->comm, dead_cpu);
1da177e4 5079 }
48f24c4d 5080 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5081 goto restart;
1da177e4
LT
5082}
5083
5084/*
5085 * While a dead CPU has no uninterruptible tasks queued at this point,
5086 * it might still have a nonzero ->nr_uninterruptible counter, because
5087 * for performance reasons the counter is not stricly tracking tasks to
5088 * their home CPUs. So we just add the counter to another CPU's counter,
5089 * to keep the global sum constant after CPU-down:
5090 */
70b97a7f 5091static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5092{
70b97a7f 5093 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5094 unsigned long flags;
5095
5096 local_irq_save(flags);
5097 double_rq_lock(rq_src, rq_dest);
5098 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5099 rq_src->nr_uninterruptible = 0;
5100 double_rq_unlock(rq_src, rq_dest);
5101 local_irq_restore(flags);
5102}
5103
5104/* Run through task list and migrate tasks from the dead cpu. */
5105static void migrate_live_tasks(int src_cpu)
5106{
48f24c4d 5107 struct task_struct *p, *t;
1da177e4
LT
5108
5109 write_lock_irq(&tasklist_lock);
5110
48f24c4d
IM
5111 do_each_thread(t, p) {
5112 if (p == current)
1da177e4
LT
5113 continue;
5114
48f24c4d
IM
5115 if (task_cpu(p) == src_cpu)
5116 move_task_off_dead_cpu(src_cpu, p);
5117 } while_each_thread(t, p);
1da177e4
LT
5118
5119 write_unlock_irq(&tasklist_lock);
5120}
5121
dd41f596
IM
5122/*
5123 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5124 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5125 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5126 */
5127void sched_idle_next(void)
5128{
48f24c4d 5129 int this_cpu = smp_processor_id();
70b97a7f 5130 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5131 struct task_struct *p = rq->idle;
5132 unsigned long flags;
5133
5134 /* cpu has to be offline */
48f24c4d 5135 BUG_ON(cpu_online(this_cpu));
1da177e4 5136
48f24c4d
IM
5137 /*
5138 * Strictly not necessary since rest of the CPUs are stopped by now
5139 * and interrupts disabled on the current cpu.
1da177e4
LT
5140 */
5141 spin_lock_irqsave(&rq->lock, flags);
5142
dd41f596 5143 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5144
5145 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5146 activate_idle_task(p, rq);
1da177e4
LT
5147
5148 spin_unlock_irqrestore(&rq->lock, flags);
5149}
5150
48f24c4d
IM
5151/*
5152 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5153 * offline.
5154 */
5155void idle_task_exit(void)
5156{
5157 struct mm_struct *mm = current->active_mm;
5158
5159 BUG_ON(cpu_online(smp_processor_id()));
5160
5161 if (mm != &init_mm)
5162 switch_mm(mm, &init_mm, current);
5163 mmdrop(mm);
5164}
5165
054b9108 5166/* called under rq->lock with disabled interrupts */
36c8b586 5167static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5168{
70b97a7f 5169 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5170
5171 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5172 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5173
5174 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5175 BUG_ON(p->state == TASK_DEAD);
1da177e4 5176
48f24c4d 5177 get_task_struct(p);
1da177e4
LT
5178
5179 /*
5180 * Drop lock around migration; if someone else moves it,
5181 * that's OK. No task can be added to this CPU, so iteration is
5182 * fine.
054b9108 5183 * NOTE: interrupts should be left disabled --dev@
1da177e4 5184 */
054b9108 5185 spin_unlock(&rq->lock);
48f24c4d 5186 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5187 spin_lock(&rq->lock);
1da177e4 5188
48f24c4d 5189 put_task_struct(p);
1da177e4
LT
5190}
5191
5192/* release_task() removes task from tasklist, so we won't find dead tasks. */
5193static void migrate_dead_tasks(unsigned int dead_cpu)
5194{
70b97a7f 5195 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5196 struct task_struct *next;
48f24c4d 5197
dd41f596
IM
5198 for ( ; ; ) {
5199 if (!rq->nr_running)
5200 break;
5201 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5202 if (!next)
5203 break;
5204 migrate_dead(dead_cpu, next);
1da177e4
LT
5205 }
5206}
5207#endif /* CONFIG_HOTPLUG_CPU */
5208
5209/*
5210 * migration_call - callback that gets triggered when a CPU is added.
5211 * Here we can start up the necessary migration thread for the new CPU.
5212 */
48f24c4d
IM
5213static int __cpuinit
5214migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5215{
1da177e4 5216 struct task_struct *p;
48f24c4d 5217 int cpu = (long)hcpu;
1da177e4 5218 unsigned long flags;
70b97a7f 5219 struct rq *rq;
1da177e4
LT
5220
5221 switch (action) {
5be9361c
GS
5222 case CPU_LOCK_ACQUIRE:
5223 mutex_lock(&sched_hotcpu_mutex);
5224 break;
5225
1da177e4 5226 case CPU_UP_PREPARE:
8bb78442 5227 case CPU_UP_PREPARE_FROZEN:
dd41f596 5228 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5229 if (IS_ERR(p))
5230 return NOTIFY_BAD;
1da177e4
LT
5231 kthread_bind(p, cpu);
5232 /* Must be high prio: stop_machine expects to yield to it. */
5233 rq = task_rq_lock(p, &flags);
dd41f596 5234 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5235 task_rq_unlock(rq, &flags);
5236 cpu_rq(cpu)->migration_thread = p;
5237 break;
48f24c4d 5238
1da177e4 5239 case CPU_ONLINE:
8bb78442 5240 case CPU_ONLINE_FROZEN:
1da177e4
LT
5241 /* Strictly unneccessary, as first user will wake it. */
5242 wake_up_process(cpu_rq(cpu)->migration_thread);
5243 break;
48f24c4d 5244
1da177e4
LT
5245#ifdef CONFIG_HOTPLUG_CPU
5246 case CPU_UP_CANCELED:
8bb78442 5247 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5248 if (!cpu_rq(cpu)->migration_thread)
5249 break;
1da177e4 5250 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5251 kthread_bind(cpu_rq(cpu)->migration_thread,
5252 any_online_cpu(cpu_online_map));
1da177e4
LT
5253 kthread_stop(cpu_rq(cpu)->migration_thread);
5254 cpu_rq(cpu)->migration_thread = NULL;
5255 break;
48f24c4d 5256
1da177e4 5257 case CPU_DEAD:
8bb78442 5258 case CPU_DEAD_FROZEN:
1da177e4
LT
5259 migrate_live_tasks(cpu);
5260 rq = cpu_rq(cpu);
5261 kthread_stop(rq->migration_thread);
5262 rq->migration_thread = NULL;
5263 /* Idle task back to normal (off runqueue, low prio) */
5264 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5265 deactivate_task(rq, rq->idle, 0);
1da177e4 5266 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5267 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5268 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5269 migrate_dead_tasks(cpu);
5270 task_rq_unlock(rq, &flags);
5271 migrate_nr_uninterruptible(rq);
5272 BUG_ON(rq->nr_running != 0);
5273
5274 /* No need to migrate the tasks: it was best-effort if
5be9361c 5275 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5276 * the requestors. */
5277 spin_lock_irq(&rq->lock);
5278 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5279 struct migration_req *req;
5280
1da177e4 5281 req = list_entry(rq->migration_queue.next,
70b97a7f 5282 struct migration_req, list);
1da177e4
LT
5283 list_del_init(&req->list);
5284 complete(&req->done);
5285 }
5286 spin_unlock_irq(&rq->lock);
5287 break;
5288#endif
5be9361c
GS
5289 case CPU_LOCK_RELEASE:
5290 mutex_unlock(&sched_hotcpu_mutex);
5291 break;
1da177e4
LT
5292 }
5293 return NOTIFY_OK;
5294}
5295
5296/* Register at highest priority so that task migration (migrate_all_tasks)
5297 * happens before everything else.
5298 */
26c2143b 5299static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5300 .notifier_call = migration_call,
5301 .priority = 10
5302};
5303
5304int __init migration_init(void)
5305{
5306 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5307 int err;
48f24c4d
IM
5308
5309 /* Start one for the boot CPU: */
07dccf33
AM
5310 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5311 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5312 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5313 register_cpu_notifier(&migration_notifier);
48f24c4d 5314
1da177e4
LT
5315 return 0;
5316}
5317#endif
5318
5319#ifdef CONFIG_SMP
476f3534
CL
5320
5321/* Number of possible processor ids */
5322int nr_cpu_ids __read_mostly = NR_CPUS;
5323EXPORT_SYMBOL(nr_cpu_ids);
5324
1a20ff27 5325#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5326#ifdef SCHED_DOMAIN_DEBUG
5327static void sched_domain_debug(struct sched_domain *sd, int cpu)
5328{
5329 int level = 0;
5330
41c7ce9a
NP
5331 if (!sd) {
5332 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5333 return;
5334 }
5335
1da177e4
LT
5336 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5337
5338 do {
5339 int i;
5340 char str[NR_CPUS];
5341 struct sched_group *group = sd->groups;
5342 cpumask_t groupmask;
5343
5344 cpumask_scnprintf(str, NR_CPUS, sd->span);
5345 cpus_clear(groupmask);
5346
5347 printk(KERN_DEBUG);
5348 for (i = 0; i < level + 1; i++)
5349 printk(" ");
5350 printk("domain %d: ", level);
5351
5352 if (!(sd->flags & SD_LOAD_BALANCE)) {
5353 printk("does not load-balance\n");
5354 if (sd->parent)
33859f7f
MOS
5355 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5356 " has parent");
1da177e4
LT
5357 break;
5358 }
5359
5360 printk("span %s\n", str);
5361
5362 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5363 printk(KERN_ERR "ERROR: domain->span does not contain "
5364 "CPU%d\n", cpu);
1da177e4 5365 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5366 printk(KERN_ERR "ERROR: domain->groups does not contain"
5367 " CPU%d\n", cpu);
1da177e4
LT
5368
5369 printk(KERN_DEBUG);
5370 for (i = 0; i < level + 2; i++)
5371 printk(" ");
5372 printk("groups:");
5373 do {
5374 if (!group) {
5375 printk("\n");
5376 printk(KERN_ERR "ERROR: group is NULL\n");
5377 break;
5378 }
5379
5517d86b 5380 if (!group->__cpu_power) {
1da177e4 5381 printk("\n");
33859f7f
MOS
5382 printk(KERN_ERR "ERROR: domain->cpu_power not "
5383 "set\n");
1da177e4
LT
5384 }
5385
5386 if (!cpus_weight(group->cpumask)) {
5387 printk("\n");
5388 printk(KERN_ERR "ERROR: empty group\n");
5389 }
5390
5391 if (cpus_intersects(groupmask, group->cpumask)) {
5392 printk("\n");
5393 printk(KERN_ERR "ERROR: repeated CPUs\n");
5394 }
5395
5396 cpus_or(groupmask, groupmask, group->cpumask);
5397
5398 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5399 printk(" %s", str);
5400
5401 group = group->next;
5402 } while (group != sd->groups);
5403 printk("\n");
5404
5405 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5406 printk(KERN_ERR "ERROR: groups don't span "
5407 "domain->span\n");
1da177e4
LT
5408
5409 level++;
5410 sd = sd->parent;
33859f7f
MOS
5411 if (!sd)
5412 continue;
1da177e4 5413
33859f7f
MOS
5414 if (!cpus_subset(groupmask, sd->span))
5415 printk(KERN_ERR "ERROR: parent span is not a superset "
5416 "of domain->span\n");
1da177e4
LT
5417
5418 } while (sd);
5419}
5420#else
48f24c4d 5421# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5422#endif
5423
1a20ff27 5424static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5425{
5426 if (cpus_weight(sd->span) == 1)
5427 return 1;
5428
5429 /* Following flags need at least 2 groups */
5430 if (sd->flags & (SD_LOAD_BALANCE |
5431 SD_BALANCE_NEWIDLE |
5432 SD_BALANCE_FORK |
89c4710e
SS
5433 SD_BALANCE_EXEC |
5434 SD_SHARE_CPUPOWER |
5435 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5436 if (sd->groups != sd->groups->next)
5437 return 0;
5438 }
5439
5440 /* Following flags don't use groups */
5441 if (sd->flags & (SD_WAKE_IDLE |
5442 SD_WAKE_AFFINE |
5443 SD_WAKE_BALANCE))
5444 return 0;
5445
5446 return 1;
5447}
5448
48f24c4d
IM
5449static int
5450sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5451{
5452 unsigned long cflags = sd->flags, pflags = parent->flags;
5453
5454 if (sd_degenerate(parent))
5455 return 1;
5456
5457 if (!cpus_equal(sd->span, parent->span))
5458 return 0;
5459
5460 /* Does parent contain flags not in child? */
5461 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5462 if (cflags & SD_WAKE_AFFINE)
5463 pflags &= ~SD_WAKE_BALANCE;
5464 /* Flags needing groups don't count if only 1 group in parent */
5465 if (parent->groups == parent->groups->next) {
5466 pflags &= ~(SD_LOAD_BALANCE |
5467 SD_BALANCE_NEWIDLE |
5468 SD_BALANCE_FORK |
89c4710e
SS
5469 SD_BALANCE_EXEC |
5470 SD_SHARE_CPUPOWER |
5471 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5472 }
5473 if (~cflags & pflags)
5474 return 0;
5475
5476 return 1;
5477}
5478
1da177e4
LT
5479/*
5480 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5481 * hold the hotplug lock.
5482 */
9c1cfda2 5483static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5484{
70b97a7f 5485 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5486 struct sched_domain *tmp;
5487
5488 /* Remove the sched domains which do not contribute to scheduling. */
5489 for (tmp = sd; tmp; tmp = tmp->parent) {
5490 struct sched_domain *parent = tmp->parent;
5491 if (!parent)
5492 break;
1a848870 5493 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5494 tmp->parent = parent->parent;
1a848870
SS
5495 if (parent->parent)
5496 parent->parent->child = tmp;
5497 }
245af2c7
SS
5498 }
5499
1a848870 5500 if (sd && sd_degenerate(sd)) {
245af2c7 5501 sd = sd->parent;
1a848870
SS
5502 if (sd)
5503 sd->child = NULL;
5504 }
1da177e4
LT
5505
5506 sched_domain_debug(sd, cpu);
5507
674311d5 5508 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5509}
5510
5511/* cpus with isolated domains */
67af63a6 5512static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5513
5514/* Setup the mask of cpus configured for isolated domains */
5515static int __init isolated_cpu_setup(char *str)
5516{
5517 int ints[NR_CPUS], i;
5518
5519 str = get_options(str, ARRAY_SIZE(ints), ints);
5520 cpus_clear(cpu_isolated_map);
5521 for (i = 1; i <= ints[0]; i++)
5522 if (ints[i] < NR_CPUS)
5523 cpu_set(ints[i], cpu_isolated_map);
5524 return 1;
5525}
5526
5527__setup ("isolcpus=", isolated_cpu_setup);
5528
5529/*
6711cab4
SS
5530 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5531 * to a function which identifies what group(along with sched group) a CPU
5532 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5533 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5534 *
5535 * init_sched_build_groups will build a circular linked list of the groups
5536 * covered by the given span, and will set each group's ->cpumask correctly,
5537 * and ->cpu_power to 0.
5538 */
a616058b 5539static void
6711cab4
SS
5540init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5541 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5542 struct sched_group **sg))
1da177e4
LT
5543{
5544 struct sched_group *first = NULL, *last = NULL;
5545 cpumask_t covered = CPU_MASK_NONE;
5546 int i;
5547
5548 for_each_cpu_mask(i, span) {
6711cab4
SS
5549 struct sched_group *sg;
5550 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5551 int j;
5552
5553 if (cpu_isset(i, covered))
5554 continue;
5555
5556 sg->cpumask = CPU_MASK_NONE;
5517d86b 5557 sg->__cpu_power = 0;
1da177e4
LT
5558
5559 for_each_cpu_mask(j, span) {
6711cab4 5560 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5561 continue;
5562
5563 cpu_set(j, covered);
5564 cpu_set(j, sg->cpumask);
5565 }
5566 if (!first)
5567 first = sg;
5568 if (last)
5569 last->next = sg;
5570 last = sg;
5571 }
5572 last->next = first;
5573}
5574
9c1cfda2 5575#define SD_NODES_PER_DOMAIN 16
1da177e4 5576
9c1cfda2 5577#ifdef CONFIG_NUMA
198e2f18 5578
9c1cfda2
JH
5579/**
5580 * find_next_best_node - find the next node to include in a sched_domain
5581 * @node: node whose sched_domain we're building
5582 * @used_nodes: nodes already in the sched_domain
5583 *
5584 * Find the next node to include in a given scheduling domain. Simply
5585 * finds the closest node not already in the @used_nodes map.
5586 *
5587 * Should use nodemask_t.
5588 */
5589static int find_next_best_node(int node, unsigned long *used_nodes)
5590{
5591 int i, n, val, min_val, best_node = 0;
5592
5593 min_val = INT_MAX;
5594
5595 for (i = 0; i < MAX_NUMNODES; i++) {
5596 /* Start at @node */
5597 n = (node + i) % MAX_NUMNODES;
5598
5599 if (!nr_cpus_node(n))
5600 continue;
5601
5602 /* Skip already used nodes */
5603 if (test_bit(n, used_nodes))
5604 continue;
5605
5606 /* Simple min distance search */
5607 val = node_distance(node, n);
5608
5609 if (val < min_val) {
5610 min_val = val;
5611 best_node = n;
5612 }
5613 }
5614
5615 set_bit(best_node, used_nodes);
5616 return best_node;
5617}
5618
5619/**
5620 * sched_domain_node_span - get a cpumask for a node's sched_domain
5621 * @node: node whose cpumask we're constructing
5622 * @size: number of nodes to include in this span
5623 *
5624 * Given a node, construct a good cpumask for its sched_domain to span. It
5625 * should be one that prevents unnecessary balancing, but also spreads tasks
5626 * out optimally.
5627 */
5628static cpumask_t sched_domain_node_span(int node)
5629{
9c1cfda2 5630 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5631 cpumask_t span, nodemask;
5632 int i;
9c1cfda2
JH
5633
5634 cpus_clear(span);
5635 bitmap_zero(used_nodes, MAX_NUMNODES);
5636
5637 nodemask = node_to_cpumask(node);
5638 cpus_or(span, span, nodemask);
5639 set_bit(node, used_nodes);
5640
5641 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5642 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5643
9c1cfda2
JH
5644 nodemask = node_to_cpumask(next_node);
5645 cpus_or(span, span, nodemask);
5646 }
5647
5648 return span;
5649}
5650#endif
5651
5c45bf27 5652int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5653
9c1cfda2 5654/*
48f24c4d 5655 * SMT sched-domains:
9c1cfda2 5656 */
1da177e4
LT
5657#ifdef CONFIG_SCHED_SMT
5658static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5659static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5660
6711cab4
SS
5661static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5662 struct sched_group **sg)
1da177e4 5663{
6711cab4
SS
5664 if (sg)
5665 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5666 return cpu;
5667}
5668#endif
5669
48f24c4d
IM
5670/*
5671 * multi-core sched-domains:
5672 */
1e9f28fa
SS
5673#ifdef CONFIG_SCHED_MC
5674static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5675static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5676#endif
5677
5678#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5679static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5680 struct sched_group **sg)
1e9f28fa 5681{
6711cab4 5682 int group;
a616058b
SS
5683 cpumask_t mask = cpu_sibling_map[cpu];
5684 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5685 group = first_cpu(mask);
5686 if (sg)
5687 *sg = &per_cpu(sched_group_core, group);
5688 return group;
1e9f28fa
SS
5689}
5690#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5691static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5692 struct sched_group **sg)
1e9f28fa 5693{
6711cab4
SS
5694 if (sg)
5695 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5696 return cpu;
5697}
5698#endif
5699
1da177e4 5700static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5701static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5702
6711cab4
SS
5703static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5704 struct sched_group **sg)
1da177e4 5705{
6711cab4 5706 int group;
48f24c4d 5707#ifdef CONFIG_SCHED_MC
1e9f28fa 5708 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5709 cpus_and(mask, mask, *cpu_map);
6711cab4 5710 group = first_cpu(mask);
1e9f28fa 5711#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5712 cpumask_t mask = cpu_sibling_map[cpu];
5713 cpus_and(mask, mask, *cpu_map);
6711cab4 5714 group = first_cpu(mask);
1da177e4 5715#else
6711cab4 5716 group = cpu;
1da177e4 5717#endif
6711cab4
SS
5718 if (sg)
5719 *sg = &per_cpu(sched_group_phys, group);
5720 return group;
1da177e4
LT
5721}
5722
5723#ifdef CONFIG_NUMA
1da177e4 5724/*
9c1cfda2
JH
5725 * The init_sched_build_groups can't handle what we want to do with node
5726 * groups, so roll our own. Now each node has its own list of groups which
5727 * gets dynamically allocated.
1da177e4 5728 */
9c1cfda2 5729static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5730static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5731
9c1cfda2 5732static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5733static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5734
6711cab4
SS
5735static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5736 struct sched_group **sg)
9c1cfda2 5737{
6711cab4
SS
5738 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5739 int group;
5740
5741 cpus_and(nodemask, nodemask, *cpu_map);
5742 group = first_cpu(nodemask);
5743
5744 if (sg)
5745 *sg = &per_cpu(sched_group_allnodes, group);
5746 return group;
1da177e4 5747}
6711cab4 5748
08069033
SS
5749static void init_numa_sched_groups_power(struct sched_group *group_head)
5750{
5751 struct sched_group *sg = group_head;
5752 int j;
5753
5754 if (!sg)
5755 return;
5756next_sg:
5757 for_each_cpu_mask(j, sg->cpumask) {
5758 struct sched_domain *sd;
5759
5760 sd = &per_cpu(phys_domains, j);
5761 if (j != first_cpu(sd->groups->cpumask)) {
5762 /*
5763 * Only add "power" once for each
5764 * physical package.
5765 */
5766 continue;
5767 }
5768
5517d86b 5769 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5770 }
5771 sg = sg->next;
5772 if (sg != group_head)
5773 goto next_sg;
5774}
1da177e4
LT
5775#endif
5776
a616058b 5777#ifdef CONFIG_NUMA
51888ca2
SV
5778/* Free memory allocated for various sched_group structures */
5779static void free_sched_groups(const cpumask_t *cpu_map)
5780{
a616058b 5781 int cpu, i;
51888ca2
SV
5782
5783 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5784 struct sched_group **sched_group_nodes
5785 = sched_group_nodes_bycpu[cpu];
5786
51888ca2
SV
5787 if (!sched_group_nodes)
5788 continue;
5789
5790 for (i = 0; i < MAX_NUMNODES; i++) {
5791 cpumask_t nodemask = node_to_cpumask(i);
5792 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5793
5794 cpus_and(nodemask, nodemask, *cpu_map);
5795 if (cpus_empty(nodemask))
5796 continue;
5797
5798 if (sg == NULL)
5799 continue;
5800 sg = sg->next;
5801next_sg:
5802 oldsg = sg;
5803 sg = sg->next;
5804 kfree(oldsg);
5805 if (oldsg != sched_group_nodes[i])
5806 goto next_sg;
5807 }
5808 kfree(sched_group_nodes);
5809 sched_group_nodes_bycpu[cpu] = NULL;
5810 }
51888ca2 5811}
a616058b
SS
5812#else
5813static void free_sched_groups(const cpumask_t *cpu_map)
5814{
5815}
5816#endif
51888ca2 5817
89c4710e
SS
5818/*
5819 * Initialize sched groups cpu_power.
5820 *
5821 * cpu_power indicates the capacity of sched group, which is used while
5822 * distributing the load between different sched groups in a sched domain.
5823 * Typically cpu_power for all the groups in a sched domain will be same unless
5824 * there are asymmetries in the topology. If there are asymmetries, group
5825 * having more cpu_power will pickup more load compared to the group having
5826 * less cpu_power.
5827 *
5828 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5829 * the maximum number of tasks a group can handle in the presence of other idle
5830 * or lightly loaded groups in the same sched domain.
5831 */
5832static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5833{
5834 struct sched_domain *child;
5835 struct sched_group *group;
5836
5837 WARN_ON(!sd || !sd->groups);
5838
5839 if (cpu != first_cpu(sd->groups->cpumask))
5840 return;
5841
5842 child = sd->child;
5843
5517d86b
ED
5844 sd->groups->__cpu_power = 0;
5845
89c4710e
SS
5846 /*
5847 * For perf policy, if the groups in child domain share resources
5848 * (for example cores sharing some portions of the cache hierarchy
5849 * or SMT), then set this domain groups cpu_power such that each group
5850 * can handle only one task, when there are other idle groups in the
5851 * same sched domain.
5852 */
5853 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5854 (child->flags &
5855 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5856 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5857 return;
5858 }
5859
89c4710e
SS
5860 /*
5861 * add cpu_power of each child group to this groups cpu_power
5862 */
5863 group = child->groups;
5864 do {
5517d86b 5865 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5866 group = group->next;
5867 } while (group != child->groups);
5868}
5869
1da177e4 5870/*
1a20ff27
DG
5871 * Build sched domains for a given set of cpus and attach the sched domains
5872 * to the individual cpus
1da177e4 5873 */
51888ca2 5874static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5875{
5876 int i;
d1b55138
JH
5877#ifdef CONFIG_NUMA
5878 struct sched_group **sched_group_nodes = NULL;
6711cab4 5879 int sd_allnodes = 0;
d1b55138
JH
5880
5881 /*
5882 * Allocate the per-node list of sched groups
5883 */
dd41f596 5884 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5885 GFP_KERNEL);
d1b55138
JH
5886 if (!sched_group_nodes) {
5887 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5888 return -ENOMEM;
d1b55138
JH
5889 }
5890 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5891#endif
1da177e4
LT
5892
5893 /*
1a20ff27 5894 * Set up domains for cpus specified by the cpu_map.
1da177e4 5895 */
1a20ff27 5896 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5897 struct sched_domain *sd = NULL, *p;
5898 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5899
1a20ff27 5900 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5901
5902#ifdef CONFIG_NUMA
dd41f596
IM
5903 if (cpus_weight(*cpu_map) >
5904 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5905 sd = &per_cpu(allnodes_domains, i);
5906 *sd = SD_ALLNODES_INIT;
5907 sd->span = *cpu_map;
6711cab4 5908 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5909 p = sd;
6711cab4 5910 sd_allnodes = 1;
9c1cfda2
JH
5911 } else
5912 p = NULL;
5913
1da177e4 5914 sd = &per_cpu(node_domains, i);
1da177e4 5915 *sd = SD_NODE_INIT;
9c1cfda2
JH
5916 sd->span = sched_domain_node_span(cpu_to_node(i));
5917 sd->parent = p;
1a848870
SS
5918 if (p)
5919 p->child = sd;
9c1cfda2 5920 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5921#endif
5922
5923 p = sd;
5924 sd = &per_cpu(phys_domains, i);
1da177e4
LT
5925 *sd = SD_CPU_INIT;
5926 sd->span = nodemask;
5927 sd->parent = p;
1a848870
SS
5928 if (p)
5929 p->child = sd;
6711cab4 5930 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 5931
1e9f28fa
SS
5932#ifdef CONFIG_SCHED_MC
5933 p = sd;
5934 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
5935 *sd = SD_MC_INIT;
5936 sd->span = cpu_coregroup_map(i);
5937 cpus_and(sd->span, sd->span, *cpu_map);
5938 sd->parent = p;
1a848870 5939 p->child = sd;
6711cab4 5940 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
5941#endif
5942
1da177e4
LT
5943#ifdef CONFIG_SCHED_SMT
5944 p = sd;
5945 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
5946 *sd = SD_SIBLING_INIT;
5947 sd->span = cpu_sibling_map[i];
1a20ff27 5948 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 5949 sd->parent = p;
1a848870 5950 p->child = sd;
6711cab4 5951 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
5952#endif
5953 }
5954
5955#ifdef CONFIG_SCHED_SMT
5956 /* Set up CPU (sibling) groups */
9c1cfda2 5957 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5958 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5959 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5960 if (i != first_cpu(this_sibling_map))
5961 continue;
5962
dd41f596
IM
5963 init_sched_build_groups(this_sibling_map, cpu_map,
5964 &cpu_to_cpu_group);
1da177e4
LT
5965 }
5966#endif
5967
1e9f28fa
SS
5968#ifdef CONFIG_SCHED_MC
5969 /* Set up multi-core groups */
5970 for_each_cpu_mask(i, *cpu_map) {
5971 cpumask_t this_core_map = cpu_coregroup_map(i);
5972 cpus_and(this_core_map, this_core_map, *cpu_map);
5973 if (i != first_cpu(this_core_map))
5974 continue;
dd41f596
IM
5975 init_sched_build_groups(this_core_map, cpu_map,
5976 &cpu_to_core_group);
1e9f28fa
SS
5977 }
5978#endif
5979
1da177e4
LT
5980 /* Set up physical groups */
5981 for (i = 0; i < MAX_NUMNODES; i++) {
5982 cpumask_t nodemask = node_to_cpumask(i);
5983
1a20ff27 5984 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5985 if (cpus_empty(nodemask))
5986 continue;
5987
6711cab4 5988 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
5989 }
5990
5991#ifdef CONFIG_NUMA
5992 /* Set up node groups */
6711cab4 5993 if (sd_allnodes)
dd41f596
IM
5994 init_sched_build_groups(*cpu_map, cpu_map,
5995 &cpu_to_allnodes_group);
9c1cfda2
JH
5996
5997 for (i = 0; i < MAX_NUMNODES; i++) {
5998 /* Set up node groups */
5999 struct sched_group *sg, *prev;
6000 cpumask_t nodemask = node_to_cpumask(i);
6001 cpumask_t domainspan;
6002 cpumask_t covered = CPU_MASK_NONE;
6003 int j;
6004
6005 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6006 if (cpus_empty(nodemask)) {
6007 sched_group_nodes[i] = NULL;
9c1cfda2 6008 continue;
d1b55138 6009 }
9c1cfda2
JH
6010
6011 domainspan = sched_domain_node_span(i);
6012 cpus_and(domainspan, domainspan, *cpu_map);
6013
15f0b676 6014 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6015 if (!sg) {
6016 printk(KERN_WARNING "Can not alloc domain group for "
6017 "node %d\n", i);
6018 goto error;
6019 }
9c1cfda2
JH
6020 sched_group_nodes[i] = sg;
6021 for_each_cpu_mask(j, nodemask) {
6022 struct sched_domain *sd;
9761eea8 6023
9c1cfda2
JH
6024 sd = &per_cpu(node_domains, j);
6025 sd->groups = sg;
9c1cfda2 6026 }
5517d86b 6027 sg->__cpu_power = 0;
9c1cfda2 6028 sg->cpumask = nodemask;
51888ca2 6029 sg->next = sg;
9c1cfda2
JH
6030 cpus_or(covered, covered, nodemask);
6031 prev = sg;
6032
6033 for (j = 0; j < MAX_NUMNODES; j++) {
6034 cpumask_t tmp, notcovered;
6035 int n = (i + j) % MAX_NUMNODES;
6036
6037 cpus_complement(notcovered, covered);
6038 cpus_and(tmp, notcovered, *cpu_map);
6039 cpus_and(tmp, tmp, domainspan);
6040 if (cpus_empty(tmp))
6041 break;
6042
6043 nodemask = node_to_cpumask(n);
6044 cpus_and(tmp, tmp, nodemask);
6045 if (cpus_empty(tmp))
6046 continue;
6047
15f0b676
SV
6048 sg = kmalloc_node(sizeof(struct sched_group),
6049 GFP_KERNEL, i);
9c1cfda2
JH
6050 if (!sg) {
6051 printk(KERN_WARNING
6052 "Can not alloc domain group for node %d\n", j);
51888ca2 6053 goto error;
9c1cfda2 6054 }
5517d86b 6055 sg->__cpu_power = 0;
9c1cfda2 6056 sg->cpumask = tmp;
51888ca2 6057 sg->next = prev->next;
9c1cfda2
JH
6058 cpus_or(covered, covered, tmp);
6059 prev->next = sg;
6060 prev = sg;
6061 }
9c1cfda2 6062 }
1da177e4
LT
6063#endif
6064
6065 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6066#ifdef CONFIG_SCHED_SMT
1a20ff27 6067 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6068 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6069
89c4710e 6070 init_sched_groups_power(i, sd);
5c45bf27 6071 }
1da177e4 6072#endif
1e9f28fa 6073#ifdef CONFIG_SCHED_MC
5c45bf27 6074 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6075 struct sched_domain *sd = &per_cpu(core_domains, i);
6076
89c4710e 6077 init_sched_groups_power(i, sd);
5c45bf27
SS
6078 }
6079#endif
1e9f28fa 6080
5c45bf27 6081 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6082 struct sched_domain *sd = &per_cpu(phys_domains, i);
6083
89c4710e 6084 init_sched_groups_power(i, sd);
1da177e4
LT
6085 }
6086
9c1cfda2 6087#ifdef CONFIG_NUMA
08069033
SS
6088 for (i = 0; i < MAX_NUMNODES; i++)
6089 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6090
6711cab4
SS
6091 if (sd_allnodes) {
6092 struct sched_group *sg;
f712c0c7 6093
6711cab4 6094 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6095 init_numa_sched_groups_power(sg);
6096 }
9c1cfda2
JH
6097#endif
6098
1da177e4 6099 /* Attach the domains */
1a20ff27 6100 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6101 struct sched_domain *sd;
6102#ifdef CONFIG_SCHED_SMT
6103 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6104#elif defined(CONFIG_SCHED_MC)
6105 sd = &per_cpu(core_domains, i);
1da177e4
LT
6106#else
6107 sd = &per_cpu(phys_domains, i);
6108#endif
6109 cpu_attach_domain(sd, i);
6110 }
51888ca2
SV
6111
6112 return 0;
6113
a616058b 6114#ifdef CONFIG_NUMA
51888ca2
SV
6115error:
6116 free_sched_groups(cpu_map);
6117 return -ENOMEM;
a616058b 6118#endif
1da177e4 6119}
1a20ff27
DG
6120/*
6121 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6122 */
51888ca2 6123static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6124{
6125 cpumask_t cpu_default_map;
51888ca2 6126 int err;
1da177e4 6127
1a20ff27
DG
6128 /*
6129 * Setup mask for cpus without special case scheduling requirements.
6130 * For now this just excludes isolated cpus, but could be used to
6131 * exclude other special cases in the future.
6132 */
6133 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6134
51888ca2
SV
6135 err = build_sched_domains(&cpu_default_map);
6136
6137 return err;
1a20ff27
DG
6138}
6139
6140static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6141{
51888ca2 6142 free_sched_groups(cpu_map);
9c1cfda2 6143}
1da177e4 6144
1a20ff27
DG
6145/*
6146 * Detach sched domains from a group of cpus specified in cpu_map
6147 * These cpus will now be attached to the NULL domain
6148 */
858119e1 6149static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6150{
6151 int i;
6152
6153 for_each_cpu_mask(i, *cpu_map)
6154 cpu_attach_domain(NULL, i);
6155 synchronize_sched();
6156 arch_destroy_sched_domains(cpu_map);
6157}
6158
6159/*
6160 * Partition sched domains as specified by the cpumasks below.
6161 * This attaches all cpus from the cpumasks to the NULL domain,
6162 * waits for a RCU quiescent period, recalculates sched
6163 * domain information and then attaches them back to the
6164 * correct sched domains
6165 * Call with hotplug lock held
6166 */
51888ca2 6167int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6168{
6169 cpumask_t change_map;
51888ca2 6170 int err = 0;
1a20ff27
DG
6171
6172 cpus_and(*partition1, *partition1, cpu_online_map);
6173 cpus_and(*partition2, *partition2, cpu_online_map);
6174 cpus_or(change_map, *partition1, *partition2);
6175
6176 /* Detach sched domains from all of the affected cpus */
6177 detach_destroy_domains(&change_map);
6178 if (!cpus_empty(*partition1))
51888ca2
SV
6179 err = build_sched_domains(partition1);
6180 if (!err && !cpus_empty(*partition2))
6181 err = build_sched_domains(partition2);
6182
6183 return err;
1a20ff27
DG
6184}
6185
5c45bf27
SS
6186#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6187int arch_reinit_sched_domains(void)
6188{
6189 int err;
6190
5be9361c 6191 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6192 detach_destroy_domains(&cpu_online_map);
6193 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6194 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6195
6196 return err;
6197}
6198
6199static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6200{
6201 int ret;
6202
6203 if (buf[0] != '0' && buf[0] != '1')
6204 return -EINVAL;
6205
6206 if (smt)
6207 sched_smt_power_savings = (buf[0] == '1');
6208 else
6209 sched_mc_power_savings = (buf[0] == '1');
6210
6211 ret = arch_reinit_sched_domains();
6212
6213 return ret ? ret : count;
6214}
6215
6216int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6217{
6218 int err = 0;
48f24c4d 6219
5c45bf27
SS
6220#ifdef CONFIG_SCHED_SMT
6221 if (smt_capable())
6222 err = sysfs_create_file(&cls->kset.kobj,
6223 &attr_sched_smt_power_savings.attr);
6224#endif
6225#ifdef CONFIG_SCHED_MC
6226 if (!err && mc_capable())
6227 err = sysfs_create_file(&cls->kset.kobj,
6228 &attr_sched_mc_power_savings.attr);
6229#endif
6230 return err;
6231}
6232#endif
6233
6234#ifdef CONFIG_SCHED_MC
6235static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6236{
6237 return sprintf(page, "%u\n", sched_mc_power_savings);
6238}
48f24c4d
IM
6239static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6240 const char *buf, size_t count)
5c45bf27
SS
6241{
6242 return sched_power_savings_store(buf, count, 0);
6243}
6244SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6245 sched_mc_power_savings_store);
6246#endif
6247
6248#ifdef CONFIG_SCHED_SMT
6249static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6250{
6251 return sprintf(page, "%u\n", sched_smt_power_savings);
6252}
48f24c4d
IM
6253static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6254 const char *buf, size_t count)
5c45bf27
SS
6255{
6256 return sched_power_savings_store(buf, count, 1);
6257}
6258SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6259 sched_smt_power_savings_store);
6260#endif
6261
1da177e4
LT
6262/*
6263 * Force a reinitialization of the sched domains hierarchy. The domains
6264 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6265 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6266 * which will prevent rebalancing while the sched domains are recalculated.
6267 */
6268static int update_sched_domains(struct notifier_block *nfb,
6269 unsigned long action, void *hcpu)
6270{
1da177e4
LT
6271 switch (action) {
6272 case CPU_UP_PREPARE:
8bb78442 6273 case CPU_UP_PREPARE_FROZEN:
1da177e4 6274 case CPU_DOWN_PREPARE:
8bb78442 6275 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6276 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6277 return NOTIFY_OK;
6278
6279 case CPU_UP_CANCELED:
8bb78442 6280 case CPU_UP_CANCELED_FROZEN:
1da177e4 6281 case CPU_DOWN_FAILED:
8bb78442 6282 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6283 case CPU_ONLINE:
8bb78442 6284 case CPU_ONLINE_FROZEN:
1da177e4 6285 case CPU_DEAD:
8bb78442 6286 case CPU_DEAD_FROZEN:
1da177e4
LT
6287 /*
6288 * Fall through and re-initialise the domains.
6289 */
6290 break;
6291 default:
6292 return NOTIFY_DONE;
6293 }
6294
6295 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6296 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6297
6298 return NOTIFY_OK;
6299}
1da177e4
LT
6300
6301void __init sched_init_smp(void)
6302{
5c1e1767
NP
6303 cpumask_t non_isolated_cpus;
6304
5be9361c 6305 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6306 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6307 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6308 if (cpus_empty(non_isolated_cpus))
6309 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6310 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6311 /* XXX: Theoretical race here - CPU may be hotplugged now */
6312 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6313
6314 /* Move init over to a non-isolated CPU */
6315 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6316 BUG();
dd41f596 6317 sched_init_granularity();
1da177e4
LT
6318}
6319#else
6320void __init sched_init_smp(void)
6321{
dd41f596 6322 sched_init_granularity();
1da177e4
LT
6323}
6324#endif /* CONFIG_SMP */
6325
6326int in_sched_functions(unsigned long addr)
6327{
6328 /* Linker adds these: start and end of __sched functions */
6329 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6330
1da177e4
LT
6331 return in_lock_functions(addr) ||
6332 (addr >= (unsigned long)__sched_text_start
6333 && addr < (unsigned long)__sched_text_end);
6334}
6335
dd41f596
IM
6336static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6337{
6338 cfs_rq->tasks_timeline = RB_ROOT;
6339 cfs_rq->fair_clock = 1;
6340#ifdef CONFIG_FAIR_GROUP_SCHED
6341 cfs_rq->rq = rq;
6342#endif
6343}
6344
1da177e4
LT
6345void __init sched_init(void)
6346{
dd41f596 6347 u64 now = sched_clock();
476f3534 6348 int highest_cpu = 0;
dd41f596
IM
6349 int i, j;
6350
6351 /*
6352 * Link up the scheduling class hierarchy:
6353 */
6354 rt_sched_class.next = &fair_sched_class;
6355 fair_sched_class.next = &idle_sched_class;
6356 idle_sched_class.next = NULL;
1da177e4 6357
0a945022 6358 for_each_possible_cpu(i) {
dd41f596 6359 struct rt_prio_array *array;
70b97a7f 6360 struct rq *rq;
1da177e4
LT
6361
6362 rq = cpu_rq(i);
6363 spin_lock_init(&rq->lock);
fcb99371 6364 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6365 rq->nr_running = 0;
dd41f596
IM
6366 rq->clock = 1;
6367 init_cfs_rq(&rq->cfs, rq);
6368#ifdef CONFIG_FAIR_GROUP_SCHED
6369 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6370 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6371#endif
6372 rq->ls.load_update_last = now;
6373 rq->ls.load_update_start = now;
1da177e4 6374
dd41f596
IM
6375 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6376 rq->cpu_load[j] = 0;
1da177e4 6377#ifdef CONFIG_SMP
41c7ce9a 6378 rq->sd = NULL;
1da177e4 6379 rq->active_balance = 0;
dd41f596 6380 rq->next_balance = jiffies;
1da177e4 6381 rq->push_cpu = 0;
0a2966b4 6382 rq->cpu = i;
1da177e4
LT
6383 rq->migration_thread = NULL;
6384 INIT_LIST_HEAD(&rq->migration_queue);
6385#endif
6386 atomic_set(&rq->nr_iowait, 0);
6387
dd41f596
IM
6388 array = &rq->rt.active;
6389 for (j = 0; j < MAX_RT_PRIO; j++) {
6390 INIT_LIST_HEAD(array->queue + j);
6391 __clear_bit(j, array->bitmap);
1da177e4 6392 }
476f3534 6393 highest_cpu = i;
dd41f596
IM
6394 /* delimiter for bitsearch: */
6395 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6396 }
6397
2dd73a4f 6398 set_load_weight(&init_task);
b50f60ce 6399
e107be36
AK
6400#ifdef CONFIG_PREEMPT_NOTIFIERS
6401 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6402#endif
6403
c9819f45 6404#ifdef CONFIG_SMP
476f3534 6405 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6406 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6407#endif
6408
b50f60ce
HC
6409#ifdef CONFIG_RT_MUTEXES
6410 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6411#endif
6412
1da177e4
LT
6413 /*
6414 * The boot idle thread does lazy MMU switching as well:
6415 */
6416 atomic_inc(&init_mm.mm_count);
6417 enter_lazy_tlb(&init_mm, current);
6418
6419 /*
6420 * Make us the idle thread. Technically, schedule() should not be
6421 * called from this thread, however somewhere below it might be,
6422 * but because we are the idle thread, we just pick up running again
6423 * when this runqueue becomes "idle".
6424 */
6425 init_idle(current, smp_processor_id());
dd41f596
IM
6426 /*
6427 * During early bootup we pretend to be a normal task:
6428 */
6429 current->sched_class = &fair_sched_class;
1da177e4
LT
6430}
6431
6432#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6433void __might_sleep(char *file, int line)
6434{
48f24c4d 6435#ifdef in_atomic
1da177e4
LT
6436 static unsigned long prev_jiffy; /* ratelimiting */
6437
6438 if ((in_atomic() || irqs_disabled()) &&
6439 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6440 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6441 return;
6442 prev_jiffy = jiffies;
91368d73 6443 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6444 " context at %s:%d\n", file, line);
6445 printk("in_atomic():%d, irqs_disabled():%d\n",
6446 in_atomic(), irqs_disabled());
a4c410f0 6447 debug_show_held_locks(current);
3117df04
IM
6448 if (irqs_disabled())
6449 print_irqtrace_events(current);
1da177e4
LT
6450 dump_stack();
6451 }
6452#endif
6453}
6454EXPORT_SYMBOL(__might_sleep);
6455#endif
6456
6457#ifdef CONFIG_MAGIC_SYSRQ
6458void normalize_rt_tasks(void)
6459{
a0f98a1c 6460 struct task_struct *g, *p;
1da177e4 6461 unsigned long flags;
70b97a7f 6462 struct rq *rq;
dd41f596 6463 int on_rq;
1da177e4
LT
6464
6465 read_lock_irq(&tasklist_lock);
a0f98a1c 6466 do_each_thread(g, p) {
dd41f596
IM
6467 p->se.fair_key = 0;
6468 p->se.wait_runtime = 0;
6469 p->se.wait_start_fair = 0;
6470 p->se.wait_start = 0;
6471 p->se.exec_start = 0;
6472 p->se.sleep_start = 0;
6473 p->se.sleep_start_fair = 0;
6474 p->se.block_start = 0;
6475 task_rq(p)->cfs.fair_clock = 0;
6476 task_rq(p)->clock = 0;
6477
6478 if (!rt_task(p)) {
6479 /*
6480 * Renice negative nice level userspace
6481 * tasks back to 0:
6482 */
6483 if (TASK_NICE(p) < 0 && p->mm)
6484 set_user_nice(p, 0);
1da177e4 6485 continue;
dd41f596 6486 }
1da177e4 6487
b29739f9
IM
6488 spin_lock_irqsave(&p->pi_lock, flags);
6489 rq = __task_rq_lock(p);
dd41f596
IM
6490#ifdef CONFIG_SMP
6491 /*
6492 * Do not touch the migration thread:
6493 */
6494 if (p == rq->migration_thread)
6495 goto out_unlock;
6496#endif
1da177e4 6497
dd41f596
IM
6498 on_rq = p->se.on_rq;
6499 if (on_rq)
6500 deactivate_task(task_rq(p), p, 0);
6501 __setscheduler(rq, p, SCHED_NORMAL, 0);
6502 if (on_rq) {
6503 activate_task(task_rq(p), p, 0);
1da177e4
LT
6504 resched_task(rq->curr);
6505 }
dd41f596
IM
6506#ifdef CONFIG_SMP
6507 out_unlock:
6508#endif
b29739f9
IM
6509 __task_rq_unlock(rq);
6510 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6511 } while_each_thread(g, p);
6512
1da177e4
LT
6513 read_unlock_irq(&tasklist_lock);
6514}
6515
6516#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6517
6518#ifdef CONFIG_IA64
6519/*
6520 * These functions are only useful for the IA64 MCA handling.
6521 *
6522 * They can only be called when the whole system has been
6523 * stopped - every CPU needs to be quiescent, and no scheduling
6524 * activity can take place. Using them for anything else would
6525 * be a serious bug, and as a result, they aren't even visible
6526 * under any other configuration.
6527 */
6528
6529/**
6530 * curr_task - return the current task for a given cpu.
6531 * @cpu: the processor in question.
6532 *
6533 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6534 */
36c8b586 6535struct task_struct *curr_task(int cpu)
1df5c10a
LT
6536{
6537 return cpu_curr(cpu);
6538}
6539
6540/**
6541 * set_curr_task - set the current task for a given cpu.
6542 * @cpu: the processor in question.
6543 * @p: the task pointer to set.
6544 *
6545 * Description: This function must only be used when non-maskable interrupts
6546 * are serviced on a separate stack. It allows the architecture to switch the
6547 * notion of the current task on a cpu in a non-blocking manner. This function
6548 * must be called with all CPU's synchronized, and interrupts disabled, the
6549 * and caller must save the original value of the current task (see
6550 * curr_task() above) and restore that value before reenabling interrupts and
6551 * re-starting the system.
6552 *
6553 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6554 */
36c8b586 6555void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6556{
6557 cpu_curr(cpu) = p;
6558}
6559
6560#endif