futex: fix for futex_wait signal stack corruption
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
5cb350ba
DG
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
ae8393e5 174 struct rcu_head rcu;
29f59db3
SV
175};
176
177/* Default task group's sched entity on each cpu */
178static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179/* Default task group's cfs_rq on each cpu */
180static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
9b5b7751
SV
182static struct sched_entity *init_sched_entity_p[NR_CPUS];
183static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
184
185/* Default task group.
3a252015 186 * Every task in system belong to this group at bootup.
29f59db3 187 */
4cf86d77 188struct task_group init_task_group = {
3a252015
IM
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191};
9b5b7751 192
24e377a8 193#ifdef CONFIG_FAIR_USER_SCHED
3a252015 194# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 195#else
3a252015 196# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
197#endif
198
4cf86d77 199static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
200
201/* return group to which a task belongs */
4cf86d77 202static inline struct task_group *task_group(struct task_struct *p)
29f59db3 203{
4cf86d77 204 struct task_group *tg;
9b5b7751 205
24e377a8
SV
206#ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
68318b8e
SV
208#elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
24e377a8 211#else
4cf86d77 212 tg = &init_task_group;
24e377a8 213#endif
9b5b7751
SV
214
215 return tg;
29f59db3
SV
216}
217
218/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 219static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 220{
ce96b5ac
DA
221 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
222 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
223}
224
225#else
226
ce96b5ac 227static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3
SV
228
229#endif /* CONFIG_FAIR_GROUP_SCHED */
230
6aa645ea
IM
231/* CFS-related fields in a runqueue */
232struct cfs_rq {
233 struct load_weight load;
234 unsigned long nr_running;
235
6aa645ea 236 u64 exec_clock;
e9acbff6 237 u64 min_vruntime;
6aa645ea
IM
238
239 struct rb_root tasks_timeline;
240 struct rb_node *rb_leftmost;
241 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
242 /* 'curr' points to currently running entity on this cfs_rq.
243 * It is set to NULL otherwise (i.e when none are currently running).
244 */
245 struct sched_entity *curr;
ddc97297
PZ
246
247 unsigned long nr_spread_over;
248
62160e3f 249#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
250 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
251
252 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 260 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
261#endif
262};
1da177e4 263
6aa645ea
IM
264/* Real-Time classes' related field in a runqueue: */
265struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269};
270
1da177e4
LT
271/*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
70b97a7f 278struct rq {
d8016491
IM
279 /* runqueue lock: */
280 spinlock_t lock;
1da177e4
LT
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
6aa645ea
IM
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 289 unsigned char idle_at_tick;
46cb4b7c
SS
290#ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292#endif
d8016491
IM
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
6aa645ea
IM
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
1da177e4 302#endif
6aa645ea 303 struct rt_rq rt;
1da177e4
LT
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
36c8b586 313 struct task_struct *curr, *idle;
c9819f45 314 unsigned long next_balance;
1da177e4 315 struct mm_struct *prev_mm;
6aa645ea 316
6aa645ea
IM
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
529c7726 323 u64 tick_timestamp;
6aa645ea 324
1da177e4
LT
325 atomic_t nr_iowait;
326
327#ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
d8016491
IM
333 /* cpu of this runqueue: */
334 int cpu;
1da177e4 335
36c8b586 336 struct task_struct *migration_thread;
1da177e4
LT
337 struct list_head migration_queue;
338#endif
339
340#ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
480b9434
KC
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
1da177e4
LT
349
350 /* schedule() stats */
480b9434
KC
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
1da177e4
LT
354
355 /* try_to_wake_up() stats */
480b9434
KC
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
b8efb561
IM
358
359 /* BKL stats */
480b9434 360 unsigned int bkl_count;
1da177e4 361#endif
fcb99371 362 struct lock_class_key rq_lock_key;
1da177e4
LT
363};
364
f34e3b61 365static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 366static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 367
dd41f596
IM
368static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369{
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371}
372
0a2966b4
CL
373static inline int cpu_of(struct rq *rq)
374{
375#ifdef CONFIG_SMP
376 return rq->cpu;
377#else
378 return 0;
379#endif
380}
381
20d315d4 382/*
b04a0f4c
IM
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
20d315d4 385 */
b04a0f4c 386static void __update_rq_clock(struct rq *rq)
20d315d4
IM
387{
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
b04a0f4c
IM
393#ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395#endif
20d315d4
IM
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
529c7726
IM
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
20d315d4
IM
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
b04a0f4c 421}
20d315d4 422
b04a0f4c
IM
423static void update_rq_clock(struct rq *rq)
424{
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
20d315d4
IM
427}
428
674311d5
NP
429/*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 431 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
48f24c4d
IM
436#define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
438
439#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440#define this_rq() (&__get_cpu_var(runqueues))
441#define task_rq(p) cpu_rq(task_cpu(p))
442#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
bf5c91ba
IM
444/*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447#ifdef CONFIG_SCHED_DEBUG
448# define const_debug __read_mostly
449#else
450# define const_debug static const
451#endif
452
453/*
454 * Debugging: various feature bits
455 */
456enum {
bbdba7c0 457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
462};
463
464const_debug unsigned int sysctl_sched_features =
8401f775 465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
9612633a 469 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
470
471#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
b82d9fdd
PZ
473/*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
e436d800
IM
479/*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483unsigned long long cpu_clock(int cpu)
484{
e436d800
IM
485 unsigned long long now;
486 unsigned long flags;
b04a0f4c 487 struct rq *rq;
e436d800 488
2cd4d0ea 489 local_irq_save(flags);
b04a0f4c
IM
490 rq = cpu_rq(cpu);
491 update_rq_clock(rq);
492 now = rq->clock;
2cd4d0ea 493 local_irq_restore(flags);
e436d800
IM
494
495 return now;
496}
a58f6f25 497EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 498
1da177e4 499#ifndef prepare_arch_switch
4866cde0
NP
500# define prepare_arch_switch(next) do { } while (0)
501#endif
502#ifndef finish_arch_switch
503# define finish_arch_switch(prev) do { } while (0)
504#endif
505
506#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 507static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
508{
509 return rq->curr == p;
510}
511
70b97a7f 512static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
513{
514}
515
70b97a7f 516static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 517{
da04c035
IM
518#ifdef CONFIG_DEBUG_SPINLOCK
519 /* this is a valid case when another task releases the spinlock */
520 rq->lock.owner = current;
521#endif
8a25d5de
IM
522 /*
523 * If we are tracking spinlock dependencies then we have to
524 * fix up the runqueue lock - which gets 'carried over' from
525 * prev into current:
526 */
527 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
528
4866cde0
NP
529 spin_unlock_irq(&rq->lock);
530}
531
532#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 533static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
534{
535#ifdef CONFIG_SMP
536 return p->oncpu;
537#else
538 return rq->curr == p;
539#endif
540}
541
70b97a7f 542static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
543{
544#ifdef CONFIG_SMP
545 /*
546 * We can optimise this out completely for !SMP, because the
547 * SMP rebalancing from interrupt is the only thing that cares
548 * here.
549 */
550 next->oncpu = 1;
551#endif
552#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 spin_unlock_irq(&rq->lock);
554#else
555 spin_unlock(&rq->lock);
556#endif
557}
558
70b97a7f 559static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
560{
561#ifdef CONFIG_SMP
562 /*
563 * After ->oncpu is cleared, the task can be moved to a different CPU.
564 * We must ensure this doesn't happen until the switch is completely
565 * finished.
566 */
567 smp_wmb();
568 prev->oncpu = 0;
569#endif
570#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
571 local_irq_enable();
1da177e4 572#endif
4866cde0
NP
573}
574#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 575
b29739f9
IM
576/*
577 * __task_rq_lock - lock the runqueue a given task resides on.
578 * Must be called interrupts disabled.
579 */
70b97a7f 580static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
581 __acquires(rq->lock)
582{
3a5c359a
AK
583 for (;;) {
584 struct rq *rq = task_rq(p);
585 spin_lock(&rq->lock);
586 if (likely(rq == task_rq(p)))
587 return rq;
b29739f9 588 spin_unlock(&rq->lock);
b29739f9 589 }
b29739f9
IM
590}
591
1da177e4
LT
592/*
593 * task_rq_lock - lock the runqueue a given task resides on and disable
594 * interrupts. Note the ordering: we can safely lookup the task_rq without
595 * explicitly disabling preemption.
596 */
70b97a7f 597static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
598 __acquires(rq->lock)
599{
70b97a7f 600 struct rq *rq;
1da177e4 601
3a5c359a
AK
602 for (;;) {
603 local_irq_save(*flags);
604 rq = task_rq(p);
605 spin_lock(&rq->lock);
606 if (likely(rq == task_rq(p)))
607 return rq;
1da177e4 608 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 609 }
1da177e4
LT
610}
611
a9957449 612static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
613 __releases(rq->lock)
614{
615 spin_unlock(&rq->lock);
616}
617
70b97a7f 618static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
619 __releases(rq->lock)
620{
621 spin_unlock_irqrestore(&rq->lock, *flags);
622}
623
1da177e4 624/*
cc2a73b5 625 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 626 */
a9957449 627static struct rq *this_rq_lock(void)
1da177e4
LT
628 __acquires(rq->lock)
629{
70b97a7f 630 struct rq *rq;
1da177e4
LT
631
632 local_irq_disable();
633 rq = this_rq();
634 spin_lock(&rq->lock);
635
636 return rq;
637}
638
1b9f19c2 639/*
2aa44d05 640 * We are going deep-idle (irqs are disabled):
1b9f19c2 641 */
2aa44d05 642void sched_clock_idle_sleep_event(void)
1b9f19c2 643{
2aa44d05
IM
644 struct rq *rq = cpu_rq(smp_processor_id());
645
646 spin_lock(&rq->lock);
647 __update_rq_clock(rq);
648 spin_unlock(&rq->lock);
649 rq->clock_deep_idle_events++;
650}
651EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
652
653/*
654 * We just idled delta nanoseconds (called with irqs disabled):
655 */
656void sched_clock_idle_wakeup_event(u64 delta_ns)
657{
658 struct rq *rq = cpu_rq(smp_processor_id());
659 u64 now = sched_clock();
1b9f19c2 660
2aa44d05
IM
661 rq->idle_clock += delta_ns;
662 /*
663 * Override the previous timestamp and ignore all
664 * sched_clock() deltas that occured while we idled,
665 * and use the PM-provided delta_ns to advance the
666 * rq clock:
667 */
668 spin_lock(&rq->lock);
669 rq->prev_clock_raw = now;
670 rq->clock += delta_ns;
671 spin_unlock(&rq->lock);
1b9f19c2 672}
2aa44d05 673EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 674
c24d20db
IM
675/*
676 * resched_task - mark a task 'to be rescheduled now'.
677 *
678 * On UP this means the setting of the need_resched flag, on SMP it
679 * might also involve a cross-CPU call to trigger the scheduler on
680 * the target CPU.
681 */
682#ifdef CONFIG_SMP
683
684#ifndef tsk_is_polling
685#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
686#endif
687
688static void resched_task(struct task_struct *p)
689{
690 int cpu;
691
692 assert_spin_locked(&task_rq(p)->lock);
693
694 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
695 return;
696
697 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
698
699 cpu = task_cpu(p);
700 if (cpu == smp_processor_id())
701 return;
702
703 /* NEED_RESCHED must be visible before we test polling */
704 smp_mb();
705 if (!tsk_is_polling(p))
706 smp_send_reschedule(cpu);
707}
708
709static void resched_cpu(int cpu)
710{
711 struct rq *rq = cpu_rq(cpu);
712 unsigned long flags;
713
714 if (!spin_trylock_irqsave(&rq->lock, flags))
715 return;
716 resched_task(cpu_curr(cpu));
717 spin_unlock_irqrestore(&rq->lock, flags);
718}
719#else
720static inline void resched_task(struct task_struct *p)
721{
722 assert_spin_locked(&task_rq(p)->lock);
723 set_tsk_need_resched(p);
724}
725#endif
726
45bf76df
IM
727#if BITS_PER_LONG == 32
728# define WMULT_CONST (~0UL)
729#else
730# define WMULT_CONST (1UL << 32)
731#endif
732
733#define WMULT_SHIFT 32
734
194081eb
IM
735/*
736 * Shift right and round:
737 */
cf2ab469 738#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 739
cb1c4fc9 740static unsigned long
45bf76df
IM
741calc_delta_mine(unsigned long delta_exec, unsigned long weight,
742 struct load_weight *lw)
743{
744 u64 tmp;
745
746 if (unlikely(!lw->inv_weight))
194081eb 747 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
748
749 tmp = (u64)delta_exec * weight;
750 /*
751 * Check whether we'd overflow the 64-bit multiplication:
752 */
194081eb 753 if (unlikely(tmp > WMULT_CONST))
cf2ab469 754 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
755 WMULT_SHIFT/2);
756 else
cf2ab469 757 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 758
ecf691da 759 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
760}
761
762static inline unsigned long
763calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
764{
765 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
766}
767
1091985b 768static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
769{
770 lw->weight += inc;
45bf76df
IM
771}
772
1091985b 773static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
774{
775 lw->weight -= dec;
45bf76df
IM
776}
777
2dd73a4f
PW
778/*
779 * To aid in avoiding the subversion of "niceness" due to uneven distribution
780 * of tasks with abnormal "nice" values across CPUs the contribution that
781 * each task makes to its run queue's load is weighted according to its
782 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 * scaled version of the new time slice allocation that they receive on time
784 * slice expiry etc.
785 */
786
dd41f596
IM
787#define WEIGHT_IDLEPRIO 2
788#define WMULT_IDLEPRIO (1 << 31)
789
790/*
791 * Nice levels are multiplicative, with a gentle 10% change for every
792 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
793 * nice 1, it will get ~10% less CPU time than another CPU-bound task
794 * that remained on nice 0.
795 *
796 * The "10% effect" is relative and cumulative: from _any_ nice level,
797 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
798 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
799 * If a task goes up by ~10% and another task goes down by ~10% then
800 * the relative distance between them is ~25%.)
dd41f596
IM
801 */
802static const int prio_to_weight[40] = {
254753dc
IM
803 /* -20 */ 88761, 71755, 56483, 46273, 36291,
804 /* -15 */ 29154, 23254, 18705, 14949, 11916,
805 /* -10 */ 9548, 7620, 6100, 4904, 3906,
806 /* -5 */ 3121, 2501, 1991, 1586, 1277,
807 /* 0 */ 1024, 820, 655, 526, 423,
808 /* 5 */ 335, 272, 215, 172, 137,
809 /* 10 */ 110, 87, 70, 56, 45,
810 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
811};
812
5714d2de
IM
813/*
814 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
815 *
816 * In cases where the weight does not change often, we can use the
817 * precalculated inverse to speed up arithmetics by turning divisions
818 * into multiplications:
819 */
dd41f596 820static const u32 prio_to_wmult[40] = {
254753dc
IM
821 /* -20 */ 48388, 59856, 76040, 92818, 118348,
822 /* -15 */ 147320, 184698, 229616, 287308, 360437,
823 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
824 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
825 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
826 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
827 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
828 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 829};
2dd73a4f 830
dd41f596
IM
831static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
832
833/*
834 * runqueue iterator, to support SMP load-balancing between different
835 * scheduling classes, without having to expose their internal data
836 * structures to the load-balancing proper:
837 */
838struct rq_iterator {
839 void *arg;
840 struct task_struct *(*start)(void *);
841 struct task_struct *(*next)(void *);
842};
843
e1d1484f
PW
844#ifdef CONFIG_SMP
845static unsigned long
846balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
847 unsigned long max_load_move, struct sched_domain *sd,
848 enum cpu_idle_type idle, int *all_pinned,
849 int *this_best_prio, struct rq_iterator *iterator);
850
851static int
852iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
853 struct sched_domain *sd, enum cpu_idle_type idle,
854 struct rq_iterator *iterator);
e1d1484f 855#endif
dd41f596 856
d842de87
SV
857#ifdef CONFIG_CGROUP_CPUACCT
858static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
859#else
860static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
861#endif
862
dd41f596 863#include "sched_stats.h"
dd41f596 864#include "sched_idletask.c"
5522d5d5
IM
865#include "sched_fair.c"
866#include "sched_rt.c"
dd41f596
IM
867#ifdef CONFIG_SCHED_DEBUG
868# include "sched_debug.c"
869#endif
870
871#define sched_class_highest (&rt_sched_class)
872
9c217245
IM
873/*
874 * Update delta_exec, delta_fair fields for rq.
875 *
876 * delta_fair clock advances at a rate inversely proportional to
495eca49 877 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
878 * delta_exec advances at the same rate as wall-clock (provided
879 * cpu is not idle).
880 *
881 * delta_exec / delta_fair is a measure of the (smoothened) load on this
882 * runqueue over any given interval. This (smoothened) load is used
883 * during load balance.
884 *
495eca49 885 * This function is called /before/ updating rq->load
9c217245
IM
886 * and when switching tasks.
887 */
29b4b623 888static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 889{
495eca49 890 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
891}
892
79b5dddf 893static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 894{
495eca49 895 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
896}
897
e5fa2237 898static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
899{
900 rq->nr_running++;
29b4b623 901 inc_load(rq, p);
9c217245
IM
902}
903
db53181e 904static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
905{
906 rq->nr_running--;
79b5dddf 907 dec_load(rq, p);
9c217245
IM
908}
909
45bf76df
IM
910static void set_load_weight(struct task_struct *p)
911{
912 if (task_has_rt_policy(p)) {
dd41f596
IM
913 p->se.load.weight = prio_to_weight[0] * 2;
914 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
915 return;
916 }
45bf76df 917
dd41f596
IM
918 /*
919 * SCHED_IDLE tasks get minimal weight:
920 */
921 if (p->policy == SCHED_IDLE) {
922 p->se.load.weight = WEIGHT_IDLEPRIO;
923 p->se.load.inv_weight = WMULT_IDLEPRIO;
924 return;
925 }
71f8bd46 926
dd41f596
IM
927 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
928 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
929}
930
8159f87e 931static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 932{
dd41f596 933 sched_info_queued(p);
fd390f6a 934 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 935 p->se.on_rq = 1;
71f8bd46
IM
936}
937
69be72c1 938static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 939{
f02231e5 940 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 941 p->se.on_rq = 0;
71f8bd46
IM
942}
943
14531189 944/*
dd41f596 945 * __normal_prio - return the priority that is based on the static prio
14531189 946 */
14531189
IM
947static inline int __normal_prio(struct task_struct *p)
948{
dd41f596 949 return p->static_prio;
14531189
IM
950}
951
b29739f9
IM
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
36c8b586 959static inline int normal_prio(struct task_struct *p)
b29739f9
IM
960{
961 int prio;
962
e05606d3 963 if (task_has_rt_policy(p))
b29739f9
IM
964 prio = MAX_RT_PRIO-1 - p->rt_priority;
965 else
966 prio = __normal_prio(p);
967 return prio;
968}
969
970/*
971 * Calculate the current priority, i.e. the priority
972 * taken into account by the scheduler. This value might
973 * be boosted by RT tasks, or might be boosted by
974 * interactivity modifiers. Will be RT if the task got
975 * RT-boosted. If not then it returns p->normal_prio.
976 */
36c8b586 977static int effective_prio(struct task_struct *p)
b29739f9
IM
978{
979 p->normal_prio = normal_prio(p);
980 /*
981 * If we are RT tasks or we were boosted to RT priority,
982 * keep the priority unchanged. Otherwise, update priority
983 * to the normal priority:
984 */
985 if (!rt_prio(p->prio))
986 return p->normal_prio;
987 return p->prio;
988}
989
1da177e4 990/*
dd41f596 991 * activate_task - move a task to the runqueue.
1da177e4 992 */
dd41f596 993static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 994{
dd41f596
IM
995 if (p->state == TASK_UNINTERRUPTIBLE)
996 rq->nr_uninterruptible--;
1da177e4 997
8159f87e 998 enqueue_task(rq, p, wakeup);
e5fa2237 999 inc_nr_running(p, rq);
1da177e4
LT
1000}
1001
1da177e4
LT
1002/*
1003 * deactivate_task - remove a task from the runqueue.
1004 */
2e1cb74a 1005static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1006{
dd41f596
IM
1007 if (p->state == TASK_UNINTERRUPTIBLE)
1008 rq->nr_uninterruptible++;
1009
69be72c1 1010 dequeue_task(rq, p, sleep);
db53181e 1011 dec_nr_running(p, rq);
1da177e4
LT
1012}
1013
1da177e4
LT
1014/**
1015 * task_curr - is this task currently executing on a CPU?
1016 * @p: the task in question.
1017 */
36c8b586 1018inline int task_curr(const struct task_struct *p)
1da177e4
LT
1019{
1020 return cpu_curr(task_cpu(p)) == p;
1021}
1022
2dd73a4f
PW
1023/* Used instead of source_load when we know the type == 0 */
1024unsigned long weighted_cpuload(const int cpu)
1025{
495eca49 1026 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1027}
1028
1029static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1030{
ce96b5ac 1031 set_task_cfs_rq(p, cpu);
dd41f596 1032#ifdef CONFIG_SMP
ce96b5ac
DA
1033 /*
1034 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1035 * successfuly executed on another CPU. We must ensure that updates of
1036 * per-task data have been completed by this moment.
1037 */
1038 smp_wmb();
dd41f596 1039 task_thread_info(p)->cpu = cpu;
dd41f596 1040#endif
2dd73a4f
PW
1041}
1042
1da177e4 1043#ifdef CONFIG_SMP
c65cc870 1044
cc367732
IM
1045/*
1046 * Is this task likely cache-hot:
1047 */
1048static inline int
1049task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1050{
1051 s64 delta;
1052
1053 if (p->sched_class != &fair_sched_class)
1054 return 0;
1055
6bc1665b
IM
1056 if (sysctl_sched_migration_cost == -1)
1057 return 1;
1058 if (sysctl_sched_migration_cost == 0)
1059 return 0;
1060
cc367732
IM
1061 delta = now - p->se.exec_start;
1062
1063 return delta < (s64)sysctl_sched_migration_cost;
1064}
1065
1066
dd41f596 1067void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1068{
dd41f596
IM
1069 int old_cpu = task_cpu(p);
1070 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1071 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1072 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1073 u64 clock_offset;
dd41f596
IM
1074
1075 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1076
1077#ifdef CONFIG_SCHEDSTATS
1078 if (p->se.wait_start)
1079 p->se.wait_start -= clock_offset;
dd41f596
IM
1080 if (p->se.sleep_start)
1081 p->se.sleep_start -= clock_offset;
1082 if (p->se.block_start)
1083 p->se.block_start -= clock_offset;
cc367732
IM
1084 if (old_cpu != new_cpu) {
1085 schedstat_inc(p, se.nr_migrations);
1086 if (task_hot(p, old_rq->clock, NULL))
1087 schedstat_inc(p, se.nr_forced2_migrations);
1088 }
6cfb0d5d 1089#endif
2830cf8c
SV
1090 p->se.vruntime -= old_cfsrq->min_vruntime -
1091 new_cfsrq->min_vruntime;
dd41f596
IM
1092
1093 __set_task_cpu(p, new_cpu);
c65cc870
IM
1094}
1095
70b97a7f 1096struct migration_req {
1da177e4 1097 struct list_head list;
1da177e4 1098
36c8b586 1099 struct task_struct *task;
1da177e4
LT
1100 int dest_cpu;
1101
1da177e4 1102 struct completion done;
70b97a7f 1103};
1da177e4
LT
1104
1105/*
1106 * The task's runqueue lock must be held.
1107 * Returns true if you have to wait for migration thread.
1108 */
36c8b586 1109static int
70b97a7f 1110migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1111{
70b97a7f 1112 struct rq *rq = task_rq(p);
1da177e4
LT
1113
1114 /*
1115 * If the task is not on a runqueue (and not running), then
1116 * it is sufficient to simply update the task's cpu field.
1117 */
dd41f596 1118 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1119 set_task_cpu(p, dest_cpu);
1120 return 0;
1121 }
1122
1123 init_completion(&req->done);
1da177e4
LT
1124 req->task = p;
1125 req->dest_cpu = dest_cpu;
1126 list_add(&req->list, &rq->migration_queue);
48f24c4d 1127
1da177e4
LT
1128 return 1;
1129}
1130
1131/*
1132 * wait_task_inactive - wait for a thread to unschedule.
1133 *
1134 * The caller must ensure that the task *will* unschedule sometime soon,
1135 * else this function might spin for a *long* time. This function can't
1136 * be called with interrupts off, or it may introduce deadlock with
1137 * smp_call_function() if an IPI is sent by the same process we are
1138 * waiting to become inactive.
1139 */
36c8b586 1140void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1141{
1142 unsigned long flags;
dd41f596 1143 int running, on_rq;
70b97a7f 1144 struct rq *rq;
1da177e4 1145
3a5c359a
AK
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
fa490cfd 1154
3a5c359a
AK
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p))
1167 cpu_relax();
fa490cfd 1168
3a5c359a
AK
1169 /*
1170 * Ok, time to look more closely! We need the rq
1171 * lock now, to be *sure*. If we're wrong, we'll
1172 * just go back and repeat.
1173 */
1174 rq = task_rq_lock(p, &flags);
1175 running = task_running(rq, p);
1176 on_rq = p->se.on_rq;
1177 task_rq_unlock(rq, &flags);
fa490cfd 1178
3a5c359a
AK
1179 /*
1180 * Was it really running after all now that we
1181 * checked with the proper locks actually held?
1182 *
1183 * Oops. Go back and try again..
1184 */
1185 if (unlikely(running)) {
1186 cpu_relax();
1187 continue;
1188 }
fa490cfd 1189
3a5c359a
AK
1190 /*
1191 * It's not enough that it's not actively running,
1192 * it must be off the runqueue _entirely_, and not
1193 * preempted!
1194 *
1195 * So if it wa still runnable (but just not actively
1196 * running right now), it's preempted, and we should
1197 * yield - it could be a while.
1198 */
1199 if (unlikely(on_rq)) {
1200 schedule_timeout_uninterruptible(1);
1201 continue;
1202 }
fa490cfd 1203
3a5c359a
AK
1204 /*
1205 * Ahh, all good. It wasn't running, and it wasn't
1206 * runnable, which means that it will never become
1207 * running in the future either. We're all done!
1208 */
1209 break;
1210 }
1da177e4
LT
1211}
1212
1213/***
1214 * kick_process - kick a running thread to enter/exit the kernel
1215 * @p: the to-be-kicked thread
1216 *
1217 * Cause a process which is running on another CPU to enter
1218 * kernel-mode, without any delay. (to get signals handled.)
1219 *
1220 * NOTE: this function doesnt have to take the runqueue lock,
1221 * because all it wants to ensure is that the remote task enters
1222 * the kernel. If the IPI races and the task has been migrated
1223 * to another CPU then no harm is done and the purpose has been
1224 * achieved as well.
1225 */
36c8b586 1226void kick_process(struct task_struct *p)
1da177e4
LT
1227{
1228 int cpu;
1229
1230 preempt_disable();
1231 cpu = task_cpu(p);
1232 if ((cpu != smp_processor_id()) && task_curr(p))
1233 smp_send_reschedule(cpu);
1234 preempt_enable();
1235}
1236
1237/*
2dd73a4f
PW
1238 * Return a low guess at the load of a migration-source cpu weighted
1239 * according to the scheduling class and "nice" value.
1da177e4
LT
1240 *
1241 * We want to under-estimate the load of migration sources, to
1242 * balance conservatively.
1243 */
a9957449 1244static unsigned long source_load(int cpu, int type)
1da177e4 1245{
70b97a7f 1246 struct rq *rq = cpu_rq(cpu);
dd41f596 1247 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1248
3b0bd9bc 1249 if (type == 0)
dd41f596 1250 return total;
b910472d 1251
dd41f596 1252 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1253}
1254
1255/*
2dd73a4f
PW
1256 * Return a high guess at the load of a migration-target cpu weighted
1257 * according to the scheduling class and "nice" value.
1da177e4 1258 */
a9957449 1259static unsigned long target_load(int cpu, int type)
1da177e4 1260{
70b97a7f 1261 struct rq *rq = cpu_rq(cpu);
dd41f596 1262 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1263
7897986b 1264 if (type == 0)
dd41f596 1265 return total;
3b0bd9bc 1266
dd41f596 1267 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1268}
1269
1270/*
1271 * Return the average load per task on the cpu's run queue
1272 */
1273static inline unsigned long cpu_avg_load_per_task(int cpu)
1274{
70b97a7f 1275 struct rq *rq = cpu_rq(cpu);
dd41f596 1276 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1277 unsigned long n = rq->nr_running;
1278
dd41f596 1279 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1280}
1281
147cbb4b
NP
1282/*
1283 * find_idlest_group finds and returns the least busy CPU group within the
1284 * domain.
1285 */
1286static struct sched_group *
1287find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1288{
1289 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1290 unsigned long min_load = ULONG_MAX, this_load = 0;
1291 int load_idx = sd->forkexec_idx;
1292 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1293
1294 do {
1295 unsigned long load, avg_load;
1296 int local_group;
1297 int i;
1298
da5a5522
BD
1299 /* Skip over this group if it has no CPUs allowed */
1300 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1301 continue;
da5a5522 1302
147cbb4b 1303 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1304
1305 /* Tally up the load of all CPUs in the group */
1306 avg_load = 0;
1307
1308 for_each_cpu_mask(i, group->cpumask) {
1309 /* Bias balancing toward cpus of our domain */
1310 if (local_group)
1311 load = source_load(i, load_idx);
1312 else
1313 load = target_load(i, load_idx);
1314
1315 avg_load += load;
1316 }
1317
1318 /* Adjust by relative CPU power of the group */
5517d86b
ED
1319 avg_load = sg_div_cpu_power(group,
1320 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1321
1322 if (local_group) {
1323 this_load = avg_load;
1324 this = group;
1325 } else if (avg_load < min_load) {
1326 min_load = avg_load;
1327 idlest = group;
1328 }
3a5c359a 1329 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1330
1331 if (!idlest || 100*this_load < imbalance*min_load)
1332 return NULL;
1333 return idlest;
1334}
1335
1336/*
0feaece9 1337 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1338 */
95cdf3b7
IM
1339static int
1340find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1341{
da5a5522 1342 cpumask_t tmp;
147cbb4b
NP
1343 unsigned long load, min_load = ULONG_MAX;
1344 int idlest = -1;
1345 int i;
1346
da5a5522
BD
1347 /* Traverse only the allowed CPUs */
1348 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1349
1350 for_each_cpu_mask(i, tmp) {
2dd73a4f 1351 load = weighted_cpuload(i);
147cbb4b
NP
1352
1353 if (load < min_load || (load == min_load && i == this_cpu)) {
1354 min_load = load;
1355 idlest = i;
1356 }
1357 }
1358
1359 return idlest;
1360}
1361
476d139c
NP
1362/*
1363 * sched_balance_self: balance the current task (running on cpu) in domains
1364 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1365 * SD_BALANCE_EXEC.
1366 *
1367 * Balance, ie. select the least loaded group.
1368 *
1369 * Returns the target CPU number, or the same CPU if no balancing is needed.
1370 *
1371 * preempt must be disabled.
1372 */
1373static int sched_balance_self(int cpu, int flag)
1374{
1375 struct task_struct *t = current;
1376 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1377
c96d145e 1378 for_each_domain(cpu, tmp) {
9761eea8
IM
1379 /*
1380 * If power savings logic is enabled for a domain, stop there.
1381 */
5c45bf27
SS
1382 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1383 break;
476d139c
NP
1384 if (tmp->flags & flag)
1385 sd = tmp;
c96d145e 1386 }
476d139c
NP
1387
1388 while (sd) {
1389 cpumask_t span;
1390 struct sched_group *group;
1a848870
SS
1391 int new_cpu, weight;
1392
1393 if (!(sd->flags & flag)) {
1394 sd = sd->child;
1395 continue;
1396 }
476d139c
NP
1397
1398 span = sd->span;
1399 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1400 if (!group) {
1401 sd = sd->child;
1402 continue;
1403 }
476d139c 1404
da5a5522 1405 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1406 if (new_cpu == -1 || new_cpu == cpu) {
1407 /* Now try balancing at a lower domain level of cpu */
1408 sd = sd->child;
1409 continue;
1410 }
476d139c 1411
1a848870 1412 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1413 cpu = new_cpu;
476d139c
NP
1414 sd = NULL;
1415 weight = cpus_weight(span);
1416 for_each_domain(cpu, tmp) {
1417 if (weight <= cpus_weight(tmp->span))
1418 break;
1419 if (tmp->flags & flag)
1420 sd = tmp;
1421 }
1422 /* while loop will break here if sd == NULL */
1423 }
1424
1425 return cpu;
1426}
1427
1428#endif /* CONFIG_SMP */
1da177e4
LT
1429
1430/*
1431 * wake_idle() will wake a task on an idle cpu if task->cpu is
1432 * not idle and an idle cpu is available. The span of cpus to
1433 * search starts with cpus closest then further out as needed,
1434 * so we always favor a closer, idle cpu.
1435 *
1436 * Returns the CPU we should wake onto.
1437 */
1438#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1439static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1440{
1441 cpumask_t tmp;
1442 struct sched_domain *sd;
1443 int i;
1444
4953198b
SS
1445 /*
1446 * If it is idle, then it is the best cpu to run this task.
1447 *
1448 * This cpu is also the best, if it has more than one task already.
1449 * Siblings must be also busy(in most cases) as they didn't already
1450 * pickup the extra load from this cpu and hence we need not check
1451 * sibling runqueue info. This will avoid the checks and cache miss
1452 * penalities associated with that.
1453 */
1454 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1455 return cpu;
1456
1457 for_each_domain(cpu, sd) {
1458 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1459 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1460 for_each_cpu_mask(i, tmp) {
cc367732
IM
1461 if (idle_cpu(i)) {
1462 if (i != task_cpu(p)) {
1463 schedstat_inc(p,
1464 se.nr_wakeups_idle);
1465 }
1da177e4 1466 return i;
cc367732 1467 }
1da177e4 1468 }
9761eea8 1469 } else {
e0f364f4 1470 break;
9761eea8 1471 }
1da177e4
LT
1472 }
1473 return cpu;
1474}
1475#else
36c8b586 1476static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1477{
1478 return cpu;
1479}
1480#endif
1481
1482/***
1483 * try_to_wake_up - wake up a thread
1484 * @p: the to-be-woken-up thread
1485 * @state: the mask of task states that can be woken
1486 * @sync: do a synchronous wakeup?
1487 *
1488 * Put it on the run-queue if it's not already there. The "current"
1489 * thread is always on the run-queue (except when the actual
1490 * re-schedule is in progress), and as such you're allowed to do
1491 * the simpler "current->state = TASK_RUNNING" to mark yourself
1492 * runnable without the overhead of this.
1493 *
1494 * returns failure only if the task is already active.
1495 */
36c8b586 1496static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1497{
cc367732 1498 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1499 unsigned long flags;
1500 long old_state;
70b97a7f 1501 struct rq *rq;
1da177e4 1502#ifdef CONFIG_SMP
7897986b 1503 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1504 unsigned long load, this_load;
1da177e4
LT
1505 int new_cpu;
1506#endif
1507
1508 rq = task_rq_lock(p, &flags);
1509 old_state = p->state;
1510 if (!(old_state & state))
1511 goto out;
1512
dd41f596 1513 if (p->se.on_rq)
1da177e4
LT
1514 goto out_running;
1515
1516 cpu = task_cpu(p);
cc367732 1517 orig_cpu = cpu;
1da177e4
LT
1518 this_cpu = smp_processor_id();
1519
1520#ifdef CONFIG_SMP
1521 if (unlikely(task_running(rq, p)))
1522 goto out_activate;
1523
7897986b
NP
1524 new_cpu = cpu;
1525
2d72376b 1526 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1527 if (cpu == this_cpu) {
1528 schedstat_inc(rq, ttwu_local);
7897986b
NP
1529 goto out_set_cpu;
1530 }
1531
1532 for_each_domain(this_cpu, sd) {
1533 if (cpu_isset(cpu, sd->span)) {
1534 schedstat_inc(sd, ttwu_wake_remote);
1535 this_sd = sd;
1536 break;
1da177e4
LT
1537 }
1538 }
1da177e4 1539
7897986b 1540 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1541 goto out_set_cpu;
1542
1da177e4 1543 /*
7897986b 1544 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1545 */
7897986b
NP
1546 if (this_sd) {
1547 int idx = this_sd->wake_idx;
1548 unsigned int imbalance;
1da177e4 1549
a3f21bce
NP
1550 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1551
7897986b
NP
1552 load = source_load(cpu, idx);
1553 this_load = target_load(this_cpu, idx);
1da177e4 1554
7897986b
NP
1555 new_cpu = this_cpu; /* Wake to this CPU if we can */
1556
a3f21bce
NP
1557 if (this_sd->flags & SD_WAKE_AFFINE) {
1558 unsigned long tl = this_load;
33859f7f
MOS
1559 unsigned long tl_per_task;
1560
71e20f18
IM
1561 /*
1562 * Attract cache-cold tasks on sync wakeups:
1563 */
1564 if (sync && !task_hot(p, rq->clock, this_sd))
1565 goto out_set_cpu;
1566
cc367732 1567 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1568 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1569
1da177e4 1570 /*
a3f21bce
NP
1571 * If sync wakeup then subtract the (maximum possible)
1572 * effect of the currently running task from the load
1573 * of the current CPU:
1da177e4 1574 */
a3f21bce 1575 if (sync)
dd41f596 1576 tl -= current->se.load.weight;
a3f21bce
NP
1577
1578 if ((tl <= load &&
2dd73a4f 1579 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1580 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1581 /*
1582 * This domain has SD_WAKE_AFFINE and
1583 * p is cache cold in this domain, and
1584 * there is no bad imbalance.
1585 */
1586 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1587 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1588 goto out_set_cpu;
1589 }
1590 }
1591
1592 /*
1593 * Start passive balancing when half the imbalance_pct
1594 * limit is reached.
1595 */
1596 if (this_sd->flags & SD_WAKE_BALANCE) {
1597 if (imbalance*this_load <= 100*load) {
1598 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1599 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1600 goto out_set_cpu;
1601 }
1da177e4
LT
1602 }
1603 }
1604
1605 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1606out_set_cpu:
1607 new_cpu = wake_idle(new_cpu, p);
1608 if (new_cpu != cpu) {
1609 set_task_cpu(p, new_cpu);
1610 task_rq_unlock(rq, &flags);
1611 /* might preempt at this point */
1612 rq = task_rq_lock(p, &flags);
1613 old_state = p->state;
1614 if (!(old_state & state))
1615 goto out;
dd41f596 1616 if (p->se.on_rq)
1da177e4
LT
1617 goto out_running;
1618
1619 this_cpu = smp_processor_id();
1620 cpu = task_cpu(p);
1621 }
1622
1623out_activate:
1624#endif /* CONFIG_SMP */
cc367732
IM
1625 schedstat_inc(p, se.nr_wakeups);
1626 if (sync)
1627 schedstat_inc(p, se.nr_wakeups_sync);
1628 if (orig_cpu != cpu)
1629 schedstat_inc(p, se.nr_wakeups_migrate);
1630 if (cpu == this_cpu)
1631 schedstat_inc(p, se.nr_wakeups_local);
1632 else
1633 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1634 update_rq_clock(rq);
dd41f596 1635 activate_task(rq, p, 1);
9c63d9c0 1636 check_preempt_curr(rq, p);
1da177e4
LT
1637 success = 1;
1638
1639out_running:
1640 p->state = TASK_RUNNING;
1641out:
1642 task_rq_unlock(rq, &flags);
1643
1644 return success;
1645}
1646
36c8b586 1647int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1648{
1649 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1650 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1651}
1da177e4
LT
1652EXPORT_SYMBOL(wake_up_process);
1653
36c8b586 1654int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1655{
1656 return try_to_wake_up(p, state, 0);
1657}
1658
1da177e4
LT
1659/*
1660 * Perform scheduler related setup for a newly forked process p.
1661 * p is forked by current.
dd41f596
IM
1662 *
1663 * __sched_fork() is basic setup used by init_idle() too:
1664 */
1665static void __sched_fork(struct task_struct *p)
1666{
dd41f596
IM
1667 p->se.exec_start = 0;
1668 p->se.sum_exec_runtime = 0;
f6cf891c 1669 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1670
1671#ifdef CONFIG_SCHEDSTATS
1672 p->se.wait_start = 0;
dd41f596
IM
1673 p->se.sum_sleep_runtime = 0;
1674 p->se.sleep_start = 0;
dd41f596
IM
1675 p->se.block_start = 0;
1676 p->se.sleep_max = 0;
1677 p->se.block_max = 0;
1678 p->se.exec_max = 0;
eba1ed4b 1679 p->se.slice_max = 0;
dd41f596 1680 p->se.wait_max = 0;
6cfb0d5d 1681#endif
476d139c 1682
dd41f596
IM
1683 INIT_LIST_HEAD(&p->run_list);
1684 p->se.on_rq = 0;
476d139c 1685
e107be36
AK
1686#ifdef CONFIG_PREEMPT_NOTIFIERS
1687 INIT_HLIST_HEAD(&p->preempt_notifiers);
1688#endif
1689
1da177e4
LT
1690 /*
1691 * We mark the process as running here, but have not actually
1692 * inserted it onto the runqueue yet. This guarantees that
1693 * nobody will actually run it, and a signal or other external
1694 * event cannot wake it up and insert it on the runqueue either.
1695 */
1696 p->state = TASK_RUNNING;
dd41f596
IM
1697}
1698
1699/*
1700 * fork()/clone()-time setup:
1701 */
1702void sched_fork(struct task_struct *p, int clone_flags)
1703{
1704 int cpu = get_cpu();
1705
1706 __sched_fork(p);
1707
1708#ifdef CONFIG_SMP
1709 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1710#endif
02e4bac2 1711 set_task_cpu(p, cpu);
b29739f9
IM
1712
1713 /*
1714 * Make sure we do not leak PI boosting priority to the child:
1715 */
1716 p->prio = current->normal_prio;
2ddbf952
HS
1717 if (!rt_prio(p->prio))
1718 p->sched_class = &fair_sched_class;
b29739f9 1719
52f17b6c 1720#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1721 if (likely(sched_info_on()))
52f17b6c 1722 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1723#endif
d6077cb8 1724#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1725 p->oncpu = 0;
1726#endif
1da177e4 1727#ifdef CONFIG_PREEMPT
4866cde0 1728 /* Want to start with kernel preemption disabled. */
a1261f54 1729 task_thread_info(p)->preempt_count = 1;
1da177e4 1730#endif
476d139c 1731 put_cpu();
1da177e4
LT
1732}
1733
1734/*
1735 * wake_up_new_task - wake up a newly created task for the first time.
1736 *
1737 * This function will do some initial scheduler statistics housekeeping
1738 * that must be done for every newly created context, then puts the task
1739 * on the runqueue and wakes it.
1740 */
36c8b586 1741void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1742{
1743 unsigned long flags;
dd41f596 1744 struct rq *rq;
1da177e4
LT
1745
1746 rq = task_rq_lock(p, &flags);
147cbb4b 1747 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1748 update_rq_clock(rq);
1da177e4
LT
1749
1750 p->prio = effective_prio(p);
1751
b9dca1e0 1752 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1753 activate_task(rq, p, 0);
1da177e4 1754 } else {
1da177e4 1755 /*
dd41f596
IM
1756 * Let the scheduling class do new task startup
1757 * management (if any):
1da177e4 1758 */
ee0827d8 1759 p->sched_class->task_new(rq, p);
e5fa2237 1760 inc_nr_running(p, rq);
1da177e4 1761 }
dd41f596
IM
1762 check_preempt_curr(rq, p);
1763 task_rq_unlock(rq, &flags);
1da177e4
LT
1764}
1765
e107be36
AK
1766#ifdef CONFIG_PREEMPT_NOTIFIERS
1767
1768/**
421cee29
RD
1769 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1770 * @notifier: notifier struct to register
e107be36
AK
1771 */
1772void preempt_notifier_register(struct preempt_notifier *notifier)
1773{
1774 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1775}
1776EXPORT_SYMBOL_GPL(preempt_notifier_register);
1777
1778/**
1779 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1780 * @notifier: notifier struct to unregister
e107be36
AK
1781 *
1782 * This is safe to call from within a preemption notifier.
1783 */
1784void preempt_notifier_unregister(struct preempt_notifier *notifier)
1785{
1786 hlist_del(&notifier->link);
1787}
1788EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1789
1790static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1791{
1792 struct preempt_notifier *notifier;
1793 struct hlist_node *node;
1794
1795 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1796 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1797}
1798
1799static void
1800fire_sched_out_preempt_notifiers(struct task_struct *curr,
1801 struct task_struct *next)
1802{
1803 struct preempt_notifier *notifier;
1804 struct hlist_node *node;
1805
1806 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1807 notifier->ops->sched_out(notifier, next);
1808}
1809
1810#else
1811
1812static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1813{
1814}
1815
1816static void
1817fire_sched_out_preempt_notifiers(struct task_struct *curr,
1818 struct task_struct *next)
1819{
1820}
1821
1822#endif
1823
4866cde0
NP
1824/**
1825 * prepare_task_switch - prepare to switch tasks
1826 * @rq: the runqueue preparing to switch
421cee29 1827 * @prev: the current task that is being switched out
4866cde0
NP
1828 * @next: the task we are going to switch to.
1829 *
1830 * This is called with the rq lock held and interrupts off. It must
1831 * be paired with a subsequent finish_task_switch after the context
1832 * switch.
1833 *
1834 * prepare_task_switch sets up locking and calls architecture specific
1835 * hooks.
1836 */
e107be36
AK
1837static inline void
1838prepare_task_switch(struct rq *rq, struct task_struct *prev,
1839 struct task_struct *next)
4866cde0 1840{
e107be36 1841 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1842 prepare_lock_switch(rq, next);
1843 prepare_arch_switch(next);
1844}
1845
1da177e4
LT
1846/**
1847 * finish_task_switch - clean up after a task-switch
344babaa 1848 * @rq: runqueue associated with task-switch
1da177e4
LT
1849 * @prev: the thread we just switched away from.
1850 *
4866cde0
NP
1851 * finish_task_switch must be called after the context switch, paired
1852 * with a prepare_task_switch call before the context switch.
1853 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1854 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1855 *
1856 * Note that we may have delayed dropping an mm in context_switch(). If
1857 * so, we finish that here outside of the runqueue lock. (Doing it
1858 * with the lock held can cause deadlocks; see schedule() for
1859 * details.)
1860 */
a9957449 1861static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1862 __releases(rq->lock)
1863{
1da177e4 1864 struct mm_struct *mm = rq->prev_mm;
55a101f8 1865 long prev_state;
1da177e4
LT
1866
1867 rq->prev_mm = NULL;
1868
1869 /*
1870 * A task struct has one reference for the use as "current".
c394cc9f 1871 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1872 * schedule one last time. The schedule call will never return, and
1873 * the scheduled task must drop that reference.
c394cc9f 1874 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1875 * still held, otherwise prev could be scheduled on another cpu, die
1876 * there before we look at prev->state, and then the reference would
1877 * be dropped twice.
1878 * Manfred Spraul <manfred@colorfullife.com>
1879 */
55a101f8 1880 prev_state = prev->state;
4866cde0
NP
1881 finish_arch_switch(prev);
1882 finish_lock_switch(rq, prev);
e107be36 1883 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1884 if (mm)
1885 mmdrop(mm);
c394cc9f 1886 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1887 /*
1888 * Remove function-return probe instances associated with this
1889 * task and put them back on the free list.
9761eea8 1890 */
c6fd91f0 1891 kprobe_flush_task(prev);
1da177e4 1892 put_task_struct(prev);
c6fd91f0 1893 }
1da177e4
LT
1894}
1895
1896/**
1897 * schedule_tail - first thing a freshly forked thread must call.
1898 * @prev: the thread we just switched away from.
1899 */
36c8b586 1900asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1901 __releases(rq->lock)
1902{
70b97a7f
IM
1903 struct rq *rq = this_rq();
1904
4866cde0
NP
1905 finish_task_switch(rq, prev);
1906#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1907 /* In this case, finish_task_switch does not reenable preemption */
1908 preempt_enable();
1909#endif
1da177e4 1910 if (current->set_child_tid)
b488893a 1911 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1912}
1913
1914/*
1915 * context_switch - switch to the new MM and the new
1916 * thread's register state.
1917 */
dd41f596 1918static inline void
70b97a7f 1919context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1920 struct task_struct *next)
1da177e4 1921{
dd41f596 1922 struct mm_struct *mm, *oldmm;
1da177e4 1923
e107be36 1924 prepare_task_switch(rq, prev, next);
dd41f596
IM
1925 mm = next->mm;
1926 oldmm = prev->active_mm;
9226d125
ZA
1927 /*
1928 * For paravirt, this is coupled with an exit in switch_to to
1929 * combine the page table reload and the switch backend into
1930 * one hypercall.
1931 */
1932 arch_enter_lazy_cpu_mode();
1933
dd41f596 1934 if (unlikely(!mm)) {
1da177e4
LT
1935 next->active_mm = oldmm;
1936 atomic_inc(&oldmm->mm_count);
1937 enter_lazy_tlb(oldmm, next);
1938 } else
1939 switch_mm(oldmm, mm, next);
1940
dd41f596 1941 if (unlikely(!prev->mm)) {
1da177e4 1942 prev->active_mm = NULL;
1da177e4
LT
1943 rq->prev_mm = oldmm;
1944 }
3a5f5e48
IM
1945 /*
1946 * Since the runqueue lock will be released by the next
1947 * task (which is an invalid locking op but in the case
1948 * of the scheduler it's an obvious special-case), so we
1949 * do an early lockdep release here:
1950 */
1951#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1952 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1953#endif
1da177e4
LT
1954
1955 /* Here we just switch the register state and the stack. */
1956 switch_to(prev, next, prev);
1957
dd41f596
IM
1958 barrier();
1959 /*
1960 * this_rq must be evaluated again because prev may have moved
1961 * CPUs since it called schedule(), thus the 'rq' on its stack
1962 * frame will be invalid.
1963 */
1964 finish_task_switch(this_rq(), prev);
1da177e4
LT
1965}
1966
1967/*
1968 * nr_running, nr_uninterruptible and nr_context_switches:
1969 *
1970 * externally visible scheduler statistics: current number of runnable
1971 * threads, current number of uninterruptible-sleeping threads, total
1972 * number of context switches performed since bootup.
1973 */
1974unsigned long nr_running(void)
1975{
1976 unsigned long i, sum = 0;
1977
1978 for_each_online_cpu(i)
1979 sum += cpu_rq(i)->nr_running;
1980
1981 return sum;
1982}
1983
1984unsigned long nr_uninterruptible(void)
1985{
1986 unsigned long i, sum = 0;
1987
0a945022 1988 for_each_possible_cpu(i)
1da177e4
LT
1989 sum += cpu_rq(i)->nr_uninterruptible;
1990
1991 /*
1992 * Since we read the counters lockless, it might be slightly
1993 * inaccurate. Do not allow it to go below zero though:
1994 */
1995 if (unlikely((long)sum < 0))
1996 sum = 0;
1997
1998 return sum;
1999}
2000
2001unsigned long long nr_context_switches(void)
2002{
cc94abfc
SR
2003 int i;
2004 unsigned long long sum = 0;
1da177e4 2005
0a945022 2006 for_each_possible_cpu(i)
1da177e4
LT
2007 sum += cpu_rq(i)->nr_switches;
2008
2009 return sum;
2010}
2011
2012unsigned long nr_iowait(void)
2013{
2014 unsigned long i, sum = 0;
2015
0a945022 2016 for_each_possible_cpu(i)
1da177e4
LT
2017 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2018
2019 return sum;
2020}
2021
db1b1fef
JS
2022unsigned long nr_active(void)
2023{
2024 unsigned long i, running = 0, uninterruptible = 0;
2025
2026 for_each_online_cpu(i) {
2027 running += cpu_rq(i)->nr_running;
2028 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2029 }
2030
2031 if (unlikely((long)uninterruptible < 0))
2032 uninterruptible = 0;
2033
2034 return running + uninterruptible;
2035}
2036
48f24c4d 2037/*
dd41f596
IM
2038 * Update rq->cpu_load[] statistics. This function is usually called every
2039 * scheduler tick (TICK_NSEC).
48f24c4d 2040 */
dd41f596 2041static void update_cpu_load(struct rq *this_rq)
48f24c4d 2042{
495eca49 2043 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2044 int i, scale;
2045
2046 this_rq->nr_load_updates++;
dd41f596
IM
2047
2048 /* Update our load: */
2049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2050 unsigned long old_load, new_load;
2051
2052 /* scale is effectively 1 << i now, and >> i divides by scale */
2053
2054 old_load = this_rq->cpu_load[i];
2055 new_load = this_load;
a25707f3
IM
2056 /*
2057 * Round up the averaging division if load is increasing. This
2058 * prevents us from getting stuck on 9 if the load is 10, for
2059 * example.
2060 */
2061 if (new_load > old_load)
2062 new_load += scale-1;
dd41f596
IM
2063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2064 }
48f24c4d
IM
2065}
2066
dd41f596
IM
2067#ifdef CONFIG_SMP
2068
1da177e4
LT
2069/*
2070 * double_rq_lock - safely lock two runqueues
2071 *
2072 * Note this does not disable interrupts like task_rq_lock,
2073 * you need to do so manually before calling.
2074 */
70b97a7f 2075static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2076 __acquires(rq1->lock)
2077 __acquires(rq2->lock)
2078{
054b9108 2079 BUG_ON(!irqs_disabled());
1da177e4
LT
2080 if (rq1 == rq2) {
2081 spin_lock(&rq1->lock);
2082 __acquire(rq2->lock); /* Fake it out ;) */
2083 } else {
c96d145e 2084 if (rq1 < rq2) {
1da177e4
LT
2085 spin_lock(&rq1->lock);
2086 spin_lock(&rq2->lock);
2087 } else {
2088 spin_lock(&rq2->lock);
2089 spin_lock(&rq1->lock);
2090 }
2091 }
6e82a3be
IM
2092 update_rq_clock(rq1);
2093 update_rq_clock(rq2);
1da177e4
LT
2094}
2095
2096/*
2097 * double_rq_unlock - safely unlock two runqueues
2098 *
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2101 */
70b97a7f 2102static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2103 __releases(rq1->lock)
2104 __releases(rq2->lock)
2105{
2106 spin_unlock(&rq1->lock);
2107 if (rq1 != rq2)
2108 spin_unlock(&rq2->lock);
2109 else
2110 __release(rq2->lock);
2111}
2112
2113/*
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2115 */
70b97a7f 2116static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2117 __releases(this_rq->lock)
2118 __acquires(busiest->lock)
2119 __acquires(this_rq->lock)
2120{
054b9108
KK
2121 if (unlikely(!irqs_disabled())) {
2122 /* printk() doesn't work good under rq->lock */
2123 spin_unlock(&this_rq->lock);
2124 BUG_ON(1);
2125 }
1da177e4 2126 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2127 if (busiest < this_rq) {
1da177e4
LT
2128 spin_unlock(&this_rq->lock);
2129 spin_lock(&busiest->lock);
2130 spin_lock(&this_rq->lock);
2131 } else
2132 spin_lock(&busiest->lock);
2133 }
2134}
2135
1da177e4
LT
2136/*
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2141 */
36c8b586 2142static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2143{
70b97a7f 2144 struct migration_req req;
1da177e4 2145 unsigned long flags;
70b97a7f 2146 struct rq *rq;
1da177e4
LT
2147
2148 rq = task_rq_lock(p, &flags);
2149 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2150 || unlikely(cpu_is_offline(dest_cpu)))
2151 goto out;
2152
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p, dest_cpu, &req)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct *mt = rq->migration_thread;
36c8b586 2157
1da177e4
LT
2158 get_task_struct(mt);
2159 task_rq_unlock(rq, &flags);
2160 wake_up_process(mt);
2161 put_task_struct(mt);
2162 wait_for_completion(&req.done);
36c8b586 2163
1da177e4
LT
2164 return;
2165 }
2166out:
2167 task_rq_unlock(rq, &flags);
2168}
2169
2170/*
476d139c
NP
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2173 */
2174void sched_exec(void)
2175{
1da177e4 2176 int new_cpu, this_cpu = get_cpu();
476d139c 2177 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2178 put_cpu();
476d139c
NP
2179 if (new_cpu != this_cpu)
2180 sched_migrate_task(current, new_cpu);
1da177e4
LT
2181}
2182
2183/*
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2186 */
dd41f596
IM
2187static void pull_task(struct rq *src_rq, struct task_struct *p,
2188 struct rq *this_rq, int this_cpu)
1da177e4 2189{
2e1cb74a 2190 deactivate_task(src_rq, p, 0);
1da177e4 2191 set_task_cpu(p, this_cpu);
dd41f596 2192 activate_task(this_rq, p, 0);
1da177e4
LT
2193 /*
2194 * Note that idle threads have a prio of MAX_PRIO, for this test
2195 * to be always true for them.
2196 */
dd41f596 2197 check_preempt_curr(this_rq, p);
1da177e4
LT
2198}
2199
2200/*
2201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2202 */
858119e1 2203static
70b97a7f 2204int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2205 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2206 int *all_pinned)
1da177e4
LT
2207{
2208 /*
2209 * We do not migrate tasks that are:
2210 * 1) running (obviously), or
2211 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2212 * 3) are cache-hot on their current CPU.
2213 */
cc367732
IM
2214 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2215 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2216 return 0;
cc367732 2217 }
81026794
NP
2218 *all_pinned = 0;
2219
cc367732
IM
2220 if (task_running(rq, p)) {
2221 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2222 return 0;
cc367732 2223 }
1da177e4 2224
da84d961
IM
2225 /*
2226 * Aggressive migration if:
2227 * 1) task is cache cold, or
2228 * 2) too many balance attempts have failed.
2229 */
2230
6bc1665b
IM
2231 if (!task_hot(p, rq->clock, sd) ||
2232 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2233#ifdef CONFIG_SCHEDSTATS
cc367732 2234 if (task_hot(p, rq->clock, sd)) {
da84d961 2235 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2236 schedstat_inc(p, se.nr_forced_migrations);
2237 }
da84d961
IM
2238#endif
2239 return 1;
2240 }
2241
cc367732
IM
2242 if (task_hot(p, rq->clock, sd)) {
2243 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2244 return 0;
cc367732 2245 }
1da177e4
LT
2246 return 1;
2247}
2248
e1d1484f
PW
2249static unsigned long
2250balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2251 unsigned long max_load_move, struct sched_domain *sd,
2252 enum cpu_idle_type idle, int *all_pinned,
2253 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2254{
b82d9fdd 2255 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2256 struct task_struct *p;
2257 long rem_load_move = max_load_move;
1da177e4 2258
e1d1484f 2259 if (max_load_move == 0)
1da177e4
LT
2260 goto out;
2261
81026794
NP
2262 pinned = 1;
2263
1da177e4 2264 /*
dd41f596 2265 * Start the load-balancing iterator:
1da177e4 2266 */
dd41f596
IM
2267 p = iterator->start(iterator->arg);
2268next:
b82d9fdd 2269 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2270 goto out;
50ddd969 2271 /*
b82d9fdd 2272 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2273 * skip a task if it will be the highest priority task (i.e. smallest
2274 * prio value) on its new queue regardless of its load weight
2275 */
dd41f596
IM
2276 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2277 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2278 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2279 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2280 p = iterator->next(iterator->arg);
2281 goto next;
1da177e4
LT
2282 }
2283
dd41f596 2284 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2285 pulled++;
dd41f596 2286 rem_load_move -= p->se.load.weight;
1da177e4 2287
2dd73a4f 2288 /*
b82d9fdd 2289 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2290 */
e1d1484f 2291 if (rem_load_move > 0) {
a4ac01c3
PW
2292 if (p->prio < *this_best_prio)
2293 *this_best_prio = p->prio;
dd41f596
IM
2294 p = iterator->next(iterator->arg);
2295 goto next;
1da177e4
LT
2296 }
2297out:
2298 /*
e1d1484f 2299 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2300 * so we can safely collect pull_task() stats here rather than
2301 * inside pull_task().
2302 */
2303 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2304
2305 if (all_pinned)
2306 *all_pinned = pinned;
e1d1484f
PW
2307
2308 return max_load_move - rem_load_move;
1da177e4
LT
2309}
2310
dd41f596 2311/*
43010659
PW
2312 * move_tasks tries to move up to max_load_move weighted load from busiest to
2313 * this_rq, as part of a balancing operation within domain "sd".
2314 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2315 *
2316 * Called with both runqueues locked.
2317 */
2318static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2319 unsigned long max_load_move,
dd41f596
IM
2320 struct sched_domain *sd, enum cpu_idle_type idle,
2321 int *all_pinned)
2322{
5522d5d5 2323 const struct sched_class *class = sched_class_highest;
43010659 2324 unsigned long total_load_moved = 0;
a4ac01c3 2325 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2326
2327 do {
43010659
PW
2328 total_load_moved +=
2329 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2330 max_load_move - total_load_moved,
a4ac01c3 2331 sd, idle, all_pinned, &this_best_prio);
dd41f596 2332 class = class->next;
43010659 2333 } while (class && max_load_move > total_load_moved);
dd41f596 2334
43010659
PW
2335 return total_load_moved > 0;
2336}
2337
e1d1484f
PW
2338static int
2339iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2340 struct sched_domain *sd, enum cpu_idle_type idle,
2341 struct rq_iterator *iterator)
2342{
2343 struct task_struct *p = iterator->start(iterator->arg);
2344 int pinned = 0;
2345
2346 while (p) {
2347 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2348 pull_task(busiest, p, this_rq, this_cpu);
2349 /*
2350 * Right now, this is only the second place pull_task()
2351 * is called, so we can safely collect pull_task()
2352 * stats here rather than inside pull_task().
2353 */
2354 schedstat_inc(sd, lb_gained[idle]);
2355
2356 return 1;
2357 }
2358 p = iterator->next(iterator->arg);
2359 }
2360
2361 return 0;
2362}
2363
43010659
PW
2364/*
2365 * move_one_task tries to move exactly one task from busiest to this_rq, as
2366 * part of active balancing operations within "domain".
2367 * Returns 1 if successful and 0 otherwise.
2368 *
2369 * Called with both runqueues locked.
2370 */
2371static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2372 struct sched_domain *sd, enum cpu_idle_type idle)
2373{
5522d5d5 2374 const struct sched_class *class;
43010659
PW
2375
2376 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2377 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2378 return 1;
2379
2380 return 0;
dd41f596
IM
2381}
2382
1da177e4
LT
2383/*
2384 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2385 * domain. It calculates and returns the amount of weighted load which
2386 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2387 */
2388static struct sched_group *
2389find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2390 unsigned long *imbalance, enum cpu_idle_type idle,
2391 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2392{
2393 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2394 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2395 unsigned long max_pull;
2dd73a4f
PW
2396 unsigned long busiest_load_per_task, busiest_nr_running;
2397 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2398 int load_idx, group_imb = 0;
5c45bf27
SS
2399#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2400 int power_savings_balance = 1;
2401 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2402 unsigned long min_nr_running = ULONG_MAX;
2403 struct sched_group *group_min = NULL, *group_leader = NULL;
2404#endif
1da177e4
LT
2405
2406 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2407 busiest_load_per_task = busiest_nr_running = 0;
2408 this_load_per_task = this_nr_running = 0;
d15bcfdb 2409 if (idle == CPU_NOT_IDLE)
7897986b 2410 load_idx = sd->busy_idx;
d15bcfdb 2411 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2412 load_idx = sd->newidle_idx;
2413 else
2414 load_idx = sd->idle_idx;
1da177e4
LT
2415
2416 do {
908a7c1b 2417 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2418 int local_group;
2419 int i;
908a7c1b 2420 int __group_imb = 0;
783609c6 2421 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2422 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2423
2424 local_group = cpu_isset(this_cpu, group->cpumask);
2425
783609c6
SS
2426 if (local_group)
2427 balance_cpu = first_cpu(group->cpumask);
2428
1da177e4 2429 /* Tally up the load of all CPUs in the group */
2dd73a4f 2430 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2431 max_cpu_load = 0;
2432 min_cpu_load = ~0UL;
1da177e4
LT
2433
2434 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2435 struct rq *rq;
2436
2437 if (!cpu_isset(i, *cpus))
2438 continue;
2439
2440 rq = cpu_rq(i);
2dd73a4f 2441
9439aab8 2442 if (*sd_idle && rq->nr_running)
5969fe06
NP
2443 *sd_idle = 0;
2444
1da177e4 2445 /* Bias balancing toward cpus of our domain */
783609c6
SS
2446 if (local_group) {
2447 if (idle_cpu(i) && !first_idle_cpu) {
2448 first_idle_cpu = 1;
2449 balance_cpu = i;
2450 }
2451
a2000572 2452 load = target_load(i, load_idx);
908a7c1b 2453 } else {
a2000572 2454 load = source_load(i, load_idx);
908a7c1b
KC
2455 if (load > max_cpu_load)
2456 max_cpu_load = load;
2457 if (min_cpu_load > load)
2458 min_cpu_load = load;
2459 }
1da177e4
LT
2460
2461 avg_load += load;
2dd73a4f 2462 sum_nr_running += rq->nr_running;
dd41f596 2463 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2464 }
2465
783609c6
SS
2466 /*
2467 * First idle cpu or the first cpu(busiest) in this sched group
2468 * is eligible for doing load balancing at this and above
9439aab8
SS
2469 * domains. In the newly idle case, we will allow all the cpu's
2470 * to do the newly idle load balance.
783609c6 2471 */
9439aab8
SS
2472 if (idle != CPU_NEWLY_IDLE && local_group &&
2473 balance_cpu != this_cpu && balance) {
783609c6
SS
2474 *balance = 0;
2475 goto ret;
2476 }
2477
1da177e4 2478 total_load += avg_load;
5517d86b 2479 total_pwr += group->__cpu_power;
1da177e4
LT
2480
2481 /* Adjust by relative CPU power of the group */
5517d86b
ED
2482 avg_load = sg_div_cpu_power(group,
2483 avg_load * SCHED_LOAD_SCALE);
1da177e4 2484
908a7c1b
KC
2485 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2486 __group_imb = 1;
2487
5517d86b 2488 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2489
1da177e4
LT
2490 if (local_group) {
2491 this_load = avg_load;
2492 this = group;
2dd73a4f
PW
2493 this_nr_running = sum_nr_running;
2494 this_load_per_task = sum_weighted_load;
2495 } else if (avg_load > max_load &&
908a7c1b 2496 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2497 max_load = avg_load;
2498 busiest = group;
2dd73a4f
PW
2499 busiest_nr_running = sum_nr_running;
2500 busiest_load_per_task = sum_weighted_load;
908a7c1b 2501 group_imb = __group_imb;
1da177e4 2502 }
5c45bf27
SS
2503
2504#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2505 /*
2506 * Busy processors will not participate in power savings
2507 * balance.
2508 */
dd41f596
IM
2509 if (idle == CPU_NOT_IDLE ||
2510 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2511 goto group_next;
5c45bf27
SS
2512
2513 /*
2514 * If the local group is idle or completely loaded
2515 * no need to do power savings balance at this domain
2516 */
2517 if (local_group && (this_nr_running >= group_capacity ||
2518 !this_nr_running))
2519 power_savings_balance = 0;
2520
dd41f596 2521 /*
5c45bf27
SS
2522 * If a group is already running at full capacity or idle,
2523 * don't include that group in power savings calculations
dd41f596
IM
2524 */
2525 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2526 || !sum_nr_running)
dd41f596 2527 goto group_next;
5c45bf27 2528
dd41f596 2529 /*
5c45bf27 2530 * Calculate the group which has the least non-idle load.
dd41f596
IM
2531 * This is the group from where we need to pick up the load
2532 * for saving power
2533 */
2534 if ((sum_nr_running < min_nr_running) ||
2535 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2536 first_cpu(group->cpumask) <
2537 first_cpu(group_min->cpumask))) {
dd41f596
IM
2538 group_min = group;
2539 min_nr_running = sum_nr_running;
5c45bf27
SS
2540 min_load_per_task = sum_weighted_load /
2541 sum_nr_running;
dd41f596 2542 }
5c45bf27 2543
dd41f596 2544 /*
5c45bf27 2545 * Calculate the group which is almost near its
dd41f596
IM
2546 * capacity but still has some space to pick up some load
2547 * from other group and save more power
2548 */
2549 if (sum_nr_running <= group_capacity - 1) {
2550 if (sum_nr_running > leader_nr_running ||
2551 (sum_nr_running == leader_nr_running &&
2552 first_cpu(group->cpumask) >
2553 first_cpu(group_leader->cpumask))) {
2554 group_leader = group;
2555 leader_nr_running = sum_nr_running;
2556 }
48f24c4d 2557 }
5c45bf27
SS
2558group_next:
2559#endif
1da177e4
LT
2560 group = group->next;
2561 } while (group != sd->groups);
2562
2dd73a4f 2563 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2564 goto out_balanced;
2565
2566 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2567
2568 if (this_load >= avg_load ||
2569 100*max_load <= sd->imbalance_pct*this_load)
2570 goto out_balanced;
2571
2dd73a4f 2572 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2573 if (group_imb)
2574 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2575
1da177e4
LT
2576 /*
2577 * We're trying to get all the cpus to the average_load, so we don't
2578 * want to push ourselves above the average load, nor do we wish to
2579 * reduce the max loaded cpu below the average load, as either of these
2580 * actions would just result in more rebalancing later, and ping-pong
2581 * tasks around. Thus we look for the minimum possible imbalance.
2582 * Negative imbalances (*we* are more loaded than anyone else) will
2583 * be counted as no imbalance for these purposes -- we can't fix that
2584 * by pulling tasks to us. Be careful of negative numbers as they'll
2585 * appear as very large values with unsigned longs.
2586 */
2dd73a4f
PW
2587 if (max_load <= busiest_load_per_task)
2588 goto out_balanced;
2589
2590 /*
2591 * In the presence of smp nice balancing, certain scenarios can have
2592 * max load less than avg load(as we skip the groups at or below
2593 * its cpu_power, while calculating max_load..)
2594 */
2595 if (max_load < avg_load) {
2596 *imbalance = 0;
2597 goto small_imbalance;
2598 }
0c117f1b
SS
2599
2600 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2601 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2602
1da177e4 2603 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2604 *imbalance = min(max_pull * busiest->__cpu_power,
2605 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2606 / SCHED_LOAD_SCALE;
2607
2dd73a4f
PW
2608 /*
2609 * if *imbalance is less than the average load per runnable task
2610 * there is no gaurantee that any tasks will be moved so we'll have
2611 * a think about bumping its value to force at least one task to be
2612 * moved
2613 */
7fd0d2dd 2614 if (*imbalance < busiest_load_per_task) {
48f24c4d 2615 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2616 unsigned int imbn;
2617
2618small_imbalance:
2619 pwr_move = pwr_now = 0;
2620 imbn = 2;
2621 if (this_nr_running) {
2622 this_load_per_task /= this_nr_running;
2623 if (busiest_load_per_task > this_load_per_task)
2624 imbn = 1;
2625 } else
2626 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2627
dd41f596
IM
2628 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2629 busiest_load_per_task * imbn) {
2dd73a4f 2630 *imbalance = busiest_load_per_task;
1da177e4
LT
2631 return busiest;
2632 }
2633
2634 /*
2635 * OK, we don't have enough imbalance to justify moving tasks,
2636 * however we may be able to increase total CPU power used by
2637 * moving them.
2638 */
2639
5517d86b
ED
2640 pwr_now += busiest->__cpu_power *
2641 min(busiest_load_per_task, max_load);
2642 pwr_now += this->__cpu_power *
2643 min(this_load_per_task, this_load);
1da177e4
LT
2644 pwr_now /= SCHED_LOAD_SCALE;
2645
2646 /* Amount of load we'd subtract */
5517d86b
ED
2647 tmp = sg_div_cpu_power(busiest,
2648 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2649 if (max_load > tmp)
5517d86b 2650 pwr_move += busiest->__cpu_power *
2dd73a4f 2651 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2652
2653 /* Amount of load we'd add */
5517d86b 2654 if (max_load * busiest->__cpu_power <
33859f7f 2655 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2656 tmp = sg_div_cpu_power(this,
2657 max_load * busiest->__cpu_power);
1da177e4 2658 else
5517d86b
ED
2659 tmp = sg_div_cpu_power(this,
2660 busiest_load_per_task * SCHED_LOAD_SCALE);
2661 pwr_move += this->__cpu_power *
2662 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2663 pwr_move /= SCHED_LOAD_SCALE;
2664
2665 /* Move if we gain throughput */
7fd0d2dd
SS
2666 if (pwr_move > pwr_now)
2667 *imbalance = busiest_load_per_task;
1da177e4
LT
2668 }
2669
1da177e4
LT
2670 return busiest;
2671
2672out_balanced:
5c45bf27 2673#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2674 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2675 goto ret;
1da177e4 2676
5c45bf27
SS
2677 if (this == group_leader && group_leader != group_min) {
2678 *imbalance = min_load_per_task;
2679 return group_min;
2680 }
5c45bf27 2681#endif
783609c6 2682ret:
1da177e4
LT
2683 *imbalance = 0;
2684 return NULL;
2685}
2686
2687/*
2688 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2689 */
70b97a7f 2690static struct rq *
d15bcfdb 2691find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2692 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2693{
70b97a7f 2694 struct rq *busiest = NULL, *rq;
2dd73a4f 2695 unsigned long max_load = 0;
1da177e4
LT
2696 int i;
2697
2698 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2699 unsigned long wl;
0a2966b4
CL
2700
2701 if (!cpu_isset(i, *cpus))
2702 continue;
2703
48f24c4d 2704 rq = cpu_rq(i);
dd41f596 2705 wl = weighted_cpuload(i);
2dd73a4f 2706
dd41f596 2707 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2708 continue;
1da177e4 2709
dd41f596
IM
2710 if (wl > max_load) {
2711 max_load = wl;
48f24c4d 2712 busiest = rq;
1da177e4
LT
2713 }
2714 }
2715
2716 return busiest;
2717}
2718
77391d71
NP
2719/*
2720 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2721 * so long as it is large enough.
2722 */
2723#define MAX_PINNED_INTERVAL 512
2724
1da177e4
LT
2725/*
2726 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2727 * tasks if there is an imbalance.
1da177e4 2728 */
70b97a7f 2729static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2730 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2731 int *balance)
1da177e4 2732{
43010659 2733 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2734 struct sched_group *group;
1da177e4 2735 unsigned long imbalance;
70b97a7f 2736 struct rq *busiest;
0a2966b4 2737 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2738 unsigned long flags;
5969fe06 2739
89c4710e
SS
2740 /*
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2743 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2744 * portraying it as CPU_NOT_IDLE.
89c4710e 2745 */
d15bcfdb 2746 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2748 sd_idle = 1;
1da177e4 2749
2d72376b 2750 schedstat_inc(sd, lb_count[idle]);
1da177e4 2751
0a2966b4
CL
2752redo:
2753 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2754 &cpus, balance);
2755
06066714 2756 if (*balance == 0)
783609c6 2757 goto out_balanced;
783609c6 2758
1da177e4
LT
2759 if (!group) {
2760 schedstat_inc(sd, lb_nobusyg[idle]);
2761 goto out_balanced;
2762 }
2763
0a2966b4 2764 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2765 if (!busiest) {
2766 schedstat_inc(sd, lb_nobusyq[idle]);
2767 goto out_balanced;
2768 }
2769
db935dbd 2770 BUG_ON(busiest == this_rq);
1da177e4
LT
2771
2772 schedstat_add(sd, lb_imbalance[idle], imbalance);
2773
43010659 2774 ld_moved = 0;
1da177e4
LT
2775 if (busiest->nr_running > 1) {
2776 /*
2777 * Attempt to move tasks. If find_busiest_group has found
2778 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2779 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2780 * correctly treated as an imbalance.
2781 */
fe2eea3f 2782 local_irq_save(flags);
e17224bf 2783 double_rq_lock(this_rq, busiest);
43010659 2784 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2785 imbalance, sd, idle, &all_pinned);
e17224bf 2786 double_rq_unlock(this_rq, busiest);
fe2eea3f 2787 local_irq_restore(flags);
81026794 2788
46cb4b7c
SS
2789 /*
2790 * some other cpu did the load balance for us.
2791 */
43010659 2792 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2793 resched_cpu(this_cpu);
2794
81026794 2795 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2796 if (unlikely(all_pinned)) {
2797 cpu_clear(cpu_of(busiest), cpus);
2798 if (!cpus_empty(cpus))
2799 goto redo;
81026794 2800 goto out_balanced;
0a2966b4 2801 }
1da177e4 2802 }
81026794 2803
43010659 2804 if (!ld_moved) {
1da177e4
LT
2805 schedstat_inc(sd, lb_failed[idle]);
2806 sd->nr_balance_failed++;
2807
2808 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2809
fe2eea3f 2810 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2811
2812 /* don't kick the migration_thread, if the curr
2813 * task on busiest cpu can't be moved to this_cpu
2814 */
2815 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2816 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2817 all_pinned = 1;
2818 goto out_one_pinned;
2819 }
2820
1da177e4
LT
2821 if (!busiest->active_balance) {
2822 busiest->active_balance = 1;
2823 busiest->push_cpu = this_cpu;
81026794 2824 active_balance = 1;
1da177e4 2825 }
fe2eea3f 2826 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2827 if (active_balance)
1da177e4
LT
2828 wake_up_process(busiest->migration_thread);
2829
2830 /*
2831 * We've kicked active balancing, reset the failure
2832 * counter.
2833 */
39507451 2834 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2835 }
81026794 2836 } else
1da177e4
LT
2837 sd->nr_balance_failed = 0;
2838
81026794 2839 if (likely(!active_balance)) {
1da177e4
LT
2840 /* We were unbalanced, so reset the balancing interval */
2841 sd->balance_interval = sd->min_interval;
81026794
NP
2842 } else {
2843 /*
2844 * If we've begun active balancing, start to back off. This
2845 * case may not be covered by the all_pinned logic if there
2846 * is only 1 task on the busy runqueue (because we don't call
2847 * move_tasks).
2848 */
2849 if (sd->balance_interval < sd->max_interval)
2850 sd->balance_interval *= 2;
1da177e4
LT
2851 }
2852
43010659 2853 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2855 return -1;
43010659 2856 return ld_moved;
1da177e4
LT
2857
2858out_balanced:
1da177e4
LT
2859 schedstat_inc(sd, lb_balanced[idle]);
2860
16cfb1c0 2861 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2862
2863out_one_pinned:
1da177e4 2864 /* tune up the balancing interval */
77391d71
NP
2865 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2866 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2867 sd->balance_interval *= 2;
2868
48f24c4d 2869 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2871 return -1;
1da177e4
LT
2872 return 0;
2873}
2874
2875/*
2876 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2877 * tasks if there is an imbalance.
2878 *
d15bcfdb 2879 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2880 * this_rq is locked.
2881 */
48f24c4d 2882static int
70b97a7f 2883load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2884{
2885 struct sched_group *group;
70b97a7f 2886 struct rq *busiest = NULL;
1da177e4 2887 unsigned long imbalance;
43010659 2888 int ld_moved = 0;
5969fe06 2889 int sd_idle = 0;
969bb4e4 2890 int all_pinned = 0;
0a2966b4 2891 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2892
89c4710e
SS
2893 /*
2894 * When power savings policy is enabled for the parent domain, idle
2895 * sibling can pick up load irrespective of busy siblings. In this case,
2896 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2897 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2898 */
2899 if (sd->flags & SD_SHARE_CPUPOWER &&
2900 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2901 sd_idle = 1;
1da177e4 2902
2d72376b 2903 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2904redo:
d15bcfdb 2905 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2906 &sd_idle, &cpus, NULL);
1da177e4 2907 if (!group) {
d15bcfdb 2908 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2909 goto out_balanced;
1da177e4
LT
2910 }
2911
d15bcfdb 2912 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2913 &cpus);
db935dbd 2914 if (!busiest) {
d15bcfdb 2915 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2916 goto out_balanced;
1da177e4
LT
2917 }
2918
db935dbd
NP
2919 BUG_ON(busiest == this_rq);
2920
d15bcfdb 2921 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2922
43010659 2923 ld_moved = 0;
d6d5cfaf
NP
2924 if (busiest->nr_running > 1) {
2925 /* Attempt to move tasks */
2926 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2927 /* this_rq->clock is already updated */
2928 update_rq_clock(busiest);
43010659 2929 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2930 imbalance, sd, CPU_NEWLY_IDLE,
2931 &all_pinned);
d6d5cfaf 2932 spin_unlock(&busiest->lock);
0a2966b4 2933
969bb4e4 2934 if (unlikely(all_pinned)) {
0a2966b4
CL
2935 cpu_clear(cpu_of(busiest), cpus);
2936 if (!cpus_empty(cpus))
2937 goto redo;
2938 }
d6d5cfaf
NP
2939 }
2940
43010659 2941 if (!ld_moved) {
d15bcfdb 2942 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2943 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2944 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2945 return -1;
2946 } else
16cfb1c0 2947 sd->nr_balance_failed = 0;
1da177e4 2948
43010659 2949 return ld_moved;
16cfb1c0
NP
2950
2951out_balanced:
d15bcfdb 2952 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2953 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2954 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2955 return -1;
16cfb1c0 2956 sd->nr_balance_failed = 0;
48f24c4d 2957
16cfb1c0 2958 return 0;
1da177e4
LT
2959}
2960
2961/*
2962 * idle_balance is called by schedule() if this_cpu is about to become
2963 * idle. Attempts to pull tasks from other CPUs.
2964 */
70b97a7f 2965static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2966{
2967 struct sched_domain *sd;
dd41f596
IM
2968 int pulled_task = -1;
2969 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2970
2971 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2972 unsigned long interval;
2973
2974 if (!(sd->flags & SD_LOAD_BALANCE))
2975 continue;
2976
2977 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2978 /* If we've pulled tasks over stop searching: */
1bd77f2d 2979 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2980 this_rq, sd);
2981
2982 interval = msecs_to_jiffies(sd->balance_interval);
2983 if (time_after(next_balance, sd->last_balance + interval))
2984 next_balance = sd->last_balance + interval;
2985 if (pulled_task)
2986 break;
1da177e4 2987 }
dd41f596 2988 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2989 /*
2990 * We are going idle. next_balance may be set based on
2991 * a busy processor. So reset next_balance.
2992 */
2993 this_rq->next_balance = next_balance;
dd41f596 2994 }
1da177e4
LT
2995}
2996
2997/*
2998 * active_load_balance is run by migration threads. It pushes running tasks
2999 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3000 * running on each physical CPU where possible, and avoids physical /
3001 * logical imbalances.
3002 *
3003 * Called with busiest_rq locked.
3004 */
70b97a7f 3005static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3006{
39507451 3007 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3008 struct sched_domain *sd;
3009 struct rq *target_rq;
39507451 3010
48f24c4d 3011 /* Is there any task to move? */
39507451 3012 if (busiest_rq->nr_running <= 1)
39507451
NP
3013 return;
3014
3015 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3016
3017 /*
39507451
NP
3018 * This condition is "impossible", if it occurs
3019 * we need to fix it. Originally reported by
3020 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3021 */
39507451 3022 BUG_ON(busiest_rq == target_rq);
1da177e4 3023
39507451
NP
3024 /* move a task from busiest_rq to target_rq */
3025 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3026 update_rq_clock(busiest_rq);
3027 update_rq_clock(target_rq);
39507451
NP
3028
3029 /* Search for an sd spanning us and the target CPU. */
c96d145e 3030 for_each_domain(target_cpu, sd) {
39507451 3031 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3032 cpu_isset(busiest_cpu, sd->span))
39507451 3033 break;
c96d145e 3034 }
39507451 3035
48f24c4d 3036 if (likely(sd)) {
2d72376b 3037 schedstat_inc(sd, alb_count);
39507451 3038
43010659
PW
3039 if (move_one_task(target_rq, target_cpu, busiest_rq,
3040 sd, CPU_IDLE))
48f24c4d
IM
3041 schedstat_inc(sd, alb_pushed);
3042 else
3043 schedstat_inc(sd, alb_failed);
3044 }
39507451 3045 spin_unlock(&target_rq->lock);
1da177e4
LT
3046}
3047
46cb4b7c
SS
3048#ifdef CONFIG_NO_HZ
3049static struct {
3050 atomic_t load_balancer;
3051 cpumask_t cpu_mask;
3052} nohz ____cacheline_aligned = {
3053 .load_balancer = ATOMIC_INIT(-1),
3054 .cpu_mask = CPU_MASK_NONE,
3055};
3056
7835b98b 3057/*
46cb4b7c
SS
3058 * This routine will try to nominate the ilb (idle load balancing)
3059 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3060 * load balancing on behalf of all those cpus. If all the cpus in the system
3061 * go into this tickless mode, then there will be no ilb owner (as there is
3062 * no need for one) and all the cpus will sleep till the next wakeup event
3063 * arrives...
3064 *
3065 * For the ilb owner, tick is not stopped. And this tick will be used
3066 * for idle load balancing. ilb owner will still be part of
3067 * nohz.cpu_mask..
7835b98b 3068 *
46cb4b7c
SS
3069 * While stopping the tick, this cpu will become the ilb owner if there
3070 * is no other owner. And will be the owner till that cpu becomes busy
3071 * or if all cpus in the system stop their ticks at which point
3072 * there is no need for ilb owner.
3073 *
3074 * When the ilb owner becomes busy, it nominates another owner, during the
3075 * next busy scheduler_tick()
3076 */
3077int select_nohz_load_balancer(int stop_tick)
3078{
3079 int cpu = smp_processor_id();
3080
3081 if (stop_tick) {
3082 cpu_set(cpu, nohz.cpu_mask);
3083 cpu_rq(cpu)->in_nohz_recently = 1;
3084
3085 /*
3086 * If we are going offline and still the leader, give up!
3087 */
3088 if (cpu_is_offline(cpu) &&
3089 atomic_read(&nohz.load_balancer) == cpu) {
3090 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3091 BUG();
3092 return 0;
3093 }
3094
3095 /* time for ilb owner also to sleep */
3096 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3097 if (atomic_read(&nohz.load_balancer) == cpu)
3098 atomic_set(&nohz.load_balancer, -1);
3099 return 0;
3100 }
3101
3102 if (atomic_read(&nohz.load_balancer) == -1) {
3103 /* make me the ilb owner */
3104 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3105 return 1;
3106 } else if (atomic_read(&nohz.load_balancer) == cpu)
3107 return 1;
3108 } else {
3109 if (!cpu_isset(cpu, nohz.cpu_mask))
3110 return 0;
3111
3112 cpu_clear(cpu, nohz.cpu_mask);
3113
3114 if (atomic_read(&nohz.load_balancer) == cpu)
3115 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3116 BUG();
3117 }
3118 return 0;
3119}
3120#endif
3121
3122static DEFINE_SPINLOCK(balancing);
3123
3124/*
7835b98b
CL
3125 * It checks each scheduling domain to see if it is due to be balanced,
3126 * and initiates a balancing operation if so.
3127 *
3128 * Balancing parameters are set up in arch_init_sched_domains.
3129 */
a9957449 3130static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3131{
46cb4b7c
SS
3132 int balance = 1;
3133 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3134 unsigned long interval;
3135 struct sched_domain *sd;
46cb4b7c 3136 /* Earliest time when we have to do rebalance again */
c9819f45 3137 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3138 int update_next_balance = 0;
1da177e4 3139
46cb4b7c 3140 for_each_domain(cpu, sd) {
1da177e4
LT
3141 if (!(sd->flags & SD_LOAD_BALANCE))
3142 continue;
3143
3144 interval = sd->balance_interval;
d15bcfdb 3145 if (idle != CPU_IDLE)
1da177e4
LT
3146 interval *= sd->busy_factor;
3147
3148 /* scale ms to jiffies */
3149 interval = msecs_to_jiffies(interval);
3150 if (unlikely(!interval))
3151 interval = 1;
dd41f596
IM
3152 if (interval > HZ*NR_CPUS/10)
3153 interval = HZ*NR_CPUS/10;
3154
1da177e4 3155
08c183f3
CL
3156 if (sd->flags & SD_SERIALIZE) {
3157 if (!spin_trylock(&balancing))
3158 goto out;
3159 }
3160
c9819f45 3161 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3162 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3163 /*
3164 * We've pulled tasks over so either we're no
5969fe06
NP
3165 * longer idle, or one of our SMT siblings is
3166 * not idle.
3167 */
d15bcfdb 3168 idle = CPU_NOT_IDLE;
1da177e4 3169 }
1bd77f2d 3170 sd->last_balance = jiffies;
1da177e4 3171 }
08c183f3
CL
3172 if (sd->flags & SD_SERIALIZE)
3173 spin_unlock(&balancing);
3174out:
f549da84 3175 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3176 next_balance = sd->last_balance + interval;
f549da84
SS
3177 update_next_balance = 1;
3178 }
783609c6
SS
3179
3180 /*
3181 * Stop the load balance at this level. There is another
3182 * CPU in our sched group which is doing load balancing more
3183 * actively.
3184 */
3185 if (!balance)
3186 break;
1da177e4 3187 }
f549da84
SS
3188
3189 /*
3190 * next_balance will be updated only when there is a need.
3191 * When the cpu is attached to null domain for ex, it will not be
3192 * updated.
3193 */
3194 if (likely(update_next_balance))
3195 rq->next_balance = next_balance;
46cb4b7c
SS
3196}
3197
3198/*
3199 * run_rebalance_domains is triggered when needed from the scheduler tick.
3200 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3201 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3202 */
3203static void run_rebalance_domains(struct softirq_action *h)
3204{
dd41f596
IM
3205 int this_cpu = smp_processor_id();
3206 struct rq *this_rq = cpu_rq(this_cpu);
3207 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3208 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3209
dd41f596 3210 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3211
3212#ifdef CONFIG_NO_HZ
3213 /*
3214 * If this cpu is the owner for idle load balancing, then do the
3215 * balancing on behalf of the other idle cpus whose ticks are
3216 * stopped.
3217 */
dd41f596
IM
3218 if (this_rq->idle_at_tick &&
3219 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3220 cpumask_t cpus = nohz.cpu_mask;
3221 struct rq *rq;
3222 int balance_cpu;
3223
dd41f596 3224 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3225 for_each_cpu_mask(balance_cpu, cpus) {
3226 /*
3227 * If this cpu gets work to do, stop the load balancing
3228 * work being done for other cpus. Next load
3229 * balancing owner will pick it up.
3230 */
3231 if (need_resched())
3232 break;
3233
de0cf899 3234 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3235
3236 rq = cpu_rq(balance_cpu);
dd41f596
IM
3237 if (time_after(this_rq->next_balance, rq->next_balance))
3238 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3239 }
3240 }
3241#endif
3242}
3243
3244/*
3245 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3246 *
3247 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3248 * idle load balancing owner or decide to stop the periodic load balancing,
3249 * if the whole system is idle.
3250 */
dd41f596 3251static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3252{
46cb4b7c
SS
3253#ifdef CONFIG_NO_HZ
3254 /*
3255 * If we were in the nohz mode recently and busy at the current
3256 * scheduler tick, then check if we need to nominate new idle
3257 * load balancer.
3258 */
3259 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3260 rq->in_nohz_recently = 0;
3261
3262 if (atomic_read(&nohz.load_balancer) == cpu) {
3263 cpu_clear(cpu, nohz.cpu_mask);
3264 atomic_set(&nohz.load_balancer, -1);
3265 }
3266
3267 if (atomic_read(&nohz.load_balancer) == -1) {
3268 /*
3269 * simple selection for now: Nominate the
3270 * first cpu in the nohz list to be the next
3271 * ilb owner.
3272 *
3273 * TBD: Traverse the sched domains and nominate
3274 * the nearest cpu in the nohz.cpu_mask.
3275 */
3276 int ilb = first_cpu(nohz.cpu_mask);
3277
3278 if (ilb != NR_CPUS)
3279 resched_cpu(ilb);
3280 }
3281 }
3282
3283 /*
3284 * If this cpu is idle and doing idle load balancing for all the
3285 * cpus with ticks stopped, is it time for that to stop?
3286 */
3287 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3288 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3289 resched_cpu(cpu);
3290 return;
3291 }
3292
3293 /*
3294 * If this cpu is idle and the idle load balancing is done by
3295 * someone else, then no need raise the SCHED_SOFTIRQ
3296 */
3297 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3298 cpu_isset(cpu, nohz.cpu_mask))
3299 return;
3300#endif
3301 if (time_after_eq(jiffies, rq->next_balance))
3302 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3303}
dd41f596
IM
3304
3305#else /* CONFIG_SMP */
3306
1da177e4
LT
3307/*
3308 * on UP we do not need to balance between CPUs:
3309 */
70b97a7f 3310static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3311{
3312}
dd41f596 3313
1da177e4
LT
3314#endif
3315
1da177e4
LT
3316DEFINE_PER_CPU(struct kernel_stat, kstat);
3317
3318EXPORT_PER_CPU_SYMBOL(kstat);
3319
3320/*
41b86e9c
IM
3321 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3322 * that have not yet been banked in case the task is currently running.
1da177e4 3323 */
41b86e9c 3324unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3325{
1da177e4 3326 unsigned long flags;
41b86e9c
IM
3327 u64 ns, delta_exec;
3328 struct rq *rq;
48f24c4d 3329
41b86e9c
IM
3330 rq = task_rq_lock(p, &flags);
3331 ns = p->se.sum_exec_runtime;
3332 if (rq->curr == p) {
a8e504d2
IM
3333 update_rq_clock(rq);
3334 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3335 if ((s64)delta_exec > 0)
3336 ns += delta_exec;
3337 }
3338 task_rq_unlock(rq, &flags);
48f24c4d 3339
1da177e4
LT
3340 return ns;
3341}
3342
1da177e4
LT
3343/*
3344 * Account user cpu time to a process.
3345 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3346 * @cputime: the cpu time spent in user space since the last update
3347 */
3348void account_user_time(struct task_struct *p, cputime_t cputime)
3349{
3350 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3351 cputime64_t tmp;
3352
3353 p->utime = cputime_add(p->utime, cputime);
3354
3355 /* Add user time to cpustat. */
3356 tmp = cputime_to_cputime64(cputime);
3357 if (TASK_NICE(p) > 0)
3358 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3359 else
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3361}
3362
94886b84
LV
3363/*
3364 * Account guest cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @cputime: the cpu time spent in virtual machine since the last update
3367 */
f7402e03 3368static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3369{
3370 cputime64_t tmp;
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3372
3373 tmp = cputime_to_cputime64(cputime);
3374
3375 p->utime = cputime_add(p->utime, cputime);
3376 p->gtime = cputime_add(p->gtime, cputime);
3377
3378 cpustat->user = cputime64_add(cpustat->user, tmp);
3379 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3380}
3381
c66f08be
MN
3382/*
3383 * Account scaled user cpu time to a process.
3384 * @p: the process that the cpu time gets accounted to
3385 * @cputime: the cpu time spent in user space since the last update
3386 */
3387void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3388{
3389 p->utimescaled = cputime_add(p->utimescaled, cputime);
3390}
3391
1da177e4
LT
3392/*
3393 * Account system cpu time to a process.
3394 * @p: the process that the cpu time gets accounted to
3395 * @hardirq_offset: the offset to subtract from hardirq_count()
3396 * @cputime: the cpu time spent in kernel space since the last update
3397 */
3398void account_system_time(struct task_struct *p, int hardirq_offset,
3399 cputime_t cputime)
3400{
3401 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3402 struct rq *rq = this_rq();
1da177e4
LT
3403 cputime64_t tmp;
3404
9778385d
CB
3405 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3406 return account_guest_time(p, cputime);
94886b84 3407
1da177e4
LT
3408 p->stime = cputime_add(p->stime, cputime);
3409
3410 /* Add system time to cpustat. */
3411 tmp = cputime_to_cputime64(cputime);
3412 if (hardirq_count() - hardirq_offset)
3413 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3414 else if (softirq_count())
3415 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3416 else if (p != rq->idle)
1da177e4 3417 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3418 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3419 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3420 else
3421 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422 /* Account for system time used */
3423 acct_update_integrals(p);
1da177e4
LT
3424}
3425
c66f08be
MN
3426/*
3427 * Account scaled system cpu time to a process.
3428 * @p: the process that the cpu time gets accounted to
3429 * @hardirq_offset: the offset to subtract from hardirq_count()
3430 * @cputime: the cpu time spent in kernel space since the last update
3431 */
3432void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3433{
3434 p->stimescaled = cputime_add(p->stimescaled, cputime);
3435}
3436
1da177e4
LT
3437/*
3438 * Account for involuntary wait time.
3439 * @p: the process from which the cpu time has been stolen
3440 * @steal: the cpu time spent in involuntary wait
3441 */
3442void account_steal_time(struct task_struct *p, cputime_t steal)
3443{
3444 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3445 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3446 struct rq *rq = this_rq();
1da177e4
LT
3447
3448 if (p == rq->idle) {
3449 p->stime = cputime_add(p->stime, steal);
3450 if (atomic_read(&rq->nr_iowait) > 0)
3451 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3452 else
3453 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3454 } else
1da177e4
LT
3455 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3456}
3457
7835b98b
CL
3458/*
3459 * This function gets called by the timer code, with HZ frequency.
3460 * We call it with interrupts disabled.
3461 *
3462 * It also gets called by the fork code, when changing the parent's
3463 * timeslices.
3464 */
3465void scheduler_tick(void)
3466{
7835b98b
CL
3467 int cpu = smp_processor_id();
3468 struct rq *rq = cpu_rq(cpu);
dd41f596 3469 struct task_struct *curr = rq->curr;
529c7726 3470 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3471
3472 spin_lock(&rq->lock);
546fe3c9 3473 __update_rq_clock(rq);
529c7726
IM
3474 /*
3475 * Let rq->clock advance by at least TICK_NSEC:
3476 */
3477 if (unlikely(rq->clock < next_tick))
3478 rq->clock = next_tick;
3479 rq->tick_timestamp = rq->clock;
f1a438d8 3480 update_cpu_load(rq);
dd41f596
IM
3481 if (curr != rq->idle) /* FIXME: needed? */
3482 curr->sched_class->task_tick(rq, curr);
dd41f596 3483 spin_unlock(&rq->lock);
7835b98b 3484
e418e1c2 3485#ifdef CONFIG_SMP
dd41f596
IM
3486 rq->idle_at_tick = idle_cpu(cpu);
3487 trigger_load_balance(rq, cpu);
e418e1c2 3488#endif
1da177e4
LT
3489}
3490
1da177e4
LT
3491#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3492
3493void fastcall add_preempt_count(int val)
3494{
3495 /*
3496 * Underflow?
3497 */
9a11b49a
IM
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
1da177e4
LT
3500 preempt_count() += val;
3501 /*
3502 * Spinlock count overflowing soon?
3503 */
33859f7f
MOS
3504 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3505 PREEMPT_MASK - 10);
1da177e4
LT
3506}
3507EXPORT_SYMBOL(add_preempt_count);
3508
3509void fastcall sub_preempt_count(int val)
3510{
3511 /*
3512 * Underflow?
3513 */
9a11b49a
IM
3514 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3515 return;
1da177e4
LT
3516 /*
3517 * Is the spinlock portion underflowing?
3518 */
9a11b49a
IM
3519 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3520 !(preempt_count() & PREEMPT_MASK)))
3521 return;
3522
1da177e4
LT
3523 preempt_count() -= val;
3524}
3525EXPORT_SYMBOL(sub_preempt_count);
3526
3527#endif
3528
3529/*
dd41f596 3530 * Print scheduling while atomic bug:
1da177e4 3531 */
dd41f596 3532static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3533{
838225b4
SS
3534 struct pt_regs *regs = get_irq_regs();
3535
3536 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3537 prev->comm, prev->pid, preempt_count());
3538
dd41f596
IM
3539 debug_show_held_locks(prev);
3540 if (irqs_disabled())
3541 print_irqtrace_events(prev);
838225b4
SS
3542
3543 if (regs)
3544 show_regs(regs);
3545 else
3546 dump_stack();
dd41f596 3547}
1da177e4 3548
dd41f596
IM
3549/*
3550 * Various schedule()-time debugging checks and statistics:
3551 */
3552static inline void schedule_debug(struct task_struct *prev)
3553{
1da177e4
LT
3554 /*
3555 * Test if we are atomic. Since do_exit() needs to call into
3556 * schedule() atomically, we ignore that path for now.
3557 * Otherwise, whine if we are scheduling when we should not be.
3558 */
dd41f596
IM
3559 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3560 __schedule_bug(prev);
3561
1da177e4
LT
3562 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3563
2d72376b 3564 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3565#ifdef CONFIG_SCHEDSTATS
3566 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3567 schedstat_inc(this_rq(), bkl_count);
3568 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3569 }
3570#endif
dd41f596
IM
3571}
3572
3573/*
3574 * Pick up the highest-prio task:
3575 */
3576static inline struct task_struct *
ff95f3df 3577pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3578{
5522d5d5 3579 const struct sched_class *class;
dd41f596 3580 struct task_struct *p;
1da177e4
LT
3581
3582 /*
dd41f596
IM
3583 * Optimization: we know that if all tasks are in
3584 * the fair class we can call that function directly:
1da177e4 3585 */
dd41f596 3586 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3587 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3588 if (likely(p))
3589 return p;
1da177e4
LT
3590 }
3591
dd41f596
IM
3592 class = sched_class_highest;
3593 for ( ; ; ) {
fb8d4724 3594 p = class->pick_next_task(rq);
dd41f596
IM
3595 if (p)
3596 return p;
3597 /*
3598 * Will never be NULL as the idle class always
3599 * returns a non-NULL p:
3600 */
3601 class = class->next;
3602 }
3603}
1da177e4 3604
dd41f596
IM
3605/*
3606 * schedule() is the main scheduler function.
3607 */
3608asmlinkage void __sched schedule(void)
3609{
3610 struct task_struct *prev, *next;
3611 long *switch_count;
3612 struct rq *rq;
dd41f596
IM
3613 int cpu;
3614
3615need_resched:
3616 preempt_disable();
3617 cpu = smp_processor_id();
3618 rq = cpu_rq(cpu);
3619 rcu_qsctr_inc(cpu);
3620 prev = rq->curr;
3621 switch_count = &prev->nivcsw;
3622
3623 release_kernel_lock(prev);
3624need_resched_nonpreemptible:
3625
3626 schedule_debug(prev);
1da177e4 3627
1e819950
IM
3628 /*
3629 * Do the rq-clock update outside the rq lock:
3630 */
3631 local_irq_disable();
c1b3da3e 3632 __update_rq_clock(rq);
1e819950
IM
3633 spin_lock(&rq->lock);
3634 clear_tsk_need_resched(prev);
1da177e4 3635
1da177e4 3636 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3637 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3638 unlikely(signal_pending(prev)))) {
1da177e4 3639 prev->state = TASK_RUNNING;
dd41f596 3640 } else {
2e1cb74a 3641 deactivate_task(rq, prev, 1);
1da177e4 3642 }
dd41f596 3643 switch_count = &prev->nvcsw;
1da177e4
LT
3644 }
3645
dd41f596 3646 if (unlikely(!rq->nr_running))
1da177e4 3647 idle_balance(cpu, rq);
1da177e4 3648
31ee529c 3649 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3650 next = pick_next_task(rq, prev);
1da177e4
LT
3651
3652 sched_info_switch(prev, next);
dd41f596 3653
1da177e4 3654 if (likely(prev != next)) {
1da177e4
LT
3655 rq->nr_switches++;
3656 rq->curr = next;
3657 ++*switch_count;
3658
dd41f596 3659 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3660 } else
3661 spin_unlock_irq(&rq->lock);
3662
dd41f596
IM
3663 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3664 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu);
1da177e4 3666 goto need_resched_nonpreemptible;
dd41f596 3667 }
1da177e4
LT
3668 preempt_enable_no_resched();
3669 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3670 goto need_resched;
3671}
1da177e4
LT
3672EXPORT_SYMBOL(schedule);
3673
3674#ifdef CONFIG_PREEMPT
3675/*
2ed6e34f 3676 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3677 * off of preempt_enable. Kernel preemptions off return from interrupt
3678 * occur there and call schedule directly.
3679 */
3680asmlinkage void __sched preempt_schedule(void)
3681{
3682 struct thread_info *ti = current_thread_info();
3683#ifdef CONFIG_PREEMPT_BKL
3684 struct task_struct *task = current;
3685 int saved_lock_depth;
3686#endif
3687 /*
3688 * If there is a non-zero preempt_count or interrupts are disabled,
3689 * we do not want to preempt the current task. Just return..
3690 */
beed33a8 3691 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3692 return;
3693
3a5c359a
AK
3694 do {
3695 add_preempt_count(PREEMPT_ACTIVE);
3696
3697 /*
3698 * We keep the big kernel semaphore locked, but we
3699 * clear ->lock_depth so that schedule() doesnt
3700 * auto-release the semaphore:
3701 */
1da177e4 3702#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3703 saved_lock_depth = task->lock_depth;
3704 task->lock_depth = -1;
1da177e4 3705#endif
3a5c359a 3706 schedule();
1da177e4 3707#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3708 task->lock_depth = saved_lock_depth;
1da177e4 3709#endif
3a5c359a 3710 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3711
3a5c359a
AK
3712 /*
3713 * Check again in case we missed a preemption opportunity
3714 * between schedule and now.
3715 */
3716 barrier();
3717 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3718}
1da177e4
LT
3719EXPORT_SYMBOL(preempt_schedule);
3720
3721/*
2ed6e34f 3722 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3723 * off of irq context.
3724 * Note, that this is called and return with irqs disabled. This will
3725 * protect us against recursive calling from irq.
3726 */
3727asmlinkage void __sched preempt_schedule_irq(void)
3728{
3729 struct thread_info *ti = current_thread_info();
3730#ifdef CONFIG_PREEMPT_BKL
3731 struct task_struct *task = current;
3732 int saved_lock_depth;
3733#endif
2ed6e34f 3734 /* Catch callers which need to be fixed */
1da177e4
LT
3735 BUG_ON(ti->preempt_count || !irqs_disabled());
3736
3a5c359a
AK
3737 do {
3738 add_preempt_count(PREEMPT_ACTIVE);
3739
3740 /*
3741 * We keep the big kernel semaphore locked, but we
3742 * clear ->lock_depth so that schedule() doesnt
3743 * auto-release the semaphore:
3744 */
1da177e4 3745#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3746 saved_lock_depth = task->lock_depth;
3747 task->lock_depth = -1;
1da177e4 3748#endif
3a5c359a
AK
3749 local_irq_enable();
3750 schedule();
3751 local_irq_disable();
1da177e4 3752#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3753 task->lock_depth = saved_lock_depth;
1da177e4 3754#endif
3a5c359a 3755 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3756
3a5c359a
AK
3757 /*
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3760 */
3761 barrier();
3762 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3763}
3764
3765#endif /* CONFIG_PREEMPT */
3766
95cdf3b7
IM
3767int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3768 void *key)
1da177e4 3769{
48f24c4d 3770 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3771}
1da177e4
LT
3772EXPORT_SYMBOL(default_wake_function);
3773
3774/*
3775 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3776 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3777 * number) then we wake all the non-exclusive tasks and one exclusive task.
3778 *
3779 * There are circumstances in which we can try to wake a task which has already
3780 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3781 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3782 */
3783static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3784 int nr_exclusive, int sync, void *key)
3785{
2e45874c 3786 wait_queue_t *curr, *next;
1da177e4 3787
2e45874c 3788 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3789 unsigned flags = curr->flags;
3790
1da177e4 3791 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3792 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3793 break;
3794 }
3795}
3796
3797/**
3798 * __wake_up - wake up threads blocked on a waitqueue.
3799 * @q: the waitqueue
3800 * @mode: which threads
3801 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3802 * @key: is directly passed to the wakeup function
1da177e4
LT
3803 */
3804void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3805 int nr_exclusive, void *key)
1da177e4
LT
3806{
3807 unsigned long flags;
3808
3809 spin_lock_irqsave(&q->lock, flags);
3810 __wake_up_common(q, mode, nr_exclusive, 0, key);
3811 spin_unlock_irqrestore(&q->lock, flags);
3812}
1da177e4
LT
3813EXPORT_SYMBOL(__wake_up);
3814
3815/*
3816 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3817 */
3818void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3819{
3820 __wake_up_common(q, mode, 1, 0, NULL);
3821}
3822
3823/**
67be2dd1 3824 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3825 * @q: the waitqueue
3826 * @mode: which threads
3827 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3828 *
3829 * The sync wakeup differs that the waker knows that it will schedule
3830 * away soon, so while the target thread will be woken up, it will not
3831 * be migrated to another CPU - ie. the two threads are 'synchronized'
3832 * with each other. This can prevent needless bouncing between CPUs.
3833 *
3834 * On UP it can prevent extra preemption.
3835 */
95cdf3b7
IM
3836void fastcall
3837__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3838{
3839 unsigned long flags;
3840 int sync = 1;
3841
3842 if (unlikely(!q))
3843 return;
3844
3845 if (unlikely(!nr_exclusive))
3846 sync = 0;
3847
3848 spin_lock_irqsave(&q->lock, flags);
3849 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3850 spin_unlock_irqrestore(&q->lock, flags);
3851}
3852EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3853
b15136e9 3854void complete(struct completion *x)
1da177e4
LT
3855{
3856 unsigned long flags;
3857
3858 spin_lock_irqsave(&x->wait.lock, flags);
3859 x->done++;
3860 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3861 1, 0, NULL);
3862 spin_unlock_irqrestore(&x->wait.lock, flags);
3863}
3864EXPORT_SYMBOL(complete);
3865
b15136e9 3866void complete_all(struct completion *x)
1da177e4
LT
3867{
3868 unsigned long flags;
3869
3870 spin_lock_irqsave(&x->wait.lock, flags);
3871 x->done += UINT_MAX/2;
3872 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3873 0, 0, NULL);
3874 spin_unlock_irqrestore(&x->wait.lock, flags);
3875}
3876EXPORT_SYMBOL(complete_all);
3877
8cbbe86d
AK
3878static inline long __sched
3879do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3880{
1da177e4
LT
3881 if (!x->done) {
3882 DECLARE_WAITQUEUE(wait, current);
3883
3884 wait.flags |= WQ_FLAG_EXCLUSIVE;
3885 __add_wait_queue_tail(&x->wait, &wait);
3886 do {
8cbbe86d
AK
3887 if (state == TASK_INTERRUPTIBLE &&
3888 signal_pending(current)) {
3889 __remove_wait_queue(&x->wait, &wait);
3890 return -ERESTARTSYS;
3891 }
3892 __set_current_state(state);
1da177e4
LT
3893 spin_unlock_irq(&x->wait.lock);
3894 timeout = schedule_timeout(timeout);
3895 spin_lock_irq(&x->wait.lock);
3896 if (!timeout) {
3897 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3898 return timeout;
1da177e4
LT
3899 }
3900 } while (!x->done);
3901 __remove_wait_queue(&x->wait, &wait);
3902 }
3903 x->done--;
1da177e4
LT
3904 return timeout;
3905}
1da177e4 3906
8cbbe86d
AK
3907static long __sched
3908wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3909{
1da177e4
LT
3910 might_sleep();
3911
3912 spin_lock_irq(&x->wait.lock);
8cbbe86d 3913 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3914 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3915 return timeout;
3916}
1da177e4 3917
b15136e9 3918void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3919{
3920 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3921}
8cbbe86d 3922EXPORT_SYMBOL(wait_for_completion);
1da177e4 3923
b15136e9 3924unsigned long __sched
8cbbe86d 3925wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3926{
8cbbe86d 3927 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3928}
8cbbe86d 3929EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3930
8cbbe86d 3931int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3932{
51e97990
AK
3933 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3934 if (t == -ERESTARTSYS)
3935 return t;
3936 return 0;
0fec171c 3937}
8cbbe86d 3938EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3939
b15136e9 3940unsigned long __sched
8cbbe86d
AK
3941wait_for_completion_interruptible_timeout(struct completion *x,
3942 unsigned long timeout)
0fec171c 3943{
8cbbe86d 3944 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3945}
8cbbe86d 3946EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3947
8cbbe86d
AK
3948static long __sched
3949sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3950{
0fec171c
IM
3951 unsigned long flags;
3952 wait_queue_t wait;
3953
3954 init_waitqueue_entry(&wait, current);
1da177e4 3955
8cbbe86d 3956 __set_current_state(state);
1da177e4 3957
8cbbe86d
AK
3958 spin_lock_irqsave(&q->lock, flags);
3959 __add_wait_queue(q, &wait);
3960 spin_unlock(&q->lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&q->lock);
3963 __remove_wait_queue(q, &wait);
3964 spin_unlock_irqrestore(&q->lock, flags);
3965
3966 return timeout;
3967}
3968
3969void __sched interruptible_sleep_on(wait_queue_head_t *q)
3970{
3971 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3972}
1da177e4
LT
3973EXPORT_SYMBOL(interruptible_sleep_on);
3974
0fec171c 3975long __sched
95cdf3b7 3976interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3977{
8cbbe86d 3978 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3979}
1da177e4
LT
3980EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3981
0fec171c 3982void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3983{
8cbbe86d 3984 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3985}
1da177e4
LT
3986EXPORT_SYMBOL(sleep_on);
3987
0fec171c 3988long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3989{
8cbbe86d 3990 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3991}
1da177e4
LT
3992EXPORT_SYMBOL(sleep_on_timeout);
3993
b29739f9
IM
3994#ifdef CONFIG_RT_MUTEXES
3995
3996/*
3997 * rt_mutex_setprio - set the current priority of a task
3998 * @p: task
3999 * @prio: prio value (kernel-internal form)
4000 *
4001 * This function changes the 'effective' priority of a task. It does
4002 * not touch ->normal_prio like __setscheduler().
4003 *
4004 * Used by the rt_mutex code to implement priority inheritance logic.
4005 */
36c8b586 4006void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4007{
4008 unsigned long flags;
83b699ed 4009 int oldprio, on_rq, running;
70b97a7f 4010 struct rq *rq;
b29739f9
IM
4011
4012 BUG_ON(prio < 0 || prio > MAX_PRIO);
4013
4014 rq = task_rq_lock(p, &flags);
a8e504d2 4015 update_rq_clock(rq);
b29739f9 4016
d5f9f942 4017 oldprio = p->prio;
dd41f596 4018 on_rq = p->se.on_rq;
83b699ed
SV
4019 running = task_running(rq, p);
4020 if (on_rq) {
69be72c1 4021 dequeue_task(rq, p, 0);
83b699ed
SV
4022 if (running)
4023 p->sched_class->put_prev_task(rq, p);
4024 }
dd41f596
IM
4025
4026 if (rt_prio(prio))
4027 p->sched_class = &rt_sched_class;
4028 else
4029 p->sched_class = &fair_sched_class;
4030
b29739f9
IM
4031 p->prio = prio;
4032
dd41f596 4033 if (on_rq) {
83b699ed
SV
4034 if (running)
4035 p->sched_class->set_curr_task(rq);
8159f87e 4036 enqueue_task(rq, p, 0);
b29739f9
IM
4037 /*
4038 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4039 * our priority decreased, or if we are not currently running on
4040 * this runqueue and our priority is higher than the current's
b29739f9 4041 */
83b699ed 4042 if (running) {
d5f9f942
AM
4043 if (p->prio > oldprio)
4044 resched_task(rq->curr);
dd41f596
IM
4045 } else {
4046 check_preempt_curr(rq, p);
4047 }
b29739f9
IM
4048 }
4049 task_rq_unlock(rq, &flags);
4050}
4051
4052#endif
4053
36c8b586 4054void set_user_nice(struct task_struct *p, long nice)
1da177e4 4055{
dd41f596 4056 int old_prio, delta, on_rq;
1da177e4 4057 unsigned long flags;
70b97a7f 4058 struct rq *rq;
1da177e4
LT
4059
4060 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4061 return;
4062 /*
4063 * We have to be careful, if called from sys_setpriority(),
4064 * the task might be in the middle of scheduling on another CPU.
4065 */
4066 rq = task_rq_lock(p, &flags);
a8e504d2 4067 update_rq_clock(rq);
1da177e4
LT
4068 /*
4069 * The RT priorities are set via sched_setscheduler(), but we still
4070 * allow the 'normal' nice value to be set - but as expected
4071 * it wont have any effect on scheduling until the task is
dd41f596 4072 * SCHED_FIFO/SCHED_RR:
1da177e4 4073 */
e05606d3 4074 if (task_has_rt_policy(p)) {
1da177e4
LT
4075 p->static_prio = NICE_TO_PRIO(nice);
4076 goto out_unlock;
4077 }
dd41f596
IM
4078 on_rq = p->se.on_rq;
4079 if (on_rq) {
69be72c1 4080 dequeue_task(rq, p, 0);
79b5dddf 4081 dec_load(rq, p);
2dd73a4f 4082 }
1da177e4 4083
1da177e4 4084 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4085 set_load_weight(p);
b29739f9
IM
4086 old_prio = p->prio;
4087 p->prio = effective_prio(p);
4088 delta = p->prio - old_prio;
1da177e4 4089
dd41f596 4090 if (on_rq) {
8159f87e 4091 enqueue_task(rq, p, 0);
29b4b623 4092 inc_load(rq, p);
1da177e4 4093 /*
d5f9f942
AM
4094 * If the task increased its priority or is running and
4095 * lowered its priority, then reschedule its CPU:
1da177e4 4096 */
d5f9f942 4097 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4098 resched_task(rq->curr);
4099 }
4100out_unlock:
4101 task_rq_unlock(rq, &flags);
4102}
1da177e4
LT
4103EXPORT_SYMBOL(set_user_nice);
4104
e43379f1
MM
4105/*
4106 * can_nice - check if a task can reduce its nice value
4107 * @p: task
4108 * @nice: nice value
4109 */
36c8b586 4110int can_nice(const struct task_struct *p, const int nice)
e43379f1 4111{
024f4747
MM
4112 /* convert nice value [19,-20] to rlimit style value [1,40] */
4113 int nice_rlim = 20 - nice;
48f24c4d 4114
e43379f1
MM
4115 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4116 capable(CAP_SYS_NICE));
4117}
4118
1da177e4
LT
4119#ifdef __ARCH_WANT_SYS_NICE
4120
4121/*
4122 * sys_nice - change the priority of the current process.
4123 * @increment: priority increment
4124 *
4125 * sys_setpriority is a more generic, but much slower function that
4126 * does similar things.
4127 */
4128asmlinkage long sys_nice(int increment)
4129{
48f24c4d 4130 long nice, retval;
1da177e4
LT
4131
4132 /*
4133 * Setpriority might change our priority at the same moment.
4134 * We don't have to worry. Conceptually one call occurs first
4135 * and we have a single winner.
4136 */
e43379f1
MM
4137 if (increment < -40)
4138 increment = -40;
1da177e4
LT
4139 if (increment > 40)
4140 increment = 40;
4141
4142 nice = PRIO_TO_NICE(current->static_prio) + increment;
4143 if (nice < -20)
4144 nice = -20;
4145 if (nice > 19)
4146 nice = 19;
4147
e43379f1
MM
4148 if (increment < 0 && !can_nice(current, nice))
4149 return -EPERM;
4150
1da177e4
LT
4151 retval = security_task_setnice(current, nice);
4152 if (retval)
4153 return retval;
4154
4155 set_user_nice(current, nice);
4156 return 0;
4157}
4158
4159#endif
4160
4161/**
4162 * task_prio - return the priority value of a given task.
4163 * @p: the task in question.
4164 *
4165 * This is the priority value as seen by users in /proc.
4166 * RT tasks are offset by -200. Normal tasks are centered
4167 * around 0, value goes from -16 to +15.
4168 */
36c8b586 4169int task_prio(const struct task_struct *p)
1da177e4
LT
4170{
4171 return p->prio - MAX_RT_PRIO;
4172}
4173
4174/**
4175 * task_nice - return the nice value of a given task.
4176 * @p: the task in question.
4177 */
36c8b586 4178int task_nice(const struct task_struct *p)
1da177e4
LT
4179{
4180 return TASK_NICE(p);
4181}
1da177e4 4182EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4183
4184/**
4185 * idle_cpu - is a given cpu idle currently?
4186 * @cpu: the processor in question.
4187 */
4188int idle_cpu(int cpu)
4189{
4190 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4191}
4192
1da177e4
LT
4193/**
4194 * idle_task - return the idle task for a given cpu.
4195 * @cpu: the processor in question.
4196 */
36c8b586 4197struct task_struct *idle_task(int cpu)
1da177e4
LT
4198{
4199 return cpu_rq(cpu)->idle;
4200}
4201
4202/**
4203 * find_process_by_pid - find a process with a matching PID value.
4204 * @pid: the pid in question.
4205 */
a9957449 4206static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4207{
228ebcbe 4208 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4209}
4210
4211/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4212static void
4213__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4214{
dd41f596 4215 BUG_ON(p->se.on_rq);
48f24c4d 4216
1da177e4 4217 p->policy = policy;
dd41f596
IM
4218 switch (p->policy) {
4219 case SCHED_NORMAL:
4220 case SCHED_BATCH:
4221 case SCHED_IDLE:
4222 p->sched_class = &fair_sched_class;
4223 break;
4224 case SCHED_FIFO:
4225 case SCHED_RR:
4226 p->sched_class = &rt_sched_class;
4227 break;
4228 }
4229
1da177e4 4230 p->rt_priority = prio;
b29739f9
IM
4231 p->normal_prio = normal_prio(p);
4232 /* we are holding p->pi_lock already */
4233 p->prio = rt_mutex_getprio(p);
2dd73a4f 4234 set_load_weight(p);
1da177e4
LT
4235}
4236
4237/**
72fd4a35 4238 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4239 * @p: the task in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
5fe1d75f 4242 *
72fd4a35 4243 * NOTE that the task may be already dead.
1da177e4 4244 */
95cdf3b7
IM
4245int sched_setscheduler(struct task_struct *p, int policy,
4246 struct sched_param *param)
1da177e4 4247{
83b699ed 4248 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4249 unsigned long flags;
70b97a7f 4250 struct rq *rq;
1da177e4 4251
66e5393a
SR
4252 /* may grab non-irq protected spin_locks */
4253 BUG_ON(in_interrupt());
1da177e4
LT
4254recheck:
4255 /* double check policy once rq lock held */
4256 if (policy < 0)
4257 policy = oldpolicy = p->policy;
4258 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4259 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4260 policy != SCHED_IDLE)
b0a9499c 4261 return -EINVAL;
1da177e4
LT
4262 /*
4263 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4264 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4265 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4266 */
4267 if (param->sched_priority < 0 ||
95cdf3b7 4268 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4269 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4270 return -EINVAL;
e05606d3 4271 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4272 return -EINVAL;
4273
37e4ab3f
OC
4274 /*
4275 * Allow unprivileged RT tasks to decrease priority:
4276 */
4277 if (!capable(CAP_SYS_NICE)) {
e05606d3 4278 if (rt_policy(policy)) {
8dc3e909 4279 unsigned long rlim_rtprio;
8dc3e909
ON
4280
4281 if (!lock_task_sighand(p, &flags))
4282 return -ESRCH;
4283 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4284 unlock_task_sighand(p, &flags);
4285
4286 /* can't set/change the rt policy */
4287 if (policy != p->policy && !rlim_rtprio)
4288 return -EPERM;
4289
4290 /* can't increase priority */
4291 if (param->sched_priority > p->rt_priority &&
4292 param->sched_priority > rlim_rtprio)
4293 return -EPERM;
4294 }
dd41f596
IM
4295 /*
4296 * Like positive nice levels, dont allow tasks to
4297 * move out of SCHED_IDLE either:
4298 */
4299 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4300 return -EPERM;
5fe1d75f 4301
37e4ab3f
OC
4302 /* can't change other user's priorities */
4303 if ((current->euid != p->euid) &&
4304 (current->euid != p->uid))
4305 return -EPERM;
4306 }
1da177e4
LT
4307
4308 retval = security_task_setscheduler(p, policy, param);
4309 if (retval)
4310 return retval;
b29739f9
IM
4311 /*
4312 * make sure no PI-waiters arrive (or leave) while we are
4313 * changing the priority of the task:
4314 */
4315 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4316 /*
4317 * To be able to change p->policy safely, the apropriate
4318 * runqueue lock must be held.
4319 */
b29739f9 4320 rq = __task_rq_lock(p);
1da177e4
LT
4321 /* recheck policy now with rq lock held */
4322 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4323 policy = oldpolicy = -1;
b29739f9
IM
4324 __task_rq_unlock(rq);
4325 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4326 goto recheck;
4327 }
2daa3577 4328 update_rq_clock(rq);
dd41f596 4329 on_rq = p->se.on_rq;
83b699ed
SV
4330 running = task_running(rq, p);
4331 if (on_rq) {
2e1cb74a 4332 deactivate_task(rq, p, 0);
83b699ed
SV
4333 if (running)
4334 p->sched_class->put_prev_task(rq, p);
4335 }
f6b53205 4336
1da177e4 4337 oldprio = p->prio;
dd41f596 4338 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4339
dd41f596 4340 if (on_rq) {
83b699ed
SV
4341 if (running)
4342 p->sched_class->set_curr_task(rq);
dd41f596 4343 activate_task(rq, p, 0);
1da177e4
LT
4344 /*
4345 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4346 * our priority decreased, or if we are not currently running on
4347 * this runqueue and our priority is higher than the current's
1da177e4 4348 */
83b699ed 4349 if (running) {
d5f9f942
AM
4350 if (p->prio > oldprio)
4351 resched_task(rq->curr);
dd41f596
IM
4352 } else {
4353 check_preempt_curr(rq, p);
4354 }
1da177e4 4355 }
b29739f9
IM
4356 __task_rq_unlock(rq);
4357 spin_unlock_irqrestore(&p->pi_lock, flags);
4358
95e02ca9
TG
4359 rt_mutex_adjust_pi(p);
4360
1da177e4
LT
4361 return 0;
4362}
4363EXPORT_SYMBOL_GPL(sched_setscheduler);
4364
95cdf3b7
IM
4365static int
4366do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4367{
1da177e4
LT
4368 struct sched_param lparam;
4369 struct task_struct *p;
36c8b586 4370 int retval;
1da177e4
LT
4371
4372 if (!param || pid < 0)
4373 return -EINVAL;
4374 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4375 return -EFAULT;
5fe1d75f
ON
4376
4377 rcu_read_lock();
4378 retval = -ESRCH;
1da177e4 4379 p = find_process_by_pid(pid);
5fe1d75f
ON
4380 if (p != NULL)
4381 retval = sched_setscheduler(p, policy, &lparam);
4382 rcu_read_unlock();
36c8b586 4383
1da177e4
LT
4384 return retval;
4385}
4386
4387/**
4388 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4389 * @pid: the pid in question.
4390 * @policy: new policy.
4391 * @param: structure containing the new RT priority.
4392 */
4393asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4394 struct sched_param __user *param)
4395{
c21761f1
JB
4396 /* negative values for policy are not valid */
4397 if (policy < 0)
4398 return -EINVAL;
4399
1da177e4
LT
4400 return do_sched_setscheduler(pid, policy, param);
4401}
4402
4403/**
4404 * sys_sched_setparam - set/change the RT priority of a thread
4405 * @pid: the pid in question.
4406 * @param: structure containing the new RT priority.
4407 */
4408asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4409{
4410 return do_sched_setscheduler(pid, -1, param);
4411}
4412
4413/**
4414 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4415 * @pid: the pid in question.
4416 */
4417asmlinkage long sys_sched_getscheduler(pid_t pid)
4418{
36c8b586 4419 struct task_struct *p;
3a5c359a 4420 int retval;
1da177e4
LT
4421
4422 if (pid < 0)
3a5c359a 4423 return -EINVAL;
1da177e4
LT
4424
4425 retval = -ESRCH;
4426 read_lock(&tasklist_lock);
4427 p = find_process_by_pid(pid);
4428 if (p) {
4429 retval = security_task_getscheduler(p);
4430 if (!retval)
4431 retval = p->policy;
4432 }
4433 read_unlock(&tasklist_lock);
1da177e4
LT
4434 return retval;
4435}
4436
4437/**
4438 * sys_sched_getscheduler - get the RT priority of a thread
4439 * @pid: the pid in question.
4440 * @param: structure containing the RT priority.
4441 */
4442asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4443{
4444 struct sched_param lp;
36c8b586 4445 struct task_struct *p;
3a5c359a 4446 int retval;
1da177e4
LT
4447
4448 if (!param || pid < 0)
3a5c359a 4449 return -EINVAL;
1da177e4
LT
4450
4451 read_lock(&tasklist_lock);
4452 p = find_process_by_pid(pid);
4453 retval = -ESRCH;
4454 if (!p)
4455 goto out_unlock;
4456
4457 retval = security_task_getscheduler(p);
4458 if (retval)
4459 goto out_unlock;
4460
4461 lp.sched_priority = p->rt_priority;
4462 read_unlock(&tasklist_lock);
4463
4464 /*
4465 * This one might sleep, we cannot do it with a spinlock held ...
4466 */
4467 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4468
1da177e4
LT
4469 return retval;
4470
4471out_unlock:
4472 read_unlock(&tasklist_lock);
4473 return retval;
4474}
4475
4476long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4477{
1da177e4 4478 cpumask_t cpus_allowed;
36c8b586
IM
4479 struct task_struct *p;
4480 int retval;
1da177e4 4481
5be9361c 4482 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4483 read_lock(&tasklist_lock);
4484
4485 p = find_process_by_pid(pid);
4486 if (!p) {
4487 read_unlock(&tasklist_lock);
5be9361c 4488 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4489 return -ESRCH;
4490 }
4491
4492 /*
4493 * It is not safe to call set_cpus_allowed with the
4494 * tasklist_lock held. We will bump the task_struct's
4495 * usage count and then drop tasklist_lock.
4496 */
4497 get_task_struct(p);
4498 read_unlock(&tasklist_lock);
4499
4500 retval = -EPERM;
4501 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4502 !capable(CAP_SYS_NICE))
4503 goto out_unlock;
4504
e7834f8f
DQ
4505 retval = security_task_setscheduler(p, 0, NULL);
4506 if (retval)
4507 goto out_unlock;
4508
1da177e4
LT
4509 cpus_allowed = cpuset_cpus_allowed(p);
4510 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4511 again:
1da177e4
LT
4512 retval = set_cpus_allowed(p, new_mask);
4513
8707d8b8
PM
4514 if (!retval) {
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 if (!cpus_subset(new_mask, cpus_allowed)) {
4517 /*
4518 * We must have raced with a concurrent cpuset
4519 * update. Just reset the cpus_allowed to the
4520 * cpuset's cpus_allowed
4521 */
4522 new_mask = cpus_allowed;
4523 goto again;
4524 }
4525 }
1da177e4
LT
4526out_unlock:
4527 put_task_struct(p);
5be9361c 4528 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4529 return retval;
4530}
4531
4532static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4533 cpumask_t *new_mask)
4534{
4535 if (len < sizeof(cpumask_t)) {
4536 memset(new_mask, 0, sizeof(cpumask_t));
4537 } else if (len > sizeof(cpumask_t)) {
4538 len = sizeof(cpumask_t);
4539 }
4540 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4541}
4542
4543/**
4544 * sys_sched_setaffinity - set the cpu affinity of a process
4545 * @pid: pid of the process
4546 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4547 * @user_mask_ptr: user-space pointer to the new cpu mask
4548 */
4549asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4550 unsigned long __user *user_mask_ptr)
4551{
4552 cpumask_t new_mask;
4553 int retval;
4554
4555 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4556 if (retval)
4557 return retval;
4558
4559 return sched_setaffinity(pid, new_mask);
4560}
4561
4562/*
4563 * Represents all cpu's present in the system
4564 * In systems capable of hotplug, this map could dynamically grow
4565 * as new cpu's are detected in the system via any platform specific
4566 * method, such as ACPI for e.g.
4567 */
4568
4cef0c61 4569cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4570EXPORT_SYMBOL(cpu_present_map);
4571
4572#ifndef CONFIG_SMP
4cef0c61 4573cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4574EXPORT_SYMBOL(cpu_online_map);
4575
4cef0c61 4576cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4577EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4578#endif
4579
4580long sched_getaffinity(pid_t pid, cpumask_t *mask)
4581{
36c8b586 4582 struct task_struct *p;
1da177e4 4583 int retval;
1da177e4 4584
5be9361c 4585 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4586 read_lock(&tasklist_lock);
4587
4588 retval = -ESRCH;
4589 p = find_process_by_pid(pid);
4590 if (!p)
4591 goto out_unlock;
4592
e7834f8f
DQ
4593 retval = security_task_getscheduler(p);
4594 if (retval)
4595 goto out_unlock;
4596
2f7016d9 4597 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4598
4599out_unlock:
4600 read_unlock(&tasklist_lock);
5be9361c 4601 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4602
9531b62f 4603 return retval;
1da177e4
LT
4604}
4605
4606/**
4607 * sys_sched_getaffinity - get the cpu affinity of a process
4608 * @pid: pid of the process
4609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4610 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4611 */
4612asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4613 unsigned long __user *user_mask_ptr)
4614{
4615 int ret;
4616 cpumask_t mask;
4617
4618 if (len < sizeof(cpumask_t))
4619 return -EINVAL;
4620
4621 ret = sched_getaffinity(pid, &mask);
4622 if (ret < 0)
4623 return ret;
4624
4625 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4626 return -EFAULT;
4627
4628 return sizeof(cpumask_t);
4629}
4630
4631/**
4632 * sys_sched_yield - yield the current processor to other threads.
4633 *
dd41f596
IM
4634 * This function yields the current CPU to other tasks. If there are no
4635 * other threads running on this CPU then this function will return.
1da177e4
LT
4636 */
4637asmlinkage long sys_sched_yield(void)
4638{
70b97a7f 4639 struct rq *rq = this_rq_lock();
1da177e4 4640
2d72376b 4641 schedstat_inc(rq, yld_count);
4530d7ab 4642 current->sched_class->yield_task(rq);
1da177e4
LT
4643
4644 /*
4645 * Since we are going to call schedule() anyway, there's
4646 * no need to preempt or enable interrupts:
4647 */
4648 __release(rq->lock);
8a25d5de 4649 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4650 _raw_spin_unlock(&rq->lock);
4651 preempt_enable_no_resched();
4652
4653 schedule();
4654
4655 return 0;
4656}
4657
e7b38404 4658static void __cond_resched(void)
1da177e4 4659{
8e0a43d8
IM
4660#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4661 __might_sleep(__FILE__, __LINE__);
4662#endif
5bbcfd90
IM
4663 /*
4664 * The BKS might be reacquired before we have dropped
4665 * PREEMPT_ACTIVE, which could trigger a second
4666 * cond_resched() call.
4667 */
1da177e4
LT
4668 do {
4669 add_preempt_count(PREEMPT_ACTIVE);
4670 schedule();
4671 sub_preempt_count(PREEMPT_ACTIVE);
4672 } while (need_resched());
4673}
4674
4675int __sched cond_resched(void)
4676{
9414232f
IM
4677 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4678 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4679 __cond_resched();
4680 return 1;
4681 }
4682 return 0;
4683}
1da177e4
LT
4684EXPORT_SYMBOL(cond_resched);
4685
4686/*
4687 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4688 * call schedule, and on return reacquire the lock.
4689 *
4690 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4691 * operations here to prevent schedule() from being called twice (once via
4692 * spin_unlock(), once by hand).
4693 */
95cdf3b7 4694int cond_resched_lock(spinlock_t *lock)
1da177e4 4695{
6df3cecb
JK
4696 int ret = 0;
4697
1da177e4
LT
4698 if (need_lockbreak(lock)) {
4699 spin_unlock(lock);
4700 cpu_relax();
6df3cecb 4701 ret = 1;
1da177e4
LT
4702 spin_lock(lock);
4703 }
9414232f 4704 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4705 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4706 _raw_spin_unlock(lock);
4707 preempt_enable_no_resched();
4708 __cond_resched();
6df3cecb 4709 ret = 1;
1da177e4 4710 spin_lock(lock);
1da177e4 4711 }
6df3cecb 4712 return ret;
1da177e4 4713}
1da177e4
LT
4714EXPORT_SYMBOL(cond_resched_lock);
4715
4716int __sched cond_resched_softirq(void)
4717{
4718 BUG_ON(!in_softirq());
4719
9414232f 4720 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4721 local_bh_enable();
1da177e4
LT
4722 __cond_resched();
4723 local_bh_disable();
4724 return 1;
4725 }
4726 return 0;
4727}
1da177e4
LT
4728EXPORT_SYMBOL(cond_resched_softirq);
4729
1da177e4
LT
4730/**
4731 * yield - yield the current processor to other threads.
4732 *
72fd4a35 4733 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4734 * thread runnable and calls sys_sched_yield().
4735 */
4736void __sched yield(void)
4737{
4738 set_current_state(TASK_RUNNING);
4739 sys_sched_yield();
4740}
1da177e4
LT
4741EXPORT_SYMBOL(yield);
4742
4743/*
4744 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4745 * that process accounting knows that this is a task in IO wait state.
4746 *
4747 * But don't do that if it is a deliberate, throttling IO wait (this task
4748 * has set its backing_dev_info: the queue against which it should throttle)
4749 */
4750void __sched io_schedule(void)
4751{
70b97a7f 4752 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4753
0ff92245 4754 delayacct_blkio_start();
1da177e4
LT
4755 atomic_inc(&rq->nr_iowait);
4756 schedule();
4757 atomic_dec(&rq->nr_iowait);
0ff92245 4758 delayacct_blkio_end();
1da177e4 4759}
1da177e4
LT
4760EXPORT_SYMBOL(io_schedule);
4761
4762long __sched io_schedule_timeout(long timeout)
4763{
70b97a7f 4764 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4765 long ret;
4766
0ff92245 4767 delayacct_blkio_start();
1da177e4
LT
4768 atomic_inc(&rq->nr_iowait);
4769 ret = schedule_timeout(timeout);
4770 atomic_dec(&rq->nr_iowait);
0ff92245 4771 delayacct_blkio_end();
1da177e4
LT
4772 return ret;
4773}
4774
4775/**
4776 * sys_sched_get_priority_max - return maximum RT priority.
4777 * @policy: scheduling class.
4778 *
4779 * this syscall returns the maximum rt_priority that can be used
4780 * by a given scheduling class.
4781 */
4782asmlinkage long sys_sched_get_priority_max(int policy)
4783{
4784 int ret = -EINVAL;
4785
4786 switch (policy) {
4787 case SCHED_FIFO:
4788 case SCHED_RR:
4789 ret = MAX_USER_RT_PRIO-1;
4790 break;
4791 case SCHED_NORMAL:
b0a9499c 4792 case SCHED_BATCH:
dd41f596 4793 case SCHED_IDLE:
1da177e4
LT
4794 ret = 0;
4795 break;
4796 }
4797 return ret;
4798}
4799
4800/**
4801 * sys_sched_get_priority_min - return minimum RT priority.
4802 * @policy: scheduling class.
4803 *
4804 * this syscall returns the minimum rt_priority that can be used
4805 * by a given scheduling class.
4806 */
4807asmlinkage long sys_sched_get_priority_min(int policy)
4808{
4809 int ret = -EINVAL;
4810
4811 switch (policy) {
4812 case SCHED_FIFO:
4813 case SCHED_RR:
4814 ret = 1;
4815 break;
4816 case SCHED_NORMAL:
b0a9499c 4817 case SCHED_BATCH:
dd41f596 4818 case SCHED_IDLE:
1da177e4
LT
4819 ret = 0;
4820 }
4821 return ret;
4822}
4823
4824/**
4825 * sys_sched_rr_get_interval - return the default timeslice of a process.
4826 * @pid: pid of the process.
4827 * @interval: userspace pointer to the timeslice value.
4828 *
4829 * this syscall writes the default timeslice value of a given process
4830 * into the user-space timespec buffer. A value of '0' means infinity.
4831 */
4832asmlinkage
4833long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4834{
36c8b586 4835 struct task_struct *p;
a4ec24b4 4836 unsigned int time_slice;
3a5c359a 4837 int retval;
1da177e4 4838 struct timespec t;
1da177e4
LT
4839
4840 if (pid < 0)
3a5c359a 4841 return -EINVAL;
1da177e4
LT
4842
4843 retval = -ESRCH;
4844 read_lock(&tasklist_lock);
4845 p = find_process_by_pid(pid);
4846 if (!p)
4847 goto out_unlock;
4848
4849 retval = security_task_getscheduler(p);
4850 if (retval)
4851 goto out_unlock;
4852
77034937
IM
4853 /*
4854 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4855 * tasks that are on an otherwise idle runqueue:
4856 */
4857 time_slice = 0;
4858 if (p->policy == SCHED_RR) {
a4ec24b4 4859 time_slice = DEF_TIMESLICE;
77034937 4860 } else {
a4ec24b4
DA
4861 struct sched_entity *se = &p->se;
4862 unsigned long flags;
4863 struct rq *rq;
4864
4865 rq = task_rq_lock(p, &flags);
77034937
IM
4866 if (rq->cfs.load.weight)
4867 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4868 task_rq_unlock(rq, &flags);
4869 }
1da177e4 4870 read_unlock(&tasklist_lock);
a4ec24b4 4871 jiffies_to_timespec(time_slice, &t);
1da177e4 4872 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4873 return retval;
3a5c359a 4874
1da177e4
LT
4875out_unlock:
4876 read_unlock(&tasklist_lock);
4877 return retval;
4878}
4879
2ed6e34f 4880static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4881
4882static void show_task(struct task_struct *p)
1da177e4 4883{
1da177e4 4884 unsigned long free = 0;
36c8b586 4885 unsigned state;
1da177e4 4886
1da177e4 4887 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4888 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4889 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4890#if BITS_PER_LONG == 32
1da177e4 4891 if (state == TASK_RUNNING)
cc4ea795 4892 printk(KERN_CONT " running ");
1da177e4 4893 else
cc4ea795 4894 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4895#else
4896 if (state == TASK_RUNNING)
cc4ea795 4897 printk(KERN_CONT " running task ");
1da177e4 4898 else
cc4ea795 4899 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4900#endif
4901#ifdef CONFIG_DEBUG_STACK_USAGE
4902 {
10ebffde 4903 unsigned long *n = end_of_stack(p);
1da177e4
LT
4904 while (!*n)
4905 n++;
10ebffde 4906 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4907 }
4908#endif
ba25f9dc
PE
4909 printk(KERN_CONT "%5lu %5d %6d\n", free,
4910 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4911
4912 if (state != TASK_RUNNING)
4913 show_stack(p, NULL);
4914}
4915
e59e2ae2 4916void show_state_filter(unsigned long state_filter)
1da177e4 4917{
36c8b586 4918 struct task_struct *g, *p;
1da177e4 4919
4bd77321
IM
4920#if BITS_PER_LONG == 32
4921 printk(KERN_INFO
4922 " task PC stack pid father\n");
1da177e4 4923#else
4bd77321
IM
4924 printk(KERN_INFO
4925 " task PC stack pid father\n");
1da177e4
LT
4926#endif
4927 read_lock(&tasklist_lock);
4928 do_each_thread(g, p) {
4929 /*
4930 * reset the NMI-timeout, listing all files on a slow
4931 * console might take alot of time:
4932 */
4933 touch_nmi_watchdog();
39bc89fd 4934 if (!state_filter || (p->state & state_filter))
e59e2ae2 4935 show_task(p);
1da177e4
LT
4936 } while_each_thread(g, p);
4937
04c9167f
JF
4938 touch_all_softlockup_watchdogs();
4939
dd41f596
IM
4940#ifdef CONFIG_SCHED_DEBUG
4941 sysrq_sched_debug_show();
4942#endif
1da177e4 4943 read_unlock(&tasklist_lock);
e59e2ae2
IM
4944 /*
4945 * Only show locks if all tasks are dumped:
4946 */
4947 if (state_filter == -1)
4948 debug_show_all_locks();
1da177e4
LT
4949}
4950
1df21055
IM
4951void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4952{
dd41f596 4953 idle->sched_class = &idle_sched_class;
1df21055
IM
4954}
4955
f340c0d1
IM
4956/**
4957 * init_idle - set up an idle thread for a given CPU
4958 * @idle: task in question
4959 * @cpu: cpu the idle task belongs to
4960 *
4961 * NOTE: this function does not set the idle thread's NEED_RESCHED
4962 * flag, to make booting more robust.
4963 */
5c1e1767 4964void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4965{
70b97a7f 4966 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4967 unsigned long flags;
4968
dd41f596
IM
4969 __sched_fork(idle);
4970 idle->se.exec_start = sched_clock();
4971
b29739f9 4972 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4973 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4974 __set_task_cpu(idle, cpu);
1da177e4
LT
4975
4976 spin_lock_irqsave(&rq->lock, flags);
4977 rq->curr = rq->idle = idle;
4866cde0
NP
4978#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4979 idle->oncpu = 1;
4980#endif
1da177e4
LT
4981 spin_unlock_irqrestore(&rq->lock, flags);
4982
4983 /* Set the preempt count _outside_ the spinlocks! */
4984#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4985 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4986#else
a1261f54 4987 task_thread_info(idle)->preempt_count = 0;
1da177e4 4988#endif
dd41f596
IM
4989 /*
4990 * The idle tasks have their own, simple scheduling class:
4991 */
4992 idle->sched_class = &idle_sched_class;
1da177e4
LT
4993}
4994
4995/*
4996 * In a system that switches off the HZ timer nohz_cpu_mask
4997 * indicates which cpus entered this state. This is used
4998 * in the rcu update to wait only for active cpus. For system
4999 * which do not switch off the HZ timer nohz_cpu_mask should
5000 * always be CPU_MASK_NONE.
5001 */
5002cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5003
19978ca6
IM
5004/*
5005 * Increase the granularity value when there are more CPUs,
5006 * because with more CPUs the 'effective latency' as visible
5007 * to users decreases. But the relationship is not linear,
5008 * so pick a second-best guess by going with the log2 of the
5009 * number of CPUs.
5010 *
5011 * This idea comes from the SD scheduler of Con Kolivas:
5012 */
5013static inline void sched_init_granularity(void)
5014{
5015 unsigned int factor = 1 + ilog2(num_online_cpus());
5016 const unsigned long limit = 200000000;
5017
5018 sysctl_sched_min_granularity *= factor;
5019 if (sysctl_sched_min_granularity > limit)
5020 sysctl_sched_min_granularity = limit;
5021
5022 sysctl_sched_latency *= factor;
5023 if (sysctl_sched_latency > limit)
5024 sysctl_sched_latency = limit;
5025
5026 sysctl_sched_wakeup_granularity *= factor;
5027 sysctl_sched_batch_wakeup_granularity *= factor;
5028}
5029
1da177e4
LT
5030#ifdef CONFIG_SMP
5031/*
5032 * This is how migration works:
5033 *
70b97a7f 5034 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5035 * runqueue and wake up that CPU's migration thread.
5036 * 2) we down() the locked semaphore => thread blocks.
5037 * 3) migration thread wakes up (implicitly it forces the migrated
5038 * thread off the CPU)
5039 * 4) it gets the migration request and checks whether the migrated
5040 * task is still in the wrong runqueue.
5041 * 5) if it's in the wrong runqueue then the migration thread removes
5042 * it and puts it into the right queue.
5043 * 6) migration thread up()s the semaphore.
5044 * 7) we wake up and the migration is done.
5045 */
5046
5047/*
5048 * Change a given task's CPU affinity. Migrate the thread to a
5049 * proper CPU and schedule it away if the CPU it's executing on
5050 * is removed from the allowed bitmask.
5051 *
5052 * NOTE: the caller must have a valid reference to the task, the
5053 * task must not exit() & deallocate itself prematurely. The
5054 * call is not atomic; no spinlocks may be held.
5055 */
36c8b586 5056int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5057{
70b97a7f 5058 struct migration_req req;
1da177e4 5059 unsigned long flags;
70b97a7f 5060 struct rq *rq;
48f24c4d 5061 int ret = 0;
1da177e4
LT
5062
5063 rq = task_rq_lock(p, &flags);
5064 if (!cpus_intersects(new_mask, cpu_online_map)) {
5065 ret = -EINVAL;
5066 goto out;
5067 }
5068
5069 p->cpus_allowed = new_mask;
5070 /* Can the task run on the task's current CPU? If so, we're done */
5071 if (cpu_isset(task_cpu(p), new_mask))
5072 goto out;
5073
5074 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5075 /* Need help from migration thread: drop lock and wait. */
5076 task_rq_unlock(rq, &flags);
5077 wake_up_process(rq->migration_thread);
5078 wait_for_completion(&req.done);
5079 tlb_migrate_finish(p->mm);
5080 return 0;
5081 }
5082out:
5083 task_rq_unlock(rq, &flags);
48f24c4d 5084
1da177e4
LT
5085 return ret;
5086}
1da177e4
LT
5087EXPORT_SYMBOL_GPL(set_cpus_allowed);
5088
5089/*
5090 * Move (not current) task off this cpu, onto dest cpu. We're doing
5091 * this because either it can't run here any more (set_cpus_allowed()
5092 * away from this CPU, or CPU going down), or because we're
5093 * attempting to rebalance this task on exec (sched_exec).
5094 *
5095 * So we race with normal scheduler movements, but that's OK, as long
5096 * as the task is no longer on this CPU.
efc30814
KK
5097 *
5098 * Returns non-zero if task was successfully migrated.
1da177e4 5099 */
efc30814 5100static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5101{
70b97a7f 5102 struct rq *rq_dest, *rq_src;
dd41f596 5103 int ret = 0, on_rq;
1da177e4
LT
5104
5105 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5106 return ret;
1da177e4
LT
5107
5108 rq_src = cpu_rq(src_cpu);
5109 rq_dest = cpu_rq(dest_cpu);
5110
5111 double_rq_lock(rq_src, rq_dest);
5112 /* Already moved. */
5113 if (task_cpu(p) != src_cpu)
5114 goto out;
5115 /* Affinity changed (again). */
5116 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5117 goto out;
5118
dd41f596 5119 on_rq = p->se.on_rq;
6e82a3be 5120 if (on_rq)
2e1cb74a 5121 deactivate_task(rq_src, p, 0);
6e82a3be 5122
1da177e4 5123 set_task_cpu(p, dest_cpu);
dd41f596
IM
5124 if (on_rq) {
5125 activate_task(rq_dest, p, 0);
5126 check_preempt_curr(rq_dest, p);
1da177e4 5127 }
efc30814 5128 ret = 1;
1da177e4
LT
5129out:
5130 double_rq_unlock(rq_src, rq_dest);
efc30814 5131 return ret;
1da177e4
LT
5132}
5133
5134/*
5135 * migration_thread - this is a highprio system thread that performs
5136 * thread migration by bumping thread off CPU then 'pushing' onto
5137 * another runqueue.
5138 */
95cdf3b7 5139static int migration_thread(void *data)
1da177e4 5140{
1da177e4 5141 int cpu = (long)data;
70b97a7f 5142 struct rq *rq;
1da177e4
LT
5143
5144 rq = cpu_rq(cpu);
5145 BUG_ON(rq->migration_thread != current);
5146
5147 set_current_state(TASK_INTERRUPTIBLE);
5148 while (!kthread_should_stop()) {
70b97a7f 5149 struct migration_req *req;
1da177e4 5150 struct list_head *head;
1da177e4 5151
1da177e4
LT
5152 spin_lock_irq(&rq->lock);
5153
5154 if (cpu_is_offline(cpu)) {
5155 spin_unlock_irq(&rq->lock);
5156 goto wait_to_die;
5157 }
5158
5159 if (rq->active_balance) {
5160 active_load_balance(rq, cpu);
5161 rq->active_balance = 0;
5162 }
5163
5164 head = &rq->migration_queue;
5165
5166 if (list_empty(head)) {
5167 spin_unlock_irq(&rq->lock);
5168 schedule();
5169 set_current_state(TASK_INTERRUPTIBLE);
5170 continue;
5171 }
70b97a7f 5172 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5173 list_del_init(head->next);
5174
674311d5
NP
5175 spin_unlock(&rq->lock);
5176 __migrate_task(req->task, cpu, req->dest_cpu);
5177 local_irq_enable();
1da177e4
LT
5178
5179 complete(&req->done);
5180 }
5181 __set_current_state(TASK_RUNNING);
5182 return 0;
5183
5184wait_to_die:
5185 /* Wait for kthread_stop */
5186 set_current_state(TASK_INTERRUPTIBLE);
5187 while (!kthread_should_stop()) {
5188 schedule();
5189 set_current_state(TASK_INTERRUPTIBLE);
5190 }
5191 __set_current_state(TASK_RUNNING);
5192 return 0;
5193}
5194
5195#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5196
5197static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5198{
5199 int ret;
5200
5201 local_irq_disable();
5202 ret = __migrate_task(p, src_cpu, dest_cpu);
5203 local_irq_enable();
5204 return ret;
5205}
5206
054b9108 5207/*
3a4fa0a2 5208 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5209 * NOTE: interrupts should be disabled by the caller
5210 */
48f24c4d 5211static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5212{
efc30814 5213 unsigned long flags;
1da177e4 5214 cpumask_t mask;
70b97a7f
IM
5215 struct rq *rq;
5216 int dest_cpu;
1da177e4 5217
3a5c359a
AK
5218 do {
5219 /* On same node? */
5220 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5221 cpus_and(mask, mask, p->cpus_allowed);
5222 dest_cpu = any_online_cpu(mask);
5223
5224 /* On any allowed CPU? */
5225 if (dest_cpu == NR_CPUS)
5226 dest_cpu = any_online_cpu(p->cpus_allowed);
5227
5228 /* No more Mr. Nice Guy. */
5229 if (dest_cpu == NR_CPUS) {
470fd646
CW
5230 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5231 /*
5232 * Try to stay on the same cpuset, where the
5233 * current cpuset may be a subset of all cpus.
5234 * The cpuset_cpus_allowed_locked() variant of
5235 * cpuset_cpus_allowed() will not block. It must be
5236 * called within calls to cpuset_lock/cpuset_unlock.
5237 */
3a5c359a 5238 rq = task_rq_lock(p, &flags);
470fd646 5239 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5240 dest_cpu = any_online_cpu(p->cpus_allowed);
5241 task_rq_unlock(rq, &flags);
1da177e4 5242
3a5c359a
AK
5243 /*
5244 * Don't tell them about moving exiting tasks or
5245 * kernel threads (both mm NULL), since they never
5246 * leave kernel.
5247 */
5248 if (p->mm && printk_ratelimit())
5249 printk(KERN_INFO "process %d (%s) no "
5250 "longer affine to cpu%d\n",
ba25f9dc 5251 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 5252 }
f7b4cddc 5253 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5254}
5255
5256/*
5257 * While a dead CPU has no uninterruptible tasks queued at this point,
5258 * it might still have a nonzero ->nr_uninterruptible counter, because
5259 * for performance reasons the counter is not stricly tracking tasks to
5260 * their home CPUs. So we just add the counter to another CPU's counter,
5261 * to keep the global sum constant after CPU-down:
5262 */
70b97a7f 5263static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5264{
70b97a7f 5265 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5266 unsigned long flags;
5267
5268 local_irq_save(flags);
5269 double_rq_lock(rq_src, rq_dest);
5270 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5271 rq_src->nr_uninterruptible = 0;
5272 double_rq_unlock(rq_src, rq_dest);
5273 local_irq_restore(flags);
5274}
5275
5276/* Run through task list and migrate tasks from the dead cpu. */
5277static void migrate_live_tasks(int src_cpu)
5278{
48f24c4d 5279 struct task_struct *p, *t;
1da177e4 5280
f7b4cddc 5281 read_lock(&tasklist_lock);
1da177e4 5282
48f24c4d
IM
5283 do_each_thread(t, p) {
5284 if (p == current)
1da177e4
LT
5285 continue;
5286
48f24c4d
IM
5287 if (task_cpu(p) == src_cpu)
5288 move_task_off_dead_cpu(src_cpu, p);
5289 } while_each_thread(t, p);
1da177e4 5290
f7b4cddc 5291 read_unlock(&tasklist_lock);
1da177e4
LT
5292}
5293
dd41f596
IM
5294/*
5295 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5296 * It does so by boosting its priority to highest possible.
5297 * Used by CPU offline code.
1da177e4
LT
5298 */
5299void sched_idle_next(void)
5300{
48f24c4d 5301 int this_cpu = smp_processor_id();
70b97a7f 5302 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5303 struct task_struct *p = rq->idle;
5304 unsigned long flags;
5305
5306 /* cpu has to be offline */
48f24c4d 5307 BUG_ON(cpu_online(this_cpu));
1da177e4 5308
48f24c4d
IM
5309 /*
5310 * Strictly not necessary since rest of the CPUs are stopped by now
5311 * and interrupts disabled on the current cpu.
1da177e4
LT
5312 */
5313 spin_lock_irqsave(&rq->lock, flags);
5314
dd41f596 5315 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5316
94bc9a7b
DA
5317 update_rq_clock(rq);
5318 activate_task(rq, p, 0);
1da177e4
LT
5319
5320 spin_unlock_irqrestore(&rq->lock, flags);
5321}
5322
48f24c4d
IM
5323/*
5324 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5325 * offline.
5326 */
5327void idle_task_exit(void)
5328{
5329 struct mm_struct *mm = current->active_mm;
5330
5331 BUG_ON(cpu_online(smp_processor_id()));
5332
5333 if (mm != &init_mm)
5334 switch_mm(mm, &init_mm, current);
5335 mmdrop(mm);
5336}
5337
054b9108 5338/* called under rq->lock with disabled interrupts */
36c8b586 5339static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5340{
70b97a7f 5341 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5342
5343 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5344 BUG_ON(!p->exit_state);
1da177e4
LT
5345
5346 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5347 BUG_ON(p->state == TASK_DEAD);
1da177e4 5348
48f24c4d 5349 get_task_struct(p);
1da177e4
LT
5350
5351 /*
5352 * Drop lock around migration; if someone else moves it,
5353 * that's OK. No task can be added to this CPU, so iteration is
5354 * fine.
5355 */
f7b4cddc 5356 spin_unlock_irq(&rq->lock);
48f24c4d 5357 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5358 spin_lock_irq(&rq->lock);
1da177e4 5359
48f24c4d 5360 put_task_struct(p);
1da177e4
LT
5361}
5362
5363/* release_task() removes task from tasklist, so we won't find dead tasks. */
5364static void migrate_dead_tasks(unsigned int dead_cpu)
5365{
70b97a7f 5366 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5367 struct task_struct *next;
48f24c4d 5368
dd41f596
IM
5369 for ( ; ; ) {
5370 if (!rq->nr_running)
5371 break;
a8e504d2 5372 update_rq_clock(rq);
ff95f3df 5373 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5374 if (!next)
5375 break;
5376 migrate_dead(dead_cpu, next);
e692ab53 5377
1da177e4
LT
5378 }
5379}
5380#endif /* CONFIG_HOTPLUG_CPU */
5381
e692ab53
NP
5382#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5383
5384static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5385 {
5386 .procname = "sched_domain",
c57baf1e 5387 .mode = 0555,
e0361851 5388 },
38605cae 5389 {0, },
e692ab53
NP
5390};
5391
5392static struct ctl_table sd_ctl_root[] = {
e0361851 5393 {
c57baf1e 5394 .ctl_name = CTL_KERN,
e0361851 5395 .procname = "kernel",
c57baf1e 5396 .mode = 0555,
e0361851
AD
5397 .child = sd_ctl_dir,
5398 },
38605cae 5399 {0, },
e692ab53
NP
5400};
5401
5402static struct ctl_table *sd_alloc_ctl_entry(int n)
5403{
5404 struct ctl_table *entry =
5cf9f062 5405 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5406
e692ab53
NP
5407 return entry;
5408}
5409
6382bc90
MM
5410static void sd_free_ctl_entry(struct ctl_table **tablep)
5411{
cd790076 5412 struct ctl_table *entry;
6382bc90 5413
cd790076
MM
5414 /*
5415 * In the intermediate directories, both the child directory and
5416 * procname are dynamically allocated and could fail but the mode
5417 * will always be set. In the lowest directory the names are
5418 * static strings and all have proc handlers.
5419 */
5420 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5421 if (entry->child)
5422 sd_free_ctl_entry(&entry->child);
cd790076
MM
5423 if (entry->proc_handler == NULL)
5424 kfree(entry->procname);
5425 }
6382bc90
MM
5426
5427 kfree(*tablep);
5428 *tablep = NULL;
5429}
5430
e692ab53 5431static void
e0361851 5432set_table_entry(struct ctl_table *entry,
e692ab53
NP
5433 const char *procname, void *data, int maxlen,
5434 mode_t mode, proc_handler *proc_handler)
5435{
e692ab53
NP
5436 entry->procname = procname;
5437 entry->data = data;
5438 entry->maxlen = maxlen;
5439 entry->mode = mode;
5440 entry->proc_handler = proc_handler;
5441}
5442
5443static struct ctl_table *
5444sd_alloc_ctl_domain_table(struct sched_domain *sd)
5445{
ace8b3d6 5446 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5447
ad1cdc1d
MM
5448 if (table == NULL)
5449 return NULL;
5450
e0361851 5451 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5452 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5453 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5454 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5455 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5457 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5459 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5461 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5463 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5465 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5467 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5468 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5469 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5470 &sd->cache_nice_tries,
5471 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5472 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5473 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5474 /* &table[11] is terminator */
e692ab53
NP
5475
5476 return table;
5477}
5478
9a4e7159 5479static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5480{
5481 struct ctl_table *entry, *table;
5482 struct sched_domain *sd;
5483 int domain_num = 0, i;
5484 char buf[32];
5485
5486 for_each_domain(cpu, sd)
5487 domain_num++;
5488 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5489 if (table == NULL)
5490 return NULL;
e692ab53
NP
5491
5492 i = 0;
5493 for_each_domain(cpu, sd) {
5494 snprintf(buf, 32, "domain%d", i);
e692ab53 5495 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5496 entry->mode = 0555;
e692ab53
NP
5497 entry->child = sd_alloc_ctl_domain_table(sd);
5498 entry++;
5499 i++;
5500 }
5501 return table;
5502}
5503
5504static struct ctl_table_header *sd_sysctl_header;
6382bc90 5505static void register_sched_domain_sysctl(void)
e692ab53
NP
5506{
5507 int i, cpu_num = num_online_cpus();
5508 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5509 char buf[32];
5510
7378547f
MM
5511 WARN_ON(sd_ctl_dir[0].child);
5512 sd_ctl_dir[0].child = entry;
5513
ad1cdc1d
MM
5514 if (entry == NULL)
5515 return;
5516
97b6ea7b 5517 for_each_online_cpu(i) {
e692ab53 5518 snprintf(buf, 32, "cpu%d", i);
e692ab53 5519 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5520 entry->mode = 0555;
e692ab53 5521 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5522 entry++;
e692ab53 5523 }
7378547f
MM
5524
5525 WARN_ON(sd_sysctl_header);
e692ab53
NP
5526 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5527}
6382bc90 5528
7378547f 5529/* may be called multiple times per register */
6382bc90
MM
5530static void unregister_sched_domain_sysctl(void)
5531{
7378547f
MM
5532 if (sd_sysctl_header)
5533 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5534 sd_sysctl_header = NULL;
7378547f
MM
5535 if (sd_ctl_dir[0].child)
5536 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5537}
e692ab53 5538#else
6382bc90
MM
5539static void register_sched_domain_sysctl(void)
5540{
5541}
5542static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5543{
5544}
5545#endif
5546
1da177e4
LT
5547/*
5548 * migration_call - callback that gets triggered when a CPU is added.
5549 * Here we can start up the necessary migration thread for the new CPU.
5550 */
48f24c4d
IM
5551static int __cpuinit
5552migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5553{
1da177e4 5554 struct task_struct *p;
48f24c4d 5555 int cpu = (long)hcpu;
1da177e4 5556 unsigned long flags;
70b97a7f 5557 struct rq *rq;
1da177e4
LT
5558
5559 switch (action) {
5be9361c
GS
5560 case CPU_LOCK_ACQUIRE:
5561 mutex_lock(&sched_hotcpu_mutex);
5562 break;
5563
1da177e4 5564 case CPU_UP_PREPARE:
8bb78442 5565 case CPU_UP_PREPARE_FROZEN:
dd41f596 5566 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5567 if (IS_ERR(p))
5568 return NOTIFY_BAD;
1da177e4
LT
5569 kthread_bind(p, cpu);
5570 /* Must be high prio: stop_machine expects to yield to it. */
5571 rq = task_rq_lock(p, &flags);
dd41f596 5572 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5573 task_rq_unlock(rq, &flags);
5574 cpu_rq(cpu)->migration_thread = p;
5575 break;
48f24c4d 5576
1da177e4 5577 case CPU_ONLINE:
8bb78442 5578 case CPU_ONLINE_FROZEN:
3a4fa0a2 5579 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5580 wake_up_process(cpu_rq(cpu)->migration_thread);
5581 break;
48f24c4d 5582
1da177e4
LT
5583#ifdef CONFIG_HOTPLUG_CPU
5584 case CPU_UP_CANCELED:
8bb78442 5585 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5586 if (!cpu_rq(cpu)->migration_thread)
5587 break;
1da177e4 5588 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5589 kthread_bind(cpu_rq(cpu)->migration_thread,
5590 any_online_cpu(cpu_online_map));
1da177e4
LT
5591 kthread_stop(cpu_rq(cpu)->migration_thread);
5592 cpu_rq(cpu)->migration_thread = NULL;
5593 break;
48f24c4d 5594
1da177e4 5595 case CPU_DEAD:
8bb78442 5596 case CPU_DEAD_FROZEN:
470fd646 5597 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5598 migrate_live_tasks(cpu);
5599 rq = cpu_rq(cpu);
5600 kthread_stop(rq->migration_thread);
5601 rq->migration_thread = NULL;
5602 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5603 spin_lock_irq(&rq->lock);
a8e504d2 5604 update_rq_clock(rq);
2e1cb74a 5605 deactivate_task(rq, rq->idle, 0);
1da177e4 5606 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5607 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5608 rq->idle->sched_class = &idle_sched_class;
1da177e4 5609 migrate_dead_tasks(cpu);
d2da272a 5610 spin_unlock_irq(&rq->lock);
470fd646 5611 cpuset_unlock();
1da177e4
LT
5612 migrate_nr_uninterruptible(rq);
5613 BUG_ON(rq->nr_running != 0);
5614
5615 /* No need to migrate the tasks: it was best-effort if
5be9361c 5616 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5617 * the requestors. */
5618 spin_lock_irq(&rq->lock);
5619 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5620 struct migration_req *req;
5621
1da177e4 5622 req = list_entry(rq->migration_queue.next,
70b97a7f 5623 struct migration_req, list);
1da177e4
LT
5624 list_del_init(&req->list);
5625 complete(&req->done);
5626 }
5627 spin_unlock_irq(&rq->lock);
5628 break;
5629#endif
5be9361c
GS
5630 case CPU_LOCK_RELEASE:
5631 mutex_unlock(&sched_hotcpu_mutex);
5632 break;
1da177e4
LT
5633 }
5634 return NOTIFY_OK;
5635}
5636
5637/* Register at highest priority so that task migration (migrate_all_tasks)
5638 * happens before everything else.
5639 */
26c2143b 5640static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5641 .notifier_call = migration_call,
5642 .priority = 10
5643};
5644
e6fe6649 5645void __init migration_init(void)
1da177e4
LT
5646{
5647 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5648 int err;
48f24c4d
IM
5649
5650 /* Start one for the boot CPU: */
07dccf33
AM
5651 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5652 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5653 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5654 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5655}
5656#endif
5657
5658#ifdef CONFIG_SMP
476f3534
CL
5659
5660/* Number of possible processor ids */
5661int nr_cpu_ids __read_mostly = NR_CPUS;
5662EXPORT_SYMBOL(nr_cpu_ids);
5663
3e9830dc 5664#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5665
5666static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5667{
4dcf6aff
IM
5668 struct sched_group *group = sd->groups;
5669 cpumask_t groupmask;
5670 char str[NR_CPUS];
1da177e4 5671
4dcf6aff
IM
5672 cpumask_scnprintf(str, NR_CPUS, sd->span);
5673 cpus_clear(groupmask);
5674
5675 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5676
5677 if (!(sd->flags & SD_LOAD_BALANCE)) {
5678 printk("does not load-balance\n");
5679 if (sd->parent)
5680 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5681 " has parent");
5682 return -1;
41c7ce9a
NP
5683 }
5684
4dcf6aff
IM
5685 printk(KERN_CONT "span %s\n", str);
5686
5687 if (!cpu_isset(cpu, sd->span)) {
5688 printk(KERN_ERR "ERROR: domain->span does not contain "
5689 "CPU%d\n", cpu);
5690 }
5691 if (!cpu_isset(cpu, group->cpumask)) {
5692 printk(KERN_ERR "ERROR: domain->groups does not contain"
5693 " CPU%d\n", cpu);
5694 }
1da177e4 5695
4dcf6aff 5696 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5697 do {
4dcf6aff
IM
5698 if (!group) {
5699 printk("\n");
5700 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5701 break;
5702 }
5703
4dcf6aff
IM
5704 if (!group->__cpu_power) {
5705 printk(KERN_CONT "\n");
5706 printk(KERN_ERR "ERROR: domain->cpu_power not "
5707 "set\n");
5708 break;
5709 }
1da177e4 5710
4dcf6aff
IM
5711 if (!cpus_weight(group->cpumask)) {
5712 printk(KERN_CONT "\n");
5713 printk(KERN_ERR "ERROR: empty group\n");
5714 break;
5715 }
1da177e4 5716
4dcf6aff
IM
5717 if (cpus_intersects(groupmask, group->cpumask)) {
5718 printk(KERN_CONT "\n");
5719 printk(KERN_ERR "ERROR: repeated CPUs\n");
5720 break;
5721 }
1da177e4 5722
4dcf6aff 5723 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5724
4dcf6aff
IM
5725 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5726 printk(KERN_CONT " %s", str);
1da177e4 5727
4dcf6aff
IM
5728 group = group->next;
5729 } while (group != sd->groups);
5730 printk(KERN_CONT "\n");
1da177e4 5731
4dcf6aff
IM
5732 if (!cpus_equal(sd->span, groupmask))
5733 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5734
4dcf6aff
IM
5735 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5736 printk(KERN_ERR "ERROR: parent span is not a superset "
5737 "of domain->span\n");
5738 return 0;
5739}
1da177e4 5740
4dcf6aff
IM
5741static void sched_domain_debug(struct sched_domain *sd, int cpu)
5742{
5743 int level = 0;
1da177e4 5744
4dcf6aff
IM
5745 if (!sd) {
5746 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5747 return;
5748 }
1da177e4 5749
4dcf6aff
IM
5750 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5751
5752 for (;;) {
5753 if (sched_domain_debug_one(sd, cpu, level))
5754 break;
1da177e4
LT
5755 level++;
5756 sd = sd->parent;
33859f7f 5757 if (!sd)
4dcf6aff
IM
5758 break;
5759 }
1da177e4
LT
5760}
5761#else
48f24c4d 5762# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5763#endif
5764
1a20ff27 5765static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5766{
5767 if (cpus_weight(sd->span) == 1)
5768 return 1;
5769
5770 /* Following flags need at least 2 groups */
5771 if (sd->flags & (SD_LOAD_BALANCE |
5772 SD_BALANCE_NEWIDLE |
5773 SD_BALANCE_FORK |
89c4710e
SS
5774 SD_BALANCE_EXEC |
5775 SD_SHARE_CPUPOWER |
5776 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5777 if (sd->groups != sd->groups->next)
5778 return 0;
5779 }
5780
5781 /* Following flags don't use groups */
5782 if (sd->flags & (SD_WAKE_IDLE |
5783 SD_WAKE_AFFINE |
5784 SD_WAKE_BALANCE))
5785 return 0;
5786
5787 return 1;
5788}
5789
48f24c4d
IM
5790static int
5791sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5792{
5793 unsigned long cflags = sd->flags, pflags = parent->flags;
5794
5795 if (sd_degenerate(parent))
5796 return 1;
5797
5798 if (!cpus_equal(sd->span, parent->span))
5799 return 0;
5800
5801 /* Does parent contain flags not in child? */
5802 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5803 if (cflags & SD_WAKE_AFFINE)
5804 pflags &= ~SD_WAKE_BALANCE;
5805 /* Flags needing groups don't count if only 1 group in parent */
5806 if (parent->groups == parent->groups->next) {
5807 pflags &= ~(SD_LOAD_BALANCE |
5808 SD_BALANCE_NEWIDLE |
5809 SD_BALANCE_FORK |
89c4710e
SS
5810 SD_BALANCE_EXEC |
5811 SD_SHARE_CPUPOWER |
5812 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5813 }
5814 if (~cflags & pflags)
5815 return 0;
5816
5817 return 1;
5818}
5819
1da177e4
LT
5820/*
5821 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5822 * hold the hotplug lock.
5823 */
9c1cfda2 5824static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5825{
70b97a7f 5826 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5827 struct sched_domain *tmp;
5828
5829 /* Remove the sched domains which do not contribute to scheduling. */
5830 for (tmp = sd; tmp; tmp = tmp->parent) {
5831 struct sched_domain *parent = tmp->parent;
5832 if (!parent)
5833 break;
1a848870 5834 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5835 tmp->parent = parent->parent;
1a848870
SS
5836 if (parent->parent)
5837 parent->parent->child = tmp;
5838 }
245af2c7
SS
5839 }
5840
1a848870 5841 if (sd && sd_degenerate(sd)) {
245af2c7 5842 sd = sd->parent;
1a848870
SS
5843 if (sd)
5844 sd->child = NULL;
5845 }
1da177e4
LT
5846
5847 sched_domain_debug(sd, cpu);
5848
674311d5 5849 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5850}
5851
5852/* cpus with isolated domains */
67af63a6 5853static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5854
5855/* Setup the mask of cpus configured for isolated domains */
5856static int __init isolated_cpu_setup(char *str)
5857{
5858 int ints[NR_CPUS], i;
5859
5860 str = get_options(str, ARRAY_SIZE(ints), ints);
5861 cpus_clear(cpu_isolated_map);
5862 for (i = 1; i <= ints[0]; i++)
5863 if (ints[i] < NR_CPUS)
5864 cpu_set(ints[i], cpu_isolated_map);
5865 return 1;
5866}
5867
8927f494 5868__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5869
5870/*
6711cab4
SS
5871 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5872 * to a function which identifies what group(along with sched group) a CPU
5873 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5874 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5875 *
5876 * init_sched_build_groups will build a circular linked list of the groups
5877 * covered by the given span, and will set each group's ->cpumask correctly,
5878 * and ->cpu_power to 0.
5879 */
a616058b 5880static void
6711cab4
SS
5881init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5882 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5883 struct sched_group **sg))
1da177e4
LT
5884{
5885 struct sched_group *first = NULL, *last = NULL;
5886 cpumask_t covered = CPU_MASK_NONE;
5887 int i;
5888
5889 for_each_cpu_mask(i, span) {
6711cab4
SS
5890 struct sched_group *sg;
5891 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5892 int j;
5893
5894 if (cpu_isset(i, covered))
5895 continue;
5896
5897 sg->cpumask = CPU_MASK_NONE;
5517d86b 5898 sg->__cpu_power = 0;
1da177e4
LT
5899
5900 for_each_cpu_mask(j, span) {
6711cab4 5901 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5902 continue;
5903
5904 cpu_set(j, covered);
5905 cpu_set(j, sg->cpumask);
5906 }
5907 if (!first)
5908 first = sg;
5909 if (last)
5910 last->next = sg;
5911 last = sg;
5912 }
5913 last->next = first;
5914}
5915
9c1cfda2 5916#define SD_NODES_PER_DOMAIN 16
1da177e4 5917
9c1cfda2 5918#ifdef CONFIG_NUMA
198e2f18 5919
9c1cfda2
JH
5920/**
5921 * find_next_best_node - find the next node to include in a sched_domain
5922 * @node: node whose sched_domain we're building
5923 * @used_nodes: nodes already in the sched_domain
5924 *
5925 * Find the next node to include in a given scheduling domain. Simply
5926 * finds the closest node not already in the @used_nodes map.
5927 *
5928 * Should use nodemask_t.
5929 */
5930static int find_next_best_node(int node, unsigned long *used_nodes)
5931{
5932 int i, n, val, min_val, best_node = 0;
5933
5934 min_val = INT_MAX;
5935
5936 for (i = 0; i < MAX_NUMNODES; i++) {
5937 /* Start at @node */
5938 n = (node + i) % MAX_NUMNODES;
5939
5940 if (!nr_cpus_node(n))
5941 continue;
5942
5943 /* Skip already used nodes */
5944 if (test_bit(n, used_nodes))
5945 continue;
5946
5947 /* Simple min distance search */
5948 val = node_distance(node, n);
5949
5950 if (val < min_val) {
5951 min_val = val;
5952 best_node = n;
5953 }
5954 }
5955
5956 set_bit(best_node, used_nodes);
5957 return best_node;
5958}
5959
5960/**
5961 * sched_domain_node_span - get a cpumask for a node's sched_domain
5962 * @node: node whose cpumask we're constructing
5963 * @size: number of nodes to include in this span
5964 *
5965 * Given a node, construct a good cpumask for its sched_domain to span. It
5966 * should be one that prevents unnecessary balancing, but also spreads tasks
5967 * out optimally.
5968 */
5969static cpumask_t sched_domain_node_span(int node)
5970{
9c1cfda2 5971 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5972 cpumask_t span, nodemask;
5973 int i;
9c1cfda2
JH
5974
5975 cpus_clear(span);
5976 bitmap_zero(used_nodes, MAX_NUMNODES);
5977
5978 nodemask = node_to_cpumask(node);
5979 cpus_or(span, span, nodemask);
5980 set_bit(node, used_nodes);
5981
5982 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5983 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5984
9c1cfda2
JH
5985 nodemask = node_to_cpumask(next_node);
5986 cpus_or(span, span, nodemask);
5987 }
5988
5989 return span;
5990}
5991#endif
5992
5c45bf27 5993int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5994
9c1cfda2 5995/*
48f24c4d 5996 * SMT sched-domains:
9c1cfda2 5997 */
1da177e4
LT
5998#ifdef CONFIG_SCHED_SMT
5999static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6000static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6001
6711cab4
SS
6002static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6003 struct sched_group **sg)
1da177e4 6004{
6711cab4
SS
6005 if (sg)
6006 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6007 return cpu;
6008}
6009#endif
6010
48f24c4d
IM
6011/*
6012 * multi-core sched-domains:
6013 */
1e9f28fa
SS
6014#ifdef CONFIG_SCHED_MC
6015static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6016static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6017#endif
6018
6019#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6020static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6021 struct sched_group **sg)
1e9f28fa 6022{
6711cab4 6023 int group;
d5a7430d 6024 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6025 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6026 group = first_cpu(mask);
6027 if (sg)
6028 *sg = &per_cpu(sched_group_core, group);
6029 return group;
1e9f28fa
SS
6030}
6031#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6032static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6033 struct sched_group **sg)
1e9f28fa 6034{
6711cab4
SS
6035 if (sg)
6036 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6037 return cpu;
6038}
6039#endif
6040
1da177e4 6041static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6042static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6043
6711cab4
SS
6044static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6045 struct sched_group **sg)
1da177e4 6046{
6711cab4 6047 int group;
48f24c4d 6048#ifdef CONFIG_SCHED_MC
1e9f28fa 6049 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6050 cpus_and(mask, mask, *cpu_map);
6711cab4 6051 group = first_cpu(mask);
1e9f28fa 6052#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6053 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6054 cpus_and(mask, mask, *cpu_map);
6711cab4 6055 group = first_cpu(mask);
1da177e4 6056#else
6711cab4 6057 group = cpu;
1da177e4 6058#endif
6711cab4
SS
6059 if (sg)
6060 *sg = &per_cpu(sched_group_phys, group);
6061 return group;
1da177e4
LT
6062}
6063
6064#ifdef CONFIG_NUMA
1da177e4 6065/*
9c1cfda2
JH
6066 * The init_sched_build_groups can't handle what we want to do with node
6067 * groups, so roll our own. Now each node has its own list of groups which
6068 * gets dynamically allocated.
1da177e4 6069 */
9c1cfda2 6070static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6071static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6072
9c1cfda2 6073static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6074static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6075
6711cab4
SS
6076static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6077 struct sched_group **sg)
9c1cfda2 6078{
6711cab4
SS
6079 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6080 int group;
6081
6082 cpus_and(nodemask, nodemask, *cpu_map);
6083 group = first_cpu(nodemask);
6084
6085 if (sg)
6086 *sg = &per_cpu(sched_group_allnodes, group);
6087 return group;
1da177e4 6088}
6711cab4 6089
08069033
SS
6090static void init_numa_sched_groups_power(struct sched_group *group_head)
6091{
6092 struct sched_group *sg = group_head;
6093 int j;
6094
6095 if (!sg)
6096 return;
3a5c359a
AK
6097 do {
6098 for_each_cpu_mask(j, sg->cpumask) {
6099 struct sched_domain *sd;
08069033 6100
3a5c359a
AK
6101 sd = &per_cpu(phys_domains, j);
6102 if (j != first_cpu(sd->groups->cpumask)) {
6103 /*
6104 * Only add "power" once for each
6105 * physical package.
6106 */
6107 continue;
6108 }
08069033 6109
3a5c359a
AK
6110 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6111 }
6112 sg = sg->next;
6113 } while (sg != group_head);
08069033 6114}
1da177e4
LT
6115#endif
6116
a616058b 6117#ifdef CONFIG_NUMA
51888ca2
SV
6118/* Free memory allocated for various sched_group structures */
6119static void free_sched_groups(const cpumask_t *cpu_map)
6120{
a616058b 6121 int cpu, i;
51888ca2
SV
6122
6123 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6124 struct sched_group **sched_group_nodes
6125 = sched_group_nodes_bycpu[cpu];
6126
51888ca2
SV
6127 if (!sched_group_nodes)
6128 continue;
6129
6130 for (i = 0; i < MAX_NUMNODES; i++) {
6131 cpumask_t nodemask = node_to_cpumask(i);
6132 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6133
6134 cpus_and(nodemask, nodemask, *cpu_map);
6135 if (cpus_empty(nodemask))
6136 continue;
6137
6138 if (sg == NULL)
6139 continue;
6140 sg = sg->next;
6141next_sg:
6142 oldsg = sg;
6143 sg = sg->next;
6144 kfree(oldsg);
6145 if (oldsg != sched_group_nodes[i])
6146 goto next_sg;
6147 }
6148 kfree(sched_group_nodes);
6149 sched_group_nodes_bycpu[cpu] = NULL;
6150 }
51888ca2 6151}
a616058b
SS
6152#else
6153static void free_sched_groups(const cpumask_t *cpu_map)
6154{
6155}
6156#endif
51888ca2 6157
89c4710e
SS
6158/*
6159 * Initialize sched groups cpu_power.
6160 *
6161 * cpu_power indicates the capacity of sched group, which is used while
6162 * distributing the load between different sched groups in a sched domain.
6163 * Typically cpu_power for all the groups in a sched domain will be same unless
6164 * there are asymmetries in the topology. If there are asymmetries, group
6165 * having more cpu_power will pickup more load compared to the group having
6166 * less cpu_power.
6167 *
6168 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6169 * the maximum number of tasks a group can handle in the presence of other idle
6170 * or lightly loaded groups in the same sched domain.
6171 */
6172static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6173{
6174 struct sched_domain *child;
6175 struct sched_group *group;
6176
6177 WARN_ON(!sd || !sd->groups);
6178
6179 if (cpu != first_cpu(sd->groups->cpumask))
6180 return;
6181
6182 child = sd->child;
6183
5517d86b
ED
6184 sd->groups->__cpu_power = 0;
6185
89c4710e
SS
6186 /*
6187 * For perf policy, if the groups in child domain share resources
6188 * (for example cores sharing some portions of the cache hierarchy
6189 * or SMT), then set this domain groups cpu_power such that each group
6190 * can handle only one task, when there are other idle groups in the
6191 * same sched domain.
6192 */
6193 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6194 (child->flags &
6195 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6196 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6197 return;
6198 }
6199
89c4710e
SS
6200 /*
6201 * add cpu_power of each child group to this groups cpu_power
6202 */
6203 group = child->groups;
6204 do {
5517d86b 6205 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6206 group = group->next;
6207 } while (group != child->groups);
6208}
6209
1da177e4 6210/*
1a20ff27
DG
6211 * Build sched domains for a given set of cpus and attach the sched domains
6212 * to the individual cpus
1da177e4 6213 */
51888ca2 6214static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6215{
6216 int i;
d1b55138
JH
6217#ifdef CONFIG_NUMA
6218 struct sched_group **sched_group_nodes = NULL;
6711cab4 6219 int sd_allnodes = 0;
d1b55138
JH
6220
6221 /*
6222 * Allocate the per-node list of sched groups
6223 */
5cf9f062 6224 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6225 GFP_KERNEL);
d1b55138
JH
6226 if (!sched_group_nodes) {
6227 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6228 return -ENOMEM;
d1b55138
JH
6229 }
6230 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6231#endif
1da177e4
LT
6232
6233 /*
1a20ff27 6234 * Set up domains for cpus specified by the cpu_map.
1da177e4 6235 */
1a20ff27 6236 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6237 struct sched_domain *sd = NULL, *p;
6238 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6239
1a20ff27 6240 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6241
6242#ifdef CONFIG_NUMA
dd41f596
IM
6243 if (cpus_weight(*cpu_map) >
6244 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6245 sd = &per_cpu(allnodes_domains, i);
6246 *sd = SD_ALLNODES_INIT;
6247 sd->span = *cpu_map;
6711cab4 6248 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6249 p = sd;
6711cab4 6250 sd_allnodes = 1;
9c1cfda2
JH
6251 } else
6252 p = NULL;
6253
1da177e4 6254 sd = &per_cpu(node_domains, i);
1da177e4 6255 *sd = SD_NODE_INIT;
9c1cfda2
JH
6256 sd->span = sched_domain_node_span(cpu_to_node(i));
6257 sd->parent = p;
1a848870
SS
6258 if (p)
6259 p->child = sd;
9c1cfda2 6260 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6261#endif
6262
6263 p = sd;
6264 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6265 *sd = SD_CPU_INIT;
6266 sd->span = nodemask;
6267 sd->parent = p;
1a848870
SS
6268 if (p)
6269 p->child = sd;
6711cab4 6270 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6271
1e9f28fa
SS
6272#ifdef CONFIG_SCHED_MC
6273 p = sd;
6274 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6275 *sd = SD_MC_INIT;
6276 sd->span = cpu_coregroup_map(i);
6277 cpus_and(sd->span, sd->span, *cpu_map);
6278 sd->parent = p;
1a848870 6279 p->child = sd;
6711cab4 6280 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6281#endif
6282
1da177e4
LT
6283#ifdef CONFIG_SCHED_SMT
6284 p = sd;
6285 sd = &per_cpu(cpu_domains, i);
1da177e4 6286 *sd = SD_SIBLING_INIT;
d5a7430d 6287 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6288 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6289 sd->parent = p;
1a848870 6290 p->child = sd;
6711cab4 6291 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6292#endif
6293 }
6294
6295#ifdef CONFIG_SCHED_SMT
6296 /* Set up CPU (sibling) groups */
9c1cfda2 6297 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6298 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6299 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6300 if (i != first_cpu(this_sibling_map))
6301 continue;
6302
dd41f596
IM
6303 init_sched_build_groups(this_sibling_map, cpu_map,
6304 &cpu_to_cpu_group);
1da177e4
LT
6305 }
6306#endif
6307
1e9f28fa
SS
6308#ifdef CONFIG_SCHED_MC
6309 /* Set up multi-core groups */
6310 for_each_cpu_mask(i, *cpu_map) {
6311 cpumask_t this_core_map = cpu_coregroup_map(i);
6312 cpus_and(this_core_map, this_core_map, *cpu_map);
6313 if (i != first_cpu(this_core_map))
6314 continue;
dd41f596
IM
6315 init_sched_build_groups(this_core_map, cpu_map,
6316 &cpu_to_core_group);
1e9f28fa
SS
6317 }
6318#endif
6319
1da177e4
LT
6320 /* Set up physical groups */
6321 for (i = 0; i < MAX_NUMNODES; i++) {
6322 cpumask_t nodemask = node_to_cpumask(i);
6323
1a20ff27 6324 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6325 if (cpus_empty(nodemask))
6326 continue;
6327
6711cab4 6328 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6329 }
6330
6331#ifdef CONFIG_NUMA
6332 /* Set up node groups */
6711cab4 6333 if (sd_allnodes)
dd41f596
IM
6334 init_sched_build_groups(*cpu_map, cpu_map,
6335 &cpu_to_allnodes_group);
9c1cfda2
JH
6336
6337 for (i = 0; i < MAX_NUMNODES; i++) {
6338 /* Set up node groups */
6339 struct sched_group *sg, *prev;
6340 cpumask_t nodemask = node_to_cpumask(i);
6341 cpumask_t domainspan;
6342 cpumask_t covered = CPU_MASK_NONE;
6343 int j;
6344
6345 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6346 if (cpus_empty(nodemask)) {
6347 sched_group_nodes[i] = NULL;
9c1cfda2 6348 continue;
d1b55138 6349 }
9c1cfda2
JH
6350
6351 domainspan = sched_domain_node_span(i);
6352 cpus_and(domainspan, domainspan, *cpu_map);
6353
15f0b676 6354 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6355 if (!sg) {
6356 printk(KERN_WARNING "Can not alloc domain group for "
6357 "node %d\n", i);
6358 goto error;
6359 }
9c1cfda2
JH
6360 sched_group_nodes[i] = sg;
6361 for_each_cpu_mask(j, nodemask) {
6362 struct sched_domain *sd;
9761eea8 6363
9c1cfda2
JH
6364 sd = &per_cpu(node_domains, j);
6365 sd->groups = sg;
9c1cfda2 6366 }
5517d86b 6367 sg->__cpu_power = 0;
9c1cfda2 6368 sg->cpumask = nodemask;
51888ca2 6369 sg->next = sg;
9c1cfda2
JH
6370 cpus_or(covered, covered, nodemask);
6371 prev = sg;
6372
6373 for (j = 0; j < MAX_NUMNODES; j++) {
6374 cpumask_t tmp, notcovered;
6375 int n = (i + j) % MAX_NUMNODES;
6376
6377 cpus_complement(notcovered, covered);
6378 cpus_and(tmp, notcovered, *cpu_map);
6379 cpus_and(tmp, tmp, domainspan);
6380 if (cpus_empty(tmp))
6381 break;
6382
6383 nodemask = node_to_cpumask(n);
6384 cpus_and(tmp, tmp, nodemask);
6385 if (cpus_empty(tmp))
6386 continue;
6387
15f0b676
SV
6388 sg = kmalloc_node(sizeof(struct sched_group),
6389 GFP_KERNEL, i);
9c1cfda2
JH
6390 if (!sg) {
6391 printk(KERN_WARNING
6392 "Can not alloc domain group for node %d\n", j);
51888ca2 6393 goto error;
9c1cfda2 6394 }
5517d86b 6395 sg->__cpu_power = 0;
9c1cfda2 6396 sg->cpumask = tmp;
51888ca2 6397 sg->next = prev->next;
9c1cfda2
JH
6398 cpus_or(covered, covered, tmp);
6399 prev->next = sg;
6400 prev = sg;
6401 }
9c1cfda2 6402 }
1da177e4
LT
6403#endif
6404
6405 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6406#ifdef CONFIG_SCHED_SMT
1a20ff27 6407 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6408 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6409
89c4710e 6410 init_sched_groups_power(i, sd);
5c45bf27 6411 }
1da177e4 6412#endif
1e9f28fa 6413#ifdef CONFIG_SCHED_MC
5c45bf27 6414 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6415 struct sched_domain *sd = &per_cpu(core_domains, i);
6416
89c4710e 6417 init_sched_groups_power(i, sd);
5c45bf27
SS
6418 }
6419#endif
1e9f28fa 6420
5c45bf27 6421 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6422 struct sched_domain *sd = &per_cpu(phys_domains, i);
6423
89c4710e 6424 init_sched_groups_power(i, sd);
1da177e4
LT
6425 }
6426
9c1cfda2 6427#ifdef CONFIG_NUMA
08069033
SS
6428 for (i = 0; i < MAX_NUMNODES; i++)
6429 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6430
6711cab4
SS
6431 if (sd_allnodes) {
6432 struct sched_group *sg;
f712c0c7 6433
6711cab4 6434 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6435 init_numa_sched_groups_power(sg);
6436 }
9c1cfda2
JH
6437#endif
6438
1da177e4 6439 /* Attach the domains */
1a20ff27 6440 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6441 struct sched_domain *sd;
6442#ifdef CONFIG_SCHED_SMT
6443 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6444#elif defined(CONFIG_SCHED_MC)
6445 sd = &per_cpu(core_domains, i);
1da177e4
LT
6446#else
6447 sd = &per_cpu(phys_domains, i);
6448#endif
6449 cpu_attach_domain(sd, i);
6450 }
51888ca2
SV
6451
6452 return 0;
6453
a616058b 6454#ifdef CONFIG_NUMA
51888ca2
SV
6455error:
6456 free_sched_groups(cpu_map);
6457 return -ENOMEM;
a616058b 6458#endif
1da177e4 6459}
029190c5
PJ
6460
6461static cpumask_t *doms_cur; /* current sched domains */
6462static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6463
6464/*
6465 * Special case: If a kmalloc of a doms_cur partition (array of
6466 * cpumask_t) fails, then fallback to a single sched domain,
6467 * as determined by the single cpumask_t fallback_doms.
6468 */
6469static cpumask_t fallback_doms;
6470
1a20ff27
DG
6471/*
6472 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6473 * For now this just excludes isolated cpus, but could be used to
6474 * exclude other special cases in the future.
1a20ff27 6475 */
51888ca2 6476static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6477{
7378547f
MM
6478 int err;
6479
029190c5
PJ
6480 ndoms_cur = 1;
6481 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6482 if (!doms_cur)
6483 doms_cur = &fallback_doms;
6484 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6485 err = build_sched_domains(doms_cur);
6382bc90 6486 register_sched_domain_sysctl();
7378547f
MM
6487
6488 return err;
1a20ff27
DG
6489}
6490
6491static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6492{
51888ca2 6493 free_sched_groups(cpu_map);
9c1cfda2 6494}
1da177e4 6495
1a20ff27
DG
6496/*
6497 * Detach sched domains from a group of cpus specified in cpu_map
6498 * These cpus will now be attached to the NULL domain
6499 */
858119e1 6500static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6501{
6502 int i;
6503
6382bc90
MM
6504 unregister_sched_domain_sysctl();
6505
1a20ff27
DG
6506 for_each_cpu_mask(i, *cpu_map)
6507 cpu_attach_domain(NULL, i);
6508 synchronize_sched();
6509 arch_destroy_sched_domains(cpu_map);
6510}
6511
029190c5
PJ
6512/*
6513 * Partition sched domains as specified by the 'ndoms_new'
6514 * cpumasks in the array doms_new[] of cpumasks. This compares
6515 * doms_new[] to the current sched domain partitioning, doms_cur[].
6516 * It destroys each deleted domain and builds each new domain.
6517 *
6518 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6519 * The masks don't intersect (don't overlap.) We should setup one
6520 * sched domain for each mask. CPUs not in any of the cpumasks will
6521 * not be load balanced. If the same cpumask appears both in the
6522 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6523 * it as it is.
6524 *
6525 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6526 * ownership of it and will kfree it when done with it. If the caller
6527 * failed the kmalloc call, then it can pass in doms_new == NULL,
6528 * and partition_sched_domains() will fallback to the single partition
6529 * 'fallback_doms'.
6530 *
6531 * Call with hotplug lock held
6532 */
6533void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6534{
6535 int i, j;
6536
7378547f
MM
6537 /* always unregister in case we don't destroy any domains */
6538 unregister_sched_domain_sysctl();
6539
029190c5
PJ
6540 if (doms_new == NULL) {
6541 ndoms_new = 1;
6542 doms_new = &fallback_doms;
6543 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6544 }
6545
6546 /* Destroy deleted domains */
6547 for (i = 0; i < ndoms_cur; i++) {
6548 for (j = 0; j < ndoms_new; j++) {
6549 if (cpus_equal(doms_cur[i], doms_new[j]))
6550 goto match1;
6551 }
6552 /* no match - a current sched domain not in new doms_new[] */
6553 detach_destroy_domains(doms_cur + i);
6554match1:
6555 ;
6556 }
6557
6558 /* Build new domains */
6559 for (i = 0; i < ndoms_new; i++) {
6560 for (j = 0; j < ndoms_cur; j++) {
6561 if (cpus_equal(doms_new[i], doms_cur[j]))
6562 goto match2;
6563 }
6564 /* no match - add a new doms_new */
6565 build_sched_domains(doms_new + i);
6566match2:
6567 ;
6568 }
6569
6570 /* Remember the new sched domains */
6571 if (doms_cur != &fallback_doms)
6572 kfree(doms_cur);
6573 doms_cur = doms_new;
6574 ndoms_cur = ndoms_new;
7378547f
MM
6575
6576 register_sched_domain_sysctl();
029190c5
PJ
6577}
6578
5c45bf27 6579#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6580static int arch_reinit_sched_domains(void)
5c45bf27
SS
6581{
6582 int err;
6583
5be9361c 6584 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6585 detach_destroy_domains(&cpu_online_map);
6586 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6587 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6588
6589 return err;
6590}
6591
6592static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6593{
6594 int ret;
6595
6596 if (buf[0] != '0' && buf[0] != '1')
6597 return -EINVAL;
6598
6599 if (smt)
6600 sched_smt_power_savings = (buf[0] == '1');
6601 else
6602 sched_mc_power_savings = (buf[0] == '1');
6603
6604 ret = arch_reinit_sched_domains();
6605
6606 return ret ? ret : count;
6607}
6608
5c45bf27
SS
6609#ifdef CONFIG_SCHED_MC
6610static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6611{
6612 return sprintf(page, "%u\n", sched_mc_power_savings);
6613}
48f24c4d
IM
6614static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6615 const char *buf, size_t count)
5c45bf27
SS
6616{
6617 return sched_power_savings_store(buf, count, 0);
6618}
6707de00
AB
6619static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6620 sched_mc_power_savings_store);
5c45bf27
SS
6621#endif
6622
6623#ifdef CONFIG_SCHED_SMT
6624static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6625{
6626 return sprintf(page, "%u\n", sched_smt_power_savings);
6627}
48f24c4d
IM
6628static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6629 const char *buf, size_t count)
5c45bf27
SS
6630{
6631 return sched_power_savings_store(buf, count, 1);
6632}
6707de00
AB
6633static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6634 sched_smt_power_savings_store);
6635#endif
6636
6637int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6638{
6639 int err = 0;
6640
6641#ifdef CONFIG_SCHED_SMT
6642 if (smt_capable())
6643 err = sysfs_create_file(&cls->kset.kobj,
6644 &attr_sched_smt_power_savings.attr);
6645#endif
6646#ifdef CONFIG_SCHED_MC
6647 if (!err && mc_capable())
6648 err = sysfs_create_file(&cls->kset.kobj,
6649 &attr_sched_mc_power_savings.attr);
6650#endif
6651 return err;
6652}
5c45bf27
SS
6653#endif
6654
1da177e4
LT
6655/*
6656 * Force a reinitialization of the sched domains hierarchy. The domains
6657 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6658 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6659 * which will prevent rebalancing while the sched domains are recalculated.
6660 */
6661static int update_sched_domains(struct notifier_block *nfb,
6662 unsigned long action, void *hcpu)
6663{
1da177e4
LT
6664 switch (action) {
6665 case CPU_UP_PREPARE:
8bb78442 6666 case CPU_UP_PREPARE_FROZEN:
1da177e4 6667 case CPU_DOWN_PREPARE:
8bb78442 6668 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6669 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6670 return NOTIFY_OK;
6671
6672 case CPU_UP_CANCELED:
8bb78442 6673 case CPU_UP_CANCELED_FROZEN:
1da177e4 6674 case CPU_DOWN_FAILED:
8bb78442 6675 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6676 case CPU_ONLINE:
8bb78442 6677 case CPU_ONLINE_FROZEN:
1da177e4 6678 case CPU_DEAD:
8bb78442 6679 case CPU_DEAD_FROZEN:
1da177e4
LT
6680 /*
6681 * Fall through and re-initialise the domains.
6682 */
6683 break;
6684 default:
6685 return NOTIFY_DONE;
6686 }
6687
6688 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6689 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6690
6691 return NOTIFY_OK;
6692}
1da177e4
LT
6693
6694void __init sched_init_smp(void)
6695{
5c1e1767
NP
6696 cpumask_t non_isolated_cpus;
6697
5be9361c 6698 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6699 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6700 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6701 if (cpus_empty(non_isolated_cpus))
6702 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6703 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6704 /* XXX: Theoretical race here - CPU may be hotplugged now */
6705 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6706
6707 /* Move init over to a non-isolated CPU */
6708 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6709 BUG();
19978ca6 6710 sched_init_granularity();
1da177e4
LT
6711}
6712#else
6713void __init sched_init_smp(void)
6714{
19978ca6 6715 sched_init_granularity();
1da177e4
LT
6716}
6717#endif /* CONFIG_SMP */
6718
6719int in_sched_functions(unsigned long addr)
6720{
1da177e4
LT
6721 return in_lock_functions(addr) ||
6722 (addr >= (unsigned long)__sched_text_start
6723 && addr < (unsigned long)__sched_text_end);
6724}
6725
a9957449 6726static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6727{
6728 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6729#ifdef CONFIG_FAIR_GROUP_SCHED
6730 cfs_rq->rq = rq;
6731#endif
67e9fb2a 6732 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6733}
6734
1da177e4
LT
6735void __init sched_init(void)
6736{
476f3534 6737 int highest_cpu = 0;
dd41f596
IM
6738 int i, j;
6739
0a945022 6740 for_each_possible_cpu(i) {
dd41f596 6741 struct rt_prio_array *array;
70b97a7f 6742 struct rq *rq;
1da177e4
LT
6743
6744 rq = cpu_rq(i);
6745 spin_lock_init(&rq->lock);
fcb99371 6746 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6747 rq->nr_running = 0;
dd41f596
IM
6748 rq->clock = 1;
6749 init_cfs_rq(&rq->cfs, rq);
6750#ifdef CONFIG_FAIR_GROUP_SCHED
6751 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6752 {
6753 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6754 struct sched_entity *se =
6755 &per_cpu(init_sched_entity, i);
6756
6757 init_cfs_rq_p[i] = cfs_rq;
6758 init_cfs_rq(cfs_rq, rq);
4cf86d77 6759 cfs_rq->tg = &init_task_group;
3a252015 6760 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6761 &rq->leaf_cfs_rq_list);
6762
3a252015
IM
6763 init_sched_entity_p[i] = se;
6764 se->cfs_rq = &rq->cfs;
6765 se->my_q = cfs_rq;
4cf86d77 6766 se->load.weight = init_task_group_load;
9b5b7751 6767 se->load.inv_weight =
4cf86d77 6768 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6769 se->parent = NULL;
6770 }
4cf86d77 6771 init_task_group.shares = init_task_group_load;
5cb350ba 6772 spin_lock_init(&init_task_group.lock);
dd41f596 6773#endif
1da177e4 6774
dd41f596
IM
6775 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6776 rq->cpu_load[j] = 0;
1da177e4 6777#ifdef CONFIG_SMP
41c7ce9a 6778 rq->sd = NULL;
1da177e4 6779 rq->active_balance = 0;
dd41f596 6780 rq->next_balance = jiffies;
1da177e4 6781 rq->push_cpu = 0;
0a2966b4 6782 rq->cpu = i;
1da177e4
LT
6783 rq->migration_thread = NULL;
6784 INIT_LIST_HEAD(&rq->migration_queue);
6785#endif
6786 atomic_set(&rq->nr_iowait, 0);
6787
dd41f596
IM
6788 array = &rq->rt.active;
6789 for (j = 0; j < MAX_RT_PRIO; j++) {
6790 INIT_LIST_HEAD(array->queue + j);
6791 __clear_bit(j, array->bitmap);
1da177e4 6792 }
476f3534 6793 highest_cpu = i;
dd41f596
IM
6794 /* delimiter for bitsearch: */
6795 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6796 }
6797
2dd73a4f 6798 set_load_weight(&init_task);
b50f60ce 6799
e107be36
AK
6800#ifdef CONFIG_PREEMPT_NOTIFIERS
6801 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6802#endif
6803
c9819f45 6804#ifdef CONFIG_SMP
476f3534 6805 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6806 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6807#endif
6808
b50f60ce
HC
6809#ifdef CONFIG_RT_MUTEXES
6810 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6811#endif
6812
1da177e4
LT
6813 /*
6814 * The boot idle thread does lazy MMU switching as well:
6815 */
6816 atomic_inc(&init_mm.mm_count);
6817 enter_lazy_tlb(&init_mm, current);
6818
6819 /*
6820 * Make us the idle thread. Technically, schedule() should not be
6821 * called from this thread, however somewhere below it might be,
6822 * but because we are the idle thread, we just pick up running again
6823 * when this runqueue becomes "idle".
6824 */
6825 init_idle(current, smp_processor_id());
dd41f596
IM
6826 /*
6827 * During early bootup we pretend to be a normal task:
6828 */
6829 current->sched_class = &fair_sched_class;
1da177e4
LT
6830}
6831
6832#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6833void __might_sleep(char *file, int line)
6834{
48f24c4d 6835#ifdef in_atomic
1da177e4
LT
6836 static unsigned long prev_jiffy; /* ratelimiting */
6837
6838 if ((in_atomic() || irqs_disabled()) &&
6839 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6840 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6841 return;
6842 prev_jiffy = jiffies;
91368d73 6843 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6844 " context at %s:%d\n", file, line);
6845 printk("in_atomic():%d, irqs_disabled():%d\n",
6846 in_atomic(), irqs_disabled());
a4c410f0 6847 debug_show_held_locks(current);
3117df04
IM
6848 if (irqs_disabled())
6849 print_irqtrace_events(current);
1da177e4
LT
6850 dump_stack();
6851 }
6852#endif
6853}
6854EXPORT_SYMBOL(__might_sleep);
6855#endif
6856
6857#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6858static void normalize_task(struct rq *rq, struct task_struct *p)
6859{
6860 int on_rq;
6861 update_rq_clock(rq);
6862 on_rq = p->se.on_rq;
6863 if (on_rq)
6864 deactivate_task(rq, p, 0);
6865 __setscheduler(rq, p, SCHED_NORMAL, 0);
6866 if (on_rq) {
6867 activate_task(rq, p, 0);
6868 resched_task(rq->curr);
6869 }
6870}
6871
1da177e4
LT
6872void normalize_rt_tasks(void)
6873{
a0f98a1c 6874 struct task_struct *g, *p;
1da177e4 6875 unsigned long flags;
70b97a7f 6876 struct rq *rq;
1da177e4
LT
6877
6878 read_lock_irq(&tasklist_lock);
a0f98a1c 6879 do_each_thread(g, p) {
178be793
IM
6880 /*
6881 * Only normalize user tasks:
6882 */
6883 if (!p->mm)
6884 continue;
6885
6cfb0d5d 6886 p->se.exec_start = 0;
6cfb0d5d 6887#ifdef CONFIG_SCHEDSTATS
dd41f596 6888 p->se.wait_start = 0;
dd41f596 6889 p->se.sleep_start = 0;
dd41f596 6890 p->se.block_start = 0;
6cfb0d5d 6891#endif
dd41f596
IM
6892 task_rq(p)->clock = 0;
6893
6894 if (!rt_task(p)) {
6895 /*
6896 * Renice negative nice level userspace
6897 * tasks back to 0:
6898 */
6899 if (TASK_NICE(p) < 0 && p->mm)
6900 set_user_nice(p, 0);
1da177e4 6901 continue;
dd41f596 6902 }
1da177e4 6903
b29739f9
IM
6904 spin_lock_irqsave(&p->pi_lock, flags);
6905 rq = __task_rq_lock(p);
1da177e4 6906
178be793 6907 normalize_task(rq, p);
3a5e4dc1 6908
b29739f9
IM
6909 __task_rq_unlock(rq);
6910 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6911 } while_each_thread(g, p);
6912
1da177e4
LT
6913 read_unlock_irq(&tasklist_lock);
6914}
6915
6916#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6917
6918#ifdef CONFIG_IA64
6919/*
6920 * These functions are only useful for the IA64 MCA handling.
6921 *
6922 * They can only be called when the whole system has been
6923 * stopped - every CPU needs to be quiescent, and no scheduling
6924 * activity can take place. Using them for anything else would
6925 * be a serious bug, and as a result, they aren't even visible
6926 * under any other configuration.
6927 */
6928
6929/**
6930 * curr_task - return the current task for a given cpu.
6931 * @cpu: the processor in question.
6932 *
6933 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6934 */
36c8b586 6935struct task_struct *curr_task(int cpu)
1df5c10a
LT
6936{
6937 return cpu_curr(cpu);
6938}
6939
6940/**
6941 * set_curr_task - set the current task for a given cpu.
6942 * @cpu: the processor in question.
6943 * @p: the task pointer to set.
6944 *
6945 * Description: This function must only be used when non-maskable interrupts
6946 * are serviced on a separate stack. It allows the architecture to switch the
6947 * notion of the current task on a cpu in a non-blocking manner. This function
6948 * must be called with all CPU's synchronized, and interrupts disabled, the
6949 * and caller must save the original value of the current task (see
6950 * curr_task() above) and restore that value before reenabling interrupts and
6951 * re-starting the system.
6952 *
6953 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6954 */
36c8b586 6955void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6956{
6957 cpu_curr(cpu) = p;
6958}
6959
6960#endif
29f59db3
SV
6961
6962#ifdef CONFIG_FAIR_GROUP_SCHED
6963
29f59db3 6964/* allocate runqueue etc for a new task group */
4cf86d77 6965struct task_group *sched_create_group(void)
29f59db3 6966{
4cf86d77 6967 struct task_group *tg;
29f59db3
SV
6968 struct cfs_rq *cfs_rq;
6969 struct sched_entity *se;
9b5b7751 6970 struct rq *rq;
29f59db3
SV
6971 int i;
6972
29f59db3
SV
6973 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6974 if (!tg)
6975 return ERR_PTR(-ENOMEM);
6976
9b5b7751 6977 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6978 if (!tg->cfs_rq)
6979 goto err;
9b5b7751 6980 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6981 if (!tg->se)
6982 goto err;
6983
6984 for_each_possible_cpu(i) {
9b5b7751 6985 rq = cpu_rq(i);
29f59db3
SV
6986
6987 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6988 cpu_to_node(i));
6989 if (!cfs_rq)
6990 goto err;
6991
6992 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6993 cpu_to_node(i));
6994 if (!se)
6995 goto err;
6996
6997 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6998 memset(se, 0, sizeof(struct sched_entity));
6999
7000 tg->cfs_rq[i] = cfs_rq;
7001 init_cfs_rq(cfs_rq, rq);
7002 cfs_rq->tg = tg;
29f59db3
SV
7003
7004 tg->se[i] = se;
7005 se->cfs_rq = &rq->cfs;
7006 se->my_q = cfs_rq;
7007 se->load.weight = NICE_0_LOAD;
7008 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7009 se->parent = NULL;
7010 }
7011
9b5b7751
SV
7012 for_each_possible_cpu(i) {
7013 rq = cpu_rq(i);
7014 cfs_rq = tg->cfs_rq[i];
7015 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7016 }
29f59db3 7017
9b5b7751 7018 tg->shares = NICE_0_LOAD;
5cb350ba 7019 spin_lock_init(&tg->lock);
29f59db3 7020
9b5b7751 7021 return tg;
29f59db3
SV
7022
7023err:
7024 for_each_possible_cpu(i) {
a65914b3 7025 if (tg->cfs_rq)
29f59db3 7026 kfree(tg->cfs_rq[i]);
a65914b3 7027 if (tg->se)
29f59db3
SV
7028 kfree(tg->se[i]);
7029 }
a65914b3
IM
7030 kfree(tg->cfs_rq);
7031 kfree(tg->se);
7032 kfree(tg);
29f59db3
SV
7033
7034 return ERR_PTR(-ENOMEM);
7035}
7036
9b5b7751
SV
7037/* rcu callback to free various structures associated with a task group */
7038static void free_sched_group(struct rcu_head *rhp)
29f59db3 7039{
ae8393e5
SV
7040 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7041 struct cfs_rq *cfs_rq;
29f59db3
SV
7042 struct sched_entity *se;
7043 int i;
7044
29f59db3
SV
7045 /* now it should be safe to free those cfs_rqs */
7046 for_each_possible_cpu(i) {
7047 cfs_rq = tg->cfs_rq[i];
7048 kfree(cfs_rq);
7049
7050 se = tg->se[i];
7051 kfree(se);
7052 }
7053
7054 kfree(tg->cfs_rq);
7055 kfree(tg->se);
7056 kfree(tg);
7057}
7058
9b5b7751 7059/* Destroy runqueue etc associated with a task group */
4cf86d77 7060void sched_destroy_group(struct task_group *tg)
29f59db3 7061{
7bae49d4 7062 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7063 int i;
29f59db3 7064
9b5b7751
SV
7065 for_each_possible_cpu(i) {
7066 cfs_rq = tg->cfs_rq[i];
7067 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7068 }
7069
7bae49d4 7070 BUG_ON(!cfs_rq);
9b5b7751
SV
7071
7072 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7073 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7074}
7075
9b5b7751 7076/* change task's runqueue when it moves between groups.
3a252015
IM
7077 * The caller of this function should have put the task in its new group
7078 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7079 * reflect its new group.
9b5b7751
SV
7080 */
7081void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7082{
7083 int on_rq, running;
7084 unsigned long flags;
7085 struct rq *rq;
7086
7087 rq = task_rq_lock(tsk, &flags);
7088
dae51f56 7089 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7090 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7091 goto done;
dae51f56 7092 }
29f59db3
SV
7093
7094 update_rq_clock(rq);
7095
7096 running = task_running(rq, tsk);
7097 on_rq = tsk->se.on_rq;
7098
83b699ed 7099 if (on_rq) {
29f59db3 7100 dequeue_task(rq, tsk, 0);
83b699ed
SV
7101 if (unlikely(running))
7102 tsk->sched_class->put_prev_task(rq, tsk);
7103 }
29f59db3 7104
ce96b5ac 7105 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7106
83b699ed
SV
7107 if (on_rq) {
7108 if (unlikely(running))
7109 tsk->sched_class->set_curr_task(rq);
7074badb 7110 enqueue_task(rq, tsk, 0);
83b699ed 7111 }
29f59db3
SV
7112
7113done:
7114 task_rq_unlock(rq, &flags);
7115}
7116
7117static void set_se_shares(struct sched_entity *se, unsigned long shares)
7118{
7119 struct cfs_rq *cfs_rq = se->cfs_rq;
7120 struct rq *rq = cfs_rq->rq;
7121 int on_rq;
7122
7123 spin_lock_irq(&rq->lock);
7124
7125 on_rq = se->on_rq;
7126 if (on_rq)
7127 dequeue_entity(cfs_rq, se, 0);
7128
7129 se->load.weight = shares;
7130 se->load.inv_weight = div64_64((1ULL<<32), shares);
7131
7132 if (on_rq)
7133 enqueue_entity(cfs_rq, se, 0);
7134
7135 spin_unlock_irq(&rq->lock);
7136}
7137
4cf86d77 7138int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7139{
7140 int i;
29f59db3 7141
5cb350ba 7142 spin_lock(&tg->lock);
9b5b7751 7143 if (tg->shares == shares)
5cb350ba 7144 goto done;
29f59db3 7145
9b5b7751 7146 tg->shares = shares;
29f59db3 7147 for_each_possible_cpu(i)
9b5b7751 7148 set_se_shares(tg->se[i], shares);
29f59db3 7149
5cb350ba
DG
7150done:
7151 spin_unlock(&tg->lock);
9b5b7751 7152 return 0;
29f59db3
SV
7153}
7154
5cb350ba
DG
7155unsigned long sched_group_shares(struct task_group *tg)
7156{
7157 return tg->shares;
7158}
7159
3a252015 7160#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7161
7162#ifdef CONFIG_FAIR_CGROUP_SCHED
7163
7164/* return corresponding task_group object of a cgroup */
2b01dfe3 7165static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7166{
2b01dfe3
PM
7167 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7168 struct task_group, css);
68318b8e
SV
7169}
7170
7171static struct cgroup_subsys_state *
2b01dfe3 7172cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7173{
7174 struct task_group *tg;
7175
2b01dfe3 7176 if (!cgrp->parent) {
68318b8e 7177 /* This is early initialization for the top cgroup */
2b01dfe3 7178 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7179 return &init_task_group.css;
7180 }
7181
7182 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7183 if (cgrp->parent->parent)
68318b8e
SV
7184 return ERR_PTR(-EINVAL);
7185
7186 tg = sched_create_group();
7187 if (IS_ERR(tg))
7188 return ERR_PTR(-ENOMEM);
7189
7190 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7191 tg->css.cgroup = cgrp;
68318b8e
SV
7192
7193 return &tg->css;
7194}
7195
7196static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
2b01dfe3 7197 struct cgroup *cgrp)
68318b8e 7198{
2b01dfe3 7199 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7200
7201 sched_destroy_group(tg);
7202}
7203
7204static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
2b01dfe3 7205 struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
7206{
7207 /* We don't support RT-tasks being in separate groups */
7208 if (tsk->sched_class != &fair_sched_class)
7209 return -EINVAL;
7210
7211 return 0;
7212}
7213
7214static void
2b01dfe3 7215cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7216 struct cgroup *old_cont, struct task_struct *tsk)
7217{
7218 sched_move_task(tsk);
7219}
7220
2b01dfe3
PM
7221static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7222 u64 shareval)
68318b8e 7223{
2b01dfe3 7224 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7225}
7226
2b01dfe3 7227static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7228{
2b01dfe3 7229 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7230
7231 return (u64) tg->shares;
7232}
7233
fe5c7cc2
PM
7234static struct cftype cpu_files[] = {
7235 {
7236 .name = "shares",
7237 .read_uint = cpu_shares_read_uint,
7238 .write_uint = cpu_shares_write_uint,
7239 },
68318b8e
SV
7240};
7241
7242static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7243{
fe5c7cc2 7244 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7245}
7246
7247struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7248 .name = "cpu",
7249 .create = cpu_cgroup_create,
7250 .destroy = cpu_cgroup_destroy,
7251 .can_attach = cpu_cgroup_can_attach,
7252 .attach = cpu_cgroup_attach,
7253 .populate = cpu_cgroup_populate,
7254 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7255 .early_init = 1,
7256};
7257
7258#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7259
7260#ifdef CONFIG_CGROUP_CPUACCT
7261
7262/*
7263 * CPU accounting code for task groups.
7264 *
7265 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7266 * (balbir@in.ibm.com).
7267 */
7268
7269/* track cpu usage of a group of tasks */
7270struct cpuacct {
7271 struct cgroup_subsys_state css;
7272 /* cpuusage holds pointer to a u64-type object on every cpu */
7273 u64 *cpuusage;
7274};
7275
7276struct cgroup_subsys cpuacct_subsys;
7277
7278/* return cpu accounting group corresponding to this container */
7279static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7280{
7281 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7282 struct cpuacct, css);
7283}
7284
7285/* return cpu accounting group to which this task belongs */
7286static inline struct cpuacct *task_ca(struct task_struct *tsk)
7287{
7288 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7289 struct cpuacct, css);
7290}
7291
7292/* create a new cpu accounting group */
7293static struct cgroup_subsys_state *cpuacct_create(
7294 struct cgroup_subsys *ss, struct cgroup *cont)
7295{
7296 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7297
7298 if (!ca)
7299 return ERR_PTR(-ENOMEM);
7300
7301 ca->cpuusage = alloc_percpu(u64);
7302 if (!ca->cpuusage) {
7303 kfree(ca);
7304 return ERR_PTR(-ENOMEM);
7305 }
7306
7307 return &ca->css;
7308}
7309
7310/* destroy an existing cpu accounting group */
7311static void cpuacct_destroy(struct cgroup_subsys *ss,
7312 struct cgroup *cont)
7313{
7314 struct cpuacct *ca = cgroup_ca(cont);
7315
7316 free_percpu(ca->cpuusage);
7317 kfree(ca);
7318}
7319
7320/* return total cpu usage (in nanoseconds) of a group */
7321static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7322{
7323 struct cpuacct *ca = cgroup_ca(cont);
7324 u64 totalcpuusage = 0;
7325 int i;
7326
7327 for_each_possible_cpu(i) {
7328 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7329
7330 /*
7331 * Take rq->lock to make 64-bit addition safe on 32-bit
7332 * platforms.
7333 */
7334 spin_lock_irq(&cpu_rq(i)->lock);
7335 totalcpuusage += *cpuusage;
7336 spin_unlock_irq(&cpu_rq(i)->lock);
7337 }
7338
7339 return totalcpuusage;
7340}
7341
7342static struct cftype files[] = {
7343 {
7344 .name = "usage",
7345 .read_uint = cpuusage_read,
7346 },
7347};
7348
7349static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7350{
7351 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7352}
7353
7354/*
7355 * charge this task's execution time to its accounting group.
7356 *
7357 * called with rq->lock held.
7358 */
7359static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7360{
7361 struct cpuacct *ca;
7362
7363 if (!cpuacct_subsys.active)
7364 return;
7365
7366 ca = task_ca(tsk);
7367 if (ca) {
7368 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7369
7370 *cpuusage += cputime;
7371 }
7372}
7373
7374struct cgroup_subsys cpuacct_subsys = {
7375 .name = "cpuacct",
7376 .create = cpuacct_create,
7377 .destroy = cpuacct_destroy,
7378 .populate = cpuacct_populate,
7379 .subsys_id = cpuacct_subsys_id,
7380};
7381#endif /* CONFIG_CGROUP_CPUACCT */