futex: Prevent stale futex owner when interrupted/timeout
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
5cb350ba
DG
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
ae8393e5 174 struct rcu_head rcu;
29f59db3
SV
175};
176
177/* Default task group's sched entity on each cpu */
178static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179/* Default task group's cfs_rq on each cpu */
180static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
9b5b7751
SV
182static struct sched_entity *init_sched_entity_p[NR_CPUS];
183static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
184
185/* Default task group.
3a252015 186 * Every task in system belong to this group at bootup.
29f59db3 187 */
4cf86d77 188struct task_group init_task_group = {
3a252015
IM
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191};
9b5b7751 192
24e377a8 193#ifdef CONFIG_FAIR_USER_SCHED
3a252015 194# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 195#else
3a252015 196# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
197#endif
198
4cf86d77 199static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
200
201/* return group to which a task belongs */
4cf86d77 202static inline struct task_group *task_group(struct task_struct *p)
29f59db3 203{
4cf86d77 204 struct task_group *tg;
9b5b7751 205
24e377a8
SV
206#ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
68318b8e
SV
208#elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
24e377a8 211#else
41a2d6cf 212 tg = &init_task_group;
24e377a8 213#endif
9b5b7751 214 return tg;
29f59db3
SV
215}
216
217/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 218static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 219{
ce96b5ac
DA
220 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
222}
223
224#else
225
ce96b5ac 226static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3
SV
227
228#endif /* CONFIG_FAIR_GROUP_SCHED */
229
6aa645ea
IM
230/* CFS-related fields in a runqueue */
231struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
6aa645ea 235 u64 exec_clock;
e9acbff6 236 u64 min_vruntime;
6aa645ea
IM
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
ddc97297
PZ
245
246 unsigned long nr_spread_over;
247
62160e3f 248#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
41a2d6cf
IM
251 /*
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
41a2d6cf
IM
259 struct list_head leaf_cfs_rq_list;
260 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
261#endif
262};
1da177e4 263
6aa645ea
IM
264/* Real-Time classes' related field in a runqueue: */
265struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269};
270
1da177e4
LT
271/*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
70b97a7f 278struct rq {
d8016491
IM
279 /* runqueue lock: */
280 spinlock_t lock;
1da177e4
LT
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
6aa645ea
IM
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 289 unsigned char idle_at_tick;
46cb4b7c
SS
290#ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292#endif
d8016491
IM
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
6aa645ea
IM
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
1da177e4 302#endif
41a2d6cf 303 struct rt_rq rt;
1da177e4
LT
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
36c8b586 313 struct task_struct *curr, *idle;
c9819f45 314 unsigned long next_balance;
1da177e4 315 struct mm_struct *prev_mm;
6aa645ea 316
6aa645ea
IM
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
529c7726 323 u64 tick_timestamp;
6aa645ea 324
1da177e4
LT
325 atomic_t nr_iowait;
326
327#ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
d8016491
IM
333 /* cpu of this runqueue: */
334 int cpu;
1da177e4 335
36c8b586 336 struct task_struct *migration_thread;
1da177e4
LT
337 struct list_head migration_queue;
338#endif
339
340#ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
480b9434
KC
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
1da177e4
LT
349
350 /* schedule() stats */
480b9434
KC
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
1da177e4
LT
354
355 /* try_to_wake_up() stats */
480b9434
KC
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
b8efb561
IM
358
359 /* BKL stats */
480b9434 360 unsigned int bkl_count;
1da177e4 361#endif
fcb99371 362 struct lock_class_key rq_lock_key;
1da177e4
LT
363};
364
f34e3b61 365static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 366static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 367
dd41f596
IM
368static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369{
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371}
372
0a2966b4
CL
373static inline int cpu_of(struct rq *rq)
374{
375#ifdef CONFIG_SMP
376 return rq->cpu;
377#else
378 return 0;
379#endif
380}
381
20d315d4 382/*
b04a0f4c
IM
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
20d315d4 385 */
b04a0f4c 386static void __update_rq_clock(struct rq *rq)
20d315d4
IM
387{
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
b04a0f4c
IM
393#ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395#endif
20d315d4
IM
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
529c7726
IM
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
20d315d4
IM
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
b04a0f4c 421}
20d315d4 422
b04a0f4c
IM
423static void update_rq_clock(struct rq *rq)
424{
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
20d315d4
IM
427}
428
674311d5
NP
429/*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 431 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
48f24c4d
IM
436#define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
438
439#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440#define this_rq() (&__get_cpu_var(runqueues))
441#define task_rq(p) cpu_rq(task_cpu(p))
442#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
bf5c91ba
IM
444/*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447#ifdef CONFIG_SCHED_DEBUG
448# define const_debug __read_mostly
449#else
450# define const_debug static const
451#endif
452
453/*
454 * Debugging: various feature bits
455 */
456enum {
bbdba7c0 457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
462};
463
464const_debug unsigned int sysctl_sched_features =
8401f775 465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
9612633a 469 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
470
471#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
b82d9fdd
PZ
473/*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
e436d800
IM
479/*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483unsigned long long cpu_clock(int cpu)
484{
e436d800
IM
485 unsigned long long now;
486 unsigned long flags;
b04a0f4c 487 struct rq *rq;
e436d800 488
2cd4d0ea 489 local_irq_save(flags);
b04a0f4c 490 rq = cpu_rq(cpu);
8ced5f69
IM
491 /*
492 * Only call sched_clock() if the scheduler has already been
493 * initialized (some code might call cpu_clock() very early):
494 */
495 if (rq->idle)
496 update_rq_clock(rq);
b04a0f4c 497 now = rq->clock;
2cd4d0ea 498 local_irq_restore(flags);
e436d800
IM
499
500 return now;
501}
a58f6f25 502EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 503
1da177e4 504#ifndef prepare_arch_switch
4866cde0
NP
505# define prepare_arch_switch(next) do { } while (0)
506#endif
507#ifndef finish_arch_switch
508# define finish_arch_switch(prev) do { } while (0)
509#endif
510
051a1d1a
DA
511static inline int task_current(struct rq *rq, struct task_struct *p)
512{
513 return rq->curr == p;
514}
515
4866cde0 516#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 517static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 518{
051a1d1a 519 return task_current(rq, p);
4866cde0
NP
520}
521
70b97a7f 522static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
523{
524}
525
70b97a7f 526static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 527{
da04c035
IM
528#ifdef CONFIG_DEBUG_SPINLOCK
529 /* this is a valid case when another task releases the spinlock */
530 rq->lock.owner = current;
531#endif
8a25d5de
IM
532 /*
533 * If we are tracking spinlock dependencies then we have to
534 * fix up the runqueue lock - which gets 'carried over' from
535 * prev into current:
536 */
537 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
538
4866cde0
NP
539 spin_unlock_irq(&rq->lock);
540}
541
542#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 543static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
544{
545#ifdef CONFIG_SMP
546 return p->oncpu;
547#else
051a1d1a 548 return task_current(rq, p);
4866cde0
NP
549#endif
550}
551
70b97a7f 552static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
553{
554#ifdef CONFIG_SMP
555 /*
556 * We can optimise this out completely for !SMP, because the
557 * SMP rebalancing from interrupt is the only thing that cares
558 * here.
559 */
560 next->oncpu = 1;
561#endif
562#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
563 spin_unlock_irq(&rq->lock);
564#else
565 spin_unlock(&rq->lock);
566#endif
567}
568
70b97a7f 569static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
570{
571#ifdef CONFIG_SMP
572 /*
573 * After ->oncpu is cleared, the task can be moved to a different CPU.
574 * We must ensure this doesn't happen until the switch is completely
575 * finished.
576 */
577 smp_wmb();
578 prev->oncpu = 0;
579#endif
580#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
581 local_irq_enable();
1da177e4 582#endif
4866cde0
NP
583}
584#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 585
b29739f9
IM
586/*
587 * __task_rq_lock - lock the runqueue a given task resides on.
588 * Must be called interrupts disabled.
589 */
70b97a7f 590static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
591 __acquires(rq->lock)
592{
3a5c359a
AK
593 for (;;) {
594 struct rq *rq = task_rq(p);
595 spin_lock(&rq->lock);
596 if (likely(rq == task_rq(p)))
597 return rq;
b29739f9 598 spin_unlock(&rq->lock);
b29739f9 599 }
b29739f9
IM
600}
601
1da177e4
LT
602/*
603 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 604 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
605 * explicitly disabling preemption.
606 */
70b97a7f 607static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
608 __acquires(rq->lock)
609{
70b97a7f 610 struct rq *rq;
1da177e4 611
3a5c359a
AK
612 for (;;) {
613 local_irq_save(*flags);
614 rq = task_rq(p);
615 spin_lock(&rq->lock);
616 if (likely(rq == task_rq(p)))
617 return rq;
1da177e4 618 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 619 }
1da177e4
LT
620}
621
a9957449 622static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
623 __releases(rq->lock)
624{
625 spin_unlock(&rq->lock);
626}
627
70b97a7f 628static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
629 __releases(rq->lock)
630{
631 spin_unlock_irqrestore(&rq->lock, *flags);
632}
633
1da177e4 634/*
cc2a73b5 635 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 636 */
a9957449 637static struct rq *this_rq_lock(void)
1da177e4
LT
638 __acquires(rq->lock)
639{
70b97a7f 640 struct rq *rq;
1da177e4
LT
641
642 local_irq_disable();
643 rq = this_rq();
644 spin_lock(&rq->lock);
645
646 return rq;
647}
648
1b9f19c2 649/*
2aa44d05 650 * We are going deep-idle (irqs are disabled):
1b9f19c2 651 */
2aa44d05 652void sched_clock_idle_sleep_event(void)
1b9f19c2 653{
2aa44d05
IM
654 struct rq *rq = cpu_rq(smp_processor_id());
655
656 spin_lock(&rq->lock);
657 __update_rq_clock(rq);
658 spin_unlock(&rq->lock);
659 rq->clock_deep_idle_events++;
660}
661EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
662
663/*
664 * We just idled delta nanoseconds (called with irqs disabled):
665 */
666void sched_clock_idle_wakeup_event(u64 delta_ns)
667{
668 struct rq *rq = cpu_rq(smp_processor_id());
669 u64 now = sched_clock();
1b9f19c2 670
2bacec8c 671 touch_softlockup_watchdog();
2aa44d05
IM
672 rq->idle_clock += delta_ns;
673 /*
674 * Override the previous timestamp and ignore all
675 * sched_clock() deltas that occured while we idled,
676 * and use the PM-provided delta_ns to advance the
677 * rq clock:
678 */
679 spin_lock(&rq->lock);
680 rq->prev_clock_raw = now;
681 rq->clock += delta_ns;
682 spin_unlock(&rq->lock);
1b9f19c2 683}
2aa44d05 684EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 685
c24d20db
IM
686/*
687 * resched_task - mark a task 'to be rescheduled now'.
688 *
689 * On UP this means the setting of the need_resched flag, on SMP it
690 * might also involve a cross-CPU call to trigger the scheduler on
691 * the target CPU.
692 */
693#ifdef CONFIG_SMP
694
695#ifndef tsk_is_polling
696#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
697#endif
698
699static void resched_task(struct task_struct *p)
700{
701 int cpu;
702
703 assert_spin_locked(&task_rq(p)->lock);
704
705 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
706 return;
707
708 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
709
710 cpu = task_cpu(p);
711 if (cpu == smp_processor_id())
712 return;
713
714 /* NEED_RESCHED must be visible before we test polling */
715 smp_mb();
716 if (!tsk_is_polling(p))
717 smp_send_reschedule(cpu);
718}
719
720static void resched_cpu(int cpu)
721{
722 struct rq *rq = cpu_rq(cpu);
723 unsigned long flags;
724
725 if (!spin_trylock_irqsave(&rq->lock, flags))
726 return;
727 resched_task(cpu_curr(cpu));
728 spin_unlock_irqrestore(&rq->lock, flags);
729}
730#else
731static inline void resched_task(struct task_struct *p)
732{
733 assert_spin_locked(&task_rq(p)->lock);
734 set_tsk_need_resched(p);
735}
736#endif
737
45bf76df
IM
738#if BITS_PER_LONG == 32
739# define WMULT_CONST (~0UL)
740#else
741# define WMULT_CONST (1UL << 32)
742#endif
743
744#define WMULT_SHIFT 32
745
194081eb
IM
746/*
747 * Shift right and round:
748 */
cf2ab469 749#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 750
cb1c4fc9 751static unsigned long
45bf76df
IM
752calc_delta_mine(unsigned long delta_exec, unsigned long weight,
753 struct load_weight *lw)
754{
755 u64 tmp;
756
757 if (unlikely(!lw->inv_weight))
194081eb 758 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
759
760 tmp = (u64)delta_exec * weight;
761 /*
762 * Check whether we'd overflow the 64-bit multiplication:
763 */
194081eb 764 if (unlikely(tmp > WMULT_CONST))
cf2ab469 765 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
766 WMULT_SHIFT/2);
767 else
cf2ab469 768 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 769
ecf691da 770 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
771}
772
773static inline unsigned long
774calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
775{
776 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
777}
778
1091985b 779static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
780{
781 lw->weight += inc;
45bf76df
IM
782}
783
1091985b 784static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
785{
786 lw->weight -= dec;
45bf76df
IM
787}
788
2dd73a4f
PW
789/*
790 * To aid in avoiding the subversion of "niceness" due to uneven distribution
791 * of tasks with abnormal "nice" values across CPUs the contribution that
792 * each task makes to its run queue's load is weighted according to its
41a2d6cf 793 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
794 * scaled version of the new time slice allocation that they receive on time
795 * slice expiry etc.
796 */
797
dd41f596
IM
798#define WEIGHT_IDLEPRIO 2
799#define WMULT_IDLEPRIO (1 << 31)
800
801/*
802 * Nice levels are multiplicative, with a gentle 10% change for every
803 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
804 * nice 1, it will get ~10% less CPU time than another CPU-bound task
805 * that remained on nice 0.
806 *
807 * The "10% effect" is relative and cumulative: from _any_ nice level,
808 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
809 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
810 * If a task goes up by ~10% and another task goes down by ~10% then
811 * the relative distance between them is ~25%.)
dd41f596
IM
812 */
813static const int prio_to_weight[40] = {
254753dc
IM
814 /* -20 */ 88761, 71755, 56483, 46273, 36291,
815 /* -15 */ 29154, 23254, 18705, 14949, 11916,
816 /* -10 */ 9548, 7620, 6100, 4904, 3906,
817 /* -5 */ 3121, 2501, 1991, 1586, 1277,
818 /* 0 */ 1024, 820, 655, 526, 423,
819 /* 5 */ 335, 272, 215, 172, 137,
820 /* 10 */ 110, 87, 70, 56, 45,
821 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
822};
823
5714d2de
IM
824/*
825 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
826 *
827 * In cases where the weight does not change often, we can use the
828 * precalculated inverse to speed up arithmetics by turning divisions
829 * into multiplications:
830 */
dd41f596 831static const u32 prio_to_wmult[40] = {
254753dc
IM
832 /* -20 */ 48388, 59856, 76040, 92818, 118348,
833 /* -15 */ 147320, 184698, 229616, 287308, 360437,
834 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
835 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
836 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
837 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
838 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
839 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 840};
2dd73a4f 841
dd41f596
IM
842static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
843
844/*
845 * runqueue iterator, to support SMP load-balancing between different
846 * scheduling classes, without having to expose their internal data
847 * structures to the load-balancing proper:
848 */
849struct rq_iterator {
850 void *arg;
851 struct task_struct *(*start)(void *);
852 struct task_struct *(*next)(void *);
853};
854
e1d1484f
PW
855#ifdef CONFIG_SMP
856static unsigned long
857balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
858 unsigned long max_load_move, struct sched_domain *sd,
859 enum cpu_idle_type idle, int *all_pinned,
860 int *this_best_prio, struct rq_iterator *iterator);
861
862static int
863iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
864 struct sched_domain *sd, enum cpu_idle_type idle,
865 struct rq_iterator *iterator);
e1d1484f 866#endif
dd41f596 867
d842de87
SV
868#ifdef CONFIG_CGROUP_CPUACCT
869static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
870#else
871static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
872#endif
873
dd41f596 874#include "sched_stats.h"
dd41f596 875#include "sched_idletask.c"
5522d5d5
IM
876#include "sched_fair.c"
877#include "sched_rt.c"
dd41f596
IM
878#ifdef CONFIG_SCHED_DEBUG
879# include "sched_debug.c"
880#endif
881
882#define sched_class_highest (&rt_sched_class)
883
9c217245
IM
884/*
885 * Update delta_exec, delta_fair fields for rq.
886 *
887 * delta_fair clock advances at a rate inversely proportional to
495eca49 888 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
889 * delta_exec advances at the same rate as wall-clock (provided
890 * cpu is not idle).
891 *
892 * delta_exec / delta_fair is a measure of the (smoothened) load on this
893 * runqueue over any given interval. This (smoothened) load is used
894 * during load balance.
895 *
495eca49 896 * This function is called /before/ updating rq->load
9c217245
IM
897 * and when switching tasks.
898 */
29b4b623 899static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 900{
495eca49 901 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
902}
903
79b5dddf 904static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 905{
495eca49 906 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
907}
908
e5fa2237 909static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
910{
911 rq->nr_running++;
29b4b623 912 inc_load(rq, p);
9c217245
IM
913}
914
db53181e 915static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
916{
917 rq->nr_running--;
79b5dddf 918 dec_load(rq, p);
9c217245
IM
919}
920
45bf76df
IM
921static void set_load_weight(struct task_struct *p)
922{
923 if (task_has_rt_policy(p)) {
dd41f596
IM
924 p->se.load.weight = prio_to_weight[0] * 2;
925 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
926 return;
927 }
45bf76df 928
dd41f596
IM
929 /*
930 * SCHED_IDLE tasks get minimal weight:
931 */
932 if (p->policy == SCHED_IDLE) {
933 p->se.load.weight = WEIGHT_IDLEPRIO;
934 p->se.load.inv_weight = WMULT_IDLEPRIO;
935 return;
936 }
71f8bd46 937
dd41f596
IM
938 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
939 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
940}
941
8159f87e 942static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 943{
dd41f596 944 sched_info_queued(p);
fd390f6a 945 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 946 p->se.on_rq = 1;
71f8bd46
IM
947}
948
69be72c1 949static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 950{
f02231e5 951 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 952 p->se.on_rq = 0;
71f8bd46
IM
953}
954
14531189 955/*
dd41f596 956 * __normal_prio - return the priority that is based on the static prio
14531189 957 */
14531189
IM
958static inline int __normal_prio(struct task_struct *p)
959{
dd41f596 960 return p->static_prio;
14531189
IM
961}
962
b29739f9
IM
963/*
964 * Calculate the expected normal priority: i.e. priority
965 * without taking RT-inheritance into account. Might be
966 * boosted by interactivity modifiers. Changes upon fork,
967 * setprio syscalls, and whenever the interactivity
968 * estimator recalculates.
969 */
36c8b586 970static inline int normal_prio(struct task_struct *p)
b29739f9
IM
971{
972 int prio;
973
e05606d3 974 if (task_has_rt_policy(p))
b29739f9
IM
975 prio = MAX_RT_PRIO-1 - p->rt_priority;
976 else
977 prio = __normal_prio(p);
978 return prio;
979}
980
981/*
982 * Calculate the current priority, i.e. the priority
983 * taken into account by the scheduler. This value might
984 * be boosted by RT tasks, or might be boosted by
985 * interactivity modifiers. Will be RT if the task got
986 * RT-boosted. If not then it returns p->normal_prio.
987 */
36c8b586 988static int effective_prio(struct task_struct *p)
b29739f9
IM
989{
990 p->normal_prio = normal_prio(p);
991 /*
992 * If we are RT tasks or we were boosted to RT priority,
993 * keep the priority unchanged. Otherwise, update priority
994 * to the normal priority:
995 */
996 if (!rt_prio(p->prio))
997 return p->normal_prio;
998 return p->prio;
999}
1000
1da177e4 1001/*
dd41f596 1002 * activate_task - move a task to the runqueue.
1da177e4 1003 */
dd41f596 1004static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1005{
dd41f596
IM
1006 if (p->state == TASK_UNINTERRUPTIBLE)
1007 rq->nr_uninterruptible--;
1da177e4 1008
8159f87e 1009 enqueue_task(rq, p, wakeup);
e5fa2237 1010 inc_nr_running(p, rq);
1da177e4
LT
1011}
1012
1da177e4
LT
1013/*
1014 * deactivate_task - remove a task from the runqueue.
1015 */
2e1cb74a 1016static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1017{
dd41f596
IM
1018 if (p->state == TASK_UNINTERRUPTIBLE)
1019 rq->nr_uninterruptible++;
1020
69be72c1 1021 dequeue_task(rq, p, sleep);
db53181e 1022 dec_nr_running(p, rq);
1da177e4
LT
1023}
1024
1da177e4
LT
1025/**
1026 * task_curr - is this task currently executing on a CPU?
1027 * @p: the task in question.
1028 */
36c8b586 1029inline int task_curr(const struct task_struct *p)
1da177e4
LT
1030{
1031 return cpu_curr(task_cpu(p)) == p;
1032}
1033
2dd73a4f
PW
1034/* Used instead of source_load when we know the type == 0 */
1035unsigned long weighted_cpuload(const int cpu)
1036{
495eca49 1037 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1038}
1039
1040static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1041{
ce96b5ac 1042 set_task_cfs_rq(p, cpu);
dd41f596 1043#ifdef CONFIG_SMP
ce96b5ac
DA
1044 /*
1045 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1046 * successfuly executed on another CPU. We must ensure that updates of
1047 * per-task data have been completed by this moment.
1048 */
1049 smp_wmb();
dd41f596 1050 task_thread_info(p)->cpu = cpu;
dd41f596 1051#endif
2dd73a4f
PW
1052}
1053
1da177e4 1054#ifdef CONFIG_SMP
c65cc870 1055
cc367732
IM
1056/*
1057 * Is this task likely cache-hot:
1058 */
1059static inline int
1060task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1061{
1062 s64 delta;
1063
1064 if (p->sched_class != &fair_sched_class)
1065 return 0;
1066
6bc1665b
IM
1067 if (sysctl_sched_migration_cost == -1)
1068 return 1;
1069 if (sysctl_sched_migration_cost == 0)
1070 return 0;
1071
cc367732
IM
1072 delta = now - p->se.exec_start;
1073
1074 return delta < (s64)sysctl_sched_migration_cost;
1075}
1076
1077
dd41f596 1078void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1079{
dd41f596
IM
1080 int old_cpu = task_cpu(p);
1081 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1082 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1083 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1084 u64 clock_offset;
dd41f596
IM
1085
1086 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1087
1088#ifdef CONFIG_SCHEDSTATS
1089 if (p->se.wait_start)
1090 p->se.wait_start -= clock_offset;
dd41f596
IM
1091 if (p->se.sleep_start)
1092 p->se.sleep_start -= clock_offset;
1093 if (p->se.block_start)
1094 p->se.block_start -= clock_offset;
cc367732
IM
1095 if (old_cpu != new_cpu) {
1096 schedstat_inc(p, se.nr_migrations);
1097 if (task_hot(p, old_rq->clock, NULL))
1098 schedstat_inc(p, se.nr_forced2_migrations);
1099 }
6cfb0d5d 1100#endif
2830cf8c
SV
1101 p->se.vruntime -= old_cfsrq->min_vruntime -
1102 new_cfsrq->min_vruntime;
dd41f596
IM
1103
1104 __set_task_cpu(p, new_cpu);
c65cc870
IM
1105}
1106
70b97a7f 1107struct migration_req {
1da177e4 1108 struct list_head list;
1da177e4 1109
36c8b586 1110 struct task_struct *task;
1da177e4
LT
1111 int dest_cpu;
1112
1da177e4 1113 struct completion done;
70b97a7f 1114};
1da177e4
LT
1115
1116/*
1117 * The task's runqueue lock must be held.
1118 * Returns true if you have to wait for migration thread.
1119 */
36c8b586 1120static int
70b97a7f 1121migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1122{
70b97a7f 1123 struct rq *rq = task_rq(p);
1da177e4
LT
1124
1125 /*
1126 * If the task is not on a runqueue (and not running), then
1127 * it is sufficient to simply update the task's cpu field.
1128 */
dd41f596 1129 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1130 set_task_cpu(p, dest_cpu);
1131 return 0;
1132 }
1133
1134 init_completion(&req->done);
1da177e4
LT
1135 req->task = p;
1136 req->dest_cpu = dest_cpu;
1137 list_add(&req->list, &rq->migration_queue);
48f24c4d 1138
1da177e4
LT
1139 return 1;
1140}
1141
1142/*
1143 * wait_task_inactive - wait for a thread to unschedule.
1144 *
1145 * The caller must ensure that the task *will* unschedule sometime soon,
1146 * else this function might spin for a *long* time. This function can't
1147 * be called with interrupts off, or it may introduce deadlock with
1148 * smp_call_function() if an IPI is sent by the same process we are
1149 * waiting to become inactive.
1150 */
36c8b586 1151void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1152{
1153 unsigned long flags;
dd41f596 1154 int running, on_rq;
70b97a7f 1155 struct rq *rq;
1da177e4 1156
3a5c359a
AK
1157 for (;;) {
1158 /*
1159 * We do the initial early heuristics without holding
1160 * any task-queue locks at all. We'll only try to get
1161 * the runqueue lock when things look like they will
1162 * work out!
1163 */
1164 rq = task_rq(p);
fa490cfd 1165
3a5c359a
AK
1166 /*
1167 * If the task is actively running on another CPU
1168 * still, just relax and busy-wait without holding
1169 * any locks.
1170 *
1171 * NOTE! Since we don't hold any locks, it's not
1172 * even sure that "rq" stays as the right runqueue!
1173 * But we don't care, since "task_running()" will
1174 * return false if the runqueue has changed and p
1175 * is actually now running somewhere else!
1176 */
1177 while (task_running(rq, p))
1178 cpu_relax();
fa490cfd 1179
3a5c359a
AK
1180 /*
1181 * Ok, time to look more closely! We need the rq
1182 * lock now, to be *sure*. If we're wrong, we'll
1183 * just go back and repeat.
1184 */
1185 rq = task_rq_lock(p, &flags);
1186 running = task_running(rq, p);
1187 on_rq = p->se.on_rq;
1188 task_rq_unlock(rq, &flags);
fa490cfd 1189
3a5c359a
AK
1190 /*
1191 * Was it really running after all now that we
1192 * checked with the proper locks actually held?
1193 *
1194 * Oops. Go back and try again..
1195 */
1196 if (unlikely(running)) {
1197 cpu_relax();
1198 continue;
1199 }
fa490cfd 1200
3a5c359a
AK
1201 /*
1202 * It's not enough that it's not actively running,
1203 * it must be off the runqueue _entirely_, and not
1204 * preempted!
1205 *
1206 * So if it wa still runnable (but just not actively
1207 * running right now), it's preempted, and we should
1208 * yield - it could be a while.
1209 */
1210 if (unlikely(on_rq)) {
1211 schedule_timeout_uninterruptible(1);
1212 continue;
1213 }
fa490cfd 1214
3a5c359a
AK
1215 /*
1216 * Ahh, all good. It wasn't running, and it wasn't
1217 * runnable, which means that it will never become
1218 * running in the future either. We're all done!
1219 */
1220 break;
1221 }
1da177e4
LT
1222}
1223
1224/***
1225 * kick_process - kick a running thread to enter/exit the kernel
1226 * @p: the to-be-kicked thread
1227 *
1228 * Cause a process which is running on another CPU to enter
1229 * kernel-mode, without any delay. (to get signals handled.)
1230 *
1231 * NOTE: this function doesnt have to take the runqueue lock,
1232 * because all it wants to ensure is that the remote task enters
1233 * the kernel. If the IPI races and the task has been migrated
1234 * to another CPU then no harm is done and the purpose has been
1235 * achieved as well.
1236 */
36c8b586 1237void kick_process(struct task_struct *p)
1da177e4
LT
1238{
1239 int cpu;
1240
1241 preempt_disable();
1242 cpu = task_cpu(p);
1243 if ((cpu != smp_processor_id()) && task_curr(p))
1244 smp_send_reschedule(cpu);
1245 preempt_enable();
1246}
1247
1248/*
2dd73a4f
PW
1249 * Return a low guess at the load of a migration-source cpu weighted
1250 * according to the scheduling class and "nice" value.
1da177e4
LT
1251 *
1252 * We want to under-estimate the load of migration sources, to
1253 * balance conservatively.
1254 */
a9957449 1255static unsigned long source_load(int cpu, int type)
1da177e4 1256{
70b97a7f 1257 struct rq *rq = cpu_rq(cpu);
dd41f596 1258 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1259
3b0bd9bc 1260 if (type == 0)
dd41f596 1261 return total;
b910472d 1262
dd41f596 1263 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1264}
1265
1266/*
2dd73a4f
PW
1267 * Return a high guess at the load of a migration-target cpu weighted
1268 * according to the scheduling class and "nice" value.
1da177e4 1269 */
a9957449 1270static unsigned long target_load(int cpu, int type)
1da177e4 1271{
70b97a7f 1272 struct rq *rq = cpu_rq(cpu);
dd41f596 1273 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1274
7897986b 1275 if (type == 0)
dd41f596 1276 return total;
3b0bd9bc 1277
dd41f596 1278 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1279}
1280
1281/*
1282 * Return the average load per task on the cpu's run queue
1283 */
1284static inline unsigned long cpu_avg_load_per_task(int cpu)
1285{
70b97a7f 1286 struct rq *rq = cpu_rq(cpu);
dd41f596 1287 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1288 unsigned long n = rq->nr_running;
1289
dd41f596 1290 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1291}
1292
147cbb4b
NP
1293/*
1294 * find_idlest_group finds and returns the least busy CPU group within the
1295 * domain.
1296 */
1297static struct sched_group *
1298find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1299{
1300 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1301 unsigned long min_load = ULONG_MAX, this_load = 0;
1302 int load_idx = sd->forkexec_idx;
1303 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1304
1305 do {
1306 unsigned long load, avg_load;
1307 int local_group;
1308 int i;
1309
da5a5522
BD
1310 /* Skip over this group if it has no CPUs allowed */
1311 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1312 continue;
da5a5522 1313
147cbb4b 1314 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1315
1316 /* Tally up the load of all CPUs in the group */
1317 avg_load = 0;
1318
1319 for_each_cpu_mask(i, group->cpumask) {
1320 /* Bias balancing toward cpus of our domain */
1321 if (local_group)
1322 load = source_load(i, load_idx);
1323 else
1324 load = target_load(i, load_idx);
1325
1326 avg_load += load;
1327 }
1328
1329 /* Adjust by relative CPU power of the group */
5517d86b
ED
1330 avg_load = sg_div_cpu_power(group,
1331 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1332
1333 if (local_group) {
1334 this_load = avg_load;
1335 this = group;
1336 } else if (avg_load < min_load) {
1337 min_load = avg_load;
1338 idlest = group;
1339 }
3a5c359a 1340 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1341
1342 if (!idlest || 100*this_load < imbalance*min_load)
1343 return NULL;
1344 return idlest;
1345}
1346
1347/*
0feaece9 1348 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1349 */
95cdf3b7
IM
1350static int
1351find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1352{
da5a5522 1353 cpumask_t tmp;
147cbb4b
NP
1354 unsigned long load, min_load = ULONG_MAX;
1355 int idlest = -1;
1356 int i;
1357
da5a5522
BD
1358 /* Traverse only the allowed CPUs */
1359 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1360
1361 for_each_cpu_mask(i, tmp) {
2dd73a4f 1362 load = weighted_cpuload(i);
147cbb4b
NP
1363
1364 if (load < min_load || (load == min_load && i == this_cpu)) {
1365 min_load = load;
1366 idlest = i;
1367 }
1368 }
1369
1370 return idlest;
1371}
1372
476d139c
NP
1373/*
1374 * sched_balance_self: balance the current task (running on cpu) in domains
1375 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1376 * SD_BALANCE_EXEC.
1377 *
1378 * Balance, ie. select the least loaded group.
1379 *
1380 * Returns the target CPU number, or the same CPU if no balancing is needed.
1381 *
1382 * preempt must be disabled.
1383 */
1384static int sched_balance_self(int cpu, int flag)
1385{
1386 struct task_struct *t = current;
1387 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1388
c96d145e 1389 for_each_domain(cpu, tmp) {
9761eea8
IM
1390 /*
1391 * If power savings logic is enabled for a domain, stop there.
1392 */
5c45bf27
SS
1393 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1394 break;
476d139c
NP
1395 if (tmp->flags & flag)
1396 sd = tmp;
c96d145e 1397 }
476d139c
NP
1398
1399 while (sd) {
1400 cpumask_t span;
1401 struct sched_group *group;
1a848870
SS
1402 int new_cpu, weight;
1403
1404 if (!(sd->flags & flag)) {
1405 sd = sd->child;
1406 continue;
1407 }
476d139c
NP
1408
1409 span = sd->span;
1410 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1411 if (!group) {
1412 sd = sd->child;
1413 continue;
1414 }
476d139c 1415
da5a5522 1416 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1417 if (new_cpu == -1 || new_cpu == cpu) {
1418 /* Now try balancing at a lower domain level of cpu */
1419 sd = sd->child;
1420 continue;
1421 }
476d139c 1422
1a848870 1423 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1424 cpu = new_cpu;
476d139c
NP
1425 sd = NULL;
1426 weight = cpus_weight(span);
1427 for_each_domain(cpu, tmp) {
1428 if (weight <= cpus_weight(tmp->span))
1429 break;
1430 if (tmp->flags & flag)
1431 sd = tmp;
1432 }
1433 /* while loop will break here if sd == NULL */
1434 }
1435
1436 return cpu;
1437}
1438
1439#endif /* CONFIG_SMP */
1da177e4
LT
1440
1441/*
1442 * wake_idle() will wake a task on an idle cpu if task->cpu is
1443 * not idle and an idle cpu is available. The span of cpus to
1444 * search starts with cpus closest then further out as needed,
1445 * so we always favor a closer, idle cpu.
1446 *
1447 * Returns the CPU we should wake onto.
1448 */
1449#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1450static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1451{
1452 cpumask_t tmp;
1453 struct sched_domain *sd;
1454 int i;
1455
4953198b
SS
1456 /*
1457 * If it is idle, then it is the best cpu to run this task.
1458 *
1459 * This cpu is also the best, if it has more than one task already.
1460 * Siblings must be also busy(in most cases) as they didn't already
1461 * pickup the extra load from this cpu and hence we need not check
1462 * sibling runqueue info. This will avoid the checks and cache miss
1463 * penalities associated with that.
1464 */
1465 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1466 return cpu;
1467
1468 for_each_domain(cpu, sd) {
1469 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1470 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1471 for_each_cpu_mask(i, tmp) {
cc367732
IM
1472 if (idle_cpu(i)) {
1473 if (i != task_cpu(p)) {
1474 schedstat_inc(p,
1475 se.nr_wakeups_idle);
1476 }
1da177e4 1477 return i;
cc367732 1478 }
1da177e4 1479 }
9761eea8 1480 } else {
e0f364f4 1481 break;
9761eea8 1482 }
1da177e4
LT
1483 }
1484 return cpu;
1485}
1486#else
36c8b586 1487static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1488{
1489 return cpu;
1490}
1491#endif
1492
1493/***
1494 * try_to_wake_up - wake up a thread
1495 * @p: the to-be-woken-up thread
1496 * @state: the mask of task states that can be woken
1497 * @sync: do a synchronous wakeup?
1498 *
1499 * Put it on the run-queue if it's not already there. The "current"
1500 * thread is always on the run-queue (except when the actual
1501 * re-schedule is in progress), and as such you're allowed to do
1502 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503 * runnable without the overhead of this.
1504 *
1505 * returns failure only if the task is already active.
1506 */
36c8b586 1507static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1508{
cc367732 1509 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1510 unsigned long flags;
1511 long old_state;
70b97a7f 1512 struct rq *rq;
1da177e4 1513#ifdef CONFIG_SMP
7897986b 1514 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1515 unsigned long load, this_load;
1da177e4
LT
1516 int new_cpu;
1517#endif
1518
1519 rq = task_rq_lock(p, &flags);
1520 old_state = p->state;
1521 if (!(old_state & state))
1522 goto out;
1523
dd41f596 1524 if (p->se.on_rq)
1da177e4
LT
1525 goto out_running;
1526
1527 cpu = task_cpu(p);
cc367732 1528 orig_cpu = cpu;
1da177e4
LT
1529 this_cpu = smp_processor_id();
1530
1531#ifdef CONFIG_SMP
1532 if (unlikely(task_running(rq, p)))
1533 goto out_activate;
1534
7897986b
NP
1535 new_cpu = cpu;
1536
2d72376b 1537 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1538 if (cpu == this_cpu) {
1539 schedstat_inc(rq, ttwu_local);
7897986b
NP
1540 goto out_set_cpu;
1541 }
1542
1543 for_each_domain(this_cpu, sd) {
1544 if (cpu_isset(cpu, sd->span)) {
1545 schedstat_inc(sd, ttwu_wake_remote);
1546 this_sd = sd;
1547 break;
1da177e4
LT
1548 }
1549 }
1da177e4 1550
7897986b 1551 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1552 goto out_set_cpu;
1553
1da177e4 1554 /*
7897986b 1555 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1556 */
7897986b
NP
1557 if (this_sd) {
1558 int idx = this_sd->wake_idx;
1559 unsigned int imbalance;
1da177e4 1560
a3f21bce
NP
1561 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1562
7897986b
NP
1563 load = source_load(cpu, idx);
1564 this_load = target_load(this_cpu, idx);
1da177e4 1565
7897986b
NP
1566 new_cpu = this_cpu; /* Wake to this CPU if we can */
1567
a3f21bce
NP
1568 if (this_sd->flags & SD_WAKE_AFFINE) {
1569 unsigned long tl = this_load;
33859f7f
MOS
1570 unsigned long tl_per_task;
1571
71e20f18
IM
1572 /*
1573 * Attract cache-cold tasks on sync wakeups:
1574 */
1575 if (sync && !task_hot(p, rq->clock, this_sd))
1576 goto out_set_cpu;
1577
cc367732 1578 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1579 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1580
1da177e4 1581 /*
a3f21bce
NP
1582 * If sync wakeup then subtract the (maximum possible)
1583 * effect of the currently running task from the load
1584 * of the current CPU:
1da177e4 1585 */
a3f21bce 1586 if (sync)
dd41f596 1587 tl -= current->se.load.weight;
a3f21bce
NP
1588
1589 if ((tl <= load &&
2dd73a4f 1590 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1591 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1592 /*
1593 * This domain has SD_WAKE_AFFINE and
1594 * p is cache cold in this domain, and
1595 * there is no bad imbalance.
1596 */
1597 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1598 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1599 goto out_set_cpu;
1600 }
1601 }
1602
1603 /*
1604 * Start passive balancing when half the imbalance_pct
1605 * limit is reached.
1606 */
1607 if (this_sd->flags & SD_WAKE_BALANCE) {
1608 if (imbalance*this_load <= 100*load) {
1609 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1610 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1611 goto out_set_cpu;
1612 }
1da177e4
LT
1613 }
1614 }
1615
1616 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1617out_set_cpu:
1618 new_cpu = wake_idle(new_cpu, p);
1619 if (new_cpu != cpu) {
1620 set_task_cpu(p, new_cpu);
1621 task_rq_unlock(rq, &flags);
1622 /* might preempt at this point */
1623 rq = task_rq_lock(p, &flags);
1624 old_state = p->state;
1625 if (!(old_state & state))
1626 goto out;
dd41f596 1627 if (p->se.on_rq)
1da177e4
LT
1628 goto out_running;
1629
1630 this_cpu = smp_processor_id();
1631 cpu = task_cpu(p);
1632 }
1633
1634out_activate:
1635#endif /* CONFIG_SMP */
cc367732
IM
1636 schedstat_inc(p, se.nr_wakeups);
1637 if (sync)
1638 schedstat_inc(p, se.nr_wakeups_sync);
1639 if (orig_cpu != cpu)
1640 schedstat_inc(p, se.nr_wakeups_migrate);
1641 if (cpu == this_cpu)
1642 schedstat_inc(p, se.nr_wakeups_local);
1643 else
1644 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1645 update_rq_clock(rq);
dd41f596 1646 activate_task(rq, p, 1);
9c63d9c0 1647 check_preempt_curr(rq, p);
1da177e4
LT
1648 success = 1;
1649
1650out_running:
1651 p->state = TASK_RUNNING;
1652out:
1653 task_rq_unlock(rq, &flags);
1654
1655 return success;
1656}
1657
36c8b586 1658int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1659{
1660 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1661 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1662}
1da177e4
LT
1663EXPORT_SYMBOL(wake_up_process);
1664
36c8b586 1665int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1666{
1667 return try_to_wake_up(p, state, 0);
1668}
1669
1da177e4
LT
1670/*
1671 * Perform scheduler related setup for a newly forked process p.
1672 * p is forked by current.
dd41f596
IM
1673 *
1674 * __sched_fork() is basic setup used by init_idle() too:
1675 */
1676static void __sched_fork(struct task_struct *p)
1677{
dd41f596
IM
1678 p->se.exec_start = 0;
1679 p->se.sum_exec_runtime = 0;
f6cf891c 1680 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1681
1682#ifdef CONFIG_SCHEDSTATS
1683 p->se.wait_start = 0;
dd41f596
IM
1684 p->se.sum_sleep_runtime = 0;
1685 p->se.sleep_start = 0;
dd41f596
IM
1686 p->se.block_start = 0;
1687 p->se.sleep_max = 0;
1688 p->se.block_max = 0;
1689 p->se.exec_max = 0;
eba1ed4b 1690 p->se.slice_max = 0;
dd41f596 1691 p->se.wait_max = 0;
6cfb0d5d 1692#endif
476d139c 1693
dd41f596
IM
1694 INIT_LIST_HEAD(&p->run_list);
1695 p->se.on_rq = 0;
476d139c 1696
e107be36
AK
1697#ifdef CONFIG_PREEMPT_NOTIFIERS
1698 INIT_HLIST_HEAD(&p->preempt_notifiers);
1699#endif
1700
1da177e4
LT
1701 /*
1702 * We mark the process as running here, but have not actually
1703 * inserted it onto the runqueue yet. This guarantees that
1704 * nobody will actually run it, and a signal or other external
1705 * event cannot wake it up and insert it on the runqueue either.
1706 */
1707 p->state = TASK_RUNNING;
dd41f596
IM
1708}
1709
1710/*
1711 * fork()/clone()-time setup:
1712 */
1713void sched_fork(struct task_struct *p, int clone_flags)
1714{
1715 int cpu = get_cpu();
1716
1717 __sched_fork(p);
1718
1719#ifdef CONFIG_SMP
1720 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1721#endif
02e4bac2 1722 set_task_cpu(p, cpu);
b29739f9
IM
1723
1724 /*
1725 * Make sure we do not leak PI boosting priority to the child:
1726 */
1727 p->prio = current->normal_prio;
2ddbf952
HS
1728 if (!rt_prio(p->prio))
1729 p->sched_class = &fair_sched_class;
b29739f9 1730
52f17b6c 1731#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1732 if (likely(sched_info_on()))
52f17b6c 1733 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1734#endif
d6077cb8 1735#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1736 p->oncpu = 0;
1737#endif
1da177e4 1738#ifdef CONFIG_PREEMPT
4866cde0 1739 /* Want to start with kernel preemption disabled. */
a1261f54 1740 task_thread_info(p)->preempt_count = 1;
1da177e4 1741#endif
476d139c 1742 put_cpu();
1da177e4
LT
1743}
1744
1745/*
1746 * wake_up_new_task - wake up a newly created task for the first time.
1747 *
1748 * This function will do some initial scheduler statistics housekeeping
1749 * that must be done for every newly created context, then puts the task
1750 * on the runqueue and wakes it.
1751 */
36c8b586 1752void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1753{
1754 unsigned long flags;
dd41f596 1755 struct rq *rq;
1da177e4
LT
1756
1757 rq = task_rq_lock(p, &flags);
147cbb4b 1758 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1759 update_rq_clock(rq);
1da177e4
LT
1760
1761 p->prio = effective_prio(p);
1762
b9dca1e0 1763 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1764 activate_task(rq, p, 0);
1da177e4 1765 } else {
1da177e4 1766 /*
dd41f596
IM
1767 * Let the scheduling class do new task startup
1768 * management (if any):
1da177e4 1769 */
ee0827d8 1770 p->sched_class->task_new(rq, p);
e5fa2237 1771 inc_nr_running(p, rq);
1da177e4 1772 }
dd41f596
IM
1773 check_preempt_curr(rq, p);
1774 task_rq_unlock(rq, &flags);
1da177e4
LT
1775}
1776
e107be36
AK
1777#ifdef CONFIG_PREEMPT_NOTIFIERS
1778
1779/**
421cee29
RD
1780 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1781 * @notifier: notifier struct to register
e107be36
AK
1782 */
1783void preempt_notifier_register(struct preempt_notifier *notifier)
1784{
1785 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1786}
1787EXPORT_SYMBOL_GPL(preempt_notifier_register);
1788
1789/**
1790 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1791 * @notifier: notifier struct to unregister
e107be36
AK
1792 *
1793 * This is safe to call from within a preemption notifier.
1794 */
1795void preempt_notifier_unregister(struct preempt_notifier *notifier)
1796{
1797 hlist_del(&notifier->link);
1798}
1799EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1800
1801static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1802{
1803 struct preempt_notifier *notifier;
1804 struct hlist_node *node;
1805
1806 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1807 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808}
1809
1810static void
1811fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1813{
1814 struct preempt_notifier *notifier;
1815 struct hlist_node *node;
1816
1817 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1818 notifier->ops->sched_out(notifier, next);
1819}
1820
1821#else
1822
1823static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1824{
1825}
1826
1827static void
1828fire_sched_out_preempt_notifiers(struct task_struct *curr,
1829 struct task_struct *next)
1830{
1831}
1832
1833#endif
1834
4866cde0
NP
1835/**
1836 * prepare_task_switch - prepare to switch tasks
1837 * @rq: the runqueue preparing to switch
421cee29 1838 * @prev: the current task that is being switched out
4866cde0
NP
1839 * @next: the task we are going to switch to.
1840 *
1841 * This is called with the rq lock held and interrupts off. It must
1842 * be paired with a subsequent finish_task_switch after the context
1843 * switch.
1844 *
1845 * prepare_task_switch sets up locking and calls architecture specific
1846 * hooks.
1847 */
e107be36
AK
1848static inline void
1849prepare_task_switch(struct rq *rq, struct task_struct *prev,
1850 struct task_struct *next)
4866cde0 1851{
e107be36 1852 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1853 prepare_lock_switch(rq, next);
1854 prepare_arch_switch(next);
1855}
1856
1da177e4
LT
1857/**
1858 * finish_task_switch - clean up after a task-switch
344babaa 1859 * @rq: runqueue associated with task-switch
1da177e4
LT
1860 * @prev: the thread we just switched away from.
1861 *
4866cde0
NP
1862 * finish_task_switch must be called after the context switch, paired
1863 * with a prepare_task_switch call before the context switch.
1864 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1865 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1866 *
1867 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1868 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1869 * with the lock held can cause deadlocks; see schedule() for
1870 * details.)
1871 */
a9957449 1872static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1873 __releases(rq->lock)
1874{
1da177e4 1875 struct mm_struct *mm = rq->prev_mm;
55a101f8 1876 long prev_state;
1da177e4
LT
1877
1878 rq->prev_mm = NULL;
1879
1880 /*
1881 * A task struct has one reference for the use as "current".
c394cc9f 1882 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1883 * schedule one last time. The schedule call will never return, and
1884 * the scheduled task must drop that reference.
c394cc9f 1885 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1886 * still held, otherwise prev could be scheduled on another cpu, die
1887 * there before we look at prev->state, and then the reference would
1888 * be dropped twice.
1889 * Manfred Spraul <manfred@colorfullife.com>
1890 */
55a101f8 1891 prev_state = prev->state;
4866cde0
NP
1892 finish_arch_switch(prev);
1893 finish_lock_switch(rq, prev);
e107be36 1894 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1895 if (mm)
1896 mmdrop(mm);
c394cc9f 1897 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1898 /*
1899 * Remove function-return probe instances associated with this
1900 * task and put them back on the free list.
9761eea8 1901 */
c6fd91f0 1902 kprobe_flush_task(prev);
1da177e4 1903 put_task_struct(prev);
c6fd91f0 1904 }
1da177e4
LT
1905}
1906
1907/**
1908 * schedule_tail - first thing a freshly forked thread must call.
1909 * @prev: the thread we just switched away from.
1910 */
36c8b586 1911asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1912 __releases(rq->lock)
1913{
70b97a7f
IM
1914 struct rq *rq = this_rq();
1915
4866cde0
NP
1916 finish_task_switch(rq, prev);
1917#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1918 /* In this case, finish_task_switch does not reenable preemption */
1919 preempt_enable();
1920#endif
1da177e4 1921 if (current->set_child_tid)
b488893a 1922 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1923}
1924
1925/*
1926 * context_switch - switch to the new MM and the new
1927 * thread's register state.
1928 */
dd41f596 1929static inline void
70b97a7f 1930context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1931 struct task_struct *next)
1da177e4 1932{
dd41f596 1933 struct mm_struct *mm, *oldmm;
1da177e4 1934
e107be36 1935 prepare_task_switch(rq, prev, next);
dd41f596
IM
1936 mm = next->mm;
1937 oldmm = prev->active_mm;
9226d125
ZA
1938 /*
1939 * For paravirt, this is coupled with an exit in switch_to to
1940 * combine the page table reload and the switch backend into
1941 * one hypercall.
1942 */
1943 arch_enter_lazy_cpu_mode();
1944
dd41f596 1945 if (unlikely(!mm)) {
1da177e4
LT
1946 next->active_mm = oldmm;
1947 atomic_inc(&oldmm->mm_count);
1948 enter_lazy_tlb(oldmm, next);
1949 } else
1950 switch_mm(oldmm, mm, next);
1951
dd41f596 1952 if (unlikely(!prev->mm)) {
1da177e4 1953 prev->active_mm = NULL;
1da177e4
LT
1954 rq->prev_mm = oldmm;
1955 }
3a5f5e48
IM
1956 /*
1957 * Since the runqueue lock will be released by the next
1958 * task (which is an invalid locking op but in the case
1959 * of the scheduler it's an obvious special-case), so we
1960 * do an early lockdep release here:
1961 */
1962#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1963 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1964#endif
1da177e4
LT
1965
1966 /* Here we just switch the register state and the stack. */
1967 switch_to(prev, next, prev);
1968
dd41f596
IM
1969 barrier();
1970 /*
1971 * this_rq must be evaluated again because prev may have moved
1972 * CPUs since it called schedule(), thus the 'rq' on its stack
1973 * frame will be invalid.
1974 */
1975 finish_task_switch(this_rq(), prev);
1da177e4
LT
1976}
1977
1978/*
1979 * nr_running, nr_uninterruptible and nr_context_switches:
1980 *
1981 * externally visible scheduler statistics: current number of runnable
1982 * threads, current number of uninterruptible-sleeping threads, total
1983 * number of context switches performed since bootup.
1984 */
1985unsigned long nr_running(void)
1986{
1987 unsigned long i, sum = 0;
1988
1989 for_each_online_cpu(i)
1990 sum += cpu_rq(i)->nr_running;
1991
1992 return sum;
1993}
1994
1995unsigned long nr_uninterruptible(void)
1996{
1997 unsigned long i, sum = 0;
1998
0a945022 1999 for_each_possible_cpu(i)
1da177e4
LT
2000 sum += cpu_rq(i)->nr_uninterruptible;
2001
2002 /*
2003 * Since we read the counters lockless, it might be slightly
2004 * inaccurate. Do not allow it to go below zero though:
2005 */
2006 if (unlikely((long)sum < 0))
2007 sum = 0;
2008
2009 return sum;
2010}
2011
2012unsigned long long nr_context_switches(void)
2013{
cc94abfc
SR
2014 int i;
2015 unsigned long long sum = 0;
1da177e4 2016
0a945022 2017 for_each_possible_cpu(i)
1da177e4
LT
2018 sum += cpu_rq(i)->nr_switches;
2019
2020 return sum;
2021}
2022
2023unsigned long nr_iowait(void)
2024{
2025 unsigned long i, sum = 0;
2026
0a945022 2027 for_each_possible_cpu(i)
1da177e4
LT
2028 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2029
2030 return sum;
2031}
2032
db1b1fef
JS
2033unsigned long nr_active(void)
2034{
2035 unsigned long i, running = 0, uninterruptible = 0;
2036
2037 for_each_online_cpu(i) {
2038 running += cpu_rq(i)->nr_running;
2039 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2040 }
2041
2042 if (unlikely((long)uninterruptible < 0))
2043 uninterruptible = 0;
2044
2045 return running + uninterruptible;
2046}
2047
48f24c4d 2048/*
dd41f596
IM
2049 * Update rq->cpu_load[] statistics. This function is usually called every
2050 * scheduler tick (TICK_NSEC).
48f24c4d 2051 */
dd41f596 2052static void update_cpu_load(struct rq *this_rq)
48f24c4d 2053{
495eca49 2054 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2055 int i, scale;
2056
2057 this_rq->nr_load_updates++;
dd41f596
IM
2058
2059 /* Update our load: */
2060 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2061 unsigned long old_load, new_load;
2062
2063 /* scale is effectively 1 << i now, and >> i divides by scale */
2064
2065 old_load = this_rq->cpu_load[i];
2066 new_load = this_load;
a25707f3
IM
2067 /*
2068 * Round up the averaging division if load is increasing. This
2069 * prevents us from getting stuck on 9 if the load is 10, for
2070 * example.
2071 */
2072 if (new_load > old_load)
2073 new_load += scale-1;
dd41f596
IM
2074 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2075 }
48f24c4d
IM
2076}
2077
dd41f596
IM
2078#ifdef CONFIG_SMP
2079
1da177e4
LT
2080/*
2081 * double_rq_lock - safely lock two runqueues
2082 *
2083 * Note this does not disable interrupts like task_rq_lock,
2084 * you need to do so manually before calling.
2085 */
70b97a7f 2086static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2087 __acquires(rq1->lock)
2088 __acquires(rq2->lock)
2089{
054b9108 2090 BUG_ON(!irqs_disabled());
1da177e4
LT
2091 if (rq1 == rq2) {
2092 spin_lock(&rq1->lock);
2093 __acquire(rq2->lock); /* Fake it out ;) */
2094 } else {
c96d145e 2095 if (rq1 < rq2) {
1da177e4
LT
2096 spin_lock(&rq1->lock);
2097 spin_lock(&rq2->lock);
2098 } else {
2099 spin_lock(&rq2->lock);
2100 spin_lock(&rq1->lock);
2101 }
2102 }
6e82a3be
IM
2103 update_rq_clock(rq1);
2104 update_rq_clock(rq2);
1da177e4
LT
2105}
2106
2107/*
2108 * double_rq_unlock - safely unlock two runqueues
2109 *
2110 * Note this does not restore interrupts like task_rq_unlock,
2111 * you need to do so manually after calling.
2112 */
70b97a7f 2113static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2114 __releases(rq1->lock)
2115 __releases(rq2->lock)
2116{
2117 spin_unlock(&rq1->lock);
2118 if (rq1 != rq2)
2119 spin_unlock(&rq2->lock);
2120 else
2121 __release(rq2->lock);
2122}
2123
2124/*
2125 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2126 */
70b97a7f 2127static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2128 __releases(this_rq->lock)
2129 __acquires(busiest->lock)
2130 __acquires(this_rq->lock)
2131{
054b9108
KK
2132 if (unlikely(!irqs_disabled())) {
2133 /* printk() doesn't work good under rq->lock */
2134 spin_unlock(&this_rq->lock);
2135 BUG_ON(1);
2136 }
1da177e4 2137 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2138 if (busiest < this_rq) {
1da177e4
LT
2139 spin_unlock(&this_rq->lock);
2140 spin_lock(&busiest->lock);
2141 spin_lock(&this_rq->lock);
2142 } else
2143 spin_lock(&busiest->lock);
2144 }
2145}
2146
1da177e4
LT
2147/*
2148 * If dest_cpu is allowed for this process, migrate the task to it.
2149 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2150 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2151 * the cpu_allowed mask is restored.
2152 */
36c8b586 2153static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2154{
70b97a7f 2155 struct migration_req req;
1da177e4 2156 unsigned long flags;
70b97a7f 2157 struct rq *rq;
1da177e4
LT
2158
2159 rq = task_rq_lock(p, &flags);
2160 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2161 || unlikely(cpu_is_offline(dest_cpu)))
2162 goto out;
2163
2164 /* force the process onto the specified CPU */
2165 if (migrate_task(p, dest_cpu, &req)) {
2166 /* Need to wait for migration thread (might exit: take ref). */
2167 struct task_struct *mt = rq->migration_thread;
36c8b586 2168
1da177e4
LT
2169 get_task_struct(mt);
2170 task_rq_unlock(rq, &flags);
2171 wake_up_process(mt);
2172 put_task_struct(mt);
2173 wait_for_completion(&req.done);
36c8b586 2174
1da177e4
LT
2175 return;
2176 }
2177out:
2178 task_rq_unlock(rq, &flags);
2179}
2180
2181/*
476d139c
NP
2182 * sched_exec - execve() is a valuable balancing opportunity, because at
2183 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2184 */
2185void sched_exec(void)
2186{
1da177e4 2187 int new_cpu, this_cpu = get_cpu();
476d139c 2188 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2189 put_cpu();
476d139c
NP
2190 if (new_cpu != this_cpu)
2191 sched_migrate_task(current, new_cpu);
1da177e4
LT
2192}
2193
2194/*
2195 * pull_task - move a task from a remote runqueue to the local runqueue.
2196 * Both runqueues must be locked.
2197 */
dd41f596
IM
2198static void pull_task(struct rq *src_rq, struct task_struct *p,
2199 struct rq *this_rq, int this_cpu)
1da177e4 2200{
2e1cb74a 2201 deactivate_task(src_rq, p, 0);
1da177e4 2202 set_task_cpu(p, this_cpu);
dd41f596 2203 activate_task(this_rq, p, 0);
1da177e4
LT
2204 /*
2205 * Note that idle threads have a prio of MAX_PRIO, for this test
2206 * to be always true for them.
2207 */
dd41f596 2208 check_preempt_curr(this_rq, p);
1da177e4
LT
2209}
2210
2211/*
2212 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2213 */
858119e1 2214static
70b97a7f 2215int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2216 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2217 int *all_pinned)
1da177e4
LT
2218{
2219 /*
2220 * We do not migrate tasks that are:
2221 * 1) running (obviously), or
2222 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2223 * 3) are cache-hot on their current CPU.
2224 */
cc367732
IM
2225 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2226 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2227 return 0;
cc367732 2228 }
81026794
NP
2229 *all_pinned = 0;
2230
cc367732
IM
2231 if (task_running(rq, p)) {
2232 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2233 return 0;
cc367732 2234 }
1da177e4 2235
da84d961
IM
2236 /*
2237 * Aggressive migration if:
2238 * 1) task is cache cold, or
2239 * 2) too many balance attempts have failed.
2240 */
2241
6bc1665b
IM
2242 if (!task_hot(p, rq->clock, sd) ||
2243 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2244#ifdef CONFIG_SCHEDSTATS
cc367732 2245 if (task_hot(p, rq->clock, sd)) {
da84d961 2246 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2247 schedstat_inc(p, se.nr_forced_migrations);
2248 }
da84d961
IM
2249#endif
2250 return 1;
2251 }
2252
cc367732
IM
2253 if (task_hot(p, rq->clock, sd)) {
2254 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2255 return 0;
cc367732 2256 }
1da177e4
LT
2257 return 1;
2258}
2259
e1d1484f
PW
2260static unsigned long
2261balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2262 unsigned long max_load_move, struct sched_domain *sd,
2263 enum cpu_idle_type idle, int *all_pinned,
2264 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2265{
b82d9fdd 2266 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2267 struct task_struct *p;
2268 long rem_load_move = max_load_move;
1da177e4 2269
e1d1484f 2270 if (max_load_move == 0)
1da177e4
LT
2271 goto out;
2272
81026794
NP
2273 pinned = 1;
2274
1da177e4 2275 /*
dd41f596 2276 * Start the load-balancing iterator:
1da177e4 2277 */
dd41f596
IM
2278 p = iterator->start(iterator->arg);
2279next:
b82d9fdd 2280 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2281 goto out;
50ddd969 2282 /*
b82d9fdd 2283 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2284 * skip a task if it will be the highest priority task (i.e. smallest
2285 * prio value) on its new queue regardless of its load weight
2286 */
dd41f596
IM
2287 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2288 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2289 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2290 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2291 p = iterator->next(iterator->arg);
2292 goto next;
1da177e4
LT
2293 }
2294
dd41f596 2295 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2296 pulled++;
dd41f596 2297 rem_load_move -= p->se.load.weight;
1da177e4 2298
2dd73a4f 2299 /*
b82d9fdd 2300 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2301 */
e1d1484f 2302 if (rem_load_move > 0) {
a4ac01c3
PW
2303 if (p->prio < *this_best_prio)
2304 *this_best_prio = p->prio;
dd41f596
IM
2305 p = iterator->next(iterator->arg);
2306 goto next;
1da177e4
LT
2307 }
2308out:
2309 /*
e1d1484f 2310 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2311 * so we can safely collect pull_task() stats here rather than
2312 * inside pull_task().
2313 */
2314 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2315
2316 if (all_pinned)
2317 *all_pinned = pinned;
e1d1484f
PW
2318
2319 return max_load_move - rem_load_move;
1da177e4
LT
2320}
2321
dd41f596 2322/*
43010659
PW
2323 * move_tasks tries to move up to max_load_move weighted load from busiest to
2324 * this_rq, as part of a balancing operation within domain "sd".
2325 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2326 *
2327 * Called with both runqueues locked.
2328 */
2329static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2330 unsigned long max_load_move,
dd41f596
IM
2331 struct sched_domain *sd, enum cpu_idle_type idle,
2332 int *all_pinned)
2333{
5522d5d5 2334 const struct sched_class *class = sched_class_highest;
43010659 2335 unsigned long total_load_moved = 0;
a4ac01c3 2336 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2337
2338 do {
43010659
PW
2339 total_load_moved +=
2340 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2341 max_load_move - total_load_moved,
a4ac01c3 2342 sd, idle, all_pinned, &this_best_prio);
dd41f596 2343 class = class->next;
43010659 2344 } while (class && max_load_move > total_load_moved);
dd41f596 2345
43010659
PW
2346 return total_load_moved > 0;
2347}
2348
e1d1484f
PW
2349static int
2350iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2351 struct sched_domain *sd, enum cpu_idle_type idle,
2352 struct rq_iterator *iterator)
2353{
2354 struct task_struct *p = iterator->start(iterator->arg);
2355 int pinned = 0;
2356
2357 while (p) {
2358 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2359 pull_task(busiest, p, this_rq, this_cpu);
2360 /*
2361 * Right now, this is only the second place pull_task()
2362 * is called, so we can safely collect pull_task()
2363 * stats here rather than inside pull_task().
2364 */
2365 schedstat_inc(sd, lb_gained[idle]);
2366
2367 return 1;
2368 }
2369 p = iterator->next(iterator->arg);
2370 }
2371
2372 return 0;
2373}
2374
43010659
PW
2375/*
2376 * move_one_task tries to move exactly one task from busiest to this_rq, as
2377 * part of active balancing operations within "domain".
2378 * Returns 1 if successful and 0 otherwise.
2379 *
2380 * Called with both runqueues locked.
2381 */
2382static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2383 struct sched_domain *sd, enum cpu_idle_type idle)
2384{
5522d5d5 2385 const struct sched_class *class;
43010659
PW
2386
2387 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2388 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2389 return 1;
2390
2391 return 0;
dd41f596
IM
2392}
2393
1da177e4
LT
2394/*
2395 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2396 * domain. It calculates and returns the amount of weighted load which
2397 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2398 */
2399static struct sched_group *
2400find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2401 unsigned long *imbalance, enum cpu_idle_type idle,
2402 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2403{
2404 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2405 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2406 unsigned long max_pull;
2dd73a4f
PW
2407 unsigned long busiest_load_per_task, busiest_nr_running;
2408 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2409 int load_idx, group_imb = 0;
5c45bf27
SS
2410#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2411 int power_savings_balance = 1;
2412 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2413 unsigned long min_nr_running = ULONG_MAX;
2414 struct sched_group *group_min = NULL, *group_leader = NULL;
2415#endif
1da177e4
LT
2416
2417 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2418 busiest_load_per_task = busiest_nr_running = 0;
2419 this_load_per_task = this_nr_running = 0;
d15bcfdb 2420 if (idle == CPU_NOT_IDLE)
7897986b 2421 load_idx = sd->busy_idx;
d15bcfdb 2422 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2423 load_idx = sd->newidle_idx;
2424 else
2425 load_idx = sd->idle_idx;
1da177e4
LT
2426
2427 do {
908a7c1b 2428 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2429 int local_group;
2430 int i;
908a7c1b 2431 int __group_imb = 0;
783609c6 2432 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2433 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2434
2435 local_group = cpu_isset(this_cpu, group->cpumask);
2436
783609c6
SS
2437 if (local_group)
2438 balance_cpu = first_cpu(group->cpumask);
2439
1da177e4 2440 /* Tally up the load of all CPUs in the group */
2dd73a4f 2441 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2442 max_cpu_load = 0;
2443 min_cpu_load = ~0UL;
1da177e4
LT
2444
2445 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2446 struct rq *rq;
2447
2448 if (!cpu_isset(i, *cpus))
2449 continue;
2450
2451 rq = cpu_rq(i);
2dd73a4f 2452
9439aab8 2453 if (*sd_idle && rq->nr_running)
5969fe06
NP
2454 *sd_idle = 0;
2455
1da177e4 2456 /* Bias balancing toward cpus of our domain */
783609c6
SS
2457 if (local_group) {
2458 if (idle_cpu(i) && !first_idle_cpu) {
2459 first_idle_cpu = 1;
2460 balance_cpu = i;
2461 }
2462
a2000572 2463 load = target_load(i, load_idx);
908a7c1b 2464 } else {
a2000572 2465 load = source_load(i, load_idx);
908a7c1b
KC
2466 if (load > max_cpu_load)
2467 max_cpu_load = load;
2468 if (min_cpu_load > load)
2469 min_cpu_load = load;
2470 }
1da177e4
LT
2471
2472 avg_load += load;
2dd73a4f 2473 sum_nr_running += rq->nr_running;
dd41f596 2474 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2475 }
2476
783609c6
SS
2477 /*
2478 * First idle cpu or the first cpu(busiest) in this sched group
2479 * is eligible for doing load balancing at this and above
9439aab8
SS
2480 * domains. In the newly idle case, we will allow all the cpu's
2481 * to do the newly idle load balance.
783609c6 2482 */
9439aab8
SS
2483 if (idle != CPU_NEWLY_IDLE && local_group &&
2484 balance_cpu != this_cpu && balance) {
783609c6
SS
2485 *balance = 0;
2486 goto ret;
2487 }
2488
1da177e4 2489 total_load += avg_load;
5517d86b 2490 total_pwr += group->__cpu_power;
1da177e4
LT
2491
2492 /* Adjust by relative CPU power of the group */
5517d86b
ED
2493 avg_load = sg_div_cpu_power(group,
2494 avg_load * SCHED_LOAD_SCALE);
1da177e4 2495
908a7c1b
KC
2496 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2497 __group_imb = 1;
2498
5517d86b 2499 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2500
1da177e4
LT
2501 if (local_group) {
2502 this_load = avg_load;
2503 this = group;
2dd73a4f
PW
2504 this_nr_running = sum_nr_running;
2505 this_load_per_task = sum_weighted_load;
2506 } else if (avg_load > max_load &&
908a7c1b 2507 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2508 max_load = avg_load;
2509 busiest = group;
2dd73a4f
PW
2510 busiest_nr_running = sum_nr_running;
2511 busiest_load_per_task = sum_weighted_load;
908a7c1b 2512 group_imb = __group_imb;
1da177e4 2513 }
5c45bf27
SS
2514
2515#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2516 /*
2517 * Busy processors will not participate in power savings
2518 * balance.
2519 */
dd41f596
IM
2520 if (idle == CPU_NOT_IDLE ||
2521 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2522 goto group_next;
5c45bf27
SS
2523
2524 /*
2525 * If the local group is idle or completely loaded
2526 * no need to do power savings balance at this domain
2527 */
2528 if (local_group && (this_nr_running >= group_capacity ||
2529 !this_nr_running))
2530 power_savings_balance = 0;
2531
dd41f596 2532 /*
5c45bf27
SS
2533 * If a group is already running at full capacity or idle,
2534 * don't include that group in power savings calculations
dd41f596
IM
2535 */
2536 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2537 || !sum_nr_running)
dd41f596 2538 goto group_next;
5c45bf27 2539
dd41f596 2540 /*
5c45bf27 2541 * Calculate the group which has the least non-idle load.
dd41f596
IM
2542 * This is the group from where we need to pick up the load
2543 * for saving power
2544 */
2545 if ((sum_nr_running < min_nr_running) ||
2546 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2547 first_cpu(group->cpumask) <
2548 first_cpu(group_min->cpumask))) {
dd41f596
IM
2549 group_min = group;
2550 min_nr_running = sum_nr_running;
5c45bf27
SS
2551 min_load_per_task = sum_weighted_load /
2552 sum_nr_running;
dd41f596 2553 }
5c45bf27 2554
dd41f596 2555 /*
5c45bf27 2556 * Calculate the group which is almost near its
dd41f596
IM
2557 * capacity but still has some space to pick up some load
2558 * from other group and save more power
2559 */
2560 if (sum_nr_running <= group_capacity - 1) {
2561 if (sum_nr_running > leader_nr_running ||
2562 (sum_nr_running == leader_nr_running &&
2563 first_cpu(group->cpumask) >
2564 first_cpu(group_leader->cpumask))) {
2565 group_leader = group;
2566 leader_nr_running = sum_nr_running;
2567 }
48f24c4d 2568 }
5c45bf27
SS
2569group_next:
2570#endif
1da177e4
LT
2571 group = group->next;
2572 } while (group != sd->groups);
2573
2dd73a4f 2574 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2575 goto out_balanced;
2576
2577 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2578
2579 if (this_load >= avg_load ||
2580 100*max_load <= sd->imbalance_pct*this_load)
2581 goto out_balanced;
2582
2dd73a4f 2583 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2584 if (group_imb)
2585 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2586
1da177e4
LT
2587 /*
2588 * We're trying to get all the cpus to the average_load, so we don't
2589 * want to push ourselves above the average load, nor do we wish to
2590 * reduce the max loaded cpu below the average load, as either of these
2591 * actions would just result in more rebalancing later, and ping-pong
2592 * tasks around. Thus we look for the minimum possible imbalance.
2593 * Negative imbalances (*we* are more loaded than anyone else) will
2594 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2595 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2596 * appear as very large values with unsigned longs.
2597 */
2dd73a4f
PW
2598 if (max_load <= busiest_load_per_task)
2599 goto out_balanced;
2600
2601 /*
2602 * In the presence of smp nice balancing, certain scenarios can have
2603 * max load less than avg load(as we skip the groups at or below
2604 * its cpu_power, while calculating max_load..)
2605 */
2606 if (max_load < avg_load) {
2607 *imbalance = 0;
2608 goto small_imbalance;
2609 }
0c117f1b
SS
2610
2611 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2612 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2613
1da177e4 2614 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2615 *imbalance = min(max_pull * busiest->__cpu_power,
2616 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2617 / SCHED_LOAD_SCALE;
2618
2dd73a4f
PW
2619 /*
2620 * if *imbalance is less than the average load per runnable task
2621 * there is no gaurantee that any tasks will be moved so we'll have
2622 * a think about bumping its value to force at least one task to be
2623 * moved
2624 */
7fd0d2dd 2625 if (*imbalance < busiest_load_per_task) {
48f24c4d 2626 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2627 unsigned int imbn;
2628
2629small_imbalance:
2630 pwr_move = pwr_now = 0;
2631 imbn = 2;
2632 if (this_nr_running) {
2633 this_load_per_task /= this_nr_running;
2634 if (busiest_load_per_task > this_load_per_task)
2635 imbn = 1;
2636 } else
2637 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2638
dd41f596
IM
2639 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2640 busiest_load_per_task * imbn) {
2dd73a4f 2641 *imbalance = busiest_load_per_task;
1da177e4
LT
2642 return busiest;
2643 }
2644
2645 /*
2646 * OK, we don't have enough imbalance to justify moving tasks,
2647 * however we may be able to increase total CPU power used by
2648 * moving them.
2649 */
2650
5517d86b
ED
2651 pwr_now += busiest->__cpu_power *
2652 min(busiest_load_per_task, max_load);
2653 pwr_now += this->__cpu_power *
2654 min(this_load_per_task, this_load);
1da177e4
LT
2655 pwr_now /= SCHED_LOAD_SCALE;
2656
2657 /* Amount of load we'd subtract */
5517d86b
ED
2658 tmp = sg_div_cpu_power(busiest,
2659 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2660 if (max_load > tmp)
5517d86b 2661 pwr_move += busiest->__cpu_power *
2dd73a4f 2662 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2663
2664 /* Amount of load we'd add */
5517d86b 2665 if (max_load * busiest->__cpu_power <
33859f7f 2666 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2667 tmp = sg_div_cpu_power(this,
2668 max_load * busiest->__cpu_power);
1da177e4 2669 else
5517d86b
ED
2670 tmp = sg_div_cpu_power(this,
2671 busiest_load_per_task * SCHED_LOAD_SCALE);
2672 pwr_move += this->__cpu_power *
2673 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2674 pwr_move /= SCHED_LOAD_SCALE;
2675
2676 /* Move if we gain throughput */
7fd0d2dd
SS
2677 if (pwr_move > pwr_now)
2678 *imbalance = busiest_load_per_task;
1da177e4
LT
2679 }
2680
1da177e4
LT
2681 return busiest;
2682
2683out_balanced:
5c45bf27 2684#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2685 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2686 goto ret;
1da177e4 2687
5c45bf27
SS
2688 if (this == group_leader && group_leader != group_min) {
2689 *imbalance = min_load_per_task;
2690 return group_min;
2691 }
5c45bf27 2692#endif
783609c6 2693ret:
1da177e4
LT
2694 *imbalance = 0;
2695 return NULL;
2696}
2697
2698/*
2699 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2700 */
70b97a7f 2701static struct rq *
d15bcfdb 2702find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2703 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2704{
70b97a7f 2705 struct rq *busiest = NULL, *rq;
2dd73a4f 2706 unsigned long max_load = 0;
1da177e4
LT
2707 int i;
2708
2709 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2710 unsigned long wl;
0a2966b4
CL
2711
2712 if (!cpu_isset(i, *cpus))
2713 continue;
2714
48f24c4d 2715 rq = cpu_rq(i);
dd41f596 2716 wl = weighted_cpuload(i);
2dd73a4f 2717
dd41f596 2718 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2719 continue;
1da177e4 2720
dd41f596
IM
2721 if (wl > max_load) {
2722 max_load = wl;
48f24c4d 2723 busiest = rq;
1da177e4
LT
2724 }
2725 }
2726
2727 return busiest;
2728}
2729
77391d71
NP
2730/*
2731 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2732 * so long as it is large enough.
2733 */
2734#define MAX_PINNED_INTERVAL 512
2735
1da177e4
LT
2736/*
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
1da177e4 2739 */
70b97a7f 2740static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2741 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2742 int *balance)
1da177e4 2743{
43010659 2744 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2745 struct sched_group *group;
1da177e4 2746 unsigned long imbalance;
70b97a7f 2747 struct rq *busiest;
0a2966b4 2748 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2749 unsigned long flags;
5969fe06 2750
89c4710e
SS
2751 /*
2752 * When power savings policy is enabled for the parent domain, idle
2753 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2754 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2755 * portraying it as CPU_NOT_IDLE.
89c4710e 2756 */
d15bcfdb 2757 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2758 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2759 sd_idle = 1;
1da177e4 2760
2d72376b 2761 schedstat_inc(sd, lb_count[idle]);
1da177e4 2762
0a2966b4
CL
2763redo:
2764 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2765 &cpus, balance);
2766
06066714 2767 if (*balance == 0)
783609c6 2768 goto out_balanced;
783609c6 2769
1da177e4
LT
2770 if (!group) {
2771 schedstat_inc(sd, lb_nobusyg[idle]);
2772 goto out_balanced;
2773 }
2774
0a2966b4 2775 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2776 if (!busiest) {
2777 schedstat_inc(sd, lb_nobusyq[idle]);
2778 goto out_balanced;
2779 }
2780
db935dbd 2781 BUG_ON(busiest == this_rq);
1da177e4
LT
2782
2783 schedstat_add(sd, lb_imbalance[idle], imbalance);
2784
43010659 2785 ld_moved = 0;
1da177e4
LT
2786 if (busiest->nr_running > 1) {
2787 /*
2788 * Attempt to move tasks. If find_busiest_group has found
2789 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2790 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2791 * correctly treated as an imbalance.
2792 */
fe2eea3f 2793 local_irq_save(flags);
e17224bf 2794 double_rq_lock(this_rq, busiest);
43010659 2795 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2796 imbalance, sd, idle, &all_pinned);
e17224bf 2797 double_rq_unlock(this_rq, busiest);
fe2eea3f 2798 local_irq_restore(flags);
81026794 2799
46cb4b7c
SS
2800 /*
2801 * some other cpu did the load balance for us.
2802 */
43010659 2803 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2804 resched_cpu(this_cpu);
2805
81026794 2806 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2807 if (unlikely(all_pinned)) {
2808 cpu_clear(cpu_of(busiest), cpus);
2809 if (!cpus_empty(cpus))
2810 goto redo;
81026794 2811 goto out_balanced;
0a2966b4 2812 }
1da177e4 2813 }
81026794 2814
43010659 2815 if (!ld_moved) {
1da177e4
LT
2816 schedstat_inc(sd, lb_failed[idle]);
2817 sd->nr_balance_failed++;
2818
2819 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2820
fe2eea3f 2821 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2822
2823 /* don't kick the migration_thread, if the curr
2824 * task on busiest cpu can't be moved to this_cpu
2825 */
2826 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2827 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2828 all_pinned = 1;
2829 goto out_one_pinned;
2830 }
2831
1da177e4
LT
2832 if (!busiest->active_balance) {
2833 busiest->active_balance = 1;
2834 busiest->push_cpu = this_cpu;
81026794 2835 active_balance = 1;
1da177e4 2836 }
fe2eea3f 2837 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2838 if (active_balance)
1da177e4
LT
2839 wake_up_process(busiest->migration_thread);
2840
2841 /*
2842 * We've kicked active balancing, reset the failure
2843 * counter.
2844 */
39507451 2845 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2846 }
81026794 2847 } else
1da177e4
LT
2848 sd->nr_balance_failed = 0;
2849
81026794 2850 if (likely(!active_balance)) {
1da177e4
LT
2851 /* We were unbalanced, so reset the balancing interval */
2852 sd->balance_interval = sd->min_interval;
81026794
NP
2853 } else {
2854 /*
2855 * If we've begun active balancing, start to back off. This
2856 * case may not be covered by the all_pinned logic if there
2857 * is only 1 task on the busy runqueue (because we don't call
2858 * move_tasks).
2859 */
2860 if (sd->balance_interval < sd->max_interval)
2861 sd->balance_interval *= 2;
1da177e4
LT
2862 }
2863
43010659 2864 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2865 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2866 return -1;
43010659 2867 return ld_moved;
1da177e4
LT
2868
2869out_balanced:
1da177e4
LT
2870 schedstat_inc(sd, lb_balanced[idle]);
2871
16cfb1c0 2872 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2873
2874out_one_pinned:
1da177e4 2875 /* tune up the balancing interval */
77391d71
NP
2876 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2877 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2878 sd->balance_interval *= 2;
2879
48f24c4d 2880 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2881 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2882 return -1;
1da177e4
LT
2883 return 0;
2884}
2885
2886/*
2887 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2888 * tasks if there is an imbalance.
2889 *
d15bcfdb 2890 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2891 * this_rq is locked.
2892 */
48f24c4d 2893static int
70b97a7f 2894load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2895{
2896 struct sched_group *group;
70b97a7f 2897 struct rq *busiest = NULL;
1da177e4 2898 unsigned long imbalance;
43010659 2899 int ld_moved = 0;
5969fe06 2900 int sd_idle = 0;
969bb4e4 2901 int all_pinned = 0;
0a2966b4 2902 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2903
89c4710e
SS
2904 /*
2905 * When power savings policy is enabled for the parent domain, idle
2906 * sibling can pick up load irrespective of busy siblings. In this case,
2907 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2908 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2909 */
2910 if (sd->flags & SD_SHARE_CPUPOWER &&
2911 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2912 sd_idle = 1;
1da177e4 2913
2d72376b 2914 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2915redo:
d15bcfdb 2916 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2917 &sd_idle, &cpus, NULL);
1da177e4 2918 if (!group) {
d15bcfdb 2919 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2920 goto out_balanced;
1da177e4
LT
2921 }
2922
d15bcfdb 2923 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2924 &cpus);
db935dbd 2925 if (!busiest) {
d15bcfdb 2926 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2927 goto out_balanced;
1da177e4
LT
2928 }
2929
db935dbd
NP
2930 BUG_ON(busiest == this_rq);
2931
d15bcfdb 2932 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2933
43010659 2934 ld_moved = 0;
d6d5cfaf
NP
2935 if (busiest->nr_running > 1) {
2936 /* Attempt to move tasks */
2937 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2938 /* this_rq->clock is already updated */
2939 update_rq_clock(busiest);
43010659 2940 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2941 imbalance, sd, CPU_NEWLY_IDLE,
2942 &all_pinned);
d6d5cfaf 2943 spin_unlock(&busiest->lock);
0a2966b4 2944
969bb4e4 2945 if (unlikely(all_pinned)) {
0a2966b4
CL
2946 cpu_clear(cpu_of(busiest), cpus);
2947 if (!cpus_empty(cpus))
2948 goto redo;
2949 }
d6d5cfaf
NP
2950 }
2951
43010659 2952 if (!ld_moved) {
d15bcfdb 2953 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2954 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2955 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2956 return -1;
2957 } else
16cfb1c0 2958 sd->nr_balance_failed = 0;
1da177e4 2959
43010659 2960 return ld_moved;
16cfb1c0
NP
2961
2962out_balanced:
d15bcfdb 2963 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2964 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2965 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2966 return -1;
16cfb1c0 2967 sd->nr_balance_failed = 0;
48f24c4d 2968
16cfb1c0 2969 return 0;
1da177e4
LT
2970}
2971
2972/*
2973 * idle_balance is called by schedule() if this_cpu is about to become
2974 * idle. Attempts to pull tasks from other CPUs.
2975 */
70b97a7f 2976static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2977{
2978 struct sched_domain *sd;
dd41f596
IM
2979 int pulled_task = -1;
2980 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2981
2982 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2983 unsigned long interval;
2984
2985 if (!(sd->flags & SD_LOAD_BALANCE))
2986 continue;
2987
2988 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2989 /* If we've pulled tasks over stop searching: */
1bd77f2d 2990 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2991 this_rq, sd);
2992
2993 interval = msecs_to_jiffies(sd->balance_interval);
2994 if (time_after(next_balance, sd->last_balance + interval))
2995 next_balance = sd->last_balance + interval;
2996 if (pulled_task)
2997 break;
1da177e4 2998 }
dd41f596 2999 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3000 /*
3001 * We are going idle. next_balance may be set based on
3002 * a busy processor. So reset next_balance.
3003 */
3004 this_rq->next_balance = next_balance;
dd41f596 3005 }
1da177e4
LT
3006}
3007
3008/*
3009 * active_load_balance is run by migration threads. It pushes running tasks
3010 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3011 * running on each physical CPU where possible, and avoids physical /
3012 * logical imbalances.
3013 *
3014 * Called with busiest_rq locked.
3015 */
70b97a7f 3016static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3017{
39507451 3018 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3019 struct sched_domain *sd;
3020 struct rq *target_rq;
39507451 3021
48f24c4d 3022 /* Is there any task to move? */
39507451 3023 if (busiest_rq->nr_running <= 1)
39507451
NP
3024 return;
3025
3026 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3027
3028 /*
39507451 3029 * This condition is "impossible", if it occurs
41a2d6cf 3030 * we need to fix it. Originally reported by
39507451 3031 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3032 */
39507451 3033 BUG_ON(busiest_rq == target_rq);
1da177e4 3034
39507451
NP
3035 /* move a task from busiest_rq to target_rq */
3036 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3037 update_rq_clock(busiest_rq);
3038 update_rq_clock(target_rq);
39507451
NP
3039
3040 /* Search for an sd spanning us and the target CPU. */
c96d145e 3041 for_each_domain(target_cpu, sd) {
39507451 3042 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3043 cpu_isset(busiest_cpu, sd->span))
39507451 3044 break;
c96d145e 3045 }
39507451 3046
48f24c4d 3047 if (likely(sd)) {
2d72376b 3048 schedstat_inc(sd, alb_count);
39507451 3049
43010659
PW
3050 if (move_one_task(target_rq, target_cpu, busiest_rq,
3051 sd, CPU_IDLE))
48f24c4d
IM
3052 schedstat_inc(sd, alb_pushed);
3053 else
3054 schedstat_inc(sd, alb_failed);
3055 }
39507451 3056 spin_unlock(&target_rq->lock);
1da177e4
LT
3057}
3058
46cb4b7c
SS
3059#ifdef CONFIG_NO_HZ
3060static struct {
3061 atomic_t load_balancer;
41a2d6cf 3062 cpumask_t cpu_mask;
46cb4b7c
SS
3063} nohz ____cacheline_aligned = {
3064 .load_balancer = ATOMIC_INIT(-1),
3065 .cpu_mask = CPU_MASK_NONE,
3066};
3067
7835b98b 3068/*
46cb4b7c
SS
3069 * This routine will try to nominate the ilb (idle load balancing)
3070 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3071 * load balancing on behalf of all those cpus. If all the cpus in the system
3072 * go into this tickless mode, then there will be no ilb owner (as there is
3073 * no need for one) and all the cpus will sleep till the next wakeup event
3074 * arrives...
3075 *
3076 * For the ilb owner, tick is not stopped. And this tick will be used
3077 * for idle load balancing. ilb owner will still be part of
3078 * nohz.cpu_mask..
7835b98b 3079 *
46cb4b7c
SS
3080 * While stopping the tick, this cpu will become the ilb owner if there
3081 * is no other owner. And will be the owner till that cpu becomes busy
3082 * or if all cpus in the system stop their ticks at which point
3083 * there is no need for ilb owner.
3084 *
3085 * When the ilb owner becomes busy, it nominates another owner, during the
3086 * next busy scheduler_tick()
3087 */
3088int select_nohz_load_balancer(int stop_tick)
3089{
3090 int cpu = smp_processor_id();
3091
3092 if (stop_tick) {
3093 cpu_set(cpu, nohz.cpu_mask);
3094 cpu_rq(cpu)->in_nohz_recently = 1;
3095
3096 /*
3097 * If we are going offline and still the leader, give up!
3098 */
3099 if (cpu_is_offline(cpu) &&
3100 atomic_read(&nohz.load_balancer) == cpu) {
3101 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3102 BUG();
3103 return 0;
3104 }
3105
3106 /* time for ilb owner also to sleep */
3107 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3108 if (atomic_read(&nohz.load_balancer) == cpu)
3109 atomic_set(&nohz.load_balancer, -1);
3110 return 0;
3111 }
3112
3113 if (atomic_read(&nohz.load_balancer) == -1) {
3114 /* make me the ilb owner */
3115 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3116 return 1;
3117 } else if (atomic_read(&nohz.load_balancer) == cpu)
3118 return 1;
3119 } else {
3120 if (!cpu_isset(cpu, nohz.cpu_mask))
3121 return 0;
3122
3123 cpu_clear(cpu, nohz.cpu_mask);
3124
3125 if (atomic_read(&nohz.load_balancer) == cpu)
3126 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3127 BUG();
3128 }
3129 return 0;
3130}
3131#endif
3132
3133static DEFINE_SPINLOCK(balancing);
3134
3135/*
7835b98b
CL
3136 * It checks each scheduling domain to see if it is due to be balanced,
3137 * and initiates a balancing operation if so.
3138 *
3139 * Balancing parameters are set up in arch_init_sched_domains.
3140 */
a9957449 3141static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3142{
46cb4b7c
SS
3143 int balance = 1;
3144 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3145 unsigned long interval;
3146 struct sched_domain *sd;
46cb4b7c 3147 /* Earliest time when we have to do rebalance again */
c9819f45 3148 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3149 int update_next_balance = 0;
1da177e4 3150
46cb4b7c 3151 for_each_domain(cpu, sd) {
1da177e4
LT
3152 if (!(sd->flags & SD_LOAD_BALANCE))
3153 continue;
3154
3155 interval = sd->balance_interval;
d15bcfdb 3156 if (idle != CPU_IDLE)
1da177e4
LT
3157 interval *= sd->busy_factor;
3158
3159 /* scale ms to jiffies */
3160 interval = msecs_to_jiffies(interval);
3161 if (unlikely(!interval))
3162 interval = 1;
dd41f596
IM
3163 if (interval > HZ*NR_CPUS/10)
3164 interval = HZ*NR_CPUS/10;
3165
1da177e4 3166
08c183f3
CL
3167 if (sd->flags & SD_SERIALIZE) {
3168 if (!spin_trylock(&balancing))
3169 goto out;
3170 }
3171
c9819f45 3172 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3173 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3174 /*
3175 * We've pulled tasks over so either we're no
5969fe06
NP
3176 * longer idle, or one of our SMT siblings is
3177 * not idle.
3178 */
d15bcfdb 3179 idle = CPU_NOT_IDLE;
1da177e4 3180 }
1bd77f2d 3181 sd->last_balance = jiffies;
1da177e4 3182 }
08c183f3
CL
3183 if (sd->flags & SD_SERIALIZE)
3184 spin_unlock(&balancing);
3185out:
f549da84 3186 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3187 next_balance = sd->last_balance + interval;
f549da84
SS
3188 update_next_balance = 1;
3189 }
783609c6
SS
3190
3191 /*
3192 * Stop the load balance at this level. There is another
3193 * CPU in our sched group which is doing load balancing more
3194 * actively.
3195 */
3196 if (!balance)
3197 break;
1da177e4 3198 }
f549da84
SS
3199
3200 /*
3201 * next_balance will be updated only when there is a need.
3202 * When the cpu is attached to null domain for ex, it will not be
3203 * updated.
3204 */
3205 if (likely(update_next_balance))
3206 rq->next_balance = next_balance;
46cb4b7c
SS
3207}
3208
3209/*
3210 * run_rebalance_domains is triggered when needed from the scheduler tick.
3211 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3212 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3213 */
3214static void run_rebalance_domains(struct softirq_action *h)
3215{
dd41f596
IM
3216 int this_cpu = smp_processor_id();
3217 struct rq *this_rq = cpu_rq(this_cpu);
3218 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3219 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3220
dd41f596 3221 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3222
3223#ifdef CONFIG_NO_HZ
3224 /*
3225 * If this cpu is the owner for idle load balancing, then do the
3226 * balancing on behalf of the other idle cpus whose ticks are
3227 * stopped.
3228 */
dd41f596
IM
3229 if (this_rq->idle_at_tick &&
3230 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3231 cpumask_t cpus = nohz.cpu_mask;
3232 struct rq *rq;
3233 int balance_cpu;
3234
dd41f596 3235 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3236 for_each_cpu_mask(balance_cpu, cpus) {
3237 /*
3238 * If this cpu gets work to do, stop the load balancing
3239 * work being done for other cpus. Next load
3240 * balancing owner will pick it up.
3241 */
3242 if (need_resched())
3243 break;
3244
de0cf899 3245 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3246
3247 rq = cpu_rq(balance_cpu);
dd41f596
IM
3248 if (time_after(this_rq->next_balance, rq->next_balance))
3249 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3250 }
3251 }
3252#endif
3253}
3254
3255/*
3256 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3257 *
3258 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3259 * idle load balancing owner or decide to stop the periodic load balancing,
3260 * if the whole system is idle.
3261 */
dd41f596 3262static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3263{
46cb4b7c
SS
3264#ifdef CONFIG_NO_HZ
3265 /*
3266 * If we were in the nohz mode recently and busy at the current
3267 * scheduler tick, then check if we need to nominate new idle
3268 * load balancer.
3269 */
3270 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3271 rq->in_nohz_recently = 0;
3272
3273 if (atomic_read(&nohz.load_balancer) == cpu) {
3274 cpu_clear(cpu, nohz.cpu_mask);
3275 atomic_set(&nohz.load_balancer, -1);
3276 }
3277
3278 if (atomic_read(&nohz.load_balancer) == -1) {
3279 /*
3280 * simple selection for now: Nominate the
3281 * first cpu in the nohz list to be the next
3282 * ilb owner.
3283 *
3284 * TBD: Traverse the sched domains and nominate
3285 * the nearest cpu in the nohz.cpu_mask.
3286 */
3287 int ilb = first_cpu(nohz.cpu_mask);
3288
3289 if (ilb != NR_CPUS)
3290 resched_cpu(ilb);
3291 }
3292 }
3293
3294 /*
3295 * If this cpu is idle and doing idle load balancing for all the
3296 * cpus with ticks stopped, is it time for that to stop?
3297 */
3298 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3299 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3300 resched_cpu(cpu);
3301 return;
3302 }
3303
3304 /*
3305 * If this cpu is idle and the idle load balancing is done by
3306 * someone else, then no need raise the SCHED_SOFTIRQ
3307 */
3308 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3309 cpu_isset(cpu, nohz.cpu_mask))
3310 return;
3311#endif
3312 if (time_after_eq(jiffies, rq->next_balance))
3313 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3314}
dd41f596
IM
3315
3316#else /* CONFIG_SMP */
3317
1da177e4
LT
3318/*
3319 * on UP we do not need to balance between CPUs:
3320 */
70b97a7f 3321static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3322{
3323}
dd41f596 3324
1da177e4
LT
3325#endif
3326
1da177e4
LT
3327DEFINE_PER_CPU(struct kernel_stat, kstat);
3328
3329EXPORT_PER_CPU_SYMBOL(kstat);
3330
3331/*
41b86e9c
IM
3332 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3333 * that have not yet been banked in case the task is currently running.
1da177e4 3334 */
41b86e9c 3335unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3336{
1da177e4 3337 unsigned long flags;
41b86e9c
IM
3338 u64 ns, delta_exec;
3339 struct rq *rq;
48f24c4d 3340
41b86e9c
IM
3341 rq = task_rq_lock(p, &flags);
3342 ns = p->se.sum_exec_runtime;
051a1d1a 3343 if (task_current(rq, p)) {
a8e504d2
IM
3344 update_rq_clock(rq);
3345 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3346 if ((s64)delta_exec > 0)
3347 ns += delta_exec;
3348 }
3349 task_rq_unlock(rq, &flags);
48f24c4d 3350
1da177e4
LT
3351 return ns;
3352}
3353
1da177e4
LT
3354/*
3355 * Account user cpu time to a process.
3356 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3357 * @cputime: the cpu time spent in user space since the last update
3358 */
3359void account_user_time(struct task_struct *p, cputime_t cputime)
3360{
3361 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3362 cputime64_t tmp;
3363
3364 p->utime = cputime_add(p->utime, cputime);
3365
3366 /* Add user time to cpustat. */
3367 tmp = cputime_to_cputime64(cputime);
3368 if (TASK_NICE(p) > 0)
3369 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3370 else
3371 cpustat->user = cputime64_add(cpustat->user, tmp);
3372}
3373
94886b84
LV
3374/*
3375 * Account guest cpu time to a process.
3376 * @p: the process that the cpu time gets accounted to
3377 * @cputime: the cpu time spent in virtual machine since the last update
3378 */
f7402e03 3379static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3380{
3381 cputime64_t tmp;
3382 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3383
3384 tmp = cputime_to_cputime64(cputime);
3385
3386 p->utime = cputime_add(p->utime, cputime);
3387 p->gtime = cputime_add(p->gtime, cputime);
3388
3389 cpustat->user = cputime64_add(cpustat->user, tmp);
3390 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3391}
3392
c66f08be
MN
3393/*
3394 * Account scaled user cpu time to a process.
3395 * @p: the process that the cpu time gets accounted to
3396 * @cputime: the cpu time spent in user space since the last update
3397 */
3398void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3399{
3400 p->utimescaled = cputime_add(p->utimescaled, cputime);
3401}
3402
1da177e4
LT
3403/*
3404 * Account system cpu time to a process.
3405 * @p: the process that the cpu time gets accounted to
3406 * @hardirq_offset: the offset to subtract from hardirq_count()
3407 * @cputime: the cpu time spent in kernel space since the last update
3408 */
3409void account_system_time(struct task_struct *p, int hardirq_offset,
3410 cputime_t cputime)
3411{
3412 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3413 struct rq *rq = this_rq();
1da177e4
LT
3414 cputime64_t tmp;
3415
9778385d
CB
3416 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3417 return account_guest_time(p, cputime);
94886b84 3418
1da177e4
LT
3419 p->stime = cputime_add(p->stime, cputime);
3420
3421 /* Add system time to cpustat. */
3422 tmp = cputime_to_cputime64(cputime);
3423 if (hardirq_count() - hardirq_offset)
3424 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3425 else if (softirq_count())
3426 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3427 else if (p != rq->idle)
1da177e4 3428 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3429 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3430 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3431 else
3432 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3433 /* Account for system time used */
3434 acct_update_integrals(p);
1da177e4
LT
3435}
3436
c66f08be
MN
3437/*
3438 * Account scaled system cpu time to a process.
3439 * @p: the process that the cpu time gets accounted to
3440 * @hardirq_offset: the offset to subtract from hardirq_count()
3441 * @cputime: the cpu time spent in kernel space since the last update
3442 */
3443void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3444{
3445 p->stimescaled = cputime_add(p->stimescaled, cputime);
3446}
3447
1da177e4
LT
3448/*
3449 * Account for involuntary wait time.
3450 * @p: the process from which the cpu time has been stolen
3451 * @steal: the cpu time spent in involuntary wait
3452 */
3453void account_steal_time(struct task_struct *p, cputime_t steal)
3454{
3455 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3456 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3457 struct rq *rq = this_rq();
1da177e4
LT
3458
3459 if (p == rq->idle) {
3460 p->stime = cputime_add(p->stime, steal);
3461 if (atomic_read(&rq->nr_iowait) > 0)
3462 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3463 else
3464 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3465 } else
1da177e4
LT
3466 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3467}
3468
7835b98b
CL
3469/*
3470 * This function gets called by the timer code, with HZ frequency.
3471 * We call it with interrupts disabled.
3472 *
3473 * It also gets called by the fork code, when changing the parent's
3474 * timeslices.
3475 */
3476void scheduler_tick(void)
3477{
7835b98b
CL
3478 int cpu = smp_processor_id();
3479 struct rq *rq = cpu_rq(cpu);
dd41f596 3480 struct task_struct *curr = rq->curr;
529c7726 3481 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3482
3483 spin_lock(&rq->lock);
546fe3c9 3484 __update_rq_clock(rq);
529c7726
IM
3485 /*
3486 * Let rq->clock advance by at least TICK_NSEC:
3487 */
3488 if (unlikely(rq->clock < next_tick))
3489 rq->clock = next_tick;
3490 rq->tick_timestamp = rq->clock;
f1a438d8 3491 update_cpu_load(rq);
dd41f596
IM
3492 if (curr != rq->idle) /* FIXME: needed? */
3493 curr->sched_class->task_tick(rq, curr);
dd41f596 3494 spin_unlock(&rq->lock);
7835b98b 3495
e418e1c2 3496#ifdef CONFIG_SMP
dd41f596
IM
3497 rq->idle_at_tick = idle_cpu(cpu);
3498 trigger_load_balance(rq, cpu);
e418e1c2 3499#endif
1da177e4
LT
3500}
3501
1da177e4
LT
3502#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3503
3504void fastcall add_preempt_count(int val)
3505{
3506 /*
3507 * Underflow?
3508 */
9a11b49a
IM
3509 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3510 return;
1da177e4
LT
3511 preempt_count() += val;
3512 /*
3513 * Spinlock count overflowing soon?
3514 */
33859f7f
MOS
3515 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3516 PREEMPT_MASK - 10);
1da177e4
LT
3517}
3518EXPORT_SYMBOL(add_preempt_count);
3519
3520void fastcall sub_preempt_count(int val)
3521{
3522 /*
3523 * Underflow?
3524 */
9a11b49a
IM
3525 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3526 return;
1da177e4
LT
3527 /*
3528 * Is the spinlock portion underflowing?
3529 */
9a11b49a
IM
3530 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3531 !(preempt_count() & PREEMPT_MASK)))
3532 return;
3533
1da177e4
LT
3534 preempt_count() -= val;
3535}
3536EXPORT_SYMBOL(sub_preempt_count);
3537
3538#endif
3539
3540/*
dd41f596 3541 * Print scheduling while atomic bug:
1da177e4 3542 */
dd41f596 3543static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3544{
838225b4
SS
3545 struct pt_regs *regs = get_irq_regs();
3546
3547 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3548 prev->comm, prev->pid, preempt_count());
3549
dd41f596
IM
3550 debug_show_held_locks(prev);
3551 if (irqs_disabled())
3552 print_irqtrace_events(prev);
838225b4
SS
3553
3554 if (regs)
3555 show_regs(regs);
3556 else
3557 dump_stack();
dd41f596 3558}
1da177e4 3559
dd41f596
IM
3560/*
3561 * Various schedule()-time debugging checks and statistics:
3562 */
3563static inline void schedule_debug(struct task_struct *prev)
3564{
1da177e4 3565 /*
41a2d6cf 3566 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3567 * schedule() atomically, we ignore that path for now.
3568 * Otherwise, whine if we are scheduling when we should not be.
3569 */
dd41f596
IM
3570 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3571 __schedule_bug(prev);
3572
1da177e4
LT
3573 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3574
2d72376b 3575 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3576#ifdef CONFIG_SCHEDSTATS
3577 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3578 schedstat_inc(this_rq(), bkl_count);
3579 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3580 }
3581#endif
dd41f596
IM
3582}
3583
3584/*
3585 * Pick up the highest-prio task:
3586 */
3587static inline struct task_struct *
ff95f3df 3588pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3589{
5522d5d5 3590 const struct sched_class *class;
dd41f596 3591 struct task_struct *p;
1da177e4
LT
3592
3593 /*
dd41f596
IM
3594 * Optimization: we know that if all tasks are in
3595 * the fair class we can call that function directly:
1da177e4 3596 */
dd41f596 3597 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3598 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3599 if (likely(p))
3600 return p;
1da177e4
LT
3601 }
3602
dd41f596
IM
3603 class = sched_class_highest;
3604 for ( ; ; ) {
fb8d4724 3605 p = class->pick_next_task(rq);
dd41f596
IM
3606 if (p)
3607 return p;
3608 /*
3609 * Will never be NULL as the idle class always
3610 * returns a non-NULL p:
3611 */
3612 class = class->next;
3613 }
3614}
1da177e4 3615
dd41f596
IM
3616/*
3617 * schedule() is the main scheduler function.
3618 */
3619asmlinkage void __sched schedule(void)
3620{
3621 struct task_struct *prev, *next;
3622 long *switch_count;
3623 struct rq *rq;
dd41f596
IM
3624 int cpu;
3625
3626need_resched:
3627 preempt_disable();
3628 cpu = smp_processor_id();
3629 rq = cpu_rq(cpu);
3630 rcu_qsctr_inc(cpu);
3631 prev = rq->curr;
3632 switch_count = &prev->nivcsw;
3633
3634 release_kernel_lock(prev);
3635need_resched_nonpreemptible:
3636
3637 schedule_debug(prev);
1da177e4 3638
1e819950
IM
3639 /*
3640 * Do the rq-clock update outside the rq lock:
3641 */
3642 local_irq_disable();
c1b3da3e 3643 __update_rq_clock(rq);
1e819950
IM
3644 spin_lock(&rq->lock);
3645 clear_tsk_need_resched(prev);
1da177e4 3646
1da177e4 3647 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3648 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3649 unlikely(signal_pending(prev)))) {
1da177e4 3650 prev->state = TASK_RUNNING;
dd41f596 3651 } else {
2e1cb74a 3652 deactivate_task(rq, prev, 1);
1da177e4 3653 }
dd41f596 3654 switch_count = &prev->nvcsw;
1da177e4
LT
3655 }
3656
dd41f596 3657 if (unlikely(!rq->nr_running))
1da177e4 3658 idle_balance(cpu, rq);
1da177e4 3659
31ee529c 3660 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3661 next = pick_next_task(rq, prev);
1da177e4
LT
3662
3663 sched_info_switch(prev, next);
dd41f596 3664
1da177e4 3665 if (likely(prev != next)) {
1da177e4
LT
3666 rq->nr_switches++;
3667 rq->curr = next;
3668 ++*switch_count;
3669
dd41f596 3670 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3671 } else
3672 spin_unlock_irq(&rq->lock);
3673
dd41f596
IM
3674 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3675 cpu = smp_processor_id();
3676 rq = cpu_rq(cpu);
1da177e4 3677 goto need_resched_nonpreemptible;
dd41f596 3678 }
1da177e4
LT
3679 preempt_enable_no_resched();
3680 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3681 goto need_resched;
3682}
1da177e4
LT
3683EXPORT_SYMBOL(schedule);
3684
3685#ifdef CONFIG_PREEMPT
3686/*
2ed6e34f 3687 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3688 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3689 * occur there and call schedule directly.
3690 */
3691asmlinkage void __sched preempt_schedule(void)
3692{
3693 struct thread_info *ti = current_thread_info();
3694#ifdef CONFIG_PREEMPT_BKL
3695 struct task_struct *task = current;
3696 int saved_lock_depth;
3697#endif
3698 /*
3699 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3700 * we do not want to preempt the current task. Just return..
1da177e4 3701 */
beed33a8 3702 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3703 return;
3704
3a5c359a
AK
3705 do {
3706 add_preempt_count(PREEMPT_ACTIVE);
3707
3708 /*
3709 * We keep the big kernel semaphore locked, but we
3710 * clear ->lock_depth so that schedule() doesnt
3711 * auto-release the semaphore:
3712 */
1da177e4 3713#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3714 saved_lock_depth = task->lock_depth;
3715 task->lock_depth = -1;
1da177e4 3716#endif
3a5c359a 3717 schedule();
1da177e4 3718#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3719 task->lock_depth = saved_lock_depth;
1da177e4 3720#endif
3a5c359a 3721 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3722
3a5c359a
AK
3723 /*
3724 * Check again in case we missed a preemption opportunity
3725 * between schedule and now.
3726 */
3727 barrier();
3728 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3729}
1da177e4
LT
3730EXPORT_SYMBOL(preempt_schedule);
3731
3732/*
2ed6e34f 3733 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3734 * off of irq context.
3735 * Note, that this is called and return with irqs disabled. This will
3736 * protect us against recursive calling from irq.
3737 */
3738asmlinkage void __sched preempt_schedule_irq(void)
3739{
3740 struct thread_info *ti = current_thread_info();
3741#ifdef CONFIG_PREEMPT_BKL
3742 struct task_struct *task = current;
3743 int saved_lock_depth;
3744#endif
2ed6e34f 3745 /* Catch callers which need to be fixed */
1da177e4
LT
3746 BUG_ON(ti->preempt_count || !irqs_disabled());
3747
3a5c359a
AK
3748 do {
3749 add_preempt_count(PREEMPT_ACTIVE);
3750
3751 /*
3752 * We keep the big kernel semaphore locked, but we
3753 * clear ->lock_depth so that schedule() doesnt
3754 * auto-release the semaphore:
3755 */
1da177e4 3756#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3757 saved_lock_depth = task->lock_depth;
3758 task->lock_depth = -1;
1da177e4 3759#endif
3a5c359a
AK
3760 local_irq_enable();
3761 schedule();
3762 local_irq_disable();
1da177e4 3763#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3764 task->lock_depth = saved_lock_depth;
1da177e4 3765#endif
3a5c359a 3766 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3767
3a5c359a
AK
3768 /*
3769 * Check again in case we missed a preemption opportunity
3770 * between schedule and now.
3771 */
3772 barrier();
3773 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3774}
3775
3776#endif /* CONFIG_PREEMPT */
3777
95cdf3b7
IM
3778int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3779 void *key)
1da177e4 3780{
48f24c4d 3781 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3782}
1da177e4
LT
3783EXPORT_SYMBOL(default_wake_function);
3784
3785/*
41a2d6cf
IM
3786 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3787 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3788 * number) then we wake all the non-exclusive tasks and one exclusive task.
3789 *
3790 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3791 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3792 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3793 */
3794static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3795 int nr_exclusive, int sync, void *key)
3796{
2e45874c 3797 wait_queue_t *curr, *next;
1da177e4 3798
2e45874c 3799 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3800 unsigned flags = curr->flags;
3801
1da177e4 3802 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3803 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3804 break;
3805 }
3806}
3807
3808/**
3809 * __wake_up - wake up threads blocked on a waitqueue.
3810 * @q: the waitqueue
3811 * @mode: which threads
3812 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3813 * @key: is directly passed to the wakeup function
1da177e4
LT
3814 */
3815void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3816 int nr_exclusive, void *key)
1da177e4
LT
3817{
3818 unsigned long flags;
3819
3820 spin_lock_irqsave(&q->lock, flags);
3821 __wake_up_common(q, mode, nr_exclusive, 0, key);
3822 spin_unlock_irqrestore(&q->lock, flags);
3823}
1da177e4
LT
3824EXPORT_SYMBOL(__wake_up);
3825
3826/*
3827 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3828 */
3829void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3830{
3831 __wake_up_common(q, mode, 1, 0, NULL);
3832}
3833
3834/**
67be2dd1 3835 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3836 * @q: the waitqueue
3837 * @mode: which threads
3838 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3839 *
3840 * The sync wakeup differs that the waker knows that it will schedule
3841 * away soon, so while the target thread will be woken up, it will not
3842 * be migrated to another CPU - ie. the two threads are 'synchronized'
3843 * with each other. This can prevent needless bouncing between CPUs.
3844 *
3845 * On UP it can prevent extra preemption.
3846 */
95cdf3b7
IM
3847void fastcall
3848__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3849{
3850 unsigned long flags;
3851 int sync = 1;
3852
3853 if (unlikely(!q))
3854 return;
3855
3856 if (unlikely(!nr_exclusive))
3857 sync = 0;
3858
3859 spin_lock_irqsave(&q->lock, flags);
3860 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3861 spin_unlock_irqrestore(&q->lock, flags);
3862}
3863EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3864
b15136e9 3865void complete(struct completion *x)
1da177e4
LT
3866{
3867 unsigned long flags;
3868
3869 spin_lock_irqsave(&x->wait.lock, flags);
3870 x->done++;
3871 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3872 1, 0, NULL);
3873 spin_unlock_irqrestore(&x->wait.lock, flags);
3874}
3875EXPORT_SYMBOL(complete);
3876
b15136e9 3877void complete_all(struct completion *x)
1da177e4
LT
3878{
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&x->wait.lock, flags);
3882 x->done += UINT_MAX/2;
3883 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3884 0, 0, NULL);
3885 spin_unlock_irqrestore(&x->wait.lock, flags);
3886}
3887EXPORT_SYMBOL(complete_all);
3888
8cbbe86d
AK
3889static inline long __sched
3890do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3891{
1da177e4
LT
3892 if (!x->done) {
3893 DECLARE_WAITQUEUE(wait, current);
3894
3895 wait.flags |= WQ_FLAG_EXCLUSIVE;
3896 __add_wait_queue_tail(&x->wait, &wait);
3897 do {
8cbbe86d
AK
3898 if (state == TASK_INTERRUPTIBLE &&
3899 signal_pending(current)) {
3900 __remove_wait_queue(&x->wait, &wait);
3901 return -ERESTARTSYS;
3902 }
3903 __set_current_state(state);
1da177e4
LT
3904 spin_unlock_irq(&x->wait.lock);
3905 timeout = schedule_timeout(timeout);
3906 spin_lock_irq(&x->wait.lock);
3907 if (!timeout) {
3908 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3909 return timeout;
1da177e4
LT
3910 }
3911 } while (!x->done);
3912 __remove_wait_queue(&x->wait, &wait);
3913 }
3914 x->done--;
1da177e4
LT
3915 return timeout;
3916}
1da177e4 3917
8cbbe86d
AK
3918static long __sched
3919wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3920{
1da177e4
LT
3921 might_sleep();
3922
3923 spin_lock_irq(&x->wait.lock);
8cbbe86d 3924 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3925 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3926 return timeout;
3927}
1da177e4 3928
b15136e9 3929void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3930{
3931 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3932}
8cbbe86d 3933EXPORT_SYMBOL(wait_for_completion);
1da177e4 3934
b15136e9 3935unsigned long __sched
8cbbe86d 3936wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3937{
8cbbe86d 3938 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3939}
8cbbe86d 3940EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3941
8cbbe86d 3942int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3943{
51e97990
AK
3944 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3945 if (t == -ERESTARTSYS)
3946 return t;
3947 return 0;
0fec171c 3948}
8cbbe86d 3949EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3950
b15136e9 3951unsigned long __sched
8cbbe86d
AK
3952wait_for_completion_interruptible_timeout(struct completion *x,
3953 unsigned long timeout)
0fec171c 3954{
8cbbe86d 3955 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3956}
8cbbe86d 3957EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3958
8cbbe86d
AK
3959static long __sched
3960sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3961{
0fec171c
IM
3962 unsigned long flags;
3963 wait_queue_t wait;
3964
3965 init_waitqueue_entry(&wait, current);
1da177e4 3966
8cbbe86d 3967 __set_current_state(state);
1da177e4 3968
8cbbe86d
AK
3969 spin_lock_irqsave(&q->lock, flags);
3970 __add_wait_queue(q, &wait);
3971 spin_unlock(&q->lock);
3972 timeout = schedule_timeout(timeout);
3973 spin_lock_irq(&q->lock);
3974 __remove_wait_queue(q, &wait);
3975 spin_unlock_irqrestore(&q->lock, flags);
3976
3977 return timeout;
3978}
3979
3980void __sched interruptible_sleep_on(wait_queue_head_t *q)
3981{
3982 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3983}
1da177e4
LT
3984EXPORT_SYMBOL(interruptible_sleep_on);
3985
0fec171c 3986long __sched
95cdf3b7 3987interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3988{
8cbbe86d 3989 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3990}
1da177e4
LT
3991EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3992
0fec171c 3993void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3994{
8cbbe86d 3995 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3996}
1da177e4
LT
3997EXPORT_SYMBOL(sleep_on);
3998
0fec171c 3999long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4000{
8cbbe86d 4001 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4002}
1da177e4
LT
4003EXPORT_SYMBOL(sleep_on_timeout);
4004
b29739f9
IM
4005#ifdef CONFIG_RT_MUTEXES
4006
4007/*
4008 * rt_mutex_setprio - set the current priority of a task
4009 * @p: task
4010 * @prio: prio value (kernel-internal form)
4011 *
4012 * This function changes the 'effective' priority of a task. It does
4013 * not touch ->normal_prio like __setscheduler().
4014 *
4015 * Used by the rt_mutex code to implement priority inheritance logic.
4016 */
36c8b586 4017void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4018{
4019 unsigned long flags;
83b699ed 4020 int oldprio, on_rq, running;
70b97a7f 4021 struct rq *rq;
b29739f9
IM
4022
4023 BUG_ON(prio < 0 || prio > MAX_PRIO);
4024
4025 rq = task_rq_lock(p, &flags);
a8e504d2 4026 update_rq_clock(rq);
b29739f9 4027
d5f9f942 4028 oldprio = p->prio;
dd41f596 4029 on_rq = p->se.on_rq;
051a1d1a 4030 running = task_current(rq, p);
83b699ed 4031 if (on_rq) {
69be72c1 4032 dequeue_task(rq, p, 0);
83b699ed
SV
4033 if (running)
4034 p->sched_class->put_prev_task(rq, p);
4035 }
dd41f596
IM
4036
4037 if (rt_prio(prio))
4038 p->sched_class = &rt_sched_class;
4039 else
4040 p->sched_class = &fair_sched_class;
4041
b29739f9
IM
4042 p->prio = prio;
4043
dd41f596 4044 if (on_rq) {
83b699ed
SV
4045 if (running)
4046 p->sched_class->set_curr_task(rq);
8159f87e 4047 enqueue_task(rq, p, 0);
b29739f9
IM
4048 /*
4049 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4050 * our priority decreased, or if we are not currently running on
4051 * this runqueue and our priority is higher than the current's
b29739f9 4052 */
83b699ed 4053 if (running) {
d5f9f942
AM
4054 if (p->prio > oldprio)
4055 resched_task(rq->curr);
dd41f596
IM
4056 } else {
4057 check_preempt_curr(rq, p);
4058 }
b29739f9
IM
4059 }
4060 task_rq_unlock(rq, &flags);
4061}
4062
4063#endif
4064
36c8b586 4065void set_user_nice(struct task_struct *p, long nice)
1da177e4 4066{
dd41f596 4067 int old_prio, delta, on_rq;
1da177e4 4068 unsigned long flags;
70b97a7f 4069 struct rq *rq;
1da177e4
LT
4070
4071 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4072 return;
4073 /*
4074 * We have to be careful, if called from sys_setpriority(),
4075 * the task might be in the middle of scheduling on another CPU.
4076 */
4077 rq = task_rq_lock(p, &flags);
a8e504d2 4078 update_rq_clock(rq);
1da177e4
LT
4079 /*
4080 * The RT priorities are set via sched_setscheduler(), but we still
4081 * allow the 'normal' nice value to be set - but as expected
4082 * it wont have any effect on scheduling until the task is
dd41f596 4083 * SCHED_FIFO/SCHED_RR:
1da177e4 4084 */
e05606d3 4085 if (task_has_rt_policy(p)) {
1da177e4
LT
4086 p->static_prio = NICE_TO_PRIO(nice);
4087 goto out_unlock;
4088 }
dd41f596
IM
4089 on_rq = p->se.on_rq;
4090 if (on_rq) {
69be72c1 4091 dequeue_task(rq, p, 0);
79b5dddf 4092 dec_load(rq, p);
2dd73a4f 4093 }
1da177e4 4094
1da177e4 4095 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4096 set_load_weight(p);
b29739f9
IM
4097 old_prio = p->prio;
4098 p->prio = effective_prio(p);
4099 delta = p->prio - old_prio;
1da177e4 4100
dd41f596 4101 if (on_rq) {
8159f87e 4102 enqueue_task(rq, p, 0);
29b4b623 4103 inc_load(rq, p);
1da177e4 4104 /*
d5f9f942
AM
4105 * If the task increased its priority or is running and
4106 * lowered its priority, then reschedule its CPU:
1da177e4 4107 */
d5f9f942 4108 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4109 resched_task(rq->curr);
4110 }
4111out_unlock:
4112 task_rq_unlock(rq, &flags);
4113}
1da177e4
LT
4114EXPORT_SYMBOL(set_user_nice);
4115
e43379f1
MM
4116/*
4117 * can_nice - check if a task can reduce its nice value
4118 * @p: task
4119 * @nice: nice value
4120 */
36c8b586 4121int can_nice(const struct task_struct *p, const int nice)
e43379f1 4122{
024f4747
MM
4123 /* convert nice value [19,-20] to rlimit style value [1,40] */
4124 int nice_rlim = 20 - nice;
48f24c4d 4125
e43379f1
MM
4126 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4127 capable(CAP_SYS_NICE));
4128}
4129
1da177e4
LT
4130#ifdef __ARCH_WANT_SYS_NICE
4131
4132/*
4133 * sys_nice - change the priority of the current process.
4134 * @increment: priority increment
4135 *
4136 * sys_setpriority is a more generic, but much slower function that
4137 * does similar things.
4138 */
4139asmlinkage long sys_nice(int increment)
4140{
48f24c4d 4141 long nice, retval;
1da177e4
LT
4142
4143 /*
4144 * Setpriority might change our priority at the same moment.
4145 * We don't have to worry. Conceptually one call occurs first
4146 * and we have a single winner.
4147 */
e43379f1
MM
4148 if (increment < -40)
4149 increment = -40;
1da177e4
LT
4150 if (increment > 40)
4151 increment = 40;
4152
4153 nice = PRIO_TO_NICE(current->static_prio) + increment;
4154 if (nice < -20)
4155 nice = -20;
4156 if (nice > 19)
4157 nice = 19;
4158
e43379f1
MM
4159 if (increment < 0 && !can_nice(current, nice))
4160 return -EPERM;
4161
1da177e4
LT
4162 retval = security_task_setnice(current, nice);
4163 if (retval)
4164 return retval;
4165
4166 set_user_nice(current, nice);
4167 return 0;
4168}
4169
4170#endif
4171
4172/**
4173 * task_prio - return the priority value of a given task.
4174 * @p: the task in question.
4175 *
4176 * This is the priority value as seen by users in /proc.
4177 * RT tasks are offset by -200. Normal tasks are centered
4178 * around 0, value goes from -16 to +15.
4179 */
36c8b586 4180int task_prio(const struct task_struct *p)
1da177e4
LT
4181{
4182 return p->prio - MAX_RT_PRIO;
4183}
4184
4185/**
4186 * task_nice - return the nice value of a given task.
4187 * @p: the task in question.
4188 */
36c8b586 4189int task_nice(const struct task_struct *p)
1da177e4
LT
4190{
4191 return TASK_NICE(p);
4192}
1da177e4 4193EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4194
4195/**
4196 * idle_cpu - is a given cpu idle currently?
4197 * @cpu: the processor in question.
4198 */
4199int idle_cpu(int cpu)
4200{
4201 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4202}
4203
1da177e4
LT
4204/**
4205 * idle_task - return the idle task for a given cpu.
4206 * @cpu: the processor in question.
4207 */
36c8b586 4208struct task_struct *idle_task(int cpu)
1da177e4
LT
4209{
4210 return cpu_rq(cpu)->idle;
4211}
4212
4213/**
4214 * find_process_by_pid - find a process with a matching PID value.
4215 * @pid: the pid in question.
4216 */
a9957449 4217static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4218{
228ebcbe 4219 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4220}
4221
4222/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4223static void
4224__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4225{
dd41f596 4226 BUG_ON(p->se.on_rq);
48f24c4d 4227
1da177e4 4228 p->policy = policy;
dd41f596
IM
4229 switch (p->policy) {
4230 case SCHED_NORMAL:
4231 case SCHED_BATCH:
4232 case SCHED_IDLE:
4233 p->sched_class = &fair_sched_class;
4234 break;
4235 case SCHED_FIFO:
4236 case SCHED_RR:
4237 p->sched_class = &rt_sched_class;
4238 break;
4239 }
4240
1da177e4 4241 p->rt_priority = prio;
b29739f9
IM
4242 p->normal_prio = normal_prio(p);
4243 /* we are holding p->pi_lock already */
4244 p->prio = rt_mutex_getprio(p);
2dd73a4f 4245 set_load_weight(p);
1da177e4
LT
4246}
4247
4248/**
72fd4a35 4249 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4250 * @p: the task in question.
4251 * @policy: new policy.
4252 * @param: structure containing the new RT priority.
5fe1d75f 4253 *
72fd4a35 4254 * NOTE that the task may be already dead.
1da177e4 4255 */
95cdf3b7
IM
4256int sched_setscheduler(struct task_struct *p, int policy,
4257 struct sched_param *param)
1da177e4 4258{
83b699ed 4259 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4260 unsigned long flags;
70b97a7f 4261 struct rq *rq;
1da177e4 4262
66e5393a
SR
4263 /* may grab non-irq protected spin_locks */
4264 BUG_ON(in_interrupt());
1da177e4
LT
4265recheck:
4266 /* double check policy once rq lock held */
4267 if (policy < 0)
4268 policy = oldpolicy = p->policy;
4269 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4270 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4271 policy != SCHED_IDLE)
b0a9499c 4272 return -EINVAL;
1da177e4
LT
4273 /*
4274 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4275 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4276 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4277 */
4278 if (param->sched_priority < 0 ||
95cdf3b7 4279 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4280 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4281 return -EINVAL;
e05606d3 4282 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4283 return -EINVAL;
4284
37e4ab3f
OC
4285 /*
4286 * Allow unprivileged RT tasks to decrease priority:
4287 */
4288 if (!capable(CAP_SYS_NICE)) {
e05606d3 4289 if (rt_policy(policy)) {
8dc3e909 4290 unsigned long rlim_rtprio;
8dc3e909
ON
4291
4292 if (!lock_task_sighand(p, &flags))
4293 return -ESRCH;
4294 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4295 unlock_task_sighand(p, &flags);
4296
4297 /* can't set/change the rt policy */
4298 if (policy != p->policy && !rlim_rtprio)
4299 return -EPERM;
4300
4301 /* can't increase priority */
4302 if (param->sched_priority > p->rt_priority &&
4303 param->sched_priority > rlim_rtprio)
4304 return -EPERM;
4305 }
dd41f596
IM
4306 /*
4307 * Like positive nice levels, dont allow tasks to
4308 * move out of SCHED_IDLE either:
4309 */
4310 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4311 return -EPERM;
5fe1d75f 4312
37e4ab3f
OC
4313 /* can't change other user's priorities */
4314 if ((current->euid != p->euid) &&
4315 (current->euid != p->uid))
4316 return -EPERM;
4317 }
1da177e4
LT
4318
4319 retval = security_task_setscheduler(p, policy, param);
4320 if (retval)
4321 return retval;
b29739f9
IM
4322 /*
4323 * make sure no PI-waiters arrive (or leave) while we are
4324 * changing the priority of the task:
4325 */
4326 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4327 /*
4328 * To be able to change p->policy safely, the apropriate
4329 * runqueue lock must be held.
4330 */
b29739f9 4331 rq = __task_rq_lock(p);
1da177e4
LT
4332 /* recheck policy now with rq lock held */
4333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4334 policy = oldpolicy = -1;
b29739f9
IM
4335 __task_rq_unlock(rq);
4336 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4337 goto recheck;
4338 }
2daa3577 4339 update_rq_clock(rq);
dd41f596 4340 on_rq = p->se.on_rq;
051a1d1a 4341 running = task_current(rq, p);
83b699ed 4342 if (on_rq) {
2e1cb74a 4343 deactivate_task(rq, p, 0);
83b699ed
SV
4344 if (running)
4345 p->sched_class->put_prev_task(rq, p);
4346 }
f6b53205 4347
1da177e4 4348 oldprio = p->prio;
dd41f596 4349 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4350
dd41f596 4351 if (on_rq) {
83b699ed
SV
4352 if (running)
4353 p->sched_class->set_curr_task(rq);
dd41f596 4354 activate_task(rq, p, 0);
1da177e4
LT
4355 /*
4356 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4357 * our priority decreased, or if we are not currently running on
4358 * this runqueue and our priority is higher than the current's
1da177e4 4359 */
83b699ed 4360 if (running) {
d5f9f942
AM
4361 if (p->prio > oldprio)
4362 resched_task(rq->curr);
dd41f596
IM
4363 } else {
4364 check_preempt_curr(rq, p);
4365 }
1da177e4 4366 }
b29739f9
IM
4367 __task_rq_unlock(rq);
4368 spin_unlock_irqrestore(&p->pi_lock, flags);
4369
95e02ca9
TG
4370 rt_mutex_adjust_pi(p);
4371
1da177e4
LT
4372 return 0;
4373}
4374EXPORT_SYMBOL_GPL(sched_setscheduler);
4375
95cdf3b7
IM
4376static int
4377do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4378{
1da177e4
LT
4379 struct sched_param lparam;
4380 struct task_struct *p;
36c8b586 4381 int retval;
1da177e4
LT
4382
4383 if (!param || pid < 0)
4384 return -EINVAL;
4385 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4386 return -EFAULT;
5fe1d75f
ON
4387
4388 rcu_read_lock();
4389 retval = -ESRCH;
1da177e4 4390 p = find_process_by_pid(pid);
5fe1d75f
ON
4391 if (p != NULL)
4392 retval = sched_setscheduler(p, policy, &lparam);
4393 rcu_read_unlock();
36c8b586 4394
1da177e4
LT
4395 return retval;
4396}
4397
4398/**
4399 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4400 * @pid: the pid in question.
4401 * @policy: new policy.
4402 * @param: structure containing the new RT priority.
4403 */
41a2d6cf
IM
4404asmlinkage long
4405sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4406{
c21761f1
JB
4407 /* negative values for policy are not valid */
4408 if (policy < 0)
4409 return -EINVAL;
4410
1da177e4
LT
4411 return do_sched_setscheduler(pid, policy, param);
4412}
4413
4414/**
4415 * sys_sched_setparam - set/change the RT priority of a thread
4416 * @pid: the pid in question.
4417 * @param: structure containing the new RT priority.
4418 */
4419asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4420{
4421 return do_sched_setscheduler(pid, -1, param);
4422}
4423
4424/**
4425 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4426 * @pid: the pid in question.
4427 */
4428asmlinkage long sys_sched_getscheduler(pid_t pid)
4429{
36c8b586 4430 struct task_struct *p;
3a5c359a 4431 int retval;
1da177e4
LT
4432
4433 if (pid < 0)
3a5c359a 4434 return -EINVAL;
1da177e4
LT
4435
4436 retval = -ESRCH;
4437 read_lock(&tasklist_lock);
4438 p = find_process_by_pid(pid);
4439 if (p) {
4440 retval = security_task_getscheduler(p);
4441 if (!retval)
4442 retval = p->policy;
4443 }
4444 read_unlock(&tasklist_lock);
1da177e4
LT
4445 return retval;
4446}
4447
4448/**
4449 * sys_sched_getscheduler - get the RT priority of a thread
4450 * @pid: the pid in question.
4451 * @param: structure containing the RT priority.
4452 */
4453asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4454{
4455 struct sched_param lp;
36c8b586 4456 struct task_struct *p;
3a5c359a 4457 int retval;
1da177e4
LT
4458
4459 if (!param || pid < 0)
3a5c359a 4460 return -EINVAL;
1da177e4
LT
4461
4462 read_lock(&tasklist_lock);
4463 p = find_process_by_pid(pid);
4464 retval = -ESRCH;
4465 if (!p)
4466 goto out_unlock;
4467
4468 retval = security_task_getscheduler(p);
4469 if (retval)
4470 goto out_unlock;
4471
4472 lp.sched_priority = p->rt_priority;
4473 read_unlock(&tasklist_lock);
4474
4475 /*
4476 * This one might sleep, we cannot do it with a spinlock held ...
4477 */
4478 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4479
1da177e4
LT
4480 return retval;
4481
4482out_unlock:
4483 read_unlock(&tasklist_lock);
4484 return retval;
4485}
4486
4487long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4488{
1da177e4 4489 cpumask_t cpus_allowed;
36c8b586
IM
4490 struct task_struct *p;
4491 int retval;
1da177e4 4492
5be9361c 4493 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4494 read_lock(&tasklist_lock);
4495
4496 p = find_process_by_pid(pid);
4497 if (!p) {
4498 read_unlock(&tasklist_lock);
5be9361c 4499 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4500 return -ESRCH;
4501 }
4502
4503 /*
4504 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4505 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4506 * usage count and then drop tasklist_lock.
4507 */
4508 get_task_struct(p);
4509 read_unlock(&tasklist_lock);
4510
4511 retval = -EPERM;
4512 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4513 !capable(CAP_SYS_NICE))
4514 goto out_unlock;
4515
e7834f8f
DQ
4516 retval = security_task_setscheduler(p, 0, NULL);
4517 if (retval)
4518 goto out_unlock;
4519
1da177e4
LT
4520 cpus_allowed = cpuset_cpus_allowed(p);
4521 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4522 again:
1da177e4
LT
4523 retval = set_cpus_allowed(p, new_mask);
4524
8707d8b8
PM
4525 if (!retval) {
4526 cpus_allowed = cpuset_cpus_allowed(p);
4527 if (!cpus_subset(new_mask, cpus_allowed)) {
4528 /*
4529 * We must have raced with a concurrent cpuset
4530 * update. Just reset the cpus_allowed to the
4531 * cpuset's cpus_allowed
4532 */
4533 new_mask = cpus_allowed;
4534 goto again;
4535 }
4536 }
1da177e4
LT
4537out_unlock:
4538 put_task_struct(p);
5be9361c 4539 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4540 return retval;
4541}
4542
4543static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4544 cpumask_t *new_mask)
4545{
4546 if (len < sizeof(cpumask_t)) {
4547 memset(new_mask, 0, sizeof(cpumask_t));
4548 } else if (len > sizeof(cpumask_t)) {
4549 len = sizeof(cpumask_t);
4550 }
4551 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4552}
4553
4554/**
4555 * sys_sched_setaffinity - set the cpu affinity of a process
4556 * @pid: pid of the process
4557 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4558 * @user_mask_ptr: user-space pointer to the new cpu mask
4559 */
4560asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4561 unsigned long __user *user_mask_ptr)
4562{
4563 cpumask_t new_mask;
4564 int retval;
4565
4566 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4567 if (retval)
4568 return retval;
4569
4570 return sched_setaffinity(pid, new_mask);
4571}
4572
4573/*
4574 * Represents all cpu's present in the system
4575 * In systems capable of hotplug, this map could dynamically grow
4576 * as new cpu's are detected in the system via any platform specific
4577 * method, such as ACPI for e.g.
4578 */
4579
4cef0c61 4580cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4581EXPORT_SYMBOL(cpu_present_map);
4582
4583#ifndef CONFIG_SMP
4cef0c61 4584cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4585EXPORT_SYMBOL(cpu_online_map);
4586
4cef0c61 4587cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4588EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4589#endif
4590
4591long sched_getaffinity(pid_t pid, cpumask_t *mask)
4592{
36c8b586 4593 struct task_struct *p;
1da177e4 4594 int retval;
1da177e4 4595
5be9361c 4596 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4597 read_lock(&tasklist_lock);
4598
4599 retval = -ESRCH;
4600 p = find_process_by_pid(pid);
4601 if (!p)
4602 goto out_unlock;
4603
e7834f8f
DQ
4604 retval = security_task_getscheduler(p);
4605 if (retval)
4606 goto out_unlock;
4607
2f7016d9 4608 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4609
4610out_unlock:
4611 read_unlock(&tasklist_lock);
5be9361c 4612 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4613
9531b62f 4614 return retval;
1da177e4
LT
4615}
4616
4617/**
4618 * sys_sched_getaffinity - get the cpu affinity of a process
4619 * @pid: pid of the process
4620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4621 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4622 */
4623asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4624 unsigned long __user *user_mask_ptr)
4625{
4626 int ret;
4627 cpumask_t mask;
4628
4629 if (len < sizeof(cpumask_t))
4630 return -EINVAL;
4631
4632 ret = sched_getaffinity(pid, &mask);
4633 if (ret < 0)
4634 return ret;
4635
4636 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4637 return -EFAULT;
4638
4639 return sizeof(cpumask_t);
4640}
4641
4642/**
4643 * sys_sched_yield - yield the current processor to other threads.
4644 *
dd41f596
IM
4645 * This function yields the current CPU to other tasks. If there are no
4646 * other threads running on this CPU then this function will return.
1da177e4
LT
4647 */
4648asmlinkage long sys_sched_yield(void)
4649{
70b97a7f 4650 struct rq *rq = this_rq_lock();
1da177e4 4651
2d72376b 4652 schedstat_inc(rq, yld_count);
4530d7ab 4653 current->sched_class->yield_task(rq);
1da177e4
LT
4654
4655 /*
4656 * Since we are going to call schedule() anyway, there's
4657 * no need to preempt or enable interrupts:
4658 */
4659 __release(rq->lock);
8a25d5de 4660 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4661 _raw_spin_unlock(&rq->lock);
4662 preempt_enable_no_resched();
4663
4664 schedule();
4665
4666 return 0;
4667}
4668
e7b38404 4669static void __cond_resched(void)
1da177e4 4670{
8e0a43d8
IM
4671#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4672 __might_sleep(__FILE__, __LINE__);
4673#endif
5bbcfd90
IM
4674 /*
4675 * The BKS might be reacquired before we have dropped
4676 * PREEMPT_ACTIVE, which could trigger a second
4677 * cond_resched() call.
4678 */
1da177e4
LT
4679 do {
4680 add_preempt_count(PREEMPT_ACTIVE);
4681 schedule();
4682 sub_preempt_count(PREEMPT_ACTIVE);
4683 } while (need_resched());
4684}
4685
4686int __sched cond_resched(void)
4687{
9414232f
IM
4688 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4689 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4690 __cond_resched();
4691 return 1;
4692 }
4693 return 0;
4694}
1da177e4
LT
4695EXPORT_SYMBOL(cond_resched);
4696
4697/*
4698 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4699 * call schedule, and on return reacquire the lock.
4700 *
41a2d6cf 4701 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4702 * operations here to prevent schedule() from being called twice (once via
4703 * spin_unlock(), once by hand).
4704 */
95cdf3b7 4705int cond_resched_lock(spinlock_t *lock)
1da177e4 4706{
6df3cecb
JK
4707 int ret = 0;
4708
1da177e4
LT
4709 if (need_lockbreak(lock)) {
4710 spin_unlock(lock);
4711 cpu_relax();
6df3cecb 4712 ret = 1;
1da177e4
LT
4713 spin_lock(lock);
4714 }
9414232f 4715 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4716 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4717 _raw_spin_unlock(lock);
4718 preempt_enable_no_resched();
4719 __cond_resched();
6df3cecb 4720 ret = 1;
1da177e4 4721 spin_lock(lock);
1da177e4 4722 }
6df3cecb 4723 return ret;
1da177e4 4724}
1da177e4
LT
4725EXPORT_SYMBOL(cond_resched_lock);
4726
4727int __sched cond_resched_softirq(void)
4728{
4729 BUG_ON(!in_softirq());
4730
9414232f 4731 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4732 local_bh_enable();
1da177e4
LT
4733 __cond_resched();
4734 local_bh_disable();
4735 return 1;
4736 }
4737 return 0;
4738}
1da177e4
LT
4739EXPORT_SYMBOL(cond_resched_softirq);
4740
1da177e4
LT
4741/**
4742 * yield - yield the current processor to other threads.
4743 *
72fd4a35 4744 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4745 * thread runnable and calls sys_sched_yield().
4746 */
4747void __sched yield(void)
4748{
4749 set_current_state(TASK_RUNNING);
4750 sys_sched_yield();
4751}
1da177e4
LT
4752EXPORT_SYMBOL(yield);
4753
4754/*
41a2d6cf 4755 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4756 * that process accounting knows that this is a task in IO wait state.
4757 *
4758 * But don't do that if it is a deliberate, throttling IO wait (this task
4759 * has set its backing_dev_info: the queue against which it should throttle)
4760 */
4761void __sched io_schedule(void)
4762{
70b97a7f 4763 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4764
0ff92245 4765 delayacct_blkio_start();
1da177e4
LT
4766 atomic_inc(&rq->nr_iowait);
4767 schedule();
4768 atomic_dec(&rq->nr_iowait);
0ff92245 4769 delayacct_blkio_end();
1da177e4 4770}
1da177e4
LT
4771EXPORT_SYMBOL(io_schedule);
4772
4773long __sched io_schedule_timeout(long timeout)
4774{
70b97a7f 4775 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4776 long ret;
4777
0ff92245 4778 delayacct_blkio_start();
1da177e4
LT
4779 atomic_inc(&rq->nr_iowait);
4780 ret = schedule_timeout(timeout);
4781 atomic_dec(&rq->nr_iowait);
0ff92245 4782 delayacct_blkio_end();
1da177e4
LT
4783 return ret;
4784}
4785
4786/**
4787 * sys_sched_get_priority_max - return maximum RT priority.
4788 * @policy: scheduling class.
4789 *
4790 * this syscall returns the maximum rt_priority that can be used
4791 * by a given scheduling class.
4792 */
4793asmlinkage long sys_sched_get_priority_max(int policy)
4794{
4795 int ret = -EINVAL;
4796
4797 switch (policy) {
4798 case SCHED_FIFO:
4799 case SCHED_RR:
4800 ret = MAX_USER_RT_PRIO-1;
4801 break;
4802 case SCHED_NORMAL:
b0a9499c 4803 case SCHED_BATCH:
dd41f596 4804 case SCHED_IDLE:
1da177e4
LT
4805 ret = 0;
4806 break;
4807 }
4808 return ret;
4809}
4810
4811/**
4812 * sys_sched_get_priority_min - return minimum RT priority.
4813 * @policy: scheduling class.
4814 *
4815 * this syscall returns the minimum rt_priority that can be used
4816 * by a given scheduling class.
4817 */
4818asmlinkage long sys_sched_get_priority_min(int policy)
4819{
4820 int ret = -EINVAL;
4821
4822 switch (policy) {
4823 case SCHED_FIFO:
4824 case SCHED_RR:
4825 ret = 1;
4826 break;
4827 case SCHED_NORMAL:
b0a9499c 4828 case SCHED_BATCH:
dd41f596 4829 case SCHED_IDLE:
1da177e4
LT
4830 ret = 0;
4831 }
4832 return ret;
4833}
4834
4835/**
4836 * sys_sched_rr_get_interval - return the default timeslice of a process.
4837 * @pid: pid of the process.
4838 * @interval: userspace pointer to the timeslice value.
4839 *
4840 * this syscall writes the default timeslice value of a given process
4841 * into the user-space timespec buffer. A value of '0' means infinity.
4842 */
4843asmlinkage
4844long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4845{
36c8b586 4846 struct task_struct *p;
a4ec24b4 4847 unsigned int time_slice;
3a5c359a 4848 int retval;
1da177e4 4849 struct timespec t;
1da177e4
LT
4850
4851 if (pid < 0)
3a5c359a 4852 return -EINVAL;
1da177e4
LT
4853
4854 retval = -ESRCH;
4855 read_lock(&tasklist_lock);
4856 p = find_process_by_pid(pid);
4857 if (!p)
4858 goto out_unlock;
4859
4860 retval = security_task_getscheduler(p);
4861 if (retval)
4862 goto out_unlock;
4863
77034937
IM
4864 /*
4865 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4866 * tasks that are on an otherwise idle runqueue:
4867 */
4868 time_slice = 0;
4869 if (p->policy == SCHED_RR) {
a4ec24b4 4870 time_slice = DEF_TIMESLICE;
77034937 4871 } else {
a4ec24b4
DA
4872 struct sched_entity *se = &p->se;
4873 unsigned long flags;
4874 struct rq *rq;
4875
4876 rq = task_rq_lock(p, &flags);
77034937
IM
4877 if (rq->cfs.load.weight)
4878 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4879 task_rq_unlock(rq, &flags);
4880 }
1da177e4 4881 read_unlock(&tasklist_lock);
a4ec24b4 4882 jiffies_to_timespec(time_slice, &t);
1da177e4 4883 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4884 return retval;
3a5c359a 4885
1da177e4
LT
4886out_unlock:
4887 read_unlock(&tasklist_lock);
4888 return retval;
4889}
4890
2ed6e34f 4891static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4892
4893static void show_task(struct task_struct *p)
1da177e4 4894{
1da177e4 4895 unsigned long free = 0;
36c8b586 4896 unsigned state;
1da177e4 4897
1da177e4 4898 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4899 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4900 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4901#if BITS_PER_LONG == 32
1da177e4 4902 if (state == TASK_RUNNING)
cc4ea795 4903 printk(KERN_CONT " running ");
1da177e4 4904 else
cc4ea795 4905 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4906#else
4907 if (state == TASK_RUNNING)
cc4ea795 4908 printk(KERN_CONT " running task ");
1da177e4 4909 else
cc4ea795 4910 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4911#endif
4912#ifdef CONFIG_DEBUG_STACK_USAGE
4913 {
10ebffde 4914 unsigned long *n = end_of_stack(p);
1da177e4
LT
4915 while (!*n)
4916 n++;
10ebffde 4917 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4918 }
4919#endif
ba25f9dc
PE
4920 printk(KERN_CONT "%5lu %5d %6d\n", free,
4921 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4922
4923 if (state != TASK_RUNNING)
4924 show_stack(p, NULL);
4925}
4926
e59e2ae2 4927void show_state_filter(unsigned long state_filter)
1da177e4 4928{
36c8b586 4929 struct task_struct *g, *p;
1da177e4 4930
4bd77321
IM
4931#if BITS_PER_LONG == 32
4932 printk(KERN_INFO
4933 " task PC stack pid father\n");
1da177e4 4934#else
4bd77321
IM
4935 printk(KERN_INFO
4936 " task PC stack pid father\n");
1da177e4
LT
4937#endif
4938 read_lock(&tasklist_lock);
4939 do_each_thread(g, p) {
4940 /*
4941 * reset the NMI-timeout, listing all files on a slow
4942 * console might take alot of time:
4943 */
4944 touch_nmi_watchdog();
39bc89fd 4945 if (!state_filter || (p->state & state_filter))
e59e2ae2 4946 show_task(p);
1da177e4
LT
4947 } while_each_thread(g, p);
4948
04c9167f
JF
4949 touch_all_softlockup_watchdogs();
4950
dd41f596
IM
4951#ifdef CONFIG_SCHED_DEBUG
4952 sysrq_sched_debug_show();
4953#endif
1da177e4 4954 read_unlock(&tasklist_lock);
e59e2ae2
IM
4955 /*
4956 * Only show locks if all tasks are dumped:
4957 */
4958 if (state_filter == -1)
4959 debug_show_all_locks();
1da177e4
LT
4960}
4961
1df21055
IM
4962void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4963{
dd41f596 4964 idle->sched_class = &idle_sched_class;
1df21055
IM
4965}
4966
f340c0d1
IM
4967/**
4968 * init_idle - set up an idle thread for a given CPU
4969 * @idle: task in question
4970 * @cpu: cpu the idle task belongs to
4971 *
4972 * NOTE: this function does not set the idle thread's NEED_RESCHED
4973 * flag, to make booting more robust.
4974 */
5c1e1767 4975void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4976{
70b97a7f 4977 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4978 unsigned long flags;
4979
dd41f596
IM
4980 __sched_fork(idle);
4981 idle->se.exec_start = sched_clock();
4982
b29739f9 4983 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4984 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4985 __set_task_cpu(idle, cpu);
1da177e4
LT
4986
4987 spin_lock_irqsave(&rq->lock, flags);
4988 rq->curr = rq->idle = idle;
4866cde0
NP
4989#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4990 idle->oncpu = 1;
4991#endif
1da177e4
LT
4992 spin_unlock_irqrestore(&rq->lock, flags);
4993
4994 /* Set the preempt count _outside_ the spinlocks! */
4995#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4996 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4997#else
a1261f54 4998 task_thread_info(idle)->preempt_count = 0;
1da177e4 4999#endif
dd41f596
IM
5000 /*
5001 * The idle tasks have their own, simple scheduling class:
5002 */
5003 idle->sched_class = &idle_sched_class;
1da177e4
LT
5004}
5005
5006/*
5007 * In a system that switches off the HZ timer nohz_cpu_mask
5008 * indicates which cpus entered this state. This is used
5009 * in the rcu update to wait only for active cpus. For system
5010 * which do not switch off the HZ timer nohz_cpu_mask should
5011 * always be CPU_MASK_NONE.
5012 */
5013cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5014
19978ca6
IM
5015/*
5016 * Increase the granularity value when there are more CPUs,
5017 * because with more CPUs the 'effective latency' as visible
5018 * to users decreases. But the relationship is not linear,
5019 * so pick a second-best guess by going with the log2 of the
5020 * number of CPUs.
5021 *
5022 * This idea comes from the SD scheduler of Con Kolivas:
5023 */
5024static inline void sched_init_granularity(void)
5025{
5026 unsigned int factor = 1 + ilog2(num_online_cpus());
5027 const unsigned long limit = 200000000;
5028
5029 sysctl_sched_min_granularity *= factor;
5030 if (sysctl_sched_min_granularity > limit)
5031 sysctl_sched_min_granularity = limit;
5032
5033 sysctl_sched_latency *= factor;
5034 if (sysctl_sched_latency > limit)
5035 sysctl_sched_latency = limit;
5036
5037 sysctl_sched_wakeup_granularity *= factor;
5038 sysctl_sched_batch_wakeup_granularity *= factor;
5039}
5040
1da177e4
LT
5041#ifdef CONFIG_SMP
5042/*
5043 * This is how migration works:
5044 *
70b97a7f 5045 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5046 * runqueue and wake up that CPU's migration thread.
5047 * 2) we down() the locked semaphore => thread blocks.
5048 * 3) migration thread wakes up (implicitly it forces the migrated
5049 * thread off the CPU)
5050 * 4) it gets the migration request and checks whether the migrated
5051 * task is still in the wrong runqueue.
5052 * 5) if it's in the wrong runqueue then the migration thread removes
5053 * it and puts it into the right queue.
5054 * 6) migration thread up()s the semaphore.
5055 * 7) we wake up and the migration is done.
5056 */
5057
5058/*
5059 * Change a given task's CPU affinity. Migrate the thread to a
5060 * proper CPU and schedule it away if the CPU it's executing on
5061 * is removed from the allowed bitmask.
5062 *
5063 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5064 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5065 * call is not atomic; no spinlocks may be held.
5066 */
36c8b586 5067int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5068{
70b97a7f 5069 struct migration_req req;
1da177e4 5070 unsigned long flags;
70b97a7f 5071 struct rq *rq;
48f24c4d 5072 int ret = 0;
1da177e4
LT
5073
5074 rq = task_rq_lock(p, &flags);
5075 if (!cpus_intersects(new_mask, cpu_online_map)) {
5076 ret = -EINVAL;
5077 goto out;
5078 }
5079
5080 p->cpus_allowed = new_mask;
5081 /* Can the task run on the task's current CPU? If so, we're done */
5082 if (cpu_isset(task_cpu(p), new_mask))
5083 goto out;
5084
5085 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5086 /* Need help from migration thread: drop lock and wait. */
5087 task_rq_unlock(rq, &flags);
5088 wake_up_process(rq->migration_thread);
5089 wait_for_completion(&req.done);
5090 tlb_migrate_finish(p->mm);
5091 return 0;
5092 }
5093out:
5094 task_rq_unlock(rq, &flags);
48f24c4d 5095
1da177e4
LT
5096 return ret;
5097}
1da177e4
LT
5098EXPORT_SYMBOL_GPL(set_cpus_allowed);
5099
5100/*
41a2d6cf 5101 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5102 * this because either it can't run here any more (set_cpus_allowed()
5103 * away from this CPU, or CPU going down), or because we're
5104 * attempting to rebalance this task on exec (sched_exec).
5105 *
5106 * So we race with normal scheduler movements, but that's OK, as long
5107 * as the task is no longer on this CPU.
efc30814
KK
5108 *
5109 * Returns non-zero if task was successfully migrated.
1da177e4 5110 */
efc30814 5111static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5112{
70b97a7f 5113 struct rq *rq_dest, *rq_src;
dd41f596 5114 int ret = 0, on_rq;
1da177e4
LT
5115
5116 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5117 return ret;
1da177e4
LT
5118
5119 rq_src = cpu_rq(src_cpu);
5120 rq_dest = cpu_rq(dest_cpu);
5121
5122 double_rq_lock(rq_src, rq_dest);
5123 /* Already moved. */
5124 if (task_cpu(p) != src_cpu)
5125 goto out;
5126 /* Affinity changed (again). */
5127 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5128 goto out;
5129
dd41f596 5130 on_rq = p->se.on_rq;
6e82a3be 5131 if (on_rq)
2e1cb74a 5132 deactivate_task(rq_src, p, 0);
6e82a3be 5133
1da177e4 5134 set_task_cpu(p, dest_cpu);
dd41f596
IM
5135 if (on_rq) {
5136 activate_task(rq_dest, p, 0);
5137 check_preempt_curr(rq_dest, p);
1da177e4 5138 }
efc30814 5139 ret = 1;
1da177e4
LT
5140out:
5141 double_rq_unlock(rq_src, rq_dest);
efc30814 5142 return ret;
1da177e4
LT
5143}
5144
5145/*
5146 * migration_thread - this is a highprio system thread that performs
5147 * thread migration by bumping thread off CPU then 'pushing' onto
5148 * another runqueue.
5149 */
95cdf3b7 5150static int migration_thread(void *data)
1da177e4 5151{
1da177e4 5152 int cpu = (long)data;
70b97a7f 5153 struct rq *rq;
1da177e4
LT
5154
5155 rq = cpu_rq(cpu);
5156 BUG_ON(rq->migration_thread != current);
5157
5158 set_current_state(TASK_INTERRUPTIBLE);
5159 while (!kthread_should_stop()) {
70b97a7f 5160 struct migration_req *req;
1da177e4 5161 struct list_head *head;
1da177e4 5162
1da177e4
LT
5163 spin_lock_irq(&rq->lock);
5164
5165 if (cpu_is_offline(cpu)) {
5166 spin_unlock_irq(&rq->lock);
5167 goto wait_to_die;
5168 }
5169
5170 if (rq->active_balance) {
5171 active_load_balance(rq, cpu);
5172 rq->active_balance = 0;
5173 }
5174
5175 head = &rq->migration_queue;
5176
5177 if (list_empty(head)) {
5178 spin_unlock_irq(&rq->lock);
5179 schedule();
5180 set_current_state(TASK_INTERRUPTIBLE);
5181 continue;
5182 }
70b97a7f 5183 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5184 list_del_init(head->next);
5185
674311d5
NP
5186 spin_unlock(&rq->lock);
5187 __migrate_task(req->task, cpu, req->dest_cpu);
5188 local_irq_enable();
1da177e4
LT
5189
5190 complete(&req->done);
5191 }
5192 __set_current_state(TASK_RUNNING);
5193 return 0;
5194
5195wait_to_die:
5196 /* Wait for kthread_stop */
5197 set_current_state(TASK_INTERRUPTIBLE);
5198 while (!kthread_should_stop()) {
5199 schedule();
5200 set_current_state(TASK_INTERRUPTIBLE);
5201 }
5202 __set_current_state(TASK_RUNNING);
5203 return 0;
5204}
5205
5206#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5207
5208static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5209{
5210 int ret;
5211
5212 local_irq_disable();
5213 ret = __migrate_task(p, src_cpu, dest_cpu);
5214 local_irq_enable();
5215 return ret;
5216}
5217
054b9108 5218/*
3a4fa0a2 5219 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5220 * NOTE: interrupts should be disabled by the caller
5221 */
48f24c4d 5222static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5223{
efc30814 5224 unsigned long flags;
1da177e4 5225 cpumask_t mask;
70b97a7f
IM
5226 struct rq *rq;
5227 int dest_cpu;
1da177e4 5228
3a5c359a
AK
5229 do {
5230 /* On same node? */
5231 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5232 cpus_and(mask, mask, p->cpus_allowed);
5233 dest_cpu = any_online_cpu(mask);
5234
5235 /* On any allowed CPU? */
5236 if (dest_cpu == NR_CPUS)
5237 dest_cpu = any_online_cpu(p->cpus_allowed);
5238
5239 /* No more Mr. Nice Guy. */
5240 if (dest_cpu == NR_CPUS) {
470fd646
CW
5241 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5242 /*
5243 * Try to stay on the same cpuset, where the
5244 * current cpuset may be a subset of all cpus.
5245 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5246 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5247 * called within calls to cpuset_lock/cpuset_unlock.
5248 */
3a5c359a 5249 rq = task_rq_lock(p, &flags);
470fd646 5250 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5251 dest_cpu = any_online_cpu(p->cpus_allowed);
5252 task_rq_unlock(rq, &flags);
1da177e4 5253
3a5c359a
AK
5254 /*
5255 * Don't tell them about moving exiting tasks or
5256 * kernel threads (both mm NULL), since they never
5257 * leave kernel.
5258 */
41a2d6cf 5259 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5260 printk(KERN_INFO "process %d (%s) no "
5261 "longer affine to cpu%d\n",
41a2d6cf
IM
5262 task_pid_nr(p), p->comm, dead_cpu);
5263 }
3a5c359a 5264 }
f7b4cddc 5265 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5266}
5267
5268/*
5269 * While a dead CPU has no uninterruptible tasks queued at this point,
5270 * it might still have a nonzero ->nr_uninterruptible counter, because
5271 * for performance reasons the counter is not stricly tracking tasks to
5272 * their home CPUs. So we just add the counter to another CPU's counter,
5273 * to keep the global sum constant after CPU-down:
5274 */
70b97a7f 5275static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5276{
70b97a7f 5277 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5278 unsigned long flags;
5279
5280 local_irq_save(flags);
5281 double_rq_lock(rq_src, rq_dest);
5282 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5283 rq_src->nr_uninterruptible = 0;
5284 double_rq_unlock(rq_src, rq_dest);
5285 local_irq_restore(flags);
5286}
5287
5288/* Run through task list and migrate tasks from the dead cpu. */
5289static void migrate_live_tasks(int src_cpu)
5290{
48f24c4d 5291 struct task_struct *p, *t;
1da177e4 5292
f7b4cddc 5293 read_lock(&tasklist_lock);
1da177e4 5294
48f24c4d
IM
5295 do_each_thread(t, p) {
5296 if (p == current)
1da177e4
LT
5297 continue;
5298
48f24c4d
IM
5299 if (task_cpu(p) == src_cpu)
5300 move_task_off_dead_cpu(src_cpu, p);
5301 } while_each_thread(t, p);
1da177e4 5302
f7b4cddc 5303 read_unlock(&tasklist_lock);
1da177e4
LT
5304}
5305
dd41f596
IM
5306/*
5307 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5308 * It does so by boosting its priority to highest possible.
5309 * Used by CPU offline code.
1da177e4
LT
5310 */
5311void sched_idle_next(void)
5312{
48f24c4d 5313 int this_cpu = smp_processor_id();
70b97a7f 5314 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5315 struct task_struct *p = rq->idle;
5316 unsigned long flags;
5317
5318 /* cpu has to be offline */
48f24c4d 5319 BUG_ON(cpu_online(this_cpu));
1da177e4 5320
48f24c4d
IM
5321 /*
5322 * Strictly not necessary since rest of the CPUs are stopped by now
5323 * and interrupts disabled on the current cpu.
1da177e4
LT
5324 */
5325 spin_lock_irqsave(&rq->lock, flags);
5326
dd41f596 5327 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5328
94bc9a7b
DA
5329 update_rq_clock(rq);
5330 activate_task(rq, p, 0);
1da177e4
LT
5331
5332 spin_unlock_irqrestore(&rq->lock, flags);
5333}
5334
48f24c4d
IM
5335/*
5336 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5337 * offline.
5338 */
5339void idle_task_exit(void)
5340{
5341 struct mm_struct *mm = current->active_mm;
5342
5343 BUG_ON(cpu_online(smp_processor_id()));
5344
5345 if (mm != &init_mm)
5346 switch_mm(mm, &init_mm, current);
5347 mmdrop(mm);
5348}
5349
054b9108 5350/* called under rq->lock with disabled interrupts */
36c8b586 5351static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5352{
70b97a7f 5353 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5354
5355 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5356 BUG_ON(!p->exit_state);
1da177e4
LT
5357
5358 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5359 BUG_ON(p->state == TASK_DEAD);
1da177e4 5360
48f24c4d 5361 get_task_struct(p);
1da177e4
LT
5362
5363 /*
5364 * Drop lock around migration; if someone else moves it,
41a2d6cf 5365 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5366 * fine.
5367 */
f7b4cddc 5368 spin_unlock_irq(&rq->lock);
48f24c4d 5369 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5370 spin_lock_irq(&rq->lock);
1da177e4 5371
48f24c4d 5372 put_task_struct(p);
1da177e4
LT
5373}
5374
5375/* release_task() removes task from tasklist, so we won't find dead tasks. */
5376static void migrate_dead_tasks(unsigned int dead_cpu)
5377{
70b97a7f 5378 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5379 struct task_struct *next;
48f24c4d 5380
dd41f596
IM
5381 for ( ; ; ) {
5382 if (!rq->nr_running)
5383 break;
a8e504d2 5384 update_rq_clock(rq);
ff95f3df 5385 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5386 if (!next)
5387 break;
5388 migrate_dead(dead_cpu, next);
e692ab53 5389
1da177e4
LT
5390 }
5391}
5392#endif /* CONFIG_HOTPLUG_CPU */
5393
e692ab53
NP
5394#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5395
5396static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5397 {
5398 .procname = "sched_domain",
c57baf1e 5399 .mode = 0555,
e0361851 5400 },
38605cae 5401 {0, },
e692ab53
NP
5402};
5403
5404static struct ctl_table sd_ctl_root[] = {
e0361851 5405 {
c57baf1e 5406 .ctl_name = CTL_KERN,
e0361851 5407 .procname = "kernel",
c57baf1e 5408 .mode = 0555,
e0361851
AD
5409 .child = sd_ctl_dir,
5410 },
38605cae 5411 {0, },
e692ab53
NP
5412};
5413
5414static struct ctl_table *sd_alloc_ctl_entry(int n)
5415{
5416 struct ctl_table *entry =
5cf9f062 5417 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5418
e692ab53
NP
5419 return entry;
5420}
5421
6382bc90
MM
5422static void sd_free_ctl_entry(struct ctl_table **tablep)
5423{
cd790076 5424 struct ctl_table *entry;
6382bc90 5425
cd790076
MM
5426 /*
5427 * In the intermediate directories, both the child directory and
5428 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5429 * will always be set. In the lowest directory the names are
cd790076
MM
5430 * static strings and all have proc handlers.
5431 */
5432 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5433 if (entry->child)
5434 sd_free_ctl_entry(&entry->child);
cd790076
MM
5435 if (entry->proc_handler == NULL)
5436 kfree(entry->procname);
5437 }
6382bc90
MM
5438
5439 kfree(*tablep);
5440 *tablep = NULL;
5441}
5442
e692ab53 5443static void
e0361851 5444set_table_entry(struct ctl_table *entry,
e692ab53
NP
5445 const char *procname, void *data, int maxlen,
5446 mode_t mode, proc_handler *proc_handler)
5447{
e692ab53
NP
5448 entry->procname = procname;
5449 entry->data = data;
5450 entry->maxlen = maxlen;
5451 entry->mode = mode;
5452 entry->proc_handler = proc_handler;
5453}
5454
5455static struct ctl_table *
5456sd_alloc_ctl_domain_table(struct sched_domain *sd)
5457{
ace8b3d6 5458 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5459
ad1cdc1d
MM
5460 if (table == NULL)
5461 return NULL;
5462
e0361851 5463 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5464 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5465 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5466 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5467 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5468 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5469 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5470 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5471 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5472 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5473 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5474 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5475 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5476 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5477 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5478 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5479 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5480 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5481 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5482 &sd->cache_nice_tries,
5483 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5484 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5485 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5486 /* &table[11] is terminator */
e692ab53
NP
5487
5488 return table;
5489}
5490
9a4e7159 5491static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5492{
5493 struct ctl_table *entry, *table;
5494 struct sched_domain *sd;
5495 int domain_num = 0, i;
5496 char buf[32];
5497
5498 for_each_domain(cpu, sd)
5499 domain_num++;
5500 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5501 if (table == NULL)
5502 return NULL;
e692ab53
NP
5503
5504 i = 0;
5505 for_each_domain(cpu, sd) {
5506 snprintf(buf, 32, "domain%d", i);
e692ab53 5507 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5508 entry->mode = 0555;
e692ab53
NP
5509 entry->child = sd_alloc_ctl_domain_table(sd);
5510 entry++;
5511 i++;
5512 }
5513 return table;
5514}
5515
5516static struct ctl_table_header *sd_sysctl_header;
6382bc90 5517static void register_sched_domain_sysctl(void)
e692ab53
NP
5518{
5519 int i, cpu_num = num_online_cpus();
5520 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5521 char buf[32];
5522
7378547f
MM
5523 WARN_ON(sd_ctl_dir[0].child);
5524 sd_ctl_dir[0].child = entry;
5525
ad1cdc1d
MM
5526 if (entry == NULL)
5527 return;
5528
97b6ea7b 5529 for_each_online_cpu(i) {
e692ab53 5530 snprintf(buf, 32, "cpu%d", i);
e692ab53 5531 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5532 entry->mode = 0555;
e692ab53 5533 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5534 entry++;
e692ab53 5535 }
7378547f
MM
5536
5537 WARN_ON(sd_sysctl_header);
e692ab53
NP
5538 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5539}
6382bc90 5540
7378547f 5541/* may be called multiple times per register */
6382bc90
MM
5542static void unregister_sched_domain_sysctl(void)
5543{
7378547f
MM
5544 if (sd_sysctl_header)
5545 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5546 sd_sysctl_header = NULL;
7378547f
MM
5547 if (sd_ctl_dir[0].child)
5548 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5549}
e692ab53 5550#else
6382bc90
MM
5551static void register_sched_domain_sysctl(void)
5552{
5553}
5554static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5555{
5556}
5557#endif
5558
1da177e4
LT
5559/*
5560 * migration_call - callback that gets triggered when a CPU is added.
5561 * Here we can start up the necessary migration thread for the new CPU.
5562 */
48f24c4d
IM
5563static int __cpuinit
5564migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5565{
1da177e4 5566 struct task_struct *p;
48f24c4d 5567 int cpu = (long)hcpu;
1da177e4 5568 unsigned long flags;
70b97a7f 5569 struct rq *rq;
1da177e4
LT
5570
5571 switch (action) {
5be9361c
GS
5572 case CPU_LOCK_ACQUIRE:
5573 mutex_lock(&sched_hotcpu_mutex);
5574 break;
5575
1da177e4 5576 case CPU_UP_PREPARE:
8bb78442 5577 case CPU_UP_PREPARE_FROZEN:
dd41f596 5578 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5579 if (IS_ERR(p))
5580 return NOTIFY_BAD;
1da177e4
LT
5581 kthread_bind(p, cpu);
5582 /* Must be high prio: stop_machine expects to yield to it. */
5583 rq = task_rq_lock(p, &flags);
dd41f596 5584 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5585 task_rq_unlock(rq, &flags);
5586 cpu_rq(cpu)->migration_thread = p;
5587 break;
48f24c4d 5588
1da177e4 5589 case CPU_ONLINE:
8bb78442 5590 case CPU_ONLINE_FROZEN:
3a4fa0a2 5591 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5592 wake_up_process(cpu_rq(cpu)->migration_thread);
5593 break;
48f24c4d 5594
1da177e4
LT
5595#ifdef CONFIG_HOTPLUG_CPU
5596 case CPU_UP_CANCELED:
8bb78442 5597 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5598 if (!cpu_rq(cpu)->migration_thread)
5599 break;
41a2d6cf 5600 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5601 kthread_bind(cpu_rq(cpu)->migration_thread,
5602 any_online_cpu(cpu_online_map));
1da177e4
LT
5603 kthread_stop(cpu_rq(cpu)->migration_thread);
5604 cpu_rq(cpu)->migration_thread = NULL;
5605 break;
48f24c4d 5606
1da177e4 5607 case CPU_DEAD:
8bb78442 5608 case CPU_DEAD_FROZEN:
470fd646 5609 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5610 migrate_live_tasks(cpu);
5611 rq = cpu_rq(cpu);
5612 kthread_stop(rq->migration_thread);
5613 rq->migration_thread = NULL;
5614 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5615 spin_lock_irq(&rq->lock);
a8e504d2 5616 update_rq_clock(rq);
2e1cb74a 5617 deactivate_task(rq, rq->idle, 0);
1da177e4 5618 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5619 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5620 rq->idle->sched_class = &idle_sched_class;
1da177e4 5621 migrate_dead_tasks(cpu);
d2da272a 5622 spin_unlock_irq(&rq->lock);
470fd646 5623 cpuset_unlock();
1da177e4
LT
5624 migrate_nr_uninterruptible(rq);
5625 BUG_ON(rq->nr_running != 0);
5626
41a2d6cf
IM
5627 /*
5628 * No need to migrate the tasks: it was best-effort if
5629 * they didn't take sched_hotcpu_mutex. Just wake up
5630 * the requestors.
5631 */
1da177e4
LT
5632 spin_lock_irq(&rq->lock);
5633 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5634 struct migration_req *req;
5635
1da177e4 5636 req = list_entry(rq->migration_queue.next,
70b97a7f 5637 struct migration_req, list);
1da177e4
LT
5638 list_del_init(&req->list);
5639 complete(&req->done);
5640 }
5641 spin_unlock_irq(&rq->lock);
5642 break;
5643#endif
5be9361c
GS
5644 case CPU_LOCK_RELEASE:
5645 mutex_unlock(&sched_hotcpu_mutex);
5646 break;
1da177e4
LT
5647 }
5648 return NOTIFY_OK;
5649}
5650
5651/* Register at highest priority so that task migration (migrate_all_tasks)
5652 * happens before everything else.
5653 */
26c2143b 5654static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5655 .notifier_call = migration_call,
5656 .priority = 10
5657};
5658
e6fe6649 5659void __init migration_init(void)
1da177e4
LT
5660{
5661 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5662 int err;
48f24c4d
IM
5663
5664 /* Start one for the boot CPU: */
07dccf33
AM
5665 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5666 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5667 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5668 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5669}
5670#endif
5671
5672#ifdef CONFIG_SMP
476f3534
CL
5673
5674/* Number of possible processor ids */
5675int nr_cpu_ids __read_mostly = NR_CPUS;
5676EXPORT_SYMBOL(nr_cpu_ids);
5677
3e9830dc 5678#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5679
5680static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5681{
4dcf6aff
IM
5682 struct sched_group *group = sd->groups;
5683 cpumask_t groupmask;
5684 char str[NR_CPUS];
1da177e4 5685
4dcf6aff
IM
5686 cpumask_scnprintf(str, NR_CPUS, sd->span);
5687 cpus_clear(groupmask);
5688
5689 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5690
5691 if (!(sd->flags & SD_LOAD_BALANCE)) {
5692 printk("does not load-balance\n");
5693 if (sd->parent)
5694 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5695 " has parent");
5696 return -1;
41c7ce9a
NP
5697 }
5698
4dcf6aff
IM
5699 printk(KERN_CONT "span %s\n", str);
5700
5701 if (!cpu_isset(cpu, sd->span)) {
5702 printk(KERN_ERR "ERROR: domain->span does not contain "
5703 "CPU%d\n", cpu);
5704 }
5705 if (!cpu_isset(cpu, group->cpumask)) {
5706 printk(KERN_ERR "ERROR: domain->groups does not contain"
5707 " CPU%d\n", cpu);
5708 }
1da177e4 5709
4dcf6aff 5710 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5711 do {
4dcf6aff
IM
5712 if (!group) {
5713 printk("\n");
5714 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5715 break;
5716 }
5717
4dcf6aff
IM
5718 if (!group->__cpu_power) {
5719 printk(KERN_CONT "\n");
5720 printk(KERN_ERR "ERROR: domain->cpu_power not "
5721 "set\n");
5722 break;
5723 }
1da177e4 5724
4dcf6aff
IM
5725 if (!cpus_weight(group->cpumask)) {
5726 printk(KERN_CONT "\n");
5727 printk(KERN_ERR "ERROR: empty group\n");
5728 break;
5729 }
1da177e4 5730
4dcf6aff
IM
5731 if (cpus_intersects(groupmask, group->cpumask)) {
5732 printk(KERN_CONT "\n");
5733 printk(KERN_ERR "ERROR: repeated CPUs\n");
5734 break;
5735 }
1da177e4 5736
4dcf6aff 5737 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5738
4dcf6aff
IM
5739 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5740 printk(KERN_CONT " %s", str);
1da177e4 5741
4dcf6aff
IM
5742 group = group->next;
5743 } while (group != sd->groups);
5744 printk(KERN_CONT "\n");
1da177e4 5745
4dcf6aff
IM
5746 if (!cpus_equal(sd->span, groupmask))
5747 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5748
4dcf6aff
IM
5749 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5750 printk(KERN_ERR "ERROR: parent span is not a superset "
5751 "of domain->span\n");
5752 return 0;
5753}
1da177e4 5754
4dcf6aff
IM
5755static void sched_domain_debug(struct sched_domain *sd, int cpu)
5756{
5757 int level = 0;
1da177e4 5758
4dcf6aff
IM
5759 if (!sd) {
5760 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5761 return;
5762 }
1da177e4 5763
4dcf6aff
IM
5764 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5765
5766 for (;;) {
5767 if (sched_domain_debug_one(sd, cpu, level))
5768 break;
1da177e4
LT
5769 level++;
5770 sd = sd->parent;
33859f7f 5771 if (!sd)
4dcf6aff
IM
5772 break;
5773 }
1da177e4
LT
5774}
5775#else
48f24c4d 5776# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5777#endif
5778
1a20ff27 5779static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5780{
5781 if (cpus_weight(sd->span) == 1)
5782 return 1;
5783
5784 /* Following flags need at least 2 groups */
5785 if (sd->flags & (SD_LOAD_BALANCE |
5786 SD_BALANCE_NEWIDLE |
5787 SD_BALANCE_FORK |
89c4710e
SS
5788 SD_BALANCE_EXEC |
5789 SD_SHARE_CPUPOWER |
5790 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5791 if (sd->groups != sd->groups->next)
5792 return 0;
5793 }
5794
5795 /* Following flags don't use groups */
5796 if (sd->flags & (SD_WAKE_IDLE |
5797 SD_WAKE_AFFINE |
5798 SD_WAKE_BALANCE))
5799 return 0;
5800
5801 return 1;
5802}
5803
48f24c4d
IM
5804static int
5805sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5806{
5807 unsigned long cflags = sd->flags, pflags = parent->flags;
5808
5809 if (sd_degenerate(parent))
5810 return 1;
5811
5812 if (!cpus_equal(sd->span, parent->span))
5813 return 0;
5814
5815 /* Does parent contain flags not in child? */
5816 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5817 if (cflags & SD_WAKE_AFFINE)
5818 pflags &= ~SD_WAKE_BALANCE;
5819 /* Flags needing groups don't count if only 1 group in parent */
5820 if (parent->groups == parent->groups->next) {
5821 pflags &= ~(SD_LOAD_BALANCE |
5822 SD_BALANCE_NEWIDLE |
5823 SD_BALANCE_FORK |
89c4710e
SS
5824 SD_BALANCE_EXEC |
5825 SD_SHARE_CPUPOWER |
5826 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5827 }
5828 if (~cflags & pflags)
5829 return 0;
5830
5831 return 1;
5832}
5833
1da177e4
LT
5834/*
5835 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5836 * hold the hotplug lock.
5837 */
9c1cfda2 5838static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5839{
70b97a7f 5840 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5841 struct sched_domain *tmp;
5842
5843 /* Remove the sched domains which do not contribute to scheduling. */
5844 for (tmp = sd; tmp; tmp = tmp->parent) {
5845 struct sched_domain *parent = tmp->parent;
5846 if (!parent)
5847 break;
1a848870 5848 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5849 tmp->parent = parent->parent;
1a848870
SS
5850 if (parent->parent)
5851 parent->parent->child = tmp;
5852 }
245af2c7
SS
5853 }
5854
1a848870 5855 if (sd && sd_degenerate(sd)) {
245af2c7 5856 sd = sd->parent;
1a848870
SS
5857 if (sd)
5858 sd->child = NULL;
5859 }
1da177e4
LT
5860
5861 sched_domain_debug(sd, cpu);
5862
674311d5 5863 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5864}
5865
5866/* cpus with isolated domains */
67af63a6 5867static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5868
5869/* Setup the mask of cpus configured for isolated domains */
5870static int __init isolated_cpu_setup(char *str)
5871{
5872 int ints[NR_CPUS], i;
5873
5874 str = get_options(str, ARRAY_SIZE(ints), ints);
5875 cpus_clear(cpu_isolated_map);
5876 for (i = 1; i <= ints[0]; i++)
5877 if (ints[i] < NR_CPUS)
5878 cpu_set(ints[i], cpu_isolated_map);
5879 return 1;
5880}
5881
8927f494 5882__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5883
5884/*
6711cab4
SS
5885 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5886 * to a function which identifies what group(along with sched group) a CPU
5887 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5888 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5889 *
5890 * init_sched_build_groups will build a circular linked list of the groups
5891 * covered by the given span, and will set each group's ->cpumask correctly,
5892 * and ->cpu_power to 0.
5893 */
a616058b 5894static void
6711cab4
SS
5895init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5896 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5897 struct sched_group **sg))
1da177e4
LT
5898{
5899 struct sched_group *first = NULL, *last = NULL;
5900 cpumask_t covered = CPU_MASK_NONE;
5901 int i;
5902
5903 for_each_cpu_mask(i, span) {
6711cab4
SS
5904 struct sched_group *sg;
5905 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5906 int j;
5907
5908 if (cpu_isset(i, covered))
5909 continue;
5910
5911 sg->cpumask = CPU_MASK_NONE;
5517d86b 5912 sg->__cpu_power = 0;
1da177e4
LT
5913
5914 for_each_cpu_mask(j, span) {
6711cab4 5915 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5916 continue;
5917
5918 cpu_set(j, covered);
5919 cpu_set(j, sg->cpumask);
5920 }
5921 if (!first)
5922 first = sg;
5923 if (last)
5924 last->next = sg;
5925 last = sg;
5926 }
5927 last->next = first;
5928}
5929
9c1cfda2 5930#define SD_NODES_PER_DOMAIN 16
1da177e4 5931
9c1cfda2 5932#ifdef CONFIG_NUMA
198e2f18 5933
9c1cfda2
JH
5934/**
5935 * find_next_best_node - find the next node to include in a sched_domain
5936 * @node: node whose sched_domain we're building
5937 * @used_nodes: nodes already in the sched_domain
5938 *
41a2d6cf 5939 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
5940 * finds the closest node not already in the @used_nodes map.
5941 *
5942 * Should use nodemask_t.
5943 */
5944static int find_next_best_node(int node, unsigned long *used_nodes)
5945{
5946 int i, n, val, min_val, best_node = 0;
5947
5948 min_val = INT_MAX;
5949
5950 for (i = 0; i < MAX_NUMNODES; i++) {
5951 /* Start at @node */
5952 n = (node + i) % MAX_NUMNODES;
5953
5954 if (!nr_cpus_node(n))
5955 continue;
5956
5957 /* Skip already used nodes */
5958 if (test_bit(n, used_nodes))
5959 continue;
5960
5961 /* Simple min distance search */
5962 val = node_distance(node, n);
5963
5964 if (val < min_val) {
5965 min_val = val;
5966 best_node = n;
5967 }
5968 }
5969
5970 set_bit(best_node, used_nodes);
5971 return best_node;
5972}
5973
5974/**
5975 * sched_domain_node_span - get a cpumask for a node's sched_domain
5976 * @node: node whose cpumask we're constructing
5977 * @size: number of nodes to include in this span
5978 *
41a2d6cf 5979 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
5980 * should be one that prevents unnecessary balancing, but also spreads tasks
5981 * out optimally.
5982 */
5983static cpumask_t sched_domain_node_span(int node)
5984{
9c1cfda2 5985 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5986 cpumask_t span, nodemask;
5987 int i;
9c1cfda2
JH
5988
5989 cpus_clear(span);
5990 bitmap_zero(used_nodes, MAX_NUMNODES);
5991
5992 nodemask = node_to_cpumask(node);
5993 cpus_or(span, span, nodemask);
5994 set_bit(node, used_nodes);
5995
5996 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5997 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5998
9c1cfda2
JH
5999 nodemask = node_to_cpumask(next_node);
6000 cpus_or(span, span, nodemask);
6001 }
6002
6003 return span;
6004}
6005#endif
6006
5c45bf27 6007int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6008
9c1cfda2 6009/*
48f24c4d 6010 * SMT sched-domains:
9c1cfda2 6011 */
1da177e4
LT
6012#ifdef CONFIG_SCHED_SMT
6013static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6014static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6015
41a2d6cf
IM
6016static int
6017cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6018{
6711cab4
SS
6019 if (sg)
6020 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6021 return cpu;
6022}
6023#endif
6024
48f24c4d
IM
6025/*
6026 * multi-core sched-domains:
6027 */
1e9f28fa
SS
6028#ifdef CONFIG_SCHED_MC
6029static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6030static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6031#endif
6032
6033#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6034static int
6035cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6036{
6711cab4 6037 int group;
d5a7430d 6038 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6039 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6040 group = first_cpu(mask);
6041 if (sg)
6042 *sg = &per_cpu(sched_group_core, group);
6043 return group;
1e9f28fa
SS
6044}
6045#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6046static int
6047cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6048{
6711cab4
SS
6049 if (sg)
6050 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6051 return cpu;
6052}
6053#endif
6054
1da177e4 6055static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6056static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6057
41a2d6cf
IM
6058static int
6059cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6060{
6711cab4 6061 int group;
48f24c4d 6062#ifdef CONFIG_SCHED_MC
1e9f28fa 6063 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6064 cpus_and(mask, mask, *cpu_map);
6711cab4 6065 group = first_cpu(mask);
1e9f28fa 6066#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6067 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6068 cpus_and(mask, mask, *cpu_map);
6711cab4 6069 group = first_cpu(mask);
1da177e4 6070#else
6711cab4 6071 group = cpu;
1da177e4 6072#endif
6711cab4
SS
6073 if (sg)
6074 *sg = &per_cpu(sched_group_phys, group);
6075 return group;
1da177e4
LT
6076}
6077
6078#ifdef CONFIG_NUMA
1da177e4 6079/*
9c1cfda2
JH
6080 * The init_sched_build_groups can't handle what we want to do with node
6081 * groups, so roll our own. Now each node has its own list of groups which
6082 * gets dynamically allocated.
1da177e4 6083 */
9c1cfda2 6084static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6085static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6086
9c1cfda2 6087static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6088static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6089
6711cab4
SS
6090static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6091 struct sched_group **sg)
9c1cfda2 6092{
6711cab4
SS
6093 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6094 int group;
6095
6096 cpus_and(nodemask, nodemask, *cpu_map);
6097 group = first_cpu(nodemask);
6098
6099 if (sg)
6100 *sg = &per_cpu(sched_group_allnodes, group);
6101 return group;
1da177e4 6102}
6711cab4 6103
08069033
SS
6104static void init_numa_sched_groups_power(struct sched_group *group_head)
6105{
6106 struct sched_group *sg = group_head;
6107 int j;
6108
6109 if (!sg)
6110 return;
3a5c359a
AK
6111 do {
6112 for_each_cpu_mask(j, sg->cpumask) {
6113 struct sched_domain *sd;
08069033 6114
3a5c359a
AK
6115 sd = &per_cpu(phys_domains, j);
6116 if (j != first_cpu(sd->groups->cpumask)) {
6117 /*
6118 * Only add "power" once for each
6119 * physical package.
6120 */
6121 continue;
6122 }
08069033 6123
3a5c359a
AK
6124 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6125 }
6126 sg = sg->next;
6127 } while (sg != group_head);
08069033 6128}
1da177e4
LT
6129#endif
6130
a616058b 6131#ifdef CONFIG_NUMA
51888ca2
SV
6132/* Free memory allocated for various sched_group structures */
6133static void free_sched_groups(const cpumask_t *cpu_map)
6134{
a616058b 6135 int cpu, i;
51888ca2
SV
6136
6137 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6138 struct sched_group **sched_group_nodes
6139 = sched_group_nodes_bycpu[cpu];
6140
51888ca2
SV
6141 if (!sched_group_nodes)
6142 continue;
6143
6144 for (i = 0; i < MAX_NUMNODES; i++) {
6145 cpumask_t nodemask = node_to_cpumask(i);
6146 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6147
6148 cpus_and(nodemask, nodemask, *cpu_map);
6149 if (cpus_empty(nodemask))
6150 continue;
6151
6152 if (sg == NULL)
6153 continue;
6154 sg = sg->next;
6155next_sg:
6156 oldsg = sg;
6157 sg = sg->next;
6158 kfree(oldsg);
6159 if (oldsg != sched_group_nodes[i])
6160 goto next_sg;
6161 }
6162 kfree(sched_group_nodes);
6163 sched_group_nodes_bycpu[cpu] = NULL;
6164 }
51888ca2 6165}
a616058b
SS
6166#else
6167static void free_sched_groups(const cpumask_t *cpu_map)
6168{
6169}
6170#endif
51888ca2 6171
89c4710e
SS
6172/*
6173 * Initialize sched groups cpu_power.
6174 *
6175 * cpu_power indicates the capacity of sched group, which is used while
6176 * distributing the load between different sched groups in a sched domain.
6177 * Typically cpu_power for all the groups in a sched domain will be same unless
6178 * there are asymmetries in the topology. If there are asymmetries, group
6179 * having more cpu_power will pickup more load compared to the group having
6180 * less cpu_power.
6181 *
6182 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6183 * the maximum number of tasks a group can handle in the presence of other idle
6184 * or lightly loaded groups in the same sched domain.
6185 */
6186static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6187{
6188 struct sched_domain *child;
6189 struct sched_group *group;
6190
6191 WARN_ON(!sd || !sd->groups);
6192
6193 if (cpu != first_cpu(sd->groups->cpumask))
6194 return;
6195
6196 child = sd->child;
6197
5517d86b
ED
6198 sd->groups->__cpu_power = 0;
6199
89c4710e
SS
6200 /*
6201 * For perf policy, if the groups in child domain share resources
6202 * (for example cores sharing some portions of the cache hierarchy
6203 * or SMT), then set this domain groups cpu_power such that each group
6204 * can handle only one task, when there are other idle groups in the
6205 * same sched domain.
6206 */
6207 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6208 (child->flags &
6209 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6210 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6211 return;
6212 }
6213
89c4710e
SS
6214 /*
6215 * add cpu_power of each child group to this groups cpu_power
6216 */
6217 group = child->groups;
6218 do {
5517d86b 6219 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6220 group = group->next;
6221 } while (group != child->groups);
6222}
6223
1da177e4 6224/*
1a20ff27
DG
6225 * Build sched domains for a given set of cpus and attach the sched domains
6226 * to the individual cpus
1da177e4 6227 */
51888ca2 6228static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6229{
6230 int i;
d1b55138
JH
6231#ifdef CONFIG_NUMA
6232 struct sched_group **sched_group_nodes = NULL;
6711cab4 6233 int sd_allnodes = 0;
d1b55138
JH
6234
6235 /*
6236 * Allocate the per-node list of sched groups
6237 */
5cf9f062 6238 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6239 GFP_KERNEL);
d1b55138
JH
6240 if (!sched_group_nodes) {
6241 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6242 return -ENOMEM;
d1b55138
JH
6243 }
6244 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6245#endif
1da177e4
LT
6246
6247 /*
1a20ff27 6248 * Set up domains for cpus specified by the cpu_map.
1da177e4 6249 */
1a20ff27 6250 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6251 struct sched_domain *sd = NULL, *p;
6252 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6253
1a20ff27 6254 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6255
6256#ifdef CONFIG_NUMA
dd41f596
IM
6257 if (cpus_weight(*cpu_map) >
6258 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6259 sd = &per_cpu(allnodes_domains, i);
6260 *sd = SD_ALLNODES_INIT;
6261 sd->span = *cpu_map;
6711cab4 6262 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6263 p = sd;
6711cab4 6264 sd_allnodes = 1;
9c1cfda2
JH
6265 } else
6266 p = NULL;
6267
1da177e4 6268 sd = &per_cpu(node_domains, i);
1da177e4 6269 *sd = SD_NODE_INIT;
9c1cfda2
JH
6270 sd->span = sched_domain_node_span(cpu_to_node(i));
6271 sd->parent = p;
1a848870
SS
6272 if (p)
6273 p->child = sd;
9c1cfda2 6274 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6275#endif
6276
6277 p = sd;
6278 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6279 *sd = SD_CPU_INIT;
6280 sd->span = nodemask;
6281 sd->parent = p;
1a848870
SS
6282 if (p)
6283 p->child = sd;
6711cab4 6284 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6285
1e9f28fa
SS
6286#ifdef CONFIG_SCHED_MC
6287 p = sd;
6288 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6289 *sd = SD_MC_INIT;
6290 sd->span = cpu_coregroup_map(i);
6291 cpus_and(sd->span, sd->span, *cpu_map);
6292 sd->parent = p;
1a848870 6293 p->child = sd;
6711cab4 6294 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6295#endif
6296
1da177e4
LT
6297#ifdef CONFIG_SCHED_SMT
6298 p = sd;
6299 sd = &per_cpu(cpu_domains, i);
1da177e4 6300 *sd = SD_SIBLING_INIT;
d5a7430d 6301 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6302 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6303 sd->parent = p;
1a848870 6304 p->child = sd;
6711cab4 6305 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6306#endif
6307 }
6308
6309#ifdef CONFIG_SCHED_SMT
6310 /* Set up CPU (sibling) groups */
9c1cfda2 6311 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6312 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6313 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6314 if (i != first_cpu(this_sibling_map))
6315 continue;
6316
dd41f596
IM
6317 init_sched_build_groups(this_sibling_map, cpu_map,
6318 &cpu_to_cpu_group);
1da177e4
LT
6319 }
6320#endif
6321
1e9f28fa
SS
6322#ifdef CONFIG_SCHED_MC
6323 /* Set up multi-core groups */
6324 for_each_cpu_mask(i, *cpu_map) {
6325 cpumask_t this_core_map = cpu_coregroup_map(i);
6326 cpus_and(this_core_map, this_core_map, *cpu_map);
6327 if (i != first_cpu(this_core_map))
6328 continue;
dd41f596
IM
6329 init_sched_build_groups(this_core_map, cpu_map,
6330 &cpu_to_core_group);
1e9f28fa
SS
6331 }
6332#endif
6333
1da177e4
LT
6334 /* Set up physical groups */
6335 for (i = 0; i < MAX_NUMNODES; i++) {
6336 cpumask_t nodemask = node_to_cpumask(i);
6337
1a20ff27 6338 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6339 if (cpus_empty(nodemask))
6340 continue;
6341
6711cab4 6342 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6343 }
6344
6345#ifdef CONFIG_NUMA
6346 /* Set up node groups */
6711cab4 6347 if (sd_allnodes)
dd41f596
IM
6348 init_sched_build_groups(*cpu_map, cpu_map,
6349 &cpu_to_allnodes_group);
9c1cfda2
JH
6350
6351 for (i = 0; i < MAX_NUMNODES; i++) {
6352 /* Set up node groups */
6353 struct sched_group *sg, *prev;
6354 cpumask_t nodemask = node_to_cpumask(i);
6355 cpumask_t domainspan;
6356 cpumask_t covered = CPU_MASK_NONE;
6357 int j;
6358
6359 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6360 if (cpus_empty(nodemask)) {
6361 sched_group_nodes[i] = NULL;
9c1cfda2 6362 continue;
d1b55138 6363 }
9c1cfda2
JH
6364
6365 domainspan = sched_domain_node_span(i);
6366 cpus_and(domainspan, domainspan, *cpu_map);
6367
15f0b676 6368 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6369 if (!sg) {
6370 printk(KERN_WARNING "Can not alloc domain group for "
6371 "node %d\n", i);
6372 goto error;
6373 }
9c1cfda2
JH
6374 sched_group_nodes[i] = sg;
6375 for_each_cpu_mask(j, nodemask) {
6376 struct sched_domain *sd;
9761eea8 6377
9c1cfda2
JH
6378 sd = &per_cpu(node_domains, j);
6379 sd->groups = sg;
9c1cfda2 6380 }
5517d86b 6381 sg->__cpu_power = 0;
9c1cfda2 6382 sg->cpumask = nodemask;
51888ca2 6383 sg->next = sg;
9c1cfda2
JH
6384 cpus_or(covered, covered, nodemask);
6385 prev = sg;
6386
6387 for (j = 0; j < MAX_NUMNODES; j++) {
6388 cpumask_t tmp, notcovered;
6389 int n = (i + j) % MAX_NUMNODES;
6390
6391 cpus_complement(notcovered, covered);
6392 cpus_and(tmp, notcovered, *cpu_map);
6393 cpus_and(tmp, tmp, domainspan);
6394 if (cpus_empty(tmp))
6395 break;
6396
6397 nodemask = node_to_cpumask(n);
6398 cpus_and(tmp, tmp, nodemask);
6399 if (cpus_empty(tmp))
6400 continue;
6401
15f0b676
SV
6402 sg = kmalloc_node(sizeof(struct sched_group),
6403 GFP_KERNEL, i);
9c1cfda2
JH
6404 if (!sg) {
6405 printk(KERN_WARNING
6406 "Can not alloc domain group for node %d\n", j);
51888ca2 6407 goto error;
9c1cfda2 6408 }
5517d86b 6409 sg->__cpu_power = 0;
9c1cfda2 6410 sg->cpumask = tmp;
51888ca2 6411 sg->next = prev->next;
9c1cfda2
JH
6412 cpus_or(covered, covered, tmp);
6413 prev->next = sg;
6414 prev = sg;
6415 }
9c1cfda2 6416 }
1da177e4
LT
6417#endif
6418
6419 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6420#ifdef CONFIG_SCHED_SMT
1a20ff27 6421 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6422 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6423
89c4710e 6424 init_sched_groups_power(i, sd);
5c45bf27 6425 }
1da177e4 6426#endif
1e9f28fa 6427#ifdef CONFIG_SCHED_MC
5c45bf27 6428 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6429 struct sched_domain *sd = &per_cpu(core_domains, i);
6430
89c4710e 6431 init_sched_groups_power(i, sd);
5c45bf27
SS
6432 }
6433#endif
1e9f28fa 6434
5c45bf27 6435 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6436 struct sched_domain *sd = &per_cpu(phys_domains, i);
6437
89c4710e 6438 init_sched_groups_power(i, sd);
1da177e4
LT
6439 }
6440
9c1cfda2 6441#ifdef CONFIG_NUMA
08069033
SS
6442 for (i = 0; i < MAX_NUMNODES; i++)
6443 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6444
6711cab4
SS
6445 if (sd_allnodes) {
6446 struct sched_group *sg;
f712c0c7 6447
6711cab4 6448 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6449 init_numa_sched_groups_power(sg);
6450 }
9c1cfda2
JH
6451#endif
6452
1da177e4 6453 /* Attach the domains */
1a20ff27 6454 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6455 struct sched_domain *sd;
6456#ifdef CONFIG_SCHED_SMT
6457 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6458#elif defined(CONFIG_SCHED_MC)
6459 sd = &per_cpu(core_domains, i);
1da177e4
LT
6460#else
6461 sd = &per_cpu(phys_domains, i);
6462#endif
6463 cpu_attach_domain(sd, i);
6464 }
51888ca2
SV
6465
6466 return 0;
6467
a616058b 6468#ifdef CONFIG_NUMA
51888ca2
SV
6469error:
6470 free_sched_groups(cpu_map);
6471 return -ENOMEM;
a616058b 6472#endif
1da177e4 6473}
029190c5
PJ
6474
6475static cpumask_t *doms_cur; /* current sched domains */
6476static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6477
6478/*
6479 * Special case: If a kmalloc of a doms_cur partition (array of
6480 * cpumask_t) fails, then fallback to a single sched domain,
6481 * as determined by the single cpumask_t fallback_doms.
6482 */
6483static cpumask_t fallback_doms;
6484
1a20ff27 6485/*
41a2d6cf 6486 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6487 * For now this just excludes isolated cpus, but could be used to
6488 * exclude other special cases in the future.
1a20ff27 6489 */
51888ca2 6490static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6491{
7378547f
MM
6492 int err;
6493
029190c5
PJ
6494 ndoms_cur = 1;
6495 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6496 if (!doms_cur)
6497 doms_cur = &fallback_doms;
6498 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6499 err = build_sched_domains(doms_cur);
6382bc90 6500 register_sched_domain_sysctl();
7378547f
MM
6501
6502 return err;
1a20ff27
DG
6503}
6504
6505static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6506{
51888ca2 6507 free_sched_groups(cpu_map);
9c1cfda2 6508}
1da177e4 6509
1a20ff27
DG
6510/*
6511 * Detach sched domains from a group of cpus specified in cpu_map
6512 * These cpus will now be attached to the NULL domain
6513 */
858119e1 6514static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6515{
6516 int i;
6517
6382bc90
MM
6518 unregister_sched_domain_sysctl();
6519
1a20ff27
DG
6520 for_each_cpu_mask(i, *cpu_map)
6521 cpu_attach_domain(NULL, i);
6522 synchronize_sched();
6523 arch_destroy_sched_domains(cpu_map);
6524}
6525
029190c5
PJ
6526/*
6527 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6528 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6529 * doms_new[] to the current sched domain partitioning, doms_cur[].
6530 * It destroys each deleted domain and builds each new domain.
6531 *
6532 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6533 * The masks don't intersect (don't overlap.) We should setup one
6534 * sched domain for each mask. CPUs not in any of the cpumasks will
6535 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6536 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6537 * it as it is.
6538 *
41a2d6cf
IM
6539 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6540 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6541 * failed the kmalloc call, then it can pass in doms_new == NULL,
6542 * and partition_sched_domains() will fallback to the single partition
6543 * 'fallback_doms'.
6544 *
6545 * Call with hotplug lock held
6546 */
6547void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6548{
6549 int i, j;
6550
7378547f
MM
6551 /* always unregister in case we don't destroy any domains */
6552 unregister_sched_domain_sysctl();
6553
029190c5
PJ
6554 if (doms_new == NULL) {
6555 ndoms_new = 1;
6556 doms_new = &fallback_doms;
6557 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6558 }
6559
6560 /* Destroy deleted domains */
6561 for (i = 0; i < ndoms_cur; i++) {
6562 for (j = 0; j < ndoms_new; j++) {
6563 if (cpus_equal(doms_cur[i], doms_new[j]))
6564 goto match1;
6565 }
6566 /* no match - a current sched domain not in new doms_new[] */
6567 detach_destroy_domains(doms_cur + i);
6568match1:
6569 ;
6570 }
6571
6572 /* Build new domains */
6573 for (i = 0; i < ndoms_new; i++) {
6574 for (j = 0; j < ndoms_cur; j++) {
6575 if (cpus_equal(doms_new[i], doms_cur[j]))
6576 goto match2;
6577 }
6578 /* no match - add a new doms_new */
6579 build_sched_domains(doms_new + i);
6580match2:
6581 ;
6582 }
6583
6584 /* Remember the new sched domains */
6585 if (doms_cur != &fallback_doms)
6586 kfree(doms_cur);
6587 doms_cur = doms_new;
6588 ndoms_cur = ndoms_new;
7378547f
MM
6589
6590 register_sched_domain_sysctl();
029190c5
PJ
6591}
6592
5c45bf27 6593#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6594static int arch_reinit_sched_domains(void)
5c45bf27
SS
6595{
6596 int err;
6597
5be9361c 6598 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6599 detach_destroy_domains(&cpu_online_map);
6600 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6601 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6602
6603 return err;
6604}
6605
6606static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6607{
6608 int ret;
6609
6610 if (buf[0] != '0' && buf[0] != '1')
6611 return -EINVAL;
6612
6613 if (smt)
6614 sched_smt_power_savings = (buf[0] == '1');
6615 else
6616 sched_mc_power_savings = (buf[0] == '1');
6617
6618 ret = arch_reinit_sched_domains();
6619
6620 return ret ? ret : count;
6621}
6622
5c45bf27
SS
6623#ifdef CONFIG_SCHED_MC
6624static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6625{
6626 return sprintf(page, "%u\n", sched_mc_power_savings);
6627}
48f24c4d
IM
6628static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6629 const char *buf, size_t count)
5c45bf27
SS
6630{
6631 return sched_power_savings_store(buf, count, 0);
6632}
6707de00
AB
6633static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6634 sched_mc_power_savings_store);
5c45bf27
SS
6635#endif
6636
6637#ifdef CONFIG_SCHED_SMT
6638static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6639{
6640 return sprintf(page, "%u\n", sched_smt_power_savings);
6641}
48f24c4d
IM
6642static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6643 const char *buf, size_t count)
5c45bf27
SS
6644{
6645 return sched_power_savings_store(buf, count, 1);
6646}
6707de00
AB
6647static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6648 sched_smt_power_savings_store);
6649#endif
6650
6651int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6652{
6653 int err = 0;
6654
6655#ifdef CONFIG_SCHED_SMT
6656 if (smt_capable())
6657 err = sysfs_create_file(&cls->kset.kobj,
6658 &attr_sched_smt_power_savings.attr);
6659#endif
6660#ifdef CONFIG_SCHED_MC
6661 if (!err && mc_capable())
6662 err = sysfs_create_file(&cls->kset.kobj,
6663 &attr_sched_mc_power_savings.attr);
6664#endif
6665 return err;
6666}
5c45bf27
SS
6667#endif
6668
1da177e4 6669/*
41a2d6cf 6670 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6671 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6672 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6673 * which will prevent rebalancing while the sched domains are recalculated.
6674 */
6675static int update_sched_domains(struct notifier_block *nfb,
6676 unsigned long action, void *hcpu)
6677{
1da177e4
LT
6678 switch (action) {
6679 case CPU_UP_PREPARE:
8bb78442 6680 case CPU_UP_PREPARE_FROZEN:
1da177e4 6681 case CPU_DOWN_PREPARE:
8bb78442 6682 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6683 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6684 return NOTIFY_OK;
6685
6686 case CPU_UP_CANCELED:
8bb78442 6687 case CPU_UP_CANCELED_FROZEN:
1da177e4 6688 case CPU_DOWN_FAILED:
8bb78442 6689 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6690 case CPU_ONLINE:
8bb78442 6691 case CPU_ONLINE_FROZEN:
1da177e4 6692 case CPU_DEAD:
8bb78442 6693 case CPU_DEAD_FROZEN:
1da177e4
LT
6694 /*
6695 * Fall through and re-initialise the domains.
6696 */
6697 break;
6698 default:
6699 return NOTIFY_DONE;
6700 }
6701
6702 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6703 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6704
6705 return NOTIFY_OK;
6706}
1da177e4
LT
6707
6708void __init sched_init_smp(void)
6709{
5c1e1767
NP
6710 cpumask_t non_isolated_cpus;
6711
5be9361c 6712 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6713 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6714 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6715 if (cpus_empty(non_isolated_cpus))
6716 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6717 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6718 /* XXX: Theoretical race here - CPU may be hotplugged now */
6719 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6720
6721 /* Move init over to a non-isolated CPU */
6722 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6723 BUG();
19978ca6 6724 sched_init_granularity();
1da177e4
LT
6725}
6726#else
6727void __init sched_init_smp(void)
6728{
19978ca6 6729 sched_init_granularity();
1da177e4
LT
6730}
6731#endif /* CONFIG_SMP */
6732
6733int in_sched_functions(unsigned long addr)
6734{
1da177e4
LT
6735 return in_lock_functions(addr) ||
6736 (addr >= (unsigned long)__sched_text_start
6737 && addr < (unsigned long)__sched_text_end);
6738}
6739
a9957449 6740static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6741{
6742 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6743#ifdef CONFIG_FAIR_GROUP_SCHED
6744 cfs_rq->rq = rq;
6745#endif
67e9fb2a 6746 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6747}
6748
1da177e4
LT
6749void __init sched_init(void)
6750{
476f3534 6751 int highest_cpu = 0;
dd41f596
IM
6752 int i, j;
6753
0a945022 6754 for_each_possible_cpu(i) {
dd41f596 6755 struct rt_prio_array *array;
70b97a7f 6756 struct rq *rq;
1da177e4
LT
6757
6758 rq = cpu_rq(i);
6759 spin_lock_init(&rq->lock);
fcb99371 6760 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6761 rq->nr_running = 0;
dd41f596
IM
6762 rq->clock = 1;
6763 init_cfs_rq(&rq->cfs, rq);
6764#ifdef CONFIG_FAIR_GROUP_SCHED
6765 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6766 {
6767 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6768 struct sched_entity *se =
6769 &per_cpu(init_sched_entity, i);
6770
6771 init_cfs_rq_p[i] = cfs_rq;
6772 init_cfs_rq(cfs_rq, rq);
4cf86d77 6773 cfs_rq->tg = &init_task_group;
3a252015 6774 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6775 &rq->leaf_cfs_rq_list);
6776
3a252015
IM
6777 init_sched_entity_p[i] = se;
6778 se->cfs_rq = &rq->cfs;
6779 se->my_q = cfs_rq;
4cf86d77 6780 se->load.weight = init_task_group_load;
9b5b7751 6781 se->load.inv_weight =
4cf86d77 6782 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6783 se->parent = NULL;
6784 }
4cf86d77 6785 init_task_group.shares = init_task_group_load;
5cb350ba 6786 spin_lock_init(&init_task_group.lock);
dd41f596 6787#endif
1da177e4 6788
dd41f596
IM
6789 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6790 rq->cpu_load[j] = 0;
1da177e4 6791#ifdef CONFIG_SMP
41c7ce9a 6792 rq->sd = NULL;
1da177e4 6793 rq->active_balance = 0;
dd41f596 6794 rq->next_balance = jiffies;
1da177e4 6795 rq->push_cpu = 0;
0a2966b4 6796 rq->cpu = i;
1da177e4
LT
6797 rq->migration_thread = NULL;
6798 INIT_LIST_HEAD(&rq->migration_queue);
6799#endif
6800 atomic_set(&rq->nr_iowait, 0);
6801
dd41f596
IM
6802 array = &rq->rt.active;
6803 for (j = 0; j < MAX_RT_PRIO; j++) {
6804 INIT_LIST_HEAD(array->queue + j);
6805 __clear_bit(j, array->bitmap);
1da177e4 6806 }
476f3534 6807 highest_cpu = i;
dd41f596
IM
6808 /* delimiter for bitsearch: */
6809 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6810 }
6811
2dd73a4f 6812 set_load_weight(&init_task);
b50f60ce 6813
e107be36
AK
6814#ifdef CONFIG_PREEMPT_NOTIFIERS
6815 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6816#endif
6817
c9819f45 6818#ifdef CONFIG_SMP
476f3534 6819 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6820 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6821#endif
6822
b50f60ce
HC
6823#ifdef CONFIG_RT_MUTEXES
6824 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6825#endif
6826
1da177e4
LT
6827 /*
6828 * The boot idle thread does lazy MMU switching as well:
6829 */
6830 atomic_inc(&init_mm.mm_count);
6831 enter_lazy_tlb(&init_mm, current);
6832
6833 /*
6834 * Make us the idle thread. Technically, schedule() should not be
6835 * called from this thread, however somewhere below it might be,
6836 * but because we are the idle thread, we just pick up running again
6837 * when this runqueue becomes "idle".
6838 */
6839 init_idle(current, smp_processor_id());
dd41f596
IM
6840 /*
6841 * During early bootup we pretend to be a normal task:
6842 */
6843 current->sched_class = &fair_sched_class;
1da177e4
LT
6844}
6845
6846#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6847void __might_sleep(char *file, int line)
6848{
48f24c4d 6849#ifdef in_atomic
1da177e4
LT
6850 static unsigned long prev_jiffy; /* ratelimiting */
6851
6852 if ((in_atomic() || irqs_disabled()) &&
6853 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6854 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6855 return;
6856 prev_jiffy = jiffies;
91368d73 6857 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6858 " context at %s:%d\n", file, line);
6859 printk("in_atomic():%d, irqs_disabled():%d\n",
6860 in_atomic(), irqs_disabled());
a4c410f0 6861 debug_show_held_locks(current);
3117df04
IM
6862 if (irqs_disabled())
6863 print_irqtrace_events(current);
1da177e4
LT
6864 dump_stack();
6865 }
6866#endif
6867}
6868EXPORT_SYMBOL(__might_sleep);
6869#endif
6870
6871#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6872static void normalize_task(struct rq *rq, struct task_struct *p)
6873{
6874 int on_rq;
6875 update_rq_clock(rq);
6876 on_rq = p->se.on_rq;
6877 if (on_rq)
6878 deactivate_task(rq, p, 0);
6879 __setscheduler(rq, p, SCHED_NORMAL, 0);
6880 if (on_rq) {
6881 activate_task(rq, p, 0);
6882 resched_task(rq->curr);
6883 }
6884}
6885
1da177e4
LT
6886void normalize_rt_tasks(void)
6887{
a0f98a1c 6888 struct task_struct *g, *p;
1da177e4 6889 unsigned long flags;
70b97a7f 6890 struct rq *rq;
1da177e4
LT
6891
6892 read_lock_irq(&tasklist_lock);
a0f98a1c 6893 do_each_thread(g, p) {
178be793
IM
6894 /*
6895 * Only normalize user tasks:
6896 */
6897 if (!p->mm)
6898 continue;
6899
6cfb0d5d 6900 p->se.exec_start = 0;
6cfb0d5d 6901#ifdef CONFIG_SCHEDSTATS
dd41f596 6902 p->se.wait_start = 0;
dd41f596 6903 p->se.sleep_start = 0;
dd41f596 6904 p->se.block_start = 0;
6cfb0d5d 6905#endif
dd41f596
IM
6906 task_rq(p)->clock = 0;
6907
6908 if (!rt_task(p)) {
6909 /*
6910 * Renice negative nice level userspace
6911 * tasks back to 0:
6912 */
6913 if (TASK_NICE(p) < 0 && p->mm)
6914 set_user_nice(p, 0);
1da177e4 6915 continue;
dd41f596 6916 }
1da177e4 6917
b29739f9
IM
6918 spin_lock_irqsave(&p->pi_lock, flags);
6919 rq = __task_rq_lock(p);
1da177e4 6920
178be793 6921 normalize_task(rq, p);
3a5e4dc1 6922
b29739f9
IM
6923 __task_rq_unlock(rq);
6924 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6925 } while_each_thread(g, p);
6926
1da177e4
LT
6927 read_unlock_irq(&tasklist_lock);
6928}
6929
6930#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6931
6932#ifdef CONFIG_IA64
6933/*
6934 * These functions are only useful for the IA64 MCA handling.
6935 *
6936 * They can only be called when the whole system has been
6937 * stopped - every CPU needs to be quiescent, and no scheduling
6938 * activity can take place. Using them for anything else would
6939 * be a serious bug, and as a result, they aren't even visible
6940 * under any other configuration.
6941 */
6942
6943/**
6944 * curr_task - return the current task for a given cpu.
6945 * @cpu: the processor in question.
6946 *
6947 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6948 */
36c8b586 6949struct task_struct *curr_task(int cpu)
1df5c10a
LT
6950{
6951 return cpu_curr(cpu);
6952}
6953
6954/**
6955 * set_curr_task - set the current task for a given cpu.
6956 * @cpu: the processor in question.
6957 * @p: the task pointer to set.
6958 *
6959 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6960 * are serviced on a separate stack. It allows the architecture to switch the
6961 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6962 * must be called with all CPU's synchronized, and interrupts disabled, the
6963 * and caller must save the original value of the current task (see
6964 * curr_task() above) and restore that value before reenabling interrupts and
6965 * re-starting the system.
6966 *
6967 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6968 */
36c8b586 6969void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6970{
6971 cpu_curr(cpu) = p;
6972}
6973
6974#endif
29f59db3
SV
6975
6976#ifdef CONFIG_FAIR_GROUP_SCHED
6977
29f59db3 6978/* allocate runqueue etc for a new task group */
4cf86d77 6979struct task_group *sched_create_group(void)
29f59db3 6980{
4cf86d77 6981 struct task_group *tg;
29f59db3
SV
6982 struct cfs_rq *cfs_rq;
6983 struct sched_entity *se;
9b5b7751 6984 struct rq *rq;
29f59db3
SV
6985 int i;
6986
29f59db3
SV
6987 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6988 if (!tg)
6989 return ERR_PTR(-ENOMEM);
6990
9b5b7751 6991 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6992 if (!tg->cfs_rq)
6993 goto err;
9b5b7751 6994 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6995 if (!tg->se)
6996 goto err;
6997
6998 for_each_possible_cpu(i) {
9b5b7751 6999 rq = cpu_rq(i);
29f59db3
SV
7000
7001 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7002 cpu_to_node(i));
7003 if (!cfs_rq)
7004 goto err;
7005
7006 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7007 cpu_to_node(i));
7008 if (!se)
7009 goto err;
7010
7011 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7012 memset(se, 0, sizeof(struct sched_entity));
7013
7014 tg->cfs_rq[i] = cfs_rq;
7015 init_cfs_rq(cfs_rq, rq);
7016 cfs_rq->tg = tg;
29f59db3
SV
7017
7018 tg->se[i] = se;
7019 se->cfs_rq = &rq->cfs;
7020 se->my_q = cfs_rq;
7021 se->load.weight = NICE_0_LOAD;
7022 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7023 se->parent = NULL;
7024 }
7025
9b5b7751
SV
7026 for_each_possible_cpu(i) {
7027 rq = cpu_rq(i);
7028 cfs_rq = tg->cfs_rq[i];
7029 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7030 }
29f59db3 7031
9b5b7751 7032 tg->shares = NICE_0_LOAD;
5cb350ba 7033 spin_lock_init(&tg->lock);
29f59db3 7034
9b5b7751 7035 return tg;
29f59db3
SV
7036
7037err:
7038 for_each_possible_cpu(i) {
a65914b3 7039 if (tg->cfs_rq)
29f59db3 7040 kfree(tg->cfs_rq[i]);
a65914b3 7041 if (tg->se)
29f59db3
SV
7042 kfree(tg->se[i]);
7043 }
a65914b3
IM
7044 kfree(tg->cfs_rq);
7045 kfree(tg->se);
7046 kfree(tg);
29f59db3
SV
7047
7048 return ERR_PTR(-ENOMEM);
7049}
7050
9b5b7751
SV
7051/* rcu callback to free various structures associated with a task group */
7052static void free_sched_group(struct rcu_head *rhp)
29f59db3 7053{
ae8393e5
SV
7054 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7055 struct cfs_rq *cfs_rq;
29f59db3
SV
7056 struct sched_entity *se;
7057 int i;
7058
29f59db3
SV
7059 /* now it should be safe to free those cfs_rqs */
7060 for_each_possible_cpu(i) {
7061 cfs_rq = tg->cfs_rq[i];
7062 kfree(cfs_rq);
7063
7064 se = tg->se[i];
7065 kfree(se);
7066 }
7067
7068 kfree(tg->cfs_rq);
7069 kfree(tg->se);
7070 kfree(tg);
7071}
7072
9b5b7751 7073/* Destroy runqueue etc associated with a task group */
4cf86d77 7074void sched_destroy_group(struct task_group *tg)
29f59db3 7075{
7bae49d4 7076 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7077 int i;
29f59db3 7078
9b5b7751
SV
7079 for_each_possible_cpu(i) {
7080 cfs_rq = tg->cfs_rq[i];
7081 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7082 }
7083
7bae49d4 7084 BUG_ON(!cfs_rq);
9b5b7751
SV
7085
7086 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7087 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7088}
7089
9b5b7751 7090/* change task's runqueue when it moves between groups.
3a252015
IM
7091 * The caller of this function should have put the task in its new group
7092 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7093 * reflect its new group.
9b5b7751
SV
7094 */
7095void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7096{
7097 int on_rq, running;
7098 unsigned long flags;
7099 struct rq *rq;
7100
7101 rq = task_rq_lock(tsk, &flags);
7102
dae51f56 7103 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7104 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7105 goto done;
dae51f56 7106 }
29f59db3
SV
7107
7108 update_rq_clock(rq);
7109
051a1d1a 7110 running = task_current(rq, tsk);
29f59db3
SV
7111 on_rq = tsk->se.on_rq;
7112
83b699ed 7113 if (on_rq) {
29f59db3 7114 dequeue_task(rq, tsk, 0);
83b699ed
SV
7115 if (unlikely(running))
7116 tsk->sched_class->put_prev_task(rq, tsk);
7117 }
29f59db3 7118
ce96b5ac 7119 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7120
83b699ed
SV
7121 if (on_rq) {
7122 if (unlikely(running))
7123 tsk->sched_class->set_curr_task(rq);
7074badb 7124 enqueue_task(rq, tsk, 0);
83b699ed 7125 }
29f59db3
SV
7126
7127done:
7128 task_rq_unlock(rq, &flags);
7129}
7130
7131static void set_se_shares(struct sched_entity *se, unsigned long shares)
7132{
7133 struct cfs_rq *cfs_rq = se->cfs_rq;
7134 struct rq *rq = cfs_rq->rq;
7135 int on_rq;
7136
7137 spin_lock_irq(&rq->lock);
7138
7139 on_rq = se->on_rq;
7140 if (on_rq)
7141 dequeue_entity(cfs_rq, se, 0);
7142
7143 se->load.weight = shares;
7144 se->load.inv_weight = div64_64((1ULL<<32), shares);
7145
7146 if (on_rq)
7147 enqueue_entity(cfs_rq, se, 0);
7148
7149 spin_unlock_irq(&rq->lock);
7150}
7151
4cf86d77 7152int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7153{
7154 int i;
29f59db3 7155
5cb350ba 7156 spin_lock(&tg->lock);
9b5b7751 7157 if (tg->shares == shares)
5cb350ba 7158 goto done;
29f59db3 7159
9b5b7751 7160 tg->shares = shares;
29f59db3 7161 for_each_possible_cpu(i)
9b5b7751 7162 set_se_shares(tg->se[i], shares);
29f59db3 7163
5cb350ba
DG
7164done:
7165 spin_unlock(&tg->lock);
9b5b7751 7166 return 0;
29f59db3
SV
7167}
7168
5cb350ba
DG
7169unsigned long sched_group_shares(struct task_group *tg)
7170{
7171 return tg->shares;
7172}
7173
3a252015 7174#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7175
7176#ifdef CONFIG_FAIR_CGROUP_SCHED
7177
7178/* return corresponding task_group object of a cgroup */
2b01dfe3 7179static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7180{
2b01dfe3
PM
7181 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7182 struct task_group, css);
68318b8e
SV
7183}
7184
7185static struct cgroup_subsys_state *
2b01dfe3 7186cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7187{
7188 struct task_group *tg;
7189
2b01dfe3 7190 if (!cgrp->parent) {
68318b8e 7191 /* This is early initialization for the top cgroup */
2b01dfe3 7192 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7193 return &init_task_group.css;
7194 }
7195
7196 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7197 if (cgrp->parent->parent)
68318b8e
SV
7198 return ERR_PTR(-EINVAL);
7199
7200 tg = sched_create_group();
7201 if (IS_ERR(tg))
7202 return ERR_PTR(-ENOMEM);
7203
7204 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7205 tg->css.cgroup = cgrp;
68318b8e
SV
7206
7207 return &tg->css;
7208}
7209
41a2d6cf
IM
7210static void
7211cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7212{
2b01dfe3 7213 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7214
7215 sched_destroy_group(tg);
7216}
7217
41a2d6cf
IM
7218static int
7219cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7220 struct task_struct *tsk)
68318b8e
SV
7221{
7222 /* We don't support RT-tasks being in separate groups */
7223 if (tsk->sched_class != &fair_sched_class)
7224 return -EINVAL;
7225
7226 return 0;
7227}
7228
7229static void
2b01dfe3 7230cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7231 struct cgroup *old_cont, struct task_struct *tsk)
7232{
7233 sched_move_task(tsk);
7234}
7235
2b01dfe3
PM
7236static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7237 u64 shareval)
68318b8e 7238{
2b01dfe3 7239 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7240}
7241
2b01dfe3 7242static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7243{
2b01dfe3 7244 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7245
7246 return (u64) tg->shares;
7247}
7248
fe5c7cc2
PM
7249static struct cftype cpu_files[] = {
7250 {
7251 .name = "shares",
7252 .read_uint = cpu_shares_read_uint,
7253 .write_uint = cpu_shares_write_uint,
7254 },
68318b8e
SV
7255};
7256
7257static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7258{
fe5c7cc2 7259 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7260}
7261
7262struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7263 .name = "cpu",
7264 .create = cpu_cgroup_create,
7265 .destroy = cpu_cgroup_destroy,
7266 .can_attach = cpu_cgroup_can_attach,
7267 .attach = cpu_cgroup_attach,
7268 .populate = cpu_cgroup_populate,
7269 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7270 .early_init = 1,
7271};
7272
7273#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7274
7275#ifdef CONFIG_CGROUP_CPUACCT
7276
7277/*
7278 * CPU accounting code for task groups.
7279 *
7280 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7281 * (balbir@in.ibm.com).
7282 */
7283
7284/* track cpu usage of a group of tasks */
7285struct cpuacct {
7286 struct cgroup_subsys_state css;
7287 /* cpuusage holds pointer to a u64-type object on every cpu */
7288 u64 *cpuusage;
7289};
7290
7291struct cgroup_subsys cpuacct_subsys;
7292
7293/* return cpu accounting group corresponding to this container */
7294static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7295{
7296 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7297 struct cpuacct, css);
7298}
7299
7300/* return cpu accounting group to which this task belongs */
7301static inline struct cpuacct *task_ca(struct task_struct *tsk)
7302{
7303 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7304 struct cpuacct, css);
7305}
7306
7307/* create a new cpu accounting group */
7308static struct cgroup_subsys_state *cpuacct_create(
7309 struct cgroup_subsys *ss, struct cgroup *cont)
7310{
7311 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7312
7313 if (!ca)
7314 return ERR_PTR(-ENOMEM);
7315
7316 ca->cpuusage = alloc_percpu(u64);
7317 if (!ca->cpuusage) {
7318 kfree(ca);
7319 return ERR_PTR(-ENOMEM);
7320 }
7321
7322 return &ca->css;
7323}
7324
7325/* destroy an existing cpu accounting group */
41a2d6cf
IM
7326static void
7327cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7328{
7329 struct cpuacct *ca = cgroup_ca(cont);
7330
7331 free_percpu(ca->cpuusage);
7332 kfree(ca);
7333}
7334
7335/* return total cpu usage (in nanoseconds) of a group */
7336static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7337{
7338 struct cpuacct *ca = cgroup_ca(cont);
7339 u64 totalcpuusage = 0;
7340 int i;
7341
7342 for_each_possible_cpu(i) {
7343 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7344
7345 /*
7346 * Take rq->lock to make 64-bit addition safe on 32-bit
7347 * platforms.
7348 */
7349 spin_lock_irq(&cpu_rq(i)->lock);
7350 totalcpuusage += *cpuusage;
7351 spin_unlock_irq(&cpu_rq(i)->lock);
7352 }
7353
7354 return totalcpuusage;
7355}
7356
7357static struct cftype files[] = {
7358 {
7359 .name = "usage",
7360 .read_uint = cpuusage_read,
7361 },
7362};
7363
7364static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7365{
7366 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7367}
7368
7369/*
7370 * charge this task's execution time to its accounting group.
7371 *
7372 * called with rq->lock held.
7373 */
7374static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7375{
7376 struct cpuacct *ca;
7377
7378 if (!cpuacct_subsys.active)
7379 return;
7380
7381 ca = task_ca(tsk);
7382 if (ca) {
7383 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7384
7385 *cpuusage += cputime;
7386 }
7387}
7388
7389struct cgroup_subsys cpuacct_subsys = {
7390 .name = "cpuacct",
7391 .create = cpuacct_create,
7392 .destroy = cpuacct_destroy,
7393 .populate = cpuacct_populate,
7394 .subsys_id = cpuacct_subsys_id,
7395};
7396#endif /* CONFIG_CGROUP_CPUACCT */