[PATCH] sched: sched_cacheflush is now unused
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
56#include <linux/syscalls.h>
57#include <linux/times.h>
8f0ab514 58#include <linux/tsacct_kern.h>
c6fd91f0 59#include <linux/kprobes.h>
0ff92245 60#include <linux/delayacct.h>
5517d86b 61#include <linux/reciprocal_div.h>
dff06c15 62#include <linux/unistd.h>
1da177e4 63
5517d86b 64#include <asm/tlb.h>
1da177e4 65
b035b6de
AD
66/*
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
70 */
71unsigned long long __attribute__((weak)) sched_clock(void)
72{
73 return (unsigned long long)jiffies * (1000000000 / HZ);
74}
75
1da177e4
LT
76/*
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
79 * and back.
80 */
81#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
84
85/*
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
89 */
90#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
93
94/*
95 * Some helpers for converting nanosecond timing to jiffy resolution
96 */
97#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
99
6aa645ea
IM
100#define NICE_0_LOAD SCHED_LOAD_SCALE
101#define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
1da177e4
LT
103/*
104 * These are the 'tuning knobs' of the scheduler:
105 *
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
109 */
110#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
5517d86b
ED
113#ifdef CONFIG_SMP
114/*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119{
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121}
122
123/*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128{
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131}
132#endif
133
634fa8c9
IM
134#define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
136
91fcdd4e 137/*
634fa8c9 138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 139 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 140 */
634fa8c9 141static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 142{
634fa8c9
IM
143 if (static_prio == NICE_TO_PRIO(19))
144 return 1;
145
146 if (static_prio < NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
148 else
149 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
150}
151
e05606d3
IM
152static inline int rt_policy(int policy)
153{
154 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
155 return 1;
156 return 0;
157}
158
159static inline int task_has_rt_policy(struct task_struct *p)
160{
161 return rt_policy(p->policy);
162}
163
1da177e4 164/*
6aa645ea 165 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 166 */
6aa645ea
IM
167struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
170};
171
172struct load_stat {
173 struct load_weight load;
174 u64 load_update_start, load_update_last;
175 unsigned long delta_fair, delta_exec, delta_stat;
176};
177
178/* CFS-related fields in a runqueue */
179struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
188
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
192#ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
198
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
202 *
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
205 */
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207#endif
208};
1da177e4 209
6aa645ea
IM
210/* Real-Time classes' related field in a runqueue: */
211struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215};
216
1da177e4
LT
217/*
218 * This is the main, per-CPU runqueue data structure.
219 *
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
223 */
70b97a7f 224struct rq {
6aa645ea 225 spinlock_t lock; /* runqueue lock */
1da177e4
LT
226
227 /*
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
230 */
231 unsigned long nr_running;
6aa645ea
IM
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 234 unsigned char idle_at_tick;
46cb4b7c
SS
235#ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237#endif
6aa645ea
IM
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
241
242 struct cfs_rq cfs;
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 245#endif
6aa645ea 246 struct rt_rq rt;
1da177e4
LT
247
248 /*
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
253 */
254 unsigned long nr_uninterruptible;
255
36c8b586 256 struct task_struct *curr, *idle;
c9819f45 257 unsigned long next_balance;
1da177e4 258 struct mm_struct *prev_mm;
6aa645ea 259
6aa645ea
IM
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
262
263 unsigned int clock_warps, clock_overflows;
264 unsigned int clock_unstable_events;
265
266 struct sched_class *load_balance_class;
267
1da177e4
LT
268 atomic_t nr_iowait;
269
270#ifdef CONFIG_SMP
271 struct sched_domain *sd;
272
273 /* For active balancing */
274 int active_balance;
275 int push_cpu;
0a2966b4 276 int cpu; /* cpu of this runqueue */
1da177e4 277
36c8b586 278 struct task_struct *migration_thread;
1da177e4
LT
279 struct list_head migration_queue;
280#endif
281
282#ifdef CONFIG_SCHEDSTATS
283 /* latency stats */
284 struct sched_info rq_sched_info;
285
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty;
288 unsigned long yld_act_empty;
289 unsigned long yld_both_empty;
290 unsigned long yld_cnt;
291
292 /* schedule() stats */
293 unsigned long sched_switch;
294 unsigned long sched_cnt;
295 unsigned long sched_goidle;
296
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt;
299 unsigned long ttwu_local;
300#endif
fcb99371 301 struct lock_class_key rq_lock_key;
1da177e4
LT
302};
303
f34e3b61 304static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 305static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 306
dd41f596
IM
307static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308{
309 rq->curr->sched_class->check_preempt_curr(rq, p);
310}
311
0a2966b4
CL
312static inline int cpu_of(struct rq *rq)
313{
314#ifdef CONFIG_SMP
315 return rq->cpu;
316#else
317 return 0;
318#endif
319}
320
20d315d4
IM
321/*
322 * Per-runqueue clock, as finegrained as the platform can give us:
323 */
324static unsigned long long __rq_clock(struct rq *rq)
325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
331 /*
332 * Protect against sched_clock() occasionally going backwards:
333 */
334 if (unlikely(delta < 0)) {
335 clock++;
336 rq->clock_warps++;
337 } else {
338 /*
339 * Catch too large forward jumps too:
340 */
341 if (unlikely(delta > 2*TICK_NSEC)) {
342 clock++;
343 rq->clock_overflows++;
344 } else {
345 if (unlikely(delta > rq->clock_max_delta))
346 rq->clock_max_delta = delta;
347 clock += delta;
348 }
349 }
350
351 rq->prev_clock_raw = now;
352 rq->clock = clock;
353
354 return clock;
355}
356
357static inline unsigned long long rq_clock(struct rq *rq)
358{
359 int this_cpu = smp_processor_id();
360
361 if (this_cpu == cpu_of(rq))
362 return __rq_clock(rq);
363
364 return rq->clock;
365}
366
674311d5
NP
367/*
368 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 369 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
370 *
371 * The domain tree of any CPU may only be accessed from within
372 * preempt-disabled sections.
373 */
48f24c4d
IM
374#define for_each_domain(cpu, __sd) \
375 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
376
377#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
378#define this_rq() (&__get_cpu_var(runqueues))
379#define task_rq(p) cpu_rq(task_cpu(p))
380#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
381
138a8aeb
IM
382#ifdef CONFIG_FAIR_GROUP_SCHED
383/* Change a task's ->cfs_rq if it moves across CPUs */
384static inline void set_task_cfs_rq(struct task_struct *p)
385{
386 p->se.cfs_rq = &task_rq(p)->cfs;
387}
388#else
389static inline void set_task_cfs_rq(struct task_struct *p)
390{
391}
392#endif
393
1da177e4 394#ifndef prepare_arch_switch
4866cde0
NP
395# define prepare_arch_switch(next) do { } while (0)
396#endif
397#ifndef finish_arch_switch
398# define finish_arch_switch(prev) do { } while (0)
399#endif
400
401#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 402static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
403{
404 return rq->curr == p;
405}
406
70b97a7f 407static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
408{
409}
410
70b97a7f 411static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 412{
da04c035
IM
413#ifdef CONFIG_DEBUG_SPINLOCK
414 /* this is a valid case when another task releases the spinlock */
415 rq->lock.owner = current;
416#endif
8a25d5de
IM
417 /*
418 * If we are tracking spinlock dependencies then we have to
419 * fix up the runqueue lock - which gets 'carried over' from
420 * prev into current:
421 */
422 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
423
4866cde0
NP
424 spin_unlock_irq(&rq->lock);
425}
426
427#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 428static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
429{
430#ifdef CONFIG_SMP
431 return p->oncpu;
432#else
433 return rq->curr == p;
434#endif
435}
436
70b97a7f 437static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
438{
439#ifdef CONFIG_SMP
440 /*
441 * We can optimise this out completely for !SMP, because the
442 * SMP rebalancing from interrupt is the only thing that cares
443 * here.
444 */
445 next->oncpu = 1;
446#endif
447#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
448 spin_unlock_irq(&rq->lock);
449#else
450 spin_unlock(&rq->lock);
451#endif
452}
453
70b97a7f 454static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
455{
456#ifdef CONFIG_SMP
457 /*
458 * After ->oncpu is cleared, the task can be moved to a different CPU.
459 * We must ensure this doesn't happen until the switch is completely
460 * finished.
461 */
462 smp_wmb();
463 prev->oncpu = 0;
464#endif
465#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
466 local_irq_enable();
1da177e4 467#endif
4866cde0
NP
468}
469#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 470
b29739f9
IM
471/*
472 * __task_rq_lock - lock the runqueue a given task resides on.
473 * Must be called interrupts disabled.
474 */
70b97a7f 475static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
476 __acquires(rq->lock)
477{
70b97a7f 478 struct rq *rq;
b29739f9
IM
479
480repeat_lock_task:
481 rq = task_rq(p);
482 spin_lock(&rq->lock);
483 if (unlikely(rq != task_rq(p))) {
484 spin_unlock(&rq->lock);
485 goto repeat_lock_task;
486 }
487 return rq;
488}
489
1da177e4
LT
490/*
491 * task_rq_lock - lock the runqueue a given task resides on and disable
492 * interrupts. Note the ordering: we can safely lookup the task_rq without
493 * explicitly disabling preemption.
494 */
70b97a7f 495static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
496 __acquires(rq->lock)
497{
70b97a7f 498 struct rq *rq;
1da177e4
LT
499
500repeat_lock_task:
501 local_irq_save(*flags);
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock_irqrestore(&rq->lock, *flags);
506 goto repeat_lock_task;
507 }
508 return rq;
509}
510
70b97a7f 511static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
512 __releases(rq->lock)
513{
514 spin_unlock(&rq->lock);
515}
516
70b97a7f 517static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
518 __releases(rq->lock)
519{
520 spin_unlock_irqrestore(&rq->lock, *flags);
521}
522
1da177e4 523/*
cc2a73b5 524 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 525 */
70b97a7f 526static inline struct rq *this_rq_lock(void)
1da177e4
LT
527 __acquires(rq->lock)
528{
70b97a7f 529 struct rq *rq;
1da177e4
LT
530
531 local_irq_disable();
532 rq = this_rq();
533 spin_lock(&rq->lock);
534
535 return rq;
536}
537
1b9f19c2
IM
538/*
539 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
540 */
541void sched_clock_unstable_event(void)
542{
543 unsigned long flags;
544 struct rq *rq;
545
546 rq = task_rq_lock(current, &flags);
547 rq->prev_clock_raw = sched_clock();
548 rq->clock_unstable_events++;
549 task_rq_unlock(rq, &flags);
550}
551
c24d20db
IM
552/*
553 * resched_task - mark a task 'to be rescheduled now'.
554 *
555 * On UP this means the setting of the need_resched flag, on SMP it
556 * might also involve a cross-CPU call to trigger the scheduler on
557 * the target CPU.
558 */
559#ifdef CONFIG_SMP
560
561#ifndef tsk_is_polling
562#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
563#endif
564
565static void resched_task(struct task_struct *p)
566{
567 int cpu;
568
569 assert_spin_locked(&task_rq(p)->lock);
570
571 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
572 return;
573
574 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
575
576 cpu = task_cpu(p);
577 if (cpu == smp_processor_id())
578 return;
579
580 /* NEED_RESCHED must be visible before we test polling */
581 smp_mb();
582 if (!tsk_is_polling(p))
583 smp_send_reschedule(cpu);
584}
585
586static void resched_cpu(int cpu)
587{
588 struct rq *rq = cpu_rq(cpu);
589 unsigned long flags;
590
591 if (!spin_trylock_irqsave(&rq->lock, flags))
592 return;
593 resched_task(cpu_curr(cpu));
594 spin_unlock_irqrestore(&rq->lock, flags);
595}
596#else
597static inline void resched_task(struct task_struct *p)
598{
599 assert_spin_locked(&task_rq(p)->lock);
600 set_tsk_need_resched(p);
601}
602#endif
603
45bf76df
IM
604static u64 div64_likely32(u64 divident, unsigned long divisor)
605{
606#if BITS_PER_LONG == 32
607 if (likely(divident <= 0xffffffffULL))
608 return (u32)divident / divisor;
609 do_div(divident, divisor);
610
611 return divident;
612#else
613 return divident / divisor;
614#endif
615}
616
617#if BITS_PER_LONG == 32
618# define WMULT_CONST (~0UL)
619#else
620# define WMULT_CONST (1UL << 32)
621#endif
622
623#define WMULT_SHIFT 32
624
625static inline unsigned long
626calc_delta_mine(unsigned long delta_exec, unsigned long weight,
627 struct load_weight *lw)
628{
629 u64 tmp;
630
631 if (unlikely(!lw->inv_weight))
632 lw->inv_weight = WMULT_CONST / lw->weight;
633
634 tmp = (u64)delta_exec * weight;
635 /*
636 * Check whether we'd overflow the 64-bit multiplication:
637 */
638 if (unlikely(tmp > WMULT_CONST)) {
639 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
640 >> (WMULT_SHIFT/2);
641 } else {
642 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
643 }
644
645 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
646}
647
648static inline unsigned long
649calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
650{
651 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
652}
653
654static void update_load_add(struct load_weight *lw, unsigned long inc)
655{
656 lw->weight += inc;
657 lw->inv_weight = 0;
658}
659
660static void update_load_sub(struct load_weight *lw, unsigned long dec)
661{
662 lw->weight -= dec;
663 lw->inv_weight = 0;
664}
665
666static void __update_curr_load(struct rq *rq, struct load_stat *ls)
667{
668 if (rq->curr != rq->idle && ls->load.weight) {
669 ls->delta_exec += ls->delta_stat;
670 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
671 ls->delta_stat = 0;
672 }
673}
674
675/*
676 * Update delta_exec, delta_fair fields for rq.
677 *
678 * delta_fair clock advances at a rate inversely proportional to
679 * total load (rq->ls.load.weight) on the runqueue, while
680 * delta_exec advances at the same rate as wall-clock (provided
681 * cpu is not idle).
682 *
683 * delta_exec / delta_fair is a measure of the (smoothened) load on this
684 * runqueue over any given interval. This (smoothened) load is used
685 * during load balance.
686 *
687 * This function is called /before/ updating rq->ls.load
688 * and when switching tasks.
689 */
690static void update_curr_load(struct rq *rq, u64 now)
691{
692 struct load_stat *ls = &rq->ls;
693 u64 start;
694
695 start = ls->load_update_start;
696 ls->load_update_start = now;
697 ls->delta_stat += now - start;
698 /*
699 * Stagger updates to ls->delta_fair. Very frequent updates
700 * can be expensive.
701 */
702 if (ls->delta_stat >= sysctl_sched_stat_granularity)
703 __update_curr_load(rq, ls);
704}
705
2dd73a4f
PW
706/*
707 * To aid in avoiding the subversion of "niceness" due to uneven distribution
708 * of tasks with abnormal "nice" values across CPUs the contribution that
709 * each task makes to its run queue's load is weighted according to its
710 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
711 * scaled version of the new time slice allocation that they receive on time
712 * slice expiry etc.
713 */
714
715/*
716 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
717 * If static_prio_timeslice() is ever changed to break this assumption then
718 * this code will need modification
719 */
720#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
dd41f596 721#define load_weight(lp) \
2dd73a4f
PW
722 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
723#define PRIO_TO_LOAD_WEIGHT(prio) \
dd41f596 724 load_weight(static_prio_timeslice(prio))
2dd73a4f 725#define RTPRIO_TO_LOAD_WEIGHT(rp) \
dd41f596
IM
726 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
727
728#define WEIGHT_IDLEPRIO 2
729#define WMULT_IDLEPRIO (1 << 31)
730
731/*
732 * Nice levels are multiplicative, with a gentle 10% change for every
733 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
734 * nice 1, it will get ~10% less CPU time than another CPU-bound task
735 * that remained on nice 0.
736 *
737 * The "10% effect" is relative and cumulative: from _any_ nice level,
738 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
739 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
740 * If a task goes up by ~10% and another task goes down by ~10% then
741 * the relative distance between them is ~25%.)
dd41f596
IM
742 */
743static const int prio_to_weight[40] = {
744/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
745/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
746/* 0 */ NICE_0_LOAD /* 1024 */,
747/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
748/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
749};
750
5714d2de
IM
751/*
752 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
753 *
754 * In cases where the weight does not change often, we can use the
755 * precalculated inverse to speed up arithmetics by turning divisions
756 * into multiplications:
757 */
dd41f596 758static const u32 prio_to_wmult[40] = {
e4af30be
IM
759/* -20 */ 48356, 60446, 75558, 94446, 118058,
760/* -15 */ 147573, 184467, 230589, 288233, 360285,
761/* -10 */ 450347, 562979, 703746, 879575, 1099582,
762/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
763/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
764/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
765/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
766/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 767};
2dd73a4f 768
36c8b586 769static inline void
dd41f596 770inc_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 771{
dd41f596
IM
772 update_curr_load(rq, now);
773 update_load_add(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
774}
775
36c8b586 776static inline void
dd41f596 777dec_load(struct rq *rq, const struct task_struct *p, u64 now)
2dd73a4f 778{
dd41f596
IM
779 update_curr_load(rq, now);
780 update_load_sub(&rq->ls.load, p->se.load.weight);
2dd73a4f
PW
781}
782
dd41f596 783static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
784{
785 rq->nr_running++;
dd41f596 786 inc_load(rq, p, now);
2dd73a4f
PW
787}
788
dd41f596 789static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
2dd73a4f
PW
790{
791 rq->nr_running--;
dd41f596 792 dec_load(rq, p, now);
2dd73a4f
PW
793}
794
dd41f596
IM
795static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
796
797/*
798 * runqueue iterator, to support SMP load-balancing between different
799 * scheduling classes, without having to expose their internal data
800 * structures to the load-balancing proper:
801 */
802struct rq_iterator {
803 void *arg;
804 struct task_struct *(*start)(void *);
805 struct task_struct *(*next)(void *);
806};
807
808static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
809 unsigned long max_nr_move, unsigned long max_load_move,
810 struct sched_domain *sd, enum cpu_idle_type idle,
811 int *all_pinned, unsigned long *load_moved,
812 int this_best_prio, int best_prio, int best_prio_seen,
813 struct rq_iterator *iterator);
814
815#include "sched_stats.h"
816#include "sched_rt.c"
817#include "sched_fair.c"
818#include "sched_idletask.c"
819#ifdef CONFIG_SCHED_DEBUG
820# include "sched_debug.c"
821#endif
822
823#define sched_class_highest (&rt_sched_class)
824
45bf76df
IM
825static void set_load_weight(struct task_struct *p)
826{
dd41f596
IM
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
829
45bf76df 830 if (task_has_rt_policy(p)) {
dd41f596
IM
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
834 }
45bf76df 835
dd41f596
IM
836 /*
837 * SCHED_IDLE tasks get minimal weight:
838 */
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
843 }
71f8bd46 844
dd41f596
IM
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
847}
848
dd41f596
IM
849static void
850enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
71f8bd46 851{
dd41f596
IM
852 sched_info_queued(p);
853 p->sched_class->enqueue_task(rq, p, wakeup, now);
854 p->se.on_rq = 1;
71f8bd46
IM
855}
856
dd41f596
IM
857static void
858dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
71f8bd46 859{
dd41f596
IM
860 p->sched_class->dequeue_task(rq, p, sleep, now);
861 p->se.on_rq = 0;
71f8bd46
IM
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
e05606d3 883 if (task_has_rt_policy(p))
b29739f9
IM
884 prio = MAX_RT_PRIO-1 - p->rt_priority;
885 else
886 prio = __normal_prio(p);
887 return prio;
888}
889
890/*
891 * Calculate the current priority, i.e. the priority
892 * taken into account by the scheduler. This value might
893 * be boosted by RT tasks, or might be boosted by
894 * interactivity modifiers. Will be RT if the task got
895 * RT-boosted. If not then it returns p->normal_prio.
896 */
36c8b586 897static int effective_prio(struct task_struct *p)
b29739f9
IM
898{
899 p->normal_prio = normal_prio(p);
900 /*
901 * If we are RT tasks or we were boosted to RT priority,
902 * keep the priority unchanged. Otherwise, update priority
903 * to the normal priority:
904 */
905 if (!rt_prio(p->prio))
906 return p->normal_prio;
907 return p->prio;
908}
909
1da177e4 910/*
dd41f596 911 * activate_task - move a task to the runqueue.
1da177e4 912 */
dd41f596 913static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 914{
dd41f596 915 u64 now = rq_clock(rq);
d425b274 916
dd41f596
IM
917 if (p->state == TASK_UNINTERRUPTIBLE)
918 rq->nr_uninterruptible--;
1da177e4 919
dd41f596
IM
920 enqueue_task(rq, p, wakeup, now);
921 inc_nr_running(p, rq, now);
1da177e4
LT
922}
923
924/*
dd41f596 925 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 926 */
dd41f596 927static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 928{
dd41f596 929 u64 now = rq_clock(rq);
1da177e4 930
dd41f596
IM
931 if (p->state == TASK_UNINTERRUPTIBLE)
932 rq->nr_uninterruptible--;
ece8a684 933
dd41f596
IM
934 enqueue_task(rq, p, 0, now);
935 inc_nr_running(p, rq, now);
1da177e4
LT
936}
937
938/*
939 * deactivate_task - remove a task from the runqueue.
940 */
dd41f596 941static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 942{
dd41f596
IM
943 u64 now = rq_clock(rq);
944
945 if (p->state == TASK_UNINTERRUPTIBLE)
946 rq->nr_uninterruptible++;
947
948 dequeue_task(rq, p, sleep, now);
949 dec_nr_running(p, rq, now);
1da177e4
LT
950}
951
1da177e4
LT
952/**
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
955 */
36c8b586 956inline int task_curr(const struct task_struct *p)
1da177e4
LT
957{
958 return cpu_curr(task_cpu(p)) == p;
959}
960
2dd73a4f
PW
961/* Used instead of source_load when we know the type == 0 */
962unsigned long weighted_cpuload(const int cpu)
963{
dd41f596
IM
964 return cpu_rq(cpu)->ls.load.weight;
965}
966
967static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
968{
969#ifdef CONFIG_SMP
970 task_thread_info(p)->cpu = cpu;
971 set_task_cfs_rq(p);
972#endif
2dd73a4f
PW
973}
974
1da177e4 975#ifdef CONFIG_SMP
c65cc870 976
dd41f596 977void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 978{
dd41f596
IM
979 int old_cpu = task_cpu(p);
980 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
981 u64 clock_offset, fair_clock_offset;
982
983 clock_offset = old_rq->clock - new_rq->clock;
984 fair_clock_offset = old_rq->cfs.fair_clock -
985 new_rq->cfs.fair_clock;
986 if (p->se.wait_start)
987 p->se.wait_start -= clock_offset;
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
990 if (p->se.sleep_start)
991 p->se.sleep_start -= clock_offset;
992 if (p->se.block_start)
993 p->se.block_start -= clock_offset;
994 if (p->se.sleep_start_fair)
995 p->se.sleep_start_fair -= fair_clock_offset;
996
997 __set_task_cpu(p, new_cpu);
c65cc870
IM
998}
999
70b97a7f 1000struct migration_req {
1da177e4 1001 struct list_head list;
1da177e4 1002
36c8b586 1003 struct task_struct *task;
1da177e4
LT
1004 int dest_cpu;
1005
1da177e4 1006 struct completion done;
70b97a7f 1007};
1da177e4
LT
1008
1009/*
1010 * The task's runqueue lock must be held.
1011 * Returns true if you have to wait for migration thread.
1012 */
36c8b586 1013static int
70b97a7f 1014migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1015{
70b97a7f 1016 struct rq *rq = task_rq(p);
1da177e4
LT
1017
1018 /*
1019 * If the task is not on a runqueue (and not running), then
1020 * it is sufficient to simply update the task's cpu field.
1021 */
dd41f596 1022 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1023 set_task_cpu(p, dest_cpu);
1024 return 0;
1025 }
1026
1027 init_completion(&req->done);
1da177e4
LT
1028 req->task = p;
1029 req->dest_cpu = dest_cpu;
1030 list_add(&req->list, &rq->migration_queue);
48f24c4d 1031
1da177e4
LT
1032 return 1;
1033}
1034
1035/*
1036 * wait_task_inactive - wait for a thread to unschedule.
1037 *
1038 * The caller must ensure that the task *will* unschedule sometime soon,
1039 * else this function might spin for a *long* time. This function can't
1040 * be called with interrupts off, or it may introduce deadlock with
1041 * smp_call_function() if an IPI is sent by the same process we are
1042 * waiting to become inactive.
1043 */
36c8b586 1044void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1045{
1046 unsigned long flags;
dd41f596 1047 int running, on_rq;
70b97a7f 1048 struct rq *rq;
1da177e4
LT
1049
1050repeat:
fa490cfd
LT
1051 /*
1052 * We do the initial early heuristics without holding
1053 * any task-queue locks at all. We'll only try to get
1054 * the runqueue lock when things look like they will
1055 * work out!
1056 */
1057 rq = task_rq(p);
1058
1059 /*
1060 * If the task is actively running on another CPU
1061 * still, just relax and busy-wait without holding
1062 * any locks.
1063 *
1064 * NOTE! Since we don't hold any locks, it's not
1065 * even sure that "rq" stays as the right runqueue!
1066 * But we don't care, since "task_running()" will
1067 * return false if the runqueue has changed and p
1068 * is actually now running somewhere else!
1069 */
1070 while (task_running(rq, p))
1071 cpu_relax();
1072
1073 /*
1074 * Ok, time to look more closely! We need the rq
1075 * lock now, to be *sure*. If we're wrong, we'll
1076 * just go back and repeat.
1077 */
1da177e4 1078 rq = task_rq_lock(p, &flags);
fa490cfd 1079 running = task_running(rq, p);
dd41f596 1080 on_rq = p->se.on_rq;
fa490cfd
LT
1081 task_rq_unlock(rq, &flags);
1082
1083 /*
1084 * Was it really running after all now that we
1085 * checked with the proper locks actually held?
1086 *
1087 * Oops. Go back and try again..
1088 */
1089 if (unlikely(running)) {
1da177e4 1090 cpu_relax();
1da177e4
LT
1091 goto repeat;
1092 }
fa490cfd
LT
1093
1094 /*
1095 * It's not enough that it's not actively running,
1096 * it must be off the runqueue _entirely_, and not
1097 * preempted!
1098 *
1099 * So if it wa still runnable (but just not actively
1100 * running right now), it's preempted, and we should
1101 * yield - it could be a while.
1102 */
dd41f596 1103 if (unlikely(on_rq)) {
fa490cfd
LT
1104 yield();
1105 goto repeat;
1106 }
1107
1108 /*
1109 * Ahh, all good. It wasn't running, and it wasn't
1110 * runnable, which means that it will never become
1111 * running in the future either. We're all done!
1112 */
1da177e4
LT
1113}
1114
1115/***
1116 * kick_process - kick a running thread to enter/exit the kernel
1117 * @p: the to-be-kicked thread
1118 *
1119 * Cause a process which is running on another CPU to enter
1120 * kernel-mode, without any delay. (to get signals handled.)
1121 *
1122 * NOTE: this function doesnt have to take the runqueue lock,
1123 * because all it wants to ensure is that the remote task enters
1124 * the kernel. If the IPI races and the task has been migrated
1125 * to another CPU then no harm is done and the purpose has been
1126 * achieved as well.
1127 */
36c8b586 1128void kick_process(struct task_struct *p)
1da177e4
LT
1129{
1130 int cpu;
1131
1132 preempt_disable();
1133 cpu = task_cpu(p);
1134 if ((cpu != smp_processor_id()) && task_curr(p))
1135 smp_send_reschedule(cpu);
1136 preempt_enable();
1137}
1138
1139/*
2dd73a4f
PW
1140 * Return a low guess at the load of a migration-source cpu weighted
1141 * according to the scheduling class and "nice" value.
1da177e4
LT
1142 *
1143 * We want to under-estimate the load of migration sources, to
1144 * balance conservatively.
1145 */
a2000572 1146static inline unsigned long source_load(int cpu, int type)
1da177e4 1147{
70b97a7f 1148 struct rq *rq = cpu_rq(cpu);
dd41f596 1149 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1150
3b0bd9bc 1151 if (type == 0)
dd41f596 1152 return total;
b910472d 1153
dd41f596 1154 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1155}
1156
1157/*
2dd73a4f
PW
1158 * Return a high guess at the load of a migration-target cpu weighted
1159 * according to the scheduling class and "nice" value.
1da177e4 1160 */
a2000572 1161static inline unsigned long target_load(int cpu, int type)
1da177e4 1162{
70b97a7f 1163 struct rq *rq = cpu_rq(cpu);
dd41f596 1164 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1165
7897986b 1166 if (type == 0)
dd41f596 1167 return total;
3b0bd9bc 1168
dd41f596 1169 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1170}
1171
1172/*
1173 * Return the average load per task on the cpu's run queue
1174 */
1175static inline unsigned long cpu_avg_load_per_task(int cpu)
1176{
70b97a7f 1177 struct rq *rq = cpu_rq(cpu);
dd41f596 1178 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1179 unsigned long n = rq->nr_running;
1180
dd41f596 1181 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1182}
1183
147cbb4b
NP
1184/*
1185 * find_idlest_group finds and returns the least busy CPU group within the
1186 * domain.
1187 */
1188static struct sched_group *
1189find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1190{
1191 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1192 unsigned long min_load = ULONG_MAX, this_load = 0;
1193 int load_idx = sd->forkexec_idx;
1194 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1195
1196 do {
1197 unsigned long load, avg_load;
1198 int local_group;
1199 int i;
1200
da5a5522
BD
1201 /* Skip over this group if it has no CPUs allowed */
1202 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1203 goto nextgroup;
1204
147cbb4b 1205 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1206
1207 /* Tally up the load of all CPUs in the group */
1208 avg_load = 0;
1209
1210 for_each_cpu_mask(i, group->cpumask) {
1211 /* Bias balancing toward cpus of our domain */
1212 if (local_group)
1213 load = source_load(i, load_idx);
1214 else
1215 load = target_load(i, load_idx);
1216
1217 avg_load += load;
1218 }
1219
1220 /* Adjust by relative CPU power of the group */
5517d86b
ED
1221 avg_load = sg_div_cpu_power(group,
1222 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1223
1224 if (local_group) {
1225 this_load = avg_load;
1226 this = group;
1227 } else if (avg_load < min_load) {
1228 min_load = avg_load;
1229 idlest = group;
1230 }
da5a5522 1231nextgroup:
147cbb4b
NP
1232 group = group->next;
1233 } while (group != sd->groups);
1234
1235 if (!idlest || 100*this_load < imbalance*min_load)
1236 return NULL;
1237 return idlest;
1238}
1239
1240/*
0feaece9 1241 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1242 */
95cdf3b7
IM
1243static int
1244find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1245{
da5a5522 1246 cpumask_t tmp;
147cbb4b
NP
1247 unsigned long load, min_load = ULONG_MAX;
1248 int idlest = -1;
1249 int i;
1250
da5a5522
BD
1251 /* Traverse only the allowed CPUs */
1252 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1253
1254 for_each_cpu_mask(i, tmp) {
2dd73a4f 1255 load = weighted_cpuload(i);
147cbb4b
NP
1256
1257 if (load < min_load || (load == min_load && i == this_cpu)) {
1258 min_load = load;
1259 idlest = i;
1260 }
1261 }
1262
1263 return idlest;
1264}
1265
476d139c
NP
1266/*
1267 * sched_balance_self: balance the current task (running on cpu) in domains
1268 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1269 * SD_BALANCE_EXEC.
1270 *
1271 * Balance, ie. select the least loaded group.
1272 *
1273 * Returns the target CPU number, or the same CPU if no balancing is needed.
1274 *
1275 * preempt must be disabled.
1276 */
1277static int sched_balance_self(int cpu, int flag)
1278{
1279 struct task_struct *t = current;
1280 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1281
c96d145e 1282 for_each_domain(cpu, tmp) {
9761eea8
IM
1283 /*
1284 * If power savings logic is enabled for a domain, stop there.
1285 */
5c45bf27
SS
1286 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1287 break;
476d139c
NP
1288 if (tmp->flags & flag)
1289 sd = tmp;
c96d145e 1290 }
476d139c
NP
1291
1292 while (sd) {
1293 cpumask_t span;
1294 struct sched_group *group;
1a848870
SS
1295 int new_cpu, weight;
1296
1297 if (!(sd->flags & flag)) {
1298 sd = sd->child;
1299 continue;
1300 }
476d139c
NP
1301
1302 span = sd->span;
1303 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1304 if (!group) {
1305 sd = sd->child;
1306 continue;
1307 }
476d139c 1308
da5a5522 1309 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1310 if (new_cpu == -1 || new_cpu == cpu) {
1311 /* Now try balancing at a lower domain level of cpu */
1312 sd = sd->child;
1313 continue;
1314 }
476d139c 1315
1a848870 1316 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1317 cpu = new_cpu;
476d139c
NP
1318 sd = NULL;
1319 weight = cpus_weight(span);
1320 for_each_domain(cpu, tmp) {
1321 if (weight <= cpus_weight(tmp->span))
1322 break;
1323 if (tmp->flags & flag)
1324 sd = tmp;
1325 }
1326 /* while loop will break here if sd == NULL */
1327 }
1328
1329 return cpu;
1330}
1331
1332#endif /* CONFIG_SMP */
1da177e4
LT
1333
1334/*
1335 * wake_idle() will wake a task on an idle cpu if task->cpu is
1336 * not idle and an idle cpu is available. The span of cpus to
1337 * search starts with cpus closest then further out as needed,
1338 * so we always favor a closer, idle cpu.
1339 *
1340 * Returns the CPU we should wake onto.
1341 */
1342#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1343static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1344{
1345 cpumask_t tmp;
1346 struct sched_domain *sd;
1347 int i;
1348
4953198b
SS
1349 /*
1350 * If it is idle, then it is the best cpu to run this task.
1351 *
1352 * This cpu is also the best, if it has more than one task already.
1353 * Siblings must be also busy(in most cases) as they didn't already
1354 * pickup the extra load from this cpu and hence we need not check
1355 * sibling runqueue info. This will avoid the checks and cache miss
1356 * penalities associated with that.
1357 */
1358 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1359 return cpu;
1360
1361 for_each_domain(cpu, sd) {
1362 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1363 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1364 for_each_cpu_mask(i, tmp) {
1365 if (idle_cpu(i))
1366 return i;
1367 }
9761eea8 1368 } else {
e0f364f4 1369 break;
9761eea8 1370 }
1da177e4
LT
1371 }
1372 return cpu;
1373}
1374#else
36c8b586 1375static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1376{
1377 return cpu;
1378}
1379#endif
1380
1381/***
1382 * try_to_wake_up - wake up a thread
1383 * @p: the to-be-woken-up thread
1384 * @state: the mask of task states that can be woken
1385 * @sync: do a synchronous wakeup?
1386 *
1387 * Put it on the run-queue if it's not already there. The "current"
1388 * thread is always on the run-queue (except when the actual
1389 * re-schedule is in progress), and as such you're allowed to do
1390 * the simpler "current->state = TASK_RUNNING" to mark yourself
1391 * runnable without the overhead of this.
1392 *
1393 * returns failure only if the task is already active.
1394 */
36c8b586 1395static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1396{
1397 int cpu, this_cpu, success = 0;
1398 unsigned long flags;
1399 long old_state;
70b97a7f 1400 struct rq *rq;
1da177e4 1401#ifdef CONFIG_SMP
7897986b 1402 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1403 unsigned long load, this_load;
1da177e4
LT
1404 int new_cpu;
1405#endif
1406
1407 rq = task_rq_lock(p, &flags);
1408 old_state = p->state;
1409 if (!(old_state & state))
1410 goto out;
1411
dd41f596 1412 if (p->se.on_rq)
1da177e4
LT
1413 goto out_running;
1414
1415 cpu = task_cpu(p);
1416 this_cpu = smp_processor_id();
1417
1418#ifdef CONFIG_SMP
1419 if (unlikely(task_running(rq, p)))
1420 goto out_activate;
1421
7897986b
NP
1422 new_cpu = cpu;
1423
1da177e4
LT
1424 schedstat_inc(rq, ttwu_cnt);
1425 if (cpu == this_cpu) {
1426 schedstat_inc(rq, ttwu_local);
7897986b
NP
1427 goto out_set_cpu;
1428 }
1429
1430 for_each_domain(this_cpu, sd) {
1431 if (cpu_isset(cpu, sd->span)) {
1432 schedstat_inc(sd, ttwu_wake_remote);
1433 this_sd = sd;
1434 break;
1da177e4
LT
1435 }
1436 }
1da177e4 1437
7897986b 1438 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1439 goto out_set_cpu;
1440
1da177e4 1441 /*
7897986b 1442 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1443 */
7897986b
NP
1444 if (this_sd) {
1445 int idx = this_sd->wake_idx;
1446 unsigned int imbalance;
1da177e4 1447
a3f21bce
NP
1448 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1449
7897986b
NP
1450 load = source_load(cpu, idx);
1451 this_load = target_load(this_cpu, idx);
1da177e4 1452
7897986b
NP
1453 new_cpu = this_cpu; /* Wake to this CPU if we can */
1454
a3f21bce
NP
1455 if (this_sd->flags & SD_WAKE_AFFINE) {
1456 unsigned long tl = this_load;
33859f7f
MOS
1457 unsigned long tl_per_task;
1458
1459 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1460
1da177e4 1461 /*
a3f21bce
NP
1462 * If sync wakeup then subtract the (maximum possible)
1463 * effect of the currently running task from the load
1464 * of the current CPU:
1da177e4 1465 */
a3f21bce 1466 if (sync)
dd41f596 1467 tl -= current->se.load.weight;
a3f21bce
NP
1468
1469 if ((tl <= load &&
2dd73a4f 1470 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1471 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1472 /*
1473 * This domain has SD_WAKE_AFFINE and
1474 * p is cache cold in this domain, and
1475 * there is no bad imbalance.
1476 */
1477 schedstat_inc(this_sd, ttwu_move_affine);
1478 goto out_set_cpu;
1479 }
1480 }
1481
1482 /*
1483 * Start passive balancing when half the imbalance_pct
1484 * limit is reached.
1485 */
1486 if (this_sd->flags & SD_WAKE_BALANCE) {
1487 if (imbalance*this_load <= 100*load) {
1488 schedstat_inc(this_sd, ttwu_move_balance);
1489 goto out_set_cpu;
1490 }
1da177e4
LT
1491 }
1492 }
1493
1494 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1495out_set_cpu:
1496 new_cpu = wake_idle(new_cpu, p);
1497 if (new_cpu != cpu) {
1498 set_task_cpu(p, new_cpu);
1499 task_rq_unlock(rq, &flags);
1500 /* might preempt at this point */
1501 rq = task_rq_lock(p, &flags);
1502 old_state = p->state;
1503 if (!(old_state & state))
1504 goto out;
dd41f596 1505 if (p->se.on_rq)
1da177e4
LT
1506 goto out_running;
1507
1508 this_cpu = smp_processor_id();
1509 cpu = task_cpu(p);
1510 }
1511
1512out_activate:
1513#endif /* CONFIG_SMP */
dd41f596 1514 activate_task(rq, p, 1);
1da177e4
LT
1515 /*
1516 * Sync wakeups (i.e. those types of wakeups where the waker
1517 * has indicated that it will leave the CPU in short order)
1518 * don't trigger a preemption, if the woken up task will run on
1519 * this cpu. (in this case the 'I will reschedule' promise of
1520 * the waker guarantees that the freshly woken up task is going
1521 * to be considered on this CPU.)
1522 */
dd41f596
IM
1523 if (!sync || cpu != this_cpu)
1524 check_preempt_curr(rq, p);
1da177e4
LT
1525 success = 1;
1526
1527out_running:
1528 p->state = TASK_RUNNING;
1529out:
1530 task_rq_unlock(rq, &flags);
1531
1532 return success;
1533}
1534
36c8b586 1535int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1536{
1537 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1538 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1539}
1da177e4
LT
1540EXPORT_SYMBOL(wake_up_process);
1541
36c8b586 1542int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1543{
1544 return try_to_wake_up(p, state, 0);
1545}
1546
1da177e4
LT
1547/*
1548 * Perform scheduler related setup for a newly forked process p.
1549 * p is forked by current.
dd41f596
IM
1550 *
1551 * __sched_fork() is basic setup used by init_idle() too:
1552 */
1553static void __sched_fork(struct task_struct *p)
1554{
1555 p->se.wait_start_fair = 0;
1556 p->se.wait_start = 0;
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.delta_exec = 0;
1560 p->se.delta_fair_run = 0;
1561 p->se.delta_fair_sleep = 0;
1562 p->se.wait_runtime = 0;
1563 p->se.sum_wait_runtime = 0;
1564 p->se.sum_sleep_runtime = 0;
1565 p->se.sleep_start = 0;
1566 p->se.sleep_start_fair = 0;
1567 p->se.block_start = 0;
1568 p->se.sleep_max = 0;
1569 p->se.block_max = 0;
1570 p->se.exec_max = 0;
1571 p->se.wait_max = 0;
1572 p->se.wait_runtime_overruns = 0;
1573 p->se.wait_runtime_underruns = 0;
476d139c 1574
dd41f596
IM
1575 INIT_LIST_HEAD(&p->run_list);
1576 p->se.on_rq = 0;
476d139c 1577
1da177e4
LT
1578 /*
1579 * We mark the process as running here, but have not actually
1580 * inserted it onto the runqueue yet. This guarantees that
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
1584 p->state = TASK_RUNNING;
dd41f596
IM
1585}
1586
1587/*
1588 * fork()/clone()-time setup:
1589 */
1590void sched_fork(struct task_struct *p, int clone_flags)
1591{
1592 int cpu = get_cpu();
1593
1594 __sched_fork(p);
1595
1596#ifdef CONFIG_SMP
1597 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1598#endif
1599 __set_task_cpu(p, cpu);
b29739f9
IM
1600
1601 /*
1602 * Make sure we do not leak PI boosting priority to the child:
1603 */
1604 p->prio = current->normal_prio;
1605
52f17b6c 1606#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1607 if (likely(sched_info_on()))
52f17b6c 1608 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1609#endif
d6077cb8 1610#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1611 p->oncpu = 0;
1612#endif
1da177e4 1613#ifdef CONFIG_PREEMPT
4866cde0 1614 /* Want to start with kernel preemption disabled. */
a1261f54 1615 task_thread_info(p)->preempt_count = 1;
1da177e4 1616#endif
476d139c 1617 put_cpu();
1da177e4
LT
1618}
1619
dd41f596
IM
1620/*
1621 * After fork, child runs first. (default) If set to 0 then
1622 * parent will (try to) run first.
1623 */
1624unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1625
1da177e4
LT
1626/*
1627 * wake_up_new_task - wake up a newly created task for the first time.
1628 *
1629 * This function will do some initial scheduler statistics housekeeping
1630 * that must be done for every newly created context, then puts the task
1631 * on the runqueue and wakes it.
1632 */
36c8b586 1633void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1634{
1635 unsigned long flags;
dd41f596
IM
1636 struct rq *rq;
1637 int this_cpu;
1da177e4
LT
1638
1639 rq = task_rq_lock(p, &flags);
147cbb4b 1640 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1641 this_cpu = smp_processor_id(); /* parent's CPU */
1da177e4
LT
1642
1643 p->prio = effective_prio(p);
1644
dd41f596
IM
1645 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1646 task_cpu(p) != this_cpu || !current->se.on_rq) {
1647 activate_task(rq, p, 0);
1da177e4 1648 } else {
1da177e4 1649 /*
dd41f596
IM
1650 * Let the scheduling class do new task startup
1651 * management (if any):
1da177e4 1652 */
dd41f596 1653 p->sched_class->task_new(rq, p);
1da177e4 1654 }
dd41f596
IM
1655 check_preempt_curr(rq, p);
1656 task_rq_unlock(rq, &flags);
1da177e4
LT
1657}
1658
4866cde0
NP
1659/**
1660 * prepare_task_switch - prepare to switch tasks
1661 * @rq: the runqueue preparing to switch
1662 * @next: the task we are going to switch to.
1663 *
1664 * This is called with the rq lock held and interrupts off. It must
1665 * be paired with a subsequent finish_task_switch after the context
1666 * switch.
1667 *
1668 * prepare_task_switch sets up locking and calls architecture specific
1669 * hooks.
1670 */
70b97a7f 1671static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1672{
1673 prepare_lock_switch(rq, next);
1674 prepare_arch_switch(next);
1675}
1676
1da177e4
LT
1677/**
1678 * finish_task_switch - clean up after a task-switch
344babaa 1679 * @rq: runqueue associated with task-switch
1da177e4
LT
1680 * @prev: the thread we just switched away from.
1681 *
4866cde0
NP
1682 * finish_task_switch must be called after the context switch, paired
1683 * with a prepare_task_switch call before the context switch.
1684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1685 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1686 *
1687 * Note that we may have delayed dropping an mm in context_switch(). If
1688 * so, we finish that here outside of the runqueue lock. (Doing it
1689 * with the lock held can cause deadlocks; see schedule() for
1690 * details.)
1691 */
70b97a7f 1692static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1693 __releases(rq->lock)
1694{
1da177e4 1695 struct mm_struct *mm = rq->prev_mm;
55a101f8 1696 long prev_state;
1da177e4
LT
1697
1698 rq->prev_mm = NULL;
1699
1700 /*
1701 * A task struct has one reference for the use as "current".
c394cc9f 1702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1703 * schedule one last time. The schedule call will never return, and
1704 * the scheduled task must drop that reference.
c394cc9f 1705 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1706 * still held, otherwise prev could be scheduled on another cpu, die
1707 * there before we look at prev->state, and then the reference would
1708 * be dropped twice.
1709 * Manfred Spraul <manfred@colorfullife.com>
1710 */
55a101f8 1711 prev_state = prev->state;
4866cde0
NP
1712 finish_arch_switch(prev);
1713 finish_lock_switch(rq, prev);
1da177e4
LT
1714 if (mm)
1715 mmdrop(mm);
c394cc9f 1716 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1717 /*
1718 * Remove function-return probe instances associated with this
1719 * task and put them back on the free list.
9761eea8 1720 */
c6fd91f0 1721 kprobe_flush_task(prev);
1da177e4 1722 put_task_struct(prev);
c6fd91f0 1723 }
1da177e4
LT
1724}
1725
1726/**
1727 * schedule_tail - first thing a freshly forked thread must call.
1728 * @prev: the thread we just switched away from.
1729 */
36c8b586 1730asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1731 __releases(rq->lock)
1732{
70b97a7f
IM
1733 struct rq *rq = this_rq();
1734
4866cde0
NP
1735 finish_task_switch(rq, prev);
1736#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1737 /* In this case, finish_task_switch does not reenable preemption */
1738 preempt_enable();
1739#endif
1da177e4
LT
1740 if (current->set_child_tid)
1741 put_user(current->pid, current->set_child_tid);
1742}
1743
1744/*
1745 * context_switch - switch to the new MM and the new
1746 * thread's register state.
1747 */
dd41f596 1748static inline void
70b97a7f 1749context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1750 struct task_struct *next)
1da177e4 1751{
dd41f596 1752 struct mm_struct *mm, *oldmm;
1da177e4 1753
dd41f596
IM
1754 prepare_task_switch(rq, next);
1755 mm = next->mm;
1756 oldmm = prev->active_mm;
9226d125
ZA
1757 /*
1758 * For paravirt, this is coupled with an exit in switch_to to
1759 * combine the page table reload and the switch backend into
1760 * one hypercall.
1761 */
1762 arch_enter_lazy_cpu_mode();
1763
dd41f596 1764 if (unlikely(!mm)) {
1da177e4
LT
1765 next->active_mm = oldmm;
1766 atomic_inc(&oldmm->mm_count);
1767 enter_lazy_tlb(oldmm, next);
1768 } else
1769 switch_mm(oldmm, mm, next);
1770
dd41f596 1771 if (unlikely(!prev->mm)) {
1da177e4 1772 prev->active_mm = NULL;
1da177e4
LT
1773 rq->prev_mm = oldmm;
1774 }
3a5f5e48
IM
1775 /*
1776 * Since the runqueue lock will be released by the next
1777 * task (which is an invalid locking op but in the case
1778 * of the scheduler it's an obvious special-case), so we
1779 * do an early lockdep release here:
1780 */
1781#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1782 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1783#endif
1da177e4
LT
1784
1785 /* Here we just switch the register state and the stack. */
1786 switch_to(prev, next, prev);
1787
dd41f596
IM
1788 barrier();
1789 /*
1790 * this_rq must be evaluated again because prev may have moved
1791 * CPUs since it called schedule(), thus the 'rq' on its stack
1792 * frame will be invalid.
1793 */
1794 finish_task_switch(this_rq(), prev);
1da177e4
LT
1795}
1796
1797/*
1798 * nr_running, nr_uninterruptible and nr_context_switches:
1799 *
1800 * externally visible scheduler statistics: current number of runnable
1801 * threads, current number of uninterruptible-sleeping threads, total
1802 * number of context switches performed since bootup.
1803 */
1804unsigned long nr_running(void)
1805{
1806 unsigned long i, sum = 0;
1807
1808 for_each_online_cpu(i)
1809 sum += cpu_rq(i)->nr_running;
1810
1811 return sum;
1812}
1813
1814unsigned long nr_uninterruptible(void)
1815{
1816 unsigned long i, sum = 0;
1817
0a945022 1818 for_each_possible_cpu(i)
1da177e4
LT
1819 sum += cpu_rq(i)->nr_uninterruptible;
1820
1821 /*
1822 * Since we read the counters lockless, it might be slightly
1823 * inaccurate. Do not allow it to go below zero though:
1824 */
1825 if (unlikely((long)sum < 0))
1826 sum = 0;
1827
1828 return sum;
1829}
1830
1831unsigned long long nr_context_switches(void)
1832{
cc94abfc
SR
1833 int i;
1834 unsigned long long sum = 0;
1da177e4 1835
0a945022 1836 for_each_possible_cpu(i)
1da177e4
LT
1837 sum += cpu_rq(i)->nr_switches;
1838
1839 return sum;
1840}
1841
1842unsigned long nr_iowait(void)
1843{
1844 unsigned long i, sum = 0;
1845
0a945022 1846 for_each_possible_cpu(i)
1da177e4
LT
1847 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1848
1849 return sum;
1850}
1851
db1b1fef
JS
1852unsigned long nr_active(void)
1853{
1854 unsigned long i, running = 0, uninterruptible = 0;
1855
1856 for_each_online_cpu(i) {
1857 running += cpu_rq(i)->nr_running;
1858 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1859 }
1860
1861 if (unlikely((long)uninterruptible < 0))
1862 uninterruptible = 0;
1863
1864 return running + uninterruptible;
1865}
1866
48f24c4d 1867/*
dd41f596
IM
1868 * Update rq->cpu_load[] statistics. This function is usually called every
1869 * scheduler tick (TICK_NSEC).
48f24c4d 1870 */
dd41f596 1871static void update_cpu_load(struct rq *this_rq)
48f24c4d 1872{
dd41f596
IM
1873 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1874 unsigned long total_load = this_rq->ls.load.weight;
1875 unsigned long this_load = total_load;
1876 struct load_stat *ls = &this_rq->ls;
1877 u64 now = __rq_clock(this_rq);
1878 int i, scale;
1879
1880 this_rq->nr_load_updates++;
1881 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1882 goto do_avg;
1883
1884 /* Update delta_fair/delta_exec fields first */
1885 update_curr_load(this_rq, now);
1886
1887 fair_delta64 = ls->delta_fair + 1;
1888 ls->delta_fair = 0;
1889
1890 exec_delta64 = ls->delta_exec + 1;
1891 ls->delta_exec = 0;
1892
1893 sample_interval64 = now - ls->load_update_last;
1894 ls->load_update_last = now;
1895
1896 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1897 sample_interval64 = TICK_NSEC;
1898
1899 if (exec_delta64 > sample_interval64)
1900 exec_delta64 = sample_interval64;
1901
1902 idle_delta64 = sample_interval64 - exec_delta64;
1903
1904 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1905 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1906
1907 this_load = (unsigned long)tmp64;
1908
1909do_avg:
1910
1911 /* Update our load: */
1912 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1913 unsigned long old_load, new_load;
1914
1915 /* scale is effectively 1 << i now, and >> i divides by scale */
1916
1917 old_load = this_rq->cpu_load[i];
1918 new_load = this_load;
1919
1920 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1921 }
48f24c4d
IM
1922}
1923
dd41f596
IM
1924#ifdef CONFIG_SMP
1925
1da177e4
LT
1926/*
1927 * double_rq_lock - safely lock two runqueues
1928 *
1929 * Note this does not disable interrupts like task_rq_lock,
1930 * you need to do so manually before calling.
1931 */
70b97a7f 1932static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1933 __acquires(rq1->lock)
1934 __acquires(rq2->lock)
1935{
054b9108 1936 BUG_ON(!irqs_disabled());
1da177e4
LT
1937 if (rq1 == rq2) {
1938 spin_lock(&rq1->lock);
1939 __acquire(rq2->lock); /* Fake it out ;) */
1940 } else {
c96d145e 1941 if (rq1 < rq2) {
1da177e4
LT
1942 spin_lock(&rq1->lock);
1943 spin_lock(&rq2->lock);
1944 } else {
1945 spin_lock(&rq2->lock);
1946 spin_lock(&rq1->lock);
1947 }
1948 }
1949}
1950
1951/*
1952 * double_rq_unlock - safely unlock two runqueues
1953 *
1954 * Note this does not restore interrupts like task_rq_unlock,
1955 * you need to do so manually after calling.
1956 */
70b97a7f 1957static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1958 __releases(rq1->lock)
1959 __releases(rq2->lock)
1960{
1961 spin_unlock(&rq1->lock);
1962 if (rq1 != rq2)
1963 spin_unlock(&rq2->lock);
1964 else
1965 __release(rq2->lock);
1966}
1967
1968/*
1969 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1970 */
70b97a7f 1971static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1972 __releases(this_rq->lock)
1973 __acquires(busiest->lock)
1974 __acquires(this_rq->lock)
1975{
054b9108
KK
1976 if (unlikely(!irqs_disabled())) {
1977 /* printk() doesn't work good under rq->lock */
1978 spin_unlock(&this_rq->lock);
1979 BUG_ON(1);
1980 }
1da177e4 1981 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 1982 if (busiest < this_rq) {
1da177e4
LT
1983 spin_unlock(&this_rq->lock);
1984 spin_lock(&busiest->lock);
1985 spin_lock(&this_rq->lock);
1986 } else
1987 spin_lock(&busiest->lock);
1988 }
1989}
1990
1da177e4
LT
1991/*
1992 * If dest_cpu is allowed for this process, migrate the task to it.
1993 * This is accomplished by forcing the cpu_allowed mask to only
1994 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1995 * the cpu_allowed mask is restored.
1996 */
36c8b586 1997static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 1998{
70b97a7f 1999 struct migration_req req;
1da177e4 2000 unsigned long flags;
70b97a7f 2001 struct rq *rq;
1da177e4
LT
2002
2003 rq = task_rq_lock(p, &flags);
2004 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2005 || unlikely(cpu_is_offline(dest_cpu)))
2006 goto out;
2007
2008 /* force the process onto the specified CPU */
2009 if (migrate_task(p, dest_cpu, &req)) {
2010 /* Need to wait for migration thread (might exit: take ref). */
2011 struct task_struct *mt = rq->migration_thread;
36c8b586 2012
1da177e4
LT
2013 get_task_struct(mt);
2014 task_rq_unlock(rq, &flags);
2015 wake_up_process(mt);
2016 put_task_struct(mt);
2017 wait_for_completion(&req.done);
36c8b586 2018
1da177e4
LT
2019 return;
2020 }
2021out:
2022 task_rq_unlock(rq, &flags);
2023}
2024
2025/*
476d139c
NP
2026 * sched_exec - execve() is a valuable balancing opportunity, because at
2027 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2028 */
2029void sched_exec(void)
2030{
1da177e4 2031 int new_cpu, this_cpu = get_cpu();
476d139c 2032 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2033 put_cpu();
476d139c
NP
2034 if (new_cpu != this_cpu)
2035 sched_migrate_task(current, new_cpu);
1da177e4
LT
2036}
2037
2038/*
2039 * pull_task - move a task from a remote runqueue to the local runqueue.
2040 * Both runqueues must be locked.
2041 */
dd41f596
IM
2042static void pull_task(struct rq *src_rq, struct task_struct *p,
2043 struct rq *this_rq, int this_cpu)
1da177e4 2044{
dd41f596 2045 deactivate_task(src_rq, p, 0);
1da177e4 2046 set_task_cpu(p, this_cpu);
dd41f596 2047 activate_task(this_rq, p, 0);
1da177e4
LT
2048 /*
2049 * Note that idle threads have a prio of MAX_PRIO, for this test
2050 * to be always true for them.
2051 */
dd41f596 2052 check_preempt_curr(this_rq, p);
1da177e4
LT
2053}
2054
2055/*
2056 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2057 */
858119e1 2058static
70b97a7f 2059int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2060 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2061 int *all_pinned)
1da177e4
LT
2062{
2063 /*
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2068 */
1da177e4
LT
2069 if (!cpu_isset(this_cpu, p->cpus_allowed))
2070 return 0;
81026794
NP
2071 *all_pinned = 0;
2072
2073 if (task_running(rq, p))
2074 return 0;
1da177e4
LT
2075
2076 /*
dd41f596 2077 * Aggressive migration if too many balance attempts have failed:
1da177e4 2078 */
dd41f596 2079 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2080 return 1;
2081
1da177e4
LT
2082 return 1;
2083}
2084
dd41f596 2085static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2086 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2087 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596
IM
2088 int *all_pinned, unsigned long *load_moved,
2089 int this_best_prio, int best_prio, int best_prio_seen,
2090 struct rq_iterator *iterator)
1da177e4 2091{
dd41f596
IM
2092 int pulled = 0, pinned = 0, skip_for_load;
2093 struct task_struct *p;
2094 long rem_load_move = max_load_move;
1da177e4 2095
2dd73a4f 2096 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2097 goto out;
2098
81026794
NP
2099 pinned = 1;
2100
1da177e4 2101 /*
dd41f596 2102 * Start the load-balancing iterator:
1da177e4 2103 */
dd41f596
IM
2104 p = iterator->start(iterator->arg);
2105next:
2106 if (!p)
1da177e4 2107 goto out;
50ddd969
PW
2108 /*
2109 * To help distribute high priority tasks accross CPUs we don't
2110 * skip a task if it will be the highest priority task (i.e. smallest
2111 * prio value) on its new queue regardless of its load weight
2112 */
dd41f596
IM
2113 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2114 SCHED_LOAD_SCALE_FUZZ;
2115 if (skip_for_load && p->prio < this_best_prio)
2116 skip_for_load = !best_prio_seen && p->prio == best_prio;
615052dc 2117 if (skip_for_load ||
dd41f596 2118 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d 2119
dd41f596
IM
2120 best_prio_seen |= p->prio == best_prio;
2121 p = iterator->next(iterator->arg);
2122 goto next;
1da177e4
LT
2123 }
2124
dd41f596 2125 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2126 pulled++;
dd41f596 2127 rem_load_move -= p->se.load.weight;
1da177e4 2128
2dd73a4f
PW
2129 /*
2130 * We only want to steal up to the prescribed number of tasks
2131 * and the prescribed amount of weighted load.
2132 */
2133 if (pulled < max_nr_move && rem_load_move > 0) {
dd41f596
IM
2134 if (p->prio < this_best_prio)
2135 this_best_prio = p->prio;
2136 p = iterator->next(iterator->arg);
2137 goto next;
1da177e4
LT
2138 }
2139out:
2140 /*
2141 * Right now, this is the only place pull_task() is called,
2142 * so we can safely collect pull_task() stats here rather than
2143 * inside pull_task().
2144 */
2145 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2146
2147 if (all_pinned)
2148 *all_pinned = pinned;
dd41f596 2149 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2150 return pulled;
2151}
2152
dd41f596
IM
2153/*
2154 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2155 * load from busiest to this_rq, as part of a balancing operation within
2156 * "domain". Returns the number of tasks moved.
2157 *
2158 * Called with both runqueues locked.
2159 */
2160static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2161 unsigned long max_nr_move, unsigned long max_load_move,
2162 struct sched_domain *sd, enum cpu_idle_type idle,
2163 int *all_pinned)
2164{
2165 struct sched_class *class = sched_class_highest;
2166 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2167 long rem_load_move = max_load_move;
2168
2169 do {
2170 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2171 max_nr_move, (unsigned long)rem_load_move,
2172 sd, idle, all_pinned, &load_moved);
2173 total_nr_moved += nr_moved;
2174 max_nr_move -= nr_moved;
2175 rem_load_move -= load_moved;
2176 class = class->next;
2177 } while (class && max_nr_move && rem_load_move > 0);
2178
2179 return total_nr_moved;
2180}
2181
1da177e4
LT
2182/*
2183 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2184 * domain. It calculates and returns the amount of weighted load which
2185 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2186 */
2187static struct sched_group *
2188find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2189 unsigned long *imbalance, enum cpu_idle_type idle,
2190 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2191{
2192 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2194 unsigned long max_pull;
2dd73a4f
PW
2195 unsigned long busiest_load_per_task, busiest_nr_running;
2196 unsigned long this_load_per_task, this_nr_running;
7897986b 2197 int load_idx;
5c45bf27
SS
2198#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2199 int power_savings_balance = 1;
2200 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2201 unsigned long min_nr_running = ULONG_MAX;
2202 struct sched_group *group_min = NULL, *group_leader = NULL;
2203#endif
1da177e4
LT
2204
2205 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2206 busiest_load_per_task = busiest_nr_running = 0;
2207 this_load_per_task = this_nr_running = 0;
d15bcfdb 2208 if (idle == CPU_NOT_IDLE)
7897986b 2209 load_idx = sd->busy_idx;
d15bcfdb 2210 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2211 load_idx = sd->newidle_idx;
2212 else
2213 load_idx = sd->idle_idx;
1da177e4
LT
2214
2215 do {
5c45bf27 2216 unsigned long load, group_capacity;
1da177e4
LT
2217 int local_group;
2218 int i;
783609c6 2219 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2220 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2221
2222 local_group = cpu_isset(this_cpu, group->cpumask);
2223
783609c6
SS
2224 if (local_group)
2225 balance_cpu = first_cpu(group->cpumask);
2226
1da177e4 2227 /* Tally up the load of all CPUs in the group */
2dd73a4f 2228 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2229
2230 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2231 struct rq *rq;
2232
2233 if (!cpu_isset(i, *cpus))
2234 continue;
2235
2236 rq = cpu_rq(i);
2dd73a4f 2237
5969fe06
NP
2238 if (*sd_idle && !idle_cpu(i))
2239 *sd_idle = 0;
2240
1da177e4 2241 /* Bias balancing toward cpus of our domain */
783609c6
SS
2242 if (local_group) {
2243 if (idle_cpu(i) && !first_idle_cpu) {
2244 first_idle_cpu = 1;
2245 balance_cpu = i;
2246 }
2247
a2000572 2248 load = target_load(i, load_idx);
783609c6 2249 } else
a2000572 2250 load = source_load(i, load_idx);
1da177e4
LT
2251
2252 avg_load += load;
2dd73a4f 2253 sum_nr_running += rq->nr_running;
dd41f596 2254 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2255 }
2256
783609c6
SS
2257 /*
2258 * First idle cpu or the first cpu(busiest) in this sched group
2259 * is eligible for doing load balancing at this and above
2260 * domains.
2261 */
2262 if (local_group && balance_cpu != this_cpu && balance) {
2263 *balance = 0;
2264 goto ret;
2265 }
2266
1da177e4 2267 total_load += avg_load;
5517d86b 2268 total_pwr += group->__cpu_power;
1da177e4
LT
2269
2270 /* Adjust by relative CPU power of the group */
5517d86b
ED
2271 avg_load = sg_div_cpu_power(group,
2272 avg_load * SCHED_LOAD_SCALE);
1da177e4 2273
5517d86b 2274 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2275
1da177e4
LT
2276 if (local_group) {
2277 this_load = avg_load;
2278 this = group;
2dd73a4f
PW
2279 this_nr_running = sum_nr_running;
2280 this_load_per_task = sum_weighted_load;
2281 } else if (avg_load > max_load &&
5c45bf27 2282 sum_nr_running > group_capacity) {
1da177e4
LT
2283 max_load = avg_load;
2284 busiest = group;
2dd73a4f
PW
2285 busiest_nr_running = sum_nr_running;
2286 busiest_load_per_task = sum_weighted_load;
1da177e4 2287 }
5c45bf27
SS
2288
2289#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2290 /*
2291 * Busy processors will not participate in power savings
2292 * balance.
2293 */
dd41f596
IM
2294 if (idle == CPU_NOT_IDLE ||
2295 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2296 goto group_next;
5c45bf27
SS
2297
2298 /*
2299 * If the local group is idle or completely loaded
2300 * no need to do power savings balance at this domain
2301 */
2302 if (local_group && (this_nr_running >= group_capacity ||
2303 !this_nr_running))
2304 power_savings_balance = 0;
2305
dd41f596 2306 /*
5c45bf27
SS
2307 * If a group is already running at full capacity or idle,
2308 * don't include that group in power savings calculations
dd41f596
IM
2309 */
2310 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2311 || !sum_nr_running)
dd41f596 2312 goto group_next;
5c45bf27 2313
dd41f596 2314 /*
5c45bf27 2315 * Calculate the group which has the least non-idle load.
dd41f596
IM
2316 * This is the group from where we need to pick up the load
2317 * for saving power
2318 */
2319 if ((sum_nr_running < min_nr_running) ||
2320 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2321 first_cpu(group->cpumask) <
2322 first_cpu(group_min->cpumask))) {
dd41f596
IM
2323 group_min = group;
2324 min_nr_running = sum_nr_running;
5c45bf27
SS
2325 min_load_per_task = sum_weighted_load /
2326 sum_nr_running;
dd41f596 2327 }
5c45bf27 2328
dd41f596 2329 /*
5c45bf27 2330 * Calculate the group which is almost near its
dd41f596
IM
2331 * capacity but still has some space to pick up some load
2332 * from other group and save more power
2333 */
2334 if (sum_nr_running <= group_capacity - 1) {
2335 if (sum_nr_running > leader_nr_running ||
2336 (sum_nr_running == leader_nr_running &&
2337 first_cpu(group->cpumask) >
2338 first_cpu(group_leader->cpumask))) {
2339 group_leader = group;
2340 leader_nr_running = sum_nr_running;
2341 }
48f24c4d 2342 }
5c45bf27
SS
2343group_next:
2344#endif
1da177e4
LT
2345 group = group->next;
2346 } while (group != sd->groups);
2347
2dd73a4f 2348 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2349 goto out_balanced;
2350
2351 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2352
2353 if (this_load >= avg_load ||
2354 100*max_load <= sd->imbalance_pct*this_load)
2355 goto out_balanced;
2356
2dd73a4f 2357 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2358 /*
2359 * We're trying to get all the cpus to the average_load, so we don't
2360 * want to push ourselves above the average load, nor do we wish to
2361 * reduce the max loaded cpu below the average load, as either of these
2362 * actions would just result in more rebalancing later, and ping-pong
2363 * tasks around. Thus we look for the minimum possible imbalance.
2364 * Negative imbalances (*we* are more loaded than anyone else) will
2365 * be counted as no imbalance for these purposes -- we can't fix that
2366 * by pulling tasks to us. Be careful of negative numbers as they'll
2367 * appear as very large values with unsigned longs.
2368 */
2dd73a4f
PW
2369 if (max_load <= busiest_load_per_task)
2370 goto out_balanced;
2371
2372 /*
2373 * In the presence of smp nice balancing, certain scenarios can have
2374 * max load less than avg load(as we skip the groups at or below
2375 * its cpu_power, while calculating max_load..)
2376 */
2377 if (max_load < avg_load) {
2378 *imbalance = 0;
2379 goto small_imbalance;
2380 }
0c117f1b
SS
2381
2382 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2383 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2384
1da177e4 2385 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2386 *imbalance = min(max_pull * busiest->__cpu_power,
2387 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2388 / SCHED_LOAD_SCALE;
2389
2dd73a4f
PW
2390 /*
2391 * if *imbalance is less than the average load per runnable task
2392 * there is no gaurantee that any tasks will be moved so we'll have
2393 * a think about bumping its value to force at least one task to be
2394 * moved
2395 */
dd41f596 2396 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2397 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2398 unsigned int imbn;
2399
2400small_imbalance:
2401 pwr_move = pwr_now = 0;
2402 imbn = 2;
2403 if (this_nr_running) {
2404 this_load_per_task /= this_nr_running;
2405 if (busiest_load_per_task > this_load_per_task)
2406 imbn = 1;
2407 } else
2408 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2409
dd41f596
IM
2410 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2411 busiest_load_per_task * imbn) {
2dd73a4f 2412 *imbalance = busiest_load_per_task;
1da177e4
LT
2413 return busiest;
2414 }
2415
2416 /*
2417 * OK, we don't have enough imbalance to justify moving tasks,
2418 * however we may be able to increase total CPU power used by
2419 * moving them.
2420 */
2421
5517d86b
ED
2422 pwr_now += busiest->__cpu_power *
2423 min(busiest_load_per_task, max_load);
2424 pwr_now += this->__cpu_power *
2425 min(this_load_per_task, this_load);
1da177e4
LT
2426 pwr_now /= SCHED_LOAD_SCALE;
2427
2428 /* Amount of load we'd subtract */
5517d86b
ED
2429 tmp = sg_div_cpu_power(busiest,
2430 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2431 if (max_load > tmp)
5517d86b 2432 pwr_move += busiest->__cpu_power *
2dd73a4f 2433 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2434
2435 /* Amount of load we'd add */
5517d86b 2436 if (max_load * busiest->__cpu_power <
33859f7f 2437 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2438 tmp = sg_div_cpu_power(this,
2439 max_load * busiest->__cpu_power);
1da177e4 2440 else
5517d86b
ED
2441 tmp = sg_div_cpu_power(this,
2442 busiest_load_per_task * SCHED_LOAD_SCALE);
2443 pwr_move += this->__cpu_power *
2444 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2445 pwr_move /= SCHED_LOAD_SCALE;
2446
2447 /* Move if we gain throughput */
2448 if (pwr_move <= pwr_now)
2449 goto out_balanced;
2450
2dd73a4f 2451 *imbalance = busiest_load_per_task;
1da177e4
LT
2452 }
2453
1da177e4
LT
2454 return busiest;
2455
2456out_balanced:
5c45bf27 2457#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2458 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2459 goto ret;
1da177e4 2460
5c45bf27
SS
2461 if (this == group_leader && group_leader != group_min) {
2462 *imbalance = min_load_per_task;
2463 return group_min;
2464 }
5c45bf27 2465#endif
783609c6 2466ret:
1da177e4
LT
2467 *imbalance = 0;
2468 return NULL;
2469}
2470
2471/*
2472 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2473 */
70b97a7f 2474static struct rq *
d15bcfdb 2475find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2476 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2477{
70b97a7f 2478 struct rq *busiest = NULL, *rq;
2dd73a4f 2479 unsigned long max_load = 0;
1da177e4
LT
2480 int i;
2481
2482 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2483 unsigned long wl;
0a2966b4
CL
2484
2485 if (!cpu_isset(i, *cpus))
2486 continue;
2487
48f24c4d 2488 rq = cpu_rq(i);
dd41f596 2489 wl = weighted_cpuload(i);
2dd73a4f 2490
dd41f596 2491 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2492 continue;
1da177e4 2493
dd41f596
IM
2494 if (wl > max_load) {
2495 max_load = wl;
48f24c4d 2496 busiest = rq;
1da177e4
LT
2497 }
2498 }
2499
2500 return busiest;
2501}
2502
77391d71
NP
2503/*
2504 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2505 * so long as it is large enough.
2506 */
2507#define MAX_PINNED_INTERVAL 512
2508
48f24c4d
IM
2509static inline unsigned long minus_1_or_zero(unsigned long n)
2510{
2511 return n > 0 ? n - 1 : 0;
2512}
2513
1da177e4
LT
2514/*
2515 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2516 * tasks if there is an imbalance.
1da177e4 2517 */
70b97a7f 2518static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2519 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2520 int *balance)
1da177e4 2521{
48f24c4d 2522 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2523 struct sched_group *group;
1da177e4 2524 unsigned long imbalance;
70b97a7f 2525 struct rq *busiest;
0a2966b4 2526 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2527 unsigned long flags;
5969fe06 2528
89c4710e
SS
2529 /*
2530 * When power savings policy is enabled for the parent domain, idle
2531 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2532 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2533 * portraying it as CPU_NOT_IDLE.
89c4710e 2534 */
d15bcfdb 2535 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2536 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2537 sd_idle = 1;
1da177e4 2538
1da177e4
LT
2539 schedstat_inc(sd, lb_cnt[idle]);
2540
0a2966b4
CL
2541redo:
2542 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2543 &cpus, balance);
2544
06066714 2545 if (*balance == 0)
783609c6 2546 goto out_balanced;
783609c6 2547
1da177e4
LT
2548 if (!group) {
2549 schedstat_inc(sd, lb_nobusyg[idle]);
2550 goto out_balanced;
2551 }
2552
0a2966b4 2553 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2554 if (!busiest) {
2555 schedstat_inc(sd, lb_nobusyq[idle]);
2556 goto out_balanced;
2557 }
2558
db935dbd 2559 BUG_ON(busiest == this_rq);
1da177e4
LT
2560
2561 schedstat_add(sd, lb_imbalance[idle], imbalance);
2562
2563 nr_moved = 0;
2564 if (busiest->nr_running > 1) {
2565 /*
2566 * Attempt to move tasks. If find_busiest_group has found
2567 * an imbalance but busiest->nr_running <= 1, the group is
2568 * still unbalanced. nr_moved simply stays zero, so it is
2569 * correctly treated as an imbalance.
2570 */
fe2eea3f 2571 local_irq_save(flags);
e17224bf 2572 double_rq_lock(this_rq, busiest);
1da177e4 2573 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2574 minus_1_or_zero(busiest->nr_running),
2575 imbalance, sd, idle, &all_pinned);
e17224bf 2576 double_rq_unlock(this_rq, busiest);
fe2eea3f 2577 local_irq_restore(flags);
81026794 2578
46cb4b7c
SS
2579 /*
2580 * some other cpu did the load balance for us.
2581 */
2582 if (nr_moved && this_cpu != smp_processor_id())
2583 resched_cpu(this_cpu);
2584
81026794 2585 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2586 if (unlikely(all_pinned)) {
2587 cpu_clear(cpu_of(busiest), cpus);
2588 if (!cpus_empty(cpus))
2589 goto redo;
81026794 2590 goto out_balanced;
0a2966b4 2591 }
1da177e4 2592 }
81026794 2593
1da177e4
LT
2594 if (!nr_moved) {
2595 schedstat_inc(sd, lb_failed[idle]);
2596 sd->nr_balance_failed++;
2597
2598 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2599
fe2eea3f 2600 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2601
2602 /* don't kick the migration_thread, if the curr
2603 * task on busiest cpu can't be moved to this_cpu
2604 */
2605 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2606 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2607 all_pinned = 1;
2608 goto out_one_pinned;
2609 }
2610
1da177e4
LT
2611 if (!busiest->active_balance) {
2612 busiest->active_balance = 1;
2613 busiest->push_cpu = this_cpu;
81026794 2614 active_balance = 1;
1da177e4 2615 }
fe2eea3f 2616 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2617 if (active_balance)
1da177e4
LT
2618 wake_up_process(busiest->migration_thread);
2619
2620 /*
2621 * We've kicked active balancing, reset the failure
2622 * counter.
2623 */
39507451 2624 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2625 }
81026794 2626 } else
1da177e4
LT
2627 sd->nr_balance_failed = 0;
2628
81026794 2629 if (likely(!active_balance)) {
1da177e4
LT
2630 /* We were unbalanced, so reset the balancing interval */
2631 sd->balance_interval = sd->min_interval;
81026794
NP
2632 } else {
2633 /*
2634 * If we've begun active balancing, start to back off. This
2635 * case may not be covered by the all_pinned logic if there
2636 * is only 1 task on the busy runqueue (because we don't call
2637 * move_tasks).
2638 */
2639 if (sd->balance_interval < sd->max_interval)
2640 sd->balance_interval *= 2;
1da177e4
LT
2641 }
2642
5c45bf27 2643 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2644 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2645 return -1;
1da177e4
LT
2646 return nr_moved;
2647
2648out_balanced:
1da177e4
LT
2649 schedstat_inc(sd, lb_balanced[idle]);
2650
16cfb1c0 2651 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2652
2653out_one_pinned:
1da177e4 2654 /* tune up the balancing interval */
77391d71
NP
2655 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2656 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2657 sd->balance_interval *= 2;
2658
48f24c4d 2659 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2660 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2661 return -1;
1da177e4
LT
2662 return 0;
2663}
2664
2665/*
2666 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2667 * tasks if there is an imbalance.
2668 *
d15bcfdb 2669 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2670 * this_rq is locked.
2671 */
48f24c4d 2672static int
70b97a7f 2673load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2674{
2675 struct sched_group *group;
70b97a7f 2676 struct rq *busiest = NULL;
1da177e4
LT
2677 unsigned long imbalance;
2678 int nr_moved = 0;
5969fe06 2679 int sd_idle = 0;
0a2966b4 2680 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2681
89c4710e
SS
2682 /*
2683 * When power savings policy is enabled for the parent domain, idle
2684 * sibling can pick up load irrespective of busy siblings. In this case,
2685 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2686 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2687 */
2688 if (sd->flags & SD_SHARE_CPUPOWER &&
2689 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2690 sd_idle = 1;
1da177e4 2691
d15bcfdb 2692 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2693redo:
d15bcfdb 2694 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2695 &sd_idle, &cpus, NULL);
1da177e4 2696 if (!group) {
d15bcfdb 2697 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2698 goto out_balanced;
1da177e4
LT
2699 }
2700
d15bcfdb 2701 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2702 &cpus);
db935dbd 2703 if (!busiest) {
d15bcfdb 2704 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2705 goto out_balanced;
1da177e4
LT
2706 }
2707
db935dbd
NP
2708 BUG_ON(busiest == this_rq);
2709
d15bcfdb 2710 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2711
2712 nr_moved = 0;
2713 if (busiest->nr_running > 1) {
2714 /* Attempt to move tasks */
2715 double_lock_balance(this_rq, busiest);
2716 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2717 minus_1_or_zero(busiest->nr_running),
d15bcfdb 2718 imbalance, sd, CPU_NEWLY_IDLE, NULL);
d6d5cfaf 2719 spin_unlock(&busiest->lock);
0a2966b4
CL
2720
2721 if (!nr_moved) {
2722 cpu_clear(cpu_of(busiest), cpus);
2723 if (!cpus_empty(cpus))
2724 goto redo;
2725 }
d6d5cfaf
NP
2726 }
2727
5969fe06 2728 if (!nr_moved) {
d15bcfdb 2729 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2732 return -1;
2733 } else
16cfb1c0 2734 sd->nr_balance_failed = 0;
1da177e4 2735
1da177e4 2736 return nr_moved;
16cfb1c0
NP
2737
2738out_balanced:
d15bcfdb 2739 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2740 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2742 return -1;
16cfb1c0 2743 sd->nr_balance_failed = 0;
48f24c4d 2744
16cfb1c0 2745 return 0;
1da177e4
LT
2746}
2747
2748/*
2749 * idle_balance is called by schedule() if this_cpu is about to become
2750 * idle. Attempts to pull tasks from other CPUs.
2751 */
70b97a7f 2752static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2753{
2754 struct sched_domain *sd;
dd41f596
IM
2755 int pulled_task = -1;
2756 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2757
2758 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2759 unsigned long interval;
2760
2761 if (!(sd->flags & SD_LOAD_BALANCE))
2762 continue;
2763
2764 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2765 /* If we've pulled tasks over stop searching: */
1bd77f2d 2766 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2767 this_rq, sd);
2768
2769 interval = msecs_to_jiffies(sd->balance_interval);
2770 if (time_after(next_balance, sd->last_balance + interval))
2771 next_balance = sd->last_balance + interval;
2772 if (pulled_task)
2773 break;
1da177e4 2774 }
dd41f596 2775 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2776 /*
2777 * We are going idle. next_balance may be set based on
2778 * a busy processor. So reset next_balance.
2779 */
2780 this_rq->next_balance = next_balance;
dd41f596 2781 }
1da177e4
LT
2782}
2783
2784/*
2785 * active_load_balance is run by migration threads. It pushes running tasks
2786 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2787 * running on each physical CPU where possible, and avoids physical /
2788 * logical imbalances.
2789 *
2790 * Called with busiest_rq locked.
2791 */
70b97a7f 2792static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2793{
39507451 2794 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2795 struct sched_domain *sd;
2796 struct rq *target_rq;
39507451 2797
48f24c4d 2798 /* Is there any task to move? */
39507451 2799 if (busiest_rq->nr_running <= 1)
39507451
NP
2800 return;
2801
2802 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2803
2804 /*
39507451
NP
2805 * This condition is "impossible", if it occurs
2806 * we need to fix it. Originally reported by
2807 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2808 */
39507451 2809 BUG_ON(busiest_rq == target_rq);
1da177e4 2810
39507451
NP
2811 /* move a task from busiest_rq to target_rq */
2812 double_lock_balance(busiest_rq, target_rq);
2813
2814 /* Search for an sd spanning us and the target CPU. */
c96d145e 2815 for_each_domain(target_cpu, sd) {
39507451 2816 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2817 cpu_isset(busiest_cpu, sd->span))
39507451 2818 break;
c96d145e 2819 }
39507451 2820
48f24c4d
IM
2821 if (likely(sd)) {
2822 schedstat_inc(sd, alb_cnt);
39507451 2823
48f24c4d 2824 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
d15bcfdb 2825 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
48f24c4d
IM
2826 NULL))
2827 schedstat_inc(sd, alb_pushed);
2828 else
2829 schedstat_inc(sd, alb_failed);
2830 }
39507451 2831 spin_unlock(&target_rq->lock);
1da177e4
LT
2832}
2833
46cb4b7c
SS
2834#ifdef CONFIG_NO_HZ
2835static struct {
2836 atomic_t load_balancer;
2837 cpumask_t cpu_mask;
2838} nohz ____cacheline_aligned = {
2839 .load_balancer = ATOMIC_INIT(-1),
2840 .cpu_mask = CPU_MASK_NONE,
2841};
2842
7835b98b 2843/*
46cb4b7c
SS
2844 * This routine will try to nominate the ilb (idle load balancing)
2845 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2846 * load balancing on behalf of all those cpus. If all the cpus in the system
2847 * go into this tickless mode, then there will be no ilb owner (as there is
2848 * no need for one) and all the cpus will sleep till the next wakeup event
2849 * arrives...
2850 *
2851 * For the ilb owner, tick is not stopped. And this tick will be used
2852 * for idle load balancing. ilb owner will still be part of
2853 * nohz.cpu_mask..
7835b98b 2854 *
46cb4b7c
SS
2855 * While stopping the tick, this cpu will become the ilb owner if there
2856 * is no other owner. And will be the owner till that cpu becomes busy
2857 * or if all cpus in the system stop their ticks at which point
2858 * there is no need for ilb owner.
2859 *
2860 * When the ilb owner becomes busy, it nominates another owner, during the
2861 * next busy scheduler_tick()
2862 */
2863int select_nohz_load_balancer(int stop_tick)
2864{
2865 int cpu = smp_processor_id();
2866
2867 if (stop_tick) {
2868 cpu_set(cpu, nohz.cpu_mask);
2869 cpu_rq(cpu)->in_nohz_recently = 1;
2870
2871 /*
2872 * If we are going offline and still the leader, give up!
2873 */
2874 if (cpu_is_offline(cpu) &&
2875 atomic_read(&nohz.load_balancer) == cpu) {
2876 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2877 BUG();
2878 return 0;
2879 }
2880
2881 /* time for ilb owner also to sleep */
2882 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2883 if (atomic_read(&nohz.load_balancer) == cpu)
2884 atomic_set(&nohz.load_balancer, -1);
2885 return 0;
2886 }
2887
2888 if (atomic_read(&nohz.load_balancer) == -1) {
2889 /* make me the ilb owner */
2890 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2891 return 1;
2892 } else if (atomic_read(&nohz.load_balancer) == cpu)
2893 return 1;
2894 } else {
2895 if (!cpu_isset(cpu, nohz.cpu_mask))
2896 return 0;
2897
2898 cpu_clear(cpu, nohz.cpu_mask);
2899
2900 if (atomic_read(&nohz.load_balancer) == cpu)
2901 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2902 BUG();
2903 }
2904 return 0;
2905}
2906#endif
2907
2908static DEFINE_SPINLOCK(balancing);
2909
2910/*
7835b98b
CL
2911 * It checks each scheduling domain to see if it is due to be balanced,
2912 * and initiates a balancing operation if so.
2913 *
2914 * Balancing parameters are set up in arch_init_sched_domains.
2915 */
d15bcfdb 2916static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 2917{
46cb4b7c
SS
2918 int balance = 1;
2919 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
2920 unsigned long interval;
2921 struct sched_domain *sd;
46cb4b7c 2922 /* Earliest time when we have to do rebalance again */
c9819f45 2923 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 2924
46cb4b7c 2925 for_each_domain(cpu, sd) {
1da177e4
LT
2926 if (!(sd->flags & SD_LOAD_BALANCE))
2927 continue;
2928
2929 interval = sd->balance_interval;
d15bcfdb 2930 if (idle != CPU_IDLE)
1da177e4
LT
2931 interval *= sd->busy_factor;
2932
2933 /* scale ms to jiffies */
2934 interval = msecs_to_jiffies(interval);
2935 if (unlikely(!interval))
2936 interval = 1;
dd41f596
IM
2937 if (interval > HZ*NR_CPUS/10)
2938 interval = HZ*NR_CPUS/10;
2939
1da177e4 2940
08c183f3
CL
2941 if (sd->flags & SD_SERIALIZE) {
2942 if (!spin_trylock(&balancing))
2943 goto out;
2944 }
2945
c9819f45 2946 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 2947 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
2948 /*
2949 * We've pulled tasks over so either we're no
5969fe06
NP
2950 * longer idle, or one of our SMT siblings is
2951 * not idle.
2952 */
d15bcfdb 2953 idle = CPU_NOT_IDLE;
1da177e4 2954 }
1bd77f2d 2955 sd->last_balance = jiffies;
1da177e4 2956 }
08c183f3
CL
2957 if (sd->flags & SD_SERIALIZE)
2958 spin_unlock(&balancing);
2959out:
c9819f45
CL
2960 if (time_after(next_balance, sd->last_balance + interval))
2961 next_balance = sd->last_balance + interval;
783609c6
SS
2962
2963 /*
2964 * Stop the load balance at this level. There is another
2965 * CPU in our sched group which is doing load balancing more
2966 * actively.
2967 */
2968 if (!balance)
2969 break;
1da177e4 2970 }
46cb4b7c
SS
2971 rq->next_balance = next_balance;
2972}
2973
2974/*
2975 * run_rebalance_domains is triggered when needed from the scheduler tick.
2976 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2977 * rebalancing for all the cpus for whom scheduler ticks are stopped.
2978 */
2979static void run_rebalance_domains(struct softirq_action *h)
2980{
dd41f596
IM
2981 int this_cpu = smp_processor_id();
2982 struct rq *this_rq = cpu_rq(this_cpu);
2983 enum cpu_idle_type idle = this_rq->idle_at_tick ?
2984 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 2985
dd41f596 2986 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
2987
2988#ifdef CONFIG_NO_HZ
2989 /*
2990 * If this cpu is the owner for idle load balancing, then do the
2991 * balancing on behalf of the other idle cpus whose ticks are
2992 * stopped.
2993 */
dd41f596
IM
2994 if (this_rq->idle_at_tick &&
2995 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
2996 cpumask_t cpus = nohz.cpu_mask;
2997 struct rq *rq;
2998 int balance_cpu;
2999
dd41f596 3000 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3001 for_each_cpu_mask(balance_cpu, cpus) {
3002 /*
3003 * If this cpu gets work to do, stop the load balancing
3004 * work being done for other cpus. Next load
3005 * balancing owner will pick it up.
3006 */
3007 if (need_resched())
3008 break;
3009
dd41f596 3010 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3011
3012 rq = cpu_rq(balance_cpu);
dd41f596
IM
3013 if (time_after(this_rq->next_balance, rq->next_balance))
3014 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3015 }
3016 }
3017#endif
3018}
3019
3020/*
3021 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3022 *
3023 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3024 * idle load balancing owner or decide to stop the periodic load balancing,
3025 * if the whole system is idle.
3026 */
dd41f596 3027static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3028{
46cb4b7c
SS
3029#ifdef CONFIG_NO_HZ
3030 /*
3031 * If we were in the nohz mode recently and busy at the current
3032 * scheduler tick, then check if we need to nominate new idle
3033 * load balancer.
3034 */
3035 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3036 rq->in_nohz_recently = 0;
3037
3038 if (atomic_read(&nohz.load_balancer) == cpu) {
3039 cpu_clear(cpu, nohz.cpu_mask);
3040 atomic_set(&nohz.load_balancer, -1);
3041 }
3042
3043 if (atomic_read(&nohz.load_balancer) == -1) {
3044 /*
3045 * simple selection for now: Nominate the
3046 * first cpu in the nohz list to be the next
3047 * ilb owner.
3048 *
3049 * TBD: Traverse the sched domains and nominate
3050 * the nearest cpu in the nohz.cpu_mask.
3051 */
3052 int ilb = first_cpu(nohz.cpu_mask);
3053
3054 if (ilb != NR_CPUS)
3055 resched_cpu(ilb);
3056 }
3057 }
3058
3059 /*
3060 * If this cpu is idle and doing idle load balancing for all the
3061 * cpus with ticks stopped, is it time for that to stop?
3062 */
3063 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3064 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3065 resched_cpu(cpu);
3066 return;
3067 }
3068
3069 /*
3070 * If this cpu is idle and the idle load balancing is done by
3071 * someone else, then no need raise the SCHED_SOFTIRQ
3072 */
3073 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3074 cpu_isset(cpu, nohz.cpu_mask))
3075 return;
3076#endif
3077 if (time_after_eq(jiffies, rq->next_balance))
3078 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3079}
dd41f596
IM
3080
3081#else /* CONFIG_SMP */
3082
1da177e4
LT
3083/*
3084 * on UP we do not need to balance between CPUs:
3085 */
70b97a7f 3086static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3087{
3088}
dd41f596
IM
3089
3090/* Avoid "used but not defined" warning on UP */
3091static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3092 unsigned long max_nr_move, unsigned long max_load_move,
3093 struct sched_domain *sd, enum cpu_idle_type idle,
3094 int *all_pinned, unsigned long *load_moved,
3095 int this_best_prio, int best_prio, int best_prio_seen,
3096 struct rq_iterator *iterator)
3097{
3098 *load_moved = 0;
3099
3100 return 0;
3101}
3102
1da177e4
LT
3103#endif
3104
1da177e4
LT
3105DEFINE_PER_CPU(struct kernel_stat, kstat);
3106
3107EXPORT_PER_CPU_SYMBOL(kstat);
3108
3109/*
41b86e9c
IM
3110 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3111 * that have not yet been banked in case the task is currently running.
1da177e4 3112 */
41b86e9c 3113unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3114{
1da177e4 3115 unsigned long flags;
41b86e9c
IM
3116 u64 ns, delta_exec;
3117 struct rq *rq;
48f24c4d 3118
41b86e9c
IM
3119 rq = task_rq_lock(p, &flags);
3120 ns = p->se.sum_exec_runtime;
3121 if (rq->curr == p) {
3122 delta_exec = rq_clock(rq) - p->se.exec_start;
3123 if ((s64)delta_exec > 0)
3124 ns += delta_exec;
3125 }
3126 task_rq_unlock(rq, &flags);
48f24c4d 3127
1da177e4
LT
3128 return ns;
3129}
3130
1da177e4
LT
3131/*
3132 * Account user cpu time to a process.
3133 * @p: the process that the cpu time gets accounted to
3134 * @hardirq_offset: the offset to subtract from hardirq_count()
3135 * @cputime: the cpu time spent in user space since the last update
3136 */
3137void account_user_time(struct task_struct *p, cputime_t cputime)
3138{
3139 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3140 cputime64_t tmp;
3141
3142 p->utime = cputime_add(p->utime, cputime);
3143
3144 /* Add user time to cpustat. */
3145 tmp = cputime_to_cputime64(cputime);
3146 if (TASK_NICE(p) > 0)
3147 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3148 else
3149 cpustat->user = cputime64_add(cpustat->user, tmp);
3150}
3151
3152/*
3153 * Account system cpu time to a process.
3154 * @p: the process that the cpu time gets accounted to
3155 * @hardirq_offset: the offset to subtract from hardirq_count()
3156 * @cputime: the cpu time spent in kernel space since the last update
3157 */
3158void account_system_time(struct task_struct *p, int hardirq_offset,
3159 cputime_t cputime)
3160{
3161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3162 struct rq *rq = this_rq();
1da177e4
LT
3163 cputime64_t tmp;
3164
3165 p->stime = cputime_add(p->stime, cputime);
3166
3167 /* Add system time to cpustat. */
3168 tmp = cputime_to_cputime64(cputime);
3169 if (hardirq_count() - hardirq_offset)
3170 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3171 else if (softirq_count())
3172 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3173 else if (p != rq->idle)
3174 cpustat->system = cputime64_add(cpustat->system, tmp);
3175 else if (atomic_read(&rq->nr_iowait) > 0)
3176 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3177 else
3178 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3179 /* Account for system time used */
3180 acct_update_integrals(p);
1da177e4
LT
3181}
3182
3183/*
3184 * Account for involuntary wait time.
3185 * @p: the process from which the cpu time has been stolen
3186 * @steal: the cpu time spent in involuntary wait
3187 */
3188void account_steal_time(struct task_struct *p, cputime_t steal)
3189{
3190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3192 struct rq *rq = this_rq();
1da177e4
LT
3193
3194 if (p == rq->idle) {
3195 p->stime = cputime_add(p->stime, steal);
3196 if (atomic_read(&rq->nr_iowait) > 0)
3197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3198 else
3199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3200 } else
3201 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3202}
3203
7835b98b
CL
3204/*
3205 * This function gets called by the timer code, with HZ frequency.
3206 * We call it with interrupts disabled.
3207 *
3208 * It also gets called by the fork code, when changing the parent's
3209 * timeslices.
3210 */
3211void scheduler_tick(void)
3212{
7835b98b
CL
3213 int cpu = smp_processor_id();
3214 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3215 struct task_struct *curr = rq->curr;
3216
3217 spin_lock(&rq->lock);
3218 if (curr != rq->idle) /* FIXME: needed? */
3219 curr->sched_class->task_tick(rq, curr);
3220 update_cpu_load(rq);
3221 spin_unlock(&rq->lock);
7835b98b 3222
e418e1c2 3223#ifdef CONFIG_SMP
dd41f596
IM
3224 rq->idle_at_tick = idle_cpu(cpu);
3225 trigger_load_balance(rq, cpu);
e418e1c2 3226#endif
1da177e4
LT
3227}
3228
1da177e4
LT
3229#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3230
3231void fastcall add_preempt_count(int val)
3232{
3233 /*
3234 * Underflow?
3235 */
9a11b49a
IM
3236 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3237 return;
1da177e4
LT
3238 preempt_count() += val;
3239 /*
3240 * Spinlock count overflowing soon?
3241 */
33859f7f
MOS
3242 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3243 PREEMPT_MASK - 10);
1da177e4
LT
3244}
3245EXPORT_SYMBOL(add_preempt_count);
3246
3247void fastcall sub_preempt_count(int val)
3248{
3249 /*
3250 * Underflow?
3251 */
9a11b49a
IM
3252 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3253 return;
1da177e4
LT
3254 /*
3255 * Is the spinlock portion underflowing?
3256 */
9a11b49a
IM
3257 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3258 !(preempt_count() & PREEMPT_MASK)))
3259 return;
3260
1da177e4
LT
3261 preempt_count() -= val;
3262}
3263EXPORT_SYMBOL(sub_preempt_count);
3264
3265#endif
3266
3267/*
dd41f596 3268 * Print scheduling while atomic bug:
1da177e4 3269 */
dd41f596 3270static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3271{
dd41f596
IM
3272 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3273 prev->comm, preempt_count(), prev->pid);
3274 debug_show_held_locks(prev);
3275 if (irqs_disabled())
3276 print_irqtrace_events(prev);
3277 dump_stack();
3278}
1da177e4 3279
dd41f596
IM
3280/*
3281 * Various schedule()-time debugging checks and statistics:
3282 */
3283static inline void schedule_debug(struct task_struct *prev)
3284{
1da177e4
LT
3285 /*
3286 * Test if we are atomic. Since do_exit() needs to call into
3287 * schedule() atomically, we ignore that path for now.
3288 * Otherwise, whine if we are scheduling when we should not be.
3289 */
dd41f596
IM
3290 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3291 __schedule_bug(prev);
3292
1da177e4
LT
3293 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3294
dd41f596
IM
3295 schedstat_inc(this_rq(), sched_cnt);
3296}
3297
3298/*
3299 * Pick up the highest-prio task:
3300 */
3301static inline struct task_struct *
3302pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3303{
3304 struct sched_class *class;
3305 struct task_struct *p;
1da177e4
LT
3306
3307 /*
dd41f596
IM
3308 * Optimization: we know that if all tasks are in
3309 * the fair class we can call that function directly:
1da177e4 3310 */
dd41f596
IM
3311 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3312 p = fair_sched_class.pick_next_task(rq, now);
3313 if (likely(p))
3314 return p;
1da177e4
LT
3315 }
3316
dd41f596
IM
3317 class = sched_class_highest;
3318 for ( ; ; ) {
3319 p = class->pick_next_task(rq, now);
3320 if (p)
3321 return p;
3322 /*
3323 * Will never be NULL as the idle class always
3324 * returns a non-NULL p:
3325 */
3326 class = class->next;
3327 }
3328}
1da177e4 3329
dd41f596
IM
3330/*
3331 * schedule() is the main scheduler function.
3332 */
3333asmlinkage void __sched schedule(void)
3334{
3335 struct task_struct *prev, *next;
3336 long *switch_count;
3337 struct rq *rq;
3338 u64 now;
3339 int cpu;
3340
3341need_resched:
3342 preempt_disable();
3343 cpu = smp_processor_id();
3344 rq = cpu_rq(cpu);
3345 rcu_qsctr_inc(cpu);
3346 prev = rq->curr;
3347 switch_count = &prev->nivcsw;
3348
3349 release_kernel_lock(prev);
3350need_resched_nonpreemptible:
3351
3352 schedule_debug(prev);
1da177e4
LT
3353
3354 spin_lock_irq(&rq->lock);
dd41f596 3355 clear_tsk_need_resched(prev);
1da177e4 3356
1da177e4 3357 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3358 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3359 unlikely(signal_pending(prev)))) {
1da177e4 3360 prev->state = TASK_RUNNING;
dd41f596
IM
3361 } else {
3362 deactivate_task(rq, prev, 1);
1da177e4 3363 }
dd41f596 3364 switch_count = &prev->nvcsw;
1da177e4
LT
3365 }
3366
dd41f596 3367 if (unlikely(!rq->nr_running))
1da177e4 3368 idle_balance(cpu, rq);
1da177e4 3369
dd41f596
IM
3370 now = __rq_clock(rq);
3371 prev->sched_class->put_prev_task(rq, prev, now);
3372 next = pick_next_task(rq, prev, now);
1da177e4
LT
3373
3374 sched_info_switch(prev, next);
dd41f596 3375
1da177e4 3376 if (likely(prev != next)) {
1da177e4
LT
3377 rq->nr_switches++;
3378 rq->curr = next;
3379 ++*switch_count;
3380
dd41f596 3381 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3382 } else
3383 spin_unlock_irq(&rq->lock);
3384
dd41f596
IM
3385 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3386 cpu = smp_processor_id();
3387 rq = cpu_rq(cpu);
1da177e4 3388 goto need_resched_nonpreemptible;
dd41f596 3389 }
1da177e4
LT
3390 preempt_enable_no_resched();
3391 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3392 goto need_resched;
3393}
1da177e4
LT
3394EXPORT_SYMBOL(schedule);
3395
3396#ifdef CONFIG_PREEMPT
3397/*
2ed6e34f 3398 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3399 * off of preempt_enable. Kernel preemptions off return from interrupt
3400 * occur there and call schedule directly.
3401 */
3402asmlinkage void __sched preempt_schedule(void)
3403{
3404 struct thread_info *ti = current_thread_info();
3405#ifdef CONFIG_PREEMPT_BKL
3406 struct task_struct *task = current;
3407 int saved_lock_depth;
3408#endif
3409 /*
3410 * If there is a non-zero preempt_count or interrupts are disabled,
3411 * we do not want to preempt the current task. Just return..
3412 */
beed33a8 3413 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3414 return;
3415
3416need_resched:
3417 add_preempt_count(PREEMPT_ACTIVE);
3418 /*
3419 * We keep the big kernel semaphore locked, but we
3420 * clear ->lock_depth so that schedule() doesnt
3421 * auto-release the semaphore:
3422 */
3423#ifdef CONFIG_PREEMPT_BKL
3424 saved_lock_depth = task->lock_depth;
3425 task->lock_depth = -1;
3426#endif
3427 schedule();
3428#ifdef CONFIG_PREEMPT_BKL
3429 task->lock_depth = saved_lock_depth;
3430#endif
3431 sub_preempt_count(PREEMPT_ACTIVE);
3432
3433 /* we could miss a preemption opportunity between schedule and now */
3434 barrier();
3435 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3436 goto need_resched;
3437}
1da177e4
LT
3438EXPORT_SYMBOL(preempt_schedule);
3439
3440/*
2ed6e34f 3441 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3442 * off of irq context.
3443 * Note, that this is called and return with irqs disabled. This will
3444 * protect us against recursive calling from irq.
3445 */
3446asmlinkage void __sched preempt_schedule_irq(void)
3447{
3448 struct thread_info *ti = current_thread_info();
3449#ifdef CONFIG_PREEMPT_BKL
3450 struct task_struct *task = current;
3451 int saved_lock_depth;
3452#endif
2ed6e34f 3453 /* Catch callers which need to be fixed */
1da177e4
LT
3454 BUG_ON(ti->preempt_count || !irqs_disabled());
3455
3456need_resched:
3457 add_preempt_count(PREEMPT_ACTIVE);
3458 /*
3459 * We keep the big kernel semaphore locked, but we
3460 * clear ->lock_depth so that schedule() doesnt
3461 * auto-release the semaphore:
3462 */
3463#ifdef CONFIG_PREEMPT_BKL
3464 saved_lock_depth = task->lock_depth;
3465 task->lock_depth = -1;
3466#endif
3467 local_irq_enable();
3468 schedule();
3469 local_irq_disable();
3470#ifdef CONFIG_PREEMPT_BKL
3471 task->lock_depth = saved_lock_depth;
3472#endif
3473 sub_preempt_count(PREEMPT_ACTIVE);
3474
3475 /* we could miss a preemption opportunity between schedule and now */
3476 barrier();
3477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3478 goto need_resched;
3479}
3480
3481#endif /* CONFIG_PREEMPT */
3482
95cdf3b7
IM
3483int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3484 void *key)
1da177e4 3485{
48f24c4d 3486 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3487}
1da177e4
LT
3488EXPORT_SYMBOL(default_wake_function);
3489
3490/*
3491 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3492 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3493 * number) then we wake all the non-exclusive tasks and one exclusive task.
3494 *
3495 * There are circumstances in which we can try to wake a task which has already
3496 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3497 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3498 */
3499static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3500 int nr_exclusive, int sync, void *key)
3501{
3502 struct list_head *tmp, *next;
3503
3504 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3505 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3506 unsigned flags = curr->flags;
3507
1da177e4 3508 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3509 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3510 break;
3511 }
3512}
3513
3514/**
3515 * __wake_up - wake up threads blocked on a waitqueue.
3516 * @q: the waitqueue
3517 * @mode: which threads
3518 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3519 * @key: is directly passed to the wakeup function
1da177e4
LT
3520 */
3521void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3522 int nr_exclusive, void *key)
1da177e4
LT
3523{
3524 unsigned long flags;
3525
3526 spin_lock_irqsave(&q->lock, flags);
3527 __wake_up_common(q, mode, nr_exclusive, 0, key);
3528 spin_unlock_irqrestore(&q->lock, flags);
3529}
1da177e4
LT
3530EXPORT_SYMBOL(__wake_up);
3531
3532/*
3533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3534 */
3535void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3536{
3537 __wake_up_common(q, mode, 1, 0, NULL);
3538}
3539
3540/**
67be2dd1 3541 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3542 * @q: the waitqueue
3543 * @mode: which threads
3544 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3545 *
3546 * The sync wakeup differs that the waker knows that it will schedule
3547 * away soon, so while the target thread will be woken up, it will not
3548 * be migrated to another CPU - ie. the two threads are 'synchronized'
3549 * with each other. This can prevent needless bouncing between CPUs.
3550 *
3551 * On UP it can prevent extra preemption.
3552 */
95cdf3b7
IM
3553void fastcall
3554__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3555{
3556 unsigned long flags;
3557 int sync = 1;
3558
3559 if (unlikely(!q))
3560 return;
3561
3562 if (unlikely(!nr_exclusive))
3563 sync = 0;
3564
3565 spin_lock_irqsave(&q->lock, flags);
3566 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3567 spin_unlock_irqrestore(&q->lock, flags);
3568}
3569EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3570
3571void fastcall complete(struct completion *x)
3572{
3573 unsigned long flags;
3574
3575 spin_lock_irqsave(&x->wait.lock, flags);
3576 x->done++;
3577 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3578 1, 0, NULL);
3579 spin_unlock_irqrestore(&x->wait.lock, flags);
3580}
3581EXPORT_SYMBOL(complete);
3582
3583void fastcall complete_all(struct completion *x)
3584{
3585 unsigned long flags;
3586
3587 spin_lock_irqsave(&x->wait.lock, flags);
3588 x->done += UINT_MAX/2;
3589 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3590 0, 0, NULL);
3591 spin_unlock_irqrestore(&x->wait.lock, flags);
3592}
3593EXPORT_SYMBOL(complete_all);
3594
3595void fastcall __sched wait_for_completion(struct completion *x)
3596{
3597 might_sleep();
48f24c4d 3598
1da177e4
LT
3599 spin_lock_irq(&x->wait.lock);
3600 if (!x->done) {
3601 DECLARE_WAITQUEUE(wait, current);
3602
3603 wait.flags |= WQ_FLAG_EXCLUSIVE;
3604 __add_wait_queue_tail(&x->wait, &wait);
3605 do {
3606 __set_current_state(TASK_UNINTERRUPTIBLE);
3607 spin_unlock_irq(&x->wait.lock);
3608 schedule();
3609 spin_lock_irq(&x->wait.lock);
3610 } while (!x->done);
3611 __remove_wait_queue(&x->wait, &wait);
3612 }
3613 x->done--;
3614 spin_unlock_irq(&x->wait.lock);
3615}
3616EXPORT_SYMBOL(wait_for_completion);
3617
3618unsigned long fastcall __sched
3619wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3620{
3621 might_sleep();
3622
3623 spin_lock_irq(&x->wait.lock);
3624 if (!x->done) {
3625 DECLARE_WAITQUEUE(wait, current);
3626
3627 wait.flags |= WQ_FLAG_EXCLUSIVE;
3628 __add_wait_queue_tail(&x->wait, &wait);
3629 do {
3630 __set_current_state(TASK_UNINTERRUPTIBLE);
3631 spin_unlock_irq(&x->wait.lock);
3632 timeout = schedule_timeout(timeout);
3633 spin_lock_irq(&x->wait.lock);
3634 if (!timeout) {
3635 __remove_wait_queue(&x->wait, &wait);
3636 goto out;
3637 }
3638 } while (!x->done);
3639 __remove_wait_queue(&x->wait, &wait);
3640 }
3641 x->done--;
3642out:
3643 spin_unlock_irq(&x->wait.lock);
3644 return timeout;
3645}
3646EXPORT_SYMBOL(wait_for_completion_timeout);
3647
3648int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3649{
3650 int ret = 0;
3651
3652 might_sleep();
3653
3654 spin_lock_irq(&x->wait.lock);
3655 if (!x->done) {
3656 DECLARE_WAITQUEUE(wait, current);
3657
3658 wait.flags |= WQ_FLAG_EXCLUSIVE;
3659 __add_wait_queue_tail(&x->wait, &wait);
3660 do {
3661 if (signal_pending(current)) {
3662 ret = -ERESTARTSYS;
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3665 }
3666 __set_current_state(TASK_INTERRUPTIBLE);
3667 spin_unlock_irq(&x->wait.lock);
3668 schedule();
3669 spin_lock_irq(&x->wait.lock);
3670 } while (!x->done);
3671 __remove_wait_queue(&x->wait, &wait);
3672 }
3673 x->done--;
3674out:
3675 spin_unlock_irq(&x->wait.lock);
3676
3677 return ret;
3678}
3679EXPORT_SYMBOL(wait_for_completion_interruptible);
3680
3681unsigned long fastcall __sched
3682wait_for_completion_interruptible_timeout(struct completion *x,
3683 unsigned long timeout)
3684{
3685 might_sleep();
3686
3687 spin_lock_irq(&x->wait.lock);
3688 if (!x->done) {
3689 DECLARE_WAITQUEUE(wait, current);
3690
3691 wait.flags |= WQ_FLAG_EXCLUSIVE;
3692 __add_wait_queue_tail(&x->wait, &wait);
3693 do {
3694 if (signal_pending(current)) {
3695 timeout = -ERESTARTSYS;
3696 __remove_wait_queue(&x->wait, &wait);
3697 goto out;
3698 }
3699 __set_current_state(TASK_INTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 timeout = schedule_timeout(timeout);
3702 spin_lock_irq(&x->wait.lock);
3703 if (!timeout) {
3704 __remove_wait_queue(&x->wait, &wait);
3705 goto out;
3706 }
3707 } while (!x->done);
3708 __remove_wait_queue(&x->wait, &wait);
3709 }
3710 x->done--;
3711out:
3712 spin_unlock_irq(&x->wait.lock);
3713 return timeout;
3714}
3715EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3716
0fec171c
IM
3717static inline void
3718sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3719{
3720 spin_lock_irqsave(&q->lock, *flags);
3721 __add_wait_queue(q, wait);
1da177e4 3722 spin_unlock(&q->lock);
0fec171c 3723}
1da177e4 3724
0fec171c
IM
3725static inline void
3726sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3727{
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, wait);
3730 spin_unlock_irqrestore(&q->lock, *flags);
3731}
1da177e4 3732
0fec171c 3733void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3734{
0fec171c
IM
3735 unsigned long flags;
3736 wait_queue_t wait;
3737
3738 init_waitqueue_entry(&wait, current);
1da177e4
LT
3739
3740 current->state = TASK_INTERRUPTIBLE;
3741
0fec171c 3742 sleep_on_head(q, &wait, &flags);
1da177e4 3743 schedule();
0fec171c 3744 sleep_on_tail(q, &wait, &flags);
1da177e4 3745}
1da177e4
LT
3746EXPORT_SYMBOL(interruptible_sleep_on);
3747
0fec171c 3748long __sched
95cdf3b7 3749interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3750{
0fec171c
IM
3751 unsigned long flags;
3752 wait_queue_t wait;
3753
3754 init_waitqueue_entry(&wait, current);
1da177e4
LT
3755
3756 current->state = TASK_INTERRUPTIBLE;
3757
0fec171c 3758 sleep_on_head(q, &wait, &flags);
1da177e4 3759 timeout = schedule_timeout(timeout);
0fec171c 3760 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3761
3762 return timeout;
3763}
1da177e4
LT
3764EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3765
0fec171c 3766void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3767{
0fec171c
IM
3768 unsigned long flags;
3769 wait_queue_t wait;
3770
3771 init_waitqueue_entry(&wait, current);
1da177e4
LT
3772
3773 current->state = TASK_UNINTERRUPTIBLE;
3774
0fec171c 3775 sleep_on_head(q, &wait, &flags);
1da177e4 3776 schedule();
0fec171c 3777 sleep_on_tail(q, &wait, &flags);
1da177e4 3778}
1da177e4
LT
3779EXPORT_SYMBOL(sleep_on);
3780
0fec171c 3781long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3782{
0fec171c
IM
3783 unsigned long flags;
3784 wait_queue_t wait;
3785
3786 init_waitqueue_entry(&wait, current);
1da177e4
LT
3787
3788 current->state = TASK_UNINTERRUPTIBLE;
3789
0fec171c 3790 sleep_on_head(q, &wait, &flags);
1da177e4 3791 timeout = schedule_timeout(timeout);
0fec171c 3792 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3793
3794 return timeout;
3795}
1da177e4
LT
3796EXPORT_SYMBOL(sleep_on_timeout);
3797
b29739f9
IM
3798#ifdef CONFIG_RT_MUTEXES
3799
3800/*
3801 * rt_mutex_setprio - set the current priority of a task
3802 * @p: task
3803 * @prio: prio value (kernel-internal form)
3804 *
3805 * This function changes the 'effective' priority of a task. It does
3806 * not touch ->normal_prio like __setscheduler().
3807 *
3808 * Used by the rt_mutex code to implement priority inheritance logic.
3809 */
36c8b586 3810void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3811{
3812 unsigned long flags;
dd41f596 3813 int oldprio, on_rq;
70b97a7f 3814 struct rq *rq;
dd41f596 3815 u64 now;
b29739f9
IM
3816
3817 BUG_ON(prio < 0 || prio > MAX_PRIO);
3818
3819 rq = task_rq_lock(p, &flags);
dd41f596 3820 now = rq_clock(rq);
b29739f9 3821
d5f9f942 3822 oldprio = p->prio;
dd41f596
IM
3823 on_rq = p->se.on_rq;
3824 if (on_rq)
3825 dequeue_task(rq, p, 0, now);
3826
3827 if (rt_prio(prio))
3828 p->sched_class = &rt_sched_class;
3829 else
3830 p->sched_class = &fair_sched_class;
3831
b29739f9
IM
3832 p->prio = prio;
3833
dd41f596
IM
3834 if (on_rq) {
3835 enqueue_task(rq, p, 0, now);
b29739f9
IM
3836 /*
3837 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3838 * our priority decreased, or if we are not currently running on
3839 * this runqueue and our priority is higher than the current's
b29739f9 3840 */
d5f9f942
AM
3841 if (task_running(rq, p)) {
3842 if (p->prio > oldprio)
3843 resched_task(rq->curr);
dd41f596
IM
3844 } else {
3845 check_preempt_curr(rq, p);
3846 }
b29739f9
IM
3847 }
3848 task_rq_unlock(rq, &flags);
3849}
3850
3851#endif
3852
36c8b586 3853void set_user_nice(struct task_struct *p, long nice)
1da177e4 3854{
dd41f596 3855 int old_prio, delta, on_rq;
1da177e4 3856 unsigned long flags;
70b97a7f 3857 struct rq *rq;
dd41f596 3858 u64 now;
1da177e4
LT
3859
3860 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3861 return;
3862 /*
3863 * We have to be careful, if called from sys_setpriority(),
3864 * the task might be in the middle of scheduling on another CPU.
3865 */
3866 rq = task_rq_lock(p, &flags);
dd41f596 3867 now = rq_clock(rq);
1da177e4
LT
3868 /*
3869 * The RT priorities are set via sched_setscheduler(), but we still
3870 * allow the 'normal' nice value to be set - but as expected
3871 * it wont have any effect on scheduling until the task is
dd41f596 3872 * SCHED_FIFO/SCHED_RR:
1da177e4 3873 */
e05606d3 3874 if (task_has_rt_policy(p)) {
1da177e4
LT
3875 p->static_prio = NICE_TO_PRIO(nice);
3876 goto out_unlock;
3877 }
dd41f596
IM
3878 on_rq = p->se.on_rq;
3879 if (on_rq) {
3880 dequeue_task(rq, p, 0, now);
3881 dec_load(rq, p, now);
2dd73a4f 3882 }
1da177e4 3883
1da177e4 3884 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3885 set_load_weight(p);
b29739f9
IM
3886 old_prio = p->prio;
3887 p->prio = effective_prio(p);
3888 delta = p->prio - old_prio;
1da177e4 3889
dd41f596
IM
3890 if (on_rq) {
3891 enqueue_task(rq, p, 0, now);
3892 inc_load(rq, p, now);
1da177e4 3893 /*
d5f9f942
AM
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
1da177e4 3896 */
d5f9f942 3897 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3898 resched_task(rq->curr);
3899 }
3900out_unlock:
3901 task_rq_unlock(rq, &flags);
3902}
1da177e4
LT
3903EXPORT_SYMBOL(set_user_nice);
3904
e43379f1
MM
3905/*
3906 * can_nice - check if a task can reduce its nice value
3907 * @p: task
3908 * @nice: nice value
3909 */
36c8b586 3910int can_nice(const struct task_struct *p, const int nice)
e43379f1 3911{
024f4747
MM
3912 /* convert nice value [19,-20] to rlimit style value [1,40] */
3913 int nice_rlim = 20 - nice;
48f24c4d 3914
e43379f1
MM
3915 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3916 capable(CAP_SYS_NICE));
3917}
3918
1da177e4
LT
3919#ifdef __ARCH_WANT_SYS_NICE
3920
3921/*
3922 * sys_nice - change the priority of the current process.
3923 * @increment: priority increment
3924 *
3925 * sys_setpriority is a more generic, but much slower function that
3926 * does similar things.
3927 */
3928asmlinkage long sys_nice(int increment)
3929{
48f24c4d 3930 long nice, retval;
1da177e4
LT
3931
3932 /*
3933 * Setpriority might change our priority at the same moment.
3934 * We don't have to worry. Conceptually one call occurs first
3935 * and we have a single winner.
3936 */
e43379f1
MM
3937 if (increment < -40)
3938 increment = -40;
1da177e4
LT
3939 if (increment > 40)
3940 increment = 40;
3941
3942 nice = PRIO_TO_NICE(current->static_prio) + increment;
3943 if (nice < -20)
3944 nice = -20;
3945 if (nice > 19)
3946 nice = 19;
3947
e43379f1
MM
3948 if (increment < 0 && !can_nice(current, nice))
3949 return -EPERM;
3950
1da177e4
LT
3951 retval = security_task_setnice(current, nice);
3952 if (retval)
3953 return retval;
3954
3955 set_user_nice(current, nice);
3956 return 0;
3957}
3958
3959#endif
3960
3961/**
3962 * task_prio - return the priority value of a given task.
3963 * @p: the task in question.
3964 *
3965 * This is the priority value as seen by users in /proc.
3966 * RT tasks are offset by -200. Normal tasks are centered
3967 * around 0, value goes from -16 to +15.
3968 */
36c8b586 3969int task_prio(const struct task_struct *p)
1da177e4
LT
3970{
3971 return p->prio - MAX_RT_PRIO;
3972}
3973
3974/**
3975 * task_nice - return the nice value of a given task.
3976 * @p: the task in question.
3977 */
36c8b586 3978int task_nice(const struct task_struct *p)
1da177e4
LT
3979{
3980 return TASK_NICE(p);
3981}
1da177e4 3982EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3983
3984/**
3985 * idle_cpu - is a given cpu idle currently?
3986 * @cpu: the processor in question.
3987 */
3988int idle_cpu(int cpu)
3989{
3990 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3991}
3992
1da177e4
LT
3993/**
3994 * idle_task - return the idle task for a given cpu.
3995 * @cpu: the processor in question.
3996 */
36c8b586 3997struct task_struct *idle_task(int cpu)
1da177e4
LT
3998{
3999 return cpu_rq(cpu)->idle;
4000}
4001
4002/**
4003 * find_process_by_pid - find a process with a matching PID value.
4004 * @pid: the pid in question.
4005 */
36c8b586 4006static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4007{
4008 return pid ? find_task_by_pid(pid) : current;
4009}
4010
4011/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4012static void
4013__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4014{
dd41f596 4015 BUG_ON(p->se.on_rq);
48f24c4d 4016
1da177e4 4017 p->policy = policy;
dd41f596
IM
4018 switch (p->policy) {
4019 case SCHED_NORMAL:
4020 case SCHED_BATCH:
4021 case SCHED_IDLE:
4022 p->sched_class = &fair_sched_class;
4023 break;
4024 case SCHED_FIFO:
4025 case SCHED_RR:
4026 p->sched_class = &rt_sched_class;
4027 break;
4028 }
4029
1da177e4 4030 p->rt_priority = prio;
b29739f9
IM
4031 p->normal_prio = normal_prio(p);
4032 /* we are holding p->pi_lock already */
4033 p->prio = rt_mutex_getprio(p);
2dd73a4f 4034 set_load_weight(p);
1da177e4
LT
4035}
4036
4037/**
72fd4a35 4038 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4039 * @p: the task in question.
4040 * @policy: new policy.
4041 * @param: structure containing the new RT priority.
5fe1d75f 4042 *
72fd4a35 4043 * NOTE that the task may be already dead.
1da177e4 4044 */
95cdf3b7
IM
4045int sched_setscheduler(struct task_struct *p, int policy,
4046 struct sched_param *param)
1da177e4 4047{
dd41f596 4048 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4049 unsigned long flags;
70b97a7f 4050 struct rq *rq;
1da177e4 4051
66e5393a
SR
4052 /* may grab non-irq protected spin_locks */
4053 BUG_ON(in_interrupt());
1da177e4
LT
4054recheck:
4055 /* double check policy once rq lock held */
4056 if (policy < 0)
4057 policy = oldpolicy = p->policy;
4058 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4059 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4060 policy != SCHED_IDLE)
b0a9499c 4061 return -EINVAL;
1da177e4
LT
4062 /*
4063 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4064 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4065 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4066 */
4067 if (param->sched_priority < 0 ||
95cdf3b7 4068 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4069 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4070 return -EINVAL;
e05606d3 4071 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4072 return -EINVAL;
4073
37e4ab3f
OC
4074 /*
4075 * Allow unprivileged RT tasks to decrease priority:
4076 */
4077 if (!capable(CAP_SYS_NICE)) {
e05606d3 4078 if (rt_policy(policy)) {
8dc3e909 4079 unsigned long rlim_rtprio;
8dc3e909
ON
4080
4081 if (!lock_task_sighand(p, &flags))
4082 return -ESRCH;
4083 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4084 unlock_task_sighand(p, &flags);
4085
4086 /* can't set/change the rt policy */
4087 if (policy != p->policy && !rlim_rtprio)
4088 return -EPERM;
4089
4090 /* can't increase priority */
4091 if (param->sched_priority > p->rt_priority &&
4092 param->sched_priority > rlim_rtprio)
4093 return -EPERM;
4094 }
dd41f596
IM
4095 /*
4096 * Like positive nice levels, dont allow tasks to
4097 * move out of SCHED_IDLE either:
4098 */
4099 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4100 return -EPERM;
5fe1d75f 4101
37e4ab3f
OC
4102 /* can't change other user's priorities */
4103 if ((current->euid != p->euid) &&
4104 (current->euid != p->uid))
4105 return -EPERM;
4106 }
1da177e4
LT
4107
4108 retval = security_task_setscheduler(p, policy, param);
4109 if (retval)
4110 return retval;
b29739f9
IM
4111 /*
4112 * make sure no PI-waiters arrive (or leave) while we are
4113 * changing the priority of the task:
4114 */
4115 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4116 /*
4117 * To be able to change p->policy safely, the apropriate
4118 * runqueue lock must be held.
4119 */
b29739f9 4120 rq = __task_rq_lock(p);
1da177e4
LT
4121 /* recheck policy now with rq lock held */
4122 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4123 policy = oldpolicy = -1;
b29739f9
IM
4124 __task_rq_unlock(rq);
4125 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4126 goto recheck;
4127 }
dd41f596
IM
4128 on_rq = p->se.on_rq;
4129 if (on_rq)
4130 deactivate_task(rq, p, 0);
1da177e4 4131 oldprio = p->prio;
dd41f596
IM
4132 __setscheduler(rq, p, policy, param->sched_priority);
4133 if (on_rq) {
4134 activate_task(rq, p, 0);
1da177e4
LT
4135 /*
4136 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4137 * our priority decreased, or if we are not currently running on
4138 * this runqueue and our priority is higher than the current's
1da177e4 4139 */
d5f9f942
AM
4140 if (task_running(rq, p)) {
4141 if (p->prio > oldprio)
4142 resched_task(rq->curr);
dd41f596
IM
4143 } else {
4144 check_preempt_curr(rq, p);
4145 }
1da177e4 4146 }
b29739f9
IM
4147 __task_rq_unlock(rq);
4148 spin_unlock_irqrestore(&p->pi_lock, flags);
4149
95e02ca9
TG
4150 rt_mutex_adjust_pi(p);
4151
1da177e4
LT
4152 return 0;
4153}
4154EXPORT_SYMBOL_GPL(sched_setscheduler);
4155
95cdf3b7
IM
4156static int
4157do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4158{
1da177e4
LT
4159 struct sched_param lparam;
4160 struct task_struct *p;
36c8b586 4161 int retval;
1da177e4
LT
4162
4163 if (!param || pid < 0)
4164 return -EINVAL;
4165 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4166 return -EFAULT;
5fe1d75f
ON
4167
4168 rcu_read_lock();
4169 retval = -ESRCH;
1da177e4 4170 p = find_process_by_pid(pid);
5fe1d75f
ON
4171 if (p != NULL)
4172 retval = sched_setscheduler(p, policy, &lparam);
4173 rcu_read_unlock();
36c8b586 4174
1da177e4
LT
4175 return retval;
4176}
4177
4178/**
4179 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4180 * @pid: the pid in question.
4181 * @policy: new policy.
4182 * @param: structure containing the new RT priority.
4183 */
4184asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4185 struct sched_param __user *param)
4186{
c21761f1
JB
4187 /* negative values for policy are not valid */
4188 if (policy < 0)
4189 return -EINVAL;
4190
1da177e4
LT
4191 return do_sched_setscheduler(pid, policy, param);
4192}
4193
4194/**
4195 * sys_sched_setparam - set/change the RT priority of a thread
4196 * @pid: the pid in question.
4197 * @param: structure containing the new RT priority.
4198 */
4199asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4200{
4201 return do_sched_setscheduler(pid, -1, param);
4202}
4203
4204/**
4205 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4206 * @pid: the pid in question.
4207 */
4208asmlinkage long sys_sched_getscheduler(pid_t pid)
4209{
36c8b586 4210 struct task_struct *p;
1da177e4 4211 int retval = -EINVAL;
1da177e4
LT
4212
4213 if (pid < 0)
4214 goto out_nounlock;
4215
4216 retval = -ESRCH;
4217 read_lock(&tasklist_lock);
4218 p = find_process_by_pid(pid);
4219 if (p) {
4220 retval = security_task_getscheduler(p);
4221 if (!retval)
4222 retval = p->policy;
4223 }
4224 read_unlock(&tasklist_lock);
4225
4226out_nounlock:
4227 return retval;
4228}
4229
4230/**
4231 * sys_sched_getscheduler - get the RT priority of a thread
4232 * @pid: the pid in question.
4233 * @param: structure containing the RT priority.
4234 */
4235asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4236{
4237 struct sched_param lp;
36c8b586 4238 struct task_struct *p;
1da177e4 4239 int retval = -EINVAL;
1da177e4
LT
4240
4241 if (!param || pid < 0)
4242 goto out_nounlock;
4243
4244 read_lock(&tasklist_lock);
4245 p = find_process_by_pid(pid);
4246 retval = -ESRCH;
4247 if (!p)
4248 goto out_unlock;
4249
4250 retval = security_task_getscheduler(p);
4251 if (retval)
4252 goto out_unlock;
4253
4254 lp.sched_priority = p->rt_priority;
4255 read_unlock(&tasklist_lock);
4256
4257 /*
4258 * This one might sleep, we cannot do it with a spinlock held ...
4259 */
4260 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4261
4262out_nounlock:
4263 return retval;
4264
4265out_unlock:
4266 read_unlock(&tasklist_lock);
4267 return retval;
4268}
4269
4270long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4271{
1da177e4 4272 cpumask_t cpus_allowed;
36c8b586
IM
4273 struct task_struct *p;
4274 int retval;
1da177e4 4275
5be9361c 4276 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4277 read_lock(&tasklist_lock);
4278
4279 p = find_process_by_pid(pid);
4280 if (!p) {
4281 read_unlock(&tasklist_lock);
5be9361c 4282 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4283 return -ESRCH;
4284 }
4285
4286 /*
4287 * It is not safe to call set_cpus_allowed with the
4288 * tasklist_lock held. We will bump the task_struct's
4289 * usage count and then drop tasklist_lock.
4290 */
4291 get_task_struct(p);
4292 read_unlock(&tasklist_lock);
4293
4294 retval = -EPERM;
4295 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4296 !capable(CAP_SYS_NICE))
4297 goto out_unlock;
4298
e7834f8f
DQ
4299 retval = security_task_setscheduler(p, 0, NULL);
4300 if (retval)
4301 goto out_unlock;
4302
1da177e4
LT
4303 cpus_allowed = cpuset_cpus_allowed(p);
4304 cpus_and(new_mask, new_mask, cpus_allowed);
4305 retval = set_cpus_allowed(p, new_mask);
4306
4307out_unlock:
4308 put_task_struct(p);
5be9361c 4309 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4310 return retval;
4311}
4312
4313static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4314 cpumask_t *new_mask)
4315{
4316 if (len < sizeof(cpumask_t)) {
4317 memset(new_mask, 0, sizeof(cpumask_t));
4318 } else if (len > sizeof(cpumask_t)) {
4319 len = sizeof(cpumask_t);
4320 }
4321 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4322}
4323
4324/**
4325 * sys_sched_setaffinity - set the cpu affinity of a process
4326 * @pid: pid of the process
4327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4328 * @user_mask_ptr: user-space pointer to the new cpu mask
4329 */
4330asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4331 unsigned long __user *user_mask_ptr)
4332{
4333 cpumask_t new_mask;
4334 int retval;
4335
4336 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4337 if (retval)
4338 return retval;
4339
4340 return sched_setaffinity(pid, new_mask);
4341}
4342
4343/*
4344 * Represents all cpu's present in the system
4345 * In systems capable of hotplug, this map could dynamically grow
4346 * as new cpu's are detected in the system via any platform specific
4347 * method, such as ACPI for e.g.
4348 */
4349
4cef0c61 4350cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4351EXPORT_SYMBOL(cpu_present_map);
4352
4353#ifndef CONFIG_SMP
4cef0c61 4354cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4355EXPORT_SYMBOL(cpu_online_map);
4356
4cef0c61 4357cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4358EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4359#endif
4360
4361long sched_getaffinity(pid_t pid, cpumask_t *mask)
4362{
36c8b586 4363 struct task_struct *p;
1da177e4 4364 int retval;
1da177e4 4365
5be9361c 4366 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4367 read_lock(&tasklist_lock);
4368
4369 retval = -ESRCH;
4370 p = find_process_by_pid(pid);
4371 if (!p)
4372 goto out_unlock;
4373
e7834f8f
DQ
4374 retval = security_task_getscheduler(p);
4375 if (retval)
4376 goto out_unlock;
4377
2f7016d9 4378 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4379
4380out_unlock:
4381 read_unlock(&tasklist_lock);
5be9361c 4382 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4383 if (retval)
4384 return retval;
4385
4386 return 0;
4387}
4388
4389/**
4390 * sys_sched_getaffinity - get the cpu affinity of a process
4391 * @pid: pid of the process
4392 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4393 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4394 */
4395asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4396 unsigned long __user *user_mask_ptr)
4397{
4398 int ret;
4399 cpumask_t mask;
4400
4401 if (len < sizeof(cpumask_t))
4402 return -EINVAL;
4403
4404 ret = sched_getaffinity(pid, &mask);
4405 if (ret < 0)
4406 return ret;
4407
4408 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4409 return -EFAULT;
4410
4411 return sizeof(cpumask_t);
4412}
4413
4414/**
4415 * sys_sched_yield - yield the current processor to other threads.
4416 *
dd41f596
IM
4417 * This function yields the current CPU to other tasks. If there are no
4418 * other threads running on this CPU then this function will return.
1da177e4
LT
4419 */
4420asmlinkage long sys_sched_yield(void)
4421{
70b97a7f 4422 struct rq *rq = this_rq_lock();
1da177e4
LT
4423
4424 schedstat_inc(rq, yld_cnt);
dd41f596 4425 if (unlikely(rq->nr_running == 1))
1da177e4 4426 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4427 else
4428 current->sched_class->yield_task(rq, current);
1da177e4
LT
4429
4430 /*
4431 * Since we are going to call schedule() anyway, there's
4432 * no need to preempt or enable interrupts:
4433 */
4434 __release(rq->lock);
8a25d5de 4435 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4436 _raw_spin_unlock(&rq->lock);
4437 preempt_enable_no_resched();
4438
4439 schedule();
4440
4441 return 0;
4442}
4443
e7b38404 4444static void __cond_resched(void)
1da177e4 4445{
8e0a43d8
IM
4446#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4447 __might_sleep(__FILE__, __LINE__);
4448#endif
5bbcfd90
IM
4449 /*
4450 * The BKS might be reacquired before we have dropped
4451 * PREEMPT_ACTIVE, which could trigger a second
4452 * cond_resched() call.
4453 */
1da177e4
LT
4454 do {
4455 add_preempt_count(PREEMPT_ACTIVE);
4456 schedule();
4457 sub_preempt_count(PREEMPT_ACTIVE);
4458 } while (need_resched());
4459}
4460
4461int __sched cond_resched(void)
4462{
9414232f
IM
4463 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4464 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4465 __cond_resched();
4466 return 1;
4467 }
4468 return 0;
4469}
1da177e4
LT
4470EXPORT_SYMBOL(cond_resched);
4471
4472/*
4473 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4474 * call schedule, and on return reacquire the lock.
4475 *
4476 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4477 * operations here to prevent schedule() from being called twice (once via
4478 * spin_unlock(), once by hand).
4479 */
95cdf3b7 4480int cond_resched_lock(spinlock_t *lock)
1da177e4 4481{
6df3cecb
JK
4482 int ret = 0;
4483
1da177e4
LT
4484 if (need_lockbreak(lock)) {
4485 spin_unlock(lock);
4486 cpu_relax();
6df3cecb 4487 ret = 1;
1da177e4
LT
4488 spin_lock(lock);
4489 }
9414232f 4490 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4491 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4492 _raw_spin_unlock(lock);
4493 preempt_enable_no_resched();
4494 __cond_resched();
6df3cecb 4495 ret = 1;
1da177e4 4496 spin_lock(lock);
1da177e4 4497 }
6df3cecb 4498 return ret;
1da177e4 4499}
1da177e4
LT
4500EXPORT_SYMBOL(cond_resched_lock);
4501
4502int __sched cond_resched_softirq(void)
4503{
4504 BUG_ON(!in_softirq());
4505
9414232f 4506 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4507 local_bh_enable();
1da177e4
LT
4508 __cond_resched();
4509 local_bh_disable();
4510 return 1;
4511 }
4512 return 0;
4513}
1da177e4
LT
4514EXPORT_SYMBOL(cond_resched_softirq);
4515
1da177e4
LT
4516/**
4517 * yield - yield the current processor to other threads.
4518 *
72fd4a35 4519 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4520 * thread runnable and calls sys_sched_yield().
4521 */
4522void __sched yield(void)
4523{
4524 set_current_state(TASK_RUNNING);
4525 sys_sched_yield();
4526}
1da177e4
LT
4527EXPORT_SYMBOL(yield);
4528
4529/*
4530 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4531 * that process accounting knows that this is a task in IO wait state.
4532 *
4533 * But don't do that if it is a deliberate, throttling IO wait (this task
4534 * has set its backing_dev_info: the queue against which it should throttle)
4535 */
4536void __sched io_schedule(void)
4537{
70b97a7f 4538 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4539
0ff92245 4540 delayacct_blkio_start();
1da177e4
LT
4541 atomic_inc(&rq->nr_iowait);
4542 schedule();
4543 atomic_dec(&rq->nr_iowait);
0ff92245 4544 delayacct_blkio_end();
1da177e4 4545}
1da177e4
LT
4546EXPORT_SYMBOL(io_schedule);
4547
4548long __sched io_schedule_timeout(long timeout)
4549{
70b97a7f 4550 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4551 long ret;
4552
0ff92245 4553 delayacct_blkio_start();
1da177e4
LT
4554 atomic_inc(&rq->nr_iowait);
4555 ret = schedule_timeout(timeout);
4556 atomic_dec(&rq->nr_iowait);
0ff92245 4557 delayacct_blkio_end();
1da177e4
LT
4558 return ret;
4559}
4560
4561/**
4562 * sys_sched_get_priority_max - return maximum RT priority.
4563 * @policy: scheduling class.
4564 *
4565 * this syscall returns the maximum rt_priority that can be used
4566 * by a given scheduling class.
4567 */
4568asmlinkage long sys_sched_get_priority_max(int policy)
4569{
4570 int ret = -EINVAL;
4571
4572 switch (policy) {
4573 case SCHED_FIFO:
4574 case SCHED_RR:
4575 ret = MAX_USER_RT_PRIO-1;
4576 break;
4577 case SCHED_NORMAL:
b0a9499c 4578 case SCHED_BATCH:
dd41f596 4579 case SCHED_IDLE:
1da177e4
LT
4580 ret = 0;
4581 break;
4582 }
4583 return ret;
4584}
4585
4586/**
4587 * sys_sched_get_priority_min - return minimum RT priority.
4588 * @policy: scheduling class.
4589 *
4590 * this syscall returns the minimum rt_priority that can be used
4591 * by a given scheduling class.
4592 */
4593asmlinkage long sys_sched_get_priority_min(int policy)
4594{
4595 int ret = -EINVAL;
4596
4597 switch (policy) {
4598 case SCHED_FIFO:
4599 case SCHED_RR:
4600 ret = 1;
4601 break;
4602 case SCHED_NORMAL:
b0a9499c 4603 case SCHED_BATCH:
dd41f596 4604 case SCHED_IDLE:
1da177e4
LT
4605 ret = 0;
4606 }
4607 return ret;
4608}
4609
4610/**
4611 * sys_sched_rr_get_interval - return the default timeslice of a process.
4612 * @pid: pid of the process.
4613 * @interval: userspace pointer to the timeslice value.
4614 *
4615 * this syscall writes the default timeslice value of a given process
4616 * into the user-space timespec buffer. A value of '0' means infinity.
4617 */
4618asmlinkage
4619long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4620{
36c8b586 4621 struct task_struct *p;
1da177e4
LT
4622 int retval = -EINVAL;
4623 struct timespec t;
1da177e4
LT
4624
4625 if (pid < 0)
4626 goto out_nounlock;
4627
4628 retval = -ESRCH;
4629 read_lock(&tasklist_lock);
4630 p = find_process_by_pid(pid);
4631 if (!p)
4632 goto out_unlock;
4633
4634 retval = security_task_getscheduler(p);
4635 if (retval)
4636 goto out_unlock;
4637
b78709cf 4638 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4639 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4640 read_unlock(&tasklist_lock);
4641 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4642out_nounlock:
4643 return retval;
4644out_unlock:
4645 read_unlock(&tasklist_lock);
4646 return retval;
4647}
4648
2ed6e34f 4649static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4650
4651static void show_task(struct task_struct *p)
1da177e4 4652{
1da177e4 4653 unsigned long free = 0;
36c8b586 4654 unsigned state;
1da177e4 4655
1da177e4 4656 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4657 printk("%-13.13s %c", p->comm,
4658 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4659#if BITS_PER_LONG == 32
1da177e4 4660 if (state == TASK_RUNNING)
4bd77321 4661 printk(" running ");
1da177e4 4662 else
4bd77321 4663 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4664#else
4665 if (state == TASK_RUNNING)
4bd77321 4666 printk(" running task ");
1da177e4
LT
4667 else
4668 printk(" %016lx ", thread_saved_pc(p));
4669#endif
4670#ifdef CONFIG_DEBUG_STACK_USAGE
4671 {
10ebffde 4672 unsigned long *n = end_of_stack(p);
1da177e4
LT
4673 while (!*n)
4674 n++;
10ebffde 4675 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4676 }
4677#endif
4bd77321 4678 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4679
4680 if (state != TASK_RUNNING)
4681 show_stack(p, NULL);
4682}
4683
e59e2ae2 4684void show_state_filter(unsigned long state_filter)
1da177e4 4685{
36c8b586 4686 struct task_struct *g, *p;
1da177e4 4687
4bd77321
IM
4688#if BITS_PER_LONG == 32
4689 printk(KERN_INFO
4690 " task PC stack pid father\n");
1da177e4 4691#else
4bd77321
IM
4692 printk(KERN_INFO
4693 " task PC stack pid father\n");
1da177e4
LT
4694#endif
4695 read_lock(&tasklist_lock);
4696 do_each_thread(g, p) {
4697 /*
4698 * reset the NMI-timeout, listing all files on a slow
4699 * console might take alot of time:
4700 */
4701 touch_nmi_watchdog();
39bc89fd 4702 if (!state_filter || (p->state & state_filter))
e59e2ae2 4703 show_task(p);
1da177e4
LT
4704 } while_each_thread(g, p);
4705
04c9167f
JF
4706 touch_all_softlockup_watchdogs();
4707
dd41f596
IM
4708#ifdef CONFIG_SCHED_DEBUG
4709 sysrq_sched_debug_show();
4710#endif
1da177e4 4711 read_unlock(&tasklist_lock);
e59e2ae2
IM
4712 /*
4713 * Only show locks if all tasks are dumped:
4714 */
4715 if (state_filter == -1)
4716 debug_show_all_locks();
1da177e4
LT
4717}
4718
1df21055
IM
4719void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4720{
dd41f596 4721 idle->sched_class = &idle_sched_class;
1df21055
IM
4722}
4723
f340c0d1
IM
4724/**
4725 * init_idle - set up an idle thread for a given CPU
4726 * @idle: task in question
4727 * @cpu: cpu the idle task belongs to
4728 *
4729 * NOTE: this function does not set the idle thread's NEED_RESCHED
4730 * flag, to make booting more robust.
4731 */
5c1e1767 4732void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4733{
70b97a7f 4734 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4735 unsigned long flags;
4736
dd41f596
IM
4737 __sched_fork(idle);
4738 idle->se.exec_start = sched_clock();
4739
b29739f9 4740 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4741 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4742 __set_task_cpu(idle, cpu);
1da177e4
LT
4743
4744 spin_lock_irqsave(&rq->lock, flags);
4745 rq->curr = rq->idle = idle;
4866cde0
NP
4746#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4747 idle->oncpu = 1;
4748#endif
1da177e4
LT
4749 spin_unlock_irqrestore(&rq->lock, flags);
4750
4751 /* Set the preempt count _outside_ the spinlocks! */
4752#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4753 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4754#else
a1261f54 4755 task_thread_info(idle)->preempt_count = 0;
1da177e4 4756#endif
dd41f596
IM
4757 /*
4758 * The idle tasks have their own, simple scheduling class:
4759 */
4760 idle->sched_class = &idle_sched_class;
1da177e4
LT
4761}
4762
4763/*
4764 * In a system that switches off the HZ timer nohz_cpu_mask
4765 * indicates which cpus entered this state. This is used
4766 * in the rcu update to wait only for active cpus. For system
4767 * which do not switch off the HZ timer nohz_cpu_mask should
4768 * always be CPU_MASK_NONE.
4769 */
4770cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4771
dd41f596
IM
4772/*
4773 * Increase the granularity value when there are more CPUs,
4774 * because with more CPUs the 'effective latency' as visible
4775 * to users decreases. But the relationship is not linear,
4776 * so pick a second-best guess by going with the log2 of the
4777 * number of CPUs.
4778 *
4779 * This idea comes from the SD scheduler of Con Kolivas:
4780 */
4781static inline void sched_init_granularity(void)
4782{
4783 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4784 const unsigned long gran_limit = 100000000;
dd41f596
IM
4785
4786 sysctl_sched_granularity *= factor;
4787 if (sysctl_sched_granularity > gran_limit)
4788 sysctl_sched_granularity = gran_limit;
4789
4790 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4791 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4792}
4793
1da177e4
LT
4794#ifdef CONFIG_SMP
4795/*
4796 * This is how migration works:
4797 *
70b97a7f 4798 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4799 * runqueue and wake up that CPU's migration thread.
4800 * 2) we down() the locked semaphore => thread blocks.
4801 * 3) migration thread wakes up (implicitly it forces the migrated
4802 * thread off the CPU)
4803 * 4) it gets the migration request and checks whether the migrated
4804 * task is still in the wrong runqueue.
4805 * 5) if it's in the wrong runqueue then the migration thread removes
4806 * it and puts it into the right queue.
4807 * 6) migration thread up()s the semaphore.
4808 * 7) we wake up and the migration is done.
4809 */
4810
4811/*
4812 * Change a given task's CPU affinity. Migrate the thread to a
4813 * proper CPU and schedule it away if the CPU it's executing on
4814 * is removed from the allowed bitmask.
4815 *
4816 * NOTE: the caller must have a valid reference to the task, the
4817 * task must not exit() & deallocate itself prematurely. The
4818 * call is not atomic; no spinlocks may be held.
4819 */
36c8b586 4820int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4821{
70b97a7f 4822 struct migration_req req;
1da177e4 4823 unsigned long flags;
70b97a7f 4824 struct rq *rq;
48f24c4d 4825 int ret = 0;
1da177e4
LT
4826
4827 rq = task_rq_lock(p, &flags);
4828 if (!cpus_intersects(new_mask, cpu_online_map)) {
4829 ret = -EINVAL;
4830 goto out;
4831 }
4832
4833 p->cpus_allowed = new_mask;
4834 /* Can the task run on the task's current CPU? If so, we're done */
4835 if (cpu_isset(task_cpu(p), new_mask))
4836 goto out;
4837
4838 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4839 /* Need help from migration thread: drop lock and wait. */
4840 task_rq_unlock(rq, &flags);
4841 wake_up_process(rq->migration_thread);
4842 wait_for_completion(&req.done);
4843 tlb_migrate_finish(p->mm);
4844 return 0;
4845 }
4846out:
4847 task_rq_unlock(rq, &flags);
48f24c4d 4848
1da177e4
LT
4849 return ret;
4850}
1da177e4
LT
4851EXPORT_SYMBOL_GPL(set_cpus_allowed);
4852
4853/*
4854 * Move (not current) task off this cpu, onto dest cpu. We're doing
4855 * this because either it can't run here any more (set_cpus_allowed()
4856 * away from this CPU, or CPU going down), or because we're
4857 * attempting to rebalance this task on exec (sched_exec).
4858 *
4859 * So we race with normal scheduler movements, but that's OK, as long
4860 * as the task is no longer on this CPU.
efc30814
KK
4861 *
4862 * Returns non-zero if task was successfully migrated.
1da177e4 4863 */
efc30814 4864static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4865{
70b97a7f 4866 struct rq *rq_dest, *rq_src;
dd41f596 4867 int ret = 0, on_rq;
1da177e4
LT
4868
4869 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4870 return ret;
1da177e4
LT
4871
4872 rq_src = cpu_rq(src_cpu);
4873 rq_dest = cpu_rq(dest_cpu);
4874
4875 double_rq_lock(rq_src, rq_dest);
4876 /* Already moved. */
4877 if (task_cpu(p) != src_cpu)
4878 goto out;
4879 /* Affinity changed (again). */
4880 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4881 goto out;
4882
dd41f596
IM
4883 on_rq = p->se.on_rq;
4884 if (on_rq)
4885 deactivate_task(rq_src, p, 0);
1da177e4 4886 set_task_cpu(p, dest_cpu);
dd41f596
IM
4887 if (on_rq) {
4888 activate_task(rq_dest, p, 0);
4889 check_preempt_curr(rq_dest, p);
1da177e4 4890 }
efc30814 4891 ret = 1;
1da177e4
LT
4892out:
4893 double_rq_unlock(rq_src, rq_dest);
efc30814 4894 return ret;
1da177e4
LT
4895}
4896
4897/*
4898 * migration_thread - this is a highprio system thread that performs
4899 * thread migration by bumping thread off CPU then 'pushing' onto
4900 * another runqueue.
4901 */
95cdf3b7 4902static int migration_thread(void *data)
1da177e4 4903{
1da177e4 4904 int cpu = (long)data;
70b97a7f 4905 struct rq *rq;
1da177e4
LT
4906
4907 rq = cpu_rq(cpu);
4908 BUG_ON(rq->migration_thread != current);
4909
4910 set_current_state(TASK_INTERRUPTIBLE);
4911 while (!kthread_should_stop()) {
70b97a7f 4912 struct migration_req *req;
1da177e4 4913 struct list_head *head;
1da177e4 4914
1da177e4
LT
4915 spin_lock_irq(&rq->lock);
4916
4917 if (cpu_is_offline(cpu)) {
4918 spin_unlock_irq(&rq->lock);
4919 goto wait_to_die;
4920 }
4921
4922 if (rq->active_balance) {
4923 active_load_balance(rq, cpu);
4924 rq->active_balance = 0;
4925 }
4926
4927 head = &rq->migration_queue;
4928
4929 if (list_empty(head)) {
4930 spin_unlock_irq(&rq->lock);
4931 schedule();
4932 set_current_state(TASK_INTERRUPTIBLE);
4933 continue;
4934 }
70b97a7f 4935 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
4936 list_del_init(head->next);
4937
674311d5
NP
4938 spin_unlock(&rq->lock);
4939 __migrate_task(req->task, cpu, req->dest_cpu);
4940 local_irq_enable();
1da177e4
LT
4941
4942 complete(&req->done);
4943 }
4944 __set_current_state(TASK_RUNNING);
4945 return 0;
4946
4947wait_to_die:
4948 /* Wait for kthread_stop */
4949 set_current_state(TASK_INTERRUPTIBLE);
4950 while (!kthread_should_stop()) {
4951 schedule();
4952 set_current_state(TASK_INTERRUPTIBLE);
4953 }
4954 __set_current_state(TASK_RUNNING);
4955 return 0;
4956}
4957
4958#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
4959/*
4960 * Figure out where task on dead CPU should go, use force if neccessary.
4961 * NOTE: interrupts should be disabled by the caller
4962 */
48f24c4d 4963static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 4964{
efc30814 4965 unsigned long flags;
1da177e4 4966 cpumask_t mask;
70b97a7f
IM
4967 struct rq *rq;
4968 int dest_cpu;
1da177e4 4969
efc30814 4970restart:
1da177e4
LT
4971 /* On same node? */
4972 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 4973 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
4974 dest_cpu = any_online_cpu(mask);
4975
4976 /* On any allowed CPU? */
4977 if (dest_cpu == NR_CPUS)
48f24c4d 4978 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
4979
4980 /* No more Mr. Nice Guy. */
4981 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
4982 rq = task_rq_lock(p, &flags);
4983 cpus_setall(p->cpus_allowed);
4984 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 4985 task_rq_unlock(rq, &flags);
1da177e4
LT
4986
4987 /*
4988 * Don't tell them about moving exiting tasks or
4989 * kernel threads (both mm NULL), since they never
4990 * leave kernel.
4991 */
48f24c4d 4992 if (p->mm && printk_ratelimit())
1da177e4
LT
4993 printk(KERN_INFO "process %d (%s) no "
4994 "longer affine to cpu%d\n",
48f24c4d 4995 p->pid, p->comm, dead_cpu);
1da177e4 4996 }
48f24c4d 4997 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 4998 goto restart;
1da177e4
LT
4999}
5000
5001/*
5002 * While a dead CPU has no uninterruptible tasks queued at this point,
5003 * it might still have a nonzero ->nr_uninterruptible counter, because
5004 * for performance reasons the counter is not stricly tracking tasks to
5005 * their home CPUs. So we just add the counter to another CPU's counter,
5006 * to keep the global sum constant after CPU-down:
5007 */
70b97a7f 5008static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5009{
70b97a7f 5010 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5011 unsigned long flags;
5012
5013 local_irq_save(flags);
5014 double_rq_lock(rq_src, rq_dest);
5015 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5016 rq_src->nr_uninterruptible = 0;
5017 double_rq_unlock(rq_src, rq_dest);
5018 local_irq_restore(flags);
5019}
5020
5021/* Run through task list and migrate tasks from the dead cpu. */
5022static void migrate_live_tasks(int src_cpu)
5023{
48f24c4d 5024 struct task_struct *p, *t;
1da177e4
LT
5025
5026 write_lock_irq(&tasklist_lock);
5027
48f24c4d
IM
5028 do_each_thread(t, p) {
5029 if (p == current)
1da177e4
LT
5030 continue;
5031
48f24c4d
IM
5032 if (task_cpu(p) == src_cpu)
5033 move_task_off_dead_cpu(src_cpu, p);
5034 } while_each_thread(t, p);
1da177e4
LT
5035
5036 write_unlock_irq(&tasklist_lock);
5037}
5038
dd41f596
IM
5039/*
5040 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5041 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5042 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5043 */
5044void sched_idle_next(void)
5045{
48f24c4d 5046 int this_cpu = smp_processor_id();
70b97a7f 5047 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5048 struct task_struct *p = rq->idle;
5049 unsigned long flags;
5050
5051 /* cpu has to be offline */
48f24c4d 5052 BUG_ON(cpu_online(this_cpu));
1da177e4 5053
48f24c4d
IM
5054 /*
5055 * Strictly not necessary since rest of the CPUs are stopped by now
5056 * and interrupts disabled on the current cpu.
1da177e4
LT
5057 */
5058 spin_lock_irqsave(&rq->lock, flags);
5059
dd41f596 5060 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5061
5062 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5063 activate_idle_task(p, rq);
1da177e4
LT
5064
5065 spin_unlock_irqrestore(&rq->lock, flags);
5066}
5067
48f24c4d
IM
5068/*
5069 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5070 * offline.
5071 */
5072void idle_task_exit(void)
5073{
5074 struct mm_struct *mm = current->active_mm;
5075
5076 BUG_ON(cpu_online(smp_processor_id()));
5077
5078 if (mm != &init_mm)
5079 switch_mm(mm, &init_mm, current);
5080 mmdrop(mm);
5081}
5082
054b9108 5083/* called under rq->lock with disabled interrupts */
36c8b586 5084static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5085{
70b97a7f 5086 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5087
5088 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5089 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5090
5091 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5092 BUG_ON(p->state == TASK_DEAD);
1da177e4 5093
48f24c4d 5094 get_task_struct(p);
1da177e4
LT
5095
5096 /*
5097 * Drop lock around migration; if someone else moves it,
5098 * that's OK. No task can be added to this CPU, so iteration is
5099 * fine.
054b9108 5100 * NOTE: interrupts should be left disabled --dev@
1da177e4 5101 */
054b9108 5102 spin_unlock(&rq->lock);
48f24c4d 5103 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5104 spin_lock(&rq->lock);
1da177e4 5105
48f24c4d 5106 put_task_struct(p);
1da177e4
LT
5107}
5108
5109/* release_task() removes task from tasklist, so we won't find dead tasks. */
5110static void migrate_dead_tasks(unsigned int dead_cpu)
5111{
70b97a7f 5112 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5113 struct task_struct *next;
48f24c4d 5114
dd41f596
IM
5115 for ( ; ; ) {
5116 if (!rq->nr_running)
5117 break;
5118 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5119 if (!next)
5120 break;
5121 migrate_dead(dead_cpu, next);
1da177e4
LT
5122 }
5123}
5124#endif /* CONFIG_HOTPLUG_CPU */
5125
5126/*
5127 * migration_call - callback that gets triggered when a CPU is added.
5128 * Here we can start up the necessary migration thread for the new CPU.
5129 */
48f24c4d
IM
5130static int __cpuinit
5131migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5132{
1da177e4 5133 struct task_struct *p;
48f24c4d 5134 int cpu = (long)hcpu;
1da177e4 5135 unsigned long flags;
70b97a7f 5136 struct rq *rq;
1da177e4
LT
5137
5138 switch (action) {
5be9361c
GS
5139 case CPU_LOCK_ACQUIRE:
5140 mutex_lock(&sched_hotcpu_mutex);
5141 break;
5142
1da177e4 5143 case CPU_UP_PREPARE:
8bb78442 5144 case CPU_UP_PREPARE_FROZEN:
dd41f596 5145 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5146 if (IS_ERR(p))
5147 return NOTIFY_BAD;
1da177e4
LT
5148 kthread_bind(p, cpu);
5149 /* Must be high prio: stop_machine expects to yield to it. */
5150 rq = task_rq_lock(p, &flags);
dd41f596 5151 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5152 task_rq_unlock(rq, &flags);
5153 cpu_rq(cpu)->migration_thread = p;
5154 break;
48f24c4d 5155
1da177e4 5156 case CPU_ONLINE:
8bb78442 5157 case CPU_ONLINE_FROZEN:
1da177e4
LT
5158 /* Strictly unneccessary, as first user will wake it. */
5159 wake_up_process(cpu_rq(cpu)->migration_thread);
5160 break;
48f24c4d 5161
1da177e4
LT
5162#ifdef CONFIG_HOTPLUG_CPU
5163 case CPU_UP_CANCELED:
8bb78442 5164 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5165 if (!cpu_rq(cpu)->migration_thread)
5166 break;
1da177e4 5167 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5168 kthread_bind(cpu_rq(cpu)->migration_thread,
5169 any_online_cpu(cpu_online_map));
1da177e4
LT
5170 kthread_stop(cpu_rq(cpu)->migration_thread);
5171 cpu_rq(cpu)->migration_thread = NULL;
5172 break;
48f24c4d 5173
1da177e4 5174 case CPU_DEAD:
8bb78442 5175 case CPU_DEAD_FROZEN:
1da177e4
LT
5176 migrate_live_tasks(cpu);
5177 rq = cpu_rq(cpu);
5178 kthread_stop(rq->migration_thread);
5179 rq->migration_thread = NULL;
5180 /* Idle task back to normal (off runqueue, low prio) */
5181 rq = task_rq_lock(rq->idle, &flags);
dd41f596 5182 deactivate_task(rq, rq->idle, 0);
1da177e4 5183 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5184 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5185 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5186 migrate_dead_tasks(cpu);
5187 task_rq_unlock(rq, &flags);
5188 migrate_nr_uninterruptible(rq);
5189 BUG_ON(rq->nr_running != 0);
5190
5191 /* No need to migrate the tasks: it was best-effort if
5be9361c 5192 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5193 * the requestors. */
5194 spin_lock_irq(&rq->lock);
5195 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5196 struct migration_req *req;
5197
1da177e4 5198 req = list_entry(rq->migration_queue.next,
70b97a7f 5199 struct migration_req, list);
1da177e4
LT
5200 list_del_init(&req->list);
5201 complete(&req->done);
5202 }
5203 spin_unlock_irq(&rq->lock);
5204 break;
5205#endif
5be9361c
GS
5206 case CPU_LOCK_RELEASE:
5207 mutex_unlock(&sched_hotcpu_mutex);
5208 break;
1da177e4
LT
5209 }
5210 return NOTIFY_OK;
5211}
5212
5213/* Register at highest priority so that task migration (migrate_all_tasks)
5214 * happens before everything else.
5215 */
26c2143b 5216static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5217 .notifier_call = migration_call,
5218 .priority = 10
5219};
5220
5221int __init migration_init(void)
5222{
5223 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5224 int err;
48f24c4d
IM
5225
5226 /* Start one for the boot CPU: */
07dccf33
AM
5227 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5228 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5229 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5230 register_cpu_notifier(&migration_notifier);
48f24c4d 5231
1da177e4
LT
5232 return 0;
5233}
5234#endif
5235
5236#ifdef CONFIG_SMP
476f3534
CL
5237
5238/* Number of possible processor ids */
5239int nr_cpu_ids __read_mostly = NR_CPUS;
5240EXPORT_SYMBOL(nr_cpu_ids);
5241
1a20ff27 5242#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5243#ifdef SCHED_DOMAIN_DEBUG
5244static void sched_domain_debug(struct sched_domain *sd, int cpu)
5245{
5246 int level = 0;
5247
41c7ce9a
NP
5248 if (!sd) {
5249 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5250 return;
5251 }
5252
1da177e4
LT
5253 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5254
5255 do {
5256 int i;
5257 char str[NR_CPUS];
5258 struct sched_group *group = sd->groups;
5259 cpumask_t groupmask;
5260
5261 cpumask_scnprintf(str, NR_CPUS, sd->span);
5262 cpus_clear(groupmask);
5263
5264 printk(KERN_DEBUG);
5265 for (i = 0; i < level + 1; i++)
5266 printk(" ");
5267 printk("domain %d: ", level);
5268
5269 if (!(sd->flags & SD_LOAD_BALANCE)) {
5270 printk("does not load-balance\n");
5271 if (sd->parent)
33859f7f
MOS
5272 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5273 " has parent");
1da177e4
LT
5274 break;
5275 }
5276
5277 printk("span %s\n", str);
5278
5279 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5280 printk(KERN_ERR "ERROR: domain->span does not contain "
5281 "CPU%d\n", cpu);
1da177e4 5282 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5283 printk(KERN_ERR "ERROR: domain->groups does not contain"
5284 " CPU%d\n", cpu);
1da177e4
LT
5285
5286 printk(KERN_DEBUG);
5287 for (i = 0; i < level + 2; i++)
5288 printk(" ");
5289 printk("groups:");
5290 do {
5291 if (!group) {
5292 printk("\n");
5293 printk(KERN_ERR "ERROR: group is NULL\n");
5294 break;
5295 }
5296
5517d86b 5297 if (!group->__cpu_power) {
1da177e4 5298 printk("\n");
33859f7f
MOS
5299 printk(KERN_ERR "ERROR: domain->cpu_power not "
5300 "set\n");
1da177e4
LT
5301 }
5302
5303 if (!cpus_weight(group->cpumask)) {
5304 printk("\n");
5305 printk(KERN_ERR "ERROR: empty group\n");
5306 }
5307
5308 if (cpus_intersects(groupmask, group->cpumask)) {
5309 printk("\n");
5310 printk(KERN_ERR "ERROR: repeated CPUs\n");
5311 }
5312
5313 cpus_or(groupmask, groupmask, group->cpumask);
5314
5315 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5316 printk(" %s", str);
5317
5318 group = group->next;
5319 } while (group != sd->groups);
5320 printk("\n");
5321
5322 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5323 printk(KERN_ERR "ERROR: groups don't span "
5324 "domain->span\n");
1da177e4
LT
5325
5326 level++;
5327 sd = sd->parent;
33859f7f
MOS
5328 if (!sd)
5329 continue;
1da177e4 5330
33859f7f
MOS
5331 if (!cpus_subset(groupmask, sd->span))
5332 printk(KERN_ERR "ERROR: parent span is not a superset "
5333 "of domain->span\n");
1da177e4
LT
5334
5335 } while (sd);
5336}
5337#else
48f24c4d 5338# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5339#endif
5340
1a20ff27 5341static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5342{
5343 if (cpus_weight(sd->span) == 1)
5344 return 1;
5345
5346 /* Following flags need at least 2 groups */
5347 if (sd->flags & (SD_LOAD_BALANCE |
5348 SD_BALANCE_NEWIDLE |
5349 SD_BALANCE_FORK |
89c4710e
SS
5350 SD_BALANCE_EXEC |
5351 SD_SHARE_CPUPOWER |
5352 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5353 if (sd->groups != sd->groups->next)
5354 return 0;
5355 }
5356
5357 /* Following flags don't use groups */
5358 if (sd->flags & (SD_WAKE_IDLE |
5359 SD_WAKE_AFFINE |
5360 SD_WAKE_BALANCE))
5361 return 0;
5362
5363 return 1;
5364}
5365
48f24c4d
IM
5366static int
5367sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5368{
5369 unsigned long cflags = sd->flags, pflags = parent->flags;
5370
5371 if (sd_degenerate(parent))
5372 return 1;
5373
5374 if (!cpus_equal(sd->span, parent->span))
5375 return 0;
5376
5377 /* Does parent contain flags not in child? */
5378 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5379 if (cflags & SD_WAKE_AFFINE)
5380 pflags &= ~SD_WAKE_BALANCE;
5381 /* Flags needing groups don't count if only 1 group in parent */
5382 if (parent->groups == parent->groups->next) {
5383 pflags &= ~(SD_LOAD_BALANCE |
5384 SD_BALANCE_NEWIDLE |
5385 SD_BALANCE_FORK |
89c4710e
SS
5386 SD_BALANCE_EXEC |
5387 SD_SHARE_CPUPOWER |
5388 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5389 }
5390 if (~cflags & pflags)
5391 return 0;
5392
5393 return 1;
5394}
5395
1da177e4
LT
5396/*
5397 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5398 * hold the hotplug lock.
5399 */
9c1cfda2 5400static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5401{
70b97a7f 5402 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5403 struct sched_domain *tmp;
5404
5405 /* Remove the sched domains which do not contribute to scheduling. */
5406 for (tmp = sd; tmp; tmp = tmp->parent) {
5407 struct sched_domain *parent = tmp->parent;
5408 if (!parent)
5409 break;
1a848870 5410 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5411 tmp->parent = parent->parent;
1a848870
SS
5412 if (parent->parent)
5413 parent->parent->child = tmp;
5414 }
245af2c7
SS
5415 }
5416
1a848870 5417 if (sd && sd_degenerate(sd)) {
245af2c7 5418 sd = sd->parent;
1a848870
SS
5419 if (sd)
5420 sd->child = NULL;
5421 }
1da177e4
LT
5422
5423 sched_domain_debug(sd, cpu);
5424
674311d5 5425 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5426}
5427
5428/* cpus with isolated domains */
67af63a6 5429static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5430
5431/* Setup the mask of cpus configured for isolated domains */
5432static int __init isolated_cpu_setup(char *str)
5433{
5434 int ints[NR_CPUS], i;
5435
5436 str = get_options(str, ARRAY_SIZE(ints), ints);
5437 cpus_clear(cpu_isolated_map);
5438 for (i = 1; i <= ints[0]; i++)
5439 if (ints[i] < NR_CPUS)
5440 cpu_set(ints[i], cpu_isolated_map);
5441 return 1;
5442}
5443
5444__setup ("isolcpus=", isolated_cpu_setup);
5445
5446/*
6711cab4
SS
5447 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5448 * to a function which identifies what group(along with sched group) a CPU
5449 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5450 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5451 *
5452 * init_sched_build_groups will build a circular linked list of the groups
5453 * covered by the given span, and will set each group's ->cpumask correctly,
5454 * and ->cpu_power to 0.
5455 */
a616058b 5456static void
6711cab4
SS
5457init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5458 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5459 struct sched_group **sg))
1da177e4
LT
5460{
5461 struct sched_group *first = NULL, *last = NULL;
5462 cpumask_t covered = CPU_MASK_NONE;
5463 int i;
5464
5465 for_each_cpu_mask(i, span) {
6711cab4
SS
5466 struct sched_group *sg;
5467 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5468 int j;
5469
5470 if (cpu_isset(i, covered))
5471 continue;
5472
5473 sg->cpumask = CPU_MASK_NONE;
5517d86b 5474 sg->__cpu_power = 0;
1da177e4
LT
5475
5476 for_each_cpu_mask(j, span) {
6711cab4 5477 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5478 continue;
5479
5480 cpu_set(j, covered);
5481 cpu_set(j, sg->cpumask);
5482 }
5483 if (!first)
5484 first = sg;
5485 if (last)
5486 last->next = sg;
5487 last = sg;
5488 }
5489 last->next = first;
5490}
5491
9c1cfda2 5492#define SD_NODES_PER_DOMAIN 16
1da177e4 5493
9c1cfda2 5494#ifdef CONFIG_NUMA
198e2f18 5495
9c1cfda2
JH
5496/**
5497 * find_next_best_node - find the next node to include in a sched_domain
5498 * @node: node whose sched_domain we're building
5499 * @used_nodes: nodes already in the sched_domain
5500 *
5501 * Find the next node to include in a given scheduling domain. Simply
5502 * finds the closest node not already in the @used_nodes map.
5503 *
5504 * Should use nodemask_t.
5505 */
5506static int find_next_best_node(int node, unsigned long *used_nodes)
5507{
5508 int i, n, val, min_val, best_node = 0;
5509
5510 min_val = INT_MAX;
5511
5512 for (i = 0; i < MAX_NUMNODES; i++) {
5513 /* Start at @node */
5514 n = (node + i) % MAX_NUMNODES;
5515
5516 if (!nr_cpus_node(n))
5517 continue;
5518
5519 /* Skip already used nodes */
5520 if (test_bit(n, used_nodes))
5521 continue;
5522
5523 /* Simple min distance search */
5524 val = node_distance(node, n);
5525
5526 if (val < min_val) {
5527 min_val = val;
5528 best_node = n;
5529 }
5530 }
5531
5532 set_bit(best_node, used_nodes);
5533 return best_node;
5534}
5535
5536/**
5537 * sched_domain_node_span - get a cpumask for a node's sched_domain
5538 * @node: node whose cpumask we're constructing
5539 * @size: number of nodes to include in this span
5540 *
5541 * Given a node, construct a good cpumask for its sched_domain to span. It
5542 * should be one that prevents unnecessary balancing, but also spreads tasks
5543 * out optimally.
5544 */
5545static cpumask_t sched_domain_node_span(int node)
5546{
9c1cfda2 5547 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5548 cpumask_t span, nodemask;
5549 int i;
9c1cfda2
JH
5550
5551 cpus_clear(span);
5552 bitmap_zero(used_nodes, MAX_NUMNODES);
5553
5554 nodemask = node_to_cpumask(node);
5555 cpus_or(span, span, nodemask);
5556 set_bit(node, used_nodes);
5557
5558 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5559 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5560
9c1cfda2
JH
5561 nodemask = node_to_cpumask(next_node);
5562 cpus_or(span, span, nodemask);
5563 }
5564
5565 return span;
5566}
5567#endif
5568
5c45bf27 5569int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5570
9c1cfda2 5571/*
48f24c4d 5572 * SMT sched-domains:
9c1cfda2 5573 */
1da177e4
LT
5574#ifdef CONFIG_SCHED_SMT
5575static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5576static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5577
6711cab4
SS
5578static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5579 struct sched_group **sg)
1da177e4 5580{
6711cab4
SS
5581 if (sg)
5582 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5583 return cpu;
5584}
5585#endif
5586
48f24c4d
IM
5587/*
5588 * multi-core sched-domains:
5589 */
1e9f28fa
SS
5590#ifdef CONFIG_SCHED_MC
5591static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5592static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5593#endif
5594
5595#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5596static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5597 struct sched_group **sg)
1e9f28fa 5598{
6711cab4 5599 int group;
a616058b
SS
5600 cpumask_t mask = cpu_sibling_map[cpu];
5601 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5602 group = first_cpu(mask);
5603 if (sg)
5604 *sg = &per_cpu(sched_group_core, group);
5605 return group;
1e9f28fa
SS
5606}
5607#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5608static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5609 struct sched_group **sg)
1e9f28fa 5610{
6711cab4
SS
5611 if (sg)
5612 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5613 return cpu;
5614}
5615#endif
5616
1da177e4 5617static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5618static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5619
6711cab4
SS
5620static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5621 struct sched_group **sg)
1da177e4 5622{
6711cab4 5623 int group;
48f24c4d 5624#ifdef CONFIG_SCHED_MC
1e9f28fa 5625 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5626 cpus_and(mask, mask, *cpu_map);
6711cab4 5627 group = first_cpu(mask);
1e9f28fa 5628#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5629 cpumask_t mask = cpu_sibling_map[cpu];
5630 cpus_and(mask, mask, *cpu_map);
6711cab4 5631 group = first_cpu(mask);
1da177e4 5632#else
6711cab4 5633 group = cpu;
1da177e4 5634#endif
6711cab4
SS
5635 if (sg)
5636 *sg = &per_cpu(sched_group_phys, group);
5637 return group;
1da177e4
LT
5638}
5639
5640#ifdef CONFIG_NUMA
1da177e4 5641/*
9c1cfda2
JH
5642 * The init_sched_build_groups can't handle what we want to do with node
5643 * groups, so roll our own. Now each node has its own list of groups which
5644 * gets dynamically allocated.
1da177e4 5645 */
9c1cfda2 5646static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5647static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5648
9c1cfda2 5649static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5650static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5651
6711cab4
SS
5652static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5653 struct sched_group **sg)
9c1cfda2 5654{
6711cab4
SS
5655 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5656 int group;
5657
5658 cpus_and(nodemask, nodemask, *cpu_map);
5659 group = first_cpu(nodemask);
5660
5661 if (sg)
5662 *sg = &per_cpu(sched_group_allnodes, group);
5663 return group;
1da177e4 5664}
6711cab4 5665
08069033
SS
5666static void init_numa_sched_groups_power(struct sched_group *group_head)
5667{
5668 struct sched_group *sg = group_head;
5669 int j;
5670
5671 if (!sg)
5672 return;
5673next_sg:
5674 for_each_cpu_mask(j, sg->cpumask) {
5675 struct sched_domain *sd;
5676
5677 sd = &per_cpu(phys_domains, j);
5678 if (j != first_cpu(sd->groups->cpumask)) {
5679 /*
5680 * Only add "power" once for each
5681 * physical package.
5682 */
5683 continue;
5684 }
5685
5517d86b 5686 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5687 }
5688 sg = sg->next;
5689 if (sg != group_head)
5690 goto next_sg;
5691}
1da177e4
LT
5692#endif
5693
a616058b 5694#ifdef CONFIG_NUMA
51888ca2
SV
5695/* Free memory allocated for various sched_group structures */
5696static void free_sched_groups(const cpumask_t *cpu_map)
5697{
a616058b 5698 int cpu, i;
51888ca2
SV
5699
5700 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5701 struct sched_group **sched_group_nodes
5702 = sched_group_nodes_bycpu[cpu];
5703
51888ca2
SV
5704 if (!sched_group_nodes)
5705 continue;
5706
5707 for (i = 0; i < MAX_NUMNODES; i++) {
5708 cpumask_t nodemask = node_to_cpumask(i);
5709 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5710
5711 cpus_and(nodemask, nodemask, *cpu_map);
5712 if (cpus_empty(nodemask))
5713 continue;
5714
5715 if (sg == NULL)
5716 continue;
5717 sg = sg->next;
5718next_sg:
5719 oldsg = sg;
5720 sg = sg->next;
5721 kfree(oldsg);
5722 if (oldsg != sched_group_nodes[i])
5723 goto next_sg;
5724 }
5725 kfree(sched_group_nodes);
5726 sched_group_nodes_bycpu[cpu] = NULL;
5727 }
51888ca2 5728}
a616058b
SS
5729#else
5730static void free_sched_groups(const cpumask_t *cpu_map)
5731{
5732}
5733#endif
51888ca2 5734
89c4710e
SS
5735/*
5736 * Initialize sched groups cpu_power.
5737 *
5738 * cpu_power indicates the capacity of sched group, which is used while
5739 * distributing the load between different sched groups in a sched domain.
5740 * Typically cpu_power for all the groups in a sched domain will be same unless
5741 * there are asymmetries in the topology. If there are asymmetries, group
5742 * having more cpu_power will pickup more load compared to the group having
5743 * less cpu_power.
5744 *
5745 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5746 * the maximum number of tasks a group can handle in the presence of other idle
5747 * or lightly loaded groups in the same sched domain.
5748 */
5749static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5750{
5751 struct sched_domain *child;
5752 struct sched_group *group;
5753
5754 WARN_ON(!sd || !sd->groups);
5755
5756 if (cpu != first_cpu(sd->groups->cpumask))
5757 return;
5758
5759 child = sd->child;
5760
5517d86b
ED
5761 sd->groups->__cpu_power = 0;
5762
89c4710e
SS
5763 /*
5764 * For perf policy, if the groups in child domain share resources
5765 * (for example cores sharing some portions of the cache hierarchy
5766 * or SMT), then set this domain groups cpu_power such that each group
5767 * can handle only one task, when there are other idle groups in the
5768 * same sched domain.
5769 */
5770 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5771 (child->flags &
5772 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5773 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5774 return;
5775 }
5776
89c4710e
SS
5777 /*
5778 * add cpu_power of each child group to this groups cpu_power
5779 */
5780 group = child->groups;
5781 do {
5517d86b 5782 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5783 group = group->next;
5784 } while (group != child->groups);
5785}
5786
1da177e4 5787/*
1a20ff27
DG
5788 * Build sched domains for a given set of cpus and attach the sched domains
5789 * to the individual cpus
1da177e4 5790 */
51888ca2 5791static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5792{
5793 int i;
d1b55138
JH
5794#ifdef CONFIG_NUMA
5795 struct sched_group **sched_group_nodes = NULL;
6711cab4 5796 int sd_allnodes = 0;
d1b55138
JH
5797
5798 /*
5799 * Allocate the per-node list of sched groups
5800 */
dd41f596 5801 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 5802 GFP_KERNEL);
d1b55138
JH
5803 if (!sched_group_nodes) {
5804 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 5805 return -ENOMEM;
d1b55138
JH
5806 }
5807 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5808#endif
1da177e4
LT
5809
5810 /*
1a20ff27 5811 * Set up domains for cpus specified by the cpu_map.
1da177e4 5812 */
1a20ff27 5813 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5814 struct sched_domain *sd = NULL, *p;
5815 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5816
1a20ff27 5817 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5818
5819#ifdef CONFIG_NUMA
dd41f596
IM
5820 if (cpus_weight(*cpu_map) >
5821 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
5822 sd = &per_cpu(allnodes_domains, i);
5823 *sd = SD_ALLNODES_INIT;
5824 sd->span = *cpu_map;
6711cab4 5825 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 5826 p = sd;
6711cab4 5827 sd_allnodes = 1;
9c1cfda2
JH
5828 } else
5829 p = NULL;
5830
1da177e4 5831 sd = &per_cpu(node_domains, i);
1da177e4 5832 *sd = SD_NODE_INIT;
9c1cfda2
JH
5833 sd->span = sched_domain_node_span(cpu_to_node(i));
5834 sd->parent = p;
1a848870
SS
5835 if (p)
5836 p->child = sd;
9c1cfda2 5837 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5838#endif
5839
5840 p = sd;
5841 sd = &per_cpu(phys_domains, i);
1da177e4
LT
5842 *sd = SD_CPU_INIT;
5843 sd->span = nodemask;
5844 sd->parent = p;
1a848870
SS
5845 if (p)
5846 p->child = sd;
6711cab4 5847 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 5848
1e9f28fa
SS
5849#ifdef CONFIG_SCHED_MC
5850 p = sd;
5851 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
5852 *sd = SD_MC_INIT;
5853 sd->span = cpu_coregroup_map(i);
5854 cpus_and(sd->span, sd->span, *cpu_map);
5855 sd->parent = p;
1a848870 5856 p->child = sd;
6711cab4 5857 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
5858#endif
5859
1da177e4
LT
5860#ifdef CONFIG_SCHED_SMT
5861 p = sd;
5862 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
5863 *sd = SD_SIBLING_INIT;
5864 sd->span = cpu_sibling_map[i];
1a20ff27 5865 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 5866 sd->parent = p;
1a848870 5867 p->child = sd;
6711cab4 5868 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
5869#endif
5870 }
5871
5872#ifdef CONFIG_SCHED_SMT
5873 /* Set up CPU (sibling) groups */
9c1cfda2 5874 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5875 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5876 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5877 if (i != first_cpu(this_sibling_map))
5878 continue;
5879
dd41f596
IM
5880 init_sched_build_groups(this_sibling_map, cpu_map,
5881 &cpu_to_cpu_group);
1da177e4
LT
5882 }
5883#endif
5884
1e9f28fa
SS
5885#ifdef CONFIG_SCHED_MC
5886 /* Set up multi-core groups */
5887 for_each_cpu_mask(i, *cpu_map) {
5888 cpumask_t this_core_map = cpu_coregroup_map(i);
5889 cpus_and(this_core_map, this_core_map, *cpu_map);
5890 if (i != first_cpu(this_core_map))
5891 continue;
dd41f596
IM
5892 init_sched_build_groups(this_core_map, cpu_map,
5893 &cpu_to_core_group);
1e9f28fa
SS
5894 }
5895#endif
5896
1da177e4
LT
5897 /* Set up physical groups */
5898 for (i = 0; i < MAX_NUMNODES; i++) {
5899 cpumask_t nodemask = node_to_cpumask(i);
5900
1a20ff27 5901 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5902 if (cpus_empty(nodemask))
5903 continue;
5904
6711cab4 5905 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
5906 }
5907
5908#ifdef CONFIG_NUMA
5909 /* Set up node groups */
6711cab4 5910 if (sd_allnodes)
dd41f596
IM
5911 init_sched_build_groups(*cpu_map, cpu_map,
5912 &cpu_to_allnodes_group);
9c1cfda2
JH
5913
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 /* Set up node groups */
5916 struct sched_group *sg, *prev;
5917 cpumask_t nodemask = node_to_cpumask(i);
5918 cpumask_t domainspan;
5919 cpumask_t covered = CPU_MASK_NONE;
5920 int j;
5921
5922 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5923 if (cpus_empty(nodemask)) {
5924 sched_group_nodes[i] = NULL;
9c1cfda2 5925 continue;
d1b55138 5926 }
9c1cfda2
JH
5927
5928 domainspan = sched_domain_node_span(i);
5929 cpus_and(domainspan, domainspan, *cpu_map);
5930
15f0b676 5931 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
5932 if (!sg) {
5933 printk(KERN_WARNING "Can not alloc domain group for "
5934 "node %d\n", i);
5935 goto error;
5936 }
9c1cfda2
JH
5937 sched_group_nodes[i] = sg;
5938 for_each_cpu_mask(j, nodemask) {
5939 struct sched_domain *sd;
9761eea8 5940
9c1cfda2
JH
5941 sd = &per_cpu(node_domains, j);
5942 sd->groups = sg;
9c1cfda2 5943 }
5517d86b 5944 sg->__cpu_power = 0;
9c1cfda2 5945 sg->cpumask = nodemask;
51888ca2 5946 sg->next = sg;
9c1cfda2
JH
5947 cpus_or(covered, covered, nodemask);
5948 prev = sg;
5949
5950 for (j = 0; j < MAX_NUMNODES; j++) {
5951 cpumask_t tmp, notcovered;
5952 int n = (i + j) % MAX_NUMNODES;
5953
5954 cpus_complement(notcovered, covered);
5955 cpus_and(tmp, notcovered, *cpu_map);
5956 cpus_and(tmp, tmp, domainspan);
5957 if (cpus_empty(tmp))
5958 break;
5959
5960 nodemask = node_to_cpumask(n);
5961 cpus_and(tmp, tmp, nodemask);
5962 if (cpus_empty(tmp))
5963 continue;
5964
15f0b676
SV
5965 sg = kmalloc_node(sizeof(struct sched_group),
5966 GFP_KERNEL, i);
9c1cfda2
JH
5967 if (!sg) {
5968 printk(KERN_WARNING
5969 "Can not alloc domain group for node %d\n", j);
51888ca2 5970 goto error;
9c1cfda2 5971 }
5517d86b 5972 sg->__cpu_power = 0;
9c1cfda2 5973 sg->cpumask = tmp;
51888ca2 5974 sg->next = prev->next;
9c1cfda2
JH
5975 cpus_or(covered, covered, tmp);
5976 prev->next = sg;
5977 prev = sg;
5978 }
9c1cfda2 5979 }
1da177e4
LT
5980#endif
5981
5982 /* Calculate CPU power for physical packages and nodes */
5c45bf27 5983#ifdef CONFIG_SCHED_SMT
1a20ff27 5984 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5985 struct sched_domain *sd = &per_cpu(cpu_domains, i);
5986
89c4710e 5987 init_sched_groups_power(i, sd);
5c45bf27 5988 }
1da177e4 5989#endif
1e9f28fa 5990#ifdef CONFIG_SCHED_MC
5c45bf27 5991 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5992 struct sched_domain *sd = &per_cpu(core_domains, i);
5993
89c4710e 5994 init_sched_groups_power(i, sd);
5c45bf27
SS
5995 }
5996#endif
1e9f28fa 5997
5c45bf27 5998 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
5999 struct sched_domain *sd = &per_cpu(phys_domains, i);
6000
89c4710e 6001 init_sched_groups_power(i, sd);
1da177e4
LT
6002 }
6003
9c1cfda2 6004#ifdef CONFIG_NUMA
08069033
SS
6005 for (i = 0; i < MAX_NUMNODES; i++)
6006 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6007
6711cab4
SS
6008 if (sd_allnodes) {
6009 struct sched_group *sg;
f712c0c7 6010
6711cab4 6011 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6012 init_numa_sched_groups_power(sg);
6013 }
9c1cfda2
JH
6014#endif
6015
1da177e4 6016 /* Attach the domains */
1a20ff27 6017 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6018 struct sched_domain *sd;
6019#ifdef CONFIG_SCHED_SMT
6020 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6021#elif defined(CONFIG_SCHED_MC)
6022 sd = &per_cpu(core_domains, i);
1da177e4
LT
6023#else
6024 sd = &per_cpu(phys_domains, i);
6025#endif
6026 cpu_attach_domain(sd, i);
6027 }
51888ca2
SV
6028
6029 return 0;
6030
a616058b 6031#ifdef CONFIG_NUMA
51888ca2
SV
6032error:
6033 free_sched_groups(cpu_map);
6034 return -ENOMEM;
a616058b 6035#endif
1da177e4 6036}
1a20ff27
DG
6037/*
6038 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6039 */
51888ca2 6040static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6041{
6042 cpumask_t cpu_default_map;
51888ca2 6043 int err;
1da177e4 6044
1a20ff27
DG
6045 /*
6046 * Setup mask for cpus without special case scheduling requirements.
6047 * For now this just excludes isolated cpus, but could be used to
6048 * exclude other special cases in the future.
6049 */
6050 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6051
51888ca2
SV
6052 err = build_sched_domains(&cpu_default_map);
6053
6054 return err;
1a20ff27
DG
6055}
6056
6057static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6058{
51888ca2 6059 free_sched_groups(cpu_map);
9c1cfda2 6060}
1da177e4 6061
1a20ff27
DG
6062/*
6063 * Detach sched domains from a group of cpus specified in cpu_map
6064 * These cpus will now be attached to the NULL domain
6065 */
858119e1 6066static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6067{
6068 int i;
6069
6070 for_each_cpu_mask(i, *cpu_map)
6071 cpu_attach_domain(NULL, i);
6072 synchronize_sched();
6073 arch_destroy_sched_domains(cpu_map);
6074}
6075
6076/*
6077 * Partition sched domains as specified by the cpumasks below.
6078 * This attaches all cpus from the cpumasks to the NULL domain,
6079 * waits for a RCU quiescent period, recalculates sched
6080 * domain information and then attaches them back to the
6081 * correct sched domains
6082 * Call with hotplug lock held
6083 */
51888ca2 6084int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6085{
6086 cpumask_t change_map;
51888ca2 6087 int err = 0;
1a20ff27
DG
6088
6089 cpus_and(*partition1, *partition1, cpu_online_map);
6090 cpus_and(*partition2, *partition2, cpu_online_map);
6091 cpus_or(change_map, *partition1, *partition2);
6092
6093 /* Detach sched domains from all of the affected cpus */
6094 detach_destroy_domains(&change_map);
6095 if (!cpus_empty(*partition1))
51888ca2
SV
6096 err = build_sched_domains(partition1);
6097 if (!err && !cpus_empty(*partition2))
6098 err = build_sched_domains(partition2);
6099
6100 return err;
1a20ff27
DG
6101}
6102
5c45bf27
SS
6103#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6104int arch_reinit_sched_domains(void)
6105{
6106 int err;
6107
5be9361c 6108 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6109 detach_destroy_domains(&cpu_online_map);
6110 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6111 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6112
6113 return err;
6114}
6115
6116static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6117{
6118 int ret;
6119
6120 if (buf[0] != '0' && buf[0] != '1')
6121 return -EINVAL;
6122
6123 if (smt)
6124 sched_smt_power_savings = (buf[0] == '1');
6125 else
6126 sched_mc_power_savings = (buf[0] == '1');
6127
6128 ret = arch_reinit_sched_domains();
6129
6130 return ret ? ret : count;
6131}
6132
6133int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6134{
6135 int err = 0;
48f24c4d 6136
5c45bf27
SS
6137#ifdef CONFIG_SCHED_SMT
6138 if (smt_capable())
6139 err = sysfs_create_file(&cls->kset.kobj,
6140 &attr_sched_smt_power_savings.attr);
6141#endif
6142#ifdef CONFIG_SCHED_MC
6143 if (!err && mc_capable())
6144 err = sysfs_create_file(&cls->kset.kobj,
6145 &attr_sched_mc_power_savings.attr);
6146#endif
6147 return err;
6148}
6149#endif
6150
6151#ifdef CONFIG_SCHED_MC
6152static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6153{
6154 return sprintf(page, "%u\n", sched_mc_power_savings);
6155}
48f24c4d
IM
6156static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6157 const char *buf, size_t count)
5c45bf27
SS
6158{
6159 return sched_power_savings_store(buf, count, 0);
6160}
6161SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6162 sched_mc_power_savings_store);
6163#endif
6164
6165#ifdef CONFIG_SCHED_SMT
6166static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6167{
6168 return sprintf(page, "%u\n", sched_smt_power_savings);
6169}
48f24c4d
IM
6170static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6171 const char *buf, size_t count)
5c45bf27
SS
6172{
6173 return sched_power_savings_store(buf, count, 1);
6174}
6175SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6176 sched_smt_power_savings_store);
6177#endif
6178
1da177e4
LT
6179/*
6180 * Force a reinitialization of the sched domains hierarchy. The domains
6181 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6182 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6183 * which will prevent rebalancing while the sched domains are recalculated.
6184 */
6185static int update_sched_domains(struct notifier_block *nfb,
6186 unsigned long action, void *hcpu)
6187{
1da177e4
LT
6188 switch (action) {
6189 case CPU_UP_PREPARE:
8bb78442 6190 case CPU_UP_PREPARE_FROZEN:
1da177e4 6191 case CPU_DOWN_PREPARE:
8bb78442 6192 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6193 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6194 return NOTIFY_OK;
6195
6196 case CPU_UP_CANCELED:
8bb78442 6197 case CPU_UP_CANCELED_FROZEN:
1da177e4 6198 case CPU_DOWN_FAILED:
8bb78442 6199 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6200 case CPU_ONLINE:
8bb78442 6201 case CPU_ONLINE_FROZEN:
1da177e4 6202 case CPU_DEAD:
8bb78442 6203 case CPU_DEAD_FROZEN:
1da177e4
LT
6204 /*
6205 * Fall through and re-initialise the domains.
6206 */
6207 break;
6208 default:
6209 return NOTIFY_DONE;
6210 }
6211
6212 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6213 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6214
6215 return NOTIFY_OK;
6216}
1da177e4
LT
6217
6218void __init sched_init_smp(void)
6219{
5c1e1767
NP
6220 cpumask_t non_isolated_cpus;
6221
5be9361c 6222 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6223 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6224 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6225 if (cpus_empty(non_isolated_cpus))
6226 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6227 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6228 /* XXX: Theoretical race here - CPU may be hotplugged now */
6229 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6230
6231 /* Move init over to a non-isolated CPU */
6232 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6233 BUG();
dd41f596 6234 sched_init_granularity();
1da177e4
LT
6235}
6236#else
6237void __init sched_init_smp(void)
6238{
dd41f596 6239 sched_init_granularity();
1da177e4
LT
6240}
6241#endif /* CONFIG_SMP */
6242
6243int in_sched_functions(unsigned long addr)
6244{
6245 /* Linker adds these: start and end of __sched functions */
6246 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6247
1da177e4
LT
6248 return in_lock_functions(addr) ||
6249 (addr >= (unsigned long)__sched_text_start
6250 && addr < (unsigned long)__sched_text_end);
6251}
6252
dd41f596
IM
6253static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6254{
6255 cfs_rq->tasks_timeline = RB_ROOT;
6256 cfs_rq->fair_clock = 1;
6257#ifdef CONFIG_FAIR_GROUP_SCHED
6258 cfs_rq->rq = rq;
6259#endif
6260}
6261
1da177e4
LT
6262void __init sched_init(void)
6263{
dd41f596 6264 u64 now = sched_clock();
476f3534 6265 int highest_cpu = 0;
dd41f596
IM
6266 int i, j;
6267
6268 /*
6269 * Link up the scheduling class hierarchy:
6270 */
6271 rt_sched_class.next = &fair_sched_class;
6272 fair_sched_class.next = &idle_sched_class;
6273 idle_sched_class.next = NULL;
1da177e4 6274
0a945022 6275 for_each_possible_cpu(i) {
dd41f596 6276 struct rt_prio_array *array;
70b97a7f 6277 struct rq *rq;
1da177e4
LT
6278
6279 rq = cpu_rq(i);
6280 spin_lock_init(&rq->lock);
fcb99371 6281 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6282 rq->nr_running = 0;
dd41f596
IM
6283 rq->clock = 1;
6284 init_cfs_rq(&rq->cfs, rq);
6285#ifdef CONFIG_FAIR_GROUP_SCHED
6286 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6287 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6288#endif
6289 rq->ls.load_update_last = now;
6290 rq->ls.load_update_start = now;
1da177e4 6291
dd41f596
IM
6292 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6293 rq->cpu_load[j] = 0;
1da177e4 6294#ifdef CONFIG_SMP
41c7ce9a 6295 rq->sd = NULL;
1da177e4 6296 rq->active_balance = 0;
dd41f596 6297 rq->next_balance = jiffies;
1da177e4 6298 rq->push_cpu = 0;
0a2966b4 6299 rq->cpu = i;
1da177e4
LT
6300 rq->migration_thread = NULL;
6301 INIT_LIST_HEAD(&rq->migration_queue);
6302#endif
6303 atomic_set(&rq->nr_iowait, 0);
6304
dd41f596
IM
6305 array = &rq->rt.active;
6306 for (j = 0; j < MAX_RT_PRIO; j++) {
6307 INIT_LIST_HEAD(array->queue + j);
6308 __clear_bit(j, array->bitmap);
1da177e4 6309 }
476f3534 6310 highest_cpu = i;
dd41f596
IM
6311 /* delimiter for bitsearch: */
6312 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6313 }
6314
2dd73a4f 6315 set_load_weight(&init_task);
b50f60ce 6316
c9819f45 6317#ifdef CONFIG_SMP
476f3534 6318 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6319 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6320#endif
6321
b50f60ce
HC
6322#ifdef CONFIG_RT_MUTEXES
6323 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6324#endif
6325
1da177e4
LT
6326 /*
6327 * The boot idle thread does lazy MMU switching as well:
6328 */
6329 atomic_inc(&init_mm.mm_count);
6330 enter_lazy_tlb(&init_mm, current);
6331
6332 /*
6333 * Make us the idle thread. Technically, schedule() should not be
6334 * called from this thread, however somewhere below it might be,
6335 * but because we are the idle thread, we just pick up running again
6336 * when this runqueue becomes "idle".
6337 */
6338 init_idle(current, smp_processor_id());
dd41f596
IM
6339 /*
6340 * During early bootup we pretend to be a normal task:
6341 */
6342 current->sched_class = &fair_sched_class;
1da177e4
LT
6343}
6344
6345#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6346void __might_sleep(char *file, int line)
6347{
48f24c4d 6348#ifdef in_atomic
1da177e4
LT
6349 static unsigned long prev_jiffy; /* ratelimiting */
6350
6351 if ((in_atomic() || irqs_disabled()) &&
6352 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6353 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6354 return;
6355 prev_jiffy = jiffies;
91368d73 6356 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6357 " context at %s:%d\n", file, line);
6358 printk("in_atomic():%d, irqs_disabled():%d\n",
6359 in_atomic(), irqs_disabled());
a4c410f0 6360 debug_show_held_locks(current);
3117df04
IM
6361 if (irqs_disabled())
6362 print_irqtrace_events(current);
1da177e4
LT
6363 dump_stack();
6364 }
6365#endif
6366}
6367EXPORT_SYMBOL(__might_sleep);
6368#endif
6369
6370#ifdef CONFIG_MAGIC_SYSRQ
6371void normalize_rt_tasks(void)
6372{
a0f98a1c 6373 struct task_struct *g, *p;
1da177e4 6374 unsigned long flags;
70b97a7f 6375 struct rq *rq;
dd41f596 6376 int on_rq;
1da177e4
LT
6377
6378 read_lock_irq(&tasklist_lock);
a0f98a1c 6379 do_each_thread(g, p) {
dd41f596
IM
6380 p->se.fair_key = 0;
6381 p->se.wait_runtime = 0;
6382 p->se.wait_start_fair = 0;
6383 p->se.wait_start = 0;
6384 p->se.exec_start = 0;
6385 p->se.sleep_start = 0;
6386 p->se.sleep_start_fair = 0;
6387 p->se.block_start = 0;
6388 task_rq(p)->cfs.fair_clock = 0;
6389 task_rq(p)->clock = 0;
6390
6391 if (!rt_task(p)) {
6392 /*
6393 * Renice negative nice level userspace
6394 * tasks back to 0:
6395 */
6396 if (TASK_NICE(p) < 0 && p->mm)
6397 set_user_nice(p, 0);
1da177e4 6398 continue;
dd41f596 6399 }
1da177e4 6400
b29739f9
IM
6401 spin_lock_irqsave(&p->pi_lock, flags);
6402 rq = __task_rq_lock(p);
dd41f596
IM
6403#ifdef CONFIG_SMP
6404 /*
6405 * Do not touch the migration thread:
6406 */
6407 if (p == rq->migration_thread)
6408 goto out_unlock;
6409#endif
1da177e4 6410
dd41f596
IM
6411 on_rq = p->se.on_rq;
6412 if (on_rq)
6413 deactivate_task(task_rq(p), p, 0);
6414 __setscheduler(rq, p, SCHED_NORMAL, 0);
6415 if (on_rq) {
6416 activate_task(task_rq(p), p, 0);
1da177e4
LT
6417 resched_task(rq->curr);
6418 }
dd41f596
IM
6419#ifdef CONFIG_SMP
6420 out_unlock:
6421#endif
b29739f9
IM
6422 __task_rq_unlock(rq);
6423 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6424 } while_each_thread(g, p);
6425
1da177e4
LT
6426 read_unlock_irq(&tasklist_lock);
6427}
6428
6429#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6430
6431#ifdef CONFIG_IA64
6432/*
6433 * These functions are only useful for the IA64 MCA handling.
6434 *
6435 * They can only be called when the whole system has been
6436 * stopped - every CPU needs to be quiescent, and no scheduling
6437 * activity can take place. Using them for anything else would
6438 * be a serious bug, and as a result, they aren't even visible
6439 * under any other configuration.
6440 */
6441
6442/**
6443 * curr_task - return the current task for a given cpu.
6444 * @cpu: the processor in question.
6445 *
6446 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6447 */
36c8b586 6448struct task_struct *curr_task(int cpu)
1df5c10a
LT
6449{
6450 return cpu_curr(cpu);
6451}
6452
6453/**
6454 * set_curr_task - set the current task for a given cpu.
6455 * @cpu: the processor in question.
6456 * @p: the task pointer to set.
6457 *
6458 * Description: This function must only be used when non-maskable interrupts
6459 * are serviced on a separate stack. It allows the architecture to switch the
6460 * notion of the current task on a cpu in a non-blocking manner. This function
6461 * must be called with all CPU's synchronized, and interrupts disabled, the
6462 * and caller must save the original value of the current task (see
6463 * curr_task() above) and restore that value before reenabling interrupts and
6464 * re-starting the system.
6465 *
6466 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6467 */
36c8b586 6468void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6469{
6470 cpu_curr(cpu) = p;
6471}
6472
6473#endif