sched: hierarchical load vs affine wakeups
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
c09595f6 409 /*
c8cba857 410 * the part of load.weight contributed by tasks
c09595f6 411 */
c8cba857 412 unsigned long task_weight;
c09595f6 413
c8cba857
PZ
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
c09595f6 421
c8cba857
PZ
422 /*
423 * this cpu's part of tg->shares
424 */
425 unsigned long shares;
c09595f6 426#endif
6aa645ea
IM
427#endif
428};
1da177e4 429
6aa645ea
IM
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
63489e45 433 unsigned long rt_nr_running;
052f1dc7 434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
435 int highest_prio; /* highest queued rt task prio */
436#endif
fa85ae24 437#ifdef CONFIG_SMP
73fe6aae 438 unsigned long rt_nr_migratory;
a22d7fc1 439 int overloaded;
fa85ae24 440#endif
6f505b16 441 int rt_throttled;
fa85ae24 442 u64 rt_time;
ac086bc2 443 u64 rt_runtime;
ea736ed5 444 /* Nests inside the rq lock: */
ac086bc2 445 spinlock_t rt_runtime_lock;
6f505b16 446
052f1dc7 447#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
448 unsigned long rt_nr_boosted;
449
6f505b16
PZ
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454#endif
6aa645ea
IM
455};
456
57d885fe
GH
457#ifdef CONFIG_SMP
458
459/*
460 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
465 *
57d885fe
GH
466 */
467struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
637f5085 471
0eab9146 472 /*
637f5085
GH
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
475 */
476 cpumask_t rto_mask;
0eab9146 477 atomic_t rto_count;
6e0534f2
GH
478#ifdef CONFIG_SMP
479 struct cpupri cpupri;
480#endif
57d885fe
GH
481};
482
dc938520
GH
483/*
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
486 */
57d885fe
GH
487static struct root_domain def_root_domain;
488
489#endif
490
1da177e4
LT
491/*
492 * This is the main, per-CPU runqueue data structure.
493 *
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
497 */
70b97a7f 498struct rq {
d8016491
IM
499 /* runqueue lock: */
500 spinlock_t lock;
1da177e4
LT
501
502 /*
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
505 */
506 unsigned long nr_running;
6aa645ea
IM
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 509 unsigned char idle_at_tick;
46cb4b7c 510#ifdef CONFIG_NO_HZ
15934a37 511 unsigned long last_tick_seen;
46cb4b7c
SS
512 unsigned char in_nohz_recently;
513#endif
d8016491
IM
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
6aa645ea
IM
516 unsigned long nr_load_updates;
517 u64 nr_switches;
518
519 struct cfs_rq cfs;
6f505b16 520 struct rt_rq rt;
6f505b16 521
6aa645ea 522#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
525#endif
526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 527 struct list_head leaf_rt_rq_list;
1da177e4 528#endif
1da177e4
LT
529
530 /*
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
535 */
536 unsigned long nr_uninterruptible;
537
36c8b586 538 struct task_struct *curr, *idle;
c9819f45 539 unsigned long next_balance;
1da177e4 540 struct mm_struct *prev_mm;
6aa645ea 541
3e51f33f 542 u64 clock;
6aa645ea 543
1da177e4
LT
544 atomic_t nr_iowait;
545
546#ifdef CONFIG_SMP
0eab9146 547 struct root_domain *rd;
1da177e4
LT
548 struct sched_domain *sd;
549
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
a8a51d5e
PZ
557 unsigned long avg_load_per_task;
558
36c8b586 559 struct task_struct *migration_thread;
1da177e4
LT
560 struct list_head migration_queue;
561#endif
562
8f4d37ec
PZ
563#ifdef CONFIG_SCHED_HRTICK
564 unsigned long hrtick_flags;
565 ktime_t hrtick_expire;
566 struct hrtimer hrtick_timer;
567#endif
568
1da177e4
LT
569#ifdef CONFIG_SCHEDSTATS
570 /* latency stats */
571 struct sched_info rq_sched_info;
572
573 /* sys_sched_yield() stats */
480b9434
KC
574 unsigned int yld_exp_empty;
575 unsigned int yld_act_empty;
576 unsigned int yld_both_empty;
577 unsigned int yld_count;
1da177e4
LT
578
579 /* schedule() stats */
480b9434
KC
580 unsigned int sched_switch;
581 unsigned int sched_count;
582 unsigned int sched_goidle;
1da177e4
LT
583
584 /* try_to_wake_up() stats */
480b9434
KC
585 unsigned int ttwu_count;
586 unsigned int ttwu_local;
b8efb561
IM
587
588 /* BKL stats */
480b9434 589 unsigned int bkl_count;
1da177e4 590#endif
fcb99371 591 struct lock_class_key rq_lock_key;
1da177e4
LT
592};
593
f34e3b61 594static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 595
dd41f596
IM
596static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
597{
598 rq->curr->sched_class->check_preempt_curr(rq, p);
599}
600
0a2966b4
CL
601static inline int cpu_of(struct rq *rq)
602{
603#ifdef CONFIG_SMP
604 return rq->cpu;
605#else
606 return 0;
607#endif
608}
609
674311d5
NP
610/*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 612 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
613 *
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
616 */
48f24c4d
IM
617#define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
619
620#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621#define this_rq() (&__get_cpu_var(runqueues))
622#define task_rq(p) cpu_rq(task_cpu(p))
623#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624
3e51f33f
PZ
625static inline void update_rq_clock(struct rq *rq)
626{
627 rq->clock = sched_clock_cpu(cpu_of(rq));
628}
629
bf5c91ba
IM
630/*
631 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
632 */
633#ifdef CONFIG_SCHED_DEBUG
634# define const_debug __read_mostly
635#else
636# define const_debug static const
637#endif
638
639/*
640 * Debugging: various feature bits
641 */
f00b45c1
PZ
642
643#define SCHED_FEAT(name, enabled) \
644 __SCHED_FEAT_##name ,
645
bf5c91ba 646enum {
f00b45c1 647#include "sched_features.h"
bf5c91ba
IM
648};
649
f00b45c1
PZ
650#undef SCHED_FEAT
651
652#define SCHED_FEAT(name, enabled) \
653 (1UL << __SCHED_FEAT_##name) * enabled |
654
bf5c91ba 655const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
656#include "sched_features.h"
657 0;
658
659#undef SCHED_FEAT
660
661#ifdef CONFIG_SCHED_DEBUG
662#define SCHED_FEAT(name, enabled) \
663 #name ,
664
983ed7a6 665static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
666#include "sched_features.h"
667 NULL
668};
669
670#undef SCHED_FEAT
671
983ed7a6 672static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
673{
674 filp->private_data = inode->i_private;
675 return 0;
676}
677
678static ssize_t
679sched_feat_read(struct file *filp, char __user *ubuf,
680 size_t cnt, loff_t *ppos)
681{
682 char *buf;
683 int r = 0;
684 int len = 0;
685 int i;
686
687 for (i = 0; sched_feat_names[i]; i++) {
688 len += strlen(sched_feat_names[i]);
689 len += 4;
690 }
691
692 buf = kmalloc(len + 2, GFP_KERNEL);
693 if (!buf)
694 return -ENOMEM;
695
696 for (i = 0; sched_feat_names[i]; i++) {
697 if (sysctl_sched_features & (1UL << i))
698 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
699 else
c24b7c52 700 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
701 }
702
703 r += sprintf(buf + r, "\n");
704 WARN_ON(r >= len + 2);
705
706 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
707
708 kfree(buf);
709
710 return r;
711}
712
713static ssize_t
714sched_feat_write(struct file *filp, const char __user *ubuf,
715 size_t cnt, loff_t *ppos)
716{
717 char buf[64];
718 char *cmp = buf;
719 int neg = 0;
720 int i;
721
722 if (cnt > 63)
723 cnt = 63;
724
725 if (copy_from_user(&buf, ubuf, cnt))
726 return -EFAULT;
727
728 buf[cnt] = 0;
729
c24b7c52 730 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
731 neg = 1;
732 cmp += 3;
733 }
734
735 for (i = 0; sched_feat_names[i]; i++) {
736 int len = strlen(sched_feat_names[i]);
737
738 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
739 if (neg)
740 sysctl_sched_features &= ~(1UL << i);
741 else
742 sysctl_sched_features |= (1UL << i);
743 break;
744 }
745 }
746
747 if (!sched_feat_names[i])
748 return -EINVAL;
749
750 filp->f_pos += cnt;
751
752 return cnt;
753}
754
755static struct file_operations sched_feat_fops = {
756 .open = sched_feat_open,
757 .read = sched_feat_read,
758 .write = sched_feat_write,
759};
760
761static __init int sched_init_debug(void)
762{
f00b45c1
PZ
763 debugfs_create_file("sched_features", 0644, NULL, NULL,
764 &sched_feat_fops);
765
766 return 0;
767}
768late_initcall(sched_init_debug);
769
770#endif
771
772#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 773
b82d9fdd
PZ
774/*
775 * Number of tasks to iterate in a single balance run.
776 * Limited because this is done with IRQs disabled.
777 */
778const_debug unsigned int sysctl_sched_nr_migrate = 32;
779
fa85ae24 780/*
9f0c1e56 781 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
782 * default: 1s
783 */
9f0c1e56 784unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 785
6892b75e
IM
786static __read_mostly int scheduler_running;
787
9f0c1e56
PZ
788/*
789 * part of the period that we allow rt tasks to run in us.
790 * default: 0.95s
791 */
792int sysctl_sched_rt_runtime = 950000;
fa85ae24 793
d0b27fa7
PZ
794static inline u64 global_rt_period(void)
795{
796 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
797}
798
799static inline u64 global_rt_runtime(void)
800{
801 if (sysctl_sched_rt_period < 0)
802 return RUNTIME_INF;
803
804 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
805}
fa85ae24 806
1da177e4 807#ifndef prepare_arch_switch
4866cde0
NP
808# define prepare_arch_switch(next) do { } while (0)
809#endif
810#ifndef finish_arch_switch
811# define finish_arch_switch(prev) do { } while (0)
812#endif
813
051a1d1a
DA
814static inline int task_current(struct rq *rq, struct task_struct *p)
815{
816 return rq->curr == p;
817}
818
4866cde0 819#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 820static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 821{
051a1d1a 822 return task_current(rq, p);
4866cde0
NP
823}
824
70b97a7f 825static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
826{
827}
828
70b97a7f 829static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 830{
da04c035
IM
831#ifdef CONFIG_DEBUG_SPINLOCK
832 /* this is a valid case when another task releases the spinlock */
833 rq->lock.owner = current;
834#endif
8a25d5de
IM
835 /*
836 * If we are tracking spinlock dependencies then we have to
837 * fix up the runqueue lock - which gets 'carried over' from
838 * prev into current:
839 */
840 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
841
4866cde0
NP
842 spin_unlock_irq(&rq->lock);
843}
844
845#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 846static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
847{
848#ifdef CONFIG_SMP
849 return p->oncpu;
850#else
051a1d1a 851 return task_current(rq, p);
4866cde0
NP
852#endif
853}
854
70b97a7f 855static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
856{
857#ifdef CONFIG_SMP
858 /*
859 * We can optimise this out completely for !SMP, because the
860 * SMP rebalancing from interrupt is the only thing that cares
861 * here.
862 */
863 next->oncpu = 1;
864#endif
865#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
866 spin_unlock_irq(&rq->lock);
867#else
868 spin_unlock(&rq->lock);
869#endif
870}
871
70b97a7f 872static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
873{
874#ifdef CONFIG_SMP
875 /*
876 * After ->oncpu is cleared, the task can be moved to a different CPU.
877 * We must ensure this doesn't happen until the switch is completely
878 * finished.
879 */
880 smp_wmb();
881 prev->oncpu = 0;
882#endif
883#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
884 local_irq_enable();
1da177e4 885#endif
4866cde0
NP
886}
887#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 888
b29739f9
IM
889/*
890 * __task_rq_lock - lock the runqueue a given task resides on.
891 * Must be called interrupts disabled.
892 */
70b97a7f 893static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
894 __acquires(rq->lock)
895{
3a5c359a
AK
896 for (;;) {
897 struct rq *rq = task_rq(p);
898 spin_lock(&rq->lock);
899 if (likely(rq == task_rq(p)))
900 return rq;
b29739f9 901 spin_unlock(&rq->lock);
b29739f9 902 }
b29739f9
IM
903}
904
1da177e4
LT
905/*
906 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 907 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
908 * explicitly disabling preemption.
909 */
70b97a7f 910static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
911 __acquires(rq->lock)
912{
70b97a7f 913 struct rq *rq;
1da177e4 914
3a5c359a
AK
915 for (;;) {
916 local_irq_save(*flags);
917 rq = task_rq(p);
918 spin_lock(&rq->lock);
919 if (likely(rq == task_rq(p)))
920 return rq;
1da177e4 921 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 922 }
1da177e4
LT
923}
924
a9957449 925static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
926 __releases(rq->lock)
927{
928 spin_unlock(&rq->lock);
929}
930
70b97a7f 931static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
932 __releases(rq->lock)
933{
934 spin_unlock_irqrestore(&rq->lock, *flags);
935}
936
1da177e4 937/*
cc2a73b5 938 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 939 */
a9957449 940static struct rq *this_rq_lock(void)
1da177e4
LT
941 __acquires(rq->lock)
942{
70b97a7f 943 struct rq *rq;
1da177e4
LT
944
945 local_irq_disable();
946 rq = this_rq();
947 spin_lock(&rq->lock);
948
949 return rq;
950}
951
8f4d37ec
PZ
952static void __resched_task(struct task_struct *p, int tif_bit);
953
954static inline void resched_task(struct task_struct *p)
955{
956 __resched_task(p, TIF_NEED_RESCHED);
957}
958
959#ifdef CONFIG_SCHED_HRTICK
960/*
961 * Use HR-timers to deliver accurate preemption points.
962 *
963 * Its all a bit involved since we cannot program an hrt while holding the
964 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
965 * reschedule event.
966 *
967 * When we get rescheduled we reprogram the hrtick_timer outside of the
968 * rq->lock.
969 */
970static inline void resched_hrt(struct task_struct *p)
971{
972 __resched_task(p, TIF_HRTICK_RESCHED);
973}
974
975static inline void resched_rq(struct rq *rq)
976{
977 unsigned long flags;
978
979 spin_lock_irqsave(&rq->lock, flags);
980 resched_task(rq->curr);
981 spin_unlock_irqrestore(&rq->lock, flags);
982}
983
984enum {
985 HRTICK_SET, /* re-programm hrtick_timer */
986 HRTICK_RESET, /* not a new slice */
b328ca18 987 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
988};
989
990/*
991 * Use hrtick when:
992 * - enabled by features
993 * - hrtimer is actually high res
994 */
995static inline int hrtick_enabled(struct rq *rq)
996{
997 if (!sched_feat(HRTICK))
998 return 0;
b328ca18
PZ
999 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1000 return 0;
8f4d37ec
PZ
1001 return hrtimer_is_hres_active(&rq->hrtick_timer);
1002}
1003
1004/*
1005 * Called to set the hrtick timer state.
1006 *
1007 * called with rq->lock held and irqs disabled
1008 */
1009static void hrtick_start(struct rq *rq, u64 delay, int reset)
1010{
1011 assert_spin_locked(&rq->lock);
1012
1013 /*
1014 * preempt at: now + delay
1015 */
1016 rq->hrtick_expire =
1017 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1018 /*
1019 * indicate we need to program the timer
1020 */
1021 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1022 if (reset)
1023 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1024
1025 /*
1026 * New slices are called from the schedule path and don't need a
1027 * forced reschedule.
1028 */
1029 if (reset)
1030 resched_hrt(rq->curr);
1031}
1032
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
1039/*
1040 * Update the timer from the possible pending state.
1041 */
1042static void hrtick_set(struct rq *rq)
1043{
1044 ktime_t time;
1045 int set, reset;
1046 unsigned long flags;
1047
1048 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1049
1050 spin_lock_irqsave(&rq->lock, flags);
1051 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1052 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1053 time = rq->hrtick_expire;
1054 clear_thread_flag(TIF_HRTICK_RESCHED);
1055 spin_unlock_irqrestore(&rq->lock, flags);
1056
1057 if (set) {
1058 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1059 if (reset && !hrtimer_active(&rq->hrtick_timer))
1060 resched_rq(rq);
1061 } else
1062 hrtick_clear(rq);
1063}
1064
1065/*
1066 * High-resolution timer tick.
1067 * Runs from hardirq context with interrupts disabled.
1068 */
1069static enum hrtimer_restart hrtick(struct hrtimer *timer)
1070{
1071 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1072
1073 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1074
1075 spin_lock(&rq->lock);
3e51f33f 1076 update_rq_clock(rq);
8f4d37ec
PZ
1077 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1078 spin_unlock(&rq->lock);
1079
1080 return HRTIMER_NORESTART;
1081}
1082
81d41d7e 1083#ifdef CONFIG_SMP
b328ca18
PZ
1084static void hotplug_hrtick_disable(int cpu)
1085{
1086 struct rq *rq = cpu_rq(cpu);
1087 unsigned long flags;
1088
1089 spin_lock_irqsave(&rq->lock, flags);
1090 rq->hrtick_flags = 0;
1091 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1092 spin_unlock_irqrestore(&rq->lock, flags);
1093
1094 hrtick_clear(rq);
1095}
1096
1097static void hotplug_hrtick_enable(int cpu)
1098{
1099 struct rq *rq = cpu_rq(cpu);
1100 unsigned long flags;
1101
1102 spin_lock_irqsave(&rq->lock, flags);
1103 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1104 spin_unlock_irqrestore(&rq->lock, flags);
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
1119 hotplug_hrtick_disable(cpu);
1120 return NOTIFY_OK;
1121
1122 case CPU_UP_PREPARE:
1123 case CPU_UP_PREPARE_FROZEN:
1124 case CPU_DOWN_FAILED:
1125 case CPU_DOWN_FAILED_FROZEN:
1126 case CPU_ONLINE:
1127 case CPU_ONLINE_FROZEN:
1128 hotplug_hrtick_enable(cpu);
1129 return NOTIFY_OK;
1130 }
1131
1132 return NOTIFY_DONE;
1133}
1134
1135static void init_hrtick(void)
1136{
1137 hotcpu_notifier(hotplug_hrtick, 0);
1138}
81d41d7e 1139#endif /* CONFIG_SMP */
b328ca18
PZ
1140
1141static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1142{
1143 rq->hrtick_flags = 0;
1144 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1145 rq->hrtick_timer.function = hrtick;
1146 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1147}
1148
1149void hrtick_resched(void)
1150{
1151 struct rq *rq;
1152 unsigned long flags;
1153
1154 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1155 return;
1156
1157 local_irq_save(flags);
1158 rq = cpu_rq(smp_processor_id());
1159 hrtick_set(rq);
1160 local_irq_restore(flags);
1161}
1162#else
1163static inline void hrtick_clear(struct rq *rq)
1164{
1165}
1166
1167static inline void hrtick_set(struct rq *rq)
1168{
1169}
1170
1171static inline void init_rq_hrtick(struct rq *rq)
1172{
1173}
1174
1175void hrtick_resched(void)
1176{
1177}
b328ca18
PZ
1178
1179static inline void init_hrtick(void)
1180{
1181}
8f4d37ec
PZ
1182#endif
1183
c24d20db
IM
1184/*
1185 * resched_task - mark a task 'to be rescheduled now'.
1186 *
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1190 */
1191#ifdef CONFIG_SMP
1192
1193#ifndef tsk_is_polling
1194#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195#endif
1196
8f4d37ec 1197static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1198{
1199 int cpu;
1200
1201 assert_spin_locked(&task_rq(p)->lock);
1202
8f4d37ec 1203 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1204 return;
1205
8f4d37ec 1206 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1207
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1211
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1216}
1217
1218static void resched_cpu(int cpu)
1219{
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1222
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1227}
06d8308c
TG
1228
1229#ifdef CONFIG_NO_HZ
1230/*
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1239 */
1240void wake_up_idle_cpu(int cpu)
1241{
1242 struct rq *rq = cpu_rq(cpu);
1243
1244 if (cpu == smp_processor_id())
1245 return;
1246
1247 /*
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1253 */
1254 if (rq->curr != rq->idle)
1255 return;
1256
1257 /*
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1261 */
1262 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1263
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1268}
6d6bc0ad 1269#endif /* CONFIG_NO_HZ */
06d8308c 1270
6d6bc0ad 1271#else /* !CONFIG_SMP */
8f4d37ec 1272static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1273{
1274 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1275 set_tsk_thread_flag(p, tif_bit);
c24d20db 1276}
6d6bc0ad 1277#endif /* CONFIG_SMP */
c24d20db 1278
45bf76df
IM
1279#if BITS_PER_LONG == 32
1280# define WMULT_CONST (~0UL)
1281#else
1282# define WMULT_CONST (1UL << 32)
1283#endif
1284
1285#define WMULT_SHIFT 32
1286
194081eb
IM
1287/*
1288 * Shift right and round:
1289 */
cf2ab469 1290#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1291
a7be37ac
PZ
1292/*
1293 * delta *= weight / lw
1294 */
cb1c4fc9 1295static unsigned long
45bf76df
IM
1296calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1297 struct load_weight *lw)
1298{
1299 u64 tmp;
1300
7a232e03
LJ
1301 if (!lw->inv_weight) {
1302 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1303 lw->inv_weight = 1;
1304 else
1305 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1306 / (lw->weight+1);
1307 }
45bf76df
IM
1308
1309 tmp = (u64)delta_exec * weight;
1310 /*
1311 * Check whether we'd overflow the 64-bit multiplication:
1312 */
194081eb 1313 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1314 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1315 WMULT_SHIFT/2);
1316 else
cf2ab469 1317 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1318
ecf691da 1319 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1320}
1321
1091985b 1322static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1323{
1324 lw->weight += inc;
e89996ae 1325 lw->inv_weight = 0;
45bf76df
IM
1326}
1327
1091985b 1328static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1329{
1330 lw->weight -= dec;
e89996ae 1331 lw->inv_weight = 0;
45bf76df
IM
1332}
1333
2dd73a4f
PW
1334/*
1335 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1336 * of tasks with abnormal "nice" values across CPUs the contribution that
1337 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1338 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1339 * scaled version of the new time slice allocation that they receive on time
1340 * slice expiry etc.
1341 */
1342
dd41f596
IM
1343#define WEIGHT_IDLEPRIO 2
1344#define WMULT_IDLEPRIO (1 << 31)
1345
1346/*
1347 * Nice levels are multiplicative, with a gentle 10% change for every
1348 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1349 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1350 * that remained on nice 0.
1351 *
1352 * The "10% effect" is relative and cumulative: from _any_ nice level,
1353 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1354 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1355 * If a task goes up by ~10% and another task goes down by ~10% then
1356 * the relative distance between them is ~25%.)
dd41f596
IM
1357 */
1358static const int prio_to_weight[40] = {
254753dc
IM
1359 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1360 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1361 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1362 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1363 /* 0 */ 1024, 820, 655, 526, 423,
1364 /* 5 */ 335, 272, 215, 172, 137,
1365 /* 10 */ 110, 87, 70, 56, 45,
1366 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1367};
1368
5714d2de
IM
1369/*
1370 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1371 *
1372 * In cases where the weight does not change often, we can use the
1373 * precalculated inverse to speed up arithmetics by turning divisions
1374 * into multiplications:
1375 */
dd41f596 1376static const u32 prio_to_wmult[40] = {
254753dc
IM
1377 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1378 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1379 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1380 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1381 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1382 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1383 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1384 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1385};
2dd73a4f 1386
dd41f596
IM
1387static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1388
1389/*
1390 * runqueue iterator, to support SMP load-balancing between different
1391 * scheduling classes, without having to expose their internal data
1392 * structures to the load-balancing proper:
1393 */
1394struct rq_iterator {
1395 void *arg;
1396 struct task_struct *(*start)(void *);
1397 struct task_struct *(*next)(void *);
1398};
1399
e1d1484f
PW
1400#ifdef CONFIG_SMP
1401static unsigned long
1402balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1403 unsigned long max_load_move, struct sched_domain *sd,
1404 enum cpu_idle_type idle, int *all_pinned,
1405 int *this_best_prio, struct rq_iterator *iterator);
1406
1407static int
1408iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 struct sched_domain *sd, enum cpu_idle_type idle,
1410 struct rq_iterator *iterator);
e1d1484f 1411#endif
dd41f596 1412
d842de87
SV
1413#ifdef CONFIG_CGROUP_CPUACCT
1414static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415#else
1416static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1417#endif
1418
18d95a28
PZ
1419static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1420{
1421 update_load_add(&rq->load, load);
1422}
1423
1424static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1425{
1426 update_load_sub(&rq->load, load);
1427}
1428
e7693a36
GH
1429#ifdef CONFIG_SMP
1430static unsigned long source_load(int cpu, int type);
1431static unsigned long target_load(int cpu, int type);
e7693a36 1432static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1433
a8a51d5e
PZ
1434static unsigned long cpu_avg_load_per_task(int cpu)
1435{
1436 struct rq *rq = cpu_rq(cpu);
1437
1438 if (rq->nr_running)
1439 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1440
1441 return rq->avg_load_per_task;
1442}
1443
c09595f6
PZ
1444#ifdef CONFIG_FAIR_GROUP_SCHED
1445
c8cba857 1446typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1447
1448/*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
c8cba857
PZ
1452static void
1453walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1454{
1455 struct task_group *parent, *child;
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459down:
b6a86c74 1460 (*down)(parent, cpu, sd);
c09595f6
PZ
1461 list_for_each_entry_rcu(child, &parent->children, siblings) {
1462 parent = child;
1463 goto down;
1464
1465up:
1466 continue;
1467 }
b6a86c74 1468 (*up)(parent, cpu, sd);
c09595f6
PZ
1469
1470 child = parent;
1471 parent = parent->parent;
1472 if (parent)
1473 goto up;
1474 rcu_read_unlock();
1475}
1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
b6a86c74 1483__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1484 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1485{
1486 int boost = 0;
1487 unsigned long shares;
1488 unsigned long rq_weight;
1489
c8cba857 1490 if (!tg->se[cpu])
c09595f6
PZ
1491 return;
1492
c8cba857 1493 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1494
1495 /*
1496 * If there are currently no tasks on the cpu pretend there is one of
1497 * average load so that when a new task gets to run here it will not
1498 * get delayed by group starvation.
1499 */
1500 if (!rq_weight) {
1501 boost = 1;
1502 rq_weight = NICE_0_LOAD;
1503 }
1504
c8cba857
PZ
1505 if (unlikely(rq_weight > sd_rq_weight))
1506 rq_weight = sd_rq_weight;
1507
c09595f6
PZ
1508 /*
1509 * \Sum shares * rq_weight
1510 * shares = -----------------------
1511 * \Sum rq_weight
1512 *
1513 */
c8cba857 1514 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1515
1516 /*
1517 * record the actual number of shares, not the boosted amount.
1518 */
c8cba857 1519 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
c09595f6
PZ
1520
1521 if (shares < MIN_SHARES)
1522 shares = MIN_SHARES;
1523 else if (shares > MAX_SHARES)
1524 shares = MAX_SHARES;
1525
c8cba857 1526 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1527}
1528
1529/*
c8cba857
PZ
1530 * Re-compute the task group their per cpu shares over the given domain.
1531 * This needs to be done in a bottom-up fashion because the rq weight of a
1532 * parent group depends on the shares of its child groups.
c09595f6
PZ
1533 */
1534static void
c8cba857 1535tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1536{
c8cba857
PZ
1537 unsigned long rq_weight = 0;
1538 unsigned long shares = 0;
1539 int i;
c09595f6 1540
c8cba857
PZ
1541 for_each_cpu_mask(i, sd->span) {
1542 rq_weight += tg->cfs_rq[i]->load.weight;
1543 shares += tg->cfs_rq[i]->shares;
c09595f6 1544 }
c09595f6 1545
c8cba857
PZ
1546 if ((!shares && rq_weight) || shares > tg->shares)
1547 shares = tg->shares;
1548
1549 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1550 shares = tg->shares;
c09595f6
PZ
1551
1552 for_each_cpu_mask(i, sd->span) {
1553 struct rq *rq = cpu_rq(i);
1554 unsigned long flags;
1555
1556 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1557 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1558 spin_unlock_irqrestore(&rq->lock, flags);
1559 }
c09595f6
PZ
1560}
1561
1562/*
c8cba857
PZ
1563 * Compute the cpu's hierarchical load factor for each task group.
1564 * This needs to be done in a top-down fashion because the load of a child
1565 * group is a fraction of its parents load.
c09595f6 1566 */
b6a86c74 1567static void
c8cba857 1568tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1569{
c8cba857 1570 unsigned long load;
c09595f6 1571
c8cba857
PZ
1572 if (!tg->parent) {
1573 load = cpu_rq(cpu)->load.weight;
1574 } else {
1575 load = tg->parent->cfs_rq[cpu]->h_load;
1576 load *= tg->cfs_rq[cpu]->shares;
1577 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1578 }
c09595f6 1579
c8cba857 1580 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1581}
1582
c8cba857
PZ
1583static void
1584tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1585{
c09595f6
PZ
1586}
1587
c8cba857 1588static void update_shares(struct sched_domain *sd)
4d8d595d 1589{
c8cba857 1590 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
4d8d595d
PZ
1591}
1592
3e5459b4
PZ
1593static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1594{
1595 spin_unlock(&rq->lock);
1596 update_shares(sd);
1597 spin_lock(&rq->lock);
1598}
1599
c8cba857 1600static void update_h_load(int cpu)
c09595f6 1601{
c8cba857 1602 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1603}
1604
1605static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1606{
1607 cfs_rq->shares = shares;
1608}
1609
1610#else
1611
c8cba857 1612static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1613{
1614}
1615
3e5459b4
PZ
1616static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1617{
1618}
1619
c09595f6
PZ
1620#endif
1621
18d95a28
PZ
1622#endif
1623
dd41f596 1624#include "sched_stats.h"
dd41f596 1625#include "sched_idletask.c"
5522d5d5
IM
1626#include "sched_fair.c"
1627#include "sched_rt.c"
dd41f596
IM
1628#ifdef CONFIG_SCHED_DEBUG
1629# include "sched_debug.c"
1630#endif
1631
1632#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1633#define for_each_class(class) \
1634 for (class = sched_class_highest; class; class = class->next)
dd41f596 1635
c09595f6 1636static void inc_nr_running(struct rq *rq)
9c217245
IM
1637{
1638 rq->nr_running++;
9c217245
IM
1639}
1640
c09595f6 1641static void dec_nr_running(struct rq *rq)
9c217245
IM
1642{
1643 rq->nr_running--;
9c217245
IM
1644}
1645
45bf76df
IM
1646static void set_load_weight(struct task_struct *p)
1647{
1648 if (task_has_rt_policy(p)) {
dd41f596
IM
1649 p->se.load.weight = prio_to_weight[0] * 2;
1650 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1651 return;
1652 }
45bf76df 1653
dd41f596
IM
1654 /*
1655 * SCHED_IDLE tasks get minimal weight:
1656 */
1657 if (p->policy == SCHED_IDLE) {
1658 p->se.load.weight = WEIGHT_IDLEPRIO;
1659 p->se.load.inv_weight = WMULT_IDLEPRIO;
1660 return;
1661 }
71f8bd46 1662
dd41f596
IM
1663 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1664 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1665}
1666
8159f87e 1667static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1668{
dd41f596 1669 sched_info_queued(p);
fd390f6a 1670 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1671 p->se.on_rq = 1;
71f8bd46
IM
1672}
1673
69be72c1 1674static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1675{
f02231e5 1676 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1677 p->se.on_rq = 0;
71f8bd46
IM
1678}
1679
14531189 1680/*
dd41f596 1681 * __normal_prio - return the priority that is based on the static prio
14531189 1682 */
14531189
IM
1683static inline int __normal_prio(struct task_struct *p)
1684{
dd41f596 1685 return p->static_prio;
14531189
IM
1686}
1687
b29739f9
IM
1688/*
1689 * Calculate the expected normal priority: i.e. priority
1690 * without taking RT-inheritance into account. Might be
1691 * boosted by interactivity modifiers. Changes upon fork,
1692 * setprio syscalls, and whenever the interactivity
1693 * estimator recalculates.
1694 */
36c8b586 1695static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1696{
1697 int prio;
1698
e05606d3 1699 if (task_has_rt_policy(p))
b29739f9
IM
1700 prio = MAX_RT_PRIO-1 - p->rt_priority;
1701 else
1702 prio = __normal_prio(p);
1703 return prio;
1704}
1705
1706/*
1707 * Calculate the current priority, i.e. the priority
1708 * taken into account by the scheduler. This value might
1709 * be boosted by RT tasks, or might be boosted by
1710 * interactivity modifiers. Will be RT if the task got
1711 * RT-boosted. If not then it returns p->normal_prio.
1712 */
36c8b586 1713static int effective_prio(struct task_struct *p)
b29739f9
IM
1714{
1715 p->normal_prio = normal_prio(p);
1716 /*
1717 * If we are RT tasks or we were boosted to RT priority,
1718 * keep the priority unchanged. Otherwise, update priority
1719 * to the normal priority:
1720 */
1721 if (!rt_prio(p->prio))
1722 return p->normal_prio;
1723 return p->prio;
1724}
1725
1da177e4 1726/*
dd41f596 1727 * activate_task - move a task to the runqueue.
1da177e4 1728 */
dd41f596 1729static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1730{
d9514f6c 1731 if (task_contributes_to_load(p))
dd41f596 1732 rq->nr_uninterruptible--;
1da177e4 1733
8159f87e 1734 enqueue_task(rq, p, wakeup);
c09595f6 1735 inc_nr_running(rq);
1da177e4
LT
1736}
1737
1da177e4
LT
1738/*
1739 * deactivate_task - remove a task from the runqueue.
1740 */
2e1cb74a 1741static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1742{
d9514f6c 1743 if (task_contributes_to_load(p))
dd41f596
IM
1744 rq->nr_uninterruptible++;
1745
69be72c1 1746 dequeue_task(rq, p, sleep);
c09595f6 1747 dec_nr_running(rq);
1da177e4
LT
1748}
1749
1da177e4
LT
1750/**
1751 * task_curr - is this task currently executing on a CPU?
1752 * @p: the task in question.
1753 */
36c8b586 1754inline int task_curr(const struct task_struct *p)
1da177e4
LT
1755{
1756 return cpu_curr(task_cpu(p)) == p;
1757}
1758
dd41f596
IM
1759static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1760{
6f505b16 1761 set_task_rq(p, cpu);
dd41f596 1762#ifdef CONFIG_SMP
ce96b5ac
DA
1763 /*
1764 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1765 * successfuly executed on another CPU. We must ensure that updates of
1766 * per-task data have been completed by this moment.
1767 */
1768 smp_wmb();
dd41f596 1769 task_thread_info(p)->cpu = cpu;
dd41f596 1770#endif
2dd73a4f
PW
1771}
1772
cb469845
SR
1773static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1774 const struct sched_class *prev_class,
1775 int oldprio, int running)
1776{
1777 if (prev_class != p->sched_class) {
1778 if (prev_class->switched_from)
1779 prev_class->switched_from(rq, p, running);
1780 p->sched_class->switched_to(rq, p, running);
1781 } else
1782 p->sched_class->prio_changed(rq, p, oldprio, running);
1783}
1784
1da177e4 1785#ifdef CONFIG_SMP
c65cc870 1786
e958b360
TG
1787/* Used instead of source_load when we know the type == 0 */
1788static unsigned long weighted_cpuload(const int cpu)
1789{
1790 return cpu_rq(cpu)->load.weight;
1791}
1792
cc367732
IM
1793/*
1794 * Is this task likely cache-hot:
1795 */
e7693a36 1796static int
cc367732
IM
1797task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1798{
1799 s64 delta;
1800
f540a608
IM
1801 /*
1802 * Buddy candidates are cache hot:
1803 */
d25ce4cd 1804 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1805 return 1;
1806
cc367732
IM
1807 if (p->sched_class != &fair_sched_class)
1808 return 0;
1809
6bc1665b
IM
1810 if (sysctl_sched_migration_cost == -1)
1811 return 1;
1812 if (sysctl_sched_migration_cost == 0)
1813 return 0;
1814
cc367732
IM
1815 delta = now - p->se.exec_start;
1816
1817 return delta < (s64)sysctl_sched_migration_cost;
1818}
1819
1820
dd41f596 1821void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1822{
dd41f596
IM
1823 int old_cpu = task_cpu(p);
1824 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1825 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1826 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1827 u64 clock_offset;
dd41f596
IM
1828
1829 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1830
1831#ifdef CONFIG_SCHEDSTATS
1832 if (p->se.wait_start)
1833 p->se.wait_start -= clock_offset;
dd41f596
IM
1834 if (p->se.sleep_start)
1835 p->se.sleep_start -= clock_offset;
1836 if (p->se.block_start)
1837 p->se.block_start -= clock_offset;
cc367732
IM
1838 if (old_cpu != new_cpu) {
1839 schedstat_inc(p, se.nr_migrations);
1840 if (task_hot(p, old_rq->clock, NULL))
1841 schedstat_inc(p, se.nr_forced2_migrations);
1842 }
6cfb0d5d 1843#endif
2830cf8c
SV
1844 p->se.vruntime -= old_cfsrq->min_vruntime -
1845 new_cfsrq->min_vruntime;
dd41f596
IM
1846
1847 __set_task_cpu(p, new_cpu);
c65cc870
IM
1848}
1849
70b97a7f 1850struct migration_req {
1da177e4 1851 struct list_head list;
1da177e4 1852
36c8b586 1853 struct task_struct *task;
1da177e4
LT
1854 int dest_cpu;
1855
1da177e4 1856 struct completion done;
70b97a7f 1857};
1da177e4
LT
1858
1859/*
1860 * The task's runqueue lock must be held.
1861 * Returns true if you have to wait for migration thread.
1862 */
36c8b586 1863static int
70b97a7f 1864migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1865{
70b97a7f 1866 struct rq *rq = task_rq(p);
1da177e4
LT
1867
1868 /*
1869 * If the task is not on a runqueue (and not running), then
1870 * it is sufficient to simply update the task's cpu field.
1871 */
dd41f596 1872 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1873 set_task_cpu(p, dest_cpu);
1874 return 0;
1875 }
1876
1877 init_completion(&req->done);
1da177e4
LT
1878 req->task = p;
1879 req->dest_cpu = dest_cpu;
1880 list_add(&req->list, &rq->migration_queue);
48f24c4d 1881
1da177e4
LT
1882 return 1;
1883}
1884
1885/*
1886 * wait_task_inactive - wait for a thread to unschedule.
1887 *
1888 * The caller must ensure that the task *will* unschedule sometime soon,
1889 * else this function might spin for a *long* time. This function can't
1890 * be called with interrupts off, or it may introduce deadlock with
1891 * smp_call_function() if an IPI is sent by the same process we are
1892 * waiting to become inactive.
1893 */
36c8b586 1894void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1895{
1896 unsigned long flags;
dd41f596 1897 int running, on_rq;
70b97a7f 1898 struct rq *rq;
1da177e4 1899
3a5c359a
AK
1900 for (;;) {
1901 /*
1902 * We do the initial early heuristics without holding
1903 * any task-queue locks at all. We'll only try to get
1904 * the runqueue lock when things look like they will
1905 * work out!
1906 */
1907 rq = task_rq(p);
fa490cfd 1908
3a5c359a
AK
1909 /*
1910 * If the task is actively running on another CPU
1911 * still, just relax and busy-wait without holding
1912 * any locks.
1913 *
1914 * NOTE! Since we don't hold any locks, it's not
1915 * even sure that "rq" stays as the right runqueue!
1916 * But we don't care, since "task_running()" will
1917 * return false if the runqueue has changed and p
1918 * is actually now running somewhere else!
1919 */
1920 while (task_running(rq, p))
1921 cpu_relax();
fa490cfd 1922
3a5c359a
AK
1923 /*
1924 * Ok, time to look more closely! We need the rq
1925 * lock now, to be *sure*. If we're wrong, we'll
1926 * just go back and repeat.
1927 */
1928 rq = task_rq_lock(p, &flags);
1929 running = task_running(rq, p);
1930 on_rq = p->se.on_rq;
1931 task_rq_unlock(rq, &flags);
fa490cfd 1932
3a5c359a
AK
1933 /*
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1936 *
1937 * Oops. Go back and try again..
1938 */
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1942 }
fa490cfd 1943
3a5c359a
AK
1944 /*
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1948 *
1949 * So if it wa still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1952 */
1953 if (unlikely(on_rq)) {
1954 schedule_timeout_uninterruptible(1);
1955 continue;
1956 }
fa490cfd 1957
3a5c359a
AK
1958 /*
1959 * Ahh, all good. It wasn't running, and it wasn't
1960 * runnable, which means that it will never become
1961 * running in the future either. We're all done!
1962 */
1963 break;
1964 }
1da177e4
LT
1965}
1966
1967/***
1968 * kick_process - kick a running thread to enter/exit the kernel
1969 * @p: the to-be-kicked thread
1970 *
1971 * Cause a process which is running on another CPU to enter
1972 * kernel-mode, without any delay. (to get signals handled.)
1973 *
1974 * NOTE: this function doesnt have to take the runqueue lock,
1975 * because all it wants to ensure is that the remote task enters
1976 * the kernel. If the IPI races and the task has been migrated
1977 * to another CPU then no harm is done and the purpose has been
1978 * achieved as well.
1979 */
36c8b586 1980void kick_process(struct task_struct *p)
1da177e4
LT
1981{
1982 int cpu;
1983
1984 preempt_disable();
1985 cpu = task_cpu(p);
1986 if ((cpu != smp_processor_id()) && task_curr(p))
1987 smp_send_reschedule(cpu);
1988 preempt_enable();
1989}
1990
1991/*
2dd73a4f
PW
1992 * Return a low guess at the load of a migration-source cpu weighted
1993 * according to the scheduling class and "nice" value.
1da177e4
LT
1994 *
1995 * We want to under-estimate the load of migration sources, to
1996 * balance conservatively.
1997 */
a9957449 1998static unsigned long source_load(int cpu, int type)
1da177e4 1999{
70b97a7f 2000 struct rq *rq = cpu_rq(cpu);
dd41f596 2001 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2002
3b0bd9bc 2003 if (type == 0)
dd41f596 2004 return total;
b910472d 2005
dd41f596 2006 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2007}
2008
2009/*
2dd73a4f
PW
2010 * Return a high guess at the load of a migration-target cpu weighted
2011 * according to the scheduling class and "nice" value.
1da177e4 2012 */
a9957449 2013static unsigned long target_load(int cpu, int type)
1da177e4 2014{
70b97a7f 2015 struct rq *rq = cpu_rq(cpu);
dd41f596 2016 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2017
7897986b 2018 if (type == 0)
dd41f596 2019 return total;
3b0bd9bc 2020
dd41f596 2021 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2022}
2023
147cbb4b
NP
2024/*
2025 * find_idlest_group finds and returns the least busy CPU group within the
2026 * domain.
2027 */
2028static struct sched_group *
2029find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2030{
2031 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2032 unsigned long min_load = ULONG_MAX, this_load = 0;
2033 int load_idx = sd->forkexec_idx;
2034 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2035
2036 do {
2037 unsigned long load, avg_load;
2038 int local_group;
2039 int i;
2040
da5a5522
BD
2041 /* Skip over this group if it has no CPUs allowed */
2042 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2043 continue;
da5a5522 2044
147cbb4b 2045 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2046
2047 /* Tally up the load of all CPUs in the group */
2048 avg_load = 0;
2049
2050 for_each_cpu_mask(i, group->cpumask) {
2051 /* Bias balancing toward cpus of our domain */
2052 if (local_group)
2053 load = source_load(i, load_idx);
2054 else
2055 load = target_load(i, load_idx);
2056
2057 avg_load += load;
2058 }
2059
2060 /* Adjust by relative CPU power of the group */
5517d86b
ED
2061 avg_load = sg_div_cpu_power(group,
2062 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2063
2064 if (local_group) {
2065 this_load = avg_load;
2066 this = group;
2067 } else if (avg_load < min_load) {
2068 min_load = avg_load;
2069 idlest = group;
2070 }
3a5c359a 2071 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2072
2073 if (!idlest || 100*this_load < imbalance*min_load)
2074 return NULL;
2075 return idlest;
2076}
2077
2078/*
0feaece9 2079 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2080 */
95cdf3b7 2081static int
7c16ec58
MT
2082find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2083 cpumask_t *tmp)
147cbb4b
NP
2084{
2085 unsigned long load, min_load = ULONG_MAX;
2086 int idlest = -1;
2087 int i;
2088
da5a5522 2089 /* Traverse only the allowed CPUs */
7c16ec58 2090 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2091
7c16ec58 2092 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2093 load = weighted_cpuload(i);
147cbb4b
NP
2094
2095 if (load < min_load || (load == min_load && i == this_cpu)) {
2096 min_load = load;
2097 idlest = i;
2098 }
2099 }
2100
2101 return idlest;
2102}
2103
476d139c
NP
2104/*
2105 * sched_balance_self: balance the current task (running on cpu) in domains
2106 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2107 * SD_BALANCE_EXEC.
2108 *
2109 * Balance, ie. select the least loaded group.
2110 *
2111 * Returns the target CPU number, or the same CPU if no balancing is needed.
2112 *
2113 * preempt must be disabled.
2114 */
2115static int sched_balance_self(int cpu, int flag)
2116{
2117 struct task_struct *t = current;
2118 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2119
c96d145e 2120 for_each_domain(cpu, tmp) {
9761eea8
IM
2121 /*
2122 * If power savings logic is enabled for a domain, stop there.
2123 */
5c45bf27
SS
2124 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2125 break;
476d139c
NP
2126 if (tmp->flags & flag)
2127 sd = tmp;
c96d145e 2128 }
476d139c 2129
039a1c41
PZ
2130 if (sd)
2131 update_shares(sd);
2132
476d139c 2133 while (sd) {
7c16ec58 2134 cpumask_t span, tmpmask;
476d139c 2135 struct sched_group *group;
1a848870
SS
2136 int new_cpu, weight;
2137
2138 if (!(sd->flags & flag)) {
2139 sd = sd->child;
2140 continue;
2141 }
476d139c
NP
2142
2143 span = sd->span;
2144 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2145 if (!group) {
2146 sd = sd->child;
2147 continue;
2148 }
476d139c 2149
7c16ec58 2150 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2151 if (new_cpu == -1 || new_cpu == cpu) {
2152 /* Now try balancing at a lower domain level of cpu */
2153 sd = sd->child;
2154 continue;
2155 }
476d139c 2156
1a848870 2157 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2158 cpu = new_cpu;
476d139c
NP
2159 sd = NULL;
2160 weight = cpus_weight(span);
2161 for_each_domain(cpu, tmp) {
2162 if (weight <= cpus_weight(tmp->span))
2163 break;
2164 if (tmp->flags & flag)
2165 sd = tmp;
2166 }
2167 /* while loop will break here if sd == NULL */
2168 }
2169
2170 return cpu;
2171}
2172
2173#endif /* CONFIG_SMP */
1da177e4 2174
1da177e4
LT
2175/***
2176 * try_to_wake_up - wake up a thread
2177 * @p: the to-be-woken-up thread
2178 * @state: the mask of task states that can be woken
2179 * @sync: do a synchronous wakeup?
2180 *
2181 * Put it on the run-queue if it's not already there. The "current"
2182 * thread is always on the run-queue (except when the actual
2183 * re-schedule is in progress), and as such you're allowed to do
2184 * the simpler "current->state = TASK_RUNNING" to mark yourself
2185 * runnable without the overhead of this.
2186 *
2187 * returns failure only if the task is already active.
2188 */
36c8b586 2189static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2190{
cc367732 2191 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2192 unsigned long flags;
2193 long old_state;
70b97a7f 2194 struct rq *rq;
1da177e4 2195
b85d0667
IM
2196 if (!sched_feat(SYNC_WAKEUPS))
2197 sync = 0;
2198
04e2f174 2199 smp_wmb();
1da177e4
LT
2200 rq = task_rq_lock(p, &flags);
2201 old_state = p->state;
2202 if (!(old_state & state))
2203 goto out;
2204
dd41f596 2205 if (p->se.on_rq)
1da177e4
LT
2206 goto out_running;
2207
2208 cpu = task_cpu(p);
cc367732 2209 orig_cpu = cpu;
1da177e4
LT
2210 this_cpu = smp_processor_id();
2211
2212#ifdef CONFIG_SMP
2213 if (unlikely(task_running(rq, p)))
2214 goto out_activate;
2215
5d2f5a61
DA
2216 cpu = p->sched_class->select_task_rq(p, sync);
2217 if (cpu != orig_cpu) {
2218 set_task_cpu(p, cpu);
1da177e4
LT
2219 task_rq_unlock(rq, &flags);
2220 /* might preempt at this point */
2221 rq = task_rq_lock(p, &flags);
2222 old_state = p->state;
2223 if (!(old_state & state))
2224 goto out;
dd41f596 2225 if (p->se.on_rq)
1da177e4
LT
2226 goto out_running;
2227
2228 this_cpu = smp_processor_id();
2229 cpu = task_cpu(p);
2230 }
2231
e7693a36
GH
2232#ifdef CONFIG_SCHEDSTATS
2233 schedstat_inc(rq, ttwu_count);
2234 if (cpu == this_cpu)
2235 schedstat_inc(rq, ttwu_local);
2236 else {
2237 struct sched_domain *sd;
2238 for_each_domain(this_cpu, sd) {
2239 if (cpu_isset(cpu, sd->span)) {
2240 schedstat_inc(sd, ttwu_wake_remote);
2241 break;
2242 }
2243 }
2244 }
6d6bc0ad 2245#endif /* CONFIG_SCHEDSTATS */
e7693a36 2246
1da177e4
LT
2247out_activate:
2248#endif /* CONFIG_SMP */
cc367732
IM
2249 schedstat_inc(p, se.nr_wakeups);
2250 if (sync)
2251 schedstat_inc(p, se.nr_wakeups_sync);
2252 if (orig_cpu != cpu)
2253 schedstat_inc(p, se.nr_wakeups_migrate);
2254 if (cpu == this_cpu)
2255 schedstat_inc(p, se.nr_wakeups_local);
2256 else
2257 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2258 update_rq_clock(rq);
dd41f596 2259 activate_task(rq, p, 1);
1da177e4
LT
2260 success = 1;
2261
2262out_running:
4ae7d5ce
IM
2263 check_preempt_curr(rq, p);
2264
1da177e4 2265 p->state = TASK_RUNNING;
9a897c5a
SR
2266#ifdef CONFIG_SMP
2267 if (p->sched_class->task_wake_up)
2268 p->sched_class->task_wake_up(rq, p);
2269#endif
1da177e4
LT
2270out:
2271 task_rq_unlock(rq, &flags);
2272
2273 return success;
2274}
2275
7ad5b3a5 2276int wake_up_process(struct task_struct *p)
1da177e4 2277{
d9514f6c 2278 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2279}
1da177e4
LT
2280EXPORT_SYMBOL(wake_up_process);
2281
7ad5b3a5 2282int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2283{
2284 return try_to_wake_up(p, state, 0);
2285}
2286
1da177e4
LT
2287/*
2288 * Perform scheduler related setup for a newly forked process p.
2289 * p is forked by current.
dd41f596
IM
2290 *
2291 * __sched_fork() is basic setup used by init_idle() too:
2292 */
2293static void __sched_fork(struct task_struct *p)
2294{
dd41f596
IM
2295 p->se.exec_start = 0;
2296 p->se.sum_exec_runtime = 0;
f6cf891c 2297 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2298 p->se.last_wakeup = 0;
2299 p->se.avg_overlap = 0;
6cfb0d5d
IM
2300
2301#ifdef CONFIG_SCHEDSTATS
2302 p->se.wait_start = 0;
dd41f596
IM
2303 p->se.sum_sleep_runtime = 0;
2304 p->se.sleep_start = 0;
dd41f596
IM
2305 p->se.block_start = 0;
2306 p->se.sleep_max = 0;
2307 p->se.block_max = 0;
2308 p->se.exec_max = 0;
eba1ed4b 2309 p->se.slice_max = 0;
dd41f596 2310 p->se.wait_max = 0;
6cfb0d5d 2311#endif
476d139c 2312
fa717060 2313 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2314 p->se.on_rq = 0;
4a55bd5e 2315 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2316
e107be36
AK
2317#ifdef CONFIG_PREEMPT_NOTIFIERS
2318 INIT_HLIST_HEAD(&p->preempt_notifiers);
2319#endif
2320
1da177e4
LT
2321 /*
2322 * We mark the process as running here, but have not actually
2323 * inserted it onto the runqueue yet. This guarantees that
2324 * nobody will actually run it, and a signal or other external
2325 * event cannot wake it up and insert it on the runqueue either.
2326 */
2327 p->state = TASK_RUNNING;
dd41f596
IM
2328}
2329
2330/*
2331 * fork()/clone()-time setup:
2332 */
2333void sched_fork(struct task_struct *p, int clone_flags)
2334{
2335 int cpu = get_cpu();
2336
2337 __sched_fork(p);
2338
2339#ifdef CONFIG_SMP
2340 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2341#endif
02e4bac2 2342 set_task_cpu(p, cpu);
b29739f9
IM
2343
2344 /*
2345 * Make sure we do not leak PI boosting priority to the child:
2346 */
2347 p->prio = current->normal_prio;
2ddbf952
HS
2348 if (!rt_prio(p->prio))
2349 p->sched_class = &fair_sched_class;
b29739f9 2350
52f17b6c 2351#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2352 if (likely(sched_info_on()))
52f17b6c 2353 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2354#endif
d6077cb8 2355#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2356 p->oncpu = 0;
2357#endif
1da177e4 2358#ifdef CONFIG_PREEMPT
4866cde0 2359 /* Want to start with kernel preemption disabled. */
a1261f54 2360 task_thread_info(p)->preempt_count = 1;
1da177e4 2361#endif
476d139c 2362 put_cpu();
1da177e4
LT
2363}
2364
2365/*
2366 * wake_up_new_task - wake up a newly created task for the first time.
2367 *
2368 * This function will do some initial scheduler statistics housekeeping
2369 * that must be done for every newly created context, then puts the task
2370 * on the runqueue and wakes it.
2371 */
7ad5b3a5 2372void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2373{
2374 unsigned long flags;
dd41f596 2375 struct rq *rq;
1da177e4
LT
2376
2377 rq = task_rq_lock(p, &flags);
147cbb4b 2378 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2379 update_rq_clock(rq);
1da177e4
LT
2380
2381 p->prio = effective_prio(p);
2382
b9dca1e0 2383 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2384 activate_task(rq, p, 0);
1da177e4 2385 } else {
1da177e4 2386 /*
dd41f596
IM
2387 * Let the scheduling class do new task startup
2388 * management (if any):
1da177e4 2389 */
ee0827d8 2390 p->sched_class->task_new(rq, p);
c09595f6 2391 inc_nr_running(rq);
1da177e4 2392 }
dd41f596 2393 check_preempt_curr(rq, p);
9a897c5a
SR
2394#ifdef CONFIG_SMP
2395 if (p->sched_class->task_wake_up)
2396 p->sched_class->task_wake_up(rq, p);
2397#endif
dd41f596 2398 task_rq_unlock(rq, &flags);
1da177e4
LT
2399}
2400
e107be36
AK
2401#ifdef CONFIG_PREEMPT_NOTIFIERS
2402
2403/**
421cee29
RD
2404 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2405 * @notifier: notifier struct to register
e107be36
AK
2406 */
2407void preempt_notifier_register(struct preempt_notifier *notifier)
2408{
2409 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2410}
2411EXPORT_SYMBOL_GPL(preempt_notifier_register);
2412
2413/**
2414 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2415 * @notifier: notifier struct to unregister
e107be36
AK
2416 *
2417 * This is safe to call from within a preemption notifier.
2418 */
2419void preempt_notifier_unregister(struct preempt_notifier *notifier)
2420{
2421 hlist_del(&notifier->link);
2422}
2423EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2424
2425static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2426{
2427 struct preempt_notifier *notifier;
2428 struct hlist_node *node;
2429
2430 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2431 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2432}
2433
2434static void
2435fire_sched_out_preempt_notifiers(struct task_struct *curr,
2436 struct task_struct *next)
2437{
2438 struct preempt_notifier *notifier;
2439 struct hlist_node *node;
2440
2441 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2442 notifier->ops->sched_out(notifier, next);
2443}
2444
6d6bc0ad 2445#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2446
2447static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2448{
2449}
2450
2451static void
2452fire_sched_out_preempt_notifiers(struct task_struct *curr,
2453 struct task_struct *next)
2454{
2455}
2456
6d6bc0ad 2457#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2458
4866cde0
NP
2459/**
2460 * prepare_task_switch - prepare to switch tasks
2461 * @rq: the runqueue preparing to switch
421cee29 2462 * @prev: the current task that is being switched out
4866cde0
NP
2463 * @next: the task we are going to switch to.
2464 *
2465 * This is called with the rq lock held and interrupts off. It must
2466 * be paired with a subsequent finish_task_switch after the context
2467 * switch.
2468 *
2469 * prepare_task_switch sets up locking and calls architecture specific
2470 * hooks.
2471 */
e107be36
AK
2472static inline void
2473prepare_task_switch(struct rq *rq, struct task_struct *prev,
2474 struct task_struct *next)
4866cde0 2475{
e107be36 2476 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2477 prepare_lock_switch(rq, next);
2478 prepare_arch_switch(next);
2479}
2480
1da177e4
LT
2481/**
2482 * finish_task_switch - clean up after a task-switch
344babaa 2483 * @rq: runqueue associated with task-switch
1da177e4
LT
2484 * @prev: the thread we just switched away from.
2485 *
4866cde0
NP
2486 * finish_task_switch must be called after the context switch, paired
2487 * with a prepare_task_switch call before the context switch.
2488 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2489 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2490 *
2491 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2492 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2493 * with the lock held can cause deadlocks; see schedule() for
2494 * details.)
2495 */
a9957449 2496static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2497 __releases(rq->lock)
2498{
1da177e4 2499 struct mm_struct *mm = rq->prev_mm;
55a101f8 2500 long prev_state;
1da177e4
LT
2501
2502 rq->prev_mm = NULL;
2503
2504 /*
2505 * A task struct has one reference for the use as "current".
c394cc9f 2506 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2507 * schedule one last time. The schedule call will never return, and
2508 * the scheduled task must drop that reference.
c394cc9f 2509 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2510 * still held, otherwise prev could be scheduled on another cpu, die
2511 * there before we look at prev->state, and then the reference would
2512 * be dropped twice.
2513 * Manfred Spraul <manfred@colorfullife.com>
2514 */
55a101f8 2515 prev_state = prev->state;
4866cde0
NP
2516 finish_arch_switch(prev);
2517 finish_lock_switch(rq, prev);
9a897c5a
SR
2518#ifdef CONFIG_SMP
2519 if (current->sched_class->post_schedule)
2520 current->sched_class->post_schedule(rq);
2521#endif
e8fa1362 2522
e107be36 2523 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2524 if (mm)
2525 mmdrop(mm);
c394cc9f 2526 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2527 /*
2528 * Remove function-return probe instances associated with this
2529 * task and put them back on the free list.
9761eea8 2530 */
c6fd91f0 2531 kprobe_flush_task(prev);
1da177e4 2532 put_task_struct(prev);
c6fd91f0 2533 }
1da177e4
LT
2534}
2535
2536/**
2537 * schedule_tail - first thing a freshly forked thread must call.
2538 * @prev: the thread we just switched away from.
2539 */
36c8b586 2540asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2541 __releases(rq->lock)
2542{
70b97a7f
IM
2543 struct rq *rq = this_rq();
2544
4866cde0
NP
2545 finish_task_switch(rq, prev);
2546#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2547 /* In this case, finish_task_switch does not reenable preemption */
2548 preempt_enable();
2549#endif
1da177e4 2550 if (current->set_child_tid)
b488893a 2551 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2552}
2553
2554/*
2555 * context_switch - switch to the new MM and the new
2556 * thread's register state.
2557 */
dd41f596 2558static inline void
70b97a7f 2559context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2560 struct task_struct *next)
1da177e4 2561{
dd41f596 2562 struct mm_struct *mm, *oldmm;
1da177e4 2563
e107be36 2564 prepare_task_switch(rq, prev, next);
dd41f596
IM
2565 mm = next->mm;
2566 oldmm = prev->active_mm;
9226d125
ZA
2567 /*
2568 * For paravirt, this is coupled with an exit in switch_to to
2569 * combine the page table reload and the switch backend into
2570 * one hypercall.
2571 */
2572 arch_enter_lazy_cpu_mode();
2573
dd41f596 2574 if (unlikely(!mm)) {
1da177e4
LT
2575 next->active_mm = oldmm;
2576 atomic_inc(&oldmm->mm_count);
2577 enter_lazy_tlb(oldmm, next);
2578 } else
2579 switch_mm(oldmm, mm, next);
2580
dd41f596 2581 if (unlikely(!prev->mm)) {
1da177e4 2582 prev->active_mm = NULL;
1da177e4
LT
2583 rq->prev_mm = oldmm;
2584 }
3a5f5e48
IM
2585 /*
2586 * Since the runqueue lock will be released by the next
2587 * task (which is an invalid locking op but in the case
2588 * of the scheduler it's an obvious special-case), so we
2589 * do an early lockdep release here:
2590 */
2591#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2592 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2593#endif
1da177e4
LT
2594
2595 /* Here we just switch the register state and the stack. */
2596 switch_to(prev, next, prev);
2597
dd41f596
IM
2598 barrier();
2599 /*
2600 * this_rq must be evaluated again because prev may have moved
2601 * CPUs since it called schedule(), thus the 'rq' on its stack
2602 * frame will be invalid.
2603 */
2604 finish_task_switch(this_rq(), prev);
1da177e4
LT
2605}
2606
2607/*
2608 * nr_running, nr_uninterruptible and nr_context_switches:
2609 *
2610 * externally visible scheduler statistics: current number of runnable
2611 * threads, current number of uninterruptible-sleeping threads, total
2612 * number of context switches performed since bootup.
2613 */
2614unsigned long nr_running(void)
2615{
2616 unsigned long i, sum = 0;
2617
2618 for_each_online_cpu(i)
2619 sum += cpu_rq(i)->nr_running;
2620
2621 return sum;
2622}
2623
2624unsigned long nr_uninterruptible(void)
2625{
2626 unsigned long i, sum = 0;
2627
0a945022 2628 for_each_possible_cpu(i)
1da177e4
LT
2629 sum += cpu_rq(i)->nr_uninterruptible;
2630
2631 /*
2632 * Since we read the counters lockless, it might be slightly
2633 * inaccurate. Do not allow it to go below zero though:
2634 */
2635 if (unlikely((long)sum < 0))
2636 sum = 0;
2637
2638 return sum;
2639}
2640
2641unsigned long long nr_context_switches(void)
2642{
cc94abfc
SR
2643 int i;
2644 unsigned long long sum = 0;
1da177e4 2645
0a945022 2646 for_each_possible_cpu(i)
1da177e4
LT
2647 sum += cpu_rq(i)->nr_switches;
2648
2649 return sum;
2650}
2651
2652unsigned long nr_iowait(void)
2653{
2654 unsigned long i, sum = 0;
2655
0a945022 2656 for_each_possible_cpu(i)
1da177e4
LT
2657 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2658
2659 return sum;
2660}
2661
db1b1fef
JS
2662unsigned long nr_active(void)
2663{
2664 unsigned long i, running = 0, uninterruptible = 0;
2665
2666 for_each_online_cpu(i) {
2667 running += cpu_rq(i)->nr_running;
2668 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2669 }
2670
2671 if (unlikely((long)uninterruptible < 0))
2672 uninterruptible = 0;
2673
2674 return running + uninterruptible;
2675}
2676
48f24c4d 2677/*
dd41f596
IM
2678 * Update rq->cpu_load[] statistics. This function is usually called every
2679 * scheduler tick (TICK_NSEC).
48f24c4d 2680 */
dd41f596 2681static void update_cpu_load(struct rq *this_rq)
48f24c4d 2682{
495eca49 2683 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2684 int i, scale;
2685
2686 this_rq->nr_load_updates++;
dd41f596
IM
2687
2688 /* Update our load: */
2689 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2690 unsigned long old_load, new_load;
2691
2692 /* scale is effectively 1 << i now, and >> i divides by scale */
2693
2694 old_load = this_rq->cpu_load[i];
2695 new_load = this_load;
a25707f3
IM
2696 /*
2697 * Round up the averaging division if load is increasing. This
2698 * prevents us from getting stuck on 9 if the load is 10, for
2699 * example.
2700 */
2701 if (new_load > old_load)
2702 new_load += scale-1;
dd41f596
IM
2703 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2704 }
48f24c4d
IM
2705}
2706
dd41f596
IM
2707#ifdef CONFIG_SMP
2708
1da177e4
LT
2709/*
2710 * double_rq_lock - safely lock two runqueues
2711 *
2712 * Note this does not disable interrupts like task_rq_lock,
2713 * you need to do so manually before calling.
2714 */
70b97a7f 2715static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2716 __acquires(rq1->lock)
2717 __acquires(rq2->lock)
2718{
054b9108 2719 BUG_ON(!irqs_disabled());
1da177e4
LT
2720 if (rq1 == rq2) {
2721 spin_lock(&rq1->lock);
2722 __acquire(rq2->lock); /* Fake it out ;) */
2723 } else {
c96d145e 2724 if (rq1 < rq2) {
1da177e4
LT
2725 spin_lock(&rq1->lock);
2726 spin_lock(&rq2->lock);
2727 } else {
2728 spin_lock(&rq2->lock);
2729 spin_lock(&rq1->lock);
2730 }
2731 }
6e82a3be
IM
2732 update_rq_clock(rq1);
2733 update_rq_clock(rq2);
1da177e4
LT
2734}
2735
2736/*
2737 * double_rq_unlock - safely unlock two runqueues
2738 *
2739 * Note this does not restore interrupts like task_rq_unlock,
2740 * you need to do so manually after calling.
2741 */
70b97a7f 2742static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2743 __releases(rq1->lock)
2744 __releases(rq2->lock)
2745{
2746 spin_unlock(&rq1->lock);
2747 if (rq1 != rq2)
2748 spin_unlock(&rq2->lock);
2749 else
2750 __release(rq2->lock);
2751}
2752
2753/*
2754 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2755 */
e8fa1362 2756static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2757 __releases(this_rq->lock)
2758 __acquires(busiest->lock)
2759 __acquires(this_rq->lock)
2760{
e8fa1362
SR
2761 int ret = 0;
2762
054b9108
KK
2763 if (unlikely(!irqs_disabled())) {
2764 /* printk() doesn't work good under rq->lock */
2765 spin_unlock(&this_rq->lock);
2766 BUG_ON(1);
2767 }
1da177e4 2768 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2769 if (busiest < this_rq) {
1da177e4
LT
2770 spin_unlock(&this_rq->lock);
2771 spin_lock(&busiest->lock);
2772 spin_lock(&this_rq->lock);
e8fa1362 2773 ret = 1;
1da177e4
LT
2774 } else
2775 spin_lock(&busiest->lock);
2776 }
e8fa1362 2777 return ret;
1da177e4
LT
2778}
2779
1da177e4
LT
2780/*
2781 * If dest_cpu is allowed for this process, migrate the task to it.
2782 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2783 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2784 * the cpu_allowed mask is restored.
2785 */
36c8b586 2786static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2787{
70b97a7f 2788 struct migration_req req;
1da177e4 2789 unsigned long flags;
70b97a7f 2790 struct rq *rq;
1da177e4
LT
2791
2792 rq = task_rq_lock(p, &flags);
2793 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2794 || unlikely(cpu_is_offline(dest_cpu)))
2795 goto out;
2796
2797 /* force the process onto the specified CPU */
2798 if (migrate_task(p, dest_cpu, &req)) {
2799 /* Need to wait for migration thread (might exit: take ref). */
2800 struct task_struct *mt = rq->migration_thread;
36c8b586 2801
1da177e4
LT
2802 get_task_struct(mt);
2803 task_rq_unlock(rq, &flags);
2804 wake_up_process(mt);
2805 put_task_struct(mt);
2806 wait_for_completion(&req.done);
36c8b586 2807
1da177e4
LT
2808 return;
2809 }
2810out:
2811 task_rq_unlock(rq, &flags);
2812}
2813
2814/*
476d139c
NP
2815 * sched_exec - execve() is a valuable balancing opportunity, because at
2816 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2817 */
2818void sched_exec(void)
2819{
1da177e4 2820 int new_cpu, this_cpu = get_cpu();
476d139c 2821 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2822 put_cpu();
476d139c
NP
2823 if (new_cpu != this_cpu)
2824 sched_migrate_task(current, new_cpu);
1da177e4
LT
2825}
2826
2827/*
2828 * pull_task - move a task from a remote runqueue to the local runqueue.
2829 * Both runqueues must be locked.
2830 */
dd41f596
IM
2831static void pull_task(struct rq *src_rq, struct task_struct *p,
2832 struct rq *this_rq, int this_cpu)
1da177e4 2833{
2e1cb74a 2834 deactivate_task(src_rq, p, 0);
1da177e4 2835 set_task_cpu(p, this_cpu);
dd41f596 2836 activate_task(this_rq, p, 0);
1da177e4
LT
2837 /*
2838 * Note that idle threads have a prio of MAX_PRIO, for this test
2839 * to be always true for them.
2840 */
dd41f596 2841 check_preempt_curr(this_rq, p);
1da177e4
LT
2842}
2843
2844/*
2845 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2846 */
858119e1 2847static
70b97a7f 2848int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2849 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2850 int *all_pinned)
1da177e4
LT
2851{
2852 /*
2853 * We do not migrate tasks that are:
2854 * 1) running (obviously), or
2855 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2856 * 3) are cache-hot on their current CPU.
2857 */
cc367732
IM
2858 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2859 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2860 return 0;
cc367732 2861 }
81026794
NP
2862 *all_pinned = 0;
2863
cc367732
IM
2864 if (task_running(rq, p)) {
2865 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2866 return 0;
cc367732 2867 }
1da177e4 2868
da84d961
IM
2869 /*
2870 * Aggressive migration if:
2871 * 1) task is cache cold, or
2872 * 2) too many balance attempts have failed.
2873 */
2874
6bc1665b
IM
2875 if (!task_hot(p, rq->clock, sd) ||
2876 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2877#ifdef CONFIG_SCHEDSTATS
cc367732 2878 if (task_hot(p, rq->clock, sd)) {
da84d961 2879 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2880 schedstat_inc(p, se.nr_forced_migrations);
2881 }
da84d961
IM
2882#endif
2883 return 1;
2884 }
2885
cc367732
IM
2886 if (task_hot(p, rq->clock, sd)) {
2887 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2888 return 0;
cc367732 2889 }
1da177e4
LT
2890 return 1;
2891}
2892
e1d1484f
PW
2893static unsigned long
2894balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2895 unsigned long max_load_move, struct sched_domain *sd,
2896 enum cpu_idle_type idle, int *all_pinned,
2897 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2898{
b82d9fdd 2899 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2900 struct task_struct *p;
2901 long rem_load_move = max_load_move;
1da177e4 2902
e1d1484f 2903 if (max_load_move == 0)
1da177e4
LT
2904 goto out;
2905
81026794
NP
2906 pinned = 1;
2907
1da177e4 2908 /*
dd41f596 2909 * Start the load-balancing iterator:
1da177e4 2910 */
dd41f596
IM
2911 p = iterator->start(iterator->arg);
2912next:
b82d9fdd 2913 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2914 goto out;
50ddd969 2915 /*
b82d9fdd 2916 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2917 * skip a task if it will be the highest priority task (i.e. smallest
2918 * prio value) on its new queue regardless of its load weight
2919 */
dd41f596
IM
2920 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2921 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2922 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2923 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2924 p = iterator->next(iterator->arg);
2925 goto next;
1da177e4
LT
2926 }
2927
dd41f596 2928 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2929 pulled++;
dd41f596 2930 rem_load_move -= p->se.load.weight;
1da177e4 2931
2dd73a4f 2932 /*
b82d9fdd 2933 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2934 */
e1d1484f 2935 if (rem_load_move > 0) {
a4ac01c3
PW
2936 if (p->prio < *this_best_prio)
2937 *this_best_prio = p->prio;
dd41f596
IM
2938 p = iterator->next(iterator->arg);
2939 goto next;
1da177e4
LT
2940 }
2941out:
2942 /*
e1d1484f 2943 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2944 * so we can safely collect pull_task() stats here rather than
2945 * inside pull_task().
2946 */
2947 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2948
2949 if (all_pinned)
2950 *all_pinned = pinned;
e1d1484f
PW
2951
2952 return max_load_move - rem_load_move;
1da177e4
LT
2953}
2954
dd41f596 2955/*
43010659
PW
2956 * move_tasks tries to move up to max_load_move weighted load from busiest to
2957 * this_rq, as part of a balancing operation within domain "sd".
2958 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2959 *
2960 * Called with both runqueues locked.
2961 */
2962static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2963 unsigned long max_load_move,
dd41f596
IM
2964 struct sched_domain *sd, enum cpu_idle_type idle,
2965 int *all_pinned)
2966{
5522d5d5 2967 const struct sched_class *class = sched_class_highest;
43010659 2968 unsigned long total_load_moved = 0;
a4ac01c3 2969 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2970
2971 do {
43010659
PW
2972 total_load_moved +=
2973 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2974 max_load_move - total_load_moved,
a4ac01c3 2975 sd, idle, all_pinned, &this_best_prio);
dd41f596 2976 class = class->next;
43010659 2977 } while (class && max_load_move > total_load_moved);
dd41f596 2978
43010659
PW
2979 return total_load_moved > 0;
2980}
2981
e1d1484f
PW
2982static int
2983iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2984 struct sched_domain *sd, enum cpu_idle_type idle,
2985 struct rq_iterator *iterator)
2986{
2987 struct task_struct *p = iterator->start(iterator->arg);
2988 int pinned = 0;
2989
2990 while (p) {
2991 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2992 pull_task(busiest, p, this_rq, this_cpu);
2993 /*
2994 * Right now, this is only the second place pull_task()
2995 * is called, so we can safely collect pull_task()
2996 * stats here rather than inside pull_task().
2997 */
2998 schedstat_inc(sd, lb_gained[idle]);
2999
3000 return 1;
3001 }
3002 p = iterator->next(iterator->arg);
3003 }
3004
3005 return 0;
3006}
3007
43010659
PW
3008/*
3009 * move_one_task tries to move exactly one task from busiest to this_rq, as
3010 * part of active balancing operations within "domain".
3011 * Returns 1 if successful and 0 otherwise.
3012 *
3013 * Called with both runqueues locked.
3014 */
3015static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3016 struct sched_domain *sd, enum cpu_idle_type idle)
3017{
5522d5d5 3018 const struct sched_class *class;
43010659
PW
3019
3020 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3021 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3022 return 1;
3023
3024 return 0;
dd41f596
IM
3025}
3026
1da177e4
LT
3027/*
3028 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3029 * domain. It calculates and returns the amount of weighted load which
3030 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3031 */
3032static struct sched_group *
3033find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3034 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3035 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3036{
3037 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3038 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3039 unsigned long max_pull;
2dd73a4f
PW
3040 unsigned long busiest_load_per_task, busiest_nr_running;
3041 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3042 int load_idx, group_imb = 0;
5c45bf27
SS
3043#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3044 int power_savings_balance = 1;
3045 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3046 unsigned long min_nr_running = ULONG_MAX;
3047 struct sched_group *group_min = NULL, *group_leader = NULL;
3048#endif
1da177e4
LT
3049
3050 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3051 busiest_load_per_task = busiest_nr_running = 0;
3052 this_load_per_task = this_nr_running = 0;
d15bcfdb 3053 if (idle == CPU_NOT_IDLE)
7897986b 3054 load_idx = sd->busy_idx;
d15bcfdb 3055 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3056 load_idx = sd->newidle_idx;
3057 else
3058 load_idx = sd->idle_idx;
1da177e4
LT
3059
3060 do {
908a7c1b 3061 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3062 int local_group;
3063 int i;
908a7c1b 3064 int __group_imb = 0;
783609c6 3065 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3066 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3067
3068 local_group = cpu_isset(this_cpu, group->cpumask);
3069
783609c6
SS
3070 if (local_group)
3071 balance_cpu = first_cpu(group->cpumask);
3072
1da177e4 3073 /* Tally up the load of all CPUs in the group */
2dd73a4f 3074 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3075 max_cpu_load = 0;
3076 min_cpu_load = ~0UL;
1da177e4
LT
3077
3078 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3079 struct rq *rq;
3080
3081 if (!cpu_isset(i, *cpus))
3082 continue;
3083
3084 rq = cpu_rq(i);
2dd73a4f 3085
9439aab8 3086 if (*sd_idle && rq->nr_running)
5969fe06
NP
3087 *sd_idle = 0;
3088
1da177e4 3089 /* Bias balancing toward cpus of our domain */
783609c6
SS
3090 if (local_group) {
3091 if (idle_cpu(i) && !first_idle_cpu) {
3092 first_idle_cpu = 1;
3093 balance_cpu = i;
3094 }
3095
a2000572 3096 load = target_load(i, load_idx);
908a7c1b 3097 } else {
a2000572 3098 load = source_load(i, load_idx);
908a7c1b
KC
3099 if (load > max_cpu_load)
3100 max_cpu_load = load;
3101 if (min_cpu_load > load)
3102 min_cpu_load = load;
3103 }
1da177e4
LT
3104
3105 avg_load += load;
2dd73a4f 3106 sum_nr_running += rq->nr_running;
dd41f596 3107 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3108 }
3109
783609c6
SS
3110 /*
3111 * First idle cpu or the first cpu(busiest) in this sched group
3112 * is eligible for doing load balancing at this and above
9439aab8
SS
3113 * domains. In the newly idle case, we will allow all the cpu's
3114 * to do the newly idle load balance.
783609c6 3115 */
9439aab8
SS
3116 if (idle != CPU_NEWLY_IDLE && local_group &&
3117 balance_cpu != this_cpu && balance) {
783609c6
SS
3118 *balance = 0;
3119 goto ret;
3120 }
3121
1da177e4 3122 total_load += avg_load;
5517d86b 3123 total_pwr += group->__cpu_power;
1da177e4
LT
3124
3125 /* Adjust by relative CPU power of the group */
5517d86b
ED
3126 avg_load = sg_div_cpu_power(group,
3127 avg_load * SCHED_LOAD_SCALE);
1da177e4 3128
908a7c1b
KC
3129 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3130 __group_imb = 1;
3131
5517d86b 3132 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3133
1da177e4
LT
3134 if (local_group) {
3135 this_load = avg_load;
3136 this = group;
2dd73a4f
PW
3137 this_nr_running = sum_nr_running;
3138 this_load_per_task = sum_weighted_load;
3139 } else if (avg_load > max_load &&
908a7c1b 3140 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3141 max_load = avg_load;
3142 busiest = group;
2dd73a4f
PW
3143 busiest_nr_running = sum_nr_running;
3144 busiest_load_per_task = sum_weighted_load;
908a7c1b 3145 group_imb = __group_imb;
1da177e4 3146 }
5c45bf27
SS
3147
3148#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3149 /*
3150 * Busy processors will not participate in power savings
3151 * balance.
3152 */
dd41f596
IM
3153 if (idle == CPU_NOT_IDLE ||
3154 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3155 goto group_next;
5c45bf27
SS
3156
3157 /*
3158 * If the local group is idle or completely loaded
3159 * no need to do power savings balance at this domain
3160 */
3161 if (local_group && (this_nr_running >= group_capacity ||
3162 !this_nr_running))
3163 power_savings_balance = 0;
3164
dd41f596 3165 /*
5c45bf27
SS
3166 * If a group is already running at full capacity or idle,
3167 * don't include that group in power savings calculations
dd41f596
IM
3168 */
3169 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3170 || !sum_nr_running)
dd41f596 3171 goto group_next;
5c45bf27 3172
dd41f596 3173 /*
5c45bf27 3174 * Calculate the group which has the least non-idle load.
dd41f596
IM
3175 * This is the group from where we need to pick up the load
3176 * for saving power
3177 */
3178 if ((sum_nr_running < min_nr_running) ||
3179 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3180 first_cpu(group->cpumask) <
3181 first_cpu(group_min->cpumask))) {
dd41f596
IM
3182 group_min = group;
3183 min_nr_running = sum_nr_running;
5c45bf27
SS
3184 min_load_per_task = sum_weighted_load /
3185 sum_nr_running;
dd41f596 3186 }
5c45bf27 3187
dd41f596 3188 /*
5c45bf27 3189 * Calculate the group which is almost near its
dd41f596
IM
3190 * capacity but still has some space to pick up some load
3191 * from other group and save more power
3192 */
3193 if (sum_nr_running <= group_capacity - 1) {
3194 if (sum_nr_running > leader_nr_running ||
3195 (sum_nr_running == leader_nr_running &&
3196 first_cpu(group->cpumask) >
3197 first_cpu(group_leader->cpumask))) {
3198 group_leader = group;
3199 leader_nr_running = sum_nr_running;
3200 }
48f24c4d 3201 }
5c45bf27
SS
3202group_next:
3203#endif
1da177e4
LT
3204 group = group->next;
3205 } while (group != sd->groups);
3206
2dd73a4f 3207 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3208 goto out_balanced;
3209
3210 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3211
3212 if (this_load >= avg_load ||
3213 100*max_load <= sd->imbalance_pct*this_load)
3214 goto out_balanced;
3215
2dd73a4f 3216 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3217 if (group_imb)
3218 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3219
1da177e4
LT
3220 /*
3221 * We're trying to get all the cpus to the average_load, so we don't
3222 * want to push ourselves above the average load, nor do we wish to
3223 * reduce the max loaded cpu below the average load, as either of these
3224 * actions would just result in more rebalancing later, and ping-pong
3225 * tasks around. Thus we look for the minimum possible imbalance.
3226 * Negative imbalances (*we* are more loaded than anyone else) will
3227 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3228 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3229 * appear as very large values with unsigned longs.
3230 */
2dd73a4f
PW
3231 if (max_load <= busiest_load_per_task)
3232 goto out_balanced;
3233
3234 /*
3235 * In the presence of smp nice balancing, certain scenarios can have
3236 * max load less than avg load(as we skip the groups at or below
3237 * its cpu_power, while calculating max_load..)
3238 */
3239 if (max_load < avg_load) {
3240 *imbalance = 0;
3241 goto small_imbalance;
3242 }
0c117f1b
SS
3243
3244 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3245 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3246
1da177e4 3247 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3248 *imbalance = min(max_pull * busiest->__cpu_power,
3249 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3250 / SCHED_LOAD_SCALE;
3251
2dd73a4f
PW
3252 /*
3253 * if *imbalance is less than the average load per runnable task
3254 * there is no gaurantee that any tasks will be moved so we'll have
3255 * a think about bumping its value to force at least one task to be
3256 * moved
3257 */
7fd0d2dd 3258 if (*imbalance < busiest_load_per_task) {
48f24c4d 3259 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3260 unsigned int imbn;
3261
3262small_imbalance:
3263 pwr_move = pwr_now = 0;
3264 imbn = 2;
3265 if (this_nr_running) {
3266 this_load_per_task /= this_nr_running;
3267 if (busiest_load_per_task > this_load_per_task)
3268 imbn = 1;
3269 } else
3270 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3271
dd41f596
IM
3272 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3273 busiest_load_per_task * imbn) {
2dd73a4f 3274 *imbalance = busiest_load_per_task;
1da177e4
LT
3275 return busiest;
3276 }
3277
3278 /*
3279 * OK, we don't have enough imbalance to justify moving tasks,
3280 * however we may be able to increase total CPU power used by
3281 * moving them.
3282 */
3283
5517d86b
ED
3284 pwr_now += busiest->__cpu_power *
3285 min(busiest_load_per_task, max_load);
3286 pwr_now += this->__cpu_power *
3287 min(this_load_per_task, this_load);
1da177e4
LT
3288 pwr_now /= SCHED_LOAD_SCALE;
3289
3290 /* Amount of load we'd subtract */
5517d86b
ED
3291 tmp = sg_div_cpu_power(busiest,
3292 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3293 if (max_load > tmp)
5517d86b 3294 pwr_move += busiest->__cpu_power *
2dd73a4f 3295 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3296
3297 /* Amount of load we'd add */
5517d86b 3298 if (max_load * busiest->__cpu_power <
33859f7f 3299 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3300 tmp = sg_div_cpu_power(this,
3301 max_load * busiest->__cpu_power);
1da177e4 3302 else
5517d86b
ED
3303 tmp = sg_div_cpu_power(this,
3304 busiest_load_per_task * SCHED_LOAD_SCALE);
3305 pwr_move += this->__cpu_power *
3306 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3307 pwr_move /= SCHED_LOAD_SCALE;
3308
3309 /* Move if we gain throughput */
7fd0d2dd
SS
3310 if (pwr_move > pwr_now)
3311 *imbalance = busiest_load_per_task;
1da177e4
LT
3312 }
3313
1da177e4
LT
3314 return busiest;
3315
3316out_balanced:
5c45bf27 3317#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3318 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3319 goto ret;
1da177e4 3320
5c45bf27
SS
3321 if (this == group_leader && group_leader != group_min) {
3322 *imbalance = min_load_per_task;
3323 return group_min;
3324 }
5c45bf27 3325#endif
783609c6 3326ret:
1da177e4
LT
3327 *imbalance = 0;
3328 return NULL;
3329}
3330
3331/*
3332 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3333 */
70b97a7f 3334static struct rq *
d15bcfdb 3335find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3336 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3337{
70b97a7f 3338 struct rq *busiest = NULL, *rq;
2dd73a4f 3339 unsigned long max_load = 0;
1da177e4
LT
3340 int i;
3341
3342 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3343 unsigned long wl;
0a2966b4
CL
3344
3345 if (!cpu_isset(i, *cpus))
3346 continue;
3347
48f24c4d 3348 rq = cpu_rq(i);
dd41f596 3349 wl = weighted_cpuload(i);
2dd73a4f 3350
dd41f596 3351 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3352 continue;
1da177e4 3353
dd41f596
IM
3354 if (wl > max_load) {
3355 max_load = wl;
48f24c4d 3356 busiest = rq;
1da177e4
LT
3357 }
3358 }
3359
3360 return busiest;
3361}
3362
77391d71
NP
3363/*
3364 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3365 * so long as it is large enough.
3366 */
3367#define MAX_PINNED_INTERVAL 512
3368
1da177e4
LT
3369/*
3370 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3371 * tasks if there is an imbalance.
1da177e4 3372 */
70b97a7f 3373static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3374 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3375 int *balance, cpumask_t *cpus)
1da177e4 3376{
43010659 3377 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3378 struct sched_group *group;
1da177e4 3379 unsigned long imbalance;
70b97a7f 3380 struct rq *busiest;
fe2eea3f 3381 unsigned long flags;
5969fe06 3382
7c16ec58
MT
3383 cpus_setall(*cpus);
3384
89c4710e
SS
3385 /*
3386 * When power savings policy is enabled for the parent domain, idle
3387 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3388 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3389 * portraying it as CPU_NOT_IDLE.
89c4710e 3390 */
d15bcfdb 3391 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3392 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3393 sd_idle = 1;
1da177e4 3394
2d72376b 3395 schedstat_inc(sd, lb_count[idle]);
1da177e4 3396
0a2966b4 3397redo:
c8cba857 3398 update_shares(sd);
0a2966b4 3399 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3400 cpus, balance);
783609c6 3401
06066714 3402 if (*balance == 0)
783609c6 3403 goto out_balanced;
783609c6 3404
1da177e4
LT
3405 if (!group) {
3406 schedstat_inc(sd, lb_nobusyg[idle]);
3407 goto out_balanced;
3408 }
3409
7c16ec58 3410 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3411 if (!busiest) {
3412 schedstat_inc(sd, lb_nobusyq[idle]);
3413 goto out_balanced;
3414 }
3415
db935dbd 3416 BUG_ON(busiest == this_rq);
1da177e4
LT
3417
3418 schedstat_add(sd, lb_imbalance[idle], imbalance);
3419
43010659 3420 ld_moved = 0;
1da177e4
LT
3421 if (busiest->nr_running > 1) {
3422 /*
3423 * Attempt to move tasks. If find_busiest_group has found
3424 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3425 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3426 * correctly treated as an imbalance.
3427 */
fe2eea3f 3428 local_irq_save(flags);
e17224bf 3429 double_rq_lock(this_rq, busiest);
43010659 3430 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3431 imbalance, sd, idle, &all_pinned);
e17224bf 3432 double_rq_unlock(this_rq, busiest);
fe2eea3f 3433 local_irq_restore(flags);
81026794 3434
46cb4b7c
SS
3435 /*
3436 * some other cpu did the load balance for us.
3437 */
43010659 3438 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3439 resched_cpu(this_cpu);
3440
81026794 3441 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3442 if (unlikely(all_pinned)) {
7c16ec58
MT
3443 cpu_clear(cpu_of(busiest), *cpus);
3444 if (!cpus_empty(*cpus))
0a2966b4 3445 goto redo;
81026794 3446 goto out_balanced;
0a2966b4 3447 }
1da177e4 3448 }
81026794 3449
43010659 3450 if (!ld_moved) {
1da177e4
LT
3451 schedstat_inc(sd, lb_failed[idle]);
3452 sd->nr_balance_failed++;
3453
3454 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3455
fe2eea3f 3456 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3457
3458 /* don't kick the migration_thread, if the curr
3459 * task on busiest cpu can't be moved to this_cpu
3460 */
3461 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3462 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3463 all_pinned = 1;
3464 goto out_one_pinned;
3465 }
3466
1da177e4
LT
3467 if (!busiest->active_balance) {
3468 busiest->active_balance = 1;
3469 busiest->push_cpu = this_cpu;
81026794 3470 active_balance = 1;
1da177e4 3471 }
fe2eea3f 3472 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3473 if (active_balance)
1da177e4
LT
3474 wake_up_process(busiest->migration_thread);
3475
3476 /*
3477 * We've kicked active balancing, reset the failure
3478 * counter.
3479 */
39507451 3480 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3481 }
81026794 3482 } else
1da177e4
LT
3483 sd->nr_balance_failed = 0;
3484
81026794 3485 if (likely(!active_balance)) {
1da177e4
LT
3486 /* We were unbalanced, so reset the balancing interval */
3487 sd->balance_interval = sd->min_interval;
81026794
NP
3488 } else {
3489 /*
3490 * If we've begun active balancing, start to back off. This
3491 * case may not be covered by the all_pinned logic if there
3492 * is only 1 task on the busy runqueue (because we don't call
3493 * move_tasks).
3494 */
3495 if (sd->balance_interval < sd->max_interval)
3496 sd->balance_interval *= 2;
1da177e4
LT
3497 }
3498
43010659 3499 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3500 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3501 ld_moved = -1;
3502
3503 goto out;
1da177e4
LT
3504
3505out_balanced:
1da177e4
LT
3506 schedstat_inc(sd, lb_balanced[idle]);
3507
16cfb1c0 3508 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3509
3510out_one_pinned:
1da177e4 3511 /* tune up the balancing interval */
77391d71
NP
3512 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3513 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3514 sd->balance_interval *= 2;
3515
48f24c4d 3516 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3517 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3518 ld_moved = -1;
3519 else
3520 ld_moved = 0;
3521out:
c8cba857
PZ
3522 if (ld_moved)
3523 update_shares(sd);
c09595f6 3524 return ld_moved;
1da177e4
LT
3525}
3526
3527/*
3528 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3529 * tasks if there is an imbalance.
3530 *
d15bcfdb 3531 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3532 * this_rq is locked.
3533 */
48f24c4d 3534static int
7c16ec58
MT
3535load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3536 cpumask_t *cpus)
1da177e4
LT
3537{
3538 struct sched_group *group;
70b97a7f 3539 struct rq *busiest = NULL;
1da177e4 3540 unsigned long imbalance;
43010659 3541 int ld_moved = 0;
5969fe06 3542 int sd_idle = 0;
969bb4e4 3543 int all_pinned = 0;
7c16ec58
MT
3544
3545 cpus_setall(*cpus);
5969fe06 3546
89c4710e
SS
3547 /*
3548 * When power savings policy is enabled for the parent domain, idle
3549 * sibling can pick up load irrespective of busy siblings. In this case,
3550 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3551 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3552 */
3553 if (sd->flags & SD_SHARE_CPUPOWER &&
3554 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3555 sd_idle = 1;
1da177e4 3556
2d72376b 3557 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3558redo:
3e5459b4 3559 update_shares_locked(this_rq, sd);
d15bcfdb 3560 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3561 &sd_idle, cpus, NULL);
1da177e4 3562 if (!group) {
d15bcfdb 3563 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3564 goto out_balanced;
1da177e4
LT
3565 }
3566
7c16ec58 3567 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3568 if (!busiest) {
d15bcfdb 3569 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3570 goto out_balanced;
1da177e4
LT
3571 }
3572
db935dbd
NP
3573 BUG_ON(busiest == this_rq);
3574
d15bcfdb 3575 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3576
43010659 3577 ld_moved = 0;
d6d5cfaf
NP
3578 if (busiest->nr_running > 1) {
3579 /* Attempt to move tasks */
3580 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3581 /* this_rq->clock is already updated */
3582 update_rq_clock(busiest);
43010659 3583 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3584 imbalance, sd, CPU_NEWLY_IDLE,
3585 &all_pinned);
d6d5cfaf 3586 spin_unlock(&busiest->lock);
0a2966b4 3587
969bb4e4 3588 if (unlikely(all_pinned)) {
7c16ec58
MT
3589 cpu_clear(cpu_of(busiest), *cpus);
3590 if (!cpus_empty(*cpus))
0a2966b4
CL
3591 goto redo;
3592 }
d6d5cfaf
NP
3593 }
3594
43010659 3595 if (!ld_moved) {
d15bcfdb 3596 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3597 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3598 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3599 return -1;
3600 } else
16cfb1c0 3601 sd->nr_balance_failed = 0;
1da177e4 3602
3e5459b4 3603 update_shares_locked(this_rq, sd);
43010659 3604 return ld_moved;
16cfb1c0
NP
3605
3606out_balanced:
d15bcfdb 3607 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3608 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3610 return -1;
16cfb1c0 3611 sd->nr_balance_failed = 0;
48f24c4d 3612
16cfb1c0 3613 return 0;
1da177e4
LT
3614}
3615
3616/*
3617 * idle_balance is called by schedule() if this_cpu is about to become
3618 * idle. Attempts to pull tasks from other CPUs.
3619 */
70b97a7f 3620static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3621{
3622 struct sched_domain *sd;
dd41f596
IM
3623 int pulled_task = -1;
3624 unsigned long next_balance = jiffies + HZ;
7c16ec58 3625 cpumask_t tmpmask;
1da177e4
LT
3626
3627 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3628 unsigned long interval;
3629
3630 if (!(sd->flags & SD_LOAD_BALANCE))
3631 continue;
3632
3633 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3634 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3635 pulled_task = load_balance_newidle(this_cpu, this_rq,
3636 sd, &tmpmask);
92c4ca5c
CL
3637
3638 interval = msecs_to_jiffies(sd->balance_interval);
3639 if (time_after(next_balance, sd->last_balance + interval))
3640 next_balance = sd->last_balance + interval;
3641 if (pulled_task)
3642 break;
1da177e4 3643 }
dd41f596 3644 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3645 /*
3646 * We are going idle. next_balance may be set based on
3647 * a busy processor. So reset next_balance.
3648 */
3649 this_rq->next_balance = next_balance;
dd41f596 3650 }
1da177e4
LT
3651}
3652
3653/*
3654 * active_load_balance is run by migration threads. It pushes running tasks
3655 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3656 * running on each physical CPU where possible, and avoids physical /
3657 * logical imbalances.
3658 *
3659 * Called with busiest_rq locked.
3660 */
70b97a7f 3661static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3662{
39507451 3663 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3664 struct sched_domain *sd;
3665 struct rq *target_rq;
39507451 3666
48f24c4d 3667 /* Is there any task to move? */
39507451 3668 if (busiest_rq->nr_running <= 1)
39507451
NP
3669 return;
3670
3671 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3672
3673 /*
39507451 3674 * This condition is "impossible", if it occurs
41a2d6cf 3675 * we need to fix it. Originally reported by
39507451 3676 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3677 */
39507451 3678 BUG_ON(busiest_rq == target_rq);
1da177e4 3679
39507451
NP
3680 /* move a task from busiest_rq to target_rq */
3681 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3682 update_rq_clock(busiest_rq);
3683 update_rq_clock(target_rq);
39507451
NP
3684
3685 /* Search for an sd spanning us and the target CPU. */
c96d145e 3686 for_each_domain(target_cpu, sd) {
39507451 3687 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3688 cpu_isset(busiest_cpu, sd->span))
39507451 3689 break;
c96d145e 3690 }
39507451 3691
48f24c4d 3692 if (likely(sd)) {
2d72376b 3693 schedstat_inc(sd, alb_count);
39507451 3694
43010659
PW
3695 if (move_one_task(target_rq, target_cpu, busiest_rq,
3696 sd, CPU_IDLE))
48f24c4d
IM
3697 schedstat_inc(sd, alb_pushed);
3698 else
3699 schedstat_inc(sd, alb_failed);
3700 }
39507451 3701 spin_unlock(&target_rq->lock);
1da177e4
LT
3702}
3703
46cb4b7c
SS
3704#ifdef CONFIG_NO_HZ
3705static struct {
3706 atomic_t load_balancer;
41a2d6cf 3707 cpumask_t cpu_mask;
46cb4b7c
SS
3708} nohz ____cacheline_aligned = {
3709 .load_balancer = ATOMIC_INIT(-1),
3710 .cpu_mask = CPU_MASK_NONE,
3711};
3712
7835b98b 3713/*
46cb4b7c
SS
3714 * This routine will try to nominate the ilb (idle load balancing)
3715 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3716 * load balancing on behalf of all those cpus. If all the cpus in the system
3717 * go into this tickless mode, then there will be no ilb owner (as there is
3718 * no need for one) and all the cpus will sleep till the next wakeup event
3719 * arrives...
3720 *
3721 * For the ilb owner, tick is not stopped. And this tick will be used
3722 * for idle load balancing. ilb owner will still be part of
3723 * nohz.cpu_mask..
7835b98b 3724 *
46cb4b7c
SS
3725 * While stopping the tick, this cpu will become the ilb owner if there
3726 * is no other owner. And will be the owner till that cpu becomes busy
3727 * or if all cpus in the system stop their ticks at which point
3728 * there is no need for ilb owner.
3729 *
3730 * When the ilb owner becomes busy, it nominates another owner, during the
3731 * next busy scheduler_tick()
3732 */
3733int select_nohz_load_balancer(int stop_tick)
3734{
3735 int cpu = smp_processor_id();
3736
3737 if (stop_tick) {
3738 cpu_set(cpu, nohz.cpu_mask);
3739 cpu_rq(cpu)->in_nohz_recently = 1;
3740
3741 /*
3742 * If we are going offline and still the leader, give up!
3743 */
3744 if (cpu_is_offline(cpu) &&
3745 atomic_read(&nohz.load_balancer) == cpu) {
3746 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3747 BUG();
3748 return 0;
3749 }
3750
3751 /* time for ilb owner also to sleep */
3752 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3753 if (atomic_read(&nohz.load_balancer) == cpu)
3754 atomic_set(&nohz.load_balancer, -1);
3755 return 0;
3756 }
3757
3758 if (atomic_read(&nohz.load_balancer) == -1) {
3759 /* make me the ilb owner */
3760 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3761 return 1;
3762 } else if (atomic_read(&nohz.load_balancer) == cpu)
3763 return 1;
3764 } else {
3765 if (!cpu_isset(cpu, nohz.cpu_mask))
3766 return 0;
3767
3768 cpu_clear(cpu, nohz.cpu_mask);
3769
3770 if (atomic_read(&nohz.load_balancer) == cpu)
3771 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3772 BUG();
3773 }
3774 return 0;
3775}
3776#endif
3777
3778static DEFINE_SPINLOCK(balancing);
3779
3780/*
7835b98b
CL
3781 * It checks each scheduling domain to see if it is due to be balanced,
3782 * and initiates a balancing operation if so.
3783 *
3784 * Balancing parameters are set up in arch_init_sched_domains.
3785 */
a9957449 3786static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3787{
46cb4b7c
SS
3788 int balance = 1;
3789 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3790 unsigned long interval;
3791 struct sched_domain *sd;
46cb4b7c 3792 /* Earliest time when we have to do rebalance again */
c9819f45 3793 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3794 int update_next_balance = 0;
d07355f5 3795 int need_serialize;
7c16ec58 3796 cpumask_t tmp;
1da177e4 3797
46cb4b7c 3798 for_each_domain(cpu, sd) {
1da177e4
LT
3799 if (!(sd->flags & SD_LOAD_BALANCE))
3800 continue;
3801
3802 interval = sd->balance_interval;
d15bcfdb 3803 if (idle != CPU_IDLE)
1da177e4
LT
3804 interval *= sd->busy_factor;
3805
3806 /* scale ms to jiffies */
3807 interval = msecs_to_jiffies(interval);
3808 if (unlikely(!interval))
3809 interval = 1;
dd41f596
IM
3810 if (interval > HZ*NR_CPUS/10)
3811 interval = HZ*NR_CPUS/10;
3812
d07355f5 3813 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3814
d07355f5 3815 if (need_serialize) {
08c183f3
CL
3816 if (!spin_trylock(&balancing))
3817 goto out;
3818 }
3819
c9819f45 3820 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3821 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3822 /*
3823 * We've pulled tasks over so either we're no
5969fe06
NP
3824 * longer idle, or one of our SMT siblings is
3825 * not idle.
3826 */
d15bcfdb 3827 idle = CPU_NOT_IDLE;
1da177e4 3828 }
1bd77f2d 3829 sd->last_balance = jiffies;
1da177e4 3830 }
d07355f5 3831 if (need_serialize)
08c183f3
CL
3832 spin_unlock(&balancing);
3833out:
f549da84 3834 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3835 next_balance = sd->last_balance + interval;
f549da84
SS
3836 update_next_balance = 1;
3837 }
783609c6
SS
3838
3839 /*
3840 * Stop the load balance at this level. There is another
3841 * CPU in our sched group which is doing load balancing more
3842 * actively.
3843 */
3844 if (!balance)
3845 break;
1da177e4 3846 }
f549da84
SS
3847
3848 /*
3849 * next_balance will be updated only when there is a need.
3850 * When the cpu is attached to null domain for ex, it will not be
3851 * updated.
3852 */
3853 if (likely(update_next_balance))
3854 rq->next_balance = next_balance;
46cb4b7c
SS
3855}
3856
3857/*
3858 * run_rebalance_domains is triggered when needed from the scheduler tick.
3859 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3860 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3861 */
3862static void run_rebalance_domains(struct softirq_action *h)
3863{
dd41f596
IM
3864 int this_cpu = smp_processor_id();
3865 struct rq *this_rq = cpu_rq(this_cpu);
3866 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3867 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3868
dd41f596 3869 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3870
3871#ifdef CONFIG_NO_HZ
3872 /*
3873 * If this cpu is the owner for idle load balancing, then do the
3874 * balancing on behalf of the other idle cpus whose ticks are
3875 * stopped.
3876 */
dd41f596
IM
3877 if (this_rq->idle_at_tick &&
3878 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3879 cpumask_t cpus = nohz.cpu_mask;
3880 struct rq *rq;
3881 int balance_cpu;
3882
dd41f596 3883 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3884 for_each_cpu_mask(balance_cpu, cpus) {
3885 /*
3886 * If this cpu gets work to do, stop the load balancing
3887 * work being done for other cpus. Next load
3888 * balancing owner will pick it up.
3889 */
3890 if (need_resched())
3891 break;
3892
de0cf899 3893 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3894
3895 rq = cpu_rq(balance_cpu);
dd41f596
IM
3896 if (time_after(this_rq->next_balance, rq->next_balance))
3897 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3898 }
3899 }
3900#endif
3901}
3902
3903/*
3904 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3905 *
3906 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3907 * idle load balancing owner or decide to stop the periodic load balancing,
3908 * if the whole system is idle.
3909 */
dd41f596 3910static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3911{
46cb4b7c
SS
3912#ifdef CONFIG_NO_HZ
3913 /*
3914 * If we were in the nohz mode recently and busy at the current
3915 * scheduler tick, then check if we need to nominate new idle
3916 * load balancer.
3917 */
3918 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3919 rq->in_nohz_recently = 0;
3920
3921 if (atomic_read(&nohz.load_balancer) == cpu) {
3922 cpu_clear(cpu, nohz.cpu_mask);
3923 atomic_set(&nohz.load_balancer, -1);
3924 }
3925
3926 if (atomic_read(&nohz.load_balancer) == -1) {
3927 /*
3928 * simple selection for now: Nominate the
3929 * first cpu in the nohz list to be the next
3930 * ilb owner.
3931 *
3932 * TBD: Traverse the sched domains and nominate
3933 * the nearest cpu in the nohz.cpu_mask.
3934 */
3935 int ilb = first_cpu(nohz.cpu_mask);
3936
434d53b0 3937 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3938 resched_cpu(ilb);
3939 }
3940 }
3941
3942 /*
3943 * If this cpu is idle and doing idle load balancing for all the
3944 * cpus with ticks stopped, is it time for that to stop?
3945 */
3946 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3947 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3948 resched_cpu(cpu);
3949 return;
3950 }
3951
3952 /*
3953 * If this cpu is idle and the idle load balancing is done by
3954 * someone else, then no need raise the SCHED_SOFTIRQ
3955 */
3956 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3957 cpu_isset(cpu, nohz.cpu_mask))
3958 return;
3959#endif
3960 if (time_after_eq(jiffies, rq->next_balance))
3961 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3962}
dd41f596
IM
3963
3964#else /* CONFIG_SMP */
3965
1da177e4
LT
3966/*
3967 * on UP we do not need to balance between CPUs:
3968 */
70b97a7f 3969static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3970{
3971}
dd41f596 3972
1da177e4
LT
3973#endif
3974
1da177e4
LT
3975DEFINE_PER_CPU(struct kernel_stat, kstat);
3976
3977EXPORT_PER_CPU_SYMBOL(kstat);
3978
3979/*
41b86e9c
IM
3980 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3981 * that have not yet been banked in case the task is currently running.
1da177e4 3982 */
41b86e9c 3983unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3984{
1da177e4 3985 unsigned long flags;
41b86e9c
IM
3986 u64 ns, delta_exec;
3987 struct rq *rq;
48f24c4d 3988
41b86e9c
IM
3989 rq = task_rq_lock(p, &flags);
3990 ns = p->se.sum_exec_runtime;
051a1d1a 3991 if (task_current(rq, p)) {
a8e504d2
IM
3992 update_rq_clock(rq);
3993 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3994 if ((s64)delta_exec > 0)
3995 ns += delta_exec;
3996 }
3997 task_rq_unlock(rq, &flags);
48f24c4d 3998
1da177e4
LT
3999 return ns;
4000}
4001
1da177e4
LT
4002/*
4003 * Account user cpu time to a process.
4004 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4005 * @cputime: the cpu time spent in user space since the last update
4006 */
4007void account_user_time(struct task_struct *p, cputime_t cputime)
4008{
4009 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4010 cputime64_t tmp;
4011
4012 p->utime = cputime_add(p->utime, cputime);
4013
4014 /* Add user time to cpustat. */
4015 tmp = cputime_to_cputime64(cputime);
4016 if (TASK_NICE(p) > 0)
4017 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4018 else
4019 cpustat->user = cputime64_add(cpustat->user, tmp);
4020}
4021
94886b84
LV
4022/*
4023 * Account guest cpu time to a process.
4024 * @p: the process that the cpu time gets accounted to
4025 * @cputime: the cpu time spent in virtual machine since the last update
4026 */
f7402e03 4027static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4028{
4029 cputime64_t tmp;
4030 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4031
4032 tmp = cputime_to_cputime64(cputime);
4033
4034 p->utime = cputime_add(p->utime, cputime);
4035 p->gtime = cputime_add(p->gtime, cputime);
4036
4037 cpustat->user = cputime64_add(cpustat->user, tmp);
4038 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4039}
4040
c66f08be
MN
4041/*
4042 * Account scaled user cpu time to a process.
4043 * @p: the process that the cpu time gets accounted to
4044 * @cputime: the cpu time spent in user space since the last update
4045 */
4046void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4047{
4048 p->utimescaled = cputime_add(p->utimescaled, cputime);
4049}
4050
1da177e4
LT
4051/*
4052 * Account system cpu time to a process.
4053 * @p: the process that the cpu time gets accounted to
4054 * @hardirq_offset: the offset to subtract from hardirq_count()
4055 * @cputime: the cpu time spent in kernel space since the last update
4056 */
4057void account_system_time(struct task_struct *p, int hardirq_offset,
4058 cputime_t cputime)
4059{
4060 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4061 struct rq *rq = this_rq();
1da177e4
LT
4062 cputime64_t tmp;
4063
983ed7a6
HH
4064 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4065 account_guest_time(p, cputime);
4066 return;
4067 }
94886b84 4068
1da177e4
LT
4069 p->stime = cputime_add(p->stime, cputime);
4070
4071 /* Add system time to cpustat. */
4072 tmp = cputime_to_cputime64(cputime);
4073 if (hardirq_count() - hardirq_offset)
4074 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4075 else if (softirq_count())
4076 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4077 else if (p != rq->idle)
1da177e4 4078 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4079 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4080 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4081 else
4082 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4083 /* Account for system time used */
4084 acct_update_integrals(p);
1da177e4
LT
4085}
4086
c66f08be
MN
4087/*
4088 * Account scaled system cpu time to a process.
4089 * @p: the process that the cpu time gets accounted to
4090 * @hardirq_offset: the offset to subtract from hardirq_count()
4091 * @cputime: the cpu time spent in kernel space since the last update
4092 */
4093void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4094{
4095 p->stimescaled = cputime_add(p->stimescaled, cputime);
4096}
4097
1da177e4
LT
4098/*
4099 * Account for involuntary wait time.
4100 * @p: the process from which the cpu time has been stolen
4101 * @steal: the cpu time spent in involuntary wait
4102 */
4103void account_steal_time(struct task_struct *p, cputime_t steal)
4104{
4105 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4106 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4107 struct rq *rq = this_rq();
1da177e4
LT
4108
4109 if (p == rq->idle) {
4110 p->stime = cputime_add(p->stime, steal);
4111 if (atomic_read(&rq->nr_iowait) > 0)
4112 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4113 else
4114 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4115 } else
1da177e4
LT
4116 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4117}
4118
7835b98b
CL
4119/*
4120 * This function gets called by the timer code, with HZ frequency.
4121 * We call it with interrupts disabled.
4122 *
4123 * It also gets called by the fork code, when changing the parent's
4124 * timeslices.
4125 */
4126void scheduler_tick(void)
4127{
7835b98b
CL
4128 int cpu = smp_processor_id();
4129 struct rq *rq = cpu_rq(cpu);
dd41f596 4130 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4131
4132 sched_clock_tick();
dd41f596
IM
4133
4134 spin_lock(&rq->lock);
3e51f33f 4135 update_rq_clock(rq);
f1a438d8 4136 update_cpu_load(rq);
fa85ae24 4137 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4138 spin_unlock(&rq->lock);
7835b98b 4139
e418e1c2 4140#ifdef CONFIG_SMP
dd41f596
IM
4141 rq->idle_at_tick = idle_cpu(cpu);
4142 trigger_load_balance(rq, cpu);
e418e1c2 4143#endif
1da177e4
LT
4144}
4145
1da177e4
LT
4146#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4147
43627582 4148void __kprobes add_preempt_count(int val)
1da177e4
LT
4149{
4150 /*
4151 * Underflow?
4152 */
9a11b49a
IM
4153 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4154 return;
1da177e4
LT
4155 preempt_count() += val;
4156 /*
4157 * Spinlock count overflowing soon?
4158 */
33859f7f
MOS
4159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4160 PREEMPT_MASK - 10);
1da177e4
LT
4161}
4162EXPORT_SYMBOL(add_preempt_count);
4163
43627582 4164void __kprobes sub_preempt_count(int val)
1da177e4
LT
4165{
4166 /*
4167 * Underflow?
4168 */
9a11b49a
IM
4169 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4170 return;
1da177e4
LT
4171 /*
4172 * Is the spinlock portion underflowing?
4173 */
9a11b49a
IM
4174 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4175 !(preempt_count() & PREEMPT_MASK)))
4176 return;
4177
1da177e4
LT
4178 preempt_count() -= val;
4179}
4180EXPORT_SYMBOL(sub_preempt_count);
4181
4182#endif
4183
4184/*
dd41f596 4185 * Print scheduling while atomic bug:
1da177e4 4186 */
dd41f596 4187static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4188{
838225b4
SS
4189 struct pt_regs *regs = get_irq_regs();
4190
4191 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4192 prev->comm, prev->pid, preempt_count());
4193
dd41f596 4194 debug_show_held_locks(prev);
e21f5b15 4195 print_modules();
dd41f596
IM
4196 if (irqs_disabled())
4197 print_irqtrace_events(prev);
838225b4
SS
4198
4199 if (regs)
4200 show_regs(regs);
4201 else
4202 dump_stack();
dd41f596 4203}
1da177e4 4204
dd41f596
IM
4205/*
4206 * Various schedule()-time debugging checks and statistics:
4207 */
4208static inline void schedule_debug(struct task_struct *prev)
4209{
1da177e4 4210 /*
41a2d6cf 4211 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4212 * schedule() atomically, we ignore that path for now.
4213 * Otherwise, whine if we are scheduling when we should not be.
4214 */
3f33a7ce 4215 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4216 __schedule_bug(prev);
4217
1da177e4
LT
4218 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4219
2d72376b 4220 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4221#ifdef CONFIG_SCHEDSTATS
4222 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4223 schedstat_inc(this_rq(), bkl_count);
4224 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4225 }
4226#endif
dd41f596
IM
4227}
4228
4229/*
4230 * Pick up the highest-prio task:
4231 */
4232static inline struct task_struct *
ff95f3df 4233pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4234{
5522d5d5 4235 const struct sched_class *class;
dd41f596 4236 struct task_struct *p;
1da177e4
LT
4237
4238 /*
dd41f596
IM
4239 * Optimization: we know that if all tasks are in
4240 * the fair class we can call that function directly:
1da177e4 4241 */
dd41f596 4242 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4243 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4244 if (likely(p))
4245 return p;
1da177e4
LT
4246 }
4247
dd41f596
IM
4248 class = sched_class_highest;
4249 for ( ; ; ) {
fb8d4724 4250 p = class->pick_next_task(rq);
dd41f596
IM
4251 if (p)
4252 return p;
4253 /*
4254 * Will never be NULL as the idle class always
4255 * returns a non-NULL p:
4256 */
4257 class = class->next;
4258 }
4259}
1da177e4 4260
dd41f596
IM
4261/*
4262 * schedule() is the main scheduler function.
4263 */
4264asmlinkage void __sched schedule(void)
4265{
4266 struct task_struct *prev, *next;
67ca7bde 4267 unsigned long *switch_count;
dd41f596 4268 struct rq *rq;
f333fdc9 4269 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4270
4271need_resched:
4272 preempt_disable();
4273 cpu = smp_processor_id();
4274 rq = cpu_rq(cpu);
4275 rcu_qsctr_inc(cpu);
4276 prev = rq->curr;
4277 switch_count = &prev->nivcsw;
4278
4279 release_kernel_lock(prev);
4280need_resched_nonpreemptible:
4281
4282 schedule_debug(prev);
1da177e4 4283
f333fdc9
MG
4284 if (hrtick)
4285 hrtick_clear(rq);
8f4d37ec 4286
1e819950
IM
4287 /*
4288 * Do the rq-clock update outside the rq lock:
4289 */
4290 local_irq_disable();
3e51f33f 4291 update_rq_clock(rq);
1e819950
IM
4292 spin_lock(&rq->lock);
4293 clear_tsk_need_resched(prev);
1da177e4 4294
1da177e4 4295 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4296 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4297 prev->state = TASK_RUNNING;
16882c1e 4298 else
2e1cb74a 4299 deactivate_task(rq, prev, 1);
dd41f596 4300 switch_count = &prev->nvcsw;
1da177e4
LT
4301 }
4302
9a897c5a
SR
4303#ifdef CONFIG_SMP
4304 if (prev->sched_class->pre_schedule)
4305 prev->sched_class->pre_schedule(rq, prev);
4306#endif
f65eda4f 4307
dd41f596 4308 if (unlikely(!rq->nr_running))
1da177e4 4309 idle_balance(cpu, rq);
1da177e4 4310
31ee529c 4311 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4312 next = pick_next_task(rq, prev);
1da177e4 4313
1da177e4 4314 if (likely(prev != next)) {
673a90a1
DS
4315 sched_info_switch(prev, next);
4316
1da177e4
LT
4317 rq->nr_switches++;
4318 rq->curr = next;
4319 ++*switch_count;
4320
dd41f596 4321 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4322 /*
4323 * the context switch might have flipped the stack from under
4324 * us, hence refresh the local variables.
4325 */
4326 cpu = smp_processor_id();
4327 rq = cpu_rq(cpu);
1da177e4
LT
4328 } else
4329 spin_unlock_irq(&rq->lock);
4330
f333fdc9
MG
4331 if (hrtick)
4332 hrtick_set(rq);
8f4d37ec
PZ
4333
4334 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4335 goto need_resched_nonpreemptible;
8f4d37ec 4336
1da177e4
LT
4337 preempt_enable_no_resched();
4338 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4339 goto need_resched;
4340}
1da177e4
LT
4341EXPORT_SYMBOL(schedule);
4342
4343#ifdef CONFIG_PREEMPT
4344/*
2ed6e34f 4345 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4346 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4347 * occur there and call schedule directly.
4348 */
4349asmlinkage void __sched preempt_schedule(void)
4350{
4351 struct thread_info *ti = current_thread_info();
6478d880 4352
1da177e4
LT
4353 /*
4354 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4355 * we do not want to preempt the current task. Just return..
1da177e4 4356 */
beed33a8 4357 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4358 return;
4359
3a5c359a
AK
4360 do {
4361 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4362 schedule();
3a5c359a 4363 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4364
3a5c359a
AK
4365 /*
4366 * Check again in case we missed a preemption opportunity
4367 * between schedule and now.
4368 */
4369 barrier();
4370 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4371}
1da177e4
LT
4372EXPORT_SYMBOL(preempt_schedule);
4373
4374/*
2ed6e34f 4375 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4376 * off of irq context.
4377 * Note, that this is called and return with irqs disabled. This will
4378 * protect us against recursive calling from irq.
4379 */
4380asmlinkage void __sched preempt_schedule_irq(void)
4381{
4382 struct thread_info *ti = current_thread_info();
6478d880 4383
2ed6e34f 4384 /* Catch callers which need to be fixed */
1da177e4
LT
4385 BUG_ON(ti->preempt_count || !irqs_disabled());
4386
3a5c359a
AK
4387 do {
4388 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4389 local_irq_enable();
4390 schedule();
4391 local_irq_disable();
3a5c359a 4392 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4393
3a5c359a
AK
4394 /*
4395 * Check again in case we missed a preemption opportunity
4396 * between schedule and now.
4397 */
4398 barrier();
4399 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4400}
4401
4402#endif /* CONFIG_PREEMPT */
4403
95cdf3b7
IM
4404int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4405 void *key)
1da177e4 4406{
48f24c4d 4407 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4408}
1da177e4
LT
4409EXPORT_SYMBOL(default_wake_function);
4410
4411/*
41a2d6cf
IM
4412 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4413 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4414 * number) then we wake all the non-exclusive tasks and one exclusive task.
4415 *
4416 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4417 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4418 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4419 */
4420static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4421 int nr_exclusive, int sync, void *key)
4422{
2e45874c 4423 wait_queue_t *curr, *next;
1da177e4 4424
2e45874c 4425 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4426 unsigned flags = curr->flags;
4427
1da177e4 4428 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4429 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4430 break;
4431 }
4432}
4433
4434/**
4435 * __wake_up - wake up threads blocked on a waitqueue.
4436 * @q: the waitqueue
4437 * @mode: which threads
4438 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4439 * @key: is directly passed to the wakeup function
1da177e4 4440 */
7ad5b3a5 4441void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4442 int nr_exclusive, void *key)
1da177e4
LT
4443{
4444 unsigned long flags;
4445
4446 spin_lock_irqsave(&q->lock, flags);
4447 __wake_up_common(q, mode, nr_exclusive, 0, key);
4448 spin_unlock_irqrestore(&q->lock, flags);
4449}
1da177e4
LT
4450EXPORT_SYMBOL(__wake_up);
4451
4452/*
4453 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4454 */
7ad5b3a5 4455void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4456{
4457 __wake_up_common(q, mode, 1, 0, NULL);
4458}
4459
4460/**
67be2dd1 4461 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4462 * @q: the waitqueue
4463 * @mode: which threads
4464 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4465 *
4466 * The sync wakeup differs that the waker knows that it will schedule
4467 * away soon, so while the target thread will be woken up, it will not
4468 * be migrated to another CPU - ie. the two threads are 'synchronized'
4469 * with each other. This can prevent needless bouncing between CPUs.
4470 *
4471 * On UP it can prevent extra preemption.
4472 */
7ad5b3a5 4473void
95cdf3b7 4474__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4475{
4476 unsigned long flags;
4477 int sync = 1;
4478
4479 if (unlikely(!q))
4480 return;
4481
4482 if (unlikely(!nr_exclusive))
4483 sync = 0;
4484
4485 spin_lock_irqsave(&q->lock, flags);
4486 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4487 spin_unlock_irqrestore(&q->lock, flags);
4488}
4489EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4490
b15136e9 4491void complete(struct completion *x)
1da177e4
LT
4492{
4493 unsigned long flags;
4494
4495 spin_lock_irqsave(&x->wait.lock, flags);
4496 x->done++;
d9514f6c 4497 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4498 spin_unlock_irqrestore(&x->wait.lock, flags);
4499}
4500EXPORT_SYMBOL(complete);
4501
b15136e9 4502void complete_all(struct completion *x)
1da177e4
LT
4503{
4504 unsigned long flags;
4505
4506 spin_lock_irqsave(&x->wait.lock, flags);
4507 x->done += UINT_MAX/2;
d9514f6c 4508 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4509 spin_unlock_irqrestore(&x->wait.lock, flags);
4510}
4511EXPORT_SYMBOL(complete_all);
4512
8cbbe86d
AK
4513static inline long __sched
4514do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4515{
1da177e4
LT
4516 if (!x->done) {
4517 DECLARE_WAITQUEUE(wait, current);
4518
4519 wait.flags |= WQ_FLAG_EXCLUSIVE;
4520 __add_wait_queue_tail(&x->wait, &wait);
4521 do {
009e577e
MW
4522 if ((state == TASK_INTERRUPTIBLE &&
4523 signal_pending(current)) ||
4524 (state == TASK_KILLABLE &&
4525 fatal_signal_pending(current))) {
ea71a546
ON
4526 timeout = -ERESTARTSYS;
4527 break;
8cbbe86d
AK
4528 }
4529 __set_current_state(state);
1da177e4
LT
4530 spin_unlock_irq(&x->wait.lock);
4531 timeout = schedule_timeout(timeout);
4532 spin_lock_irq(&x->wait.lock);
ea71a546 4533 } while (!x->done && timeout);
1da177e4 4534 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4535 if (!x->done)
4536 return timeout;
1da177e4
LT
4537 }
4538 x->done--;
ea71a546 4539 return timeout ?: 1;
1da177e4 4540}
1da177e4 4541
8cbbe86d
AK
4542static long __sched
4543wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4544{
1da177e4
LT
4545 might_sleep();
4546
4547 spin_lock_irq(&x->wait.lock);
8cbbe86d 4548 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4549 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4550 return timeout;
4551}
1da177e4 4552
b15136e9 4553void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4554{
4555 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4556}
8cbbe86d 4557EXPORT_SYMBOL(wait_for_completion);
1da177e4 4558
b15136e9 4559unsigned long __sched
8cbbe86d 4560wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4561{
8cbbe86d 4562 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4563}
8cbbe86d 4564EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4565
8cbbe86d 4566int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4567{
51e97990
AK
4568 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4569 if (t == -ERESTARTSYS)
4570 return t;
4571 return 0;
0fec171c 4572}
8cbbe86d 4573EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4574
b15136e9 4575unsigned long __sched
8cbbe86d
AK
4576wait_for_completion_interruptible_timeout(struct completion *x,
4577 unsigned long timeout)
0fec171c 4578{
8cbbe86d 4579 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4580}
8cbbe86d 4581EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4582
009e577e
MW
4583int __sched wait_for_completion_killable(struct completion *x)
4584{
4585 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4586 if (t == -ERESTARTSYS)
4587 return t;
4588 return 0;
4589}
4590EXPORT_SYMBOL(wait_for_completion_killable);
4591
8cbbe86d
AK
4592static long __sched
4593sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4594{
0fec171c
IM
4595 unsigned long flags;
4596 wait_queue_t wait;
4597
4598 init_waitqueue_entry(&wait, current);
1da177e4 4599
8cbbe86d 4600 __set_current_state(state);
1da177e4 4601
8cbbe86d
AK
4602 spin_lock_irqsave(&q->lock, flags);
4603 __add_wait_queue(q, &wait);
4604 spin_unlock(&q->lock);
4605 timeout = schedule_timeout(timeout);
4606 spin_lock_irq(&q->lock);
4607 __remove_wait_queue(q, &wait);
4608 spin_unlock_irqrestore(&q->lock, flags);
4609
4610 return timeout;
4611}
4612
4613void __sched interruptible_sleep_on(wait_queue_head_t *q)
4614{
4615 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4616}
1da177e4
LT
4617EXPORT_SYMBOL(interruptible_sleep_on);
4618
0fec171c 4619long __sched
95cdf3b7 4620interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4621{
8cbbe86d 4622 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4623}
1da177e4
LT
4624EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4625
0fec171c 4626void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4627{
8cbbe86d 4628 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4629}
1da177e4
LT
4630EXPORT_SYMBOL(sleep_on);
4631
0fec171c 4632long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4633{
8cbbe86d 4634 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4635}
1da177e4
LT
4636EXPORT_SYMBOL(sleep_on_timeout);
4637
b29739f9
IM
4638#ifdef CONFIG_RT_MUTEXES
4639
4640/*
4641 * rt_mutex_setprio - set the current priority of a task
4642 * @p: task
4643 * @prio: prio value (kernel-internal form)
4644 *
4645 * This function changes the 'effective' priority of a task. It does
4646 * not touch ->normal_prio like __setscheduler().
4647 *
4648 * Used by the rt_mutex code to implement priority inheritance logic.
4649 */
36c8b586 4650void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4651{
4652 unsigned long flags;
83b699ed 4653 int oldprio, on_rq, running;
70b97a7f 4654 struct rq *rq;
cb469845 4655 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4656
4657 BUG_ON(prio < 0 || prio > MAX_PRIO);
4658
4659 rq = task_rq_lock(p, &flags);
a8e504d2 4660 update_rq_clock(rq);
b29739f9 4661
d5f9f942 4662 oldprio = p->prio;
dd41f596 4663 on_rq = p->se.on_rq;
051a1d1a 4664 running = task_current(rq, p);
0e1f3483 4665 if (on_rq)
69be72c1 4666 dequeue_task(rq, p, 0);
0e1f3483
HS
4667 if (running)
4668 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4669
4670 if (rt_prio(prio))
4671 p->sched_class = &rt_sched_class;
4672 else
4673 p->sched_class = &fair_sched_class;
4674
b29739f9
IM
4675 p->prio = prio;
4676
0e1f3483
HS
4677 if (running)
4678 p->sched_class->set_curr_task(rq);
dd41f596 4679 if (on_rq) {
8159f87e 4680 enqueue_task(rq, p, 0);
cb469845
SR
4681
4682 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4683 }
4684 task_rq_unlock(rq, &flags);
4685}
4686
4687#endif
4688
36c8b586 4689void set_user_nice(struct task_struct *p, long nice)
1da177e4 4690{
dd41f596 4691 int old_prio, delta, on_rq;
1da177e4 4692 unsigned long flags;
70b97a7f 4693 struct rq *rq;
1da177e4
LT
4694
4695 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4696 return;
4697 /*
4698 * We have to be careful, if called from sys_setpriority(),
4699 * the task might be in the middle of scheduling on another CPU.
4700 */
4701 rq = task_rq_lock(p, &flags);
a8e504d2 4702 update_rq_clock(rq);
1da177e4
LT
4703 /*
4704 * The RT priorities are set via sched_setscheduler(), but we still
4705 * allow the 'normal' nice value to be set - but as expected
4706 * it wont have any effect on scheduling until the task is
dd41f596 4707 * SCHED_FIFO/SCHED_RR:
1da177e4 4708 */
e05606d3 4709 if (task_has_rt_policy(p)) {
1da177e4
LT
4710 p->static_prio = NICE_TO_PRIO(nice);
4711 goto out_unlock;
4712 }
dd41f596 4713 on_rq = p->se.on_rq;
c09595f6 4714 if (on_rq)
69be72c1 4715 dequeue_task(rq, p, 0);
1da177e4 4716
1da177e4 4717 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4718 set_load_weight(p);
b29739f9
IM
4719 old_prio = p->prio;
4720 p->prio = effective_prio(p);
4721 delta = p->prio - old_prio;
1da177e4 4722
dd41f596 4723 if (on_rq) {
8159f87e 4724 enqueue_task(rq, p, 0);
1da177e4 4725 /*
d5f9f942
AM
4726 * If the task increased its priority or is running and
4727 * lowered its priority, then reschedule its CPU:
1da177e4 4728 */
d5f9f942 4729 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4730 resched_task(rq->curr);
4731 }
4732out_unlock:
4733 task_rq_unlock(rq, &flags);
4734}
1da177e4
LT
4735EXPORT_SYMBOL(set_user_nice);
4736
e43379f1
MM
4737/*
4738 * can_nice - check if a task can reduce its nice value
4739 * @p: task
4740 * @nice: nice value
4741 */
36c8b586 4742int can_nice(const struct task_struct *p, const int nice)
e43379f1 4743{
024f4747
MM
4744 /* convert nice value [19,-20] to rlimit style value [1,40] */
4745 int nice_rlim = 20 - nice;
48f24c4d 4746
e43379f1
MM
4747 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4748 capable(CAP_SYS_NICE));
4749}
4750
1da177e4
LT
4751#ifdef __ARCH_WANT_SYS_NICE
4752
4753/*
4754 * sys_nice - change the priority of the current process.
4755 * @increment: priority increment
4756 *
4757 * sys_setpriority is a more generic, but much slower function that
4758 * does similar things.
4759 */
4760asmlinkage long sys_nice(int increment)
4761{
48f24c4d 4762 long nice, retval;
1da177e4
LT
4763
4764 /*
4765 * Setpriority might change our priority at the same moment.
4766 * We don't have to worry. Conceptually one call occurs first
4767 * and we have a single winner.
4768 */
e43379f1
MM
4769 if (increment < -40)
4770 increment = -40;
1da177e4
LT
4771 if (increment > 40)
4772 increment = 40;
4773
4774 nice = PRIO_TO_NICE(current->static_prio) + increment;
4775 if (nice < -20)
4776 nice = -20;
4777 if (nice > 19)
4778 nice = 19;
4779
e43379f1
MM
4780 if (increment < 0 && !can_nice(current, nice))
4781 return -EPERM;
4782
1da177e4
LT
4783 retval = security_task_setnice(current, nice);
4784 if (retval)
4785 return retval;
4786
4787 set_user_nice(current, nice);
4788 return 0;
4789}
4790
4791#endif
4792
4793/**
4794 * task_prio - return the priority value of a given task.
4795 * @p: the task in question.
4796 *
4797 * This is the priority value as seen by users in /proc.
4798 * RT tasks are offset by -200. Normal tasks are centered
4799 * around 0, value goes from -16 to +15.
4800 */
36c8b586 4801int task_prio(const struct task_struct *p)
1da177e4
LT
4802{
4803 return p->prio - MAX_RT_PRIO;
4804}
4805
4806/**
4807 * task_nice - return the nice value of a given task.
4808 * @p: the task in question.
4809 */
36c8b586 4810int task_nice(const struct task_struct *p)
1da177e4
LT
4811{
4812 return TASK_NICE(p);
4813}
150d8bed 4814EXPORT_SYMBOL(task_nice);
1da177e4
LT
4815
4816/**
4817 * idle_cpu - is a given cpu idle currently?
4818 * @cpu: the processor in question.
4819 */
4820int idle_cpu(int cpu)
4821{
4822 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4823}
4824
1da177e4
LT
4825/**
4826 * idle_task - return the idle task for a given cpu.
4827 * @cpu: the processor in question.
4828 */
36c8b586 4829struct task_struct *idle_task(int cpu)
1da177e4
LT
4830{
4831 return cpu_rq(cpu)->idle;
4832}
4833
4834/**
4835 * find_process_by_pid - find a process with a matching PID value.
4836 * @pid: the pid in question.
4837 */
a9957449 4838static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4839{
228ebcbe 4840 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4841}
4842
4843/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4844static void
4845__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4846{
dd41f596 4847 BUG_ON(p->se.on_rq);
48f24c4d 4848
1da177e4 4849 p->policy = policy;
dd41f596
IM
4850 switch (p->policy) {
4851 case SCHED_NORMAL:
4852 case SCHED_BATCH:
4853 case SCHED_IDLE:
4854 p->sched_class = &fair_sched_class;
4855 break;
4856 case SCHED_FIFO:
4857 case SCHED_RR:
4858 p->sched_class = &rt_sched_class;
4859 break;
4860 }
4861
1da177e4 4862 p->rt_priority = prio;
b29739f9
IM
4863 p->normal_prio = normal_prio(p);
4864 /* we are holding p->pi_lock already */
4865 p->prio = rt_mutex_getprio(p);
2dd73a4f 4866 set_load_weight(p);
1da177e4
LT
4867}
4868
4869/**
72fd4a35 4870 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4871 * @p: the task in question.
4872 * @policy: new policy.
4873 * @param: structure containing the new RT priority.
5fe1d75f 4874 *
72fd4a35 4875 * NOTE that the task may be already dead.
1da177e4 4876 */
95cdf3b7
IM
4877int sched_setscheduler(struct task_struct *p, int policy,
4878 struct sched_param *param)
1da177e4 4879{
83b699ed 4880 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4881 unsigned long flags;
cb469845 4882 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4883 struct rq *rq;
1da177e4 4884
66e5393a
SR
4885 /* may grab non-irq protected spin_locks */
4886 BUG_ON(in_interrupt());
1da177e4
LT
4887recheck:
4888 /* double check policy once rq lock held */
4889 if (policy < 0)
4890 policy = oldpolicy = p->policy;
4891 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4892 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4893 policy != SCHED_IDLE)
b0a9499c 4894 return -EINVAL;
1da177e4
LT
4895 /*
4896 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4897 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4898 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4899 */
4900 if (param->sched_priority < 0 ||
95cdf3b7 4901 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4902 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4903 return -EINVAL;
e05606d3 4904 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4905 return -EINVAL;
4906
37e4ab3f
OC
4907 /*
4908 * Allow unprivileged RT tasks to decrease priority:
4909 */
4910 if (!capable(CAP_SYS_NICE)) {
e05606d3 4911 if (rt_policy(policy)) {
8dc3e909 4912 unsigned long rlim_rtprio;
8dc3e909
ON
4913
4914 if (!lock_task_sighand(p, &flags))
4915 return -ESRCH;
4916 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4917 unlock_task_sighand(p, &flags);
4918
4919 /* can't set/change the rt policy */
4920 if (policy != p->policy && !rlim_rtprio)
4921 return -EPERM;
4922
4923 /* can't increase priority */
4924 if (param->sched_priority > p->rt_priority &&
4925 param->sched_priority > rlim_rtprio)
4926 return -EPERM;
4927 }
dd41f596
IM
4928 /*
4929 * Like positive nice levels, dont allow tasks to
4930 * move out of SCHED_IDLE either:
4931 */
4932 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4933 return -EPERM;
5fe1d75f 4934
37e4ab3f
OC
4935 /* can't change other user's priorities */
4936 if ((current->euid != p->euid) &&
4937 (current->euid != p->uid))
4938 return -EPERM;
4939 }
1da177e4 4940
b68aa230
PZ
4941#ifdef CONFIG_RT_GROUP_SCHED
4942 /*
4943 * Do not allow realtime tasks into groups that have no runtime
4944 * assigned.
4945 */
d0b27fa7 4946 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4947 return -EPERM;
4948#endif
4949
1da177e4
LT
4950 retval = security_task_setscheduler(p, policy, param);
4951 if (retval)
4952 return retval;
b29739f9
IM
4953 /*
4954 * make sure no PI-waiters arrive (or leave) while we are
4955 * changing the priority of the task:
4956 */
4957 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4958 /*
4959 * To be able to change p->policy safely, the apropriate
4960 * runqueue lock must be held.
4961 */
b29739f9 4962 rq = __task_rq_lock(p);
1da177e4
LT
4963 /* recheck policy now with rq lock held */
4964 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4965 policy = oldpolicy = -1;
b29739f9
IM
4966 __task_rq_unlock(rq);
4967 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4968 goto recheck;
4969 }
2daa3577 4970 update_rq_clock(rq);
dd41f596 4971 on_rq = p->se.on_rq;
051a1d1a 4972 running = task_current(rq, p);
0e1f3483 4973 if (on_rq)
2e1cb74a 4974 deactivate_task(rq, p, 0);
0e1f3483
HS
4975 if (running)
4976 p->sched_class->put_prev_task(rq, p);
f6b53205 4977
1da177e4 4978 oldprio = p->prio;
dd41f596 4979 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4980
0e1f3483
HS
4981 if (running)
4982 p->sched_class->set_curr_task(rq);
dd41f596
IM
4983 if (on_rq) {
4984 activate_task(rq, p, 0);
cb469845
SR
4985
4986 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4987 }
b29739f9
IM
4988 __task_rq_unlock(rq);
4989 spin_unlock_irqrestore(&p->pi_lock, flags);
4990
95e02ca9
TG
4991 rt_mutex_adjust_pi(p);
4992
1da177e4
LT
4993 return 0;
4994}
4995EXPORT_SYMBOL_GPL(sched_setscheduler);
4996
95cdf3b7
IM
4997static int
4998do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4999{
1da177e4
LT
5000 struct sched_param lparam;
5001 struct task_struct *p;
36c8b586 5002 int retval;
1da177e4
LT
5003
5004 if (!param || pid < 0)
5005 return -EINVAL;
5006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5007 return -EFAULT;
5fe1d75f
ON
5008
5009 rcu_read_lock();
5010 retval = -ESRCH;
1da177e4 5011 p = find_process_by_pid(pid);
5fe1d75f
ON
5012 if (p != NULL)
5013 retval = sched_setscheduler(p, policy, &lparam);
5014 rcu_read_unlock();
36c8b586 5015
1da177e4
LT
5016 return retval;
5017}
5018
5019/**
5020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5021 * @pid: the pid in question.
5022 * @policy: new policy.
5023 * @param: structure containing the new RT priority.
5024 */
41a2d6cf
IM
5025asmlinkage long
5026sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5027{
c21761f1
JB
5028 /* negative values for policy are not valid */
5029 if (policy < 0)
5030 return -EINVAL;
5031
1da177e4
LT
5032 return do_sched_setscheduler(pid, policy, param);
5033}
5034
5035/**
5036 * sys_sched_setparam - set/change the RT priority of a thread
5037 * @pid: the pid in question.
5038 * @param: structure containing the new RT priority.
5039 */
5040asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5041{
5042 return do_sched_setscheduler(pid, -1, param);
5043}
5044
5045/**
5046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5047 * @pid: the pid in question.
5048 */
5049asmlinkage long sys_sched_getscheduler(pid_t pid)
5050{
36c8b586 5051 struct task_struct *p;
3a5c359a 5052 int retval;
1da177e4
LT
5053
5054 if (pid < 0)
3a5c359a 5055 return -EINVAL;
1da177e4
LT
5056
5057 retval = -ESRCH;
5058 read_lock(&tasklist_lock);
5059 p = find_process_by_pid(pid);
5060 if (p) {
5061 retval = security_task_getscheduler(p);
5062 if (!retval)
5063 retval = p->policy;
5064 }
5065 read_unlock(&tasklist_lock);
1da177e4
LT
5066 return retval;
5067}
5068
5069/**
5070 * sys_sched_getscheduler - get the RT priority of a thread
5071 * @pid: the pid in question.
5072 * @param: structure containing the RT priority.
5073 */
5074asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5075{
5076 struct sched_param lp;
36c8b586 5077 struct task_struct *p;
3a5c359a 5078 int retval;
1da177e4
LT
5079
5080 if (!param || pid < 0)
3a5c359a 5081 return -EINVAL;
1da177e4
LT
5082
5083 read_lock(&tasklist_lock);
5084 p = find_process_by_pid(pid);
5085 retval = -ESRCH;
5086 if (!p)
5087 goto out_unlock;
5088
5089 retval = security_task_getscheduler(p);
5090 if (retval)
5091 goto out_unlock;
5092
5093 lp.sched_priority = p->rt_priority;
5094 read_unlock(&tasklist_lock);
5095
5096 /*
5097 * This one might sleep, we cannot do it with a spinlock held ...
5098 */
5099 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5100
1da177e4
LT
5101 return retval;
5102
5103out_unlock:
5104 read_unlock(&tasklist_lock);
5105 return retval;
5106}
5107
b53e921b 5108long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5109{
1da177e4 5110 cpumask_t cpus_allowed;
b53e921b 5111 cpumask_t new_mask = *in_mask;
36c8b586
IM
5112 struct task_struct *p;
5113 int retval;
1da177e4 5114
95402b38 5115 get_online_cpus();
1da177e4
LT
5116 read_lock(&tasklist_lock);
5117
5118 p = find_process_by_pid(pid);
5119 if (!p) {
5120 read_unlock(&tasklist_lock);
95402b38 5121 put_online_cpus();
1da177e4
LT
5122 return -ESRCH;
5123 }
5124
5125 /*
5126 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5127 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5128 * usage count and then drop tasklist_lock.
5129 */
5130 get_task_struct(p);
5131 read_unlock(&tasklist_lock);
5132
5133 retval = -EPERM;
5134 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5135 !capable(CAP_SYS_NICE))
5136 goto out_unlock;
5137
e7834f8f
DQ
5138 retval = security_task_setscheduler(p, 0, NULL);
5139 if (retval)
5140 goto out_unlock;
5141
f9a86fcb 5142 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5143 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5144 again:
7c16ec58 5145 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5146
8707d8b8 5147 if (!retval) {
f9a86fcb 5148 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5149 if (!cpus_subset(new_mask, cpus_allowed)) {
5150 /*
5151 * We must have raced with a concurrent cpuset
5152 * update. Just reset the cpus_allowed to the
5153 * cpuset's cpus_allowed
5154 */
5155 new_mask = cpus_allowed;
5156 goto again;
5157 }
5158 }
1da177e4
LT
5159out_unlock:
5160 put_task_struct(p);
95402b38 5161 put_online_cpus();
1da177e4
LT
5162 return retval;
5163}
5164
5165static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5166 cpumask_t *new_mask)
5167{
5168 if (len < sizeof(cpumask_t)) {
5169 memset(new_mask, 0, sizeof(cpumask_t));
5170 } else if (len > sizeof(cpumask_t)) {
5171 len = sizeof(cpumask_t);
5172 }
5173 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5174}
5175
5176/**
5177 * sys_sched_setaffinity - set the cpu affinity of a process
5178 * @pid: pid of the process
5179 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5180 * @user_mask_ptr: user-space pointer to the new cpu mask
5181 */
5182asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5183 unsigned long __user *user_mask_ptr)
5184{
5185 cpumask_t new_mask;
5186 int retval;
5187
5188 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5189 if (retval)
5190 return retval;
5191
b53e921b 5192 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5193}
5194
1da177e4
LT
5195long sched_getaffinity(pid_t pid, cpumask_t *mask)
5196{
36c8b586 5197 struct task_struct *p;
1da177e4 5198 int retval;
1da177e4 5199
95402b38 5200 get_online_cpus();
1da177e4
LT
5201 read_lock(&tasklist_lock);
5202
5203 retval = -ESRCH;
5204 p = find_process_by_pid(pid);
5205 if (!p)
5206 goto out_unlock;
5207
e7834f8f
DQ
5208 retval = security_task_getscheduler(p);
5209 if (retval)
5210 goto out_unlock;
5211
2f7016d9 5212 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5213
5214out_unlock:
5215 read_unlock(&tasklist_lock);
95402b38 5216 put_online_cpus();
1da177e4 5217
9531b62f 5218 return retval;
1da177e4
LT
5219}
5220
5221/**
5222 * sys_sched_getaffinity - get the cpu affinity of a process
5223 * @pid: pid of the process
5224 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5225 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5226 */
5227asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5228 unsigned long __user *user_mask_ptr)
5229{
5230 int ret;
5231 cpumask_t mask;
5232
5233 if (len < sizeof(cpumask_t))
5234 return -EINVAL;
5235
5236 ret = sched_getaffinity(pid, &mask);
5237 if (ret < 0)
5238 return ret;
5239
5240 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5241 return -EFAULT;
5242
5243 return sizeof(cpumask_t);
5244}
5245
5246/**
5247 * sys_sched_yield - yield the current processor to other threads.
5248 *
dd41f596
IM
5249 * This function yields the current CPU to other tasks. If there are no
5250 * other threads running on this CPU then this function will return.
1da177e4
LT
5251 */
5252asmlinkage long sys_sched_yield(void)
5253{
70b97a7f 5254 struct rq *rq = this_rq_lock();
1da177e4 5255
2d72376b 5256 schedstat_inc(rq, yld_count);
4530d7ab 5257 current->sched_class->yield_task(rq);
1da177e4
LT
5258
5259 /*
5260 * Since we are going to call schedule() anyway, there's
5261 * no need to preempt or enable interrupts:
5262 */
5263 __release(rq->lock);
8a25d5de 5264 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5265 _raw_spin_unlock(&rq->lock);
5266 preempt_enable_no_resched();
5267
5268 schedule();
5269
5270 return 0;
5271}
5272
e7b38404 5273static void __cond_resched(void)
1da177e4 5274{
8e0a43d8
IM
5275#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5276 __might_sleep(__FILE__, __LINE__);
5277#endif
5bbcfd90
IM
5278 /*
5279 * The BKS might be reacquired before we have dropped
5280 * PREEMPT_ACTIVE, which could trigger a second
5281 * cond_resched() call.
5282 */
1da177e4
LT
5283 do {
5284 add_preempt_count(PREEMPT_ACTIVE);
5285 schedule();
5286 sub_preempt_count(PREEMPT_ACTIVE);
5287 } while (need_resched());
5288}
5289
02b67cc3 5290int __sched _cond_resched(void)
1da177e4 5291{
9414232f
IM
5292 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5293 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5294 __cond_resched();
5295 return 1;
5296 }
5297 return 0;
5298}
02b67cc3 5299EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5300
5301/*
5302 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5303 * call schedule, and on return reacquire the lock.
5304 *
41a2d6cf 5305 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5306 * operations here to prevent schedule() from being called twice (once via
5307 * spin_unlock(), once by hand).
5308 */
95cdf3b7 5309int cond_resched_lock(spinlock_t *lock)
1da177e4 5310{
95c354fe 5311 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5312 int ret = 0;
5313
95c354fe 5314 if (spin_needbreak(lock) || resched) {
1da177e4 5315 spin_unlock(lock);
95c354fe
NP
5316 if (resched && need_resched())
5317 __cond_resched();
5318 else
5319 cpu_relax();
6df3cecb 5320 ret = 1;
1da177e4 5321 spin_lock(lock);
1da177e4 5322 }
6df3cecb 5323 return ret;
1da177e4 5324}
1da177e4
LT
5325EXPORT_SYMBOL(cond_resched_lock);
5326
5327int __sched cond_resched_softirq(void)
5328{
5329 BUG_ON(!in_softirq());
5330
9414232f 5331 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5332 local_bh_enable();
1da177e4
LT
5333 __cond_resched();
5334 local_bh_disable();
5335 return 1;
5336 }
5337 return 0;
5338}
1da177e4
LT
5339EXPORT_SYMBOL(cond_resched_softirq);
5340
1da177e4
LT
5341/**
5342 * yield - yield the current processor to other threads.
5343 *
72fd4a35 5344 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5345 * thread runnable and calls sys_sched_yield().
5346 */
5347void __sched yield(void)
5348{
5349 set_current_state(TASK_RUNNING);
5350 sys_sched_yield();
5351}
1da177e4
LT
5352EXPORT_SYMBOL(yield);
5353
5354/*
41a2d6cf 5355 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5356 * that process accounting knows that this is a task in IO wait state.
5357 *
5358 * But don't do that if it is a deliberate, throttling IO wait (this task
5359 * has set its backing_dev_info: the queue against which it should throttle)
5360 */
5361void __sched io_schedule(void)
5362{
70b97a7f 5363 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5364
0ff92245 5365 delayacct_blkio_start();
1da177e4
LT
5366 atomic_inc(&rq->nr_iowait);
5367 schedule();
5368 atomic_dec(&rq->nr_iowait);
0ff92245 5369 delayacct_blkio_end();
1da177e4 5370}
1da177e4
LT
5371EXPORT_SYMBOL(io_schedule);
5372
5373long __sched io_schedule_timeout(long timeout)
5374{
70b97a7f 5375 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5376 long ret;
5377
0ff92245 5378 delayacct_blkio_start();
1da177e4
LT
5379 atomic_inc(&rq->nr_iowait);
5380 ret = schedule_timeout(timeout);
5381 atomic_dec(&rq->nr_iowait);
0ff92245 5382 delayacct_blkio_end();
1da177e4
LT
5383 return ret;
5384}
5385
5386/**
5387 * sys_sched_get_priority_max - return maximum RT priority.
5388 * @policy: scheduling class.
5389 *
5390 * this syscall returns the maximum rt_priority that can be used
5391 * by a given scheduling class.
5392 */
5393asmlinkage long sys_sched_get_priority_max(int policy)
5394{
5395 int ret = -EINVAL;
5396
5397 switch (policy) {
5398 case SCHED_FIFO:
5399 case SCHED_RR:
5400 ret = MAX_USER_RT_PRIO-1;
5401 break;
5402 case SCHED_NORMAL:
b0a9499c 5403 case SCHED_BATCH:
dd41f596 5404 case SCHED_IDLE:
1da177e4
LT
5405 ret = 0;
5406 break;
5407 }
5408 return ret;
5409}
5410
5411/**
5412 * sys_sched_get_priority_min - return minimum RT priority.
5413 * @policy: scheduling class.
5414 *
5415 * this syscall returns the minimum rt_priority that can be used
5416 * by a given scheduling class.
5417 */
5418asmlinkage long sys_sched_get_priority_min(int policy)
5419{
5420 int ret = -EINVAL;
5421
5422 switch (policy) {
5423 case SCHED_FIFO:
5424 case SCHED_RR:
5425 ret = 1;
5426 break;
5427 case SCHED_NORMAL:
b0a9499c 5428 case SCHED_BATCH:
dd41f596 5429 case SCHED_IDLE:
1da177e4
LT
5430 ret = 0;
5431 }
5432 return ret;
5433}
5434
5435/**
5436 * sys_sched_rr_get_interval - return the default timeslice of a process.
5437 * @pid: pid of the process.
5438 * @interval: userspace pointer to the timeslice value.
5439 *
5440 * this syscall writes the default timeslice value of a given process
5441 * into the user-space timespec buffer. A value of '0' means infinity.
5442 */
5443asmlinkage
5444long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5445{
36c8b586 5446 struct task_struct *p;
a4ec24b4 5447 unsigned int time_slice;
3a5c359a 5448 int retval;
1da177e4 5449 struct timespec t;
1da177e4
LT
5450
5451 if (pid < 0)
3a5c359a 5452 return -EINVAL;
1da177e4
LT
5453
5454 retval = -ESRCH;
5455 read_lock(&tasklist_lock);
5456 p = find_process_by_pid(pid);
5457 if (!p)
5458 goto out_unlock;
5459
5460 retval = security_task_getscheduler(p);
5461 if (retval)
5462 goto out_unlock;
5463
77034937
IM
5464 /*
5465 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5466 * tasks that are on an otherwise idle runqueue:
5467 */
5468 time_slice = 0;
5469 if (p->policy == SCHED_RR) {
a4ec24b4 5470 time_slice = DEF_TIMESLICE;
1868f958 5471 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5472 struct sched_entity *se = &p->se;
5473 unsigned long flags;
5474 struct rq *rq;
5475
5476 rq = task_rq_lock(p, &flags);
77034937
IM
5477 if (rq->cfs.load.weight)
5478 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5479 task_rq_unlock(rq, &flags);
5480 }
1da177e4 5481 read_unlock(&tasklist_lock);
a4ec24b4 5482 jiffies_to_timespec(time_slice, &t);
1da177e4 5483 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5484 return retval;
3a5c359a 5485
1da177e4
LT
5486out_unlock:
5487 read_unlock(&tasklist_lock);
5488 return retval;
5489}
5490
2ed6e34f 5491static const char stat_nam[] = "RSDTtZX";
36c8b586 5492
82a1fcb9 5493void sched_show_task(struct task_struct *p)
1da177e4 5494{
1da177e4 5495 unsigned long free = 0;
36c8b586 5496 unsigned state;
1da177e4 5497
1da177e4 5498 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5499 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5500 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5501#if BITS_PER_LONG == 32
1da177e4 5502 if (state == TASK_RUNNING)
cc4ea795 5503 printk(KERN_CONT " running ");
1da177e4 5504 else
cc4ea795 5505 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5506#else
5507 if (state == TASK_RUNNING)
cc4ea795 5508 printk(KERN_CONT " running task ");
1da177e4 5509 else
cc4ea795 5510 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5511#endif
5512#ifdef CONFIG_DEBUG_STACK_USAGE
5513 {
10ebffde 5514 unsigned long *n = end_of_stack(p);
1da177e4
LT
5515 while (!*n)
5516 n++;
10ebffde 5517 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5518 }
5519#endif
ba25f9dc 5520 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5521 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5522
5fb5e6de 5523 show_stack(p, NULL);
1da177e4
LT
5524}
5525
e59e2ae2 5526void show_state_filter(unsigned long state_filter)
1da177e4 5527{
36c8b586 5528 struct task_struct *g, *p;
1da177e4 5529
4bd77321
IM
5530#if BITS_PER_LONG == 32
5531 printk(KERN_INFO
5532 " task PC stack pid father\n");
1da177e4 5533#else
4bd77321
IM
5534 printk(KERN_INFO
5535 " task PC stack pid father\n");
1da177e4
LT
5536#endif
5537 read_lock(&tasklist_lock);
5538 do_each_thread(g, p) {
5539 /*
5540 * reset the NMI-timeout, listing all files on a slow
5541 * console might take alot of time:
5542 */
5543 touch_nmi_watchdog();
39bc89fd 5544 if (!state_filter || (p->state & state_filter))
82a1fcb9 5545 sched_show_task(p);
1da177e4
LT
5546 } while_each_thread(g, p);
5547
04c9167f
JF
5548 touch_all_softlockup_watchdogs();
5549
dd41f596
IM
5550#ifdef CONFIG_SCHED_DEBUG
5551 sysrq_sched_debug_show();
5552#endif
1da177e4 5553 read_unlock(&tasklist_lock);
e59e2ae2
IM
5554 /*
5555 * Only show locks if all tasks are dumped:
5556 */
5557 if (state_filter == -1)
5558 debug_show_all_locks();
1da177e4
LT
5559}
5560
1df21055
IM
5561void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5562{
dd41f596 5563 idle->sched_class = &idle_sched_class;
1df21055
IM
5564}
5565
f340c0d1
IM
5566/**
5567 * init_idle - set up an idle thread for a given CPU
5568 * @idle: task in question
5569 * @cpu: cpu the idle task belongs to
5570 *
5571 * NOTE: this function does not set the idle thread's NEED_RESCHED
5572 * flag, to make booting more robust.
5573 */
5c1e1767 5574void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5575{
70b97a7f 5576 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5577 unsigned long flags;
5578
dd41f596
IM
5579 __sched_fork(idle);
5580 idle->se.exec_start = sched_clock();
5581
b29739f9 5582 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5583 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5584 __set_task_cpu(idle, cpu);
1da177e4
LT
5585
5586 spin_lock_irqsave(&rq->lock, flags);
5587 rq->curr = rq->idle = idle;
4866cde0
NP
5588#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5589 idle->oncpu = 1;
5590#endif
1da177e4
LT
5591 spin_unlock_irqrestore(&rq->lock, flags);
5592
5593 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5594#if defined(CONFIG_PREEMPT)
5595 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5596#else
a1261f54 5597 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5598#endif
dd41f596
IM
5599 /*
5600 * The idle tasks have their own, simple scheduling class:
5601 */
5602 idle->sched_class = &idle_sched_class;
1da177e4
LT
5603}
5604
5605/*
5606 * In a system that switches off the HZ timer nohz_cpu_mask
5607 * indicates which cpus entered this state. This is used
5608 * in the rcu update to wait only for active cpus. For system
5609 * which do not switch off the HZ timer nohz_cpu_mask should
5610 * always be CPU_MASK_NONE.
5611 */
5612cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5613
19978ca6
IM
5614/*
5615 * Increase the granularity value when there are more CPUs,
5616 * because with more CPUs the 'effective latency' as visible
5617 * to users decreases. But the relationship is not linear,
5618 * so pick a second-best guess by going with the log2 of the
5619 * number of CPUs.
5620 *
5621 * This idea comes from the SD scheduler of Con Kolivas:
5622 */
5623static inline void sched_init_granularity(void)
5624{
5625 unsigned int factor = 1 + ilog2(num_online_cpus());
5626 const unsigned long limit = 200000000;
5627
5628 sysctl_sched_min_granularity *= factor;
5629 if (sysctl_sched_min_granularity > limit)
5630 sysctl_sched_min_granularity = limit;
5631
5632 sysctl_sched_latency *= factor;
5633 if (sysctl_sched_latency > limit)
5634 sysctl_sched_latency = limit;
5635
5636 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5637}
5638
1da177e4
LT
5639#ifdef CONFIG_SMP
5640/*
5641 * This is how migration works:
5642 *
70b97a7f 5643 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5644 * runqueue and wake up that CPU's migration thread.
5645 * 2) we down() the locked semaphore => thread blocks.
5646 * 3) migration thread wakes up (implicitly it forces the migrated
5647 * thread off the CPU)
5648 * 4) it gets the migration request and checks whether the migrated
5649 * task is still in the wrong runqueue.
5650 * 5) if it's in the wrong runqueue then the migration thread removes
5651 * it and puts it into the right queue.
5652 * 6) migration thread up()s the semaphore.
5653 * 7) we wake up and the migration is done.
5654 */
5655
5656/*
5657 * Change a given task's CPU affinity. Migrate the thread to a
5658 * proper CPU and schedule it away if the CPU it's executing on
5659 * is removed from the allowed bitmask.
5660 *
5661 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5662 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5663 * call is not atomic; no spinlocks may be held.
5664 */
cd8ba7cd 5665int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5666{
70b97a7f 5667 struct migration_req req;
1da177e4 5668 unsigned long flags;
70b97a7f 5669 struct rq *rq;
48f24c4d 5670 int ret = 0;
1da177e4
LT
5671
5672 rq = task_rq_lock(p, &flags);
cd8ba7cd 5673 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5674 ret = -EINVAL;
5675 goto out;
5676 }
5677
9985b0ba
DR
5678 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5679 !cpus_equal(p->cpus_allowed, *new_mask))) {
5680 ret = -EINVAL;
5681 goto out;
5682 }
5683
73fe6aae 5684 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5685 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5686 else {
cd8ba7cd
MT
5687 p->cpus_allowed = *new_mask;
5688 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5689 }
5690
1da177e4 5691 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5692 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5693 goto out;
5694
cd8ba7cd 5695 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5696 /* Need help from migration thread: drop lock and wait. */
5697 task_rq_unlock(rq, &flags);
5698 wake_up_process(rq->migration_thread);
5699 wait_for_completion(&req.done);
5700 tlb_migrate_finish(p->mm);
5701 return 0;
5702 }
5703out:
5704 task_rq_unlock(rq, &flags);
48f24c4d 5705
1da177e4
LT
5706 return ret;
5707}
cd8ba7cd 5708EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5709
5710/*
41a2d6cf 5711 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5712 * this because either it can't run here any more (set_cpus_allowed()
5713 * away from this CPU, or CPU going down), or because we're
5714 * attempting to rebalance this task on exec (sched_exec).
5715 *
5716 * So we race with normal scheduler movements, but that's OK, as long
5717 * as the task is no longer on this CPU.
efc30814
KK
5718 *
5719 * Returns non-zero if task was successfully migrated.
1da177e4 5720 */
efc30814 5721static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5722{
70b97a7f 5723 struct rq *rq_dest, *rq_src;
dd41f596 5724 int ret = 0, on_rq;
1da177e4
LT
5725
5726 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5727 return ret;
1da177e4
LT
5728
5729 rq_src = cpu_rq(src_cpu);
5730 rq_dest = cpu_rq(dest_cpu);
5731
5732 double_rq_lock(rq_src, rq_dest);
5733 /* Already moved. */
5734 if (task_cpu(p) != src_cpu)
5735 goto out;
5736 /* Affinity changed (again). */
5737 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5738 goto out;
5739
dd41f596 5740 on_rq = p->se.on_rq;
6e82a3be 5741 if (on_rq)
2e1cb74a 5742 deactivate_task(rq_src, p, 0);
6e82a3be 5743
1da177e4 5744 set_task_cpu(p, dest_cpu);
dd41f596
IM
5745 if (on_rq) {
5746 activate_task(rq_dest, p, 0);
5747 check_preempt_curr(rq_dest, p);
1da177e4 5748 }
efc30814 5749 ret = 1;
1da177e4
LT
5750out:
5751 double_rq_unlock(rq_src, rq_dest);
efc30814 5752 return ret;
1da177e4
LT
5753}
5754
5755/*
5756 * migration_thread - this is a highprio system thread that performs
5757 * thread migration by bumping thread off CPU then 'pushing' onto
5758 * another runqueue.
5759 */
95cdf3b7 5760static int migration_thread(void *data)
1da177e4 5761{
1da177e4 5762 int cpu = (long)data;
70b97a7f 5763 struct rq *rq;
1da177e4
LT
5764
5765 rq = cpu_rq(cpu);
5766 BUG_ON(rq->migration_thread != current);
5767
5768 set_current_state(TASK_INTERRUPTIBLE);
5769 while (!kthread_should_stop()) {
70b97a7f 5770 struct migration_req *req;
1da177e4 5771 struct list_head *head;
1da177e4 5772
1da177e4
LT
5773 spin_lock_irq(&rq->lock);
5774
5775 if (cpu_is_offline(cpu)) {
5776 spin_unlock_irq(&rq->lock);
5777 goto wait_to_die;
5778 }
5779
5780 if (rq->active_balance) {
5781 active_load_balance(rq, cpu);
5782 rq->active_balance = 0;
5783 }
5784
5785 head = &rq->migration_queue;
5786
5787 if (list_empty(head)) {
5788 spin_unlock_irq(&rq->lock);
5789 schedule();
5790 set_current_state(TASK_INTERRUPTIBLE);
5791 continue;
5792 }
70b97a7f 5793 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5794 list_del_init(head->next);
5795
674311d5
NP
5796 spin_unlock(&rq->lock);
5797 __migrate_task(req->task, cpu, req->dest_cpu);
5798 local_irq_enable();
1da177e4
LT
5799
5800 complete(&req->done);
5801 }
5802 __set_current_state(TASK_RUNNING);
5803 return 0;
5804
5805wait_to_die:
5806 /* Wait for kthread_stop */
5807 set_current_state(TASK_INTERRUPTIBLE);
5808 while (!kthread_should_stop()) {
5809 schedule();
5810 set_current_state(TASK_INTERRUPTIBLE);
5811 }
5812 __set_current_state(TASK_RUNNING);
5813 return 0;
5814}
5815
5816#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5817
5818static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5819{
5820 int ret;
5821
5822 local_irq_disable();
5823 ret = __migrate_task(p, src_cpu, dest_cpu);
5824 local_irq_enable();
5825 return ret;
5826}
5827
054b9108 5828/*
3a4fa0a2 5829 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5830 * NOTE: interrupts should be disabled by the caller
5831 */
48f24c4d 5832static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5833{
efc30814 5834 unsigned long flags;
1da177e4 5835 cpumask_t mask;
70b97a7f
IM
5836 struct rq *rq;
5837 int dest_cpu;
1da177e4 5838
3a5c359a
AK
5839 do {
5840 /* On same node? */
5841 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5842 cpus_and(mask, mask, p->cpus_allowed);
5843 dest_cpu = any_online_cpu(mask);
5844
5845 /* On any allowed CPU? */
434d53b0 5846 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5847 dest_cpu = any_online_cpu(p->cpus_allowed);
5848
5849 /* No more Mr. Nice Guy. */
434d53b0 5850 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5851 cpumask_t cpus_allowed;
5852
5853 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5854 /*
5855 * Try to stay on the same cpuset, where the
5856 * current cpuset may be a subset of all cpus.
5857 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5858 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5859 * called within calls to cpuset_lock/cpuset_unlock.
5860 */
3a5c359a 5861 rq = task_rq_lock(p, &flags);
470fd646 5862 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5863 dest_cpu = any_online_cpu(p->cpus_allowed);
5864 task_rq_unlock(rq, &flags);
1da177e4 5865
3a5c359a
AK
5866 /*
5867 * Don't tell them about moving exiting tasks or
5868 * kernel threads (both mm NULL), since they never
5869 * leave kernel.
5870 */
41a2d6cf 5871 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5872 printk(KERN_INFO "process %d (%s) no "
5873 "longer affine to cpu%d\n",
41a2d6cf
IM
5874 task_pid_nr(p), p->comm, dead_cpu);
5875 }
3a5c359a 5876 }
f7b4cddc 5877 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5878}
5879
5880/*
5881 * While a dead CPU has no uninterruptible tasks queued at this point,
5882 * it might still have a nonzero ->nr_uninterruptible counter, because
5883 * for performance reasons the counter is not stricly tracking tasks to
5884 * their home CPUs. So we just add the counter to another CPU's counter,
5885 * to keep the global sum constant after CPU-down:
5886 */
70b97a7f 5887static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5888{
7c16ec58 5889 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5890 unsigned long flags;
5891
5892 local_irq_save(flags);
5893 double_rq_lock(rq_src, rq_dest);
5894 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5895 rq_src->nr_uninterruptible = 0;
5896 double_rq_unlock(rq_src, rq_dest);
5897 local_irq_restore(flags);
5898}
5899
5900/* Run through task list and migrate tasks from the dead cpu. */
5901static void migrate_live_tasks(int src_cpu)
5902{
48f24c4d 5903 struct task_struct *p, *t;
1da177e4 5904
f7b4cddc 5905 read_lock(&tasklist_lock);
1da177e4 5906
48f24c4d
IM
5907 do_each_thread(t, p) {
5908 if (p == current)
1da177e4
LT
5909 continue;
5910
48f24c4d
IM
5911 if (task_cpu(p) == src_cpu)
5912 move_task_off_dead_cpu(src_cpu, p);
5913 } while_each_thread(t, p);
1da177e4 5914
f7b4cddc 5915 read_unlock(&tasklist_lock);
1da177e4
LT
5916}
5917
dd41f596
IM
5918/*
5919 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5920 * It does so by boosting its priority to highest possible.
5921 * Used by CPU offline code.
1da177e4
LT
5922 */
5923void sched_idle_next(void)
5924{
48f24c4d 5925 int this_cpu = smp_processor_id();
70b97a7f 5926 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5927 struct task_struct *p = rq->idle;
5928 unsigned long flags;
5929
5930 /* cpu has to be offline */
48f24c4d 5931 BUG_ON(cpu_online(this_cpu));
1da177e4 5932
48f24c4d
IM
5933 /*
5934 * Strictly not necessary since rest of the CPUs are stopped by now
5935 * and interrupts disabled on the current cpu.
1da177e4
LT
5936 */
5937 spin_lock_irqsave(&rq->lock, flags);
5938
dd41f596 5939 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5940
94bc9a7b
DA
5941 update_rq_clock(rq);
5942 activate_task(rq, p, 0);
1da177e4
LT
5943
5944 spin_unlock_irqrestore(&rq->lock, flags);
5945}
5946
48f24c4d
IM
5947/*
5948 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5949 * offline.
5950 */
5951void idle_task_exit(void)
5952{
5953 struct mm_struct *mm = current->active_mm;
5954
5955 BUG_ON(cpu_online(smp_processor_id()));
5956
5957 if (mm != &init_mm)
5958 switch_mm(mm, &init_mm, current);
5959 mmdrop(mm);
5960}
5961
054b9108 5962/* called under rq->lock with disabled interrupts */
36c8b586 5963static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5964{
70b97a7f 5965 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5966
5967 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5968 BUG_ON(!p->exit_state);
1da177e4
LT
5969
5970 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5971 BUG_ON(p->state == TASK_DEAD);
1da177e4 5972
48f24c4d 5973 get_task_struct(p);
1da177e4
LT
5974
5975 /*
5976 * Drop lock around migration; if someone else moves it,
41a2d6cf 5977 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5978 * fine.
5979 */
f7b4cddc 5980 spin_unlock_irq(&rq->lock);
48f24c4d 5981 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5982 spin_lock_irq(&rq->lock);
1da177e4 5983
48f24c4d 5984 put_task_struct(p);
1da177e4
LT
5985}
5986
5987/* release_task() removes task from tasklist, so we won't find dead tasks. */
5988static void migrate_dead_tasks(unsigned int dead_cpu)
5989{
70b97a7f 5990 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5991 struct task_struct *next;
48f24c4d 5992
dd41f596
IM
5993 for ( ; ; ) {
5994 if (!rq->nr_running)
5995 break;
a8e504d2 5996 update_rq_clock(rq);
ff95f3df 5997 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5998 if (!next)
5999 break;
6000 migrate_dead(dead_cpu, next);
e692ab53 6001
1da177e4
LT
6002 }
6003}
6004#endif /* CONFIG_HOTPLUG_CPU */
6005
e692ab53
NP
6006#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6007
6008static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6009 {
6010 .procname = "sched_domain",
c57baf1e 6011 .mode = 0555,
e0361851 6012 },
38605cae 6013 {0, },
e692ab53
NP
6014};
6015
6016static struct ctl_table sd_ctl_root[] = {
e0361851 6017 {
c57baf1e 6018 .ctl_name = CTL_KERN,
e0361851 6019 .procname = "kernel",
c57baf1e 6020 .mode = 0555,
e0361851
AD
6021 .child = sd_ctl_dir,
6022 },
38605cae 6023 {0, },
e692ab53
NP
6024};
6025
6026static struct ctl_table *sd_alloc_ctl_entry(int n)
6027{
6028 struct ctl_table *entry =
5cf9f062 6029 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6030
e692ab53
NP
6031 return entry;
6032}
6033
6382bc90
MM
6034static void sd_free_ctl_entry(struct ctl_table **tablep)
6035{
cd790076 6036 struct ctl_table *entry;
6382bc90 6037
cd790076
MM
6038 /*
6039 * In the intermediate directories, both the child directory and
6040 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6041 * will always be set. In the lowest directory the names are
cd790076
MM
6042 * static strings and all have proc handlers.
6043 */
6044 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6045 if (entry->child)
6046 sd_free_ctl_entry(&entry->child);
cd790076
MM
6047 if (entry->proc_handler == NULL)
6048 kfree(entry->procname);
6049 }
6382bc90
MM
6050
6051 kfree(*tablep);
6052 *tablep = NULL;
6053}
6054
e692ab53 6055static void
e0361851 6056set_table_entry(struct ctl_table *entry,
e692ab53
NP
6057 const char *procname, void *data, int maxlen,
6058 mode_t mode, proc_handler *proc_handler)
6059{
e692ab53
NP
6060 entry->procname = procname;
6061 entry->data = data;
6062 entry->maxlen = maxlen;
6063 entry->mode = mode;
6064 entry->proc_handler = proc_handler;
6065}
6066
6067static struct ctl_table *
6068sd_alloc_ctl_domain_table(struct sched_domain *sd)
6069{
ace8b3d6 6070 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6071
ad1cdc1d
MM
6072 if (table == NULL)
6073 return NULL;
6074
e0361851 6075 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6076 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6077 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6078 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6079 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6080 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6081 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6082 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6083 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6084 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6085 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6086 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6087 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6088 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6089 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6090 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6091 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6092 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6093 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6094 &sd->cache_nice_tries,
6095 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6096 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6097 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6098 /* &table[11] is terminator */
e692ab53
NP
6099
6100 return table;
6101}
6102
9a4e7159 6103static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6104{
6105 struct ctl_table *entry, *table;
6106 struct sched_domain *sd;
6107 int domain_num = 0, i;
6108 char buf[32];
6109
6110 for_each_domain(cpu, sd)
6111 domain_num++;
6112 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6113 if (table == NULL)
6114 return NULL;
e692ab53
NP
6115
6116 i = 0;
6117 for_each_domain(cpu, sd) {
6118 snprintf(buf, 32, "domain%d", i);
e692ab53 6119 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6120 entry->mode = 0555;
e692ab53
NP
6121 entry->child = sd_alloc_ctl_domain_table(sd);
6122 entry++;
6123 i++;
6124 }
6125 return table;
6126}
6127
6128static struct ctl_table_header *sd_sysctl_header;
6382bc90 6129static void register_sched_domain_sysctl(void)
e692ab53
NP
6130{
6131 int i, cpu_num = num_online_cpus();
6132 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6133 char buf[32];
6134
7378547f
MM
6135 WARN_ON(sd_ctl_dir[0].child);
6136 sd_ctl_dir[0].child = entry;
6137
ad1cdc1d
MM
6138 if (entry == NULL)
6139 return;
6140
97b6ea7b 6141 for_each_online_cpu(i) {
e692ab53 6142 snprintf(buf, 32, "cpu%d", i);
e692ab53 6143 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6144 entry->mode = 0555;
e692ab53 6145 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6146 entry++;
e692ab53 6147 }
7378547f
MM
6148
6149 WARN_ON(sd_sysctl_header);
e692ab53
NP
6150 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6151}
6382bc90 6152
7378547f 6153/* may be called multiple times per register */
6382bc90
MM
6154static void unregister_sched_domain_sysctl(void)
6155{
7378547f
MM
6156 if (sd_sysctl_header)
6157 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6158 sd_sysctl_header = NULL;
7378547f
MM
6159 if (sd_ctl_dir[0].child)
6160 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6161}
e692ab53 6162#else
6382bc90
MM
6163static void register_sched_domain_sysctl(void)
6164{
6165}
6166static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6167{
6168}
6169#endif
6170
1f11eb6a
GH
6171static void set_rq_online(struct rq *rq)
6172{
6173 if (!rq->online) {
6174 const struct sched_class *class;
6175
6176 cpu_set(rq->cpu, rq->rd->online);
6177 rq->online = 1;
6178
6179 for_each_class(class) {
6180 if (class->rq_online)
6181 class->rq_online(rq);
6182 }
6183 }
6184}
6185
6186static void set_rq_offline(struct rq *rq)
6187{
6188 if (rq->online) {
6189 const struct sched_class *class;
6190
6191 for_each_class(class) {
6192 if (class->rq_offline)
6193 class->rq_offline(rq);
6194 }
6195
6196 cpu_clear(rq->cpu, rq->rd->online);
6197 rq->online = 0;
6198 }
6199}
6200
1da177e4
LT
6201/*
6202 * migration_call - callback that gets triggered when a CPU is added.
6203 * Here we can start up the necessary migration thread for the new CPU.
6204 */
48f24c4d
IM
6205static int __cpuinit
6206migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6207{
1da177e4 6208 struct task_struct *p;
48f24c4d 6209 int cpu = (long)hcpu;
1da177e4 6210 unsigned long flags;
70b97a7f 6211 struct rq *rq;
1da177e4
LT
6212
6213 switch (action) {
5be9361c 6214
1da177e4 6215 case CPU_UP_PREPARE:
8bb78442 6216 case CPU_UP_PREPARE_FROZEN:
dd41f596 6217 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6218 if (IS_ERR(p))
6219 return NOTIFY_BAD;
1da177e4
LT
6220 kthread_bind(p, cpu);
6221 /* Must be high prio: stop_machine expects to yield to it. */
6222 rq = task_rq_lock(p, &flags);
dd41f596 6223 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6224 task_rq_unlock(rq, &flags);
6225 cpu_rq(cpu)->migration_thread = p;
6226 break;
48f24c4d 6227
1da177e4 6228 case CPU_ONLINE:
8bb78442 6229 case CPU_ONLINE_FROZEN:
3a4fa0a2 6230 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6231 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6232
6233 /* Update our root-domain */
6234 rq = cpu_rq(cpu);
6235 spin_lock_irqsave(&rq->lock, flags);
6236 if (rq->rd) {
6237 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6238
6239 set_rq_online(rq);
1f94ef59
GH
6240 }
6241 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6242 break;
48f24c4d 6243
1da177e4
LT
6244#ifdef CONFIG_HOTPLUG_CPU
6245 case CPU_UP_CANCELED:
8bb78442 6246 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6247 if (!cpu_rq(cpu)->migration_thread)
6248 break;
41a2d6cf 6249 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6250 kthread_bind(cpu_rq(cpu)->migration_thread,
6251 any_online_cpu(cpu_online_map));
1da177e4
LT
6252 kthread_stop(cpu_rq(cpu)->migration_thread);
6253 cpu_rq(cpu)->migration_thread = NULL;
6254 break;
48f24c4d 6255
1da177e4 6256 case CPU_DEAD:
8bb78442 6257 case CPU_DEAD_FROZEN:
470fd646 6258 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6259 migrate_live_tasks(cpu);
6260 rq = cpu_rq(cpu);
6261 kthread_stop(rq->migration_thread);
6262 rq->migration_thread = NULL;
6263 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6264 spin_lock_irq(&rq->lock);
a8e504d2 6265 update_rq_clock(rq);
2e1cb74a 6266 deactivate_task(rq, rq->idle, 0);
1da177e4 6267 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6268 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6269 rq->idle->sched_class = &idle_sched_class;
1da177e4 6270 migrate_dead_tasks(cpu);
d2da272a 6271 spin_unlock_irq(&rq->lock);
470fd646 6272 cpuset_unlock();
1da177e4
LT
6273 migrate_nr_uninterruptible(rq);
6274 BUG_ON(rq->nr_running != 0);
6275
41a2d6cf
IM
6276 /*
6277 * No need to migrate the tasks: it was best-effort if
6278 * they didn't take sched_hotcpu_mutex. Just wake up
6279 * the requestors.
6280 */
1da177e4
LT
6281 spin_lock_irq(&rq->lock);
6282 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6283 struct migration_req *req;
6284
1da177e4 6285 req = list_entry(rq->migration_queue.next,
70b97a7f 6286 struct migration_req, list);
1da177e4
LT
6287 list_del_init(&req->list);
6288 complete(&req->done);
6289 }
6290 spin_unlock_irq(&rq->lock);
6291 break;
57d885fe 6292
08f503b0
GH
6293 case CPU_DYING:
6294 case CPU_DYING_FROZEN:
57d885fe
GH
6295 /* Update our root-domain */
6296 rq = cpu_rq(cpu);
6297 spin_lock_irqsave(&rq->lock, flags);
6298 if (rq->rd) {
6299 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6300 set_rq_offline(rq);
57d885fe
GH
6301 }
6302 spin_unlock_irqrestore(&rq->lock, flags);
6303 break;
1da177e4
LT
6304#endif
6305 }
6306 return NOTIFY_OK;
6307}
6308
6309/* Register at highest priority so that task migration (migrate_all_tasks)
6310 * happens before everything else.
6311 */
26c2143b 6312static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6313 .notifier_call = migration_call,
6314 .priority = 10
6315};
6316
e6fe6649 6317void __init migration_init(void)
1da177e4
LT
6318{
6319 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6320 int err;
48f24c4d
IM
6321
6322 /* Start one for the boot CPU: */
07dccf33
AM
6323 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6324 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6325 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6326 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6327}
6328#endif
6329
6330#ifdef CONFIG_SMP
476f3534 6331
3e9830dc 6332#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6333
099f98c8
GS
6334static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6335{
6336 switch (lvl) {
6337 case SD_LV_NONE:
6338 return "NONE";
6339 case SD_LV_SIBLING:
6340 return "SIBLING";
6341 case SD_LV_MC:
6342 return "MC";
6343 case SD_LV_CPU:
6344 return "CPU";
6345 case SD_LV_NODE:
6346 return "NODE";
6347 case SD_LV_ALLNODES:
6348 return "ALLNODES";
6349 case SD_LV_MAX:
6350 return "MAX";
6351
6352 }
6353 return "MAX";
6354}
6355
7c16ec58
MT
6356static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6357 cpumask_t *groupmask)
1da177e4 6358{
4dcf6aff 6359 struct sched_group *group = sd->groups;
434d53b0 6360 char str[256];
1da177e4 6361
434d53b0 6362 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6363 cpus_clear(*groupmask);
4dcf6aff
IM
6364
6365 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6366
6367 if (!(sd->flags & SD_LOAD_BALANCE)) {
6368 printk("does not load-balance\n");
6369 if (sd->parent)
6370 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6371 " has parent");
6372 return -1;
41c7ce9a
NP
6373 }
6374
099f98c8
GS
6375 printk(KERN_CONT "span %s level %s\n",
6376 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6377
6378 if (!cpu_isset(cpu, sd->span)) {
6379 printk(KERN_ERR "ERROR: domain->span does not contain "
6380 "CPU%d\n", cpu);
6381 }
6382 if (!cpu_isset(cpu, group->cpumask)) {
6383 printk(KERN_ERR "ERROR: domain->groups does not contain"
6384 " CPU%d\n", cpu);
6385 }
1da177e4 6386
4dcf6aff 6387 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6388 do {
4dcf6aff
IM
6389 if (!group) {
6390 printk("\n");
6391 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6392 break;
6393 }
6394
4dcf6aff
IM
6395 if (!group->__cpu_power) {
6396 printk(KERN_CONT "\n");
6397 printk(KERN_ERR "ERROR: domain->cpu_power not "
6398 "set\n");
6399 break;
6400 }
1da177e4 6401
4dcf6aff
IM
6402 if (!cpus_weight(group->cpumask)) {
6403 printk(KERN_CONT "\n");
6404 printk(KERN_ERR "ERROR: empty group\n");
6405 break;
6406 }
1da177e4 6407
7c16ec58 6408 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6409 printk(KERN_CONT "\n");
6410 printk(KERN_ERR "ERROR: repeated CPUs\n");
6411 break;
6412 }
1da177e4 6413
7c16ec58 6414 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6415
434d53b0 6416 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6417 printk(KERN_CONT " %s", str);
1da177e4 6418
4dcf6aff
IM
6419 group = group->next;
6420 } while (group != sd->groups);
6421 printk(KERN_CONT "\n");
1da177e4 6422
7c16ec58 6423 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6424 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6425
7c16ec58 6426 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6427 printk(KERN_ERR "ERROR: parent span is not a superset "
6428 "of domain->span\n");
6429 return 0;
6430}
1da177e4 6431
4dcf6aff
IM
6432static void sched_domain_debug(struct sched_domain *sd, int cpu)
6433{
7c16ec58 6434 cpumask_t *groupmask;
4dcf6aff 6435 int level = 0;
1da177e4 6436
4dcf6aff
IM
6437 if (!sd) {
6438 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6439 return;
6440 }
1da177e4 6441
4dcf6aff
IM
6442 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6443
7c16ec58
MT
6444 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6445 if (!groupmask) {
6446 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6447 return;
6448 }
6449
4dcf6aff 6450 for (;;) {
7c16ec58 6451 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6452 break;
1da177e4
LT
6453 level++;
6454 sd = sd->parent;
33859f7f 6455 if (!sd)
4dcf6aff
IM
6456 break;
6457 }
7c16ec58 6458 kfree(groupmask);
1da177e4 6459}
6d6bc0ad 6460#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6461# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6462#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6463
1a20ff27 6464static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6465{
6466 if (cpus_weight(sd->span) == 1)
6467 return 1;
6468
6469 /* Following flags need at least 2 groups */
6470 if (sd->flags & (SD_LOAD_BALANCE |
6471 SD_BALANCE_NEWIDLE |
6472 SD_BALANCE_FORK |
89c4710e
SS
6473 SD_BALANCE_EXEC |
6474 SD_SHARE_CPUPOWER |
6475 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6476 if (sd->groups != sd->groups->next)
6477 return 0;
6478 }
6479
6480 /* Following flags don't use groups */
6481 if (sd->flags & (SD_WAKE_IDLE |
6482 SD_WAKE_AFFINE |
6483 SD_WAKE_BALANCE))
6484 return 0;
6485
6486 return 1;
6487}
6488
48f24c4d
IM
6489static int
6490sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6491{
6492 unsigned long cflags = sd->flags, pflags = parent->flags;
6493
6494 if (sd_degenerate(parent))
6495 return 1;
6496
6497 if (!cpus_equal(sd->span, parent->span))
6498 return 0;
6499
6500 /* Does parent contain flags not in child? */
6501 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6502 if (cflags & SD_WAKE_AFFINE)
6503 pflags &= ~SD_WAKE_BALANCE;
6504 /* Flags needing groups don't count if only 1 group in parent */
6505 if (parent->groups == parent->groups->next) {
6506 pflags &= ~(SD_LOAD_BALANCE |
6507 SD_BALANCE_NEWIDLE |
6508 SD_BALANCE_FORK |
89c4710e
SS
6509 SD_BALANCE_EXEC |
6510 SD_SHARE_CPUPOWER |
6511 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6512 }
6513 if (~cflags & pflags)
6514 return 0;
6515
6516 return 1;
6517}
6518
57d885fe
GH
6519static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6520{
6521 unsigned long flags;
57d885fe
GH
6522
6523 spin_lock_irqsave(&rq->lock, flags);
6524
6525 if (rq->rd) {
6526 struct root_domain *old_rd = rq->rd;
6527
1f11eb6a
GH
6528 if (cpu_isset(rq->cpu, old_rd->online))
6529 set_rq_offline(rq);
57d885fe 6530
dc938520 6531 cpu_clear(rq->cpu, old_rd->span);
dc938520 6532
57d885fe
GH
6533 if (atomic_dec_and_test(&old_rd->refcount))
6534 kfree(old_rd);
6535 }
6536
6537 atomic_inc(&rd->refcount);
6538 rq->rd = rd;
6539
dc938520 6540 cpu_set(rq->cpu, rd->span);
1f94ef59 6541 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6542 set_rq_online(rq);
57d885fe
GH
6543
6544 spin_unlock_irqrestore(&rq->lock, flags);
6545}
6546
dc938520 6547static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6548{
6549 memset(rd, 0, sizeof(*rd));
6550
dc938520
GH
6551 cpus_clear(rd->span);
6552 cpus_clear(rd->online);
6e0534f2
GH
6553
6554 cpupri_init(&rd->cpupri);
57d885fe
GH
6555}
6556
6557static void init_defrootdomain(void)
6558{
dc938520 6559 init_rootdomain(&def_root_domain);
57d885fe
GH
6560 atomic_set(&def_root_domain.refcount, 1);
6561}
6562
dc938520 6563static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6564{
6565 struct root_domain *rd;
6566
6567 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6568 if (!rd)
6569 return NULL;
6570
dc938520 6571 init_rootdomain(rd);
57d885fe
GH
6572
6573 return rd;
6574}
6575
1da177e4 6576/*
0eab9146 6577 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6578 * hold the hotplug lock.
6579 */
0eab9146
IM
6580static void
6581cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6582{
70b97a7f 6583 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6584 struct sched_domain *tmp;
6585
6586 /* Remove the sched domains which do not contribute to scheduling. */
6587 for (tmp = sd; tmp; tmp = tmp->parent) {
6588 struct sched_domain *parent = tmp->parent;
6589 if (!parent)
6590 break;
1a848870 6591 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6592 tmp->parent = parent->parent;
1a848870
SS
6593 if (parent->parent)
6594 parent->parent->child = tmp;
6595 }
245af2c7
SS
6596 }
6597
1a848870 6598 if (sd && sd_degenerate(sd)) {
245af2c7 6599 sd = sd->parent;
1a848870
SS
6600 if (sd)
6601 sd->child = NULL;
6602 }
1da177e4
LT
6603
6604 sched_domain_debug(sd, cpu);
6605
57d885fe 6606 rq_attach_root(rq, rd);
674311d5 6607 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6608}
6609
6610/* cpus with isolated domains */
67af63a6 6611static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6612
6613/* Setup the mask of cpus configured for isolated domains */
6614static int __init isolated_cpu_setup(char *str)
6615{
6616 int ints[NR_CPUS], i;
6617
6618 str = get_options(str, ARRAY_SIZE(ints), ints);
6619 cpus_clear(cpu_isolated_map);
6620 for (i = 1; i <= ints[0]; i++)
6621 if (ints[i] < NR_CPUS)
6622 cpu_set(ints[i], cpu_isolated_map);
6623 return 1;
6624}
6625
8927f494 6626__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6627
6628/*
6711cab4
SS
6629 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6630 * to a function which identifies what group(along with sched group) a CPU
6631 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6632 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6633 *
6634 * init_sched_build_groups will build a circular linked list of the groups
6635 * covered by the given span, and will set each group's ->cpumask correctly,
6636 * and ->cpu_power to 0.
6637 */
a616058b 6638static void
7c16ec58 6639init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6640 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6641 struct sched_group **sg,
6642 cpumask_t *tmpmask),
6643 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6644{
6645 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6646 int i;
6647
7c16ec58
MT
6648 cpus_clear(*covered);
6649
6650 for_each_cpu_mask(i, *span) {
6711cab4 6651 struct sched_group *sg;
7c16ec58 6652 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6653 int j;
6654
7c16ec58 6655 if (cpu_isset(i, *covered))
1da177e4
LT
6656 continue;
6657
7c16ec58 6658 cpus_clear(sg->cpumask);
5517d86b 6659 sg->__cpu_power = 0;
1da177e4 6660
7c16ec58
MT
6661 for_each_cpu_mask(j, *span) {
6662 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6663 continue;
6664
7c16ec58 6665 cpu_set(j, *covered);
1da177e4
LT
6666 cpu_set(j, sg->cpumask);
6667 }
6668 if (!first)
6669 first = sg;
6670 if (last)
6671 last->next = sg;
6672 last = sg;
6673 }
6674 last->next = first;
6675}
6676
9c1cfda2 6677#define SD_NODES_PER_DOMAIN 16
1da177e4 6678
9c1cfda2 6679#ifdef CONFIG_NUMA
198e2f18 6680
9c1cfda2
JH
6681/**
6682 * find_next_best_node - find the next node to include in a sched_domain
6683 * @node: node whose sched_domain we're building
6684 * @used_nodes: nodes already in the sched_domain
6685 *
41a2d6cf 6686 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6687 * finds the closest node not already in the @used_nodes map.
6688 *
6689 * Should use nodemask_t.
6690 */
c5f59f08 6691static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6692{
6693 int i, n, val, min_val, best_node = 0;
6694
6695 min_val = INT_MAX;
6696
6697 for (i = 0; i < MAX_NUMNODES; i++) {
6698 /* Start at @node */
6699 n = (node + i) % MAX_NUMNODES;
6700
6701 if (!nr_cpus_node(n))
6702 continue;
6703
6704 /* Skip already used nodes */
c5f59f08 6705 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6706 continue;
6707
6708 /* Simple min distance search */
6709 val = node_distance(node, n);
6710
6711 if (val < min_val) {
6712 min_val = val;
6713 best_node = n;
6714 }
6715 }
6716
c5f59f08 6717 node_set(best_node, *used_nodes);
9c1cfda2
JH
6718 return best_node;
6719}
6720
6721/**
6722 * sched_domain_node_span - get a cpumask for a node's sched_domain
6723 * @node: node whose cpumask we're constructing
73486722 6724 * @span: resulting cpumask
9c1cfda2 6725 *
41a2d6cf 6726 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6727 * should be one that prevents unnecessary balancing, but also spreads tasks
6728 * out optimally.
6729 */
4bdbaad3 6730static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6731{
c5f59f08 6732 nodemask_t used_nodes;
c5f59f08 6733 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6734 int i;
9c1cfda2 6735
4bdbaad3 6736 cpus_clear(*span);
c5f59f08 6737 nodes_clear(used_nodes);
9c1cfda2 6738
4bdbaad3 6739 cpus_or(*span, *span, *nodemask);
c5f59f08 6740 node_set(node, used_nodes);
9c1cfda2
JH
6741
6742 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6743 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6744
c5f59f08 6745 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6746 cpus_or(*span, *span, *nodemask);
9c1cfda2 6747 }
9c1cfda2 6748}
6d6bc0ad 6749#endif /* CONFIG_NUMA */
9c1cfda2 6750
5c45bf27 6751int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6752
9c1cfda2 6753/*
48f24c4d 6754 * SMT sched-domains:
9c1cfda2 6755 */
1da177e4
LT
6756#ifdef CONFIG_SCHED_SMT
6757static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6758static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6759
41a2d6cf 6760static int
7c16ec58
MT
6761cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6762 cpumask_t *unused)
1da177e4 6763{
6711cab4
SS
6764 if (sg)
6765 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6766 return cpu;
6767}
6d6bc0ad 6768#endif /* CONFIG_SCHED_SMT */
1da177e4 6769
48f24c4d
IM
6770/*
6771 * multi-core sched-domains:
6772 */
1e9f28fa
SS
6773#ifdef CONFIG_SCHED_MC
6774static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6775static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6776#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6777
6778#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6779static int
7c16ec58
MT
6780cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6781 cpumask_t *mask)
1e9f28fa 6782{
6711cab4 6783 int group;
7c16ec58
MT
6784
6785 *mask = per_cpu(cpu_sibling_map, cpu);
6786 cpus_and(*mask, *mask, *cpu_map);
6787 group = first_cpu(*mask);
6711cab4
SS
6788 if (sg)
6789 *sg = &per_cpu(sched_group_core, group);
6790 return group;
1e9f28fa
SS
6791}
6792#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6793static int
7c16ec58
MT
6794cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6795 cpumask_t *unused)
1e9f28fa 6796{
6711cab4
SS
6797 if (sg)
6798 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6799 return cpu;
6800}
6801#endif
6802
1da177e4 6803static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6804static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6805
41a2d6cf 6806static int
7c16ec58
MT
6807cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6808 cpumask_t *mask)
1da177e4 6809{
6711cab4 6810 int group;
48f24c4d 6811#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6812 *mask = cpu_coregroup_map(cpu);
6813 cpus_and(*mask, *mask, *cpu_map);
6814 group = first_cpu(*mask);
1e9f28fa 6815#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6816 *mask = per_cpu(cpu_sibling_map, cpu);
6817 cpus_and(*mask, *mask, *cpu_map);
6818 group = first_cpu(*mask);
1da177e4 6819#else
6711cab4 6820 group = cpu;
1da177e4 6821#endif
6711cab4
SS
6822 if (sg)
6823 *sg = &per_cpu(sched_group_phys, group);
6824 return group;
1da177e4
LT
6825}
6826
6827#ifdef CONFIG_NUMA
1da177e4 6828/*
9c1cfda2
JH
6829 * The init_sched_build_groups can't handle what we want to do with node
6830 * groups, so roll our own. Now each node has its own list of groups which
6831 * gets dynamically allocated.
1da177e4 6832 */
9c1cfda2 6833static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6834static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6835
9c1cfda2 6836static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6837static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6838
6711cab4 6839static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6840 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6841{
6711cab4
SS
6842 int group;
6843
7c16ec58
MT
6844 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6845 cpus_and(*nodemask, *nodemask, *cpu_map);
6846 group = first_cpu(*nodemask);
6711cab4
SS
6847
6848 if (sg)
6849 *sg = &per_cpu(sched_group_allnodes, group);
6850 return group;
1da177e4 6851}
6711cab4 6852
08069033
SS
6853static void init_numa_sched_groups_power(struct sched_group *group_head)
6854{
6855 struct sched_group *sg = group_head;
6856 int j;
6857
6858 if (!sg)
6859 return;
3a5c359a
AK
6860 do {
6861 for_each_cpu_mask(j, sg->cpumask) {
6862 struct sched_domain *sd;
08069033 6863
3a5c359a
AK
6864 sd = &per_cpu(phys_domains, j);
6865 if (j != first_cpu(sd->groups->cpumask)) {
6866 /*
6867 * Only add "power" once for each
6868 * physical package.
6869 */
6870 continue;
6871 }
08069033 6872
3a5c359a
AK
6873 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6874 }
6875 sg = sg->next;
6876 } while (sg != group_head);
08069033 6877}
6d6bc0ad 6878#endif /* CONFIG_NUMA */
1da177e4 6879
a616058b 6880#ifdef CONFIG_NUMA
51888ca2 6881/* Free memory allocated for various sched_group structures */
7c16ec58 6882static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6883{
a616058b 6884 int cpu, i;
51888ca2
SV
6885
6886 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6887 struct sched_group **sched_group_nodes
6888 = sched_group_nodes_bycpu[cpu];
6889
51888ca2
SV
6890 if (!sched_group_nodes)
6891 continue;
6892
6893 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6894 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6895
7c16ec58
MT
6896 *nodemask = node_to_cpumask(i);
6897 cpus_and(*nodemask, *nodemask, *cpu_map);
6898 if (cpus_empty(*nodemask))
51888ca2
SV
6899 continue;
6900
6901 if (sg == NULL)
6902 continue;
6903 sg = sg->next;
6904next_sg:
6905 oldsg = sg;
6906 sg = sg->next;
6907 kfree(oldsg);
6908 if (oldsg != sched_group_nodes[i])
6909 goto next_sg;
6910 }
6911 kfree(sched_group_nodes);
6912 sched_group_nodes_bycpu[cpu] = NULL;
6913 }
51888ca2 6914}
6d6bc0ad 6915#else /* !CONFIG_NUMA */
7c16ec58 6916static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6917{
6918}
6d6bc0ad 6919#endif /* CONFIG_NUMA */
51888ca2 6920
89c4710e
SS
6921/*
6922 * Initialize sched groups cpu_power.
6923 *
6924 * cpu_power indicates the capacity of sched group, which is used while
6925 * distributing the load between different sched groups in a sched domain.
6926 * Typically cpu_power for all the groups in a sched domain will be same unless
6927 * there are asymmetries in the topology. If there are asymmetries, group
6928 * having more cpu_power will pickup more load compared to the group having
6929 * less cpu_power.
6930 *
6931 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6932 * the maximum number of tasks a group can handle in the presence of other idle
6933 * or lightly loaded groups in the same sched domain.
6934 */
6935static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6936{
6937 struct sched_domain *child;
6938 struct sched_group *group;
6939
6940 WARN_ON(!sd || !sd->groups);
6941
6942 if (cpu != first_cpu(sd->groups->cpumask))
6943 return;
6944
6945 child = sd->child;
6946
5517d86b
ED
6947 sd->groups->__cpu_power = 0;
6948
89c4710e
SS
6949 /*
6950 * For perf policy, if the groups in child domain share resources
6951 * (for example cores sharing some portions of the cache hierarchy
6952 * or SMT), then set this domain groups cpu_power such that each group
6953 * can handle only one task, when there are other idle groups in the
6954 * same sched domain.
6955 */
6956 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6957 (child->flags &
6958 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6959 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6960 return;
6961 }
6962
89c4710e
SS
6963 /*
6964 * add cpu_power of each child group to this groups cpu_power
6965 */
6966 group = child->groups;
6967 do {
5517d86b 6968 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6969 group = group->next;
6970 } while (group != child->groups);
6971}
6972
7c16ec58
MT
6973/*
6974 * Initializers for schedule domains
6975 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6976 */
6977
6978#define SD_INIT(sd, type) sd_init_##type(sd)
6979#define SD_INIT_FUNC(type) \
6980static noinline void sd_init_##type(struct sched_domain *sd) \
6981{ \
6982 memset(sd, 0, sizeof(*sd)); \
6983 *sd = SD_##type##_INIT; \
1d3504fc 6984 sd->level = SD_LV_##type; \
7c16ec58
MT
6985}
6986
6987SD_INIT_FUNC(CPU)
6988#ifdef CONFIG_NUMA
6989 SD_INIT_FUNC(ALLNODES)
6990 SD_INIT_FUNC(NODE)
6991#endif
6992#ifdef CONFIG_SCHED_SMT
6993 SD_INIT_FUNC(SIBLING)
6994#endif
6995#ifdef CONFIG_SCHED_MC
6996 SD_INIT_FUNC(MC)
6997#endif
6998
6999/*
7000 * To minimize stack usage kmalloc room for cpumasks and share the
7001 * space as the usage in build_sched_domains() dictates. Used only
7002 * if the amount of space is significant.
7003 */
7004struct allmasks {
7005 cpumask_t tmpmask; /* make this one first */
7006 union {
7007 cpumask_t nodemask;
7008 cpumask_t this_sibling_map;
7009 cpumask_t this_core_map;
7010 };
7011 cpumask_t send_covered;
7012
7013#ifdef CONFIG_NUMA
7014 cpumask_t domainspan;
7015 cpumask_t covered;
7016 cpumask_t notcovered;
7017#endif
7018};
7019
7020#if NR_CPUS > 128
7021#define SCHED_CPUMASK_ALLOC 1
7022#define SCHED_CPUMASK_FREE(v) kfree(v)
7023#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7024#else
7025#define SCHED_CPUMASK_ALLOC 0
7026#define SCHED_CPUMASK_FREE(v)
7027#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7028#endif
7029
7030#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7031 ((unsigned long)(a) + offsetof(struct allmasks, v))
7032
1d3504fc
HS
7033static int default_relax_domain_level = -1;
7034
7035static int __init setup_relax_domain_level(char *str)
7036{
30e0e178
LZ
7037 unsigned long val;
7038
7039 val = simple_strtoul(str, NULL, 0);
7040 if (val < SD_LV_MAX)
7041 default_relax_domain_level = val;
7042
1d3504fc
HS
7043 return 1;
7044}
7045__setup("relax_domain_level=", setup_relax_domain_level);
7046
7047static void set_domain_attribute(struct sched_domain *sd,
7048 struct sched_domain_attr *attr)
7049{
7050 int request;
7051
7052 if (!attr || attr->relax_domain_level < 0) {
7053 if (default_relax_domain_level < 0)
7054 return;
7055 else
7056 request = default_relax_domain_level;
7057 } else
7058 request = attr->relax_domain_level;
7059 if (request < sd->level) {
7060 /* turn off idle balance on this domain */
7061 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7062 } else {
7063 /* turn on idle balance on this domain */
7064 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7065 }
7066}
7067
1da177e4 7068/*
1a20ff27
DG
7069 * Build sched domains for a given set of cpus and attach the sched domains
7070 * to the individual cpus
1da177e4 7071 */
1d3504fc
HS
7072static int __build_sched_domains(const cpumask_t *cpu_map,
7073 struct sched_domain_attr *attr)
1da177e4
LT
7074{
7075 int i;
57d885fe 7076 struct root_domain *rd;
7c16ec58
MT
7077 SCHED_CPUMASK_DECLARE(allmasks);
7078 cpumask_t *tmpmask;
d1b55138
JH
7079#ifdef CONFIG_NUMA
7080 struct sched_group **sched_group_nodes = NULL;
6711cab4 7081 int sd_allnodes = 0;
d1b55138
JH
7082
7083 /*
7084 * Allocate the per-node list of sched groups
7085 */
5cf9f062 7086 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7087 GFP_KERNEL);
d1b55138
JH
7088 if (!sched_group_nodes) {
7089 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7090 return -ENOMEM;
d1b55138 7091 }
d1b55138 7092#endif
1da177e4 7093
dc938520 7094 rd = alloc_rootdomain();
57d885fe
GH
7095 if (!rd) {
7096 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7097#ifdef CONFIG_NUMA
7098 kfree(sched_group_nodes);
7099#endif
57d885fe
GH
7100 return -ENOMEM;
7101 }
7102
7c16ec58
MT
7103#if SCHED_CPUMASK_ALLOC
7104 /* get space for all scratch cpumask variables */
7105 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7106 if (!allmasks) {
7107 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7108 kfree(rd);
7109#ifdef CONFIG_NUMA
7110 kfree(sched_group_nodes);
7111#endif
7112 return -ENOMEM;
7113 }
7114#endif
7115 tmpmask = (cpumask_t *)allmasks;
7116
7117
7118#ifdef CONFIG_NUMA
7119 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7120#endif
7121
1da177e4 7122 /*
1a20ff27 7123 * Set up domains for cpus specified by the cpu_map.
1da177e4 7124 */
1a20ff27 7125 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7126 struct sched_domain *sd = NULL, *p;
7c16ec58 7127 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7128
7c16ec58
MT
7129 *nodemask = node_to_cpumask(cpu_to_node(i));
7130 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7131
7132#ifdef CONFIG_NUMA
dd41f596 7133 if (cpus_weight(*cpu_map) >
7c16ec58 7134 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7135 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7136 SD_INIT(sd, ALLNODES);
1d3504fc 7137 set_domain_attribute(sd, attr);
9c1cfda2 7138 sd->span = *cpu_map;
7c16ec58 7139 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7140 p = sd;
6711cab4 7141 sd_allnodes = 1;
9c1cfda2
JH
7142 } else
7143 p = NULL;
7144
1da177e4 7145 sd = &per_cpu(node_domains, i);
7c16ec58 7146 SD_INIT(sd, NODE);
1d3504fc 7147 set_domain_attribute(sd, attr);
4bdbaad3 7148 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7149 sd->parent = p;
1a848870
SS
7150 if (p)
7151 p->child = sd;
9c1cfda2 7152 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7153#endif
7154
7155 p = sd;
7156 sd = &per_cpu(phys_domains, i);
7c16ec58 7157 SD_INIT(sd, CPU);
1d3504fc 7158 set_domain_attribute(sd, attr);
7c16ec58 7159 sd->span = *nodemask;
1da177e4 7160 sd->parent = p;
1a848870
SS
7161 if (p)
7162 p->child = sd;
7c16ec58 7163 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7164
1e9f28fa
SS
7165#ifdef CONFIG_SCHED_MC
7166 p = sd;
7167 sd = &per_cpu(core_domains, i);
7c16ec58 7168 SD_INIT(sd, MC);
1d3504fc 7169 set_domain_attribute(sd, attr);
1e9f28fa
SS
7170 sd->span = cpu_coregroup_map(i);
7171 cpus_and(sd->span, sd->span, *cpu_map);
7172 sd->parent = p;
1a848870 7173 p->child = sd;
7c16ec58 7174 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7175#endif
7176
1da177e4
LT
7177#ifdef CONFIG_SCHED_SMT
7178 p = sd;
7179 sd = &per_cpu(cpu_domains, i);
7c16ec58 7180 SD_INIT(sd, SIBLING);
1d3504fc 7181 set_domain_attribute(sd, attr);
d5a7430d 7182 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7183 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7184 sd->parent = p;
1a848870 7185 p->child = sd;
7c16ec58 7186 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7187#endif
7188 }
7189
7190#ifdef CONFIG_SCHED_SMT
7191 /* Set up CPU (sibling) groups */
9c1cfda2 7192 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7193 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7194 SCHED_CPUMASK_VAR(send_covered, allmasks);
7195
7196 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7197 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7198 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7199 continue;
7200
dd41f596 7201 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7202 &cpu_to_cpu_group,
7203 send_covered, tmpmask);
1da177e4
LT
7204 }
7205#endif
7206
1e9f28fa
SS
7207#ifdef CONFIG_SCHED_MC
7208 /* Set up multi-core groups */
7209 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7210 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7211 SCHED_CPUMASK_VAR(send_covered, allmasks);
7212
7213 *this_core_map = cpu_coregroup_map(i);
7214 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7215 if (i != first_cpu(*this_core_map))
1e9f28fa 7216 continue;
7c16ec58 7217
dd41f596 7218 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7219 &cpu_to_core_group,
7220 send_covered, tmpmask);
1e9f28fa
SS
7221 }
7222#endif
7223
1da177e4
LT
7224 /* Set up physical groups */
7225 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7226 SCHED_CPUMASK_VAR(nodemask, allmasks);
7227 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7228
7c16ec58
MT
7229 *nodemask = node_to_cpumask(i);
7230 cpus_and(*nodemask, *nodemask, *cpu_map);
7231 if (cpus_empty(*nodemask))
1da177e4
LT
7232 continue;
7233
7c16ec58
MT
7234 init_sched_build_groups(nodemask, cpu_map,
7235 &cpu_to_phys_group,
7236 send_covered, tmpmask);
1da177e4
LT
7237 }
7238
7239#ifdef CONFIG_NUMA
7240 /* Set up node groups */
7c16ec58
MT
7241 if (sd_allnodes) {
7242 SCHED_CPUMASK_VAR(send_covered, allmasks);
7243
7244 init_sched_build_groups(cpu_map, cpu_map,
7245 &cpu_to_allnodes_group,
7246 send_covered, tmpmask);
7247 }
9c1cfda2
JH
7248
7249 for (i = 0; i < MAX_NUMNODES; i++) {
7250 /* Set up node groups */
7251 struct sched_group *sg, *prev;
7c16ec58
MT
7252 SCHED_CPUMASK_VAR(nodemask, allmasks);
7253 SCHED_CPUMASK_VAR(domainspan, allmasks);
7254 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7255 int j;
7256
7c16ec58
MT
7257 *nodemask = node_to_cpumask(i);
7258 cpus_clear(*covered);
7259
7260 cpus_and(*nodemask, *nodemask, *cpu_map);
7261 if (cpus_empty(*nodemask)) {
d1b55138 7262 sched_group_nodes[i] = NULL;
9c1cfda2 7263 continue;
d1b55138 7264 }
9c1cfda2 7265
4bdbaad3 7266 sched_domain_node_span(i, domainspan);
7c16ec58 7267 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7268
15f0b676 7269 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7270 if (!sg) {
7271 printk(KERN_WARNING "Can not alloc domain group for "
7272 "node %d\n", i);
7273 goto error;
7274 }
9c1cfda2 7275 sched_group_nodes[i] = sg;
7c16ec58 7276 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7277 struct sched_domain *sd;
9761eea8 7278
9c1cfda2
JH
7279 sd = &per_cpu(node_domains, j);
7280 sd->groups = sg;
9c1cfda2 7281 }
5517d86b 7282 sg->__cpu_power = 0;
7c16ec58 7283 sg->cpumask = *nodemask;
51888ca2 7284 sg->next = sg;
7c16ec58 7285 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7286 prev = sg;
7287
7288 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7289 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7290 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7291 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7292
7c16ec58
MT
7293 cpus_complement(*notcovered, *covered);
7294 cpus_and(*tmpmask, *notcovered, *cpu_map);
7295 cpus_and(*tmpmask, *tmpmask, *domainspan);
7296 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7297 break;
7298
7c16ec58
MT
7299 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7300 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7301 continue;
7302
15f0b676
SV
7303 sg = kmalloc_node(sizeof(struct sched_group),
7304 GFP_KERNEL, i);
9c1cfda2
JH
7305 if (!sg) {
7306 printk(KERN_WARNING
7307 "Can not alloc domain group for node %d\n", j);
51888ca2 7308 goto error;
9c1cfda2 7309 }
5517d86b 7310 sg->__cpu_power = 0;
7c16ec58 7311 sg->cpumask = *tmpmask;
51888ca2 7312 sg->next = prev->next;
7c16ec58 7313 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7314 prev->next = sg;
7315 prev = sg;
7316 }
9c1cfda2 7317 }
1da177e4
LT
7318#endif
7319
7320 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7321#ifdef CONFIG_SCHED_SMT
1a20ff27 7322 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7323 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7324
89c4710e 7325 init_sched_groups_power(i, sd);
5c45bf27 7326 }
1da177e4 7327#endif
1e9f28fa 7328#ifdef CONFIG_SCHED_MC
5c45bf27 7329 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7330 struct sched_domain *sd = &per_cpu(core_domains, i);
7331
89c4710e 7332 init_sched_groups_power(i, sd);
5c45bf27
SS
7333 }
7334#endif
1e9f28fa 7335
5c45bf27 7336 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7337 struct sched_domain *sd = &per_cpu(phys_domains, i);
7338
89c4710e 7339 init_sched_groups_power(i, sd);
1da177e4
LT
7340 }
7341
9c1cfda2 7342#ifdef CONFIG_NUMA
08069033
SS
7343 for (i = 0; i < MAX_NUMNODES; i++)
7344 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7345
6711cab4
SS
7346 if (sd_allnodes) {
7347 struct sched_group *sg;
f712c0c7 7348
7c16ec58
MT
7349 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7350 tmpmask);
f712c0c7
SS
7351 init_numa_sched_groups_power(sg);
7352 }
9c1cfda2
JH
7353#endif
7354
1da177e4 7355 /* Attach the domains */
1a20ff27 7356 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7357 struct sched_domain *sd;
7358#ifdef CONFIG_SCHED_SMT
7359 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7360#elif defined(CONFIG_SCHED_MC)
7361 sd = &per_cpu(core_domains, i);
1da177e4
LT
7362#else
7363 sd = &per_cpu(phys_domains, i);
7364#endif
57d885fe 7365 cpu_attach_domain(sd, rd, i);
1da177e4 7366 }
51888ca2 7367
7c16ec58 7368 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7369 return 0;
7370
a616058b 7371#ifdef CONFIG_NUMA
51888ca2 7372error:
7c16ec58
MT
7373 free_sched_groups(cpu_map, tmpmask);
7374 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7375 return -ENOMEM;
a616058b 7376#endif
1da177e4 7377}
029190c5 7378
1d3504fc
HS
7379static int build_sched_domains(const cpumask_t *cpu_map)
7380{
7381 return __build_sched_domains(cpu_map, NULL);
7382}
7383
029190c5
PJ
7384static cpumask_t *doms_cur; /* current sched domains */
7385static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7386static struct sched_domain_attr *dattr_cur;
7387 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7388
7389/*
7390 * Special case: If a kmalloc of a doms_cur partition (array of
7391 * cpumask_t) fails, then fallback to a single sched domain,
7392 * as determined by the single cpumask_t fallback_doms.
7393 */
7394static cpumask_t fallback_doms;
7395
22e52b07
HC
7396void __attribute__((weak)) arch_update_cpu_topology(void)
7397{
7398}
7399
5c8e1ed1
MK
7400/*
7401 * Free current domain masks.
7402 * Called after all cpus are attached to NULL domain.
7403 */
7404static void free_sched_domains(void)
7405{
7406 ndoms_cur = 0;
7407 if (doms_cur != &fallback_doms)
7408 kfree(doms_cur);
7409 doms_cur = &fallback_doms;
7410}
7411
1a20ff27 7412/*
41a2d6cf 7413 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7414 * For now this just excludes isolated cpus, but could be used to
7415 * exclude other special cases in the future.
1a20ff27 7416 */
51888ca2 7417static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7418{
7378547f
MM
7419 int err;
7420
22e52b07 7421 arch_update_cpu_topology();
029190c5
PJ
7422 ndoms_cur = 1;
7423 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7424 if (!doms_cur)
7425 doms_cur = &fallback_doms;
7426 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7427 dattr_cur = NULL;
7378547f 7428 err = build_sched_domains(doms_cur);
6382bc90 7429 register_sched_domain_sysctl();
7378547f
MM
7430
7431 return err;
1a20ff27
DG
7432}
7433
7c16ec58
MT
7434static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7435 cpumask_t *tmpmask)
1da177e4 7436{
7c16ec58 7437 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7438}
1da177e4 7439
1a20ff27
DG
7440/*
7441 * Detach sched domains from a group of cpus specified in cpu_map
7442 * These cpus will now be attached to the NULL domain
7443 */
858119e1 7444static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7445{
7c16ec58 7446 cpumask_t tmpmask;
1a20ff27
DG
7447 int i;
7448
6382bc90
MM
7449 unregister_sched_domain_sysctl();
7450
1a20ff27 7451 for_each_cpu_mask(i, *cpu_map)
57d885fe 7452 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7453 synchronize_sched();
7c16ec58 7454 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7455}
7456
1d3504fc
HS
7457/* handle null as "default" */
7458static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7459 struct sched_domain_attr *new, int idx_new)
7460{
7461 struct sched_domain_attr tmp;
7462
7463 /* fast path */
7464 if (!new && !cur)
7465 return 1;
7466
7467 tmp = SD_ATTR_INIT;
7468 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7469 new ? (new + idx_new) : &tmp,
7470 sizeof(struct sched_domain_attr));
7471}
7472
029190c5
PJ
7473/*
7474 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7475 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7476 * doms_new[] to the current sched domain partitioning, doms_cur[].
7477 * It destroys each deleted domain and builds each new domain.
7478 *
7479 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7480 * The masks don't intersect (don't overlap.) We should setup one
7481 * sched domain for each mask. CPUs not in any of the cpumasks will
7482 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7483 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7484 * it as it is.
7485 *
41a2d6cf
IM
7486 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7487 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7488 * failed the kmalloc call, then it can pass in doms_new == NULL,
7489 * and partition_sched_domains() will fallback to the single partition
7490 * 'fallback_doms'.
7491 *
7492 * Call with hotplug lock held
7493 */
1d3504fc
HS
7494void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7495 struct sched_domain_attr *dattr_new)
029190c5
PJ
7496{
7497 int i, j;
7498
712555ee 7499 mutex_lock(&sched_domains_mutex);
a1835615 7500
7378547f
MM
7501 /* always unregister in case we don't destroy any domains */
7502 unregister_sched_domain_sysctl();
7503
029190c5
PJ
7504 if (doms_new == NULL) {
7505 ndoms_new = 1;
7506 doms_new = &fallback_doms;
7507 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7508 dattr_new = NULL;
029190c5
PJ
7509 }
7510
7511 /* Destroy deleted domains */
7512 for (i = 0; i < ndoms_cur; i++) {
7513 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7514 if (cpus_equal(doms_cur[i], doms_new[j])
7515 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7516 goto match1;
7517 }
7518 /* no match - a current sched domain not in new doms_new[] */
7519 detach_destroy_domains(doms_cur + i);
7520match1:
7521 ;
7522 }
7523
7524 /* Build new domains */
7525 for (i = 0; i < ndoms_new; i++) {
7526 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7527 if (cpus_equal(doms_new[i], doms_cur[j])
7528 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7529 goto match2;
7530 }
7531 /* no match - add a new doms_new */
1d3504fc
HS
7532 __build_sched_domains(doms_new + i,
7533 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7534match2:
7535 ;
7536 }
7537
7538 /* Remember the new sched domains */
7539 if (doms_cur != &fallback_doms)
7540 kfree(doms_cur);
1d3504fc 7541 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7542 doms_cur = doms_new;
1d3504fc 7543 dattr_cur = dattr_new;
029190c5 7544 ndoms_cur = ndoms_new;
7378547f
MM
7545
7546 register_sched_domain_sysctl();
a1835615 7547
712555ee 7548 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7549}
7550
5c45bf27 7551#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7552int arch_reinit_sched_domains(void)
5c45bf27
SS
7553{
7554 int err;
7555
95402b38 7556 get_online_cpus();
712555ee 7557 mutex_lock(&sched_domains_mutex);
5c45bf27 7558 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7559 free_sched_domains();
5c45bf27 7560 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7561 mutex_unlock(&sched_domains_mutex);
95402b38 7562 put_online_cpus();
5c45bf27
SS
7563
7564 return err;
7565}
7566
7567static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7568{
7569 int ret;
7570
7571 if (buf[0] != '0' && buf[0] != '1')
7572 return -EINVAL;
7573
7574 if (smt)
7575 sched_smt_power_savings = (buf[0] == '1');
7576 else
7577 sched_mc_power_savings = (buf[0] == '1');
7578
7579 ret = arch_reinit_sched_domains();
7580
7581 return ret ? ret : count;
7582}
7583
5c45bf27
SS
7584#ifdef CONFIG_SCHED_MC
7585static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7586{
7587 return sprintf(page, "%u\n", sched_mc_power_savings);
7588}
48f24c4d
IM
7589static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7590 const char *buf, size_t count)
5c45bf27
SS
7591{
7592 return sched_power_savings_store(buf, count, 0);
7593}
6707de00
AB
7594static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7595 sched_mc_power_savings_store);
5c45bf27
SS
7596#endif
7597
7598#ifdef CONFIG_SCHED_SMT
7599static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7600{
7601 return sprintf(page, "%u\n", sched_smt_power_savings);
7602}
48f24c4d
IM
7603static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7604 const char *buf, size_t count)
5c45bf27
SS
7605{
7606 return sched_power_savings_store(buf, count, 1);
7607}
6707de00
AB
7608static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7609 sched_smt_power_savings_store);
7610#endif
7611
7612int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7613{
7614 int err = 0;
7615
7616#ifdef CONFIG_SCHED_SMT
7617 if (smt_capable())
7618 err = sysfs_create_file(&cls->kset.kobj,
7619 &attr_sched_smt_power_savings.attr);
7620#endif
7621#ifdef CONFIG_SCHED_MC
7622 if (!err && mc_capable())
7623 err = sysfs_create_file(&cls->kset.kobj,
7624 &attr_sched_mc_power_savings.attr);
7625#endif
7626 return err;
7627}
6d6bc0ad 7628#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7629
1da177e4 7630/*
41a2d6cf 7631 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7632 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7633 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7634 * which will prevent rebalancing while the sched domains are recalculated.
7635 */
7636static int update_sched_domains(struct notifier_block *nfb,
7637 unsigned long action, void *hcpu)
7638{
7def2be1
PZ
7639 int cpu = (int)(long)hcpu;
7640
1da177e4 7641 switch (action) {
1da177e4 7642 case CPU_DOWN_PREPARE:
8bb78442 7643 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7644 disable_runtime(cpu_rq(cpu));
7645 /* fall-through */
7646 case CPU_UP_PREPARE:
7647 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7648 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7649 free_sched_domains();
1da177e4
LT
7650 return NOTIFY_OK;
7651
7def2be1 7652
1da177e4 7653 case CPU_DOWN_FAILED:
8bb78442 7654 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7655 case CPU_ONLINE:
8bb78442 7656 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7657 enable_runtime(cpu_rq(cpu));
7658 /* fall-through */
7659 case CPU_UP_CANCELED:
7660 case CPU_UP_CANCELED_FROZEN:
1da177e4 7661 case CPU_DEAD:
8bb78442 7662 case CPU_DEAD_FROZEN:
1da177e4
LT
7663 /*
7664 * Fall through and re-initialise the domains.
7665 */
7666 break;
7667 default:
7668 return NOTIFY_DONE;
7669 }
7670
5c8e1ed1
MK
7671#ifndef CONFIG_CPUSETS
7672 /*
7673 * Create default domain partitioning if cpusets are disabled.
7674 * Otherwise we let cpusets rebuild the domains based on the
7675 * current setup.
7676 */
7677
1da177e4 7678 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7679 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7680#endif
1da177e4
LT
7681
7682 return NOTIFY_OK;
7683}
1da177e4
LT
7684
7685void __init sched_init_smp(void)
7686{
5c1e1767
NP
7687 cpumask_t non_isolated_cpus;
7688
434d53b0
MT
7689#if defined(CONFIG_NUMA)
7690 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7691 GFP_KERNEL);
7692 BUG_ON(sched_group_nodes_bycpu == NULL);
7693#endif
95402b38 7694 get_online_cpus();
712555ee 7695 mutex_lock(&sched_domains_mutex);
1a20ff27 7696 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7697 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7698 if (cpus_empty(non_isolated_cpus))
7699 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7700 mutex_unlock(&sched_domains_mutex);
95402b38 7701 put_online_cpus();
1da177e4
LT
7702 /* XXX: Theoretical race here - CPU may be hotplugged now */
7703 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7704 init_hrtick();
5c1e1767
NP
7705
7706 /* Move init over to a non-isolated CPU */
7c16ec58 7707 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7708 BUG();
19978ca6 7709 sched_init_granularity();
1da177e4
LT
7710}
7711#else
7712void __init sched_init_smp(void)
7713{
19978ca6 7714 sched_init_granularity();
1da177e4
LT
7715}
7716#endif /* CONFIG_SMP */
7717
7718int in_sched_functions(unsigned long addr)
7719{
1da177e4
LT
7720 return in_lock_functions(addr) ||
7721 (addr >= (unsigned long)__sched_text_start
7722 && addr < (unsigned long)__sched_text_end);
7723}
7724
a9957449 7725static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7726{
7727 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7728 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7729#ifdef CONFIG_FAIR_GROUP_SCHED
7730 cfs_rq->rq = rq;
7731#endif
67e9fb2a 7732 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7733}
7734
fa85ae24
PZ
7735static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7736{
7737 struct rt_prio_array *array;
7738 int i;
7739
7740 array = &rt_rq->active;
7741 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7742 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7743 __clear_bit(i, array->bitmap);
7744 }
7745 /* delimiter for bitsearch: */
7746 __set_bit(MAX_RT_PRIO, array->bitmap);
7747
052f1dc7 7748#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7749 rt_rq->highest_prio = MAX_RT_PRIO;
7750#endif
fa85ae24
PZ
7751#ifdef CONFIG_SMP
7752 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7753 rt_rq->overloaded = 0;
7754#endif
7755
7756 rt_rq->rt_time = 0;
7757 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7758 rt_rq->rt_runtime = 0;
7759 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7760
052f1dc7 7761#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7762 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7763 rt_rq->rq = rq;
7764#endif
fa85ae24
PZ
7765}
7766
6f505b16 7767#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7768static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7769 struct sched_entity *se, int cpu, int add,
7770 struct sched_entity *parent)
6f505b16 7771{
ec7dc8ac 7772 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7773 tg->cfs_rq[cpu] = cfs_rq;
7774 init_cfs_rq(cfs_rq, rq);
7775 cfs_rq->tg = tg;
7776 if (add)
7777 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7778
7779 tg->se[cpu] = se;
354d60c2
DG
7780 /* se could be NULL for init_task_group */
7781 if (!se)
7782 return;
7783
ec7dc8ac
DG
7784 if (!parent)
7785 se->cfs_rq = &rq->cfs;
7786 else
7787 se->cfs_rq = parent->my_q;
7788
6f505b16
PZ
7789 se->my_q = cfs_rq;
7790 se->load.weight = tg->shares;
e05510d0 7791 se->load.inv_weight = 0;
ec7dc8ac 7792 se->parent = parent;
6f505b16 7793}
052f1dc7 7794#endif
6f505b16 7795
052f1dc7 7796#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7797static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7798 struct sched_rt_entity *rt_se, int cpu, int add,
7799 struct sched_rt_entity *parent)
6f505b16 7800{
ec7dc8ac
DG
7801 struct rq *rq = cpu_rq(cpu);
7802
6f505b16
PZ
7803 tg->rt_rq[cpu] = rt_rq;
7804 init_rt_rq(rt_rq, rq);
7805 rt_rq->tg = tg;
7806 rt_rq->rt_se = rt_se;
ac086bc2 7807 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7808 if (add)
7809 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7810
7811 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7812 if (!rt_se)
7813 return;
7814
ec7dc8ac
DG
7815 if (!parent)
7816 rt_se->rt_rq = &rq->rt;
7817 else
7818 rt_se->rt_rq = parent->my_q;
7819
6f505b16 7820 rt_se->my_q = rt_rq;
ec7dc8ac 7821 rt_se->parent = parent;
6f505b16
PZ
7822 INIT_LIST_HEAD(&rt_se->run_list);
7823}
7824#endif
7825
1da177e4
LT
7826void __init sched_init(void)
7827{
dd41f596 7828 int i, j;
434d53b0
MT
7829 unsigned long alloc_size = 0, ptr;
7830
7831#ifdef CONFIG_FAIR_GROUP_SCHED
7832 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7833#endif
7834#ifdef CONFIG_RT_GROUP_SCHED
7835 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7836#endif
7837#ifdef CONFIG_USER_SCHED
7838 alloc_size *= 2;
434d53b0
MT
7839#endif
7840 /*
7841 * As sched_init() is called before page_alloc is setup,
7842 * we use alloc_bootmem().
7843 */
7844 if (alloc_size) {
5a9d3225 7845 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7846
7847#ifdef CONFIG_FAIR_GROUP_SCHED
7848 init_task_group.se = (struct sched_entity **)ptr;
7849 ptr += nr_cpu_ids * sizeof(void **);
7850
7851 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7852 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7853
7854#ifdef CONFIG_USER_SCHED
7855 root_task_group.se = (struct sched_entity **)ptr;
7856 ptr += nr_cpu_ids * sizeof(void **);
7857
7858 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7859 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7860#endif /* CONFIG_USER_SCHED */
7861#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7862#ifdef CONFIG_RT_GROUP_SCHED
7863 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7864 ptr += nr_cpu_ids * sizeof(void **);
7865
7866 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7867 ptr += nr_cpu_ids * sizeof(void **);
7868
7869#ifdef CONFIG_USER_SCHED
7870 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7871 ptr += nr_cpu_ids * sizeof(void **);
7872
7873 root_task_group.rt_rq = (struct rt_rq **)ptr;
7874 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7875#endif /* CONFIG_USER_SCHED */
7876#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7877 }
dd41f596 7878
57d885fe
GH
7879#ifdef CONFIG_SMP
7880 init_defrootdomain();
7881#endif
7882
d0b27fa7
PZ
7883 init_rt_bandwidth(&def_rt_bandwidth,
7884 global_rt_period(), global_rt_runtime());
7885
7886#ifdef CONFIG_RT_GROUP_SCHED
7887 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7888 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7889#ifdef CONFIG_USER_SCHED
7890 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7891 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7892#endif /* CONFIG_USER_SCHED */
7893#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7894
052f1dc7 7895#ifdef CONFIG_GROUP_SCHED
6f505b16 7896 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7897 INIT_LIST_HEAD(&init_task_group.children);
7898
7899#ifdef CONFIG_USER_SCHED
7900 INIT_LIST_HEAD(&root_task_group.children);
7901 init_task_group.parent = &root_task_group;
7902 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7903#endif /* CONFIG_USER_SCHED */
7904#endif /* CONFIG_GROUP_SCHED */
6f505b16 7905
0a945022 7906 for_each_possible_cpu(i) {
70b97a7f 7907 struct rq *rq;
1da177e4
LT
7908
7909 rq = cpu_rq(i);
7910 spin_lock_init(&rq->lock);
fcb99371 7911 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7912 rq->nr_running = 0;
dd41f596 7913 init_cfs_rq(&rq->cfs, rq);
6f505b16 7914 init_rt_rq(&rq->rt, rq);
dd41f596 7915#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7916 init_task_group.shares = init_task_group_load;
6f505b16 7917 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7918#ifdef CONFIG_CGROUP_SCHED
7919 /*
7920 * How much cpu bandwidth does init_task_group get?
7921 *
7922 * In case of task-groups formed thr' the cgroup filesystem, it
7923 * gets 100% of the cpu resources in the system. This overall
7924 * system cpu resource is divided among the tasks of
7925 * init_task_group and its child task-groups in a fair manner,
7926 * based on each entity's (task or task-group's) weight
7927 * (se->load.weight).
7928 *
7929 * In other words, if init_task_group has 10 tasks of weight
7930 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7931 * then A0's share of the cpu resource is:
7932 *
7933 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7934 *
7935 * We achieve this by letting init_task_group's tasks sit
7936 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7937 */
ec7dc8ac 7938 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7939#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7940 root_task_group.shares = NICE_0_LOAD;
7941 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7942 /*
7943 * In case of task-groups formed thr' the user id of tasks,
7944 * init_task_group represents tasks belonging to root user.
7945 * Hence it forms a sibling of all subsequent groups formed.
7946 * In this case, init_task_group gets only a fraction of overall
7947 * system cpu resource, based on the weight assigned to root
7948 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7949 * by letting tasks of init_task_group sit in a separate cfs_rq
7950 * (init_cfs_rq) and having one entity represent this group of
7951 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7952 */
ec7dc8ac 7953 init_tg_cfs_entry(&init_task_group,
6f505b16 7954 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7955 &per_cpu(init_sched_entity, i), i, 1,
7956 root_task_group.se[i]);
6f505b16 7957
052f1dc7 7958#endif
354d60c2
DG
7959#endif /* CONFIG_FAIR_GROUP_SCHED */
7960
7961 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7962#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7963 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7964#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7965 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7966#elif defined CONFIG_USER_SCHED
eff766a6 7967 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7968 init_tg_rt_entry(&init_task_group,
6f505b16 7969 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7970 &per_cpu(init_sched_rt_entity, i), i, 1,
7971 root_task_group.rt_se[i]);
354d60c2 7972#endif
dd41f596 7973#endif
1da177e4 7974
dd41f596
IM
7975 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7976 rq->cpu_load[j] = 0;
1da177e4 7977#ifdef CONFIG_SMP
41c7ce9a 7978 rq->sd = NULL;
57d885fe 7979 rq->rd = NULL;
1da177e4 7980 rq->active_balance = 0;
dd41f596 7981 rq->next_balance = jiffies;
1da177e4 7982 rq->push_cpu = 0;
0a2966b4 7983 rq->cpu = i;
1f11eb6a 7984 rq->online = 0;
1da177e4
LT
7985 rq->migration_thread = NULL;
7986 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7987 rq_attach_root(rq, &def_root_domain);
1da177e4 7988#endif
8f4d37ec 7989 init_rq_hrtick(rq);
1da177e4 7990 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7991 }
7992
2dd73a4f 7993 set_load_weight(&init_task);
b50f60ce 7994
e107be36
AK
7995#ifdef CONFIG_PREEMPT_NOTIFIERS
7996 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7997#endif
7998
c9819f45
CL
7999#ifdef CONFIG_SMP
8000 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8001#endif
8002
b50f60ce
HC
8003#ifdef CONFIG_RT_MUTEXES
8004 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8005#endif
8006
1da177e4
LT
8007 /*
8008 * The boot idle thread does lazy MMU switching as well:
8009 */
8010 atomic_inc(&init_mm.mm_count);
8011 enter_lazy_tlb(&init_mm, current);
8012
8013 /*
8014 * Make us the idle thread. Technically, schedule() should not be
8015 * called from this thread, however somewhere below it might be,
8016 * but because we are the idle thread, we just pick up running again
8017 * when this runqueue becomes "idle".
8018 */
8019 init_idle(current, smp_processor_id());
dd41f596
IM
8020 /*
8021 * During early bootup we pretend to be a normal task:
8022 */
8023 current->sched_class = &fair_sched_class;
6892b75e
IM
8024
8025 scheduler_running = 1;
1da177e4
LT
8026}
8027
8028#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8029void __might_sleep(char *file, int line)
8030{
48f24c4d 8031#ifdef in_atomic
1da177e4
LT
8032 static unsigned long prev_jiffy; /* ratelimiting */
8033
8034 if ((in_atomic() || irqs_disabled()) &&
8035 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8036 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8037 return;
8038 prev_jiffy = jiffies;
91368d73 8039 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8040 " context at %s:%d\n", file, line);
8041 printk("in_atomic():%d, irqs_disabled():%d\n",
8042 in_atomic(), irqs_disabled());
a4c410f0 8043 debug_show_held_locks(current);
3117df04
IM
8044 if (irqs_disabled())
8045 print_irqtrace_events(current);
1da177e4
LT
8046 dump_stack();
8047 }
8048#endif
8049}
8050EXPORT_SYMBOL(__might_sleep);
8051#endif
8052
8053#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8054static void normalize_task(struct rq *rq, struct task_struct *p)
8055{
8056 int on_rq;
3e51f33f 8057
3a5e4dc1
AK
8058 update_rq_clock(rq);
8059 on_rq = p->se.on_rq;
8060 if (on_rq)
8061 deactivate_task(rq, p, 0);
8062 __setscheduler(rq, p, SCHED_NORMAL, 0);
8063 if (on_rq) {
8064 activate_task(rq, p, 0);
8065 resched_task(rq->curr);
8066 }
8067}
8068
1da177e4
LT
8069void normalize_rt_tasks(void)
8070{
a0f98a1c 8071 struct task_struct *g, *p;
1da177e4 8072 unsigned long flags;
70b97a7f 8073 struct rq *rq;
1da177e4 8074
4cf5d77a 8075 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8076 do_each_thread(g, p) {
178be793
IM
8077 /*
8078 * Only normalize user tasks:
8079 */
8080 if (!p->mm)
8081 continue;
8082
6cfb0d5d 8083 p->se.exec_start = 0;
6cfb0d5d 8084#ifdef CONFIG_SCHEDSTATS
dd41f596 8085 p->se.wait_start = 0;
dd41f596 8086 p->se.sleep_start = 0;
dd41f596 8087 p->se.block_start = 0;
6cfb0d5d 8088#endif
dd41f596
IM
8089
8090 if (!rt_task(p)) {
8091 /*
8092 * Renice negative nice level userspace
8093 * tasks back to 0:
8094 */
8095 if (TASK_NICE(p) < 0 && p->mm)
8096 set_user_nice(p, 0);
1da177e4 8097 continue;
dd41f596 8098 }
1da177e4 8099
4cf5d77a 8100 spin_lock(&p->pi_lock);
b29739f9 8101 rq = __task_rq_lock(p);
1da177e4 8102
178be793 8103 normalize_task(rq, p);
3a5e4dc1 8104
b29739f9 8105 __task_rq_unlock(rq);
4cf5d77a 8106 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8107 } while_each_thread(g, p);
8108
4cf5d77a 8109 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8110}
8111
8112#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8113
8114#ifdef CONFIG_IA64
8115/*
8116 * These functions are only useful for the IA64 MCA handling.
8117 *
8118 * They can only be called when the whole system has been
8119 * stopped - every CPU needs to be quiescent, and no scheduling
8120 * activity can take place. Using them for anything else would
8121 * be a serious bug, and as a result, they aren't even visible
8122 * under any other configuration.
8123 */
8124
8125/**
8126 * curr_task - return the current task for a given cpu.
8127 * @cpu: the processor in question.
8128 *
8129 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8130 */
36c8b586 8131struct task_struct *curr_task(int cpu)
1df5c10a
LT
8132{
8133 return cpu_curr(cpu);
8134}
8135
8136/**
8137 * set_curr_task - set the current task for a given cpu.
8138 * @cpu: the processor in question.
8139 * @p: the task pointer to set.
8140 *
8141 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8142 * are serviced on a separate stack. It allows the architecture to switch the
8143 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8144 * must be called with all CPU's synchronized, and interrupts disabled, the
8145 * and caller must save the original value of the current task (see
8146 * curr_task() above) and restore that value before reenabling interrupts and
8147 * re-starting the system.
8148 *
8149 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8150 */
36c8b586 8151void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8152{
8153 cpu_curr(cpu) = p;
8154}
8155
8156#endif
29f59db3 8157
bccbe08a
PZ
8158#ifdef CONFIG_FAIR_GROUP_SCHED
8159static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8160{
8161 int i;
8162
8163 for_each_possible_cpu(i) {
8164 if (tg->cfs_rq)
8165 kfree(tg->cfs_rq[i]);
8166 if (tg->se)
8167 kfree(tg->se[i]);
6f505b16
PZ
8168 }
8169
8170 kfree(tg->cfs_rq);
8171 kfree(tg->se);
6f505b16
PZ
8172}
8173
ec7dc8ac
DG
8174static
8175int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8176{
29f59db3 8177 struct cfs_rq *cfs_rq;
ec7dc8ac 8178 struct sched_entity *se, *parent_se;
9b5b7751 8179 struct rq *rq;
29f59db3
SV
8180 int i;
8181
434d53b0 8182 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8183 if (!tg->cfs_rq)
8184 goto err;
434d53b0 8185 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8186 if (!tg->se)
8187 goto err;
052f1dc7
PZ
8188
8189 tg->shares = NICE_0_LOAD;
29f59db3
SV
8190
8191 for_each_possible_cpu(i) {
9b5b7751 8192 rq = cpu_rq(i);
29f59db3 8193
6f505b16
PZ
8194 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8195 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8196 if (!cfs_rq)
8197 goto err;
8198
6f505b16
PZ
8199 se = kmalloc_node(sizeof(struct sched_entity),
8200 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8201 if (!se)
8202 goto err;
8203
ec7dc8ac
DG
8204 parent_se = parent ? parent->se[i] : NULL;
8205 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8206 }
8207
8208 return 1;
8209
8210 err:
8211 return 0;
8212}
8213
8214static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8215{
8216 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8217 &cpu_rq(cpu)->leaf_cfs_rq_list);
8218}
8219
8220static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8221{
8222 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8223}
6d6bc0ad 8224#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8225static inline void free_fair_sched_group(struct task_group *tg)
8226{
8227}
8228
ec7dc8ac
DG
8229static inline
8230int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8231{
8232 return 1;
8233}
8234
8235static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8236{
8237}
8238
8239static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8240{
8241}
6d6bc0ad 8242#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8243
8244#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8245static void free_rt_sched_group(struct task_group *tg)
8246{
8247 int i;
8248
d0b27fa7
PZ
8249 destroy_rt_bandwidth(&tg->rt_bandwidth);
8250
bccbe08a
PZ
8251 for_each_possible_cpu(i) {
8252 if (tg->rt_rq)
8253 kfree(tg->rt_rq[i]);
8254 if (tg->rt_se)
8255 kfree(tg->rt_se[i]);
8256 }
8257
8258 kfree(tg->rt_rq);
8259 kfree(tg->rt_se);
8260}
8261
ec7dc8ac
DG
8262static
8263int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8264{
8265 struct rt_rq *rt_rq;
ec7dc8ac 8266 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8267 struct rq *rq;
8268 int i;
8269
434d53b0 8270 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8271 if (!tg->rt_rq)
8272 goto err;
434d53b0 8273 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8274 if (!tg->rt_se)
8275 goto err;
8276
d0b27fa7
PZ
8277 init_rt_bandwidth(&tg->rt_bandwidth,
8278 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8279
8280 for_each_possible_cpu(i) {
8281 rq = cpu_rq(i);
8282
6f505b16
PZ
8283 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8284 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8285 if (!rt_rq)
8286 goto err;
29f59db3 8287
6f505b16
PZ
8288 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8289 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8290 if (!rt_se)
8291 goto err;
29f59db3 8292
ec7dc8ac
DG
8293 parent_se = parent ? parent->rt_se[i] : NULL;
8294 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8295 }
8296
bccbe08a
PZ
8297 return 1;
8298
8299 err:
8300 return 0;
8301}
8302
8303static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8304{
8305 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8306 &cpu_rq(cpu)->leaf_rt_rq_list);
8307}
8308
8309static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8310{
8311 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8312}
6d6bc0ad 8313#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8314static inline void free_rt_sched_group(struct task_group *tg)
8315{
8316}
8317
ec7dc8ac
DG
8318static inline
8319int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8320{
8321 return 1;
8322}
8323
8324static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8325{
8326}
8327
8328static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8329{
8330}
6d6bc0ad 8331#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8332
d0b27fa7 8333#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8334static void free_sched_group(struct task_group *tg)
8335{
8336 free_fair_sched_group(tg);
8337 free_rt_sched_group(tg);
8338 kfree(tg);
8339}
8340
8341/* allocate runqueue etc for a new task group */
ec7dc8ac 8342struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8343{
8344 struct task_group *tg;
8345 unsigned long flags;
8346 int i;
8347
8348 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8349 if (!tg)
8350 return ERR_PTR(-ENOMEM);
8351
ec7dc8ac 8352 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8353 goto err;
8354
ec7dc8ac 8355 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8356 goto err;
8357
8ed36996 8358 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8359 for_each_possible_cpu(i) {
bccbe08a
PZ
8360 register_fair_sched_group(tg, i);
8361 register_rt_sched_group(tg, i);
9b5b7751 8362 }
6f505b16 8363 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8364
8365 WARN_ON(!parent); /* root should already exist */
8366
8367 tg->parent = parent;
8368 list_add_rcu(&tg->siblings, &parent->children);
8369 INIT_LIST_HEAD(&tg->children);
8ed36996 8370 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8371
9b5b7751 8372 return tg;
29f59db3
SV
8373
8374err:
6f505b16 8375 free_sched_group(tg);
29f59db3
SV
8376 return ERR_PTR(-ENOMEM);
8377}
8378
9b5b7751 8379/* rcu callback to free various structures associated with a task group */
6f505b16 8380static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8381{
29f59db3 8382 /* now it should be safe to free those cfs_rqs */
6f505b16 8383 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8384}
8385
9b5b7751 8386/* Destroy runqueue etc associated with a task group */
4cf86d77 8387void sched_destroy_group(struct task_group *tg)
29f59db3 8388{
8ed36996 8389 unsigned long flags;
9b5b7751 8390 int i;
29f59db3 8391
8ed36996 8392 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8393 for_each_possible_cpu(i) {
bccbe08a
PZ
8394 unregister_fair_sched_group(tg, i);
8395 unregister_rt_sched_group(tg, i);
9b5b7751 8396 }
6f505b16 8397 list_del_rcu(&tg->list);
f473aa5e 8398 list_del_rcu(&tg->siblings);
8ed36996 8399 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8400
9b5b7751 8401 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8402 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8403}
8404
9b5b7751 8405/* change task's runqueue when it moves between groups.
3a252015
IM
8406 * The caller of this function should have put the task in its new group
8407 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8408 * reflect its new group.
9b5b7751
SV
8409 */
8410void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8411{
8412 int on_rq, running;
8413 unsigned long flags;
8414 struct rq *rq;
8415
8416 rq = task_rq_lock(tsk, &flags);
8417
29f59db3
SV
8418 update_rq_clock(rq);
8419
051a1d1a 8420 running = task_current(rq, tsk);
29f59db3
SV
8421 on_rq = tsk->se.on_rq;
8422
0e1f3483 8423 if (on_rq)
29f59db3 8424 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8425 if (unlikely(running))
8426 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8427
6f505b16 8428 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8429
810b3817
PZ
8430#ifdef CONFIG_FAIR_GROUP_SCHED
8431 if (tsk->sched_class->moved_group)
8432 tsk->sched_class->moved_group(tsk);
8433#endif
8434
0e1f3483
HS
8435 if (unlikely(running))
8436 tsk->sched_class->set_curr_task(rq);
8437 if (on_rq)
7074badb 8438 enqueue_task(rq, tsk, 0);
29f59db3 8439
29f59db3
SV
8440 task_rq_unlock(rq, &flags);
8441}
6d6bc0ad 8442#endif /* CONFIG_GROUP_SCHED */
29f59db3 8443
052f1dc7 8444#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8445static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8446{
8447 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8448 int on_rq;
8449
29f59db3 8450 on_rq = se->on_rq;
62fb1851 8451 if (on_rq)
29f59db3
SV
8452 dequeue_entity(cfs_rq, se, 0);
8453
8454 se->load.weight = shares;
e05510d0 8455 se->load.inv_weight = 0;
29f59db3 8456
62fb1851 8457 if (on_rq)
29f59db3 8458 enqueue_entity(cfs_rq, se, 0);
c09595f6 8459}
62fb1851 8460
c09595f6
PZ
8461static void set_se_shares(struct sched_entity *se, unsigned long shares)
8462{
8463 struct cfs_rq *cfs_rq = se->cfs_rq;
8464 struct rq *rq = cfs_rq->rq;
8465 unsigned long flags;
8466
8467 spin_lock_irqsave(&rq->lock, flags);
8468 __set_se_shares(se, shares);
8469 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8470}
8471
8ed36996
PZ
8472static DEFINE_MUTEX(shares_mutex);
8473
4cf86d77 8474int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8475{
8476 int i;
8ed36996 8477 unsigned long flags;
c61935fd 8478
ec7dc8ac
DG
8479 /*
8480 * We can't change the weight of the root cgroup.
8481 */
8482 if (!tg->se[0])
8483 return -EINVAL;
8484
18d95a28
PZ
8485 if (shares < MIN_SHARES)
8486 shares = MIN_SHARES;
cb4ad1ff
MX
8487 else if (shares > MAX_SHARES)
8488 shares = MAX_SHARES;
62fb1851 8489
8ed36996 8490 mutex_lock(&shares_mutex);
9b5b7751 8491 if (tg->shares == shares)
5cb350ba 8492 goto done;
29f59db3 8493
8ed36996 8494 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8495 for_each_possible_cpu(i)
8496 unregister_fair_sched_group(tg, i);
f473aa5e 8497 list_del_rcu(&tg->siblings);
8ed36996 8498 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8499
8500 /* wait for any ongoing reference to this group to finish */
8501 synchronize_sched();
8502
8503 /*
8504 * Now we are free to modify the group's share on each cpu
8505 * w/o tripping rebalance_share or load_balance_fair.
8506 */
9b5b7751 8507 tg->shares = shares;
c09595f6
PZ
8508 for_each_possible_cpu(i) {
8509 /*
8510 * force a rebalance
8511 */
8512 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8513 set_se_shares(tg->se[i], shares);
c09595f6 8514 }
29f59db3 8515
6b2d7700
SV
8516 /*
8517 * Enable load balance activity on this group, by inserting it back on
8518 * each cpu's rq->leaf_cfs_rq_list.
8519 */
8ed36996 8520 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8521 for_each_possible_cpu(i)
8522 register_fair_sched_group(tg, i);
f473aa5e 8523 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8524 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8525done:
8ed36996 8526 mutex_unlock(&shares_mutex);
9b5b7751 8527 return 0;
29f59db3
SV
8528}
8529
5cb350ba
DG
8530unsigned long sched_group_shares(struct task_group *tg)
8531{
8532 return tg->shares;
8533}
052f1dc7 8534#endif
5cb350ba 8535
052f1dc7 8536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8537/*
9f0c1e56 8538 * Ensure that the real time constraints are schedulable.
6f505b16 8539 */
9f0c1e56
PZ
8540static DEFINE_MUTEX(rt_constraints_mutex);
8541
8542static unsigned long to_ratio(u64 period, u64 runtime)
8543{
8544 if (runtime == RUNTIME_INF)
8545 return 1ULL << 16;
8546
6f6d6a1a 8547 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8548}
8549
b40b2e8e
PZ
8550#ifdef CONFIG_CGROUP_SCHED
8551static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8552{
10b612f4 8553 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8554 unsigned long total = 0;
8555
8556 if (!parent) {
8557 if (global_rt_period() < period)
8558 return 0;
8559
8560 return to_ratio(period, runtime) <
8561 to_ratio(global_rt_period(), global_rt_runtime());
8562 }
8563
8564 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8565 return 0;
8566
8567 rcu_read_lock();
8568 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8569 if (tgi == tg)
8570 continue;
8571
8572 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8573 tgi->rt_bandwidth.rt_runtime);
8574 }
8575 rcu_read_unlock();
8576
10b612f4 8577 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8578 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8579 parent->rt_bandwidth.rt_runtime);
8580}
8581#elif defined CONFIG_USER_SCHED
9f0c1e56 8582static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8583{
8584 struct task_group *tgi;
8585 unsigned long total = 0;
9f0c1e56 8586 unsigned long global_ratio =
d0b27fa7 8587 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8588
8589 rcu_read_lock();
9f0c1e56
PZ
8590 list_for_each_entry_rcu(tgi, &task_groups, list) {
8591 if (tgi == tg)
8592 continue;
6f505b16 8593
d0b27fa7
PZ
8594 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8595 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8596 }
8597 rcu_read_unlock();
6f505b16 8598
9f0c1e56 8599 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8600}
b40b2e8e 8601#endif
6f505b16 8602
521f1a24
DG
8603/* Must be called with tasklist_lock held */
8604static inline int tg_has_rt_tasks(struct task_group *tg)
8605{
8606 struct task_struct *g, *p;
8607 do_each_thread(g, p) {
8608 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8609 return 1;
8610 } while_each_thread(g, p);
8611 return 0;
8612}
8613
d0b27fa7
PZ
8614static int tg_set_bandwidth(struct task_group *tg,
8615 u64 rt_period, u64 rt_runtime)
6f505b16 8616{
ac086bc2 8617 int i, err = 0;
9f0c1e56 8618
9f0c1e56 8619 mutex_lock(&rt_constraints_mutex);
521f1a24 8620 read_lock(&tasklist_lock);
ac086bc2 8621 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8622 err = -EBUSY;
8623 goto unlock;
8624 }
9f0c1e56
PZ
8625 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8626 err = -EINVAL;
8627 goto unlock;
8628 }
ac086bc2
PZ
8629
8630 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8631 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8632 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8633
8634 for_each_possible_cpu(i) {
8635 struct rt_rq *rt_rq = tg->rt_rq[i];
8636
8637 spin_lock(&rt_rq->rt_runtime_lock);
8638 rt_rq->rt_runtime = rt_runtime;
8639 spin_unlock(&rt_rq->rt_runtime_lock);
8640 }
8641 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8642 unlock:
521f1a24 8643 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8644 mutex_unlock(&rt_constraints_mutex);
8645
8646 return err;
6f505b16
PZ
8647}
8648
d0b27fa7
PZ
8649int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8650{
8651 u64 rt_runtime, rt_period;
8652
8653 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8654 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8655 if (rt_runtime_us < 0)
8656 rt_runtime = RUNTIME_INF;
8657
8658 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8659}
8660
9f0c1e56
PZ
8661long sched_group_rt_runtime(struct task_group *tg)
8662{
8663 u64 rt_runtime_us;
8664
d0b27fa7 8665 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8666 return -1;
8667
d0b27fa7 8668 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8669 do_div(rt_runtime_us, NSEC_PER_USEC);
8670 return rt_runtime_us;
8671}
d0b27fa7
PZ
8672
8673int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8674{
8675 u64 rt_runtime, rt_period;
8676
8677 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8678 rt_runtime = tg->rt_bandwidth.rt_runtime;
8679
8680 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8681}
8682
8683long sched_group_rt_period(struct task_group *tg)
8684{
8685 u64 rt_period_us;
8686
8687 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8688 do_div(rt_period_us, NSEC_PER_USEC);
8689 return rt_period_us;
8690}
8691
8692static int sched_rt_global_constraints(void)
8693{
10b612f4
PZ
8694 struct task_group *tg = &root_task_group;
8695 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8696 int ret = 0;
8697
10b612f4
PZ
8698 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8699 rt_runtime = tg->rt_bandwidth.rt_runtime;
8700
d0b27fa7 8701 mutex_lock(&rt_constraints_mutex);
10b612f4 8702 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8703 ret = -EINVAL;
8704 mutex_unlock(&rt_constraints_mutex);
8705
8706 return ret;
8707}
6d6bc0ad 8708#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8709static int sched_rt_global_constraints(void)
8710{
ac086bc2
PZ
8711 unsigned long flags;
8712 int i;
8713
8714 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8715 for_each_possible_cpu(i) {
8716 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8717
8718 spin_lock(&rt_rq->rt_runtime_lock);
8719 rt_rq->rt_runtime = global_rt_runtime();
8720 spin_unlock(&rt_rq->rt_runtime_lock);
8721 }
8722 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8723
d0b27fa7
PZ
8724 return 0;
8725}
6d6bc0ad 8726#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8727
8728int sched_rt_handler(struct ctl_table *table, int write,
8729 struct file *filp, void __user *buffer, size_t *lenp,
8730 loff_t *ppos)
8731{
8732 int ret;
8733 int old_period, old_runtime;
8734 static DEFINE_MUTEX(mutex);
8735
8736 mutex_lock(&mutex);
8737 old_period = sysctl_sched_rt_period;
8738 old_runtime = sysctl_sched_rt_runtime;
8739
8740 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8741
8742 if (!ret && write) {
8743 ret = sched_rt_global_constraints();
8744 if (ret) {
8745 sysctl_sched_rt_period = old_period;
8746 sysctl_sched_rt_runtime = old_runtime;
8747 } else {
8748 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8749 def_rt_bandwidth.rt_period =
8750 ns_to_ktime(global_rt_period());
8751 }
8752 }
8753 mutex_unlock(&mutex);
8754
8755 return ret;
8756}
68318b8e 8757
052f1dc7 8758#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8759
8760/* return corresponding task_group object of a cgroup */
2b01dfe3 8761static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8762{
2b01dfe3
PM
8763 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8764 struct task_group, css);
68318b8e
SV
8765}
8766
8767static struct cgroup_subsys_state *
2b01dfe3 8768cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8769{
ec7dc8ac 8770 struct task_group *tg, *parent;
68318b8e 8771
2b01dfe3 8772 if (!cgrp->parent) {
68318b8e 8773 /* This is early initialization for the top cgroup */
2b01dfe3 8774 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8775 return &init_task_group.css;
8776 }
8777
ec7dc8ac
DG
8778 parent = cgroup_tg(cgrp->parent);
8779 tg = sched_create_group(parent);
68318b8e
SV
8780 if (IS_ERR(tg))
8781 return ERR_PTR(-ENOMEM);
8782
8783 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8784 tg->css.cgroup = cgrp;
68318b8e
SV
8785
8786 return &tg->css;
8787}
8788
41a2d6cf
IM
8789static void
8790cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8791{
2b01dfe3 8792 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8793
8794 sched_destroy_group(tg);
8795}
8796
41a2d6cf
IM
8797static int
8798cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8799 struct task_struct *tsk)
68318b8e 8800{
b68aa230
PZ
8801#ifdef CONFIG_RT_GROUP_SCHED
8802 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8803 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8804 return -EINVAL;
8805#else
68318b8e
SV
8806 /* We don't support RT-tasks being in separate groups */
8807 if (tsk->sched_class != &fair_sched_class)
8808 return -EINVAL;
b68aa230 8809#endif
68318b8e
SV
8810
8811 return 0;
8812}
8813
8814static void
2b01dfe3 8815cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8816 struct cgroup *old_cont, struct task_struct *tsk)
8817{
8818 sched_move_task(tsk);
8819}
8820
052f1dc7 8821#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8822static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8823 u64 shareval)
68318b8e 8824{
2b01dfe3 8825 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8826}
8827
f4c753b7 8828static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8829{
2b01dfe3 8830 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8831
8832 return (u64) tg->shares;
8833}
6d6bc0ad 8834#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8835
052f1dc7 8836#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8837static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8838 s64 val)
6f505b16 8839{
06ecb27c 8840 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8841}
8842
06ecb27c 8843static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8844{
06ecb27c 8845 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8846}
d0b27fa7
PZ
8847
8848static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8849 u64 rt_period_us)
8850{
8851 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8852}
8853
8854static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8855{
8856 return sched_group_rt_period(cgroup_tg(cgrp));
8857}
6d6bc0ad 8858#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8859
fe5c7cc2 8860static struct cftype cpu_files[] = {
052f1dc7 8861#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8862 {
8863 .name = "shares",
f4c753b7
PM
8864 .read_u64 = cpu_shares_read_u64,
8865 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8866 },
052f1dc7
PZ
8867#endif
8868#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8869 {
9f0c1e56 8870 .name = "rt_runtime_us",
06ecb27c
PM
8871 .read_s64 = cpu_rt_runtime_read,
8872 .write_s64 = cpu_rt_runtime_write,
6f505b16 8873 },
d0b27fa7
PZ
8874 {
8875 .name = "rt_period_us",
f4c753b7
PM
8876 .read_u64 = cpu_rt_period_read_uint,
8877 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8878 },
052f1dc7 8879#endif
68318b8e
SV
8880};
8881
8882static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8883{
fe5c7cc2 8884 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8885}
8886
8887struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8888 .name = "cpu",
8889 .create = cpu_cgroup_create,
8890 .destroy = cpu_cgroup_destroy,
8891 .can_attach = cpu_cgroup_can_attach,
8892 .attach = cpu_cgroup_attach,
8893 .populate = cpu_cgroup_populate,
8894 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8895 .early_init = 1,
8896};
8897
052f1dc7 8898#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8899
8900#ifdef CONFIG_CGROUP_CPUACCT
8901
8902/*
8903 * CPU accounting code for task groups.
8904 *
8905 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8906 * (balbir@in.ibm.com).
8907 */
8908
8909/* track cpu usage of a group of tasks */
8910struct cpuacct {
8911 struct cgroup_subsys_state css;
8912 /* cpuusage holds pointer to a u64-type object on every cpu */
8913 u64 *cpuusage;
8914};
8915
8916struct cgroup_subsys cpuacct_subsys;
8917
8918/* return cpu accounting group corresponding to this container */
32cd756a 8919static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8920{
32cd756a 8921 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8922 struct cpuacct, css);
8923}
8924
8925/* return cpu accounting group to which this task belongs */
8926static inline struct cpuacct *task_ca(struct task_struct *tsk)
8927{
8928 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8929 struct cpuacct, css);
8930}
8931
8932/* create a new cpu accounting group */
8933static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8934 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8935{
8936 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8937
8938 if (!ca)
8939 return ERR_PTR(-ENOMEM);
8940
8941 ca->cpuusage = alloc_percpu(u64);
8942 if (!ca->cpuusage) {
8943 kfree(ca);
8944 return ERR_PTR(-ENOMEM);
8945 }
8946
8947 return &ca->css;
8948}
8949
8950/* destroy an existing cpu accounting group */
41a2d6cf 8951static void
32cd756a 8952cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8953{
32cd756a 8954 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8955
8956 free_percpu(ca->cpuusage);
8957 kfree(ca);
8958}
8959
8960/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8961static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8962{
32cd756a 8963 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8964 u64 totalcpuusage = 0;
8965 int i;
8966
8967 for_each_possible_cpu(i) {
8968 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8969
8970 /*
8971 * Take rq->lock to make 64-bit addition safe on 32-bit
8972 * platforms.
8973 */
8974 spin_lock_irq(&cpu_rq(i)->lock);
8975 totalcpuusage += *cpuusage;
8976 spin_unlock_irq(&cpu_rq(i)->lock);
8977 }
8978
8979 return totalcpuusage;
8980}
8981
0297b803
DG
8982static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8983 u64 reset)
8984{
8985 struct cpuacct *ca = cgroup_ca(cgrp);
8986 int err = 0;
8987 int i;
8988
8989 if (reset) {
8990 err = -EINVAL;
8991 goto out;
8992 }
8993
8994 for_each_possible_cpu(i) {
8995 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8996
8997 spin_lock_irq(&cpu_rq(i)->lock);
8998 *cpuusage = 0;
8999 spin_unlock_irq(&cpu_rq(i)->lock);
9000 }
9001out:
9002 return err;
9003}
9004
d842de87
SV
9005static struct cftype files[] = {
9006 {
9007 .name = "usage",
f4c753b7
PM
9008 .read_u64 = cpuusage_read,
9009 .write_u64 = cpuusage_write,
d842de87
SV
9010 },
9011};
9012
32cd756a 9013static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9014{
32cd756a 9015 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9016}
9017
9018/*
9019 * charge this task's execution time to its accounting group.
9020 *
9021 * called with rq->lock held.
9022 */
9023static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9024{
9025 struct cpuacct *ca;
9026
9027 if (!cpuacct_subsys.active)
9028 return;
9029
9030 ca = task_ca(tsk);
9031 if (ca) {
9032 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9033
9034 *cpuusage += cputime;
9035 }
9036}
9037
9038struct cgroup_subsys cpuacct_subsys = {
9039 .name = "cpuacct",
9040 .create = cpuacct_create,
9041 .destroy = cpuacct_destroy,
9042 .populate = cpuacct_populate,
9043 .subsys_id = cpuacct_subsys_id,
9044};
9045#endif /* CONFIG_CGROUP_CPUACCT */