Merge git://git.infradead.org/users/cbou/battery-2.6.29
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
0b148fa0 226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
3e51f33f
PZ
671static inline void update_rq_clock(struct rq *rq)
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
31656519 1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1187 return;
1188
31656519 1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db
IM
1256{
1257 assert_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
6d6bc0ad 1260#endif /* CONFIG_SMP */
c24d20db 1261
45bf76df
IM
1262#if BITS_PER_LONG == 32
1263# define WMULT_CONST (~0UL)
1264#else
1265# define WMULT_CONST (1UL << 32)
1266#endif
1267
1268#define WMULT_SHIFT 32
1269
194081eb
IM
1270/*
1271 * Shift right and round:
1272 */
cf2ab469 1273#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1274
a7be37ac
PZ
1275/*
1276 * delta *= weight / lw
1277 */
cb1c4fc9 1278static unsigned long
45bf76df
IM
1279calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1281{
1282 u64 tmp;
1283
7a232e03
LJ
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1290 }
45bf76df
IM
1291
1292 tmp = (u64)delta_exec * weight;
1293 /*
1294 * Check whether we'd overflow the 64-bit multiplication:
1295 */
194081eb 1296 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1298 WMULT_SHIFT/2);
1299 else
cf2ab469 1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1301
ecf691da 1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1303}
1304
1091985b 1305static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1306{
1307 lw->weight += inc;
e89996ae 1308 lw->inv_weight = 0;
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1312{
1313 lw->weight -= dec;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
2dd73a4f
PW
1317/*
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1324 */
1325
cce7ade8
PZ
1326#define WEIGHT_IDLEPRIO 3
1327#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1328
1329/*
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1334 *
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
dd41f596
IM
1340 */
1341static const int prio_to_weight[40] = {
254753dc
IM
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1350};
1351
5714d2de
IM
1352/*
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354 *
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1358 */
dd41f596 1359static const u32 prio_to_wmult[40] = {
254753dc
IM
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1368};
2dd73a4f 1369
dd41f596
IM
1370static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371
1372/*
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1376 */
1377struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1381};
1382
e1d1484f
PW
1383#ifdef CONFIG_SMP
1384static unsigned long
1385balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1389
1390static int
1391iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
e1d1484f 1394#endif
dd41f596 1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398#else
1399static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400#endif
1401
18d95a28
PZ
1402static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_add(&rq->load, load);
1405}
1406
1407static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_sub(&rq->load, load);
1410}
1411
7940ca36 1412#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1413typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1414
1415/*
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1418 */
eb755805 1419static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1420{
1421 struct task_group *parent, *child;
eb755805 1422 int ret;
c09595f6
PZ
1423
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426down:
eb755805
PZ
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1433
1434up:
1435 continue;
1436 }
eb755805
PZ
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
eb755805 1445out_unlock:
c09595f6 1446 rcu_read_unlock();
eb755805
PZ
1447
1448 return ret;
c09595f6
PZ
1449}
1450
eb755805
PZ
1451static int tg_nop(struct task_group *tg, void *data)
1452{
1453 return 0;
c09595f6 1454}
eb755805
PZ
1455#endif
1456
1457#ifdef CONFIG_SMP
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
1460static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461
1462static unsigned long cpu_avg_load_per_task(int cpu)
1463{
1464 struct rq *rq = cpu_rq(cpu);
af6d596f 1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1466
4cd42620
SR
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1469 else
1470 rq->avg_load_per_task = 0;
eb755805
PZ
1471
1472 return rq->avg_load_per_task;
1473}
1474
1475#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
ffda12a1
PZ
1483update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1485{
c09595f6
PZ
1486 unsigned long shares;
1487 unsigned long rq_weight;
1488
c8cba857 1489 if (!tg->se[cpu])
c09595f6
PZ
1490 return;
1491
ec4e0e2f 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1493
c09595f6
PZ
1494 /*
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1498 *
1499 */
ec4e0e2f 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1502
ffda12a1
PZ
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
c09595f6 1507
ffda12a1 1508 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1509 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1510
ffda12a1
PZ
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1513 }
18d95a28 1514}
c09595f6
PZ
1515
1516/*
c8cba857
PZ
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
c09595f6 1520 */
eb755805 1521static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1522{
ec4e0e2f 1523 unsigned long weight, rq_weight = 0;
c8cba857 1524 unsigned long shares = 0;
eb755805 1525 struct sched_domain *sd = data;
c8cba857 1526 int i;
c09595f6 1527
758b2cdc 1528 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
c8cba857 1540 shares += tg->cfs_rq[i]->shares;
c09595f6 1541 }
c09595f6 1542
c8cba857
PZ
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1545
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
c09595f6 1548
758b2cdc 1549 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1551
1552 return 0;
c09595f6
PZ
1553}
1554
1555/*
c8cba857
PZ
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
c09595f6 1559 */
eb755805 1560static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1561{
c8cba857 1562 unsigned long load;
eb755805 1563 long cpu = (long)data;
c09595f6 1564
c8cba857
PZ
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 }
c09595f6 1572
c8cba857 1573 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1574
eb755805 1575 return 0;
c09595f6
PZ
1576}
1577
c8cba857 1578static void update_shares(struct sched_domain *sd)
4d8d595d 1579{
2398f2c6
PZ
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1582
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
eb755805 1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1586 }
4d8d595d
PZ
1587}
1588
3e5459b4
PZ
1589static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590{
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1599}
1600
c09595f6
PZ
1601#else
1602
c8cba857 1603static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1604{
1605}
1606
3e5459b4
PZ
1607static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608{
1609}
1610
18d95a28
PZ
1611#endif
1612
70574a99
AD
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
18d95a28
PZ
1646#endif
1647
30432094 1648#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1649static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650{
30432094 1651#ifdef CONFIG_SMP
34e83e85
IM
1652 cfs_rq->shares = shares;
1653#endif
1654}
30432094 1655#endif
e7693a36 1656
dd41f596 1657#include "sched_stats.h"
dd41f596 1658#include "sched_idletask.c"
5522d5d5
IM
1659#include "sched_fair.c"
1660#include "sched_rt.c"
dd41f596
IM
1661#ifdef CONFIG_SCHED_DEBUG
1662# include "sched_debug.c"
1663#endif
1664
1665#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1666#define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
dd41f596 1668
c09595f6 1669static void inc_nr_running(struct rq *rq)
9c217245
IM
1670{
1671 rq->nr_running++;
9c217245
IM
1672}
1673
c09595f6 1674static void dec_nr_running(struct rq *rq)
9c217245
IM
1675{
1676 rq->nr_running--;
9c217245
IM
1677}
1678
45bf76df
IM
1679static void set_load_weight(struct task_struct *p)
1680{
1681 if (task_has_rt_policy(p)) {
dd41f596
IM
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1685 }
45bf76df 1686
dd41f596
IM
1687 /*
1688 * SCHED_IDLE tasks get minimal weight:
1689 */
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1694 }
71f8bd46 1695
dd41f596
IM
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1698}
1699
2087a1ad
GH
1700static void update_avg(u64 *avg, u64 sample)
1701{
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1704}
1705
8159f87e 1706static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1707{
dd41f596 1708 sched_info_queued(p);
fd390f6a 1709 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1710 p->se.on_rq = 1;
71f8bd46
IM
1711}
1712
69be72c1 1713static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1714{
2087a1ad
GH
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1719 }
1720
46ac22ba 1721 sched_info_dequeued(p);
f02231e5 1722 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1723 p->se.on_rq = 0;
71f8bd46
IM
1724}
1725
14531189 1726/*
dd41f596 1727 * __normal_prio - return the priority that is based on the static prio
14531189 1728 */
14531189
IM
1729static inline int __normal_prio(struct task_struct *p)
1730{
dd41f596 1731 return p->static_prio;
14531189
IM
1732}
1733
b29739f9
IM
1734/*
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1740 */
36c8b586 1741static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1742{
1743 int prio;
1744
e05606d3 1745 if (task_has_rt_policy(p))
b29739f9
IM
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1750}
1751
1752/*
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1758 */
36c8b586 1759static int effective_prio(struct task_struct *p)
b29739f9
IM
1760{
1761 p->normal_prio = normal_prio(p);
1762 /*
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1766 */
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1770}
1771
1da177e4 1772/*
dd41f596 1773 * activate_task - move a task to the runqueue.
1da177e4 1774 */
dd41f596 1775static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1776{
d9514f6c 1777 if (task_contributes_to_load(p))
dd41f596 1778 rq->nr_uninterruptible--;
1da177e4 1779
8159f87e 1780 enqueue_task(rq, p, wakeup);
c09595f6 1781 inc_nr_running(rq);
1da177e4
LT
1782}
1783
1da177e4
LT
1784/*
1785 * deactivate_task - remove a task from the runqueue.
1786 */
2e1cb74a 1787static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1788{
d9514f6c 1789 if (task_contributes_to_load(p))
dd41f596
IM
1790 rq->nr_uninterruptible++;
1791
69be72c1 1792 dequeue_task(rq, p, sleep);
c09595f6 1793 dec_nr_running(rq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1799 */
36c8b586 1800inline int task_curr(const struct task_struct *p)
1da177e4
LT
1801{
1802 return cpu_curr(task_cpu(p)) == p;
1803}
1804
dd41f596
IM
1805static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806{
6f505b16 1807 set_task_rq(p, cpu);
dd41f596 1808#ifdef CONFIG_SMP
ce96b5ac
DA
1809 /*
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1813 */
1814 smp_wmb();
dd41f596 1815 task_thread_info(p)->cpu = cpu;
dd41f596 1816#endif
2dd73a4f
PW
1817}
1818
cb469845
SR
1819static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1822{
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1829}
1830
1da177e4 1831#ifdef CONFIG_SMP
c65cc870 1832
e958b360
TG
1833/* Used instead of source_load when we know the type == 0 */
1834static unsigned long weighted_cpuload(const int cpu)
1835{
1836 return cpu_rq(cpu)->load.weight;
1837}
1838
cc367732
IM
1839/*
1840 * Is this task likely cache-hot:
1841 */
e7693a36 1842static int
cc367732
IM
1843task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844{
1845 s64 delta;
1846
f540a608
IM
1847 /*
1848 * Buddy candidates are cache hot:
1849 */
4793241b
PZ
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1853 return 1;
1854
cc367732
IM
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1857
6bc1665b
IM
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1862
cc367732
IM
1863 delta = now - p->se.exec_start;
1864
1865 return delta < (s64)sysctl_sched_migration_cost;
1866}
1867
1868
dd41f596 1869void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1870{
dd41f596
IM
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1875 u64 clock_offset;
dd41f596
IM
1876
1877 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1878
cbc34ed1
PZ
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
6cfb0d5d
IM
1881#ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
dd41f596
IM
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
cc367732
IM
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
6cfb0d5d 1893#endif
2830cf8c
SV
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
dd41f596
IM
1896
1897 __set_task_cpu(p, new_cpu);
c65cc870
IM
1898}
1899
70b97a7f 1900struct migration_req {
1da177e4 1901 struct list_head list;
1da177e4 1902
36c8b586 1903 struct task_struct *task;
1da177e4
LT
1904 int dest_cpu;
1905
1da177e4 1906 struct completion done;
70b97a7f 1907};
1da177e4
LT
1908
1909/*
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1912 */
36c8b586 1913static int
70b97a7f 1914migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1915{
70b97a7f 1916 struct rq *rq = task_rq(p);
1da177e4
LT
1917
1918 /*
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1921 */
dd41f596 1922 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1925 }
1926
1927 init_completion(&req->done);
1da177e4
LT
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
48f24c4d 1931
1da177e4
LT
1932 return 1;
1933}
1934
1935/*
1936 * wait_task_inactive - wait for a thread to unschedule.
1937 *
85ba2d86
RM
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1944 *
1da177e4
LT
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1950 */
85ba2d86 1951unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1952{
1953 unsigned long flags;
dd41f596 1954 int running, on_rq;
85ba2d86 1955 unsigned long ncsw;
70b97a7f 1956 struct rq *rq;
1da177e4 1957
3a5c359a
AK
1958 for (;;) {
1959 /*
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1964 */
1965 rq = task_rq(p);
fa490cfd 1966
3a5c359a
AK
1967 /*
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1971 *
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1977 */
85ba2d86
RM
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
3a5c359a 1981 cpu_relax();
85ba2d86 1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
0a16b607 1990 trace_sched_wait_task(rq, p);
3a5c359a
AK
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
85ba2d86 1993 ncsw = 0;
f31e11d8 1994 if (!match_state || p->state == match_state)
93dcf55f 1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1996 task_rq_unlock(rq, &flags);
fa490cfd 1997
85ba2d86
RM
1998 /*
1999 * If it changed from the expected state, bail out now.
2000 */
2001 if (unlikely(!ncsw))
2002 break;
2003
3a5c359a
AK
2004 /*
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2007 *
2008 * Oops. Go back and try again..
2009 */
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2013 }
fa490cfd 2014
3a5c359a
AK
2015 /*
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2019 *
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2023 */
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2027 }
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2033 */
2034 break;
2035 }
85ba2d86
RM
2036
2037 return ncsw;
1da177e4
LT
2038}
2039
2040/***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2043 *
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2046 *
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2052 */
36c8b586 2053void kick_process(struct task_struct *p)
1da177e4
LT
2054{
2055 int cpu;
2056
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2062}
2063
2064/*
2dd73a4f
PW
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
1da177e4
LT
2067 *
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2070 */
a9957449 2071static unsigned long source_load(int cpu, int type)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = cpu_rq(cpu);
dd41f596 2074 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2075
93b75217 2076 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2077 return total;
b910472d 2078
dd41f596 2079 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2080}
2081
2082/*
2dd73a4f
PW
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
1da177e4 2085 */
a9957449 2086static unsigned long target_load(int cpu, int type)
1da177e4 2087{
70b97a7f 2088 struct rq *rq = cpu_rq(cpu);
dd41f596 2089 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2090
93b75217 2091 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2092 return total;
3b0bd9bc 2093
dd41f596 2094 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2095}
2096
147cbb4b
NP
2097/*
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2100 */
2101static struct sched_group *
2102find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103{
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2113
da5a5522 2114 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
3a5c359a 2117 continue;
da5a5522 2118
758b2cdc
RR
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
147cbb4b
NP
2121
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2124
758b2cdc 2125 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2131
2132 avg_load += load;
2133 }
2134
2135 /* Adjust by relative CPU power of the group */
5517d86b
ED
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2138
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2145 }
3a5c359a 2146 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2147
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2151}
2152
2153/*
0feaece9 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2155 */
95cdf3b7 2156static int
758b2cdc 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2158{
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2162
da5a5522 2163 /* Traverse only the allowed CPUs */
758b2cdc 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2165 load = weighted_cpuload(i);
147cbb4b
NP
2166
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2170 }
2171 }
2172
2173 return idlest;
2174}
2175
476d139c
NP
2176/*
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2180 *
2181 * Balance, ie. select the least loaded group.
2182 *
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2184 *
2185 * preempt must be disabled.
2186 */
2187static int sched_balance_self(int cpu, int flag)
2188{
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2191
c96d145e 2192 for_each_domain(cpu, tmp) {
9761eea8
IM
2193 /*
2194 * If power savings logic is enabled for a domain, stop there.
2195 */
5c45bf27
SS
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
476d139c
NP
2198 if (tmp->flags & flag)
2199 sd = tmp;
c96d145e 2200 }
476d139c 2201
039a1c41
PZ
2202 if (sd)
2203 update_shares(sd);
2204
476d139c 2205 while (sd) {
476d139c 2206 struct sched_group *group;
1a848870
SS
2207 int new_cpu, weight;
2208
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2212 }
476d139c 2213
476d139c 2214 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2218 }
476d139c 2219
758b2cdc 2220 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2225 }
476d139c 2226
1a848870 2227 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2228 cpu = new_cpu;
758b2cdc 2229 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2230 sd = NULL;
476d139c 2231 for_each_domain(cpu, tmp) {
758b2cdc 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2236 }
2237 /* while loop will break here if sd == NULL */
2238 }
2239
2240 return cpu;
2241}
2242
2243#endif /* CONFIG_SMP */
1da177e4 2244
1da177e4
LT
2245/***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2250 *
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2256 *
2257 * returns failure only if the task is already active.
2258 */
36c8b586 2259static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2260{
cc367732 2261 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2262 unsigned long flags;
2263 long old_state;
70b97a7f 2264 struct rq *rq;
1da177e4 2265
b85d0667
IM
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2268
2398f2c6
PZ
2269#ifdef CONFIG_SMP
2270 if (sched_feat(LB_WAKEUP_UPDATE)) {
2271 struct sched_domain *sd;
2272
2273 this_cpu = raw_smp_processor_id();
2274 cpu = task_cpu(p);
2275
2276 for_each_domain(this_cpu, sd) {
758b2cdc 2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2278 update_shares(sd);
2279 break;
2280 }
2281 }
2282 }
2283#endif
2284
04e2f174 2285 smp_wmb();
1da177e4 2286 rq = task_rq_lock(p, &flags);
03e89e45 2287 update_rq_clock(rq);
1da177e4
LT
2288 old_state = p->state;
2289 if (!(old_state & state))
2290 goto out;
2291
dd41f596 2292 if (p->se.on_rq)
1da177e4
LT
2293 goto out_running;
2294
2295 cpu = task_cpu(p);
cc367732 2296 orig_cpu = cpu;
1da177e4
LT
2297 this_cpu = smp_processor_id();
2298
2299#ifdef CONFIG_SMP
2300 if (unlikely(task_running(rq, p)))
2301 goto out_activate;
2302
5d2f5a61
DA
2303 cpu = p->sched_class->select_task_rq(p, sync);
2304 if (cpu != orig_cpu) {
2305 set_task_cpu(p, cpu);
1da177e4
LT
2306 task_rq_unlock(rq, &flags);
2307 /* might preempt at this point */
2308 rq = task_rq_lock(p, &flags);
2309 old_state = p->state;
2310 if (!(old_state & state))
2311 goto out;
dd41f596 2312 if (p->se.on_rq)
1da177e4
LT
2313 goto out_running;
2314
2315 this_cpu = smp_processor_id();
2316 cpu = task_cpu(p);
2317 }
2318
e7693a36
GH
2319#ifdef CONFIG_SCHEDSTATS
2320 schedstat_inc(rq, ttwu_count);
2321 if (cpu == this_cpu)
2322 schedstat_inc(rq, ttwu_local);
2323 else {
2324 struct sched_domain *sd;
2325 for_each_domain(this_cpu, sd) {
758b2cdc 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2327 schedstat_inc(sd, ttwu_wake_remote);
2328 break;
2329 }
2330 }
2331 }
6d6bc0ad 2332#endif /* CONFIG_SCHEDSTATS */
e7693a36 2333
1da177e4
LT
2334out_activate:
2335#endif /* CONFIG_SMP */
cc367732
IM
2336 schedstat_inc(p, se.nr_wakeups);
2337 if (sync)
2338 schedstat_inc(p, se.nr_wakeups_sync);
2339 if (orig_cpu != cpu)
2340 schedstat_inc(p, se.nr_wakeups_migrate);
2341 if (cpu == this_cpu)
2342 schedstat_inc(p, se.nr_wakeups_local);
2343 else
2344 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2345 activate_task(rq, p, 1);
1da177e4
LT
2346 success = 1;
2347
2348out_running:
468a15bb 2349 trace_sched_wakeup(rq, p, success);
15afe09b 2350 check_preempt_curr(rq, p, sync);
4ae7d5ce 2351
1da177e4 2352 p->state = TASK_RUNNING;
9a897c5a
SR
2353#ifdef CONFIG_SMP
2354 if (p->sched_class->task_wake_up)
2355 p->sched_class->task_wake_up(rq, p);
2356#endif
1da177e4 2357out:
2087a1ad
GH
2358 current->se.last_wakeup = current->se.sum_exec_runtime;
2359
1da177e4
LT
2360 task_rq_unlock(rq, &flags);
2361
2362 return success;
2363}
2364
7ad5b3a5 2365int wake_up_process(struct task_struct *p)
1da177e4 2366{
d9514f6c 2367 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2368}
1da177e4
LT
2369EXPORT_SYMBOL(wake_up_process);
2370
7ad5b3a5 2371int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2372{
2373 return try_to_wake_up(p, state, 0);
2374}
2375
1da177e4
LT
2376/*
2377 * Perform scheduler related setup for a newly forked process p.
2378 * p is forked by current.
dd41f596
IM
2379 *
2380 * __sched_fork() is basic setup used by init_idle() too:
2381 */
2382static void __sched_fork(struct task_struct *p)
2383{
dd41f596
IM
2384 p->se.exec_start = 0;
2385 p->se.sum_exec_runtime = 0;
f6cf891c 2386 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2387 p->se.last_wakeup = 0;
2388 p->se.avg_overlap = 0;
6cfb0d5d
IM
2389
2390#ifdef CONFIG_SCHEDSTATS
2391 p->se.wait_start = 0;
dd41f596
IM
2392 p->se.sum_sleep_runtime = 0;
2393 p->se.sleep_start = 0;
dd41f596
IM
2394 p->se.block_start = 0;
2395 p->se.sleep_max = 0;
2396 p->se.block_max = 0;
2397 p->se.exec_max = 0;
eba1ed4b 2398 p->se.slice_max = 0;
dd41f596 2399 p->se.wait_max = 0;
6cfb0d5d 2400#endif
476d139c 2401
fa717060 2402 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2403 p->se.on_rq = 0;
4a55bd5e 2404 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2405
e107be36
AK
2406#ifdef CONFIG_PREEMPT_NOTIFIERS
2407 INIT_HLIST_HEAD(&p->preempt_notifiers);
2408#endif
2409
1da177e4
LT
2410 /*
2411 * We mark the process as running here, but have not actually
2412 * inserted it onto the runqueue yet. This guarantees that
2413 * nobody will actually run it, and a signal or other external
2414 * event cannot wake it up and insert it on the runqueue either.
2415 */
2416 p->state = TASK_RUNNING;
dd41f596
IM
2417}
2418
2419/*
2420 * fork()/clone()-time setup:
2421 */
2422void sched_fork(struct task_struct *p, int clone_flags)
2423{
2424 int cpu = get_cpu();
2425
2426 __sched_fork(p);
2427
2428#ifdef CONFIG_SMP
2429 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2430#endif
02e4bac2 2431 set_task_cpu(p, cpu);
b29739f9
IM
2432
2433 /*
2434 * Make sure we do not leak PI boosting priority to the child:
2435 */
2436 p->prio = current->normal_prio;
2ddbf952
HS
2437 if (!rt_prio(p->prio))
2438 p->sched_class = &fair_sched_class;
b29739f9 2439
52f17b6c 2440#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2441 if (likely(sched_info_on()))
52f17b6c 2442 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2443#endif
d6077cb8 2444#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2445 p->oncpu = 0;
2446#endif
1da177e4 2447#ifdef CONFIG_PREEMPT
4866cde0 2448 /* Want to start with kernel preemption disabled. */
a1261f54 2449 task_thread_info(p)->preempt_count = 1;
1da177e4 2450#endif
476d139c 2451 put_cpu();
1da177e4
LT
2452}
2453
2454/*
2455 * wake_up_new_task - wake up a newly created task for the first time.
2456 *
2457 * This function will do some initial scheduler statistics housekeeping
2458 * that must be done for every newly created context, then puts the task
2459 * on the runqueue and wakes it.
2460 */
7ad5b3a5 2461void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2462{
2463 unsigned long flags;
dd41f596 2464 struct rq *rq;
1da177e4
LT
2465
2466 rq = task_rq_lock(p, &flags);
147cbb4b 2467 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2468 update_rq_clock(rq);
1da177e4
LT
2469
2470 p->prio = effective_prio(p);
2471
b9dca1e0 2472 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2473 activate_task(rq, p, 0);
1da177e4 2474 } else {
1da177e4 2475 /*
dd41f596
IM
2476 * Let the scheduling class do new task startup
2477 * management (if any):
1da177e4 2478 */
ee0827d8 2479 p->sched_class->task_new(rq, p);
c09595f6 2480 inc_nr_running(rq);
1da177e4 2481 }
c71dd42d 2482 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2483 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2484#ifdef CONFIG_SMP
2485 if (p->sched_class->task_wake_up)
2486 p->sched_class->task_wake_up(rq, p);
2487#endif
dd41f596 2488 task_rq_unlock(rq, &flags);
1da177e4
LT
2489}
2490
e107be36
AK
2491#ifdef CONFIG_PREEMPT_NOTIFIERS
2492
2493/**
421cee29
RD
2494 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495 * @notifier: notifier struct to register
e107be36
AK
2496 */
2497void preempt_notifier_register(struct preempt_notifier *notifier)
2498{
2499 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2500}
2501EXPORT_SYMBOL_GPL(preempt_notifier_register);
2502
2503/**
2504 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2505 * @notifier: notifier struct to unregister
e107be36
AK
2506 *
2507 * This is safe to call from within a preemption notifier.
2508 */
2509void preempt_notifier_unregister(struct preempt_notifier *notifier)
2510{
2511 hlist_del(&notifier->link);
2512}
2513EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2514
2515static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516{
2517 struct preempt_notifier *notifier;
2518 struct hlist_node *node;
2519
2520 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2521 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2522}
2523
2524static void
2525fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 struct task_struct *next)
2527{
2528 struct preempt_notifier *notifier;
2529 struct hlist_node *node;
2530
2531 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2532 notifier->ops->sched_out(notifier, next);
2533}
2534
6d6bc0ad 2535#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2536
2537static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538{
2539}
2540
2541static void
2542fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 struct task_struct *next)
2544{
2545}
2546
6d6bc0ad 2547#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2548
4866cde0
NP
2549/**
2550 * prepare_task_switch - prepare to switch tasks
2551 * @rq: the runqueue preparing to switch
421cee29 2552 * @prev: the current task that is being switched out
4866cde0
NP
2553 * @next: the task we are going to switch to.
2554 *
2555 * This is called with the rq lock held and interrupts off. It must
2556 * be paired with a subsequent finish_task_switch after the context
2557 * switch.
2558 *
2559 * prepare_task_switch sets up locking and calls architecture specific
2560 * hooks.
2561 */
e107be36
AK
2562static inline void
2563prepare_task_switch(struct rq *rq, struct task_struct *prev,
2564 struct task_struct *next)
4866cde0 2565{
e107be36 2566 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2567 prepare_lock_switch(rq, next);
2568 prepare_arch_switch(next);
2569}
2570
1da177e4
LT
2571/**
2572 * finish_task_switch - clean up after a task-switch
344babaa 2573 * @rq: runqueue associated with task-switch
1da177e4
LT
2574 * @prev: the thread we just switched away from.
2575 *
4866cde0
NP
2576 * finish_task_switch must be called after the context switch, paired
2577 * with a prepare_task_switch call before the context switch.
2578 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2580 *
2581 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2582 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2583 * with the lock held can cause deadlocks; see schedule() for
2584 * details.)
2585 */
a9957449 2586static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
1da177e4 2589 struct mm_struct *mm = rq->prev_mm;
55a101f8 2590 long prev_state;
1da177e4
LT
2591
2592 rq->prev_mm = NULL;
2593
2594 /*
2595 * A task struct has one reference for the use as "current".
c394cc9f 2596 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2597 * schedule one last time. The schedule call will never return, and
2598 * the scheduled task must drop that reference.
c394cc9f 2599 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2600 * still held, otherwise prev could be scheduled on another cpu, die
2601 * there before we look at prev->state, and then the reference would
2602 * be dropped twice.
2603 * Manfred Spraul <manfred@colorfullife.com>
2604 */
55a101f8 2605 prev_state = prev->state;
4866cde0
NP
2606 finish_arch_switch(prev);
2607 finish_lock_switch(rq, prev);
9a897c5a
SR
2608#ifdef CONFIG_SMP
2609 if (current->sched_class->post_schedule)
2610 current->sched_class->post_schedule(rq);
2611#endif
e8fa1362 2612
e107be36 2613 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2614 if (mm)
2615 mmdrop(mm);
c394cc9f 2616 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2617 /*
2618 * Remove function-return probe instances associated with this
2619 * task and put them back on the free list.
9761eea8 2620 */
c6fd91f0 2621 kprobe_flush_task(prev);
1da177e4 2622 put_task_struct(prev);
c6fd91f0 2623 }
1da177e4
LT
2624}
2625
2626/**
2627 * schedule_tail - first thing a freshly forked thread must call.
2628 * @prev: the thread we just switched away from.
2629 */
36c8b586 2630asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2631 __releases(rq->lock)
2632{
70b97a7f
IM
2633 struct rq *rq = this_rq();
2634
4866cde0
NP
2635 finish_task_switch(rq, prev);
2636#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 /* In this case, finish_task_switch does not reenable preemption */
2638 preempt_enable();
2639#endif
1da177e4 2640 if (current->set_child_tid)
b488893a 2641 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2642}
2643
2644/*
2645 * context_switch - switch to the new MM and the new
2646 * thread's register state.
2647 */
dd41f596 2648static inline void
70b97a7f 2649context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2650 struct task_struct *next)
1da177e4 2651{
dd41f596 2652 struct mm_struct *mm, *oldmm;
1da177e4 2653
e107be36 2654 prepare_task_switch(rq, prev, next);
0a16b607 2655 trace_sched_switch(rq, prev, next);
dd41f596
IM
2656 mm = next->mm;
2657 oldmm = prev->active_mm;
9226d125
ZA
2658 /*
2659 * For paravirt, this is coupled with an exit in switch_to to
2660 * combine the page table reload and the switch backend into
2661 * one hypercall.
2662 */
2663 arch_enter_lazy_cpu_mode();
2664
dd41f596 2665 if (unlikely(!mm)) {
1da177e4
LT
2666 next->active_mm = oldmm;
2667 atomic_inc(&oldmm->mm_count);
2668 enter_lazy_tlb(oldmm, next);
2669 } else
2670 switch_mm(oldmm, mm, next);
2671
dd41f596 2672 if (unlikely(!prev->mm)) {
1da177e4 2673 prev->active_mm = NULL;
1da177e4
LT
2674 rq->prev_mm = oldmm;
2675 }
3a5f5e48
IM
2676 /*
2677 * Since the runqueue lock will be released by the next
2678 * task (which is an invalid locking op but in the case
2679 * of the scheduler it's an obvious special-case), so we
2680 * do an early lockdep release here:
2681 */
2682#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2683 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2684#endif
1da177e4
LT
2685
2686 /* Here we just switch the register state and the stack. */
2687 switch_to(prev, next, prev);
2688
dd41f596
IM
2689 barrier();
2690 /*
2691 * this_rq must be evaluated again because prev may have moved
2692 * CPUs since it called schedule(), thus the 'rq' on its stack
2693 * frame will be invalid.
2694 */
2695 finish_task_switch(this_rq(), prev);
1da177e4
LT
2696}
2697
2698/*
2699 * nr_running, nr_uninterruptible and nr_context_switches:
2700 *
2701 * externally visible scheduler statistics: current number of runnable
2702 * threads, current number of uninterruptible-sleeping threads, total
2703 * number of context switches performed since bootup.
2704 */
2705unsigned long nr_running(void)
2706{
2707 unsigned long i, sum = 0;
2708
2709 for_each_online_cpu(i)
2710 sum += cpu_rq(i)->nr_running;
2711
2712 return sum;
2713}
2714
2715unsigned long nr_uninterruptible(void)
2716{
2717 unsigned long i, sum = 0;
2718
0a945022 2719 for_each_possible_cpu(i)
1da177e4
LT
2720 sum += cpu_rq(i)->nr_uninterruptible;
2721
2722 /*
2723 * Since we read the counters lockless, it might be slightly
2724 * inaccurate. Do not allow it to go below zero though:
2725 */
2726 if (unlikely((long)sum < 0))
2727 sum = 0;
2728
2729 return sum;
2730}
2731
2732unsigned long long nr_context_switches(void)
2733{
cc94abfc
SR
2734 int i;
2735 unsigned long long sum = 0;
1da177e4 2736
0a945022 2737 for_each_possible_cpu(i)
1da177e4
LT
2738 sum += cpu_rq(i)->nr_switches;
2739
2740 return sum;
2741}
2742
2743unsigned long nr_iowait(void)
2744{
2745 unsigned long i, sum = 0;
2746
0a945022 2747 for_each_possible_cpu(i)
1da177e4
LT
2748 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2749
2750 return sum;
2751}
2752
db1b1fef
JS
2753unsigned long nr_active(void)
2754{
2755 unsigned long i, running = 0, uninterruptible = 0;
2756
2757 for_each_online_cpu(i) {
2758 running += cpu_rq(i)->nr_running;
2759 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2760 }
2761
2762 if (unlikely((long)uninterruptible < 0))
2763 uninterruptible = 0;
2764
2765 return running + uninterruptible;
2766}
2767
48f24c4d 2768/*
dd41f596
IM
2769 * Update rq->cpu_load[] statistics. This function is usually called every
2770 * scheduler tick (TICK_NSEC).
48f24c4d 2771 */
dd41f596 2772static void update_cpu_load(struct rq *this_rq)
48f24c4d 2773{
495eca49 2774 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2775 int i, scale;
2776
2777 this_rq->nr_load_updates++;
dd41f596
IM
2778
2779 /* Update our load: */
2780 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2781 unsigned long old_load, new_load;
2782
2783 /* scale is effectively 1 << i now, and >> i divides by scale */
2784
2785 old_load = this_rq->cpu_load[i];
2786 new_load = this_load;
a25707f3
IM
2787 /*
2788 * Round up the averaging division if load is increasing. This
2789 * prevents us from getting stuck on 9 if the load is 10, for
2790 * example.
2791 */
2792 if (new_load > old_load)
2793 new_load += scale-1;
dd41f596
IM
2794 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2795 }
48f24c4d
IM
2796}
2797
dd41f596
IM
2798#ifdef CONFIG_SMP
2799
1da177e4
LT
2800/*
2801 * double_rq_lock - safely lock two runqueues
2802 *
2803 * Note this does not disable interrupts like task_rq_lock,
2804 * you need to do so manually before calling.
2805 */
70b97a7f 2806static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2807 __acquires(rq1->lock)
2808 __acquires(rq2->lock)
2809{
054b9108 2810 BUG_ON(!irqs_disabled());
1da177e4
LT
2811 if (rq1 == rq2) {
2812 spin_lock(&rq1->lock);
2813 __acquire(rq2->lock); /* Fake it out ;) */
2814 } else {
c96d145e 2815 if (rq1 < rq2) {
1da177e4 2816 spin_lock(&rq1->lock);
5e710e37 2817 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2818 } else {
2819 spin_lock(&rq2->lock);
5e710e37 2820 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2821 }
2822 }
6e82a3be
IM
2823 update_rq_clock(rq1);
2824 update_rq_clock(rq2);
1da177e4
LT
2825}
2826
2827/*
2828 * double_rq_unlock - safely unlock two runqueues
2829 *
2830 * Note this does not restore interrupts like task_rq_unlock,
2831 * you need to do so manually after calling.
2832 */
70b97a7f 2833static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2834 __releases(rq1->lock)
2835 __releases(rq2->lock)
2836{
2837 spin_unlock(&rq1->lock);
2838 if (rq1 != rq2)
2839 spin_unlock(&rq2->lock);
2840 else
2841 __release(rq2->lock);
2842}
2843
1da177e4
LT
2844/*
2845 * If dest_cpu is allowed for this process, migrate the task to it.
2846 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2848 * the cpu_allowed mask is restored.
2849 */
36c8b586 2850static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2851{
70b97a7f 2852 struct migration_req req;
1da177e4 2853 unsigned long flags;
70b97a7f 2854 struct rq *rq;
1da177e4
LT
2855
2856 rq = task_rq_lock(p, &flags);
96f874e2 2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2858 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2859 goto out;
2860
2861 /* force the process onto the specified CPU */
2862 if (migrate_task(p, dest_cpu, &req)) {
2863 /* Need to wait for migration thread (might exit: take ref). */
2864 struct task_struct *mt = rq->migration_thread;
36c8b586 2865
1da177e4
LT
2866 get_task_struct(mt);
2867 task_rq_unlock(rq, &flags);
2868 wake_up_process(mt);
2869 put_task_struct(mt);
2870 wait_for_completion(&req.done);
36c8b586 2871
1da177e4
LT
2872 return;
2873 }
2874out:
2875 task_rq_unlock(rq, &flags);
2876}
2877
2878/*
476d139c
NP
2879 * sched_exec - execve() is a valuable balancing opportunity, because at
2880 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2881 */
2882void sched_exec(void)
2883{
1da177e4 2884 int new_cpu, this_cpu = get_cpu();
476d139c 2885 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2886 put_cpu();
476d139c
NP
2887 if (new_cpu != this_cpu)
2888 sched_migrate_task(current, new_cpu);
1da177e4
LT
2889}
2890
2891/*
2892 * pull_task - move a task from a remote runqueue to the local runqueue.
2893 * Both runqueues must be locked.
2894 */
dd41f596
IM
2895static void pull_task(struct rq *src_rq, struct task_struct *p,
2896 struct rq *this_rq, int this_cpu)
1da177e4 2897{
2e1cb74a 2898 deactivate_task(src_rq, p, 0);
1da177e4 2899 set_task_cpu(p, this_cpu);
dd41f596 2900 activate_task(this_rq, p, 0);
1da177e4
LT
2901 /*
2902 * Note that idle threads have a prio of MAX_PRIO, for this test
2903 * to be always true for them.
2904 */
15afe09b 2905 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2906}
2907
2908/*
2909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2910 */
858119e1 2911static
70b97a7f 2912int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2913 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2914 int *all_pinned)
1da177e4
LT
2915{
2916 /*
2917 * We do not migrate tasks that are:
2918 * 1) running (obviously), or
2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2920 * 3) are cache-hot on their current CPU.
2921 */
96f874e2 2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2923 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2924 return 0;
cc367732 2925 }
81026794
NP
2926 *all_pinned = 0;
2927
cc367732
IM
2928 if (task_running(rq, p)) {
2929 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2930 return 0;
cc367732 2931 }
1da177e4 2932
da84d961
IM
2933 /*
2934 * Aggressive migration if:
2935 * 1) task is cache cold, or
2936 * 2) too many balance attempts have failed.
2937 */
2938
6bc1665b
IM
2939 if (!task_hot(p, rq->clock, sd) ||
2940 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2941#ifdef CONFIG_SCHEDSTATS
cc367732 2942 if (task_hot(p, rq->clock, sd)) {
da84d961 2943 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2944 schedstat_inc(p, se.nr_forced_migrations);
2945 }
da84d961
IM
2946#endif
2947 return 1;
2948 }
2949
cc367732
IM
2950 if (task_hot(p, rq->clock, sd)) {
2951 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2952 return 0;
cc367732 2953 }
1da177e4
LT
2954 return 1;
2955}
2956
e1d1484f
PW
2957static unsigned long
2958balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2959 unsigned long max_load_move, struct sched_domain *sd,
2960 enum cpu_idle_type idle, int *all_pinned,
2961 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2962{
051c6764 2963 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2964 struct task_struct *p;
2965 long rem_load_move = max_load_move;
1da177e4 2966
e1d1484f 2967 if (max_load_move == 0)
1da177e4
LT
2968 goto out;
2969
81026794
NP
2970 pinned = 1;
2971
1da177e4 2972 /*
dd41f596 2973 * Start the load-balancing iterator:
1da177e4 2974 */
dd41f596
IM
2975 p = iterator->start(iterator->arg);
2976next:
b82d9fdd 2977 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2978 goto out;
051c6764
PZ
2979
2980 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2981 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2982 p = iterator->next(iterator->arg);
2983 goto next;
1da177e4
LT
2984 }
2985
dd41f596 2986 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2987 pulled++;
dd41f596 2988 rem_load_move -= p->se.load.weight;
1da177e4 2989
2dd73a4f 2990 /*
b82d9fdd 2991 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2992 */
e1d1484f 2993 if (rem_load_move > 0) {
a4ac01c3
PW
2994 if (p->prio < *this_best_prio)
2995 *this_best_prio = p->prio;
dd41f596
IM
2996 p = iterator->next(iterator->arg);
2997 goto next;
1da177e4
LT
2998 }
2999out:
3000 /*
e1d1484f 3001 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3002 * so we can safely collect pull_task() stats here rather than
3003 * inside pull_task().
3004 */
3005 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3006
3007 if (all_pinned)
3008 *all_pinned = pinned;
e1d1484f
PW
3009
3010 return max_load_move - rem_load_move;
1da177e4
LT
3011}
3012
dd41f596 3013/*
43010659
PW
3014 * move_tasks tries to move up to max_load_move weighted load from busiest to
3015 * this_rq, as part of a balancing operation within domain "sd".
3016 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3017 *
3018 * Called with both runqueues locked.
3019 */
3020static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3021 unsigned long max_load_move,
dd41f596
IM
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 int *all_pinned)
3024{
5522d5d5 3025 const struct sched_class *class = sched_class_highest;
43010659 3026 unsigned long total_load_moved = 0;
a4ac01c3 3027 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3028
3029 do {
43010659
PW
3030 total_load_moved +=
3031 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3032 max_load_move - total_load_moved,
a4ac01c3 3033 sd, idle, all_pinned, &this_best_prio);
dd41f596 3034 class = class->next;
c4acb2c0
GH
3035
3036 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3037 break;
3038
43010659 3039 } while (class && max_load_move > total_load_moved);
dd41f596 3040
43010659
PW
3041 return total_load_moved > 0;
3042}
3043
e1d1484f
PW
3044static int
3045iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3046 struct sched_domain *sd, enum cpu_idle_type idle,
3047 struct rq_iterator *iterator)
3048{
3049 struct task_struct *p = iterator->start(iterator->arg);
3050 int pinned = 0;
3051
3052 while (p) {
3053 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3054 pull_task(busiest, p, this_rq, this_cpu);
3055 /*
3056 * Right now, this is only the second place pull_task()
3057 * is called, so we can safely collect pull_task()
3058 * stats here rather than inside pull_task().
3059 */
3060 schedstat_inc(sd, lb_gained[idle]);
3061
3062 return 1;
3063 }
3064 p = iterator->next(iterator->arg);
3065 }
3066
3067 return 0;
3068}
3069
43010659
PW
3070/*
3071 * move_one_task tries to move exactly one task from busiest to this_rq, as
3072 * part of active balancing operations within "domain".
3073 * Returns 1 if successful and 0 otherwise.
3074 *
3075 * Called with both runqueues locked.
3076 */
3077static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3078 struct sched_domain *sd, enum cpu_idle_type idle)
3079{
5522d5d5 3080 const struct sched_class *class;
43010659
PW
3081
3082 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3083 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3084 return 1;
3085
3086 return 0;
dd41f596
IM
3087}
3088
1da177e4
LT
3089/*
3090 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3091 * domain. It calculates and returns the amount of weighted load which
3092 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3093 */
3094static struct sched_group *
3095find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3096 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3097 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3098{
3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3101 unsigned long max_pull;
2dd73a4f
PW
3102 unsigned long busiest_load_per_task, busiest_nr_running;
3103 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3104 int load_idx, group_imb = 0;
5c45bf27
SS
3105#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3106 int power_savings_balance = 1;
3107 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3108 unsigned long min_nr_running = ULONG_MAX;
3109 struct sched_group *group_min = NULL, *group_leader = NULL;
3110#endif
1da177e4
LT
3111
3112 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3113 busiest_load_per_task = busiest_nr_running = 0;
3114 this_load_per_task = this_nr_running = 0;
408ed066 3115
d15bcfdb 3116 if (idle == CPU_NOT_IDLE)
7897986b 3117 load_idx = sd->busy_idx;
d15bcfdb 3118 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3119 load_idx = sd->newidle_idx;
3120 else
3121 load_idx = sd->idle_idx;
1da177e4
LT
3122
3123 do {
908a7c1b 3124 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3125 int local_group;
3126 int i;
908a7c1b 3127 int __group_imb = 0;
783609c6 3128 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3129 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3130 unsigned long sum_avg_load_per_task;
3131 unsigned long avg_load_per_task;
1da177e4 3132
758b2cdc
RR
3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
1da177e4 3135
783609c6 3136 if (local_group)
758b2cdc 3137 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3138
1da177e4 3139 /* Tally up the load of all CPUs in the group */
2dd73a4f 3140 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3141 sum_avg_load_per_task = avg_load_per_task = 0;
3142
908a7c1b
KC
3143 max_cpu_load = 0;
3144 min_cpu_load = ~0UL;
1da177e4 3145
758b2cdc
RR
3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3147 struct rq *rq = cpu_rq(i);
2dd73a4f 3148
9439aab8 3149 if (*sd_idle && rq->nr_running)
5969fe06
NP
3150 *sd_idle = 0;
3151
1da177e4 3152 /* Bias balancing toward cpus of our domain */
783609c6
SS
3153 if (local_group) {
3154 if (idle_cpu(i) && !first_idle_cpu) {
3155 first_idle_cpu = 1;
3156 balance_cpu = i;
3157 }
3158
a2000572 3159 load = target_load(i, load_idx);
908a7c1b 3160 } else {
a2000572 3161 load = source_load(i, load_idx);
908a7c1b
KC
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3166 }
1da177e4
LT
3167
3168 avg_load += load;
2dd73a4f 3169 sum_nr_running += rq->nr_running;
dd41f596 3170 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3171
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3173 }
3174
783609c6
SS
3175 /*
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
9439aab8
SS
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
783609c6 3180 */
9439aab8
SS
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
783609c6
SS
3183 *balance = 0;
3184 goto ret;
3185 }
3186
1da177e4 3187 total_load += avg_load;
5517d86b 3188 total_pwr += group->__cpu_power;
1da177e4
LT
3189
3190 /* Adjust by relative CPU power of the group */
5517d86b
ED
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
1da177e4 3193
408ed066
PZ
3194
3195 /*
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3198 *
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3203 */
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3206
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3208 __group_imb = 1;
3209
5517d86b 3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3211
1da177e4
LT
3212 if (local_group) {
3213 this_load = avg_load;
3214 this = group;
2dd73a4f
PW
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
908a7c1b 3218 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3219 max_load = avg_load;
3220 busiest = group;
2dd73a4f
PW
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
908a7c1b 3223 group_imb = __group_imb;
1da177e4 3224 }
5c45bf27
SS
3225
3226#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3227 /*
3228 * Busy processors will not participate in power savings
3229 * balance.
3230 */
dd41f596
IM
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3233 goto group_next;
5c45bf27
SS
3234
3235 /*
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3238 */
3239 if (local_group && (this_nr_running >= group_capacity ||
3240 !this_nr_running))
3241 power_savings_balance = 0;
3242
dd41f596 3243 /*
5c45bf27
SS
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
dd41f596
IM
3246 */
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3248 || !sum_nr_running)
dd41f596 3249 goto group_next;
5c45bf27 3250
dd41f596 3251 /*
5c45bf27 3252 * Calculate the group which has the least non-idle load.
dd41f596
IM
3253 * This is the group from where we need to pick up the load
3254 * for saving power
3255 */
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
d5679bd1 3258 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3259 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3260 group_min = group;
3261 min_nr_running = sum_nr_running;
5c45bf27
SS
3262 min_load_per_task = sum_weighted_load /
3263 sum_nr_running;
dd41f596 3264 }
5c45bf27 3265
dd41f596 3266 /*
5c45bf27 3267 * Calculate the group which is almost near its
dd41f596
IM
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3270 */
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
d5679bd1 3274 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3275 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3278 }
48f24c4d 3279 }
5c45bf27
SS
3280group_next:
3281#endif
1da177e4
LT
3282 group = group->next;
3283 } while (group != sd->groups);
3284
2dd73a4f 3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3286 goto out_balanced;
3287
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3289
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3292 goto out_balanced;
3293
2dd73a4f 3294 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3295 if (group_imb)
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3297
1da177e4
LT
3298 /*
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3306 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3307 * appear as very large values with unsigned longs.
3308 */
2dd73a4f
PW
3309 if (max_load <= busiest_load_per_task)
3310 goto out_balanced;
3311
3312 /*
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3316 */
3317 if (max_load < avg_load) {
3318 *imbalance = 0;
3319 goto small_imbalance;
3320 }
0c117f1b
SS
3321
3322 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3324
1da177e4 3325 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3328 / SCHED_LOAD_SCALE;
3329
2dd73a4f
PW
3330 /*
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3334 * moved
3335 */
7fd0d2dd 3336 if (*imbalance < busiest_load_per_task) {
48f24c4d 3337 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3338 unsigned int imbn;
3339
3340small_imbalance:
3341 pwr_move = pwr_now = 0;
3342 imbn = 2;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3346 imbn = 1;
3347 } else
408ed066 3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3349
01c8c57d 3350 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3351 busiest_load_per_task * imbn) {
2dd73a4f 3352 *imbalance = busiest_load_per_task;
1da177e4
LT
3353 return busiest;
3354 }
3355
3356 /*
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3359 * moving them.
3360 */
3361
5517d86b
ED
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
1da177e4
LT
3366 pwr_now /= SCHED_LOAD_SCALE;
3367
3368 /* Amount of load we'd subtract */
5517d86b
ED
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3371 if (max_load > tmp)
5517d86b 3372 pwr_move += busiest->__cpu_power *
2dd73a4f 3373 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3374
3375 /* Amount of load we'd add */
5517d86b 3376 if (max_load * busiest->__cpu_power <
33859f7f 3377 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
1da177e4 3380 else
5517d86b
ED
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3385 pwr_move /= SCHED_LOAD_SCALE;
3386
3387 /* Move if we gain throughput */
7fd0d2dd
SS
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
1da177e4
LT
3390 }
3391
1da177e4
LT
3392 return busiest;
3393
3394out_balanced:
5c45bf27 3395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3397 goto ret;
1da177e4 3398
5c45bf27
SS
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
7a09b1a2
VS
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3403 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3404 }
5c45bf27
SS
3405 return group_min;
3406 }
5c45bf27 3407#endif
783609c6 3408ret:
1da177e4
LT
3409 *imbalance = 0;
3410 return NULL;
3411}
3412
3413/*
3414 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3415 */
70b97a7f 3416static struct rq *
d15bcfdb 3417find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3418 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3419{
70b97a7f 3420 struct rq *busiest = NULL, *rq;
2dd73a4f 3421 unsigned long max_load = 0;
1da177e4
LT
3422 int i;
3423
758b2cdc 3424 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3425 unsigned long wl;
0a2966b4 3426
96f874e2 3427 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3428 continue;
3429
48f24c4d 3430 rq = cpu_rq(i);
dd41f596 3431 wl = weighted_cpuload(i);
2dd73a4f 3432
dd41f596 3433 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3434 continue;
1da177e4 3435
dd41f596
IM
3436 if (wl > max_load) {
3437 max_load = wl;
48f24c4d 3438 busiest = rq;
1da177e4
LT
3439 }
3440 }
3441
3442 return busiest;
3443}
3444
77391d71
NP
3445/*
3446 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3447 * so long as it is large enough.
3448 */
3449#define MAX_PINNED_INTERVAL 512
3450
1da177e4
LT
3451/*
3452 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3453 * tasks if there is an imbalance.
1da177e4 3454 */
70b97a7f 3455static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3456 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3457 int *balance, struct cpumask *cpus)
1da177e4 3458{
43010659 3459 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3460 struct sched_group *group;
1da177e4 3461 unsigned long imbalance;
70b97a7f 3462 struct rq *busiest;
fe2eea3f 3463 unsigned long flags;
5969fe06 3464
96f874e2 3465 cpumask_setall(cpus);
7c16ec58 3466
89c4710e
SS
3467 /*
3468 * When power savings policy is enabled for the parent domain, idle
3469 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3470 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3471 * portraying it as CPU_NOT_IDLE.
89c4710e 3472 */
d15bcfdb 3473 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3474 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3475 sd_idle = 1;
1da177e4 3476
2d72376b 3477 schedstat_inc(sd, lb_count[idle]);
1da177e4 3478
0a2966b4 3479redo:
c8cba857 3480 update_shares(sd);
0a2966b4 3481 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3482 cpus, balance);
783609c6 3483
06066714 3484 if (*balance == 0)
783609c6 3485 goto out_balanced;
783609c6 3486
1da177e4
LT
3487 if (!group) {
3488 schedstat_inc(sd, lb_nobusyg[idle]);
3489 goto out_balanced;
3490 }
3491
7c16ec58 3492 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3493 if (!busiest) {
3494 schedstat_inc(sd, lb_nobusyq[idle]);
3495 goto out_balanced;
3496 }
3497
db935dbd 3498 BUG_ON(busiest == this_rq);
1da177e4
LT
3499
3500 schedstat_add(sd, lb_imbalance[idle], imbalance);
3501
43010659 3502 ld_moved = 0;
1da177e4
LT
3503 if (busiest->nr_running > 1) {
3504 /*
3505 * Attempt to move tasks. If find_busiest_group has found
3506 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3507 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3508 * correctly treated as an imbalance.
3509 */
fe2eea3f 3510 local_irq_save(flags);
e17224bf 3511 double_rq_lock(this_rq, busiest);
43010659 3512 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3513 imbalance, sd, idle, &all_pinned);
e17224bf 3514 double_rq_unlock(this_rq, busiest);
fe2eea3f 3515 local_irq_restore(flags);
81026794 3516
46cb4b7c
SS
3517 /*
3518 * some other cpu did the load balance for us.
3519 */
43010659 3520 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3521 resched_cpu(this_cpu);
3522
81026794 3523 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3524 if (unlikely(all_pinned)) {
96f874e2
RR
3525 cpumask_clear_cpu(cpu_of(busiest), cpus);
3526 if (!cpumask_empty(cpus))
0a2966b4 3527 goto redo;
81026794 3528 goto out_balanced;
0a2966b4 3529 }
1da177e4 3530 }
81026794 3531
43010659 3532 if (!ld_moved) {
1da177e4
LT
3533 schedstat_inc(sd, lb_failed[idle]);
3534 sd->nr_balance_failed++;
3535
3536 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3537
fe2eea3f 3538 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3539
3540 /* don't kick the migration_thread, if the curr
3541 * task on busiest cpu can't be moved to this_cpu
3542 */
96f874e2
RR
3543 if (!cpumask_test_cpu(this_cpu,
3544 &busiest->curr->cpus_allowed)) {
fe2eea3f 3545 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3546 all_pinned = 1;
3547 goto out_one_pinned;
3548 }
3549
1da177e4
LT
3550 if (!busiest->active_balance) {
3551 busiest->active_balance = 1;
3552 busiest->push_cpu = this_cpu;
81026794 3553 active_balance = 1;
1da177e4 3554 }
fe2eea3f 3555 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3556 if (active_balance)
1da177e4
LT
3557 wake_up_process(busiest->migration_thread);
3558
3559 /*
3560 * We've kicked active balancing, reset the failure
3561 * counter.
3562 */
39507451 3563 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3564 }
81026794 3565 } else
1da177e4
LT
3566 sd->nr_balance_failed = 0;
3567
81026794 3568 if (likely(!active_balance)) {
1da177e4
LT
3569 /* We were unbalanced, so reset the balancing interval */
3570 sd->balance_interval = sd->min_interval;
81026794
NP
3571 } else {
3572 /*
3573 * If we've begun active balancing, start to back off. This
3574 * case may not be covered by the all_pinned logic if there
3575 * is only 1 task on the busy runqueue (because we don't call
3576 * move_tasks).
3577 */
3578 if (sd->balance_interval < sd->max_interval)
3579 sd->balance_interval *= 2;
1da177e4
LT
3580 }
3581
43010659 3582 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3583 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3584 ld_moved = -1;
3585
3586 goto out;
1da177e4
LT
3587
3588out_balanced:
1da177e4
LT
3589 schedstat_inc(sd, lb_balanced[idle]);
3590
16cfb1c0 3591 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3592
3593out_one_pinned:
1da177e4 3594 /* tune up the balancing interval */
77391d71
NP
3595 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3596 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3597 sd->balance_interval *= 2;
3598
48f24c4d 3599 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3600 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3601 ld_moved = -1;
3602 else
3603 ld_moved = 0;
3604out:
c8cba857
PZ
3605 if (ld_moved)
3606 update_shares(sd);
c09595f6 3607 return ld_moved;
1da177e4
LT
3608}
3609
3610/*
3611 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3612 * tasks if there is an imbalance.
3613 *
d15bcfdb 3614 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3615 * this_rq is locked.
3616 */
48f24c4d 3617static int
7c16ec58 3618load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3619 struct cpumask *cpus)
1da177e4
LT
3620{
3621 struct sched_group *group;
70b97a7f 3622 struct rq *busiest = NULL;
1da177e4 3623 unsigned long imbalance;
43010659 3624 int ld_moved = 0;
5969fe06 3625 int sd_idle = 0;
969bb4e4 3626 int all_pinned = 0;
7c16ec58 3627
96f874e2 3628 cpumask_setall(cpus);
5969fe06 3629
89c4710e
SS
3630 /*
3631 * When power savings policy is enabled for the parent domain, idle
3632 * sibling can pick up load irrespective of busy siblings. In this case,
3633 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3634 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3635 */
3636 if (sd->flags & SD_SHARE_CPUPOWER &&
3637 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3638 sd_idle = 1;
1da177e4 3639
2d72376b 3640 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3641redo:
3e5459b4 3642 update_shares_locked(this_rq, sd);
d15bcfdb 3643 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3644 &sd_idle, cpus, NULL);
1da177e4 3645 if (!group) {
d15bcfdb 3646 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3647 goto out_balanced;
1da177e4
LT
3648 }
3649
7c16ec58 3650 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3651 if (!busiest) {
d15bcfdb 3652 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3653 goto out_balanced;
1da177e4
LT
3654 }
3655
db935dbd
NP
3656 BUG_ON(busiest == this_rq);
3657
d15bcfdb 3658 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3659
43010659 3660 ld_moved = 0;
d6d5cfaf
NP
3661 if (busiest->nr_running > 1) {
3662 /* Attempt to move tasks */
3663 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3664 /* this_rq->clock is already updated */
3665 update_rq_clock(busiest);
43010659 3666 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3667 imbalance, sd, CPU_NEWLY_IDLE,
3668 &all_pinned);
1b12bbc7 3669 double_unlock_balance(this_rq, busiest);
0a2966b4 3670
969bb4e4 3671 if (unlikely(all_pinned)) {
96f874e2
RR
3672 cpumask_clear_cpu(cpu_of(busiest), cpus);
3673 if (!cpumask_empty(cpus))
0a2966b4
CL
3674 goto redo;
3675 }
d6d5cfaf
NP
3676 }
3677
43010659 3678 if (!ld_moved) {
36dffab6 3679 int active_balance = 0;
ad273b32 3680
d15bcfdb 3681 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3684 return -1;
ad273b32
VS
3685
3686 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3687 return -1;
3688
3689 if (sd->nr_balance_failed++ < 2)
3690 return -1;
3691
3692 /*
3693 * The only task running in a non-idle cpu can be moved to this
3694 * cpu in an attempt to completely freeup the other CPU
3695 * package. The same method used to move task in load_balance()
3696 * have been extended for load_balance_newidle() to speedup
3697 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3698 *
3699 * The package power saving logic comes from
3700 * find_busiest_group(). If there are no imbalance, then
3701 * f_b_g() will return NULL. However when sched_mc={1,2} then
3702 * f_b_g() will select a group from which a running task may be
3703 * pulled to this cpu in order to make the other package idle.
3704 * If there is no opportunity to make a package idle and if
3705 * there are no imbalance, then f_b_g() will return NULL and no
3706 * action will be taken in load_balance_newidle().
3707 *
3708 * Under normal task pull operation due to imbalance, there
3709 * will be more than one task in the source run queue and
3710 * move_tasks() will succeed. ld_moved will be true and this
3711 * active balance code will not be triggered.
3712 */
3713
3714 /* Lock busiest in correct order while this_rq is held */
3715 double_lock_balance(this_rq, busiest);
3716
3717 /*
3718 * don't kick the migration_thread, if the curr
3719 * task on busiest cpu can't be moved to this_cpu
3720 */
6ca09dfc 3721 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3722 double_unlock_balance(this_rq, busiest);
3723 all_pinned = 1;
3724 return ld_moved;
3725 }
3726
3727 if (!busiest->active_balance) {
3728 busiest->active_balance = 1;
3729 busiest->push_cpu = this_cpu;
3730 active_balance = 1;
3731 }
3732
3733 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3734 /*
3735 * Should not call ttwu while holding a rq->lock
3736 */
3737 spin_unlock(&this_rq->lock);
ad273b32
VS
3738 if (active_balance)
3739 wake_up_process(busiest->migration_thread);
da8d5089 3740 spin_lock(&this_rq->lock);
ad273b32 3741
5969fe06 3742 } else
16cfb1c0 3743 sd->nr_balance_failed = 0;
1da177e4 3744
3e5459b4 3745 update_shares_locked(this_rq, sd);
43010659 3746 return ld_moved;
16cfb1c0
NP
3747
3748out_balanced:
d15bcfdb 3749 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3750 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3751 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3752 return -1;
16cfb1c0 3753 sd->nr_balance_failed = 0;
48f24c4d 3754
16cfb1c0 3755 return 0;
1da177e4
LT
3756}
3757
3758/*
3759 * idle_balance is called by schedule() if this_cpu is about to become
3760 * idle. Attempts to pull tasks from other CPUs.
3761 */
70b97a7f 3762static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3763{
3764 struct sched_domain *sd;
efbe027e 3765 int pulled_task = 0;
dd41f596 3766 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3767 cpumask_var_t tmpmask;
3768
3769 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3770 return;
1da177e4
LT
3771
3772 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3773 unsigned long interval;
3774
3775 if (!(sd->flags & SD_LOAD_BALANCE))
3776 continue;
3777
3778 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3779 /* If we've pulled tasks over stop searching: */
7c16ec58 3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3781 sd, tmpmask);
92c4ca5c
CL
3782
3783 interval = msecs_to_jiffies(sd->balance_interval);
3784 if (time_after(next_balance, sd->last_balance + interval))
3785 next_balance = sd->last_balance + interval;
3786 if (pulled_task)
3787 break;
1da177e4 3788 }
dd41f596 3789 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3790 /*
3791 * We are going idle. next_balance may be set based on
3792 * a busy processor. So reset next_balance.
3793 */
3794 this_rq->next_balance = next_balance;
dd41f596 3795 }
4d2732c6 3796 free_cpumask_var(tmpmask);
1da177e4
LT
3797}
3798
3799/*
3800 * active_load_balance is run by migration threads. It pushes running tasks
3801 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3802 * running on each physical CPU where possible, and avoids physical /
3803 * logical imbalances.
3804 *
3805 * Called with busiest_rq locked.
3806 */
70b97a7f 3807static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3808{
39507451 3809 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3810 struct sched_domain *sd;
3811 struct rq *target_rq;
39507451 3812
48f24c4d 3813 /* Is there any task to move? */
39507451 3814 if (busiest_rq->nr_running <= 1)
39507451
NP
3815 return;
3816
3817 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3818
3819 /*
39507451 3820 * This condition is "impossible", if it occurs
41a2d6cf 3821 * we need to fix it. Originally reported by
39507451 3822 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3823 */
39507451 3824 BUG_ON(busiest_rq == target_rq);
1da177e4 3825
39507451
NP
3826 /* move a task from busiest_rq to target_rq */
3827 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3828 update_rq_clock(busiest_rq);
3829 update_rq_clock(target_rq);
39507451
NP
3830
3831 /* Search for an sd spanning us and the target CPU. */
c96d145e 3832 for_each_domain(target_cpu, sd) {
39507451 3833 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3834 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3835 break;
c96d145e 3836 }
39507451 3837
48f24c4d 3838 if (likely(sd)) {
2d72376b 3839 schedstat_inc(sd, alb_count);
39507451 3840
43010659
PW
3841 if (move_one_task(target_rq, target_cpu, busiest_rq,
3842 sd, CPU_IDLE))
48f24c4d
IM
3843 schedstat_inc(sd, alb_pushed);
3844 else
3845 schedstat_inc(sd, alb_failed);
3846 }
1b12bbc7 3847 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3848}
3849
46cb4b7c
SS
3850#ifdef CONFIG_NO_HZ
3851static struct {
3852 atomic_t load_balancer;
7d1e6a9b 3853 cpumask_var_t cpu_mask;
46cb4b7c
SS
3854} nohz ____cacheline_aligned = {
3855 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3856};
3857
7835b98b 3858/*
46cb4b7c
SS
3859 * This routine will try to nominate the ilb (idle load balancing)
3860 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3861 * load balancing on behalf of all those cpus. If all the cpus in the system
3862 * go into this tickless mode, then there will be no ilb owner (as there is
3863 * no need for one) and all the cpus will sleep till the next wakeup event
3864 * arrives...
3865 *
3866 * For the ilb owner, tick is not stopped. And this tick will be used
3867 * for idle load balancing. ilb owner will still be part of
3868 * nohz.cpu_mask..
7835b98b 3869 *
46cb4b7c
SS
3870 * While stopping the tick, this cpu will become the ilb owner if there
3871 * is no other owner. And will be the owner till that cpu becomes busy
3872 * or if all cpus in the system stop their ticks at which point
3873 * there is no need for ilb owner.
3874 *
3875 * When the ilb owner becomes busy, it nominates another owner, during the
3876 * next busy scheduler_tick()
3877 */
3878int select_nohz_load_balancer(int stop_tick)
3879{
3880 int cpu = smp_processor_id();
3881
3882 if (stop_tick) {
46cb4b7c
SS
3883 cpu_rq(cpu)->in_nohz_recently = 1;
3884
483b4ee6
SS
3885 if (!cpu_active(cpu)) {
3886 if (atomic_read(&nohz.load_balancer) != cpu)
3887 return 0;
3888
3889 /*
3890 * If we are going offline and still the leader,
3891 * give up!
3892 */
46cb4b7c
SS
3893 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3894 BUG();
483b4ee6 3895
46cb4b7c
SS
3896 return 0;
3897 }
3898
483b4ee6
SS
3899 cpumask_set_cpu(cpu, nohz.cpu_mask);
3900
46cb4b7c 3901 /* time for ilb owner also to sleep */
7d1e6a9b 3902 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3903 if (atomic_read(&nohz.load_balancer) == cpu)
3904 atomic_set(&nohz.load_balancer, -1);
3905 return 0;
3906 }
3907
3908 if (atomic_read(&nohz.load_balancer) == -1) {
3909 /* make me the ilb owner */
3910 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3911 return 1;
3912 } else if (atomic_read(&nohz.load_balancer) == cpu)
3913 return 1;
3914 } else {
7d1e6a9b 3915 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3916 return 0;
3917
7d1e6a9b 3918 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3919
3920 if (atomic_read(&nohz.load_balancer) == cpu)
3921 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3922 BUG();
3923 }
3924 return 0;
3925}
3926#endif
3927
3928static DEFINE_SPINLOCK(balancing);
3929
3930/*
7835b98b
CL
3931 * It checks each scheduling domain to see if it is due to be balanced,
3932 * and initiates a balancing operation if so.
3933 *
3934 * Balancing parameters are set up in arch_init_sched_domains.
3935 */
a9957449 3936static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3937{
46cb4b7c
SS
3938 int balance = 1;
3939 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3940 unsigned long interval;
3941 struct sched_domain *sd;
46cb4b7c 3942 /* Earliest time when we have to do rebalance again */
c9819f45 3943 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3944 int update_next_balance = 0;
d07355f5 3945 int need_serialize;
a0e90245
RR
3946 cpumask_var_t tmp;
3947
3948 /* Fails alloc? Rebalancing probably not a priority right now. */
3949 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3950 return;
1da177e4 3951
46cb4b7c 3952 for_each_domain(cpu, sd) {
1da177e4
LT
3953 if (!(sd->flags & SD_LOAD_BALANCE))
3954 continue;
3955
3956 interval = sd->balance_interval;
d15bcfdb 3957 if (idle != CPU_IDLE)
1da177e4
LT
3958 interval *= sd->busy_factor;
3959
3960 /* scale ms to jiffies */
3961 interval = msecs_to_jiffies(interval);
3962 if (unlikely(!interval))
3963 interval = 1;
dd41f596
IM
3964 if (interval > HZ*NR_CPUS/10)
3965 interval = HZ*NR_CPUS/10;
3966
d07355f5 3967 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3968
d07355f5 3969 if (need_serialize) {
08c183f3
CL
3970 if (!spin_trylock(&balancing))
3971 goto out;
3972 }
3973
c9819f45 3974 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3975 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3976 /*
3977 * We've pulled tasks over so either we're no
5969fe06
NP
3978 * longer idle, or one of our SMT siblings is
3979 * not idle.
3980 */
d15bcfdb 3981 idle = CPU_NOT_IDLE;
1da177e4 3982 }
1bd77f2d 3983 sd->last_balance = jiffies;
1da177e4 3984 }
d07355f5 3985 if (need_serialize)
08c183f3
CL
3986 spin_unlock(&balancing);
3987out:
f549da84 3988 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3989 next_balance = sd->last_balance + interval;
f549da84
SS
3990 update_next_balance = 1;
3991 }
783609c6
SS
3992
3993 /*
3994 * Stop the load balance at this level. There is another
3995 * CPU in our sched group which is doing load balancing more
3996 * actively.
3997 */
3998 if (!balance)
3999 break;
1da177e4 4000 }
f549da84
SS
4001
4002 /*
4003 * next_balance will be updated only when there is a need.
4004 * When the cpu is attached to null domain for ex, it will not be
4005 * updated.
4006 */
4007 if (likely(update_next_balance))
4008 rq->next_balance = next_balance;
a0e90245
RR
4009
4010 free_cpumask_var(tmp);
46cb4b7c
SS
4011}
4012
4013/*
4014 * run_rebalance_domains is triggered when needed from the scheduler tick.
4015 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4016 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4017 */
4018static void run_rebalance_domains(struct softirq_action *h)
4019{
dd41f596
IM
4020 int this_cpu = smp_processor_id();
4021 struct rq *this_rq = cpu_rq(this_cpu);
4022 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4023 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4024
dd41f596 4025 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4026
4027#ifdef CONFIG_NO_HZ
4028 /*
4029 * If this cpu is the owner for idle load balancing, then do the
4030 * balancing on behalf of the other idle cpus whose ticks are
4031 * stopped.
4032 */
dd41f596
IM
4033 if (this_rq->idle_at_tick &&
4034 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4035 struct rq *rq;
4036 int balance_cpu;
4037
7d1e6a9b
RR
4038 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4039 if (balance_cpu == this_cpu)
4040 continue;
4041
46cb4b7c
SS
4042 /*
4043 * If this cpu gets work to do, stop the load balancing
4044 * work being done for other cpus. Next load
4045 * balancing owner will pick it up.
4046 */
4047 if (need_resched())
4048 break;
4049
de0cf899 4050 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4051
4052 rq = cpu_rq(balance_cpu);
dd41f596
IM
4053 if (time_after(this_rq->next_balance, rq->next_balance))
4054 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4055 }
4056 }
4057#endif
4058}
4059
4060/*
4061 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4062 *
4063 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4064 * idle load balancing owner or decide to stop the periodic load balancing,
4065 * if the whole system is idle.
4066 */
dd41f596 4067static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4068{
46cb4b7c
SS
4069#ifdef CONFIG_NO_HZ
4070 /*
4071 * If we were in the nohz mode recently and busy at the current
4072 * scheduler tick, then check if we need to nominate new idle
4073 * load balancer.
4074 */
4075 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4076 rq->in_nohz_recently = 0;
4077
4078 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4079 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4080 atomic_set(&nohz.load_balancer, -1);
4081 }
4082
4083 if (atomic_read(&nohz.load_balancer) == -1) {
4084 /*
4085 * simple selection for now: Nominate the
4086 * first cpu in the nohz list to be the next
4087 * ilb owner.
4088 *
4089 * TBD: Traverse the sched domains and nominate
4090 * the nearest cpu in the nohz.cpu_mask.
4091 */
7d1e6a9b 4092 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4093
434d53b0 4094 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4095 resched_cpu(ilb);
4096 }
4097 }
4098
4099 /*
4100 * If this cpu is idle and doing idle load balancing for all the
4101 * cpus with ticks stopped, is it time for that to stop?
4102 */
4103 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4104 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4105 resched_cpu(cpu);
4106 return;
4107 }
4108
4109 /*
4110 * If this cpu is idle and the idle load balancing is done by
4111 * someone else, then no need raise the SCHED_SOFTIRQ
4112 */
4113 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4114 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4115 return;
4116#endif
4117 if (time_after_eq(jiffies, rq->next_balance))
4118 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4119}
dd41f596
IM
4120
4121#else /* CONFIG_SMP */
4122
1da177e4
LT
4123/*
4124 * on UP we do not need to balance between CPUs:
4125 */
70b97a7f 4126static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4127{
4128}
dd41f596 4129
1da177e4
LT
4130#endif
4131
1da177e4
LT
4132DEFINE_PER_CPU(struct kernel_stat, kstat);
4133
4134EXPORT_PER_CPU_SYMBOL(kstat);
4135
4136/*
f06febc9
FM
4137 * Return any ns on the sched_clock that have not yet been banked in
4138 * @p in case that task is currently running.
1da177e4 4139 */
bb34d92f 4140unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4141{
1da177e4 4142 unsigned long flags;
41b86e9c 4143 struct rq *rq;
bb34d92f 4144 u64 ns = 0;
48f24c4d 4145
41b86e9c 4146 rq = task_rq_lock(p, &flags);
1508487e 4147
051a1d1a 4148 if (task_current(rq, p)) {
f06febc9
FM
4149 u64 delta_exec;
4150
a8e504d2
IM
4151 update_rq_clock(rq);
4152 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4153 if ((s64)delta_exec > 0)
bb34d92f 4154 ns = delta_exec;
41b86e9c 4155 }
48f24c4d 4156
41b86e9c 4157 task_rq_unlock(rq, &flags);
48f24c4d 4158
1da177e4
LT
4159 return ns;
4160}
4161
1da177e4
LT
4162/*
4163 * Account user cpu time to a process.
4164 * @p: the process that the cpu time gets accounted to
1da177e4 4165 * @cputime: the cpu time spent in user space since the last update
457533a7 4166 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4167 */
457533a7
MS
4168void account_user_time(struct task_struct *p, cputime_t cputime,
4169 cputime_t cputime_scaled)
1da177e4
LT
4170{
4171 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4172 cputime64_t tmp;
4173
457533a7 4174 /* Add user time to process. */
1da177e4 4175 p->utime = cputime_add(p->utime, cputime);
457533a7 4176 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4177 account_group_user_time(p, cputime);
1da177e4
LT
4178
4179 /* Add user time to cpustat. */
4180 tmp = cputime_to_cputime64(cputime);
4181 if (TASK_NICE(p) > 0)
4182 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4183 else
4184 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4185 /* Account for user time used */
4186 acct_update_integrals(p);
1da177e4
LT
4187}
4188
94886b84
LV
4189/*
4190 * Account guest cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4193 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4194 */
457533a7
MS
4195static void account_guest_time(struct task_struct *p, cputime_t cputime,
4196 cputime_t cputime_scaled)
94886b84
LV
4197{
4198 cputime64_t tmp;
4199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4200
4201 tmp = cputime_to_cputime64(cputime);
4202
457533a7 4203 /* Add guest time to process. */
94886b84 4204 p->utime = cputime_add(p->utime, cputime);
457533a7 4205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4206 account_group_user_time(p, cputime);
94886b84
LV
4207 p->gtime = cputime_add(p->gtime, cputime);
4208
457533a7 4209 /* Add guest time to cpustat. */
94886b84
LV
4210 cpustat->user = cputime64_add(cpustat->user, tmp);
4211 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4212}
4213
1da177e4
LT
4214/*
4215 * Account system cpu time to a process.
4216 * @p: the process that the cpu time gets accounted to
4217 * @hardirq_offset: the offset to subtract from hardirq_count()
4218 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4219 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4220 */
4221void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4222 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4223{
4224 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4225 cputime64_t tmp;
4226
983ed7a6 4227 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4228 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4229 return;
4230 }
94886b84 4231
457533a7 4232 /* Add system time to process. */
1da177e4 4233 p->stime = cputime_add(p->stime, cputime);
457533a7 4234 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4235 account_group_system_time(p, cputime);
1da177e4
LT
4236
4237 /* Add system time to cpustat. */
4238 tmp = cputime_to_cputime64(cputime);
4239 if (hardirq_count() - hardirq_offset)
4240 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4241 else if (softirq_count())
4242 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4243 else
79741dd3
MS
4244 cpustat->system = cputime64_add(cpustat->system, tmp);
4245
1da177e4
LT
4246 /* Account for system time used */
4247 acct_update_integrals(p);
1da177e4
LT
4248}
4249
c66f08be 4250/*
1da177e4 4251 * Account for involuntary wait time.
1da177e4 4252 * @steal: the cpu time spent in involuntary wait
c66f08be 4253 */
79741dd3 4254void account_steal_time(cputime_t cputime)
c66f08be 4255{
79741dd3
MS
4256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4257 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4258
4259 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4260}
4261
1da177e4 4262/*
79741dd3
MS
4263 * Account for idle time.
4264 * @cputime: the cpu time spent in idle wait
1da177e4 4265 */
79741dd3 4266void account_idle_time(cputime_t cputime)
1da177e4
LT
4267{
4268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4269 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4270 struct rq *rq = this_rq();
1da177e4 4271
79741dd3
MS
4272 if (atomic_read(&rq->nr_iowait) > 0)
4273 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4274 else
4275 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4276}
4277
79741dd3
MS
4278#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4279
4280/*
4281 * Account a single tick of cpu time.
4282 * @p: the process that the cpu time gets accounted to
4283 * @user_tick: indicates if the tick is a user or a system tick
4284 */
4285void account_process_tick(struct task_struct *p, int user_tick)
4286{
4287 cputime_t one_jiffy = jiffies_to_cputime(1);
4288 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4289 struct rq *rq = this_rq();
4290
4291 if (user_tick)
4292 account_user_time(p, one_jiffy, one_jiffy_scaled);
4293 else if (p != rq->idle)
4294 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4295 one_jiffy_scaled);
4296 else
4297 account_idle_time(one_jiffy);
4298}
4299
4300/*
4301 * Account multiple ticks of steal time.
4302 * @p: the process from which the cpu time has been stolen
4303 * @ticks: number of stolen ticks
4304 */
4305void account_steal_ticks(unsigned long ticks)
4306{
4307 account_steal_time(jiffies_to_cputime(ticks));
4308}
4309
4310/*
4311 * Account multiple ticks of idle time.
4312 * @ticks: number of stolen ticks
4313 */
4314void account_idle_ticks(unsigned long ticks)
4315{
4316 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4317}
4318
79741dd3
MS
4319#endif
4320
49048622
BS
4321/*
4322 * Use precise platform statistics if available:
4323 */
4324#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4325cputime_t task_utime(struct task_struct *p)
4326{
4327 return p->utime;
4328}
4329
4330cputime_t task_stime(struct task_struct *p)
4331{
4332 return p->stime;
4333}
4334#else
4335cputime_t task_utime(struct task_struct *p)
4336{
4337 clock_t utime = cputime_to_clock_t(p->utime),
4338 total = utime + cputime_to_clock_t(p->stime);
4339 u64 temp;
4340
4341 /*
4342 * Use CFS's precise accounting:
4343 */
4344 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4345
4346 if (total) {
4347 temp *= utime;
4348 do_div(temp, total);
4349 }
4350 utime = (clock_t)temp;
4351
4352 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4353 return p->prev_utime;
4354}
4355
4356cputime_t task_stime(struct task_struct *p)
4357{
4358 clock_t stime;
4359
4360 /*
4361 * Use CFS's precise accounting. (we subtract utime from
4362 * the total, to make sure the total observed by userspace
4363 * grows monotonically - apps rely on that):
4364 */
4365 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4366 cputime_to_clock_t(task_utime(p));
4367
4368 if (stime >= 0)
4369 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4370
4371 return p->prev_stime;
4372}
4373#endif
4374
4375inline cputime_t task_gtime(struct task_struct *p)
4376{
4377 return p->gtime;
4378}
4379
7835b98b
CL
4380/*
4381 * This function gets called by the timer code, with HZ frequency.
4382 * We call it with interrupts disabled.
4383 *
4384 * It also gets called by the fork code, when changing the parent's
4385 * timeslices.
4386 */
4387void scheduler_tick(void)
4388{
7835b98b
CL
4389 int cpu = smp_processor_id();
4390 struct rq *rq = cpu_rq(cpu);
dd41f596 4391 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4392
4393 sched_clock_tick();
dd41f596
IM
4394
4395 spin_lock(&rq->lock);
3e51f33f 4396 update_rq_clock(rq);
f1a438d8 4397 update_cpu_load(rq);
fa85ae24 4398 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4399 spin_unlock(&rq->lock);
7835b98b 4400
e418e1c2 4401#ifdef CONFIG_SMP
dd41f596
IM
4402 rq->idle_at_tick = idle_cpu(cpu);
4403 trigger_load_balance(rq, cpu);
e418e1c2 4404#endif
1da177e4
LT
4405}
4406
6cd8a4bb
SR
4407#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4408 defined(CONFIG_PREEMPT_TRACER))
4409
4410static inline unsigned long get_parent_ip(unsigned long addr)
4411{
4412 if (in_lock_functions(addr)) {
4413 addr = CALLER_ADDR2;
4414 if (in_lock_functions(addr))
4415 addr = CALLER_ADDR3;
4416 }
4417 return addr;
4418}
1da177e4 4419
43627582 4420void __kprobes add_preempt_count(int val)
1da177e4 4421{
6cd8a4bb 4422#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4423 /*
4424 * Underflow?
4425 */
9a11b49a
IM
4426 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4427 return;
6cd8a4bb 4428#endif
1da177e4 4429 preempt_count() += val;
6cd8a4bb 4430#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4431 /*
4432 * Spinlock count overflowing soon?
4433 */
33859f7f
MOS
4434 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4435 PREEMPT_MASK - 10);
6cd8a4bb
SR
4436#endif
4437 if (preempt_count() == val)
4438 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4439}
4440EXPORT_SYMBOL(add_preempt_count);
4441
43627582 4442void __kprobes sub_preempt_count(int val)
1da177e4 4443{
6cd8a4bb 4444#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4445 /*
4446 * Underflow?
4447 */
01e3eb82 4448 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4449 return;
1da177e4
LT
4450 /*
4451 * Is the spinlock portion underflowing?
4452 */
9a11b49a
IM
4453 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4454 !(preempt_count() & PREEMPT_MASK)))
4455 return;
6cd8a4bb 4456#endif
9a11b49a 4457
6cd8a4bb
SR
4458 if (preempt_count() == val)
4459 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4460 preempt_count() -= val;
4461}
4462EXPORT_SYMBOL(sub_preempt_count);
4463
4464#endif
4465
4466/*
dd41f596 4467 * Print scheduling while atomic bug:
1da177e4 4468 */
dd41f596 4469static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4470{
838225b4
SS
4471 struct pt_regs *regs = get_irq_regs();
4472
4473 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4474 prev->comm, prev->pid, preempt_count());
4475
dd41f596 4476 debug_show_held_locks(prev);
e21f5b15 4477 print_modules();
dd41f596
IM
4478 if (irqs_disabled())
4479 print_irqtrace_events(prev);
838225b4
SS
4480
4481 if (regs)
4482 show_regs(regs);
4483 else
4484 dump_stack();
dd41f596 4485}
1da177e4 4486
dd41f596
IM
4487/*
4488 * Various schedule()-time debugging checks and statistics:
4489 */
4490static inline void schedule_debug(struct task_struct *prev)
4491{
1da177e4 4492 /*
41a2d6cf 4493 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4494 * schedule() atomically, we ignore that path for now.
4495 * Otherwise, whine if we are scheduling when we should not be.
4496 */
3f33a7ce 4497 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4498 __schedule_bug(prev);
4499
1da177e4
LT
4500 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4501
2d72376b 4502 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4503#ifdef CONFIG_SCHEDSTATS
4504 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4505 schedstat_inc(this_rq(), bkl_count);
4506 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4507 }
4508#endif
dd41f596
IM
4509}
4510
4511/*
4512 * Pick up the highest-prio task:
4513 */
4514static inline struct task_struct *
ff95f3df 4515pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4516{
5522d5d5 4517 const struct sched_class *class;
dd41f596 4518 struct task_struct *p;
1da177e4
LT
4519
4520 /*
dd41f596
IM
4521 * Optimization: we know that if all tasks are in
4522 * the fair class we can call that function directly:
1da177e4 4523 */
dd41f596 4524 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4525 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4526 if (likely(p))
4527 return p;
1da177e4
LT
4528 }
4529
dd41f596
IM
4530 class = sched_class_highest;
4531 for ( ; ; ) {
fb8d4724 4532 p = class->pick_next_task(rq);
dd41f596
IM
4533 if (p)
4534 return p;
4535 /*
4536 * Will never be NULL as the idle class always
4537 * returns a non-NULL p:
4538 */
4539 class = class->next;
4540 }
4541}
1da177e4 4542
dd41f596
IM
4543/*
4544 * schedule() is the main scheduler function.
4545 */
4546asmlinkage void __sched schedule(void)
4547{
4548 struct task_struct *prev, *next;
67ca7bde 4549 unsigned long *switch_count;
dd41f596 4550 struct rq *rq;
31656519 4551 int cpu;
dd41f596
IM
4552
4553need_resched:
4554 preempt_disable();
4555 cpu = smp_processor_id();
4556 rq = cpu_rq(cpu);
4557 rcu_qsctr_inc(cpu);
4558 prev = rq->curr;
4559 switch_count = &prev->nivcsw;
4560
4561 release_kernel_lock(prev);
4562need_resched_nonpreemptible:
4563
4564 schedule_debug(prev);
1da177e4 4565
31656519 4566 if (sched_feat(HRTICK))
f333fdc9 4567 hrtick_clear(rq);
8f4d37ec 4568
8cd162ce 4569 spin_lock_irq(&rq->lock);
3e51f33f 4570 update_rq_clock(rq);
1e819950 4571 clear_tsk_need_resched(prev);
1da177e4 4572
1da177e4 4573 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4574 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4575 prev->state = TASK_RUNNING;
16882c1e 4576 else
2e1cb74a 4577 deactivate_task(rq, prev, 1);
dd41f596 4578 switch_count = &prev->nvcsw;
1da177e4
LT
4579 }
4580
9a897c5a
SR
4581#ifdef CONFIG_SMP
4582 if (prev->sched_class->pre_schedule)
4583 prev->sched_class->pre_schedule(rq, prev);
4584#endif
f65eda4f 4585
dd41f596 4586 if (unlikely(!rq->nr_running))
1da177e4 4587 idle_balance(cpu, rq);
1da177e4 4588
31ee529c 4589 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4590 next = pick_next_task(rq, prev);
1da177e4 4591
1da177e4 4592 if (likely(prev != next)) {
673a90a1
DS
4593 sched_info_switch(prev, next);
4594
1da177e4
LT
4595 rq->nr_switches++;
4596 rq->curr = next;
4597 ++*switch_count;
4598
dd41f596 4599 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4600 /*
4601 * the context switch might have flipped the stack from under
4602 * us, hence refresh the local variables.
4603 */
4604 cpu = smp_processor_id();
4605 rq = cpu_rq(cpu);
1da177e4
LT
4606 } else
4607 spin_unlock_irq(&rq->lock);
4608
8f4d37ec 4609 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4610 goto need_resched_nonpreemptible;
8f4d37ec 4611
1da177e4
LT
4612 preempt_enable_no_resched();
4613 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4614 goto need_resched;
4615}
1da177e4
LT
4616EXPORT_SYMBOL(schedule);
4617
4618#ifdef CONFIG_PREEMPT
4619/*
2ed6e34f 4620 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4621 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4622 * occur there and call schedule directly.
4623 */
4624asmlinkage void __sched preempt_schedule(void)
4625{
4626 struct thread_info *ti = current_thread_info();
6478d880 4627
1da177e4
LT
4628 /*
4629 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4630 * we do not want to preempt the current task. Just return..
1da177e4 4631 */
beed33a8 4632 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4633 return;
4634
3a5c359a
AK
4635 do {
4636 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4637 schedule();
3a5c359a 4638 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4639
3a5c359a
AK
4640 /*
4641 * Check again in case we missed a preemption opportunity
4642 * between schedule and now.
4643 */
4644 barrier();
4645 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4646}
1da177e4
LT
4647EXPORT_SYMBOL(preempt_schedule);
4648
4649/*
2ed6e34f 4650 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4651 * off of irq context.
4652 * Note, that this is called and return with irqs disabled. This will
4653 * protect us against recursive calling from irq.
4654 */
4655asmlinkage void __sched preempt_schedule_irq(void)
4656{
4657 struct thread_info *ti = current_thread_info();
6478d880 4658
2ed6e34f 4659 /* Catch callers which need to be fixed */
1da177e4
LT
4660 BUG_ON(ti->preempt_count || !irqs_disabled());
4661
3a5c359a
AK
4662 do {
4663 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4664 local_irq_enable();
4665 schedule();
4666 local_irq_disable();
3a5c359a 4667 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4668
3a5c359a
AK
4669 /*
4670 * Check again in case we missed a preemption opportunity
4671 * between schedule and now.
4672 */
4673 barrier();
4674 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4675}
4676
4677#endif /* CONFIG_PREEMPT */
4678
95cdf3b7
IM
4679int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4680 void *key)
1da177e4 4681{
48f24c4d 4682 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4683}
1da177e4
LT
4684EXPORT_SYMBOL(default_wake_function);
4685
4686/*
41a2d6cf
IM
4687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4689 * number) then we wake all the non-exclusive tasks and one exclusive task.
4690 *
4691 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4694 */
777c6c5f
JW
4695void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4696 int nr_exclusive, int sync, void *key)
1da177e4 4697{
2e45874c 4698 wait_queue_t *curr, *next;
1da177e4 4699
2e45874c 4700 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4701 unsigned flags = curr->flags;
4702
1da177e4 4703 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4704 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4705 break;
4706 }
4707}
4708
4709/**
4710 * __wake_up - wake up threads blocked on a waitqueue.
4711 * @q: the waitqueue
4712 * @mode: which threads
4713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4714 * @key: is directly passed to the wakeup function
1da177e4 4715 */
7ad5b3a5 4716void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4717 int nr_exclusive, void *key)
1da177e4
LT
4718{
4719 unsigned long flags;
4720
4721 spin_lock_irqsave(&q->lock, flags);
4722 __wake_up_common(q, mode, nr_exclusive, 0, key);
4723 spin_unlock_irqrestore(&q->lock, flags);
4724}
1da177e4
LT
4725EXPORT_SYMBOL(__wake_up);
4726
4727/*
4728 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4729 */
7ad5b3a5 4730void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4731{
4732 __wake_up_common(q, mode, 1, 0, NULL);
4733}
4734
4735/**
67be2dd1 4736 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4737 * @q: the waitqueue
4738 * @mode: which threads
4739 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4740 *
4741 * The sync wakeup differs that the waker knows that it will schedule
4742 * away soon, so while the target thread will be woken up, it will not
4743 * be migrated to another CPU - ie. the two threads are 'synchronized'
4744 * with each other. This can prevent needless bouncing between CPUs.
4745 *
4746 * On UP it can prevent extra preemption.
4747 */
7ad5b3a5 4748void
95cdf3b7 4749__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4750{
4751 unsigned long flags;
4752 int sync = 1;
4753
4754 if (unlikely(!q))
4755 return;
4756
4757 if (unlikely(!nr_exclusive))
4758 sync = 0;
4759
4760 spin_lock_irqsave(&q->lock, flags);
4761 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4762 spin_unlock_irqrestore(&q->lock, flags);
4763}
4764EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4765
65eb3dc6
KD
4766/**
4767 * complete: - signals a single thread waiting on this completion
4768 * @x: holds the state of this particular completion
4769 *
4770 * This will wake up a single thread waiting on this completion. Threads will be
4771 * awakened in the same order in which they were queued.
4772 *
4773 * See also complete_all(), wait_for_completion() and related routines.
4774 */
b15136e9 4775void complete(struct completion *x)
1da177e4
LT
4776{
4777 unsigned long flags;
4778
4779 spin_lock_irqsave(&x->wait.lock, flags);
4780 x->done++;
d9514f6c 4781 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4782 spin_unlock_irqrestore(&x->wait.lock, flags);
4783}
4784EXPORT_SYMBOL(complete);
4785
65eb3dc6
KD
4786/**
4787 * complete_all: - signals all threads waiting on this completion
4788 * @x: holds the state of this particular completion
4789 *
4790 * This will wake up all threads waiting on this particular completion event.
4791 */
b15136e9 4792void complete_all(struct completion *x)
1da177e4
LT
4793{
4794 unsigned long flags;
4795
4796 spin_lock_irqsave(&x->wait.lock, flags);
4797 x->done += UINT_MAX/2;
d9514f6c 4798 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4799 spin_unlock_irqrestore(&x->wait.lock, flags);
4800}
4801EXPORT_SYMBOL(complete_all);
4802
8cbbe86d
AK
4803static inline long __sched
4804do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4805{
1da177e4
LT
4806 if (!x->done) {
4807 DECLARE_WAITQUEUE(wait, current);
4808
4809 wait.flags |= WQ_FLAG_EXCLUSIVE;
4810 __add_wait_queue_tail(&x->wait, &wait);
4811 do {
94d3d824 4812 if (signal_pending_state(state, current)) {
ea71a546
ON
4813 timeout = -ERESTARTSYS;
4814 break;
8cbbe86d
AK
4815 }
4816 __set_current_state(state);
1da177e4
LT
4817 spin_unlock_irq(&x->wait.lock);
4818 timeout = schedule_timeout(timeout);
4819 spin_lock_irq(&x->wait.lock);
ea71a546 4820 } while (!x->done && timeout);
1da177e4 4821 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4822 if (!x->done)
4823 return timeout;
1da177e4
LT
4824 }
4825 x->done--;
ea71a546 4826 return timeout ?: 1;
1da177e4 4827}
1da177e4 4828
8cbbe86d
AK
4829static long __sched
4830wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4831{
1da177e4
LT
4832 might_sleep();
4833
4834 spin_lock_irq(&x->wait.lock);
8cbbe86d 4835 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4836 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4837 return timeout;
4838}
1da177e4 4839
65eb3dc6
KD
4840/**
4841 * wait_for_completion: - waits for completion of a task
4842 * @x: holds the state of this particular completion
4843 *
4844 * This waits to be signaled for completion of a specific task. It is NOT
4845 * interruptible and there is no timeout.
4846 *
4847 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4848 * and interrupt capability. Also see complete().
4849 */
b15136e9 4850void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4851{
4852 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4853}
8cbbe86d 4854EXPORT_SYMBOL(wait_for_completion);
1da177e4 4855
65eb3dc6
KD
4856/**
4857 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4858 * @x: holds the state of this particular completion
4859 * @timeout: timeout value in jiffies
4860 *
4861 * This waits for either a completion of a specific task to be signaled or for a
4862 * specified timeout to expire. The timeout is in jiffies. It is not
4863 * interruptible.
4864 */
b15136e9 4865unsigned long __sched
8cbbe86d 4866wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4867{
8cbbe86d 4868 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4869}
8cbbe86d 4870EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4871
65eb3dc6
KD
4872/**
4873 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4874 * @x: holds the state of this particular completion
4875 *
4876 * This waits for completion of a specific task to be signaled. It is
4877 * interruptible.
4878 */
8cbbe86d 4879int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4880{
51e97990
AK
4881 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4882 if (t == -ERESTARTSYS)
4883 return t;
4884 return 0;
0fec171c 4885}
8cbbe86d 4886EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4887
65eb3dc6
KD
4888/**
4889 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4890 * @x: holds the state of this particular completion
4891 * @timeout: timeout value in jiffies
4892 *
4893 * This waits for either a completion of a specific task to be signaled or for a
4894 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4895 */
b15136e9 4896unsigned long __sched
8cbbe86d
AK
4897wait_for_completion_interruptible_timeout(struct completion *x,
4898 unsigned long timeout)
0fec171c 4899{
8cbbe86d 4900 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4901}
8cbbe86d 4902EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4903
65eb3dc6
KD
4904/**
4905 * wait_for_completion_killable: - waits for completion of a task (killable)
4906 * @x: holds the state of this particular completion
4907 *
4908 * This waits to be signaled for completion of a specific task. It can be
4909 * interrupted by a kill signal.
4910 */
009e577e
MW
4911int __sched wait_for_completion_killable(struct completion *x)
4912{
4913 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4914 if (t == -ERESTARTSYS)
4915 return t;
4916 return 0;
4917}
4918EXPORT_SYMBOL(wait_for_completion_killable);
4919
be4de352
DC
4920/**
4921 * try_wait_for_completion - try to decrement a completion without blocking
4922 * @x: completion structure
4923 *
4924 * Returns: 0 if a decrement cannot be done without blocking
4925 * 1 if a decrement succeeded.
4926 *
4927 * If a completion is being used as a counting completion,
4928 * attempt to decrement the counter without blocking. This
4929 * enables us to avoid waiting if the resource the completion
4930 * is protecting is not available.
4931 */
4932bool try_wait_for_completion(struct completion *x)
4933{
4934 int ret = 1;
4935
4936 spin_lock_irq(&x->wait.lock);
4937 if (!x->done)
4938 ret = 0;
4939 else
4940 x->done--;
4941 spin_unlock_irq(&x->wait.lock);
4942 return ret;
4943}
4944EXPORT_SYMBOL(try_wait_for_completion);
4945
4946/**
4947 * completion_done - Test to see if a completion has any waiters
4948 * @x: completion structure
4949 *
4950 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4951 * 1 if there are no waiters.
4952 *
4953 */
4954bool completion_done(struct completion *x)
4955{
4956 int ret = 1;
4957
4958 spin_lock_irq(&x->wait.lock);
4959 if (!x->done)
4960 ret = 0;
4961 spin_unlock_irq(&x->wait.lock);
4962 return ret;
4963}
4964EXPORT_SYMBOL(completion_done);
4965
8cbbe86d
AK
4966static long __sched
4967sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4968{
0fec171c
IM
4969 unsigned long flags;
4970 wait_queue_t wait;
4971
4972 init_waitqueue_entry(&wait, current);
1da177e4 4973
8cbbe86d 4974 __set_current_state(state);
1da177e4 4975
8cbbe86d
AK
4976 spin_lock_irqsave(&q->lock, flags);
4977 __add_wait_queue(q, &wait);
4978 spin_unlock(&q->lock);
4979 timeout = schedule_timeout(timeout);
4980 spin_lock_irq(&q->lock);
4981 __remove_wait_queue(q, &wait);
4982 spin_unlock_irqrestore(&q->lock, flags);
4983
4984 return timeout;
4985}
4986
4987void __sched interruptible_sleep_on(wait_queue_head_t *q)
4988{
4989 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4990}
1da177e4
LT
4991EXPORT_SYMBOL(interruptible_sleep_on);
4992
0fec171c 4993long __sched
95cdf3b7 4994interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4995{
8cbbe86d 4996 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4997}
1da177e4
LT
4998EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4999
0fec171c 5000void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5001{
8cbbe86d 5002 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5003}
1da177e4
LT
5004EXPORT_SYMBOL(sleep_on);
5005
0fec171c 5006long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5007{
8cbbe86d 5008 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5009}
1da177e4
LT
5010EXPORT_SYMBOL(sleep_on_timeout);
5011
b29739f9
IM
5012#ifdef CONFIG_RT_MUTEXES
5013
5014/*
5015 * rt_mutex_setprio - set the current priority of a task
5016 * @p: task
5017 * @prio: prio value (kernel-internal form)
5018 *
5019 * This function changes the 'effective' priority of a task. It does
5020 * not touch ->normal_prio like __setscheduler().
5021 *
5022 * Used by the rt_mutex code to implement priority inheritance logic.
5023 */
36c8b586 5024void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5025{
5026 unsigned long flags;
83b699ed 5027 int oldprio, on_rq, running;
70b97a7f 5028 struct rq *rq;
cb469845 5029 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5030
5031 BUG_ON(prio < 0 || prio > MAX_PRIO);
5032
5033 rq = task_rq_lock(p, &flags);
a8e504d2 5034 update_rq_clock(rq);
b29739f9 5035
d5f9f942 5036 oldprio = p->prio;
dd41f596 5037 on_rq = p->se.on_rq;
051a1d1a 5038 running = task_current(rq, p);
0e1f3483 5039 if (on_rq)
69be72c1 5040 dequeue_task(rq, p, 0);
0e1f3483
HS
5041 if (running)
5042 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5043
5044 if (rt_prio(prio))
5045 p->sched_class = &rt_sched_class;
5046 else
5047 p->sched_class = &fair_sched_class;
5048
b29739f9
IM
5049 p->prio = prio;
5050
0e1f3483
HS
5051 if (running)
5052 p->sched_class->set_curr_task(rq);
dd41f596 5053 if (on_rq) {
8159f87e 5054 enqueue_task(rq, p, 0);
cb469845
SR
5055
5056 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5057 }
5058 task_rq_unlock(rq, &flags);
5059}
5060
5061#endif
5062
36c8b586 5063void set_user_nice(struct task_struct *p, long nice)
1da177e4 5064{
dd41f596 5065 int old_prio, delta, on_rq;
1da177e4 5066 unsigned long flags;
70b97a7f 5067 struct rq *rq;
1da177e4
LT
5068
5069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5070 return;
5071 /*
5072 * We have to be careful, if called from sys_setpriority(),
5073 * the task might be in the middle of scheduling on another CPU.
5074 */
5075 rq = task_rq_lock(p, &flags);
a8e504d2 5076 update_rq_clock(rq);
1da177e4
LT
5077 /*
5078 * The RT priorities are set via sched_setscheduler(), but we still
5079 * allow the 'normal' nice value to be set - but as expected
5080 * it wont have any effect on scheduling until the task is
dd41f596 5081 * SCHED_FIFO/SCHED_RR:
1da177e4 5082 */
e05606d3 5083 if (task_has_rt_policy(p)) {
1da177e4
LT
5084 p->static_prio = NICE_TO_PRIO(nice);
5085 goto out_unlock;
5086 }
dd41f596 5087 on_rq = p->se.on_rq;
c09595f6 5088 if (on_rq)
69be72c1 5089 dequeue_task(rq, p, 0);
1da177e4 5090
1da177e4 5091 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5092 set_load_weight(p);
b29739f9
IM
5093 old_prio = p->prio;
5094 p->prio = effective_prio(p);
5095 delta = p->prio - old_prio;
1da177e4 5096
dd41f596 5097 if (on_rq) {
8159f87e 5098 enqueue_task(rq, p, 0);
1da177e4 5099 /*
d5f9f942
AM
5100 * If the task increased its priority or is running and
5101 * lowered its priority, then reschedule its CPU:
1da177e4 5102 */
d5f9f942 5103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5104 resched_task(rq->curr);
5105 }
5106out_unlock:
5107 task_rq_unlock(rq, &flags);
5108}
1da177e4
LT
5109EXPORT_SYMBOL(set_user_nice);
5110
e43379f1
MM
5111/*
5112 * can_nice - check if a task can reduce its nice value
5113 * @p: task
5114 * @nice: nice value
5115 */
36c8b586 5116int can_nice(const struct task_struct *p, const int nice)
e43379f1 5117{
024f4747
MM
5118 /* convert nice value [19,-20] to rlimit style value [1,40] */
5119 int nice_rlim = 20 - nice;
48f24c4d 5120
e43379f1
MM
5121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5122 capable(CAP_SYS_NICE));
5123}
5124
1da177e4
LT
5125#ifdef __ARCH_WANT_SYS_NICE
5126
5127/*
5128 * sys_nice - change the priority of the current process.
5129 * @increment: priority increment
5130 *
5131 * sys_setpriority is a more generic, but much slower function that
5132 * does similar things.
5133 */
5add95d4 5134SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5135{
48f24c4d 5136 long nice, retval;
1da177e4
LT
5137
5138 /*
5139 * Setpriority might change our priority at the same moment.
5140 * We don't have to worry. Conceptually one call occurs first
5141 * and we have a single winner.
5142 */
e43379f1
MM
5143 if (increment < -40)
5144 increment = -40;
1da177e4
LT
5145 if (increment > 40)
5146 increment = 40;
5147
5148 nice = PRIO_TO_NICE(current->static_prio) + increment;
5149 if (nice < -20)
5150 nice = -20;
5151 if (nice > 19)
5152 nice = 19;
5153
e43379f1
MM
5154 if (increment < 0 && !can_nice(current, nice))
5155 return -EPERM;
5156
1da177e4
LT
5157 retval = security_task_setnice(current, nice);
5158 if (retval)
5159 return retval;
5160
5161 set_user_nice(current, nice);
5162 return 0;
5163}
5164
5165#endif
5166
5167/**
5168 * task_prio - return the priority value of a given task.
5169 * @p: the task in question.
5170 *
5171 * This is the priority value as seen by users in /proc.
5172 * RT tasks are offset by -200. Normal tasks are centered
5173 * around 0, value goes from -16 to +15.
5174 */
36c8b586 5175int task_prio(const struct task_struct *p)
1da177e4
LT
5176{
5177 return p->prio - MAX_RT_PRIO;
5178}
5179
5180/**
5181 * task_nice - return the nice value of a given task.
5182 * @p: the task in question.
5183 */
36c8b586 5184int task_nice(const struct task_struct *p)
1da177e4
LT
5185{
5186 return TASK_NICE(p);
5187}
150d8bed 5188EXPORT_SYMBOL(task_nice);
1da177e4
LT
5189
5190/**
5191 * idle_cpu - is a given cpu idle currently?
5192 * @cpu: the processor in question.
5193 */
5194int idle_cpu(int cpu)
5195{
5196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5197}
5198
1da177e4
LT
5199/**
5200 * idle_task - return the idle task for a given cpu.
5201 * @cpu: the processor in question.
5202 */
36c8b586 5203struct task_struct *idle_task(int cpu)
1da177e4
LT
5204{
5205 return cpu_rq(cpu)->idle;
5206}
5207
5208/**
5209 * find_process_by_pid - find a process with a matching PID value.
5210 * @pid: the pid in question.
5211 */
a9957449 5212static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5213{
228ebcbe 5214 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5215}
5216
5217/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5218static void
5219__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5220{
dd41f596 5221 BUG_ON(p->se.on_rq);
48f24c4d 5222
1da177e4 5223 p->policy = policy;
dd41f596
IM
5224 switch (p->policy) {
5225 case SCHED_NORMAL:
5226 case SCHED_BATCH:
5227 case SCHED_IDLE:
5228 p->sched_class = &fair_sched_class;
5229 break;
5230 case SCHED_FIFO:
5231 case SCHED_RR:
5232 p->sched_class = &rt_sched_class;
5233 break;
5234 }
5235
1da177e4 5236 p->rt_priority = prio;
b29739f9
IM
5237 p->normal_prio = normal_prio(p);
5238 /* we are holding p->pi_lock already */
5239 p->prio = rt_mutex_getprio(p);
2dd73a4f 5240 set_load_weight(p);
1da177e4
LT
5241}
5242
c69e8d9c
DH
5243/*
5244 * check the target process has a UID that matches the current process's
5245 */
5246static bool check_same_owner(struct task_struct *p)
5247{
5248 const struct cred *cred = current_cred(), *pcred;
5249 bool match;
5250
5251 rcu_read_lock();
5252 pcred = __task_cred(p);
5253 match = (cred->euid == pcred->euid ||
5254 cred->euid == pcred->uid);
5255 rcu_read_unlock();
5256 return match;
5257}
5258
961ccddd
RR
5259static int __sched_setscheduler(struct task_struct *p, int policy,
5260 struct sched_param *param, bool user)
1da177e4 5261{
83b699ed 5262 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5263 unsigned long flags;
cb469845 5264 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5265 struct rq *rq;
1da177e4 5266
66e5393a
SR
5267 /* may grab non-irq protected spin_locks */
5268 BUG_ON(in_interrupt());
1da177e4
LT
5269recheck:
5270 /* double check policy once rq lock held */
5271 if (policy < 0)
5272 policy = oldpolicy = p->policy;
5273 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5274 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5275 policy != SCHED_IDLE)
b0a9499c 5276 return -EINVAL;
1da177e4
LT
5277 /*
5278 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5279 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5280 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5281 */
5282 if (param->sched_priority < 0 ||
95cdf3b7 5283 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5284 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5285 return -EINVAL;
e05606d3 5286 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5287 return -EINVAL;
5288
37e4ab3f
OC
5289 /*
5290 * Allow unprivileged RT tasks to decrease priority:
5291 */
961ccddd 5292 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5293 if (rt_policy(policy)) {
8dc3e909 5294 unsigned long rlim_rtprio;
8dc3e909
ON
5295
5296 if (!lock_task_sighand(p, &flags))
5297 return -ESRCH;
5298 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5299 unlock_task_sighand(p, &flags);
5300
5301 /* can't set/change the rt policy */
5302 if (policy != p->policy && !rlim_rtprio)
5303 return -EPERM;
5304
5305 /* can't increase priority */
5306 if (param->sched_priority > p->rt_priority &&
5307 param->sched_priority > rlim_rtprio)
5308 return -EPERM;
5309 }
dd41f596
IM
5310 /*
5311 * Like positive nice levels, dont allow tasks to
5312 * move out of SCHED_IDLE either:
5313 */
5314 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5315 return -EPERM;
5fe1d75f 5316
37e4ab3f 5317 /* can't change other user's priorities */
c69e8d9c 5318 if (!check_same_owner(p))
37e4ab3f
OC
5319 return -EPERM;
5320 }
1da177e4 5321
725aad24 5322 if (user) {
b68aa230 5323#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5324 /*
5325 * Do not allow realtime tasks into groups that have no runtime
5326 * assigned.
5327 */
9a7e0b18
PZ
5328 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5329 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5330 return -EPERM;
b68aa230
PZ
5331#endif
5332
725aad24
JF
5333 retval = security_task_setscheduler(p, policy, param);
5334 if (retval)
5335 return retval;
5336 }
5337
b29739f9
IM
5338 /*
5339 * make sure no PI-waiters arrive (or leave) while we are
5340 * changing the priority of the task:
5341 */
5342 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5343 /*
5344 * To be able to change p->policy safely, the apropriate
5345 * runqueue lock must be held.
5346 */
b29739f9 5347 rq = __task_rq_lock(p);
1da177e4
LT
5348 /* recheck policy now with rq lock held */
5349 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5350 policy = oldpolicy = -1;
b29739f9
IM
5351 __task_rq_unlock(rq);
5352 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5353 goto recheck;
5354 }
2daa3577 5355 update_rq_clock(rq);
dd41f596 5356 on_rq = p->se.on_rq;
051a1d1a 5357 running = task_current(rq, p);
0e1f3483 5358 if (on_rq)
2e1cb74a 5359 deactivate_task(rq, p, 0);
0e1f3483
HS
5360 if (running)
5361 p->sched_class->put_prev_task(rq, p);
f6b53205 5362
1da177e4 5363 oldprio = p->prio;
dd41f596 5364 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5365
0e1f3483
HS
5366 if (running)
5367 p->sched_class->set_curr_task(rq);
dd41f596
IM
5368 if (on_rq) {
5369 activate_task(rq, p, 0);
cb469845
SR
5370
5371 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5372 }
b29739f9
IM
5373 __task_rq_unlock(rq);
5374 spin_unlock_irqrestore(&p->pi_lock, flags);
5375
95e02ca9
TG
5376 rt_mutex_adjust_pi(p);
5377
1da177e4
LT
5378 return 0;
5379}
961ccddd
RR
5380
5381/**
5382 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5383 * @p: the task in question.
5384 * @policy: new policy.
5385 * @param: structure containing the new RT priority.
5386 *
5387 * NOTE that the task may be already dead.
5388 */
5389int sched_setscheduler(struct task_struct *p, int policy,
5390 struct sched_param *param)
5391{
5392 return __sched_setscheduler(p, policy, param, true);
5393}
1da177e4
LT
5394EXPORT_SYMBOL_GPL(sched_setscheduler);
5395
961ccddd
RR
5396/**
5397 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5398 * @p: the task in question.
5399 * @policy: new policy.
5400 * @param: structure containing the new RT priority.
5401 *
5402 * Just like sched_setscheduler, only don't bother checking if the
5403 * current context has permission. For example, this is needed in
5404 * stop_machine(): we create temporary high priority worker threads,
5405 * but our caller might not have that capability.
5406 */
5407int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5408 struct sched_param *param)
5409{
5410 return __sched_setscheduler(p, policy, param, false);
5411}
5412
95cdf3b7
IM
5413static int
5414do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5415{
1da177e4
LT
5416 struct sched_param lparam;
5417 struct task_struct *p;
36c8b586 5418 int retval;
1da177e4
LT
5419
5420 if (!param || pid < 0)
5421 return -EINVAL;
5422 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5423 return -EFAULT;
5fe1d75f
ON
5424
5425 rcu_read_lock();
5426 retval = -ESRCH;
1da177e4 5427 p = find_process_by_pid(pid);
5fe1d75f
ON
5428 if (p != NULL)
5429 retval = sched_setscheduler(p, policy, &lparam);
5430 rcu_read_unlock();
36c8b586 5431
1da177e4
LT
5432 return retval;
5433}
5434
5435/**
5436 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5437 * @pid: the pid in question.
5438 * @policy: new policy.
5439 * @param: structure containing the new RT priority.
5440 */
5add95d4
HC
5441SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5442 struct sched_param __user *, param)
1da177e4 5443{
c21761f1
JB
5444 /* negative values for policy are not valid */
5445 if (policy < 0)
5446 return -EINVAL;
5447
1da177e4
LT
5448 return do_sched_setscheduler(pid, policy, param);
5449}
5450
5451/**
5452 * sys_sched_setparam - set/change the RT priority of a thread
5453 * @pid: the pid in question.
5454 * @param: structure containing the new RT priority.
5455 */
5add95d4 5456SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5457{
5458 return do_sched_setscheduler(pid, -1, param);
5459}
5460
5461/**
5462 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5463 * @pid: the pid in question.
5464 */
5add95d4 5465SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5466{
36c8b586 5467 struct task_struct *p;
3a5c359a 5468 int retval;
1da177e4
LT
5469
5470 if (pid < 0)
3a5c359a 5471 return -EINVAL;
1da177e4
LT
5472
5473 retval = -ESRCH;
5474 read_lock(&tasklist_lock);
5475 p = find_process_by_pid(pid);
5476 if (p) {
5477 retval = security_task_getscheduler(p);
5478 if (!retval)
5479 retval = p->policy;
5480 }
5481 read_unlock(&tasklist_lock);
1da177e4
LT
5482 return retval;
5483}
5484
5485/**
5486 * sys_sched_getscheduler - get the RT priority of a thread
5487 * @pid: the pid in question.
5488 * @param: structure containing the RT priority.
5489 */
5add95d4 5490SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5491{
5492 struct sched_param lp;
36c8b586 5493 struct task_struct *p;
3a5c359a 5494 int retval;
1da177e4
LT
5495
5496 if (!param || pid < 0)
3a5c359a 5497 return -EINVAL;
1da177e4
LT
5498
5499 read_lock(&tasklist_lock);
5500 p = find_process_by_pid(pid);
5501 retval = -ESRCH;
5502 if (!p)
5503 goto out_unlock;
5504
5505 retval = security_task_getscheduler(p);
5506 if (retval)
5507 goto out_unlock;
5508
5509 lp.sched_priority = p->rt_priority;
5510 read_unlock(&tasklist_lock);
5511
5512 /*
5513 * This one might sleep, we cannot do it with a spinlock held ...
5514 */
5515 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5516
1da177e4
LT
5517 return retval;
5518
5519out_unlock:
5520 read_unlock(&tasklist_lock);
5521 return retval;
5522}
5523
96f874e2 5524long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5525{
5a16f3d3 5526 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5527 struct task_struct *p;
5528 int retval;
1da177e4 5529
95402b38 5530 get_online_cpus();
1da177e4
LT
5531 read_lock(&tasklist_lock);
5532
5533 p = find_process_by_pid(pid);
5534 if (!p) {
5535 read_unlock(&tasklist_lock);
95402b38 5536 put_online_cpus();
1da177e4
LT
5537 return -ESRCH;
5538 }
5539
5540 /*
5541 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5542 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5543 * usage count and then drop tasklist_lock.
5544 */
5545 get_task_struct(p);
5546 read_unlock(&tasklist_lock);
5547
5a16f3d3
RR
5548 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5549 retval = -ENOMEM;
5550 goto out_put_task;
5551 }
5552 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5553 retval = -ENOMEM;
5554 goto out_free_cpus_allowed;
5555 }
1da177e4 5556 retval = -EPERM;
c69e8d9c 5557 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5558 goto out_unlock;
5559
e7834f8f
DQ
5560 retval = security_task_setscheduler(p, 0, NULL);
5561 if (retval)
5562 goto out_unlock;
5563
5a16f3d3
RR
5564 cpuset_cpus_allowed(p, cpus_allowed);
5565 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5566 again:
5a16f3d3 5567 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5568
8707d8b8 5569 if (!retval) {
5a16f3d3
RR
5570 cpuset_cpus_allowed(p, cpus_allowed);
5571 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5572 /*
5573 * We must have raced with a concurrent cpuset
5574 * update. Just reset the cpus_allowed to the
5575 * cpuset's cpus_allowed
5576 */
5a16f3d3 5577 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5578 goto again;
5579 }
5580 }
1da177e4 5581out_unlock:
5a16f3d3
RR
5582 free_cpumask_var(new_mask);
5583out_free_cpus_allowed:
5584 free_cpumask_var(cpus_allowed);
5585out_put_task:
1da177e4 5586 put_task_struct(p);
95402b38 5587 put_online_cpus();
1da177e4
LT
5588 return retval;
5589}
5590
5591static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5592 struct cpumask *new_mask)
1da177e4 5593{
96f874e2
RR
5594 if (len < cpumask_size())
5595 cpumask_clear(new_mask);
5596 else if (len > cpumask_size())
5597 len = cpumask_size();
5598
1da177e4
LT
5599 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5600}
5601
5602/**
5603 * sys_sched_setaffinity - set the cpu affinity of a process
5604 * @pid: pid of the process
5605 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5606 * @user_mask_ptr: user-space pointer to the new cpu mask
5607 */
5add95d4
HC
5608SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5609 unsigned long __user *, user_mask_ptr)
1da177e4 5610{
5a16f3d3 5611 cpumask_var_t new_mask;
1da177e4
LT
5612 int retval;
5613
5a16f3d3
RR
5614 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5615 return -ENOMEM;
1da177e4 5616
5a16f3d3
RR
5617 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5618 if (retval == 0)
5619 retval = sched_setaffinity(pid, new_mask);
5620 free_cpumask_var(new_mask);
5621 return retval;
1da177e4
LT
5622}
5623
96f874e2 5624long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5625{
36c8b586 5626 struct task_struct *p;
1da177e4 5627 int retval;
1da177e4 5628
95402b38 5629 get_online_cpus();
1da177e4
LT
5630 read_lock(&tasklist_lock);
5631
5632 retval = -ESRCH;
5633 p = find_process_by_pid(pid);
5634 if (!p)
5635 goto out_unlock;
5636
e7834f8f
DQ
5637 retval = security_task_getscheduler(p);
5638 if (retval)
5639 goto out_unlock;
5640
96f874e2 5641 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5642
5643out_unlock:
5644 read_unlock(&tasklist_lock);
95402b38 5645 put_online_cpus();
1da177e4 5646
9531b62f 5647 return retval;
1da177e4
LT
5648}
5649
5650/**
5651 * sys_sched_getaffinity - get the cpu affinity of a process
5652 * @pid: pid of the process
5653 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5654 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5655 */
5add95d4
HC
5656SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5657 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5658{
5659 int ret;
f17c8607 5660 cpumask_var_t mask;
1da177e4 5661
f17c8607 5662 if (len < cpumask_size())
1da177e4
LT
5663 return -EINVAL;
5664
f17c8607
RR
5665 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5666 return -ENOMEM;
1da177e4 5667
f17c8607
RR
5668 ret = sched_getaffinity(pid, mask);
5669 if (ret == 0) {
5670 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5671 ret = -EFAULT;
5672 else
5673 ret = cpumask_size();
5674 }
5675 free_cpumask_var(mask);
1da177e4 5676
f17c8607 5677 return ret;
1da177e4
LT
5678}
5679
5680/**
5681 * sys_sched_yield - yield the current processor to other threads.
5682 *
dd41f596
IM
5683 * This function yields the current CPU to other tasks. If there are no
5684 * other threads running on this CPU then this function will return.
1da177e4 5685 */
5add95d4 5686SYSCALL_DEFINE0(sched_yield)
1da177e4 5687{
70b97a7f 5688 struct rq *rq = this_rq_lock();
1da177e4 5689
2d72376b 5690 schedstat_inc(rq, yld_count);
4530d7ab 5691 current->sched_class->yield_task(rq);
1da177e4
LT
5692
5693 /*
5694 * Since we are going to call schedule() anyway, there's
5695 * no need to preempt or enable interrupts:
5696 */
5697 __release(rq->lock);
8a25d5de 5698 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5699 _raw_spin_unlock(&rq->lock);
5700 preempt_enable_no_resched();
5701
5702 schedule();
5703
5704 return 0;
5705}
5706
e7b38404 5707static void __cond_resched(void)
1da177e4 5708{
8e0a43d8
IM
5709#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5710 __might_sleep(__FILE__, __LINE__);
5711#endif
5bbcfd90
IM
5712 /*
5713 * The BKS might be reacquired before we have dropped
5714 * PREEMPT_ACTIVE, which could trigger a second
5715 * cond_resched() call.
5716 */
1da177e4
LT
5717 do {
5718 add_preempt_count(PREEMPT_ACTIVE);
5719 schedule();
5720 sub_preempt_count(PREEMPT_ACTIVE);
5721 } while (need_resched());
5722}
5723
02b67cc3 5724int __sched _cond_resched(void)
1da177e4 5725{
9414232f
IM
5726 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5727 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5728 __cond_resched();
5729 return 1;
5730 }
5731 return 0;
5732}
02b67cc3 5733EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5734
5735/*
5736 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5737 * call schedule, and on return reacquire the lock.
5738 *
41a2d6cf 5739 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5740 * operations here to prevent schedule() from being called twice (once via
5741 * spin_unlock(), once by hand).
5742 */
95cdf3b7 5743int cond_resched_lock(spinlock_t *lock)
1da177e4 5744{
95c354fe 5745 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5746 int ret = 0;
5747
95c354fe 5748 if (spin_needbreak(lock) || resched) {
1da177e4 5749 spin_unlock(lock);
95c354fe
NP
5750 if (resched && need_resched())
5751 __cond_resched();
5752 else
5753 cpu_relax();
6df3cecb 5754 ret = 1;
1da177e4 5755 spin_lock(lock);
1da177e4 5756 }
6df3cecb 5757 return ret;
1da177e4 5758}
1da177e4
LT
5759EXPORT_SYMBOL(cond_resched_lock);
5760
5761int __sched cond_resched_softirq(void)
5762{
5763 BUG_ON(!in_softirq());
5764
9414232f 5765 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5766 local_bh_enable();
1da177e4
LT
5767 __cond_resched();
5768 local_bh_disable();
5769 return 1;
5770 }
5771 return 0;
5772}
1da177e4
LT
5773EXPORT_SYMBOL(cond_resched_softirq);
5774
1da177e4
LT
5775/**
5776 * yield - yield the current processor to other threads.
5777 *
72fd4a35 5778 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5779 * thread runnable and calls sys_sched_yield().
5780 */
5781void __sched yield(void)
5782{
5783 set_current_state(TASK_RUNNING);
5784 sys_sched_yield();
5785}
1da177e4
LT
5786EXPORT_SYMBOL(yield);
5787
5788/*
41a2d6cf 5789 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5790 * that process accounting knows that this is a task in IO wait state.
5791 *
5792 * But don't do that if it is a deliberate, throttling IO wait (this task
5793 * has set its backing_dev_info: the queue against which it should throttle)
5794 */
5795void __sched io_schedule(void)
5796{
70b97a7f 5797 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5798
0ff92245 5799 delayacct_blkio_start();
1da177e4
LT
5800 atomic_inc(&rq->nr_iowait);
5801 schedule();
5802 atomic_dec(&rq->nr_iowait);
0ff92245 5803 delayacct_blkio_end();
1da177e4 5804}
1da177e4
LT
5805EXPORT_SYMBOL(io_schedule);
5806
5807long __sched io_schedule_timeout(long timeout)
5808{
70b97a7f 5809 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5810 long ret;
5811
0ff92245 5812 delayacct_blkio_start();
1da177e4
LT
5813 atomic_inc(&rq->nr_iowait);
5814 ret = schedule_timeout(timeout);
5815 atomic_dec(&rq->nr_iowait);
0ff92245 5816 delayacct_blkio_end();
1da177e4
LT
5817 return ret;
5818}
5819
5820/**
5821 * sys_sched_get_priority_max - return maximum RT priority.
5822 * @policy: scheduling class.
5823 *
5824 * this syscall returns the maximum rt_priority that can be used
5825 * by a given scheduling class.
5826 */
5add95d4 5827SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5828{
5829 int ret = -EINVAL;
5830
5831 switch (policy) {
5832 case SCHED_FIFO:
5833 case SCHED_RR:
5834 ret = MAX_USER_RT_PRIO-1;
5835 break;
5836 case SCHED_NORMAL:
b0a9499c 5837 case SCHED_BATCH:
dd41f596 5838 case SCHED_IDLE:
1da177e4
LT
5839 ret = 0;
5840 break;
5841 }
5842 return ret;
5843}
5844
5845/**
5846 * sys_sched_get_priority_min - return minimum RT priority.
5847 * @policy: scheduling class.
5848 *
5849 * this syscall returns the minimum rt_priority that can be used
5850 * by a given scheduling class.
5851 */
5add95d4 5852SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5853{
5854 int ret = -EINVAL;
5855
5856 switch (policy) {
5857 case SCHED_FIFO:
5858 case SCHED_RR:
5859 ret = 1;
5860 break;
5861 case SCHED_NORMAL:
b0a9499c 5862 case SCHED_BATCH:
dd41f596 5863 case SCHED_IDLE:
1da177e4
LT
5864 ret = 0;
5865 }
5866 return ret;
5867}
5868
5869/**
5870 * sys_sched_rr_get_interval - return the default timeslice of a process.
5871 * @pid: pid of the process.
5872 * @interval: userspace pointer to the timeslice value.
5873 *
5874 * this syscall writes the default timeslice value of a given process
5875 * into the user-space timespec buffer. A value of '0' means infinity.
5876 */
17da2bd9 5877SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5878 struct timespec __user *, interval)
1da177e4 5879{
36c8b586 5880 struct task_struct *p;
a4ec24b4 5881 unsigned int time_slice;
3a5c359a 5882 int retval;
1da177e4 5883 struct timespec t;
1da177e4
LT
5884
5885 if (pid < 0)
3a5c359a 5886 return -EINVAL;
1da177e4
LT
5887
5888 retval = -ESRCH;
5889 read_lock(&tasklist_lock);
5890 p = find_process_by_pid(pid);
5891 if (!p)
5892 goto out_unlock;
5893
5894 retval = security_task_getscheduler(p);
5895 if (retval)
5896 goto out_unlock;
5897
77034937
IM
5898 /*
5899 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5900 * tasks that are on an otherwise idle runqueue:
5901 */
5902 time_slice = 0;
5903 if (p->policy == SCHED_RR) {
a4ec24b4 5904 time_slice = DEF_TIMESLICE;
1868f958 5905 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5906 struct sched_entity *se = &p->se;
5907 unsigned long flags;
5908 struct rq *rq;
5909
5910 rq = task_rq_lock(p, &flags);
77034937
IM
5911 if (rq->cfs.load.weight)
5912 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5913 task_rq_unlock(rq, &flags);
5914 }
1da177e4 5915 read_unlock(&tasklist_lock);
a4ec24b4 5916 jiffies_to_timespec(time_slice, &t);
1da177e4 5917 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5918 return retval;
3a5c359a 5919
1da177e4
LT
5920out_unlock:
5921 read_unlock(&tasklist_lock);
5922 return retval;
5923}
5924
7c731e0a 5925static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5926
82a1fcb9 5927void sched_show_task(struct task_struct *p)
1da177e4 5928{
1da177e4 5929 unsigned long free = 0;
36c8b586 5930 unsigned state;
1da177e4 5931
1da177e4 5932 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5933 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5934 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5935#if BITS_PER_LONG == 32
1da177e4 5936 if (state == TASK_RUNNING)
cc4ea795 5937 printk(KERN_CONT " running ");
1da177e4 5938 else
cc4ea795 5939 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5940#else
5941 if (state == TASK_RUNNING)
cc4ea795 5942 printk(KERN_CONT " running task ");
1da177e4 5943 else
cc4ea795 5944 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5945#endif
5946#ifdef CONFIG_DEBUG_STACK_USAGE
5947 {
10ebffde 5948 unsigned long *n = end_of_stack(p);
1da177e4
LT
5949 while (!*n)
5950 n++;
10ebffde 5951 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5952 }
5953#endif
ba25f9dc 5954 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5955 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5956
5fb5e6de 5957 show_stack(p, NULL);
1da177e4
LT
5958}
5959
e59e2ae2 5960void show_state_filter(unsigned long state_filter)
1da177e4 5961{
36c8b586 5962 struct task_struct *g, *p;
1da177e4 5963
4bd77321
IM
5964#if BITS_PER_LONG == 32
5965 printk(KERN_INFO
5966 " task PC stack pid father\n");
1da177e4 5967#else
4bd77321
IM
5968 printk(KERN_INFO
5969 " task PC stack pid father\n");
1da177e4
LT
5970#endif
5971 read_lock(&tasklist_lock);
5972 do_each_thread(g, p) {
5973 /*
5974 * reset the NMI-timeout, listing all files on a slow
5975 * console might take alot of time:
5976 */
5977 touch_nmi_watchdog();
39bc89fd 5978 if (!state_filter || (p->state & state_filter))
82a1fcb9 5979 sched_show_task(p);
1da177e4
LT
5980 } while_each_thread(g, p);
5981
04c9167f
JF
5982 touch_all_softlockup_watchdogs();
5983
dd41f596
IM
5984#ifdef CONFIG_SCHED_DEBUG
5985 sysrq_sched_debug_show();
5986#endif
1da177e4 5987 read_unlock(&tasklist_lock);
e59e2ae2
IM
5988 /*
5989 * Only show locks if all tasks are dumped:
5990 */
5991 if (state_filter == -1)
5992 debug_show_all_locks();
1da177e4
LT
5993}
5994
1df21055
IM
5995void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5996{
dd41f596 5997 idle->sched_class = &idle_sched_class;
1df21055
IM
5998}
5999
f340c0d1
IM
6000/**
6001 * init_idle - set up an idle thread for a given CPU
6002 * @idle: task in question
6003 * @cpu: cpu the idle task belongs to
6004 *
6005 * NOTE: this function does not set the idle thread's NEED_RESCHED
6006 * flag, to make booting more robust.
6007 */
5c1e1767 6008void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6009{
70b97a7f 6010 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6011 unsigned long flags;
6012
5cbd54ef
IM
6013 spin_lock_irqsave(&rq->lock, flags);
6014
dd41f596
IM
6015 __sched_fork(idle);
6016 idle->se.exec_start = sched_clock();
6017
b29739f9 6018 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6019 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6020 __set_task_cpu(idle, cpu);
1da177e4 6021
1da177e4 6022 rq->curr = rq->idle = idle;
4866cde0
NP
6023#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6024 idle->oncpu = 1;
6025#endif
1da177e4
LT
6026 spin_unlock_irqrestore(&rq->lock, flags);
6027
6028 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6029#if defined(CONFIG_PREEMPT)
6030 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6031#else
a1261f54 6032 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6033#endif
dd41f596
IM
6034 /*
6035 * The idle tasks have their own, simple scheduling class:
6036 */
6037 idle->sched_class = &idle_sched_class;
fb52607a 6038 ftrace_graph_init_task(idle);
1da177e4
LT
6039}
6040
6041/*
6042 * In a system that switches off the HZ timer nohz_cpu_mask
6043 * indicates which cpus entered this state. This is used
6044 * in the rcu update to wait only for active cpus. For system
6045 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6046 * always be CPU_BITS_NONE.
1da177e4 6047 */
6a7b3dc3 6048cpumask_var_t nohz_cpu_mask;
1da177e4 6049
19978ca6
IM
6050/*
6051 * Increase the granularity value when there are more CPUs,
6052 * because with more CPUs the 'effective latency' as visible
6053 * to users decreases. But the relationship is not linear,
6054 * so pick a second-best guess by going with the log2 of the
6055 * number of CPUs.
6056 *
6057 * This idea comes from the SD scheduler of Con Kolivas:
6058 */
6059static inline void sched_init_granularity(void)
6060{
6061 unsigned int factor = 1 + ilog2(num_online_cpus());
6062 const unsigned long limit = 200000000;
6063
6064 sysctl_sched_min_granularity *= factor;
6065 if (sysctl_sched_min_granularity > limit)
6066 sysctl_sched_min_granularity = limit;
6067
6068 sysctl_sched_latency *= factor;
6069 if (sysctl_sched_latency > limit)
6070 sysctl_sched_latency = limit;
6071
6072 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6073
6074 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6075}
6076
1da177e4
LT
6077#ifdef CONFIG_SMP
6078/*
6079 * This is how migration works:
6080 *
70b97a7f 6081 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6082 * runqueue and wake up that CPU's migration thread.
6083 * 2) we down() the locked semaphore => thread blocks.
6084 * 3) migration thread wakes up (implicitly it forces the migrated
6085 * thread off the CPU)
6086 * 4) it gets the migration request and checks whether the migrated
6087 * task is still in the wrong runqueue.
6088 * 5) if it's in the wrong runqueue then the migration thread removes
6089 * it and puts it into the right queue.
6090 * 6) migration thread up()s the semaphore.
6091 * 7) we wake up and the migration is done.
6092 */
6093
6094/*
6095 * Change a given task's CPU affinity. Migrate the thread to a
6096 * proper CPU and schedule it away if the CPU it's executing on
6097 * is removed from the allowed bitmask.
6098 *
6099 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6100 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6101 * call is not atomic; no spinlocks may be held.
6102 */
96f874e2 6103int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6104{
70b97a7f 6105 struct migration_req req;
1da177e4 6106 unsigned long flags;
70b97a7f 6107 struct rq *rq;
48f24c4d 6108 int ret = 0;
1da177e4
LT
6109
6110 rq = task_rq_lock(p, &flags);
96f874e2 6111 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6112 ret = -EINVAL;
6113 goto out;
6114 }
6115
9985b0ba 6116 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6117 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6118 ret = -EINVAL;
6119 goto out;
6120 }
6121
73fe6aae 6122 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6123 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6124 else {
96f874e2
RR
6125 cpumask_copy(&p->cpus_allowed, new_mask);
6126 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6127 }
6128
1da177e4 6129 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6130 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6131 goto out;
6132
1e5ce4f4 6133 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6134 /* Need help from migration thread: drop lock and wait. */
6135 task_rq_unlock(rq, &flags);
6136 wake_up_process(rq->migration_thread);
6137 wait_for_completion(&req.done);
6138 tlb_migrate_finish(p->mm);
6139 return 0;
6140 }
6141out:
6142 task_rq_unlock(rq, &flags);
48f24c4d 6143
1da177e4
LT
6144 return ret;
6145}
cd8ba7cd 6146EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6147
6148/*
41a2d6cf 6149 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6150 * this because either it can't run here any more (set_cpus_allowed()
6151 * away from this CPU, or CPU going down), or because we're
6152 * attempting to rebalance this task on exec (sched_exec).
6153 *
6154 * So we race with normal scheduler movements, but that's OK, as long
6155 * as the task is no longer on this CPU.
efc30814
KK
6156 *
6157 * Returns non-zero if task was successfully migrated.
1da177e4 6158 */
efc30814 6159static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6160{
70b97a7f 6161 struct rq *rq_dest, *rq_src;
dd41f596 6162 int ret = 0, on_rq;
1da177e4 6163
e761b772 6164 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6165 return ret;
1da177e4
LT
6166
6167 rq_src = cpu_rq(src_cpu);
6168 rq_dest = cpu_rq(dest_cpu);
6169
6170 double_rq_lock(rq_src, rq_dest);
6171 /* Already moved. */
6172 if (task_cpu(p) != src_cpu)
b1e38734 6173 goto done;
1da177e4 6174 /* Affinity changed (again). */
96f874e2 6175 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6176 goto fail;
1da177e4 6177
dd41f596 6178 on_rq = p->se.on_rq;
6e82a3be 6179 if (on_rq)
2e1cb74a 6180 deactivate_task(rq_src, p, 0);
6e82a3be 6181
1da177e4 6182 set_task_cpu(p, dest_cpu);
dd41f596
IM
6183 if (on_rq) {
6184 activate_task(rq_dest, p, 0);
15afe09b 6185 check_preempt_curr(rq_dest, p, 0);
1da177e4 6186 }
b1e38734 6187done:
efc30814 6188 ret = 1;
b1e38734 6189fail:
1da177e4 6190 double_rq_unlock(rq_src, rq_dest);
efc30814 6191 return ret;
1da177e4
LT
6192}
6193
6194/*
6195 * migration_thread - this is a highprio system thread that performs
6196 * thread migration by bumping thread off CPU then 'pushing' onto
6197 * another runqueue.
6198 */
95cdf3b7 6199static int migration_thread(void *data)
1da177e4 6200{
1da177e4 6201 int cpu = (long)data;
70b97a7f 6202 struct rq *rq;
1da177e4
LT
6203
6204 rq = cpu_rq(cpu);
6205 BUG_ON(rq->migration_thread != current);
6206
6207 set_current_state(TASK_INTERRUPTIBLE);
6208 while (!kthread_should_stop()) {
70b97a7f 6209 struct migration_req *req;
1da177e4 6210 struct list_head *head;
1da177e4 6211
1da177e4
LT
6212 spin_lock_irq(&rq->lock);
6213
6214 if (cpu_is_offline(cpu)) {
6215 spin_unlock_irq(&rq->lock);
6216 goto wait_to_die;
6217 }
6218
6219 if (rq->active_balance) {
6220 active_load_balance(rq, cpu);
6221 rq->active_balance = 0;
6222 }
6223
6224 head = &rq->migration_queue;
6225
6226 if (list_empty(head)) {
6227 spin_unlock_irq(&rq->lock);
6228 schedule();
6229 set_current_state(TASK_INTERRUPTIBLE);
6230 continue;
6231 }
70b97a7f 6232 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6233 list_del_init(head->next);
6234
674311d5
NP
6235 spin_unlock(&rq->lock);
6236 __migrate_task(req->task, cpu, req->dest_cpu);
6237 local_irq_enable();
1da177e4
LT
6238
6239 complete(&req->done);
6240 }
6241 __set_current_state(TASK_RUNNING);
6242 return 0;
6243
6244wait_to_die:
6245 /* Wait for kthread_stop */
6246 set_current_state(TASK_INTERRUPTIBLE);
6247 while (!kthread_should_stop()) {
6248 schedule();
6249 set_current_state(TASK_INTERRUPTIBLE);
6250 }
6251 __set_current_state(TASK_RUNNING);
6252 return 0;
6253}
6254
6255#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6256
6257static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6258{
6259 int ret;
6260
6261 local_irq_disable();
6262 ret = __migrate_task(p, src_cpu, dest_cpu);
6263 local_irq_enable();
6264 return ret;
6265}
6266
054b9108 6267/*
3a4fa0a2 6268 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6269 */
48f24c4d 6270static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6271{
70b97a7f 6272 int dest_cpu;
6ca09dfc 6273 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6274
6275again:
6276 /* Look for allowed, online CPU in same node. */
6277 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6278 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6279 goto move;
6280
6281 /* Any allowed, online CPU? */
6282 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6283 if (dest_cpu < nr_cpu_ids)
6284 goto move;
6285
6286 /* No more Mr. Nice Guy. */
6287 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6288 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6289 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6290
e76bd8d9
RR
6291 /*
6292 * Don't tell them about moving exiting tasks or
6293 * kernel threads (both mm NULL), since they never
6294 * leave kernel.
6295 */
6296 if (p->mm && printk_ratelimit()) {
6297 printk(KERN_INFO "process %d (%s) no "
6298 "longer affine to cpu%d\n",
6299 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6300 }
e76bd8d9
RR
6301 }
6302
6303move:
6304 /* It can have affinity changed while we were choosing. */
6305 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6306 goto again;
1da177e4
LT
6307}
6308
6309/*
6310 * While a dead CPU has no uninterruptible tasks queued at this point,
6311 * it might still have a nonzero ->nr_uninterruptible counter, because
6312 * for performance reasons the counter is not stricly tracking tasks to
6313 * their home CPUs. So we just add the counter to another CPU's counter,
6314 * to keep the global sum constant after CPU-down:
6315 */
70b97a7f 6316static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6317{
1e5ce4f4 6318 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6319 unsigned long flags;
6320
6321 local_irq_save(flags);
6322 double_rq_lock(rq_src, rq_dest);
6323 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6324 rq_src->nr_uninterruptible = 0;
6325 double_rq_unlock(rq_src, rq_dest);
6326 local_irq_restore(flags);
6327}
6328
6329/* Run through task list and migrate tasks from the dead cpu. */
6330static void migrate_live_tasks(int src_cpu)
6331{
48f24c4d 6332 struct task_struct *p, *t;
1da177e4 6333
f7b4cddc 6334 read_lock(&tasklist_lock);
1da177e4 6335
48f24c4d
IM
6336 do_each_thread(t, p) {
6337 if (p == current)
1da177e4
LT
6338 continue;
6339
48f24c4d
IM
6340 if (task_cpu(p) == src_cpu)
6341 move_task_off_dead_cpu(src_cpu, p);
6342 } while_each_thread(t, p);
1da177e4 6343
f7b4cddc 6344 read_unlock(&tasklist_lock);
1da177e4
LT
6345}
6346
dd41f596
IM
6347/*
6348 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6349 * It does so by boosting its priority to highest possible.
6350 * Used by CPU offline code.
1da177e4
LT
6351 */
6352void sched_idle_next(void)
6353{
48f24c4d 6354 int this_cpu = smp_processor_id();
70b97a7f 6355 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6356 struct task_struct *p = rq->idle;
6357 unsigned long flags;
6358
6359 /* cpu has to be offline */
48f24c4d 6360 BUG_ON(cpu_online(this_cpu));
1da177e4 6361
48f24c4d
IM
6362 /*
6363 * Strictly not necessary since rest of the CPUs are stopped by now
6364 * and interrupts disabled on the current cpu.
1da177e4
LT
6365 */
6366 spin_lock_irqsave(&rq->lock, flags);
6367
dd41f596 6368 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6369
94bc9a7b
DA
6370 update_rq_clock(rq);
6371 activate_task(rq, p, 0);
1da177e4
LT
6372
6373 spin_unlock_irqrestore(&rq->lock, flags);
6374}
6375
48f24c4d
IM
6376/*
6377 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6378 * offline.
6379 */
6380void idle_task_exit(void)
6381{
6382 struct mm_struct *mm = current->active_mm;
6383
6384 BUG_ON(cpu_online(smp_processor_id()));
6385
6386 if (mm != &init_mm)
6387 switch_mm(mm, &init_mm, current);
6388 mmdrop(mm);
6389}
6390
054b9108 6391/* called under rq->lock with disabled interrupts */
36c8b586 6392static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6393{
70b97a7f 6394 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6395
6396 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6397 BUG_ON(!p->exit_state);
1da177e4
LT
6398
6399 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6400 BUG_ON(p->state == TASK_DEAD);
1da177e4 6401
48f24c4d 6402 get_task_struct(p);
1da177e4
LT
6403
6404 /*
6405 * Drop lock around migration; if someone else moves it,
41a2d6cf 6406 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6407 * fine.
6408 */
f7b4cddc 6409 spin_unlock_irq(&rq->lock);
48f24c4d 6410 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6411 spin_lock_irq(&rq->lock);
1da177e4 6412
48f24c4d 6413 put_task_struct(p);
1da177e4
LT
6414}
6415
6416/* release_task() removes task from tasklist, so we won't find dead tasks. */
6417static void migrate_dead_tasks(unsigned int dead_cpu)
6418{
70b97a7f 6419 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6420 struct task_struct *next;
48f24c4d 6421
dd41f596
IM
6422 for ( ; ; ) {
6423 if (!rq->nr_running)
6424 break;
a8e504d2 6425 update_rq_clock(rq);
ff95f3df 6426 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6427 if (!next)
6428 break;
79c53799 6429 next->sched_class->put_prev_task(rq, next);
dd41f596 6430 migrate_dead(dead_cpu, next);
e692ab53 6431
1da177e4
LT
6432 }
6433}
6434#endif /* CONFIG_HOTPLUG_CPU */
6435
e692ab53
NP
6436#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6437
6438static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6439 {
6440 .procname = "sched_domain",
c57baf1e 6441 .mode = 0555,
e0361851 6442 },
38605cae 6443 {0, },
e692ab53
NP
6444};
6445
6446static struct ctl_table sd_ctl_root[] = {
e0361851 6447 {
c57baf1e 6448 .ctl_name = CTL_KERN,
e0361851 6449 .procname = "kernel",
c57baf1e 6450 .mode = 0555,
e0361851
AD
6451 .child = sd_ctl_dir,
6452 },
38605cae 6453 {0, },
e692ab53
NP
6454};
6455
6456static struct ctl_table *sd_alloc_ctl_entry(int n)
6457{
6458 struct ctl_table *entry =
5cf9f062 6459 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6460
e692ab53
NP
6461 return entry;
6462}
6463
6382bc90
MM
6464static void sd_free_ctl_entry(struct ctl_table **tablep)
6465{
cd790076 6466 struct ctl_table *entry;
6382bc90 6467
cd790076
MM
6468 /*
6469 * In the intermediate directories, both the child directory and
6470 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6471 * will always be set. In the lowest directory the names are
cd790076
MM
6472 * static strings and all have proc handlers.
6473 */
6474 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6475 if (entry->child)
6476 sd_free_ctl_entry(&entry->child);
cd790076
MM
6477 if (entry->proc_handler == NULL)
6478 kfree(entry->procname);
6479 }
6382bc90
MM
6480
6481 kfree(*tablep);
6482 *tablep = NULL;
6483}
6484
e692ab53 6485static void
e0361851 6486set_table_entry(struct ctl_table *entry,
e692ab53
NP
6487 const char *procname, void *data, int maxlen,
6488 mode_t mode, proc_handler *proc_handler)
6489{
e692ab53
NP
6490 entry->procname = procname;
6491 entry->data = data;
6492 entry->maxlen = maxlen;
6493 entry->mode = mode;
6494 entry->proc_handler = proc_handler;
6495}
6496
6497static struct ctl_table *
6498sd_alloc_ctl_domain_table(struct sched_domain *sd)
6499{
a5d8c348 6500 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6501
ad1cdc1d
MM
6502 if (table == NULL)
6503 return NULL;
6504
e0361851 6505 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6506 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6507 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6508 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6509 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6510 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6511 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6512 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6513 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6514 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6515 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6516 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6517 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6518 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6519 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6520 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6521 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6522 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6523 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6524 &sd->cache_nice_tries,
6525 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6526 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6527 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6528 set_table_entry(&table[11], "name", sd->name,
6529 CORENAME_MAX_SIZE, 0444, proc_dostring);
6530 /* &table[12] is terminator */
e692ab53
NP
6531
6532 return table;
6533}
6534
9a4e7159 6535static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6536{
6537 struct ctl_table *entry, *table;
6538 struct sched_domain *sd;
6539 int domain_num = 0, i;
6540 char buf[32];
6541
6542 for_each_domain(cpu, sd)
6543 domain_num++;
6544 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6545 if (table == NULL)
6546 return NULL;
e692ab53
NP
6547
6548 i = 0;
6549 for_each_domain(cpu, sd) {
6550 snprintf(buf, 32, "domain%d", i);
e692ab53 6551 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6552 entry->mode = 0555;
e692ab53
NP
6553 entry->child = sd_alloc_ctl_domain_table(sd);
6554 entry++;
6555 i++;
6556 }
6557 return table;
6558}
6559
6560static struct ctl_table_header *sd_sysctl_header;
6382bc90 6561static void register_sched_domain_sysctl(void)
e692ab53
NP
6562{
6563 int i, cpu_num = num_online_cpus();
6564 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6565 char buf[32];
6566
7378547f
MM
6567 WARN_ON(sd_ctl_dir[0].child);
6568 sd_ctl_dir[0].child = entry;
6569
ad1cdc1d
MM
6570 if (entry == NULL)
6571 return;
6572
97b6ea7b 6573 for_each_online_cpu(i) {
e692ab53 6574 snprintf(buf, 32, "cpu%d", i);
e692ab53 6575 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6576 entry->mode = 0555;
e692ab53 6577 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6578 entry++;
e692ab53 6579 }
7378547f
MM
6580
6581 WARN_ON(sd_sysctl_header);
e692ab53
NP
6582 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6583}
6382bc90 6584
7378547f 6585/* may be called multiple times per register */
6382bc90
MM
6586static void unregister_sched_domain_sysctl(void)
6587{
7378547f
MM
6588 if (sd_sysctl_header)
6589 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6590 sd_sysctl_header = NULL;
7378547f
MM
6591 if (sd_ctl_dir[0].child)
6592 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6593}
e692ab53 6594#else
6382bc90
MM
6595static void register_sched_domain_sysctl(void)
6596{
6597}
6598static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6599{
6600}
6601#endif
6602
1f11eb6a
GH
6603static void set_rq_online(struct rq *rq)
6604{
6605 if (!rq->online) {
6606 const struct sched_class *class;
6607
c6c4927b 6608 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6609 rq->online = 1;
6610
6611 for_each_class(class) {
6612 if (class->rq_online)
6613 class->rq_online(rq);
6614 }
6615 }
6616}
6617
6618static void set_rq_offline(struct rq *rq)
6619{
6620 if (rq->online) {
6621 const struct sched_class *class;
6622
6623 for_each_class(class) {
6624 if (class->rq_offline)
6625 class->rq_offline(rq);
6626 }
6627
c6c4927b 6628 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6629 rq->online = 0;
6630 }
6631}
6632
1da177e4
LT
6633/*
6634 * migration_call - callback that gets triggered when a CPU is added.
6635 * Here we can start up the necessary migration thread for the new CPU.
6636 */
48f24c4d
IM
6637static int __cpuinit
6638migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6639{
1da177e4 6640 struct task_struct *p;
48f24c4d 6641 int cpu = (long)hcpu;
1da177e4 6642 unsigned long flags;
70b97a7f 6643 struct rq *rq;
1da177e4
LT
6644
6645 switch (action) {
5be9361c 6646
1da177e4 6647 case CPU_UP_PREPARE:
8bb78442 6648 case CPU_UP_PREPARE_FROZEN:
dd41f596 6649 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6650 if (IS_ERR(p))
6651 return NOTIFY_BAD;
1da177e4
LT
6652 kthread_bind(p, cpu);
6653 /* Must be high prio: stop_machine expects to yield to it. */
6654 rq = task_rq_lock(p, &flags);
dd41f596 6655 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6656 task_rq_unlock(rq, &flags);
6657 cpu_rq(cpu)->migration_thread = p;
6658 break;
48f24c4d 6659
1da177e4 6660 case CPU_ONLINE:
8bb78442 6661 case CPU_ONLINE_FROZEN:
3a4fa0a2 6662 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6663 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6664
6665 /* Update our root-domain */
6666 rq = cpu_rq(cpu);
6667 spin_lock_irqsave(&rq->lock, flags);
6668 if (rq->rd) {
c6c4927b 6669 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6670
6671 set_rq_online(rq);
1f94ef59
GH
6672 }
6673 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6674 break;
48f24c4d 6675
1da177e4
LT
6676#ifdef CONFIG_HOTPLUG_CPU
6677 case CPU_UP_CANCELED:
8bb78442 6678 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6679 if (!cpu_rq(cpu)->migration_thread)
6680 break;
41a2d6cf 6681 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6682 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6683 cpumask_any(cpu_online_mask));
1da177e4
LT
6684 kthread_stop(cpu_rq(cpu)->migration_thread);
6685 cpu_rq(cpu)->migration_thread = NULL;
6686 break;
48f24c4d 6687
1da177e4 6688 case CPU_DEAD:
8bb78442 6689 case CPU_DEAD_FROZEN:
470fd646 6690 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6691 migrate_live_tasks(cpu);
6692 rq = cpu_rq(cpu);
6693 kthread_stop(rq->migration_thread);
6694 rq->migration_thread = NULL;
6695 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6696 spin_lock_irq(&rq->lock);
a8e504d2 6697 update_rq_clock(rq);
2e1cb74a 6698 deactivate_task(rq, rq->idle, 0);
1da177e4 6699 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6700 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6701 rq->idle->sched_class = &idle_sched_class;
1da177e4 6702 migrate_dead_tasks(cpu);
d2da272a 6703 spin_unlock_irq(&rq->lock);
470fd646 6704 cpuset_unlock();
1da177e4
LT
6705 migrate_nr_uninterruptible(rq);
6706 BUG_ON(rq->nr_running != 0);
6707
41a2d6cf
IM
6708 /*
6709 * No need to migrate the tasks: it was best-effort if
6710 * they didn't take sched_hotcpu_mutex. Just wake up
6711 * the requestors.
6712 */
1da177e4
LT
6713 spin_lock_irq(&rq->lock);
6714 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6715 struct migration_req *req;
6716
1da177e4 6717 req = list_entry(rq->migration_queue.next,
70b97a7f 6718 struct migration_req, list);
1da177e4 6719 list_del_init(&req->list);
9a2bd244 6720 spin_unlock_irq(&rq->lock);
1da177e4 6721 complete(&req->done);
9a2bd244 6722 spin_lock_irq(&rq->lock);
1da177e4
LT
6723 }
6724 spin_unlock_irq(&rq->lock);
6725 break;
57d885fe 6726
08f503b0
GH
6727 case CPU_DYING:
6728 case CPU_DYING_FROZEN:
57d885fe
GH
6729 /* Update our root-domain */
6730 rq = cpu_rq(cpu);
6731 spin_lock_irqsave(&rq->lock, flags);
6732 if (rq->rd) {
c6c4927b 6733 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6734 set_rq_offline(rq);
57d885fe
GH
6735 }
6736 spin_unlock_irqrestore(&rq->lock, flags);
6737 break;
1da177e4
LT
6738#endif
6739 }
6740 return NOTIFY_OK;
6741}
6742
6743/* Register at highest priority so that task migration (migrate_all_tasks)
6744 * happens before everything else.
6745 */
26c2143b 6746static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6747 .notifier_call = migration_call,
6748 .priority = 10
6749};
6750
7babe8db 6751static int __init migration_init(void)
1da177e4
LT
6752{
6753 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6754 int err;
48f24c4d
IM
6755
6756 /* Start one for the boot CPU: */
07dccf33
AM
6757 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6758 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6759 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6760 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6761
6762 return err;
1da177e4 6763}
7babe8db 6764early_initcall(migration_init);
1da177e4
LT
6765#endif
6766
6767#ifdef CONFIG_SMP
476f3534 6768
3e9830dc 6769#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6770
7c16ec58 6771static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6772 struct cpumask *groupmask)
1da177e4 6773{
4dcf6aff 6774 struct sched_group *group = sd->groups;
434d53b0 6775 char str[256];
1da177e4 6776
968ea6d8 6777 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6778 cpumask_clear(groupmask);
4dcf6aff
IM
6779
6780 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6781
6782 if (!(sd->flags & SD_LOAD_BALANCE)) {
6783 printk("does not load-balance\n");
6784 if (sd->parent)
6785 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6786 " has parent");
6787 return -1;
41c7ce9a
NP
6788 }
6789
eefd796a 6790 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6791
758b2cdc 6792 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6793 printk(KERN_ERR "ERROR: domain->span does not contain "
6794 "CPU%d\n", cpu);
6795 }
758b2cdc 6796 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6797 printk(KERN_ERR "ERROR: domain->groups does not contain"
6798 " CPU%d\n", cpu);
6799 }
1da177e4 6800
4dcf6aff 6801 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6802 do {
4dcf6aff
IM
6803 if (!group) {
6804 printk("\n");
6805 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6806 break;
6807 }
6808
4dcf6aff
IM
6809 if (!group->__cpu_power) {
6810 printk(KERN_CONT "\n");
6811 printk(KERN_ERR "ERROR: domain->cpu_power not "
6812 "set\n");
6813 break;
6814 }
1da177e4 6815
758b2cdc 6816 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6817 printk(KERN_CONT "\n");
6818 printk(KERN_ERR "ERROR: empty group\n");
6819 break;
6820 }
1da177e4 6821
758b2cdc 6822 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6823 printk(KERN_CONT "\n");
6824 printk(KERN_ERR "ERROR: repeated CPUs\n");
6825 break;
6826 }
1da177e4 6827
758b2cdc 6828 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6829
968ea6d8 6830 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6831 printk(KERN_CONT " %s", str);
1da177e4 6832
4dcf6aff
IM
6833 group = group->next;
6834 } while (group != sd->groups);
6835 printk(KERN_CONT "\n");
1da177e4 6836
758b2cdc 6837 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6838 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6839
758b2cdc
RR
6840 if (sd->parent &&
6841 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6842 printk(KERN_ERR "ERROR: parent span is not a superset "
6843 "of domain->span\n");
6844 return 0;
6845}
1da177e4 6846
4dcf6aff
IM
6847static void sched_domain_debug(struct sched_domain *sd, int cpu)
6848{
d5dd3db1 6849 cpumask_var_t groupmask;
4dcf6aff 6850 int level = 0;
1da177e4 6851
4dcf6aff
IM
6852 if (!sd) {
6853 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6854 return;
6855 }
1da177e4 6856
4dcf6aff
IM
6857 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6858
d5dd3db1 6859 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6860 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6861 return;
6862 }
6863
4dcf6aff 6864 for (;;) {
7c16ec58 6865 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6866 break;
1da177e4
LT
6867 level++;
6868 sd = sd->parent;
33859f7f 6869 if (!sd)
4dcf6aff
IM
6870 break;
6871 }
d5dd3db1 6872 free_cpumask_var(groupmask);
1da177e4 6873}
6d6bc0ad 6874#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6875# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6876#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6877
1a20ff27 6878static int sd_degenerate(struct sched_domain *sd)
245af2c7 6879{
758b2cdc 6880 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6881 return 1;
6882
6883 /* Following flags need at least 2 groups */
6884 if (sd->flags & (SD_LOAD_BALANCE |
6885 SD_BALANCE_NEWIDLE |
6886 SD_BALANCE_FORK |
89c4710e
SS
6887 SD_BALANCE_EXEC |
6888 SD_SHARE_CPUPOWER |
6889 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6890 if (sd->groups != sd->groups->next)
6891 return 0;
6892 }
6893
6894 /* Following flags don't use groups */
6895 if (sd->flags & (SD_WAKE_IDLE |
6896 SD_WAKE_AFFINE |
6897 SD_WAKE_BALANCE))
6898 return 0;
6899
6900 return 1;
6901}
6902
48f24c4d
IM
6903static int
6904sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6905{
6906 unsigned long cflags = sd->flags, pflags = parent->flags;
6907
6908 if (sd_degenerate(parent))
6909 return 1;
6910
758b2cdc 6911 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6912 return 0;
6913
6914 /* Does parent contain flags not in child? */
6915 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6916 if (cflags & SD_WAKE_AFFINE)
6917 pflags &= ~SD_WAKE_BALANCE;
6918 /* Flags needing groups don't count if only 1 group in parent */
6919 if (parent->groups == parent->groups->next) {
6920 pflags &= ~(SD_LOAD_BALANCE |
6921 SD_BALANCE_NEWIDLE |
6922 SD_BALANCE_FORK |
89c4710e
SS
6923 SD_BALANCE_EXEC |
6924 SD_SHARE_CPUPOWER |
6925 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6926 if (nr_node_ids == 1)
6927 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6928 }
6929 if (~cflags & pflags)
6930 return 0;
6931
6932 return 1;
6933}
6934
c6c4927b
RR
6935static void free_rootdomain(struct root_domain *rd)
6936{
68e74568
RR
6937 cpupri_cleanup(&rd->cpupri);
6938
c6c4927b
RR
6939 free_cpumask_var(rd->rto_mask);
6940 free_cpumask_var(rd->online);
6941 free_cpumask_var(rd->span);
6942 kfree(rd);
6943}
6944
57d885fe
GH
6945static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6946{
6947 unsigned long flags;
57d885fe
GH
6948
6949 spin_lock_irqsave(&rq->lock, flags);
6950
6951 if (rq->rd) {
6952 struct root_domain *old_rd = rq->rd;
6953
c6c4927b 6954 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6955 set_rq_offline(rq);
57d885fe 6956
c6c4927b 6957 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6958
57d885fe 6959 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6960 free_rootdomain(old_rd);
57d885fe
GH
6961 }
6962
6963 atomic_inc(&rd->refcount);
6964 rq->rd = rd;
6965
c6c4927b
RR
6966 cpumask_set_cpu(rq->cpu, rd->span);
6967 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6968 set_rq_online(rq);
57d885fe
GH
6969
6970 spin_unlock_irqrestore(&rq->lock, flags);
6971}
6972
db2f59c8 6973static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6974{
6975 memset(rd, 0, sizeof(*rd));
6976
c6c4927b
RR
6977 if (bootmem) {
6978 alloc_bootmem_cpumask_var(&def_root_domain.span);
6979 alloc_bootmem_cpumask_var(&def_root_domain.online);
6980 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6981 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6982 return 0;
6983 }
6984
6985 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6986 goto out;
c6c4927b
RR
6987 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6988 goto free_span;
6989 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6990 goto free_online;
6e0534f2 6991
68e74568
RR
6992 if (cpupri_init(&rd->cpupri, false) != 0)
6993 goto free_rto_mask;
c6c4927b 6994 return 0;
6e0534f2 6995
68e74568
RR
6996free_rto_mask:
6997 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6998free_online:
6999 free_cpumask_var(rd->online);
7000free_span:
7001 free_cpumask_var(rd->span);
0c910d28 7002out:
c6c4927b 7003 return -ENOMEM;
57d885fe
GH
7004}
7005
7006static void init_defrootdomain(void)
7007{
c6c4927b
RR
7008 init_rootdomain(&def_root_domain, true);
7009
57d885fe
GH
7010 atomic_set(&def_root_domain.refcount, 1);
7011}
7012
dc938520 7013static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7014{
7015 struct root_domain *rd;
7016
7017 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7018 if (!rd)
7019 return NULL;
7020
c6c4927b
RR
7021 if (init_rootdomain(rd, false) != 0) {
7022 kfree(rd);
7023 return NULL;
7024 }
57d885fe
GH
7025
7026 return rd;
7027}
7028
1da177e4 7029/*
0eab9146 7030 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7031 * hold the hotplug lock.
7032 */
0eab9146
IM
7033static void
7034cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7035{
70b97a7f 7036 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7037 struct sched_domain *tmp;
7038
7039 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7040 for (tmp = sd; tmp; ) {
245af2c7
SS
7041 struct sched_domain *parent = tmp->parent;
7042 if (!parent)
7043 break;
f29c9b1c 7044
1a848870 7045 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7046 tmp->parent = parent->parent;
1a848870
SS
7047 if (parent->parent)
7048 parent->parent->child = tmp;
f29c9b1c
LZ
7049 } else
7050 tmp = tmp->parent;
245af2c7
SS
7051 }
7052
1a848870 7053 if (sd && sd_degenerate(sd)) {
245af2c7 7054 sd = sd->parent;
1a848870
SS
7055 if (sd)
7056 sd->child = NULL;
7057 }
1da177e4
LT
7058
7059 sched_domain_debug(sd, cpu);
7060
57d885fe 7061 rq_attach_root(rq, rd);
674311d5 7062 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7063}
7064
7065/* cpus with isolated domains */
dcc30a35 7066static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7067
7068/* Setup the mask of cpus configured for isolated domains */
7069static int __init isolated_cpu_setup(char *str)
7070{
968ea6d8 7071 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7072 return 1;
7073}
7074
8927f494 7075__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7076
7077/*
6711cab4
SS
7078 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7079 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7080 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7081 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7082 *
7083 * init_sched_build_groups will build a circular linked list of the groups
7084 * covered by the given span, and will set each group's ->cpumask correctly,
7085 * and ->cpu_power to 0.
7086 */
a616058b 7087static void
96f874e2
RR
7088init_sched_build_groups(const struct cpumask *span,
7089 const struct cpumask *cpu_map,
7090 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7091 struct sched_group **sg,
96f874e2
RR
7092 struct cpumask *tmpmask),
7093 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7094{
7095 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7096 int i;
7097
96f874e2 7098 cpumask_clear(covered);
7c16ec58 7099
abcd083a 7100 for_each_cpu(i, span) {
6711cab4 7101 struct sched_group *sg;
7c16ec58 7102 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7103 int j;
7104
758b2cdc 7105 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7106 continue;
7107
758b2cdc 7108 cpumask_clear(sched_group_cpus(sg));
5517d86b 7109 sg->__cpu_power = 0;
1da177e4 7110
abcd083a 7111 for_each_cpu(j, span) {
7c16ec58 7112 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7113 continue;
7114
96f874e2 7115 cpumask_set_cpu(j, covered);
758b2cdc 7116 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7117 }
7118 if (!first)
7119 first = sg;
7120 if (last)
7121 last->next = sg;
7122 last = sg;
7123 }
7124 last->next = first;
7125}
7126
9c1cfda2 7127#define SD_NODES_PER_DOMAIN 16
1da177e4 7128
9c1cfda2 7129#ifdef CONFIG_NUMA
198e2f18 7130
9c1cfda2
JH
7131/**
7132 * find_next_best_node - find the next node to include in a sched_domain
7133 * @node: node whose sched_domain we're building
7134 * @used_nodes: nodes already in the sched_domain
7135 *
41a2d6cf 7136 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7137 * finds the closest node not already in the @used_nodes map.
7138 *
7139 * Should use nodemask_t.
7140 */
c5f59f08 7141static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7142{
7143 int i, n, val, min_val, best_node = 0;
7144
7145 min_val = INT_MAX;
7146
076ac2af 7147 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7148 /* Start at @node */
076ac2af 7149 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7150
7151 if (!nr_cpus_node(n))
7152 continue;
7153
7154 /* Skip already used nodes */
c5f59f08 7155 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7156 continue;
7157
7158 /* Simple min distance search */
7159 val = node_distance(node, n);
7160
7161 if (val < min_val) {
7162 min_val = val;
7163 best_node = n;
7164 }
7165 }
7166
c5f59f08 7167 node_set(best_node, *used_nodes);
9c1cfda2
JH
7168 return best_node;
7169}
7170
7171/**
7172 * sched_domain_node_span - get a cpumask for a node's sched_domain
7173 * @node: node whose cpumask we're constructing
73486722 7174 * @span: resulting cpumask
9c1cfda2 7175 *
41a2d6cf 7176 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7177 * should be one that prevents unnecessary balancing, but also spreads tasks
7178 * out optimally.
7179 */
96f874e2 7180static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7181{
c5f59f08 7182 nodemask_t used_nodes;
48f24c4d 7183 int i;
9c1cfda2 7184
6ca09dfc 7185 cpumask_clear(span);
c5f59f08 7186 nodes_clear(used_nodes);
9c1cfda2 7187
6ca09dfc 7188 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7189 node_set(node, used_nodes);
9c1cfda2
JH
7190
7191 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7192 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7193
6ca09dfc 7194 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7195 }
9c1cfda2 7196}
6d6bc0ad 7197#endif /* CONFIG_NUMA */
9c1cfda2 7198
5c45bf27 7199int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7200
6c99e9ad
RR
7201/*
7202 * The cpus mask in sched_group and sched_domain hangs off the end.
7203 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7204 * for nr_cpu_ids < CONFIG_NR_CPUS.
7205 */
7206struct static_sched_group {
7207 struct sched_group sg;
7208 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7209};
7210
7211struct static_sched_domain {
7212 struct sched_domain sd;
7213 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7214};
7215
9c1cfda2 7216/*
48f24c4d 7217 * SMT sched-domains:
9c1cfda2 7218 */
1da177e4 7219#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7220static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7221static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7222
41a2d6cf 7223static int
96f874e2
RR
7224cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7225 struct sched_group **sg, struct cpumask *unused)
1da177e4 7226{
6711cab4 7227 if (sg)
6c99e9ad 7228 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7229 return cpu;
7230}
6d6bc0ad 7231#endif /* CONFIG_SCHED_SMT */
1da177e4 7232
48f24c4d
IM
7233/*
7234 * multi-core sched-domains:
7235 */
1e9f28fa 7236#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7237static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7238static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7239#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7240
7241#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7242static int
96f874e2
RR
7243cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7244 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7245{
6711cab4 7246 int group;
7c16ec58 7247
96f874e2
RR
7248 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7249 group = cpumask_first(mask);
6711cab4 7250 if (sg)
6c99e9ad 7251 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7252 return group;
1e9f28fa
SS
7253}
7254#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7255static int
96f874e2
RR
7256cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7257 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7258{
6711cab4 7259 if (sg)
6c99e9ad 7260 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7261 return cpu;
7262}
7263#endif
7264
6c99e9ad
RR
7265static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7266static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7267
41a2d6cf 7268static int
96f874e2
RR
7269cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7270 struct sched_group **sg, struct cpumask *mask)
1da177e4 7271{
6711cab4 7272 int group;
48f24c4d 7273#ifdef CONFIG_SCHED_MC
6ca09dfc 7274 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7275 group = cpumask_first(mask);
1e9f28fa 7276#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7277 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7278 group = cpumask_first(mask);
1da177e4 7279#else
6711cab4 7280 group = cpu;
1da177e4 7281#endif
6711cab4 7282 if (sg)
6c99e9ad 7283 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7284 return group;
1da177e4
LT
7285}
7286
7287#ifdef CONFIG_NUMA
1da177e4 7288/*
9c1cfda2
JH
7289 * The init_sched_build_groups can't handle what we want to do with node
7290 * groups, so roll our own. Now each node has its own list of groups which
7291 * gets dynamically allocated.
1da177e4 7292 */
62ea9ceb 7293static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7294static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7295
62ea9ceb 7296static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7297static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7298
96f874e2
RR
7299static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7300 struct sched_group **sg,
7301 struct cpumask *nodemask)
9c1cfda2 7302{
6711cab4
SS
7303 int group;
7304
6ca09dfc 7305 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7306 group = cpumask_first(nodemask);
6711cab4
SS
7307
7308 if (sg)
6c99e9ad 7309 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7310 return group;
1da177e4 7311}
6711cab4 7312
08069033
SS
7313static void init_numa_sched_groups_power(struct sched_group *group_head)
7314{
7315 struct sched_group *sg = group_head;
7316 int j;
7317
7318 if (!sg)
7319 return;
3a5c359a 7320 do {
758b2cdc 7321 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7322 struct sched_domain *sd;
08069033 7323
6c99e9ad 7324 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7325 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7326 /*
7327 * Only add "power" once for each
7328 * physical package.
7329 */
7330 continue;
7331 }
08069033 7332
3a5c359a
AK
7333 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7334 }
7335 sg = sg->next;
7336 } while (sg != group_head);
08069033 7337}
6d6bc0ad 7338#endif /* CONFIG_NUMA */
1da177e4 7339
a616058b 7340#ifdef CONFIG_NUMA
51888ca2 7341/* Free memory allocated for various sched_group structures */
96f874e2
RR
7342static void free_sched_groups(const struct cpumask *cpu_map,
7343 struct cpumask *nodemask)
51888ca2 7344{
a616058b 7345 int cpu, i;
51888ca2 7346
abcd083a 7347 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7348 struct sched_group **sched_group_nodes
7349 = sched_group_nodes_bycpu[cpu];
7350
51888ca2
SV
7351 if (!sched_group_nodes)
7352 continue;
7353
076ac2af 7354 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7355 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7356
6ca09dfc 7357 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7358 if (cpumask_empty(nodemask))
51888ca2
SV
7359 continue;
7360
7361 if (sg == NULL)
7362 continue;
7363 sg = sg->next;
7364next_sg:
7365 oldsg = sg;
7366 sg = sg->next;
7367 kfree(oldsg);
7368 if (oldsg != sched_group_nodes[i])
7369 goto next_sg;
7370 }
7371 kfree(sched_group_nodes);
7372 sched_group_nodes_bycpu[cpu] = NULL;
7373 }
51888ca2 7374}
6d6bc0ad 7375#else /* !CONFIG_NUMA */
96f874e2
RR
7376static void free_sched_groups(const struct cpumask *cpu_map,
7377 struct cpumask *nodemask)
a616058b
SS
7378{
7379}
6d6bc0ad 7380#endif /* CONFIG_NUMA */
51888ca2 7381
89c4710e
SS
7382/*
7383 * Initialize sched groups cpu_power.
7384 *
7385 * cpu_power indicates the capacity of sched group, which is used while
7386 * distributing the load between different sched groups in a sched domain.
7387 * Typically cpu_power for all the groups in a sched domain will be same unless
7388 * there are asymmetries in the topology. If there are asymmetries, group
7389 * having more cpu_power will pickup more load compared to the group having
7390 * less cpu_power.
7391 *
7392 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7393 * the maximum number of tasks a group can handle in the presence of other idle
7394 * or lightly loaded groups in the same sched domain.
7395 */
7396static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7397{
7398 struct sched_domain *child;
7399 struct sched_group *group;
7400
7401 WARN_ON(!sd || !sd->groups);
7402
758b2cdc 7403 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7404 return;
7405
7406 child = sd->child;
7407
5517d86b
ED
7408 sd->groups->__cpu_power = 0;
7409
89c4710e
SS
7410 /*
7411 * For perf policy, if the groups in child domain share resources
7412 * (for example cores sharing some portions of the cache hierarchy
7413 * or SMT), then set this domain groups cpu_power such that each group
7414 * can handle only one task, when there are other idle groups in the
7415 * same sched domain.
7416 */
7417 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7418 (child->flags &
7419 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7420 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7421 return;
7422 }
7423
89c4710e
SS
7424 /*
7425 * add cpu_power of each child group to this groups cpu_power
7426 */
7427 group = child->groups;
7428 do {
5517d86b 7429 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7430 group = group->next;
7431 } while (group != child->groups);
7432}
7433
7c16ec58
MT
7434/*
7435 * Initializers for schedule domains
7436 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7437 */
7438
a5d8c348
IM
7439#ifdef CONFIG_SCHED_DEBUG
7440# define SD_INIT_NAME(sd, type) sd->name = #type
7441#else
7442# define SD_INIT_NAME(sd, type) do { } while (0)
7443#endif
7444
7c16ec58 7445#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7446
7c16ec58
MT
7447#define SD_INIT_FUNC(type) \
7448static noinline void sd_init_##type(struct sched_domain *sd) \
7449{ \
7450 memset(sd, 0, sizeof(*sd)); \
7451 *sd = SD_##type##_INIT; \
1d3504fc 7452 sd->level = SD_LV_##type; \
a5d8c348 7453 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7454}
7455
7456SD_INIT_FUNC(CPU)
7457#ifdef CONFIG_NUMA
7458 SD_INIT_FUNC(ALLNODES)
7459 SD_INIT_FUNC(NODE)
7460#endif
7461#ifdef CONFIG_SCHED_SMT
7462 SD_INIT_FUNC(SIBLING)
7463#endif
7464#ifdef CONFIG_SCHED_MC
7465 SD_INIT_FUNC(MC)
7466#endif
7467
1d3504fc
HS
7468static int default_relax_domain_level = -1;
7469
7470static int __init setup_relax_domain_level(char *str)
7471{
30e0e178
LZ
7472 unsigned long val;
7473
7474 val = simple_strtoul(str, NULL, 0);
7475 if (val < SD_LV_MAX)
7476 default_relax_domain_level = val;
7477
1d3504fc
HS
7478 return 1;
7479}
7480__setup("relax_domain_level=", setup_relax_domain_level);
7481
7482static void set_domain_attribute(struct sched_domain *sd,
7483 struct sched_domain_attr *attr)
7484{
7485 int request;
7486
7487 if (!attr || attr->relax_domain_level < 0) {
7488 if (default_relax_domain_level < 0)
7489 return;
7490 else
7491 request = default_relax_domain_level;
7492 } else
7493 request = attr->relax_domain_level;
7494 if (request < sd->level) {
7495 /* turn off idle balance on this domain */
7496 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7497 } else {
7498 /* turn on idle balance on this domain */
7499 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7500 }
7501}
7502
1da177e4 7503/*
1a20ff27
DG
7504 * Build sched domains for a given set of cpus and attach the sched domains
7505 * to the individual cpus
1da177e4 7506 */
96f874e2 7507static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7508 struct sched_domain_attr *attr)
1da177e4 7509{
3404c8d9 7510 int i, err = -ENOMEM;
57d885fe 7511 struct root_domain *rd;
3404c8d9
RR
7512 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7513 tmpmask;
d1b55138 7514#ifdef CONFIG_NUMA
3404c8d9 7515 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7516 struct sched_group **sched_group_nodes = NULL;
6711cab4 7517 int sd_allnodes = 0;
d1b55138 7518
3404c8d9
RR
7519 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7520 goto out;
7521 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7522 goto free_domainspan;
7523 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7524 goto free_covered;
7525#endif
7526
7527 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7528 goto free_notcovered;
7529 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7530 goto free_nodemask;
7531 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7532 goto free_this_sibling_map;
7533 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7534 goto free_this_core_map;
7535 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7536 goto free_send_covered;
7537
7538#ifdef CONFIG_NUMA
d1b55138
JH
7539 /*
7540 * Allocate the per-node list of sched groups
7541 */
076ac2af 7542 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7543 GFP_KERNEL);
d1b55138
JH
7544 if (!sched_group_nodes) {
7545 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7546 goto free_tmpmask;
d1b55138 7547 }
d1b55138 7548#endif
1da177e4 7549
dc938520 7550 rd = alloc_rootdomain();
57d885fe
GH
7551 if (!rd) {
7552 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7553 goto free_sched_groups;
57d885fe
GH
7554 }
7555
7c16ec58 7556#ifdef CONFIG_NUMA
96f874e2 7557 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7558#endif
7559
1da177e4 7560 /*
1a20ff27 7561 * Set up domains for cpus specified by the cpu_map.
1da177e4 7562 */
abcd083a 7563 for_each_cpu(i, cpu_map) {
1da177e4 7564 struct sched_domain *sd = NULL, *p;
1da177e4 7565
6ca09dfc 7566 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7567
7568#ifdef CONFIG_NUMA
96f874e2
RR
7569 if (cpumask_weight(cpu_map) >
7570 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7571 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7572 SD_INIT(sd, ALLNODES);
1d3504fc 7573 set_domain_attribute(sd, attr);
758b2cdc 7574 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7575 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7576 p = sd;
6711cab4 7577 sd_allnodes = 1;
9c1cfda2
JH
7578 } else
7579 p = NULL;
7580
62ea9ceb 7581 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7582 SD_INIT(sd, NODE);
1d3504fc 7583 set_domain_attribute(sd, attr);
758b2cdc 7584 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7585 sd->parent = p;
1a848870
SS
7586 if (p)
7587 p->child = sd;
758b2cdc
RR
7588 cpumask_and(sched_domain_span(sd),
7589 sched_domain_span(sd), cpu_map);
1da177e4
LT
7590#endif
7591
7592 p = sd;
6c99e9ad 7593 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7594 SD_INIT(sd, CPU);
1d3504fc 7595 set_domain_attribute(sd, attr);
758b2cdc 7596 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7597 sd->parent = p;
1a848870
SS
7598 if (p)
7599 p->child = sd;
7c16ec58 7600 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7601
1e9f28fa
SS
7602#ifdef CONFIG_SCHED_MC
7603 p = sd;
6c99e9ad 7604 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7605 SD_INIT(sd, MC);
1d3504fc 7606 set_domain_attribute(sd, attr);
6ca09dfc
MT
7607 cpumask_and(sched_domain_span(sd), cpu_map,
7608 cpu_coregroup_mask(i));
1e9f28fa 7609 sd->parent = p;
1a848870 7610 p->child = sd;
7c16ec58 7611 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7612#endif
7613
1da177e4
LT
7614#ifdef CONFIG_SCHED_SMT
7615 p = sd;
6c99e9ad 7616 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7617 SD_INIT(sd, SIBLING);
1d3504fc 7618 set_domain_attribute(sd, attr);
758b2cdc
RR
7619 cpumask_and(sched_domain_span(sd),
7620 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7621 sd->parent = p;
1a848870 7622 p->child = sd;
7c16ec58 7623 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7624#endif
7625 }
7626
7627#ifdef CONFIG_SCHED_SMT
7628 /* Set up CPU (sibling) groups */
abcd083a 7629 for_each_cpu(i, cpu_map) {
96f874e2
RR
7630 cpumask_and(this_sibling_map,
7631 &per_cpu(cpu_sibling_map, i), cpu_map);
7632 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7633 continue;
7634
dd41f596 7635 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7636 &cpu_to_cpu_group,
7637 send_covered, tmpmask);
1da177e4
LT
7638 }
7639#endif
7640
1e9f28fa
SS
7641#ifdef CONFIG_SCHED_MC
7642 /* Set up multi-core groups */
abcd083a 7643 for_each_cpu(i, cpu_map) {
6ca09dfc 7644 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7645 if (i != cpumask_first(this_core_map))
1e9f28fa 7646 continue;
7c16ec58 7647
dd41f596 7648 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7649 &cpu_to_core_group,
7650 send_covered, tmpmask);
1e9f28fa
SS
7651 }
7652#endif
7653
1da177e4 7654 /* Set up physical groups */
076ac2af 7655 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7656 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7657 if (cpumask_empty(nodemask))
1da177e4
LT
7658 continue;
7659
7c16ec58
MT
7660 init_sched_build_groups(nodemask, cpu_map,
7661 &cpu_to_phys_group,
7662 send_covered, tmpmask);
1da177e4
LT
7663 }
7664
7665#ifdef CONFIG_NUMA
7666 /* Set up node groups */
7c16ec58 7667 if (sd_allnodes) {
7c16ec58
MT
7668 init_sched_build_groups(cpu_map, cpu_map,
7669 &cpu_to_allnodes_group,
7670 send_covered, tmpmask);
7671 }
9c1cfda2 7672
076ac2af 7673 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7674 /* Set up node groups */
7675 struct sched_group *sg, *prev;
9c1cfda2
JH
7676 int j;
7677
96f874e2 7678 cpumask_clear(covered);
6ca09dfc 7679 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7680 if (cpumask_empty(nodemask)) {
d1b55138 7681 sched_group_nodes[i] = NULL;
9c1cfda2 7682 continue;
d1b55138 7683 }
9c1cfda2 7684
4bdbaad3 7685 sched_domain_node_span(i, domainspan);
96f874e2 7686 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7687
6c99e9ad
RR
7688 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7689 GFP_KERNEL, i);
51888ca2
SV
7690 if (!sg) {
7691 printk(KERN_WARNING "Can not alloc domain group for "
7692 "node %d\n", i);
7693 goto error;
7694 }
9c1cfda2 7695 sched_group_nodes[i] = sg;
abcd083a 7696 for_each_cpu(j, nodemask) {
9c1cfda2 7697 struct sched_domain *sd;
9761eea8 7698
62ea9ceb 7699 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7700 sd->groups = sg;
9c1cfda2 7701 }
5517d86b 7702 sg->__cpu_power = 0;
758b2cdc 7703 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7704 sg->next = sg;
96f874e2 7705 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7706 prev = sg;
7707
076ac2af 7708 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7709 int n = (i + j) % nr_node_ids;
9c1cfda2 7710
96f874e2
RR
7711 cpumask_complement(notcovered, covered);
7712 cpumask_and(tmpmask, notcovered, cpu_map);
7713 cpumask_and(tmpmask, tmpmask, domainspan);
7714 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7715 break;
7716
6ca09dfc 7717 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7718 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7719 continue;
7720
6c99e9ad
RR
7721 sg = kmalloc_node(sizeof(struct sched_group) +
7722 cpumask_size(),
15f0b676 7723 GFP_KERNEL, i);
9c1cfda2
JH
7724 if (!sg) {
7725 printk(KERN_WARNING
7726 "Can not alloc domain group for node %d\n", j);
51888ca2 7727 goto error;
9c1cfda2 7728 }
5517d86b 7729 sg->__cpu_power = 0;
758b2cdc 7730 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7731 sg->next = prev->next;
96f874e2 7732 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7733 prev->next = sg;
7734 prev = sg;
7735 }
9c1cfda2 7736 }
1da177e4
LT
7737#endif
7738
7739 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7740#ifdef CONFIG_SCHED_SMT
abcd083a 7741 for_each_cpu(i, cpu_map) {
6c99e9ad 7742 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7743
89c4710e 7744 init_sched_groups_power(i, sd);
5c45bf27 7745 }
1da177e4 7746#endif
1e9f28fa 7747#ifdef CONFIG_SCHED_MC
abcd083a 7748 for_each_cpu(i, cpu_map) {
6c99e9ad 7749 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7750
89c4710e 7751 init_sched_groups_power(i, sd);
5c45bf27
SS
7752 }
7753#endif
1e9f28fa 7754
abcd083a 7755 for_each_cpu(i, cpu_map) {
6c99e9ad 7756 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7757
89c4710e 7758 init_sched_groups_power(i, sd);
1da177e4
LT
7759 }
7760
9c1cfda2 7761#ifdef CONFIG_NUMA
076ac2af 7762 for (i = 0; i < nr_node_ids; i++)
08069033 7763 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7764
6711cab4
SS
7765 if (sd_allnodes) {
7766 struct sched_group *sg;
f712c0c7 7767
96f874e2 7768 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7769 tmpmask);
f712c0c7
SS
7770 init_numa_sched_groups_power(sg);
7771 }
9c1cfda2
JH
7772#endif
7773
1da177e4 7774 /* Attach the domains */
abcd083a 7775 for_each_cpu(i, cpu_map) {
1da177e4
LT
7776 struct sched_domain *sd;
7777#ifdef CONFIG_SCHED_SMT
6c99e9ad 7778 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7779#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7780 sd = &per_cpu(core_domains, i).sd;
1da177e4 7781#else
6c99e9ad 7782 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7783#endif
57d885fe 7784 cpu_attach_domain(sd, rd, i);
1da177e4 7785 }
51888ca2 7786
3404c8d9
RR
7787 err = 0;
7788
7789free_tmpmask:
7790 free_cpumask_var(tmpmask);
7791free_send_covered:
7792 free_cpumask_var(send_covered);
7793free_this_core_map:
7794 free_cpumask_var(this_core_map);
7795free_this_sibling_map:
7796 free_cpumask_var(this_sibling_map);
7797free_nodemask:
7798 free_cpumask_var(nodemask);
7799free_notcovered:
7800#ifdef CONFIG_NUMA
7801 free_cpumask_var(notcovered);
7802free_covered:
7803 free_cpumask_var(covered);
7804free_domainspan:
7805 free_cpumask_var(domainspan);
7806out:
7807#endif
7808 return err;
7809
7810free_sched_groups:
7811#ifdef CONFIG_NUMA
7812 kfree(sched_group_nodes);
7813#endif
7814 goto free_tmpmask;
51888ca2 7815
a616058b 7816#ifdef CONFIG_NUMA
51888ca2 7817error:
7c16ec58 7818 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7819 free_rootdomain(rd);
3404c8d9 7820 goto free_tmpmask;
a616058b 7821#endif
1da177e4 7822}
029190c5 7823
96f874e2 7824static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7825{
7826 return __build_sched_domains(cpu_map, NULL);
7827}
7828
96f874e2 7829static struct cpumask *doms_cur; /* current sched domains */
029190c5 7830static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7831static struct sched_domain_attr *dattr_cur;
7832 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7833
7834/*
7835 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7836 * cpumask) fails, then fallback to a single sched domain,
7837 * as determined by the single cpumask fallback_doms.
029190c5 7838 */
4212823f 7839static cpumask_var_t fallback_doms;
029190c5 7840
ee79d1bd
HC
7841/*
7842 * arch_update_cpu_topology lets virtualized architectures update the
7843 * cpu core maps. It is supposed to return 1 if the topology changed
7844 * or 0 if it stayed the same.
7845 */
7846int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7847{
ee79d1bd 7848 return 0;
22e52b07
HC
7849}
7850
1a20ff27 7851/*
41a2d6cf 7852 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7853 * For now this just excludes isolated cpus, but could be used to
7854 * exclude other special cases in the future.
1a20ff27 7855 */
96f874e2 7856static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7857{
7378547f
MM
7858 int err;
7859
22e52b07 7860 arch_update_cpu_topology();
029190c5 7861 ndoms_cur = 1;
96f874e2 7862 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7863 if (!doms_cur)
4212823f 7864 doms_cur = fallback_doms;
dcc30a35 7865 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7866 dattr_cur = NULL;
7378547f 7867 err = build_sched_domains(doms_cur);
6382bc90 7868 register_sched_domain_sysctl();
7378547f
MM
7869
7870 return err;
1a20ff27
DG
7871}
7872
96f874e2
RR
7873static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7874 struct cpumask *tmpmask)
1da177e4 7875{
7c16ec58 7876 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7877}
1da177e4 7878
1a20ff27
DG
7879/*
7880 * Detach sched domains from a group of cpus specified in cpu_map
7881 * These cpus will now be attached to the NULL domain
7882 */
96f874e2 7883static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7884{
96f874e2
RR
7885 /* Save because hotplug lock held. */
7886 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7887 int i;
7888
abcd083a 7889 for_each_cpu(i, cpu_map)
57d885fe 7890 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7891 synchronize_sched();
96f874e2 7892 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7893}
7894
1d3504fc
HS
7895/* handle null as "default" */
7896static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7897 struct sched_domain_attr *new, int idx_new)
7898{
7899 struct sched_domain_attr tmp;
7900
7901 /* fast path */
7902 if (!new && !cur)
7903 return 1;
7904
7905 tmp = SD_ATTR_INIT;
7906 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7907 new ? (new + idx_new) : &tmp,
7908 sizeof(struct sched_domain_attr));
7909}
7910
029190c5
PJ
7911/*
7912 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7913 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7914 * doms_new[] to the current sched domain partitioning, doms_cur[].
7915 * It destroys each deleted domain and builds each new domain.
7916 *
96f874e2 7917 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7918 * The masks don't intersect (don't overlap.) We should setup one
7919 * sched domain for each mask. CPUs not in any of the cpumasks will
7920 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7921 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7922 * it as it is.
7923 *
41a2d6cf
IM
7924 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7925 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7926 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7927 * ndoms_new == 1, and partition_sched_domains() will fallback to
7928 * the single partition 'fallback_doms', it also forces the domains
7929 * to be rebuilt.
029190c5 7930 *
96f874e2 7931 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7932 * ndoms_new == 0 is a special case for destroying existing domains,
7933 * and it will not create the default domain.
dfb512ec 7934 *
029190c5
PJ
7935 * Call with hotplug lock held
7936 */
96f874e2
RR
7937/* FIXME: Change to struct cpumask *doms_new[] */
7938void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7939 struct sched_domain_attr *dattr_new)
029190c5 7940{
dfb512ec 7941 int i, j, n;
d65bd5ec 7942 int new_topology;
029190c5 7943
712555ee 7944 mutex_lock(&sched_domains_mutex);
a1835615 7945
7378547f
MM
7946 /* always unregister in case we don't destroy any domains */
7947 unregister_sched_domain_sysctl();
7948
d65bd5ec
HC
7949 /* Let architecture update cpu core mappings. */
7950 new_topology = arch_update_cpu_topology();
7951
dfb512ec 7952 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7953
7954 /* Destroy deleted domains */
7955 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7956 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7957 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7958 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7959 goto match1;
7960 }
7961 /* no match - a current sched domain not in new doms_new[] */
7962 detach_destroy_domains(doms_cur + i);
7963match1:
7964 ;
7965 }
7966
e761b772
MK
7967 if (doms_new == NULL) {
7968 ndoms_cur = 0;
4212823f 7969 doms_new = fallback_doms;
dcc30a35 7970 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7971 WARN_ON_ONCE(dattr_new);
e761b772
MK
7972 }
7973
029190c5
PJ
7974 /* Build new domains */
7975 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7976 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7977 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7978 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7979 goto match2;
7980 }
7981 /* no match - add a new doms_new */
1d3504fc
HS
7982 __build_sched_domains(doms_new + i,
7983 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7984match2:
7985 ;
7986 }
7987
7988 /* Remember the new sched domains */
4212823f 7989 if (doms_cur != fallback_doms)
029190c5 7990 kfree(doms_cur);
1d3504fc 7991 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7992 doms_cur = doms_new;
1d3504fc 7993 dattr_cur = dattr_new;
029190c5 7994 ndoms_cur = ndoms_new;
7378547f
MM
7995
7996 register_sched_domain_sysctl();
a1835615 7997
712555ee 7998 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7999}
8000
5c45bf27 8001#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8002static void arch_reinit_sched_domains(void)
5c45bf27 8003{
95402b38 8004 get_online_cpus();
dfb512ec
MK
8005
8006 /* Destroy domains first to force the rebuild */
8007 partition_sched_domains(0, NULL, NULL);
8008
e761b772 8009 rebuild_sched_domains();
95402b38 8010 put_online_cpus();
5c45bf27
SS
8011}
8012
8013static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8014{
afb8a9b7 8015 unsigned int level = 0;
5c45bf27 8016
afb8a9b7
GS
8017 if (sscanf(buf, "%u", &level) != 1)
8018 return -EINVAL;
8019
8020 /*
8021 * level is always be positive so don't check for
8022 * level < POWERSAVINGS_BALANCE_NONE which is 0
8023 * What happens on 0 or 1 byte write,
8024 * need to check for count as well?
8025 */
8026
8027 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8028 return -EINVAL;
8029
8030 if (smt)
afb8a9b7 8031 sched_smt_power_savings = level;
5c45bf27 8032 else
afb8a9b7 8033 sched_mc_power_savings = level;
5c45bf27 8034
c70f22d2 8035 arch_reinit_sched_domains();
5c45bf27 8036
c70f22d2 8037 return count;
5c45bf27
SS
8038}
8039
5c45bf27 8040#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8041static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8042 char *page)
5c45bf27
SS
8043{
8044 return sprintf(page, "%u\n", sched_mc_power_savings);
8045}
f718cd4a 8046static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8047 const char *buf, size_t count)
5c45bf27
SS
8048{
8049 return sched_power_savings_store(buf, count, 0);
8050}
f718cd4a
AK
8051static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8052 sched_mc_power_savings_show,
8053 sched_mc_power_savings_store);
5c45bf27
SS
8054#endif
8055
8056#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8057static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8058 char *page)
5c45bf27
SS
8059{
8060 return sprintf(page, "%u\n", sched_smt_power_savings);
8061}
f718cd4a 8062static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8063 const char *buf, size_t count)
5c45bf27
SS
8064{
8065 return sched_power_savings_store(buf, count, 1);
8066}
f718cd4a
AK
8067static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8068 sched_smt_power_savings_show,
6707de00
AB
8069 sched_smt_power_savings_store);
8070#endif
8071
39aac648 8072int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8073{
8074 int err = 0;
8075
8076#ifdef CONFIG_SCHED_SMT
8077 if (smt_capable())
8078 err = sysfs_create_file(&cls->kset.kobj,
8079 &attr_sched_smt_power_savings.attr);
8080#endif
8081#ifdef CONFIG_SCHED_MC
8082 if (!err && mc_capable())
8083 err = sysfs_create_file(&cls->kset.kobj,
8084 &attr_sched_mc_power_savings.attr);
8085#endif
8086 return err;
8087}
6d6bc0ad 8088#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8089
e761b772 8090#ifndef CONFIG_CPUSETS
1da177e4 8091/*
e761b772
MK
8092 * Add online and remove offline CPUs from the scheduler domains.
8093 * When cpusets are enabled they take over this function.
1da177e4
LT
8094 */
8095static int update_sched_domains(struct notifier_block *nfb,
8096 unsigned long action, void *hcpu)
e761b772
MK
8097{
8098 switch (action) {
8099 case CPU_ONLINE:
8100 case CPU_ONLINE_FROZEN:
8101 case CPU_DEAD:
8102 case CPU_DEAD_FROZEN:
dfb512ec 8103 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8104 return NOTIFY_OK;
8105
8106 default:
8107 return NOTIFY_DONE;
8108 }
8109}
8110#endif
8111
8112static int update_runtime(struct notifier_block *nfb,
8113 unsigned long action, void *hcpu)
1da177e4 8114{
7def2be1
PZ
8115 int cpu = (int)(long)hcpu;
8116
1da177e4 8117 switch (action) {
1da177e4 8118 case CPU_DOWN_PREPARE:
8bb78442 8119 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8120 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8121 return NOTIFY_OK;
8122
1da177e4 8123 case CPU_DOWN_FAILED:
8bb78442 8124 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8125 case CPU_ONLINE:
8bb78442 8126 case CPU_ONLINE_FROZEN:
7def2be1 8127 enable_runtime(cpu_rq(cpu));
e761b772
MK
8128 return NOTIFY_OK;
8129
1da177e4
LT
8130 default:
8131 return NOTIFY_DONE;
8132 }
1da177e4 8133}
1da177e4
LT
8134
8135void __init sched_init_smp(void)
8136{
dcc30a35
RR
8137 cpumask_var_t non_isolated_cpus;
8138
8139 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8140
434d53b0
MT
8141#if defined(CONFIG_NUMA)
8142 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8143 GFP_KERNEL);
8144 BUG_ON(sched_group_nodes_bycpu == NULL);
8145#endif
95402b38 8146 get_online_cpus();
712555ee 8147 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8148 arch_init_sched_domains(cpu_online_mask);
8149 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8150 if (cpumask_empty(non_isolated_cpus))
8151 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8152 mutex_unlock(&sched_domains_mutex);
95402b38 8153 put_online_cpus();
e761b772
MK
8154
8155#ifndef CONFIG_CPUSETS
1da177e4
LT
8156 /* XXX: Theoretical race here - CPU may be hotplugged now */
8157 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8158#endif
8159
8160 /* RT runtime code needs to handle some hotplug events */
8161 hotcpu_notifier(update_runtime, 0);
8162
b328ca18 8163 init_hrtick();
5c1e1767
NP
8164
8165 /* Move init over to a non-isolated CPU */
dcc30a35 8166 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8167 BUG();
19978ca6 8168 sched_init_granularity();
dcc30a35 8169 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8170
8171 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8172 init_sched_rt_class();
1da177e4
LT
8173}
8174#else
8175void __init sched_init_smp(void)
8176{
19978ca6 8177 sched_init_granularity();
1da177e4
LT
8178}
8179#endif /* CONFIG_SMP */
8180
8181int in_sched_functions(unsigned long addr)
8182{
1da177e4
LT
8183 return in_lock_functions(addr) ||
8184 (addr >= (unsigned long)__sched_text_start
8185 && addr < (unsigned long)__sched_text_end);
8186}
8187
a9957449 8188static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8189{
8190 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8191 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8192#ifdef CONFIG_FAIR_GROUP_SCHED
8193 cfs_rq->rq = rq;
8194#endif
67e9fb2a 8195 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8196}
8197
fa85ae24
PZ
8198static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8199{
8200 struct rt_prio_array *array;
8201 int i;
8202
8203 array = &rt_rq->active;
8204 for (i = 0; i < MAX_RT_PRIO; i++) {
8205 INIT_LIST_HEAD(array->queue + i);
8206 __clear_bit(i, array->bitmap);
8207 }
8208 /* delimiter for bitsearch: */
8209 __set_bit(MAX_RT_PRIO, array->bitmap);
8210
052f1dc7 8211#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8212 rt_rq->highest_prio = MAX_RT_PRIO;
8213#endif
fa85ae24
PZ
8214#ifdef CONFIG_SMP
8215 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8216 rt_rq->overloaded = 0;
8217#endif
8218
8219 rt_rq->rt_time = 0;
8220 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8221 rt_rq->rt_runtime = 0;
8222 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8223
052f1dc7 8224#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8225 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8226 rt_rq->rq = rq;
8227#endif
fa85ae24
PZ
8228}
8229
6f505b16 8230#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8231static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8232 struct sched_entity *se, int cpu, int add,
8233 struct sched_entity *parent)
6f505b16 8234{
ec7dc8ac 8235 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8236 tg->cfs_rq[cpu] = cfs_rq;
8237 init_cfs_rq(cfs_rq, rq);
8238 cfs_rq->tg = tg;
8239 if (add)
8240 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8241
8242 tg->se[cpu] = se;
354d60c2
DG
8243 /* se could be NULL for init_task_group */
8244 if (!se)
8245 return;
8246
ec7dc8ac
DG
8247 if (!parent)
8248 se->cfs_rq = &rq->cfs;
8249 else
8250 se->cfs_rq = parent->my_q;
8251
6f505b16
PZ
8252 se->my_q = cfs_rq;
8253 se->load.weight = tg->shares;
e05510d0 8254 se->load.inv_weight = 0;
ec7dc8ac 8255 se->parent = parent;
6f505b16 8256}
052f1dc7 8257#endif
6f505b16 8258
052f1dc7 8259#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8260static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8261 struct sched_rt_entity *rt_se, int cpu, int add,
8262 struct sched_rt_entity *parent)
6f505b16 8263{
ec7dc8ac
DG
8264 struct rq *rq = cpu_rq(cpu);
8265
6f505b16
PZ
8266 tg->rt_rq[cpu] = rt_rq;
8267 init_rt_rq(rt_rq, rq);
8268 rt_rq->tg = tg;
8269 rt_rq->rt_se = rt_se;
ac086bc2 8270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8271 if (add)
8272 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8273
8274 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8275 if (!rt_se)
8276 return;
8277
ec7dc8ac
DG
8278 if (!parent)
8279 rt_se->rt_rq = &rq->rt;
8280 else
8281 rt_se->rt_rq = parent->my_q;
8282
6f505b16 8283 rt_se->my_q = rt_rq;
ec7dc8ac 8284 rt_se->parent = parent;
6f505b16
PZ
8285 INIT_LIST_HEAD(&rt_se->run_list);
8286}
8287#endif
8288
1da177e4
LT
8289void __init sched_init(void)
8290{
dd41f596 8291 int i, j;
434d53b0
MT
8292 unsigned long alloc_size = 0, ptr;
8293
8294#ifdef CONFIG_FAIR_GROUP_SCHED
8295 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8296#endif
8297#ifdef CONFIG_RT_GROUP_SCHED
8298 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8299#endif
8300#ifdef CONFIG_USER_SCHED
8301 alloc_size *= 2;
434d53b0
MT
8302#endif
8303 /*
8304 * As sched_init() is called before page_alloc is setup,
8305 * we use alloc_bootmem().
8306 */
8307 if (alloc_size) {
5a9d3225 8308 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8309
8310#ifdef CONFIG_FAIR_GROUP_SCHED
8311 init_task_group.se = (struct sched_entity **)ptr;
8312 ptr += nr_cpu_ids * sizeof(void **);
8313
8314 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8315 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8316
8317#ifdef CONFIG_USER_SCHED
8318 root_task_group.se = (struct sched_entity **)ptr;
8319 ptr += nr_cpu_ids * sizeof(void **);
8320
8321 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8322 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8323#endif /* CONFIG_USER_SCHED */
8324#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8325#ifdef CONFIG_RT_GROUP_SCHED
8326 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8327 ptr += nr_cpu_ids * sizeof(void **);
8328
8329 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8330 ptr += nr_cpu_ids * sizeof(void **);
8331
8332#ifdef CONFIG_USER_SCHED
8333 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8334 ptr += nr_cpu_ids * sizeof(void **);
8335
8336 root_task_group.rt_rq = (struct rt_rq **)ptr;
8337 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8338#endif /* CONFIG_USER_SCHED */
8339#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8340 }
dd41f596 8341
57d885fe
GH
8342#ifdef CONFIG_SMP
8343 init_defrootdomain();
8344#endif
8345
d0b27fa7
PZ
8346 init_rt_bandwidth(&def_rt_bandwidth,
8347 global_rt_period(), global_rt_runtime());
8348
8349#ifdef CONFIG_RT_GROUP_SCHED
8350 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8351 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8352#ifdef CONFIG_USER_SCHED
8353 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8354 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8355#endif /* CONFIG_USER_SCHED */
8356#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8357
052f1dc7 8358#ifdef CONFIG_GROUP_SCHED
6f505b16 8359 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8360 INIT_LIST_HEAD(&init_task_group.children);
8361
8362#ifdef CONFIG_USER_SCHED
8363 INIT_LIST_HEAD(&root_task_group.children);
8364 init_task_group.parent = &root_task_group;
8365 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8366#endif /* CONFIG_USER_SCHED */
8367#endif /* CONFIG_GROUP_SCHED */
6f505b16 8368
0a945022 8369 for_each_possible_cpu(i) {
70b97a7f 8370 struct rq *rq;
1da177e4
LT
8371
8372 rq = cpu_rq(i);
8373 spin_lock_init(&rq->lock);
7897986b 8374 rq->nr_running = 0;
dd41f596 8375 init_cfs_rq(&rq->cfs, rq);
6f505b16 8376 init_rt_rq(&rq->rt, rq);
dd41f596 8377#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8378 init_task_group.shares = init_task_group_load;
6f505b16 8379 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8380#ifdef CONFIG_CGROUP_SCHED
8381 /*
8382 * How much cpu bandwidth does init_task_group get?
8383 *
8384 * In case of task-groups formed thr' the cgroup filesystem, it
8385 * gets 100% of the cpu resources in the system. This overall
8386 * system cpu resource is divided among the tasks of
8387 * init_task_group and its child task-groups in a fair manner,
8388 * based on each entity's (task or task-group's) weight
8389 * (se->load.weight).
8390 *
8391 * In other words, if init_task_group has 10 tasks of weight
8392 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8393 * then A0's share of the cpu resource is:
8394 *
8395 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8396 *
8397 * We achieve this by letting init_task_group's tasks sit
8398 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8399 */
ec7dc8ac 8400 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8401#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8402 root_task_group.shares = NICE_0_LOAD;
8403 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8404 /*
8405 * In case of task-groups formed thr' the user id of tasks,
8406 * init_task_group represents tasks belonging to root user.
8407 * Hence it forms a sibling of all subsequent groups formed.
8408 * In this case, init_task_group gets only a fraction of overall
8409 * system cpu resource, based on the weight assigned to root
8410 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8411 * by letting tasks of init_task_group sit in a separate cfs_rq
8412 * (init_cfs_rq) and having one entity represent this group of
8413 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8414 */
ec7dc8ac 8415 init_tg_cfs_entry(&init_task_group,
6f505b16 8416 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8417 &per_cpu(init_sched_entity, i), i, 1,
8418 root_task_group.se[i]);
6f505b16 8419
052f1dc7 8420#endif
354d60c2
DG
8421#endif /* CONFIG_FAIR_GROUP_SCHED */
8422
8423 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8424#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8425 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8426#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8427 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8428#elif defined CONFIG_USER_SCHED
eff766a6 8429 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8430 init_tg_rt_entry(&init_task_group,
6f505b16 8431 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8432 &per_cpu(init_sched_rt_entity, i), i, 1,
8433 root_task_group.rt_se[i]);
354d60c2 8434#endif
dd41f596 8435#endif
1da177e4 8436
dd41f596
IM
8437 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8438 rq->cpu_load[j] = 0;
1da177e4 8439#ifdef CONFIG_SMP
41c7ce9a 8440 rq->sd = NULL;
57d885fe 8441 rq->rd = NULL;
1da177e4 8442 rq->active_balance = 0;
dd41f596 8443 rq->next_balance = jiffies;
1da177e4 8444 rq->push_cpu = 0;
0a2966b4 8445 rq->cpu = i;
1f11eb6a 8446 rq->online = 0;
1da177e4
LT
8447 rq->migration_thread = NULL;
8448 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8449 rq_attach_root(rq, &def_root_domain);
1da177e4 8450#endif
8f4d37ec 8451 init_rq_hrtick(rq);
1da177e4 8452 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8453 }
8454
2dd73a4f 8455 set_load_weight(&init_task);
b50f60ce 8456
e107be36
AK
8457#ifdef CONFIG_PREEMPT_NOTIFIERS
8458 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8459#endif
8460
c9819f45 8461#ifdef CONFIG_SMP
962cf36c 8462 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8463#endif
8464
b50f60ce
HC
8465#ifdef CONFIG_RT_MUTEXES
8466 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8467#endif
8468
1da177e4
LT
8469 /*
8470 * The boot idle thread does lazy MMU switching as well:
8471 */
8472 atomic_inc(&init_mm.mm_count);
8473 enter_lazy_tlb(&init_mm, current);
8474
8475 /*
8476 * Make us the idle thread. Technically, schedule() should not be
8477 * called from this thread, however somewhere below it might be,
8478 * but because we are the idle thread, we just pick up running again
8479 * when this runqueue becomes "idle".
8480 */
8481 init_idle(current, smp_processor_id());
dd41f596
IM
8482 /*
8483 * During early bootup we pretend to be a normal task:
8484 */
8485 current->sched_class = &fair_sched_class;
6892b75e 8486
6a7b3dc3
RR
8487 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8488 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8489#ifdef CONFIG_SMP
7d1e6a9b
RR
8490#ifdef CONFIG_NO_HZ
8491 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8492#endif
dcc30a35 8493 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8494#endif /* SMP */
6a7b3dc3 8495
6892b75e 8496 scheduler_running = 1;
1da177e4
LT
8497}
8498
8499#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8500void __might_sleep(char *file, int line)
8501{
48f24c4d 8502#ifdef in_atomic
1da177e4
LT
8503 static unsigned long prev_jiffy; /* ratelimiting */
8504
aef745fc
IM
8505 if ((!in_atomic() && !irqs_disabled()) ||
8506 system_state != SYSTEM_RUNNING || oops_in_progress)
8507 return;
8508 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8509 return;
8510 prev_jiffy = jiffies;
8511
8512 printk(KERN_ERR
8513 "BUG: sleeping function called from invalid context at %s:%d\n",
8514 file, line);
8515 printk(KERN_ERR
8516 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8517 in_atomic(), irqs_disabled(),
8518 current->pid, current->comm);
8519
8520 debug_show_held_locks(current);
8521 if (irqs_disabled())
8522 print_irqtrace_events(current);
8523 dump_stack();
1da177e4
LT
8524#endif
8525}
8526EXPORT_SYMBOL(__might_sleep);
8527#endif
8528
8529#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8530static void normalize_task(struct rq *rq, struct task_struct *p)
8531{
8532 int on_rq;
3e51f33f 8533
3a5e4dc1
AK
8534 update_rq_clock(rq);
8535 on_rq = p->se.on_rq;
8536 if (on_rq)
8537 deactivate_task(rq, p, 0);
8538 __setscheduler(rq, p, SCHED_NORMAL, 0);
8539 if (on_rq) {
8540 activate_task(rq, p, 0);
8541 resched_task(rq->curr);
8542 }
8543}
8544
1da177e4
LT
8545void normalize_rt_tasks(void)
8546{
a0f98a1c 8547 struct task_struct *g, *p;
1da177e4 8548 unsigned long flags;
70b97a7f 8549 struct rq *rq;
1da177e4 8550
4cf5d77a 8551 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8552 do_each_thread(g, p) {
178be793
IM
8553 /*
8554 * Only normalize user tasks:
8555 */
8556 if (!p->mm)
8557 continue;
8558
6cfb0d5d 8559 p->se.exec_start = 0;
6cfb0d5d 8560#ifdef CONFIG_SCHEDSTATS
dd41f596 8561 p->se.wait_start = 0;
dd41f596 8562 p->se.sleep_start = 0;
dd41f596 8563 p->se.block_start = 0;
6cfb0d5d 8564#endif
dd41f596
IM
8565
8566 if (!rt_task(p)) {
8567 /*
8568 * Renice negative nice level userspace
8569 * tasks back to 0:
8570 */
8571 if (TASK_NICE(p) < 0 && p->mm)
8572 set_user_nice(p, 0);
1da177e4 8573 continue;
dd41f596 8574 }
1da177e4 8575
4cf5d77a 8576 spin_lock(&p->pi_lock);
b29739f9 8577 rq = __task_rq_lock(p);
1da177e4 8578
178be793 8579 normalize_task(rq, p);
3a5e4dc1 8580
b29739f9 8581 __task_rq_unlock(rq);
4cf5d77a 8582 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8583 } while_each_thread(g, p);
8584
4cf5d77a 8585 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8586}
8587
8588#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8589
8590#ifdef CONFIG_IA64
8591/*
8592 * These functions are only useful for the IA64 MCA handling.
8593 *
8594 * They can only be called when the whole system has been
8595 * stopped - every CPU needs to be quiescent, and no scheduling
8596 * activity can take place. Using them for anything else would
8597 * be a serious bug, and as a result, they aren't even visible
8598 * under any other configuration.
8599 */
8600
8601/**
8602 * curr_task - return the current task for a given cpu.
8603 * @cpu: the processor in question.
8604 *
8605 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8606 */
36c8b586 8607struct task_struct *curr_task(int cpu)
1df5c10a
LT
8608{
8609 return cpu_curr(cpu);
8610}
8611
8612/**
8613 * set_curr_task - set the current task for a given cpu.
8614 * @cpu: the processor in question.
8615 * @p: the task pointer to set.
8616 *
8617 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8618 * are serviced on a separate stack. It allows the architecture to switch the
8619 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8620 * must be called with all CPU's synchronized, and interrupts disabled, the
8621 * and caller must save the original value of the current task (see
8622 * curr_task() above) and restore that value before reenabling interrupts and
8623 * re-starting the system.
8624 *
8625 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8626 */
36c8b586 8627void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8628{
8629 cpu_curr(cpu) = p;
8630}
8631
8632#endif
29f59db3 8633
bccbe08a
PZ
8634#ifdef CONFIG_FAIR_GROUP_SCHED
8635static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8636{
8637 int i;
8638
8639 for_each_possible_cpu(i) {
8640 if (tg->cfs_rq)
8641 kfree(tg->cfs_rq[i]);
8642 if (tg->se)
8643 kfree(tg->se[i]);
6f505b16
PZ
8644 }
8645
8646 kfree(tg->cfs_rq);
8647 kfree(tg->se);
6f505b16
PZ
8648}
8649
ec7dc8ac
DG
8650static
8651int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8652{
29f59db3 8653 struct cfs_rq *cfs_rq;
eab17229 8654 struct sched_entity *se;
9b5b7751 8655 struct rq *rq;
29f59db3
SV
8656 int i;
8657
434d53b0 8658 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8659 if (!tg->cfs_rq)
8660 goto err;
434d53b0 8661 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8662 if (!tg->se)
8663 goto err;
052f1dc7
PZ
8664
8665 tg->shares = NICE_0_LOAD;
29f59db3
SV
8666
8667 for_each_possible_cpu(i) {
9b5b7751 8668 rq = cpu_rq(i);
29f59db3 8669
eab17229
LZ
8670 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8671 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8672 if (!cfs_rq)
8673 goto err;
8674
eab17229
LZ
8675 se = kzalloc_node(sizeof(struct sched_entity),
8676 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8677 if (!se)
8678 goto err;
8679
eab17229 8680 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8681 }
8682
8683 return 1;
8684
8685 err:
8686 return 0;
8687}
8688
8689static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8690{
8691 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8692 &cpu_rq(cpu)->leaf_cfs_rq_list);
8693}
8694
8695static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8696{
8697 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8698}
6d6bc0ad 8699#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8700static inline void free_fair_sched_group(struct task_group *tg)
8701{
8702}
8703
ec7dc8ac
DG
8704static inline
8705int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8706{
8707 return 1;
8708}
8709
8710static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8711{
8712}
8713
8714static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8715{
8716}
6d6bc0ad 8717#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8718
8719#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8720static void free_rt_sched_group(struct task_group *tg)
8721{
8722 int i;
8723
d0b27fa7
PZ
8724 destroy_rt_bandwidth(&tg->rt_bandwidth);
8725
bccbe08a
PZ
8726 for_each_possible_cpu(i) {
8727 if (tg->rt_rq)
8728 kfree(tg->rt_rq[i]);
8729 if (tg->rt_se)
8730 kfree(tg->rt_se[i]);
8731 }
8732
8733 kfree(tg->rt_rq);
8734 kfree(tg->rt_se);
8735}
8736
ec7dc8ac
DG
8737static
8738int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8739{
8740 struct rt_rq *rt_rq;
eab17229 8741 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8742 struct rq *rq;
8743 int i;
8744
434d53b0 8745 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8746 if (!tg->rt_rq)
8747 goto err;
434d53b0 8748 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8749 if (!tg->rt_se)
8750 goto err;
8751
d0b27fa7
PZ
8752 init_rt_bandwidth(&tg->rt_bandwidth,
8753 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8754
8755 for_each_possible_cpu(i) {
8756 rq = cpu_rq(i);
8757
eab17229
LZ
8758 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8759 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8760 if (!rt_rq)
8761 goto err;
29f59db3 8762
eab17229
LZ
8763 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8764 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8765 if (!rt_se)
8766 goto err;
29f59db3 8767
eab17229 8768 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8769 }
8770
bccbe08a
PZ
8771 return 1;
8772
8773 err:
8774 return 0;
8775}
8776
8777static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8778{
8779 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8780 &cpu_rq(cpu)->leaf_rt_rq_list);
8781}
8782
8783static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8784{
8785 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8786}
6d6bc0ad 8787#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8788static inline void free_rt_sched_group(struct task_group *tg)
8789{
8790}
8791
ec7dc8ac
DG
8792static inline
8793int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8794{
8795 return 1;
8796}
8797
8798static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8799{
8800}
8801
8802static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8803{
8804}
6d6bc0ad 8805#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8806
d0b27fa7 8807#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8808static void free_sched_group(struct task_group *tg)
8809{
8810 free_fair_sched_group(tg);
8811 free_rt_sched_group(tg);
8812 kfree(tg);
8813}
8814
8815/* allocate runqueue etc for a new task group */
ec7dc8ac 8816struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8817{
8818 struct task_group *tg;
8819 unsigned long flags;
8820 int i;
8821
8822 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8823 if (!tg)
8824 return ERR_PTR(-ENOMEM);
8825
ec7dc8ac 8826 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8827 goto err;
8828
ec7dc8ac 8829 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8830 goto err;
8831
8ed36996 8832 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8833 for_each_possible_cpu(i) {
bccbe08a
PZ
8834 register_fair_sched_group(tg, i);
8835 register_rt_sched_group(tg, i);
9b5b7751 8836 }
6f505b16 8837 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8838
8839 WARN_ON(!parent); /* root should already exist */
8840
8841 tg->parent = parent;
f473aa5e 8842 INIT_LIST_HEAD(&tg->children);
09f2724a 8843 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8844 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8845
9b5b7751 8846 return tg;
29f59db3
SV
8847
8848err:
6f505b16 8849 free_sched_group(tg);
29f59db3
SV
8850 return ERR_PTR(-ENOMEM);
8851}
8852
9b5b7751 8853/* rcu callback to free various structures associated with a task group */
6f505b16 8854static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8855{
29f59db3 8856 /* now it should be safe to free those cfs_rqs */
6f505b16 8857 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8858}
8859
9b5b7751 8860/* Destroy runqueue etc associated with a task group */
4cf86d77 8861void sched_destroy_group(struct task_group *tg)
29f59db3 8862{
8ed36996 8863 unsigned long flags;
9b5b7751 8864 int i;
29f59db3 8865
8ed36996 8866 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8867 for_each_possible_cpu(i) {
bccbe08a
PZ
8868 unregister_fair_sched_group(tg, i);
8869 unregister_rt_sched_group(tg, i);
9b5b7751 8870 }
6f505b16 8871 list_del_rcu(&tg->list);
f473aa5e 8872 list_del_rcu(&tg->siblings);
8ed36996 8873 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8874
9b5b7751 8875 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8876 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8877}
8878
9b5b7751 8879/* change task's runqueue when it moves between groups.
3a252015
IM
8880 * The caller of this function should have put the task in its new group
8881 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8882 * reflect its new group.
9b5b7751
SV
8883 */
8884void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8885{
8886 int on_rq, running;
8887 unsigned long flags;
8888 struct rq *rq;
8889
8890 rq = task_rq_lock(tsk, &flags);
8891
29f59db3
SV
8892 update_rq_clock(rq);
8893
051a1d1a 8894 running = task_current(rq, tsk);
29f59db3
SV
8895 on_rq = tsk->se.on_rq;
8896
0e1f3483 8897 if (on_rq)
29f59db3 8898 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8899 if (unlikely(running))
8900 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8901
6f505b16 8902 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8903
810b3817
PZ
8904#ifdef CONFIG_FAIR_GROUP_SCHED
8905 if (tsk->sched_class->moved_group)
8906 tsk->sched_class->moved_group(tsk);
8907#endif
8908
0e1f3483
HS
8909 if (unlikely(running))
8910 tsk->sched_class->set_curr_task(rq);
8911 if (on_rq)
7074badb 8912 enqueue_task(rq, tsk, 0);
29f59db3 8913
29f59db3
SV
8914 task_rq_unlock(rq, &flags);
8915}
6d6bc0ad 8916#endif /* CONFIG_GROUP_SCHED */
29f59db3 8917
052f1dc7 8918#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8919static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8920{
8921 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8922 int on_rq;
8923
29f59db3 8924 on_rq = se->on_rq;
62fb1851 8925 if (on_rq)
29f59db3
SV
8926 dequeue_entity(cfs_rq, se, 0);
8927
8928 se->load.weight = shares;
e05510d0 8929 se->load.inv_weight = 0;
29f59db3 8930
62fb1851 8931 if (on_rq)
29f59db3 8932 enqueue_entity(cfs_rq, se, 0);
c09595f6 8933}
62fb1851 8934
c09595f6
PZ
8935static void set_se_shares(struct sched_entity *se, unsigned long shares)
8936{
8937 struct cfs_rq *cfs_rq = se->cfs_rq;
8938 struct rq *rq = cfs_rq->rq;
8939 unsigned long flags;
8940
8941 spin_lock_irqsave(&rq->lock, flags);
8942 __set_se_shares(se, shares);
8943 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8944}
8945
8ed36996
PZ
8946static DEFINE_MUTEX(shares_mutex);
8947
4cf86d77 8948int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8949{
8950 int i;
8ed36996 8951 unsigned long flags;
c61935fd 8952
ec7dc8ac
DG
8953 /*
8954 * We can't change the weight of the root cgroup.
8955 */
8956 if (!tg->se[0])
8957 return -EINVAL;
8958
18d95a28
PZ
8959 if (shares < MIN_SHARES)
8960 shares = MIN_SHARES;
cb4ad1ff
MX
8961 else if (shares > MAX_SHARES)
8962 shares = MAX_SHARES;
62fb1851 8963
8ed36996 8964 mutex_lock(&shares_mutex);
9b5b7751 8965 if (tg->shares == shares)
5cb350ba 8966 goto done;
29f59db3 8967
8ed36996 8968 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8969 for_each_possible_cpu(i)
8970 unregister_fair_sched_group(tg, i);
f473aa5e 8971 list_del_rcu(&tg->siblings);
8ed36996 8972 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8973
8974 /* wait for any ongoing reference to this group to finish */
8975 synchronize_sched();
8976
8977 /*
8978 * Now we are free to modify the group's share on each cpu
8979 * w/o tripping rebalance_share or load_balance_fair.
8980 */
9b5b7751 8981 tg->shares = shares;
c09595f6
PZ
8982 for_each_possible_cpu(i) {
8983 /*
8984 * force a rebalance
8985 */
8986 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8987 set_se_shares(tg->se[i], shares);
c09595f6 8988 }
29f59db3 8989
6b2d7700
SV
8990 /*
8991 * Enable load balance activity on this group, by inserting it back on
8992 * each cpu's rq->leaf_cfs_rq_list.
8993 */
8ed36996 8994 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8995 for_each_possible_cpu(i)
8996 register_fair_sched_group(tg, i);
f473aa5e 8997 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8998 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8999done:
8ed36996 9000 mutex_unlock(&shares_mutex);
9b5b7751 9001 return 0;
29f59db3
SV
9002}
9003
5cb350ba
DG
9004unsigned long sched_group_shares(struct task_group *tg)
9005{
9006 return tg->shares;
9007}
052f1dc7 9008#endif
5cb350ba 9009
052f1dc7 9010#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9011/*
9f0c1e56 9012 * Ensure that the real time constraints are schedulable.
6f505b16 9013 */
9f0c1e56
PZ
9014static DEFINE_MUTEX(rt_constraints_mutex);
9015
9016static unsigned long to_ratio(u64 period, u64 runtime)
9017{
9018 if (runtime == RUNTIME_INF)
9a7e0b18 9019 return 1ULL << 20;
9f0c1e56 9020
9a7e0b18 9021 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9022}
9023
9a7e0b18
PZ
9024/* Must be called with tasklist_lock held */
9025static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9026{
9a7e0b18 9027 struct task_struct *g, *p;
b40b2e8e 9028
9a7e0b18
PZ
9029 do_each_thread(g, p) {
9030 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9031 return 1;
9032 } while_each_thread(g, p);
b40b2e8e 9033
9a7e0b18
PZ
9034 return 0;
9035}
b40b2e8e 9036
9a7e0b18
PZ
9037struct rt_schedulable_data {
9038 struct task_group *tg;
9039 u64 rt_period;
9040 u64 rt_runtime;
9041};
b40b2e8e 9042
9a7e0b18
PZ
9043static int tg_schedulable(struct task_group *tg, void *data)
9044{
9045 struct rt_schedulable_data *d = data;
9046 struct task_group *child;
9047 unsigned long total, sum = 0;
9048 u64 period, runtime;
b40b2e8e 9049
9a7e0b18
PZ
9050 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9051 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9052
9a7e0b18
PZ
9053 if (tg == d->tg) {
9054 period = d->rt_period;
9055 runtime = d->rt_runtime;
b40b2e8e 9056 }
b40b2e8e 9057
98a4826b
PZ
9058#ifdef CONFIG_USER_SCHED
9059 if (tg == &root_task_group) {
9060 period = global_rt_period();
9061 runtime = global_rt_runtime();
9062 }
9063#endif
9064
4653f803
PZ
9065 /*
9066 * Cannot have more runtime than the period.
9067 */
9068 if (runtime > period && runtime != RUNTIME_INF)
9069 return -EINVAL;
6f505b16 9070
4653f803
PZ
9071 /*
9072 * Ensure we don't starve existing RT tasks.
9073 */
9a7e0b18
PZ
9074 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9075 return -EBUSY;
6f505b16 9076
9a7e0b18 9077 total = to_ratio(period, runtime);
6f505b16 9078
4653f803
PZ
9079 /*
9080 * Nobody can have more than the global setting allows.
9081 */
9082 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9083 return -EINVAL;
6f505b16 9084
4653f803
PZ
9085 /*
9086 * The sum of our children's runtime should not exceed our own.
9087 */
9a7e0b18
PZ
9088 list_for_each_entry_rcu(child, &tg->children, siblings) {
9089 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9090 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9091
9a7e0b18
PZ
9092 if (child == d->tg) {
9093 period = d->rt_period;
9094 runtime = d->rt_runtime;
9095 }
6f505b16 9096
9a7e0b18 9097 sum += to_ratio(period, runtime);
9f0c1e56 9098 }
6f505b16 9099
9a7e0b18
PZ
9100 if (sum > total)
9101 return -EINVAL;
9102
9103 return 0;
6f505b16
PZ
9104}
9105
9a7e0b18 9106static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9107{
9a7e0b18
PZ
9108 struct rt_schedulable_data data = {
9109 .tg = tg,
9110 .rt_period = period,
9111 .rt_runtime = runtime,
9112 };
9113
9114 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9115}
9116
d0b27fa7
PZ
9117static int tg_set_bandwidth(struct task_group *tg,
9118 u64 rt_period, u64 rt_runtime)
6f505b16 9119{
ac086bc2 9120 int i, err = 0;
9f0c1e56 9121
9f0c1e56 9122 mutex_lock(&rt_constraints_mutex);
521f1a24 9123 read_lock(&tasklist_lock);
9a7e0b18
PZ
9124 err = __rt_schedulable(tg, rt_period, rt_runtime);
9125 if (err)
9f0c1e56 9126 goto unlock;
ac086bc2
PZ
9127
9128 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9129 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9130 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9131
9132 for_each_possible_cpu(i) {
9133 struct rt_rq *rt_rq = tg->rt_rq[i];
9134
9135 spin_lock(&rt_rq->rt_runtime_lock);
9136 rt_rq->rt_runtime = rt_runtime;
9137 spin_unlock(&rt_rq->rt_runtime_lock);
9138 }
9139 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9140 unlock:
521f1a24 9141 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9142 mutex_unlock(&rt_constraints_mutex);
9143
9144 return err;
6f505b16
PZ
9145}
9146
d0b27fa7
PZ
9147int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9148{
9149 u64 rt_runtime, rt_period;
9150
9151 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9152 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9153 if (rt_runtime_us < 0)
9154 rt_runtime = RUNTIME_INF;
9155
9156 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9157}
9158
9f0c1e56
PZ
9159long sched_group_rt_runtime(struct task_group *tg)
9160{
9161 u64 rt_runtime_us;
9162
d0b27fa7 9163 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9164 return -1;
9165
d0b27fa7 9166 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9167 do_div(rt_runtime_us, NSEC_PER_USEC);
9168 return rt_runtime_us;
9169}
d0b27fa7
PZ
9170
9171int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9172{
9173 u64 rt_runtime, rt_period;
9174
9175 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9176 rt_runtime = tg->rt_bandwidth.rt_runtime;
9177
619b0488
R
9178 if (rt_period == 0)
9179 return -EINVAL;
9180
d0b27fa7
PZ
9181 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9182}
9183
9184long sched_group_rt_period(struct task_group *tg)
9185{
9186 u64 rt_period_us;
9187
9188 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9189 do_div(rt_period_us, NSEC_PER_USEC);
9190 return rt_period_us;
9191}
9192
9193static int sched_rt_global_constraints(void)
9194{
4653f803 9195 u64 runtime, period;
d0b27fa7
PZ
9196 int ret = 0;
9197
ec5d4989
HS
9198 if (sysctl_sched_rt_period <= 0)
9199 return -EINVAL;
9200
4653f803
PZ
9201 runtime = global_rt_runtime();
9202 period = global_rt_period();
9203
9204 /*
9205 * Sanity check on the sysctl variables.
9206 */
9207 if (runtime > period && runtime != RUNTIME_INF)
9208 return -EINVAL;
10b612f4 9209
d0b27fa7 9210 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9211 read_lock(&tasklist_lock);
4653f803 9212 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9213 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9214 mutex_unlock(&rt_constraints_mutex);
9215
9216 return ret;
9217}
6d6bc0ad 9218#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9219static int sched_rt_global_constraints(void)
9220{
ac086bc2
PZ
9221 unsigned long flags;
9222 int i;
9223
ec5d4989
HS
9224 if (sysctl_sched_rt_period <= 0)
9225 return -EINVAL;
9226
ac086bc2
PZ
9227 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9228 for_each_possible_cpu(i) {
9229 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9230
9231 spin_lock(&rt_rq->rt_runtime_lock);
9232 rt_rq->rt_runtime = global_rt_runtime();
9233 spin_unlock(&rt_rq->rt_runtime_lock);
9234 }
9235 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9236
d0b27fa7
PZ
9237 return 0;
9238}
6d6bc0ad 9239#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9240
9241int sched_rt_handler(struct ctl_table *table, int write,
9242 struct file *filp, void __user *buffer, size_t *lenp,
9243 loff_t *ppos)
9244{
9245 int ret;
9246 int old_period, old_runtime;
9247 static DEFINE_MUTEX(mutex);
9248
9249 mutex_lock(&mutex);
9250 old_period = sysctl_sched_rt_period;
9251 old_runtime = sysctl_sched_rt_runtime;
9252
9253 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9254
9255 if (!ret && write) {
9256 ret = sched_rt_global_constraints();
9257 if (ret) {
9258 sysctl_sched_rt_period = old_period;
9259 sysctl_sched_rt_runtime = old_runtime;
9260 } else {
9261 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9262 def_rt_bandwidth.rt_period =
9263 ns_to_ktime(global_rt_period());
9264 }
9265 }
9266 mutex_unlock(&mutex);
9267
9268 return ret;
9269}
68318b8e 9270
052f1dc7 9271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9272
9273/* return corresponding task_group object of a cgroup */
2b01dfe3 9274static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9275{
2b01dfe3
PM
9276 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9277 struct task_group, css);
68318b8e
SV
9278}
9279
9280static struct cgroup_subsys_state *
2b01dfe3 9281cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9282{
ec7dc8ac 9283 struct task_group *tg, *parent;
68318b8e 9284
2b01dfe3 9285 if (!cgrp->parent) {
68318b8e 9286 /* This is early initialization for the top cgroup */
68318b8e
SV
9287 return &init_task_group.css;
9288 }
9289
ec7dc8ac
DG
9290 parent = cgroup_tg(cgrp->parent);
9291 tg = sched_create_group(parent);
68318b8e
SV
9292 if (IS_ERR(tg))
9293 return ERR_PTR(-ENOMEM);
9294
68318b8e
SV
9295 return &tg->css;
9296}
9297
41a2d6cf
IM
9298static void
9299cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9300{
2b01dfe3 9301 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9302
9303 sched_destroy_group(tg);
9304}
9305
41a2d6cf
IM
9306static int
9307cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9308 struct task_struct *tsk)
68318b8e 9309{
b68aa230
PZ
9310#ifdef CONFIG_RT_GROUP_SCHED
9311 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9312 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9313 return -EINVAL;
9314#else
68318b8e
SV
9315 /* We don't support RT-tasks being in separate groups */
9316 if (tsk->sched_class != &fair_sched_class)
9317 return -EINVAL;
b68aa230 9318#endif
68318b8e
SV
9319
9320 return 0;
9321}
9322
9323static void
2b01dfe3 9324cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9325 struct cgroup *old_cont, struct task_struct *tsk)
9326{
9327 sched_move_task(tsk);
9328}
9329
052f1dc7 9330#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9331static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9332 u64 shareval)
68318b8e 9333{
2b01dfe3 9334 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9335}
9336
f4c753b7 9337static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9338{
2b01dfe3 9339 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9340
9341 return (u64) tg->shares;
9342}
6d6bc0ad 9343#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9344
052f1dc7 9345#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9346static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9347 s64 val)
6f505b16 9348{
06ecb27c 9349 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9350}
9351
06ecb27c 9352static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9353{
06ecb27c 9354 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9355}
d0b27fa7
PZ
9356
9357static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9358 u64 rt_period_us)
9359{
9360 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9361}
9362
9363static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9364{
9365 return sched_group_rt_period(cgroup_tg(cgrp));
9366}
6d6bc0ad 9367#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9368
fe5c7cc2 9369static struct cftype cpu_files[] = {
052f1dc7 9370#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9371 {
9372 .name = "shares",
f4c753b7
PM
9373 .read_u64 = cpu_shares_read_u64,
9374 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9375 },
052f1dc7
PZ
9376#endif
9377#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9378 {
9f0c1e56 9379 .name = "rt_runtime_us",
06ecb27c
PM
9380 .read_s64 = cpu_rt_runtime_read,
9381 .write_s64 = cpu_rt_runtime_write,
6f505b16 9382 },
d0b27fa7
PZ
9383 {
9384 .name = "rt_period_us",
f4c753b7
PM
9385 .read_u64 = cpu_rt_period_read_uint,
9386 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9387 },
052f1dc7 9388#endif
68318b8e
SV
9389};
9390
9391static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9392{
fe5c7cc2 9393 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9394}
9395
9396struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9397 .name = "cpu",
9398 .create = cpu_cgroup_create,
9399 .destroy = cpu_cgroup_destroy,
9400 .can_attach = cpu_cgroup_can_attach,
9401 .attach = cpu_cgroup_attach,
9402 .populate = cpu_cgroup_populate,
9403 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9404 .early_init = 1,
9405};
9406
052f1dc7 9407#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9408
9409#ifdef CONFIG_CGROUP_CPUACCT
9410
9411/*
9412 * CPU accounting code for task groups.
9413 *
9414 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9415 * (balbir@in.ibm.com).
9416 */
9417
934352f2 9418/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9419struct cpuacct {
9420 struct cgroup_subsys_state css;
9421 /* cpuusage holds pointer to a u64-type object on every cpu */
9422 u64 *cpuusage;
934352f2 9423 struct cpuacct *parent;
d842de87
SV
9424};
9425
9426struct cgroup_subsys cpuacct_subsys;
9427
9428/* return cpu accounting group corresponding to this container */
32cd756a 9429static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9430{
32cd756a 9431 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9432 struct cpuacct, css);
9433}
9434
9435/* return cpu accounting group to which this task belongs */
9436static inline struct cpuacct *task_ca(struct task_struct *tsk)
9437{
9438 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9439 struct cpuacct, css);
9440}
9441
9442/* create a new cpu accounting group */
9443static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9444 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9445{
9446 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9447
9448 if (!ca)
9449 return ERR_PTR(-ENOMEM);
9450
9451 ca->cpuusage = alloc_percpu(u64);
9452 if (!ca->cpuusage) {
9453 kfree(ca);
9454 return ERR_PTR(-ENOMEM);
9455 }
9456
934352f2
BR
9457 if (cgrp->parent)
9458 ca->parent = cgroup_ca(cgrp->parent);
9459
d842de87
SV
9460 return &ca->css;
9461}
9462
9463/* destroy an existing cpu accounting group */
41a2d6cf 9464static void
32cd756a 9465cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9466{
32cd756a 9467 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9468
9469 free_percpu(ca->cpuusage);
9470 kfree(ca);
9471}
9472
720f5498
KC
9473static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9474{
9475 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9476 u64 data;
9477
9478#ifndef CONFIG_64BIT
9479 /*
9480 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9481 */
9482 spin_lock_irq(&cpu_rq(cpu)->lock);
9483 data = *cpuusage;
9484 spin_unlock_irq(&cpu_rq(cpu)->lock);
9485#else
9486 data = *cpuusage;
9487#endif
9488
9489 return data;
9490}
9491
9492static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9493{
9494 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9495
9496#ifndef CONFIG_64BIT
9497 /*
9498 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9499 */
9500 spin_lock_irq(&cpu_rq(cpu)->lock);
9501 *cpuusage = val;
9502 spin_unlock_irq(&cpu_rq(cpu)->lock);
9503#else
9504 *cpuusage = val;
9505#endif
9506}
9507
d842de87 9508/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9509static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9510{
32cd756a 9511 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9512 u64 totalcpuusage = 0;
9513 int i;
9514
720f5498
KC
9515 for_each_present_cpu(i)
9516 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9517
9518 return totalcpuusage;
9519}
9520
0297b803
DG
9521static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9522 u64 reset)
9523{
9524 struct cpuacct *ca = cgroup_ca(cgrp);
9525 int err = 0;
9526 int i;
9527
9528 if (reset) {
9529 err = -EINVAL;
9530 goto out;
9531 }
9532
720f5498
KC
9533 for_each_present_cpu(i)
9534 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9535
0297b803
DG
9536out:
9537 return err;
9538}
9539
e9515c3c
KC
9540static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9541 struct seq_file *m)
9542{
9543 struct cpuacct *ca = cgroup_ca(cgroup);
9544 u64 percpu;
9545 int i;
9546
9547 for_each_present_cpu(i) {
9548 percpu = cpuacct_cpuusage_read(ca, i);
9549 seq_printf(m, "%llu ", (unsigned long long) percpu);
9550 }
9551 seq_printf(m, "\n");
9552 return 0;
9553}
9554
d842de87
SV
9555static struct cftype files[] = {
9556 {
9557 .name = "usage",
f4c753b7
PM
9558 .read_u64 = cpuusage_read,
9559 .write_u64 = cpuusage_write,
d842de87 9560 },
e9515c3c
KC
9561 {
9562 .name = "usage_percpu",
9563 .read_seq_string = cpuacct_percpu_seq_read,
9564 },
9565
d842de87
SV
9566};
9567
32cd756a 9568static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9569{
32cd756a 9570 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9571}
9572
9573/*
9574 * charge this task's execution time to its accounting group.
9575 *
9576 * called with rq->lock held.
9577 */
9578static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9579{
9580 struct cpuacct *ca;
934352f2 9581 int cpu;
d842de87
SV
9582
9583 if (!cpuacct_subsys.active)
9584 return;
9585
934352f2 9586 cpu = task_cpu(tsk);
d842de87 9587 ca = task_ca(tsk);
d842de87 9588
934352f2
BR
9589 for (; ca; ca = ca->parent) {
9590 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9591 *cpuusage += cputime;
9592 }
9593}
9594
9595struct cgroup_subsys cpuacct_subsys = {
9596 .name = "cpuacct",
9597 .create = cpuacct_create,
9598 .destroy = cpuacct_destroy,
9599 .populate = cpuacct_populate,
9600 .subsys_id = cpuacct_subsys_id,
9601};
9602#endif /* CONFIG_CGROUP_CPUACCT */