sched: fair-group scheduling vs latency
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
1da177e4 71
5517d86b 72#include <asm/tlb.h>
838225b4 73#include <asm/irq_regs.h>
1da177e4 74
b035b6de
AD
75/*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80unsigned long long __attribute__((weak)) sched_clock(void)
81{
d6322faf 82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
83}
84
1da177e4
LT
85/*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94/*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103/*
d7876a08 104 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 105 */
d6322faf 106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 107
6aa645ea
IM
108#define NICE_0_LOAD SCHED_LOAD_SCALE
109#define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
1da177e4
LT
111/*
112 * These are the 'tuning knobs' of the scheduler:
113 *
a4ec24b4 114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
115 * Timeslices get refilled after they expire.
116 */
1da177e4 117#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 118
d0b27fa7
PZ
119/*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122#define RUNTIME_INF ((u64)~0ULL)
123
5517d86b
ED
124#ifdef CONFIG_SMP
125/*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130{
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132}
133
134/*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139{
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142}
143#endif
144
e05606d3
IM
145static inline int rt_policy(int policy)
146{
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150}
151
152static inline int task_has_rt_policy(struct task_struct *p)
153{
154 return rt_policy(p->policy);
155}
156
1da177e4 157/*
6aa645ea 158 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 159 */
6aa645ea
IM
160struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163};
164
d0b27fa7 165struct rt_bandwidth {
ea736ed5
IM
166 /* nests inside the rq lock: */
167 spinlock_t rt_runtime_lock;
168 ktime_t rt_period;
169 u64 rt_runtime;
170 struct hrtimer rt_period_timer;
d0b27fa7
PZ
171};
172
173static struct rt_bandwidth def_rt_bandwidth;
174
175static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
176
177static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
178{
179 struct rt_bandwidth *rt_b =
180 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 ktime_t now;
182 int overrun;
183 int idle = 0;
184
185 for (;;) {
186 now = hrtimer_cb_get_time(timer);
187 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
188
189 if (!overrun)
190 break;
191
192 idle = do_sched_rt_period_timer(rt_b, overrun);
193 }
194
195 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196}
197
198static
199void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
200{
201 rt_b->rt_period = ns_to_ktime(period);
202 rt_b->rt_runtime = runtime;
203
ac086bc2
PZ
204 spin_lock_init(&rt_b->rt_runtime_lock);
205
d0b27fa7
PZ
206 hrtimer_init(&rt_b->rt_period_timer,
207 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
208 rt_b->rt_period_timer.function = sched_rt_period_timer;
209 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
210}
211
212static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213{
214 ktime_t now;
215
216 if (rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234}
235
236#ifdef CONFIG_RT_GROUP_SCHED
237static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238{
239 hrtimer_cancel(&rt_b->rt_period_timer);
240}
241#endif
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
052f1dc7
PZ
294#endif
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
052f1dc7 299#endif
eff766a6
PZ
300#else
301#define root_task_group init_task_group
354d60c2 302#endif
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
a1835615
SV
309/* doms_cur_mutex serializes access to doms_cur[] array */
310static DEFINE_MUTEX(doms_cur_mutex);
311
052f1dc7 312#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
313#ifdef CONFIG_USER_SCHED
314# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
315#else
316# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
317#endif
318
18d95a28
PZ
319#define MIN_SHARES 2
320
052f1dc7
PZ
321static int init_task_group_load = INIT_TASK_GROUP_LOAD;
322#endif
323
29f59db3 324/* Default task group.
3a252015 325 * Every task in system belong to this group at bootup.
29f59db3 326 */
434d53b0 327struct task_group init_task_group;
29f59db3
SV
328
329/* return group to which a task belongs */
4cf86d77 330static inline struct task_group *task_group(struct task_struct *p)
29f59db3 331{
4cf86d77 332 struct task_group *tg;
9b5b7751 333
052f1dc7 334#ifdef CONFIG_USER_SCHED
24e377a8 335 tg = p->user->tg;
052f1dc7 336#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
337 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
338 struct task_group, css);
24e377a8 339#else
41a2d6cf 340 tg = &init_task_group;
24e377a8 341#endif
9b5b7751 342 return tg;
29f59db3
SV
343}
344
345/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 346static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 347{
052f1dc7 348#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
349 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
350 p->se.parent = task_group(p)->se[cpu];
052f1dc7 351#endif
6f505b16 352
052f1dc7 353#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
354 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
355 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 356#endif
29f59db3
SV
357}
358
a1835615
SV
359static inline void lock_doms_cur(void)
360{
361 mutex_lock(&doms_cur_mutex);
362}
363
364static inline void unlock_doms_cur(void)
365{
366 mutex_unlock(&doms_cur_mutex);
367}
368
29f59db3
SV
369#else
370
6f505b16 371static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
a1835615
SV
372static inline void lock_doms_cur(void) { }
373static inline void unlock_doms_cur(void) { }
29f59db3 374
052f1dc7 375#endif /* CONFIG_GROUP_SCHED */
29f59db3 376
6aa645ea
IM
377/* CFS-related fields in a runqueue */
378struct cfs_rq {
379 struct load_weight load;
380 unsigned long nr_running;
381
6aa645ea 382 u64 exec_clock;
e9acbff6 383 u64 min_vruntime;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
387 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
388 /* 'curr' points to currently running entity on this cfs_rq.
389 * It is set to NULL otherwise (i.e when none are currently running).
390 */
aa2ac252 391 struct sched_entity *curr, *next;
ddc97297
PZ
392
393 unsigned long nr_spread_over;
394
62160e3f 395#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
396 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
397
41a2d6cf
IM
398 /*
399 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
400 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
401 * (like users, containers etc.)
402 *
403 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
404 * list is used during load balance.
405 */
41a2d6cf
IM
406 struct list_head leaf_cfs_rq_list;
407 struct task_group *tg; /* group that "owns" this runqueue */
18d95a28
PZ
408
409#ifdef CONFIG_SMP
410 unsigned long task_weight;
411 unsigned long shares;
412 /*
413 * We need space to build a sched_domain wide view of the full task
414 * group tree, in order to avoid depending on dynamic memory allocation
415 * during the load balancing we place this in the per cpu task group
416 * hierarchy. This limits the load balancing to one instance per cpu,
417 * but more should not be needed anyway.
418 */
419 struct aggregate_struct {
420 /*
421 * load = weight(cpus) * f(tg)
422 *
423 * Where f(tg) is the recursive weight fraction assigned to
424 * this group.
425 */
426 unsigned long load;
427
428 /*
429 * part of the group weight distributed to this span.
430 */
431 unsigned long shares;
432
433 /*
434 * The sum of all runqueue weights within this span.
435 */
436 unsigned long rq_weight;
437
438 /*
439 * Weight contributed by tasks; this is the part we can
440 * influence by moving tasks around.
441 */
442 unsigned long task_weight;
443 } aggregate;
444#endif
6aa645ea
IM
445#endif
446};
1da177e4 447
6aa645ea
IM
448/* Real-Time classes' related field in a runqueue: */
449struct rt_rq {
450 struct rt_prio_array active;
63489e45 451 unsigned long rt_nr_running;
052f1dc7 452#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
453 int highest_prio; /* highest queued rt task prio */
454#endif
fa85ae24 455#ifdef CONFIG_SMP
73fe6aae 456 unsigned long rt_nr_migratory;
a22d7fc1 457 int overloaded;
fa85ae24 458#endif
6f505b16 459 int rt_throttled;
fa85ae24 460 u64 rt_time;
ac086bc2 461 u64 rt_runtime;
ea736ed5 462 /* Nests inside the rq lock: */
ac086bc2 463 spinlock_t rt_runtime_lock;
6f505b16 464
052f1dc7 465#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
466 unsigned long rt_nr_boosted;
467
6f505b16
PZ
468 struct rq *rq;
469 struct list_head leaf_rt_rq_list;
470 struct task_group *tg;
471 struct sched_rt_entity *rt_se;
472#endif
6aa645ea
IM
473};
474
57d885fe
GH
475#ifdef CONFIG_SMP
476
477/*
478 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
479 * variables. Each exclusive cpuset essentially defines an island domain by
480 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
481 * exclusive cpuset is created, we also create and attach a new root-domain
482 * object.
483 *
57d885fe
GH
484 */
485struct root_domain {
486 atomic_t refcount;
487 cpumask_t span;
488 cpumask_t online;
637f5085 489
0eab9146 490 /*
637f5085
GH
491 * The "RT overload" flag: it gets set if a CPU has more than
492 * one runnable RT task.
493 */
494 cpumask_t rto_mask;
0eab9146 495 atomic_t rto_count;
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
6aa645ea
IM
557 u64 clock, prev_clock_raw;
558 s64 clock_max_delta;
559
cc203d24 560 unsigned int clock_warps, clock_overflows, clock_underflows;
2aa44d05
IM
561 u64 idle_clock;
562 unsigned int clock_deep_idle_events;
529c7726 563 u64 tick_timestamp;
6aa645ea 564
1da177e4
LT
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
0eab9146 568 struct root_domain *rd;
1da177e4
LT
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
d8016491
IM
574 /* cpu of this runqueue: */
575 int cpu;
1da177e4 576
36c8b586 577 struct task_struct *migration_thread;
1da177e4
LT
578 struct list_head migration_queue;
579#endif
580
8f4d37ec
PZ
581#ifdef CONFIG_SCHED_HRTICK
582 unsigned long hrtick_flags;
583 ktime_t hrtick_expire;
584 struct hrtimer hrtick_timer;
585#endif
586
1da177e4
LT
587#ifdef CONFIG_SCHEDSTATS
588 /* latency stats */
589 struct sched_info rq_sched_info;
590
591 /* sys_sched_yield() stats */
480b9434
KC
592 unsigned int yld_exp_empty;
593 unsigned int yld_act_empty;
594 unsigned int yld_both_empty;
595 unsigned int yld_count;
1da177e4
LT
596
597 /* schedule() stats */
480b9434
KC
598 unsigned int sched_switch;
599 unsigned int sched_count;
600 unsigned int sched_goidle;
1da177e4
LT
601
602 /* try_to_wake_up() stats */
480b9434
KC
603 unsigned int ttwu_count;
604 unsigned int ttwu_local;
b8efb561
IM
605
606 /* BKL stats */
480b9434 607 unsigned int bkl_count;
1da177e4 608#endif
fcb99371 609 struct lock_class_key rq_lock_key;
1da177e4
LT
610};
611
f34e3b61 612static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 613
dd41f596
IM
614static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
615{
616 rq->curr->sched_class->check_preempt_curr(rq, p);
617}
618
0a2966b4
CL
619static inline int cpu_of(struct rq *rq)
620{
621#ifdef CONFIG_SMP
622 return rq->cpu;
623#else
624 return 0;
625#endif
626}
627
15934a37
GC
628#ifdef CONFIG_NO_HZ
629static inline bool nohz_on(int cpu)
630{
631 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
632}
633
634static inline u64 max_skipped_ticks(struct rq *rq)
635{
636 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
637}
638
639static inline void update_last_tick_seen(struct rq *rq)
640{
641 rq->last_tick_seen = jiffies;
642}
643#else
644static inline u64 max_skipped_ticks(struct rq *rq)
645{
646 return 1;
647}
648
649static inline void update_last_tick_seen(struct rq *rq)
650{
651}
652#endif
653
20d315d4 654/*
b04a0f4c
IM
655 * Update the per-runqueue clock, as finegrained as the platform can give
656 * us, but without assuming monotonicity, etc.:
20d315d4 657 */
b04a0f4c 658static void __update_rq_clock(struct rq *rq)
20d315d4
IM
659{
660 u64 prev_raw = rq->prev_clock_raw;
661 u64 now = sched_clock();
662 s64 delta = now - prev_raw;
663 u64 clock = rq->clock;
664
b04a0f4c
IM
665#ifdef CONFIG_SCHED_DEBUG
666 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
667#endif
20d315d4
IM
668 /*
669 * Protect against sched_clock() occasionally going backwards:
670 */
671 if (unlikely(delta < 0)) {
672 clock++;
673 rq->clock_warps++;
674 } else {
675 /*
676 * Catch too large forward jumps too:
677 */
15934a37
GC
678 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
679 u64 max_time = rq->tick_timestamp + max_jump;
680
681 if (unlikely(clock + delta > max_time)) {
682 if (clock < max_time)
683 clock = max_time;
529c7726
IM
684 else
685 clock++;
20d315d4
IM
686 rq->clock_overflows++;
687 } else {
688 if (unlikely(delta > rq->clock_max_delta))
689 rq->clock_max_delta = delta;
690 clock += delta;
691 }
692 }
693
694 rq->prev_clock_raw = now;
695 rq->clock = clock;
b04a0f4c 696}
20d315d4 697
b04a0f4c
IM
698static void update_rq_clock(struct rq *rq)
699{
700 if (likely(smp_processor_id() == cpu_of(rq)))
701 __update_rq_clock(rq);
20d315d4
IM
702}
703
674311d5
NP
704/*
705 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 706 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
707 *
708 * The domain tree of any CPU may only be accessed from within
709 * preempt-disabled sections.
710 */
48f24c4d
IM
711#define for_each_domain(cpu, __sd) \
712 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
713
714#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
715#define this_rq() (&__get_cpu_var(runqueues))
716#define task_rq(p) cpu_rq(task_cpu(p))
717#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
718
bf5c91ba
IM
719/*
720 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
721 */
722#ifdef CONFIG_SCHED_DEBUG
723# define const_debug __read_mostly
724#else
725# define const_debug static const
726#endif
727
728/*
729 * Debugging: various feature bits
730 */
731enum {
bbdba7c0 732 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
733 SCHED_FEAT_WAKEUP_PREEMPT = 2,
734 SCHED_FEAT_START_DEBIT = 4,
d25ce4cd
IM
735 SCHED_FEAT_AFFINE_WAKEUPS = 8,
736 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
02e2b83b
IM
737 SCHED_FEAT_SYNC_WAKEUPS = 32,
738 SCHED_FEAT_HRTICK = 64,
739 SCHED_FEAT_DOUBLE_TICK = 128,
112f53f5 740 SCHED_FEAT_NORMALIZED_SLEEPER = 256,
bf5c91ba
IM
741};
742
743const_debug unsigned int sysctl_sched_features =
8401f775 744 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 745 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775 746 SCHED_FEAT_START_DEBIT * 1 |
d25ce4cd
IM
747 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
748 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
02e2b83b 749 SCHED_FEAT_SYNC_WAKEUPS * 1 |
8f4d37ec 750 SCHED_FEAT_HRTICK * 1 |
112f53f5
PZ
751 SCHED_FEAT_DOUBLE_TICK * 0 |
752 SCHED_FEAT_NORMALIZED_SLEEPER * 1;
bf5c91ba
IM
753
754#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
755
b82d9fdd
PZ
756/*
757 * Number of tasks to iterate in a single balance run.
758 * Limited because this is done with IRQs disabled.
759 */
760const_debug unsigned int sysctl_sched_nr_migrate = 32;
761
fa85ae24 762/*
9f0c1e56 763 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
764 * default: 1s
765 */
9f0c1e56 766unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 767
6892b75e
IM
768static __read_mostly int scheduler_running;
769
9f0c1e56
PZ
770/*
771 * part of the period that we allow rt tasks to run in us.
772 * default: 0.95s
773 */
774int sysctl_sched_rt_runtime = 950000;
fa85ae24 775
d0b27fa7
PZ
776static inline u64 global_rt_period(void)
777{
778 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
779}
780
781static inline u64 global_rt_runtime(void)
782{
783 if (sysctl_sched_rt_period < 0)
784 return RUNTIME_INF;
785
786 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
787}
fa85ae24 788
27ec4407
IM
789static const unsigned long long time_sync_thresh = 100000;
790
791static DEFINE_PER_CPU(unsigned long long, time_offset);
792static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
793
e436d800 794/*
27ec4407
IM
795 * Global lock which we take every now and then to synchronize
796 * the CPUs time. This method is not warp-safe, but it's good
797 * enough to synchronize slowly diverging time sources and thus
798 * it's good enough for tracing:
e436d800 799 */
27ec4407
IM
800static DEFINE_SPINLOCK(time_sync_lock);
801static unsigned long long prev_global_time;
802
803static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
804{
805 unsigned long flags;
806
807 spin_lock_irqsave(&time_sync_lock, flags);
808
809 if (time < prev_global_time) {
810 per_cpu(time_offset, cpu) += prev_global_time - time;
811 time = prev_global_time;
812 } else {
813 prev_global_time = time;
814 }
815
816 spin_unlock_irqrestore(&time_sync_lock, flags);
817
818 return time;
819}
820
821static unsigned long long __cpu_clock(int cpu)
e436d800 822{
e436d800
IM
823 unsigned long long now;
824 unsigned long flags;
b04a0f4c 825 struct rq *rq;
e436d800 826
8ced5f69
IM
827 /*
828 * Only call sched_clock() if the scheduler has already been
829 * initialized (some code might call cpu_clock() very early):
830 */
6892b75e
IM
831 if (unlikely(!scheduler_running))
832 return 0;
833
834 local_irq_save(flags);
835 rq = cpu_rq(cpu);
836 update_rq_clock(rq);
b04a0f4c 837 now = rq->clock;
2cd4d0ea 838 local_irq_restore(flags);
e436d800
IM
839
840 return now;
841}
27ec4407
IM
842
843/*
844 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
845 * clock constructed from sched_clock():
846 */
847unsigned long long cpu_clock(int cpu)
848{
849 unsigned long long prev_cpu_time, time, delta_time;
850
851 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
852 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
853 delta_time = time-prev_cpu_time;
854
855 if (unlikely(delta_time > time_sync_thresh))
856 time = __sync_cpu_clock(time, cpu);
857
858 return time;
859}
a58f6f25 860EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 861
1da177e4 862#ifndef prepare_arch_switch
4866cde0
NP
863# define prepare_arch_switch(next) do { } while (0)
864#endif
865#ifndef finish_arch_switch
866# define finish_arch_switch(prev) do { } while (0)
867#endif
868
051a1d1a
DA
869static inline int task_current(struct rq *rq, struct task_struct *p)
870{
871 return rq->curr == p;
872}
873
4866cde0 874#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 875static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 876{
051a1d1a 877 return task_current(rq, p);
4866cde0
NP
878}
879
70b97a7f 880static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
881{
882}
883
70b97a7f 884static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 885{
da04c035
IM
886#ifdef CONFIG_DEBUG_SPINLOCK
887 /* this is a valid case when another task releases the spinlock */
888 rq->lock.owner = current;
889#endif
8a25d5de
IM
890 /*
891 * If we are tracking spinlock dependencies then we have to
892 * fix up the runqueue lock - which gets 'carried over' from
893 * prev into current:
894 */
895 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
896
4866cde0
NP
897 spin_unlock_irq(&rq->lock);
898}
899
900#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 901static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
902{
903#ifdef CONFIG_SMP
904 return p->oncpu;
905#else
051a1d1a 906 return task_current(rq, p);
4866cde0
NP
907#endif
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912#ifdef CONFIG_SMP
913 /*
914 * We can optimise this out completely for !SMP, because the
915 * SMP rebalancing from interrupt is the only thing that cares
916 * here.
917 */
918 next->oncpu = 1;
919#endif
920#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 spin_unlock_irq(&rq->lock);
922#else
923 spin_unlock(&rq->lock);
924#endif
925}
926
70b97a7f 927static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
928{
929#ifdef CONFIG_SMP
930 /*
931 * After ->oncpu is cleared, the task can be moved to a different CPU.
932 * We must ensure this doesn't happen until the switch is completely
933 * finished.
934 */
935 smp_wmb();
936 prev->oncpu = 0;
937#endif
938#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
939 local_irq_enable();
1da177e4 940#endif
4866cde0
NP
941}
942#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 943
b29739f9
IM
944/*
945 * __task_rq_lock - lock the runqueue a given task resides on.
946 * Must be called interrupts disabled.
947 */
70b97a7f 948static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
949 __acquires(rq->lock)
950{
3a5c359a
AK
951 for (;;) {
952 struct rq *rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
b29739f9 956 spin_unlock(&rq->lock);
b29739f9 957 }
b29739f9
IM
958}
959
1da177e4
LT
960/*
961 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 962 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
963 * explicitly disabling preemption.
964 */
70b97a7f 965static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
966 __acquires(rq->lock)
967{
70b97a7f 968 struct rq *rq;
1da177e4 969
3a5c359a
AK
970 for (;;) {
971 local_irq_save(*flags);
972 rq = task_rq(p);
973 spin_lock(&rq->lock);
974 if (likely(rq == task_rq(p)))
975 return rq;
1da177e4 976 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 977 }
1da177e4
LT
978}
979
a9957449 980static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
981 __releases(rq->lock)
982{
983 spin_unlock(&rq->lock);
984}
985
70b97a7f 986static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
987 __releases(rq->lock)
988{
989 spin_unlock_irqrestore(&rq->lock, *flags);
990}
991
1da177e4 992/*
cc2a73b5 993 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 994 */
a9957449 995static struct rq *this_rq_lock(void)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4
LT
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1003
1004 return rq;
1005}
1006
1b9f19c2 1007/*
2aa44d05 1008 * We are going deep-idle (irqs are disabled):
1b9f19c2 1009 */
2aa44d05 1010void sched_clock_idle_sleep_event(void)
1b9f19c2 1011{
2aa44d05
IM
1012 struct rq *rq = cpu_rq(smp_processor_id());
1013
1014 spin_lock(&rq->lock);
1015 __update_rq_clock(rq);
1016 spin_unlock(&rq->lock);
1017 rq->clock_deep_idle_events++;
1018}
1019EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
1020
1021/*
1022 * We just idled delta nanoseconds (called with irqs disabled):
1023 */
1024void sched_clock_idle_wakeup_event(u64 delta_ns)
1025{
1026 struct rq *rq = cpu_rq(smp_processor_id());
1027 u64 now = sched_clock();
1b9f19c2 1028
2aa44d05
IM
1029 rq->idle_clock += delta_ns;
1030 /*
1031 * Override the previous timestamp and ignore all
1032 * sched_clock() deltas that occured while we idled,
1033 * and use the PM-provided delta_ns to advance the
1034 * rq clock:
1035 */
1036 spin_lock(&rq->lock);
1037 rq->prev_clock_raw = now;
1038 rq->clock += delta_ns;
1039 spin_unlock(&rq->lock);
782daeee 1040 touch_softlockup_watchdog();
1b9f19c2 1041}
2aa44d05 1042EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 1043
8f4d37ec
PZ
1044static void __resched_task(struct task_struct *p, int tif_bit);
1045
1046static inline void resched_task(struct task_struct *p)
1047{
1048 __resched_task(p, TIF_NEED_RESCHED);
1049}
1050
1051#ifdef CONFIG_SCHED_HRTICK
1052/*
1053 * Use HR-timers to deliver accurate preemption points.
1054 *
1055 * Its all a bit involved since we cannot program an hrt while holding the
1056 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1057 * reschedule event.
1058 *
1059 * When we get rescheduled we reprogram the hrtick_timer outside of the
1060 * rq->lock.
1061 */
1062static inline void resched_hrt(struct task_struct *p)
1063{
1064 __resched_task(p, TIF_HRTICK_RESCHED);
1065}
1066
1067static inline void resched_rq(struct rq *rq)
1068{
1069 unsigned long flags;
1070
1071 spin_lock_irqsave(&rq->lock, flags);
1072 resched_task(rq->curr);
1073 spin_unlock_irqrestore(&rq->lock, flags);
1074}
1075
1076enum {
1077 HRTICK_SET, /* re-programm hrtick_timer */
1078 HRTICK_RESET, /* not a new slice */
1079};
1080
1081/*
1082 * Use hrtick when:
1083 * - enabled by features
1084 * - hrtimer is actually high res
1085 */
1086static inline int hrtick_enabled(struct rq *rq)
1087{
1088 if (!sched_feat(HRTICK))
1089 return 0;
1090 return hrtimer_is_hres_active(&rq->hrtick_timer);
1091}
1092
1093/*
1094 * Called to set the hrtick timer state.
1095 *
1096 * called with rq->lock held and irqs disabled
1097 */
1098static void hrtick_start(struct rq *rq, u64 delay, int reset)
1099{
1100 assert_spin_locked(&rq->lock);
1101
1102 /*
1103 * preempt at: now + delay
1104 */
1105 rq->hrtick_expire =
1106 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1107 /*
1108 * indicate we need to program the timer
1109 */
1110 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1111 if (reset)
1112 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1113
1114 /*
1115 * New slices are called from the schedule path and don't need a
1116 * forced reschedule.
1117 */
1118 if (reset)
1119 resched_hrt(rq->curr);
1120}
1121
1122static void hrtick_clear(struct rq *rq)
1123{
1124 if (hrtimer_active(&rq->hrtick_timer))
1125 hrtimer_cancel(&rq->hrtick_timer);
1126}
1127
1128/*
1129 * Update the timer from the possible pending state.
1130 */
1131static void hrtick_set(struct rq *rq)
1132{
1133 ktime_t time;
1134 int set, reset;
1135 unsigned long flags;
1136
1137 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1138
1139 spin_lock_irqsave(&rq->lock, flags);
1140 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1141 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1142 time = rq->hrtick_expire;
1143 clear_thread_flag(TIF_HRTICK_RESCHED);
1144 spin_unlock_irqrestore(&rq->lock, flags);
1145
1146 if (set) {
1147 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1148 if (reset && !hrtimer_active(&rq->hrtick_timer))
1149 resched_rq(rq);
1150 } else
1151 hrtick_clear(rq);
1152}
1153
1154/*
1155 * High-resolution timer tick.
1156 * Runs from hardirq context with interrupts disabled.
1157 */
1158static enum hrtimer_restart hrtick(struct hrtimer *timer)
1159{
1160 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1161
1162 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1163
1164 spin_lock(&rq->lock);
1165 __update_rq_clock(rq);
1166 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1167 spin_unlock(&rq->lock);
1168
1169 return HRTIMER_NORESTART;
1170}
1171
1172static inline void init_rq_hrtick(struct rq *rq)
1173{
1174 rq->hrtick_flags = 0;
1175 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1176 rq->hrtick_timer.function = hrtick;
1177 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1178}
1179
1180void hrtick_resched(void)
1181{
1182 struct rq *rq;
1183 unsigned long flags;
1184
1185 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1186 return;
1187
1188 local_irq_save(flags);
1189 rq = cpu_rq(smp_processor_id());
1190 hrtick_set(rq);
1191 local_irq_restore(flags);
1192}
1193#else
1194static inline void hrtick_clear(struct rq *rq)
1195{
1196}
1197
1198static inline void hrtick_set(struct rq *rq)
1199{
1200}
1201
1202static inline void init_rq_hrtick(struct rq *rq)
1203{
1204}
1205
1206void hrtick_resched(void)
1207{
1208}
1209#endif
1210
c24d20db
IM
1211/*
1212 * resched_task - mark a task 'to be rescheduled now'.
1213 *
1214 * On UP this means the setting of the need_resched flag, on SMP it
1215 * might also involve a cross-CPU call to trigger the scheduler on
1216 * the target CPU.
1217 */
1218#ifdef CONFIG_SMP
1219
1220#ifndef tsk_is_polling
1221#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1222#endif
1223
8f4d37ec 1224static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1225{
1226 int cpu;
1227
1228 assert_spin_locked(&task_rq(p)->lock);
1229
8f4d37ec 1230 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1231 return;
1232
8f4d37ec 1233 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1234
1235 cpu = task_cpu(p);
1236 if (cpu == smp_processor_id())
1237 return;
1238
1239 /* NEED_RESCHED must be visible before we test polling */
1240 smp_mb();
1241 if (!tsk_is_polling(p))
1242 smp_send_reschedule(cpu);
1243}
1244
1245static void resched_cpu(int cpu)
1246{
1247 struct rq *rq = cpu_rq(cpu);
1248 unsigned long flags;
1249
1250 if (!spin_trylock_irqsave(&rq->lock, flags))
1251 return;
1252 resched_task(cpu_curr(cpu));
1253 spin_unlock_irqrestore(&rq->lock, flags);
1254}
06d8308c
TG
1255
1256#ifdef CONFIG_NO_HZ
1257/*
1258 * When add_timer_on() enqueues a timer into the timer wheel of an
1259 * idle CPU then this timer might expire before the next timer event
1260 * which is scheduled to wake up that CPU. In case of a completely
1261 * idle system the next event might even be infinite time into the
1262 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1263 * leaves the inner idle loop so the newly added timer is taken into
1264 * account when the CPU goes back to idle and evaluates the timer
1265 * wheel for the next timer event.
1266 */
1267void wake_up_idle_cpu(int cpu)
1268{
1269 struct rq *rq = cpu_rq(cpu);
1270
1271 if (cpu == smp_processor_id())
1272 return;
1273
1274 /*
1275 * This is safe, as this function is called with the timer
1276 * wheel base lock of (cpu) held. When the CPU is on the way
1277 * to idle and has not yet set rq->curr to idle then it will
1278 * be serialized on the timer wheel base lock and take the new
1279 * timer into account automatically.
1280 */
1281 if (rq->curr != rq->idle)
1282 return;
1283
1284 /*
1285 * We can set TIF_RESCHED on the idle task of the other CPU
1286 * lockless. The worst case is that the other CPU runs the
1287 * idle task through an additional NOOP schedule()
1288 */
1289 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1290
1291 /* NEED_RESCHED must be visible before we test polling */
1292 smp_mb();
1293 if (!tsk_is_polling(rq->idle))
1294 smp_send_reschedule(cpu);
1295}
1296#endif
1297
c24d20db 1298#else
8f4d37ec 1299static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1300{
1301 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1302 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1303}
1304#endif
1305
45bf76df
IM
1306#if BITS_PER_LONG == 32
1307# define WMULT_CONST (~0UL)
1308#else
1309# define WMULT_CONST (1UL << 32)
1310#endif
1311
1312#define WMULT_SHIFT 32
1313
194081eb
IM
1314/*
1315 * Shift right and round:
1316 */
cf2ab469 1317#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1318
cb1c4fc9 1319static unsigned long
45bf76df
IM
1320calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1321 struct load_weight *lw)
1322{
1323 u64 tmp;
1324
1325 if (unlikely(!lw->inv_weight))
27d11726 1326 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
45bf76df
IM
1327
1328 tmp = (u64)delta_exec * weight;
1329 /*
1330 * Check whether we'd overflow the 64-bit multiplication:
1331 */
194081eb 1332 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1333 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1334 WMULT_SHIFT/2);
1335 else
cf2ab469 1336 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1337
ecf691da 1338 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1339}
1340
1341static inline unsigned long
1342calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1343{
1344 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1345}
1346
1091985b 1347static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1348{
1349 lw->weight += inc;
e89996ae 1350 lw->inv_weight = 0;
45bf76df
IM
1351}
1352
1091985b 1353static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1354{
1355 lw->weight -= dec;
e89996ae 1356 lw->inv_weight = 0;
45bf76df
IM
1357}
1358
2dd73a4f
PW
1359/*
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1366 */
1367
dd41f596
IM
1368#define WEIGHT_IDLEPRIO 2
1369#define WMULT_IDLEPRIO (1 << 31)
1370
1371/*
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1376 *
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
dd41f596
IM
1382 */
1383static const int prio_to_weight[40] = {
254753dc
IM
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1392};
1393
5714d2de
IM
1394/*
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1396 *
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1400 */
dd41f596 1401static const u32 prio_to_wmult[40] = {
254753dc
IM
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1410};
2dd73a4f 1411
dd41f596
IM
1412static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1413
1414/*
1415 * runqueue iterator, to support SMP load-balancing between different
1416 * scheduling classes, without having to expose their internal data
1417 * structures to the load-balancing proper:
1418 */
1419struct rq_iterator {
1420 void *arg;
1421 struct task_struct *(*start)(void *);
1422 struct task_struct *(*next)(void *);
1423};
1424
e1d1484f
PW
1425#ifdef CONFIG_SMP
1426static unsigned long
1427balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1428 unsigned long max_load_move, struct sched_domain *sd,
1429 enum cpu_idle_type idle, int *all_pinned,
1430 int *this_best_prio, struct rq_iterator *iterator);
1431
1432static int
1433iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1434 struct sched_domain *sd, enum cpu_idle_type idle,
1435 struct rq_iterator *iterator);
e1d1484f 1436#endif
dd41f596 1437
d842de87
SV
1438#ifdef CONFIG_CGROUP_CPUACCT
1439static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1440#else
1441static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1442#endif
1443
18d95a28
PZ
1444static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1445{
1446 update_load_add(&rq->load, load);
1447}
1448
1449static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1450{
1451 update_load_sub(&rq->load, load);
1452}
1453
e7693a36
GH
1454#ifdef CONFIG_SMP
1455static unsigned long source_load(int cpu, int type);
1456static unsigned long target_load(int cpu, int type);
1457static unsigned long cpu_avg_load_per_task(int cpu);
1458static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
18d95a28
PZ
1459
1460#ifdef CONFIG_FAIR_GROUP_SCHED
1461
1462/*
1463 * Group load balancing.
1464 *
1465 * We calculate a few balance domain wide aggregate numbers; load and weight.
1466 * Given the pictures below, and assuming each item has equal weight:
1467 *
1468 * root 1 - thread
1469 * / | \ A - group
1470 * A 1 B
1471 * /|\ / \
1472 * C 2 D 3 4
1473 * | |
1474 * 5 6
1475 *
1476 * load:
1477 * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
1478 * which equals 1/9-th of the total load.
1479 *
1480 * shares:
1481 * The weight of this group on the selected cpus.
1482 *
1483 * rq_weight:
1484 * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
1485 * B would get 2.
1486 *
1487 * task_weight:
1488 * Part of the rq_weight contributed by tasks; all groups except B would
1489 * get 1, B gets 2.
1490 */
1491
1492static inline struct aggregate_struct *
1493aggregate(struct task_group *tg, struct sched_domain *sd)
1494{
1495 return &tg->cfs_rq[sd->first_cpu]->aggregate;
1496}
1497
1498typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
1499
1500/*
1501 * Iterate the full tree, calling @down when first entering a node and @up when
1502 * leaving it for the final time.
1503 */
1504static
1505void aggregate_walk_tree(aggregate_func down, aggregate_func up,
1506 struct sched_domain *sd)
1507{
1508 struct task_group *parent, *child;
1509
1510 rcu_read_lock();
1511 parent = &root_task_group;
1512down:
1513 (*down)(parent, sd);
1514 list_for_each_entry_rcu(child, &parent->children, siblings) {
1515 parent = child;
1516 goto down;
1517
1518up:
1519 continue;
1520 }
1521 (*up)(parent, sd);
1522
1523 child = parent;
1524 parent = parent->parent;
1525 if (parent)
1526 goto up;
1527 rcu_read_unlock();
1528}
1529
1530/*
1531 * Calculate the aggregate runqueue weight.
1532 */
1533static
1534void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
1535{
1536 unsigned long rq_weight = 0;
1537 unsigned long task_weight = 0;
1538 int i;
1539
1540 for_each_cpu_mask(i, sd->span) {
1541 rq_weight += tg->cfs_rq[i]->load.weight;
1542 task_weight += tg->cfs_rq[i]->task_weight;
1543 }
1544
1545 aggregate(tg, sd)->rq_weight = rq_weight;
1546 aggregate(tg, sd)->task_weight = task_weight;
1547}
1548
1549/*
1550 * Redistribute tg->shares amongst all tg->cfs_rq[]s.
1551 */
1552static void __aggregate_redistribute_shares(struct task_group *tg)
1553{
1554 int i, max_cpu = smp_processor_id();
1555 unsigned long rq_weight = 0;
1556 unsigned long shares, max_shares = 0, shares_rem = tg->shares;
1557
1558 for_each_possible_cpu(i)
1559 rq_weight += tg->cfs_rq[i]->load.weight;
1560
1561 for_each_possible_cpu(i) {
1562 /*
1563 * divide shares proportional to the rq_weights.
1564 */
1565 shares = tg->shares * tg->cfs_rq[i]->load.weight;
1566 shares /= rq_weight + 1;
1567
1568 tg->cfs_rq[i]->shares = shares;
1569
1570 if (shares > max_shares) {
1571 max_shares = shares;
1572 max_cpu = i;
1573 }
1574 shares_rem -= shares;
1575 }
1576
1577 /*
1578 * Ensure it all adds up to tg->shares; we can loose a few
1579 * due to rounding down when computing the per-cpu shares.
1580 */
1581 if (shares_rem)
1582 tg->cfs_rq[max_cpu]->shares += shares_rem;
1583}
1584
1585/*
1586 * Compute the weight of this group on the given cpus.
1587 */
1588static
1589void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
1590{
1591 unsigned long shares = 0;
1592 int i;
1593
1594again:
1595 for_each_cpu_mask(i, sd->span)
1596 shares += tg->cfs_rq[i]->shares;
1597
1598 /*
1599 * When the span doesn't have any shares assigned, but does have
1600 * tasks to run do a machine wide rebalance (should be rare).
1601 */
1602 if (unlikely(!shares && aggregate(tg, sd)->rq_weight)) {
1603 __aggregate_redistribute_shares(tg);
1604 goto again;
1605 }
1606
1607 aggregate(tg, sd)->shares = shares;
1608}
1609
1610/*
1611 * Compute the load fraction assigned to this group, relies on the aggregate
1612 * weight and this group's parent's load, i.e. top-down.
1613 */
1614static
1615void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
1616{
1617 unsigned long load;
1618
1619 if (!tg->parent) {
1620 int i;
1621
1622 load = 0;
1623 for_each_cpu_mask(i, sd->span)
1624 load += cpu_rq(i)->load.weight;
1625
1626 } else {
1627 load = aggregate(tg->parent, sd)->load;
1628
1629 /*
1630 * shares is our weight in the parent's rq so
1631 * shares/parent->rq_weight gives our fraction of the load
1632 */
1633 load *= aggregate(tg, sd)->shares;
1634 load /= aggregate(tg->parent, sd)->rq_weight + 1;
1635 }
1636
1637 aggregate(tg, sd)->load = load;
1638}
1639
1640static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1641
1642/*
1643 * Calculate and set the cpu's group shares.
1644 */
1645static void
1646__update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
1647 int tcpu)
1648{
1649 int boost = 0;
1650 unsigned long shares;
1651 unsigned long rq_weight;
1652
1653 if (!tg->se[tcpu])
1654 return;
1655
1656 rq_weight = tg->cfs_rq[tcpu]->load.weight;
1657
1658 /*
1659 * If there are currently no tasks on the cpu pretend there is one of
1660 * average load so that when a new task gets to run here it will not
1661 * get delayed by group starvation.
1662 */
1663 if (!rq_weight) {
1664 boost = 1;
1665 rq_weight = NICE_0_LOAD;
1666 }
1667
1668 /*
1669 * \Sum shares * rq_weight
1670 * shares = -----------------------
1671 * \Sum rq_weight
1672 *
1673 */
1674 shares = aggregate(tg, sd)->shares * rq_weight;
1675 shares /= aggregate(tg, sd)->rq_weight + 1;
1676
1677 /*
1678 * record the actual number of shares, not the boosted amount.
1679 */
1680 tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
1681
1682 if (shares < MIN_SHARES)
1683 shares = MIN_SHARES;
1684
1685 __set_se_shares(tg->se[tcpu], shares);
1686}
1687
1688/*
1689 * Re-adjust the weights on the cpu the task came from and on the cpu the
1690 * task went to.
1691 */
1692static void
1693__move_group_shares(struct task_group *tg, struct sched_domain *sd,
1694 int scpu, int dcpu)
1695{
1696 unsigned long shares;
1697
1698 shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1699
1700 __update_group_shares_cpu(tg, sd, scpu);
1701 __update_group_shares_cpu(tg, sd, dcpu);
1702
1703 /*
1704 * ensure we never loose shares due to rounding errors in the
1705 * above redistribution.
1706 */
1707 shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
1708 if (shares)
1709 tg->cfs_rq[dcpu]->shares += shares;
1710}
1711
1712/*
1713 * Because changing a group's shares changes the weight of the super-group
1714 * we need to walk up the tree and change all shares until we hit the root.
1715 */
1716static void
1717move_group_shares(struct task_group *tg, struct sched_domain *sd,
1718 int scpu, int dcpu)
1719{
1720 while (tg) {
1721 __move_group_shares(tg, sd, scpu, dcpu);
1722 tg = tg->parent;
1723 }
1724}
1725
1726static
1727void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
1728{
1729 unsigned long shares = aggregate(tg, sd)->shares;
1730 int i;
1731
1732 for_each_cpu_mask(i, sd->span) {
1733 struct rq *rq = cpu_rq(i);
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&rq->lock, flags);
1737 __update_group_shares_cpu(tg, sd, i);
1738 spin_unlock_irqrestore(&rq->lock, flags);
1739 }
1740
1741 aggregate_group_shares(tg, sd);
1742
1743 /*
1744 * ensure we never loose shares due to rounding errors in the
1745 * above redistribution.
1746 */
1747 shares -= aggregate(tg, sd)->shares;
1748 if (shares) {
1749 tg->cfs_rq[sd->first_cpu]->shares += shares;
1750 aggregate(tg, sd)->shares += shares;
1751 }
1752}
1753
1754/*
1755 * Calculate the accumulative weight and recursive load of each task group
1756 * while walking down the tree.
1757 */
1758static
1759void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
1760{
1761 aggregate_group_weight(tg, sd);
1762 aggregate_group_shares(tg, sd);
1763 aggregate_group_load(tg, sd);
1764}
1765
1766/*
1767 * Rebalance the cpu shares while walking back up the tree.
1768 */
1769static
1770void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
1771{
1772 aggregate_group_set_shares(tg, sd);
1773}
1774
1775static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
1776
1777static void __init init_aggregate(void)
1778{
1779 int i;
1780
1781 for_each_possible_cpu(i)
1782 spin_lock_init(&per_cpu(aggregate_lock, i));
1783}
1784
1785static int get_aggregate(struct sched_domain *sd)
1786{
1787 if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
1788 return 0;
1789
1790 aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
1791 return 1;
1792}
1793
1794static void put_aggregate(struct sched_domain *sd)
1795{
1796 spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
1797}
1798
1799static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1800{
1801 cfs_rq->shares = shares;
1802}
1803
1804#else
1805
1806static inline void init_aggregate(void)
1807{
1808}
1809
1810static inline int get_aggregate(struct sched_domain *sd)
1811{
1812 return 0;
1813}
1814
1815static inline void put_aggregate(struct sched_domain *sd)
1816{
1817}
1818#endif
1819
1820#else /* CONFIG_SMP */
1821
1822#ifdef CONFIG_FAIR_GROUP_SCHED
1823static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1824{
1825}
1826#endif
1827
e7693a36
GH
1828#endif /* CONFIG_SMP */
1829
dd41f596 1830#include "sched_stats.h"
dd41f596 1831#include "sched_idletask.c"
5522d5d5
IM
1832#include "sched_fair.c"
1833#include "sched_rt.c"
dd41f596
IM
1834#ifdef CONFIG_SCHED_DEBUG
1835# include "sched_debug.c"
1836#endif
1837
1838#define sched_class_highest (&rt_sched_class)
1839
18d95a28 1840static void inc_nr_running(struct rq *rq)
9c217245
IM
1841{
1842 rq->nr_running++;
9c217245
IM
1843}
1844
18d95a28 1845static void dec_nr_running(struct rq *rq)
9c217245
IM
1846{
1847 rq->nr_running--;
9c217245
IM
1848}
1849
45bf76df
IM
1850static void set_load_weight(struct task_struct *p)
1851{
1852 if (task_has_rt_policy(p)) {
dd41f596
IM
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
45bf76df 1857
dd41f596
IM
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
71f8bd46 1866
dd41f596
IM
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1869}
1870
8159f87e 1871static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1872{
dd41f596 1873 sched_info_queued(p);
fd390f6a 1874 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1875 p->se.on_rq = 1;
71f8bd46
IM
1876}
1877
69be72c1 1878static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1879{
f02231e5 1880 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1881 p->se.on_rq = 0;
71f8bd46
IM
1882}
1883
14531189 1884/*
dd41f596 1885 * __normal_prio - return the priority that is based on the static prio
14531189 1886 */
14531189
IM
1887static inline int __normal_prio(struct task_struct *p)
1888{
dd41f596 1889 return p->static_prio;
14531189
IM
1890}
1891
b29739f9
IM
1892/*
1893 * Calculate the expected normal priority: i.e. priority
1894 * without taking RT-inheritance into account. Might be
1895 * boosted by interactivity modifiers. Changes upon fork,
1896 * setprio syscalls, and whenever the interactivity
1897 * estimator recalculates.
1898 */
36c8b586 1899static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1900{
1901 int prio;
1902
e05606d3 1903 if (task_has_rt_policy(p))
b29739f9
IM
1904 prio = MAX_RT_PRIO-1 - p->rt_priority;
1905 else
1906 prio = __normal_prio(p);
1907 return prio;
1908}
1909
1910/*
1911 * Calculate the current priority, i.e. the priority
1912 * taken into account by the scheduler. This value might
1913 * be boosted by RT tasks, or might be boosted by
1914 * interactivity modifiers. Will be RT if the task got
1915 * RT-boosted. If not then it returns p->normal_prio.
1916 */
36c8b586 1917static int effective_prio(struct task_struct *p)
b29739f9
IM
1918{
1919 p->normal_prio = normal_prio(p);
1920 /*
1921 * If we are RT tasks or we were boosted to RT priority,
1922 * keep the priority unchanged. Otherwise, update priority
1923 * to the normal priority:
1924 */
1925 if (!rt_prio(p->prio))
1926 return p->normal_prio;
1927 return p->prio;
1928}
1929
1da177e4 1930/*
dd41f596 1931 * activate_task - move a task to the runqueue.
1da177e4 1932 */
dd41f596 1933static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1934{
d9514f6c 1935 if (task_contributes_to_load(p))
dd41f596 1936 rq->nr_uninterruptible--;
1da177e4 1937
8159f87e 1938 enqueue_task(rq, p, wakeup);
18d95a28 1939 inc_nr_running(rq);
1da177e4
LT
1940}
1941
1da177e4
LT
1942/*
1943 * deactivate_task - remove a task from the runqueue.
1944 */
2e1cb74a 1945static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1946{
d9514f6c 1947 if (task_contributes_to_load(p))
dd41f596
IM
1948 rq->nr_uninterruptible++;
1949
69be72c1 1950 dequeue_task(rq, p, sleep);
18d95a28 1951 dec_nr_running(rq);
1da177e4
LT
1952}
1953
1da177e4
LT
1954/**
1955 * task_curr - is this task currently executing on a CPU?
1956 * @p: the task in question.
1957 */
36c8b586 1958inline int task_curr(const struct task_struct *p)
1da177e4
LT
1959{
1960 return cpu_curr(task_cpu(p)) == p;
1961}
1962
2dd73a4f
PW
1963/* Used instead of source_load when we know the type == 0 */
1964unsigned long weighted_cpuload(const int cpu)
1965{
495eca49 1966 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1967}
1968
1969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1970{
6f505b16 1971 set_task_rq(p, cpu);
dd41f596 1972#ifdef CONFIG_SMP
ce96b5ac
DA
1973 /*
1974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1975 * successfuly executed on another CPU. We must ensure that updates of
1976 * per-task data have been completed by this moment.
1977 */
1978 smp_wmb();
dd41f596 1979 task_thread_info(p)->cpu = cpu;
dd41f596 1980#endif
2dd73a4f
PW
1981}
1982
cb469845
SR
1983static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986{
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993}
1994
1da177e4 1995#ifdef CONFIG_SMP
c65cc870 1996
cc367732
IM
1997/*
1998 * Is this task likely cache-hot:
1999 */
e7693a36 2000static int
cc367732
IM
2001task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2002{
2003 s64 delta;
2004
f540a608
IM
2005 /*
2006 * Buddy candidates are cache hot:
2007 */
d25ce4cd 2008 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
2009 return 1;
2010
cc367732
IM
2011 if (p->sched_class != &fair_sched_class)
2012 return 0;
2013
6bc1665b
IM
2014 if (sysctl_sched_migration_cost == -1)
2015 return 1;
2016 if (sysctl_sched_migration_cost == 0)
2017 return 0;
2018
cc367732
IM
2019 delta = now - p->se.exec_start;
2020
2021 return delta < (s64)sysctl_sched_migration_cost;
2022}
2023
2024
dd41f596 2025void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2026{
dd41f596
IM
2027 int old_cpu = task_cpu(p);
2028 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
2029 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2030 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 2031 u64 clock_offset;
dd41f596
IM
2032
2033 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
2034
2035#ifdef CONFIG_SCHEDSTATS
2036 if (p->se.wait_start)
2037 p->se.wait_start -= clock_offset;
dd41f596
IM
2038 if (p->se.sleep_start)
2039 p->se.sleep_start -= clock_offset;
2040 if (p->se.block_start)
2041 p->se.block_start -= clock_offset;
cc367732
IM
2042 if (old_cpu != new_cpu) {
2043 schedstat_inc(p, se.nr_migrations);
2044 if (task_hot(p, old_rq->clock, NULL))
2045 schedstat_inc(p, se.nr_forced2_migrations);
2046 }
6cfb0d5d 2047#endif
2830cf8c
SV
2048 p->se.vruntime -= old_cfsrq->min_vruntime -
2049 new_cfsrq->min_vruntime;
dd41f596
IM
2050
2051 __set_task_cpu(p, new_cpu);
c65cc870
IM
2052}
2053
70b97a7f 2054struct migration_req {
1da177e4 2055 struct list_head list;
1da177e4 2056
36c8b586 2057 struct task_struct *task;
1da177e4
LT
2058 int dest_cpu;
2059
1da177e4 2060 struct completion done;
70b97a7f 2061};
1da177e4
LT
2062
2063/*
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2066 */
36c8b586 2067static int
70b97a7f 2068migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = task_rq(p);
1da177e4
LT
2071
2072 /*
2073 * If the task is not on a runqueue (and not running), then
2074 * it is sufficient to simply update the task's cpu field.
2075 */
dd41f596 2076 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2077 set_task_cpu(p, dest_cpu);
2078 return 0;
2079 }
2080
2081 init_completion(&req->done);
1da177e4
LT
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
48f24c4d 2085
1da177e4
LT
2086 return 1;
2087}
2088
2089/*
2090 * wait_task_inactive - wait for a thread to unschedule.
2091 *
2092 * The caller must ensure that the task *will* unschedule sometime soon,
2093 * else this function might spin for a *long* time. This function can't
2094 * be called with interrupts off, or it may introduce deadlock with
2095 * smp_call_function() if an IPI is sent by the same process we are
2096 * waiting to become inactive.
2097 */
36c8b586 2098void wait_task_inactive(struct task_struct *p)
1da177e4
LT
2099{
2100 unsigned long flags;
dd41f596 2101 int running, on_rq;
70b97a7f 2102 struct rq *rq;
1da177e4 2103
3a5c359a
AK
2104 for (;;) {
2105 /*
2106 * We do the initial early heuristics without holding
2107 * any task-queue locks at all. We'll only try to get
2108 * the runqueue lock when things look like they will
2109 * work out!
2110 */
2111 rq = task_rq(p);
fa490cfd 2112
3a5c359a
AK
2113 /*
2114 * If the task is actively running on another CPU
2115 * still, just relax and busy-wait without holding
2116 * any locks.
2117 *
2118 * NOTE! Since we don't hold any locks, it's not
2119 * even sure that "rq" stays as the right runqueue!
2120 * But we don't care, since "task_running()" will
2121 * return false if the runqueue has changed and p
2122 * is actually now running somewhere else!
2123 */
2124 while (task_running(rq, p))
2125 cpu_relax();
fa490cfd 2126
3a5c359a
AK
2127 /*
2128 * Ok, time to look more closely! We need the rq
2129 * lock now, to be *sure*. If we're wrong, we'll
2130 * just go back and repeat.
2131 */
2132 rq = task_rq_lock(p, &flags);
2133 running = task_running(rq, p);
2134 on_rq = p->se.on_rq;
2135 task_rq_unlock(rq, &flags);
fa490cfd 2136
3a5c359a
AK
2137 /*
2138 * Was it really running after all now that we
2139 * checked with the proper locks actually held?
2140 *
2141 * Oops. Go back and try again..
2142 */
2143 if (unlikely(running)) {
2144 cpu_relax();
2145 continue;
2146 }
fa490cfd 2147
3a5c359a
AK
2148 /*
2149 * It's not enough that it's not actively running,
2150 * it must be off the runqueue _entirely_, and not
2151 * preempted!
2152 *
2153 * So if it wa still runnable (but just not actively
2154 * running right now), it's preempted, and we should
2155 * yield - it could be a while.
2156 */
2157 if (unlikely(on_rq)) {
2158 schedule_timeout_uninterruptible(1);
2159 continue;
2160 }
fa490cfd 2161
3a5c359a
AK
2162 /*
2163 * Ahh, all good. It wasn't running, and it wasn't
2164 * runnable, which means that it will never become
2165 * running in the future either. We're all done!
2166 */
2167 break;
2168 }
1da177e4
LT
2169}
2170
2171/***
2172 * kick_process - kick a running thread to enter/exit the kernel
2173 * @p: the to-be-kicked thread
2174 *
2175 * Cause a process which is running on another CPU to enter
2176 * kernel-mode, without any delay. (to get signals handled.)
2177 *
2178 * NOTE: this function doesnt have to take the runqueue lock,
2179 * because all it wants to ensure is that the remote task enters
2180 * the kernel. If the IPI races and the task has been migrated
2181 * to another CPU then no harm is done and the purpose has been
2182 * achieved as well.
2183 */
36c8b586 2184void kick_process(struct task_struct *p)
1da177e4
LT
2185{
2186 int cpu;
2187
2188 preempt_disable();
2189 cpu = task_cpu(p);
2190 if ((cpu != smp_processor_id()) && task_curr(p))
2191 smp_send_reschedule(cpu);
2192 preempt_enable();
2193}
2194
2195/*
2dd73a4f
PW
2196 * Return a low guess at the load of a migration-source cpu weighted
2197 * according to the scheduling class and "nice" value.
1da177e4
LT
2198 *
2199 * We want to under-estimate the load of migration sources, to
2200 * balance conservatively.
2201 */
a9957449 2202static unsigned long source_load(int cpu, int type)
1da177e4 2203{
70b97a7f 2204 struct rq *rq = cpu_rq(cpu);
dd41f596 2205 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2206
3b0bd9bc 2207 if (type == 0)
dd41f596 2208 return total;
b910472d 2209
dd41f596 2210 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2211}
2212
2213/*
2dd73a4f
PW
2214 * Return a high guess at the load of a migration-target cpu weighted
2215 * according to the scheduling class and "nice" value.
1da177e4 2216 */
a9957449 2217static unsigned long target_load(int cpu, int type)
1da177e4 2218{
70b97a7f 2219 struct rq *rq = cpu_rq(cpu);
dd41f596 2220 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2221
7897986b 2222 if (type == 0)
dd41f596 2223 return total;
3b0bd9bc 2224
dd41f596 2225 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2226}
2227
2228/*
2229 * Return the average load per task on the cpu's run queue
2230 */
e7693a36 2231static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2232{
70b97a7f 2233 struct rq *rq = cpu_rq(cpu);
dd41f596 2234 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2235 unsigned long n = rq->nr_running;
2236
dd41f596 2237 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2238}
2239
147cbb4b
NP
2240/*
2241 * find_idlest_group finds and returns the least busy CPU group within the
2242 * domain.
2243 */
2244static struct sched_group *
2245find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2246{
2247 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2248 unsigned long min_load = ULONG_MAX, this_load = 0;
2249 int load_idx = sd->forkexec_idx;
2250 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2251
2252 do {
2253 unsigned long load, avg_load;
2254 int local_group;
2255 int i;
2256
da5a5522
BD
2257 /* Skip over this group if it has no CPUs allowed */
2258 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2259 continue;
da5a5522 2260
147cbb4b 2261 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2262
2263 /* Tally up the load of all CPUs in the group */
2264 avg_load = 0;
2265
2266 for_each_cpu_mask(i, group->cpumask) {
2267 /* Bias balancing toward cpus of our domain */
2268 if (local_group)
2269 load = source_load(i, load_idx);
2270 else
2271 load = target_load(i, load_idx);
2272
2273 avg_load += load;
2274 }
2275
2276 /* Adjust by relative CPU power of the group */
5517d86b
ED
2277 avg_load = sg_div_cpu_power(group,
2278 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2279
2280 if (local_group) {
2281 this_load = avg_load;
2282 this = group;
2283 } else if (avg_load < min_load) {
2284 min_load = avg_load;
2285 idlest = group;
2286 }
3a5c359a 2287 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2288
2289 if (!idlest || 100*this_load < imbalance*min_load)
2290 return NULL;
2291 return idlest;
2292}
2293
2294/*
0feaece9 2295 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2296 */
95cdf3b7 2297static int
7c16ec58
MT
2298find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2299 cpumask_t *tmp)
147cbb4b
NP
2300{
2301 unsigned long load, min_load = ULONG_MAX;
2302 int idlest = -1;
2303 int i;
2304
da5a5522 2305 /* Traverse only the allowed CPUs */
7c16ec58 2306 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2307
7c16ec58 2308 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2309 load = weighted_cpuload(i);
147cbb4b
NP
2310
2311 if (load < min_load || (load == min_load && i == this_cpu)) {
2312 min_load = load;
2313 idlest = i;
2314 }
2315 }
2316
2317 return idlest;
2318}
2319
476d139c
NP
2320/*
2321 * sched_balance_self: balance the current task (running on cpu) in domains
2322 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2323 * SD_BALANCE_EXEC.
2324 *
2325 * Balance, ie. select the least loaded group.
2326 *
2327 * Returns the target CPU number, or the same CPU if no balancing is needed.
2328 *
2329 * preempt must be disabled.
2330 */
2331static int sched_balance_self(int cpu, int flag)
2332{
2333 struct task_struct *t = current;
2334 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2335
c96d145e 2336 for_each_domain(cpu, tmp) {
9761eea8
IM
2337 /*
2338 * If power savings logic is enabled for a domain, stop there.
2339 */
5c45bf27
SS
2340 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2341 break;
476d139c
NP
2342 if (tmp->flags & flag)
2343 sd = tmp;
c96d145e 2344 }
476d139c
NP
2345
2346 while (sd) {
7c16ec58 2347 cpumask_t span, tmpmask;
476d139c 2348 struct sched_group *group;
1a848870
SS
2349 int new_cpu, weight;
2350
2351 if (!(sd->flags & flag)) {
2352 sd = sd->child;
2353 continue;
2354 }
476d139c
NP
2355
2356 span = sd->span;
2357 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2358 if (!group) {
2359 sd = sd->child;
2360 continue;
2361 }
476d139c 2362
7c16ec58 2363 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2364 if (new_cpu == -1 || new_cpu == cpu) {
2365 /* Now try balancing at a lower domain level of cpu */
2366 sd = sd->child;
2367 continue;
2368 }
476d139c 2369
1a848870 2370 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2371 cpu = new_cpu;
476d139c
NP
2372 sd = NULL;
2373 weight = cpus_weight(span);
2374 for_each_domain(cpu, tmp) {
2375 if (weight <= cpus_weight(tmp->span))
2376 break;
2377 if (tmp->flags & flag)
2378 sd = tmp;
2379 }
2380 /* while loop will break here if sd == NULL */
2381 }
2382
2383 return cpu;
2384}
2385
2386#endif /* CONFIG_SMP */
1da177e4 2387
1da177e4
LT
2388/***
2389 * try_to_wake_up - wake up a thread
2390 * @p: the to-be-woken-up thread
2391 * @state: the mask of task states that can be woken
2392 * @sync: do a synchronous wakeup?
2393 *
2394 * Put it on the run-queue if it's not already there. The "current"
2395 * thread is always on the run-queue (except when the actual
2396 * re-schedule is in progress), and as such you're allowed to do
2397 * the simpler "current->state = TASK_RUNNING" to mark yourself
2398 * runnable without the overhead of this.
2399 *
2400 * returns failure only if the task is already active.
2401 */
36c8b586 2402static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2403{
cc367732 2404 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2405 unsigned long flags;
2406 long old_state;
70b97a7f 2407 struct rq *rq;
1da177e4 2408
b85d0667
IM
2409 if (!sched_feat(SYNC_WAKEUPS))
2410 sync = 0;
2411
04e2f174 2412 smp_wmb();
1da177e4
LT
2413 rq = task_rq_lock(p, &flags);
2414 old_state = p->state;
2415 if (!(old_state & state))
2416 goto out;
2417
dd41f596 2418 if (p->se.on_rq)
1da177e4
LT
2419 goto out_running;
2420
2421 cpu = task_cpu(p);
cc367732 2422 orig_cpu = cpu;
1da177e4
LT
2423 this_cpu = smp_processor_id();
2424
2425#ifdef CONFIG_SMP
2426 if (unlikely(task_running(rq, p)))
2427 goto out_activate;
2428
5d2f5a61
DA
2429 cpu = p->sched_class->select_task_rq(p, sync);
2430 if (cpu != orig_cpu) {
2431 set_task_cpu(p, cpu);
1da177e4
LT
2432 task_rq_unlock(rq, &flags);
2433 /* might preempt at this point */
2434 rq = task_rq_lock(p, &flags);
2435 old_state = p->state;
2436 if (!(old_state & state))
2437 goto out;
dd41f596 2438 if (p->se.on_rq)
1da177e4
LT
2439 goto out_running;
2440
2441 this_cpu = smp_processor_id();
2442 cpu = task_cpu(p);
2443 }
2444
e7693a36
GH
2445#ifdef CONFIG_SCHEDSTATS
2446 schedstat_inc(rq, ttwu_count);
2447 if (cpu == this_cpu)
2448 schedstat_inc(rq, ttwu_local);
2449 else {
2450 struct sched_domain *sd;
2451 for_each_domain(this_cpu, sd) {
2452 if (cpu_isset(cpu, sd->span)) {
2453 schedstat_inc(sd, ttwu_wake_remote);
2454 break;
2455 }
2456 }
2457 }
e7693a36
GH
2458#endif
2459
1da177e4
LT
2460out_activate:
2461#endif /* CONFIG_SMP */
cc367732
IM
2462 schedstat_inc(p, se.nr_wakeups);
2463 if (sync)
2464 schedstat_inc(p, se.nr_wakeups_sync);
2465 if (orig_cpu != cpu)
2466 schedstat_inc(p, se.nr_wakeups_migrate);
2467 if (cpu == this_cpu)
2468 schedstat_inc(p, se.nr_wakeups_local);
2469 else
2470 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2471 update_rq_clock(rq);
dd41f596 2472 activate_task(rq, p, 1);
1da177e4
LT
2473 success = 1;
2474
2475out_running:
4ae7d5ce
IM
2476 check_preempt_curr(rq, p);
2477
1da177e4 2478 p->state = TASK_RUNNING;
9a897c5a
SR
2479#ifdef CONFIG_SMP
2480 if (p->sched_class->task_wake_up)
2481 p->sched_class->task_wake_up(rq, p);
2482#endif
1da177e4
LT
2483out:
2484 task_rq_unlock(rq, &flags);
2485
2486 return success;
2487}
2488
7ad5b3a5 2489int wake_up_process(struct task_struct *p)
1da177e4 2490{
d9514f6c 2491 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2492}
1da177e4
LT
2493EXPORT_SYMBOL(wake_up_process);
2494
7ad5b3a5 2495int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2496{
2497 return try_to_wake_up(p, state, 0);
2498}
2499
1da177e4
LT
2500/*
2501 * Perform scheduler related setup for a newly forked process p.
2502 * p is forked by current.
dd41f596
IM
2503 *
2504 * __sched_fork() is basic setup used by init_idle() too:
2505 */
2506static void __sched_fork(struct task_struct *p)
2507{
dd41f596
IM
2508 p->se.exec_start = 0;
2509 p->se.sum_exec_runtime = 0;
f6cf891c 2510 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2511 p->se.last_wakeup = 0;
2512 p->se.avg_overlap = 0;
6cfb0d5d
IM
2513
2514#ifdef CONFIG_SCHEDSTATS
2515 p->se.wait_start = 0;
dd41f596
IM
2516 p->se.sum_sleep_runtime = 0;
2517 p->se.sleep_start = 0;
dd41f596
IM
2518 p->se.block_start = 0;
2519 p->se.sleep_max = 0;
2520 p->se.block_max = 0;
2521 p->se.exec_max = 0;
eba1ed4b 2522 p->se.slice_max = 0;
dd41f596 2523 p->se.wait_max = 0;
6cfb0d5d 2524#endif
476d139c 2525
fa717060 2526 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2527 p->se.on_rq = 0;
476d139c 2528
e107be36
AK
2529#ifdef CONFIG_PREEMPT_NOTIFIERS
2530 INIT_HLIST_HEAD(&p->preempt_notifiers);
2531#endif
2532
1da177e4
LT
2533 /*
2534 * We mark the process as running here, but have not actually
2535 * inserted it onto the runqueue yet. This guarantees that
2536 * nobody will actually run it, and a signal or other external
2537 * event cannot wake it up and insert it on the runqueue either.
2538 */
2539 p->state = TASK_RUNNING;
dd41f596
IM
2540}
2541
2542/*
2543 * fork()/clone()-time setup:
2544 */
2545void sched_fork(struct task_struct *p, int clone_flags)
2546{
2547 int cpu = get_cpu();
2548
2549 __sched_fork(p);
2550
2551#ifdef CONFIG_SMP
2552 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2553#endif
02e4bac2 2554 set_task_cpu(p, cpu);
b29739f9
IM
2555
2556 /*
2557 * Make sure we do not leak PI boosting priority to the child:
2558 */
2559 p->prio = current->normal_prio;
2ddbf952
HS
2560 if (!rt_prio(p->prio))
2561 p->sched_class = &fair_sched_class;
b29739f9 2562
52f17b6c 2563#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2564 if (likely(sched_info_on()))
52f17b6c 2565 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2566#endif
d6077cb8 2567#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2568 p->oncpu = 0;
2569#endif
1da177e4 2570#ifdef CONFIG_PREEMPT
4866cde0 2571 /* Want to start with kernel preemption disabled. */
a1261f54 2572 task_thread_info(p)->preempt_count = 1;
1da177e4 2573#endif
476d139c 2574 put_cpu();
1da177e4
LT
2575}
2576
2577/*
2578 * wake_up_new_task - wake up a newly created task for the first time.
2579 *
2580 * This function will do some initial scheduler statistics housekeeping
2581 * that must be done for every newly created context, then puts the task
2582 * on the runqueue and wakes it.
2583 */
7ad5b3a5 2584void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2585{
2586 unsigned long flags;
dd41f596 2587 struct rq *rq;
1da177e4
LT
2588
2589 rq = task_rq_lock(p, &flags);
147cbb4b 2590 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2591 update_rq_clock(rq);
1da177e4
LT
2592
2593 p->prio = effective_prio(p);
2594
b9dca1e0 2595 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2596 activate_task(rq, p, 0);
1da177e4 2597 } else {
1da177e4 2598 /*
dd41f596
IM
2599 * Let the scheduling class do new task startup
2600 * management (if any):
1da177e4 2601 */
ee0827d8 2602 p->sched_class->task_new(rq, p);
18d95a28 2603 inc_nr_running(rq);
1da177e4 2604 }
dd41f596 2605 check_preempt_curr(rq, p);
9a897c5a
SR
2606#ifdef CONFIG_SMP
2607 if (p->sched_class->task_wake_up)
2608 p->sched_class->task_wake_up(rq, p);
2609#endif
dd41f596 2610 task_rq_unlock(rq, &flags);
1da177e4
LT
2611}
2612
e107be36
AK
2613#ifdef CONFIG_PREEMPT_NOTIFIERS
2614
2615/**
421cee29
RD
2616 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2617 * @notifier: notifier struct to register
e107be36
AK
2618 */
2619void preempt_notifier_register(struct preempt_notifier *notifier)
2620{
2621 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2622}
2623EXPORT_SYMBOL_GPL(preempt_notifier_register);
2624
2625/**
2626 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2627 * @notifier: notifier struct to unregister
e107be36
AK
2628 *
2629 * This is safe to call from within a preemption notifier.
2630 */
2631void preempt_notifier_unregister(struct preempt_notifier *notifier)
2632{
2633 hlist_del(&notifier->link);
2634}
2635EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2636
2637static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2638{
2639 struct preempt_notifier *notifier;
2640 struct hlist_node *node;
2641
2642 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2643 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2644}
2645
2646static void
2647fire_sched_out_preempt_notifiers(struct task_struct *curr,
2648 struct task_struct *next)
2649{
2650 struct preempt_notifier *notifier;
2651 struct hlist_node *node;
2652
2653 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2654 notifier->ops->sched_out(notifier, next);
2655}
2656
2657#else
2658
2659static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2660{
2661}
2662
2663static void
2664fire_sched_out_preempt_notifiers(struct task_struct *curr,
2665 struct task_struct *next)
2666{
2667}
2668
2669#endif
2670
4866cde0
NP
2671/**
2672 * prepare_task_switch - prepare to switch tasks
2673 * @rq: the runqueue preparing to switch
421cee29 2674 * @prev: the current task that is being switched out
4866cde0
NP
2675 * @next: the task we are going to switch to.
2676 *
2677 * This is called with the rq lock held and interrupts off. It must
2678 * be paired with a subsequent finish_task_switch after the context
2679 * switch.
2680 *
2681 * prepare_task_switch sets up locking and calls architecture specific
2682 * hooks.
2683 */
e107be36
AK
2684static inline void
2685prepare_task_switch(struct rq *rq, struct task_struct *prev,
2686 struct task_struct *next)
4866cde0 2687{
e107be36 2688 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2689 prepare_lock_switch(rq, next);
2690 prepare_arch_switch(next);
2691}
2692
1da177e4
LT
2693/**
2694 * finish_task_switch - clean up after a task-switch
344babaa 2695 * @rq: runqueue associated with task-switch
1da177e4
LT
2696 * @prev: the thread we just switched away from.
2697 *
4866cde0
NP
2698 * finish_task_switch must be called after the context switch, paired
2699 * with a prepare_task_switch call before the context switch.
2700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2701 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2702 *
2703 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2704 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2705 * with the lock held can cause deadlocks; see schedule() for
2706 * details.)
2707 */
a9957449 2708static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2709 __releases(rq->lock)
2710{
1da177e4 2711 struct mm_struct *mm = rq->prev_mm;
55a101f8 2712 long prev_state;
1da177e4
LT
2713
2714 rq->prev_mm = NULL;
2715
2716 /*
2717 * A task struct has one reference for the use as "current".
c394cc9f 2718 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2719 * schedule one last time. The schedule call will never return, and
2720 * the scheduled task must drop that reference.
c394cc9f 2721 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2722 * still held, otherwise prev could be scheduled on another cpu, die
2723 * there before we look at prev->state, and then the reference would
2724 * be dropped twice.
2725 * Manfred Spraul <manfred@colorfullife.com>
2726 */
55a101f8 2727 prev_state = prev->state;
4866cde0
NP
2728 finish_arch_switch(prev);
2729 finish_lock_switch(rq, prev);
9a897c5a
SR
2730#ifdef CONFIG_SMP
2731 if (current->sched_class->post_schedule)
2732 current->sched_class->post_schedule(rq);
2733#endif
e8fa1362 2734
e107be36 2735 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2736 if (mm)
2737 mmdrop(mm);
c394cc9f 2738 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2739 /*
2740 * Remove function-return probe instances associated with this
2741 * task and put them back on the free list.
9761eea8 2742 */
c6fd91f0 2743 kprobe_flush_task(prev);
1da177e4 2744 put_task_struct(prev);
c6fd91f0 2745 }
1da177e4
LT
2746}
2747
2748/**
2749 * schedule_tail - first thing a freshly forked thread must call.
2750 * @prev: the thread we just switched away from.
2751 */
36c8b586 2752asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2753 __releases(rq->lock)
2754{
70b97a7f
IM
2755 struct rq *rq = this_rq();
2756
4866cde0
NP
2757 finish_task_switch(rq, prev);
2758#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2759 /* In this case, finish_task_switch does not reenable preemption */
2760 preempt_enable();
2761#endif
1da177e4 2762 if (current->set_child_tid)
b488893a 2763 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2764}
2765
2766/*
2767 * context_switch - switch to the new MM and the new
2768 * thread's register state.
2769 */
dd41f596 2770static inline void
70b97a7f 2771context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2772 struct task_struct *next)
1da177e4 2773{
dd41f596 2774 struct mm_struct *mm, *oldmm;
1da177e4 2775
e107be36 2776 prepare_task_switch(rq, prev, next);
dd41f596
IM
2777 mm = next->mm;
2778 oldmm = prev->active_mm;
9226d125
ZA
2779 /*
2780 * For paravirt, this is coupled with an exit in switch_to to
2781 * combine the page table reload and the switch backend into
2782 * one hypercall.
2783 */
2784 arch_enter_lazy_cpu_mode();
2785
dd41f596 2786 if (unlikely(!mm)) {
1da177e4
LT
2787 next->active_mm = oldmm;
2788 atomic_inc(&oldmm->mm_count);
2789 enter_lazy_tlb(oldmm, next);
2790 } else
2791 switch_mm(oldmm, mm, next);
2792
dd41f596 2793 if (unlikely(!prev->mm)) {
1da177e4 2794 prev->active_mm = NULL;
1da177e4
LT
2795 rq->prev_mm = oldmm;
2796 }
3a5f5e48
IM
2797 /*
2798 * Since the runqueue lock will be released by the next
2799 * task (which is an invalid locking op but in the case
2800 * of the scheduler it's an obvious special-case), so we
2801 * do an early lockdep release here:
2802 */
2803#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2804 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2805#endif
1da177e4
LT
2806
2807 /* Here we just switch the register state and the stack. */
2808 switch_to(prev, next, prev);
2809
dd41f596
IM
2810 barrier();
2811 /*
2812 * this_rq must be evaluated again because prev may have moved
2813 * CPUs since it called schedule(), thus the 'rq' on its stack
2814 * frame will be invalid.
2815 */
2816 finish_task_switch(this_rq(), prev);
1da177e4
LT
2817}
2818
2819/*
2820 * nr_running, nr_uninterruptible and nr_context_switches:
2821 *
2822 * externally visible scheduler statistics: current number of runnable
2823 * threads, current number of uninterruptible-sleeping threads, total
2824 * number of context switches performed since bootup.
2825 */
2826unsigned long nr_running(void)
2827{
2828 unsigned long i, sum = 0;
2829
2830 for_each_online_cpu(i)
2831 sum += cpu_rq(i)->nr_running;
2832
2833 return sum;
2834}
2835
2836unsigned long nr_uninterruptible(void)
2837{
2838 unsigned long i, sum = 0;
2839
0a945022 2840 for_each_possible_cpu(i)
1da177e4
LT
2841 sum += cpu_rq(i)->nr_uninterruptible;
2842
2843 /*
2844 * Since we read the counters lockless, it might be slightly
2845 * inaccurate. Do not allow it to go below zero though:
2846 */
2847 if (unlikely((long)sum < 0))
2848 sum = 0;
2849
2850 return sum;
2851}
2852
2853unsigned long long nr_context_switches(void)
2854{
cc94abfc
SR
2855 int i;
2856 unsigned long long sum = 0;
1da177e4 2857
0a945022 2858 for_each_possible_cpu(i)
1da177e4
LT
2859 sum += cpu_rq(i)->nr_switches;
2860
2861 return sum;
2862}
2863
2864unsigned long nr_iowait(void)
2865{
2866 unsigned long i, sum = 0;
2867
0a945022 2868 for_each_possible_cpu(i)
1da177e4
LT
2869 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2870
2871 return sum;
2872}
2873
db1b1fef
JS
2874unsigned long nr_active(void)
2875{
2876 unsigned long i, running = 0, uninterruptible = 0;
2877
2878 for_each_online_cpu(i) {
2879 running += cpu_rq(i)->nr_running;
2880 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2881 }
2882
2883 if (unlikely((long)uninterruptible < 0))
2884 uninterruptible = 0;
2885
2886 return running + uninterruptible;
2887}
2888
48f24c4d 2889/*
dd41f596
IM
2890 * Update rq->cpu_load[] statistics. This function is usually called every
2891 * scheduler tick (TICK_NSEC).
48f24c4d 2892 */
dd41f596 2893static void update_cpu_load(struct rq *this_rq)
48f24c4d 2894{
495eca49 2895 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2896 int i, scale;
2897
2898 this_rq->nr_load_updates++;
dd41f596
IM
2899
2900 /* Update our load: */
2901 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2902 unsigned long old_load, new_load;
2903
2904 /* scale is effectively 1 << i now, and >> i divides by scale */
2905
2906 old_load = this_rq->cpu_load[i];
2907 new_load = this_load;
a25707f3
IM
2908 /*
2909 * Round up the averaging division if load is increasing. This
2910 * prevents us from getting stuck on 9 if the load is 10, for
2911 * example.
2912 */
2913 if (new_load > old_load)
2914 new_load += scale-1;
dd41f596
IM
2915 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2916 }
48f24c4d
IM
2917}
2918
dd41f596
IM
2919#ifdef CONFIG_SMP
2920
1da177e4
LT
2921/*
2922 * double_rq_lock - safely lock two runqueues
2923 *
2924 * Note this does not disable interrupts like task_rq_lock,
2925 * you need to do so manually before calling.
2926 */
70b97a7f 2927static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2928 __acquires(rq1->lock)
2929 __acquires(rq2->lock)
2930{
054b9108 2931 BUG_ON(!irqs_disabled());
1da177e4
LT
2932 if (rq1 == rq2) {
2933 spin_lock(&rq1->lock);
2934 __acquire(rq2->lock); /* Fake it out ;) */
2935 } else {
c96d145e 2936 if (rq1 < rq2) {
1da177e4
LT
2937 spin_lock(&rq1->lock);
2938 spin_lock(&rq2->lock);
2939 } else {
2940 spin_lock(&rq2->lock);
2941 spin_lock(&rq1->lock);
2942 }
2943 }
6e82a3be
IM
2944 update_rq_clock(rq1);
2945 update_rq_clock(rq2);
1da177e4
LT
2946}
2947
2948/*
2949 * double_rq_unlock - safely unlock two runqueues
2950 *
2951 * Note this does not restore interrupts like task_rq_unlock,
2952 * you need to do so manually after calling.
2953 */
70b97a7f 2954static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2955 __releases(rq1->lock)
2956 __releases(rq2->lock)
2957{
2958 spin_unlock(&rq1->lock);
2959 if (rq1 != rq2)
2960 spin_unlock(&rq2->lock);
2961 else
2962 __release(rq2->lock);
2963}
2964
2965/*
2966 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2967 */
e8fa1362 2968static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2969 __releases(this_rq->lock)
2970 __acquires(busiest->lock)
2971 __acquires(this_rq->lock)
2972{
e8fa1362
SR
2973 int ret = 0;
2974
054b9108
KK
2975 if (unlikely(!irqs_disabled())) {
2976 /* printk() doesn't work good under rq->lock */
2977 spin_unlock(&this_rq->lock);
2978 BUG_ON(1);
2979 }
1da177e4 2980 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2981 if (busiest < this_rq) {
1da177e4
LT
2982 spin_unlock(&this_rq->lock);
2983 spin_lock(&busiest->lock);
2984 spin_lock(&this_rq->lock);
e8fa1362 2985 ret = 1;
1da177e4
LT
2986 } else
2987 spin_lock(&busiest->lock);
2988 }
e8fa1362 2989 return ret;
1da177e4
LT
2990}
2991
1da177e4
LT
2992/*
2993 * If dest_cpu is allowed for this process, migrate the task to it.
2994 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2995 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2996 * the cpu_allowed mask is restored.
2997 */
36c8b586 2998static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2999{
70b97a7f 3000 struct migration_req req;
1da177e4 3001 unsigned long flags;
70b97a7f 3002 struct rq *rq;
1da177e4
LT
3003
3004 rq = task_rq_lock(p, &flags);
3005 if (!cpu_isset(dest_cpu, p->cpus_allowed)
3006 || unlikely(cpu_is_offline(dest_cpu)))
3007 goto out;
3008
3009 /* force the process onto the specified CPU */
3010 if (migrate_task(p, dest_cpu, &req)) {
3011 /* Need to wait for migration thread (might exit: take ref). */
3012 struct task_struct *mt = rq->migration_thread;
36c8b586 3013
1da177e4
LT
3014 get_task_struct(mt);
3015 task_rq_unlock(rq, &flags);
3016 wake_up_process(mt);
3017 put_task_struct(mt);
3018 wait_for_completion(&req.done);
36c8b586 3019
1da177e4
LT
3020 return;
3021 }
3022out:
3023 task_rq_unlock(rq, &flags);
3024}
3025
3026/*
476d139c
NP
3027 * sched_exec - execve() is a valuable balancing opportunity, because at
3028 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3029 */
3030void sched_exec(void)
3031{
1da177e4 3032 int new_cpu, this_cpu = get_cpu();
476d139c 3033 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3034 put_cpu();
476d139c
NP
3035 if (new_cpu != this_cpu)
3036 sched_migrate_task(current, new_cpu);
1da177e4
LT
3037}
3038
3039/*
3040 * pull_task - move a task from a remote runqueue to the local runqueue.
3041 * Both runqueues must be locked.
3042 */
dd41f596
IM
3043static void pull_task(struct rq *src_rq, struct task_struct *p,
3044 struct rq *this_rq, int this_cpu)
1da177e4 3045{
2e1cb74a 3046 deactivate_task(src_rq, p, 0);
1da177e4 3047 set_task_cpu(p, this_cpu);
dd41f596 3048 activate_task(this_rq, p, 0);
1da177e4
LT
3049 /*
3050 * Note that idle threads have a prio of MAX_PRIO, for this test
3051 * to be always true for them.
3052 */
dd41f596 3053 check_preempt_curr(this_rq, p);
1da177e4
LT
3054}
3055
3056/*
3057 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3058 */
858119e1 3059static
70b97a7f 3060int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3061 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3062 int *all_pinned)
1da177e4
LT
3063{
3064 /*
3065 * We do not migrate tasks that are:
3066 * 1) running (obviously), or
3067 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3068 * 3) are cache-hot on their current CPU.
3069 */
cc367732
IM
3070 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
3071 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3072 return 0;
cc367732 3073 }
81026794
NP
3074 *all_pinned = 0;
3075
cc367732
IM
3076 if (task_running(rq, p)) {
3077 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3078 return 0;
cc367732 3079 }
1da177e4 3080
da84d961
IM
3081 /*
3082 * Aggressive migration if:
3083 * 1) task is cache cold, or
3084 * 2) too many balance attempts have failed.
3085 */
3086
6bc1665b
IM
3087 if (!task_hot(p, rq->clock, sd) ||
3088 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3089#ifdef CONFIG_SCHEDSTATS
cc367732 3090 if (task_hot(p, rq->clock, sd)) {
da84d961 3091 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3092 schedstat_inc(p, se.nr_forced_migrations);
3093 }
da84d961
IM
3094#endif
3095 return 1;
3096 }
3097
cc367732
IM
3098 if (task_hot(p, rq->clock, sd)) {
3099 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3100 return 0;
cc367732 3101 }
1da177e4
LT
3102 return 1;
3103}
3104
e1d1484f
PW
3105static unsigned long
3106balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3107 unsigned long max_load_move, struct sched_domain *sd,
3108 enum cpu_idle_type idle, int *all_pinned,
3109 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3110{
b82d9fdd 3111 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
3112 struct task_struct *p;
3113 long rem_load_move = max_load_move;
1da177e4 3114
e1d1484f 3115 if (max_load_move == 0)
1da177e4
LT
3116 goto out;
3117
81026794
NP
3118 pinned = 1;
3119
1da177e4 3120 /*
dd41f596 3121 * Start the load-balancing iterator:
1da177e4 3122 */
dd41f596
IM
3123 p = iterator->start(iterator->arg);
3124next:
b82d9fdd 3125 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3126 goto out;
50ddd969 3127 /*
b82d9fdd 3128 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
3129 * skip a task if it will be the highest priority task (i.e. smallest
3130 * prio value) on its new queue regardless of its load weight
3131 */
dd41f596
IM
3132 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
3133 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 3134 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 3135 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3136 p = iterator->next(iterator->arg);
3137 goto next;
1da177e4
LT
3138 }
3139
dd41f596 3140 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3141 pulled++;
dd41f596 3142 rem_load_move -= p->se.load.weight;
1da177e4 3143
2dd73a4f 3144 /*
b82d9fdd 3145 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3146 */
e1d1484f 3147 if (rem_load_move > 0) {
a4ac01c3
PW
3148 if (p->prio < *this_best_prio)
3149 *this_best_prio = p->prio;
dd41f596
IM
3150 p = iterator->next(iterator->arg);
3151 goto next;
1da177e4
LT
3152 }
3153out:
3154 /*
e1d1484f 3155 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3156 * so we can safely collect pull_task() stats here rather than
3157 * inside pull_task().
3158 */
3159 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3160
3161 if (all_pinned)
3162 *all_pinned = pinned;
e1d1484f
PW
3163
3164 return max_load_move - rem_load_move;
1da177e4
LT
3165}
3166
dd41f596 3167/*
43010659
PW
3168 * move_tasks tries to move up to max_load_move weighted load from busiest to
3169 * this_rq, as part of a balancing operation within domain "sd".
3170 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3171 *
3172 * Called with both runqueues locked.
3173 */
3174static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3175 unsigned long max_load_move,
dd41f596
IM
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *all_pinned)
3178{
5522d5d5 3179 const struct sched_class *class = sched_class_highest;
43010659 3180 unsigned long total_load_moved = 0;
a4ac01c3 3181 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3182
3183 do {
43010659
PW
3184 total_load_moved +=
3185 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3186 max_load_move - total_load_moved,
a4ac01c3 3187 sd, idle, all_pinned, &this_best_prio);
dd41f596 3188 class = class->next;
43010659 3189 } while (class && max_load_move > total_load_moved);
dd41f596 3190
43010659
PW
3191 return total_load_moved > 0;
3192}
3193
e1d1484f
PW
3194static int
3195iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3196 struct sched_domain *sd, enum cpu_idle_type idle,
3197 struct rq_iterator *iterator)
3198{
3199 struct task_struct *p = iterator->start(iterator->arg);
3200 int pinned = 0;
3201
3202 while (p) {
3203 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3204 pull_task(busiest, p, this_rq, this_cpu);
3205 /*
3206 * Right now, this is only the second place pull_task()
3207 * is called, so we can safely collect pull_task()
3208 * stats here rather than inside pull_task().
3209 */
3210 schedstat_inc(sd, lb_gained[idle]);
3211
3212 return 1;
3213 }
3214 p = iterator->next(iterator->arg);
3215 }
3216
3217 return 0;
3218}
3219
43010659
PW
3220/*
3221 * move_one_task tries to move exactly one task from busiest to this_rq, as
3222 * part of active balancing operations within "domain".
3223 * Returns 1 if successful and 0 otherwise.
3224 *
3225 * Called with both runqueues locked.
3226 */
3227static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3228 struct sched_domain *sd, enum cpu_idle_type idle)
3229{
5522d5d5 3230 const struct sched_class *class;
43010659
PW
3231
3232 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3233 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3234 return 1;
3235
3236 return 0;
dd41f596
IM
3237}
3238
1da177e4
LT
3239/*
3240 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3241 * domain. It calculates and returns the amount of weighted load which
3242 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3243 */
3244static struct sched_group *
3245find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3246 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3247 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3248{
3249 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3250 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3251 unsigned long max_pull;
2dd73a4f
PW
3252 unsigned long busiest_load_per_task, busiest_nr_running;
3253 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3254 int load_idx, group_imb = 0;
5c45bf27
SS
3255#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3256 int power_savings_balance = 1;
3257 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3258 unsigned long min_nr_running = ULONG_MAX;
3259 struct sched_group *group_min = NULL, *group_leader = NULL;
3260#endif
1da177e4
LT
3261
3262 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3263 busiest_load_per_task = busiest_nr_running = 0;
3264 this_load_per_task = this_nr_running = 0;
d15bcfdb 3265 if (idle == CPU_NOT_IDLE)
7897986b 3266 load_idx = sd->busy_idx;
d15bcfdb 3267 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3268 load_idx = sd->newidle_idx;
3269 else
3270 load_idx = sd->idle_idx;
1da177e4
LT
3271
3272 do {
908a7c1b 3273 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3274 int local_group;
3275 int i;
908a7c1b 3276 int __group_imb = 0;
783609c6 3277 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3278 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3279
3280 local_group = cpu_isset(this_cpu, group->cpumask);
3281
783609c6
SS
3282 if (local_group)
3283 balance_cpu = first_cpu(group->cpumask);
3284
1da177e4 3285 /* Tally up the load of all CPUs in the group */
2dd73a4f 3286 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3287 max_cpu_load = 0;
3288 min_cpu_load = ~0UL;
1da177e4
LT
3289
3290 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3291 struct rq *rq;
3292
3293 if (!cpu_isset(i, *cpus))
3294 continue;
3295
3296 rq = cpu_rq(i);
2dd73a4f 3297
9439aab8 3298 if (*sd_idle && rq->nr_running)
5969fe06
NP
3299 *sd_idle = 0;
3300
1da177e4 3301 /* Bias balancing toward cpus of our domain */
783609c6
SS
3302 if (local_group) {
3303 if (idle_cpu(i) && !first_idle_cpu) {
3304 first_idle_cpu = 1;
3305 balance_cpu = i;
3306 }
3307
a2000572 3308 load = target_load(i, load_idx);
908a7c1b 3309 } else {
a2000572 3310 load = source_load(i, load_idx);
908a7c1b
KC
3311 if (load > max_cpu_load)
3312 max_cpu_load = load;
3313 if (min_cpu_load > load)
3314 min_cpu_load = load;
3315 }
1da177e4
LT
3316
3317 avg_load += load;
2dd73a4f 3318 sum_nr_running += rq->nr_running;
dd41f596 3319 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3320 }
3321
783609c6
SS
3322 /*
3323 * First idle cpu or the first cpu(busiest) in this sched group
3324 * is eligible for doing load balancing at this and above
9439aab8
SS
3325 * domains. In the newly idle case, we will allow all the cpu's
3326 * to do the newly idle load balance.
783609c6 3327 */
9439aab8
SS
3328 if (idle != CPU_NEWLY_IDLE && local_group &&
3329 balance_cpu != this_cpu && balance) {
783609c6
SS
3330 *balance = 0;
3331 goto ret;
3332 }
3333
1da177e4 3334 total_load += avg_load;
5517d86b 3335 total_pwr += group->__cpu_power;
1da177e4
LT
3336
3337 /* Adjust by relative CPU power of the group */
5517d86b
ED
3338 avg_load = sg_div_cpu_power(group,
3339 avg_load * SCHED_LOAD_SCALE);
1da177e4 3340
908a7c1b
KC
3341 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3342 __group_imb = 1;
3343
5517d86b 3344 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3345
1da177e4
LT
3346 if (local_group) {
3347 this_load = avg_load;
3348 this = group;
2dd73a4f
PW
3349 this_nr_running = sum_nr_running;
3350 this_load_per_task = sum_weighted_load;
3351 } else if (avg_load > max_load &&
908a7c1b 3352 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3353 max_load = avg_load;
3354 busiest = group;
2dd73a4f
PW
3355 busiest_nr_running = sum_nr_running;
3356 busiest_load_per_task = sum_weighted_load;
908a7c1b 3357 group_imb = __group_imb;
1da177e4 3358 }
5c45bf27
SS
3359
3360#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3361 /*
3362 * Busy processors will not participate in power savings
3363 * balance.
3364 */
dd41f596
IM
3365 if (idle == CPU_NOT_IDLE ||
3366 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3367 goto group_next;
5c45bf27
SS
3368
3369 /*
3370 * If the local group is idle or completely loaded
3371 * no need to do power savings balance at this domain
3372 */
3373 if (local_group && (this_nr_running >= group_capacity ||
3374 !this_nr_running))
3375 power_savings_balance = 0;
3376
dd41f596 3377 /*
5c45bf27
SS
3378 * If a group is already running at full capacity or idle,
3379 * don't include that group in power savings calculations
dd41f596
IM
3380 */
3381 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3382 || !sum_nr_running)
dd41f596 3383 goto group_next;
5c45bf27 3384
dd41f596 3385 /*
5c45bf27 3386 * Calculate the group which has the least non-idle load.
dd41f596
IM
3387 * This is the group from where we need to pick up the load
3388 * for saving power
3389 */
3390 if ((sum_nr_running < min_nr_running) ||
3391 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3392 first_cpu(group->cpumask) <
3393 first_cpu(group_min->cpumask))) {
dd41f596
IM
3394 group_min = group;
3395 min_nr_running = sum_nr_running;
5c45bf27
SS
3396 min_load_per_task = sum_weighted_load /
3397 sum_nr_running;
dd41f596 3398 }
5c45bf27 3399
dd41f596 3400 /*
5c45bf27 3401 * Calculate the group which is almost near its
dd41f596
IM
3402 * capacity but still has some space to pick up some load
3403 * from other group and save more power
3404 */
3405 if (sum_nr_running <= group_capacity - 1) {
3406 if (sum_nr_running > leader_nr_running ||
3407 (sum_nr_running == leader_nr_running &&
3408 first_cpu(group->cpumask) >
3409 first_cpu(group_leader->cpumask))) {
3410 group_leader = group;
3411 leader_nr_running = sum_nr_running;
3412 }
48f24c4d 3413 }
5c45bf27
SS
3414group_next:
3415#endif
1da177e4
LT
3416 group = group->next;
3417 } while (group != sd->groups);
3418
2dd73a4f 3419 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3420 goto out_balanced;
3421
3422 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3423
3424 if (this_load >= avg_load ||
3425 100*max_load <= sd->imbalance_pct*this_load)
3426 goto out_balanced;
3427
2dd73a4f 3428 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3429 if (group_imb)
3430 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3431
1da177e4
LT
3432 /*
3433 * We're trying to get all the cpus to the average_load, so we don't
3434 * want to push ourselves above the average load, nor do we wish to
3435 * reduce the max loaded cpu below the average load, as either of these
3436 * actions would just result in more rebalancing later, and ping-pong
3437 * tasks around. Thus we look for the minimum possible imbalance.
3438 * Negative imbalances (*we* are more loaded than anyone else) will
3439 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3440 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3441 * appear as very large values with unsigned longs.
3442 */
2dd73a4f
PW
3443 if (max_load <= busiest_load_per_task)
3444 goto out_balanced;
3445
3446 /*
3447 * In the presence of smp nice balancing, certain scenarios can have
3448 * max load less than avg load(as we skip the groups at or below
3449 * its cpu_power, while calculating max_load..)
3450 */
3451 if (max_load < avg_load) {
3452 *imbalance = 0;
3453 goto small_imbalance;
3454 }
0c117f1b
SS
3455
3456 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3457 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3458
1da177e4 3459 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3460 *imbalance = min(max_pull * busiest->__cpu_power,
3461 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3462 / SCHED_LOAD_SCALE;
3463
2dd73a4f
PW
3464 /*
3465 * if *imbalance is less than the average load per runnable task
3466 * there is no gaurantee that any tasks will be moved so we'll have
3467 * a think about bumping its value to force at least one task to be
3468 * moved
3469 */
7fd0d2dd 3470 if (*imbalance < busiest_load_per_task) {
48f24c4d 3471 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3472 unsigned int imbn;
3473
3474small_imbalance:
3475 pwr_move = pwr_now = 0;
3476 imbn = 2;
3477 if (this_nr_running) {
3478 this_load_per_task /= this_nr_running;
3479 if (busiest_load_per_task > this_load_per_task)
3480 imbn = 1;
3481 } else
3482 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3483
dd41f596
IM
3484 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3485 busiest_load_per_task * imbn) {
2dd73a4f 3486 *imbalance = busiest_load_per_task;
1da177e4
LT
3487 return busiest;
3488 }
3489
3490 /*
3491 * OK, we don't have enough imbalance to justify moving tasks,
3492 * however we may be able to increase total CPU power used by
3493 * moving them.
3494 */
3495
5517d86b
ED
3496 pwr_now += busiest->__cpu_power *
3497 min(busiest_load_per_task, max_load);
3498 pwr_now += this->__cpu_power *
3499 min(this_load_per_task, this_load);
1da177e4
LT
3500 pwr_now /= SCHED_LOAD_SCALE;
3501
3502 /* Amount of load we'd subtract */
5517d86b
ED
3503 tmp = sg_div_cpu_power(busiest,
3504 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3505 if (max_load > tmp)
5517d86b 3506 pwr_move += busiest->__cpu_power *
2dd73a4f 3507 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3508
3509 /* Amount of load we'd add */
5517d86b 3510 if (max_load * busiest->__cpu_power <
33859f7f 3511 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3512 tmp = sg_div_cpu_power(this,
3513 max_load * busiest->__cpu_power);
1da177e4 3514 else
5517d86b
ED
3515 tmp = sg_div_cpu_power(this,
3516 busiest_load_per_task * SCHED_LOAD_SCALE);
3517 pwr_move += this->__cpu_power *
3518 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3519 pwr_move /= SCHED_LOAD_SCALE;
3520
3521 /* Move if we gain throughput */
7fd0d2dd
SS
3522 if (pwr_move > pwr_now)
3523 *imbalance = busiest_load_per_task;
1da177e4
LT
3524 }
3525
1da177e4
LT
3526 return busiest;
3527
3528out_balanced:
5c45bf27 3529#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3530 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3531 goto ret;
1da177e4 3532
5c45bf27
SS
3533 if (this == group_leader && group_leader != group_min) {
3534 *imbalance = min_load_per_task;
3535 return group_min;
3536 }
5c45bf27 3537#endif
783609c6 3538ret:
1da177e4
LT
3539 *imbalance = 0;
3540 return NULL;
3541}
3542
3543/*
3544 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3545 */
70b97a7f 3546static struct rq *
d15bcfdb 3547find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3548 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3549{
70b97a7f 3550 struct rq *busiest = NULL, *rq;
2dd73a4f 3551 unsigned long max_load = 0;
1da177e4
LT
3552 int i;
3553
3554 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3555 unsigned long wl;
0a2966b4
CL
3556
3557 if (!cpu_isset(i, *cpus))
3558 continue;
3559
48f24c4d 3560 rq = cpu_rq(i);
dd41f596 3561 wl = weighted_cpuload(i);
2dd73a4f 3562
dd41f596 3563 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3564 continue;
1da177e4 3565
dd41f596
IM
3566 if (wl > max_load) {
3567 max_load = wl;
48f24c4d 3568 busiest = rq;
1da177e4
LT
3569 }
3570 }
3571
3572 return busiest;
3573}
3574
77391d71
NP
3575/*
3576 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3577 * so long as it is large enough.
3578 */
3579#define MAX_PINNED_INTERVAL 512
3580
1da177e4
LT
3581/*
3582 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3583 * tasks if there is an imbalance.
1da177e4 3584 */
70b97a7f 3585static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3586 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3587 int *balance, cpumask_t *cpus)
1da177e4 3588{
43010659 3589 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3590 struct sched_group *group;
1da177e4 3591 unsigned long imbalance;
70b97a7f 3592 struct rq *busiest;
fe2eea3f 3593 unsigned long flags;
18d95a28 3594 int unlock_aggregate;
5969fe06 3595
7c16ec58
MT
3596 cpus_setall(*cpus);
3597
18d95a28
PZ
3598 unlock_aggregate = get_aggregate(sd);
3599
89c4710e
SS
3600 /*
3601 * When power savings policy is enabled for the parent domain, idle
3602 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3603 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3604 * portraying it as CPU_NOT_IDLE.
89c4710e 3605 */
d15bcfdb 3606 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3608 sd_idle = 1;
1da177e4 3609
2d72376b 3610 schedstat_inc(sd, lb_count[idle]);
1da177e4 3611
0a2966b4
CL
3612redo:
3613 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3614 cpus, balance);
783609c6 3615
06066714 3616 if (*balance == 0)
783609c6 3617 goto out_balanced;
783609c6 3618
1da177e4
LT
3619 if (!group) {
3620 schedstat_inc(sd, lb_nobusyg[idle]);
3621 goto out_balanced;
3622 }
3623
7c16ec58 3624 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3625 if (!busiest) {
3626 schedstat_inc(sd, lb_nobusyq[idle]);
3627 goto out_balanced;
3628 }
3629
db935dbd 3630 BUG_ON(busiest == this_rq);
1da177e4
LT
3631
3632 schedstat_add(sd, lb_imbalance[idle], imbalance);
3633
43010659 3634 ld_moved = 0;
1da177e4
LT
3635 if (busiest->nr_running > 1) {
3636 /*
3637 * Attempt to move tasks. If find_busiest_group has found
3638 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3639 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3640 * correctly treated as an imbalance.
3641 */
fe2eea3f 3642 local_irq_save(flags);
e17224bf 3643 double_rq_lock(this_rq, busiest);
43010659 3644 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3645 imbalance, sd, idle, &all_pinned);
e17224bf 3646 double_rq_unlock(this_rq, busiest);
fe2eea3f 3647 local_irq_restore(flags);
81026794 3648
46cb4b7c
SS
3649 /*
3650 * some other cpu did the load balance for us.
3651 */
43010659 3652 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3653 resched_cpu(this_cpu);
3654
81026794 3655 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3656 if (unlikely(all_pinned)) {
7c16ec58
MT
3657 cpu_clear(cpu_of(busiest), *cpus);
3658 if (!cpus_empty(*cpus))
0a2966b4 3659 goto redo;
81026794 3660 goto out_balanced;
0a2966b4 3661 }
1da177e4 3662 }
81026794 3663
43010659 3664 if (!ld_moved) {
1da177e4
LT
3665 schedstat_inc(sd, lb_failed[idle]);
3666 sd->nr_balance_failed++;
3667
3668 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3669
fe2eea3f 3670 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3671
3672 /* don't kick the migration_thread, if the curr
3673 * task on busiest cpu can't be moved to this_cpu
3674 */
3675 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3676 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3677 all_pinned = 1;
3678 goto out_one_pinned;
3679 }
3680
1da177e4
LT
3681 if (!busiest->active_balance) {
3682 busiest->active_balance = 1;
3683 busiest->push_cpu = this_cpu;
81026794 3684 active_balance = 1;
1da177e4 3685 }
fe2eea3f 3686 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3687 if (active_balance)
1da177e4
LT
3688 wake_up_process(busiest->migration_thread);
3689
3690 /*
3691 * We've kicked active balancing, reset the failure
3692 * counter.
3693 */
39507451 3694 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3695 }
81026794 3696 } else
1da177e4
LT
3697 sd->nr_balance_failed = 0;
3698
81026794 3699 if (likely(!active_balance)) {
1da177e4
LT
3700 /* We were unbalanced, so reset the balancing interval */
3701 sd->balance_interval = sd->min_interval;
81026794
NP
3702 } else {
3703 /*
3704 * If we've begun active balancing, start to back off. This
3705 * case may not be covered by the all_pinned logic if there
3706 * is only 1 task on the busy runqueue (because we don't call
3707 * move_tasks).
3708 */
3709 if (sd->balance_interval < sd->max_interval)
3710 sd->balance_interval *= 2;
1da177e4
LT
3711 }
3712
43010659 3713 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3714 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3715 ld_moved = -1;
3716
3717 goto out;
1da177e4
LT
3718
3719out_balanced:
1da177e4
LT
3720 schedstat_inc(sd, lb_balanced[idle]);
3721
16cfb1c0 3722 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3723
3724out_one_pinned:
1da177e4 3725 /* tune up the balancing interval */
77391d71
NP
3726 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3727 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3728 sd->balance_interval *= 2;
3729
48f24c4d 3730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
18d95a28
PZ
3732 ld_moved = -1;
3733 else
3734 ld_moved = 0;
3735out:
3736 if (unlock_aggregate)
3737 put_aggregate(sd);
3738 return ld_moved;
1da177e4
LT
3739}
3740
3741/*
3742 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3743 * tasks if there is an imbalance.
3744 *
d15bcfdb 3745 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3746 * this_rq is locked.
3747 */
48f24c4d 3748static int
7c16ec58
MT
3749load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3750 cpumask_t *cpus)
1da177e4
LT
3751{
3752 struct sched_group *group;
70b97a7f 3753 struct rq *busiest = NULL;
1da177e4 3754 unsigned long imbalance;
43010659 3755 int ld_moved = 0;
5969fe06 3756 int sd_idle = 0;
969bb4e4 3757 int all_pinned = 0;
7c16ec58
MT
3758
3759 cpus_setall(*cpus);
5969fe06 3760
89c4710e
SS
3761 /*
3762 * When power savings policy is enabled for the parent domain, idle
3763 * sibling can pick up load irrespective of busy siblings. In this case,
3764 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3765 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3766 */
3767 if (sd->flags & SD_SHARE_CPUPOWER &&
3768 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3769 sd_idle = 1;
1da177e4 3770
2d72376b 3771 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3772redo:
d15bcfdb 3773 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3774 &sd_idle, cpus, NULL);
1da177e4 3775 if (!group) {
d15bcfdb 3776 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3777 goto out_balanced;
1da177e4
LT
3778 }
3779
7c16ec58 3780 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3781 if (!busiest) {
d15bcfdb 3782 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3783 goto out_balanced;
1da177e4
LT
3784 }
3785
db935dbd
NP
3786 BUG_ON(busiest == this_rq);
3787
d15bcfdb 3788 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3789
43010659 3790 ld_moved = 0;
d6d5cfaf
NP
3791 if (busiest->nr_running > 1) {
3792 /* Attempt to move tasks */
3793 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3794 /* this_rq->clock is already updated */
3795 update_rq_clock(busiest);
43010659 3796 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3797 imbalance, sd, CPU_NEWLY_IDLE,
3798 &all_pinned);
d6d5cfaf 3799 spin_unlock(&busiest->lock);
0a2966b4 3800
969bb4e4 3801 if (unlikely(all_pinned)) {
7c16ec58
MT
3802 cpu_clear(cpu_of(busiest), *cpus);
3803 if (!cpus_empty(*cpus))
0a2966b4
CL
3804 goto redo;
3805 }
d6d5cfaf
NP
3806 }
3807
43010659 3808 if (!ld_moved) {
d15bcfdb 3809 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3810 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3811 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3812 return -1;
3813 } else
16cfb1c0 3814 sd->nr_balance_failed = 0;
1da177e4 3815
43010659 3816 return ld_moved;
16cfb1c0
NP
3817
3818out_balanced:
d15bcfdb 3819 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3820 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3821 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3822 return -1;
16cfb1c0 3823 sd->nr_balance_failed = 0;
48f24c4d 3824
16cfb1c0 3825 return 0;
1da177e4
LT
3826}
3827
3828/*
3829 * idle_balance is called by schedule() if this_cpu is about to become
3830 * idle. Attempts to pull tasks from other CPUs.
3831 */
70b97a7f 3832static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3833{
3834 struct sched_domain *sd;
dd41f596
IM
3835 int pulled_task = -1;
3836 unsigned long next_balance = jiffies + HZ;
7c16ec58 3837 cpumask_t tmpmask;
1da177e4
LT
3838
3839 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3840 unsigned long interval;
3841
3842 if (!(sd->flags & SD_LOAD_BALANCE))
3843 continue;
3844
3845 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3846 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3847 pulled_task = load_balance_newidle(this_cpu, this_rq,
3848 sd, &tmpmask);
92c4ca5c
CL
3849
3850 interval = msecs_to_jiffies(sd->balance_interval);
3851 if (time_after(next_balance, sd->last_balance + interval))
3852 next_balance = sd->last_balance + interval;
3853 if (pulled_task)
3854 break;
1da177e4 3855 }
dd41f596 3856 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3857 /*
3858 * We are going idle. next_balance may be set based on
3859 * a busy processor. So reset next_balance.
3860 */
3861 this_rq->next_balance = next_balance;
dd41f596 3862 }
1da177e4
LT
3863}
3864
3865/*
3866 * active_load_balance is run by migration threads. It pushes running tasks
3867 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3868 * running on each physical CPU where possible, and avoids physical /
3869 * logical imbalances.
3870 *
3871 * Called with busiest_rq locked.
3872 */
70b97a7f 3873static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3874{
39507451 3875 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3876 struct sched_domain *sd;
3877 struct rq *target_rq;
39507451 3878
48f24c4d 3879 /* Is there any task to move? */
39507451 3880 if (busiest_rq->nr_running <= 1)
39507451
NP
3881 return;
3882
3883 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3884
3885 /*
39507451 3886 * This condition is "impossible", if it occurs
41a2d6cf 3887 * we need to fix it. Originally reported by
39507451 3888 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3889 */
39507451 3890 BUG_ON(busiest_rq == target_rq);
1da177e4 3891
39507451
NP
3892 /* move a task from busiest_rq to target_rq */
3893 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3894 update_rq_clock(busiest_rq);
3895 update_rq_clock(target_rq);
39507451
NP
3896
3897 /* Search for an sd spanning us and the target CPU. */
c96d145e 3898 for_each_domain(target_cpu, sd) {
39507451 3899 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3900 cpu_isset(busiest_cpu, sd->span))
39507451 3901 break;
c96d145e 3902 }
39507451 3903
48f24c4d 3904 if (likely(sd)) {
2d72376b 3905 schedstat_inc(sd, alb_count);
39507451 3906
43010659
PW
3907 if (move_one_task(target_rq, target_cpu, busiest_rq,
3908 sd, CPU_IDLE))
48f24c4d
IM
3909 schedstat_inc(sd, alb_pushed);
3910 else
3911 schedstat_inc(sd, alb_failed);
3912 }
39507451 3913 spin_unlock(&target_rq->lock);
1da177e4
LT
3914}
3915
46cb4b7c
SS
3916#ifdef CONFIG_NO_HZ
3917static struct {
3918 atomic_t load_balancer;
41a2d6cf 3919 cpumask_t cpu_mask;
46cb4b7c
SS
3920} nohz ____cacheline_aligned = {
3921 .load_balancer = ATOMIC_INIT(-1),
3922 .cpu_mask = CPU_MASK_NONE,
3923};
3924
7835b98b 3925/*
46cb4b7c
SS
3926 * This routine will try to nominate the ilb (idle load balancing)
3927 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3928 * load balancing on behalf of all those cpus. If all the cpus in the system
3929 * go into this tickless mode, then there will be no ilb owner (as there is
3930 * no need for one) and all the cpus will sleep till the next wakeup event
3931 * arrives...
3932 *
3933 * For the ilb owner, tick is not stopped. And this tick will be used
3934 * for idle load balancing. ilb owner will still be part of
3935 * nohz.cpu_mask..
7835b98b 3936 *
46cb4b7c
SS
3937 * While stopping the tick, this cpu will become the ilb owner if there
3938 * is no other owner. And will be the owner till that cpu becomes busy
3939 * or if all cpus in the system stop their ticks at which point
3940 * there is no need for ilb owner.
3941 *
3942 * When the ilb owner becomes busy, it nominates another owner, during the
3943 * next busy scheduler_tick()
3944 */
3945int select_nohz_load_balancer(int stop_tick)
3946{
3947 int cpu = smp_processor_id();
3948
3949 if (stop_tick) {
3950 cpu_set(cpu, nohz.cpu_mask);
3951 cpu_rq(cpu)->in_nohz_recently = 1;
3952
3953 /*
3954 * If we are going offline and still the leader, give up!
3955 */
3956 if (cpu_is_offline(cpu) &&
3957 atomic_read(&nohz.load_balancer) == cpu) {
3958 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3959 BUG();
3960 return 0;
3961 }
3962
3963 /* time for ilb owner also to sleep */
3964 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3965 if (atomic_read(&nohz.load_balancer) == cpu)
3966 atomic_set(&nohz.load_balancer, -1);
3967 return 0;
3968 }
3969
3970 if (atomic_read(&nohz.load_balancer) == -1) {
3971 /* make me the ilb owner */
3972 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3973 return 1;
3974 } else if (atomic_read(&nohz.load_balancer) == cpu)
3975 return 1;
3976 } else {
3977 if (!cpu_isset(cpu, nohz.cpu_mask))
3978 return 0;
3979
3980 cpu_clear(cpu, nohz.cpu_mask);
3981
3982 if (atomic_read(&nohz.load_balancer) == cpu)
3983 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3984 BUG();
3985 }
3986 return 0;
3987}
3988#endif
3989
3990static DEFINE_SPINLOCK(balancing);
3991
3992/*
7835b98b
CL
3993 * It checks each scheduling domain to see if it is due to be balanced,
3994 * and initiates a balancing operation if so.
3995 *
3996 * Balancing parameters are set up in arch_init_sched_domains.
3997 */
a9957449 3998static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3999{
46cb4b7c
SS
4000 int balance = 1;
4001 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4002 unsigned long interval;
4003 struct sched_domain *sd;
46cb4b7c 4004 /* Earliest time when we have to do rebalance again */
c9819f45 4005 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4006 int update_next_balance = 0;
7c16ec58 4007 cpumask_t tmp;
1da177e4 4008
46cb4b7c 4009 for_each_domain(cpu, sd) {
1da177e4
LT
4010 if (!(sd->flags & SD_LOAD_BALANCE))
4011 continue;
4012
4013 interval = sd->balance_interval;
d15bcfdb 4014 if (idle != CPU_IDLE)
1da177e4
LT
4015 interval *= sd->busy_factor;
4016
4017 /* scale ms to jiffies */
4018 interval = msecs_to_jiffies(interval);
4019 if (unlikely(!interval))
4020 interval = 1;
dd41f596
IM
4021 if (interval > HZ*NR_CPUS/10)
4022 interval = HZ*NR_CPUS/10;
4023
1da177e4 4024
08c183f3
CL
4025 if (sd->flags & SD_SERIALIZE) {
4026 if (!spin_trylock(&balancing))
4027 goto out;
4028 }
4029
c9819f45 4030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 4031 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
4032 /*
4033 * We've pulled tasks over so either we're no
5969fe06
NP
4034 * longer idle, or one of our SMT siblings is
4035 * not idle.
4036 */
d15bcfdb 4037 idle = CPU_NOT_IDLE;
1da177e4 4038 }
1bd77f2d 4039 sd->last_balance = jiffies;
1da177e4 4040 }
08c183f3
CL
4041 if (sd->flags & SD_SERIALIZE)
4042 spin_unlock(&balancing);
4043out:
f549da84 4044 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4045 next_balance = sd->last_balance + interval;
f549da84
SS
4046 update_next_balance = 1;
4047 }
783609c6
SS
4048
4049 /*
4050 * Stop the load balance at this level. There is another
4051 * CPU in our sched group which is doing load balancing more
4052 * actively.
4053 */
4054 if (!balance)
4055 break;
1da177e4 4056 }
f549da84
SS
4057
4058 /*
4059 * next_balance will be updated only when there is a need.
4060 * When the cpu is attached to null domain for ex, it will not be
4061 * updated.
4062 */
4063 if (likely(update_next_balance))
4064 rq->next_balance = next_balance;
46cb4b7c
SS
4065}
4066
4067/*
4068 * run_rebalance_domains is triggered when needed from the scheduler tick.
4069 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4070 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4071 */
4072static void run_rebalance_domains(struct softirq_action *h)
4073{
dd41f596
IM
4074 int this_cpu = smp_processor_id();
4075 struct rq *this_rq = cpu_rq(this_cpu);
4076 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4077 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4078
dd41f596 4079 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4080
4081#ifdef CONFIG_NO_HZ
4082 /*
4083 * If this cpu is the owner for idle load balancing, then do the
4084 * balancing on behalf of the other idle cpus whose ticks are
4085 * stopped.
4086 */
dd41f596
IM
4087 if (this_rq->idle_at_tick &&
4088 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4089 cpumask_t cpus = nohz.cpu_mask;
4090 struct rq *rq;
4091 int balance_cpu;
4092
dd41f596 4093 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
4094 for_each_cpu_mask(balance_cpu, cpus) {
4095 /*
4096 * If this cpu gets work to do, stop the load balancing
4097 * work being done for other cpus. Next load
4098 * balancing owner will pick it up.
4099 */
4100 if (need_resched())
4101 break;
4102
de0cf899 4103 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4104
4105 rq = cpu_rq(balance_cpu);
dd41f596
IM
4106 if (time_after(this_rq->next_balance, rq->next_balance))
4107 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4108 }
4109 }
4110#endif
4111}
4112
4113/*
4114 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4115 *
4116 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4117 * idle load balancing owner or decide to stop the periodic load balancing,
4118 * if the whole system is idle.
4119 */
dd41f596 4120static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4121{
46cb4b7c
SS
4122#ifdef CONFIG_NO_HZ
4123 /*
4124 * If we were in the nohz mode recently and busy at the current
4125 * scheduler tick, then check if we need to nominate new idle
4126 * load balancer.
4127 */
4128 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4129 rq->in_nohz_recently = 0;
4130
4131 if (atomic_read(&nohz.load_balancer) == cpu) {
4132 cpu_clear(cpu, nohz.cpu_mask);
4133 atomic_set(&nohz.load_balancer, -1);
4134 }
4135
4136 if (atomic_read(&nohz.load_balancer) == -1) {
4137 /*
4138 * simple selection for now: Nominate the
4139 * first cpu in the nohz list to be the next
4140 * ilb owner.
4141 *
4142 * TBD: Traverse the sched domains and nominate
4143 * the nearest cpu in the nohz.cpu_mask.
4144 */
4145 int ilb = first_cpu(nohz.cpu_mask);
4146
434d53b0 4147 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4148 resched_cpu(ilb);
4149 }
4150 }
4151
4152 /*
4153 * If this cpu is idle and doing idle load balancing for all the
4154 * cpus with ticks stopped, is it time for that to stop?
4155 */
4156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4157 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4158 resched_cpu(cpu);
4159 return;
4160 }
4161
4162 /*
4163 * If this cpu is idle and the idle load balancing is done by
4164 * someone else, then no need raise the SCHED_SOFTIRQ
4165 */
4166 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4167 cpu_isset(cpu, nohz.cpu_mask))
4168 return;
4169#endif
4170 if (time_after_eq(jiffies, rq->next_balance))
4171 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4172}
dd41f596
IM
4173
4174#else /* CONFIG_SMP */
4175
1da177e4
LT
4176/*
4177 * on UP we do not need to balance between CPUs:
4178 */
70b97a7f 4179static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4180{
4181}
dd41f596 4182
1da177e4
LT
4183#endif
4184
1da177e4
LT
4185DEFINE_PER_CPU(struct kernel_stat, kstat);
4186
4187EXPORT_PER_CPU_SYMBOL(kstat);
4188
4189/*
41b86e9c
IM
4190 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4191 * that have not yet been banked in case the task is currently running.
1da177e4 4192 */
41b86e9c 4193unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4194{
1da177e4 4195 unsigned long flags;
41b86e9c
IM
4196 u64 ns, delta_exec;
4197 struct rq *rq;
48f24c4d 4198
41b86e9c
IM
4199 rq = task_rq_lock(p, &flags);
4200 ns = p->se.sum_exec_runtime;
051a1d1a 4201 if (task_current(rq, p)) {
a8e504d2
IM
4202 update_rq_clock(rq);
4203 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4204 if ((s64)delta_exec > 0)
4205 ns += delta_exec;
4206 }
4207 task_rq_unlock(rq, &flags);
48f24c4d 4208
1da177e4
LT
4209 return ns;
4210}
4211
1da177e4
LT
4212/*
4213 * Account user cpu time to a process.
4214 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4215 * @cputime: the cpu time spent in user space since the last update
4216 */
4217void account_user_time(struct task_struct *p, cputime_t cputime)
4218{
4219 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4220 cputime64_t tmp;
4221
4222 p->utime = cputime_add(p->utime, cputime);
4223
4224 /* Add user time to cpustat. */
4225 tmp = cputime_to_cputime64(cputime);
4226 if (TASK_NICE(p) > 0)
4227 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4228 else
4229 cpustat->user = cputime64_add(cpustat->user, tmp);
4230}
4231
94886b84
LV
4232/*
4233 * Account guest cpu time to a process.
4234 * @p: the process that the cpu time gets accounted to
4235 * @cputime: the cpu time spent in virtual machine since the last update
4236 */
f7402e03 4237static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4238{
4239 cputime64_t tmp;
4240 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4241
4242 tmp = cputime_to_cputime64(cputime);
4243
4244 p->utime = cputime_add(p->utime, cputime);
4245 p->gtime = cputime_add(p->gtime, cputime);
4246
4247 cpustat->user = cputime64_add(cpustat->user, tmp);
4248 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4249}
4250
c66f08be
MN
4251/*
4252 * Account scaled user cpu time to a process.
4253 * @p: the process that the cpu time gets accounted to
4254 * @cputime: the cpu time spent in user space since the last update
4255 */
4256void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4257{
4258 p->utimescaled = cputime_add(p->utimescaled, cputime);
4259}
4260
1da177e4
LT
4261/*
4262 * Account system cpu time to a process.
4263 * @p: the process that the cpu time gets accounted to
4264 * @hardirq_offset: the offset to subtract from hardirq_count()
4265 * @cputime: the cpu time spent in kernel space since the last update
4266 */
4267void account_system_time(struct task_struct *p, int hardirq_offset,
4268 cputime_t cputime)
4269{
4270 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4271 struct rq *rq = this_rq();
1da177e4
LT
4272 cputime64_t tmp;
4273
9778385d
CB
4274 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
4275 return account_guest_time(p, cputime);
94886b84 4276
1da177e4
LT
4277 p->stime = cputime_add(p->stime, cputime);
4278
4279 /* Add system time to cpustat. */
4280 tmp = cputime_to_cputime64(cputime);
4281 if (hardirq_count() - hardirq_offset)
4282 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4283 else if (softirq_count())
4284 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4285 else if (p != rq->idle)
1da177e4 4286 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4287 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4288 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4289 else
4290 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4291 /* Account for system time used */
4292 acct_update_integrals(p);
1da177e4
LT
4293}
4294
c66f08be
MN
4295/*
4296 * Account scaled system cpu time to a process.
4297 * @p: the process that the cpu time gets accounted to
4298 * @hardirq_offset: the offset to subtract from hardirq_count()
4299 * @cputime: the cpu time spent in kernel space since the last update
4300 */
4301void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4302{
4303 p->stimescaled = cputime_add(p->stimescaled, cputime);
4304}
4305
1da177e4
LT
4306/*
4307 * Account for involuntary wait time.
4308 * @p: the process from which the cpu time has been stolen
4309 * @steal: the cpu time spent in involuntary wait
4310 */
4311void account_steal_time(struct task_struct *p, cputime_t steal)
4312{
4313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4314 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4315 struct rq *rq = this_rq();
1da177e4
LT
4316
4317 if (p == rq->idle) {
4318 p->stime = cputime_add(p->stime, steal);
4319 if (atomic_read(&rq->nr_iowait) > 0)
4320 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4321 else
4322 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4323 } else
1da177e4
LT
4324 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4325}
4326
7835b98b
CL
4327/*
4328 * This function gets called by the timer code, with HZ frequency.
4329 * We call it with interrupts disabled.
4330 *
4331 * It also gets called by the fork code, when changing the parent's
4332 * timeslices.
4333 */
4334void scheduler_tick(void)
4335{
7835b98b
CL
4336 int cpu = smp_processor_id();
4337 struct rq *rq = cpu_rq(cpu);
dd41f596 4338 struct task_struct *curr = rq->curr;
529c7726 4339 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
4340
4341 spin_lock(&rq->lock);
546fe3c9 4342 __update_rq_clock(rq);
529c7726
IM
4343 /*
4344 * Let rq->clock advance by at least TICK_NSEC:
4345 */
cc203d24 4346 if (unlikely(rq->clock < next_tick)) {
529c7726 4347 rq->clock = next_tick;
cc203d24
GC
4348 rq->clock_underflows++;
4349 }
529c7726 4350 rq->tick_timestamp = rq->clock;
15934a37 4351 update_last_tick_seen(rq);
f1a438d8 4352 update_cpu_load(rq);
fa85ae24 4353 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4354 spin_unlock(&rq->lock);
7835b98b 4355
e418e1c2 4356#ifdef CONFIG_SMP
dd41f596
IM
4357 rq->idle_at_tick = idle_cpu(cpu);
4358 trigger_load_balance(rq, cpu);
e418e1c2 4359#endif
1da177e4
LT
4360}
4361
1da177e4
LT
4362#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4363
43627582 4364void __kprobes add_preempt_count(int val)
1da177e4
LT
4365{
4366 /*
4367 * Underflow?
4368 */
9a11b49a
IM
4369 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4370 return;
1da177e4
LT
4371 preempt_count() += val;
4372 /*
4373 * Spinlock count overflowing soon?
4374 */
33859f7f
MOS
4375 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4376 PREEMPT_MASK - 10);
1da177e4
LT
4377}
4378EXPORT_SYMBOL(add_preempt_count);
4379
43627582 4380void __kprobes sub_preempt_count(int val)
1da177e4
LT
4381{
4382 /*
4383 * Underflow?
4384 */
9a11b49a
IM
4385 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4386 return;
1da177e4
LT
4387 /*
4388 * Is the spinlock portion underflowing?
4389 */
9a11b49a
IM
4390 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4391 !(preempt_count() & PREEMPT_MASK)))
4392 return;
4393
1da177e4
LT
4394 preempt_count() -= val;
4395}
4396EXPORT_SYMBOL(sub_preempt_count);
4397
4398#endif
4399
4400/*
dd41f596 4401 * Print scheduling while atomic bug:
1da177e4 4402 */
dd41f596 4403static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4404{
838225b4
SS
4405 struct pt_regs *regs = get_irq_regs();
4406
4407 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4408 prev->comm, prev->pid, preempt_count());
4409
dd41f596
IM
4410 debug_show_held_locks(prev);
4411 if (irqs_disabled())
4412 print_irqtrace_events(prev);
838225b4
SS
4413
4414 if (regs)
4415 show_regs(regs);
4416 else
4417 dump_stack();
dd41f596 4418}
1da177e4 4419
dd41f596
IM
4420/*
4421 * Various schedule()-time debugging checks and statistics:
4422 */
4423static inline void schedule_debug(struct task_struct *prev)
4424{
1da177e4 4425 /*
41a2d6cf 4426 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4427 * schedule() atomically, we ignore that path for now.
4428 * Otherwise, whine if we are scheduling when we should not be.
4429 */
dd41f596
IM
4430 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4431 __schedule_bug(prev);
4432
1da177e4
LT
4433 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4434
2d72376b 4435 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4436#ifdef CONFIG_SCHEDSTATS
4437 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4438 schedstat_inc(this_rq(), bkl_count);
4439 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4440 }
4441#endif
dd41f596
IM
4442}
4443
4444/*
4445 * Pick up the highest-prio task:
4446 */
4447static inline struct task_struct *
ff95f3df 4448pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4449{
5522d5d5 4450 const struct sched_class *class;
dd41f596 4451 struct task_struct *p;
1da177e4
LT
4452
4453 /*
dd41f596
IM
4454 * Optimization: we know that if all tasks are in
4455 * the fair class we can call that function directly:
1da177e4 4456 */
dd41f596 4457 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4458 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4459 if (likely(p))
4460 return p;
1da177e4
LT
4461 }
4462
dd41f596
IM
4463 class = sched_class_highest;
4464 for ( ; ; ) {
fb8d4724 4465 p = class->pick_next_task(rq);
dd41f596
IM
4466 if (p)
4467 return p;
4468 /*
4469 * Will never be NULL as the idle class always
4470 * returns a non-NULL p:
4471 */
4472 class = class->next;
4473 }
4474}
1da177e4 4475
dd41f596
IM
4476/*
4477 * schedule() is the main scheduler function.
4478 */
4479asmlinkage void __sched schedule(void)
4480{
4481 struct task_struct *prev, *next;
67ca7bde 4482 unsigned long *switch_count;
dd41f596 4483 struct rq *rq;
dd41f596
IM
4484 int cpu;
4485
4486need_resched:
4487 preempt_disable();
4488 cpu = smp_processor_id();
4489 rq = cpu_rq(cpu);
4490 rcu_qsctr_inc(cpu);
4491 prev = rq->curr;
4492 switch_count = &prev->nivcsw;
4493
4494 release_kernel_lock(prev);
4495need_resched_nonpreemptible:
4496
4497 schedule_debug(prev);
1da177e4 4498
8f4d37ec
PZ
4499 hrtick_clear(rq);
4500
1e819950
IM
4501 /*
4502 * Do the rq-clock update outside the rq lock:
4503 */
4504 local_irq_disable();
c1b3da3e 4505 __update_rq_clock(rq);
1e819950
IM
4506 spin_lock(&rq->lock);
4507 clear_tsk_need_resched(prev);
1da177e4 4508
1da177e4 4509 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 4510 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
23e3c3cd 4511 signal_pending(prev))) {
1da177e4 4512 prev->state = TASK_RUNNING;
dd41f596 4513 } else {
2e1cb74a 4514 deactivate_task(rq, prev, 1);
1da177e4 4515 }
dd41f596 4516 switch_count = &prev->nvcsw;
1da177e4
LT
4517 }
4518
9a897c5a
SR
4519#ifdef CONFIG_SMP
4520 if (prev->sched_class->pre_schedule)
4521 prev->sched_class->pre_schedule(rq, prev);
4522#endif
f65eda4f 4523
dd41f596 4524 if (unlikely(!rq->nr_running))
1da177e4 4525 idle_balance(cpu, rq);
1da177e4 4526
31ee529c 4527 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4528 next = pick_next_task(rq, prev);
1da177e4
LT
4529
4530 sched_info_switch(prev, next);
dd41f596 4531
1da177e4 4532 if (likely(prev != next)) {
1da177e4
LT
4533 rq->nr_switches++;
4534 rq->curr = next;
4535 ++*switch_count;
4536
dd41f596 4537 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4538 /*
4539 * the context switch might have flipped the stack from under
4540 * us, hence refresh the local variables.
4541 */
4542 cpu = smp_processor_id();
4543 rq = cpu_rq(cpu);
1da177e4
LT
4544 } else
4545 spin_unlock_irq(&rq->lock);
4546
8f4d37ec
PZ
4547 hrtick_set(rq);
4548
4549 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4550 goto need_resched_nonpreemptible;
8f4d37ec 4551
1da177e4
LT
4552 preempt_enable_no_resched();
4553 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4554 goto need_resched;
4555}
1da177e4
LT
4556EXPORT_SYMBOL(schedule);
4557
4558#ifdef CONFIG_PREEMPT
4559/*
2ed6e34f 4560 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4561 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4562 * occur there and call schedule directly.
4563 */
4564asmlinkage void __sched preempt_schedule(void)
4565{
4566 struct thread_info *ti = current_thread_info();
1da177e4
LT
4567 struct task_struct *task = current;
4568 int saved_lock_depth;
6478d880 4569
1da177e4
LT
4570 /*
4571 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4572 * we do not want to preempt the current task. Just return..
1da177e4 4573 */
beed33a8 4574 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4575 return;
4576
3a5c359a
AK
4577 do {
4578 add_preempt_count(PREEMPT_ACTIVE);
4579
4580 /*
4581 * We keep the big kernel semaphore locked, but we
4582 * clear ->lock_depth so that schedule() doesnt
4583 * auto-release the semaphore:
4584 */
3a5c359a
AK
4585 saved_lock_depth = task->lock_depth;
4586 task->lock_depth = -1;
3a5c359a 4587 schedule();
3a5c359a 4588 task->lock_depth = saved_lock_depth;
3a5c359a 4589 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4590
3a5c359a
AK
4591 /*
4592 * Check again in case we missed a preemption opportunity
4593 * between schedule and now.
4594 */
4595 barrier();
4596 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4597}
1da177e4
LT
4598EXPORT_SYMBOL(preempt_schedule);
4599
4600/*
2ed6e34f 4601 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4602 * off of irq context.
4603 * Note, that this is called and return with irqs disabled. This will
4604 * protect us against recursive calling from irq.
4605 */
4606asmlinkage void __sched preempt_schedule_irq(void)
4607{
4608 struct thread_info *ti = current_thread_info();
1da177e4
LT
4609 struct task_struct *task = current;
4610 int saved_lock_depth;
6478d880 4611
2ed6e34f 4612 /* Catch callers which need to be fixed */
1da177e4
LT
4613 BUG_ON(ti->preempt_count || !irqs_disabled());
4614
3a5c359a
AK
4615 do {
4616 add_preempt_count(PREEMPT_ACTIVE);
4617
4618 /*
4619 * We keep the big kernel semaphore locked, but we
4620 * clear ->lock_depth so that schedule() doesnt
4621 * auto-release the semaphore:
4622 */
3a5c359a
AK
4623 saved_lock_depth = task->lock_depth;
4624 task->lock_depth = -1;
3a5c359a
AK
4625 local_irq_enable();
4626 schedule();
4627 local_irq_disable();
3a5c359a 4628 task->lock_depth = saved_lock_depth;
3a5c359a 4629 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4630
3a5c359a
AK
4631 /*
4632 * Check again in case we missed a preemption opportunity
4633 * between schedule and now.
4634 */
4635 barrier();
4636 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4637}
4638
4639#endif /* CONFIG_PREEMPT */
4640
95cdf3b7
IM
4641int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4642 void *key)
1da177e4 4643{
48f24c4d 4644 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4645}
1da177e4
LT
4646EXPORT_SYMBOL(default_wake_function);
4647
4648/*
41a2d6cf
IM
4649 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4650 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4651 * number) then we wake all the non-exclusive tasks and one exclusive task.
4652 *
4653 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4654 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4655 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4656 */
4657static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4658 int nr_exclusive, int sync, void *key)
4659{
2e45874c 4660 wait_queue_t *curr, *next;
1da177e4 4661
2e45874c 4662 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4663 unsigned flags = curr->flags;
4664
1da177e4 4665 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4666 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4667 break;
4668 }
4669}
4670
4671/**
4672 * __wake_up - wake up threads blocked on a waitqueue.
4673 * @q: the waitqueue
4674 * @mode: which threads
4675 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4676 * @key: is directly passed to the wakeup function
1da177e4 4677 */
7ad5b3a5 4678void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4679 int nr_exclusive, void *key)
1da177e4
LT
4680{
4681 unsigned long flags;
4682
4683 spin_lock_irqsave(&q->lock, flags);
4684 __wake_up_common(q, mode, nr_exclusive, 0, key);
4685 spin_unlock_irqrestore(&q->lock, flags);
4686}
1da177e4
LT
4687EXPORT_SYMBOL(__wake_up);
4688
4689/*
4690 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4691 */
7ad5b3a5 4692void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4693{
4694 __wake_up_common(q, mode, 1, 0, NULL);
4695}
4696
4697/**
67be2dd1 4698 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4699 * @q: the waitqueue
4700 * @mode: which threads
4701 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4702 *
4703 * The sync wakeup differs that the waker knows that it will schedule
4704 * away soon, so while the target thread will be woken up, it will not
4705 * be migrated to another CPU - ie. the two threads are 'synchronized'
4706 * with each other. This can prevent needless bouncing between CPUs.
4707 *
4708 * On UP it can prevent extra preemption.
4709 */
7ad5b3a5 4710void
95cdf3b7 4711__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4712{
4713 unsigned long flags;
4714 int sync = 1;
4715
4716 if (unlikely(!q))
4717 return;
4718
4719 if (unlikely(!nr_exclusive))
4720 sync = 0;
4721
4722 spin_lock_irqsave(&q->lock, flags);
4723 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4724 spin_unlock_irqrestore(&q->lock, flags);
4725}
4726EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4727
b15136e9 4728void complete(struct completion *x)
1da177e4
LT
4729{
4730 unsigned long flags;
4731
4732 spin_lock_irqsave(&x->wait.lock, flags);
4733 x->done++;
d9514f6c 4734 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4735 spin_unlock_irqrestore(&x->wait.lock, flags);
4736}
4737EXPORT_SYMBOL(complete);
4738
b15136e9 4739void complete_all(struct completion *x)
1da177e4
LT
4740{
4741 unsigned long flags;
4742
4743 spin_lock_irqsave(&x->wait.lock, flags);
4744 x->done += UINT_MAX/2;
d9514f6c 4745 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4746 spin_unlock_irqrestore(&x->wait.lock, flags);
4747}
4748EXPORT_SYMBOL(complete_all);
4749
8cbbe86d
AK
4750static inline long __sched
4751do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4752{
1da177e4
LT
4753 if (!x->done) {
4754 DECLARE_WAITQUEUE(wait, current);
4755
4756 wait.flags |= WQ_FLAG_EXCLUSIVE;
4757 __add_wait_queue_tail(&x->wait, &wait);
4758 do {
009e577e
MW
4759 if ((state == TASK_INTERRUPTIBLE &&
4760 signal_pending(current)) ||
4761 (state == TASK_KILLABLE &&
4762 fatal_signal_pending(current))) {
8cbbe86d
AK
4763 __remove_wait_queue(&x->wait, &wait);
4764 return -ERESTARTSYS;
4765 }
4766 __set_current_state(state);
1da177e4
LT
4767 spin_unlock_irq(&x->wait.lock);
4768 timeout = schedule_timeout(timeout);
4769 spin_lock_irq(&x->wait.lock);
4770 if (!timeout) {
4771 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 4772 return timeout;
1da177e4
LT
4773 }
4774 } while (!x->done);
4775 __remove_wait_queue(&x->wait, &wait);
4776 }
4777 x->done--;
1da177e4
LT
4778 return timeout;
4779}
1da177e4 4780
8cbbe86d
AK
4781static long __sched
4782wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4783{
1da177e4
LT
4784 might_sleep();
4785
4786 spin_lock_irq(&x->wait.lock);
8cbbe86d 4787 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4788 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4789 return timeout;
4790}
1da177e4 4791
b15136e9 4792void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4793{
4794 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4795}
8cbbe86d 4796EXPORT_SYMBOL(wait_for_completion);
1da177e4 4797
b15136e9 4798unsigned long __sched
8cbbe86d 4799wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4800{
8cbbe86d 4801 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4802}
8cbbe86d 4803EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4804
8cbbe86d 4805int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4806{
51e97990
AK
4807 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4808 if (t == -ERESTARTSYS)
4809 return t;
4810 return 0;
0fec171c 4811}
8cbbe86d 4812EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4813
b15136e9 4814unsigned long __sched
8cbbe86d
AK
4815wait_for_completion_interruptible_timeout(struct completion *x,
4816 unsigned long timeout)
0fec171c 4817{
8cbbe86d 4818 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4819}
8cbbe86d 4820EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4821
009e577e
MW
4822int __sched wait_for_completion_killable(struct completion *x)
4823{
4824 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4825 if (t == -ERESTARTSYS)
4826 return t;
4827 return 0;
4828}
4829EXPORT_SYMBOL(wait_for_completion_killable);
4830
8cbbe86d
AK
4831static long __sched
4832sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4833{
0fec171c
IM
4834 unsigned long flags;
4835 wait_queue_t wait;
4836
4837 init_waitqueue_entry(&wait, current);
1da177e4 4838
8cbbe86d 4839 __set_current_state(state);
1da177e4 4840
8cbbe86d
AK
4841 spin_lock_irqsave(&q->lock, flags);
4842 __add_wait_queue(q, &wait);
4843 spin_unlock(&q->lock);
4844 timeout = schedule_timeout(timeout);
4845 spin_lock_irq(&q->lock);
4846 __remove_wait_queue(q, &wait);
4847 spin_unlock_irqrestore(&q->lock, flags);
4848
4849 return timeout;
4850}
4851
4852void __sched interruptible_sleep_on(wait_queue_head_t *q)
4853{
4854 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4855}
1da177e4
LT
4856EXPORT_SYMBOL(interruptible_sleep_on);
4857
0fec171c 4858long __sched
95cdf3b7 4859interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4860{
8cbbe86d 4861 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4862}
1da177e4
LT
4863EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4864
0fec171c 4865void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4866{
8cbbe86d 4867 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4868}
1da177e4
LT
4869EXPORT_SYMBOL(sleep_on);
4870
0fec171c 4871long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4872{
8cbbe86d 4873 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4874}
1da177e4
LT
4875EXPORT_SYMBOL(sleep_on_timeout);
4876
b29739f9
IM
4877#ifdef CONFIG_RT_MUTEXES
4878
4879/*
4880 * rt_mutex_setprio - set the current priority of a task
4881 * @p: task
4882 * @prio: prio value (kernel-internal form)
4883 *
4884 * This function changes the 'effective' priority of a task. It does
4885 * not touch ->normal_prio like __setscheduler().
4886 *
4887 * Used by the rt_mutex code to implement priority inheritance logic.
4888 */
36c8b586 4889void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4890{
4891 unsigned long flags;
83b699ed 4892 int oldprio, on_rq, running;
70b97a7f 4893 struct rq *rq;
cb469845 4894 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4895
4896 BUG_ON(prio < 0 || prio > MAX_PRIO);
4897
4898 rq = task_rq_lock(p, &flags);
a8e504d2 4899 update_rq_clock(rq);
b29739f9 4900
d5f9f942 4901 oldprio = p->prio;
dd41f596 4902 on_rq = p->se.on_rq;
051a1d1a 4903 running = task_current(rq, p);
0e1f3483 4904 if (on_rq)
69be72c1 4905 dequeue_task(rq, p, 0);
0e1f3483
HS
4906 if (running)
4907 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4908
4909 if (rt_prio(prio))
4910 p->sched_class = &rt_sched_class;
4911 else
4912 p->sched_class = &fair_sched_class;
4913
b29739f9
IM
4914 p->prio = prio;
4915
0e1f3483
HS
4916 if (running)
4917 p->sched_class->set_curr_task(rq);
dd41f596 4918 if (on_rq) {
8159f87e 4919 enqueue_task(rq, p, 0);
cb469845
SR
4920
4921 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4922 }
4923 task_rq_unlock(rq, &flags);
4924}
4925
4926#endif
4927
36c8b586 4928void set_user_nice(struct task_struct *p, long nice)
1da177e4 4929{
dd41f596 4930 int old_prio, delta, on_rq;
1da177e4 4931 unsigned long flags;
70b97a7f 4932 struct rq *rq;
1da177e4
LT
4933
4934 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4935 return;
4936 /*
4937 * We have to be careful, if called from sys_setpriority(),
4938 * the task might be in the middle of scheduling on another CPU.
4939 */
4940 rq = task_rq_lock(p, &flags);
a8e504d2 4941 update_rq_clock(rq);
1da177e4
LT
4942 /*
4943 * The RT priorities are set via sched_setscheduler(), but we still
4944 * allow the 'normal' nice value to be set - but as expected
4945 * it wont have any effect on scheduling until the task is
dd41f596 4946 * SCHED_FIFO/SCHED_RR:
1da177e4 4947 */
e05606d3 4948 if (task_has_rt_policy(p)) {
1da177e4
LT
4949 p->static_prio = NICE_TO_PRIO(nice);
4950 goto out_unlock;
4951 }
dd41f596 4952 on_rq = p->se.on_rq;
18d95a28 4953 if (on_rq)
69be72c1 4954 dequeue_task(rq, p, 0);
1da177e4 4955
1da177e4 4956 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4957 set_load_weight(p);
b29739f9
IM
4958 old_prio = p->prio;
4959 p->prio = effective_prio(p);
4960 delta = p->prio - old_prio;
1da177e4 4961
dd41f596 4962 if (on_rq) {
8159f87e 4963 enqueue_task(rq, p, 0);
1da177e4 4964 /*
d5f9f942
AM
4965 * If the task increased its priority or is running and
4966 * lowered its priority, then reschedule its CPU:
1da177e4 4967 */
d5f9f942 4968 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4969 resched_task(rq->curr);
4970 }
4971out_unlock:
4972 task_rq_unlock(rq, &flags);
4973}
1da177e4
LT
4974EXPORT_SYMBOL(set_user_nice);
4975
e43379f1
MM
4976/*
4977 * can_nice - check if a task can reduce its nice value
4978 * @p: task
4979 * @nice: nice value
4980 */
36c8b586 4981int can_nice(const struct task_struct *p, const int nice)
e43379f1 4982{
024f4747
MM
4983 /* convert nice value [19,-20] to rlimit style value [1,40] */
4984 int nice_rlim = 20 - nice;
48f24c4d 4985
e43379f1
MM
4986 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4987 capable(CAP_SYS_NICE));
4988}
4989
1da177e4
LT
4990#ifdef __ARCH_WANT_SYS_NICE
4991
4992/*
4993 * sys_nice - change the priority of the current process.
4994 * @increment: priority increment
4995 *
4996 * sys_setpriority is a more generic, but much slower function that
4997 * does similar things.
4998 */
4999asmlinkage long sys_nice(int increment)
5000{
48f24c4d 5001 long nice, retval;
1da177e4
LT
5002
5003 /*
5004 * Setpriority might change our priority at the same moment.
5005 * We don't have to worry. Conceptually one call occurs first
5006 * and we have a single winner.
5007 */
e43379f1
MM
5008 if (increment < -40)
5009 increment = -40;
1da177e4
LT
5010 if (increment > 40)
5011 increment = 40;
5012
5013 nice = PRIO_TO_NICE(current->static_prio) + increment;
5014 if (nice < -20)
5015 nice = -20;
5016 if (nice > 19)
5017 nice = 19;
5018
e43379f1
MM
5019 if (increment < 0 && !can_nice(current, nice))
5020 return -EPERM;
5021
1da177e4
LT
5022 retval = security_task_setnice(current, nice);
5023 if (retval)
5024 return retval;
5025
5026 set_user_nice(current, nice);
5027 return 0;
5028}
5029
5030#endif
5031
5032/**
5033 * task_prio - return the priority value of a given task.
5034 * @p: the task in question.
5035 *
5036 * This is the priority value as seen by users in /proc.
5037 * RT tasks are offset by -200. Normal tasks are centered
5038 * around 0, value goes from -16 to +15.
5039 */
36c8b586 5040int task_prio(const struct task_struct *p)
1da177e4
LT
5041{
5042 return p->prio - MAX_RT_PRIO;
5043}
5044
5045/**
5046 * task_nice - return the nice value of a given task.
5047 * @p: the task in question.
5048 */
36c8b586 5049int task_nice(const struct task_struct *p)
1da177e4
LT
5050{
5051 return TASK_NICE(p);
5052}
150d8bed 5053EXPORT_SYMBOL(task_nice);
1da177e4
LT
5054
5055/**
5056 * idle_cpu - is a given cpu idle currently?
5057 * @cpu: the processor in question.
5058 */
5059int idle_cpu(int cpu)
5060{
5061 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5062}
5063
1da177e4
LT
5064/**
5065 * idle_task - return the idle task for a given cpu.
5066 * @cpu: the processor in question.
5067 */
36c8b586 5068struct task_struct *idle_task(int cpu)
1da177e4
LT
5069{
5070 return cpu_rq(cpu)->idle;
5071}
5072
5073/**
5074 * find_process_by_pid - find a process with a matching PID value.
5075 * @pid: the pid in question.
5076 */
a9957449 5077static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5078{
228ebcbe 5079 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5080}
5081
5082/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5083static void
5084__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5085{
dd41f596 5086 BUG_ON(p->se.on_rq);
48f24c4d 5087
1da177e4 5088 p->policy = policy;
dd41f596
IM
5089 switch (p->policy) {
5090 case SCHED_NORMAL:
5091 case SCHED_BATCH:
5092 case SCHED_IDLE:
5093 p->sched_class = &fair_sched_class;
5094 break;
5095 case SCHED_FIFO:
5096 case SCHED_RR:
5097 p->sched_class = &rt_sched_class;
5098 break;
5099 }
5100
1da177e4 5101 p->rt_priority = prio;
b29739f9
IM
5102 p->normal_prio = normal_prio(p);
5103 /* we are holding p->pi_lock already */
5104 p->prio = rt_mutex_getprio(p);
2dd73a4f 5105 set_load_weight(p);
1da177e4
LT
5106}
5107
5108/**
72fd4a35 5109 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
5110 * @p: the task in question.
5111 * @policy: new policy.
5112 * @param: structure containing the new RT priority.
5fe1d75f 5113 *
72fd4a35 5114 * NOTE that the task may be already dead.
1da177e4 5115 */
95cdf3b7
IM
5116int sched_setscheduler(struct task_struct *p, int policy,
5117 struct sched_param *param)
1da177e4 5118{
83b699ed 5119 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5120 unsigned long flags;
cb469845 5121 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5122 struct rq *rq;
1da177e4 5123
66e5393a
SR
5124 /* may grab non-irq protected spin_locks */
5125 BUG_ON(in_interrupt());
1da177e4
LT
5126recheck:
5127 /* double check policy once rq lock held */
5128 if (policy < 0)
5129 policy = oldpolicy = p->policy;
5130 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5131 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5132 policy != SCHED_IDLE)
b0a9499c 5133 return -EINVAL;
1da177e4
LT
5134 /*
5135 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5136 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5137 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5138 */
5139 if (param->sched_priority < 0 ||
95cdf3b7 5140 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5141 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5142 return -EINVAL;
e05606d3 5143 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5144 return -EINVAL;
5145
37e4ab3f
OC
5146 /*
5147 * Allow unprivileged RT tasks to decrease priority:
5148 */
5149 if (!capable(CAP_SYS_NICE)) {
e05606d3 5150 if (rt_policy(policy)) {
8dc3e909 5151 unsigned long rlim_rtprio;
8dc3e909
ON
5152
5153 if (!lock_task_sighand(p, &flags))
5154 return -ESRCH;
5155 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5156 unlock_task_sighand(p, &flags);
5157
5158 /* can't set/change the rt policy */
5159 if (policy != p->policy && !rlim_rtprio)
5160 return -EPERM;
5161
5162 /* can't increase priority */
5163 if (param->sched_priority > p->rt_priority &&
5164 param->sched_priority > rlim_rtprio)
5165 return -EPERM;
5166 }
dd41f596
IM
5167 /*
5168 * Like positive nice levels, dont allow tasks to
5169 * move out of SCHED_IDLE either:
5170 */
5171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5172 return -EPERM;
5fe1d75f 5173
37e4ab3f
OC
5174 /* can't change other user's priorities */
5175 if ((current->euid != p->euid) &&
5176 (current->euid != p->uid))
5177 return -EPERM;
5178 }
1da177e4 5179
b68aa230
PZ
5180#ifdef CONFIG_RT_GROUP_SCHED
5181 /*
5182 * Do not allow realtime tasks into groups that have no runtime
5183 * assigned.
5184 */
d0b27fa7 5185 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5186 return -EPERM;
5187#endif
5188
1da177e4
LT
5189 retval = security_task_setscheduler(p, policy, param);
5190 if (retval)
5191 return retval;
b29739f9
IM
5192 /*
5193 * make sure no PI-waiters arrive (or leave) while we are
5194 * changing the priority of the task:
5195 */
5196 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5197 /*
5198 * To be able to change p->policy safely, the apropriate
5199 * runqueue lock must be held.
5200 */
b29739f9 5201 rq = __task_rq_lock(p);
1da177e4
LT
5202 /* recheck policy now with rq lock held */
5203 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5204 policy = oldpolicy = -1;
b29739f9
IM
5205 __task_rq_unlock(rq);
5206 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5207 goto recheck;
5208 }
2daa3577 5209 update_rq_clock(rq);
dd41f596 5210 on_rq = p->se.on_rq;
051a1d1a 5211 running = task_current(rq, p);
0e1f3483 5212 if (on_rq)
2e1cb74a 5213 deactivate_task(rq, p, 0);
0e1f3483
HS
5214 if (running)
5215 p->sched_class->put_prev_task(rq, p);
f6b53205 5216
1da177e4 5217 oldprio = p->prio;
dd41f596 5218 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5219
0e1f3483
HS
5220 if (running)
5221 p->sched_class->set_curr_task(rq);
dd41f596
IM
5222 if (on_rq) {
5223 activate_task(rq, p, 0);
cb469845
SR
5224
5225 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5226 }
b29739f9
IM
5227 __task_rq_unlock(rq);
5228 spin_unlock_irqrestore(&p->pi_lock, flags);
5229
95e02ca9
TG
5230 rt_mutex_adjust_pi(p);
5231
1da177e4
LT
5232 return 0;
5233}
5234EXPORT_SYMBOL_GPL(sched_setscheduler);
5235
95cdf3b7
IM
5236static int
5237do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5238{
1da177e4
LT
5239 struct sched_param lparam;
5240 struct task_struct *p;
36c8b586 5241 int retval;
1da177e4
LT
5242
5243 if (!param || pid < 0)
5244 return -EINVAL;
5245 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5246 return -EFAULT;
5fe1d75f
ON
5247
5248 rcu_read_lock();
5249 retval = -ESRCH;
1da177e4 5250 p = find_process_by_pid(pid);
5fe1d75f
ON
5251 if (p != NULL)
5252 retval = sched_setscheduler(p, policy, &lparam);
5253 rcu_read_unlock();
36c8b586 5254
1da177e4
LT
5255 return retval;
5256}
5257
5258/**
5259 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5260 * @pid: the pid in question.
5261 * @policy: new policy.
5262 * @param: structure containing the new RT priority.
5263 */
41a2d6cf
IM
5264asmlinkage long
5265sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5266{
c21761f1
JB
5267 /* negative values for policy are not valid */
5268 if (policy < 0)
5269 return -EINVAL;
5270
1da177e4
LT
5271 return do_sched_setscheduler(pid, policy, param);
5272}
5273
5274/**
5275 * sys_sched_setparam - set/change the RT priority of a thread
5276 * @pid: the pid in question.
5277 * @param: structure containing the new RT priority.
5278 */
5279asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5280{
5281 return do_sched_setscheduler(pid, -1, param);
5282}
5283
5284/**
5285 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5286 * @pid: the pid in question.
5287 */
5288asmlinkage long sys_sched_getscheduler(pid_t pid)
5289{
36c8b586 5290 struct task_struct *p;
3a5c359a 5291 int retval;
1da177e4
LT
5292
5293 if (pid < 0)
3a5c359a 5294 return -EINVAL;
1da177e4
LT
5295
5296 retval = -ESRCH;
5297 read_lock(&tasklist_lock);
5298 p = find_process_by_pid(pid);
5299 if (p) {
5300 retval = security_task_getscheduler(p);
5301 if (!retval)
5302 retval = p->policy;
5303 }
5304 read_unlock(&tasklist_lock);
1da177e4
LT
5305 return retval;
5306}
5307
5308/**
5309 * sys_sched_getscheduler - get the RT priority of a thread
5310 * @pid: the pid in question.
5311 * @param: structure containing the RT priority.
5312 */
5313asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5314{
5315 struct sched_param lp;
36c8b586 5316 struct task_struct *p;
3a5c359a 5317 int retval;
1da177e4
LT
5318
5319 if (!param || pid < 0)
3a5c359a 5320 return -EINVAL;
1da177e4
LT
5321
5322 read_lock(&tasklist_lock);
5323 p = find_process_by_pid(pid);
5324 retval = -ESRCH;
5325 if (!p)
5326 goto out_unlock;
5327
5328 retval = security_task_getscheduler(p);
5329 if (retval)
5330 goto out_unlock;
5331
5332 lp.sched_priority = p->rt_priority;
5333 read_unlock(&tasklist_lock);
5334
5335 /*
5336 * This one might sleep, we cannot do it with a spinlock held ...
5337 */
5338 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5339
1da177e4
LT
5340 return retval;
5341
5342out_unlock:
5343 read_unlock(&tasklist_lock);
5344 return retval;
5345}
5346
b53e921b 5347long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5348{
1da177e4 5349 cpumask_t cpus_allowed;
b53e921b 5350 cpumask_t new_mask = *in_mask;
36c8b586
IM
5351 struct task_struct *p;
5352 int retval;
1da177e4 5353
95402b38 5354 get_online_cpus();
1da177e4
LT
5355 read_lock(&tasklist_lock);
5356
5357 p = find_process_by_pid(pid);
5358 if (!p) {
5359 read_unlock(&tasklist_lock);
95402b38 5360 put_online_cpus();
1da177e4
LT
5361 return -ESRCH;
5362 }
5363
5364 /*
5365 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5366 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5367 * usage count and then drop tasklist_lock.
5368 */
5369 get_task_struct(p);
5370 read_unlock(&tasklist_lock);
5371
5372 retval = -EPERM;
5373 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5374 !capable(CAP_SYS_NICE))
5375 goto out_unlock;
5376
e7834f8f
DQ
5377 retval = security_task_setscheduler(p, 0, NULL);
5378 if (retval)
5379 goto out_unlock;
5380
f9a86fcb 5381 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5382 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5383 again:
7c16ec58 5384 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5385
8707d8b8 5386 if (!retval) {
f9a86fcb 5387 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5388 if (!cpus_subset(new_mask, cpus_allowed)) {
5389 /*
5390 * We must have raced with a concurrent cpuset
5391 * update. Just reset the cpus_allowed to the
5392 * cpuset's cpus_allowed
5393 */
5394 new_mask = cpus_allowed;
5395 goto again;
5396 }
5397 }
1da177e4
LT
5398out_unlock:
5399 put_task_struct(p);
95402b38 5400 put_online_cpus();
1da177e4
LT
5401 return retval;
5402}
5403
5404static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5405 cpumask_t *new_mask)
5406{
5407 if (len < sizeof(cpumask_t)) {
5408 memset(new_mask, 0, sizeof(cpumask_t));
5409 } else if (len > sizeof(cpumask_t)) {
5410 len = sizeof(cpumask_t);
5411 }
5412 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5413}
5414
5415/**
5416 * sys_sched_setaffinity - set the cpu affinity of a process
5417 * @pid: pid of the process
5418 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5419 * @user_mask_ptr: user-space pointer to the new cpu mask
5420 */
5421asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5422 unsigned long __user *user_mask_ptr)
5423{
5424 cpumask_t new_mask;
5425 int retval;
5426
5427 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5428 if (retval)
5429 return retval;
5430
b53e921b 5431 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5432}
5433
5434/*
5435 * Represents all cpu's present in the system
5436 * In systems capable of hotplug, this map could dynamically grow
5437 * as new cpu's are detected in the system via any platform specific
5438 * method, such as ACPI for e.g.
5439 */
5440
4cef0c61 5441cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
5442EXPORT_SYMBOL(cpu_present_map);
5443
5444#ifndef CONFIG_SMP
4cef0c61 5445cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
5446EXPORT_SYMBOL(cpu_online_map);
5447
4cef0c61 5448cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 5449EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
5450#endif
5451
5452long sched_getaffinity(pid_t pid, cpumask_t *mask)
5453{
36c8b586 5454 struct task_struct *p;
1da177e4 5455 int retval;
1da177e4 5456
95402b38 5457 get_online_cpus();
1da177e4
LT
5458 read_lock(&tasklist_lock);
5459
5460 retval = -ESRCH;
5461 p = find_process_by_pid(pid);
5462 if (!p)
5463 goto out_unlock;
5464
e7834f8f
DQ
5465 retval = security_task_getscheduler(p);
5466 if (retval)
5467 goto out_unlock;
5468
2f7016d9 5469 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5470
5471out_unlock:
5472 read_unlock(&tasklist_lock);
95402b38 5473 put_online_cpus();
1da177e4 5474
9531b62f 5475 return retval;
1da177e4
LT
5476}
5477
5478/**
5479 * sys_sched_getaffinity - get the cpu affinity of a process
5480 * @pid: pid of the process
5481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5482 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5483 */
5484asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5485 unsigned long __user *user_mask_ptr)
5486{
5487 int ret;
5488 cpumask_t mask;
5489
5490 if (len < sizeof(cpumask_t))
5491 return -EINVAL;
5492
5493 ret = sched_getaffinity(pid, &mask);
5494 if (ret < 0)
5495 return ret;
5496
5497 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5498 return -EFAULT;
5499
5500 return sizeof(cpumask_t);
5501}
5502
5503/**
5504 * sys_sched_yield - yield the current processor to other threads.
5505 *
dd41f596
IM
5506 * This function yields the current CPU to other tasks. If there are no
5507 * other threads running on this CPU then this function will return.
1da177e4
LT
5508 */
5509asmlinkage long sys_sched_yield(void)
5510{
70b97a7f 5511 struct rq *rq = this_rq_lock();
1da177e4 5512
2d72376b 5513 schedstat_inc(rq, yld_count);
4530d7ab 5514 current->sched_class->yield_task(rq);
1da177e4
LT
5515
5516 /*
5517 * Since we are going to call schedule() anyway, there's
5518 * no need to preempt or enable interrupts:
5519 */
5520 __release(rq->lock);
8a25d5de 5521 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5522 _raw_spin_unlock(&rq->lock);
5523 preempt_enable_no_resched();
5524
5525 schedule();
5526
5527 return 0;
5528}
5529
e7b38404 5530static void __cond_resched(void)
1da177e4 5531{
8e0a43d8
IM
5532#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5533 __might_sleep(__FILE__, __LINE__);
5534#endif
5bbcfd90
IM
5535 /*
5536 * The BKS might be reacquired before we have dropped
5537 * PREEMPT_ACTIVE, which could trigger a second
5538 * cond_resched() call.
5539 */
1da177e4
LT
5540 do {
5541 add_preempt_count(PREEMPT_ACTIVE);
5542 schedule();
5543 sub_preempt_count(PREEMPT_ACTIVE);
5544 } while (need_resched());
5545}
5546
02b67cc3
HX
5547#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5548int __sched _cond_resched(void)
1da177e4 5549{
9414232f
IM
5550 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5551 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5552 __cond_resched();
5553 return 1;
5554 }
5555 return 0;
5556}
02b67cc3
HX
5557EXPORT_SYMBOL(_cond_resched);
5558#endif
1da177e4
LT
5559
5560/*
5561 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5562 * call schedule, and on return reacquire the lock.
5563 *
41a2d6cf 5564 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5565 * operations here to prevent schedule() from being called twice (once via
5566 * spin_unlock(), once by hand).
5567 */
95cdf3b7 5568int cond_resched_lock(spinlock_t *lock)
1da177e4 5569{
95c354fe 5570 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5571 int ret = 0;
5572
95c354fe 5573 if (spin_needbreak(lock) || resched) {
1da177e4 5574 spin_unlock(lock);
95c354fe
NP
5575 if (resched && need_resched())
5576 __cond_resched();
5577 else
5578 cpu_relax();
6df3cecb 5579 ret = 1;
1da177e4 5580 spin_lock(lock);
1da177e4 5581 }
6df3cecb 5582 return ret;
1da177e4 5583}
1da177e4
LT
5584EXPORT_SYMBOL(cond_resched_lock);
5585
5586int __sched cond_resched_softirq(void)
5587{
5588 BUG_ON(!in_softirq());
5589
9414232f 5590 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5591 local_bh_enable();
1da177e4
LT
5592 __cond_resched();
5593 local_bh_disable();
5594 return 1;
5595 }
5596 return 0;
5597}
1da177e4
LT
5598EXPORT_SYMBOL(cond_resched_softirq);
5599
1da177e4
LT
5600/**
5601 * yield - yield the current processor to other threads.
5602 *
72fd4a35 5603 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5604 * thread runnable and calls sys_sched_yield().
5605 */
5606void __sched yield(void)
5607{
5608 set_current_state(TASK_RUNNING);
5609 sys_sched_yield();
5610}
1da177e4
LT
5611EXPORT_SYMBOL(yield);
5612
5613/*
41a2d6cf 5614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5615 * that process accounting knows that this is a task in IO wait state.
5616 *
5617 * But don't do that if it is a deliberate, throttling IO wait (this task
5618 * has set its backing_dev_info: the queue against which it should throttle)
5619 */
5620void __sched io_schedule(void)
5621{
70b97a7f 5622 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5623
0ff92245 5624 delayacct_blkio_start();
1da177e4
LT
5625 atomic_inc(&rq->nr_iowait);
5626 schedule();
5627 atomic_dec(&rq->nr_iowait);
0ff92245 5628 delayacct_blkio_end();
1da177e4 5629}
1da177e4
LT
5630EXPORT_SYMBOL(io_schedule);
5631
5632long __sched io_schedule_timeout(long timeout)
5633{
70b97a7f 5634 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5635 long ret;
5636
0ff92245 5637 delayacct_blkio_start();
1da177e4
LT
5638 atomic_inc(&rq->nr_iowait);
5639 ret = schedule_timeout(timeout);
5640 atomic_dec(&rq->nr_iowait);
0ff92245 5641 delayacct_blkio_end();
1da177e4
LT
5642 return ret;
5643}
5644
5645/**
5646 * sys_sched_get_priority_max - return maximum RT priority.
5647 * @policy: scheduling class.
5648 *
5649 * this syscall returns the maximum rt_priority that can be used
5650 * by a given scheduling class.
5651 */
5652asmlinkage long sys_sched_get_priority_max(int policy)
5653{
5654 int ret = -EINVAL;
5655
5656 switch (policy) {
5657 case SCHED_FIFO:
5658 case SCHED_RR:
5659 ret = MAX_USER_RT_PRIO-1;
5660 break;
5661 case SCHED_NORMAL:
b0a9499c 5662 case SCHED_BATCH:
dd41f596 5663 case SCHED_IDLE:
1da177e4
LT
5664 ret = 0;
5665 break;
5666 }
5667 return ret;
5668}
5669
5670/**
5671 * sys_sched_get_priority_min - return minimum RT priority.
5672 * @policy: scheduling class.
5673 *
5674 * this syscall returns the minimum rt_priority that can be used
5675 * by a given scheduling class.
5676 */
5677asmlinkage long sys_sched_get_priority_min(int policy)
5678{
5679 int ret = -EINVAL;
5680
5681 switch (policy) {
5682 case SCHED_FIFO:
5683 case SCHED_RR:
5684 ret = 1;
5685 break;
5686 case SCHED_NORMAL:
b0a9499c 5687 case SCHED_BATCH:
dd41f596 5688 case SCHED_IDLE:
1da177e4
LT
5689 ret = 0;
5690 }
5691 return ret;
5692}
5693
5694/**
5695 * sys_sched_rr_get_interval - return the default timeslice of a process.
5696 * @pid: pid of the process.
5697 * @interval: userspace pointer to the timeslice value.
5698 *
5699 * this syscall writes the default timeslice value of a given process
5700 * into the user-space timespec buffer. A value of '0' means infinity.
5701 */
5702asmlinkage
5703long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5704{
36c8b586 5705 struct task_struct *p;
a4ec24b4 5706 unsigned int time_slice;
3a5c359a 5707 int retval;
1da177e4 5708 struct timespec t;
1da177e4
LT
5709
5710 if (pid < 0)
3a5c359a 5711 return -EINVAL;
1da177e4
LT
5712
5713 retval = -ESRCH;
5714 read_lock(&tasklist_lock);
5715 p = find_process_by_pid(pid);
5716 if (!p)
5717 goto out_unlock;
5718
5719 retval = security_task_getscheduler(p);
5720 if (retval)
5721 goto out_unlock;
5722
77034937
IM
5723 /*
5724 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5725 * tasks that are on an otherwise idle runqueue:
5726 */
5727 time_slice = 0;
5728 if (p->policy == SCHED_RR) {
a4ec24b4 5729 time_slice = DEF_TIMESLICE;
1868f958 5730 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5731 struct sched_entity *se = &p->se;
5732 unsigned long flags;
5733 struct rq *rq;
5734
5735 rq = task_rq_lock(p, &flags);
77034937
IM
5736 if (rq->cfs.load.weight)
5737 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5738 task_rq_unlock(rq, &flags);
5739 }
1da177e4 5740 read_unlock(&tasklist_lock);
a4ec24b4 5741 jiffies_to_timespec(time_slice, &t);
1da177e4 5742 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5743 return retval;
3a5c359a 5744
1da177e4
LT
5745out_unlock:
5746 read_unlock(&tasklist_lock);
5747 return retval;
5748}
5749
2ed6e34f 5750static const char stat_nam[] = "RSDTtZX";
36c8b586 5751
82a1fcb9 5752void sched_show_task(struct task_struct *p)
1da177e4 5753{
1da177e4 5754 unsigned long free = 0;
36c8b586 5755 unsigned state;
1da177e4 5756
1da177e4 5757 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5758 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5759 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5760#if BITS_PER_LONG == 32
1da177e4 5761 if (state == TASK_RUNNING)
cc4ea795 5762 printk(KERN_CONT " running ");
1da177e4 5763 else
cc4ea795 5764 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5765#else
5766 if (state == TASK_RUNNING)
cc4ea795 5767 printk(KERN_CONT " running task ");
1da177e4 5768 else
cc4ea795 5769 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5770#endif
5771#ifdef CONFIG_DEBUG_STACK_USAGE
5772 {
10ebffde 5773 unsigned long *n = end_of_stack(p);
1da177e4
LT
5774 while (!*n)
5775 n++;
10ebffde 5776 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5777 }
5778#endif
ba25f9dc 5779 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5780 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5781
5fb5e6de 5782 show_stack(p, NULL);
1da177e4
LT
5783}
5784
e59e2ae2 5785void show_state_filter(unsigned long state_filter)
1da177e4 5786{
36c8b586 5787 struct task_struct *g, *p;
1da177e4 5788
4bd77321
IM
5789#if BITS_PER_LONG == 32
5790 printk(KERN_INFO
5791 " task PC stack pid father\n");
1da177e4 5792#else
4bd77321
IM
5793 printk(KERN_INFO
5794 " task PC stack pid father\n");
1da177e4
LT
5795#endif
5796 read_lock(&tasklist_lock);
5797 do_each_thread(g, p) {
5798 /*
5799 * reset the NMI-timeout, listing all files on a slow
5800 * console might take alot of time:
5801 */
5802 touch_nmi_watchdog();
39bc89fd 5803 if (!state_filter || (p->state & state_filter))
82a1fcb9 5804 sched_show_task(p);
1da177e4
LT
5805 } while_each_thread(g, p);
5806
04c9167f
JF
5807 touch_all_softlockup_watchdogs();
5808
dd41f596
IM
5809#ifdef CONFIG_SCHED_DEBUG
5810 sysrq_sched_debug_show();
5811#endif
1da177e4 5812 read_unlock(&tasklist_lock);
e59e2ae2
IM
5813 /*
5814 * Only show locks if all tasks are dumped:
5815 */
5816 if (state_filter == -1)
5817 debug_show_all_locks();
1da177e4
LT
5818}
5819
1df21055
IM
5820void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5821{
dd41f596 5822 idle->sched_class = &idle_sched_class;
1df21055
IM
5823}
5824
f340c0d1
IM
5825/**
5826 * init_idle - set up an idle thread for a given CPU
5827 * @idle: task in question
5828 * @cpu: cpu the idle task belongs to
5829 *
5830 * NOTE: this function does not set the idle thread's NEED_RESCHED
5831 * flag, to make booting more robust.
5832 */
5c1e1767 5833void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5834{
70b97a7f 5835 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5836 unsigned long flags;
5837
dd41f596
IM
5838 __sched_fork(idle);
5839 idle->se.exec_start = sched_clock();
5840
b29739f9 5841 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5842 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5843 __set_task_cpu(idle, cpu);
1da177e4
LT
5844
5845 spin_lock_irqsave(&rq->lock, flags);
5846 rq->curr = rq->idle = idle;
4866cde0
NP
5847#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5848 idle->oncpu = 1;
5849#endif
1da177e4
LT
5850 spin_unlock_irqrestore(&rq->lock, flags);
5851
5852 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 5853 task_thread_info(idle)->preempt_count = 0;
6478d880 5854
dd41f596
IM
5855 /*
5856 * The idle tasks have their own, simple scheduling class:
5857 */
5858 idle->sched_class = &idle_sched_class;
1da177e4
LT
5859}
5860
5861/*
5862 * In a system that switches off the HZ timer nohz_cpu_mask
5863 * indicates which cpus entered this state. This is used
5864 * in the rcu update to wait only for active cpus. For system
5865 * which do not switch off the HZ timer nohz_cpu_mask should
5866 * always be CPU_MASK_NONE.
5867 */
5868cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5869
19978ca6
IM
5870/*
5871 * Increase the granularity value when there are more CPUs,
5872 * because with more CPUs the 'effective latency' as visible
5873 * to users decreases. But the relationship is not linear,
5874 * so pick a second-best guess by going with the log2 of the
5875 * number of CPUs.
5876 *
5877 * This idea comes from the SD scheduler of Con Kolivas:
5878 */
5879static inline void sched_init_granularity(void)
5880{
5881 unsigned int factor = 1 + ilog2(num_online_cpus());
5882 const unsigned long limit = 200000000;
5883
5884 sysctl_sched_min_granularity *= factor;
5885 if (sysctl_sched_min_granularity > limit)
5886 sysctl_sched_min_granularity = limit;
5887
5888 sysctl_sched_latency *= factor;
5889 if (sysctl_sched_latency > limit)
5890 sysctl_sched_latency = limit;
5891
5892 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5893}
5894
1da177e4
LT
5895#ifdef CONFIG_SMP
5896/*
5897 * This is how migration works:
5898 *
70b97a7f 5899 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5900 * runqueue and wake up that CPU's migration thread.
5901 * 2) we down() the locked semaphore => thread blocks.
5902 * 3) migration thread wakes up (implicitly it forces the migrated
5903 * thread off the CPU)
5904 * 4) it gets the migration request and checks whether the migrated
5905 * task is still in the wrong runqueue.
5906 * 5) if it's in the wrong runqueue then the migration thread removes
5907 * it and puts it into the right queue.
5908 * 6) migration thread up()s the semaphore.
5909 * 7) we wake up and the migration is done.
5910 */
5911
5912/*
5913 * Change a given task's CPU affinity. Migrate the thread to a
5914 * proper CPU and schedule it away if the CPU it's executing on
5915 * is removed from the allowed bitmask.
5916 *
5917 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5918 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5919 * call is not atomic; no spinlocks may be held.
5920 */
cd8ba7cd 5921int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5922{
70b97a7f 5923 struct migration_req req;
1da177e4 5924 unsigned long flags;
70b97a7f 5925 struct rq *rq;
48f24c4d 5926 int ret = 0;
1da177e4
LT
5927
5928 rq = task_rq_lock(p, &flags);
cd8ba7cd 5929 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5930 ret = -EINVAL;
5931 goto out;
5932 }
5933
73fe6aae 5934 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5935 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5936 else {
cd8ba7cd
MT
5937 p->cpus_allowed = *new_mask;
5938 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5939 }
5940
1da177e4 5941 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5942 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5943 goto out;
5944
cd8ba7cd 5945 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5946 /* Need help from migration thread: drop lock and wait. */
5947 task_rq_unlock(rq, &flags);
5948 wake_up_process(rq->migration_thread);
5949 wait_for_completion(&req.done);
5950 tlb_migrate_finish(p->mm);
5951 return 0;
5952 }
5953out:
5954 task_rq_unlock(rq, &flags);
48f24c4d 5955
1da177e4
LT
5956 return ret;
5957}
cd8ba7cd 5958EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5959
5960/*
41a2d6cf 5961 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5962 * this because either it can't run here any more (set_cpus_allowed()
5963 * away from this CPU, or CPU going down), or because we're
5964 * attempting to rebalance this task on exec (sched_exec).
5965 *
5966 * So we race with normal scheduler movements, but that's OK, as long
5967 * as the task is no longer on this CPU.
efc30814
KK
5968 *
5969 * Returns non-zero if task was successfully migrated.
1da177e4 5970 */
efc30814 5971static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5972{
70b97a7f 5973 struct rq *rq_dest, *rq_src;
dd41f596 5974 int ret = 0, on_rq;
1da177e4
LT
5975
5976 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5977 return ret;
1da177e4
LT
5978
5979 rq_src = cpu_rq(src_cpu);
5980 rq_dest = cpu_rq(dest_cpu);
5981
5982 double_rq_lock(rq_src, rq_dest);
5983 /* Already moved. */
5984 if (task_cpu(p) != src_cpu)
5985 goto out;
5986 /* Affinity changed (again). */
5987 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5988 goto out;
5989
dd41f596 5990 on_rq = p->se.on_rq;
6e82a3be 5991 if (on_rq)
2e1cb74a 5992 deactivate_task(rq_src, p, 0);
6e82a3be 5993
1da177e4 5994 set_task_cpu(p, dest_cpu);
dd41f596
IM
5995 if (on_rq) {
5996 activate_task(rq_dest, p, 0);
5997 check_preempt_curr(rq_dest, p);
1da177e4 5998 }
efc30814 5999 ret = 1;
1da177e4
LT
6000out:
6001 double_rq_unlock(rq_src, rq_dest);
efc30814 6002 return ret;
1da177e4
LT
6003}
6004
6005/*
6006 * migration_thread - this is a highprio system thread that performs
6007 * thread migration by bumping thread off CPU then 'pushing' onto
6008 * another runqueue.
6009 */
95cdf3b7 6010static int migration_thread(void *data)
1da177e4 6011{
1da177e4 6012 int cpu = (long)data;
70b97a7f 6013 struct rq *rq;
1da177e4
LT
6014
6015 rq = cpu_rq(cpu);
6016 BUG_ON(rq->migration_thread != current);
6017
6018 set_current_state(TASK_INTERRUPTIBLE);
6019 while (!kthread_should_stop()) {
70b97a7f 6020 struct migration_req *req;
1da177e4 6021 struct list_head *head;
1da177e4 6022
1da177e4
LT
6023 spin_lock_irq(&rq->lock);
6024
6025 if (cpu_is_offline(cpu)) {
6026 spin_unlock_irq(&rq->lock);
6027 goto wait_to_die;
6028 }
6029
6030 if (rq->active_balance) {
6031 active_load_balance(rq, cpu);
6032 rq->active_balance = 0;
6033 }
6034
6035 head = &rq->migration_queue;
6036
6037 if (list_empty(head)) {
6038 spin_unlock_irq(&rq->lock);
6039 schedule();
6040 set_current_state(TASK_INTERRUPTIBLE);
6041 continue;
6042 }
70b97a7f 6043 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6044 list_del_init(head->next);
6045
674311d5
NP
6046 spin_unlock(&rq->lock);
6047 __migrate_task(req->task, cpu, req->dest_cpu);
6048 local_irq_enable();
1da177e4
LT
6049
6050 complete(&req->done);
6051 }
6052 __set_current_state(TASK_RUNNING);
6053 return 0;
6054
6055wait_to_die:
6056 /* Wait for kthread_stop */
6057 set_current_state(TASK_INTERRUPTIBLE);
6058 while (!kthread_should_stop()) {
6059 schedule();
6060 set_current_state(TASK_INTERRUPTIBLE);
6061 }
6062 __set_current_state(TASK_RUNNING);
6063 return 0;
6064}
6065
6066#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6067
6068static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6069{
6070 int ret;
6071
6072 local_irq_disable();
6073 ret = __migrate_task(p, src_cpu, dest_cpu);
6074 local_irq_enable();
6075 return ret;
6076}
6077
054b9108 6078/*
3a4fa0a2 6079 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6080 * NOTE: interrupts should be disabled by the caller
6081 */
48f24c4d 6082static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6083{
efc30814 6084 unsigned long flags;
1da177e4 6085 cpumask_t mask;
70b97a7f
IM
6086 struct rq *rq;
6087 int dest_cpu;
1da177e4 6088
3a5c359a
AK
6089 do {
6090 /* On same node? */
6091 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6092 cpus_and(mask, mask, p->cpus_allowed);
6093 dest_cpu = any_online_cpu(mask);
6094
6095 /* On any allowed CPU? */
434d53b0 6096 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6097 dest_cpu = any_online_cpu(p->cpus_allowed);
6098
6099 /* No more Mr. Nice Guy. */
434d53b0 6100 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6101 cpumask_t cpus_allowed;
6102
6103 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6104 /*
6105 * Try to stay on the same cpuset, where the
6106 * current cpuset may be a subset of all cpus.
6107 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6108 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6109 * called within calls to cpuset_lock/cpuset_unlock.
6110 */
3a5c359a 6111 rq = task_rq_lock(p, &flags);
470fd646 6112 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6113 dest_cpu = any_online_cpu(p->cpus_allowed);
6114 task_rq_unlock(rq, &flags);
1da177e4 6115
3a5c359a
AK
6116 /*
6117 * Don't tell them about moving exiting tasks or
6118 * kernel threads (both mm NULL), since they never
6119 * leave kernel.
6120 */
41a2d6cf 6121 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6122 printk(KERN_INFO "process %d (%s) no "
6123 "longer affine to cpu%d\n",
41a2d6cf
IM
6124 task_pid_nr(p), p->comm, dead_cpu);
6125 }
3a5c359a 6126 }
f7b4cddc 6127 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6128}
6129
6130/*
6131 * While a dead CPU has no uninterruptible tasks queued at this point,
6132 * it might still have a nonzero ->nr_uninterruptible counter, because
6133 * for performance reasons the counter is not stricly tracking tasks to
6134 * their home CPUs. So we just add the counter to another CPU's counter,
6135 * to keep the global sum constant after CPU-down:
6136 */
70b97a7f 6137static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6138{
7c16ec58 6139 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6140 unsigned long flags;
6141
6142 local_irq_save(flags);
6143 double_rq_lock(rq_src, rq_dest);
6144 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6145 rq_src->nr_uninterruptible = 0;
6146 double_rq_unlock(rq_src, rq_dest);
6147 local_irq_restore(flags);
6148}
6149
6150/* Run through task list and migrate tasks from the dead cpu. */
6151static void migrate_live_tasks(int src_cpu)
6152{
48f24c4d 6153 struct task_struct *p, *t;
1da177e4 6154
f7b4cddc 6155 read_lock(&tasklist_lock);
1da177e4 6156
48f24c4d
IM
6157 do_each_thread(t, p) {
6158 if (p == current)
1da177e4
LT
6159 continue;
6160
48f24c4d
IM
6161 if (task_cpu(p) == src_cpu)
6162 move_task_off_dead_cpu(src_cpu, p);
6163 } while_each_thread(t, p);
1da177e4 6164
f7b4cddc 6165 read_unlock(&tasklist_lock);
1da177e4
LT
6166}
6167
dd41f596
IM
6168/*
6169 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6170 * It does so by boosting its priority to highest possible.
6171 * Used by CPU offline code.
1da177e4
LT
6172 */
6173void sched_idle_next(void)
6174{
48f24c4d 6175 int this_cpu = smp_processor_id();
70b97a7f 6176 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6177 struct task_struct *p = rq->idle;
6178 unsigned long flags;
6179
6180 /* cpu has to be offline */
48f24c4d 6181 BUG_ON(cpu_online(this_cpu));
1da177e4 6182
48f24c4d
IM
6183 /*
6184 * Strictly not necessary since rest of the CPUs are stopped by now
6185 * and interrupts disabled on the current cpu.
1da177e4
LT
6186 */
6187 spin_lock_irqsave(&rq->lock, flags);
6188
dd41f596 6189 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6190
94bc9a7b
DA
6191 update_rq_clock(rq);
6192 activate_task(rq, p, 0);
1da177e4
LT
6193
6194 spin_unlock_irqrestore(&rq->lock, flags);
6195}
6196
48f24c4d
IM
6197/*
6198 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6199 * offline.
6200 */
6201void idle_task_exit(void)
6202{
6203 struct mm_struct *mm = current->active_mm;
6204
6205 BUG_ON(cpu_online(smp_processor_id()));
6206
6207 if (mm != &init_mm)
6208 switch_mm(mm, &init_mm, current);
6209 mmdrop(mm);
6210}
6211
054b9108 6212/* called under rq->lock with disabled interrupts */
36c8b586 6213static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6214{
70b97a7f 6215 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6216
6217 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6218 BUG_ON(!p->exit_state);
1da177e4
LT
6219
6220 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6221 BUG_ON(p->state == TASK_DEAD);
1da177e4 6222
48f24c4d 6223 get_task_struct(p);
1da177e4
LT
6224
6225 /*
6226 * Drop lock around migration; if someone else moves it,
41a2d6cf 6227 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6228 * fine.
6229 */
f7b4cddc 6230 spin_unlock_irq(&rq->lock);
48f24c4d 6231 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6232 spin_lock_irq(&rq->lock);
1da177e4 6233
48f24c4d 6234 put_task_struct(p);
1da177e4
LT
6235}
6236
6237/* release_task() removes task from tasklist, so we won't find dead tasks. */
6238static void migrate_dead_tasks(unsigned int dead_cpu)
6239{
70b97a7f 6240 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6241 struct task_struct *next;
48f24c4d 6242
dd41f596
IM
6243 for ( ; ; ) {
6244 if (!rq->nr_running)
6245 break;
a8e504d2 6246 update_rq_clock(rq);
ff95f3df 6247 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6248 if (!next)
6249 break;
6250 migrate_dead(dead_cpu, next);
e692ab53 6251
1da177e4
LT
6252 }
6253}
6254#endif /* CONFIG_HOTPLUG_CPU */
6255
e692ab53
NP
6256#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6257
6258static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6259 {
6260 .procname = "sched_domain",
c57baf1e 6261 .mode = 0555,
e0361851 6262 },
38605cae 6263 {0, },
e692ab53
NP
6264};
6265
6266static struct ctl_table sd_ctl_root[] = {
e0361851 6267 {
c57baf1e 6268 .ctl_name = CTL_KERN,
e0361851 6269 .procname = "kernel",
c57baf1e 6270 .mode = 0555,
e0361851
AD
6271 .child = sd_ctl_dir,
6272 },
38605cae 6273 {0, },
e692ab53
NP
6274};
6275
6276static struct ctl_table *sd_alloc_ctl_entry(int n)
6277{
6278 struct ctl_table *entry =
5cf9f062 6279 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6280
e692ab53
NP
6281 return entry;
6282}
6283
6382bc90
MM
6284static void sd_free_ctl_entry(struct ctl_table **tablep)
6285{
cd790076 6286 struct ctl_table *entry;
6382bc90 6287
cd790076
MM
6288 /*
6289 * In the intermediate directories, both the child directory and
6290 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6291 * will always be set. In the lowest directory the names are
cd790076
MM
6292 * static strings and all have proc handlers.
6293 */
6294 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6295 if (entry->child)
6296 sd_free_ctl_entry(&entry->child);
cd790076
MM
6297 if (entry->proc_handler == NULL)
6298 kfree(entry->procname);
6299 }
6382bc90
MM
6300
6301 kfree(*tablep);
6302 *tablep = NULL;
6303}
6304
e692ab53 6305static void
e0361851 6306set_table_entry(struct ctl_table *entry,
e692ab53
NP
6307 const char *procname, void *data, int maxlen,
6308 mode_t mode, proc_handler *proc_handler)
6309{
e692ab53
NP
6310 entry->procname = procname;
6311 entry->data = data;
6312 entry->maxlen = maxlen;
6313 entry->mode = mode;
6314 entry->proc_handler = proc_handler;
6315}
6316
6317static struct ctl_table *
6318sd_alloc_ctl_domain_table(struct sched_domain *sd)
6319{
ace8b3d6 6320 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6321
ad1cdc1d
MM
6322 if (table == NULL)
6323 return NULL;
6324
e0361851 6325 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6326 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6327 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6328 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6329 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6330 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6331 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6332 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6333 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6334 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6335 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6336 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6337 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6338 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6339 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6340 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6341 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6342 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6343 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6344 &sd->cache_nice_tries,
6345 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6346 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6347 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6348 /* &table[11] is terminator */
e692ab53
NP
6349
6350 return table;
6351}
6352
9a4e7159 6353static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6354{
6355 struct ctl_table *entry, *table;
6356 struct sched_domain *sd;
6357 int domain_num = 0, i;
6358 char buf[32];
6359
6360 for_each_domain(cpu, sd)
6361 domain_num++;
6362 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6363 if (table == NULL)
6364 return NULL;
e692ab53
NP
6365
6366 i = 0;
6367 for_each_domain(cpu, sd) {
6368 snprintf(buf, 32, "domain%d", i);
e692ab53 6369 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6370 entry->mode = 0555;
e692ab53
NP
6371 entry->child = sd_alloc_ctl_domain_table(sd);
6372 entry++;
6373 i++;
6374 }
6375 return table;
6376}
6377
6378static struct ctl_table_header *sd_sysctl_header;
6382bc90 6379static void register_sched_domain_sysctl(void)
e692ab53
NP
6380{
6381 int i, cpu_num = num_online_cpus();
6382 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6383 char buf[32];
6384
7378547f
MM
6385 WARN_ON(sd_ctl_dir[0].child);
6386 sd_ctl_dir[0].child = entry;
6387
ad1cdc1d
MM
6388 if (entry == NULL)
6389 return;
6390
97b6ea7b 6391 for_each_online_cpu(i) {
e692ab53 6392 snprintf(buf, 32, "cpu%d", i);
e692ab53 6393 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6394 entry->mode = 0555;
e692ab53 6395 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6396 entry++;
e692ab53 6397 }
7378547f
MM
6398
6399 WARN_ON(sd_sysctl_header);
e692ab53
NP
6400 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6401}
6382bc90 6402
7378547f 6403/* may be called multiple times per register */
6382bc90
MM
6404static void unregister_sched_domain_sysctl(void)
6405{
7378547f
MM
6406 if (sd_sysctl_header)
6407 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6408 sd_sysctl_header = NULL;
7378547f
MM
6409 if (sd_ctl_dir[0].child)
6410 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6411}
e692ab53 6412#else
6382bc90
MM
6413static void register_sched_domain_sysctl(void)
6414{
6415}
6416static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6417{
6418}
6419#endif
6420
1da177e4
LT
6421/*
6422 * migration_call - callback that gets triggered when a CPU is added.
6423 * Here we can start up the necessary migration thread for the new CPU.
6424 */
48f24c4d
IM
6425static int __cpuinit
6426migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6427{
1da177e4 6428 struct task_struct *p;
48f24c4d 6429 int cpu = (long)hcpu;
1da177e4 6430 unsigned long flags;
70b97a7f 6431 struct rq *rq;
1da177e4
LT
6432
6433 switch (action) {
5be9361c 6434
1da177e4 6435 case CPU_UP_PREPARE:
8bb78442 6436 case CPU_UP_PREPARE_FROZEN:
dd41f596 6437 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6438 if (IS_ERR(p))
6439 return NOTIFY_BAD;
1da177e4
LT
6440 kthread_bind(p, cpu);
6441 /* Must be high prio: stop_machine expects to yield to it. */
6442 rq = task_rq_lock(p, &flags);
dd41f596 6443 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6444 task_rq_unlock(rq, &flags);
6445 cpu_rq(cpu)->migration_thread = p;
6446 break;
48f24c4d 6447
1da177e4 6448 case CPU_ONLINE:
8bb78442 6449 case CPU_ONLINE_FROZEN:
3a4fa0a2 6450 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6451 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6452
6453 /* Update our root-domain */
6454 rq = cpu_rq(cpu);
6455 spin_lock_irqsave(&rq->lock, flags);
6456 if (rq->rd) {
6457 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6458 cpu_set(cpu, rq->rd->online);
6459 }
6460 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6461 break;
48f24c4d 6462
1da177e4
LT
6463#ifdef CONFIG_HOTPLUG_CPU
6464 case CPU_UP_CANCELED:
8bb78442 6465 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6466 if (!cpu_rq(cpu)->migration_thread)
6467 break;
41a2d6cf 6468 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6469 kthread_bind(cpu_rq(cpu)->migration_thread,
6470 any_online_cpu(cpu_online_map));
1da177e4
LT
6471 kthread_stop(cpu_rq(cpu)->migration_thread);
6472 cpu_rq(cpu)->migration_thread = NULL;
6473 break;
48f24c4d 6474
1da177e4 6475 case CPU_DEAD:
8bb78442 6476 case CPU_DEAD_FROZEN:
470fd646 6477 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6478 migrate_live_tasks(cpu);
6479 rq = cpu_rq(cpu);
6480 kthread_stop(rq->migration_thread);
6481 rq->migration_thread = NULL;
6482 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6483 spin_lock_irq(&rq->lock);
a8e504d2 6484 update_rq_clock(rq);
2e1cb74a 6485 deactivate_task(rq, rq->idle, 0);
1da177e4 6486 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6487 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6488 rq->idle->sched_class = &idle_sched_class;
1da177e4 6489 migrate_dead_tasks(cpu);
d2da272a 6490 spin_unlock_irq(&rq->lock);
470fd646 6491 cpuset_unlock();
1da177e4
LT
6492 migrate_nr_uninterruptible(rq);
6493 BUG_ON(rq->nr_running != 0);
6494
41a2d6cf
IM
6495 /*
6496 * No need to migrate the tasks: it was best-effort if
6497 * they didn't take sched_hotcpu_mutex. Just wake up
6498 * the requestors.
6499 */
1da177e4
LT
6500 spin_lock_irq(&rq->lock);
6501 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6502 struct migration_req *req;
6503
1da177e4 6504 req = list_entry(rq->migration_queue.next,
70b97a7f 6505 struct migration_req, list);
1da177e4
LT
6506 list_del_init(&req->list);
6507 complete(&req->done);
6508 }
6509 spin_unlock_irq(&rq->lock);
6510 break;
57d885fe 6511
08f503b0
GH
6512 case CPU_DYING:
6513 case CPU_DYING_FROZEN:
57d885fe
GH
6514 /* Update our root-domain */
6515 rq = cpu_rq(cpu);
6516 spin_lock_irqsave(&rq->lock, flags);
6517 if (rq->rd) {
6518 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6519 cpu_clear(cpu, rq->rd->online);
6520 }
6521 spin_unlock_irqrestore(&rq->lock, flags);
6522 break;
1da177e4
LT
6523#endif
6524 }
6525 return NOTIFY_OK;
6526}
6527
6528/* Register at highest priority so that task migration (migrate_all_tasks)
6529 * happens before everything else.
6530 */
26c2143b 6531static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6532 .notifier_call = migration_call,
6533 .priority = 10
6534};
6535
e6fe6649 6536void __init migration_init(void)
1da177e4
LT
6537{
6538 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6539 int err;
48f24c4d
IM
6540
6541 /* Start one for the boot CPU: */
07dccf33
AM
6542 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6543 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6544 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6545 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6546}
6547#endif
6548
6549#ifdef CONFIG_SMP
476f3534 6550
3e9830dc 6551#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6552
7c16ec58
MT
6553static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6554 cpumask_t *groupmask)
1da177e4 6555{
4dcf6aff 6556 struct sched_group *group = sd->groups;
434d53b0 6557 char str[256];
1da177e4 6558
434d53b0 6559 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6560 cpus_clear(*groupmask);
4dcf6aff
IM
6561
6562 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6563
6564 if (!(sd->flags & SD_LOAD_BALANCE)) {
6565 printk("does not load-balance\n");
6566 if (sd->parent)
6567 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6568 " has parent");
6569 return -1;
41c7ce9a
NP
6570 }
6571
4dcf6aff
IM
6572 printk(KERN_CONT "span %s\n", str);
6573
6574 if (!cpu_isset(cpu, sd->span)) {
6575 printk(KERN_ERR "ERROR: domain->span does not contain "
6576 "CPU%d\n", cpu);
6577 }
6578 if (!cpu_isset(cpu, group->cpumask)) {
6579 printk(KERN_ERR "ERROR: domain->groups does not contain"
6580 " CPU%d\n", cpu);
6581 }
1da177e4 6582
4dcf6aff 6583 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6584 do {
4dcf6aff
IM
6585 if (!group) {
6586 printk("\n");
6587 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6588 break;
6589 }
6590
4dcf6aff
IM
6591 if (!group->__cpu_power) {
6592 printk(KERN_CONT "\n");
6593 printk(KERN_ERR "ERROR: domain->cpu_power not "
6594 "set\n");
6595 break;
6596 }
1da177e4 6597
4dcf6aff
IM
6598 if (!cpus_weight(group->cpumask)) {
6599 printk(KERN_CONT "\n");
6600 printk(KERN_ERR "ERROR: empty group\n");
6601 break;
6602 }
1da177e4 6603
7c16ec58 6604 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6605 printk(KERN_CONT "\n");
6606 printk(KERN_ERR "ERROR: repeated CPUs\n");
6607 break;
6608 }
1da177e4 6609
7c16ec58 6610 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6611
434d53b0 6612 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6613 printk(KERN_CONT " %s", str);
1da177e4 6614
4dcf6aff
IM
6615 group = group->next;
6616 } while (group != sd->groups);
6617 printk(KERN_CONT "\n");
1da177e4 6618
7c16ec58 6619 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6620 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6621
7c16ec58 6622 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6623 printk(KERN_ERR "ERROR: parent span is not a superset "
6624 "of domain->span\n");
6625 return 0;
6626}
1da177e4 6627
4dcf6aff
IM
6628static void sched_domain_debug(struct sched_domain *sd, int cpu)
6629{
7c16ec58 6630 cpumask_t *groupmask;
4dcf6aff 6631 int level = 0;
1da177e4 6632
4dcf6aff
IM
6633 if (!sd) {
6634 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6635 return;
6636 }
1da177e4 6637
4dcf6aff
IM
6638 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6639
7c16ec58
MT
6640 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6641 if (!groupmask) {
6642 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6643 return;
6644 }
6645
4dcf6aff 6646 for (;;) {
7c16ec58 6647 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6648 break;
1da177e4
LT
6649 level++;
6650 sd = sd->parent;
33859f7f 6651 if (!sd)
4dcf6aff
IM
6652 break;
6653 }
7c16ec58 6654 kfree(groupmask);
1da177e4
LT
6655}
6656#else
48f24c4d 6657# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
6658#endif
6659
1a20ff27 6660static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6661{
6662 if (cpus_weight(sd->span) == 1)
6663 return 1;
6664
6665 /* Following flags need at least 2 groups */
6666 if (sd->flags & (SD_LOAD_BALANCE |
6667 SD_BALANCE_NEWIDLE |
6668 SD_BALANCE_FORK |
89c4710e
SS
6669 SD_BALANCE_EXEC |
6670 SD_SHARE_CPUPOWER |
6671 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6672 if (sd->groups != sd->groups->next)
6673 return 0;
6674 }
6675
6676 /* Following flags don't use groups */
6677 if (sd->flags & (SD_WAKE_IDLE |
6678 SD_WAKE_AFFINE |
6679 SD_WAKE_BALANCE))
6680 return 0;
6681
6682 return 1;
6683}
6684
48f24c4d
IM
6685static int
6686sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6687{
6688 unsigned long cflags = sd->flags, pflags = parent->flags;
6689
6690 if (sd_degenerate(parent))
6691 return 1;
6692
6693 if (!cpus_equal(sd->span, parent->span))
6694 return 0;
6695
6696 /* Does parent contain flags not in child? */
6697 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6698 if (cflags & SD_WAKE_AFFINE)
6699 pflags &= ~SD_WAKE_BALANCE;
6700 /* Flags needing groups don't count if only 1 group in parent */
6701 if (parent->groups == parent->groups->next) {
6702 pflags &= ~(SD_LOAD_BALANCE |
6703 SD_BALANCE_NEWIDLE |
6704 SD_BALANCE_FORK |
89c4710e
SS
6705 SD_BALANCE_EXEC |
6706 SD_SHARE_CPUPOWER |
6707 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6708 }
6709 if (~cflags & pflags)
6710 return 0;
6711
6712 return 1;
6713}
6714
57d885fe
GH
6715static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6716{
6717 unsigned long flags;
6718 const struct sched_class *class;
6719
6720 spin_lock_irqsave(&rq->lock, flags);
6721
6722 if (rq->rd) {
6723 struct root_domain *old_rd = rq->rd;
6724
0eab9146 6725 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6726 if (class->leave_domain)
6727 class->leave_domain(rq);
0eab9146 6728 }
57d885fe 6729
dc938520
GH
6730 cpu_clear(rq->cpu, old_rd->span);
6731 cpu_clear(rq->cpu, old_rd->online);
6732
57d885fe
GH
6733 if (atomic_dec_and_test(&old_rd->refcount))
6734 kfree(old_rd);
6735 }
6736
6737 atomic_inc(&rd->refcount);
6738 rq->rd = rd;
6739
dc938520 6740 cpu_set(rq->cpu, rd->span);
1f94ef59
GH
6741 if (cpu_isset(rq->cpu, cpu_online_map))
6742 cpu_set(rq->cpu, rd->online);
dc938520 6743
0eab9146 6744 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
6745 if (class->join_domain)
6746 class->join_domain(rq);
0eab9146 6747 }
57d885fe
GH
6748
6749 spin_unlock_irqrestore(&rq->lock, flags);
6750}
6751
dc938520 6752static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6753{
6754 memset(rd, 0, sizeof(*rd));
6755
dc938520
GH
6756 cpus_clear(rd->span);
6757 cpus_clear(rd->online);
57d885fe
GH
6758}
6759
6760static void init_defrootdomain(void)
6761{
dc938520 6762 init_rootdomain(&def_root_domain);
57d885fe
GH
6763 atomic_set(&def_root_domain.refcount, 1);
6764}
6765
dc938520 6766static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6767{
6768 struct root_domain *rd;
6769
6770 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6771 if (!rd)
6772 return NULL;
6773
dc938520 6774 init_rootdomain(rd);
57d885fe
GH
6775
6776 return rd;
6777}
6778
1da177e4 6779/*
0eab9146 6780 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6781 * hold the hotplug lock.
6782 */
0eab9146
IM
6783static void
6784cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6785{
70b97a7f 6786 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6787 struct sched_domain *tmp;
6788
6789 /* Remove the sched domains which do not contribute to scheduling. */
6790 for (tmp = sd; tmp; tmp = tmp->parent) {
6791 struct sched_domain *parent = tmp->parent;
6792 if (!parent)
6793 break;
1a848870 6794 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6795 tmp->parent = parent->parent;
1a848870
SS
6796 if (parent->parent)
6797 parent->parent->child = tmp;
6798 }
245af2c7
SS
6799 }
6800
1a848870 6801 if (sd && sd_degenerate(sd)) {
245af2c7 6802 sd = sd->parent;
1a848870
SS
6803 if (sd)
6804 sd->child = NULL;
6805 }
1da177e4
LT
6806
6807 sched_domain_debug(sd, cpu);
6808
57d885fe 6809 rq_attach_root(rq, rd);
674311d5 6810 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6811}
6812
6813/* cpus with isolated domains */
67af63a6 6814static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6815
6816/* Setup the mask of cpus configured for isolated domains */
6817static int __init isolated_cpu_setup(char *str)
6818{
6819 int ints[NR_CPUS], i;
6820
6821 str = get_options(str, ARRAY_SIZE(ints), ints);
6822 cpus_clear(cpu_isolated_map);
6823 for (i = 1; i <= ints[0]; i++)
6824 if (ints[i] < NR_CPUS)
6825 cpu_set(ints[i], cpu_isolated_map);
6826 return 1;
6827}
6828
8927f494 6829__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6830
6831/*
6711cab4
SS
6832 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6833 * to a function which identifies what group(along with sched group) a CPU
6834 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6835 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6836 *
6837 * init_sched_build_groups will build a circular linked list of the groups
6838 * covered by the given span, and will set each group's ->cpumask correctly,
6839 * and ->cpu_power to 0.
6840 */
a616058b 6841static void
7c16ec58 6842init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6843 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6844 struct sched_group **sg,
6845 cpumask_t *tmpmask),
6846 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6847{
6848 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6849 int i;
6850
7c16ec58
MT
6851 cpus_clear(*covered);
6852
6853 for_each_cpu_mask(i, *span) {
6711cab4 6854 struct sched_group *sg;
7c16ec58 6855 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6856 int j;
6857
7c16ec58 6858 if (cpu_isset(i, *covered))
1da177e4
LT
6859 continue;
6860
7c16ec58 6861 cpus_clear(sg->cpumask);
5517d86b 6862 sg->__cpu_power = 0;
1da177e4 6863
7c16ec58
MT
6864 for_each_cpu_mask(j, *span) {
6865 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6866 continue;
6867
7c16ec58 6868 cpu_set(j, *covered);
1da177e4
LT
6869 cpu_set(j, sg->cpumask);
6870 }
6871 if (!first)
6872 first = sg;
6873 if (last)
6874 last->next = sg;
6875 last = sg;
6876 }
6877 last->next = first;
6878}
6879
9c1cfda2 6880#define SD_NODES_PER_DOMAIN 16
1da177e4 6881
9c1cfda2 6882#ifdef CONFIG_NUMA
198e2f18 6883
9c1cfda2
JH
6884/**
6885 * find_next_best_node - find the next node to include in a sched_domain
6886 * @node: node whose sched_domain we're building
6887 * @used_nodes: nodes already in the sched_domain
6888 *
41a2d6cf 6889 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6890 * finds the closest node not already in the @used_nodes map.
6891 *
6892 * Should use nodemask_t.
6893 */
c5f59f08 6894static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6895{
6896 int i, n, val, min_val, best_node = 0;
6897
6898 min_val = INT_MAX;
6899
6900 for (i = 0; i < MAX_NUMNODES; i++) {
6901 /* Start at @node */
6902 n = (node + i) % MAX_NUMNODES;
6903
6904 if (!nr_cpus_node(n))
6905 continue;
6906
6907 /* Skip already used nodes */
c5f59f08 6908 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6909 continue;
6910
6911 /* Simple min distance search */
6912 val = node_distance(node, n);
6913
6914 if (val < min_val) {
6915 min_val = val;
6916 best_node = n;
6917 }
6918 }
6919
c5f59f08 6920 node_set(best_node, *used_nodes);
9c1cfda2
JH
6921 return best_node;
6922}
6923
6924/**
6925 * sched_domain_node_span - get a cpumask for a node's sched_domain
6926 * @node: node whose cpumask we're constructing
9c1cfda2 6927 *
41a2d6cf 6928 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6929 * should be one that prevents unnecessary balancing, but also spreads tasks
6930 * out optimally.
6931 */
4bdbaad3 6932static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6933{
c5f59f08 6934 nodemask_t used_nodes;
c5f59f08 6935 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6936 int i;
9c1cfda2 6937
4bdbaad3 6938 cpus_clear(*span);
c5f59f08 6939 nodes_clear(used_nodes);
9c1cfda2 6940
4bdbaad3 6941 cpus_or(*span, *span, *nodemask);
c5f59f08 6942 node_set(node, used_nodes);
9c1cfda2
JH
6943
6944 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6945 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6946
c5f59f08 6947 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6948 cpus_or(*span, *span, *nodemask);
9c1cfda2 6949 }
9c1cfda2
JH
6950}
6951#endif
6952
5c45bf27 6953int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6954
9c1cfda2 6955/*
48f24c4d 6956 * SMT sched-domains:
9c1cfda2 6957 */
1da177e4
LT
6958#ifdef CONFIG_SCHED_SMT
6959static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6960static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6961
41a2d6cf 6962static int
7c16ec58
MT
6963cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6964 cpumask_t *unused)
1da177e4 6965{
6711cab4
SS
6966 if (sg)
6967 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6968 return cpu;
6969}
6970#endif
6971
48f24c4d
IM
6972/*
6973 * multi-core sched-domains:
6974 */
1e9f28fa
SS
6975#ifdef CONFIG_SCHED_MC
6976static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6977static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6978#endif
6979
6980#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6981static int
7c16ec58
MT
6982cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6983 cpumask_t *mask)
1e9f28fa 6984{
6711cab4 6985 int group;
7c16ec58
MT
6986
6987 *mask = per_cpu(cpu_sibling_map, cpu);
6988 cpus_and(*mask, *mask, *cpu_map);
6989 group = first_cpu(*mask);
6711cab4
SS
6990 if (sg)
6991 *sg = &per_cpu(sched_group_core, group);
6992 return group;
1e9f28fa
SS
6993}
6994#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6995static int
7c16ec58
MT
6996cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6997 cpumask_t *unused)
1e9f28fa 6998{
6711cab4
SS
6999 if (sg)
7000 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7001 return cpu;
7002}
7003#endif
7004
1da177e4 7005static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7006static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7007
41a2d6cf 7008static int
7c16ec58
MT
7009cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7010 cpumask_t *mask)
1da177e4 7011{
6711cab4 7012 int group;
48f24c4d 7013#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7014 *mask = cpu_coregroup_map(cpu);
7015 cpus_and(*mask, *mask, *cpu_map);
7016 group = first_cpu(*mask);
1e9f28fa 7017#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7018 *mask = per_cpu(cpu_sibling_map, cpu);
7019 cpus_and(*mask, *mask, *cpu_map);
7020 group = first_cpu(*mask);
1da177e4 7021#else
6711cab4 7022 group = cpu;
1da177e4 7023#endif
6711cab4
SS
7024 if (sg)
7025 *sg = &per_cpu(sched_group_phys, group);
7026 return group;
1da177e4
LT
7027}
7028
7029#ifdef CONFIG_NUMA
1da177e4 7030/*
9c1cfda2
JH
7031 * The init_sched_build_groups can't handle what we want to do with node
7032 * groups, so roll our own. Now each node has its own list of groups which
7033 * gets dynamically allocated.
1da177e4 7034 */
9c1cfda2 7035static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7036static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7037
9c1cfda2 7038static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7039static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7040
6711cab4 7041static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7042 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7043{
6711cab4
SS
7044 int group;
7045
7c16ec58
MT
7046 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7047 cpus_and(*nodemask, *nodemask, *cpu_map);
7048 group = first_cpu(*nodemask);
6711cab4
SS
7049
7050 if (sg)
7051 *sg = &per_cpu(sched_group_allnodes, group);
7052 return group;
1da177e4 7053}
6711cab4 7054
08069033
SS
7055static void init_numa_sched_groups_power(struct sched_group *group_head)
7056{
7057 struct sched_group *sg = group_head;
7058 int j;
7059
7060 if (!sg)
7061 return;
3a5c359a
AK
7062 do {
7063 for_each_cpu_mask(j, sg->cpumask) {
7064 struct sched_domain *sd;
08069033 7065
3a5c359a
AK
7066 sd = &per_cpu(phys_domains, j);
7067 if (j != first_cpu(sd->groups->cpumask)) {
7068 /*
7069 * Only add "power" once for each
7070 * physical package.
7071 */
7072 continue;
7073 }
08069033 7074
3a5c359a
AK
7075 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7076 }
7077 sg = sg->next;
7078 } while (sg != group_head);
08069033 7079}
1da177e4
LT
7080#endif
7081
a616058b 7082#ifdef CONFIG_NUMA
51888ca2 7083/* Free memory allocated for various sched_group structures */
7c16ec58 7084static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7085{
a616058b 7086 int cpu, i;
51888ca2
SV
7087
7088 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7089 struct sched_group **sched_group_nodes
7090 = sched_group_nodes_bycpu[cpu];
7091
51888ca2
SV
7092 if (!sched_group_nodes)
7093 continue;
7094
7095 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
7096 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7097
7c16ec58
MT
7098 *nodemask = node_to_cpumask(i);
7099 cpus_and(*nodemask, *nodemask, *cpu_map);
7100 if (cpus_empty(*nodemask))
51888ca2
SV
7101 continue;
7102
7103 if (sg == NULL)
7104 continue;
7105 sg = sg->next;
7106next_sg:
7107 oldsg = sg;
7108 sg = sg->next;
7109 kfree(oldsg);
7110 if (oldsg != sched_group_nodes[i])
7111 goto next_sg;
7112 }
7113 kfree(sched_group_nodes);
7114 sched_group_nodes_bycpu[cpu] = NULL;
7115 }
51888ca2 7116}
a616058b 7117#else
7c16ec58 7118static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7119{
7120}
7121#endif
51888ca2 7122
89c4710e
SS
7123/*
7124 * Initialize sched groups cpu_power.
7125 *
7126 * cpu_power indicates the capacity of sched group, which is used while
7127 * distributing the load between different sched groups in a sched domain.
7128 * Typically cpu_power for all the groups in a sched domain will be same unless
7129 * there are asymmetries in the topology. If there are asymmetries, group
7130 * having more cpu_power will pickup more load compared to the group having
7131 * less cpu_power.
7132 *
7133 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7134 * the maximum number of tasks a group can handle in the presence of other idle
7135 * or lightly loaded groups in the same sched domain.
7136 */
7137static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7138{
7139 struct sched_domain *child;
7140 struct sched_group *group;
7141
7142 WARN_ON(!sd || !sd->groups);
7143
7144 if (cpu != first_cpu(sd->groups->cpumask))
7145 return;
7146
7147 child = sd->child;
7148
5517d86b
ED
7149 sd->groups->__cpu_power = 0;
7150
89c4710e
SS
7151 /*
7152 * For perf policy, if the groups in child domain share resources
7153 * (for example cores sharing some portions of the cache hierarchy
7154 * or SMT), then set this domain groups cpu_power such that each group
7155 * can handle only one task, when there are other idle groups in the
7156 * same sched domain.
7157 */
7158 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7159 (child->flags &
7160 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7161 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7162 return;
7163 }
7164
89c4710e
SS
7165 /*
7166 * add cpu_power of each child group to this groups cpu_power
7167 */
7168 group = child->groups;
7169 do {
5517d86b 7170 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7171 group = group->next;
7172 } while (group != child->groups);
7173}
7174
7c16ec58
MT
7175/*
7176 * Initializers for schedule domains
7177 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7178 */
7179
7180#define SD_INIT(sd, type) sd_init_##type(sd)
7181#define SD_INIT_FUNC(type) \
7182static noinline void sd_init_##type(struct sched_domain *sd) \
7183{ \
7184 memset(sd, 0, sizeof(*sd)); \
7185 *sd = SD_##type##_INIT; \
1d3504fc 7186 sd->level = SD_LV_##type; \
7c16ec58
MT
7187}
7188
7189SD_INIT_FUNC(CPU)
7190#ifdef CONFIG_NUMA
7191 SD_INIT_FUNC(ALLNODES)
7192 SD_INIT_FUNC(NODE)
7193#endif
7194#ifdef CONFIG_SCHED_SMT
7195 SD_INIT_FUNC(SIBLING)
7196#endif
7197#ifdef CONFIG_SCHED_MC
7198 SD_INIT_FUNC(MC)
7199#endif
7200
7201/*
7202 * To minimize stack usage kmalloc room for cpumasks and share the
7203 * space as the usage in build_sched_domains() dictates. Used only
7204 * if the amount of space is significant.
7205 */
7206struct allmasks {
7207 cpumask_t tmpmask; /* make this one first */
7208 union {
7209 cpumask_t nodemask;
7210 cpumask_t this_sibling_map;
7211 cpumask_t this_core_map;
7212 };
7213 cpumask_t send_covered;
7214
7215#ifdef CONFIG_NUMA
7216 cpumask_t domainspan;
7217 cpumask_t covered;
7218 cpumask_t notcovered;
7219#endif
7220};
7221
7222#if NR_CPUS > 128
7223#define SCHED_CPUMASK_ALLOC 1
7224#define SCHED_CPUMASK_FREE(v) kfree(v)
7225#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7226#else
7227#define SCHED_CPUMASK_ALLOC 0
7228#define SCHED_CPUMASK_FREE(v)
7229#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7230#endif
7231
7232#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7233 ((unsigned long)(a) + offsetof(struct allmasks, v))
7234
1d3504fc
HS
7235static int default_relax_domain_level = -1;
7236
7237static int __init setup_relax_domain_level(char *str)
7238{
7239 default_relax_domain_level = simple_strtoul(str, NULL, 0);
7240 return 1;
7241}
7242__setup("relax_domain_level=", setup_relax_domain_level);
7243
7244static void set_domain_attribute(struct sched_domain *sd,
7245 struct sched_domain_attr *attr)
7246{
7247 int request;
7248
7249 if (!attr || attr->relax_domain_level < 0) {
7250 if (default_relax_domain_level < 0)
7251 return;
7252 else
7253 request = default_relax_domain_level;
7254 } else
7255 request = attr->relax_domain_level;
7256 if (request < sd->level) {
7257 /* turn off idle balance on this domain */
7258 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7259 } else {
7260 /* turn on idle balance on this domain */
7261 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7262 }
7263}
7264
1da177e4 7265/*
1a20ff27
DG
7266 * Build sched domains for a given set of cpus and attach the sched domains
7267 * to the individual cpus
1da177e4 7268 */
1d3504fc
HS
7269static int __build_sched_domains(const cpumask_t *cpu_map,
7270 struct sched_domain_attr *attr)
1da177e4
LT
7271{
7272 int i;
57d885fe 7273 struct root_domain *rd;
7c16ec58
MT
7274 SCHED_CPUMASK_DECLARE(allmasks);
7275 cpumask_t *tmpmask;
d1b55138
JH
7276#ifdef CONFIG_NUMA
7277 struct sched_group **sched_group_nodes = NULL;
6711cab4 7278 int sd_allnodes = 0;
d1b55138
JH
7279
7280 /*
7281 * Allocate the per-node list of sched groups
7282 */
5cf9f062 7283 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7284 GFP_KERNEL);
d1b55138
JH
7285 if (!sched_group_nodes) {
7286 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7287 return -ENOMEM;
d1b55138 7288 }
d1b55138 7289#endif
1da177e4 7290
dc938520 7291 rd = alloc_rootdomain();
57d885fe
GH
7292 if (!rd) {
7293 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7294#ifdef CONFIG_NUMA
7295 kfree(sched_group_nodes);
7296#endif
57d885fe
GH
7297 return -ENOMEM;
7298 }
7299
7c16ec58
MT
7300#if SCHED_CPUMASK_ALLOC
7301 /* get space for all scratch cpumask variables */
7302 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7303 if (!allmasks) {
7304 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7305 kfree(rd);
7306#ifdef CONFIG_NUMA
7307 kfree(sched_group_nodes);
7308#endif
7309 return -ENOMEM;
7310 }
7311#endif
7312 tmpmask = (cpumask_t *)allmasks;
7313
7314
7315#ifdef CONFIG_NUMA
7316 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7317#endif
7318
1da177e4 7319 /*
1a20ff27 7320 * Set up domains for cpus specified by the cpu_map.
1da177e4 7321 */
1a20ff27 7322 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7323 struct sched_domain *sd = NULL, *p;
7c16ec58 7324 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7325
7c16ec58
MT
7326 *nodemask = node_to_cpumask(cpu_to_node(i));
7327 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7328
7329#ifdef CONFIG_NUMA
dd41f596 7330 if (cpus_weight(*cpu_map) >
7c16ec58 7331 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7332 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7333 SD_INIT(sd, ALLNODES);
1d3504fc 7334 set_domain_attribute(sd, attr);
9c1cfda2 7335 sd->span = *cpu_map;
18d95a28 7336 sd->first_cpu = first_cpu(sd->span);
7c16ec58 7337 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7338 p = sd;
6711cab4 7339 sd_allnodes = 1;
9c1cfda2
JH
7340 } else
7341 p = NULL;
7342
1da177e4 7343 sd = &per_cpu(node_domains, i);
7c16ec58 7344 SD_INIT(sd, NODE);
1d3504fc 7345 set_domain_attribute(sd, attr);
4bdbaad3 7346 sched_domain_node_span(cpu_to_node(i), &sd->span);
18d95a28 7347 sd->first_cpu = first_cpu(sd->span);
9c1cfda2 7348 sd->parent = p;
1a848870
SS
7349 if (p)
7350 p->child = sd;
9c1cfda2 7351 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7352#endif
7353
7354 p = sd;
7355 sd = &per_cpu(phys_domains, i);
7c16ec58 7356 SD_INIT(sd, CPU);
1d3504fc 7357 set_domain_attribute(sd, attr);
7c16ec58 7358 sd->span = *nodemask;
18d95a28 7359 sd->first_cpu = first_cpu(sd->span);
1da177e4 7360 sd->parent = p;
1a848870
SS
7361 if (p)
7362 p->child = sd;
7c16ec58 7363 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7364
1e9f28fa
SS
7365#ifdef CONFIG_SCHED_MC
7366 p = sd;
7367 sd = &per_cpu(core_domains, i);
7c16ec58 7368 SD_INIT(sd, MC);
1d3504fc 7369 set_domain_attribute(sd, attr);
1e9f28fa 7370 sd->span = cpu_coregroup_map(i);
18d95a28 7371 sd->first_cpu = first_cpu(sd->span);
1e9f28fa
SS
7372 cpus_and(sd->span, sd->span, *cpu_map);
7373 sd->parent = p;
1a848870 7374 p->child = sd;
7c16ec58 7375 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7376#endif
7377
1da177e4
LT
7378#ifdef CONFIG_SCHED_SMT
7379 p = sd;
7380 sd = &per_cpu(cpu_domains, i);
7c16ec58 7381 SD_INIT(sd, SIBLING);
1d3504fc 7382 set_domain_attribute(sd, attr);
d5a7430d 7383 sd->span = per_cpu(cpu_sibling_map, i);
18d95a28 7384 sd->first_cpu = first_cpu(sd->span);
1a20ff27 7385 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7386 sd->parent = p;
1a848870 7387 p->child = sd;
7c16ec58 7388 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7389#endif
7390 }
7391
7392#ifdef CONFIG_SCHED_SMT
7393 /* Set up CPU (sibling) groups */
9c1cfda2 7394 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7395 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7396 SCHED_CPUMASK_VAR(send_covered, allmasks);
7397
7398 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7399 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7400 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7401 continue;
7402
dd41f596 7403 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7404 &cpu_to_cpu_group,
7405 send_covered, tmpmask);
1da177e4
LT
7406 }
7407#endif
7408
1e9f28fa
SS
7409#ifdef CONFIG_SCHED_MC
7410 /* Set up multi-core groups */
7411 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7412 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7413 SCHED_CPUMASK_VAR(send_covered, allmasks);
7414
7415 *this_core_map = cpu_coregroup_map(i);
7416 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7417 if (i != first_cpu(*this_core_map))
1e9f28fa 7418 continue;
7c16ec58 7419
dd41f596 7420 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7421 &cpu_to_core_group,
7422 send_covered, tmpmask);
1e9f28fa
SS
7423 }
7424#endif
7425
1da177e4
LT
7426 /* Set up physical groups */
7427 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7428 SCHED_CPUMASK_VAR(nodemask, allmasks);
7429 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7430
7c16ec58
MT
7431 *nodemask = node_to_cpumask(i);
7432 cpus_and(*nodemask, *nodemask, *cpu_map);
7433 if (cpus_empty(*nodemask))
1da177e4
LT
7434 continue;
7435
7c16ec58
MT
7436 init_sched_build_groups(nodemask, cpu_map,
7437 &cpu_to_phys_group,
7438 send_covered, tmpmask);
1da177e4
LT
7439 }
7440
7441#ifdef CONFIG_NUMA
7442 /* Set up node groups */
7c16ec58
MT
7443 if (sd_allnodes) {
7444 SCHED_CPUMASK_VAR(send_covered, allmasks);
7445
7446 init_sched_build_groups(cpu_map, cpu_map,
7447 &cpu_to_allnodes_group,
7448 send_covered, tmpmask);
7449 }
9c1cfda2
JH
7450
7451 for (i = 0; i < MAX_NUMNODES; i++) {
7452 /* Set up node groups */
7453 struct sched_group *sg, *prev;
7c16ec58
MT
7454 SCHED_CPUMASK_VAR(nodemask, allmasks);
7455 SCHED_CPUMASK_VAR(domainspan, allmasks);
7456 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7457 int j;
7458
7c16ec58
MT
7459 *nodemask = node_to_cpumask(i);
7460 cpus_clear(*covered);
7461
7462 cpus_and(*nodemask, *nodemask, *cpu_map);
7463 if (cpus_empty(*nodemask)) {
d1b55138 7464 sched_group_nodes[i] = NULL;
9c1cfda2 7465 continue;
d1b55138 7466 }
9c1cfda2 7467
4bdbaad3 7468 sched_domain_node_span(i, domainspan);
7c16ec58 7469 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7470
15f0b676 7471 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7472 if (!sg) {
7473 printk(KERN_WARNING "Can not alloc domain group for "
7474 "node %d\n", i);
7475 goto error;
7476 }
9c1cfda2 7477 sched_group_nodes[i] = sg;
7c16ec58 7478 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7479 struct sched_domain *sd;
9761eea8 7480
9c1cfda2
JH
7481 sd = &per_cpu(node_domains, j);
7482 sd->groups = sg;
9c1cfda2 7483 }
5517d86b 7484 sg->__cpu_power = 0;
7c16ec58 7485 sg->cpumask = *nodemask;
51888ca2 7486 sg->next = sg;
7c16ec58 7487 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7488 prev = sg;
7489
7490 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7491 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7492 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7493 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7494
7c16ec58
MT
7495 cpus_complement(*notcovered, *covered);
7496 cpus_and(*tmpmask, *notcovered, *cpu_map);
7497 cpus_and(*tmpmask, *tmpmask, *domainspan);
7498 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7499 break;
7500
7c16ec58
MT
7501 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7502 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7503 continue;
7504
15f0b676
SV
7505 sg = kmalloc_node(sizeof(struct sched_group),
7506 GFP_KERNEL, i);
9c1cfda2
JH
7507 if (!sg) {
7508 printk(KERN_WARNING
7509 "Can not alloc domain group for node %d\n", j);
51888ca2 7510 goto error;
9c1cfda2 7511 }
5517d86b 7512 sg->__cpu_power = 0;
7c16ec58 7513 sg->cpumask = *tmpmask;
51888ca2 7514 sg->next = prev->next;
7c16ec58 7515 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7516 prev->next = sg;
7517 prev = sg;
7518 }
9c1cfda2 7519 }
1da177e4
LT
7520#endif
7521
7522 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7523#ifdef CONFIG_SCHED_SMT
1a20ff27 7524 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7525 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7526
89c4710e 7527 init_sched_groups_power(i, sd);
5c45bf27 7528 }
1da177e4 7529#endif
1e9f28fa 7530#ifdef CONFIG_SCHED_MC
5c45bf27 7531 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7532 struct sched_domain *sd = &per_cpu(core_domains, i);
7533
89c4710e 7534 init_sched_groups_power(i, sd);
5c45bf27
SS
7535 }
7536#endif
1e9f28fa 7537
5c45bf27 7538 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7539 struct sched_domain *sd = &per_cpu(phys_domains, i);
7540
89c4710e 7541 init_sched_groups_power(i, sd);
1da177e4
LT
7542 }
7543
9c1cfda2 7544#ifdef CONFIG_NUMA
08069033
SS
7545 for (i = 0; i < MAX_NUMNODES; i++)
7546 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7547
6711cab4
SS
7548 if (sd_allnodes) {
7549 struct sched_group *sg;
f712c0c7 7550
7c16ec58
MT
7551 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7552 tmpmask);
f712c0c7
SS
7553 init_numa_sched_groups_power(sg);
7554 }
9c1cfda2
JH
7555#endif
7556
1da177e4 7557 /* Attach the domains */
1a20ff27 7558 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7559 struct sched_domain *sd;
7560#ifdef CONFIG_SCHED_SMT
7561 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7562#elif defined(CONFIG_SCHED_MC)
7563 sd = &per_cpu(core_domains, i);
1da177e4
LT
7564#else
7565 sd = &per_cpu(phys_domains, i);
7566#endif
57d885fe 7567 cpu_attach_domain(sd, rd, i);
1da177e4 7568 }
51888ca2 7569
7c16ec58 7570 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7571 return 0;
7572
a616058b 7573#ifdef CONFIG_NUMA
51888ca2 7574error:
7c16ec58
MT
7575 free_sched_groups(cpu_map, tmpmask);
7576 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7577 return -ENOMEM;
a616058b 7578#endif
1da177e4 7579}
029190c5 7580
1d3504fc
HS
7581static int build_sched_domains(const cpumask_t *cpu_map)
7582{
7583 return __build_sched_domains(cpu_map, NULL);
7584}
7585
029190c5
PJ
7586static cpumask_t *doms_cur; /* current sched domains */
7587static int ndoms_cur; /* number of sched domains in 'doms_cur' */
1d3504fc
HS
7588static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
7589 in 'doms_cur' */
029190c5
PJ
7590
7591/*
7592 * Special case: If a kmalloc of a doms_cur partition (array of
7593 * cpumask_t) fails, then fallback to a single sched domain,
7594 * as determined by the single cpumask_t fallback_doms.
7595 */
7596static cpumask_t fallback_doms;
7597
22e52b07
HC
7598void __attribute__((weak)) arch_update_cpu_topology(void)
7599{
7600}
7601
1a20ff27 7602/*
41a2d6cf 7603 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7604 * For now this just excludes isolated cpus, but could be used to
7605 * exclude other special cases in the future.
1a20ff27 7606 */
51888ca2 7607static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7608{
7378547f
MM
7609 int err;
7610
22e52b07 7611 arch_update_cpu_topology();
029190c5
PJ
7612 ndoms_cur = 1;
7613 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7614 if (!doms_cur)
7615 doms_cur = &fallback_doms;
7616 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7617 dattr_cur = NULL;
7378547f 7618 err = build_sched_domains(doms_cur);
6382bc90 7619 register_sched_domain_sysctl();
7378547f
MM
7620
7621 return err;
1a20ff27
DG
7622}
7623
7c16ec58
MT
7624static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7625 cpumask_t *tmpmask)
1da177e4 7626{
7c16ec58 7627 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7628}
1da177e4 7629
1a20ff27
DG
7630/*
7631 * Detach sched domains from a group of cpus specified in cpu_map
7632 * These cpus will now be attached to the NULL domain
7633 */
858119e1 7634static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7635{
7c16ec58 7636 cpumask_t tmpmask;
1a20ff27
DG
7637 int i;
7638
6382bc90
MM
7639 unregister_sched_domain_sysctl();
7640
1a20ff27 7641 for_each_cpu_mask(i, *cpu_map)
57d885fe 7642 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7643 synchronize_sched();
7c16ec58 7644 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7645}
7646
1d3504fc
HS
7647/* handle null as "default" */
7648static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7649 struct sched_domain_attr *new, int idx_new)
7650{
7651 struct sched_domain_attr tmp;
7652
7653 /* fast path */
7654 if (!new && !cur)
7655 return 1;
7656
7657 tmp = SD_ATTR_INIT;
7658 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7659 new ? (new + idx_new) : &tmp,
7660 sizeof(struct sched_domain_attr));
7661}
7662
029190c5
PJ
7663/*
7664 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7665 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7666 * doms_new[] to the current sched domain partitioning, doms_cur[].
7667 * It destroys each deleted domain and builds each new domain.
7668 *
7669 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7670 * The masks don't intersect (don't overlap.) We should setup one
7671 * sched domain for each mask. CPUs not in any of the cpumasks will
7672 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7673 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7674 * it as it is.
7675 *
41a2d6cf
IM
7676 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7677 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7678 * failed the kmalloc call, then it can pass in doms_new == NULL,
7679 * and partition_sched_domains() will fallback to the single partition
7680 * 'fallback_doms'.
7681 *
7682 * Call with hotplug lock held
7683 */
1d3504fc
HS
7684void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7685 struct sched_domain_attr *dattr_new)
029190c5
PJ
7686{
7687 int i, j;
7688
a1835615
SV
7689 lock_doms_cur();
7690
7378547f
MM
7691 /* always unregister in case we don't destroy any domains */
7692 unregister_sched_domain_sysctl();
7693
029190c5
PJ
7694 if (doms_new == NULL) {
7695 ndoms_new = 1;
7696 doms_new = &fallback_doms;
7697 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7698 dattr_new = NULL;
029190c5
PJ
7699 }
7700
7701 /* Destroy deleted domains */
7702 for (i = 0; i < ndoms_cur; i++) {
7703 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7704 if (cpus_equal(doms_cur[i], doms_new[j])
7705 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7706 goto match1;
7707 }
7708 /* no match - a current sched domain not in new doms_new[] */
7709 detach_destroy_domains(doms_cur + i);
7710match1:
7711 ;
7712 }
7713
7714 /* Build new domains */
7715 for (i = 0; i < ndoms_new; i++) {
7716 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7717 if (cpus_equal(doms_new[i], doms_cur[j])
7718 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7719 goto match2;
7720 }
7721 /* no match - add a new doms_new */
1d3504fc
HS
7722 __build_sched_domains(doms_new + i,
7723 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7724match2:
7725 ;
7726 }
7727
7728 /* Remember the new sched domains */
7729 if (doms_cur != &fallback_doms)
7730 kfree(doms_cur);
1d3504fc 7731 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7732 doms_cur = doms_new;
1d3504fc 7733 dattr_cur = dattr_new;
029190c5 7734 ndoms_cur = ndoms_new;
7378547f
MM
7735
7736 register_sched_domain_sysctl();
a1835615
SV
7737
7738 unlock_doms_cur();
029190c5
PJ
7739}
7740
5c45bf27 7741#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7742int arch_reinit_sched_domains(void)
5c45bf27
SS
7743{
7744 int err;
7745
95402b38 7746 get_online_cpus();
5c45bf27
SS
7747 detach_destroy_domains(&cpu_online_map);
7748 err = arch_init_sched_domains(&cpu_online_map);
95402b38 7749 put_online_cpus();
5c45bf27
SS
7750
7751 return err;
7752}
7753
7754static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7755{
7756 int ret;
7757
7758 if (buf[0] != '0' && buf[0] != '1')
7759 return -EINVAL;
7760
7761 if (smt)
7762 sched_smt_power_savings = (buf[0] == '1');
7763 else
7764 sched_mc_power_savings = (buf[0] == '1');
7765
7766 ret = arch_reinit_sched_domains();
7767
7768 return ret ? ret : count;
7769}
7770
5c45bf27
SS
7771#ifdef CONFIG_SCHED_MC
7772static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7773{
7774 return sprintf(page, "%u\n", sched_mc_power_savings);
7775}
48f24c4d
IM
7776static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7777 const char *buf, size_t count)
5c45bf27
SS
7778{
7779 return sched_power_savings_store(buf, count, 0);
7780}
6707de00
AB
7781static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7782 sched_mc_power_savings_store);
5c45bf27
SS
7783#endif
7784
7785#ifdef CONFIG_SCHED_SMT
7786static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7787{
7788 return sprintf(page, "%u\n", sched_smt_power_savings);
7789}
48f24c4d
IM
7790static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7791 const char *buf, size_t count)
5c45bf27
SS
7792{
7793 return sched_power_savings_store(buf, count, 1);
7794}
6707de00
AB
7795static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7796 sched_smt_power_savings_store);
7797#endif
7798
7799int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7800{
7801 int err = 0;
7802
7803#ifdef CONFIG_SCHED_SMT
7804 if (smt_capable())
7805 err = sysfs_create_file(&cls->kset.kobj,
7806 &attr_sched_smt_power_savings.attr);
7807#endif
7808#ifdef CONFIG_SCHED_MC
7809 if (!err && mc_capable())
7810 err = sysfs_create_file(&cls->kset.kobj,
7811 &attr_sched_mc_power_savings.attr);
7812#endif
7813 return err;
7814}
5c45bf27
SS
7815#endif
7816
1da177e4 7817/*
41a2d6cf 7818 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7819 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7820 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7821 * which will prevent rebalancing while the sched domains are recalculated.
7822 */
7823static int update_sched_domains(struct notifier_block *nfb,
7824 unsigned long action, void *hcpu)
7825{
1da177e4
LT
7826 switch (action) {
7827 case CPU_UP_PREPARE:
8bb78442 7828 case CPU_UP_PREPARE_FROZEN:
1da177e4 7829 case CPU_DOWN_PREPARE:
8bb78442 7830 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 7831 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
7832 return NOTIFY_OK;
7833
7834 case CPU_UP_CANCELED:
8bb78442 7835 case CPU_UP_CANCELED_FROZEN:
1da177e4 7836 case CPU_DOWN_FAILED:
8bb78442 7837 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7838 case CPU_ONLINE:
8bb78442 7839 case CPU_ONLINE_FROZEN:
1da177e4 7840 case CPU_DEAD:
8bb78442 7841 case CPU_DEAD_FROZEN:
1da177e4
LT
7842 /*
7843 * Fall through and re-initialise the domains.
7844 */
7845 break;
7846 default:
7847 return NOTIFY_DONE;
7848 }
7849
7850 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7851 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
7852
7853 return NOTIFY_OK;
7854}
1da177e4
LT
7855
7856void __init sched_init_smp(void)
7857{
5c1e1767
NP
7858 cpumask_t non_isolated_cpus;
7859
434d53b0
MT
7860#if defined(CONFIG_NUMA)
7861 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7862 GFP_KERNEL);
7863 BUG_ON(sched_group_nodes_bycpu == NULL);
7864#endif
95402b38 7865 get_online_cpus();
1a20ff27 7866 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7867 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7868 if (cpus_empty(non_isolated_cpus))
7869 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 7870 put_online_cpus();
1da177e4
LT
7871 /* XXX: Theoretical race here - CPU may be hotplugged now */
7872 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
7873
7874 /* Move init over to a non-isolated CPU */
7c16ec58 7875 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7876 BUG();
19978ca6 7877 sched_init_granularity();
1da177e4
LT
7878}
7879#else
7880void __init sched_init_smp(void)
7881{
434d53b0
MT
7882#if defined(CONFIG_NUMA)
7883 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7884 GFP_KERNEL);
7885 BUG_ON(sched_group_nodes_bycpu == NULL);
7886#endif
19978ca6 7887 sched_init_granularity();
1da177e4
LT
7888}
7889#endif /* CONFIG_SMP */
7890
7891int in_sched_functions(unsigned long addr)
7892{
1da177e4
LT
7893 return in_lock_functions(addr) ||
7894 (addr >= (unsigned long)__sched_text_start
7895 && addr < (unsigned long)__sched_text_end);
7896}
7897
a9957449 7898static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7899{
7900 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
7901#ifdef CONFIG_FAIR_GROUP_SCHED
7902 cfs_rq->rq = rq;
7903#endif
67e9fb2a 7904 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7905}
7906
fa85ae24
PZ
7907static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7908{
7909 struct rt_prio_array *array;
7910 int i;
7911
7912 array = &rt_rq->active;
7913 for (i = 0; i < MAX_RT_PRIO; i++) {
7914 INIT_LIST_HEAD(array->queue + i);
7915 __clear_bit(i, array->bitmap);
7916 }
7917 /* delimiter for bitsearch: */
7918 __set_bit(MAX_RT_PRIO, array->bitmap);
7919
052f1dc7 7920#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7921 rt_rq->highest_prio = MAX_RT_PRIO;
7922#endif
fa85ae24
PZ
7923#ifdef CONFIG_SMP
7924 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7925 rt_rq->overloaded = 0;
7926#endif
7927
7928 rt_rq->rt_time = 0;
7929 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7930 rt_rq->rt_runtime = 0;
7931 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7932
052f1dc7 7933#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7934 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7935 rt_rq->rq = rq;
7936#endif
fa85ae24
PZ
7937}
7938
6f505b16 7939#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7940static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7941 struct sched_entity *se, int cpu, int add,
7942 struct sched_entity *parent)
6f505b16 7943{
ec7dc8ac 7944 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7945 tg->cfs_rq[cpu] = cfs_rq;
7946 init_cfs_rq(cfs_rq, rq);
7947 cfs_rq->tg = tg;
7948 if (add)
7949 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7950
7951 tg->se[cpu] = se;
354d60c2
DG
7952 /* se could be NULL for init_task_group */
7953 if (!se)
7954 return;
7955
ec7dc8ac
DG
7956 if (!parent)
7957 se->cfs_rq = &rq->cfs;
7958 else
7959 se->cfs_rq = parent->my_q;
7960
6f505b16
PZ
7961 se->my_q = cfs_rq;
7962 se->load.weight = tg->shares;
7963 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
ec7dc8ac 7964 se->parent = parent;
6f505b16 7965}
052f1dc7 7966#endif
6f505b16 7967
052f1dc7 7968#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7969static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7970 struct sched_rt_entity *rt_se, int cpu, int add,
7971 struct sched_rt_entity *parent)
6f505b16 7972{
ec7dc8ac
DG
7973 struct rq *rq = cpu_rq(cpu);
7974
6f505b16
PZ
7975 tg->rt_rq[cpu] = rt_rq;
7976 init_rt_rq(rt_rq, rq);
7977 rt_rq->tg = tg;
7978 rt_rq->rt_se = rt_se;
ac086bc2 7979 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7980 if (add)
7981 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7982
7983 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7984 if (!rt_se)
7985 return;
7986
ec7dc8ac
DG
7987 if (!parent)
7988 rt_se->rt_rq = &rq->rt;
7989 else
7990 rt_se->rt_rq = parent->my_q;
7991
6f505b16
PZ
7992 rt_se->rt_rq = &rq->rt;
7993 rt_se->my_q = rt_rq;
ec7dc8ac 7994 rt_se->parent = parent;
6f505b16
PZ
7995 INIT_LIST_HEAD(&rt_se->run_list);
7996}
7997#endif
7998
1da177e4
LT
7999void __init sched_init(void)
8000{
dd41f596 8001 int i, j;
434d53b0
MT
8002 unsigned long alloc_size = 0, ptr;
8003
8004#ifdef CONFIG_FAIR_GROUP_SCHED
8005 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8006#endif
8007#ifdef CONFIG_RT_GROUP_SCHED
8008 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8009#endif
8010#ifdef CONFIG_USER_SCHED
8011 alloc_size *= 2;
434d53b0
MT
8012#endif
8013 /*
8014 * As sched_init() is called before page_alloc is setup,
8015 * we use alloc_bootmem().
8016 */
8017 if (alloc_size) {
8018 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
8019
8020#ifdef CONFIG_FAIR_GROUP_SCHED
8021 init_task_group.se = (struct sched_entity **)ptr;
8022 ptr += nr_cpu_ids * sizeof(void **);
8023
8024 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8025 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8026
8027#ifdef CONFIG_USER_SCHED
8028 root_task_group.se = (struct sched_entity **)ptr;
8029 ptr += nr_cpu_ids * sizeof(void **);
8030
8031 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8032 ptr += nr_cpu_ids * sizeof(void **);
8033#endif
434d53b0
MT
8034#endif
8035#ifdef CONFIG_RT_GROUP_SCHED
8036 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8037 ptr += nr_cpu_ids * sizeof(void **);
8038
8039 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8040 ptr += nr_cpu_ids * sizeof(void **);
8041
8042#ifdef CONFIG_USER_SCHED
8043 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8044 ptr += nr_cpu_ids * sizeof(void **);
8045
8046 root_task_group.rt_rq = (struct rt_rq **)ptr;
8047 ptr += nr_cpu_ids * sizeof(void **);
8048#endif
434d53b0
MT
8049#endif
8050 }
dd41f596 8051
57d885fe 8052#ifdef CONFIG_SMP
18d95a28 8053 init_aggregate();
57d885fe
GH
8054 init_defrootdomain();
8055#endif
8056
d0b27fa7
PZ
8057 init_rt_bandwidth(&def_rt_bandwidth,
8058 global_rt_period(), global_rt_runtime());
8059
8060#ifdef CONFIG_RT_GROUP_SCHED
8061 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8062 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8063#ifdef CONFIG_USER_SCHED
8064 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8065 global_rt_period(), RUNTIME_INF);
8066#endif
d0b27fa7
PZ
8067#endif
8068
052f1dc7 8069#ifdef CONFIG_GROUP_SCHED
6f505b16 8070 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8071 INIT_LIST_HEAD(&init_task_group.children);
8072
8073#ifdef CONFIG_USER_SCHED
8074 INIT_LIST_HEAD(&root_task_group.children);
8075 init_task_group.parent = &root_task_group;
8076 list_add(&init_task_group.siblings, &root_task_group.children);
8077#endif
6f505b16
PZ
8078#endif
8079
0a945022 8080 for_each_possible_cpu(i) {
70b97a7f 8081 struct rq *rq;
1da177e4
LT
8082
8083 rq = cpu_rq(i);
8084 spin_lock_init(&rq->lock);
fcb99371 8085 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8086 rq->nr_running = 0;
dd41f596 8087 rq->clock = 1;
15934a37 8088 update_last_tick_seen(rq);
dd41f596 8089 init_cfs_rq(&rq->cfs, rq);
6f505b16 8090 init_rt_rq(&rq->rt, rq);
dd41f596 8091#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8092 init_task_group.shares = init_task_group_load;
6f505b16 8093 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8094#ifdef CONFIG_CGROUP_SCHED
8095 /*
8096 * How much cpu bandwidth does init_task_group get?
8097 *
8098 * In case of task-groups formed thr' the cgroup filesystem, it
8099 * gets 100% of the cpu resources in the system. This overall
8100 * system cpu resource is divided among the tasks of
8101 * init_task_group and its child task-groups in a fair manner,
8102 * based on each entity's (task or task-group's) weight
8103 * (se->load.weight).
8104 *
8105 * In other words, if init_task_group has 10 tasks of weight
8106 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8107 * then A0's share of the cpu resource is:
8108 *
8109 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8110 *
8111 * We achieve this by letting init_task_group's tasks sit
8112 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8113 */
ec7dc8ac 8114 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8115#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8116 root_task_group.shares = NICE_0_LOAD;
8117 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8118 /*
8119 * In case of task-groups formed thr' the user id of tasks,
8120 * init_task_group represents tasks belonging to root user.
8121 * Hence it forms a sibling of all subsequent groups formed.
8122 * In this case, init_task_group gets only a fraction of overall
8123 * system cpu resource, based on the weight assigned to root
8124 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8125 * by letting tasks of init_task_group sit in a separate cfs_rq
8126 * (init_cfs_rq) and having one entity represent this group of
8127 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8128 */
ec7dc8ac 8129 init_tg_cfs_entry(&init_task_group,
6f505b16 8130 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8131 &per_cpu(init_sched_entity, i), i, 1,
8132 root_task_group.se[i]);
6f505b16 8133
052f1dc7 8134#endif
354d60c2
DG
8135#endif /* CONFIG_FAIR_GROUP_SCHED */
8136
8137 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8138#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8139 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8140#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8141 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8142#elif defined CONFIG_USER_SCHED
eff766a6 8143 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8144 init_tg_rt_entry(&init_task_group,
6f505b16 8145 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8146 &per_cpu(init_sched_rt_entity, i), i, 1,
8147 root_task_group.rt_se[i]);
354d60c2 8148#endif
dd41f596 8149#endif
1da177e4 8150
dd41f596
IM
8151 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8152 rq->cpu_load[j] = 0;
1da177e4 8153#ifdef CONFIG_SMP
41c7ce9a 8154 rq->sd = NULL;
57d885fe 8155 rq->rd = NULL;
1da177e4 8156 rq->active_balance = 0;
dd41f596 8157 rq->next_balance = jiffies;
1da177e4 8158 rq->push_cpu = 0;
0a2966b4 8159 rq->cpu = i;
1da177e4
LT
8160 rq->migration_thread = NULL;
8161 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8162 rq_attach_root(rq, &def_root_domain);
1da177e4 8163#endif
8f4d37ec 8164 init_rq_hrtick(rq);
1da177e4 8165 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8166 }
8167
2dd73a4f 8168 set_load_weight(&init_task);
b50f60ce 8169
e107be36
AK
8170#ifdef CONFIG_PREEMPT_NOTIFIERS
8171 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8172#endif
8173
c9819f45
CL
8174#ifdef CONFIG_SMP
8175 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8176#endif
8177
b50f60ce
HC
8178#ifdef CONFIG_RT_MUTEXES
8179 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8180#endif
8181
1da177e4
LT
8182 /*
8183 * The boot idle thread does lazy MMU switching as well:
8184 */
8185 atomic_inc(&init_mm.mm_count);
8186 enter_lazy_tlb(&init_mm, current);
8187
8188 /*
8189 * Make us the idle thread. Technically, schedule() should not be
8190 * called from this thread, however somewhere below it might be,
8191 * but because we are the idle thread, we just pick up running again
8192 * when this runqueue becomes "idle".
8193 */
8194 init_idle(current, smp_processor_id());
dd41f596
IM
8195 /*
8196 * During early bootup we pretend to be a normal task:
8197 */
8198 current->sched_class = &fair_sched_class;
6892b75e
IM
8199
8200 scheduler_running = 1;
1da177e4
LT
8201}
8202
8203#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8204void __might_sleep(char *file, int line)
8205{
48f24c4d 8206#ifdef in_atomic
1da177e4
LT
8207 static unsigned long prev_jiffy; /* ratelimiting */
8208
8209 if ((in_atomic() || irqs_disabled()) &&
8210 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8211 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8212 return;
8213 prev_jiffy = jiffies;
91368d73 8214 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8215 " context at %s:%d\n", file, line);
8216 printk("in_atomic():%d, irqs_disabled():%d\n",
8217 in_atomic(), irqs_disabled());
a4c410f0 8218 debug_show_held_locks(current);
3117df04
IM
8219 if (irqs_disabled())
8220 print_irqtrace_events(current);
1da177e4
LT
8221 dump_stack();
8222 }
8223#endif
8224}
8225EXPORT_SYMBOL(__might_sleep);
8226#endif
8227
8228#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8229static void normalize_task(struct rq *rq, struct task_struct *p)
8230{
8231 int on_rq;
8232 update_rq_clock(rq);
8233 on_rq = p->se.on_rq;
8234 if (on_rq)
8235 deactivate_task(rq, p, 0);
8236 __setscheduler(rq, p, SCHED_NORMAL, 0);
8237 if (on_rq) {
8238 activate_task(rq, p, 0);
8239 resched_task(rq->curr);
8240 }
8241}
8242
1da177e4
LT
8243void normalize_rt_tasks(void)
8244{
a0f98a1c 8245 struct task_struct *g, *p;
1da177e4 8246 unsigned long flags;
70b97a7f 8247 struct rq *rq;
1da177e4 8248
4cf5d77a 8249 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8250 do_each_thread(g, p) {
178be793
IM
8251 /*
8252 * Only normalize user tasks:
8253 */
8254 if (!p->mm)
8255 continue;
8256
6cfb0d5d 8257 p->se.exec_start = 0;
6cfb0d5d 8258#ifdef CONFIG_SCHEDSTATS
dd41f596 8259 p->se.wait_start = 0;
dd41f596 8260 p->se.sleep_start = 0;
dd41f596 8261 p->se.block_start = 0;
6cfb0d5d 8262#endif
dd41f596
IM
8263 task_rq(p)->clock = 0;
8264
8265 if (!rt_task(p)) {
8266 /*
8267 * Renice negative nice level userspace
8268 * tasks back to 0:
8269 */
8270 if (TASK_NICE(p) < 0 && p->mm)
8271 set_user_nice(p, 0);
1da177e4 8272 continue;
dd41f596 8273 }
1da177e4 8274
4cf5d77a 8275 spin_lock(&p->pi_lock);
b29739f9 8276 rq = __task_rq_lock(p);
1da177e4 8277
178be793 8278 normalize_task(rq, p);
3a5e4dc1 8279
b29739f9 8280 __task_rq_unlock(rq);
4cf5d77a 8281 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8282 } while_each_thread(g, p);
8283
4cf5d77a 8284 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8285}
8286
8287#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8288
8289#ifdef CONFIG_IA64
8290/*
8291 * These functions are only useful for the IA64 MCA handling.
8292 *
8293 * They can only be called when the whole system has been
8294 * stopped - every CPU needs to be quiescent, and no scheduling
8295 * activity can take place. Using them for anything else would
8296 * be a serious bug, and as a result, they aren't even visible
8297 * under any other configuration.
8298 */
8299
8300/**
8301 * curr_task - return the current task for a given cpu.
8302 * @cpu: the processor in question.
8303 *
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8305 */
36c8b586 8306struct task_struct *curr_task(int cpu)
1df5c10a
LT
8307{
8308 return cpu_curr(cpu);
8309}
8310
8311/**
8312 * set_curr_task - set the current task for a given cpu.
8313 * @cpu: the processor in question.
8314 * @p: the task pointer to set.
8315 *
8316 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8317 * are serviced on a separate stack. It allows the architecture to switch the
8318 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8319 * must be called with all CPU's synchronized, and interrupts disabled, the
8320 * and caller must save the original value of the current task (see
8321 * curr_task() above) and restore that value before reenabling interrupts and
8322 * re-starting the system.
8323 *
8324 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8325 */
36c8b586 8326void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8327{
8328 cpu_curr(cpu) = p;
8329}
8330
8331#endif
29f59db3 8332
bccbe08a
PZ
8333#ifdef CONFIG_FAIR_GROUP_SCHED
8334static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8335{
8336 int i;
8337
8338 for_each_possible_cpu(i) {
8339 if (tg->cfs_rq)
8340 kfree(tg->cfs_rq[i]);
8341 if (tg->se)
8342 kfree(tg->se[i]);
6f505b16
PZ
8343 }
8344
8345 kfree(tg->cfs_rq);
8346 kfree(tg->se);
6f505b16
PZ
8347}
8348
ec7dc8ac
DG
8349static
8350int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8351{
29f59db3 8352 struct cfs_rq *cfs_rq;
ec7dc8ac 8353 struct sched_entity *se, *parent_se;
9b5b7751 8354 struct rq *rq;
29f59db3
SV
8355 int i;
8356
434d53b0 8357 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8358 if (!tg->cfs_rq)
8359 goto err;
434d53b0 8360 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8361 if (!tg->se)
8362 goto err;
052f1dc7
PZ
8363
8364 tg->shares = NICE_0_LOAD;
29f59db3
SV
8365
8366 for_each_possible_cpu(i) {
9b5b7751 8367 rq = cpu_rq(i);
29f59db3 8368
6f505b16
PZ
8369 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8370 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8371 if (!cfs_rq)
8372 goto err;
8373
6f505b16
PZ
8374 se = kmalloc_node(sizeof(struct sched_entity),
8375 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8376 if (!se)
8377 goto err;
8378
ec7dc8ac
DG
8379 parent_se = parent ? parent->se[i] : NULL;
8380 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8381 }
8382
8383 return 1;
8384
8385 err:
8386 return 0;
8387}
8388
8389static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8390{
8391 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8392 &cpu_rq(cpu)->leaf_cfs_rq_list);
8393}
8394
8395static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8396{
8397 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8398}
8399#else
8400static inline void free_fair_sched_group(struct task_group *tg)
8401{
8402}
8403
ec7dc8ac
DG
8404static inline
8405int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8406{
8407 return 1;
8408}
8409
8410static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8411{
8412}
8413
8414static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8415{
8416}
052f1dc7
PZ
8417#endif
8418
8419#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8420static void free_rt_sched_group(struct task_group *tg)
8421{
8422 int i;
8423
d0b27fa7
PZ
8424 destroy_rt_bandwidth(&tg->rt_bandwidth);
8425
bccbe08a
PZ
8426 for_each_possible_cpu(i) {
8427 if (tg->rt_rq)
8428 kfree(tg->rt_rq[i]);
8429 if (tg->rt_se)
8430 kfree(tg->rt_se[i]);
8431 }
8432
8433 kfree(tg->rt_rq);
8434 kfree(tg->rt_se);
8435}
8436
ec7dc8ac
DG
8437static
8438int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8439{
8440 struct rt_rq *rt_rq;
ec7dc8ac 8441 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8442 struct rq *rq;
8443 int i;
8444
434d53b0 8445 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8446 if (!tg->rt_rq)
8447 goto err;
434d53b0 8448 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8449 if (!tg->rt_se)
8450 goto err;
8451
d0b27fa7
PZ
8452 init_rt_bandwidth(&tg->rt_bandwidth,
8453 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8454
8455 for_each_possible_cpu(i) {
8456 rq = cpu_rq(i);
8457
6f505b16
PZ
8458 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8459 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8460 if (!rt_rq)
8461 goto err;
29f59db3 8462
6f505b16
PZ
8463 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8464 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8465 if (!rt_se)
8466 goto err;
29f59db3 8467
ec7dc8ac
DG
8468 parent_se = parent ? parent->rt_se[i] : NULL;
8469 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8470 }
8471
bccbe08a
PZ
8472 return 1;
8473
8474 err:
8475 return 0;
8476}
8477
8478static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8479{
8480 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8481 &cpu_rq(cpu)->leaf_rt_rq_list);
8482}
8483
8484static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8485{
8486 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8487}
8488#else
8489static inline void free_rt_sched_group(struct task_group *tg)
8490{
8491}
8492
ec7dc8ac
DG
8493static inline
8494int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8495{
8496 return 1;
8497}
8498
8499static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8500{
8501}
8502
8503static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8504{
8505}
8506#endif
8507
d0b27fa7 8508#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8509static void free_sched_group(struct task_group *tg)
8510{
8511 free_fair_sched_group(tg);
8512 free_rt_sched_group(tg);
8513 kfree(tg);
8514}
8515
8516/* allocate runqueue etc for a new task group */
ec7dc8ac 8517struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8518{
8519 struct task_group *tg;
8520 unsigned long flags;
8521 int i;
8522
8523 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8524 if (!tg)
8525 return ERR_PTR(-ENOMEM);
8526
ec7dc8ac 8527 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8528 goto err;
8529
ec7dc8ac 8530 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8531 goto err;
8532
8ed36996 8533 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8534 for_each_possible_cpu(i) {
bccbe08a
PZ
8535 register_fair_sched_group(tg, i);
8536 register_rt_sched_group(tg, i);
9b5b7751 8537 }
6f505b16 8538 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8539
8540 WARN_ON(!parent); /* root should already exist */
8541
8542 tg->parent = parent;
8543 list_add_rcu(&tg->siblings, &parent->children);
8544 INIT_LIST_HEAD(&tg->children);
8ed36996 8545 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8546
9b5b7751 8547 return tg;
29f59db3
SV
8548
8549err:
6f505b16 8550 free_sched_group(tg);
29f59db3
SV
8551 return ERR_PTR(-ENOMEM);
8552}
8553
9b5b7751 8554/* rcu callback to free various structures associated with a task group */
6f505b16 8555static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8556{
29f59db3 8557 /* now it should be safe to free those cfs_rqs */
6f505b16 8558 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8559}
8560
9b5b7751 8561/* Destroy runqueue etc associated with a task group */
4cf86d77 8562void sched_destroy_group(struct task_group *tg)
29f59db3 8563{
8ed36996 8564 unsigned long flags;
9b5b7751 8565 int i;
29f59db3 8566
8ed36996 8567 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8568 for_each_possible_cpu(i) {
bccbe08a
PZ
8569 unregister_fair_sched_group(tg, i);
8570 unregister_rt_sched_group(tg, i);
9b5b7751 8571 }
6f505b16 8572 list_del_rcu(&tg->list);
f473aa5e 8573 list_del_rcu(&tg->siblings);
8ed36996 8574 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8575
9b5b7751 8576 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8577 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8578}
8579
9b5b7751 8580/* change task's runqueue when it moves between groups.
3a252015
IM
8581 * The caller of this function should have put the task in its new group
8582 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8583 * reflect its new group.
9b5b7751
SV
8584 */
8585void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8586{
8587 int on_rq, running;
8588 unsigned long flags;
8589 struct rq *rq;
8590
8591 rq = task_rq_lock(tsk, &flags);
8592
29f59db3
SV
8593 update_rq_clock(rq);
8594
051a1d1a 8595 running = task_current(rq, tsk);
29f59db3
SV
8596 on_rq = tsk->se.on_rq;
8597
0e1f3483 8598 if (on_rq)
29f59db3 8599 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8600 if (unlikely(running))
8601 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8602
6f505b16 8603 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8604
810b3817
PZ
8605#ifdef CONFIG_FAIR_GROUP_SCHED
8606 if (tsk->sched_class->moved_group)
8607 tsk->sched_class->moved_group(tsk);
8608#endif
8609
0e1f3483
HS
8610 if (unlikely(running))
8611 tsk->sched_class->set_curr_task(rq);
8612 if (on_rq)
7074badb 8613 enqueue_task(rq, tsk, 0);
29f59db3 8614
29f59db3
SV
8615 task_rq_unlock(rq, &flags);
8616}
d0b27fa7 8617#endif
29f59db3 8618
052f1dc7 8619#ifdef CONFIG_FAIR_GROUP_SCHED
18d95a28 8620static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8621{
8622 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8623 int on_rq;
8624
29f59db3 8625 on_rq = se->on_rq;
62fb1851 8626 if (on_rq)
29f59db3
SV
8627 dequeue_entity(cfs_rq, se, 0);
8628
8629 se->load.weight = shares;
8630 se->load.inv_weight = div64_64((1ULL<<32), shares);
8631
62fb1851 8632 if (on_rq)
29f59db3 8633 enqueue_entity(cfs_rq, se, 0);
18d95a28 8634}
62fb1851 8635
18d95a28
PZ
8636static void set_se_shares(struct sched_entity *se, unsigned long shares)
8637{
8638 struct cfs_rq *cfs_rq = se->cfs_rq;
8639 struct rq *rq = cfs_rq->rq;
8640 unsigned long flags;
8641
8642 spin_lock_irqsave(&rq->lock, flags);
8643 __set_se_shares(se, shares);
8644 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8645}
8646
8ed36996
PZ
8647static DEFINE_MUTEX(shares_mutex);
8648
4cf86d77 8649int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8650{
8651 int i;
8ed36996 8652 unsigned long flags;
c61935fd 8653
ec7dc8ac
DG
8654 /*
8655 * We can't change the weight of the root cgroup.
8656 */
8657 if (!tg->se[0])
8658 return -EINVAL;
8659
62fb1851
PZ
8660 /*
8661 * A weight of 0 or 1 can cause arithmetics problems.
8662 * (The default weight is 1024 - so there's no practical
8663 * limitation from this.)
8664 */
18d95a28
PZ
8665 if (shares < MIN_SHARES)
8666 shares = MIN_SHARES;
62fb1851 8667
8ed36996 8668 mutex_lock(&shares_mutex);
9b5b7751 8669 if (tg->shares == shares)
5cb350ba 8670 goto done;
29f59db3 8671
8ed36996 8672 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8673 for_each_possible_cpu(i)
8674 unregister_fair_sched_group(tg, i);
f473aa5e 8675 list_del_rcu(&tg->siblings);
8ed36996 8676 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8677
8678 /* wait for any ongoing reference to this group to finish */
8679 synchronize_sched();
8680
8681 /*
8682 * Now we are free to modify the group's share on each cpu
8683 * w/o tripping rebalance_share or load_balance_fair.
8684 */
9b5b7751 8685 tg->shares = shares;
18d95a28
PZ
8686 for_each_possible_cpu(i) {
8687 /*
8688 * force a rebalance
8689 */
8690 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8691 set_se_shares(tg->se[i], shares/nr_cpu_ids);
8692 }
29f59db3 8693
6b2d7700
SV
8694 /*
8695 * Enable load balance activity on this group, by inserting it back on
8696 * each cpu's rq->leaf_cfs_rq_list.
8697 */
8ed36996 8698 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8699 for_each_possible_cpu(i)
8700 register_fair_sched_group(tg, i);
f473aa5e 8701 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8702 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8703done:
8ed36996 8704 mutex_unlock(&shares_mutex);
9b5b7751 8705 return 0;
29f59db3
SV
8706}
8707
5cb350ba
DG
8708unsigned long sched_group_shares(struct task_group *tg)
8709{
8710 return tg->shares;
8711}
052f1dc7 8712#endif
5cb350ba 8713
052f1dc7 8714#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8715/*
9f0c1e56 8716 * Ensure that the real time constraints are schedulable.
6f505b16 8717 */
9f0c1e56
PZ
8718static DEFINE_MUTEX(rt_constraints_mutex);
8719
8720static unsigned long to_ratio(u64 period, u64 runtime)
8721{
8722 if (runtime == RUNTIME_INF)
8723 return 1ULL << 16;
8724
2692a240 8725 return div64_64(runtime << 16, period);
9f0c1e56
PZ
8726}
8727
b40b2e8e
PZ
8728#ifdef CONFIG_CGROUP_SCHED
8729static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8730{
8731 struct task_group *tgi, *parent = tg->parent;
8732 unsigned long total = 0;
8733
8734 if (!parent) {
8735 if (global_rt_period() < period)
8736 return 0;
8737
8738 return to_ratio(period, runtime) <
8739 to_ratio(global_rt_period(), global_rt_runtime());
8740 }
8741
8742 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8743 return 0;
8744
8745 rcu_read_lock();
8746 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8747 if (tgi == tg)
8748 continue;
8749
8750 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8751 tgi->rt_bandwidth.rt_runtime);
8752 }
8753 rcu_read_unlock();
8754
8755 return total + to_ratio(period, runtime) <
8756 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8757 parent->rt_bandwidth.rt_runtime);
8758}
8759#elif defined CONFIG_USER_SCHED
9f0c1e56 8760static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8761{
8762 struct task_group *tgi;
8763 unsigned long total = 0;
9f0c1e56 8764 unsigned long global_ratio =
d0b27fa7 8765 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8766
8767 rcu_read_lock();
9f0c1e56
PZ
8768 list_for_each_entry_rcu(tgi, &task_groups, list) {
8769 if (tgi == tg)
8770 continue;
6f505b16 8771
d0b27fa7
PZ
8772 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8773 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8774 }
8775 rcu_read_unlock();
6f505b16 8776
9f0c1e56 8777 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8778}
b40b2e8e 8779#endif
6f505b16 8780
521f1a24
DG
8781/* Must be called with tasklist_lock held */
8782static inline int tg_has_rt_tasks(struct task_group *tg)
8783{
8784 struct task_struct *g, *p;
8785 do_each_thread(g, p) {
8786 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8787 return 1;
8788 } while_each_thread(g, p);
8789 return 0;
8790}
8791
d0b27fa7
PZ
8792static int tg_set_bandwidth(struct task_group *tg,
8793 u64 rt_period, u64 rt_runtime)
6f505b16 8794{
ac086bc2 8795 int i, err = 0;
9f0c1e56 8796
9f0c1e56 8797 mutex_lock(&rt_constraints_mutex);
521f1a24 8798 read_lock(&tasklist_lock);
ac086bc2 8799 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8800 err = -EBUSY;
8801 goto unlock;
8802 }
9f0c1e56
PZ
8803 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8804 err = -EINVAL;
8805 goto unlock;
8806 }
ac086bc2
PZ
8807
8808 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8809 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8810 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8811
8812 for_each_possible_cpu(i) {
8813 struct rt_rq *rt_rq = tg->rt_rq[i];
8814
8815 spin_lock(&rt_rq->rt_runtime_lock);
8816 rt_rq->rt_runtime = rt_runtime;
8817 spin_unlock(&rt_rq->rt_runtime_lock);
8818 }
8819 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8820 unlock:
521f1a24 8821 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8822 mutex_unlock(&rt_constraints_mutex);
8823
8824 return err;
6f505b16
PZ
8825}
8826
d0b27fa7
PZ
8827int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8828{
8829 u64 rt_runtime, rt_period;
8830
8831 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8832 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8833 if (rt_runtime_us < 0)
8834 rt_runtime = RUNTIME_INF;
8835
8836 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8837}
8838
9f0c1e56
PZ
8839long sched_group_rt_runtime(struct task_group *tg)
8840{
8841 u64 rt_runtime_us;
8842
d0b27fa7 8843 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8844 return -1;
8845
d0b27fa7 8846 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8847 do_div(rt_runtime_us, NSEC_PER_USEC);
8848 return rt_runtime_us;
8849}
d0b27fa7
PZ
8850
8851int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8852{
8853 u64 rt_runtime, rt_period;
8854
8855 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8856 rt_runtime = tg->rt_bandwidth.rt_runtime;
8857
8858 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8859}
8860
8861long sched_group_rt_period(struct task_group *tg)
8862{
8863 u64 rt_period_us;
8864
8865 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8866 do_div(rt_period_us, NSEC_PER_USEC);
8867 return rt_period_us;
8868}
8869
8870static int sched_rt_global_constraints(void)
8871{
8872 int ret = 0;
8873
8874 mutex_lock(&rt_constraints_mutex);
8875 if (!__rt_schedulable(NULL, 1, 0))
8876 ret = -EINVAL;
8877 mutex_unlock(&rt_constraints_mutex);
8878
8879 return ret;
8880}
8881#else
8882static int sched_rt_global_constraints(void)
8883{
ac086bc2
PZ
8884 unsigned long flags;
8885 int i;
8886
8887 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8888 for_each_possible_cpu(i) {
8889 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8890
8891 spin_lock(&rt_rq->rt_runtime_lock);
8892 rt_rq->rt_runtime = global_rt_runtime();
8893 spin_unlock(&rt_rq->rt_runtime_lock);
8894 }
8895 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8896
d0b27fa7
PZ
8897 return 0;
8898}
052f1dc7 8899#endif
d0b27fa7
PZ
8900
8901int sched_rt_handler(struct ctl_table *table, int write,
8902 struct file *filp, void __user *buffer, size_t *lenp,
8903 loff_t *ppos)
8904{
8905 int ret;
8906 int old_period, old_runtime;
8907 static DEFINE_MUTEX(mutex);
8908
8909 mutex_lock(&mutex);
8910 old_period = sysctl_sched_rt_period;
8911 old_runtime = sysctl_sched_rt_runtime;
8912
8913 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8914
8915 if (!ret && write) {
8916 ret = sched_rt_global_constraints();
8917 if (ret) {
8918 sysctl_sched_rt_period = old_period;
8919 sysctl_sched_rt_runtime = old_runtime;
8920 } else {
8921 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8922 def_rt_bandwidth.rt_period =
8923 ns_to_ktime(global_rt_period());
8924 }
8925 }
8926 mutex_unlock(&mutex);
8927
8928 return ret;
8929}
68318b8e 8930
052f1dc7 8931#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8932
8933/* return corresponding task_group object of a cgroup */
2b01dfe3 8934static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8935{
2b01dfe3
PM
8936 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8937 struct task_group, css);
68318b8e
SV
8938}
8939
8940static struct cgroup_subsys_state *
2b01dfe3 8941cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8942{
ec7dc8ac 8943 struct task_group *tg, *parent;
68318b8e 8944
2b01dfe3 8945 if (!cgrp->parent) {
68318b8e 8946 /* This is early initialization for the top cgroup */
2b01dfe3 8947 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8948 return &init_task_group.css;
8949 }
8950
ec7dc8ac
DG
8951 parent = cgroup_tg(cgrp->parent);
8952 tg = sched_create_group(parent);
68318b8e
SV
8953 if (IS_ERR(tg))
8954 return ERR_PTR(-ENOMEM);
8955
8956 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8957 tg->css.cgroup = cgrp;
68318b8e
SV
8958
8959 return &tg->css;
8960}
8961
41a2d6cf
IM
8962static void
8963cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8964{
2b01dfe3 8965 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8966
8967 sched_destroy_group(tg);
8968}
8969
41a2d6cf
IM
8970static int
8971cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8972 struct task_struct *tsk)
68318b8e 8973{
b68aa230
PZ
8974#ifdef CONFIG_RT_GROUP_SCHED
8975 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8976 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8977 return -EINVAL;
8978#else
68318b8e
SV
8979 /* We don't support RT-tasks being in separate groups */
8980 if (tsk->sched_class != &fair_sched_class)
8981 return -EINVAL;
b68aa230 8982#endif
68318b8e
SV
8983
8984 return 0;
8985}
8986
8987static void
2b01dfe3 8988cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8989 struct cgroup *old_cont, struct task_struct *tsk)
8990{
8991 sched_move_task(tsk);
8992}
8993
052f1dc7 8994#ifdef CONFIG_FAIR_GROUP_SCHED
2b01dfe3
PM
8995static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8996 u64 shareval)
68318b8e 8997{
2b01dfe3 8998 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8999}
9000
2b01dfe3 9001static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9002{
2b01dfe3 9003 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9004
9005 return (u64) tg->shares;
9006}
052f1dc7 9007#endif
68318b8e 9008
052f1dc7 9009#ifdef CONFIG_RT_GROUP_SCHED
ac086bc2 9010static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9f0c1e56
PZ
9011 struct file *file,
9012 const char __user *userbuf,
9013 size_t nbytes, loff_t *unused_ppos)
6f505b16 9014{
9f0c1e56
PZ
9015 char buffer[64];
9016 int retval = 0;
9017 s64 val;
9018 char *end;
9019
9020 if (!nbytes)
9021 return -EINVAL;
9022 if (nbytes >= sizeof(buffer))
9023 return -E2BIG;
9024 if (copy_from_user(buffer, userbuf, nbytes))
9025 return -EFAULT;
9026
9027 buffer[nbytes] = 0; /* nul-terminate */
9028
9029 /* strip newline if necessary */
9030 if (nbytes && (buffer[nbytes-1] == '\n'))
9031 buffer[nbytes-1] = 0;
9032 val = simple_strtoll(buffer, &end, 0);
9033 if (*end)
9034 return -EINVAL;
9035
9036 /* Pass to subsystem */
9037 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9038 if (!retval)
9039 retval = nbytes;
9040 return retval;
6f505b16
PZ
9041}
9042
9f0c1e56
PZ
9043static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
9044 struct file *file,
9045 char __user *buf, size_t nbytes,
9046 loff_t *ppos)
6f505b16 9047{
9f0c1e56
PZ
9048 char tmp[64];
9049 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
9050 int len = sprintf(tmp, "%ld\n", val);
6f505b16 9051
9f0c1e56 9052 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
6f505b16 9053}
d0b27fa7
PZ
9054
9055static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9056 u64 rt_period_us)
9057{
9058 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9059}
9060
9061static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9062{
9063 return sched_group_rt_period(cgroup_tg(cgrp));
9064}
052f1dc7 9065#endif
6f505b16 9066
fe5c7cc2 9067static struct cftype cpu_files[] = {
052f1dc7 9068#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9069 {
9070 .name = "shares",
9071 .read_uint = cpu_shares_read_uint,
9072 .write_uint = cpu_shares_write_uint,
9073 },
052f1dc7
PZ
9074#endif
9075#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9076 {
9f0c1e56
PZ
9077 .name = "rt_runtime_us",
9078 .read = cpu_rt_runtime_read,
9079 .write = cpu_rt_runtime_write,
6f505b16 9080 },
d0b27fa7
PZ
9081 {
9082 .name = "rt_period_us",
9083 .read_uint = cpu_rt_period_read_uint,
9084 .write_uint = cpu_rt_period_write_uint,
9085 },
052f1dc7 9086#endif
68318b8e
SV
9087};
9088
9089static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9090{
fe5c7cc2 9091 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9092}
9093
9094struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9095 .name = "cpu",
9096 .create = cpu_cgroup_create,
9097 .destroy = cpu_cgroup_destroy,
9098 .can_attach = cpu_cgroup_can_attach,
9099 .attach = cpu_cgroup_attach,
9100 .populate = cpu_cgroup_populate,
9101 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9102 .early_init = 1,
9103};
9104
052f1dc7 9105#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9106
9107#ifdef CONFIG_CGROUP_CPUACCT
9108
9109/*
9110 * CPU accounting code for task groups.
9111 *
9112 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9113 * (balbir@in.ibm.com).
9114 */
9115
9116/* track cpu usage of a group of tasks */
9117struct cpuacct {
9118 struct cgroup_subsys_state css;
9119 /* cpuusage holds pointer to a u64-type object on every cpu */
9120 u64 *cpuusage;
9121};
9122
9123struct cgroup_subsys cpuacct_subsys;
9124
9125/* return cpu accounting group corresponding to this container */
32cd756a 9126static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9127{
32cd756a 9128 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9129 struct cpuacct, css);
9130}
9131
9132/* return cpu accounting group to which this task belongs */
9133static inline struct cpuacct *task_ca(struct task_struct *tsk)
9134{
9135 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9136 struct cpuacct, css);
9137}
9138
9139/* create a new cpu accounting group */
9140static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9141 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9142{
9143 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9144
9145 if (!ca)
9146 return ERR_PTR(-ENOMEM);
9147
9148 ca->cpuusage = alloc_percpu(u64);
9149 if (!ca->cpuusage) {
9150 kfree(ca);
9151 return ERR_PTR(-ENOMEM);
9152 }
9153
9154 return &ca->css;
9155}
9156
9157/* destroy an existing cpu accounting group */
41a2d6cf 9158static void
32cd756a 9159cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9160{
32cd756a 9161 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9162
9163 free_percpu(ca->cpuusage);
9164 kfree(ca);
9165}
9166
9167/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9168static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9169{
32cd756a 9170 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9171 u64 totalcpuusage = 0;
9172 int i;
9173
9174 for_each_possible_cpu(i) {
9175 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9176
9177 /*
9178 * Take rq->lock to make 64-bit addition safe on 32-bit
9179 * platforms.
9180 */
9181 spin_lock_irq(&cpu_rq(i)->lock);
9182 totalcpuusage += *cpuusage;
9183 spin_unlock_irq(&cpu_rq(i)->lock);
9184 }
9185
9186 return totalcpuusage;
9187}
9188
0297b803
DG
9189static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9190 u64 reset)
9191{
9192 struct cpuacct *ca = cgroup_ca(cgrp);
9193 int err = 0;
9194 int i;
9195
9196 if (reset) {
9197 err = -EINVAL;
9198 goto out;
9199 }
9200
9201 for_each_possible_cpu(i) {
9202 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9203
9204 spin_lock_irq(&cpu_rq(i)->lock);
9205 *cpuusage = 0;
9206 spin_unlock_irq(&cpu_rq(i)->lock);
9207 }
9208out:
9209 return err;
9210}
9211
d842de87
SV
9212static struct cftype files[] = {
9213 {
9214 .name = "usage",
9215 .read_uint = cpuusage_read,
0297b803 9216 .write_uint = cpuusage_write,
d842de87
SV
9217 },
9218};
9219
32cd756a 9220static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9221{
32cd756a 9222 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9223}
9224
9225/*
9226 * charge this task's execution time to its accounting group.
9227 *
9228 * called with rq->lock held.
9229 */
9230static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9231{
9232 struct cpuacct *ca;
9233
9234 if (!cpuacct_subsys.active)
9235 return;
9236
9237 ca = task_ca(tsk);
9238 if (ca) {
9239 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9240
9241 *cpuusage += cputime;
9242 }
9243}
9244
9245struct cgroup_subsys cpuacct_subsys = {
9246 .name = "cpuacct",
9247 .create = cpuacct_create,
9248 .destroy = cpuacct_destroy,
9249 .populate = cpuacct_populate,
9250 .subsys_id = cpuacct_subsys_id,
9251};
9252#endif /* CONFIG_CGROUP_CPUACCT */