sched: RT-balance, replace hooks with pre/post schedule and wakeup methods
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
1da177e4 68
5517d86b 69#include <asm/tlb.h>
838225b4 70#include <asm/irq_regs.h>
1da177e4 71
b035b6de
AD
72/*
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
76 */
77unsigned long long __attribute__((weak)) sched_clock(void)
78{
d6322faf 79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
80}
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
6b2d7700
SV
172
173 /*
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
177 *
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
182 *
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 *
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 *
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 *
194 * Note: It's not necessary that each of a task's group schedulable
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
198 *
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 *
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
205 *
206 */
29f59db3 207 unsigned long shares;
6b2d7700 208
ae8393e5 209 struct rcu_head rcu;
29f59db3
SV
210};
211
212/* Default task group's sched entity on each cpu */
213static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214/* Default task group's cfs_rq on each cpu */
215static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216
9b5b7751
SV
217static struct sched_entity *init_sched_entity_p[NR_CPUS];
218static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 219
ec2c507f
SV
220/* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
222 */
223static DEFINE_MUTEX(task_group_mutex);
224
a1835615
SV
225/* doms_cur_mutex serializes access to doms_cur[] array */
226static DEFINE_MUTEX(doms_cur_mutex);
227
6b2d7700
SV
228#ifdef CONFIG_SMP
229/* kernel thread that runs rebalance_shares() periodically */
230static struct task_struct *lb_monitor_task;
231static int load_balance_monitor(void *unused);
232#endif
233
234static void set_se_shares(struct sched_entity *se, unsigned long shares);
235
29f59db3 236/* Default task group.
3a252015 237 * Every task in system belong to this group at bootup.
29f59db3 238 */
4cf86d77 239struct task_group init_task_group = {
0eab9146 240 .se = init_sched_entity_p,
3a252015
IM
241 .cfs_rq = init_cfs_rq_p,
242};
9b5b7751 243
24e377a8 244#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 245# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 246#else
93f992cc 247# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
248#endif
249
0eab9146 250#define MIN_GROUP_SHARES 2
6b2d7700 251
93f992cc 252static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
253
254/* return group to which a task belongs */
4cf86d77 255static inline struct task_group *task_group(struct task_struct *p)
29f59db3 256{
4cf86d77 257 struct task_group *tg;
9b5b7751 258
24e377a8
SV
259#ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
68318b8e
SV
261#elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
24e377a8 264#else
41a2d6cf 265 tg = &init_task_group;
24e377a8 266#endif
9b5b7751 267 return tg;
29f59db3
SV
268}
269
270/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 271static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 272{
ce96b5ac
DA
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
275}
276
ec2c507f
SV
277static inline void lock_task_group_list(void)
278{
279 mutex_lock(&task_group_mutex);
280}
281
282static inline void unlock_task_group_list(void)
283{
284 mutex_unlock(&task_group_mutex);
285}
286
a1835615
SV
287static inline void lock_doms_cur(void)
288{
289 mutex_lock(&doms_cur_mutex);
290}
291
292static inline void unlock_doms_cur(void)
293{
294 mutex_unlock(&doms_cur_mutex);
295}
296
29f59db3
SV
297#else
298
ce96b5ac 299static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
300static inline void lock_task_group_list(void) { }
301static inline void unlock_task_group_list(void) { }
a1835615
SV
302static inline void lock_doms_cur(void) { }
303static inline void unlock_doms_cur(void) { }
29f59db3
SV
304
305#endif /* CONFIG_FAIR_GROUP_SCHED */
306
6aa645ea
IM
307/* CFS-related fields in a runqueue */
308struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
311
6aa645ea 312 u64 exec_clock;
e9acbff6 313 u64 min_vruntime;
6aa645ea
IM
314
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
320 */
321 struct sched_entity *curr;
ddc97297
PZ
322
323 unsigned long nr_spread_over;
324
62160e3f 325#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
327
41a2d6cf
IM
328 /*
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
332 *
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
335 */
41a2d6cf
IM
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
338#endif
339};
1da177e4 340
6aa645ea
IM
341/* Real-Time classes' related field in a runqueue: */
342struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 346 unsigned long rt_nr_running;
73fe6aae 347 unsigned long rt_nr_migratory;
764a9d6f
SR
348 /* highest queued rt task prio */
349 int highest_prio;
a22d7fc1 350 int overloaded;
6aa645ea
IM
351};
352
57d885fe
GH
353#ifdef CONFIG_SMP
354
355/*
356 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
361 *
362 * By default the system creates a single root-domain with all cpus as
363 * members (mimicking the global state we have today).
364 */
365struct root_domain {
366 atomic_t refcount;
367 cpumask_t span;
368 cpumask_t online;
637f5085 369
0eab9146 370 /*
637f5085
GH
371 * The "RT overload" flag: it gets set if a CPU has more than
372 * one runnable RT task.
373 */
374 cpumask_t rto_mask;
0eab9146 375 atomic_t rto_count;
57d885fe
GH
376};
377
378static struct root_domain def_root_domain;
379
380#endif
381
1da177e4
LT
382/*
383 * This is the main, per-CPU runqueue data structure.
384 *
385 * Locking rule: those places that want to lock multiple runqueues
386 * (such as the load balancing or the thread migration code), lock
387 * acquire operations must be ordered by ascending &runqueue.
388 */
70b97a7f 389struct rq {
d8016491
IM
390 /* runqueue lock: */
391 spinlock_t lock;
1da177e4
LT
392
393 /*
394 * nr_running and cpu_load should be in the same cacheline because
395 * remote CPUs use both these fields when doing load calculation.
396 */
397 unsigned long nr_running;
6aa645ea
IM
398 #define CPU_LOAD_IDX_MAX 5
399 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 400 unsigned char idle_at_tick;
46cb4b7c
SS
401#ifdef CONFIG_NO_HZ
402 unsigned char in_nohz_recently;
403#endif
d8016491
IM
404 /* capture load from *all* tasks on this cpu: */
405 struct load_weight load;
6aa645ea
IM
406 unsigned long nr_load_updates;
407 u64 nr_switches;
408
409 struct cfs_rq cfs;
410#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
411 /* list of leaf cfs_rq on this cpu: */
412 struct list_head leaf_cfs_rq_list;
1da177e4 413#endif
41a2d6cf 414 struct rt_rq rt;
1da177e4
LT
415
416 /*
417 * This is part of a global counter where only the total sum
418 * over all CPUs matters. A task can increase this counter on
419 * one CPU and if it got migrated afterwards it may decrease
420 * it on another CPU. Always updated under the runqueue lock:
421 */
422 unsigned long nr_uninterruptible;
423
36c8b586 424 struct task_struct *curr, *idle;
c9819f45 425 unsigned long next_balance;
1da177e4 426 struct mm_struct *prev_mm;
6aa645ea 427
6aa645ea
IM
428 u64 clock, prev_clock_raw;
429 s64 clock_max_delta;
430
431 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
432 u64 idle_clock;
433 unsigned int clock_deep_idle_events;
529c7726 434 u64 tick_timestamp;
6aa645ea 435
1da177e4
LT
436 atomic_t nr_iowait;
437
438#ifdef CONFIG_SMP
0eab9146 439 struct root_domain *rd;
1da177e4
LT
440 struct sched_domain *sd;
441
442 /* For active balancing */
443 int active_balance;
444 int push_cpu;
d8016491
IM
445 /* cpu of this runqueue: */
446 int cpu;
1da177e4 447
36c8b586 448 struct task_struct *migration_thread;
1da177e4
LT
449 struct list_head migration_queue;
450#endif
451
452#ifdef CONFIG_SCHEDSTATS
453 /* latency stats */
454 struct sched_info rq_sched_info;
455
456 /* sys_sched_yield() stats */
480b9434
KC
457 unsigned int yld_exp_empty;
458 unsigned int yld_act_empty;
459 unsigned int yld_both_empty;
460 unsigned int yld_count;
1da177e4
LT
461
462 /* schedule() stats */
480b9434
KC
463 unsigned int sched_switch;
464 unsigned int sched_count;
465 unsigned int sched_goidle;
1da177e4
LT
466
467 /* try_to_wake_up() stats */
480b9434
KC
468 unsigned int ttwu_count;
469 unsigned int ttwu_local;
b8efb561
IM
470
471 /* BKL stats */
480b9434 472 unsigned int bkl_count;
1da177e4 473#endif
fcb99371 474 struct lock_class_key rq_lock_key;
1da177e4
LT
475};
476
f34e3b61 477static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 478
dd41f596
IM
479static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
480{
481 rq->curr->sched_class->check_preempt_curr(rq, p);
482}
483
0a2966b4
CL
484static inline int cpu_of(struct rq *rq)
485{
486#ifdef CONFIG_SMP
487 return rq->cpu;
488#else
489 return 0;
490#endif
491}
492
20d315d4 493/*
b04a0f4c
IM
494 * Update the per-runqueue clock, as finegrained as the platform can give
495 * us, but without assuming monotonicity, etc.:
20d315d4 496 */
b04a0f4c 497static void __update_rq_clock(struct rq *rq)
20d315d4
IM
498{
499 u64 prev_raw = rq->prev_clock_raw;
500 u64 now = sched_clock();
501 s64 delta = now - prev_raw;
502 u64 clock = rq->clock;
503
b04a0f4c
IM
504#ifdef CONFIG_SCHED_DEBUG
505 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
506#endif
20d315d4
IM
507 /*
508 * Protect against sched_clock() occasionally going backwards:
509 */
510 if (unlikely(delta < 0)) {
511 clock++;
512 rq->clock_warps++;
513 } else {
514 /*
515 * Catch too large forward jumps too:
516 */
529c7726
IM
517 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
518 if (clock < rq->tick_timestamp + TICK_NSEC)
519 clock = rq->tick_timestamp + TICK_NSEC;
520 else
521 clock++;
20d315d4
IM
522 rq->clock_overflows++;
523 } else {
524 if (unlikely(delta > rq->clock_max_delta))
525 rq->clock_max_delta = delta;
526 clock += delta;
527 }
528 }
529
530 rq->prev_clock_raw = now;
531 rq->clock = clock;
b04a0f4c 532}
20d315d4 533
b04a0f4c
IM
534static void update_rq_clock(struct rq *rq)
535{
536 if (likely(smp_processor_id() == cpu_of(rq)))
537 __update_rq_clock(rq);
20d315d4
IM
538}
539
674311d5
NP
540/*
541 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 542 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
543 *
544 * The domain tree of any CPU may only be accessed from within
545 * preempt-disabled sections.
546 */
48f24c4d
IM
547#define for_each_domain(cpu, __sd) \
548 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
549
550#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
551#define this_rq() (&__get_cpu_var(runqueues))
552#define task_rq(p) cpu_rq(task_cpu(p))
553#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
554
bf5c91ba
IM
555/*
556 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
557 */
558#ifdef CONFIG_SCHED_DEBUG
559# define const_debug __read_mostly
560#else
561# define const_debug static const
562#endif
563
564/*
565 * Debugging: various feature bits
566 */
567enum {
bbdba7c0 568 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
569 SCHED_FEAT_WAKEUP_PREEMPT = 2,
570 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
571 SCHED_FEAT_TREE_AVG = 8,
572 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
573};
574
575const_debug unsigned int sysctl_sched_features =
8401f775 576 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 577 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
578 SCHED_FEAT_START_DEBIT * 1 |
579 SCHED_FEAT_TREE_AVG * 0 |
9612633a 580 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
581
582#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
583
b82d9fdd
PZ
584/*
585 * Number of tasks to iterate in a single balance run.
586 * Limited because this is done with IRQs disabled.
587 */
588const_debug unsigned int sysctl_sched_nr_migrate = 32;
589
e436d800
IM
590/*
591 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
592 * clock constructed from sched_clock():
593 */
594unsigned long long cpu_clock(int cpu)
595{
e436d800
IM
596 unsigned long long now;
597 unsigned long flags;
b04a0f4c 598 struct rq *rq;
e436d800 599
2cd4d0ea 600 local_irq_save(flags);
b04a0f4c 601 rq = cpu_rq(cpu);
8ced5f69
IM
602 /*
603 * Only call sched_clock() if the scheduler has already been
604 * initialized (some code might call cpu_clock() very early):
605 */
606 if (rq->idle)
607 update_rq_clock(rq);
b04a0f4c 608 now = rq->clock;
2cd4d0ea 609 local_irq_restore(flags);
e436d800
IM
610
611 return now;
612}
a58f6f25 613EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 614
1da177e4 615#ifndef prepare_arch_switch
4866cde0
NP
616# define prepare_arch_switch(next) do { } while (0)
617#endif
618#ifndef finish_arch_switch
619# define finish_arch_switch(prev) do { } while (0)
620#endif
621
051a1d1a
DA
622static inline int task_current(struct rq *rq, struct task_struct *p)
623{
624 return rq->curr == p;
625}
626
4866cde0 627#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 628static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 629{
051a1d1a 630 return task_current(rq, p);
4866cde0
NP
631}
632
70b97a7f 633static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
634{
635}
636
70b97a7f 637static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 638{
da04c035
IM
639#ifdef CONFIG_DEBUG_SPINLOCK
640 /* this is a valid case when another task releases the spinlock */
641 rq->lock.owner = current;
642#endif
8a25d5de
IM
643 /*
644 * If we are tracking spinlock dependencies then we have to
645 * fix up the runqueue lock - which gets 'carried over' from
646 * prev into current:
647 */
648 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
649
4866cde0
NP
650 spin_unlock_irq(&rq->lock);
651}
652
653#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 654static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
655{
656#ifdef CONFIG_SMP
657 return p->oncpu;
658#else
051a1d1a 659 return task_current(rq, p);
4866cde0
NP
660#endif
661}
662
70b97a7f 663static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
664{
665#ifdef CONFIG_SMP
666 /*
667 * We can optimise this out completely for !SMP, because the
668 * SMP rebalancing from interrupt is the only thing that cares
669 * here.
670 */
671 next->oncpu = 1;
672#endif
673#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
674 spin_unlock_irq(&rq->lock);
675#else
676 spin_unlock(&rq->lock);
677#endif
678}
679
70b97a7f 680static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
681{
682#ifdef CONFIG_SMP
683 /*
684 * After ->oncpu is cleared, the task can be moved to a different CPU.
685 * We must ensure this doesn't happen until the switch is completely
686 * finished.
687 */
688 smp_wmb();
689 prev->oncpu = 0;
690#endif
691#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
692 local_irq_enable();
1da177e4 693#endif
4866cde0
NP
694}
695#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 696
b29739f9
IM
697/*
698 * __task_rq_lock - lock the runqueue a given task resides on.
699 * Must be called interrupts disabled.
700 */
70b97a7f 701static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
702 __acquires(rq->lock)
703{
3a5c359a
AK
704 for (;;) {
705 struct rq *rq = task_rq(p);
706 spin_lock(&rq->lock);
707 if (likely(rq == task_rq(p)))
708 return rq;
b29739f9 709 spin_unlock(&rq->lock);
b29739f9 710 }
b29739f9
IM
711}
712
1da177e4
LT
713/*
714 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 715 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
716 * explicitly disabling preemption.
717 */
70b97a7f 718static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
719 __acquires(rq->lock)
720{
70b97a7f 721 struct rq *rq;
1da177e4 722
3a5c359a
AK
723 for (;;) {
724 local_irq_save(*flags);
725 rq = task_rq(p);
726 spin_lock(&rq->lock);
727 if (likely(rq == task_rq(p)))
728 return rq;
1da177e4 729 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 730 }
1da177e4
LT
731}
732
a9957449 733static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
734 __releases(rq->lock)
735{
736 spin_unlock(&rq->lock);
737}
738
70b97a7f 739static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
740 __releases(rq->lock)
741{
742 spin_unlock_irqrestore(&rq->lock, *flags);
743}
744
1da177e4 745/*
cc2a73b5 746 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 747 */
a9957449 748static struct rq *this_rq_lock(void)
1da177e4
LT
749 __acquires(rq->lock)
750{
70b97a7f 751 struct rq *rq;
1da177e4
LT
752
753 local_irq_disable();
754 rq = this_rq();
755 spin_lock(&rq->lock);
756
757 return rq;
758}
759
1b9f19c2 760/*
2aa44d05 761 * We are going deep-idle (irqs are disabled):
1b9f19c2 762 */
2aa44d05 763void sched_clock_idle_sleep_event(void)
1b9f19c2 764{
2aa44d05
IM
765 struct rq *rq = cpu_rq(smp_processor_id());
766
767 spin_lock(&rq->lock);
768 __update_rq_clock(rq);
769 spin_unlock(&rq->lock);
770 rq->clock_deep_idle_events++;
771}
772EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
773
774/*
775 * We just idled delta nanoseconds (called with irqs disabled):
776 */
777void sched_clock_idle_wakeup_event(u64 delta_ns)
778{
779 struct rq *rq = cpu_rq(smp_processor_id());
780 u64 now = sched_clock();
1b9f19c2 781
2bacec8c 782 touch_softlockup_watchdog();
2aa44d05
IM
783 rq->idle_clock += delta_ns;
784 /*
785 * Override the previous timestamp and ignore all
786 * sched_clock() deltas that occured while we idled,
787 * and use the PM-provided delta_ns to advance the
788 * rq clock:
789 */
790 spin_lock(&rq->lock);
791 rq->prev_clock_raw = now;
792 rq->clock += delta_ns;
793 spin_unlock(&rq->lock);
1b9f19c2 794}
2aa44d05 795EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 796
c24d20db
IM
797/*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804#ifdef CONFIG_SMP
805
806#ifndef tsk_is_polling
807#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
808#endif
809
810static void resched_task(struct task_struct *p)
811{
812 int cpu;
813
814 assert_spin_locked(&task_rq(p)->lock);
815
816 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
817 return;
818
819 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
820
821 cpu = task_cpu(p);
822 if (cpu == smp_processor_id())
823 return;
824
825 /* NEED_RESCHED must be visible before we test polling */
826 smp_mb();
827 if (!tsk_is_polling(p))
828 smp_send_reschedule(cpu);
829}
830
831static void resched_cpu(int cpu)
832{
833 struct rq *rq = cpu_rq(cpu);
834 unsigned long flags;
835
836 if (!spin_trylock_irqsave(&rq->lock, flags))
837 return;
838 resched_task(cpu_curr(cpu));
839 spin_unlock_irqrestore(&rq->lock, flags);
840}
841#else
842static inline void resched_task(struct task_struct *p)
843{
844 assert_spin_locked(&task_rq(p)->lock);
845 set_tsk_need_resched(p);
846}
847#endif
848
45bf76df
IM
849#if BITS_PER_LONG == 32
850# define WMULT_CONST (~0UL)
851#else
852# define WMULT_CONST (1UL << 32)
853#endif
854
855#define WMULT_SHIFT 32
856
194081eb
IM
857/*
858 * Shift right and round:
859 */
cf2ab469 860#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 861
cb1c4fc9 862static unsigned long
45bf76df
IM
863calc_delta_mine(unsigned long delta_exec, unsigned long weight,
864 struct load_weight *lw)
865{
866 u64 tmp;
867
868 if (unlikely(!lw->inv_weight))
194081eb 869 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
870
871 tmp = (u64)delta_exec * weight;
872 /*
873 * Check whether we'd overflow the 64-bit multiplication:
874 */
194081eb 875 if (unlikely(tmp > WMULT_CONST))
cf2ab469 876 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
877 WMULT_SHIFT/2);
878 else
cf2ab469 879 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 880
ecf691da 881 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
882}
883
884static inline unsigned long
885calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
886{
887 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
888}
889
1091985b 890static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
891{
892 lw->weight += inc;
45bf76df
IM
893}
894
1091985b 895static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
896{
897 lw->weight -= dec;
45bf76df
IM
898}
899
2dd73a4f
PW
900/*
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
41a2d6cf 904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
907 */
908
dd41f596
IM
909#define WEIGHT_IDLEPRIO 2
910#define WMULT_IDLEPRIO (1 << 31)
911
912/*
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
917 *
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
dd41f596
IM
923 */
924static const int prio_to_weight[40] = {
254753dc
IM
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
933};
934
5714d2de
IM
935/*
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
937 *
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
941 */
dd41f596 942static const u32 prio_to_wmult[40] = {
254753dc
IM
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 951};
2dd73a4f 952
dd41f596
IM
953static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
954
955/*
956 * runqueue iterator, to support SMP load-balancing between different
957 * scheduling classes, without having to expose their internal data
958 * structures to the load-balancing proper:
959 */
960struct rq_iterator {
961 void *arg;
962 struct task_struct *(*start)(void *);
963 struct task_struct *(*next)(void *);
964};
965
e1d1484f
PW
966#ifdef CONFIG_SMP
967static unsigned long
968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
969 unsigned long max_load_move, struct sched_domain *sd,
970 enum cpu_idle_type idle, int *all_pinned,
971 int *this_best_prio, struct rq_iterator *iterator);
972
973static int
974iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
975 struct sched_domain *sd, enum cpu_idle_type idle,
976 struct rq_iterator *iterator);
e1d1484f 977#endif
dd41f596 978
d842de87
SV
979#ifdef CONFIG_CGROUP_CPUACCT
980static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
981#else
982static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
983#endif
984
58e2d4ca
SV
985static inline void inc_cpu_load(struct rq *rq, unsigned long load)
986{
987 update_load_add(&rq->load, load);
988}
989
990static inline void dec_cpu_load(struct rq *rq, unsigned long load)
991{
992 update_load_sub(&rq->load, load);
993}
994
e7693a36
GH
995#ifdef CONFIG_SMP
996static unsigned long source_load(int cpu, int type);
997static unsigned long target_load(int cpu, int type);
998static unsigned long cpu_avg_load_per_task(int cpu);
999static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1000#endif /* CONFIG_SMP */
1001
dd41f596 1002#include "sched_stats.h"
dd41f596 1003#include "sched_idletask.c"
5522d5d5
IM
1004#include "sched_fair.c"
1005#include "sched_rt.c"
dd41f596
IM
1006#ifdef CONFIG_SCHED_DEBUG
1007# include "sched_debug.c"
1008#endif
1009
1010#define sched_class_highest (&rt_sched_class)
1011
e5fa2237 1012static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1013{
1014 rq->nr_running++;
9c217245
IM
1015}
1016
db53181e 1017static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1018{
1019 rq->nr_running--;
9c217245
IM
1020}
1021
45bf76df
IM
1022static void set_load_weight(struct task_struct *p)
1023{
1024 if (task_has_rt_policy(p)) {
dd41f596
IM
1025 p->se.load.weight = prio_to_weight[0] * 2;
1026 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1027 return;
1028 }
45bf76df 1029
dd41f596
IM
1030 /*
1031 * SCHED_IDLE tasks get minimal weight:
1032 */
1033 if (p->policy == SCHED_IDLE) {
1034 p->se.load.weight = WEIGHT_IDLEPRIO;
1035 p->se.load.inv_weight = WMULT_IDLEPRIO;
1036 return;
1037 }
71f8bd46 1038
dd41f596
IM
1039 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1040 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1041}
1042
8159f87e 1043static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1044{
dd41f596 1045 sched_info_queued(p);
fd390f6a 1046 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1047 p->se.on_rq = 1;
71f8bd46
IM
1048}
1049
69be72c1 1050static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1051{
f02231e5 1052 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1053 p->se.on_rq = 0;
71f8bd46
IM
1054}
1055
14531189 1056/*
dd41f596 1057 * __normal_prio - return the priority that is based on the static prio
14531189 1058 */
14531189
IM
1059static inline int __normal_prio(struct task_struct *p)
1060{
dd41f596 1061 return p->static_prio;
14531189
IM
1062}
1063
b29739f9
IM
1064/*
1065 * Calculate the expected normal priority: i.e. priority
1066 * without taking RT-inheritance into account. Might be
1067 * boosted by interactivity modifiers. Changes upon fork,
1068 * setprio syscalls, and whenever the interactivity
1069 * estimator recalculates.
1070 */
36c8b586 1071static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1072{
1073 int prio;
1074
e05606d3 1075 if (task_has_rt_policy(p))
b29739f9
IM
1076 prio = MAX_RT_PRIO-1 - p->rt_priority;
1077 else
1078 prio = __normal_prio(p);
1079 return prio;
1080}
1081
1082/*
1083 * Calculate the current priority, i.e. the priority
1084 * taken into account by the scheduler. This value might
1085 * be boosted by RT tasks, or might be boosted by
1086 * interactivity modifiers. Will be RT if the task got
1087 * RT-boosted. If not then it returns p->normal_prio.
1088 */
36c8b586 1089static int effective_prio(struct task_struct *p)
b29739f9
IM
1090{
1091 p->normal_prio = normal_prio(p);
1092 /*
1093 * If we are RT tasks or we were boosted to RT priority,
1094 * keep the priority unchanged. Otherwise, update priority
1095 * to the normal priority:
1096 */
1097 if (!rt_prio(p->prio))
1098 return p->normal_prio;
1099 return p->prio;
1100}
1101
1da177e4 1102/*
dd41f596 1103 * activate_task - move a task to the runqueue.
1da177e4 1104 */
dd41f596 1105static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1106{
dd41f596
IM
1107 if (p->state == TASK_UNINTERRUPTIBLE)
1108 rq->nr_uninterruptible--;
1da177e4 1109
8159f87e 1110 enqueue_task(rq, p, wakeup);
e5fa2237 1111 inc_nr_running(p, rq);
1da177e4
LT
1112}
1113
1da177e4
LT
1114/*
1115 * deactivate_task - remove a task from the runqueue.
1116 */
2e1cb74a 1117static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1118{
dd41f596
IM
1119 if (p->state == TASK_UNINTERRUPTIBLE)
1120 rq->nr_uninterruptible++;
1121
69be72c1 1122 dequeue_task(rq, p, sleep);
db53181e 1123 dec_nr_running(p, rq);
1da177e4
LT
1124}
1125
1da177e4
LT
1126/**
1127 * task_curr - is this task currently executing on a CPU?
1128 * @p: the task in question.
1129 */
36c8b586 1130inline int task_curr(const struct task_struct *p)
1da177e4
LT
1131{
1132 return cpu_curr(task_cpu(p)) == p;
1133}
1134
2dd73a4f
PW
1135/* Used instead of source_load when we know the type == 0 */
1136unsigned long weighted_cpuload(const int cpu)
1137{
495eca49 1138 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1139}
1140
1141static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1142{
ce96b5ac 1143 set_task_cfs_rq(p, cpu);
dd41f596 1144#ifdef CONFIG_SMP
ce96b5ac
DA
1145 /*
1146 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1147 * successfuly executed on another CPU. We must ensure that updates of
1148 * per-task data have been completed by this moment.
1149 */
1150 smp_wmb();
dd41f596 1151 task_thread_info(p)->cpu = cpu;
dd41f596 1152#endif
2dd73a4f
PW
1153}
1154
1da177e4 1155#ifdef CONFIG_SMP
c65cc870 1156
cc367732
IM
1157/*
1158 * Is this task likely cache-hot:
1159 */
e7693a36 1160static int
cc367732
IM
1161task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1162{
1163 s64 delta;
1164
1165 if (p->sched_class != &fair_sched_class)
1166 return 0;
1167
6bc1665b
IM
1168 if (sysctl_sched_migration_cost == -1)
1169 return 1;
1170 if (sysctl_sched_migration_cost == 0)
1171 return 0;
1172
cc367732
IM
1173 delta = now - p->se.exec_start;
1174
1175 return delta < (s64)sysctl_sched_migration_cost;
1176}
1177
1178
dd41f596 1179void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1180{
dd41f596
IM
1181 int old_cpu = task_cpu(p);
1182 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1183 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1184 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1185 u64 clock_offset;
dd41f596
IM
1186
1187 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1188
1189#ifdef CONFIG_SCHEDSTATS
1190 if (p->se.wait_start)
1191 p->se.wait_start -= clock_offset;
dd41f596
IM
1192 if (p->se.sleep_start)
1193 p->se.sleep_start -= clock_offset;
1194 if (p->se.block_start)
1195 p->se.block_start -= clock_offset;
cc367732
IM
1196 if (old_cpu != new_cpu) {
1197 schedstat_inc(p, se.nr_migrations);
1198 if (task_hot(p, old_rq->clock, NULL))
1199 schedstat_inc(p, se.nr_forced2_migrations);
1200 }
6cfb0d5d 1201#endif
2830cf8c
SV
1202 p->se.vruntime -= old_cfsrq->min_vruntime -
1203 new_cfsrq->min_vruntime;
dd41f596
IM
1204
1205 __set_task_cpu(p, new_cpu);
c65cc870
IM
1206}
1207
70b97a7f 1208struct migration_req {
1da177e4 1209 struct list_head list;
1da177e4 1210
36c8b586 1211 struct task_struct *task;
1da177e4
LT
1212 int dest_cpu;
1213
1da177e4 1214 struct completion done;
70b97a7f 1215};
1da177e4
LT
1216
1217/*
1218 * The task's runqueue lock must be held.
1219 * Returns true if you have to wait for migration thread.
1220 */
36c8b586 1221static int
70b97a7f 1222migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1223{
70b97a7f 1224 struct rq *rq = task_rq(p);
1da177e4
LT
1225
1226 /*
1227 * If the task is not on a runqueue (and not running), then
1228 * it is sufficient to simply update the task's cpu field.
1229 */
dd41f596 1230 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1231 set_task_cpu(p, dest_cpu);
1232 return 0;
1233 }
1234
1235 init_completion(&req->done);
1da177e4
LT
1236 req->task = p;
1237 req->dest_cpu = dest_cpu;
1238 list_add(&req->list, &rq->migration_queue);
48f24c4d 1239
1da177e4
LT
1240 return 1;
1241}
1242
1243/*
1244 * wait_task_inactive - wait for a thread to unschedule.
1245 *
1246 * The caller must ensure that the task *will* unschedule sometime soon,
1247 * else this function might spin for a *long* time. This function can't
1248 * be called with interrupts off, or it may introduce deadlock with
1249 * smp_call_function() if an IPI is sent by the same process we are
1250 * waiting to become inactive.
1251 */
36c8b586 1252void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1253{
1254 unsigned long flags;
dd41f596 1255 int running, on_rq;
70b97a7f 1256 struct rq *rq;
1da177e4 1257
3a5c359a
AK
1258 for (;;) {
1259 /*
1260 * We do the initial early heuristics without holding
1261 * any task-queue locks at all. We'll only try to get
1262 * the runqueue lock when things look like they will
1263 * work out!
1264 */
1265 rq = task_rq(p);
fa490cfd 1266
3a5c359a
AK
1267 /*
1268 * If the task is actively running on another CPU
1269 * still, just relax and busy-wait without holding
1270 * any locks.
1271 *
1272 * NOTE! Since we don't hold any locks, it's not
1273 * even sure that "rq" stays as the right runqueue!
1274 * But we don't care, since "task_running()" will
1275 * return false if the runqueue has changed and p
1276 * is actually now running somewhere else!
1277 */
1278 while (task_running(rq, p))
1279 cpu_relax();
fa490cfd 1280
3a5c359a
AK
1281 /*
1282 * Ok, time to look more closely! We need the rq
1283 * lock now, to be *sure*. If we're wrong, we'll
1284 * just go back and repeat.
1285 */
1286 rq = task_rq_lock(p, &flags);
1287 running = task_running(rq, p);
1288 on_rq = p->se.on_rq;
1289 task_rq_unlock(rq, &flags);
fa490cfd 1290
3a5c359a
AK
1291 /*
1292 * Was it really running after all now that we
1293 * checked with the proper locks actually held?
1294 *
1295 * Oops. Go back and try again..
1296 */
1297 if (unlikely(running)) {
1298 cpu_relax();
1299 continue;
1300 }
fa490cfd 1301
3a5c359a
AK
1302 /*
1303 * It's not enough that it's not actively running,
1304 * it must be off the runqueue _entirely_, and not
1305 * preempted!
1306 *
1307 * So if it wa still runnable (but just not actively
1308 * running right now), it's preempted, and we should
1309 * yield - it could be a while.
1310 */
1311 if (unlikely(on_rq)) {
1312 schedule_timeout_uninterruptible(1);
1313 continue;
1314 }
fa490cfd 1315
3a5c359a
AK
1316 /*
1317 * Ahh, all good. It wasn't running, and it wasn't
1318 * runnable, which means that it will never become
1319 * running in the future either. We're all done!
1320 */
1321 break;
1322 }
1da177e4
LT
1323}
1324
1325/***
1326 * kick_process - kick a running thread to enter/exit the kernel
1327 * @p: the to-be-kicked thread
1328 *
1329 * Cause a process which is running on another CPU to enter
1330 * kernel-mode, without any delay. (to get signals handled.)
1331 *
1332 * NOTE: this function doesnt have to take the runqueue lock,
1333 * because all it wants to ensure is that the remote task enters
1334 * the kernel. If the IPI races and the task has been migrated
1335 * to another CPU then no harm is done and the purpose has been
1336 * achieved as well.
1337 */
36c8b586 1338void kick_process(struct task_struct *p)
1da177e4
LT
1339{
1340 int cpu;
1341
1342 preempt_disable();
1343 cpu = task_cpu(p);
1344 if ((cpu != smp_processor_id()) && task_curr(p))
1345 smp_send_reschedule(cpu);
1346 preempt_enable();
1347}
1348
1349/*
2dd73a4f
PW
1350 * Return a low guess at the load of a migration-source cpu weighted
1351 * according to the scheduling class and "nice" value.
1da177e4
LT
1352 *
1353 * We want to under-estimate the load of migration sources, to
1354 * balance conservatively.
1355 */
a9957449 1356static unsigned long source_load(int cpu, int type)
1da177e4 1357{
70b97a7f 1358 struct rq *rq = cpu_rq(cpu);
dd41f596 1359 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1360
3b0bd9bc 1361 if (type == 0)
dd41f596 1362 return total;
b910472d 1363
dd41f596 1364 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1365}
1366
1367/*
2dd73a4f
PW
1368 * Return a high guess at the load of a migration-target cpu weighted
1369 * according to the scheduling class and "nice" value.
1da177e4 1370 */
a9957449 1371static unsigned long target_load(int cpu, int type)
1da177e4 1372{
70b97a7f 1373 struct rq *rq = cpu_rq(cpu);
dd41f596 1374 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1375
7897986b 1376 if (type == 0)
dd41f596 1377 return total;
3b0bd9bc 1378
dd41f596 1379 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1380}
1381
1382/*
1383 * Return the average load per task on the cpu's run queue
1384 */
e7693a36 1385static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1386{
70b97a7f 1387 struct rq *rq = cpu_rq(cpu);
dd41f596 1388 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1389 unsigned long n = rq->nr_running;
1390
dd41f596 1391 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1392}
1393
147cbb4b
NP
1394/*
1395 * find_idlest_group finds and returns the least busy CPU group within the
1396 * domain.
1397 */
1398static struct sched_group *
1399find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1400{
1401 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1402 unsigned long min_load = ULONG_MAX, this_load = 0;
1403 int load_idx = sd->forkexec_idx;
1404 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1405
1406 do {
1407 unsigned long load, avg_load;
1408 int local_group;
1409 int i;
1410
da5a5522
BD
1411 /* Skip over this group if it has no CPUs allowed */
1412 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1413 continue;
da5a5522 1414
147cbb4b 1415 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1416
1417 /* Tally up the load of all CPUs in the group */
1418 avg_load = 0;
1419
1420 for_each_cpu_mask(i, group->cpumask) {
1421 /* Bias balancing toward cpus of our domain */
1422 if (local_group)
1423 load = source_load(i, load_idx);
1424 else
1425 load = target_load(i, load_idx);
1426
1427 avg_load += load;
1428 }
1429
1430 /* Adjust by relative CPU power of the group */
5517d86b
ED
1431 avg_load = sg_div_cpu_power(group,
1432 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1433
1434 if (local_group) {
1435 this_load = avg_load;
1436 this = group;
1437 } else if (avg_load < min_load) {
1438 min_load = avg_load;
1439 idlest = group;
1440 }
3a5c359a 1441 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1442
1443 if (!idlest || 100*this_load < imbalance*min_load)
1444 return NULL;
1445 return idlest;
1446}
1447
1448/*
0feaece9 1449 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1450 */
95cdf3b7
IM
1451static int
1452find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1453{
da5a5522 1454 cpumask_t tmp;
147cbb4b
NP
1455 unsigned long load, min_load = ULONG_MAX;
1456 int idlest = -1;
1457 int i;
1458
da5a5522
BD
1459 /* Traverse only the allowed CPUs */
1460 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1461
1462 for_each_cpu_mask(i, tmp) {
2dd73a4f 1463 load = weighted_cpuload(i);
147cbb4b
NP
1464
1465 if (load < min_load || (load == min_load && i == this_cpu)) {
1466 min_load = load;
1467 idlest = i;
1468 }
1469 }
1470
1471 return idlest;
1472}
1473
476d139c
NP
1474/*
1475 * sched_balance_self: balance the current task (running on cpu) in domains
1476 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1477 * SD_BALANCE_EXEC.
1478 *
1479 * Balance, ie. select the least loaded group.
1480 *
1481 * Returns the target CPU number, or the same CPU if no balancing is needed.
1482 *
1483 * preempt must be disabled.
1484 */
1485static int sched_balance_self(int cpu, int flag)
1486{
1487 struct task_struct *t = current;
1488 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1489
c96d145e 1490 for_each_domain(cpu, tmp) {
9761eea8
IM
1491 /*
1492 * If power savings logic is enabled for a domain, stop there.
1493 */
5c45bf27
SS
1494 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1495 break;
476d139c
NP
1496 if (tmp->flags & flag)
1497 sd = tmp;
c96d145e 1498 }
476d139c
NP
1499
1500 while (sd) {
1501 cpumask_t span;
1502 struct sched_group *group;
1a848870
SS
1503 int new_cpu, weight;
1504
1505 if (!(sd->flags & flag)) {
1506 sd = sd->child;
1507 continue;
1508 }
476d139c
NP
1509
1510 span = sd->span;
1511 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1512 if (!group) {
1513 sd = sd->child;
1514 continue;
1515 }
476d139c 1516
da5a5522 1517 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1518 if (new_cpu == -1 || new_cpu == cpu) {
1519 /* Now try balancing at a lower domain level of cpu */
1520 sd = sd->child;
1521 continue;
1522 }
476d139c 1523
1a848870 1524 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1525 cpu = new_cpu;
476d139c
NP
1526 sd = NULL;
1527 weight = cpus_weight(span);
1528 for_each_domain(cpu, tmp) {
1529 if (weight <= cpus_weight(tmp->span))
1530 break;
1531 if (tmp->flags & flag)
1532 sd = tmp;
1533 }
1534 /* while loop will break here if sd == NULL */
1535 }
1536
1537 return cpu;
1538}
1539
1540#endif /* CONFIG_SMP */
1da177e4 1541
1da177e4
LT
1542/***
1543 * try_to_wake_up - wake up a thread
1544 * @p: the to-be-woken-up thread
1545 * @state: the mask of task states that can be woken
1546 * @sync: do a synchronous wakeup?
1547 *
1548 * Put it on the run-queue if it's not already there. The "current"
1549 * thread is always on the run-queue (except when the actual
1550 * re-schedule is in progress), and as such you're allowed to do
1551 * the simpler "current->state = TASK_RUNNING" to mark yourself
1552 * runnable without the overhead of this.
1553 *
1554 * returns failure only if the task is already active.
1555 */
36c8b586 1556static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1557{
cc367732 1558 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1559 unsigned long flags;
1560 long old_state;
70b97a7f 1561 struct rq *rq;
1da177e4
LT
1562
1563 rq = task_rq_lock(p, &flags);
1564 old_state = p->state;
1565 if (!(old_state & state))
1566 goto out;
1567
dd41f596 1568 if (p->se.on_rq)
1da177e4
LT
1569 goto out_running;
1570
1571 cpu = task_cpu(p);
cc367732 1572 orig_cpu = cpu;
1da177e4
LT
1573 this_cpu = smp_processor_id();
1574
1575#ifdef CONFIG_SMP
1576 if (unlikely(task_running(rq, p)))
1577 goto out_activate;
1578
5d2f5a61
DA
1579 cpu = p->sched_class->select_task_rq(p, sync);
1580 if (cpu != orig_cpu) {
1581 set_task_cpu(p, cpu);
1da177e4
LT
1582 task_rq_unlock(rq, &flags);
1583 /* might preempt at this point */
1584 rq = task_rq_lock(p, &flags);
1585 old_state = p->state;
1586 if (!(old_state & state))
1587 goto out;
dd41f596 1588 if (p->se.on_rq)
1da177e4
LT
1589 goto out_running;
1590
1591 this_cpu = smp_processor_id();
1592 cpu = task_cpu(p);
1593 }
1594
e7693a36
GH
1595#ifdef CONFIG_SCHEDSTATS
1596 schedstat_inc(rq, ttwu_count);
1597 if (cpu == this_cpu)
1598 schedstat_inc(rq, ttwu_local);
1599 else {
1600 struct sched_domain *sd;
1601 for_each_domain(this_cpu, sd) {
1602 if (cpu_isset(cpu, sd->span)) {
1603 schedstat_inc(sd, ttwu_wake_remote);
1604 break;
1605 }
1606 }
1607 }
e7693a36
GH
1608#endif
1609
1da177e4
LT
1610out_activate:
1611#endif /* CONFIG_SMP */
cc367732
IM
1612 schedstat_inc(p, se.nr_wakeups);
1613 if (sync)
1614 schedstat_inc(p, se.nr_wakeups_sync);
1615 if (orig_cpu != cpu)
1616 schedstat_inc(p, se.nr_wakeups_migrate);
1617 if (cpu == this_cpu)
1618 schedstat_inc(p, se.nr_wakeups_local);
1619 else
1620 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1621 update_rq_clock(rq);
dd41f596 1622 activate_task(rq, p, 1);
9c63d9c0 1623 check_preempt_curr(rq, p);
1da177e4
LT
1624 success = 1;
1625
1626out_running:
1627 p->state = TASK_RUNNING;
9a897c5a
SR
1628#ifdef CONFIG_SMP
1629 if (p->sched_class->task_wake_up)
1630 p->sched_class->task_wake_up(rq, p);
1631#endif
1da177e4
LT
1632out:
1633 task_rq_unlock(rq, &flags);
1634
1635 return success;
1636}
1637
36c8b586 1638int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1639{
1640 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1641 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1642}
1da177e4
LT
1643EXPORT_SYMBOL(wake_up_process);
1644
36c8b586 1645int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1646{
1647 return try_to_wake_up(p, state, 0);
1648}
1649
1da177e4
LT
1650/*
1651 * Perform scheduler related setup for a newly forked process p.
1652 * p is forked by current.
dd41f596
IM
1653 *
1654 * __sched_fork() is basic setup used by init_idle() too:
1655 */
1656static void __sched_fork(struct task_struct *p)
1657{
dd41f596
IM
1658 p->se.exec_start = 0;
1659 p->se.sum_exec_runtime = 0;
f6cf891c 1660 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1661
1662#ifdef CONFIG_SCHEDSTATS
1663 p->se.wait_start = 0;
dd41f596
IM
1664 p->se.sum_sleep_runtime = 0;
1665 p->se.sleep_start = 0;
dd41f596
IM
1666 p->se.block_start = 0;
1667 p->se.sleep_max = 0;
1668 p->se.block_max = 0;
1669 p->se.exec_max = 0;
eba1ed4b 1670 p->se.slice_max = 0;
dd41f596 1671 p->se.wait_max = 0;
6cfb0d5d 1672#endif
476d139c 1673
dd41f596
IM
1674 INIT_LIST_HEAD(&p->run_list);
1675 p->se.on_rq = 0;
476d139c 1676
e107be36
AK
1677#ifdef CONFIG_PREEMPT_NOTIFIERS
1678 INIT_HLIST_HEAD(&p->preempt_notifiers);
1679#endif
1680
1da177e4
LT
1681 /*
1682 * We mark the process as running here, but have not actually
1683 * inserted it onto the runqueue yet. This guarantees that
1684 * nobody will actually run it, and a signal or other external
1685 * event cannot wake it up and insert it on the runqueue either.
1686 */
1687 p->state = TASK_RUNNING;
dd41f596
IM
1688}
1689
1690/*
1691 * fork()/clone()-time setup:
1692 */
1693void sched_fork(struct task_struct *p, int clone_flags)
1694{
1695 int cpu = get_cpu();
1696
1697 __sched_fork(p);
1698
1699#ifdef CONFIG_SMP
1700 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1701#endif
02e4bac2 1702 set_task_cpu(p, cpu);
b29739f9
IM
1703
1704 /*
1705 * Make sure we do not leak PI boosting priority to the child:
1706 */
1707 p->prio = current->normal_prio;
2ddbf952
HS
1708 if (!rt_prio(p->prio))
1709 p->sched_class = &fair_sched_class;
b29739f9 1710
52f17b6c 1711#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1712 if (likely(sched_info_on()))
52f17b6c 1713 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1714#endif
d6077cb8 1715#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1716 p->oncpu = 0;
1717#endif
1da177e4 1718#ifdef CONFIG_PREEMPT
4866cde0 1719 /* Want to start with kernel preemption disabled. */
a1261f54 1720 task_thread_info(p)->preempt_count = 1;
1da177e4 1721#endif
476d139c 1722 put_cpu();
1da177e4
LT
1723}
1724
1725/*
1726 * wake_up_new_task - wake up a newly created task for the first time.
1727 *
1728 * This function will do some initial scheduler statistics housekeeping
1729 * that must be done for every newly created context, then puts the task
1730 * on the runqueue and wakes it.
1731 */
36c8b586 1732void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1733{
1734 unsigned long flags;
dd41f596 1735 struct rq *rq;
1da177e4
LT
1736
1737 rq = task_rq_lock(p, &flags);
147cbb4b 1738 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1739 update_rq_clock(rq);
1da177e4
LT
1740
1741 p->prio = effective_prio(p);
1742
b9dca1e0 1743 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1744 activate_task(rq, p, 0);
1da177e4 1745 } else {
1da177e4 1746 /*
dd41f596
IM
1747 * Let the scheduling class do new task startup
1748 * management (if any):
1da177e4 1749 */
ee0827d8 1750 p->sched_class->task_new(rq, p);
e5fa2237 1751 inc_nr_running(p, rq);
1da177e4 1752 }
dd41f596 1753 check_preempt_curr(rq, p);
9a897c5a
SR
1754#ifdef CONFIG_SMP
1755 if (p->sched_class->task_wake_up)
1756 p->sched_class->task_wake_up(rq, p);
1757#endif
dd41f596 1758 task_rq_unlock(rq, &flags);
1da177e4
LT
1759}
1760
e107be36
AK
1761#ifdef CONFIG_PREEMPT_NOTIFIERS
1762
1763/**
421cee29
RD
1764 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1765 * @notifier: notifier struct to register
e107be36
AK
1766 */
1767void preempt_notifier_register(struct preempt_notifier *notifier)
1768{
1769 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1770}
1771EXPORT_SYMBOL_GPL(preempt_notifier_register);
1772
1773/**
1774 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1775 * @notifier: notifier struct to unregister
e107be36
AK
1776 *
1777 * This is safe to call from within a preemption notifier.
1778 */
1779void preempt_notifier_unregister(struct preempt_notifier *notifier)
1780{
1781 hlist_del(&notifier->link);
1782}
1783EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1784
1785static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1786{
1787 struct preempt_notifier *notifier;
1788 struct hlist_node *node;
1789
1790 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1791 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1792}
1793
1794static void
1795fire_sched_out_preempt_notifiers(struct task_struct *curr,
1796 struct task_struct *next)
1797{
1798 struct preempt_notifier *notifier;
1799 struct hlist_node *node;
1800
1801 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1802 notifier->ops->sched_out(notifier, next);
1803}
1804
1805#else
1806
1807static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1808{
1809}
1810
1811static void
1812fire_sched_out_preempt_notifiers(struct task_struct *curr,
1813 struct task_struct *next)
1814{
1815}
1816
1817#endif
1818
4866cde0
NP
1819/**
1820 * prepare_task_switch - prepare to switch tasks
1821 * @rq: the runqueue preparing to switch
421cee29 1822 * @prev: the current task that is being switched out
4866cde0
NP
1823 * @next: the task we are going to switch to.
1824 *
1825 * This is called with the rq lock held and interrupts off. It must
1826 * be paired with a subsequent finish_task_switch after the context
1827 * switch.
1828 *
1829 * prepare_task_switch sets up locking and calls architecture specific
1830 * hooks.
1831 */
e107be36
AK
1832static inline void
1833prepare_task_switch(struct rq *rq, struct task_struct *prev,
1834 struct task_struct *next)
4866cde0 1835{
e107be36 1836 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1837 prepare_lock_switch(rq, next);
1838 prepare_arch_switch(next);
1839}
1840
1da177e4
LT
1841/**
1842 * finish_task_switch - clean up after a task-switch
344babaa 1843 * @rq: runqueue associated with task-switch
1da177e4
LT
1844 * @prev: the thread we just switched away from.
1845 *
4866cde0
NP
1846 * finish_task_switch must be called after the context switch, paired
1847 * with a prepare_task_switch call before the context switch.
1848 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1849 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1850 *
1851 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1852 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1853 * with the lock held can cause deadlocks; see schedule() for
1854 * details.)
1855 */
a9957449 1856static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1857 __releases(rq->lock)
1858{
1da177e4 1859 struct mm_struct *mm = rq->prev_mm;
55a101f8 1860 long prev_state;
1da177e4
LT
1861
1862 rq->prev_mm = NULL;
1863
1864 /*
1865 * A task struct has one reference for the use as "current".
c394cc9f 1866 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1867 * schedule one last time. The schedule call will never return, and
1868 * the scheduled task must drop that reference.
c394cc9f 1869 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1870 * still held, otherwise prev could be scheduled on another cpu, die
1871 * there before we look at prev->state, and then the reference would
1872 * be dropped twice.
1873 * Manfred Spraul <manfred@colorfullife.com>
1874 */
55a101f8 1875 prev_state = prev->state;
4866cde0
NP
1876 finish_arch_switch(prev);
1877 finish_lock_switch(rq, prev);
9a897c5a
SR
1878#ifdef CONFIG_SMP
1879 if (current->sched_class->post_schedule)
1880 current->sched_class->post_schedule(rq);
1881#endif
e8fa1362 1882
e107be36 1883 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1884 if (mm)
1885 mmdrop(mm);
c394cc9f 1886 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1887 /*
1888 * Remove function-return probe instances associated with this
1889 * task and put them back on the free list.
9761eea8 1890 */
c6fd91f0 1891 kprobe_flush_task(prev);
1da177e4 1892 put_task_struct(prev);
c6fd91f0 1893 }
1da177e4
LT
1894}
1895
1896/**
1897 * schedule_tail - first thing a freshly forked thread must call.
1898 * @prev: the thread we just switched away from.
1899 */
36c8b586 1900asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1901 __releases(rq->lock)
1902{
70b97a7f
IM
1903 struct rq *rq = this_rq();
1904
4866cde0
NP
1905 finish_task_switch(rq, prev);
1906#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1907 /* In this case, finish_task_switch does not reenable preemption */
1908 preempt_enable();
1909#endif
1da177e4 1910 if (current->set_child_tid)
b488893a 1911 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1912}
1913
1914/*
1915 * context_switch - switch to the new MM and the new
1916 * thread's register state.
1917 */
dd41f596 1918static inline void
70b97a7f 1919context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1920 struct task_struct *next)
1da177e4 1921{
dd41f596 1922 struct mm_struct *mm, *oldmm;
1da177e4 1923
e107be36 1924 prepare_task_switch(rq, prev, next);
dd41f596
IM
1925 mm = next->mm;
1926 oldmm = prev->active_mm;
9226d125
ZA
1927 /*
1928 * For paravirt, this is coupled with an exit in switch_to to
1929 * combine the page table reload and the switch backend into
1930 * one hypercall.
1931 */
1932 arch_enter_lazy_cpu_mode();
1933
dd41f596 1934 if (unlikely(!mm)) {
1da177e4
LT
1935 next->active_mm = oldmm;
1936 atomic_inc(&oldmm->mm_count);
1937 enter_lazy_tlb(oldmm, next);
1938 } else
1939 switch_mm(oldmm, mm, next);
1940
dd41f596 1941 if (unlikely(!prev->mm)) {
1da177e4 1942 prev->active_mm = NULL;
1da177e4
LT
1943 rq->prev_mm = oldmm;
1944 }
3a5f5e48
IM
1945 /*
1946 * Since the runqueue lock will be released by the next
1947 * task (which is an invalid locking op but in the case
1948 * of the scheduler it's an obvious special-case), so we
1949 * do an early lockdep release here:
1950 */
1951#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1952 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1953#endif
1da177e4
LT
1954
1955 /* Here we just switch the register state and the stack. */
1956 switch_to(prev, next, prev);
1957
dd41f596
IM
1958 barrier();
1959 /*
1960 * this_rq must be evaluated again because prev may have moved
1961 * CPUs since it called schedule(), thus the 'rq' on its stack
1962 * frame will be invalid.
1963 */
1964 finish_task_switch(this_rq(), prev);
1da177e4
LT
1965}
1966
1967/*
1968 * nr_running, nr_uninterruptible and nr_context_switches:
1969 *
1970 * externally visible scheduler statistics: current number of runnable
1971 * threads, current number of uninterruptible-sleeping threads, total
1972 * number of context switches performed since bootup.
1973 */
1974unsigned long nr_running(void)
1975{
1976 unsigned long i, sum = 0;
1977
1978 for_each_online_cpu(i)
1979 sum += cpu_rq(i)->nr_running;
1980
1981 return sum;
1982}
1983
1984unsigned long nr_uninterruptible(void)
1985{
1986 unsigned long i, sum = 0;
1987
0a945022 1988 for_each_possible_cpu(i)
1da177e4
LT
1989 sum += cpu_rq(i)->nr_uninterruptible;
1990
1991 /*
1992 * Since we read the counters lockless, it might be slightly
1993 * inaccurate. Do not allow it to go below zero though:
1994 */
1995 if (unlikely((long)sum < 0))
1996 sum = 0;
1997
1998 return sum;
1999}
2000
2001unsigned long long nr_context_switches(void)
2002{
cc94abfc
SR
2003 int i;
2004 unsigned long long sum = 0;
1da177e4 2005
0a945022 2006 for_each_possible_cpu(i)
1da177e4
LT
2007 sum += cpu_rq(i)->nr_switches;
2008
2009 return sum;
2010}
2011
2012unsigned long nr_iowait(void)
2013{
2014 unsigned long i, sum = 0;
2015
0a945022 2016 for_each_possible_cpu(i)
1da177e4
LT
2017 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2018
2019 return sum;
2020}
2021
db1b1fef
JS
2022unsigned long nr_active(void)
2023{
2024 unsigned long i, running = 0, uninterruptible = 0;
2025
2026 for_each_online_cpu(i) {
2027 running += cpu_rq(i)->nr_running;
2028 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2029 }
2030
2031 if (unlikely((long)uninterruptible < 0))
2032 uninterruptible = 0;
2033
2034 return running + uninterruptible;
2035}
2036
48f24c4d 2037/*
dd41f596
IM
2038 * Update rq->cpu_load[] statistics. This function is usually called every
2039 * scheduler tick (TICK_NSEC).
48f24c4d 2040 */
dd41f596 2041static void update_cpu_load(struct rq *this_rq)
48f24c4d 2042{
495eca49 2043 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2044 int i, scale;
2045
2046 this_rq->nr_load_updates++;
dd41f596
IM
2047
2048 /* Update our load: */
2049 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2050 unsigned long old_load, new_load;
2051
2052 /* scale is effectively 1 << i now, and >> i divides by scale */
2053
2054 old_load = this_rq->cpu_load[i];
2055 new_load = this_load;
a25707f3
IM
2056 /*
2057 * Round up the averaging division if load is increasing. This
2058 * prevents us from getting stuck on 9 if the load is 10, for
2059 * example.
2060 */
2061 if (new_load > old_load)
2062 new_load += scale-1;
dd41f596
IM
2063 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2064 }
48f24c4d
IM
2065}
2066
dd41f596
IM
2067#ifdef CONFIG_SMP
2068
1da177e4
LT
2069/*
2070 * double_rq_lock - safely lock two runqueues
2071 *
2072 * Note this does not disable interrupts like task_rq_lock,
2073 * you need to do so manually before calling.
2074 */
70b97a7f 2075static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2076 __acquires(rq1->lock)
2077 __acquires(rq2->lock)
2078{
054b9108 2079 BUG_ON(!irqs_disabled());
1da177e4
LT
2080 if (rq1 == rq2) {
2081 spin_lock(&rq1->lock);
2082 __acquire(rq2->lock); /* Fake it out ;) */
2083 } else {
c96d145e 2084 if (rq1 < rq2) {
1da177e4
LT
2085 spin_lock(&rq1->lock);
2086 spin_lock(&rq2->lock);
2087 } else {
2088 spin_lock(&rq2->lock);
2089 spin_lock(&rq1->lock);
2090 }
2091 }
6e82a3be
IM
2092 update_rq_clock(rq1);
2093 update_rq_clock(rq2);
1da177e4
LT
2094}
2095
2096/*
2097 * double_rq_unlock - safely unlock two runqueues
2098 *
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2101 */
70b97a7f 2102static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2103 __releases(rq1->lock)
2104 __releases(rq2->lock)
2105{
2106 spin_unlock(&rq1->lock);
2107 if (rq1 != rq2)
2108 spin_unlock(&rq2->lock);
2109 else
2110 __release(rq2->lock);
2111}
2112
2113/*
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2115 */
e8fa1362 2116static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2117 __releases(this_rq->lock)
2118 __acquires(busiest->lock)
2119 __acquires(this_rq->lock)
2120{
e8fa1362
SR
2121 int ret = 0;
2122
054b9108
KK
2123 if (unlikely(!irqs_disabled())) {
2124 /* printk() doesn't work good under rq->lock */
2125 spin_unlock(&this_rq->lock);
2126 BUG_ON(1);
2127 }
1da177e4 2128 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2129 if (busiest < this_rq) {
1da177e4
LT
2130 spin_unlock(&this_rq->lock);
2131 spin_lock(&busiest->lock);
2132 spin_lock(&this_rq->lock);
e8fa1362 2133 ret = 1;
1da177e4
LT
2134 } else
2135 spin_lock(&busiest->lock);
2136 }
e8fa1362 2137 return ret;
1da177e4
LT
2138}
2139
1da177e4
LT
2140/*
2141 * If dest_cpu is allowed for this process, migrate the task to it.
2142 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2143 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2144 * the cpu_allowed mask is restored.
2145 */
36c8b586 2146static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2147{
70b97a7f 2148 struct migration_req req;
1da177e4 2149 unsigned long flags;
70b97a7f 2150 struct rq *rq;
1da177e4
LT
2151
2152 rq = task_rq_lock(p, &flags);
2153 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2154 || unlikely(cpu_is_offline(dest_cpu)))
2155 goto out;
2156
2157 /* force the process onto the specified CPU */
2158 if (migrate_task(p, dest_cpu, &req)) {
2159 /* Need to wait for migration thread (might exit: take ref). */
2160 struct task_struct *mt = rq->migration_thread;
36c8b586 2161
1da177e4
LT
2162 get_task_struct(mt);
2163 task_rq_unlock(rq, &flags);
2164 wake_up_process(mt);
2165 put_task_struct(mt);
2166 wait_for_completion(&req.done);
36c8b586 2167
1da177e4
LT
2168 return;
2169 }
2170out:
2171 task_rq_unlock(rq, &flags);
2172}
2173
2174/*
476d139c
NP
2175 * sched_exec - execve() is a valuable balancing opportunity, because at
2176 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2177 */
2178void sched_exec(void)
2179{
1da177e4 2180 int new_cpu, this_cpu = get_cpu();
476d139c 2181 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2182 put_cpu();
476d139c
NP
2183 if (new_cpu != this_cpu)
2184 sched_migrate_task(current, new_cpu);
1da177e4
LT
2185}
2186
2187/*
2188 * pull_task - move a task from a remote runqueue to the local runqueue.
2189 * Both runqueues must be locked.
2190 */
dd41f596
IM
2191static void pull_task(struct rq *src_rq, struct task_struct *p,
2192 struct rq *this_rq, int this_cpu)
1da177e4 2193{
2e1cb74a 2194 deactivate_task(src_rq, p, 0);
1da177e4 2195 set_task_cpu(p, this_cpu);
dd41f596 2196 activate_task(this_rq, p, 0);
1da177e4
LT
2197 /*
2198 * Note that idle threads have a prio of MAX_PRIO, for this test
2199 * to be always true for them.
2200 */
dd41f596 2201 check_preempt_curr(this_rq, p);
1da177e4
LT
2202}
2203
2204/*
2205 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2206 */
858119e1 2207static
70b97a7f 2208int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2209 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2210 int *all_pinned)
1da177e4
LT
2211{
2212 /*
2213 * We do not migrate tasks that are:
2214 * 1) running (obviously), or
2215 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2216 * 3) are cache-hot on their current CPU.
2217 */
cc367732
IM
2218 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2219 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2220 return 0;
cc367732 2221 }
81026794
NP
2222 *all_pinned = 0;
2223
cc367732
IM
2224 if (task_running(rq, p)) {
2225 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2226 return 0;
cc367732 2227 }
1da177e4 2228
da84d961
IM
2229 /*
2230 * Aggressive migration if:
2231 * 1) task is cache cold, or
2232 * 2) too many balance attempts have failed.
2233 */
2234
6bc1665b
IM
2235 if (!task_hot(p, rq->clock, sd) ||
2236 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2237#ifdef CONFIG_SCHEDSTATS
cc367732 2238 if (task_hot(p, rq->clock, sd)) {
da84d961 2239 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2240 schedstat_inc(p, se.nr_forced_migrations);
2241 }
da84d961
IM
2242#endif
2243 return 1;
2244 }
2245
cc367732
IM
2246 if (task_hot(p, rq->clock, sd)) {
2247 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2248 return 0;
cc367732 2249 }
1da177e4
LT
2250 return 1;
2251}
2252
e1d1484f
PW
2253static unsigned long
2254balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2255 unsigned long max_load_move, struct sched_domain *sd,
2256 enum cpu_idle_type idle, int *all_pinned,
2257 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2258{
b82d9fdd 2259 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2260 struct task_struct *p;
2261 long rem_load_move = max_load_move;
1da177e4 2262
e1d1484f 2263 if (max_load_move == 0)
1da177e4
LT
2264 goto out;
2265
81026794
NP
2266 pinned = 1;
2267
1da177e4 2268 /*
dd41f596 2269 * Start the load-balancing iterator:
1da177e4 2270 */
dd41f596
IM
2271 p = iterator->start(iterator->arg);
2272next:
b82d9fdd 2273 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2274 goto out;
50ddd969 2275 /*
b82d9fdd 2276 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2277 * skip a task if it will be the highest priority task (i.e. smallest
2278 * prio value) on its new queue regardless of its load weight
2279 */
dd41f596
IM
2280 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2281 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2282 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2283 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2284 p = iterator->next(iterator->arg);
2285 goto next;
1da177e4
LT
2286 }
2287
dd41f596 2288 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2289 pulled++;
dd41f596 2290 rem_load_move -= p->se.load.weight;
1da177e4 2291
2dd73a4f 2292 /*
b82d9fdd 2293 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2294 */
e1d1484f 2295 if (rem_load_move > 0) {
a4ac01c3
PW
2296 if (p->prio < *this_best_prio)
2297 *this_best_prio = p->prio;
dd41f596
IM
2298 p = iterator->next(iterator->arg);
2299 goto next;
1da177e4
LT
2300 }
2301out:
2302 /*
e1d1484f 2303 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2304 * so we can safely collect pull_task() stats here rather than
2305 * inside pull_task().
2306 */
2307 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2308
2309 if (all_pinned)
2310 *all_pinned = pinned;
e1d1484f
PW
2311
2312 return max_load_move - rem_load_move;
1da177e4
LT
2313}
2314
dd41f596 2315/*
43010659
PW
2316 * move_tasks tries to move up to max_load_move weighted load from busiest to
2317 * this_rq, as part of a balancing operation within domain "sd".
2318 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2319 *
2320 * Called with both runqueues locked.
2321 */
2322static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2323 unsigned long max_load_move,
dd41f596
IM
2324 struct sched_domain *sd, enum cpu_idle_type idle,
2325 int *all_pinned)
2326{
5522d5d5 2327 const struct sched_class *class = sched_class_highest;
43010659 2328 unsigned long total_load_moved = 0;
a4ac01c3 2329 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2330
2331 do {
43010659
PW
2332 total_load_moved +=
2333 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2334 max_load_move - total_load_moved,
a4ac01c3 2335 sd, idle, all_pinned, &this_best_prio);
dd41f596 2336 class = class->next;
43010659 2337 } while (class && max_load_move > total_load_moved);
dd41f596 2338
43010659
PW
2339 return total_load_moved > 0;
2340}
2341
e1d1484f
PW
2342static int
2343iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2344 struct sched_domain *sd, enum cpu_idle_type idle,
2345 struct rq_iterator *iterator)
2346{
2347 struct task_struct *p = iterator->start(iterator->arg);
2348 int pinned = 0;
2349
2350 while (p) {
2351 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2352 pull_task(busiest, p, this_rq, this_cpu);
2353 /*
2354 * Right now, this is only the second place pull_task()
2355 * is called, so we can safely collect pull_task()
2356 * stats here rather than inside pull_task().
2357 */
2358 schedstat_inc(sd, lb_gained[idle]);
2359
2360 return 1;
2361 }
2362 p = iterator->next(iterator->arg);
2363 }
2364
2365 return 0;
2366}
2367
43010659
PW
2368/*
2369 * move_one_task tries to move exactly one task from busiest to this_rq, as
2370 * part of active balancing operations within "domain".
2371 * Returns 1 if successful and 0 otherwise.
2372 *
2373 * Called with both runqueues locked.
2374 */
2375static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2376 struct sched_domain *sd, enum cpu_idle_type idle)
2377{
5522d5d5 2378 const struct sched_class *class;
43010659
PW
2379
2380 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2381 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2382 return 1;
2383
2384 return 0;
dd41f596
IM
2385}
2386
1da177e4
LT
2387/*
2388 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2389 * domain. It calculates and returns the amount of weighted load which
2390 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2391 */
2392static struct sched_group *
2393find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2394 unsigned long *imbalance, enum cpu_idle_type idle,
2395 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2396{
2397 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2398 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2399 unsigned long max_pull;
2dd73a4f
PW
2400 unsigned long busiest_load_per_task, busiest_nr_running;
2401 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2402 int load_idx, group_imb = 0;
5c45bf27
SS
2403#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2404 int power_savings_balance = 1;
2405 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2406 unsigned long min_nr_running = ULONG_MAX;
2407 struct sched_group *group_min = NULL, *group_leader = NULL;
2408#endif
1da177e4
LT
2409
2410 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2411 busiest_load_per_task = busiest_nr_running = 0;
2412 this_load_per_task = this_nr_running = 0;
d15bcfdb 2413 if (idle == CPU_NOT_IDLE)
7897986b 2414 load_idx = sd->busy_idx;
d15bcfdb 2415 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2416 load_idx = sd->newidle_idx;
2417 else
2418 load_idx = sd->idle_idx;
1da177e4
LT
2419
2420 do {
908a7c1b 2421 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2422 int local_group;
2423 int i;
908a7c1b 2424 int __group_imb = 0;
783609c6 2425 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2426 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2427
2428 local_group = cpu_isset(this_cpu, group->cpumask);
2429
783609c6
SS
2430 if (local_group)
2431 balance_cpu = first_cpu(group->cpumask);
2432
1da177e4 2433 /* Tally up the load of all CPUs in the group */
2dd73a4f 2434 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2435 max_cpu_load = 0;
2436 min_cpu_load = ~0UL;
1da177e4
LT
2437
2438 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2439 struct rq *rq;
2440
2441 if (!cpu_isset(i, *cpus))
2442 continue;
2443
2444 rq = cpu_rq(i);
2dd73a4f 2445
9439aab8 2446 if (*sd_idle && rq->nr_running)
5969fe06
NP
2447 *sd_idle = 0;
2448
1da177e4 2449 /* Bias balancing toward cpus of our domain */
783609c6
SS
2450 if (local_group) {
2451 if (idle_cpu(i) && !first_idle_cpu) {
2452 first_idle_cpu = 1;
2453 balance_cpu = i;
2454 }
2455
a2000572 2456 load = target_load(i, load_idx);
908a7c1b 2457 } else {
a2000572 2458 load = source_load(i, load_idx);
908a7c1b
KC
2459 if (load > max_cpu_load)
2460 max_cpu_load = load;
2461 if (min_cpu_load > load)
2462 min_cpu_load = load;
2463 }
1da177e4
LT
2464
2465 avg_load += load;
2dd73a4f 2466 sum_nr_running += rq->nr_running;
dd41f596 2467 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2468 }
2469
783609c6
SS
2470 /*
2471 * First idle cpu or the first cpu(busiest) in this sched group
2472 * is eligible for doing load balancing at this and above
9439aab8
SS
2473 * domains. In the newly idle case, we will allow all the cpu's
2474 * to do the newly idle load balance.
783609c6 2475 */
9439aab8
SS
2476 if (idle != CPU_NEWLY_IDLE && local_group &&
2477 balance_cpu != this_cpu && balance) {
783609c6
SS
2478 *balance = 0;
2479 goto ret;
2480 }
2481
1da177e4 2482 total_load += avg_load;
5517d86b 2483 total_pwr += group->__cpu_power;
1da177e4
LT
2484
2485 /* Adjust by relative CPU power of the group */
5517d86b
ED
2486 avg_load = sg_div_cpu_power(group,
2487 avg_load * SCHED_LOAD_SCALE);
1da177e4 2488
908a7c1b
KC
2489 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2490 __group_imb = 1;
2491
5517d86b 2492 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2493
1da177e4
LT
2494 if (local_group) {
2495 this_load = avg_load;
2496 this = group;
2dd73a4f
PW
2497 this_nr_running = sum_nr_running;
2498 this_load_per_task = sum_weighted_load;
2499 } else if (avg_load > max_load &&
908a7c1b 2500 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2501 max_load = avg_load;
2502 busiest = group;
2dd73a4f
PW
2503 busiest_nr_running = sum_nr_running;
2504 busiest_load_per_task = sum_weighted_load;
908a7c1b 2505 group_imb = __group_imb;
1da177e4 2506 }
5c45bf27
SS
2507
2508#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2509 /*
2510 * Busy processors will not participate in power savings
2511 * balance.
2512 */
dd41f596
IM
2513 if (idle == CPU_NOT_IDLE ||
2514 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2515 goto group_next;
5c45bf27
SS
2516
2517 /*
2518 * If the local group is idle or completely loaded
2519 * no need to do power savings balance at this domain
2520 */
2521 if (local_group && (this_nr_running >= group_capacity ||
2522 !this_nr_running))
2523 power_savings_balance = 0;
2524
dd41f596 2525 /*
5c45bf27
SS
2526 * If a group is already running at full capacity or idle,
2527 * don't include that group in power savings calculations
dd41f596
IM
2528 */
2529 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2530 || !sum_nr_running)
dd41f596 2531 goto group_next;
5c45bf27 2532
dd41f596 2533 /*
5c45bf27 2534 * Calculate the group which has the least non-idle load.
dd41f596
IM
2535 * This is the group from where we need to pick up the load
2536 * for saving power
2537 */
2538 if ((sum_nr_running < min_nr_running) ||
2539 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2540 first_cpu(group->cpumask) <
2541 first_cpu(group_min->cpumask))) {
dd41f596
IM
2542 group_min = group;
2543 min_nr_running = sum_nr_running;
5c45bf27
SS
2544 min_load_per_task = sum_weighted_load /
2545 sum_nr_running;
dd41f596 2546 }
5c45bf27 2547
dd41f596 2548 /*
5c45bf27 2549 * Calculate the group which is almost near its
dd41f596
IM
2550 * capacity but still has some space to pick up some load
2551 * from other group and save more power
2552 */
2553 if (sum_nr_running <= group_capacity - 1) {
2554 if (sum_nr_running > leader_nr_running ||
2555 (sum_nr_running == leader_nr_running &&
2556 first_cpu(group->cpumask) >
2557 first_cpu(group_leader->cpumask))) {
2558 group_leader = group;
2559 leader_nr_running = sum_nr_running;
2560 }
48f24c4d 2561 }
5c45bf27
SS
2562group_next:
2563#endif
1da177e4
LT
2564 group = group->next;
2565 } while (group != sd->groups);
2566
2dd73a4f 2567 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2568 goto out_balanced;
2569
2570 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2571
2572 if (this_load >= avg_load ||
2573 100*max_load <= sd->imbalance_pct*this_load)
2574 goto out_balanced;
2575
2dd73a4f 2576 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2577 if (group_imb)
2578 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2579
1da177e4
LT
2580 /*
2581 * We're trying to get all the cpus to the average_load, so we don't
2582 * want to push ourselves above the average load, nor do we wish to
2583 * reduce the max loaded cpu below the average load, as either of these
2584 * actions would just result in more rebalancing later, and ping-pong
2585 * tasks around. Thus we look for the minimum possible imbalance.
2586 * Negative imbalances (*we* are more loaded than anyone else) will
2587 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2588 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2589 * appear as very large values with unsigned longs.
2590 */
2dd73a4f
PW
2591 if (max_load <= busiest_load_per_task)
2592 goto out_balanced;
2593
2594 /*
2595 * In the presence of smp nice balancing, certain scenarios can have
2596 * max load less than avg load(as we skip the groups at or below
2597 * its cpu_power, while calculating max_load..)
2598 */
2599 if (max_load < avg_load) {
2600 *imbalance = 0;
2601 goto small_imbalance;
2602 }
0c117f1b
SS
2603
2604 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2605 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2606
1da177e4 2607 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2608 *imbalance = min(max_pull * busiest->__cpu_power,
2609 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2610 / SCHED_LOAD_SCALE;
2611
2dd73a4f
PW
2612 /*
2613 * if *imbalance is less than the average load per runnable task
2614 * there is no gaurantee that any tasks will be moved so we'll have
2615 * a think about bumping its value to force at least one task to be
2616 * moved
2617 */
7fd0d2dd 2618 if (*imbalance < busiest_load_per_task) {
48f24c4d 2619 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2620 unsigned int imbn;
2621
2622small_imbalance:
2623 pwr_move = pwr_now = 0;
2624 imbn = 2;
2625 if (this_nr_running) {
2626 this_load_per_task /= this_nr_running;
2627 if (busiest_load_per_task > this_load_per_task)
2628 imbn = 1;
2629 } else
2630 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2631
dd41f596
IM
2632 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2633 busiest_load_per_task * imbn) {
2dd73a4f 2634 *imbalance = busiest_load_per_task;
1da177e4
LT
2635 return busiest;
2636 }
2637
2638 /*
2639 * OK, we don't have enough imbalance to justify moving tasks,
2640 * however we may be able to increase total CPU power used by
2641 * moving them.
2642 */
2643
5517d86b
ED
2644 pwr_now += busiest->__cpu_power *
2645 min(busiest_load_per_task, max_load);
2646 pwr_now += this->__cpu_power *
2647 min(this_load_per_task, this_load);
1da177e4
LT
2648 pwr_now /= SCHED_LOAD_SCALE;
2649
2650 /* Amount of load we'd subtract */
5517d86b
ED
2651 tmp = sg_div_cpu_power(busiest,
2652 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2653 if (max_load > tmp)
5517d86b 2654 pwr_move += busiest->__cpu_power *
2dd73a4f 2655 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2656
2657 /* Amount of load we'd add */
5517d86b 2658 if (max_load * busiest->__cpu_power <
33859f7f 2659 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2660 tmp = sg_div_cpu_power(this,
2661 max_load * busiest->__cpu_power);
1da177e4 2662 else
5517d86b
ED
2663 tmp = sg_div_cpu_power(this,
2664 busiest_load_per_task * SCHED_LOAD_SCALE);
2665 pwr_move += this->__cpu_power *
2666 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2667 pwr_move /= SCHED_LOAD_SCALE;
2668
2669 /* Move if we gain throughput */
7fd0d2dd
SS
2670 if (pwr_move > pwr_now)
2671 *imbalance = busiest_load_per_task;
1da177e4
LT
2672 }
2673
1da177e4
LT
2674 return busiest;
2675
2676out_balanced:
5c45bf27 2677#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2678 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2679 goto ret;
1da177e4 2680
5c45bf27
SS
2681 if (this == group_leader && group_leader != group_min) {
2682 *imbalance = min_load_per_task;
2683 return group_min;
2684 }
5c45bf27 2685#endif
783609c6 2686ret:
1da177e4
LT
2687 *imbalance = 0;
2688 return NULL;
2689}
2690
2691/*
2692 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2693 */
70b97a7f 2694static struct rq *
d15bcfdb 2695find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2696 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2697{
70b97a7f 2698 struct rq *busiest = NULL, *rq;
2dd73a4f 2699 unsigned long max_load = 0;
1da177e4
LT
2700 int i;
2701
2702 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2703 unsigned long wl;
0a2966b4
CL
2704
2705 if (!cpu_isset(i, *cpus))
2706 continue;
2707
48f24c4d 2708 rq = cpu_rq(i);
dd41f596 2709 wl = weighted_cpuload(i);
2dd73a4f 2710
dd41f596 2711 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2712 continue;
1da177e4 2713
dd41f596
IM
2714 if (wl > max_load) {
2715 max_load = wl;
48f24c4d 2716 busiest = rq;
1da177e4
LT
2717 }
2718 }
2719
2720 return busiest;
2721}
2722
77391d71
NP
2723/*
2724 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2725 * so long as it is large enough.
2726 */
2727#define MAX_PINNED_INTERVAL 512
2728
1da177e4
LT
2729/*
2730 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2731 * tasks if there is an imbalance.
1da177e4 2732 */
70b97a7f 2733static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2734 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2735 int *balance)
1da177e4 2736{
43010659 2737 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2738 struct sched_group *group;
1da177e4 2739 unsigned long imbalance;
70b97a7f 2740 struct rq *busiest;
0a2966b4 2741 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2742 unsigned long flags;
5969fe06 2743
89c4710e
SS
2744 /*
2745 * When power savings policy is enabled for the parent domain, idle
2746 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2747 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2748 * portraying it as CPU_NOT_IDLE.
89c4710e 2749 */
d15bcfdb 2750 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2751 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2752 sd_idle = 1;
1da177e4 2753
2d72376b 2754 schedstat_inc(sd, lb_count[idle]);
1da177e4 2755
0a2966b4
CL
2756redo:
2757 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2758 &cpus, balance);
2759
06066714 2760 if (*balance == 0)
783609c6 2761 goto out_balanced;
783609c6 2762
1da177e4
LT
2763 if (!group) {
2764 schedstat_inc(sd, lb_nobusyg[idle]);
2765 goto out_balanced;
2766 }
2767
0a2966b4 2768 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2769 if (!busiest) {
2770 schedstat_inc(sd, lb_nobusyq[idle]);
2771 goto out_balanced;
2772 }
2773
db935dbd 2774 BUG_ON(busiest == this_rq);
1da177e4
LT
2775
2776 schedstat_add(sd, lb_imbalance[idle], imbalance);
2777
43010659 2778 ld_moved = 0;
1da177e4
LT
2779 if (busiest->nr_running > 1) {
2780 /*
2781 * Attempt to move tasks. If find_busiest_group has found
2782 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2783 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2784 * correctly treated as an imbalance.
2785 */
fe2eea3f 2786 local_irq_save(flags);
e17224bf 2787 double_rq_lock(this_rq, busiest);
43010659 2788 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2789 imbalance, sd, idle, &all_pinned);
e17224bf 2790 double_rq_unlock(this_rq, busiest);
fe2eea3f 2791 local_irq_restore(flags);
81026794 2792
46cb4b7c
SS
2793 /*
2794 * some other cpu did the load balance for us.
2795 */
43010659 2796 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2797 resched_cpu(this_cpu);
2798
81026794 2799 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2800 if (unlikely(all_pinned)) {
2801 cpu_clear(cpu_of(busiest), cpus);
2802 if (!cpus_empty(cpus))
2803 goto redo;
81026794 2804 goto out_balanced;
0a2966b4 2805 }
1da177e4 2806 }
81026794 2807
43010659 2808 if (!ld_moved) {
1da177e4
LT
2809 schedstat_inc(sd, lb_failed[idle]);
2810 sd->nr_balance_failed++;
2811
2812 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2813
fe2eea3f 2814 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2815
2816 /* don't kick the migration_thread, if the curr
2817 * task on busiest cpu can't be moved to this_cpu
2818 */
2819 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2820 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2821 all_pinned = 1;
2822 goto out_one_pinned;
2823 }
2824
1da177e4
LT
2825 if (!busiest->active_balance) {
2826 busiest->active_balance = 1;
2827 busiest->push_cpu = this_cpu;
81026794 2828 active_balance = 1;
1da177e4 2829 }
fe2eea3f 2830 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2831 if (active_balance)
1da177e4
LT
2832 wake_up_process(busiest->migration_thread);
2833
2834 /*
2835 * We've kicked active balancing, reset the failure
2836 * counter.
2837 */
39507451 2838 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2839 }
81026794 2840 } else
1da177e4
LT
2841 sd->nr_balance_failed = 0;
2842
81026794 2843 if (likely(!active_balance)) {
1da177e4
LT
2844 /* We were unbalanced, so reset the balancing interval */
2845 sd->balance_interval = sd->min_interval;
81026794
NP
2846 } else {
2847 /*
2848 * If we've begun active balancing, start to back off. This
2849 * case may not be covered by the all_pinned logic if there
2850 * is only 1 task on the busy runqueue (because we don't call
2851 * move_tasks).
2852 */
2853 if (sd->balance_interval < sd->max_interval)
2854 sd->balance_interval *= 2;
1da177e4
LT
2855 }
2856
43010659 2857 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2858 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2859 return -1;
43010659 2860 return ld_moved;
1da177e4
LT
2861
2862out_balanced:
1da177e4
LT
2863 schedstat_inc(sd, lb_balanced[idle]);
2864
16cfb1c0 2865 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2866
2867out_one_pinned:
1da177e4 2868 /* tune up the balancing interval */
77391d71
NP
2869 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2870 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2871 sd->balance_interval *= 2;
2872
48f24c4d 2873 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2874 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2875 return -1;
1da177e4
LT
2876 return 0;
2877}
2878
2879/*
2880 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2881 * tasks if there is an imbalance.
2882 *
d15bcfdb 2883 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2884 * this_rq is locked.
2885 */
48f24c4d 2886static int
70b97a7f 2887load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2888{
2889 struct sched_group *group;
70b97a7f 2890 struct rq *busiest = NULL;
1da177e4 2891 unsigned long imbalance;
43010659 2892 int ld_moved = 0;
5969fe06 2893 int sd_idle = 0;
969bb4e4 2894 int all_pinned = 0;
0a2966b4 2895 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2896
89c4710e
SS
2897 /*
2898 * When power savings policy is enabled for the parent domain, idle
2899 * sibling can pick up load irrespective of busy siblings. In this case,
2900 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2901 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2902 */
2903 if (sd->flags & SD_SHARE_CPUPOWER &&
2904 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2905 sd_idle = 1;
1da177e4 2906
2d72376b 2907 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2908redo:
d15bcfdb 2909 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2910 &sd_idle, &cpus, NULL);
1da177e4 2911 if (!group) {
d15bcfdb 2912 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2913 goto out_balanced;
1da177e4
LT
2914 }
2915
d15bcfdb 2916 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2917 &cpus);
db935dbd 2918 if (!busiest) {
d15bcfdb 2919 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2920 goto out_balanced;
1da177e4
LT
2921 }
2922
db935dbd
NP
2923 BUG_ON(busiest == this_rq);
2924
d15bcfdb 2925 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2926
43010659 2927 ld_moved = 0;
d6d5cfaf
NP
2928 if (busiest->nr_running > 1) {
2929 /* Attempt to move tasks */
2930 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2931 /* this_rq->clock is already updated */
2932 update_rq_clock(busiest);
43010659 2933 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2934 imbalance, sd, CPU_NEWLY_IDLE,
2935 &all_pinned);
d6d5cfaf 2936 spin_unlock(&busiest->lock);
0a2966b4 2937
969bb4e4 2938 if (unlikely(all_pinned)) {
0a2966b4
CL
2939 cpu_clear(cpu_of(busiest), cpus);
2940 if (!cpus_empty(cpus))
2941 goto redo;
2942 }
d6d5cfaf
NP
2943 }
2944
43010659 2945 if (!ld_moved) {
d15bcfdb 2946 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2947 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2948 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2949 return -1;
2950 } else
16cfb1c0 2951 sd->nr_balance_failed = 0;
1da177e4 2952
43010659 2953 return ld_moved;
16cfb1c0
NP
2954
2955out_balanced:
d15bcfdb 2956 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2957 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2958 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2959 return -1;
16cfb1c0 2960 sd->nr_balance_failed = 0;
48f24c4d 2961
16cfb1c0 2962 return 0;
1da177e4
LT
2963}
2964
2965/*
2966 * idle_balance is called by schedule() if this_cpu is about to become
2967 * idle. Attempts to pull tasks from other CPUs.
2968 */
70b97a7f 2969static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2970{
2971 struct sched_domain *sd;
dd41f596
IM
2972 int pulled_task = -1;
2973 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2974
2975 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2976 unsigned long interval;
2977
2978 if (!(sd->flags & SD_LOAD_BALANCE))
2979 continue;
2980
2981 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2982 /* If we've pulled tasks over stop searching: */
1bd77f2d 2983 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2984 this_rq, sd);
2985
2986 interval = msecs_to_jiffies(sd->balance_interval);
2987 if (time_after(next_balance, sd->last_balance + interval))
2988 next_balance = sd->last_balance + interval;
2989 if (pulled_task)
2990 break;
1da177e4 2991 }
dd41f596 2992 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2993 /*
2994 * We are going idle. next_balance may be set based on
2995 * a busy processor. So reset next_balance.
2996 */
2997 this_rq->next_balance = next_balance;
dd41f596 2998 }
1da177e4
LT
2999}
3000
3001/*
3002 * active_load_balance is run by migration threads. It pushes running tasks
3003 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3004 * running on each physical CPU where possible, and avoids physical /
3005 * logical imbalances.
3006 *
3007 * Called with busiest_rq locked.
3008 */
70b97a7f 3009static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3010{
39507451 3011 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3012 struct sched_domain *sd;
3013 struct rq *target_rq;
39507451 3014
48f24c4d 3015 /* Is there any task to move? */
39507451 3016 if (busiest_rq->nr_running <= 1)
39507451
NP
3017 return;
3018
3019 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3020
3021 /*
39507451 3022 * This condition is "impossible", if it occurs
41a2d6cf 3023 * we need to fix it. Originally reported by
39507451 3024 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3025 */
39507451 3026 BUG_ON(busiest_rq == target_rq);
1da177e4 3027
39507451
NP
3028 /* move a task from busiest_rq to target_rq */
3029 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3030 update_rq_clock(busiest_rq);
3031 update_rq_clock(target_rq);
39507451
NP
3032
3033 /* Search for an sd spanning us and the target CPU. */
c96d145e 3034 for_each_domain(target_cpu, sd) {
39507451 3035 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3036 cpu_isset(busiest_cpu, sd->span))
39507451 3037 break;
c96d145e 3038 }
39507451 3039
48f24c4d 3040 if (likely(sd)) {
2d72376b 3041 schedstat_inc(sd, alb_count);
39507451 3042
43010659
PW
3043 if (move_one_task(target_rq, target_cpu, busiest_rq,
3044 sd, CPU_IDLE))
48f24c4d
IM
3045 schedstat_inc(sd, alb_pushed);
3046 else
3047 schedstat_inc(sd, alb_failed);
3048 }
39507451 3049 spin_unlock(&target_rq->lock);
1da177e4
LT
3050}
3051
46cb4b7c
SS
3052#ifdef CONFIG_NO_HZ
3053static struct {
3054 atomic_t load_balancer;
41a2d6cf 3055 cpumask_t cpu_mask;
46cb4b7c
SS
3056} nohz ____cacheline_aligned = {
3057 .load_balancer = ATOMIC_INIT(-1),
3058 .cpu_mask = CPU_MASK_NONE,
3059};
3060
7835b98b 3061/*
46cb4b7c
SS
3062 * This routine will try to nominate the ilb (idle load balancing)
3063 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3064 * load balancing on behalf of all those cpus. If all the cpus in the system
3065 * go into this tickless mode, then there will be no ilb owner (as there is
3066 * no need for one) and all the cpus will sleep till the next wakeup event
3067 * arrives...
3068 *
3069 * For the ilb owner, tick is not stopped. And this tick will be used
3070 * for idle load balancing. ilb owner will still be part of
3071 * nohz.cpu_mask..
7835b98b 3072 *
46cb4b7c
SS
3073 * While stopping the tick, this cpu will become the ilb owner if there
3074 * is no other owner. And will be the owner till that cpu becomes busy
3075 * or if all cpus in the system stop their ticks at which point
3076 * there is no need for ilb owner.
3077 *
3078 * When the ilb owner becomes busy, it nominates another owner, during the
3079 * next busy scheduler_tick()
3080 */
3081int select_nohz_load_balancer(int stop_tick)
3082{
3083 int cpu = smp_processor_id();
3084
3085 if (stop_tick) {
3086 cpu_set(cpu, nohz.cpu_mask);
3087 cpu_rq(cpu)->in_nohz_recently = 1;
3088
3089 /*
3090 * If we are going offline and still the leader, give up!
3091 */
3092 if (cpu_is_offline(cpu) &&
3093 atomic_read(&nohz.load_balancer) == cpu) {
3094 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3095 BUG();
3096 return 0;
3097 }
3098
3099 /* time for ilb owner also to sleep */
3100 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3101 if (atomic_read(&nohz.load_balancer) == cpu)
3102 atomic_set(&nohz.load_balancer, -1);
3103 return 0;
3104 }
3105
3106 if (atomic_read(&nohz.load_balancer) == -1) {
3107 /* make me the ilb owner */
3108 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3109 return 1;
3110 } else if (atomic_read(&nohz.load_balancer) == cpu)
3111 return 1;
3112 } else {
3113 if (!cpu_isset(cpu, nohz.cpu_mask))
3114 return 0;
3115
3116 cpu_clear(cpu, nohz.cpu_mask);
3117
3118 if (atomic_read(&nohz.load_balancer) == cpu)
3119 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3120 BUG();
3121 }
3122 return 0;
3123}
3124#endif
3125
3126static DEFINE_SPINLOCK(balancing);
3127
3128/*
7835b98b
CL
3129 * It checks each scheduling domain to see if it is due to be balanced,
3130 * and initiates a balancing operation if so.
3131 *
3132 * Balancing parameters are set up in arch_init_sched_domains.
3133 */
a9957449 3134static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3135{
46cb4b7c
SS
3136 int balance = 1;
3137 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3138 unsigned long interval;
3139 struct sched_domain *sd;
46cb4b7c 3140 /* Earliest time when we have to do rebalance again */
c9819f45 3141 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3142 int update_next_balance = 0;
1da177e4 3143
46cb4b7c 3144 for_each_domain(cpu, sd) {
1da177e4
LT
3145 if (!(sd->flags & SD_LOAD_BALANCE))
3146 continue;
3147
3148 interval = sd->balance_interval;
d15bcfdb 3149 if (idle != CPU_IDLE)
1da177e4
LT
3150 interval *= sd->busy_factor;
3151
3152 /* scale ms to jiffies */
3153 interval = msecs_to_jiffies(interval);
3154 if (unlikely(!interval))
3155 interval = 1;
dd41f596
IM
3156 if (interval > HZ*NR_CPUS/10)
3157 interval = HZ*NR_CPUS/10;
3158
1da177e4 3159
08c183f3
CL
3160 if (sd->flags & SD_SERIALIZE) {
3161 if (!spin_trylock(&balancing))
3162 goto out;
3163 }
3164
c9819f45 3165 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3166 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3167 /*
3168 * We've pulled tasks over so either we're no
5969fe06
NP
3169 * longer idle, or one of our SMT siblings is
3170 * not idle.
3171 */
d15bcfdb 3172 idle = CPU_NOT_IDLE;
1da177e4 3173 }
1bd77f2d 3174 sd->last_balance = jiffies;
1da177e4 3175 }
08c183f3
CL
3176 if (sd->flags & SD_SERIALIZE)
3177 spin_unlock(&balancing);
3178out:
f549da84 3179 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3180 next_balance = sd->last_balance + interval;
f549da84
SS
3181 update_next_balance = 1;
3182 }
783609c6
SS
3183
3184 /*
3185 * Stop the load balance at this level. There is another
3186 * CPU in our sched group which is doing load balancing more
3187 * actively.
3188 */
3189 if (!balance)
3190 break;
1da177e4 3191 }
f549da84
SS
3192
3193 /*
3194 * next_balance will be updated only when there is a need.
3195 * When the cpu is attached to null domain for ex, it will not be
3196 * updated.
3197 */
3198 if (likely(update_next_balance))
3199 rq->next_balance = next_balance;
46cb4b7c
SS
3200}
3201
3202/*
3203 * run_rebalance_domains is triggered when needed from the scheduler tick.
3204 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3205 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3206 */
3207static void run_rebalance_domains(struct softirq_action *h)
3208{
dd41f596
IM
3209 int this_cpu = smp_processor_id();
3210 struct rq *this_rq = cpu_rq(this_cpu);
3211 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3212 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3213
dd41f596 3214 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3215
3216#ifdef CONFIG_NO_HZ
3217 /*
3218 * If this cpu is the owner for idle load balancing, then do the
3219 * balancing on behalf of the other idle cpus whose ticks are
3220 * stopped.
3221 */
dd41f596
IM
3222 if (this_rq->idle_at_tick &&
3223 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3224 cpumask_t cpus = nohz.cpu_mask;
3225 struct rq *rq;
3226 int balance_cpu;
3227
dd41f596 3228 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3229 for_each_cpu_mask(balance_cpu, cpus) {
3230 /*
3231 * If this cpu gets work to do, stop the load balancing
3232 * work being done for other cpus. Next load
3233 * balancing owner will pick it up.
3234 */
3235 if (need_resched())
3236 break;
3237
de0cf899 3238 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3239
3240 rq = cpu_rq(balance_cpu);
dd41f596
IM
3241 if (time_after(this_rq->next_balance, rq->next_balance))
3242 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3243 }
3244 }
3245#endif
3246}
3247
3248/*
3249 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3250 *
3251 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3252 * idle load balancing owner or decide to stop the periodic load balancing,
3253 * if the whole system is idle.
3254 */
dd41f596 3255static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3256{
46cb4b7c
SS
3257#ifdef CONFIG_NO_HZ
3258 /*
3259 * If we were in the nohz mode recently and busy at the current
3260 * scheduler tick, then check if we need to nominate new idle
3261 * load balancer.
3262 */
3263 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3264 rq->in_nohz_recently = 0;
3265
3266 if (atomic_read(&nohz.load_balancer) == cpu) {
3267 cpu_clear(cpu, nohz.cpu_mask);
3268 atomic_set(&nohz.load_balancer, -1);
3269 }
3270
3271 if (atomic_read(&nohz.load_balancer) == -1) {
3272 /*
3273 * simple selection for now: Nominate the
3274 * first cpu in the nohz list to be the next
3275 * ilb owner.
3276 *
3277 * TBD: Traverse the sched domains and nominate
3278 * the nearest cpu in the nohz.cpu_mask.
3279 */
3280 int ilb = first_cpu(nohz.cpu_mask);
3281
3282 if (ilb != NR_CPUS)
3283 resched_cpu(ilb);
3284 }
3285 }
3286
3287 /*
3288 * If this cpu is idle and doing idle load balancing for all the
3289 * cpus with ticks stopped, is it time for that to stop?
3290 */
3291 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3292 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3293 resched_cpu(cpu);
3294 return;
3295 }
3296
3297 /*
3298 * If this cpu is idle and the idle load balancing is done by
3299 * someone else, then no need raise the SCHED_SOFTIRQ
3300 */
3301 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3302 cpu_isset(cpu, nohz.cpu_mask))
3303 return;
3304#endif
3305 if (time_after_eq(jiffies, rq->next_balance))
3306 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3307}
dd41f596
IM
3308
3309#else /* CONFIG_SMP */
3310
1da177e4
LT
3311/*
3312 * on UP we do not need to balance between CPUs:
3313 */
70b97a7f 3314static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3315{
3316}
dd41f596 3317
1da177e4
LT
3318#endif
3319
1da177e4
LT
3320DEFINE_PER_CPU(struct kernel_stat, kstat);
3321
3322EXPORT_PER_CPU_SYMBOL(kstat);
3323
3324/*
41b86e9c
IM
3325 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3326 * that have not yet been banked in case the task is currently running.
1da177e4 3327 */
41b86e9c 3328unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3329{
1da177e4 3330 unsigned long flags;
41b86e9c
IM
3331 u64 ns, delta_exec;
3332 struct rq *rq;
48f24c4d 3333
41b86e9c
IM
3334 rq = task_rq_lock(p, &flags);
3335 ns = p->se.sum_exec_runtime;
051a1d1a 3336 if (task_current(rq, p)) {
a8e504d2
IM
3337 update_rq_clock(rq);
3338 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3339 if ((s64)delta_exec > 0)
3340 ns += delta_exec;
3341 }
3342 task_rq_unlock(rq, &flags);
48f24c4d 3343
1da177e4
LT
3344 return ns;
3345}
3346
1da177e4
LT
3347/*
3348 * Account user cpu time to a process.
3349 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3350 * @cputime: the cpu time spent in user space since the last update
3351 */
3352void account_user_time(struct task_struct *p, cputime_t cputime)
3353{
3354 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3355 cputime64_t tmp;
3356
3357 p->utime = cputime_add(p->utime, cputime);
3358
3359 /* Add user time to cpustat. */
3360 tmp = cputime_to_cputime64(cputime);
3361 if (TASK_NICE(p) > 0)
3362 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3363 else
3364 cpustat->user = cputime64_add(cpustat->user, tmp);
3365}
3366
94886b84
LV
3367/*
3368 * Account guest cpu time to a process.
3369 * @p: the process that the cpu time gets accounted to
3370 * @cputime: the cpu time spent in virtual machine since the last update
3371 */
f7402e03 3372static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3373{
3374 cputime64_t tmp;
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3376
3377 tmp = cputime_to_cputime64(cputime);
3378
3379 p->utime = cputime_add(p->utime, cputime);
3380 p->gtime = cputime_add(p->gtime, cputime);
3381
3382 cpustat->user = cputime64_add(cpustat->user, tmp);
3383 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3384}
3385
c66f08be
MN
3386/*
3387 * Account scaled user cpu time to a process.
3388 * @p: the process that the cpu time gets accounted to
3389 * @cputime: the cpu time spent in user space since the last update
3390 */
3391void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3392{
3393 p->utimescaled = cputime_add(p->utimescaled, cputime);
3394}
3395
1da177e4
LT
3396/*
3397 * Account system cpu time to a process.
3398 * @p: the process that the cpu time gets accounted to
3399 * @hardirq_offset: the offset to subtract from hardirq_count()
3400 * @cputime: the cpu time spent in kernel space since the last update
3401 */
3402void account_system_time(struct task_struct *p, int hardirq_offset,
3403 cputime_t cputime)
3404{
3405 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3406 struct rq *rq = this_rq();
1da177e4
LT
3407 cputime64_t tmp;
3408
9778385d
CB
3409 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3410 return account_guest_time(p, cputime);
94886b84 3411
1da177e4
LT
3412 p->stime = cputime_add(p->stime, cputime);
3413
3414 /* Add system time to cpustat. */
3415 tmp = cputime_to_cputime64(cputime);
3416 if (hardirq_count() - hardirq_offset)
3417 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3418 else if (softirq_count())
3419 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3420 else if (p != rq->idle)
1da177e4 3421 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3422 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3423 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3424 else
3425 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3426 /* Account for system time used */
3427 acct_update_integrals(p);
1da177e4
LT
3428}
3429
c66f08be
MN
3430/*
3431 * Account scaled system cpu time to a process.
3432 * @p: the process that the cpu time gets accounted to
3433 * @hardirq_offset: the offset to subtract from hardirq_count()
3434 * @cputime: the cpu time spent in kernel space since the last update
3435 */
3436void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3437{
3438 p->stimescaled = cputime_add(p->stimescaled, cputime);
3439}
3440
1da177e4
LT
3441/*
3442 * Account for involuntary wait time.
3443 * @p: the process from which the cpu time has been stolen
3444 * @steal: the cpu time spent in involuntary wait
3445 */
3446void account_steal_time(struct task_struct *p, cputime_t steal)
3447{
3448 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3449 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3450 struct rq *rq = this_rq();
1da177e4
LT
3451
3452 if (p == rq->idle) {
3453 p->stime = cputime_add(p->stime, steal);
3454 if (atomic_read(&rq->nr_iowait) > 0)
3455 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3456 else
3457 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3458 } else
1da177e4
LT
3459 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3460}
3461
7835b98b
CL
3462/*
3463 * This function gets called by the timer code, with HZ frequency.
3464 * We call it with interrupts disabled.
3465 *
3466 * It also gets called by the fork code, when changing the parent's
3467 * timeslices.
3468 */
3469void scheduler_tick(void)
3470{
7835b98b
CL
3471 int cpu = smp_processor_id();
3472 struct rq *rq = cpu_rq(cpu);
dd41f596 3473 struct task_struct *curr = rq->curr;
529c7726 3474 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3475
3476 spin_lock(&rq->lock);
546fe3c9 3477 __update_rq_clock(rq);
529c7726
IM
3478 /*
3479 * Let rq->clock advance by at least TICK_NSEC:
3480 */
3481 if (unlikely(rq->clock < next_tick))
3482 rq->clock = next_tick;
3483 rq->tick_timestamp = rq->clock;
f1a438d8 3484 update_cpu_load(rq);
dd41f596
IM
3485 if (curr != rq->idle) /* FIXME: needed? */
3486 curr->sched_class->task_tick(rq, curr);
dd41f596 3487 spin_unlock(&rq->lock);
7835b98b 3488
e418e1c2 3489#ifdef CONFIG_SMP
dd41f596
IM
3490 rq->idle_at_tick = idle_cpu(cpu);
3491 trigger_load_balance(rq, cpu);
e418e1c2 3492#endif
1da177e4
LT
3493}
3494
1da177e4
LT
3495#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3496
3497void fastcall add_preempt_count(int val)
3498{
3499 /*
3500 * Underflow?
3501 */
9a11b49a
IM
3502 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3503 return;
1da177e4
LT
3504 preempt_count() += val;
3505 /*
3506 * Spinlock count overflowing soon?
3507 */
33859f7f
MOS
3508 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3509 PREEMPT_MASK - 10);
1da177e4
LT
3510}
3511EXPORT_SYMBOL(add_preempt_count);
3512
3513void fastcall sub_preempt_count(int val)
3514{
3515 /*
3516 * Underflow?
3517 */
9a11b49a
IM
3518 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3519 return;
1da177e4
LT
3520 /*
3521 * Is the spinlock portion underflowing?
3522 */
9a11b49a
IM
3523 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3524 !(preempt_count() & PREEMPT_MASK)))
3525 return;
3526
1da177e4
LT
3527 preempt_count() -= val;
3528}
3529EXPORT_SYMBOL(sub_preempt_count);
3530
3531#endif
3532
3533/*
dd41f596 3534 * Print scheduling while atomic bug:
1da177e4 3535 */
dd41f596 3536static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3537{
838225b4
SS
3538 struct pt_regs *regs = get_irq_regs();
3539
3540 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3541 prev->comm, prev->pid, preempt_count());
3542
dd41f596
IM
3543 debug_show_held_locks(prev);
3544 if (irqs_disabled())
3545 print_irqtrace_events(prev);
838225b4
SS
3546
3547 if (regs)
3548 show_regs(regs);
3549 else
3550 dump_stack();
dd41f596 3551}
1da177e4 3552
dd41f596
IM
3553/*
3554 * Various schedule()-time debugging checks and statistics:
3555 */
3556static inline void schedule_debug(struct task_struct *prev)
3557{
1da177e4 3558 /*
41a2d6cf 3559 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3560 * schedule() atomically, we ignore that path for now.
3561 * Otherwise, whine if we are scheduling when we should not be.
3562 */
dd41f596
IM
3563 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3564 __schedule_bug(prev);
3565
1da177e4
LT
3566 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3567
2d72376b 3568 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3569#ifdef CONFIG_SCHEDSTATS
3570 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3571 schedstat_inc(this_rq(), bkl_count);
3572 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3573 }
3574#endif
dd41f596
IM
3575}
3576
3577/*
3578 * Pick up the highest-prio task:
3579 */
3580static inline struct task_struct *
ff95f3df 3581pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3582{
5522d5d5 3583 const struct sched_class *class;
dd41f596 3584 struct task_struct *p;
1da177e4
LT
3585
3586 /*
dd41f596
IM
3587 * Optimization: we know that if all tasks are in
3588 * the fair class we can call that function directly:
1da177e4 3589 */
dd41f596 3590 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3591 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3592 if (likely(p))
3593 return p;
1da177e4
LT
3594 }
3595
dd41f596
IM
3596 class = sched_class_highest;
3597 for ( ; ; ) {
fb8d4724 3598 p = class->pick_next_task(rq);
dd41f596
IM
3599 if (p)
3600 return p;
3601 /*
3602 * Will never be NULL as the idle class always
3603 * returns a non-NULL p:
3604 */
3605 class = class->next;
3606 }
3607}
1da177e4 3608
dd41f596
IM
3609/*
3610 * schedule() is the main scheduler function.
3611 */
3612asmlinkage void __sched schedule(void)
3613{
3614 struct task_struct *prev, *next;
3615 long *switch_count;
3616 struct rq *rq;
dd41f596
IM
3617 int cpu;
3618
3619need_resched:
3620 preempt_disable();
3621 cpu = smp_processor_id();
3622 rq = cpu_rq(cpu);
3623 rcu_qsctr_inc(cpu);
3624 prev = rq->curr;
3625 switch_count = &prev->nivcsw;
3626
3627 release_kernel_lock(prev);
3628need_resched_nonpreemptible:
3629
3630 schedule_debug(prev);
1da177e4 3631
1e819950
IM
3632 /*
3633 * Do the rq-clock update outside the rq lock:
3634 */
3635 local_irq_disable();
c1b3da3e 3636 __update_rq_clock(rq);
1e819950
IM
3637 spin_lock(&rq->lock);
3638 clear_tsk_need_resched(prev);
1da177e4 3639
1da177e4 3640 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3641 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3642 unlikely(signal_pending(prev)))) {
1da177e4 3643 prev->state = TASK_RUNNING;
dd41f596 3644 } else {
2e1cb74a 3645 deactivate_task(rq, prev, 1);
1da177e4 3646 }
dd41f596 3647 switch_count = &prev->nvcsw;
1da177e4
LT
3648 }
3649
9a897c5a
SR
3650#ifdef CONFIG_SMP
3651 if (prev->sched_class->pre_schedule)
3652 prev->sched_class->pre_schedule(rq, prev);
3653#endif
f65eda4f 3654
dd41f596 3655 if (unlikely(!rq->nr_running))
1da177e4 3656 idle_balance(cpu, rq);
1da177e4 3657
31ee529c 3658 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3659 next = pick_next_task(rq, prev);
1da177e4
LT
3660
3661 sched_info_switch(prev, next);
dd41f596 3662
1da177e4 3663 if (likely(prev != next)) {
1da177e4
LT
3664 rq->nr_switches++;
3665 rq->curr = next;
3666 ++*switch_count;
3667
dd41f596 3668 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3669 } else
3670 spin_unlock_irq(&rq->lock);
3671
dd41f596
IM
3672 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3673 cpu = smp_processor_id();
3674 rq = cpu_rq(cpu);
1da177e4 3675 goto need_resched_nonpreemptible;
dd41f596 3676 }
1da177e4
LT
3677 preempt_enable_no_resched();
3678 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3679 goto need_resched;
3680}
1da177e4
LT
3681EXPORT_SYMBOL(schedule);
3682
3683#ifdef CONFIG_PREEMPT
3684/*
2ed6e34f 3685 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3686 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3687 * occur there and call schedule directly.
3688 */
3689asmlinkage void __sched preempt_schedule(void)
3690{
3691 struct thread_info *ti = current_thread_info();
3692#ifdef CONFIG_PREEMPT_BKL
3693 struct task_struct *task = current;
3694 int saved_lock_depth;
3695#endif
3696 /*
3697 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3698 * we do not want to preempt the current task. Just return..
1da177e4 3699 */
beed33a8 3700 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3701 return;
3702
3a5c359a
AK
3703 do {
3704 add_preempt_count(PREEMPT_ACTIVE);
3705
3706 /*
3707 * We keep the big kernel semaphore locked, but we
3708 * clear ->lock_depth so that schedule() doesnt
3709 * auto-release the semaphore:
3710 */
1da177e4 3711#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3712 saved_lock_depth = task->lock_depth;
3713 task->lock_depth = -1;
1da177e4 3714#endif
3a5c359a 3715 schedule();
1da177e4 3716#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3717 task->lock_depth = saved_lock_depth;
1da177e4 3718#endif
3a5c359a 3719 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3720
3a5c359a
AK
3721 /*
3722 * Check again in case we missed a preemption opportunity
3723 * between schedule and now.
3724 */
3725 barrier();
3726 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3727}
1da177e4
LT
3728EXPORT_SYMBOL(preempt_schedule);
3729
3730/*
2ed6e34f 3731 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3732 * off of irq context.
3733 * Note, that this is called and return with irqs disabled. This will
3734 * protect us against recursive calling from irq.
3735 */
3736asmlinkage void __sched preempt_schedule_irq(void)
3737{
3738 struct thread_info *ti = current_thread_info();
3739#ifdef CONFIG_PREEMPT_BKL
3740 struct task_struct *task = current;
3741 int saved_lock_depth;
3742#endif
2ed6e34f 3743 /* Catch callers which need to be fixed */
1da177e4
LT
3744 BUG_ON(ti->preempt_count || !irqs_disabled());
3745
3a5c359a
AK
3746 do {
3747 add_preempt_count(PREEMPT_ACTIVE);
3748
3749 /*
3750 * We keep the big kernel semaphore locked, but we
3751 * clear ->lock_depth so that schedule() doesnt
3752 * auto-release the semaphore:
3753 */
1da177e4 3754#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3755 saved_lock_depth = task->lock_depth;
3756 task->lock_depth = -1;
1da177e4 3757#endif
3a5c359a
AK
3758 local_irq_enable();
3759 schedule();
3760 local_irq_disable();
1da177e4 3761#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3762 task->lock_depth = saved_lock_depth;
1da177e4 3763#endif
3a5c359a 3764 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3765
3a5c359a
AK
3766 /*
3767 * Check again in case we missed a preemption opportunity
3768 * between schedule and now.
3769 */
3770 barrier();
3771 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3772}
3773
3774#endif /* CONFIG_PREEMPT */
3775
95cdf3b7
IM
3776int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3777 void *key)
1da177e4 3778{
48f24c4d 3779 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3780}
1da177e4
LT
3781EXPORT_SYMBOL(default_wake_function);
3782
3783/*
41a2d6cf
IM
3784 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3785 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3786 * number) then we wake all the non-exclusive tasks and one exclusive task.
3787 *
3788 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3789 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3790 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3791 */
3792static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3793 int nr_exclusive, int sync, void *key)
3794{
2e45874c 3795 wait_queue_t *curr, *next;
1da177e4 3796
2e45874c 3797 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3798 unsigned flags = curr->flags;
3799
1da177e4 3800 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3801 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3802 break;
3803 }
3804}
3805
3806/**
3807 * __wake_up - wake up threads blocked on a waitqueue.
3808 * @q: the waitqueue
3809 * @mode: which threads
3810 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3811 * @key: is directly passed to the wakeup function
1da177e4
LT
3812 */
3813void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3814 int nr_exclusive, void *key)
1da177e4
LT
3815{
3816 unsigned long flags;
3817
3818 spin_lock_irqsave(&q->lock, flags);
3819 __wake_up_common(q, mode, nr_exclusive, 0, key);
3820 spin_unlock_irqrestore(&q->lock, flags);
3821}
1da177e4
LT
3822EXPORT_SYMBOL(__wake_up);
3823
3824/*
3825 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3826 */
3827void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3828{
3829 __wake_up_common(q, mode, 1, 0, NULL);
3830}
3831
3832/**
67be2dd1 3833 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3834 * @q: the waitqueue
3835 * @mode: which threads
3836 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3837 *
3838 * The sync wakeup differs that the waker knows that it will schedule
3839 * away soon, so while the target thread will be woken up, it will not
3840 * be migrated to another CPU - ie. the two threads are 'synchronized'
3841 * with each other. This can prevent needless bouncing between CPUs.
3842 *
3843 * On UP it can prevent extra preemption.
3844 */
95cdf3b7
IM
3845void fastcall
3846__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3847{
3848 unsigned long flags;
3849 int sync = 1;
3850
3851 if (unlikely(!q))
3852 return;
3853
3854 if (unlikely(!nr_exclusive))
3855 sync = 0;
3856
3857 spin_lock_irqsave(&q->lock, flags);
3858 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3859 spin_unlock_irqrestore(&q->lock, flags);
3860}
3861EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3862
b15136e9 3863void complete(struct completion *x)
1da177e4
LT
3864{
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&x->wait.lock, flags);
3868 x->done++;
3869 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3870 1, 0, NULL);
3871 spin_unlock_irqrestore(&x->wait.lock, flags);
3872}
3873EXPORT_SYMBOL(complete);
3874
b15136e9 3875void complete_all(struct completion *x)
1da177e4
LT
3876{
3877 unsigned long flags;
3878
3879 spin_lock_irqsave(&x->wait.lock, flags);
3880 x->done += UINT_MAX/2;
3881 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3882 0, 0, NULL);
3883 spin_unlock_irqrestore(&x->wait.lock, flags);
3884}
3885EXPORT_SYMBOL(complete_all);
3886
8cbbe86d
AK
3887static inline long __sched
3888do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3889{
1da177e4
LT
3890 if (!x->done) {
3891 DECLARE_WAITQUEUE(wait, current);
3892
3893 wait.flags |= WQ_FLAG_EXCLUSIVE;
3894 __add_wait_queue_tail(&x->wait, &wait);
3895 do {
8cbbe86d
AK
3896 if (state == TASK_INTERRUPTIBLE &&
3897 signal_pending(current)) {
3898 __remove_wait_queue(&x->wait, &wait);
3899 return -ERESTARTSYS;
3900 }
3901 __set_current_state(state);
1da177e4
LT
3902 spin_unlock_irq(&x->wait.lock);
3903 timeout = schedule_timeout(timeout);
3904 spin_lock_irq(&x->wait.lock);
3905 if (!timeout) {
3906 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3907 return timeout;
1da177e4
LT
3908 }
3909 } while (!x->done);
3910 __remove_wait_queue(&x->wait, &wait);
3911 }
3912 x->done--;
1da177e4
LT
3913 return timeout;
3914}
1da177e4 3915
8cbbe86d
AK
3916static long __sched
3917wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3918{
1da177e4
LT
3919 might_sleep();
3920
3921 spin_lock_irq(&x->wait.lock);
8cbbe86d 3922 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3923 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3924 return timeout;
3925}
1da177e4 3926
b15136e9 3927void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3928{
3929 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3930}
8cbbe86d 3931EXPORT_SYMBOL(wait_for_completion);
1da177e4 3932
b15136e9 3933unsigned long __sched
8cbbe86d 3934wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3935{
8cbbe86d 3936 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3937}
8cbbe86d 3938EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3939
8cbbe86d 3940int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3941{
51e97990
AK
3942 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3943 if (t == -ERESTARTSYS)
3944 return t;
3945 return 0;
0fec171c 3946}
8cbbe86d 3947EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3948
b15136e9 3949unsigned long __sched
8cbbe86d
AK
3950wait_for_completion_interruptible_timeout(struct completion *x,
3951 unsigned long timeout)
0fec171c 3952{
8cbbe86d 3953 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3954}
8cbbe86d 3955EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3956
8cbbe86d
AK
3957static long __sched
3958sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3959{
0fec171c
IM
3960 unsigned long flags;
3961 wait_queue_t wait;
3962
3963 init_waitqueue_entry(&wait, current);
1da177e4 3964
8cbbe86d 3965 __set_current_state(state);
1da177e4 3966
8cbbe86d
AK
3967 spin_lock_irqsave(&q->lock, flags);
3968 __add_wait_queue(q, &wait);
3969 spin_unlock(&q->lock);
3970 timeout = schedule_timeout(timeout);
3971 spin_lock_irq(&q->lock);
3972 __remove_wait_queue(q, &wait);
3973 spin_unlock_irqrestore(&q->lock, flags);
3974
3975 return timeout;
3976}
3977
3978void __sched interruptible_sleep_on(wait_queue_head_t *q)
3979{
3980 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3981}
1da177e4
LT
3982EXPORT_SYMBOL(interruptible_sleep_on);
3983
0fec171c 3984long __sched
95cdf3b7 3985interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3986{
8cbbe86d 3987 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3988}
1da177e4
LT
3989EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3990
0fec171c 3991void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3992{
8cbbe86d 3993 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3994}
1da177e4
LT
3995EXPORT_SYMBOL(sleep_on);
3996
0fec171c 3997long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3998{
8cbbe86d 3999 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4000}
1da177e4
LT
4001EXPORT_SYMBOL(sleep_on_timeout);
4002
b29739f9
IM
4003#ifdef CONFIG_RT_MUTEXES
4004
4005/*
4006 * rt_mutex_setprio - set the current priority of a task
4007 * @p: task
4008 * @prio: prio value (kernel-internal form)
4009 *
4010 * This function changes the 'effective' priority of a task. It does
4011 * not touch ->normal_prio like __setscheduler().
4012 *
4013 * Used by the rt_mutex code to implement priority inheritance logic.
4014 */
36c8b586 4015void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4016{
4017 unsigned long flags;
83b699ed 4018 int oldprio, on_rq, running;
70b97a7f 4019 struct rq *rq;
b29739f9
IM
4020
4021 BUG_ON(prio < 0 || prio > MAX_PRIO);
4022
4023 rq = task_rq_lock(p, &flags);
a8e504d2 4024 update_rq_clock(rq);
b29739f9 4025
d5f9f942 4026 oldprio = p->prio;
dd41f596 4027 on_rq = p->se.on_rq;
051a1d1a 4028 running = task_current(rq, p);
83b699ed 4029 if (on_rq) {
69be72c1 4030 dequeue_task(rq, p, 0);
83b699ed
SV
4031 if (running)
4032 p->sched_class->put_prev_task(rq, p);
4033 }
dd41f596
IM
4034
4035 if (rt_prio(prio))
4036 p->sched_class = &rt_sched_class;
4037 else
4038 p->sched_class = &fair_sched_class;
4039
b29739f9
IM
4040 p->prio = prio;
4041
dd41f596 4042 if (on_rq) {
83b699ed
SV
4043 if (running)
4044 p->sched_class->set_curr_task(rq);
8159f87e 4045 enqueue_task(rq, p, 0);
b29739f9
IM
4046 /*
4047 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4048 * our priority decreased, or if we are not currently running on
4049 * this runqueue and our priority is higher than the current's
b29739f9 4050 */
83b699ed 4051 if (running) {
d5f9f942
AM
4052 if (p->prio > oldprio)
4053 resched_task(rq->curr);
dd41f596
IM
4054 } else {
4055 check_preempt_curr(rq, p);
4056 }
b29739f9
IM
4057 }
4058 task_rq_unlock(rq, &flags);
4059}
4060
4061#endif
4062
36c8b586 4063void set_user_nice(struct task_struct *p, long nice)
1da177e4 4064{
dd41f596 4065 int old_prio, delta, on_rq;
1da177e4 4066 unsigned long flags;
70b97a7f 4067 struct rq *rq;
1da177e4
LT
4068
4069 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4070 return;
4071 /*
4072 * We have to be careful, if called from sys_setpriority(),
4073 * the task might be in the middle of scheduling on another CPU.
4074 */
4075 rq = task_rq_lock(p, &flags);
a8e504d2 4076 update_rq_clock(rq);
1da177e4
LT
4077 /*
4078 * The RT priorities are set via sched_setscheduler(), but we still
4079 * allow the 'normal' nice value to be set - but as expected
4080 * it wont have any effect on scheduling until the task is
dd41f596 4081 * SCHED_FIFO/SCHED_RR:
1da177e4 4082 */
e05606d3 4083 if (task_has_rt_policy(p)) {
1da177e4
LT
4084 p->static_prio = NICE_TO_PRIO(nice);
4085 goto out_unlock;
4086 }
dd41f596 4087 on_rq = p->se.on_rq;
58e2d4ca 4088 if (on_rq)
69be72c1 4089 dequeue_task(rq, p, 0);
1da177e4 4090
1da177e4 4091 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4092 set_load_weight(p);
b29739f9
IM
4093 old_prio = p->prio;
4094 p->prio = effective_prio(p);
4095 delta = p->prio - old_prio;
1da177e4 4096
dd41f596 4097 if (on_rq) {
8159f87e 4098 enqueue_task(rq, p, 0);
1da177e4 4099 /*
d5f9f942
AM
4100 * If the task increased its priority or is running and
4101 * lowered its priority, then reschedule its CPU:
1da177e4 4102 */
d5f9f942 4103 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4104 resched_task(rq->curr);
4105 }
4106out_unlock:
4107 task_rq_unlock(rq, &flags);
4108}
1da177e4
LT
4109EXPORT_SYMBOL(set_user_nice);
4110
e43379f1
MM
4111/*
4112 * can_nice - check if a task can reduce its nice value
4113 * @p: task
4114 * @nice: nice value
4115 */
36c8b586 4116int can_nice(const struct task_struct *p, const int nice)
e43379f1 4117{
024f4747
MM
4118 /* convert nice value [19,-20] to rlimit style value [1,40] */
4119 int nice_rlim = 20 - nice;
48f24c4d 4120
e43379f1
MM
4121 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4122 capable(CAP_SYS_NICE));
4123}
4124
1da177e4
LT
4125#ifdef __ARCH_WANT_SYS_NICE
4126
4127/*
4128 * sys_nice - change the priority of the current process.
4129 * @increment: priority increment
4130 *
4131 * sys_setpriority is a more generic, but much slower function that
4132 * does similar things.
4133 */
4134asmlinkage long sys_nice(int increment)
4135{
48f24c4d 4136 long nice, retval;
1da177e4
LT
4137
4138 /*
4139 * Setpriority might change our priority at the same moment.
4140 * We don't have to worry. Conceptually one call occurs first
4141 * and we have a single winner.
4142 */
e43379f1
MM
4143 if (increment < -40)
4144 increment = -40;
1da177e4
LT
4145 if (increment > 40)
4146 increment = 40;
4147
4148 nice = PRIO_TO_NICE(current->static_prio) + increment;
4149 if (nice < -20)
4150 nice = -20;
4151 if (nice > 19)
4152 nice = 19;
4153
e43379f1
MM
4154 if (increment < 0 && !can_nice(current, nice))
4155 return -EPERM;
4156
1da177e4
LT
4157 retval = security_task_setnice(current, nice);
4158 if (retval)
4159 return retval;
4160
4161 set_user_nice(current, nice);
4162 return 0;
4163}
4164
4165#endif
4166
4167/**
4168 * task_prio - return the priority value of a given task.
4169 * @p: the task in question.
4170 *
4171 * This is the priority value as seen by users in /proc.
4172 * RT tasks are offset by -200. Normal tasks are centered
4173 * around 0, value goes from -16 to +15.
4174 */
36c8b586 4175int task_prio(const struct task_struct *p)
1da177e4
LT
4176{
4177 return p->prio - MAX_RT_PRIO;
4178}
4179
4180/**
4181 * task_nice - return the nice value of a given task.
4182 * @p: the task in question.
4183 */
36c8b586 4184int task_nice(const struct task_struct *p)
1da177e4
LT
4185{
4186 return TASK_NICE(p);
4187}
1da177e4 4188EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4189
4190/**
4191 * idle_cpu - is a given cpu idle currently?
4192 * @cpu: the processor in question.
4193 */
4194int idle_cpu(int cpu)
4195{
4196 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4197}
4198
1da177e4
LT
4199/**
4200 * idle_task - return the idle task for a given cpu.
4201 * @cpu: the processor in question.
4202 */
36c8b586 4203struct task_struct *idle_task(int cpu)
1da177e4
LT
4204{
4205 return cpu_rq(cpu)->idle;
4206}
4207
4208/**
4209 * find_process_by_pid - find a process with a matching PID value.
4210 * @pid: the pid in question.
4211 */
a9957449 4212static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4213{
228ebcbe 4214 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4215}
4216
4217/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4218static void
4219__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4220{
dd41f596 4221 BUG_ON(p->se.on_rq);
48f24c4d 4222
1da177e4 4223 p->policy = policy;
dd41f596
IM
4224 switch (p->policy) {
4225 case SCHED_NORMAL:
4226 case SCHED_BATCH:
4227 case SCHED_IDLE:
4228 p->sched_class = &fair_sched_class;
4229 break;
4230 case SCHED_FIFO:
4231 case SCHED_RR:
4232 p->sched_class = &rt_sched_class;
4233 break;
4234 }
4235
1da177e4 4236 p->rt_priority = prio;
b29739f9
IM
4237 p->normal_prio = normal_prio(p);
4238 /* we are holding p->pi_lock already */
4239 p->prio = rt_mutex_getprio(p);
2dd73a4f 4240 set_load_weight(p);
1da177e4
LT
4241}
4242
4243/**
72fd4a35 4244 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4245 * @p: the task in question.
4246 * @policy: new policy.
4247 * @param: structure containing the new RT priority.
5fe1d75f 4248 *
72fd4a35 4249 * NOTE that the task may be already dead.
1da177e4 4250 */
95cdf3b7
IM
4251int sched_setscheduler(struct task_struct *p, int policy,
4252 struct sched_param *param)
1da177e4 4253{
83b699ed 4254 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4255 unsigned long flags;
70b97a7f 4256 struct rq *rq;
1da177e4 4257
66e5393a
SR
4258 /* may grab non-irq protected spin_locks */
4259 BUG_ON(in_interrupt());
1da177e4
LT
4260recheck:
4261 /* double check policy once rq lock held */
4262 if (policy < 0)
4263 policy = oldpolicy = p->policy;
4264 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4265 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4266 policy != SCHED_IDLE)
b0a9499c 4267 return -EINVAL;
1da177e4
LT
4268 /*
4269 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4270 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4271 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4272 */
4273 if (param->sched_priority < 0 ||
95cdf3b7 4274 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4275 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4276 return -EINVAL;
e05606d3 4277 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4278 return -EINVAL;
4279
37e4ab3f
OC
4280 /*
4281 * Allow unprivileged RT tasks to decrease priority:
4282 */
4283 if (!capable(CAP_SYS_NICE)) {
e05606d3 4284 if (rt_policy(policy)) {
8dc3e909 4285 unsigned long rlim_rtprio;
8dc3e909
ON
4286
4287 if (!lock_task_sighand(p, &flags))
4288 return -ESRCH;
4289 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4290 unlock_task_sighand(p, &flags);
4291
4292 /* can't set/change the rt policy */
4293 if (policy != p->policy && !rlim_rtprio)
4294 return -EPERM;
4295
4296 /* can't increase priority */
4297 if (param->sched_priority > p->rt_priority &&
4298 param->sched_priority > rlim_rtprio)
4299 return -EPERM;
4300 }
dd41f596
IM
4301 /*
4302 * Like positive nice levels, dont allow tasks to
4303 * move out of SCHED_IDLE either:
4304 */
4305 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4306 return -EPERM;
5fe1d75f 4307
37e4ab3f
OC
4308 /* can't change other user's priorities */
4309 if ((current->euid != p->euid) &&
4310 (current->euid != p->uid))
4311 return -EPERM;
4312 }
1da177e4
LT
4313
4314 retval = security_task_setscheduler(p, policy, param);
4315 if (retval)
4316 return retval;
b29739f9
IM
4317 /*
4318 * make sure no PI-waiters arrive (or leave) while we are
4319 * changing the priority of the task:
4320 */
4321 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4322 /*
4323 * To be able to change p->policy safely, the apropriate
4324 * runqueue lock must be held.
4325 */
b29739f9 4326 rq = __task_rq_lock(p);
1da177e4
LT
4327 /* recheck policy now with rq lock held */
4328 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4329 policy = oldpolicy = -1;
b29739f9
IM
4330 __task_rq_unlock(rq);
4331 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4332 goto recheck;
4333 }
2daa3577 4334 update_rq_clock(rq);
dd41f596 4335 on_rq = p->se.on_rq;
051a1d1a 4336 running = task_current(rq, p);
83b699ed 4337 if (on_rq) {
2e1cb74a 4338 deactivate_task(rq, p, 0);
83b699ed
SV
4339 if (running)
4340 p->sched_class->put_prev_task(rq, p);
4341 }
f6b53205 4342
1da177e4 4343 oldprio = p->prio;
dd41f596 4344 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4345
dd41f596 4346 if (on_rq) {
83b699ed
SV
4347 if (running)
4348 p->sched_class->set_curr_task(rq);
dd41f596 4349 activate_task(rq, p, 0);
1da177e4
LT
4350 /*
4351 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4352 * our priority decreased, or if we are not currently running on
4353 * this runqueue and our priority is higher than the current's
1da177e4 4354 */
83b699ed 4355 if (running) {
d5f9f942
AM
4356 if (p->prio > oldprio)
4357 resched_task(rq->curr);
dd41f596
IM
4358 } else {
4359 check_preempt_curr(rq, p);
4360 }
1da177e4 4361 }
b29739f9
IM
4362 __task_rq_unlock(rq);
4363 spin_unlock_irqrestore(&p->pi_lock, flags);
4364
95e02ca9
TG
4365 rt_mutex_adjust_pi(p);
4366
1da177e4
LT
4367 return 0;
4368}
4369EXPORT_SYMBOL_GPL(sched_setscheduler);
4370
95cdf3b7
IM
4371static int
4372do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4373{
1da177e4
LT
4374 struct sched_param lparam;
4375 struct task_struct *p;
36c8b586 4376 int retval;
1da177e4
LT
4377
4378 if (!param || pid < 0)
4379 return -EINVAL;
4380 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4381 return -EFAULT;
5fe1d75f
ON
4382
4383 rcu_read_lock();
4384 retval = -ESRCH;
1da177e4 4385 p = find_process_by_pid(pid);
5fe1d75f
ON
4386 if (p != NULL)
4387 retval = sched_setscheduler(p, policy, &lparam);
4388 rcu_read_unlock();
36c8b586 4389
1da177e4
LT
4390 return retval;
4391}
4392
4393/**
4394 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4395 * @pid: the pid in question.
4396 * @policy: new policy.
4397 * @param: structure containing the new RT priority.
4398 */
41a2d6cf
IM
4399asmlinkage long
4400sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4401{
c21761f1
JB
4402 /* negative values for policy are not valid */
4403 if (policy < 0)
4404 return -EINVAL;
4405
1da177e4
LT
4406 return do_sched_setscheduler(pid, policy, param);
4407}
4408
4409/**
4410 * sys_sched_setparam - set/change the RT priority of a thread
4411 * @pid: the pid in question.
4412 * @param: structure containing the new RT priority.
4413 */
4414asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4415{
4416 return do_sched_setscheduler(pid, -1, param);
4417}
4418
4419/**
4420 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4421 * @pid: the pid in question.
4422 */
4423asmlinkage long sys_sched_getscheduler(pid_t pid)
4424{
36c8b586 4425 struct task_struct *p;
3a5c359a 4426 int retval;
1da177e4
LT
4427
4428 if (pid < 0)
3a5c359a 4429 return -EINVAL;
1da177e4
LT
4430
4431 retval = -ESRCH;
4432 read_lock(&tasklist_lock);
4433 p = find_process_by_pid(pid);
4434 if (p) {
4435 retval = security_task_getscheduler(p);
4436 if (!retval)
4437 retval = p->policy;
4438 }
4439 read_unlock(&tasklist_lock);
1da177e4
LT
4440 return retval;
4441}
4442
4443/**
4444 * sys_sched_getscheduler - get the RT priority of a thread
4445 * @pid: the pid in question.
4446 * @param: structure containing the RT priority.
4447 */
4448asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4449{
4450 struct sched_param lp;
36c8b586 4451 struct task_struct *p;
3a5c359a 4452 int retval;
1da177e4
LT
4453
4454 if (!param || pid < 0)
3a5c359a 4455 return -EINVAL;
1da177e4
LT
4456
4457 read_lock(&tasklist_lock);
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 lp.sched_priority = p->rt_priority;
4468 read_unlock(&tasklist_lock);
4469
4470 /*
4471 * This one might sleep, we cannot do it with a spinlock held ...
4472 */
4473 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4474
1da177e4
LT
4475 return retval;
4476
4477out_unlock:
4478 read_unlock(&tasklist_lock);
4479 return retval;
4480}
4481
4482long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4483{
1da177e4 4484 cpumask_t cpus_allowed;
36c8b586
IM
4485 struct task_struct *p;
4486 int retval;
1da177e4 4487
95402b38 4488 get_online_cpus();
1da177e4
LT
4489 read_lock(&tasklist_lock);
4490
4491 p = find_process_by_pid(pid);
4492 if (!p) {
4493 read_unlock(&tasklist_lock);
95402b38 4494 put_online_cpus();
1da177e4
LT
4495 return -ESRCH;
4496 }
4497
4498 /*
4499 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4500 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4501 * usage count and then drop tasklist_lock.
4502 */
4503 get_task_struct(p);
4504 read_unlock(&tasklist_lock);
4505
4506 retval = -EPERM;
4507 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4508 !capable(CAP_SYS_NICE))
4509 goto out_unlock;
4510
e7834f8f
DQ
4511 retval = security_task_setscheduler(p, 0, NULL);
4512 if (retval)
4513 goto out_unlock;
4514
1da177e4
LT
4515 cpus_allowed = cpuset_cpus_allowed(p);
4516 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4517 again:
1da177e4
LT
4518 retval = set_cpus_allowed(p, new_mask);
4519
8707d8b8
PM
4520 if (!retval) {
4521 cpus_allowed = cpuset_cpus_allowed(p);
4522 if (!cpus_subset(new_mask, cpus_allowed)) {
4523 /*
4524 * We must have raced with a concurrent cpuset
4525 * update. Just reset the cpus_allowed to the
4526 * cpuset's cpus_allowed
4527 */
4528 new_mask = cpus_allowed;
4529 goto again;
4530 }
4531 }
1da177e4
LT
4532out_unlock:
4533 put_task_struct(p);
95402b38 4534 put_online_cpus();
1da177e4
LT
4535 return retval;
4536}
4537
4538static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4539 cpumask_t *new_mask)
4540{
4541 if (len < sizeof(cpumask_t)) {
4542 memset(new_mask, 0, sizeof(cpumask_t));
4543 } else if (len > sizeof(cpumask_t)) {
4544 len = sizeof(cpumask_t);
4545 }
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4547}
4548
4549/**
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
4554 */
4555asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4556 unsigned long __user *user_mask_ptr)
4557{
4558 cpumask_t new_mask;
4559 int retval;
4560
4561 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4562 if (retval)
4563 return retval;
4564
4565 return sched_setaffinity(pid, new_mask);
4566}
4567
4568/*
4569 * Represents all cpu's present in the system
4570 * In systems capable of hotplug, this map could dynamically grow
4571 * as new cpu's are detected in the system via any platform specific
4572 * method, such as ACPI for e.g.
4573 */
4574
4cef0c61 4575cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4576EXPORT_SYMBOL(cpu_present_map);
4577
4578#ifndef CONFIG_SMP
4cef0c61 4579cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4580EXPORT_SYMBOL(cpu_online_map);
4581
4cef0c61 4582cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4583EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4584#endif
4585
4586long sched_getaffinity(pid_t pid, cpumask_t *mask)
4587{
36c8b586 4588 struct task_struct *p;
1da177e4 4589 int retval;
1da177e4 4590
95402b38 4591 get_online_cpus();
1da177e4
LT
4592 read_lock(&tasklist_lock);
4593
4594 retval = -ESRCH;
4595 p = find_process_by_pid(pid);
4596 if (!p)
4597 goto out_unlock;
4598
e7834f8f
DQ
4599 retval = security_task_getscheduler(p);
4600 if (retval)
4601 goto out_unlock;
4602
2f7016d9 4603 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4604
4605out_unlock:
4606 read_unlock(&tasklist_lock);
95402b38 4607 put_online_cpus();
1da177e4 4608
9531b62f 4609 return retval;
1da177e4
LT
4610}
4611
4612/**
4613 * sys_sched_getaffinity - get the cpu affinity of a process
4614 * @pid: pid of the process
4615 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4616 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4617 */
4618asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4619 unsigned long __user *user_mask_ptr)
4620{
4621 int ret;
4622 cpumask_t mask;
4623
4624 if (len < sizeof(cpumask_t))
4625 return -EINVAL;
4626
4627 ret = sched_getaffinity(pid, &mask);
4628 if (ret < 0)
4629 return ret;
4630
4631 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4632 return -EFAULT;
4633
4634 return sizeof(cpumask_t);
4635}
4636
4637/**
4638 * sys_sched_yield - yield the current processor to other threads.
4639 *
dd41f596
IM
4640 * This function yields the current CPU to other tasks. If there are no
4641 * other threads running on this CPU then this function will return.
1da177e4
LT
4642 */
4643asmlinkage long sys_sched_yield(void)
4644{
70b97a7f 4645 struct rq *rq = this_rq_lock();
1da177e4 4646
2d72376b 4647 schedstat_inc(rq, yld_count);
4530d7ab 4648 current->sched_class->yield_task(rq);
1da177e4
LT
4649
4650 /*
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4653 */
4654 __release(rq->lock);
8a25d5de 4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4656 _raw_spin_unlock(&rq->lock);
4657 preempt_enable_no_resched();
4658
4659 schedule();
4660
4661 return 0;
4662}
4663
e7b38404 4664static void __cond_resched(void)
1da177e4 4665{
8e0a43d8
IM
4666#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4667 __might_sleep(__FILE__, __LINE__);
4668#endif
5bbcfd90
IM
4669 /*
4670 * The BKS might be reacquired before we have dropped
4671 * PREEMPT_ACTIVE, which could trigger a second
4672 * cond_resched() call.
4673 */
1da177e4
LT
4674 do {
4675 add_preempt_count(PREEMPT_ACTIVE);
4676 schedule();
4677 sub_preempt_count(PREEMPT_ACTIVE);
4678 } while (need_resched());
4679}
4680
4681int __sched cond_resched(void)
4682{
9414232f
IM
4683 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4684 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4685 __cond_resched();
4686 return 1;
4687 }
4688 return 0;
4689}
1da177e4
LT
4690EXPORT_SYMBOL(cond_resched);
4691
4692/*
4693 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4694 * call schedule, and on return reacquire the lock.
4695 *
41a2d6cf 4696 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4697 * operations here to prevent schedule() from being called twice (once via
4698 * spin_unlock(), once by hand).
4699 */
95cdf3b7 4700int cond_resched_lock(spinlock_t *lock)
1da177e4 4701{
6df3cecb
JK
4702 int ret = 0;
4703
1da177e4
LT
4704 if (need_lockbreak(lock)) {
4705 spin_unlock(lock);
4706 cpu_relax();
6df3cecb 4707 ret = 1;
1da177e4
LT
4708 spin_lock(lock);
4709 }
9414232f 4710 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4711 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4712 _raw_spin_unlock(lock);
4713 preempt_enable_no_resched();
4714 __cond_resched();
6df3cecb 4715 ret = 1;
1da177e4 4716 spin_lock(lock);
1da177e4 4717 }
6df3cecb 4718 return ret;
1da177e4 4719}
1da177e4
LT
4720EXPORT_SYMBOL(cond_resched_lock);
4721
4722int __sched cond_resched_softirq(void)
4723{
4724 BUG_ON(!in_softirq());
4725
9414232f 4726 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4727 local_bh_enable();
1da177e4
LT
4728 __cond_resched();
4729 local_bh_disable();
4730 return 1;
4731 }
4732 return 0;
4733}
1da177e4
LT
4734EXPORT_SYMBOL(cond_resched_softirq);
4735
1da177e4
LT
4736/**
4737 * yield - yield the current processor to other threads.
4738 *
72fd4a35 4739 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4740 * thread runnable and calls sys_sched_yield().
4741 */
4742void __sched yield(void)
4743{
4744 set_current_state(TASK_RUNNING);
4745 sys_sched_yield();
4746}
1da177e4
LT
4747EXPORT_SYMBOL(yield);
4748
4749/*
41a2d6cf 4750 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4751 * that process accounting knows that this is a task in IO wait state.
4752 *
4753 * But don't do that if it is a deliberate, throttling IO wait (this task
4754 * has set its backing_dev_info: the queue against which it should throttle)
4755 */
4756void __sched io_schedule(void)
4757{
70b97a7f 4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4759
0ff92245 4760 delayacct_blkio_start();
1da177e4
LT
4761 atomic_inc(&rq->nr_iowait);
4762 schedule();
4763 atomic_dec(&rq->nr_iowait);
0ff92245 4764 delayacct_blkio_end();
1da177e4 4765}
1da177e4
LT
4766EXPORT_SYMBOL(io_schedule);
4767
4768long __sched io_schedule_timeout(long timeout)
4769{
70b97a7f 4770 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4771 long ret;
4772
0ff92245 4773 delayacct_blkio_start();
1da177e4
LT
4774 atomic_inc(&rq->nr_iowait);
4775 ret = schedule_timeout(timeout);
4776 atomic_dec(&rq->nr_iowait);
0ff92245 4777 delayacct_blkio_end();
1da177e4
LT
4778 return ret;
4779}
4780
4781/**
4782 * sys_sched_get_priority_max - return maximum RT priority.
4783 * @policy: scheduling class.
4784 *
4785 * this syscall returns the maximum rt_priority that can be used
4786 * by a given scheduling class.
4787 */
4788asmlinkage long sys_sched_get_priority_max(int policy)
4789{
4790 int ret = -EINVAL;
4791
4792 switch (policy) {
4793 case SCHED_FIFO:
4794 case SCHED_RR:
4795 ret = MAX_USER_RT_PRIO-1;
4796 break;
4797 case SCHED_NORMAL:
b0a9499c 4798 case SCHED_BATCH:
dd41f596 4799 case SCHED_IDLE:
1da177e4
LT
4800 ret = 0;
4801 break;
4802 }
4803 return ret;
4804}
4805
4806/**
4807 * sys_sched_get_priority_min - return minimum RT priority.
4808 * @policy: scheduling class.
4809 *
4810 * this syscall returns the minimum rt_priority that can be used
4811 * by a given scheduling class.
4812 */
4813asmlinkage long sys_sched_get_priority_min(int policy)
4814{
4815 int ret = -EINVAL;
4816
4817 switch (policy) {
4818 case SCHED_FIFO:
4819 case SCHED_RR:
4820 ret = 1;
4821 break;
4822 case SCHED_NORMAL:
b0a9499c 4823 case SCHED_BATCH:
dd41f596 4824 case SCHED_IDLE:
1da177e4
LT
4825 ret = 0;
4826 }
4827 return ret;
4828}
4829
4830/**
4831 * sys_sched_rr_get_interval - return the default timeslice of a process.
4832 * @pid: pid of the process.
4833 * @interval: userspace pointer to the timeslice value.
4834 *
4835 * this syscall writes the default timeslice value of a given process
4836 * into the user-space timespec buffer. A value of '0' means infinity.
4837 */
4838asmlinkage
4839long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4840{
36c8b586 4841 struct task_struct *p;
a4ec24b4 4842 unsigned int time_slice;
3a5c359a 4843 int retval;
1da177e4 4844 struct timespec t;
1da177e4
LT
4845
4846 if (pid < 0)
3a5c359a 4847 return -EINVAL;
1da177e4
LT
4848
4849 retval = -ESRCH;
4850 read_lock(&tasklist_lock);
4851 p = find_process_by_pid(pid);
4852 if (!p)
4853 goto out_unlock;
4854
4855 retval = security_task_getscheduler(p);
4856 if (retval)
4857 goto out_unlock;
4858
77034937
IM
4859 /*
4860 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4861 * tasks that are on an otherwise idle runqueue:
4862 */
4863 time_slice = 0;
4864 if (p->policy == SCHED_RR) {
a4ec24b4 4865 time_slice = DEF_TIMESLICE;
77034937 4866 } else {
a4ec24b4
DA
4867 struct sched_entity *se = &p->se;
4868 unsigned long flags;
4869 struct rq *rq;
4870
4871 rq = task_rq_lock(p, &flags);
77034937
IM
4872 if (rq->cfs.load.weight)
4873 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4874 task_rq_unlock(rq, &flags);
4875 }
1da177e4 4876 read_unlock(&tasklist_lock);
a4ec24b4 4877 jiffies_to_timespec(time_slice, &t);
1da177e4 4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4879 return retval;
3a5c359a 4880
1da177e4
LT
4881out_unlock:
4882 read_unlock(&tasklist_lock);
4883 return retval;
4884}
4885
2ed6e34f 4886static const char stat_nam[] = "RSDTtZX";
36c8b586 4887
82a1fcb9 4888void sched_show_task(struct task_struct *p)
1da177e4 4889{
1da177e4 4890 unsigned long free = 0;
36c8b586 4891 unsigned state;
1da177e4 4892
1da177e4 4893 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4894 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4896#if BITS_PER_LONG == 32
1da177e4 4897 if (state == TASK_RUNNING)
cc4ea795 4898 printk(KERN_CONT " running ");
1da177e4 4899 else
cc4ea795 4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4901#else
4902 if (state == TASK_RUNNING)
cc4ea795 4903 printk(KERN_CONT " running task ");
1da177e4 4904 else
cc4ea795 4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4906#endif
4907#ifdef CONFIG_DEBUG_STACK_USAGE
4908 {
10ebffde 4909 unsigned long *n = end_of_stack(p);
1da177e4
LT
4910 while (!*n)
4911 n++;
10ebffde 4912 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4913 }
4914#endif
ba25f9dc 4915 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4916 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4917
4918 if (state != TASK_RUNNING)
4919 show_stack(p, NULL);
4920}
4921
e59e2ae2 4922void show_state_filter(unsigned long state_filter)
1da177e4 4923{
36c8b586 4924 struct task_struct *g, *p;
1da177e4 4925
4bd77321
IM
4926#if BITS_PER_LONG == 32
4927 printk(KERN_INFO
4928 " task PC stack pid father\n");
1da177e4 4929#else
4bd77321
IM
4930 printk(KERN_INFO
4931 " task PC stack pid father\n");
1da177e4
LT
4932#endif
4933 read_lock(&tasklist_lock);
4934 do_each_thread(g, p) {
4935 /*
4936 * reset the NMI-timeout, listing all files on a slow
4937 * console might take alot of time:
4938 */
4939 touch_nmi_watchdog();
39bc89fd 4940 if (!state_filter || (p->state & state_filter))
82a1fcb9 4941 sched_show_task(p);
1da177e4
LT
4942 } while_each_thread(g, p);
4943
04c9167f
JF
4944 touch_all_softlockup_watchdogs();
4945
dd41f596
IM
4946#ifdef CONFIG_SCHED_DEBUG
4947 sysrq_sched_debug_show();
4948#endif
1da177e4 4949 read_unlock(&tasklist_lock);
e59e2ae2
IM
4950 /*
4951 * Only show locks if all tasks are dumped:
4952 */
4953 if (state_filter == -1)
4954 debug_show_all_locks();
1da177e4
LT
4955}
4956
1df21055
IM
4957void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4958{
dd41f596 4959 idle->sched_class = &idle_sched_class;
1df21055
IM
4960}
4961
f340c0d1
IM
4962/**
4963 * init_idle - set up an idle thread for a given CPU
4964 * @idle: task in question
4965 * @cpu: cpu the idle task belongs to
4966 *
4967 * NOTE: this function does not set the idle thread's NEED_RESCHED
4968 * flag, to make booting more robust.
4969 */
5c1e1767 4970void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4971{
70b97a7f 4972 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4973 unsigned long flags;
4974
dd41f596
IM
4975 __sched_fork(idle);
4976 idle->se.exec_start = sched_clock();
4977
b29739f9 4978 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4979 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4980 __set_task_cpu(idle, cpu);
1da177e4
LT
4981
4982 spin_lock_irqsave(&rq->lock, flags);
4983 rq->curr = rq->idle = idle;
4866cde0
NP
4984#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4985 idle->oncpu = 1;
4986#endif
1da177e4
LT
4987 spin_unlock_irqrestore(&rq->lock, flags);
4988
4989 /* Set the preempt count _outside_ the spinlocks! */
4990#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4991 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4992#else
a1261f54 4993 task_thread_info(idle)->preempt_count = 0;
1da177e4 4994#endif
dd41f596
IM
4995 /*
4996 * The idle tasks have their own, simple scheduling class:
4997 */
4998 idle->sched_class = &idle_sched_class;
1da177e4
LT
4999}
5000
5001/*
5002 * In a system that switches off the HZ timer nohz_cpu_mask
5003 * indicates which cpus entered this state. This is used
5004 * in the rcu update to wait only for active cpus. For system
5005 * which do not switch off the HZ timer nohz_cpu_mask should
5006 * always be CPU_MASK_NONE.
5007 */
5008cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5009
19978ca6
IM
5010/*
5011 * Increase the granularity value when there are more CPUs,
5012 * because with more CPUs the 'effective latency' as visible
5013 * to users decreases. But the relationship is not linear,
5014 * so pick a second-best guess by going with the log2 of the
5015 * number of CPUs.
5016 *
5017 * This idea comes from the SD scheduler of Con Kolivas:
5018 */
5019static inline void sched_init_granularity(void)
5020{
5021 unsigned int factor = 1 + ilog2(num_online_cpus());
5022 const unsigned long limit = 200000000;
5023
5024 sysctl_sched_min_granularity *= factor;
5025 if (sysctl_sched_min_granularity > limit)
5026 sysctl_sched_min_granularity = limit;
5027
5028 sysctl_sched_latency *= factor;
5029 if (sysctl_sched_latency > limit)
5030 sysctl_sched_latency = limit;
5031
5032 sysctl_sched_wakeup_granularity *= factor;
5033 sysctl_sched_batch_wakeup_granularity *= factor;
5034}
5035
1da177e4
LT
5036#ifdef CONFIG_SMP
5037/*
5038 * This is how migration works:
5039 *
70b97a7f 5040 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5041 * runqueue and wake up that CPU's migration thread.
5042 * 2) we down() the locked semaphore => thread blocks.
5043 * 3) migration thread wakes up (implicitly it forces the migrated
5044 * thread off the CPU)
5045 * 4) it gets the migration request and checks whether the migrated
5046 * task is still in the wrong runqueue.
5047 * 5) if it's in the wrong runqueue then the migration thread removes
5048 * it and puts it into the right queue.
5049 * 6) migration thread up()s the semaphore.
5050 * 7) we wake up and the migration is done.
5051 */
5052
5053/*
5054 * Change a given task's CPU affinity. Migrate the thread to a
5055 * proper CPU and schedule it away if the CPU it's executing on
5056 * is removed from the allowed bitmask.
5057 *
5058 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5059 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5060 * call is not atomic; no spinlocks may be held.
5061 */
36c8b586 5062int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5063{
70b97a7f 5064 struct migration_req req;
1da177e4 5065 unsigned long flags;
70b97a7f 5066 struct rq *rq;
48f24c4d 5067 int ret = 0;
1da177e4
LT
5068
5069 rq = task_rq_lock(p, &flags);
5070 if (!cpus_intersects(new_mask, cpu_online_map)) {
5071 ret = -EINVAL;
5072 goto out;
5073 }
5074
73fe6aae
GH
5075 if (p->sched_class->set_cpus_allowed)
5076 p->sched_class->set_cpus_allowed(p, &new_mask);
5077 else {
0eab9146 5078 p->cpus_allowed = new_mask;
73fe6aae
GH
5079 p->nr_cpus_allowed = cpus_weight(new_mask);
5080 }
5081
1da177e4
LT
5082 /* Can the task run on the task's current CPU? If so, we're done */
5083 if (cpu_isset(task_cpu(p), new_mask))
5084 goto out;
5085
5086 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5087 /* Need help from migration thread: drop lock and wait. */
5088 task_rq_unlock(rq, &flags);
5089 wake_up_process(rq->migration_thread);
5090 wait_for_completion(&req.done);
5091 tlb_migrate_finish(p->mm);
5092 return 0;
5093 }
5094out:
5095 task_rq_unlock(rq, &flags);
48f24c4d 5096
1da177e4
LT
5097 return ret;
5098}
1da177e4
LT
5099EXPORT_SYMBOL_GPL(set_cpus_allowed);
5100
5101/*
41a2d6cf 5102 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5103 * this because either it can't run here any more (set_cpus_allowed()
5104 * away from this CPU, or CPU going down), or because we're
5105 * attempting to rebalance this task on exec (sched_exec).
5106 *
5107 * So we race with normal scheduler movements, but that's OK, as long
5108 * as the task is no longer on this CPU.
efc30814
KK
5109 *
5110 * Returns non-zero if task was successfully migrated.
1da177e4 5111 */
efc30814 5112static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5113{
70b97a7f 5114 struct rq *rq_dest, *rq_src;
dd41f596 5115 int ret = 0, on_rq;
1da177e4
LT
5116
5117 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5118 return ret;
1da177e4
LT
5119
5120 rq_src = cpu_rq(src_cpu);
5121 rq_dest = cpu_rq(dest_cpu);
5122
5123 double_rq_lock(rq_src, rq_dest);
5124 /* Already moved. */
5125 if (task_cpu(p) != src_cpu)
5126 goto out;
5127 /* Affinity changed (again). */
5128 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5129 goto out;
5130
dd41f596 5131 on_rq = p->se.on_rq;
6e82a3be 5132 if (on_rq)
2e1cb74a 5133 deactivate_task(rq_src, p, 0);
6e82a3be 5134
1da177e4 5135 set_task_cpu(p, dest_cpu);
dd41f596
IM
5136 if (on_rq) {
5137 activate_task(rq_dest, p, 0);
5138 check_preempt_curr(rq_dest, p);
1da177e4 5139 }
efc30814 5140 ret = 1;
1da177e4
LT
5141out:
5142 double_rq_unlock(rq_src, rq_dest);
efc30814 5143 return ret;
1da177e4
LT
5144}
5145
5146/*
5147 * migration_thread - this is a highprio system thread that performs
5148 * thread migration by bumping thread off CPU then 'pushing' onto
5149 * another runqueue.
5150 */
95cdf3b7 5151static int migration_thread(void *data)
1da177e4 5152{
1da177e4 5153 int cpu = (long)data;
70b97a7f 5154 struct rq *rq;
1da177e4
LT
5155
5156 rq = cpu_rq(cpu);
5157 BUG_ON(rq->migration_thread != current);
5158
5159 set_current_state(TASK_INTERRUPTIBLE);
5160 while (!kthread_should_stop()) {
70b97a7f 5161 struct migration_req *req;
1da177e4 5162 struct list_head *head;
1da177e4 5163
1da177e4
LT
5164 spin_lock_irq(&rq->lock);
5165
5166 if (cpu_is_offline(cpu)) {
5167 spin_unlock_irq(&rq->lock);
5168 goto wait_to_die;
5169 }
5170
5171 if (rq->active_balance) {
5172 active_load_balance(rq, cpu);
5173 rq->active_balance = 0;
5174 }
5175
5176 head = &rq->migration_queue;
5177
5178 if (list_empty(head)) {
5179 spin_unlock_irq(&rq->lock);
5180 schedule();
5181 set_current_state(TASK_INTERRUPTIBLE);
5182 continue;
5183 }
70b97a7f 5184 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5185 list_del_init(head->next);
5186
674311d5
NP
5187 spin_unlock(&rq->lock);
5188 __migrate_task(req->task, cpu, req->dest_cpu);
5189 local_irq_enable();
1da177e4
LT
5190
5191 complete(&req->done);
5192 }
5193 __set_current_state(TASK_RUNNING);
5194 return 0;
5195
5196wait_to_die:
5197 /* Wait for kthread_stop */
5198 set_current_state(TASK_INTERRUPTIBLE);
5199 while (!kthread_should_stop()) {
5200 schedule();
5201 set_current_state(TASK_INTERRUPTIBLE);
5202 }
5203 __set_current_state(TASK_RUNNING);
5204 return 0;
5205}
5206
5207#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5208
5209static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5210{
5211 int ret;
5212
5213 local_irq_disable();
5214 ret = __migrate_task(p, src_cpu, dest_cpu);
5215 local_irq_enable();
5216 return ret;
5217}
5218
054b9108 5219/*
3a4fa0a2 5220 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5221 * NOTE: interrupts should be disabled by the caller
5222 */
48f24c4d 5223static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5224{
efc30814 5225 unsigned long flags;
1da177e4 5226 cpumask_t mask;
70b97a7f
IM
5227 struct rq *rq;
5228 int dest_cpu;
1da177e4 5229
3a5c359a
AK
5230 do {
5231 /* On same node? */
5232 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5233 cpus_and(mask, mask, p->cpus_allowed);
5234 dest_cpu = any_online_cpu(mask);
5235
5236 /* On any allowed CPU? */
5237 if (dest_cpu == NR_CPUS)
5238 dest_cpu = any_online_cpu(p->cpus_allowed);
5239
5240 /* No more Mr. Nice Guy. */
5241 if (dest_cpu == NR_CPUS) {
470fd646
CW
5242 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5243 /*
5244 * Try to stay on the same cpuset, where the
5245 * current cpuset may be a subset of all cpus.
5246 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5247 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5248 * called within calls to cpuset_lock/cpuset_unlock.
5249 */
3a5c359a 5250 rq = task_rq_lock(p, &flags);
470fd646 5251 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5252 dest_cpu = any_online_cpu(p->cpus_allowed);
5253 task_rq_unlock(rq, &flags);
1da177e4 5254
3a5c359a
AK
5255 /*
5256 * Don't tell them about moving exiting tasks or
5257 * kernel threads (both mm NULL), since they never
5258 * leave kernel.
5259 */
41a2d6cf 5260 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5261 printk(KERN_INFO "process %d (%s) no "
5262 "longer affine to cpu%d\n",
41a2d6cf
IM
5263 task_pid_nr(p), p->comm, dead_cpu);
5264 }
3a5c359a 5265 }
f7b4cddc 5266 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5267}
5268
5269/*
5270 * While a dead CPU has no uninterruptible tasks queued at this point,
5271 * it might still have a nonzero ->nr_uninterruptible counter, because
5272 * for performance reasons the counter is not stricly tracking tasks to
5273 * their home CPUs. So we just add the counter to another CPU's counter,
5274 * to keep the global sum constant after CPU-down:
5275 */
70b97a7f 5276static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5277{
70b97a7f 5278 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5279 unsigned long flags;
5280
5281 local_irq_save(flags);
5282 double_rq_lock(rq_src, rq_dest);
5283 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5284 rq_src->nr_uninterruptible = 0;
5285 double_rq_unlock(rq_src, rq_dest);
5286 local_irq_restore(flags);
5287}
5288
5289/* Run through task list and migrate tasks from the dead cpu. */
5290static void migrate_live_tasks(int src_cpu)
5291{
48f24c4d 5292 struct task_struct *p, *t;
1da177e4 5293
f7b4cddc 5294 read_lock(&tasklist_lock);
1da177e4 5295
48f24c4d
IM
5296 do_each_thread(t, p) {
5297 if (p == current)
1da177e4
LT
5298 continue;
5299
48f24c4d
IM
5300 if (task_cpu(p) == src_cpu)
5301 move_task_off_dead_cpu(src_cpu, p);
5302 } while_each_thread(t, p);
1da177e4 5303
f7b4cddc 5304 read_unlock(&tasklist_lock);
1da177e4
LT
5305}
5306
dd41f596
IM
5307/*
5308 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5309 * It does so by boosting its priority to highest possible.
5310 * Used by CPU offline code.
1da177e4
LT
5311 */
5312void sched_idle_next(void)
5313{
48f24c4d 5314 int this_cpu = smp_processor_id();
70b97a7f 5315 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5316 struct task_struct *p = rq->idle;
5317 unsigned long flags;
5318
5319 /* cpu has to be offline */
48f24c4d 5320 BUG_ON(cpu_online(this_cpu));
1da177e4 5321
48f24c4d
IM
5322 /*
5323 * Strictly not necessary since rest of the CPUs are stopped by now
5324 * and interrupts disabled on the current cpu.
1da177e4
LT
5325 */
5326 spin_lock_irqsave(&rq->lock, flags);
5327
dd41f596 5328 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5329
94bc9a7b
DA
5330 update_rq_clock(rq);
5331 activate_task(rq, p, 0);
1da177e4
LT
5332
5333 spin_unlock_irqrestore(&rq->lock, flags);
5334}
5335
48f24c4d
IM
5336/*
5337 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5338 * offline.
5339 */
5340void idle_task_exit(void)
5341{
5342 struct mm_struct *mm = current->active_mm;
5343
5344 BUG_ON(cpu_online(smp_processor_id()));
5345
5346 if (mm != &init_mm)
5347 switch_mm(mm, &init_mm, current);
5348 mmdrop(mm);
5349}
5350
054b9108 5351/* called under rq->lock with disabled interrupts */
36c8b586 5352static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5353{
70b97a7f 5354 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5355
5356 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5357 BUG_ON(!p->exit_state);
1da177e4
LT
5358
5359 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5360 BUG_ON(p->state == TASK_DEAD);
1da177e4 5361
48f24c4d 5362 get_task_struct(p);
1da177e4
LT
5363
5364 /*
5365 * Drop lock around migration; if someone else moves it,
41a2d6cf 5366 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5367 * fine.
5368 */
f7b4cddc 5369 spin_unlock_irq(&rq->lock);
48f24c4d 5370 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5371 spin_lock_irq(&rq->lock);
1da177e4 5372
48f24c4d 5373 put_task_struct(p);
1da177e4
LT
5374}
5375
5376/* release_task() removes task from tasklist, so we won't find dead tasks. */
5377static void migrate_dead_tasks(unsigned int dead_cpu)
5378{
70b97a7f 5379 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5380 struct task_struct *next;
48f24c4d 5381
dd41f596
IM
5382 for ( ; ; ) {
5383 if (!rq->nr_running)
5384 break;
a8e504d2 5385 update_rq_clock(rq);
ff95f3df 5386 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5387 if (!next)
5388 break;
5389 migrate_dead(dead_cpu, next);
e692ab53 5390
1da177e4
LT
5391 }
5392}
5393#endif /* CONFIG_HOTPLUG_CPU */
5394
e692ab53
NP
5395#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5396
5397static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5398 {
5399 .procname = "sched_domain",
c57baf1e 5400 .mode = 0555,
e0361851 5401 },
38605cae 5402 {0, },
e692ab53
NP
5403};
5404
5405static struct ctl_table sd_ctl_root[] = {
e0361851 5406 {
c57baf1e 5407 .ctl_name = CTL_KERN,
e0361851 5408 .procname = "kernel",
c57baf1e 5409 .mode = 0555,
e0361851
AD
5410 .child = sd_ctl_dir,
5411 },
38605cae 5412 {0, },
e692ab53
NP
5413};
5414
5415static struct ctl_table *sd_alloc_ctl_entry(int n)
5416{
5417 struct ctl_table *entry =
5cf9f062 5418 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5419
e692ab53
NP
5420 return entry;
5421}
5422
6382bc90
MM
5423static void sd_free_ctl_entry(struct ctl_table **tablep)
5424{
cd790076 5425 struct ctl_table *entry;
6382bc90 5426
cd790076
MM
5427 /*
5428 * In the intermediate directories, both the child directory and
5429 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5430 * will always be set. In the lowest directory the names are
cd790076
MM
5431 * static strings and all have proc handlers.
5432 */
5433 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5434 if (entry->child)
5435 sd_free_ctl_entry(&entry->child);
cd790076
MM
5436 if (entry->proc_handler == NULL)
5437 kfree(entry->procname);
5438 }
6382bc90
MM
5439
5440 kfree(*tablep);
5441 *tablep = NULL;
5442}
5443
e692ab53 5444static void
e0361851 5445set_table_entry(struct ctl_table *entry,
e692ab53
NP
5446 const char *procname, void *data, int maxlen,
5447 mode_t mode, proc_handler *proc_handler)
5448{
e692ab53
NP
5449 entry->procname = procname;
5450 entry->data = data;
5451 entry->maxlen = maxlen;
5452 entry->mode = mode;
5453 entry->proc_handler = proc_handler;
5454}
5455
5456static struct ctl_table *
5457sd_alloc_ctl_domain_table(struct sched_domain *sd)
5458{
ace8b3d6 5459 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5460
ad1cdc1d
MM
5461 if (table == NULL)
5462 return NULL;
5463
e0361851 5464 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5465 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5466 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5467 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5468 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5469 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5470 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5472 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5473 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5474 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5475 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5476 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5477 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5478 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5479 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5480 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5481 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5482 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5483 &sd->cache_nice_tries,
5484 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5485 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5486 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5487 /* &table[11] is terminator */
e692ab53
NP
5488
5489 return table;
5490}
5491
9a4e7159 5492static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5493{
5494 struct ctl_table *entry, *table;
5495 struct sched_domain *sd;
5496 int domain_num = 0, i;
5497 char buf[32];
5498
5499 for_each_domain(cpu, sd)
5500 domain_num++;
5501 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5502 if (table == NULL)
5503 return NULL;
e692ab53
NP
5504
5505 i = 0;
5506 for_each_domain(cpu, sd) {
5507 snprintf(buf, 32, "domain%d", i);
e692ab53 5508 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5509 entry->mode = 0555;
e692ab53
NP
5510 entry->child = sd_alloc_ctl_domain_table(sd);
5511 entry++;
5512 i++;
5513 }
5514 return table;
5515}
5516
5517static struct ctl_table_header *sd_sysctl_header;
6382bc90 5518static void register_sched_domain_sysctl(void)
e692ab53
NP
5519{
5520 int i, cpu_num = num_online_cpus();
5521 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5522 char buf[32];
5523
7378547f
MM
5524 WARN_ON(sd_ctl_dir[0].child);
5525 sd_ctl_dir[0].child = entry;
5526
ad1cdc1d
MM
5527 if (entry == NULL)
5528 return;
5529
97b6ea7b 5530 for_each_online_cpu(i) {
e692ab53 5531 snprintf(buf, 32, "cpu%d", i);
e692ab53 5532 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5533 entry->mode = 0555;
e692ab53 5534 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5535 entry++;
e692ab53 5536 }
7378547f
MM
5537
5538 WARN_ON(sd_sysctl_header);
e692ab53
NP
5539 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5540}
6382bc90 5541
7378547f 5542/* may be called multiple times per register */
6382bc90
MM
5543static void unregister_sched_domain_sysctl(void)
5544{
7378547f
MM
5545 if (sd_sysctl_header)
5546 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5547 sd_sysctl_header = NULL;
7378547f
MM
5548 if (sd_ctl_dir[0].child)
5549 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5550}
e692ab53 5551#else
6382bc90
MM
5552static void register_sched_domain_sysctl(void)
5553{
5554}
5555static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5556{
5557}
5558#endif
5559
1da177e4
LT
5560/*
5561 * migration_call - callback that gets triggered when a CPU is added.
5562 * Here we can start up the necessary migration thread for the new CPU.
5563 */
48f24c4d
IM
5564static int __cpuinit
5565migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5566{
1da177e4 5567 struct task_struct *p;
48f24c4d 5568 int cpu = (long)hcpu;
1da177e4 5569 unsigned long flags;
70b97a7f 5570 struct rq *rq;
1da177e4
LT
5571
5572 switch (action) {
5be9361c 5573
1da177e4 5574 case CPU_UP_PREPARE:
8bb78442 5575 case CPU_UP_PREPARE_FROZEN:
dd41f596 5576 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5577 if (IS_ERR(p))
5578 return NOTIFY_BAD;
1da177e4
LT
5579 kthread_bind(p, cpu);
5580 /* Must be high prio: stop_machine expects to yield to it. */
5581 rq = task_rq_lock(p, &flags);
dd41f596 5582 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5583 task_rq_unlock(rq, &flags);
5584 cpu_rq(cpu)->migration_thread = p;
5585 break;
48f24c4d 5586
1da177e4 5587 case CPU_ONLINE:
8bb78442 5588 case CPU_ONLINE_FROZEN:
3a4fa0a2 5589 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5590 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5591
5592 /* Update our root-domain */
5593 rq = cpu_rq(cpu);
5594 spin_lock_irqsave(&rq->lock, flags);
5595 if (rq->rd) {
5596 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5597 cpu_set(cpu, rq->rd->online);
5598 }
5599 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5600 break;
48f24c4d 5601
1da177e4
LT
5602#ifdef CONFIG_HOTPLUG_CPU
5603 case CPU_UP_CANCELED:
8bb78442 5604 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5605 if (!cpu_rq(cpu)->migration_thread)
5606 break;
41a2d6cf 5607 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5608 kthread_bind(cpu_rq(cpu)->migration_thread,
5609 any_online_cpu(cpu_online_map));
1da177e4
LT
5610 kthread_stop(cpu_rq(cpu)->migration_thread);
5611 cpu_rq(cpu)->migration_thread = NULL;
5612 break;
48f24c4d 5613
1da177e4 5614 case CPU_DEAD:
8bb78442 5615 case CPU_DEAD_FROZEN:
470fd646 5616 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5617 migrate_live_tasks(cpu);
5618 rq = cpu_rq(cpu);
5619 kthread_stop(rq->migration_thread);
5620 rq->migration_thread = NULL;
5621 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5622 spin_lock_irq(&rq->lock);
a8e504d2 5623 update_rq_clock(rq);
2e1cb74a 5624 deactivate_task(rq, rq->idle, 0);
1da177e4 5625 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5626 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5627 rq->idle->sched_class = &idle_sched_class;
1da177e4 5628 migrate_dead_tasks(cpu);
d2da272a 5629 spin_unlock_irq(&rq->lock);
470fd646 5630 cpuset_unlock();
1da177e4
LT
5631 migrate_nr_uninterruptible(rq);
5632 BUG_ON(rq->nr_running != 0);
5633
41a2d6cf
IM
5634 /*
5635 * No need to migrate the tasks: it was best-effort if
5636 * they didn't take sched_hotcpu_mutex. Just wake up
5637 * the requestors.
5638 */
1da177e4
LT
5639 spin_lock_irq(&rq->lock);
5640 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5641 struct migration_req *req;
5642
1da177e4 5643 req = list_entry(rq->migration_queue.next,
70b97a7f 5644 struct migration_req, list);
1da177e4
LT
5645 list_del_init(&req->list);
5646 complete(&req->done);
5647 }
5648 spin_unlock_irq(&rq->lock);
5649 break;
57d885fe
GH
5650
5651 case CPU_DOWN_PREPARE:
5652 /* Update our root-domain */
5653 rq = cpu_rq(cpu);
5654 spin_lock_irqsave(&rq->lock, flags);
5655 if (rq->rd) {
5656 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5657 cpu_clear(cpu, rq->rd->online);
5658 }
5659 spin_unlock_irqrestore(&rq->lock, flags);
5660 break;
1da177e4
LT
5661#endif
5662 }
5663 return NOTIFY_OK;
5664}
5665
5666/* Register at highest priority so that task migration (migrate_all_tasks)
5667 * happens before everything else.
5668 */
26c2143b 5669static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5670 .notifier_call = migration_call,
5671 .priority = 10
5672};
5673
e6fe6649 5674void __init migration_init(void)
1da177e4
LT
5675{
5676 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5677 int err;
48f24c4d
IM
5678
5679 /* Start one for the boot CPU: */
07dccf33
AM
5680 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5681 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5682 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5683 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5684}
5685#endif
5686
5687#ifdef CONFIG_SMP
476f3534
CL
5688
5689/* Number of possible processor ids */
5690int nr_cpu_ids __read_mostly = NR_CPUS;
5691EXPORT_SYMBOL(nr_cpu_ids);
5692
3e9830dc 5693#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5694
5695static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5696{
4dcf6aff
IM
5697 struct sched_group *group = sd->groups;
5698 cpumask_t groupmask;
5699 char str[NR_CPUS];
1da177e4 5700
4dcf6aff
IM
5701 cpumask_scnprintf(str, NR_CPUS, sd->span);
5702 cpus_clear(groupmask);
5703
5704 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5705
5706 if (!(sd->flags & SD_LOAD_BALANCE)) {
5707 printk("does not load-balance\n");
5708 if (sd->parent)
5709 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5710 " has parent");
5711 return -1;
41c7ce9a
NP
5712 }
5713
4dcf6aff
IM
5714 printk(KERN_CONT "span %s\n", str);
5715
5716 if (!cpu_isset(cpu, sd->span)) {
5717 printk(KERN_ERR "ERROR: domain->span does not contain "
5718 "CPU%d\n", cpu);
5719 }
5720 if (!cpu_isset(cpu, group->cpumask)) {
5721 printk(KERN_ERR "ERROR: domain->groups does not contain"
5722 " CPU%d\n", cpu);
5723 }
1da177e4 5724
4dcf6aff 5725 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5726 do {
4dcf6aff
IM
5727 if (!group) {
5728 printk("\n");
5729 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5730 break;
5731 }
5732
4dcf6aff
IM
5733 if (!group->__cpu_power) {
5734 printk(KERN_CONT "\n");
5735 printk(KERN_ERR "ERROR: domain->cpu_power not "
5736 "set\n");
5737 break;
5738 }
1da177e4 5739
4dcf6aff
IM
5740 if (!cpus_weight(group->cpumask)) {
5741 printk(KERN_CONT "\n");
5742 printk(KERN_ERR "ERROR: empty group\n");
5743 break;
5744 }
1da177e4 5745
4dcf6aff
IM
5746 if (cpus_intersects(groupmask, group->cpumask)) {
5747 printk(KERN_CONT "\n");
5748 printk(KERN_ERR "ERROR: repeated CPUs\n");
5749 break;
5750 }
1da177e4 5751
4dcf6aff 5752 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5753
4dcf6aff
IM
5754 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5755 printk(KERN_CONT " %s", str);
1da177e4 5756
4dcf6aff
IM
5757 group = group->next;
5758 } while (group != sd->groups);
5759 printk(KERN_CONT "\n");
1da177e4 5760
4dcf6aff
IM
5761 if (!cpus_equal(sd->span, groupmask))
5762 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5763
4dcf6aff
IM
5764 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5765 printk(KERN_ERR "ERROR: parent span is not a superset "
5766 "of domain->span\n");
5767 return 0;
5768}
1da177e4 5769
4dcf6aff
IM
5770static void sched_domain_debug(struct sched_domain *sd, int cpu)
5771{
5772 int level = 0;
1da177e4 5773
4dcf6aff
IM
5774 if (!sd) {
5775 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5776 return;
5777 }
1da177e4 5778
4dcf6aff
IM
5779 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5780
5781 for (;;) {
5782 if (sched_domain_debug_one(sd, cpu, level))
5783 break;
1da177e4
LT
5784 level++;
5785 sd = sd->parent;
33859f7f 5786 if (!sd)
4dcf6aff
IM
5787 break;
5788 }
1da177e4
LT
5789}
5790#else
48f24c4d 5791# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5792#endif
5793
1a20ff27 5794static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5795{
5796 if (cpus_weight(sd->span) == 1)
5797 return 1;
5798
5799 /* Following flags need at least 2 groups */
5800 if (sd->flags & (SD_LOAD_BALANCE |
5801 SD_BALANCE_NEWIDLE |
5802 SD_BALANCE_FORK |
89c4710e
SS
5803 SD_BALANCE_EXEC |
5804 SD_SHARE_CPUPOWER |
5805 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5806 if (sd->groups != sd->groups->next)
5807 return 0;
5808 }
5809
5810 /* Following flags don't use groups */
5811 if (sd->flags & (SD_WAKE_IDLE |
5812 SD_WAKE_AFFINE |
5813 SD_WAKE_BALANCE))
5814 return 0;
5815
5816 return 1;
5817}
5818
48f24c4d
IM
5819static int
5820sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5821{
5822 unsigned long cflags = sd->flags, pflags = parent->flags;
5823
5824 if (sd_degenerate(parent))
5825 return 1;
5826
5827 if (!cpus_equal(sd->span, parent->span))
5828 return 0;
5829
5830 /* Does parent contain flags not in child? */
5831 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5832 if (cflags & SD_WAKE_AFFINE)
5833 pflags &= ~SD_WAKE_BALANCE;
5834 /* Flags needing groups don't count if only 1 group in parent */
5835 if (parent->groups == parent->groups->next) {
5836 pflags &= ~(SD_LOAD_BALANCE |
5837 SD_BALANCE_NEWIDLE |
5838 SD_BALANCE_FORK |
89c4710e
SS
5839 SD_BALANCE_EXEC |
5840 SD_SHARE_CPUPOWER |
5841 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5842 }
5843 if (~cflags & pflags)
5844 return 0;
5845
5846 return 1;
5847}
5848
57d885fe
GH
5849static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5850{
5851 unsigned long flags;
5852 const struct sched_class *class;
5853
5854 spin_lock_irqsave(&rq->lock, flags);
5855
5856 if (rq->rd) {
5857 struct root_domain *old_rd = rq->rd;
5858
0eab9146 5859 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5860 if (class->leave_domain)
5861 class->leave_domain(rq);
0eab9146 5862 }
57d885fe
GH
5863
5864 if (atomic_dec_and_test(&old_rd->refcount))
5865 kfree(old_rd);
5866 }
5867
5868 atomic_inc(&rd->refcount);
5869 rq->rd = rd;
5870
0eab9146 5871 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5872 if (class->join_domain)
5873 class->join_domain(rq);
0eab9146 5874 }
57d885fe
GH
5875
5876 spin_unlock_irqrestore(&rq->lock, flags);
5877}
5878
5879static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5880{
5881 memset(rd, 0, sizeof(*rd));
5882
5883 rd->span = *map;
5884 cpus_and(rd->online, rd->span, cpu_online_map);
5885}
5886
5887static void init_defrootdomain(void)
5888{
5889 cpumask_t cpus = CPU_MASK_ALL;
5890
5891 init_rootdomain(&def_root_domain, &cpus);
5892 atomic_set(&def_root_domain.refcount, 1);
5893}
5894
5895static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5896{
5897 struct root_domain *rd;
5898
5899 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5900 if (!rd)
5901 return NULL;
5902
5903 init_rootdomain(rd, map);
5904
5905 return rd;
5906}
5907
1da177e4 5908/*
0eab9146 5909 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5910 * hold the hotplug lock.
5911 */
0eab9146
IM
5912static void
5913cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5914{
70b97a7f 5915 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5916 struct sched_domain *tmp;
5917
5918 /* Remove the sched domains which do not contribute to scheduling. */
5919 for (tmp = sd; tmp; tmp = tmp->parent) {
5920 struct sched_domain *parent = tmp->parent;
5921 if (!parent)
5922 break;
1a848870 5923 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5924 tmp->parent = parent->parent;
1a848870
SS
5925 if (parent->parent)
5926 parent->parent->child = tmp;
5927 }
245af2c7
SS
5928 }
5929
1a848870 5930 if (sd && sd_degenerate(sd)) {
245af2c7 5931 sd = sd->parent;
1a848870
SS
5932 if (sd)
5933 sd->child = NULL;
5934 }
1da177e4
LT
5935
5936 sched_domain_debug(sd, cpu);
5937
57d885fe 5938 rq_attach_root(rq, rd);
674311d5 5939 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5940}
5941
5942/* cpus with isolated domains */
67af63a6 5943static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5944
5945/* Setup the mask of cpus configured for isolated domains */
5946static int __init isolated_cpu_setup(char *str)
5947{
5948 int ints[NR_CPUS], i;
5949
5950 str = get_options(str, ARRAY_SIZE(ints), ints);
5951 cpus_clear(cpu_isolated_map);
5952 for (i = 1; i <= ints[0]; i++)
5953 if (ints[i] < NR_CPUS)
5954 cpu_set(ints[i], cpu_isolated_map);
5955 return 1;
5956}
5957
8927f494 5958__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5959
5960/*
6711cab4
SS
5961 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5962 * to a function which identifies what group(along with sched group) a CPU
5963 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5964 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5965 *
5966 * init_sched_build_groups will build a circular linked list of the groups
5967 * covered by the given span, and will set each group's ->cpumask correctly,
5968 * and ->cpu_power to 0.
5969 */
a616058b 5970static void
6711cab4
SS
5971init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5972 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5973 struct sched_group **sg))
1da177e4
LT
5974{
5975 struct sched_group *first = NULL, *last = NULL;
5976 cpumask_t covered = CPU_MASK_NONE;
5977 int i;
5978
5979 for_each_cpu_mask(i, span) {
6711cab4
SS
5980 struct sched_group *sg;
5981 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5982 int j;
5983
5984 if (cpu_isset(i, covered))
5985 continue;
5986
5987 sg->cpumask = CPU_MASK_NONE;
5517d86b 5988 sg->__cpu_power = 0;
1da177e4
LT
5989
5990 for_each_cpu_mask(j, span) {
6711cab4 5991 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5992 continue;
5993
5994 cpu_set(j, covered);
5995 cpu_set(j, sg->cpumask);
5996 }
5997 if (!first)
5998 first = sg;
5999 if (last)
6000 last->next = sg;
6001 last = sg;
6002 }
6003 last->next = first;
6004}
6005
9c1cfda2 6006#define SD_NODES_PER_DOMAIN 16
1da177e4 6007
9c1cfda2 6008#ifdef CONFIG_NUMA
198e2f18 6009
9c1cfda2
JH
6010/**
6011 * find_next_best_node - find the next node to include in a sched_domain
6012 * @node: node whose sched_domain we're building
6013 * @used_nodes: nodes already in the sched_domain
6014 *
41a2d6cf 6015 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6016 * finds the closest node not already in the @used_nodes map.
6017 *
6018 * Should use nodemask_t.
6019 */
6020static int find_next_best_node(int node, unsigned long *used_nodes)
6021{
6022 int i, n, val, min_val, best_node = 0;
6023
6024 min_val = INT_MAX;
6025
6026 for (i = 0; i < MAX_NUMNODES; i++) {
6027 /* Start at @node */
6028 n = (node + i) % MAX_NUMNODES;
6029
6030 if (!nr_cpus_node(n))
6031 continue;
6032
6033 /* Skip already used nodes */
6034 if (test_bit(n, used_nodes))
6035 continue;
6036
6037 /* Simple min distance search */
6038 val = node_distance(node, n);
6039
6040 if (val < min_val) {
6041 min_val = val;
6042 best_node = n;
6043 }
6044 }
6045
6046 set_bit(best_node, used_nodes);
6047 return best_node;
6048}
6049
6050/**
6051 * sched_domain_node_span - get a cpumask for a node's sched_domain
6052 * @node: node whose cpumask we're constructing
6053 * @size: number of nodes to include in this span
6054 *
41a2d6cf 6055 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6056 * should be one that prevents unnecessary balancing, but also spreads tasks
6057 * out optimally.
6058 */
6059static cpumask_t sched_domain_node_span(int node)
6060{
9c1cfda2 6061 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6062 cpumask_t span, nodemask;
6063 int i;
9c1cfda2
JH
6064
6065 cpus_clear(span);
6066 bitmap_zero(used_nodes, MAX_NUMNODES);
6067
6068 nodemask = node_to_cpumask(node);
6069 cpus_or(span, span, nodemask);
6070 set_bit(node, used_nodes);
6071
6072 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6073 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6074
9c1cfda2
JH
6075 nodemask = node_to_cpumask(next_node);
6076 cpus_or(span, span, nodemask);
6077 }
6078
6079 return span;
6080}
6081#endif
6082
5c45bf27 6083int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6084
9c1cfda2 6085/*
48f24c4d 6086 * SMT sched-domains:
9c1cfda2 6087 */
1da177e4
LT
6088#ifdef CONFIG_SCHED_SMT
6089static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6090static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6091
41a2d6cf
IM
6092static int
6093cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6094{
6711cab4
SS
6095 if (sg)
6096 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6097 return cpu;
6098}
6099#endif
6100
48f24c4d
IM
6101/*
6102 * multi-core sched-domains:
6103 */
1e9f28fa
SS
6104#ifdef CONFIG_SCHED_MC
6105static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6106static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6107#endif
6108
6109#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6110static int
6111cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6112{
6711cab4 6113 int group;
d5a7430d 6114 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6115 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6116 group = first_cpu(mask);
6117 if (sg)
6118 *sg = &per_cpu(sched_group_core, group);
6119 return group;
1e9f28fa
SS
6120}
6121#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6122static int
6123cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6124{
6711cab4
SS
6125 if (sg)
6126 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6127 return cpu;
6128}
6129#endif
6130
1da177e4 6131static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6132static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6133
41a2d6cf
IM
6134static int
6135cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6136{
6711cab4 6137 int group;
48f24c4d 6138#ifdef CONFIG_SCHED_MC
1e9f28fa 6139 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6140 cpus_and(mask, mask, *cpu_map);
6711cab4 6141 group = first_cpu(mask);
1e9f28fa 6142#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6143 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6144 cpus_and(mask, mask, *cpu_map);
6711cab4 6145 group = first_cpu(mask);
1da177e4 6146#else
6711cab4 6147 group = cpu;
1da177e4 6148#endif
6711cab4
SS
6149 if (sg)
6150 *sg = &per_cpu(sched_group_phys, group);
6151 return group;
1da177e4
LT
6152}
6153
6154#ifdef CONFIG_NUMA
1da177e4 6155/*
9c1cfda2
JH
6156 * The init_sched_build_groups can't handle what we want to do with node
6157 * groups, so roll our own. Now each node has its own list of groups which
6158 * gets dynamically allocated.
1da177e4 6159 */
9c1cfda2 6160static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6161static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6162
9c1cfda2 6163static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6164static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6165
6711cab4
SS
6166static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6167 struct sched_group **sg)
9c1cfda2 6168{
6711cab4
SS
6169 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6170 int group;
6171
6172 cpus_and(nodemask, nodemask, *cpu_map);
6173 group = first_cpu(nodemask);
6174
6175 if (sg)
6176 *sg = &per_cpu(sched_group_allnodes, group);
6177 return group;
1da177e4 6178}
6711cab4 6179
08069033
SS
6180static void init_numa_sched_groups_power(struct sched_group *group_head)
6181{
6182 struct sched_group *sg = group_head;
6183 int j;
6184
6185 if (!sg)
6186 return;
3a5c359a
AK
6187 do {
6188 for_each_cpu_mask(j, sg->cpumask) {
6189 struct sched_domain *sd;
08069033 6190
3a5c359a
AK
6191 sd = &per_cpu(phys_domains, j);
6192 if (j != first_cpu(sd->groups->cpumask)) {
6193 /*
6194 * Only add "power" once for each
6195 * physical package.
6196 */
6197 continue;
6198 }
08069033 6199
3a5c359a
AK
6200 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6201 }
6202 sg = sg->next;
6203 } while (sg != group_head);
08069033 6204}
1da177e4
LT
6205#endif
6206
a616058b 6207#ifdef CONFIG_NUMA
51888ca2
SV
6208/* Free memory allocated for various sched_group structures */
6209static void free_sched_groups(const cpumask_t *cpu_map)
6210{
a616058b 6211 int cpu, i;
51888ca2
SV
6212
6213 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6214 struct sched_group **sched_group_nodes
6215 = sched_group_nodes_bycpu[cpu];
6216
51888ca2
SV
6217 if (!sched_group_nodes)
6218 continue;
6219
6220 for (i = 0; i < MAX_NUMNODES; i++) {
6221 cpumask_t nodemask = node_to_cpumask(i);
6222 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6223
6224 cpus_and(nodemask, nodemask, *cpu_map);
6225 if (cpus_empty(nodemask))
6226 continue;
6227
6228 if (sg == NULL)
6229 continue;
6230 sg = sg->next;
6231next_sg:
6232 oldsg = sg;
6233 sg = sg->next;
6234 kfree(oldsg);
6235 if (oldsg != sched_group_nodes[i])
6236 goto next_sg;
6237 }
6238 kfree(sched_group_nodes);
6239 sched_group_nodes_bycpu[cpu] = NULL;
6240 }
51888ca2 6241}
a616058b
SS
6242#else
6243static void free_sched_groups(const cpumask_t *cpu_map)
6244{
6245}
6246#endif
51888ca2 6247
89c4710e
SS
6248/*
6249 * Initialize sched groups cpu_power.
6250 *
6251 * cpu_power indicates the capacity of sched group, which is used while
6252 * distributing the load between different sched groups in a sched domain.
6253 * Typically cpu_power for all the groups in a sched domain will be same unless
6254 * there are asymmetries in the topology. If there are asymmetries, group
6255 * having more cpu_power will pickup more load compared to the group having
6256 * less cpu_power.
6257 *
6258 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6259 * the maximum number of tasks a group can handle in the presence of other idle
6260 * or lightly loaded groups in the same sched domain.
6261 */
6262static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6263{
6264 struct sched_domain *child;
6265 struct sched_group *group;
6266
6267 WARN_ON(!sd || !sd->groups);
6268
6269 if (cpu != first_cpu(sd->groups->cpumask))
6270 return;
6271
6272 child = sd->child;
6273
5517d86b
ED
6274 sd->groups->__cpu_power = 0;
6275
89c4710e
SS
6276 /*
6277 * For perf policy, if the groups in child domain share resources
6278 * (for example cores sharing some portions of the cache hierarchy
6279 * or SMT), then set this domain groups cpu_power such that each group
6280 * can handle only one task, when there are other idle groups in the
6281 * same sched domain.
6282 */
6283 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6284 (child->flags &
6285 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6286 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6287 return;
6288 }
6289
89c4710e
SS
6290 /*
6291 * add cpu_power of each child group to this groups cpu_power
6292 */
6293 group = child->groups;
6294 do {
5517d86b 6295 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6296 group = group->next;
6297 } while (group != child->groups);
6298}
6299
1da177e4 6300/*
1a20ff27
DG
6301 * Build sched domains for a given set of cpus and attach the sched domains
6302 * to the individual cpus
1da177e4 6303 */
51888ca2 6304static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6305{
6306 int i;
57d885fe 6307 struct root_domain *rd;
d1b55138
JH
6308#ifdef CONFIG_NUMA
6309 struct sched_group **sched_group_nodes = NULL;
6711cab4 6310 int sd_allnodes = 0;
d1b55138
JH
6311
6312 /*
6313 * Allocate the per-node list of sched groups
6314 */
5cf9f062 6315 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6316 GFP_KERNEL);
d1b55138
JH
6317 if (!sched_group_nodes) {
6318 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6319 return -ENOMEM;
d1b55138
JH
6320 }
6321 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6322#endif
1da177e4 6323
57d885fe
GH
6324 rd = alloc_rootdomain(cpu_map);
6325 if (!rd) {
6326 printk(KERN_WARNING "Cannot alloc root domain\n");
6327 return -ENOMEM;
6328 }
6329
1da177e4 6330 /*
1a20ff27 6331 * Set up domains for cpus specified by the cpu_map.
1da177e4 6332 */
1a20ff27 6333 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6334 struct sched_domain *sd = NULL, *p;
6335 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6336
1a20ff27 6337 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6338
6339#ifdef CONFIG_NUMA
dd41f596
IM
6340 if (cpus_weight(*cpu_map) >
6341 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6342 sd = &per_cpu(allnodes_domains, i);
6343 *sd = SD_ALLNODES_INIT;
6344 sd->span = *cpu_map;
6711cab4 6345 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6346 p = sd;
6711cab4 6347 sd_allnodes = 1;
9c1cfda2
JH
6348 } else
6349 p = NULL;
6350
1da177e4 6351 sd = &per_cpu(node_domains, i);
1da177e4 6352 *sd = SD_NODE_INIT;
9c1cfda2
JH
6353 sd->span = sched_domain_node_span(cpu_to_node(i));
6354 sd->parent = p;
1a848870
SS
6355 if (p)
6356 p->child = sd;
9c1cfda2 6357 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6358#endif
6359
6360 p = sd;
6361 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6362 *sd = SD_CPU_INIT;
6363 sd->span = nodemask;
6364 sd->parent = p;
1a848870
SS
6365 if (p)
6366 p->child = sd;
6711cab4 6367 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6368
1e9f28fa
SS
6369#ifdef CONFIG_SCHED_MC
6370 p = sd;
6371 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6372 *sd = SD_MC_INIT;
6373 sd->span = cpu_coregroup_map(i);
6374 cpus_and(sd->span, sd->span, *cpu_map);
6375 sd->parent = p;
1a848870 6376 p->child = sd;
6711cab4 6377 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6378#endif
6379
1da177e4
LT
6380#ifdef CONFIG_SCHED_SMT
6381 p = sd;
6382 sd = &per_cpu(cpu_domains, i);
1da177e4 6383 *sd = SD_SIBLING_INIT;
d5a7430d 6384 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6385 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6386 sd->parent = p;
1a848870 6387 p->child = sd;
6711cab4 6388 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6389#endif
6390 }
6391
6392#ifdef CONFIG_SCHED_SMT
6393 /* Set up CPU (sibling) groups */
9c1cfda2 6394 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6395 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6396 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6397 if (i != first_cpu(this_sibling_map))
6398 continue;
6399
dd41f596
IM
6400 init_sched_build_groups(this_sibling_map, cpu_map,
6401 &cpu_to_cpu_group);
1da177e4
LT
6402 }
6403#endif
6404
1e9f28fa
SS
6405#ifdef CONFIG_SCHED_MC
6406 /* Set up multi-core groups */
6407 for_each_cpu_mask(i, *cpu_map) {
6408 cpumask_t this_core_map = cpu_coregroup_map(i);
6409 cpus_and(this_core_map, this_core_map, *cpu_map);
6410 if (i != first_cpu(this_core_map))
6411 continue;
dd41f596
IM
6412 init_sched_build_groups(this_core_map, cpu_map,
6413 &cpu_to_core_group);
1e9f28fa
SS
6414 }
6415#endif
6416
1da177e4
LT
6417 /* Set up physical groups */
6418 for (i = 0; i < MAX_NUMNODES; i++) {
6419 cpumask_t nodemask = node_to_cpumask(i);
6420
1a20ff27 6421 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6422 if (cpus_empty(nodemask))
6423 continue;
6424
6711cab4 6425 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6426 }
6427
6428#ifdef CONFIG_NUMA
6429 /* Set up node groups */
6711cab4 6430 if (sd_allnodes)
dd41f596
IM
6431 init_sched_build_groups(*cpu_map, cpu_map,
6432 &cpu_to_allnodes_group);
9c1cfda2
JH
6433
6434 for (i = 0; i < MAX_NUMNODES; i++) {
6435 /* Set up node groups */
6436 struct sched_group *sg, *prev;
6437 cpumask_t nodemask = node_to_cpumask(i);
6438 cpumask_t domainspan;
6439 cpumask_t covered = CPU_MASK_NONE;
6440 int j;
6441
6442 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6443 if (cpus_empty(nodemask)) {
6444 sched_group_nodes[i] = NULL;
9c1cfda2 6445 continue;
d1b55138 6446 }
9c1cfda2
JH
6447
6448 domainspan = sched_domain_node_span(i);
6449 cpus_and(domainspan, domainspan, *cpu_map);
6450
15f0b676 6451 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6452 if (!sg) {
6453 printk(KERN_WARNING "Can not alloc domain group for "
6454 "node %d\n", i);
6455 goto error;
6456 }
9c1cfda2
JH
6457 sched_group_nodes[i] = sg;
6458 for_each_cpu_mask(j, nodemask) {
6459 struct sched_domain *sd;
9761eea8 6460
9c1cfda2
JH
6461 sd = &per_cpu(node_domains, j);
6462 sd->groups = sg;
9c1cfda2 6463 }
5517d86b 6464 sg->__cpu_power = 0;
9c1cfda2 6465 sg->cpumask = nodemask;
51888ca2 6466 sg->next = sg;
9c1cfda2
JH
6467 cpus_or(covered, covered, nodemask);
6468 prev = sg;
6469
6470 for (j = 0; j < MAX_NUMNODES; j++) {
6471 cpumask_t tmp, notcovered;
6472 int n = (i + j) % MAX_NUMNODES;
6473
6474 cpus_complement(notcovered, covered);
6475 cpus_and(tmp, notcovered, *cpu_map);
6476 cpus_and(tmp, tmp, domainspan);
6477 if (cpus_empty(tmp))
6478 break;
6479
6480 nodemask = node_to_cpumask(n);
6481 cpus_and(tmp, tmp, nodemask);
6482 if (cpus_empty(tmp))
6483 continue;
6484
15f0b676
SV
6485 sg = kmalloc_node(sizeof(struct sched_group),
6486 GFP_KERNEL, i);
9c1cfda2
JH
6487 if (!sg) {
6488 printk(KERN_WARNING
6489 "Can not alloc domain group for node %d\n", j);
51888ca2 6490 goto error;
9c1cfda2 6491 }
5517d86b 6492 sg->__cpu_power = 0;
9c1cfda2 6493 sg->cpumask = tmp;
51888ca2 6494 sg->next = prev->next;
9c1cfda2
JH
6495 cpus_or(covered, covered, tmp);
6496 prev->next = sg;
6497 prev = sg;
6498 }
9c1cfda2 6499 }
1da177e4
LT
6500#endif
6501
6502 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6503#ifdef CONFIG_SCHED_SMT
1a20ff27 6504 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6505 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6506
89c4710e 6507 init_sched_groups_power(i, sd);
5c45bf27 6508 }
1da177e4 6509#endif
1e9f28fa 6510#ifdef CONFIG_SCHED_MC
5c45bf27 6511 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6512 struct sched_domain *sd = &per_cpu(core_domains, i);
6513
89c4710e 6514 init_sched_groups_power(i, sd);
5c45bf27
SS
6515 }
6516#endif
1e9f28fa 6517
5c45bf27 6518 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6519 struct sched_domain *sd = &per_cpu(phys_domains, i);
6520
89c4710e 6521 init_sched_groups_power(i, sd);
1da177e4
LT
6522 }
6523
9c1cfda2 6524#ifdef CONFIG_NUMA
08069033
SS
6525 for (i = 0; i < MAX_NUMNODES; i++)
6526 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6527
6711cab4
SS
6528 if (sd_allnodes) {
6529 struct sched_group *sg;
f712c0c7 6530
6711cab4 6531 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6532 init_numa_sched_groups_power(sg);
6533 }
9c1cfda2
JH
6534#endif
6535
1da177e4 6536 /* Attach the domains */
1a20ff27 6537 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6538 struct sched_domain *sd;
6539#ifdef CONFIG_SCHED_SMT
6540 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6541#elif defined(CONFIG_SCHED_MC)
6542 sd = &per_cpu(core_domains, i);
1da177e4
LT
6543#else
6544 sd = &per_cpu(phys_domains, i);
6545#endif
57d885fe 6546 cpu_attach_domain(sd, rd, i);
1da177e4 6547 }
51888ca2
SV
6548
6549 return 0;
6550
a616058b 6551#ifdef CONFIG_NUMA
51888ca2
SV
6552error:
6553 free_sched_groups(cpu_map);
6554 return -ENOMEM;
a616058b 6555#endif
1da177e4 6556}
029190c5
PJ
6557
6558static cpumask_t *doms_cur; /* current sched domains */
6559static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6560
6561/*
6562 * Special case: If a kmalloc of a doms_cur partition (array of
6563 * cpumask_t) fails, then fallback to a single sched domain,
6564 * as determined by the single cpumask_t fallback_doms.
6565 */
6566static cpumask_t fallback_doms;
6567
1a20ff27 6568/*
41a2d6cf 6569 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6570 * For now this just excludes isolated cpus, but could be used to
6571 * exclude other special cases in the future.
1a20ff27 6572 */
51888ca2 6573static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6574{
7378547f
MM
6575 int err;
6576
029190c5
PJ
6577 ndoms_cur = 1;
6578 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6579 if (!doms_cur)
6580 doms_cur = &fallback_doms;
6581 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6582 err = build_sched_domains(doms_cur);
6382bc90 6583 register_sched_domain_sysctl();
7378547f
MM
6584
6585 return err;
1a20ff27
DG
6586}
6587
6588static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6589{
51888ca2 6590 free_sched_groups(cpu_map);
9c1cfda2 6591}
1da177e4 6592
1a20ff27
DG
6593/*
6594 * Detach sched domains from a group of cpus specified in cpu_map
6595 * These cpus will now be attached to the NULL domain
6596 */
858119e1 6597static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6598{
6599 int i;
6600
6382bc90
MM
6601 unregister_sched_domain_sysctl();
6602
1a20ff27 6603 for_each_cpu_mask(i, *cpu_map)
57d885fe 6604 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6605 synchronize_sched();
6606 arch_destroy_sched_domains(cpu_map);
6607}
6608
029190c5
PJ
6609/*
6610 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6611 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6612 * doms_new[] to the current sched domain partitioning, doms_cur[].
6613 * It destroys each deleted domain and builds each new domain.
6614 *
6615 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6616 * The masks don't intersect (don't overlap.) We should setup one
6617 * sched domain for each mask. CPUs not in any of the cpumasks will
6618 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6619 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6620 * it as it is.
6621 *
41a2d6cf
IM
6622 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6623 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6624 * failed the kmalloc call, then it can pass in doms_new == NULL,
6625 * and partition_sched_domains() will fallback to the single partition
6626 * 'fallback_doms'.
6627 *
6628 * Call with hotplug lock held
6629 */
6630void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6631{
6632 int i, j;
6633
a1835615
SV
6634 lock_doms_cur();
6635
7378547f
MM
6636 /* always unregister in case we don't destroy any domains */
6637 unregister_sched_domain_sysctl();
6638
029190c5
PJ
6639 if (doms_new == NULL) {
6640 ndoms_new = 1;
6641 doms_new = &fallback_doms;
6642 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6643 }
6644
6645 /* Destroy deleted domains */
6646 for (i = 0; i < ndoms_cur; i++) {
6647 for (j = 0; j < ndoms_new; j++) {
6648 if (cpus_equal(doms_cur[i], doms_new[j]))
6649 goto match1;
6650 }
6651 /* no match - a current sched domain not in new doms_new[] */
6652 detach_destroy_domains(doms_cur + i);
6653match1:
6654 ;
6655 }
6656
6657 /* Build new domains */
6658 for (i = 0; i < ndoms_new; i++) {
6659 for (j = 0; j < ndoms_cur; j++) {
6660 if (cpus_equal(doms_new[i], doms_cur[j]))
6661 goto match2;
6662 }
6663 /* no match - add a new doms_new */
6664 build_sched_domains(doms_new + i);
6665match2:
6666 ;
6667 }
6668
6669 /* Remember the new sched domains */
6670 if (doms_cur != &fallback_doms)
6671 kfree(doms_cur);
6672 doms_cur = doms_new;
6673 ndoms_cur = ndoms_new;
7378547f
MM
6674
6675 register_sched_domain_sysctl();
a1835615
SV
6676
6677 unlock_doms_cur();
029190c5
PJ
6678}
6679
5c45bf27 6680#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6681static int arch_reinit_sched_domains(void)
5c45bf27
SS
6682{
6683 int err;
6684
95402b38 6685 get_online_cpus();
5c45bf27
SS
6686 detach_destroy_domains(&cpu_online_map);
6687 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6688 put_online_cpus();
5c45bf27
SS
6689
6690 return err;
6691}
6692
6693static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6694{
6695 int ret;
6696
6697 if (buf[0] != '0' && buf[0] != '1')
6698 return -EINVAL;
6699
6700 if (smt)
6701 sched_smt_power_savings = (buf[0] == '1');
6702 else
6703 sched_mc_power_savings = (buf[0] == '1');
6704
6705 ret = arch_reinit_sched_domains();
6706
6707 return ret ? ret : count;
6708}
6709
5c45bf27
SS
6710#ifdef CONFIG_SCHED_MC
6711static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6712{
6713 return sprintf(page, "%u\n", sched_mc_power_savings);
6714}
48f24c4d
IM
6715static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6716 const char *buf, size_t count)
5c45bf27
SS
6717{
6718 return sched_power_savings_store(buf, count, 0);
6719}
6707de00
AB
6720static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6721 sched_mc_power_savings_store);
5c45bf27
SS
6722#endif
6723
6724#ifdef CONFIG_SCHED_SMT
6725static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6726{
6727 return sprintf(page, "%u\n", sched_smt_power_savings);
6728}
48f24c4d
IM
6729static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6730 const char *buf, size_t count)
5c45bf27
SS
6731{
6732 return sched_power_savings_store(buf, count, 1);
6733}
6707de00
AB
6734static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6735 sched_smt_power_savings_store);
6736#endif
6737
6738int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6739{
6740 int err = 0;
6741
6742#ifdef CONFIG_SCHED_SMT
6743 if (smt_capable())
6744 err = sysfs_create_file(&cls->kset.kobj,
6745 &attr_sched_smt_power_savings.attr);
6746#endif
6747#ifdef CONFIG_SCHED_MC
6748 if (!err && mc_capable())
6749 err = sysfs_create_file(&cls->kset.kobj,
6750 &attr_sched_mc_power_savings.attr);
6751#endif
6752 return err;
6753}
5c45bf27
SS
6754#endif
6755
1da177e4 6756/*
41a2d6cf 6757 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6758 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6759 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6760 * which will prevent rebalancing while the sched domains are recalculated.
6761 */
6762static int update_sched_domains(struct notifier_block *nfb,
6763 unsigned long action, void *hcpu)
6764{
1da177e4
LT
6765 switch (action) {
6766 case CPU_UP_PREPARE:
8bb78442 6767 case CPU_UP_PREPARE_FROZEN:
1da177e4 6768 case CPU_DOWN_PREPARE:
8bb78442 6769 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6770 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6771 return NOTIFY_OK;
6772
6773 case CPU_UP_CANCELED:
8bb78442 6774 case CPU_UP_CANCELED_FROZEN:
1da177e4 6775 case CPU_DOWN_FAILED:
8bb78442 6776 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6777 case CPU_ONLINE:
8bb78442 6778 case CPU_ONLINE_FROZEN:
1da177e4 6779 case CPU_DEAD:
8bb78442 6780 case CPU_DEAD_FROZEN:
1da177e4
LT
6781 /*
6782 * Fall through and re-initialise the domains.
6783 */
6784 break;
6785 default:
6786 return NOTIFY_DONE;
6787 }
6788
6789 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6790 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6791
6792 return NOTIFY_OK;
6793}
1da177e4
LT
6794
6795void __init sched_init_smp(void)
6796{
5c1e1767
NP
6797 cpumask_t non_isolated_cpus;
6798
95402b38 6799 get_online_cpus();
1a20ff27 6800 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6801 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6802 if (cpus_empty(non_isolated_cpus))
6803 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6804 put_online_cpus();
1da177e4
LT
6805 /* XXX: Theoretical race here - CPU may be hotplugged now */
6806 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6807
6808 /* Move init over to a non-isolated CPU */
6809 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6810 BUG();
19978ca6 6811 sched_init_granularity();
6b2d7700
SV
6812
6813#ifdef CONFIG_FAIR_GROUP_SCHED
6814 if (nr_cpu_ids == 1)
6815 return;
6816
6817 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6818 "group_balance");
6819 if (!IS_ERR(lb_monitor_task)) {
6820 lb_monitor_task->flags |= PF_NOFREEZE;
6821 wake_up_process(lb_monitor_task);
6822 } else {
6823 printk(KERN_ERR "Could not create load balance monitor thread"
6824 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6825 }
6826#endif
1da177e4
LT
6827}
6828#else
6829void __init sched_init_smp(void)
6830{
19978ca6 6831 sched_init_granularity();
1da177e4
LT
6832}
6833#endif /* CONFIG_SMP */
6834
6835int in_sched_functions(unsigned long addr)
6836{
1da177e4
LT
6837 return in_lock_functions(addr) ||
6838 (addr >= (unsigned long)__sched_text_start
6839 && addr < (unsigned long)__sched_text_end);
6840}
6841
a9957449 6842static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6843{
6844 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6845#ifdef CONFIG_FAIR_GROUP_SCHED
6846 cfs_rq->rq = rq;
6847#endif
67e9fb2a 6848 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6849}
6850
1da177e4
LT
6851void __init sched_init(void)
6852{
476f3534 6853 int highest_cpu = 0;
dd41f596
IM
6854 int i, j;
6855
57d885fe
GH
6856#ifdef CONFIG_SMP
6857 init_defrootdomain();
6858#endif
6859
0a945022 6860 for_each_possible_cpu(i) {
dd41f596 6861 struct rt_prio_array *array;
70b97a7f 6862 struct rq *rq;
1da177e4
LT
6863
6864 rq = cpu_rq(i);
6865 spin_lock_init(&rq->lock);
fcb99371 6866 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6867 rq->nr_running = 0;
dd41f596
IM
6868 rq->clock = 1;
6869 init_cfs_rq(&rq->cfs, rq);
6870#ifdef CONFIG_FAIR_GROUP_SCHED
6871 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6872 {
6873 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6874 struct sched_entity *se =
6875 &per_cpu(init_sched_entity, i);
6876
6877 init_cfs_rq_p[i] = cfs_rq;
6878 init_cfs_rq(cfs_rq, rq);
4cf86d77 6879 cfs_rq->tg = &init_task_group;
3a252015 6880 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6881 &rq->leaf_cfs_rq_list);
6882
3a252015
IM
6883 init_sched_entity_p[i] = se;
6884 se->cfs_rq = &rq->cfs;
6885 se->my_q = cfs_rq;
4cf86d77 6886 se->load.weight = init_task_group_load;
9b5b7751 6887 se->load.inv_weight =
4cf86d77 6888 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6889 se->parent = NULL;
6890 }
4cf86d77 6891 init_task_group.shares = init_task_group_load;
dd41f596 6892#endif
1da177e4 6893
dd41f596
IM
6894 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6895 rq->cpu_load[j] = 0;
1da177e4 6896#ifdef CONFIG_SMP
41c7ce9a 6897 rq->sd = NULL;
57d885fe
GH
6898 rq->rd = NULL;
6899 rq_attach_root(rq, &def_root_domain);
1da177e4 6900 rq->active_balance = 0;
dd41f596 6901 rq->next_balance = jiffies;
1da177e4 6902 rq->push_cpu = 0;
0a2966b4 6903 rq->cpu = i;
1da177e4
LT
6904 rq->migration_thread = NULL;
6905 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6906 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6907 rq->rt.overloaded = 0;
1da177e4
LT
6908#endif
6909 atomic_set(&rq->nr_iowait, 0);
6910
dd41f596
IM
6911 array = &rq->rt.active;
6912 for (j = 0; j < MAX_RT_PRIO; j++) {
6913 INIT_LIST_HEAD(array->queue + j);
6914 __clear_bit(j, array->bitmap);
1da177e4 6915 }
476f3534 6916 highest_cpu = i;
dd41f596
IM
6917 /* delimiter for bitsearch: */
6918 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6919 }
6920
2dd73a4f 6921 set_load_weight(&init_task);
b50f60ce 6922
e107be36
AK
6923#ifdef CONFIG_PREEMPT_NOTIFIERS
6924 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6925#endif
6926
c9819f45 6927#ifdef CONFIG_SMP
476f3534 6928 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6929 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6930#endif
6931
b50f60ce
HC
6932#ifdef CONFIG_RT_MUTEXES
6933 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6934#endif
6935
1da177e4
LT
6936 /*
6937 * The boot idle thread does lazy MMU switching as well:
6938 */
6939 atomic_inc(&init_mm.mm_count);
6940 enter_lazy_tlb(&init_mm, current);
6941
6942 /*
6943 * Make us the idle thread. Technically, schedule() should not be
6944 * called from this thread, however somewhere below it might be,
6945 * but because we are the idle thread, we just pick up running again
6946 * when this runqueue becomes "idle".
6947 */
6948 init_idle(current, smp_processor_id());
dd41f596
IM
6949 /*
6950 * During early bootup we pretend to be a normal task:
6951 */
6952 current->sched_class = &fair_sched_class;
1da177e4
LT
6953}
6954
6955#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6956void __might_sleep(char *file, int line)
6957{
48f24c4d 6958#ifdef in_atomic
1da177e4
LT
6959 static unsigned long prev_jiffy; /* ratelimiting */
6960
6961 if ((in_atomic() || irqs_disabled()) &&
6962 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6963 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6964 return;
6965 prev_jiffy = jiffies;
91368d73 6966 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6967 " context at %s:%d\n", file, line);
6968 printk("in_atomic():%d, irqs_disabled():%d\n",
6969 in_atomic(), irqs_disabled());
a4c410f0 6970 debug_show_held_locks(current);
3117df04
IM
6971 if (irqs_disabled())
6972 print_irqtrace_events(current);
1da177e4
LT
6973 dump_stack();
6974 }
6975#endif
6976}
6977EXPORT_SYMBOL(__might_sleep);
6978#endif
6979
6980#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6981static void normalize_task(struct rq *rq, struct task_struct *p)
6982{
6983 int on_rq;
6984 update_rq_clock(rq);
6985 on_rq = p->se.on_rq;
6986 if (on_rq)
6987 deactivate_task(rq, p, 0);
6988 __setscheduler(rq, p, SCHED_NORMAL, 0);
6989 if (on_rq) {
6990 activate_task(rq, p, 0);
6991 resched_task(rq->curr);
6992 }
6993}
6994
1da177e4
LT
6995void normalize_rt_tasks(void)
6996{
a0f98a1c 6997 struct task_struct *g, *p;
1da177e4 6998 unsigned long flags;
70b97a7f 6999 struct rq *rq;
1da177e4
LT
7000
7001 read_lock_irq(&tasklist_lock);
a0f98a1c 7002 do_each_thread(g, p) {
178be793
IM
7003 /*
7004 * Only normalize user tasks:
7005 */
7006 if (!p->mm)
7007 continue;
7008
6cfb0d5d 7009 p->se.exec_start = 0;
6cfb0d5d 7010#ifdef CONFIG_SCHEDSTATS
dd41f596 7011 p->se.wait_start = 0;
dd41f596 7012 p->se.sleep_start = 0;
dd41f596 7013 p->se.block_start = 0;
6cfb0d5d 7014#endif
dd41f596
IM
7015 task_rq(p)->clock = 0;
7016
7017 if (!rt_task(p)) {
7018 /*
7019 * Renice negative nice level userspace
7020 * tasks back to 0:
7021 */
7022 if (TASK_NICE(p) < 0 && p->mm)
7023 set_user_nice(p, 0);
1da177e4 7024 continue;
dd41f596 7025 }
1da177e4 7026
b29739f9
IM
7027 spin_lock_irqsave(&p->pi_lock, flags);
7028 rq = __task_rq_lock(p);
1da177e4 7029
178be793 7030 normalize_task(rq, p);
3a5e4dc1 7031
b29739f9
IM
7032 __task_rq_unlock(rq);
7033 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7034 } while_each_thread(g, p);
7035
1da177e4
LT
7036 read_unlock_irq(&tasklist_lock);
7037}
7038
7039#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7040
7041#ifdef CONFIG_IA64
7042/*
7043 * These functions are only useful for the IA64 MCA handling.
7044 *
7045 * They can only be called when the whole system has been
7046 * stopped - every CPU needs to be quiescent, and no scheduling
7047 * activity can take place. Using them for anything else would
7048 * be a serious bug, and as a result, they aren't even visible
7049 * under any other configuration.
7050 */
7051
7052/**
7053 * curr_task - return the current task for a given cpu.
7054 * @cpu: the processor in question.
7055 *
7056 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7057 */
36c8b586 7058struct task_struct *curr_task(int cpu)
1df5c10a
LT
7059{
7060 return cpu_curr(cpu);
7061}
7062
7063/**
7064 * set_curr_task - set the current task for a given cpu.
7065 * @cpu: the processor in question.
7066 * @p: the task pointer to set.
7067 *
7068 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7069 * are serviced on a separate stack. It allows the architecture to switch the
7070 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7071 * must be called with all CPU's synchronized, and interrupts disabled, the
7072 * and caller must save the original value of the current task (see
7073 * curr_task() above) and restore that value before reenabling interrupts and
7074 * re-starting the system.
7075 *
7076 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7077 */
36c8b586 7078void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7079{
7080 cpu_curr(cpu) = p;
7081}
7082
7083#endif
29f59db3
SV
7084
7085#ifdef CONFIG_FAIR_GROUP_SCHED
7086
6b2d7700
SV
7087#ifdef CONFIG_SMP
7088/*
7089 * distribute shares of all task groups among their schedulable entities,
7090 * to reflect load distrbution across cpus.
7091 */
7092static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7093{
7094 struct cfs_rq *cfs_rq;
7095 struct rq *rq = cpu_rq(this_cpu);
7096 cpumask_t sdspan = sd->span;
7097 int balanced = 1;
7098
7099 /* Walk thr' all the task groups that we have */
7100 for_each_leaf_cfs_rq(rq, cfs_rq) {
7101 int i;
7102 unsigned long total_load = 0, total_shares;
7103 struct task_group *tg = cfs_rq->tg;
7104
7105 /* Gather total task load of this group across cpus */
7106 for_each_cpu_mask(i, sdspan)
7107 total_load += tg->cfs_rq[i]->load.weight;
7108
0eab9146 7109 /* Nothing to do if this group has no load */
6b2d7700
SV
7110 if (!total_load)
7111 continue;
7112
7113 /*
7114 * tg->shares represents the number of cpu shares the task group
7115 * is eligible to hold on a single cpu. On N cpus, it is
7116 * eligible to hold (N * tg->shares) number of cpu shares.
7117 */
7118 total_shares = tg->shares * cpus_weight(sdspan);
7119
7120 /*
7121 * redistribute total_shares across cpus as per the task load
7122 * distribution.
7123 */
7124 for_each_cpu_mask(i, sdspan) {
7125 unsigned long local_load, local_shares;
7126
7127 local_load = tg->cfs_rq[i]->load.weight;
7128 local_shares = (local_load * total_shares) / total_load;
7129 if (!local_shares)
7130 local_shares = MIN_GROUP_SHARES;
7131 if (local_shares == tg->se[i]->load.weight)
7132 continue;
7133
7134 spin_lock_irq(&cpu_rq(i)->lock);
7135 set_se_shares(tg->se[i], local_shares);
7136 spin_unlock_irq(&cpu_rq(i)->lock);
7137 balanced = 0;
7138 }
7139 }
7140
7141 return balanced;
7142}
7143
7144/*
7145 * How frequently should we rebalance_shares() across cpus?
7146 *
7147 * The more frequently we rebalance shares, the more accurate is the fairness
7148 * of cpu bandwidth distribution between task groups. However higher frequency
7149 * also implies increased scheduling overhead.
7150 *
7151 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7152 * consecutive calls to rebalance_shares() in the same sched domain.
7153 *
7154 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7155 * consecutive calls to rebalance_shares() in the same sched domain.
7156 *
7157 * These settings allows for the appropriate tradeoff between accuracy of
7158 * fairness and the associated overhead.
7159 *
7160 */
7161
7162/* default: 8ms, units: milliseconds */
7163const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7164
7165/* default: 128ms, units: milliseconds */
7166const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7167
7168/* kernel thread that runs rebalance_shares() periodically */
7169static int load_balance_monitor(void *unused)
7170{
7171 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7172 struct sched_param schedparm;
7173 int ret;
7174
7175 /*
7176 * We don't want this thread's execution to be limited by the shares
7177 * assigned to default group (init_task_group). Hence make it run
7178 * as a SCHED_RR RT task at the lowest priority.
7179 */
7180 schedparm.sched_priority = 1;
7181 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7182 if (ret)
7183 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7184 " monitor thread (error = %d) \n", ret);
7185
7186 while (!kthread_should_stop()) {
7187 int i, cpu, balanced = 1;
7188
7189 /* Prevent cpus going down or coming up */
86ef5c9a 7190 get_online_cpus();
6b2d7700
SV
7191 /* lockout changes to doms_cur[] array */
7192 lock_doms_cur();
7193 /*
7194 * Enter a rcu read-side critical section to safely walk rq->sd
7195 * chain on various cpus and to walk task group list
7196 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7197 */
7198 rcu_read_lock();
7199
7200 for (i = 0; i < ndoms_cur; i++) {
7201 cpumask_t cpumap = doms_cur[i];
7202 struct sched_domain *sd = NULL, *sd_prev = NULL;
7203
7204 cpu = first_cpu(cpumap);
7205
7206 /* Find the highest domain at which to balance shares */
7207 for_each_domain(cpu, sd) {
7208 if (!(sd->flags & SD_LOAD_BALANCE))
7209 continue;
7210 sd_prev = sd;
7211 }
7212
7213 sd = sd_prev;
7214 /* sd == NULL? No load balance reqd in this domain */
7215 if (!sd)
7216 continue;
7217
7218 balanced &= rebalance_shares(sd, cpu);
7219 }
7220
7221 rcu_read_unlock();
7222
7223 unlock_doms_cur();
86ef5c9a 7224 put_online_cpus();
6b2d7700
SV
7225
7226 if (!balanced)
7227 timeout = sysctl_sched_min_bal_int_shares;
7228 else if (timeout < sysctl_sched_max_bal_int_shares)
7229 timeout *= 2;
7230
7231 msleep_interruptible(timeout);
7232 }
7233
7234 return 0;
7235}
7236#endif /* CONFIG_SMP */
7237
29f59db3 7238/* allocate runqueue etc for a new task group */
4cf86d77 7239struct task_group *sched_create_group(void)
29f59db3 7240{
4cf86d77 7241 struct task_group *tg;
29f59db3
SV
7242 struct cfs_rq *cfs_rq;
7243 struct sched_entity *se;
9b5b7751 7244 struct rq *rq;
29f59db3
SV
7245 int i;
7246
29f59db3
SV
7247 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7248 if (!tg)
7249 return ERR_PTR(-ENOMEM);
7250
9b5b7751 7251 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7252 if (!tg->cfs_rq)
7253 goto err;
9b5b7751 7254 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7255 if (!tg->se)
7256 goto err;
7257
7258 for_each_possible_cpu(i) {
9b5b7751 7259 rq = cpu_rq(i);
29f59db3
SV
7260
7261 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7262 cpu_to_node(i));
7263 if (!cfs_rq)
7264 goto err;
7265
7266 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7267 cpu_to_node(i));
7268 if (!se)
7269 goto err;
7270
7271 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7272 memset(se, 0, sizeof(struct sched_entity));
7273
7274 tg->cfs_rq[i] = cfs_rq;
7275 init_cfs_rq(cfs_rq, rq);
7276 cfs_rq->tg = tg;
29f59db3
SV
7277
7278 tg->se[i] = se;
7279 se->cfs_rq = &rq->cfs;
7280 se->my_q = cfs_rq;
7281 se->load.weight = NICE_0_LOAD;
7282 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7283 se->parent = NULL;
7284 }
7285
ec2c507f
SV
7286 tg->shares = NICE_0_LOAD;
7287
7288 lock_task_group_list();
9b5b7751
SV
7289 for_each_possible_cpu(i) {
7290 rq = cpu_rq(i);
7291 cfs_rq = tg->cfs_rq[i];
7292 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7293 }
ec2c507f 7294 unlock_task_group_list();
29f59db3 7295
9b5b7751 7296 return tg;
29f59db3
SV
7297
7298err:
7299 for_each_possible_cpu(i) {
a65914b3 7300 if (tg->cfs_rq)
29f59db3 7301 kfree(tg->cfs_rq[i]);
a65914b3 7302 if (tg->se)
29f59db3
SV
7303 kfree(tg->se[i]);
7304 }
a65914b3
IM
7305 kfree(tg->cfs_rq);
7306 kfree(tg->se);
7307 kfree(tg);
29f59db3
SV
7308
7309 return ERR_PTR(-ENOMEM);
7310}
7311
9b5b7751
SV
7312/* rcu callback to free various structures associated with a task group */
7313static void free_sched_group(struct rcu_head *rhp)
29f59db3 7314{
ae8393e5
SV
7315 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7316 struct cfs_rq *cfs_rq;
29f59db3
SV
7317 struct sched_entity *se;
7318 int i;
7319
29f59db3
SV
7320 /* now it should be safe to free those cfs_rqs */
7321 for_each_possible_cpu(i) {
7322 cfs_rq = tg->cfs_rq[i];
7323 kfree(cfs_rq);
7324
7325 se = tg->se[i];
7326 kfree(se);
7327 }
7328
7329 kfree(tg->cfs_rq);
7330 kfree(tg->se);
7331 kfree(tg);
7332}
7333
9b5b7751 7334/* Destroy runqueue etc associated with a task group */
4cf86d77 7335void sched_destroy_group(struct task_group *tg)
29f59db3 7336{
7bae49d4 7337 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7338 int i;
29f59db3 7339
ec2c507f 7340 lock_task_group_list();
9b5b7751
SV
7341 for_each_possible_cpu(i) {
7342 cfs_rq = tg->cfs_rq[i];
7343 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7344 }
ec2c507f 7345 unlock_task_group_list();
9b5b7751 7346
7bae49d4 7347 BUG_ON(!cfs_rq);
9b5b7751
SV
7348
7349 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7350 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7351}
7352
9b5b7751 7353/* change task's runqueue when it moves between groups.
3a252015
IM
7354 * The caller of this function should have put the task in its new group
7355 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7356 * reflect its new group.
9b5b7751
SV
7357 */
7358void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7359{
7360 int on_rq, running;
7361 unsigned long flags;
7362 struct rq *rq;
7363
7364 rq = task_rq_lock(tsk, &flags);
7365
dae51f56 7366 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7367 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7368 goto done;
dae51f56 7369 }
29f59db3
SV
7370
7371 update_rq_clock(rq);
7372
051a1d1a 7373 running = task_current(rq, tsk);
29f59db3
SV
7374 on_rq = tsk->se.on_rq;
7375
83b699ed 7376 if (on_rq) {
29f59db3 7377 dequeue_task(rq, tsk, 0);
83b699ed
SV
7378 if (unlikely(running))
7379 tsk->sched_class->put_prev_task(rq, tsk);
7380 }
29f59db3 7381
ce96b5ac 7382 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7383
83b699ed
SV
7384 if (on_rq) {
7385 if (unlikely(running))
7386 tsk->sched_class->set_curr_task(rq);
7074badb 7387 enqueue_task(rq, tsk, 0);
83b699ed 7388 }
29f59db3
SV
7389
7390done:
7391 task_rq_unlock(rq, &flags);
7392}
7393
6b2d7700 7394/* rq->lock to be locked by caller */
29f59db3
SV
7395static void set_se_shares(struct sched_entity *se, unsigned long shares)
7396{
7397 struct cfs_rq *cfs_rq = se->cfs_rq;
7398 struct rq *rq = cfs_rq->rq;
7399 int on_rq;
7400
6b2d7700
SV
7401 if (!shares)
7402 shares = MIN_GROUP_SHARES;
29f59db3
SV
7403
7404 on_rq = se->on_rq;
6b2d7700 7405 if (on_rq) {
29f59db3 7406 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7407 dec_cpu_load(rq, se->load.weight);
7408 }
29f59db3
SV
7409
7410 se->load.weight = shares;
7411 se->load.inv_weight = div64_64((1ULL<<32), shares);
7412
6b2d7700 7413 if (on_rq) {
29f59db3 7414 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7415 inc_cpu_load(rq, se->load.weight);
7416 }
29f59db3
SV
7417}
7418
4cf86d77 7419int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7420{
7421 int i;
6b2d7700
SV
7422 struct cfs_rq *cfs_rq;
7423 struct rq *rq;
c61935fd 7424
ec2c507f 7425 lock_task_group_list();
9b5b7751 7426 if (tg->shares == shares)
5cb350ba 7427 goto done;
29f59db3 7428
6b2d7700
SV
7429 if (shares < MIN_GROUP_SHARES)
7430 shares = MIN_GROUP_SHARES;
7431
7432 /*
7433 * Prevent any load balance activity (rebalance_shares,
7434 * load_balance_fair) from referring to this group first,
7435 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7436 */
7437 for_each_possible_cpu(i) {
7438 cfs_rq = tg->cfs_rq[i];
7439 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7440 }
7441
7442 /* wait for any ongoing reference to this group to finish */
7443 synchronize_sched();
7444
7445 /*
7446 * Now we are free to modify the group's share on each cpu
7447 * w/o tripping rebalance_share or load_balance_fair.
7448 */
9b5b7751 7449 tg->shares = shares;
6b2d7700
SV
7450 for_each_possible_cpu(i) {
7451 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7452 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7453 spin_unlock_irq(&cpu_rq(i)->lock);
7454 }
29f59db3 7455
6b2d7700
SV
7456 /*
7457 * Enable load balance activity on this group, by inserting it back on
7458 * each cpu's rq->leaf_cfs_rq_list.
7459 */
7460 for_each_possible_cpu(i) {
7461 rq = cpu_rq(i);
7462 cfs_rq = tg->cfs_rq[i];
7463 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7464 }
5cb350ba 7465done:
ec2c507f 7466 unlock_task_group_list();
9b5b7751 7467 return 0;
29f59db3
SV
7468}
7469
5cb350ba
DG
7470unsigned long sched_group_shares(struct task_group *tg)
7471{
7472 return tg->shares;
7473}
7474
3a252015 7475#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7476
7477#ifdef CONFIG_FAIR_CGROUP_SCHED
7478
7479/* return corresponding task_group object of a cgroup */
2b01dfe3 7480static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7481{
2b01dfe3
PM
7482 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7483 struct task_group, css);
68318b8e
SV
7484}
7485
7486static struct cgroup_subsys_state *
2b01dfe3 7487cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7488{
7489 struct task_group *tg;
7490
2b01dfe3 7491 if (!cgrp->parent) {
68318b8e 7492 /* This is early initialization for the top cgroup */
2b01dfe3 7493 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7494 return &init_task_group.css;
7495 }
7496
7497 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7498 if (cgrp->parent->parent)
68318b8e
SV
7499 return ERR_PTR(-EINVAL);
7500
7501 tg = sched_create_group();
7502 if (IS_ERR(tg))
7503 return ERR_PTR(-ENOMEM);
7504
7505 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7506 tg->css.cgroup = cgrp;
68318b8e
SV
7507
7508 return &tg->css;
7509}
7510
41a2d6cf
IM
7511static void
7512cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7513{
2b01dfe3 7514 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7515
7516 sched_destroy_group(tg);
7517}
7518
41a2d6cf
IM
7519static int
7520cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7521 struct task_struct *tsk)
68318b8e
SV
7522{
7523 /* We don't support RT-tasks being in separate groups */
7524 if (tsk->sched_class != &fair_sched_class)
7525 return -EINVAL;
7526
7527 return 0;
7528}
7529
7530static void
2b01dfe3 7531cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7532 struct cgroup *old_cont, struct task_struct *tsk)
7533{
7534 sched_move_task(tsk);
7535}
7536
2b01dfe3
PM
7537static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7538 u64 shareval)
68318b8e 7539{
2b01dfe3 7540 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7541}
7542
2b01dfe3 7543static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7544{
2b01dfe3 7545 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7546
7547 return (u64) tg->shares;
7548}
7549
fe5c7cc2
PM
7550static struct cftype cpu_files[] = {
7551 {
7552 .name = "shares",
7553 .read_uint = cpu_shares_read_uint,
7554 .write_uint = cpu_shares_write_uint,
7555 },
68318b8e
SV
7556};
7557
7558static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7559{
fe5c7cc2 7560 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7561}
7562
7563struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7564 .name = "cpu",
7565 .create = cpu_cgroup_create,
7566 .destroy = cpu_cgroup_destroy,
7567 .can_attach = cpu_cgroup_can_attach,
7568 .attach = cpu_cgroup_attach,
7569 .populate = cpu_cgroup_populate,
7570 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7571 .early_init = 1,
7572};
7573
7574#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7575
7576#ifdef CONFIG_CGROUP_CPUACCT
7577
7578/*
7579 * CPU accounting code for task groups.
7580 *
7581 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7582 * (balbir@in.ibm.com).
7583 */
7584
7585/* track cpu usage of a group of tasks */
7586struct cpuacct {
7587 struct cgroup_subsys_state css;
7588 /* cpuusage holds pointer to a u64-type object on every cpu */
7589 u64 *cpuusage;
7590};
7591
7592struct cgroup_subsys cpuacct_subsys;
7593
7594/* return cpu accounting group corresponding to this container */
7595static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7596{
7597 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7598 struct cpuacct, css);
7599}
7600
7601/* return cpu accounting group to which this task belongs */
7602static inline struct cpuacct *task_ca(struct task_struct *tsk)
7603{
7604 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7605 struct cpuacct, css);
7606}
7607
7608/* create a new cpu accounting group */
7609static struct cgroup_subsys_state *cpuacct_create(
7610 struct cgroup_subsys *ss, struct cgroup *cont)
7611{
7612 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7613
7614 if (!ca)
7615 return ERR_PTR(-ENOMEM);
7616
7617 ca->cpuusage = alloc_percpu(u64);
7618 if (!ca->cpuusage) {
7619 kfree(ca);
7620 return ERR_PTR(-ENOMEM);
7621 }
7622
7623 return &ca->css;
7624}
7625
7626/* destroy an existing cpu accounting group */
41a2d6cf
IM
7627static void
7628cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7629{
7630 struct cpuacct *ca = cgroup_ca(cont);
7631
7632 free_percpu(ca->cpuusage);
7633 kfree(ca);
7634}
7635
7636/* return total cpu usage (in nanoseconds) of a group */
7637static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7638{
7639 struct cpuacct *ca = cgroup_ca(cont);
7640 u64 totalcpuusage = 0;
7641 int i;
7642
7643 for_each_possible_cpu(i) {
7644 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7645
7646 /*
7647 * Take rq->lock to make 64-bit addition safe on 32-bit
7648 * platforms.
7649 */
7650 spin_lock_irq(&cpu_rq(i)->lock);
7651 totalcpuusage += *cpuusage;
7652 spin_unlock_irq(&cpu_rq(i)->lock);
7653 }
7654
7655 return totalcpuusage;
7656}
7657
7658static struct cftype files[] = {
7659 {
7660 .name = "usage",
7661 .read_uint = cpuusage_read,
7662 },
7663};
7664
7665static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7666{
7667 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7668}
7669
7670/*
7671 * charge this task's execution time to its accounting group.
7672 *
7673 * called with rq->lock held.
7674 */
7675static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7676{
7677 struct cpuacct *ca;
7678
7679 if (!cpuacct_subsys.active)
7680 return;
7681
7682 ca = task_ca(tsk);
7683 if (ca) {
7684 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7685
7686 *cpuusage += cputime;
7687 }
7688}
7689
7690struct cgroup_subsys cpuacct_subsys = {
7691 .name = "cpuacct",
7692 .create = cpuacct_create,
7693 .destroy = cpuacct_destroy,
7694 .populate = cpuacct_populate,
7695 .subsys_id = cpuacct_subsys_id,
7696};
7697#endif /* CONFIG_CGROUP_CPUACCT */