Merge branches 'sched/cleanups' and 'linus' into sched/core
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
470 struct {
471 int curr; /* highest queued rt task prio */
398a153b 472#ifdef CONFIG_SMP
e864c499 473 int next; /* next highest */
398a153b 474#endif
e864c499 475 } highest_prio;
6f505b16 476#endif
fa85ae24 477#ifdef CONFIG_SMP
73fe6aae 478 unsigned long rt_nr_migratory;
a22d7fc1 479 int overloaded;
917b627d 480 struct plist_head pushable_tasks;
fa85ae24 481#endif
6f505b16 482 int rt_throttled;
fa85ae24 483 u64 rt_time;
ac086bc2 484 u64 rt_runtime;
ea736ed5 485 /* Nests inside the rq lock: */
ac086bc2 486 spinlock_t rt_runtime_lock;
6f505b16 487
052f1dc7 488#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
489 unsigned long rt_nr_boosted;
490
6f505b16
PZ
491 struct rq *rq;
492 struct list_head leaf_rt_rq_list;
493 struct task_group *tg;
494 struct sched_rt_entity *rt_se;
495#endif
6aa645ea
IM
496};
497
57d885fe
GH
498#ifdef CONFIG_SMP
499
500/*
501 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
502 * variables. Each exclusive cpuset essentially defines an island domain by
503 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
504 * exclusive cpuset is created, we also create and attach a new root-domain
505 * object.
506 *
57d885fe
GH
507 */
508struct root_domain {
509 atomic_t refcount;
c6c4927b
RR
510 cpumask_var_t span;
511 cpumask_var_t online;
637f5085 512
0eab9146 513 /*
637f5085
GH
514 * The "RT overload" flag: it gets set if a CPU has more than
515 * one runnable RT task.
516 */
c6c4927b 517 cpumask_var_t rto_mask;
0eab9146 518 atomic_t rto_count;
6e0534f2
GH
519#ifdef CONFIG_SMP
520 struct cpupri cpupri;
521#endif
7a09b1a2
VS
522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
523 /*
524 * Preferred wake up cpu nominated by sched_mc balance that will be
525 * used when most cpus are idle in the system indicating overall very
526 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
527 */
528 unsigned int sched_mc_preferred_wakeup_cpu;
529#endif
57d885fe
GH
530};
531
dc938520
GH
532/*
533 * By default the system creates a single root-domain with all cpus as
534 * members (mimicking the global state we have today).
535 */
57d885fe
GH
536static struct root_domain def_root_domain;
537
538#endif
539
1da177e4
LT
540/*
541 * This is the main, per-CPU runqueue data structure.
542 *
543 * Locking rule: those places that want to lock multiple runqueues
544 * (such as the load balancing or the thread migration code), lock
545 * acquire operations must be ordered by ascending &runqueue.
546 */
70b97a7f 547struct rq {
d8016491
IM
548 /* runqueue lock: */
549 spinlock_t lock;
1da177e4
LT
550
551 /*
552 * nr_running and cpu_load should be in the same cacheline because
553 * remote CPUs use both these fields when doing load calculation.
554 */
555 unsigned long nr_running;
6aa645ea
IM
556 #define CPU_LOAD_IDX_MAX 5
557 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 558#ifdef CONFIG_NO_HZ
15934a37 559 unsigned long last_tick_seen;
46cb4b7c
SS
560 unsigned char in_nohz_recently;
561#endif
d8016491
IM
562 /* capture load from *all* tasks on this cpu: */
563 struct load_weight load;
6aa645ea
IM
564 unsigned long nr_load_updates;
565 u64 nr_switches;
566
567 struct cfs_rq cfs;
6f505b16 568 struct rt_rq rt;
6f505b16 569
6aa645ea 570#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
571 /* list of leaf cfs_rq on this cpu: */
572 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
573#endif
574#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 575 struct list_head leaf_rt_rq_list;
1da177e4 576#endif
1da177e4
LT
577
578 /*
579 * This is part of a global counter where only the total sum
580 * over all CPUs matters. A task can increase this counter on
581 * one CPU and if it got migrated afterwards it may decrease
582 * it on another CPU. Always updated under the runqueue lock:
583 */
584 unsigned long nr_uninterruptible;
585
36c8b586 586 struct task_struct *curr, *idle;
c9819f45 587 unsigned long next_balance;
1da177e4 588 struct mm_struct *prev_mm;
6aa645ea 589
3e51f33f 590 u64 clock;
6aa645ea 591
1da177e4
LT
592 atomic_t nr_iowait;
593
594#ifdef CONFIG_SMP
0eab9146 595 struct root_domain *rd;
1da177e4
LT
596 struct sched_domain *sd;
597
a0a522ce 598 unsigned char idle_at_tick;
1da177e4
LT
599 /* For active balancing */
600 int active_balance;
601 int push_cpu;
d8016491
IM
602 /* cpu of this runqueue: */
603 int cpu;
1f11eb6a 604 int online;
1da177e4 605
a8a51d5e 606 unsigned long avg_load_per_task;
1da177e4 607
36c8b586 608 struct task_struct *migration_thread;
1da177e4
LT
609 struct list_head migration_queue;
610#endif
611
8f4d37ec 612#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
613#ifdef CONFIG_SMP
614 int hrtick_csd_pending;
615 struct call_single_data hrtick_csd;
616#endif
8f4d37ec
PZ
617 struct hrtimer hrtick_timer;
618#endif
619
1da177e4
LT
620#ifdef CONFIG_SCHEDSTATS
621 /* latency stats */
622 struct sched_info rq_sched_info;
9c2c4802
KC
623 unsigned long long rq_cpu_time;
624 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
625
626 /* sys_sched_yield() stats */
480b9434
KC
627 unsigned int yld_exp_empty;
628 unsigned int yld_act_empty;
629 unsigned int yld_both_empty;
630 unsigned int yld_count;
1da177e4
LT
631
632 /* schedule() stats */
480b9434
KC
633 unsigned int sched_switch;
634 unsigned int sched_count;
635 unsigned int sched_goidle;
1da177e4
LT
636
637 /* try_to_wake_up() stats */
480b9434
KC
638 unsigned int ttwu_count;
639 unsigned int ttwu_local;
b8efb561
IM
640
641 /* BKL stats */
480b9434 642 unsigned int bkl_count;
1da177e4
LT
643#endif
644};
645
f34e3b61 646static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 647
15afe09b 648static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 649{
15afe09b 650 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
651}
652
0a2966b4
CL
653static inline int cpu_of(struct rq *rq)
654{
655#ifdef CONFIG_SMP
656 return rq->cpu;
657#else
658 return 0;
659#endif
660}
661
674311d5
NP
662/*
663 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 664 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
665 *
666 * The domain tree of any CPU may only be accessed from within
667 * preempt-disabled sections.
668 */
48f24c4d
IM
669#define for_each_domain(cpu, __sd) \
670 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
671
672#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
673#define this_rq() (&__get_cpu_var(runqueues))
674#define task_rq(p) cpu_rq(task_cpu(p))
675#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
676
3e51f33f
PZ
677static inline void update_rq_clock(struct rq *rq)
678{
679 rq->clock = sched_clock_cpu(cpu_of(rq));
680}
681
bf5c91ba
IM
682/*
683 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
684 */
685#ifdef CONFIG_SCHED_DEBUG
686# define const_debug __read_mostly
687#else
688# define const_debug static const
689#endif
690
017730c1
IM
691/**
692 * runqueue_is_locked
693 *
694 * Returns true if the current cpu runqueue is locked.
695 * This interface allows printk to be called with the runqueue lock
696 * held and know whether or not it is OK to wake up the klogd.
697 */
698int runqueue_is_locked(void)
699{
700 int cpu = get_cpu();
701 struct rq *rq = cpu_rq(cpu);
702 int ret;
703
704 ret = spin_is_locked(&rq->lock);
705 put_cpu();
706 return ret;
707}
708
bf5c91ba
IM
709/*
710 * Debugging: various feature bits
711 */
f00b45c1
PZ
712
713#define SCHED_FEAT(name, enabled) \
714 __SCHED_FEAT_##name ,
715
bf5c91ba 716enum {
f00b45c1 717#include "sched_features.h"
bf5c91ba
IM
718};
719
f00b45c1
PZ
720#undef SCHED_FEAT
721
722#define SCHED_FEAT(name, enabled) \
723 (1UL << __SCHED_FEAT_##name) * enabled |
724
bf5c91ba 725const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
726#include "sched_features.h"
727 0;
728
729#undef SCHED_FEAT
730
731#ifdef CONFIG_SCHED_DEBUG
732#define SCHED_FEAT(name, enabled) \
733 #name ,
734
983ed7a6 735static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
736#include "sched_features.h"
737 NULL
738};
739
740#undef SCHED_FEAT
741
34f3a814 742static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 743{
f00b45c1
PZ
744 int i;
745
746 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
747 if (!(sysctl_sched_features & (1UL << i)))
748 seq_puts(m, "NO_");
749 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 750 }
34f3a814 751 seq_puts(m, "\n");
f00b45c1 752
34f3a814 753 return 0;
f00b45c1
PZ
754}
755
756static ssize_t
757sched_feat_write(struct file *filp, const char __user *ubuf,
758 size_t cnt, loff_t *ppos)
759{
760 char buf[64];
761 char *cmp = buf;
762 int neg = 0;
763 int i;
764
765 if (cnt > 63)
766 cnt = 63;
767
768 if (copy_from_user(&buf, ubuf, cnt))
769 return -EFAULT;
770
771 buf[cnt] = 0;
772
c24b7c52 773 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
774 neg = 1;
775 cmp += 3;
776 }
777
778 for (i = 0; sched_feat_names[i]; i++) {
779 int len = strlen(sched_feat_names[i]);
780
781 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
782 if (neg)
783 sysctl_sched_features &= ~(1UL << i);
784 else
785 sysctl_sched_features |= (1UL << i);
786 break;
787 }
788 }
789
790 if (!sched_feat_names[i])
791 return -EINVAL;
792
793 filp->f_pos += cnt;
794
795 return cnt;
796}
797
34f3a814
LZ
798static int sched_feat_open(struct inode *inode, struct file *filp)
799{
800 return single_open(filp, sched_feat_show, NULL);
801}
802
f00b45c1 803static struct file_operations sched_feat_fops = {
34f3a814
LZ
804 .open = sched_feat_open,
805 .write = sched_feat_write,
806 .read = seq_read,
807 .llseek = seq_lseek,
808 .release = single_release,
f00b45c1
PZ
809};
810
811static __init int sched_init_debug(void)
812{
f00b45c1
PZ
813 debugfs_create_file("sched_features", 0644, NULL, NULL,
814 &sched_feat_fops);
815
816 return 0;
817}
818late_initcall(sched_init_debug);
819
820#endif
821
822#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 823
b82d9fdd
PZ
824/*
825 * Number of tasks to iterate in a single balance run.
826 * Limited because this is done with IRQs disabled.
827 */
828const_debug unsigned int sysctl_sched_nr_migrate = 32;
829
2398f2c6
PZ
830/*
831 * ratelimit for updating the group shares.
55cd5340 832 * default: 0.25ms
2398f2c6 833 */
55cd5340 834unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 835
ffda12a1
PZ
836/*
837 * Inject some fuzzyness into changing the per-cpu group shares
838 * this avoids remote rq-locks at the expense of fairness.
839 * default: 4
840 */
841unsigned int sysctl_sched_shares_thresh = 4;
842
fa85ae24 843/*
9f0c1e56 844 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
845 * default: 1s
846 */
9f0c1e56 847unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 848
6892b75e
IM
849static __read_mostly int scheduler_running;
850
9f0c1e56
PZ
851/*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855int sysctl_sched_rt_runtime = 950000;
fa85ae24 856
d0b27fa7
PZ
857static inline u64 global_rt_period(void)
858{
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860}
861
862static inline u64 global_rt_runtime(void)
863{
e26873bb 864 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868}
fa85ae24 869
1da177e4 870#ifndef prepare_arch_switch
4866cde0
NP
871# define prepare_arch_switch(next) do { } while (0)
872#endif
873#ifndef finish_arch_switch
874# define finish_arch_switch(prev) do { } while (0)
875#endif
876
051a1d1a
DA
877static inline int task_current(struct rq *rq, struct task_struct *p)
878{
879 return rq->curr == p;
880}
881
4866cde0 882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 884{
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890}
891
70b97a7f 892static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 893{
da04c035
IM
894#ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897#endif
8a25d5de
IM
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
4866cde0
NP
905 spin_unlock_irq(&rq->lock);
906}
907
908#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 909static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 return p->oncpu;
913#else
051a1d1a 914 return task_current(rq, p);
4866cde0
NP
915#endif
916}
917
70b97a7f 918static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
919{
920#ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927#endif
928#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930#else
931 spin_unlock(&rq->lock);
932#endif
933}
934
70b97a7f 935static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
936{
937#ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945#endif
946#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
1da177e4 948#endif
4866cde0
NP
949}
950#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 951
b29739f9
IM
952/*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
70b97a7f 956static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
957 __acquires(rq->lock)
958{
3a5c359a
AK
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
b29739f9 964 spin_unlock(&rq->lock);
b29739f9 965 }
b29739f9
IM
966}
967
1da177e4
LT
968/*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 970 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
971 * explicitly disabling preemption.
972 */
70b97a7f 973static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
974 __acquires(rq->lock)
975{
70b97a7f 976 struct rq *rq;
1da177e4 977
3a5c359a
AK
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
1da177e4 984 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 985 }
1da177e4
LT
986}
987
ad474cac
ON
988void task_rq_unlock_wait(struct task_struct *p)
989{
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994}
995
a9957449 996static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
997 __releases(rq->lock)
998{
999 spin_unlock(&rq->lock);
1000}
1001
70b97a7f 1002static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1003 __releases(rq->lock)
1004{
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006}
1007
1da177e4 1008/*
cc2a73b5 1009 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1010 */
a9957449 1011static struct rq *this_rq_lock(void)
1da177e4
LT
1012 __acquires(rq->lock)
1013{
70b97a7f 1014 struct rq *rq;
1da177e4
LT
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021}
1022
8f4d37ec
PZ
1023#ifdef CONFIG_SCHED_HRTICK
1024/*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
8f4d37ec
PZ
1034
1035/*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040static inline int hrtick_enabled(struct rq *rq)
1041{
1042 if (!sched_feat(HRTICK))
1043 return 0;
ba42059f 1044 if (!cpu_active(cpu_of(rq)))
b328ca18 1045 return 0;
8f4d37ec
PZ
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049static void hrtick_clear(struct rq *rq)
1050{
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053}
1054
8f4d37ec
PZ
1055/*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060{
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
3e51f33f 1066 update_rq_clock(rq);
8f4d37ec
PZ
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071}
1072
95e904c7 1073#ifdef CONFIG_SMP
31656519
PZ
1074/*
1075 * called from hardirq (IPI) context
1076 */
1077static void __hrtick_start(void *arg)
b328ca18 1078{
31656519 1079 struct rq *rq = arg;
b328ca18 1080
31656519
PZ
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
b328ca18
PZ
1085}
1086
31656519
PZ
1087/*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1093{
31656519
PZ
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1096
cc584b21 1097 hrtimer_set_expires(timer, time);
31656519
PZ
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1103 rq->hrtick_csd_pending = 1;
1104 }
b328ca18
PZ
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
31656519 1119 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124}
1125
fa748203 1126static __init void init_hrtick(void)
b328ca18
PZ
1127{
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129}
31656519
PZ
1130#else
1131/*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136static void hrtick_start(struct rq *rq, u64 delay)
1137{
1138 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1139}
b328ca18 1140
006c75f1 1141static inline void init_hrtick(void)
8f4d37ec 1142{
8f4d37ec 1143}
31656519 1144#endif /* CONFIG_SMP */
8f4d37ec 1145
31656519 1146static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1147{
31656519
PZ
1148#ifdef CONFIG_SMP
1149 rq->hrtick_csd_pending = 0;
8f4d37ec 1150
31656519
PZ
1151 rq->hrtick_csd.flags = 0;
1152 rq->hrtick_csd.func = __hrtick_start;
1153 rq->hrtick_csd.info = rq;
1154#endif
8f4d37ec 1155
31656519
PZ
1156 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1157 rq->hrtick_timer.function = hrtick;
8f4d37ec 1158}
006c75f1 1159#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1160static inline void hrtick_clear(struct rq *rq)
1161{
1162}
1163
8f4d37ec
PZ
1164static inline void init_rq_hrtick(struct rq *rq)
1165{
1166}
1167
b328ca18
PZ
1168static inline void init_hrtick(void)
1169{
1170}
006c75f1 1171#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1172
c24d20db
IM
1173/*
1174 * resched_task - mark a task 'to be rescheduled now'.
1175 *
1176 * On UP this means the setting of the need_resched flag, on SMP it
1177 * might also involve a cross-CPU call to trigger the scheduler on
1178 * the target CPU.
1179 */
1180#ifdef CONFIG_SMP
1181
1182#ifndef tsk_is_polling
1183#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1184#endif
1185
31656519 1186static void resched_task(struct task_struct *p)
c24d20db
IM
1187{
1188 int cpu;
1189
1190 assert_spin_locked(&task_rq(p)->lock);
1191
5ed0cec0 1192 if (test_tsk_need_resched(p))
c24d20db
IM
1193 return;
1194
5ed0cec0 1195 set_tsk_need_resched(p);
c24d20db
IM
1196
1197 cpu = task_cpu(p);
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /* NEED_RESCHED must be visible before we test polling */
1202 smp_mb();
1203 if (!tsk_is_polling(p))
1204 smp_send_reschedule(cpu);
1205}
1206
1207static void resched_cpu(int cpu)
1208{
1209 struct rq *rq = cpu_rq(cpu);
1210 unsigned long flags;
1211
1212 if (!spin_trylock_irqsave(&rq->lock, flags))
1213 return;
1214 resched_task(cpu_curr(cpu));
1215 spin_unlock_irqrestore(&rq->lock, flags);
1216}
06d8308c
TG
1217
1218#ifdef CONFIG_NO_HZ
1219/*
1220 * When add_timer_on() enqueues a timer into the timer wheel of an
1221 * idle CPU then this timer might expire before the next timer event
1222 * which is scheduled to wake up that CPU. In case of a completely
1223 * idle system the next event might even be infinite time into the
1224 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1225 * leaves the inner idle loop so the newly added timer is taken into
1226 * account when the CPU goes back to idle and evaluates the timer
1227 * wheel for the next timer event.
1228 */
1229void wake_up_idle_cpu(int cpu)
1230{
1231 struct rq *rq = cpu_rq(cpu);
1232
1233 if (cpu == smp_processor_id())
1234 return;
1235
1236 /*
1237 * This is safe, as this function is called with the timer
1238 * wheel base lock of (cpu) held. When the CPU is on the way
1239 * to idle and has not yet set rq->curr to idle then it will
1240 * be serialized on the timer wheel base lock and take the new
1241 * timer into account automatically.
1242 */
1243 if (rq->curr != rq->idle)
1244 return;
1245
1246 /*
1247 * We can set TIF_RESCHED on the idle task of the other CPU
1248 * lockless. The worst case is that the other CPU runs the
1249 * idle task through an additional NOOP schedule()
1250 */
5ed0cec0 1251 set_tsk_need_resched(rq->idle);
06d8308c
TG
1252
1253 /* NEED_RESCHED must be visible before we test polling */
1254 smp_mb();
1255 if (!tsk_is_polling(rq->idle))
1256 smp_send_reschedule(cpu);
1257}
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
6d6bc0ad 1260#else /* !CONFIG_SMP */
31656519 1261static void resched_task(struct task_struct *p)
c24d20db
IM
1262{
1263 assert_spin_locked(&task_rq(p)->lock);
31656519 1264 set_tsk_need_resched(p);
c24d20db 1265}
6d6bc0ad 1266#endif /* CONFIG_SMP */
c24d20db 1267
45bf76df
IM
1268#if BITS_PER_LONG == 32
1269# define WMULT_CONST (~0UL)
1270#else
1271# define WMULT_CONST (1UL << 32)
1272#endif
1273
1274#define WMULT_SHIFT 32
1275
194081eb
IM
1276/*
1277 * Shift right and round:
1278 */
cf2ab469 1279#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1280
a7be37ac
PZ
1281/*
1282 * delta *= weight / lw
1283 */
cb1c4fc9 1284static unsigned long
45bf76df
IM
1285calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1286 struct load_weight *lw)
1287{
1288 u64 tmp;
1289
7a232e03
LJ
1290 if (!lw->inv_weight) {
1291 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1292 lw->inv_weight = 1;
1293 else
1294 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1295 / (lw->weight+1);
1296 }
45bf76df
IM
1297
1298 tmp = (u64)delta_exec * weight;
1299 /*
1300 * Check whether we'd overflow the 64-bit multiplication:
1301 */
194081eb 1302 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1303 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1304 WMULT_SHIFT/2);
1305 else
cf2ab469 1306 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1307
ecf691da 1308 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1312{
1313 lw->weight += inc;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
1091985b 1317static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1318{
1319 lw->weight -= dec;
e89996ae 1320 lw->inv_weight = 0;
45bf76df
IM
1321}
1322
2dd73a4f
PW
1323/*
1324 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1325 * of tasks with abnormal "nice" values across CPUs the contribution that
1326 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1327 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1328 * scaled version of the new time slice allocation that they receive on time
1329 * slice expiry etc.
1330 */
1331
cce7ade8
PZ
1332#define WEIGHT_IDLEPRIO 3
1333#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1334
1335/*
1336 * Nice levels are multiplicative, with a gentle 10% change for every
1337 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1338 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1339 * that remained on nice 0.
1340 *
1341 * The "10% effect" is relative and cumulative: from _any_ nice level,
1342 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1343 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1344 * If a task goes up by ~10% and another task goes down by ~10% then
1345 * the relative distance between them is ~25%.)
dd41f596
IM
1346 */
1347static const int prio_to_weight[40] = {
254753dc
IM
1348 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1349 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1350 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1351 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1352 /* 0 */ 1024, 820, 655, 526, 423,
1353 /* 5 */ 335, 272, 215, 172, 137,
1354 /* 10 */ 110, 87, 70, 56, 45,
1355 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1356};
1357
5714d2de
IM
1358/*
1359 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1360 *
1361 * In cases where the weight does not change often, we can use the
1362 * precalculated inverse to speed up arithmetics by turning divisions
1363 * into multiplications:
1364 */
dd41f596 1365static const u32 prio_to_wmult[40] = {
254753dc
IM
1366 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1367 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1368 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1369 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1370 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1371 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1372 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1373 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1374};
2dd73a4f 1375
dd41f596
IM
1376static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1377
1378/*
1379 * runqueue iterator, to support SMP load-balancing between different
1380 * scheduling classes, without having to expose their internal data
1381 * structures to the load-balancing proper:
1382 */
1383struct rq_iterator {
1384 void *arg;
1385 struct task_struct *(*start)(void *);
1386 struct task_struct *(*next)(void *);
1387};
1388
e1d1484f
PW
1389#ifdef CONFIG_SMP
1390static unsigned long
1391balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 unsigned long max_load_move, struct sched_domain *sd,
1393 enum cpu_idle_type idle, int *all_pinned,
1394 int *this_best_prio, struct rq_iterator *iterator);
1395
1396static int
1397iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1398 struct sched_domain *sd, enum cpu_idle_type idle,
1399 struct rq_iterator *iterator);
e1d1484f 1400#endif
dd41f596 1401
d842de87
SV
1402#ifdef CONFIG_CGROUP_CPUACCT
1403static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1404#else
1405static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1406#endif
1407
18d95a28
PZ
1408static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1409{
1410 update_load_add(&rq->load, load);
1411}
1412
1413static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1414{
1415 update_load_sub(&rq->load, load);
1416}
1417
7940ca36 1418#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1419typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1420
1421/*
1422 * Iterate the full tree, calling @down when first entering a node and @up when
1423 * leaving it for the final time.
1424 */
eb755805 1425static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1426{
1427 struct task_group *parent, *child;
eb755805 1428 int ret;
c09595f6
PZ
1429
1430 rcu_read_lock();
1431 parent = &root_task_group;
1432down:
eb755805
PZ
1433 ret = (*down)(parent, data);
1434 if (ret)
1435 goto out_unlock;
c09595f6
PZ
1436 list_for_each_entry_rcu(child, &parent->children, siblings) {
1437 parent = child;
1438 goto down;
1439
1440up:
1441 continue;
1442 }
eb755805
PZ
1443 ret = (*up)(parent, data);
1444 if (ret)
1445 goto out_unlock;
c09595f6
PZ
1446
1447 child = parent;
1448 parent = parent->parent;
1449 if (parent)
1450 goto up;
eb755805 1451out_unlock:
c09595f6 1452 rcu_read_unlock();
eb755805
PZ
1453
1454 return ret;
c09595f6
PZ
1455}
1456
eb755805
PZ
1457static int tg_nop(struct task_group *tg, void *data)
1458{
1459 return 0;
c09595f6 1460}
eb755805
PZ
1461#endif
1462
1463#ifdef CONFIG_SMP
1464static unsigned long source_load(int cpu, int type);
1465static unsigned long target_load(int cpu, int type);
1466static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1467
1468static unsigned long cpu_avg_load_per_task(int cpu)
1469{
1470 struct rq *rq = cpu_rq(cpu);
af6d596f 1471 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1472
4cd42620
SR
1473 if (nr_running)
1474 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1475 else
1476 rq->avg_load_per_task = 0;
eb755805
PZ
1477
1478 return rq->avg_load_per_task;
1479}
1480
1481#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1482
c09595f6
PZ
1483static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1484
1485/*
1486 * Calculate and set the cpu's group shares.
1487 */
1488static void
ffda12a1
PZ
1489update_group_shares_cpu(struct task_group *tg, int cpu,
1490 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1491{
c09595f6
PZ
1492 unsigned long shares;
1493 unsigned long rq_weight;
1494
c8cba857 1495 if (!tg->se[cpu])
c09595f6
PZ
1496 return;
1497
ec4e0e2f 1498 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1499
c09595f6
PZ
1500 /*
1501 * \Sum shares * rq_weight
1502 * shares = -----------------------
1503 * \Sum rq_weight
1504 *
1505 */
ec4e0e2f 1506 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1507 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1508
ffda12a1
PZ
1509 if (abs(shares - tg->se[cpu]->load.weight) >
1510 sysctl_sched_shares_thresh) {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long flags;
c09595f6 1513
ffda12a1 1514 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1515 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1516
ffda12a1
PZ
1517 __set_se_shares(tg->se[cpu], shares);
1518 spin_unlock_irqrestore(&rq->lock, flags);
1519 }
18d95a28 1520}
c09595f6
PZ
1521
1522/*
c8cba857
PZ
1523 * Re-compute the task group their per cpu shares over the given domain.
1524 * This needs to be done in a bottom-up fashion because the rq weight of a
1525 * parent group depends on the shares of its child groups.
c09595f6 1526 */
eb755805 1527static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1528{
ec4e0e2f 1529 unsigned long weight, rq_weight = 0;
c8cba857 1530 unsigned long shares = 0;
eb755805 1531 struct sched_domain *sd = data;
c8cba857 1532 int i;
c09595f6 1533
758b2cdc 1534 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1535 /*
1536 * If there are currently no tasks on the cpu pretend there
1537 * is one of average load so that when a new task gets to
1538 * run here it will not get delayed by group starvation.
1539 */
1540 weight = tg->cfs_rq[i]->load.weight;
1541 if (!weight)
1542 weight = NICE_0_LOAD;
1543
1544 tg->cfs_rq[i]->rq_weight = weight;
1545 rq_weight += weight;
c8cba857 1546 shares += tg->cfs_rq[i]->shares;
c09595f6 1547 }
c09595f6 1548
c8cba857
PZ
1549 if ((!shares && rq_weight) || shares > tg->shares)
1550 shares = tg->shares;
1551
1552 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1553 shares = tg->shares;
c09595f6 1554
758b2cdc 1555 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1556 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1557
1558 return 0;
c09595f6
PZ
1559}
1560
1561/*
c8cba857
PZ
1562 * Compute the cpu's hierarchical load factor for each task group.
1563 * This needs to be done in a top-down fashion because the load of a child
1564 * group is a fraction of its parents load.
c09595f6 1565 */
eb755805 1566static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1567{
c8cba857 1568 unsigned long load;
eb755805 1569 long cpu = (long)data;
c09595f6 1570
c8cba857
PZ
1571 if (!tg->parent) {
1572 load = cpu_rq(cpu)->load.weight;
1573 } else {
1574 load = tg->parent->cfs_rq[cpu]->h_load;
1575 load *= tg->cfs_rq[cpu]->shares;
1576 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1577 }
c09595f6 1578
c8cba857 1579 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1580
eb755805 1581 return 0;
c09595f6
PZ
1582}
1583
c8cba857 1584static void update_shares(struct sched_domain *sd)
4d8d595d 1585{
2398f2c6
PZ
1586 u64 now = cpu_clock(raw_smp_processor_id());
1587 s64 elapsed = now - sd->last_update;
1588
1589 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1590 sd->last_update = now;
eb755805 1591 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1592 }
4d8d595d
PZ
1593}
1594
3e5459b4
PZ
1595static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1596{
1597 spin_unlock(&rq->lock);
1598 update_shares(sd);
1599 spin_lock(&rq->lock);
1600}
1601
eb755805 1602static void update_h_load(long cpu)
c09595f6 1603{
eb755805 1604 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1605}
1606
c09595f6
PZ
1607#else
1608
c8cba857 1609static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1610{
1611}
1612
3e5459b4
PZ
1613static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1614{
1615}
1616
18d95a28
PZ
1617#endif
1618
8f45e2b5
GH
1619#ifdef CONFIG_PREEMPT
1620
70574a99 1621/*
8f45e2b5
GH
1622 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1623 * way at the expense of forcing extra atomic operations in all
1624 * invocations. This assures that the double_lock is acquired using the
1625 * same underlying policy as the spinlock_t on this architecture, which
1626 * reduces latency compared to the unfair variant below. However, it
1627 * also adds more overhead and therefore may reduce throughput.
70574a99 1628 */
8f45e2b5
GH
1629static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630 __releases(this_rq->lock)
1631 __acquires(busiest->lock)
1632 __acquires(this_rq->lock)
1633{
1634 spin_unlock(&this_rq->lock);
1635 double_rq_lock(this_rq, busiest);
1636
1637 return 1;
1638}
1639
1640#else
1641/*
1642 * Unfair double_lock_balance: Optimizes throughput at the expense of
1643 * latency by eliminating extra atomic operations when the locks are
1644 * already in proper order on entry. This favors lower cpu-ids and will
1645 * grant the double lock to lower cpus over higher ids under contention,
1646 * regardless of entry order into the function.
1647 */
1648static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1649 __releases(this_rq->lock)
1650 __acquires(busiest->lock)
1651 __acquires(this_rq->lock)
1652{
1653 int ret = 0;
1654
70574a99
AD
1655 if (unlikely(!spin_trylock(&busiest->lock))) {
1656 if (busiest < this_rq) {
1657 spin_unlock(&this_rq->lock);
1658 spin_lock(&busiest->lock);
1659 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1660 ret = 1;
1661 } else
1662 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 return ret;
1665}
1666
8f45e2b5
GH
1667#endif /* CONFIG_PREEMPT */
1668
1669/*
1670 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1671 */
1672static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1673{
1674 if (unlikely(!irqs_disabled())) {
1675 /* printk() doesn't work good under rq->lock */
1676 spin_unlock(&this_rq->lock);
1677 BUG_ON(1);
1678 }
1679
1680 return _double_lock_balance(this_rq, busiest);
1681}
1682
70574a99
AD
1683static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1684 __releases(busiest->lock)
1685{
1686 spin_unlock(&busiest->lock);
1687 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1688}
18d95a28
PZ
1689#endif
1690
30432094 1691#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1692static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1693{
30432094 1694#ifdef CONFIG_SMP
34e83e85
IM
1695 cfs_rq->shares = shares;
1696#endif
1697}
30432094 1698#endif
e7693a36 1699
dd41f596 1700#include "sched_stats.h"
dd41f596 1701#include "sched_idletask.c"
5522d5d5
IM
1702#include "sched_fair.c"
1703#include "sched_rt.c"
dd41f596
IM
1704#ifdef CONFIG_SCHED_DEBUG
1705# include "sched_debug.c"
1706#endif
1707
1708#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1709#define for_each_class(class) \
1710 for (class = sched_class_highest; class; class = class->next)
dd41f596 1711
c09595f6 1712static void inc_nr_running(struct rq *rq)
9c217245
IM
1713{
1714 rq->nr_running++;
9c217245
IM
1715}
1716
c09595f6 1717static void dec_nr_running(struct rq *rq)
9c217245
IM
1718{
1719 rq->nr_running--;
9c217245
IM
1720}
1721
45bf76df
IM
1722static void set_load_weight(struct task_struct *p)
1723{
1724 if (task_has_rt_policy(p)) {
dd41f596
IM
1725 p->se.load.weight = prio_to_weight[0] * 2;
1726 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1727 return;
1728 }
45bf76df 1729
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
2087a1ad
GH
1743static void update_avg(u64 *avg, u64 sample)
1744{
1745 s64 diff = sample - *avg;
1746 *avg += diff >> 3;
1747}
1748
8159f87e 1749static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1750{
831451ac
PZ
1751 if (wakeup)
1752 p->se.start_runtime = p->se.sum_exec_runtime;
1753
dd41f596 1754 sched_info_queued(p);
fd390f6a 1755 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1756 p->se.on_rq = 1;
71f8bd46
IM
1757}
1758
69be72c1 1759static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1760{
831451ac
PZ
1761 if (sleep) {
1762 if (p->se.last_wakeup) {
1763 update_avg(&p->se.avg_overlap,
1764 p->se.sum_exec_runtime - p->se.last_wakeup);
1765 p->se.last_wakeup = 0;
1766 } else {
1767 update_avg(&p->se.avg_wakeup,
1768 sysctl_sched_wakeup_granularity);
1769 }
2087a1ad
GH
1770 }
1771
46ac22ba 1772 sched_info_dequeued(p);
f02231e5 1773 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1774 p->se.on_rq = 0;
71f8bd46
IM
1775}
1776
14531189 1777/*
dd41f596 1778 * __normal_prio - return the priority that is based on the static prio
14531189 1779 */
14531189
IM
1780static inline int __normal_prio(struct task_struct *p)
1781{
dd41f596 1782 return p->static_prio;
14531189
IM
1783}
1784
b29739f9
IM
1785/*
1786 * Calculate the expected normal priority: i.e. priority
1787 * without taking RT-inheritance into account. Might be
1788 * boosted by interactivity modifiers. Changes upon fork,
1789 * setprio syscalls, and whenever the interactivity
1790 * estimator recalculates.
1791 */
36c8b586 1792static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1793{
1794 int prio;
1795
e05606d3 1796 if (task_has_rt_policy(p))
b29739f9
IM
1797 prio = MAX_RT_PRIO-1 - p->rt_priority;
1798 else
1799 prio = __normal_prio(p);
1800 return prio;
1801}
1802
1803/*
1804 * Calculate the current priority, i.e. the priority
1805 * taken into account by the scheduler. This value might
1806 * be boosted by RT tasks, or might be boosted by
1807 * interactivity modifiers. Will be RT if the task got
1808 * RT-boosted. If not then it returns p->normal_prio.
1809 */
36c8b586 1810static int effective_prio(struct task_struct *p)
b29739f9
IM
1811{
1812 p->normal_prio = normal_prio(p);
1813 /*
1814 * If we are RT tasks or we were boosted to RT priority,
1815 * keep the priority unchanged. Otherwise, update priority
1816 * to the normal priority:
1817 */
1818 if (!rt_prio(p->prio))
1819 return p->normal_prio;
1820 return p->prio;
1821}
1822
1da177e4 1823/*
dd41f596 1824 * activate_task - move a task to the runqueue.
1da177e4 1825 */
dd41f596 1826static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1827{
d9514f6c 1828 if (task_contributes_to_load(p))
dd41f596 1829 rq->nr_uninterruptible--;
1da177e4 1830
8159f87e 1831 enqueue_task(rq, p, wakeup);
c09595f6 1832 inc_nr_running(rq);
1da177e4
LT
1833}
1834
1da177e4
LT
1835/*
1836 * deactivate_task - remove a task from the runqueue.
1837 */
2e1cb74a 1838static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1839{
d9514f6c 1840 if (task_contributes_to_load(p))
dd41f596
IM
1841 rq->nr_uninterruptible++;
1842
69be72c1 1843 dequeue_task(rq, p, sleep);
c09595f6 1844 dec_nr_running(rq);
1da177e4
LT
1845}
1846
1da177e4
LT
1847/**
1848 * task_curr - is this task currently executing on a CPU?
1849 * @p: the task in question.
1850 */
36c8b586 1851inline int task_curr(const struct task_struct *p)
1da177e4
LT
1852{
1853 return cpu_curr(task_cpu(p)) == p;
1854}
1855
dd41f596
IM
1856static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1857{
6f505b16 1858 set_task_rq(p, cpu);
dd41f596 1859#ifdef CONFIG_SMP
ce96b5ac
DA
1860 /*
1861 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1862 * successfuly executed on another CPU. We must ensure that updates of
1863 * per-task data have been completed by this moment.
1864 */
1865 smp_wmb();
dd41f596 1866 task_thread_info(p)->cpu = cpu;
dd41f596 1867#endif
2dd73a4f
PW
1868}
1869
cb469845
SR
1870static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1871 const struct sched_class *prev_class,
1872 int oldprio, int running)
1873{
1874 if (prev_class != p->sched_class) {
1875 if (prev_class->switched_from)
1876 prev_class->switched_from(rq, p, running);
1877 p->sched_class->switched_to(rq, p, running);
1878 } else
1879 p->sched_class->prio_changed(rq, p, oldprio, running);
1880}
1881
1da177e4 1882#ifdef CONFIG_SMP
c65cc870 1883
e958b360
TG
1884/* Used instead of source_load when we know the type == 0 */
1885static unsigned long weighted_cpuload(const int cpu)
1886{
1887 return cpu_rq(cpu)->load.weight;
1888}
1889
cc367732
IM
1890/*
1891 * Is this task likely cache-hot:
1892 */
e7693a36 1893static int
cc367732
IM
1894task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1895{
1896 s64 delta;
1897
f540a608
IM
1898 /*
1899 * Buddy candidates are cache hot:
1900 */
4793241b
PZ
1901 if (sched_feat(CACHE_HOT_BUDDY) &&
1902 (&p->se == cfs_rq_of(&p->se)->next ||
1903 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1904 return 1;
1905
cc367732
IM
1906 if (p->sched_class != &fair_sched_class)
1907 return 0;
1908
6bc1665b
IM
1909 if (sysctl_sched_migration_cost == -1)
1910 return 1;
1911 if (sysctl_sched_migration_cost == 0)
1912 return 0;
1913
cc367732
IM
1914 delta = now - p->se.exec_start;
1915
1916 return delta < (s64)sysctl_sched_migration_cost;
1917}
1918
1919
dd41f596 1920void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1921{
dd41f596
IM
1922 int old_cpu = task_cpu(p);
1923 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1924 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1925 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1926 u64 clock_offset;
dd41f596
IM
1927
1928 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1929
cbc34ed1
PZ
1930 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1931
6cfb0d5d
IM
1932#ifdef CONFIG_SCHEDSTATS
1933 if (p->se.wait_start)
1934 p->se.wait_start -= clock_offset;
dd41f596
IM
1935 if (p->se.sleep_start)
1936 p->se.sleep_start -= clock_offset;
1937 if (p->se.block_start)
1938 p->se.block_start -= clock_offset;
cc367732
IM
1939 if (old_cpu != new_cpu) {
1940 schedstat_inc(p, se.nr_migrations);
1941 if (task_hot(p, old_rq->clock, NULL))
1942 schedstat_inc(p, se.nr_forced2_migrations);
1943 }
6cfb0d5d 1944#endif
2830cf8c
SV
1945 p->se.vruntime -= old_cfsrq->min_vruntime -
1946 new_cfsrq->min_vruntime;
dd41f596
IM
1947
1948 __set_task_cpu(p, new_cpu);
c65cc870
IM
1949}
1950
70b97a7f 1951struct migration_req {
1da177e4 1952 struct list_head list;
1da177e4 1953
36c8b586 1954 struct task_struct *task;
1da177e4
LT
1955 int dest_cpu;
1956
1da177e4 1957 struct completion done;
70b97a7f 1958};
1da177e4
LT
1959
1960/*
1961 * The task's runqueue lock must be held.
1962 * Returns true if you have to wait for migration thread.
1963 */
36c8b586 1964static int
70b97a7f 1965migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1966{
70b97a7f 1967 struct rq *rq = task_rq(p);
1da177e4
LT
1968
1969 /*
1970 * If the task is not on a runqueue (and not running), then
1971 * it is sufficient to simply update the task's cpu field.
1972 */
dd41f596 1973 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1974 set_task_cpu(p, dest_cpu);
1975 return 0;
1976 }
1977
1978 init_completion(&req->done);
1da177e4
LT
1979 req->task = p;
1980 req->dest_cpu = dest_cpu;
1981 list_add(&req->list, &rq->migration_queue);
48f24c4d 1982
1da177e4
LT
1983 return 1;
1984}
1985
1986/*
1987 * wait_task_inactive - wait for a thread to unschedule.
1988 *
85ba2d86
RM
1989 * If @match_state is nonzero, it's the @p->state value just checked and
1990 * not expected to change. If it changes, i.e. @p might have woken up,
1991 * then return zero. When we succeed in waiting for @p to be off its CPU,
1992 * we return a positive number (its total switch count). If a second call
1993 * a short while later returns the same number, the caller can be sure that
1994 * @p has remained unscheduled the whole time.
1995 *
1da177e4
LT
1996 * The caller must ensure that the task *will* unschedule sometime soon,
1997 * else this function might spin for a *long* time. This function can't
1998 * be called with interrupts off, or it may introduce deadlock with
1999 * smp_call_function() if an IPI is sent by the same process we are
2000 * waiting to become inactive.
2001 */
85ba2d86 2002unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2003{
2004 unsigned long flags;
dd41f596 2005 int running, on_rq;
85ba2d86 2006 unsigned long ncsw;
70b97a7f 2007 struct rq *rq;
1da177e4 2008
3a5c359a
AK
2009 for (;;) {
2010 /*
2011 * We do the initial early heuristics without holding
2012 * any task-queue locks at all. We'll only try to get
2013 * the runqueue lock when things look like they will
2014 * work out!
2015 */
2016 rq = task_rq(p);
fa490cfd 2017
3a5c359a
AK
2018 /*
2019 * If the task is actively running on another CPU
2020 * still, just relax and busy-wait without holding
2021 * any locks.
2022 *
2023 * NOTE! Since we don't hold any locks, it's not
2024 * even sure that "rq" stays as the right runqueue!
2025 * But we don't care, since "task_running()" will
2026 * return false if the runqueue has changed and p
2027 * is actually now running somewhere else!
2028 */
85ba2d86
RM
2029 while (task_running(rq, p)) {
2030 if (match_state && unlikely(p->state != match_state))
2031 return 0;
3a5c359a 2032 cpu_relax();
85ba2d86 2033 }
fa490cfd 2034
3a5c359a
AK
2035 /*
2036 * Ok, time to look more closely! We need the rq
2037 * lock now, to be *sure*. If we're wrong, we'll
2038 * just go back and repeat.
2039 */
2040 rq = task_rq_lock(p, &flags);
0a16b607 2041 trace_sched_wait_task(rq, p);
3a5c359a
AK
2042 running = task_running(rq, p);
2043 on_rq = p->se.on_rq;
85ba2d86 2044 ncsw = 0;
f31e11d8 2045 if (!match_state || p->state == match_state)
93dcf55f 2046 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2047 task_rq_unlock(rq, &flags);
fa490cfd 2048
85ba2d86
RM
2049 /*
2050 * If it changed from the expected state, bail out now.
2051 */
2052 if (unlikely(!ncsw))
2053 break;
2054
3a5c359a
AK
2055 /*
2056 * Was it really running after all now that we
2057 * checked with the proper locks actually held?
2058 *
2059 * Oops. Go back and try again..
2060 */
2061 if (unlikely(running)) {
2062 cpu_relax();
2063 continue;
2064 }
fa490cfd 2065
3a5c359a
AK
2066 /*
2067 * It's not enough that it's not actively running,
2068 * it must be off the runqueue _entirely_, and not
2069 * preempted!
2070 *
2071 * So if it wa still runnable (but just not actively
2072 * running right now), it's preempted, and we should
2073 * yield - it could be a while.
2074 */
2075 if (unlikely(on_rq)) {
2076 schedule_timeout_uninterruptible(1);
2077 continue;
2078 }
fa490cfd 2079
3a5c359a
AK
2080 /*
2081 * Ahh, all good. It wasn't running, and it wasn't
2082 * runnable, which means that it will never become
2083 * running in the future either. We're all done!
2084 */
2085 break;
2086 }
85ba2d86
RM
2087
2088 return ncsw;
1da177e4
LT
2089}
2090
2091/***
2092 * kick_process - kick a running thread to enter/exit the kernel
2093 * @p: the to-be-kicked thread
2094 *
2095 * Cause a process which is running on another CPU to enter
2096 * kernel-mode, without any delay. (to get signals handled.)
2097 *
2098 * NOTE: this function doesnt have to take the runqueue lock,
2099 * because all it wants to ensure is that the remote task enters
2100 * the kernel. If the IPI races and the task has been migrated
2101 * to another CPU then no harm is done and the purpose has been
2102 * achieved as well.
2103 */
36c8b586 2104void kick_process(struct task_struct *p)
1da177e4
LT
2105{
2106 int cpu;
2107
2108 preempt_disable();
2109 cpu = task_cpu(p);
2110 if ((cpu != smp_processor_id()) && task_curr(p))
2111 smp_send_reschedule(cpu);
2112 preempt_enable();
2113}
2114
2115/*
2dd73a4f
PW
2116 * Return a low guess at the load of a migration-source cpu weighted
2117 * according to the scheduling class and "nice" value.
1da177e4
LT
2118 *
2119 * We want to under-estimate the load of migration sources, to
2120 * balance conservatively.
2121 */
a9957449 2122static unsigned long source_load(int cpu, int type)
1da177e4 2123{
70b97a7f 2124 struct rq *rq = cpu_rq(cpu);
dd41f596 2125 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2126
93b75217 2127 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2128 return total;
b910472d 2129
dd41f596 2130 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2131}
2132
2133/*
2dd73a4f
PW
2134 * Return a high guess at the load of a migration-target cpu weighted
2135 * according to the scheduling class and "nice" value.
1da177e4 2136 */
a9957449 2137static unsigned long target_load(int cpu, int type)
1da177e4 2138{
70b97a7f 2139 struct rq *rq = cpu_rq(cpu);
dd41f596 2140 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2141
93b75217 2142 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2143 return total;
3b0bd9bc 2144
dd41f596 2145 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2146}
2147
147cbb4b
NP
2148/*
2149 * find_idlest_group finds and returns the least busy CPU group within the
2150 * domain.
2151 */
2152static struct sched_group *
2153find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2154{
2155 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2156 unsigned long min_load = ULONG_MAX, this_load = 0;
2157 int load_idx = sd->forkexec_idx;
2158 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2159
2160 do {
2161 unsigned long load, avg_load;
2162 int local_group;
2163 int i;
2164
da5a5522 2165 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2166 if (!cpumask_intersects(sched_group_cpus(group),
2167 &p->cpus_allowed))
3a5c359a 2168 continue;
da5a5522 2169
758b2cdc
RR
2170 local_group = cpumask_test_cpu(this_cpu,
2171 sched_group_cpus(group));
147cbb4b
NP
2172
2173 /* Tally up the load of all CPUs in the group */
2174 avg_load = 0;
2175
758b2cdc 2176 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2177 /* Bias balancing toward cpus of our domain */
2178 if (local_group)
2179 load = source_load(i, load_idx);
2180 else
2181 load = target_load(i, load_idx);
2182
2183 avg_load += load;
2184 }
2185
2186 /* Adjust by relative CPU power of the group */
5517d86b
ED
2187 avg_load = sg_div_cpu_power(group,
2188 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2189
2190 if (local_group) {
2191 this_load = avg_load;
2192 this = group;
2193 } else if (avg_load < min_load) {
2194 min_load = avg_load;
2195 idlest = group;
2196 }
3a5c359a 2197 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2198
2199 if (!idlest || 100*this_load < imbalance*min_load)
2200 return NULL;
2201 return idlest;
2202}
2203
2204/*
0feaece9 2205 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2206 */
95cdf3b7 2207static int
758b2cdc 2208find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2209{
2210 unsigned long load, min_load = ULONG_MAX;
2211 int idlest = -1;
2212 int i;
2213
da5a5522 2214 /* Traverse only the allowed CPUs */
758b2cdc 2215 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2216 load = weighted_cpuload(i);
147cbb4b
NP
2217
2218 if (load < min_load || (load == min_load && i == this_cpu)) {
2219 min_load = load;
2220 idlest = i;
2221 }
2222 }
2223
2224 return idlest;
2225}
2226
476d139c
NP
2227/*
2228 * sched_balance_self: balance the current task (running on cpu) in domains
2229 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2230 * SD_BALANCE_EXEC.
2231 *
2232 * Balance, ie. select the least loaded group.
2233 *
2234 * Returns the target CPU number, or the same CPU if no balancing is needed.
2235 *
2236 * preempt must be disabled.
2237 */
2238static int sched_balance_self(int cpu, int flag)
2239{
2240 struct task_struct *t = current;
2241 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2242
c96d145e 2243 for_each_domain(cpu, tmp) {
9761eea8
IM
2244 /*
2245 * If power savings logic is enabled for a domain, stop there.
2246 */
5c45bf27
SS
2247 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2248 break;
476d139c
NP
2249 if (tmp->flags & flag)
2250 sd = tmp;
c96d145e 2251 }
476d139c 2252
039a1c41
PZ
2253 if (sd)
2254 update_shares(sd);
2255
476d139c 2256 while (sd) {
476d139c 2257 struct sched_group *group;
1a848870
SS
2258 int new_cpu, weight;
2259
2260 if (!(sd->flags & flag)) {
2261 sd = sd->child;
2262 continue;
2263 }
476d139c 2264
476d139c 2265 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2266 if (!group) {
2267 sd = sd->child;
2268 continue;
2269 }
476d139c 2270
758b2cdc 2271 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2272 if (new_cpu == -1 || new_cpu == cpu) {
2273 /* Now try balancing at a lower domain level of cpu */
2274 sd = sd->child;
2275 continue;
2276 }
476d139c 2277
1a848870 2278 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2279 cpu = new_cpu;
758b2cdc 2280 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2281 sd = NULL;
476d139c 2282 for_each_domain(cpu, tmp) {
758b2cdc 2283 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2284 break;
2285 if (tmp->flags & flag)
2286 sd = tmp;
2287 }
2288 /* while loop will break here if sd == NULL */
2289 }
2290
2291 return cpu;
2292}
2293
2294#endif /* CONFIG_SMP */
1da177e4 2295
1da177e4
LT
2296/***
2297 * try_to_wake_up - wake up a thread
2298 * @p: the to-be-woken-up thread
2299 * @state: the mask of task states that can be woken
2300 * @sync: do a synchronous wakeup?
2301 *
2302 * Put it on the run-queue if it's not already there. The "current"
2303 * thread is always on the run-queue (except when the actual
2304 * re-schedule is in progress), and as such you're allowed to do
2305 * the simpler "current->state = TASK_RUNNING" to mark yourself
2306 * runnable without the overhead of this.
2307 *
2308 * returns failure only if the task is already active.
2309 */
36c8b586 2310static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2311{
cc367732 2312 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2313 unsigned long flags;
2314 long old_state;
70b97a7f 2315 struct rq *rq;
1da177e4 2316
b85d0667
IM
2317 if (!sched_feat(SYNC_WAKEUPS))
2318 sync = 0;
2319
2398f2c6
PZ
2320#ifdef CONFIG_SMP
2321 if (sched_feat(LB_WAKEUP_UPDATE)) {
2322 struct sched_domain *sd;
2323
2324 this_cpu = raw_smp_processor_id();
2325 cpu = task_cpu(p);
2326
2327 for_each_domain(this_cpu, sd) {
758b2cdc 2328 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2329 update_shares(sd);
2330 break;
2331 }
2332 }
2333 }
2334#endif
2335
04e2f174 2336 smp_wmb();
1da177e4 2337 rq = task_rq_lock(p, &flags);
03e89e45 2338 update_rq_clock(rq);
1da177e4
LT
2339 old_state = p->state;
2340 if (!(old_state & state))
2341 goto out;
2342
dd41f596 2343 if (p->se.on_rq)
1da177e4
LT
2344 goto out_running;
2345
2346 cpu = task_cpu(p);
cc367732 2347 orig_cpu = cpu;
1da177e4
LT
2348 this_cpu = smp_processor_id();
2349
2350#ifdef CONFIG_SMP
2351 if (unlikely(task_running(rq, p)))
2352 goto out_activate;
2353
5d2f5a61
DA
2354 cpu = p->sched_class->select_task_rq(p, sync);
2355 if (cpu != orig_cpu) {
2356 set_task_cpu(p, cpu);
1da177e4
LT
2357 task_rq_unlock(rq, &flags);
2358 /* might preempt at this point */
2359 rq = task_rq_lock(p, &flags);
2360 old_state = p->state;
2361 if (!(old_state & state))
2362 goto out;
dd41f596 2363 if (p->se.on_rq)
1da177e4
LT
2364 goto out_running;
2365
2366 this_cpu = smp_processor_id();
2367 cpu = task_cpu(p);
2368 }
2369
e7693a36
GH
2370#ifdef CONFIG_SCHEDSTATS
2371 schedstat_inc(rq, ttwu_count);
2372 if (cpu == this_cpu)
2373 schedstat_inc(rq, ttwu_local);
2374 else {
2375 struct sched_domain *sd;
2376 for_each_domain(this_cpu, sd) {
758b2cdc 2377 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2378 schedstat_inc(sd, ttwu_wake_remote);
2379 break;
2380 }
2381 }
2382 }
6d6bc0ad 2383#endif /* CONFIG_SCHEDSTATS */
e7693a36 2384
1da177e4
LT
2385out_activate:
2386#endif /* CONFIG_SMP */
cc367732
IM
2387 schedstat_inc(p, se.nr_wakeups);
2388 if (sync)
2389 schedstat_inc(p, se.nr_wakeups_sync);
2390 if (orig_cpu != cpu)
2391 schedstat_inc(p, se.nr_wakeups_migrate);
2392 if (cpu == this_cpu)
2393 schedstat_inc(p, se.nr_wakeups_local);
2394 else
2395 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2396 activate_task(rq, p, 1);
1da177e4
LT
2397 success = 1;
2398
831451ac
PZ
2399 /*
2400 * Only attribute actual wakeups done by this task.
2401 */
2402 if (!in_interrupt()) {
2403 struct sched_entity *se = &current->se;
2404 u64 sample = se->sum_exec_runtime;
2405
2406 if (se->last_wakeup)
2407 sample -= se->last_wakeup;
2408 else
2409 sample -= se->start_runtime;
2410 update_avg(&se->avg_wakeup, sample);
2411
2412 se->last_wakeup = se->sum_exec_runtime;
2413 }
2414
1da177e4 2415out_running:
468a15bb 2416 trace_sched_wakeup(rq, p, success);
15afe09b 2417 check_preempt_curr(rq, p, sync);
4ae7d5ce 2418
1da177e4 2419 p->state = TASK_RUNNING;
9a897c5a
SR
2420#ifdef CONFIG_SMP
2421 if (p->sched_class->task_wake_up)
2422 p->sched_class->task_wake_up(rq, p);
2423#endif
1da177e4
LT
2424out:
2425 task_rq_unlock(rq, &flags);
2426
2427 return success;
2428}
2429
7ad5b3a5 2430int wake_up_process(struct task_struct *p)
1da177e4 2431{
d9514f6c 2432 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2433}
1da177e4
LT
2434EXPORT_SYMBOL(wake_up_process);
2435
7ad5b3a5 2436int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2437{
2438 return try_to_wake_up(p, state, 0);
2439}
2440
1da177e4
LT
2441/*
2442 * Perform scheduler related setup for a newly forked process p.
2443 * p is forked by current.
dd41f596
IM
2444 *
2445 * __sched_fork() is basic setup used by init_idle() too:
2446 */
2447static void __sched_fork(struct task_struct *p)
2448{
dd41f596
IM
2449 p->se.exec_start = 0;
2450 p->se.sum_exec_runtime = 0;
f6cf891c 2451 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2452 p->se.last_wakeup = 0;
2453 p->se.avg_overlap = 0;
831451ac
PZ
2454 p->se.start_runtime = 0;
2455 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2456
2457#ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
dd41f596
IM
2459 p->se.sum_sleep_runtime = 0;
2460 p->se.sleep_start = 0;
dd41f596
IM
2461 p->se.block_start = 0;
2462 p->se.sleep_max = 0;
2463 p->se.block_max = 0;
2464 p->se.exec_max = 0;
eba1ed4b 2465 p->se.slice_max = 0;
dd41f596 2466 p->se.wait_max = 0;
6cfb0d5d 2467#endif
476d139c 2468
fa717060 2469 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2470 p->se.on_rq = 0;
4a55bd5e 2471 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2472
e107be36
AK
2473#ifdef CONFIG_PREEMPT_NOTIFIERS
2474 INIT_HLIST_HEAD(&p->preempt_notifiers);
2475#endif
2476
1da177e4
LT
2477 /*
2478 * We mark the process as running here, but have not actually
2479 * inserted it onto the runqueue yet. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2482 */
2483 p->state = TASK_RUNNING;
dd41f596
IM
2484}
2485
2486/*
2487 * fork()/clone()-time setup:
2488 */
2489void sched_fork(struct task_struct *p, int clone_flags)
2490{
2491 int cpu = get_cpu();
2492
2493 __sched_fork(p);
2494
2495#ifdef CONFIG_SMP
2496 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2497#endif
02e4bac2 2498 set_task_cpu(p, cpu);
b29739f9
IM
2499
2500 /*
2501 * Make sure we do not leak PI boosting priority to the child:
2502 */
2503 p->prio = current->normal_prio;
2ddbf952
HS
2504 if (!rt_prio(p->prio))
2505 p->sched_class = &fair_sched_class;
b29739f9 2506
52f17b6c 2507#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2508 if (likely(sched_info_on()))
52f17b6c 2509 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2510#endif
d6077cb8 2511#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2512 p->oncpu = 0;
2513#endif
1da177e4 2514#ifdef CONFIG_PREEMPT
4866cde0 2515 /* Want to start with kernel preemption disabled. */
a1261f54 2516 task_thread_info(p)->preempt_count = 1;
1da177e4 2517#endif
917b627d
GH
2518 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2519
476d139c 2520 put_cpu();
1da177e4
LT
2521}
2522
2523/*
2524 * wake_up_new_task - wake up a newly created task for the first time.
2525 *
2526 * This function will do some initial scheduler statistics housekeeping
2527 * that must be done for every newly created context, then puts the task
2528 * on the runqueue and wakes it.
2529 */
7ad5b3a5 2530void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2531{
2532 unsigned long flags;
dd41f596 2533 struct rq *rq;
1da177e4
LT
2534
2535 rq = task_rq_lock(p, &flags);
147cbb4b 2536 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2537 update_rq_clock(rq);
1da177e4
LT
2538
2539 p->prio = effective_prio(p);
2540
b9dca1e0 2541 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2542 activate_task(rq, p, 0);
1da177e4 2543 } else {
1da177e4 2544 /*
dd41f596
IM
2545 * Let the scheduling class do new task startup
2546 * management (if any):
1da177e4 2547 */
ee0827d8 2548 p->sched_class->task_new(rq, p);
c09595f6 2549 inc_nr_running(rq);
1da177e4 2550 }
c71dd42d 2551 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2552 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2553#ifdef CONFIG_SMP
2554 if (p->sched_class->task_wake_up)
2555 p->sched_class->task_wake_up(rq, p);
2556#endif
dd41f596 2557 task_rq_unlock(rq, &flags);
1da177e4
LT
2558}
2559
e107be36
AK
2560#ifdef CONFIG_PREEMPT_NOTIFIERS
2561
2562/**
421cee29
RD
2563 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2564 * @notifier: notifier struct to register
e107be36
AK
2565 */
2566void preempt_notifier_register(struct preempt_notifier *notifier)
2567{
2568 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2569}
2570EXPORT_SYMBOL_GPL(preempt_notifier_register);
2571
2572/**
2573 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2574 * @notifier: notifier struct to unregister
e107be36
AK
2575 *
2576 * This is safe to call from within a preemption notifier.
2577 */
2578void preempt_notifier_unregister(struct preempt_notifier *notifier)
2579{
2580 hlist_del(&notifier->link);
2581}
2582EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2583
2584static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2585{
2586 struct preempt_notifier *notifier;
2587 struct hlist_node *node;
2588
2589 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2590 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2591}
2592
2593static void
2594fire_sched_out_preempt_notifiers(struct task_struct *curr,
2595 struct task_struct *next)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_out(notifier, next);
2602}
2603
6d6bc0ad 2604#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2605
2606static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2607{
2608}
2609
2610static void
2611fire_sched_out_preempt_notifiers(struct task_struct *curr,
2612 struct task_struct *next)
2613{
2614}
2615
6d6bc0ad 2616#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2617
4866cde0
NP
2618/**
2619 * prepare_task_switch - prepare to switch tasks
2620 * @rq: the runqueue preparing to switch
421cee29 2621 * @prev: the current task that is being switched out
4866cde0
NP
2622 * @next: the task we are going to switch to.
2623 *
2624 * This is called with the rq lock held and interrupts off. It must
2625 * be paired with a subsequent finish_task_switch after the context
2626 * switch.
2627 *
2628 * prepare_task_switch sets up locking and calls architecture specific
2629 * hooks.
2630 */
e107be36
AK
2631static inline void
2632prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 struct task_struct *next)
4866cde0 2634{
e107be36 2635 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2636 prepare_lock_switch(rq, next);
2637 prepare_arch_switch(next);
2638}
2639
1da177e4
LT
2640/**
2641 * finish_task_switch - clean up after a task-switch
344babaa 2642 * @rq: runqueue associated with task-switch
1da177e4
LT
2643 * @prev: the thread we just switched away from.
2644 *
4866cde0
NP
2645 * finish_task_switch must be called after the context switch, paired
2646 * with a prepare_task_switch call before the context switch.
2647 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2648 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2649 *
2650 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2651 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2652 * with the lock held can cause deadlocks; see schedule() for
2653 * details.)
2654 */
a9957449 2655static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2656 __releases(rq->lock)
2657{
1da177e4 2658 struct mm_struct *mm = rq->prev_mm;
55a101f8 2659 long prev_state;
967fc046
GH
2660#ifdef CONFIG_SMP
2661 int post_schedule = 0;
2662
2663 if (current->sched_class->needs_post_schedule)
2664 post_schedule = current->sched_class->needs_post_schedule(rq);
2665#endif
1da177e4
LT
2666
2667 rq->prev_mm = NULL;
2668
2669 /*
2670 * A task struct has one reference for the use as "current".
c394cc9f 2671 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2672 * schedule one last time. The schedule call will never return, and
2673 * the scheduled task must drop that reference.
c394cc9f 2674 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2675 * still held, otherwise prev could be scheduled on another cpu, die
2676 * there before we look at prev->state, and then the reference would
2677 * be dropped twice.
2678 * Manfred Spraul <manfred@colorfullife.com>
2679 */
55a101f8 2680 prev_state = prev->state;
4866cde0
NP
2681 finish_arch_switch(prev);
2682 finish_lock_switch(rq, prev);
9a897c5a 2683#ifdef CONFIG_SMP
967fc046 2684 if (post_schedule)
9a897c5a
SR
2685 current->sched_class->post_schedule(rq);
2686#endif
e8fa1362 2687
e107be36 2688 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2689 if (mm)
2690 mmdrop(mm);
c394cc9f 2691 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2692 /*
2693 * Remove function-return probe instances associated with this
2694 * task and put them back on the free list.
9761eea8 2695 */
c6fd91f0 2696 kprobe_flush_task(prev);
1da177e4 2697 put_task_struct(prev);
c6fd91f0 2698 }
1da177e4
LT
2699}
2700
2701/**
2702 * schedule_tail - first thing a freshly forked thread must call.
2703 * @prev: the thread we just switched away from.
2704 */
36c8b586 2705asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2706 __releases(rq->lock)
2707{
70b97a7f
IM
2708 struct rq *rq = this_rq();
2709
4866cde0
NP
2710 finish_task_switch(rq, prev);
2711#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2712 /* In this case, finish_task_switch does not reenable preemption */
2713 preempt_enable();
2714#endif
1da177e4 2715 if (current->set_child_tid)
b488893a 2716 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2717}
2718
2719/*
2720 * context_switch - switch to the new MM and the new
2721 * thread's register state.
2722 */
dd41f596 2723static inline void
70b97a7f 2724context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2725 struct task_struct *next)
1da177e4 2726{
dd41f596 2727 struct mm_struct *mm, *oldmm;
1da177e4 2728
e107be36 2729 prepare_task_switch(rq, prev, next);
0a16b607 2730 trace_sched_switch(rq, prev, next);
dd41f596
IM
2731 mm = next->mm;
2732 oldmm = prev->active_mm;
9226d125
ZA
2733 /*
2734 * For paravirt, this is coupled with an exit in switch_to to
2735 * combine the page table reload and the switch backend into
2736 * one hypercall.
2737 */
2738 arch_enter_lazy_cpu_mode();
2739
dd41f596 2740 if (unlikely(!mm)) {
1da177e4
LT
2741 next->active_mm = oldmm;
2742 atomic_inc(&oldmm->mm_count);
2743 enter_lazy_tlb(oldmm, next);
2744 } else
2745 switch_mm(oldmm, mm, next);
2746
dd41f596 2747 if (unlikely(!prev->mm)) {
1da177e4 2748 prev->active_mm = NULL;
1da177e4
LT
2749 rq->prev_mm = oldmm;
2750 }
3a5f5e48
IM
2751 /*
2752 * Since the runqueue lock will be released by the next
2753 * task (which is an invalid locking op but in the case
2754 * of the scheduler it's an obvious special-case), so we
2755 * do an early lockdep release here:
2756 */
2757#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2758 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2759#endif
1da177e4
LT
2760
2761 /* Here we just switch the register state and the stack. */
2762 switch_to(prev, next, prev);
2763
dd41f596
IM
2764 barrier();
2765 /*
2766 * this_rq must be evaluated again because prev may have moved
2767 * CPUs since it called schedule(), thus the 'rq' on its stack
2768 * frame will be invalid.
2769 */
2770 finish_task_switch(this_rq(), prev);
1da177e4
LT
2771}
2772
2773/*
2774 * nr_running, nr_uninterruptible and nr_context_switches:
2775 *
2776 * externally visible scheduler statistics: current number of runnable
2777 * threads, current number of uninterruptible-sleeping threads, total
2778 * number of context switches performed since bootup.
2779 */
2780unsigned long nr_running(void)
2781{
2782 unsigned long i, sum = 0;
2783
2784 for_each_online_cpu(i)
2785 sum += cpu_rq(i)->nr_running;
2786
2787 return sum;
2788}
2789
2790unsigned long nr_uninterruptible(void)
2791{
2792 unsigned long i, sum = 0;
2793
0a945022 2794 for_each_possible_cpu(i)
1da177e4
LT
2795 sum += cpu_rq(i)->nr_uninterruptible;
2796
2797 /*
2798 * Since we read the counters lockless, it might be slightly
2799 * inaccurate. Do not allow it to go below zero though:
2800 */
2801 if (unlikely((long)sum < 0))
2802 sum = 0;
2803
2804 return sum;
2805}
2806
2807unsigned long long nr_context_switches(void)
2808{
cc94abfc
SR
2809 int i;
2810 unsigned long long sum = 0;
1da177e4 2811
0a945022 2812 for_each_possible_cpu(i)
1da177e4
LT
2813 sum += cpu_rq(i)->nr_switches;
2814
2815 return sum;
2816}
2817
2818unsigned long nr_iowait(void)
2819{
2820 unsigned long i, sum = 0;
2821
0a945022 2822 for_each_possible_cpu(i)
1da177e4
LT
2823 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2824
2825 return sum;
2826}
2827
db1b1fef
JS
2828unsigned long nr_active(void)
2829{
2830 unsigned long i, running = 0, uninterruptible = 0;
2831
2832 for_each_online_cpu(i) {
2833 running += cpu_rq(i)->nr_running;
2834 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2835 }
2836
2837 if (unlikely((long)uninterruptible < 0))
2838 uninterruptible = 0;
2839
2840 return running + uninterruptible;
2841}
2842
48f24c4d 2843/*
dd41f596
IM
2844 * Update rq->cpu_load[] statistics. This function is usually called every
2845 * scheduler tick (TICK_NSEC).
48f24c4d 2846 */
dd41f596 2847static void update_cpu_load(struct rq *this_rq)
48f24c4d 2848{
495eca49 2849 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2850 int i, scale;
2851
2852 this_rq->nr_load_updates++;
dd41f596
IM
2853
2854 /* Update our load: */
2855 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2856 unsigned long old_load, new_load;
2857
2858 /* scale is effectively 1 << i now, and >> i divides by scale */
2859
2860 old_load = this_rq->cpu_load[i];
2861 new_load = this_load;
a25707f3
IM
2862 /*
2863 * Round up the averaging division if load is increasing. This
2864 * prevents us from getting stuck on 9 if the load is 10, for
2865 * example.
2866 */
2867 if (new_load > old_load)
2868 new_load += scale-1;
dd41f596
IM
2869 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2870 }
48f24c4d
IM
2871}
2872
dd41f596
IM
2873#ifdef CONFIG_SMP
2874
1da177e4
LT
2875/*
2876 * double_rq_lock - safely lock two runqueues
2877 *
2878 * Note this does not disable interrupts like task_rq_lock,
2879 * you need to do so manually before calling.
2880 */
70b97a7f 2881static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2882 __acquires(rq1->lock)
2883 __acquires(rq2->lock)
2884{
054b9108 2885 BUG_ON(!irqs_disabled());
1da177e4
LT
2886 if (rq1 == rq2) {
2887 spin_lock(&rq1->lock);
2888 __acquire(rq2->lock); /* Fake it out ;) */
2889 } else {
c96d145e 2890 if (rq1 < rq2) {
1da177e4 2891 spin_lock(&rq1->lock);
5e710e37 2892 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2893 } else {
2894 spin_lock(&rq2->lock);
5e710e37 2895 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2896 }
2897 }
6e82a3be
IM
2898 update_rq_clock(rq1);
2899 update_rq_clock(rq2);
1da177e4
LT
2900}
2901
2902/*
2903 * double_rq_unlock - safely unlock two runqueues
2904 *
2905 * Note this does not restore interrupts like task_rq_unlock,
2906 * you need to do so manually after calling.
2907 */
70b97a7f 2908static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2909 __releases(rq1->lock)
2910 __releases(rq2->lock)
2911{
2912 spin_unlock(&rq1->lock);
2913 if (rq1 != rq2)
2914 spin_unlock(&rq2->lock);
2915 else
2916 __release(rq2->lock);
2917}
2918
1da177e4
LT
2919/*
2920 * If dest_cpu is allowed for this process, migrate the task to it.
2921 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2922 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2923 * the cpu_allowed mask is restored.
2924 */
36c8b586 2925static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2926{
70b97a7f 2927 struct migration_req req;
1da177e4 2928 unsigned long flags;
70b97a7f 2929 struct rq *rq;
1da177e4
LT
2930
2931 rq = task_rq_lock(p, &flags);
96f874e2 2932 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2933 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2934 goto out;
2935
2936 /* force the process onto the specified CPU */
2937 if (migrate_task(p, dest_cpu, &req)) {
2938 /* Need to wait for migration thread (might exit: take ref). */
2939 struct task_struct *mt = rq->migration_thread;
36c8b586 2940
1da177e4
LT
2941 get_task_struct(mt);
2942 task_rq_unlock(rq, &flags);
2943 wake_up_process(mt);
2944 put_task_struct(mt);
2945 wait_for_completion(&req.done);
36c8b586 2946
1da177e4
LT
2947 return;
2948 }
2949out:
2950 task_rq_unlock(rq, &flags);
2951}
2952
2953/*
476d139c
NP
2954 * sched_exec - execve() is a valuable balancing opportunity, because at
2955 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2956 */
2957void sched_exec(void)
2958{
1da177e4 2959 int new_cpu, this_cpu = get_cpu();
476d139c 2960 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2961 put_cpu();
476d139c
NP
2962 if (new_cpu != this_cpu)
2963 sched_migrate_task(current, new_cpu);
1da177e4
LT
2964}
2965
2966/*
2967 * pull_task - move a task from a remote runqueue to the local runqueue.
2968 * Both runqueues must be locked.
2969 */
dd41f596
IM
2970static void pull_task(struct rq *src_rq, struct task_struct *p,
2971 struct rq *this_rq, int this_cpu)
1da177e4 2972{
2e1cb74a 2973 deactivate_task(src_rq, p, 0);
1da177e4 2974 set_task_cpu(p, this_cpu);
dd41f596 2975 activate_task(this_rq, p, 0);
1da177e4
LT
2976 /*
2977 * Note that idle threads have a prio of MAX_PRIO, for this test
2978 * to be always true for them.
2979 */
15afe09b 2980 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2981}
2982
2983/*
2984 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2985 */
858119e1 2986static
70b97a7f 2987int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2988 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2989 int *all_pinned)
1da177e4
LT
2990{
2991 /*
2992 * We do not migrate tasks that are:
2993 * 1) running (obviously), or
2994 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2995 * 3) are cache-hot on their current CPU.
2996 */
96f874e2 2997 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2998 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2999 return 0;
cc367732 3000 }
81026794
NP
3001 *all_pinned = 0;
3002
cc367732
IM
3003 if (task_running(rq, p)) {
3004 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3005 return 0;
cc367732 3006 }
1da177e4 3007
da84d961
IM
3008 /*
3009 * Aggressive migration if:
3010 * 1) task is cache cold, or
3011 * 2) too many balance attempts have failed.
3012 */
3013
6bc1665b
IM
3014 if (!task_hot(p, rq->clock, sd) ||
3015 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3016#ifdef CONFIG_SCHEDSTATS
cc367732 3017 if (task_hot(p, rq->clock, sd)) {
da84d961 3018 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3019 schedstat_inc(p, se.nr_forced_migrations);
3020 }
da84d961
IM
3021#endif
3022 return 1;
3023 }
3024
cc367732
IM
3025 if (task_hot(p, rq->clock, sd)) {
3026 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3027 return 0;
cc367732 3028 }
1da177e4
LT
3029 return 1;
3030}
3031
e1d1484f
PW
3032static unsigned long
3033balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3034 unsigned long max_load_move, struct sched_domain *sd,
3035 enum cpu_idle_type idle, int *all_pinned,
3036 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3037{
051c6764 3038 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3039 struct task_struct *p;
3040 long rem_load_move = max_load_move;
1da177e4 3041
e1d1484f 3042 if (max_load_move == 0)
1da177e4
LT
3043 goto out;
3044
81026794
NP
3045 pinned = 1;
3046
1da177e4 3047 /*
dd41f596 3048 * Start the load-balancing iterator:
1da177e4 3049 */
dd41f596
IM
3050 p = iterator->start(iterator->arg);
3051next:
b82d9fdd 3052 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3053 goto out;
051c6764
PZ
3054
3055 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3056 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3057 p = iterator->next(iterator->arg);
3058 goto next;
1da177e4
LT
3059 }
3060
dd41f596 3061 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3062 pulled++;
dd41f596 3063 rem_load_move -= p->se.load.weight;
1da177e4 3064
7e96fa58
GH
3065#ifdef CONFIG_PREEMPT
3066 /*
3067 * NEWIDLE balancing is a source of latency, so preemptible kernels
3068 * will stop after the first task is pulled to minimize the critical
3069 * section.
3070 */
3071 if (idle == CPU_NEWLY_IDLE)
3072 goto out;
3073#endif
3074
2dd73a4f 3075 /*
b82d9fdd 3076 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3077 */
e1d1484f 3078 if (rem_load_move > 0) {
a4ac01c3
PW
3079 if (p->prio < *this_best_prio)
3080 *this_best_prio = p->prio;
dd41f596
IM
3081 p = iterator->next(iterator->arg);
3082 goto next;
1da177e4
LT
3083 }
3084out:
3085 /*
e1d1484f 3086 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3087 * so we can safely collect pull_task() stats here rather than
3088 * inside pull_task().
3089 */
3090 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3091
3092 if (all_pinned)
3093 *all_pinned = pinned;
e1d1484f
PW
3094
3095 return max_load_move - rem_load_move;
1da177e4
LT
3096}
3097
dd41f596 3098/*
43010659
PW
3099 * move_tasks tries to move up to max_load_move weighted load from busiest to
3100 * this_rq, as part of a balancing operation within domain "sd".
3101 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3102 *
3103 * Called with both runqueues locked.
3104 */
3105static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3106 unsigned long max_load_move,
dd41f596
IM
3107 struct sched_domain *sd, enum cpu_idle_type idle,
3108 int *all_pinned)
3109{
5522d5d5 3110 const struct sched_class *class = sched_class_highest;
43010659 3111 unsigned long total_load_moved = 0;
a4ac01c3 3112 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3113
3114 do {
43010659
PW
3115 total_load_moved +=
3116 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3117 max_load_move - total_load_moved,
a4ac01c3 3118 sd, idle, all_pinned, &this_best_prio);
dd41f596 3119 class = class->next;
c4acb2c0 3120
7e96fa58
GH
3121#ifdef CONFIG_PREEMPT
3122 /*
3123 * NEWIDLE balancing is a source of latency, so preemptible
3124 * kernels will stop after the first task is pulled to minimize
3125 * the critical section.
3126 */
c4acb2c0
GH
3127 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3128 break;
7e96fa58 3129#endif
43010659 3130 } while (class && max_load_move > total_load_moved);
dd41f596 3131
43010659
PW
3132 return total_load_moved > 0;
3133}
3134
e1d1484f
PW
3135static int
3136iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3137 struct sched_domain *sd, enum cpu_idle_type idle,
3138 struct rq_iterator *iterator)
3139{
3140 struct task_struct *p = iterator->start(iterator->arg);
3141 int pinned = 0;
3142
3143 while (p) {
3144 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3145 pull_task(busiest, p, this_rq, this_cpu);
3146 /*
3147 * Right now, this is only the second place pull_task()
3148 * is called, so we can safely collect pull_task()
3149 * stats here rather than inside pull_task().
3150 */
3151 schedstat_inc(sd, lb_gained[idle]);
3152
3153 return 1;
3154 }
3155 p = iterator->next(iterator->arg);
3156 }
3157
3158 return 0;
3159}
3160
43010659
PW
3161/*
3162 * move_one_task tries to move exactly one task from busiest to this_rq, as
3163 * part of active balancing operations within "domain".
3164 * Returns 1 if successful and 0 otherwise.
3165 *
3166 * Called with both runqueues locked.
3167 */
3168static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3169 struct sched_domain *sd, enum cpu_idle_type idle)
3170{
5522d5d5 3171 const struct sched_class *class;
43010659
PW
3172
3173 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3174 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3175 return 1;
3176
3177 return 0;
dd41f596
IM
3178}
3179
1da177e4
LT
3180/*
3181 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3182 * domain. It calculates and returns the amount of weighted load which
3183 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3184 */
3185static struct sched_group *
3186find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3187 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3188 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3189{
3190 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3191 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3192 unsigned long max_pull;
2dd73a4f
PW
3193 unsigned long busiest_load_per_task, busiest_nr_running;
3194 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3195 int load_idx, group_imb = 0;
5c45bf27
SS
3196#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3197 int power_savings_balance = 1;
3198 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3199 unsigned long min_nr_running = ULONG_MAX;
3200 struct sched_group *group_min = NULL, *group_leader = NULL;
3201#endif
1da177e4
LT
3202
3203 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3204 busiest_load_per_task = busiest_nr_running = 0;
3205 this_load_per_task = this_nr_running = 0;
408ed066 3206
d15bcfdb 3207 if (idle == CPU_NOT_IDLE)
7897986b 3208 load_idx = sd->busy_idx;
d15bcfdb 3209 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3210 load_idx = sd->newidle_idx;
3211 else
3212 load_idx = sd->idle_idx;
1da177e4
LT
3213
3214 do {
908a7c1b 3215 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3216 int local_group;
3217 int i;
908a7c1b 3218 int __group_imb = 0;
783609c6 3219 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3220 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3221 unsigned long sum_avg_load_per_task;
3222 unsigned long avg_load_per_task;
1da177e4 3223
758b2cdc
RR
3224 local_group = cpumask_test_cpu(this_cpu,
3225 sched_group_cpus(group));
1da177e4 3226
783609c6 3227 if (local_group)
758b2cdc 3228 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3229
1da177e4 3230 /* Tally up the load of all CPUs in the group */
2dd73a4f 3231 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3232 sum_avg_load_per_task = avg_load_per_task = 0;
3233
908a7c1b
KC
3234 max_cpu_load = 0;
3235 min_cpu_load = ~0UL;
1da177e4 3236
758b2cdc
RR
3237 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3238 struct rq *rq = cpu_rq(i);
2dd73a4f 3239
9439aab8 3240 if (*sd_idle && rq->nr_running)
5969fe06
NP
3241 *sd_idle = 0;
3242
1da177e4 3243 /* Bias balancing toward cpus of our domain */
783609c6
SS
3244 if (local_group) {
3245 if (idle_cpu(i) && !first_idle_cpu) {
3246 first_idle_cpu = 1;
3247 balance_cpu = i;
3248 }
3249
a2000572 3250 load = target_load(i, load_idx);
908a7c1b 3251 } else {
a2000572 3252 load = source_load(i, load_idx);
908a7c1b
KC
3253 if (load > max_cpu_load)
3254 max_cpu_load = load;
3255 if (min_cpu_load > load)
3256 min_cpu_load = load;
3257 }
1da177e4
LT
3258
3259 avg_load += load;
2dd73a4f 3260 sum_nr_running += rq->nr_running;
dd41f596 3261 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3262
3263 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3264 }
3265
783609c6
SS
3266 /*
3267 * First idle cpu or the first cpu(busiest) in this sched group
3268 * is eligible for doing load balancing at this and above
9439aab8
SS
3269 * domains. In the newly idle case, we will allow all the cpu's
3270 * to do the newly idle load balance.
783609c6 3271 */
9439aab8
SS
3272 if (idle != CPU_NEWLY_IDLE && local_group &&
3273 balance_cpu != this_cpu && balance) {
783609c6
SS
3274 *balance = 0;
3275 goto ret;
3276 }
3277
1da177e4 3278 total_load += avg_load;
5517d86b 3279 total_pwr += group->__cpu_power;
1da177e4
LT
3280
3281 /* Adjust by relative CPU power of the group */
5517d86b
ED
3282 avg_load = sg_div_cpu_power(group,
3283 avg_load * SCHED_LOAD_SCALE);
1da177e4 3284
408ed066
PZ
3285
3286 /*
3287 * Consider the group unbalanced when the imbalance is larger
3288 * than the average weight of two tasks.
3289 *
3290 * APZ: with cgroup the avg task weight can vary wildly and
3291 * might not be a suitable number - should we keep a
3292 * normalized nr_running number somewhere that negates
3293 * the hierarchy?
3294 */
3295 avg_load_per_task = sg_div_cpu_power(group,
3296 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3297
3298 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3299 __group_imb = 1;
3300
5517d86b 3301 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3302
1da177e4
LT
3303 if (local_group) {
3304 this_load = avg_load;
3305 this = group;
2dd73a4f
PW
3306 this_nr_running = sum_nr_running;
3307 this_load_per_task = sum_weighted_load;
3308 } else if (avg_load > max_load &&
908a7c1b 3309 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3310 max_load = avg_load;
3311 busiest = group;
2dd73a4f
PW
3312 busiest_nr_running = sum_nr_running;
3313 busiest_load_per_task = sum_weighted_load;
908a7c1b 3314 group_imb = __group_imb;
1da177e4 3315 }
5c45bf27
SS
3316
3317#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3318 /*
3319 * Busy processors will not participate in power savings
3320 * balance.
3321 */
dd41f596
IM
3322 if (idle == CPU_NOT_IDLE ||
3323 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3324 goto group_next;
5c45bf27
SS
3325
3326 /*
3327 * If the local group is idle or completely loaded
3328 * no need to do power savings balance at this domain
3329 */
3330 if (local_group && (this_nr_running >= group_capacity ||
3331 !this_nr_running))
3332 power_savings_balance = 0;
3333
dd41f596 3334 /*
5c45bf27
SS
3335 * If a group is already running at full capacity or idle,
3336 * don't include that group in power savings calculations
dd41f596
IM
3337 */
3338 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3339 || !sum_nr_running)
dd41f596 3340 goto group_next;
5c45bf27 3341
dd41f596 3342 /*
5c45bf27 3343 * Calculate the group which has the least non-idle load.
dd41f596
IM
3344 * This is the group from where we need to pick up the load
3345 * for saving power
3346 */
3347 if ((sum_nr_running < min_nr_running) ||
3348 (sum_nr_running == min_nr_running &&
d5679bd1 3349 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3350 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3351 group_min = group;
3352 min_nr_running = sum_nr_running;
5c45bf27
SS
3353 min_load_per_task = sum_weighted_load /
3354 sum_nr_running;
dd41f596 3355 }
5c45bf27 3356
dd41f596 3357 /*
5c45bf27 3358 * Calculate the group which is almost near its
dd41f596
IM
3359 * capacity but still has some space to pick up some load
3360 * from other group and save more power
3361 */
3362 if (sum_nr_running <= group_capacity - 1) {
3363 if (sum_nr_running > leader_nr_running ||
3364 (sum_nr_running == leader_nr_running &&
d5679bd1 3365 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3366 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3367 group_leader = group;
3368 leader_nr_running = sum_nr_running;
3369 }
48f24c4d 3370 }
5c45bf27
SS
3371group_next:
3372#endif
1da177e4
LT
3373 group = group->next;
3374 } while (group != sd->groups);
3375
2dd73a4f 3376 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3377 goto out_balanced;
3378
3379 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3380
3381 if (this_load >= avg_load ||
3382 100*max_load <= sd->imbalance_pct*this_load)
3383 goto out_balanced;
3384
2dd73a4f 3385 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3386 if (group_imb)
3387 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3388
1da177e4
LT
3389 /*
3390 * We're trying to get all the cpus to the average_load, so we don't
3391 * want to push ourselves above the average load, nor do we wish to
3392 * reduce the max loaded cpu below the average load, as either of these
3393 * actions would just result in more rebalancing later, and ping-pong
3394 * tasks around. Thus we look for the minimum possible imbalance.
3395 * Negative imbalances (*we* are more loaded than anyone else) will
3396 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3397 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3398 * appear as very large values with unsigned longs.
3399 */
2dd73a4f
PW
3400 if (max_load <= busiest_load_per_task)
3401 goto out_balanced;
3402
3403 /*
3404 * In the presence of smp nice balancing, certain scenarios can have
3405 * max load less than avg load(as we skip the groups at or below
3406 * its cpu_power, while calculating max_load..)
3407 */
3408 if (max_load < avg_load) {
3409 *imbalance = 0;
3410 goto small_imbalance;
3411 }
0c117f1b
SS
3412
3413 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3414 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3415
1da177e4 3416 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3417 *imbalance = min(max_pull * busiest->__cpu_power,
3418 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3419 / SCHED_LOAD_SCALE;
3420
2dd73a4f
PW
3421 /*
3422 * if *imbalance is less than the average load per runnable task
3423 * there is no gaurantee that any tasks will be moved so we'll have
3424 * a think about bumping its value to force at least one task to be
3425 * moved
3426 */
7fd0d2dd 3427 if (*imbalance < busiest_load_per_task) {
48f24c4d 3428 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3429 unsigned int imbn;
3430
3431small_imbalance:
3432 pwr_move = pwr_now = 0;
3433 imbn = 2;
3434 if (this_nr_running) {
3435 this_load_per_task /= this_nr_running;
3436 if (busiest_load_per_task > this_load_per_task)
3437 imbn = 1;
3438 } else
408ed066 3439 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3440
01c8c57d 3441 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3442 busiest_load_per_task * imbn) {
2dd73a4f 3443 *imbalance = busiest_load_per_task;
1da177e4
LT
3444 return busiest;
3445 }
3446
3447 /*
3448 * OK, we don't have enough imbalance to justify moving tasks,
3449 * however we may be able to increase total CPU power used by
3450 * moving them.
3451 */
3452
5517d86b
ED
3453 pwr_now += busiest->__cpu_power *
3454 min(busiest_load_per_task, max_load);
3455 pwr_now += this->__cpu_power *
3456 min(this_load_per_task, this_load);
1da177e4
LT
3457 pwr_now /= SCHED_LOAD_SCALE;
3458
3459 /* Amount of load we'd subtract */
5517d86b
ED
3460 tmp = sg_div_cpu_power(busiest,
3461 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3462 if (max_load > tmp)
5517d86b 3463 pwr_move += busiest->__cpu_power *
2dd73a4f 3464 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3465
3466 /* Amount of load we'd add */
5517d86b 3467 if (max_load * busiest->__cpu_power <
33859f7f 3468 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3469 tmp = sg_div_cpu_power(this,
3470 max_load * busiest->__cpu_power);
1da177e4 3471 else
5517d86b
ED
3472 tmp = sg_div_cpu_power(this,
3473 busiest_load_per_task * SCHED_LOAD_SCALE);
3474 pwr_move += this->__cpu_power *
3475 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3476 pwr_move /= SCHED_LOAD_SCALE;
3477
3478 /* Move if we gain throughput */
7fd0d2dd
SS
3479 if (pwr_move > pwr_now)
3480 *imbalance = busiest_load_per_task;
1da177e4
LT
3481 }
3482
1da177e4
LT
3483 return busiest;
3484
3485out_balanced:
5c45bf27 3486#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3487 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3488 goto ret;
1da177e4 3489
5c45bf27
SS
3490 if (this == group_leader && group_leader != group_min) {
3491 *imbalance = min_load_per_task;
7a09b1a2
VS
3492 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3493 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3494 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3495 }
5c45bf27
SS
3496 return group_min;
3497 }
5c45bf27 3498#endif
783609c6 3499ret:
1da177e4
LT
3500 *imbalance = 0;
3501 return NULL;
3502}
3503
3504/*
3505 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3506 */
70b97a7f 3507static struct rq *
d15bcfdb 3508find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3509 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3510{
70b97a7f 3511 struct rq *busiest = NULL, *rq;
2dd73a4f 3512 unsigned long max_load = 0;
1da177e4
LT
3513 int i;
3514
758b2cdc 3515 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3516 unsigned long wl;
0a2966b4 3517
96f874e2 3518 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3519 continue;
3520
48f24c4d 3521 rq = cpu_rq(i);
dd41f596 3522 wl = weighted_cpuload(i);
2dd73a4f 3523
dd41f596 3524 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3525 continue;
1da177e4 3526
dd41f596
IM
3527 if (wl > max_load) {
3528 max_load = wl;
48f24c4d 3529 busiest = rq;
1da177e4
LT
3530 }
3531 }
3532
3533 return busiest;
3534}
3535
77391d71
NP
3536/*
3537 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3538 * so long as it is large enough.
3539 */
3540#define MAX_PINNED_INTERVAL 512
3541
1da177e4
LT
3542/*
3543 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3544 * tasks if there is an imbalance.
1da177e4 3545 */
70b97a7f 3546static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3547 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3548 int *balance, struct cpumask *cpus)
1da177e4 3549{
43010659 3550 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3551 struct sched_group *group;
1da177e4 3552 unsigned long imbalance;
70b97a7f 3553 struct rq *busiest;
fe2eea3f 3554 unsigned long flags;
5969fe06 3555
96f874e2 3556 cpumask_setall(cpus);
7c16ec58 3557
89c4710e
SS
3558 /*
3559 * When power savings policy is enabled for the parent domain, idle
3560 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3561 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3562 * portraying it as CPU_NOT_IDLE.
89c4710e 3563 */
d15bcfdb 3564 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3565 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3566 sd_idle = 1;
1da177e4 3567
2d72376b 3568 schedstat_inc(sd, lb_count[idle]);
1da177e4 3569
0a2966b4 3570redo:
c8cba857 3571 update_shares(sd);
0a2966b4 3572 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3573 cpus, balance);
783609c6 3574
06066714 3575 if (*balance == 0)
783609c6 3576 goto out_balanced;
783609c6 3577
1da177e4
LT
3578 if (!group) {
3579 schedstat_inc(sd, lb_nobusyg[idle]);
3580 goto out_balanced;
3581 }
3582
7c16ec58 3583 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3584 if (!busiest) {
3585 schedstat_inc(sd, lb_nobusyq[idle]);
3586 goto out_balanced;
3587 }
3588
db935dbd 3589 BUG_ON(busiest == this_rq);
1da177e4
LT
3590
3591 schedstat_add(sd, lb_imbalance[idle], imbalance);
3592
43010659 3593 ld_moved = 0;
1da177e4
LT
3594 if (busiest->nr_running > 1) {
3595 /*
3596 * Attempt to move tasks. If find_busiest_group has found
3597 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3598 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3599 * correctly treated as an imbalance.
3600 */
fe2eea3f 3601 local_irq_save(flags);
e17224bf 3602 double_rq_lock(this_rq, busiest);
43010659 3603 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3604 imbalance, sd, idle, &all_pinned);
e17224bf 3605 double_rq_unlock(this_rq, busiest);
fe2eea3f 3606 local_irq_restore(flags);
81026794 3607
46cb4b7c
SS
3608 /*
3609 * some other cpu did the load balance for us.
3610 */
43010659 3611 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3612 resched_cpu(this_cpu);
3613
81026794 3614 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3615 if (unlikely(all_pinned)) {
96f874e2
RR
3616 cpumask_clear_cpu(cpu_of(busiest), cpus);
3617 if (!cpumask_empty(cpus))
0a2966b4 3618 goto redo;
81026794 3619 goto out_balanced;
0a2966b4 3620 }
1da177e4 3621 }
81026794 3622
43010659 3623 if (!ld_moved) {
1da177e4
LT
3624 schedstat_inc(sd, lb_failed[idle]);
3625 sd->nr_balance_failed++;
3626
3627 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3628
fe2eea3f 3629 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3630
3631 /* don't kick the migration_thread, if the curr
3632 * task on busiest cpu can't be moved to this_cpu
3633 */
96f874e2
RR
3634 if (!cpumask_test_cpu(this_cpu,
3635 &busiest->curr->cpus_allowed)) {
fe2eea3f 3636 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3637 all_pinned = 1;
3638 goto out_one_pinned;
3639 }
3640
1da177e4
LT
3641 if (!busiest->active_balance) {
3642 busiest->active_balance = 1;
3643 busiest->push_cpu = this_cpu;
81026794 3644 active_balance = 1;
1da177e4 3645 }
fe2eea3f 3646 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3647 if (active_balance)
1da177e4
LT
3648 wake_up_process(busiest->migration_thread);
3649
3650 /*
3651 * We've kicked active balancing, reset the failure
3652 * counter.
3653 */
39507451 3654 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3655 }
81026794 3656 } else
1da177e4
LT
3657 sd->nr_balance_failed = 0;
3658
81026794 3659 if (likely(!active_balance)) {
1da177e4
LT
3660 /* We were unbalanced, so reset the balancing interval */
3661 sd->balance_interval = sd->min_interval;
81026794
NP
3662 } else {
3663 /*
3664 * If we've begun active balancing, start to back off. This
3665 * case may not be covered by the all_pinned logic if there
3666 * is only 1 task on the busy runqueue (because we don't call
3667 * move_tasks).
3668 */
3669 if (sd->balance_interval < sd->max_interval)
3670 sd->balance_interval *= 2;
1da177e4
LT
3671 }
3672
43010659 3673 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3675 ld_moved = -1;
3676
3677 goto out;
1da177e4
LT
3678
3679out_balanced:
1da177e4
LT
3680 schedstat_inc(sd, lb_balanced[idle]);
3681
16cfb1c0 3682 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3683
3684out_one_pinned:
1da177e4 3685 /* tune up the balancing interval */
77391d71
NP
3686 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3687 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3688 sd->balance_interval *= 2;
3689
48f24c4d 3690 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3691 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3692 ld_moved = -1;
3693 else
3694 ld_moved = 0;
3695out:
c8cba857
PZ
3696 if (ld_moved)
3697 update_shares(sd);
c09595f6 3698 return ld_moved;
1da177e4
LT
3699}
3700
3701/*
3702 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3703 * tasks if there is an imbalance.
3704 *
d15bcfdb 3705 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3706 * this_rq is locked.
3707 */
48f24c4d 3708static int
7c16ec58 3709load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3710 struct cpumask *cpus)
1da177e4
LT
3711{
3712 struct sched_group *group;
70b97a7f 3713 struct rq *busiest = NULL;
1da177e4 3714 unsigned long imbalance;
43010659 3715 int ld_moved = 0;
5969fe06 3716 int sd_idle = 0;
969bb4e4 3717 int all_pinned = 0;
7c16ec58 3718
96f874e2 3719 cpumask_setall(cpus);
5969fe06 3720
89c4710e
SS
3721 /*
3722 * When power savings policy is enabled for the parent domain, idle
3723 * sibling can pick up load irrespective of busy siblings. In this case,
3724 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3725 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3726 */
3727 if (sd->flags & SD_SHARE_CPUPOWER &&
3728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3729 sd_idle = 1;
1da177e4 3730
2d72376b 3731 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3732redo:
3e5459b4 3733 update_shares_locked(this_rq, sd);
d15bcfdb 3734 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3735 &sd_idle, cpus, NULL);
1da177e4 3736 if (!group) {
d15bcfdb 3737 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3738 goto out_balanced;
1da177e4
LT
3739 }
3740
7c16ec58 3741 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3742 if (!busiest) {
d15bcfdb 3743 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3744 goto out_balanced;
1da177e4
LT
3745 }
3746
db935dbd
NP
3747 BUG_ON(busiest == this_rq);
3748
d15bcfdb 3749 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3750
43010659 3751 ld_moved = 0;
d6d5cfaf
NP
3752 if (busiest->nr_running > 1) {
3753 /* Attempt to move tasks */
3754 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3755 /* this_rq->clock is already updated */
3756 update_rq_clock(busiest);
43010659 3757 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3758 imbalance, sd, CPU_NEWLY_IDLE,
3759 &all_pinned);
1b12bbc7 3760 double_unlock_balance(this_rq, busiest);
0a2966b4 3761
969bb4e4 3762 if (unlikely(all_pinned)) {
96f874e2
RR
3763 cpumask_clear_cpu(cpu_of(busiest), cpus);
3764 if (!cpumask_empty(cpus))
0a2966b4
CL
3765 goto redo;
3766 }
d6d5cfaf
NP
3767 }
3768
43010659 3769 if (!ld_moved) {
36dffab6 3770 int active_balance = 0;
ad273b32 3771
d15bcfdb 3772 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3773 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3775 return -1;
ad273b32
VS
3776
3777 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3778 return -1;
3779
3780 if (sd->nr_balance_failed++ < 2)
3781 return -1;
3782
3783 /*
3784 * The only task running in a non-idle cpu can be moved to this
3785 * cpu in an attempt to completely freeup the other CPU
3786 * package. The same method used to move task in load_balance()
3787 * have been extended for load_balance_newidle() to speedup
3788 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3789 *
3790 * The package power saving logic comes from
3791 * find_busiest_group(). If there are no imbalance, then
3792 * f_b_g() will return NULL. However when sched_mc={1,2} then
3793 * f_b_g() will select a group from which a running task may be
3794 * pulled to this cpu in order to make the other package idle.
3795 * If there is no opportunity to make a package idle and if
3796 * there are no imbalance, then f_b_g() will return NULL and no
3797 * action will be taken in load_balance_newidle().
3798 *
3799 * Under normal task pull operation due to imbalance, there
3800 * will be more than one task in the source run queue and
3801 * move_tasks() will succeed. ld_moved will be true and this
3802 * active balance code will not be triggered.
3803 */
3804
3805 /* Lock busiest in correct order while this_rq is held */
3806 double_lock_balance(this_rq, busiest);
3807
3808 /*
3809 * don't kick the migration_thread, if the curr
3810 * task on busiest cpu can't be moved to this_cpu
3811 */
6ca09dfc 3812 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3813 double_unlock_balance(this_rq, busiest);
3814 all_pinned = 1;
3815 return ld_moved;
3816 }
3817
3818 if (!busiest->active_balance) {
3819 busiest->active_balance = 1;
3820 busiest->push_cpu = this_cpu;
3821 active_balance = 1;
3822 }
3823
3824 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3825 /*
3826 * Should not call ttwu while holding a rq->lock
3827 */
3828 spin_unlock(&this_rq->lock);
ad273b32
VS
3829 if (active_balance)
3830 wake_up_process(busiest->migration_thread);
da8d5089 3831 spin_lock(&this_rq->lock);
ad273b32 3832
5969fe06 3833 } else
16cfb1c0 3834 sd->nr_balance_failed = 0;
1da177e4 3835
3e5459b4 3836 update_shares_locked(this_rq, sd);
43010659 3837 return ld_moved;
16cfb1c0
NP
3838
3839out_balanced:
d15bcfdb 3840 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3843 return -1;
16cfb1c0 3844 sd->nr_balance_failed = 0;
48f24c4d 3845
16cfb1c0 3846 return 0;
1da177e4
LT
3847}
3848
3849/*
3850 * idle_balance is called by schedule() if this_cpu is about to become
3851 * idle. Attempts to pull tasks from other CPUs.
3852 */
70b97a7f 3853static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3854{
3855 struct sched_domain *sd;
efbe027e 3856 int pulled_task = 0;
dd41f596 3857 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3858 cpumask_var_t tmpmask;
3859
3860 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3861 return;
1da177e4
LT
3862
3863 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3864 unsigned long interval;
3865
3866 if (!(sd->flags & SD_LOAD_BALANCE))
3867 continue;
3868
3869 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3870 /* If we've pulled tasks over stop searching: */
7c16ec58 3871 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3872 sd, tmpmask);
92c4ca5c
CL
3873
3874 interval = msecs_to_jiffies(sd->balance_interval);
3875 if (time_after(next_balance, sd->last_balance + interval))
3876 next_balance = sd->last_balance + interval;
3877 if (pulled_task)
3878 break;
1da177e4 3879 }
dd41f596 3880 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3881 /*
3882 * We are going idle. next_balance may be set based on
3883 * a busy processor. So reset next_balance.
3884 */
3885 this_rq->next_balance = next_balance;
dd41f596 3886 }
4d2732c6 3887 free_cpumask_var(tmpmask);
1da177e4
LT
3888}
3889
3890/*
3891 * active_load_balance is run by migration threads. It pushes running tasks
3892 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3893 * running on each physical CPU where possible, and avoids physical /
3894 * logical imbalances.
3895 *
3896 * Called with busiest_rq locked.
3897 */
70b97a7f 3898static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3899{
39507451 3900 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3901 struct sched_domain *sd;
3902 struct rq *target_rq;
39507451 3903
48f24c4d 3904 /* Is there any task to move? */
39507451 3905 if (busiest_rq->nr_running <= 1)
39507451
NP
3906 return;
3907
3908 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3909
3910 /*
39507451 3911 * This condition is "impossible", if it occurs
41a2d6cf 3912 * we need to fix it. Originally reported by
39507451 3913 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3914 */
39507451 3915 BUG_ON(busiest_rq == target_rq);
1da177e4 3916
39507451
NP
3917 /* move a task from busiest_rq to target_rq */
3918 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3919 update_rq_clock(busiest_rq);
3920 update_rq_clock(target_rq);
39507451
NP
3921
3922 /* Search for an sd spanning us and the target CPU. */
c96d145e 3923 for_each_domain(target_cpu, sd) {
39507451 3924 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3925 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3926 break;
c96d145e 3927 }
39507451 3928
48f24c4d 3929 if (likely(sd)) {
2d72376b 3930 schedstat_inc(sd, alb_count);
39507451 3931
43010659
PW
3932 if (move_one_task(target_rq, target_cpu, busiest_rq,
3933 sd, CPU_IDLE))
48f24c4d
IM
3934 schedstat_inc(sd, alb_pushed);
3935 else
3936 schedstat_inc(sd, alb_failed);
3937 }
1b12bbc7 3938 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3939}
3940
46cb4b7c
SS
3941#ifdef CONFIG_NO_HZ
3942static struct {
3943 atomic_t load_balancer;
7d1e6a9b 3944 cpumask_var_t cpu_mask;
46cb4b7c
SS
3945} nohz ____cacheline_aligned = {
3946 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3947};
3948
7835b98b 3949/*
46cb4b7c
SS
3950 * This routine will try to nominate the ilb (idle load balancing)
3951 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3952 * load balancing on behalf of all those cpus. If all the cpus in the system
3953 * go into this tickless mode, then there will be no ilb owner (as there is
3954 * no need for one) and all the cpus will sleep till the next wakeup event
3955 * arrives...
3956 *
3957 * For the ilb owner, tick is not stopped. And this tick will be used
3958 * for idle load balancing. ilb owner will still be part of
3959 * nohz.cpu_mask..
7835b98b 3960 *
46cb4b7c
SS
3961 * While stopping the tick, this cpu will become the ilb owner if there
3962 * is no other owner. And will be the owner till that cpu becomes busy
3963 * or if all cpus in the system stop their ticks at which point
3964 * there is no need for ilb owner.
3965 *
3966 * When the ilb owner becomes busy, it nominates another owner, during the
3967 * next busy scheduler_tick()
3968 */
3969int select_nohz_load_balancer(int stop_tick)
3970{
3971 int cpu = smp_processor_id();
3972
3973 if (stop_tick) {
46cb4b7c
SS
3974 cpu_rq(cpu)->in_nohz_recently = 1;
3975
483b4ee6
SS
3976 if (!cpu_active(cpu)) {
3977 if (atomic_read(&nohz.load_balancer) != cpu)
3978 return 0;
3979
3980 /*
3981 * If we are going offline and still the leader,
3982 * give up!
3983 */
46cb4b7c
SS
3984 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3985 BUG();
483b4ee6 3986
46cb4b7c
SS
3987 return 0;
3988 }
3989
483b4ee6
SS
3990 cpumask_set_cpu(cpu, nohz.cpu_mask);
3991
46cb4b7c 3992 /* time for ilb owner also to sleep */
7d1e6a9b 3993 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3994 if (atomic_read(&nohz.load_balancer) == cpu)
3995 atomic_set(&nohz.load_balancer, -1);
3996 return 0;
3997 }
3998
3999 if (atomic_read(&nohz.load_balancer) == -1) {
4000 /* make me the ilb owner */
4001 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4002 return 1;
4003 } else if (atomic_read(&nohz.load_balancer) == cpu)
4004 return 1;
4005 } else {
7d1e6a9b 4006 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4007 return 0;
4008
7d1e6a9b 4009 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4010
4011 if (atomic_read(&nohz.load_balancer) == cpu)
4012 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4013 BUG();
4014 }
4015 return 0;
4016}
4017#endif
4018
4019static DEFINE_SPINLOCK(balancing);
4020
4021/*
7835b98b
CL
4022 * It checks each scheduling domain to see if it is due to be balanced,
4023 * and initiates a balancing operation if so.
4024 *
4025 * Balancing parameters are set up in arch_init_sched_domains.
4026 */
a9957449 4027static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4028{
46cb4b7c
SS
4029 int balance = 1;
4030 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4031 unsigned long interval;
4032 struct sched_domain *sd;
46cb4b7c 4033 /* Earliest time when we have to do rebalance again */
c9819f45 4034 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4035 int update_next_balance = 0;
d07355f5 4036 int need_serialize;
a0e90245
RR
4037 cpumask_var_t tmp;
4038
4039 /* Fails alloc? Rebalancing probably not a priority right now. */
4040 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4041 return;
1da177e4 4042
46cb4b7c 4043 for_each_domain(cpu, sd) {
1da177e4
LT
4044 if (!(sd->flags & SD_LOAD_BALANCE))
4045 continue;
4046
4047 interval = sd->balance_interval;
d15bcfdb 4048 if (idle != CPU_IDLE)
1da177e4
LT
4049 interval *= sd->busy_factor;
4050
4051 /* scale ms to jiffies */
4052 interval = msecs_to_jiffies(interval);
4053 if (unlikely(!interval))
4054 interval = 1;
dd41f596
IM
4055 if (interval > HZ*NR_CPUS/10)
4056 interval = HZ*NR_CPUS/10;
4057
d07355f5 4058 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4059
d07355f5 4060 if (need_serialize) {
08c183f3
CL
4061 if (!spin_trylock(&balancing))
4062 goto out;
4063 }
4064
c9819f45 4065 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4066 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4067 /*
4068 * We've pulled tasks over so either we're no
5969fe06
NP
4069 * longer idle, or one of our SMT siblings is
4070 * not idle.
4071 */
d15bcfdb 4072 idle = CPU_NOT_IDLE;
1da177e4 4073 }
1bd77f2d 4074 sd->last_balance = jiffies;
1da177e4 4075 }
d07355f5 4076 if (need_serialize)
08c183f3
CL
4077 spin_unlock(&balancing);
4078out:
f549da84 4079 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4080 next_balance = sd->last_balance + interval;
f549da84
SS
4081 update_next_balance = 1;
4082 }
783609c6
SS
4083
4084 /*
4085 * Stop the load balance at this level. There is another
4086 * CPU in our sched group which is doing load balancing more
4087 * actively.
4088 */
4089 if (!balance)
4090 break;
1da177e4 4091 }
f549da84
SS
4092
4093 /*
4094 * next_balance will be updated only when there is a need.
4095 * When the cpu is attached to null domain for ex, it will not be
4096 * updated.
4097 */
4098 if (likely(update_next_balance))
4099 rq->next_balance = next_balance;
a0e90245
RR
4100
4101 free_cpumask_var(tmp);
46cb4b7c
SS
4102}
4103
4104/*
4105 * run_rebalance_domains is triggered when needed from the scheduler tick.
4106 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4107 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4108 */
4109static void run_rebalance_domains(struct softirq_action *h)
4110{
dd41f596
IM
4111 int this_cpu = smp_processor_id();
4112 struct rq *this_rq = cpu_rq(this_cpu);
4113 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4114 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4115
dd41f596 4116 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4117
4118#ifdef CONFIG_NO_HZ
4119 /*
4120 * If this cpu is the owner for idle load balancing, then do the
4121 * balancing on behalf of the other idle cpus whose ticks are
4122 * stopped.
4123 */
dd41f596
IM
4124 if (this_rq->idle_at_tick &&
4125 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4126 struct rq *rq;
4127 int balance_cpu;
4128
7d1e6a9b
RR
4129 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4130 if (balance_cpu == this_cpu)
4131 continue;
4132
46cb4b7c
SS
4133 /*
4134 * If this cpu gets work to do, stop the load balancing
4135 * work being done for other cpus. Next load
4136 * balancing owner will pick it up.
4137 */
4138 if (need_resched())
4139 break;
4140
de0cf899 4141 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4142
4143 rq = cpu_rq(balance_cpu);
dd41f596
IM
4144 if (time_after(this_rq->next_balance, rq->next_balance))
4145 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4146 }
4147 }
4148#endif
4149}
4150
8a0be9ef
FW
4151static inline int on_null_domain(int cpu)
4152{
4153 return !rcu_dereference(cpu_rq(cpu)->sd);
4154}
4155
46cb4b7c
SS
4156/*
4157 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4158 *
4159 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4160 * idle load balancing owner or decide to stop the periodic load balancing,
4161 * if the whole system is idle.
4162 */
dd41f596 4163static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4164{
46cb4b7c
SS
4165#ifdef CONFIG_NO_HZ
4166 /*
4167 * If we were in the nohz mode recently and busy at the current
4168 * scheduler tick, then check if we need to nominate new idle
4169 * load balancer.
4170 */
4171 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4172 rq->in_nohz_recently = 0;
4173
4174 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4175 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4176 atomic_set(&nohz.load_balancer, -1);
4177 }
4178
4179 if (atomic_read(&nohz.load_balancer) == -1) {
4180 /*
4181 * simple selection for now: Nominate the
4182 * first cpu in the nohz list to be the next
4183 * ilb owner.
4184 *
4185 * TBD: Traverse the sched domains and nominate
4186 * the nearest cpu in the nohz.cpu_mask.
4187 */
7d1e6a9b 4188 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4189
434d53b0 4190 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4191 resched_cpu(ilb);
4192 }
4193 }
4194
4195 /*
4196 * If this cpu is idle and doing idle load balancing for all the
4197 * cpus with ticks stopped, is it time for that to stop?
4198 */
4199 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4200 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4201 resched_cpu(cpu);
4202 return;
4203 }
4204
4205 /*
4206 * If this cpu is idle and the idle load balancing is done by
4207 * someone else, then no need raise the SCHED_SOFTIRQ
4208 */
4209 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4210 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4211 return;
4212#endif
8a0be9ef
FW
4213 /* Don't need to rebalance while attached to NULL domain */
4214 if (time_after_eq(jiffies, rq->next_balance) &&
4215 likely(!on_null_domain(cpu)))
46cb4b7c 4216 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4217}
dd41f596
IM
4218
4219#else /* CONFIG_SMP */
4220
1da177e4
LT
4221/*
4222 * on UP we do not need to balance between CPUs:
4223 */
70b97a7f 4224static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4225{
4226}
dd41f596 4227
1da177e4
LT
4228#endif
4229
1da177e4
LT
4230DEFINE_PER_CPU(struct kernel_stat, kstat);
4231
4232EXPORT_PER_CPU_SYMBOL(kstat);
4233
4234/*
f06febc9
FM
4235 * Return any ns on the sched_clock that have not yet been banked in
4236 * @p in case that task is currently running.
1da177e4 4237 */
bb34d92f 4238unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4239{
1da177e4 4240 unsigned long flags;
41b86e9c 4241 struct rq *rq;
bb34d92f 4242 u64 ns = 0;
48f24c4d 4243
41b86e9c 4244 rq = task_rq_lock(p, &flags);
1508487e 4245
051a1d1a 4246 if (task_current(rq, p)) {
f06febc9
FM
4247 u64 delta_exec;
4248
a8e504d2
IM
4249 update_rq_clock(rq);
4250 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4251 if ((s64)delta_exec > 0)
bb34d92f 4252 ns = delta_exec;
41b86e9c 4253 }
48f24c4d 4254
41b86e9c 4255 task_rq_unlock(rq, &flags);
48f24c4d 4256
1da177e4
LT
4257 return ns;
4258}
4259
1da177e4
LT
4260/*
4261 * Account user cpu time to a process.
4262 * @p: the process that the cpu time gets accounted to
1da177e4 4263 * @cputime: the cpu time spent in user space since the last update
457533a7 4264 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4265 */
457533a7
MS
4266void account_user_time(struct task_struct *p, cputime_t cputime,
4267 cputime_t cputime_scaled)
1da177e4
LT
4268{
4269 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4270 cputime64_t tmp;
4271
457533a7 4272 /* Add user time to process. */
1da177e4 4273 p->utime = cputime_add(p->utime, cputime);
457533a7 4274 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4275 account_group_user_time(p, cputime);
1da177e4
LT
4276
4277 /* Add user time to cpustat. */
4278 tmp = cputime_to_cputime64(cputime);
4279 if (TASK_NICE(p) > 0)
4280 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4281 else
4282 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4283 /* Account for user time used */
4284 acct_update_integrals(p);
1da177e4
LT
4285}
4286
94886b84
LV
4287/*
4288 * Account guest cpu time to a process.
4289 * @p: the process that the cpu time gets accounted to
4290 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4291 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4292 */
457533a7
MS
4293static void account_guest_time(struct task_struct *p, cputime_t cputime,
4294 cputime_t cputime_scaled)
94886b84
LV
4295{
4296 cputime64_t tmp;
4297 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4298
4299 tmp = cputime_to_cputime64(cputime);
4300
457533a7 4301 /* Add guest time to process. */
94886b84 4302 p->utime = cputime_add(p->utime, cputime);
457533a7 4303 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4304 account_group_user_time(p, cputime);
94886b84
LV
4305 p->gtime = cputime_add(p->gtime, cputime);
4306
457533a7 4307 /* Add guest time to cpustat. */
94886b84
LV
4308 cpustat->user = cputime64_add(cpustat->user, tmp);
4309 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4310}
4311
1da177e4
LT
4312/*
4313 * Account system cpu time to a process.
4314 * @p: the process that the cpu time gets accounted to
4315 * @hardirq_offset: the offset to subtract from hardirq_count()
4316 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4317 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4318 */
4319void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4320 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4321{
4322 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4323 cputime64_t tmp;
4324
983ed7a6 4325 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4326 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4327 return;
4328 }
94886b84 4329
457533a7 4330 /* Add system time to process. */
1da177e4 4331 p->stime = cputime_add(p->stime, cputime);
457533a7 4332 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4333 account_group_system_time(p, cputime);
1da177e4
LT
4334
4335 /* Add system time to cpustat. */
4336 tmp = cputime_to_cputime64(cputime);
4337 if (hardirq_count() - hardirq_offset)
4338 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4339 else if (softirq_count())
4340 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4341 else
79741dd3
MS
4342 cpustat->system = cputime64_add(cpustat->system, tmp);
4343
1da177e4
LT
4344 /* Account for system time used */
4345 acct_update_integrals(p);
1da177e4
LT
4346}
4347
c66f08be 4348/*
1da177e4 4349 * Account for involuntary wait time.
1da177e4 4350 * @steal: the cpu time spent in involuntary wait
c66f08be 4351 */
79741dd3 4352void account_steal_time(cputime_t cputime)
c66f08be 4353{
79741dd3
MS
4354 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4355 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4356
4357 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4358}
4359
1da177e4 4360/*
79741dd3
MS
4361 * Account for idle time.
4362 * @cputime: the cpu time spent in idle wait
1da177e4 4363 */
79741dd3 4364void account_idle_time(cputime_t cputime)
1da177e4
LT
4365{
4366 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4367 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4368 struct rq *rq = this_rq();
1da177e4 4369
79741dd3
MS
4370 if (atomic_read(&rq->nr_iowait) > 0)
4371 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4372 else
4373 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4374}
4375
79741dd3
MS
4376#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4377
4378/*
4379 * Account a single tick of cpu time.
4380 * @p: the process that the cpu time gets accounted to
4381 * @user_tick: indicates if the tick is a user or a system tick
4382 */
4383void account_process_tick(struct task_struct *p, int user_tick)
4384{
4385 cputime_t one_jiffy = jiffies_to_cputime(1);
4386 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4387 struct rq *rq = this_rq();
4388
4389 if (user_tick)
4390 account_user_time(p, one_jiffy, one_jiffy_scaled);
4391 else if (p != rq->idle)
4392 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4393 one_jiffy_scaled);
4394 else
4395 account_idle_time(one_jiffy);
4396}
4397
4398/*
4399 * Account multiple ticks of steal time.
4400 * @p: the process from which the cpu time has been stolen
4401 * @ticks: number of stolen ticks
4402 */
4403void account_steal_ticks(unsigned long ticks)
4404{
4405 account_steal_time(jiffies_to_cputime(ticks));
4406}
4407
4408/*
4409 * Account multiple ticks of idle time.
4410 * @ticks: number of stolen ticks
4411 */
4412void account_idle_ticks(unsigned long ticks)
4413{
4414 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4415}
4416
79741dd3
MS
4417#endif
4418
49048622
BS
4419/*
4420 * Use precise platform statistics if available:
4421 */
4422#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4423cputime_t task_utime(struct task_struct *p)
4424{
4425 return p->utime;
4426}
4427
4428cputime_t task_stime(struct task_struct *p)
4429{
4430 return p->stime;
4431}
4432#else
4433cputime_t task_utime(struct task_struct *p)
4434{
4435 clock_t utime = cputime_to_clock_t(p->utime),
4436 total = utime + cputime_to_clock_t(p->stime);
4437 u64 temp;
4438
4439 /*
4440 * Use CFS's precise accounting:
4441 */
4442 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4443
4444 if (total) {
4445 temp *= utime;
4446 do_div(temp, total);
4447 }
4448 utime = (clock_t)temp;
4449
4450 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4451 return p->prev_utime;
4452}
4453
4454cputime_t task_stime(struct task_struct *p)
4455{
4456 clock_t stime;
4457
4458 /*
4459 * Use CFS's precise accounting. (we subtract utime from
4460 * the total, to make sure the total observed by userspace
4461 * grows monotonically - apps rely on that):
4462 */
4463 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4464 cputime_to_clock_t(task_utime(p));
4465
4466 if (stime >= 0)
4467 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4468
4469 return p->prev_stime;
4470}
4471#endif
4472
4473inline cputime_t task_gtime(struct task_struct *p)
4474{
4475 return p->gtime;
4476}
4477
7835b98b
CL
4478/*
4479 * This function gets called by the timer code, with HZ frequency.
4480 * We call it with interrupts disabled.
4481 *
4482 * It also gets called by the fork code, when changing the parent's
4483 * timeslices.
4484 */
4485void scheduler_tick(void)
4486{
7835b98b
CL
4487 int cpu = smp_processor_id();
4488 struct rq *rq = cpu_rq(cpu);
dd41f596 4489 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4490
4491 sched_clock_tick();
dd41f596
IM
4492
4493 spin_lock(&rq->lock);
3e51f33f 4494 update_rq_clock(rq);
f1a438d8 4495 update_cpu_load(rq);
fa85ae24 4496 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4497 spin_unlock(&rq->lock);
7835b98b 4498
e418e1c2 4499#ifdef CONFIG_SMP
dd41f596
IM
4500 rq->idle_at_tick = idle_cpu(cpu);
4501 trigger_load_balance(rq, cpu);
e418e1c2 4502#endif
1da177e4
LT
4503}
4504
6cd8a4bb
SR
4505#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4506 defined(CONFIG_PREEMPT_TRACER))
4507
4508static inline unsigned long get_parent_ip(unsigned long addr)
4509{
4510 if (in_lock_functions(addr)) {
4511 addr = CALLER_ADDR2;
4512 if (in_lock_functions(addr))
4513 addr = CALLER_ADDR3;
4514 }
4515 return addr;
4516}
1da177e4 4517
43627582 4518void __kprobes add_preempt_count(int val)
1da177e4 4519{
6cd8a4bb 4520#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4521 /*
4522 * Underflow?
4523 */
9a11b49a
IM
4524 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4525 return;
6cd8a4bb 4526#endif
1da177e4 4527 preempt_count() += val;
6cd8a4bb 4528#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4529 /*
4530 * Spinlock count overflowing soon?
4531 */
33859f7f
MOS
4532 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4533 PREEMPT_MASK - 10);
6cd8a4bb
SR
4534#endif
4535 if (preempt_count() == val)
4536 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4537}
4538EXPORT_SYMBOL(add_preempt_count);
4539
43627582 4540void __kprobes sub_preempt_count(int val)
1da177e4 4541{
6cd8a4bb 4542#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4543 /*
4544 * Underflow?
4545 */
01e3eb82 4546 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4547 return;
1da177e4
LT
4548 /*
4549 * Is the spinlock portion underflowing?
4550 */
9a11b49a
IM
4551 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4552 !(preempt_count() & PREEMPT_MASK)))
4553 return;
6cd8a4bb 4554#endif
9a11b49a 4555
6cd8a4bb
SR
4556 if (preempt_count() == val)
4557 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4558 preempt_count() -= val;
4559}
4560EXPORT_SYMBOL(sub_preempt_count);
4561
4562#endif
4563
4564/*
dd41f596 4565 * Print scheduling while atomic bug:
1da177e4 4566 */
dd41f596 4567static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4568{
838225b4
SS
4569 struct pt_regs *regs = get_irq_regs();
4570
4571 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4572 prev->comm, prev->pid, preempt_count());
4573
dd41f596 4574 debug_show_held_locks(prev);
e21f5b15 4575 print_modules();
dd41f596
IM
4576 if (irqs_disabled())
4577 print_irqtrace_events(prev);
838225b4
SS
4578
4579 if (regs)
4580 show_regs(regs);
4581 else
4582 dump_stack();
dd41f596 4583}
1da177e4 4584
dd41f596
IM
4585/*
4586 * Various schedule()-time debugging checks and statistics:
4587 */
4588static inline void schedule_debug(struct task_struct *prev)
4589{
1da177e4 4590 /*
41a2d6cf 4591 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4592 * schedule() atomically, we ignore that path for now.
4593 * Otherwise, whine if we are scheduling when we should not be.
4594 */
3f33a7ce 4595 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4596 __schedule_bug(prev);
4597
1da177e4
LT
4598 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4599
2d72376b 4600 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4601#ifdef CONFIG_SCHEDSTATS
4602 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4603 schedstat_inc(this_rq(), bkl_count);
4604 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4605 }
4606#endif
dd41f596
IM
4607}
4608
4609/*
4610 * Pick up the highest-prio task:
4611 */
4612static inline struct task_struct *
b67802ea 4613pick_next_task(struct rq *rq)
dd41f596 4614{
5522d5d5 4615 const struct sched_class *class;
dd41f596 4616 struct task_struct *p;
1da177e4
LT
4617
4618 /*
dd41f596
IM
4619 * Optimization: we know that if all tasks are in
4620 * the fair class we can call that function directly:
1da177e4 4621 */
dd41f596 4622 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4623 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4624 if (likely(p))
4625 return p;
1da177e4
LT
4626 }
4627
dd41f596
IM
4628 class = sched_class_highest;
4629 for ( ; ; ) {
fb8d4724 4630 p = class->pick_next_task(rq);
dd41f596
IM
4631 if (p)
4632 return p;
4633 /*
4634 * Will never be NULL as the idle class always
4635 * returns a non-NULL p:
4636 */
4637 class = class->next;
4638 }
4639}
1da177e4 4640
dd41f596
IM
4641/*
4642 * schedule() is the main scheduler function.
4643 */
4644asmlinkage void __sched schedule(void)
4645{
4646 struct task_struct *prev, *next;
67ca7bde 4647 unsigned long *switch_count;
dd41f596 4648 struct rq *rq;
31656519 4649 int cpu;
dd41f596
IM
4650
4651need_resched:
4652 preempt_disable();
4653 cpu = smp_processor_id();
4654 rq = cpu_rq(cpu);
4655 rcu_qsctr_inc(cpu);
4656 prev = rq->curr;
4657 switch_count = &prev->nivcsw;
4658
4659 release_kernel_lock(prev);
4660need_resched_nonpreemptible:
4661
4662 schedule_debug(prev);
1da177e4 4663
31656519 4664 if (sched_feat(HRTICK))
f333fdc9 4665 hrtick_clear(rq);
8f4d37ec 4666
8cd162ce 4667 spin_lock_irq(&rq->lock);
3e51f33f 4668 update_rq_clock(rq);
1e819950 4669 clear_tsk_need_resched(prev);
1da177e4 4670
1da177e4 4671 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4672 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4673 prev->state = TASK_RUNNING;
16882c1e 4674 else
2e1cb74a 4675 deactivate_task(rq, prev, 1);
dd41f596 4676 switch_count = &prev->nvcsw;
1da177e4
LT
4677 }
4678
9a897c5a
SR
4679#ifdef CONFIG_SMP
4680 if (prev->sched_class->pre_schedule)
4681 prev->sched_class->pre_schedule(rq, prev);
4682#endif
f65eda4f 4683
dd41f596 4684 if (unlikely(!rq->nr_running))
1da177e4 4685 idle_balance(cpu, rq);
1da177e4 4686
31ee529c 4687 prev->sched_class->put_prev_task(rq, prev);
b67802ea 4688 next = pick_next_task(rq);
1da177e4 4689
1da177e4 4690 if (likely(prev != next)) {
673a90a1
DS
4691 sched_info_switch(prev, next);
4692
1da177e4
LT
4693 rq->nr_switches++;
4694 rq->curr = next;
4695 ++*switch_count;
4696
dd41f596 4697 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4698 /*
4699 * the context switch might have flipped the stack from under
4700 * us, hence refresh the local variables.
4701 */
4702 cpu = smp_processor_id();
4703 rq = cpu_rq(cpu);
1da177e4
LT
4704 } else
4705 spin_unlock_irq(&rq->lock);
4706
8f4d37ec 4707 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4708 goto need_resched_nonpreemptible;
8f4d37ec 4709
1da177e4
LT
4710 preempt_enable_no_resched();
4711 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4712 goto need_resched;
4713}
1da177e4
LT
4714EXPORT_SYMBOL(schedule);
4715
4716#ifdef CONFIG_PREEMPT
4717/*
2ed6e34f 4718 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4719 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4720 * occur there and call schedule directly.
4721 */
4722asmlinkage void __sched preempt_schedule(void)
4723{
4724 struct thread_info *ti = current_thread_info();
6478d880 4725
1da177e4
LT
4726 /*
4727 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4728 * we do not want to preempt the current task. Just return..
1da177e4 4729 */
beed33a8 4730 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4731 return;
4732
3a5c359a
AK
4733 do {
4734 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4735 schedule();
3a5c359a 4736 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4737
3a5c359a
AK
4738 /*
4739 * Check again in case we missed a preemption opportunity
4740 * between schedule and now.
4741 */
4742 barrier();
5ed0cec0 4743 } while (need_resched());
1da177e4 4744}
1da177e4
LT
4745EXPORT_SYMBOL(preempt_schedule);
4746
4747/*
2ed6e34f 4748 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4749 * off of irq context.
4750 * Note, that this is called and return with irqs disabled. This will
4751 * protect us against recursive calling from irq.
4752 */
4753asmlinkage void __sched preempt_schedule_irq(void)
4754{
4755 struct thread_info *ti = current_thread_info();
6478d880 4756
2ed6e34f 4757 /* Catch callers which need to be fixed */
1da177e4
LT
4758 BUG_ON(ti->preempt_count || !irqs_disabled());
4759
3a5c359a
AK
4760 do {
4761 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4762 local_irq_enable();
4763 schedule();
4764 local_irq_disable();
3a5c359a 4765 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4766
3a5c359a
AK
4767 /*
4768 * Check again in case we missed a preemption opportunity
4769 * between schedule and now.
4770 */
4771 barrier();
5ed0cec0 4772 } while (need_resched());
1da177e4
LT
4773}
4774
4775#endif /* CONFIG_PREEMPT */
4776
95cdf3b7
IM
4777int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4778 void *key)
1da177e4 4779{
48f24c4d 4780 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4781}
1da177e4
LT
4782EXPORT_SYMBOL(default_wake_function);
4783
4784/*
41a2d6cf
IM
4785 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4786 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4787 * number) then we wake all the non-exclusive tasks and one exclusive task.
4788 *
4789 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4790 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4791 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4792 */
777c6c5f
JW
4793void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4794 int nr_exclusive, int sync, void *key)
1da177e4 4795{
2e45874c 4796 wait_queue_t *curr, *next;
1da177e4 4797
2e45874c 4798 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4799 unsigned flags = curr->flags;
4800
1da177e4 4801 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4802 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4803 break;
4804 }
4805}
4806
4807/**
4808 * __wake_up - wake up threads blocked on a waitqueue.
4809 * @q: the waitqueue
4810 * @mode: which threads
4811 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4812 * @key: is directly passed to the wakeup function
1da177e4 4813 */
7ad5b3a5 4814void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4815 int nr_exclusive, void *key)
1da177e4
LT
4816{
4817 unsigned long flags;
4818
4819 spin_lock_irqsave(&q->lock, flags);
4820 __wake_up_common(q, mode, nr_exclusive, 0, key);
4821 spin_unlock_irqrestore(&q->lock, flags);
4822}
1da177e4
LT
4823EXPORT_SYMBOL(__wake_up);
4824
4825/*
4826 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4827 */
7ad5b3a5 4828void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4829{
4830 __wake_up_common(q, mode, 1, 0, NULL);
4831}
4832
4833/**
67be2dd1 4834 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4835 * @q: the waitqueue
4836 * @mode: which threads
4837 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4838 *
4839 * The sync wakeup differs that the waker knows that it will schedule
4840 * away soon, so while the target thread will be woken up, it will not
4841 * be migrated to another CPU - ie. the two threads are 'synchronized'
4842 * with each other. This can prevent needless bouncing between CPUs.
4843 *
4844 * On UP it can prevent extra preemption.
4845 */
7ad5b3a5 4846void
95cdf3b7 4847__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4848{
4849 unsigned long flags;
4850 int sync = 1;
4851
4852 if (unlikely(!q))
4853 return;
4854
4855 if (unlikely(!nr_exclusive))
4856 sync = 0;
4857
4858 spin_lock_irqsave(&q->lock, flags);
4859 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4860 spin_unlock_irqrestore(&q->lock, flags);
4861}
4862EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4863
65eb3dc6
KD
4864/**
4865 * complete: - signals a single thread waiting on this completion
4866 * @x: holds the state of this particular completion
4867 *
4868 * This will wake up a single thread waiting on this completion. Threads will be
4869 * awakened in the same order in which they were queued.
4870 *
4871 * See also complete_all(), wait_for_completion() and related routines.
4872 */
b15136e9 4873void complete(struct completion *x)
1da177e4
LT
4874{
4875 unsigned long flags;
4876
4877 spin_lock_irqsave(&x->wait.lock, flags);
4878 x->done++;
d9514f6c 4879 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4880 spin_unlock_irqrestore(&x->wait.lock, flags);
4881}
4882EXPORT_SYMBOL(complete);
4883
65eb3dc6
KD
4884/**
4885 * complete_all: - signals all threads waiting on this completion
4886 * @x: holds the state of this particular completion
4887 *
4888 * This will wake up all threads waiting on this particular completion event.
4889 */
b15136e9 4890void complete_all(struct completion *x)
1da177e4
LT
4891{
4892 unsigned long flags;
4893
4894 spin_lock_irqsave(&x->wait.lock, flags);
4895 x->done += UINT_MAX/2;
d9514f6c 4896 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4897 spin_unlock_irqrestore(&x->wait.lock, flags);
4898}
4899EXPORT_SYMBOL(complete_all);
4900
8cbbe86d
AK
4901static inline long __sched
4902do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4903{
1da177e4
LT
4904 if (!x->done) {
4905 DECLARE_WAITQUEUE(wait, current);
4906
4907 wait.flags |= WQ_FLAG_EXCLUSIVE;
4908 __add_wait_queue_tail(&x->wait, &wait);
4909 do {
94d3d824 4910 if (signal_pending_state(state, current)) {
ea71a546
ON
4911 timeout = -ERESTARTSYS;
4912 break;
8cbbe86d
AK
4913 }
4914 __set_current_state(state);
1da177e4
LT
4915 spin_unlock_irq(&x->wait.lock);
4916 timeout = schedule_timeout(timeout);
4917 spin_lock_irq(&x->wait.lock);
ea71a546 4918 } while (!x->done && timeout);
1da177e4 4919 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4920 if (!x->done)
4921 return timeout;
1da177e4
LT
4922 }
4923 x->done--;
ea71a546 4924 return timeout ?: 1;
1da177e4 4925}
1da177e4 4926
8cbbe86d
AK
4927static long __sched
4928wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4929{
1da177e4
LT
4930 might_sleep();
4931
4932 spin_lock_irq(&x->wait.lock);
8cbbe86d 4933 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4934 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4935 return timeout;
4936}
1da177e4 4937
65eb3dc6
KD
4938/**
4939 * wait_for_completion: - waits for completion of a task
4940 * @x: holds the state of this particular completion
4941 *
4942 * This waits to be signaled for completion of a specific task. It is NOT
4943 * interruptible and there is no timeout.
4944 *
4945 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4946 * and interrupt capability. Also see complete().
4947 */
b15136e9 4948void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4949{
4950 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4951}
8cbbe86d 4952EXPORT_SYMBOL(wait_for_completion);
1da177e4 4953
65eb3dc6
KD
4954/**
4955 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4956 * @x: holds the state of this particular completion
4957 * @timeout: timeout value in jiffies
4958 *
4959 * This waits for either a completion of a specific task to be signaled or for a
4960 * specified timeout to expire. The timeout is in jiffies. It is not
4961 * interruptible.
4962 */
b15136e9 4963unsigned long __sched
8cbbe86d 4964wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4965{
8cbbe86d 4966 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4967}
8cbbe86d 4968EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4969
65eb3dc6
KD
4970/**
4971 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4972 * @x: holds the state of this particular completion
4973 *
4974 * This waits for completion of a specific task to be signaled. It is
4975 * interruptible.
4976 */
8cbbe86d 4977int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4978{
51e97990
AK
4979 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4980 if (t == -ERESTARTSYS)
4981 return t;
4982 return 0;
0fec171c 4983}
8cbbe86d 4984EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4985
65eb3dc6
KD
4986/**
4987 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4988 * @x: holds the state of this particular completion
4989 * @timeout: timeout value in jiffies
4990 *
4991 * This waits for either a completion of a specific task to be signaled or for a
4992 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4993 */
b15136e9 4994unsigned long __sched
8cbbe86d
AK
4995wait_for_completion_interruptible_timeout(struct completion *x,
4996 unsigned long timeout)
0fec171c 4997{
8cbbe86d 4998 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4999}
8cbbe86d 5000EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5001
65eb3dc6
KD
5002/**
5003 * wait_for_completion_killable: - waits for completion of a task (killable)
5004 * @x: holds the state of this particular completion
5005 *
5006 * This waits to be signaled for completion of a specific task. It can be
5007 * interrupted by a kill signal.
5008 */
009e577e
MW
5009int __sched wait_for_completion_killable(struct completion *x)
5010{
5011 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5012 if (t == -ERESTARTSYS)
5013 return t;
5014 return 0;
5015}
5016EXPORT_SYMBOL(wait_for_completion_killable);
5017
be4de352
DC
5018/**
5019 * try_wait_for_completion - try to decrement a completion without blocking
5020 * @x: completion structure
5021 *
5022 * Returns: 0 if a decrement cannot be done without blocking
5023 * 1 if a decrement succeeded.
5024 *
5025 * If a completion is being used as a counting completion,
5026 * attempt to decrement the counter without blocking. This
5027 * enables us to avoid waiting if the resource the completion
5028 * is protecting is not available.
5029 */
5030bool try_wait_for_completion(struct completion *x)
5031{
5032 int ret = 1;
5033
5034 spin_lock_irq(&x->wait.lock);
5035 if (!x->done)
5036 ret = 0;
5037 else
5038 x->done--;
5039 spin_unlock_irq(&x->wait.lock);
5040 return ret;
5041}
5042EXPORT_SYMBOL(try_wait_for_completion);
5043
5044/**
5045 * completion_done - Test to see if a completion has any waiters
5046 * @x: completion structure
5047 *
5048 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5049 * 1 if there are no waiters.
5050 *
5051 */
5052bool completion_done(struct completion *x)
5053{
5054 int ret = 1;
5055
5056 spin_lock_irq(&x->wait.lock);
5057 if (!x->done)
5058 ret = 0;
5059 spin_unlock_irq(&x->wait.lock);
5060 return ret;
5061}
5062EXPORT_SYMBOL(completion_done);
5063
8cbbe86d
AK
5064static long __sched
5065sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5066{
0fec171c
IM
5067 unsigned long flags;
5068 wait_queue_t wait;
5069
5070 init_waitqueue_entry(&wait, current);
1da177e4 5071
8cbbe86d 5072 __set_current_state(state);
1da177e4 5073
8cbbe86d
AK
5074 spin_lock_irqsave(&q->lock, flags);
5075 __add_wait_queue(q, &wait);
5076 spin_unlock(&q->lock);
5077 timeout = schedule_timeout(timeout);
5078 spin_lock_irq(&q->lock);
5079 __remove_wait_queue(q, &wait);
5080 spin_unlock_irqrestore(&q->lock, flags);
5081
5082 return timeout;
5083}
5084
5085void __sched interruptible_sleep_on(wait_queue_head_t *q)
5086{
5087 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5088}
1da177e4
LT
5089EXPORT_SYMBOL(interruptible_sleep_on);
5090
0fec171c 5091long __sched
95cdf3b7 5092interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5093{
8cbbe86d 5094 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5095}
1da177e4
LT
5096EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5097
0fec171c 5098void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5099{
8cbbe86d 5100 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5101}
1da177e4
LT
5102EXPORT_SYMBOL(sleep_on);
5103
0fec171c 5104long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5105{
8cbbe86d 5106 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5107}
1da177e4
LT
5108EXPORT_SYMBOL(sleep_on_timeout);
5109
b29739f9
IM
5110#ifdef CONFIG_RT_MUTEXES
5111
5112/*
5113 * rt_mutex_setprio - set the current priority of a task
5114 * @p: task
5115 * @prio: prio value (kernel-internal form)
5116 *
5117 * This function changes the 'effective' priority of a task. It does
5118 * not touch ->normal_prio like __setscheduler().
5119 *
5120 * Used by the rt_mutex code to implement priority inheritance logic.
5121 */
36c8b586 5122void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5123{
5124 unsigned long flags;
83b699ed 5125 int oldprio, on_rq, running;
70b97a7f 5126 struct rq *rq;
cb469845 5127 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5128
5129 BUG_ON(prio < 0 || prio > MAX_PRIO);
5130
5131 rq = task_rq_lock(p, &flags);
a8e504d2 5132 update_rq_clock(rq);
b29739f9 5133
d5f9f942 5134 oldprio = p->prio;
dd41f596 5135 on_rq = p->se.on_rq;
051a1d1a 5136 running = task_current(rq, p);
0e1f3483 5137 if (on_rq)
69be72c1 5138 dequeue_task(rq, p, 0);
0e1f3483
HS
5139 if (running)
5140 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5141
5142 if (rt_prio(prio))
5143 p->sched_class = &rt_sched_class;
5144 else
5145 p->sched_class = &fair_sched_class;
5146
b29739f9
IM
5147 p->prio = prio;
5148
0e1f3483
HS
5149 if (running)
5150 p->sched_class->set_curr_task(rq);
dd41f596 5151 if (on_rq) {
8159f87e 5152 enqueue_task(rq, p, 0);
cb469845
SR
5153
5154 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5155 }
5156 task_rq_unlock(rq, &flags);
5157}
5158
5159#endif
5160
36c8b586 5161void set_user_nice(struct task_struct *p, long nice)
1da177e4 5162{
dd41f596 5163 int old_prio, delta, on_rq;
1da177e4 5164 unsigned long flags;
70b97a7f 5165 struct rq *rq;
1da177e4
LT
5166
5167 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5168 return;
5169 /*
5170 * We have to be careful, if called from sys_setpriority(),
5171 * the task might be in the middle of scheduling on another CPU.
5172 */
5173 rq = task_rq_lock(p, &flags);
a8e504d2 5174 update_rq_clock(rq);
1da177e4
LT
5175 /*
5176 * The RT priorities are set via sched_setscheduler(), but we still
5177 * allow the 'normal' nice value to be set - but as expected
5178 * it wont have any effect on scheduling until the task is
dd41f596 5179 * SCHED_FIFO/SCHED_RR:
1da177e4 5180 */
e05606d3 5181 if (task_has_rt_policy(p)) {
1da177e4
LT
5182 p->static_prio = NICE_TO_PRIO(nice);
5183 goto out_unlock;
5184 }
dd41f596 5185 on_rq = p->se.on_rq;
c09595f6 5186 if (on_rq)
69be72c1 5187 dequeue_task(rq, p, 0);
1da177e4 5188
1da177e4 5189 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5190 set_load_weight(p);
b29739f9
IM
5191 old_prio = p->prio;
5192 p->prio = effective_prio(p);
5193 delta = p->prio - old_prio;
1da177e4 5194
dd41f596 5195 if (on_rq) {
8159f87e 5196 enqueue_task(rq, p, 0);
1da177e4 5197 /*
d5f9f942
AM
5198 * If the task increased its priority or is running and
5199 * lowered its priority, then reschedule its CPU:
1da177e4 5200 */
d5f9f942 5201 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5202 resched_task(rq->curr);
5203 }
5204out_unlock:
5205 task_rq_unlock(rq, &flags);
5206}
1da177e4
LT
5207EXPORT_SYMBOL(set_user_nice);
5208
e43379f1
MM
5209/*
5210 * can_nice - check if a task can reduce its nice value
5211 * @p: task
5212 * @nice: nice value
5213 */
36c8b586 5214int can_nice(const struct task_struct *p, const int nice)
e43379f1 5215{
024f4747
MM
5216 /* convert nice value [19,-20] to rlimit style value [1,40] */
5217 int nice_rlim = 20 - nice;
48f24c4d 5218
e43379f1
MM
5219 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5220 capable(CAP_SYS_NICE));
5221}
5222
1da177e4
LT
5223#ifdef __ARCH_WANT_SYS_NICE
5224
5225/*
5226 * sys_nice - change the priority of the current process.
5227 * @increment: priority increment
5228 *
5229 * sys_setpriority is a more generic, but much slower function that
5230 * does similar things.
5231 */
5add95d4 5232SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5233{
48f24c4d 5234 long nice, retval;
1da177e4
LT
5235
5236 /*
5237 * Setpriority might change our priority at the same moment.
5238 * We don't have to worry. Conceptually one call occurs first
5239 * and we have a single winner.
5240 */
e43379f1
MM
5241 if (increment < -40)
5242 increment = -40;
1da177e4
LT
5243 if (increment > 40)
5244 increment = 40;
5245
2b8f836f 5246 nice = TASK_NICE(current) + increment;
1da177e4
LT
5247 if (nice < -20)
5248 nice = -20;
5249 if (nice > 19)
5250 nice = 19;
5251
e43379f1
MM
5252 if (increment < 0 && !can_nice(current, nice))
5253 return -EPERM;
5254
1da177e4
LT
5255 retval = security_task_setnice(current, nice);
5256 if (retval)
5257 return retval;
5258
5259 set_user_nice(current, nice);
5260 return 0;
5261}
5262
5263#endif
5264
5265/**
5266 * task_prio - return the priority value of a given task.
5267 * @p: the task in question.
5268 *
5269 * This is the priority value as seen by users in /proc.
5270 * RT tasks are offset by -200. Normal tasks are centered
5271 * around 0, value goes from -16 to +15.
5272 */
36c8b586 5273int task_prio(const struct task_struct *p)
1da177e4
LT
5274{
5275 return p->prio - MAX_RT_PRIO;
5276}
5277
5278/**
5279 * task_nice - return the nice value of a given task.
5280 * @p: the task in question.
5281 */
36c8b586 5282int task_nice(const struct task_struct *p)
1da177e4
LT
5283{
5284 return TASK_NICE(p);
5285}
150d8bed 5286EXPORT_SYMBOL(task_nice);
1da177e4
LT
5287
5288/**
5289 * idle_cpu - is a given cpu idle currently?
5290 * @cpu: the processor in question.
5291 */
5292int idle_cpu(int cpu)
5293{
5294 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5295}
5296
1da177e4
LT
5297/**
5298 * idle_task - return the idle task for a given cpu.
5299 * @cpu: the processor in question.
5300 */
36c8b586 5301struct task_struct *idle_task(int cpu)
1da177e4
LT
5302{
5303 return cpu_rq(cpu)->idle;
5304}
5305
5306/**
5307 * find_process_by_pid - find a process with a matching PID value.
5308 * @pid: the pid in question.
5309 */
a9957449 5310static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5311{
228ebcbe 5312 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5313}
5314
5315/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5316static void
5317__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5318{
dd41f596 5319 BUG_ON(p->se.on_rq);
48f24c4d 5320
1da177e4 5321 p->policy = policy;
dd41f596
IM
5322 switch (p->policy) {
5323 case SCHED_NORMAL:
5324 case SCHED_BATCH:
5325 case SCHED_IDLE:
5326 p->sched_class = &fair_sched_class;
5327 break;
5328 case SCHED_FIFO:
5329 case SCHED_RR:
5330 p->sched_class = &rt_sched_class;
5331 break;
5332 }
5333
1da177e4 5334 p->rt_priority = prio;
b29739f9
IM
5335 p->normal_prio = normal_prio(p);
5336 /* we are holding p->pi_lock already */
5337 p->prio = rt_mutex_getprio(p);
2dd73a4f 5338 set_load_weight(p);
1da177e4
LT
5339}
5340
c69e8d9c
DH
5341/*
5342 * check the target process has a UID that matches the current process's
5343 */
5344static bool check_same_owner(struct task_struct *p)
5345{
5346 const struct cred *cred = current_cred(), *pcred;
5347 bool match;
5348
5349 rcu_read_lock();
5350 pcred = __task_cred(p);
5351 match = (cred->euid == pcred->euid ||
5352 cred->euid == pcred->uid);
5353 rcu_read_unlock();
5354 return match;
5355}
5356
961ccddd
RR
5357static int __sched_setscheduler(struct task_struct *p, int policy,
5358 struct sched_param *param, bool user)
1da177e4 5359{
83b699ed 5360 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5361 unsigned long flags;
cb469845 5362 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5363 struct rq *rq;
1da177e4 5364
66e5393a
SR
5365 /* may grab non-irq protected spin_locks */
5366 BUG_ON(in_interrupt());
1da177e4
LT
5367recheck:
5368 /* double check policy once rq lock held */
5369 if (policy < 0)
5370 policy = oldpolicy = p->policy;
5371 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5372 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5373 policy != SCHED_IDLE)
b0a9499c 5374 return -EINVAL;
1da177e4
LT
5375 /*
5376 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5377 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5378 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5379 */
5380 if (param->sched_priority < 0 ||
95cdf3b7 5381 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5382 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5383 return -EINVAL;
e05606d3 5384 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5385 return -EINVAL;
5386
37e4ab3f
OC
5387 /*
5388 * Allow unprivileged RT tasks to decrease priority:
5389 */
961ccddd 5390 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5391 if (rt_policy(policy)) {
8dc3e909 5392 unsigned long rlim_rtprio;
8dc3e909
ON
5393
5394 if (!lock_task_sighand(p, &flags))
5395 return -ESRCH;
5396 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5397 unlock_task_sighand(p, &flags);
5398
5399 /* can't set/change the rt policy */
5400 if (policy != p->policy && !rlim_rtprio)
5401 return -EPERM;
5402
5403 /* can't increase priority */
5404 if (param->sched_priority > p->rt_priority &&
5405 param->sched_priority > rlim_rtprio)
5406 return -EPERM;
5407 }
dd41f596
IM
5408 /*
5409 * Like positive nice levels, dont allow tasks to
5410 * move out of SCHED_IDLE either:
5411 */
5412 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5413 return -EPERM;
5fe1d75f 5414
37e4ab3f 5415 /* can't change other user's priorities */
c69e8d9c 5416 if (!check_same_owner(p))
37e4ab3f
OC
5417 return -EPERM;
5418 }
1da177e4 5419
725aad24 5420 if (user) {
b68aa230 5421#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5422 /*
5423 * Do not allow realtime tasks into groups that have no runtime
5424 * assigned.
5425 */
9a7e0b18
PZ
5426 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5427 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5428 return -EPERM;
b68aa230
PZ
5429#endif
5430
725aad24
JF
5431 retval = security_task_setscheduler(p, policy, param);
5432 if (retval)
5433 return retval;
5434 }
5435
b29739f9
IM
5436 /*
5437 * make sure no PI-waiters arrive (or leave) while we are
5438 * changing the priority of the task:
5439 */
5440 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5441 /*
5442 * To be able to change p->policy safely, the apropriate
5443 * runqueue lock must be held.
5444 */
b29739f9 5445 rq = __task_rq_lock(p);
1da177e4
LT
5446 /* recheck policy now with rq lock held */
5447 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5448 policy = oldpolicy = -1;
b29739f9
IM
5449 __task_rq_unlock(rq);
5450 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5451 goto recheck;
5452 }
2daa3577 5453 update_rq_clock(rq);
dd41f596 5454 on_rq = p->se.on_rq;
051a1d1a 5455 running = task_current(rq, p);
0e1f3483 5456 if (on_rq)
2e1cb74a 5457 deactivate_task(rq, p, 0);
0e1f3483
HS
5458 if (running)
5459 p->sched_class->put_prev_task(rq, p);
f6b53205 5460
1da177e4 5461 oldprio = p->prio;
dd41f596 5462 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5463
0e1f3483
HS
5464 if (running)
5465 p->sched_class->set_curr_task(rq);
dd41f596
IM
5466 if (on_rq) {
5467 activate_task(rq, p, 0);
cb469845
SR
5468
5469 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5470 }
b29739f9
IM
5471 __task_rq_unlock(rq);
5472 spin_unlock_irqrestore(&p->pi_lock, flags);
5473
95e02ca9
TG
5474 rt_mutex_adjust_pi(p);
5475
1da177e4
LT
5476 return 0;
5477}
961ccddd
RR
5478
5479/**
5480 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5481 * @p: the task in question.
5482 * @policy: new policy.
5483 * @param: structure containing the new RT priority.
5484 *
5485 * NOTE that the task may be already dead.
5486 */
5487int sched_setscheduler(struct task_struct *p, int policy,
5488 struct sched_param *param)
5489{
5490 return __sched_setscheduler(p, policy, param, true);
5491}
1da177e4
LT
5492EXPORT_SYMBOL_GPL(sched_setscheduler);
5493
961ccddd
RR
5494/**
5495 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5496 * @p: the task in question.
5497 * @policy: new policy.
5498 * @param: structure containing the new RT priority.
5499 *
5500 * Just like sched_setscheduler, only don't bother checking if the
5501 * current context has permission. For example, this is needed in
5502 * stop_machine(): we create temporary high priority worker threads,
5503 * but our caller might not have that capability.
5504 */
5505int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5506 struct sched_param *param)
5507{
5508 return __sched_setscheduler(p, policy, param, false);
5509}
5510
95cdf3b7
IM
5511static int
5512do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5513{
1da177e4
LT
5514 struct sched_param lparam;
5515 struct task_struct *p;
36c8b586 5516 int retval;
1da177e4
LT
5517
5518 if (!param || pid < 0)
5519 return -EINVAL;
5520 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5521 return -EFAULT;
5fe1d75f
ON
5522
5523 rcu_read_lock();
5524 retval = -ESRCH;
1da177e4 5525 p = find_process_by_pid(pid);
5fe1d75f
ON
5526 if (p != NULL)
5527 retval = sched_setscheduler(p, policy, &lparam);
5528 rcu_read_unlock();
36c8b586 5529
1da177e4
LT
5530 return retval;
5531}
5532
5533/**
5534 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5535 * @pid: the pid in question.
5536 * @policy: new policy.
5537 * @param: structure containing the new RT priority.
5538 */
5add95d4
HC
5539SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5540 struct sched_param __user *, param)
1da177e4 5541{
c21761f1
JB
5542 /* negative values for policy are not valid */
5543 if (policy < 0)
5544 return -EINVAL;
5545
1da177e4
LT
5546 return do_sched_setscheduler(pid, policy, param);
5547}
5548
5549/**
5550 * sys_sched_setparam - set/change the RT priority of a thread
5551 * @pid: the pid in question.
5552 * @param: structure containing the new RT priority.
5553 */
5add95d4 5554SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5555{
5556 return do_sched_setscheduler(pid, -1, param);
5557}
5558
5559/**
5560 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5561 * @pid: the pid in question.
5562 */
5add95d4 5563SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5564{
36c8b586 5565 struct task_struct *p;
3a5c359a 5566 int retval;
1da177e4
LT
5567
5568 if (pid < 0)
3a5c359a 5569 return -EINVAL;
1da177e4
LT
5570
5571 retval = -ESRCH;
5572 read_lock(&tasklist_lock);
5573 p = find_process_by_pid(pid);
5574 if (p) {
5575 retval = security_task_getscheduler(p);
5576 if (!retval)
5577 retval = p->policy;
5578 }
5579 read_unlock(&tasklist_lock);
1da177e4
LT
5580 return retval;
5581}
5582
5583/**
5584 * sys_sched_getscheduler - get the RT priority of a thread
5585 * @pid: the pid in question.
5586 * @param: structure containing the RT priority.
5587 */
5add95d4 5588SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5589{
5590 struct sched_param lp;
36c8b586 5591 struct task_struct *p;
3a5c359a 5592 int retval;
1da177e4
LT
5593
5594 if (!param || pid < 0)
3a5c359a 5595 return -EINVAL;
1da177e4
LT
5596
5597 read_lock(&tasklist_lock);
5598 p = find_process_by_pid(pid);
5599 retval = -ESRCH;
5600 if (!p)
5601 goto out_unlock;
5602
5603 retval = security_task_getscheduler(p);
5604 if (retval)
5605 goto out_unlock;
5606
5607 lp.sched_priority = p->rt_priority;
5608 read_unlock(&tasklist_lock);
5609
5610 /*
5611 * This one might sleep, we cannot do it with a spinlock held ...
5612 */
5613 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5614
1da177e4
LT
5615 return retval;
5616
5617out_unlock:
5618 read_unlock(&tasklist_lock);
5619 return retval;
5620}
5621
96f874e2 5622long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5623{
5a16f3d3 5624 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5625 struct task_struct *p;
5626 int retval;
1da177e4 5627
95402b38 5628 get_online_cpus();
1da177e4
LT
5629 read_lock(&tasklist_lock);
5630
5631 p = find_process_by_pid(pid);
5632 if (!p) {
5633 read_unlock(&tasklist_lock);
95402b38 5634 put_online_cpus();
1da177e4
LT
5635 return -ESRCH;
5636 }
5637
5638 /*
5639 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5640 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5641 * usage count and then drop tasklist_lock.
5642 */
5643 get_task_struct(p);
5644 read_unlock(&tasklist_lock);
5645
5a16f3d3
RR
5646 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5647 retval = -ENOMEM;
5648 goto out_put_task;
5649 }
5650 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5651 retval = -ENOMEM;
5652 goto out_free_cpus_allowed;
5653 }
1da177e4 5654 retval = -EPERM;
c69e8d9c 5655 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5656 goto out_unlock;
5657
e7834f8f
DQ
5658 retval = security_task_setscheduler(p, 0, NULL);
5659 if (retval)
5660 goto out_unlock;
5661
5a16f3d3
RR
5662 cpuset_cpus_allowed(p, cpus_allowed);
5663 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5664 again:
5a16f3d3 5665 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5666
8707d8b8 5667 if (!retval) {
5a16f3d3
RR
5668 cpuset_cpus_allowed(p, cpus_allowed);
5669 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5670 /*
5671 * We must have raced with a concurrent cpuset
5672 * update. Just reset the cpus_allowed to the
5673 * cpuset's cpus_allowed
5674 */
5a16f3d3 5675 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5676 goto again;
5677 }
5678 }
1da177e4 5679out_unlock:
5a16f3d3
RR
5680 free_cpumask_var(new_mask);
5681out_free_cpus_allowed:
5682 free_cpumask_var(cpus_allowed);
5683out_put_task:
1da177e4 5684 put_task_struct(p);
95402b38 5685 put_online_cpus();
1da177e4
LT
5686 return retval;
5687}
5688
5689static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5690 struct cpumask *new_mask)
1da177e4 5691{
96f874e2
RR
5692 if (len < cpumask_size())
5693 cpumask_clear(new_mask);
5694 else if (len > cpumask_size())
5695 len = cpumask_size();
5696
1da177e4
LT
5697 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5698}
5699
5700/**
5701 * sys_sched_setaffinity - set the cpu affinity of a process
5702 * @pid: pid of the process
5703 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5704 * @user_mask_ptr: user-space pointer to the new cpu mask
5705 */
5add95d4
HC
5706SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5707 unsigned long __user *, user_mask_ptr)
1da177e4 5708{
5a16f3d3 5709 cpumask_var_t new_mask;
1da177e4
LT
5710 int retval;
5711
5a16f3d3
RR
5712 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5713 return -ENOMEM;
1da177e4 5714
5a16f3d3
RR
5715 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5716 if (retval == 0)
5717 retval = sched_setaffinity(pid, new_mask);
5718 free_cpumask_var(new_mask);
5719 return retval;
1da177e4
LT
5720}
5721
96f874e2 5722long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5723{
36c8b586 5724 struct task_struct *p;
1da177e4 5725 int retval;
1da177e4 5726
95402b38 5727 get_online_cpus();
1da177e4
LT
5728 read_lock(&tasklist_lock);
5729
5730 retval = -ESRCH;
5731 p = find_process_by_pid(pid);
5732 if (!p)
5733 goto out_unlock;
5734
e7834f8f
DQ
5735 retval = security_task_getscheduler(p);
5736 if (retval)
5737 goto out_unlock;
5738
96f874e2 5739 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5740
5741out_unlock:
5742 read_unlock(&tasklist_lock);
95402b38 5743 put_online_cpus();
1da177e4 5744
9531b62f 5745 return retval;
1da177e4
LT
5746}
5747
5748/**
5749 * sys_sched_getaffinity - get the cpu affinity of a process
5750 * @pid: pid of the process
5751 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5752 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5753 */
5add95d4
HC
5754SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5755 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5756{
5757 int ret;
f17c8607 5758 cpumask_var_t mask;
1da177e4 5759
f17c8607 5760 if (len < cpumask_size())
1da177e4
LT
5761 return -EINVAL;
5762
f17c8607
RR
5763 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5764 return -ENOMEM;
1da177e4 5765
f17c8607
RR
5766 ret = sched_getaffinity(pid, mask);
5767 if (ret == 0) {
5768 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5769 ret = -EFAULT;
5770 else
5771 ret = cpumask_size();
5772 }
5773 free_cpumask_var(mask);
1da177e4 5774
f17c8607 5775 return ret;
1da177e4
LT
5776}
5777
5778/**
5779 * sys_sched_yield - yield the current processor to other threads.
5780 *
dd41f596
IM
5781 * This function yields the current CPU to other tasks. If there are no
5782 * other threads running on this CPU then this function will return.
1da177e4 5783 */
5add95d4 5784SYSCALL_DEFINE0(sched_yield)
1da177e4 5785{
70b97a7f 5786 struct rq *rq = this_rq_lock();
1da177e4 5787
2d72376b 5788 schedstat_inc(rq, yld_count);
4530d7ab 5789 current->sched_class->yield_task(rq);
1da177e4
LT
5790
5791 /*
5792 * Since we are going to call schedule() anyway, there's
5793 * no need to preempt or enable interrupts:
5794 */
5795 __release(rq->lock);
8a25d5de 5796 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5797 _raw_spin_unlock(&rq->lock);
5798 preempt_enable_no_resched();
5799
5800 schedule();
5801
5802 return 0;
5803}
5804
e7b38404 5805static void __cond_resched(void)
1da177e4 5806{
8e0a43d8
IM
5807#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5808 __might_sleep(__FILE__, __LINE__);
5809#endif
5bbcfd90
IM
5810 /*
5811 * The BKS might be reacquired before we have dropped
5812 * PREEMPT_ACTIVE, which could trigger a second
5813 * cond_resched() call.
5814 */
1da177e4
LT
5815 do {
5816 add_preempt_count(PREEMPT_ACTIVE);
5817 schedule();
5818 sub_preempt_count(PREEMPT_ACTIVE);
5819 } while (need_resched());
5820}
5821
02b67cc3 5822int __sched _cond_resched(void)
1da177e4 5823{
9414232f
IM
5824 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5825 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5826 __cond_resched();
5827 return 1;
5828 }
5829 return 0;
5830}
02b67cc3 5831EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5832
5833/*
5834 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5835 * call schedule, and on return reacquire the lock.
5836 *
41a2d6cf 5837 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5838 * operations here to prevent schedule() from being called twice (once via
5839 * spin_unlock(), once by hand).
5840 */
95cdf3b7 5841int cond_resched_lock(spinlock_t *lock)
1da177e4 5842{
95c354fe 5843 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5844 int ret = 0;
5845
95c354fe 5846 if (spin_needbreak(lock) || resched) {
1da177e4 5847 spin_unlock(lock);
95c354fe
NP
5848 if (resched && need_resched())
5849 __cond_resched();
5850 else
5851 cpu_relax();
6df3cecb 5852 ret = 1;
1da177e4 5853 spin_lock(lock);
1da177e4 5854 }
6df3cecb 5855 return ret;
1da177e4 5856}
1da177e4
LT
5857EXPORT_SYMBOL(cond_resched_lock);
5858
5859int __sched cond_resched_softirq(void)
5860{
5861 BUG_ON(!in_softirq());
5862
9414232f 5863 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5864 local_bh_enable();
1da177e4
LT
5865 __cond_resched();
5866 local_bh_disable();
5867 return 1;
5868 }
5869 return 0;
5870}
1da177e4
LT
5871EXPORT_SYMBOL(cond_resched_softirq);
5872
1da177e4
LT
5873/**
5874 * yield - yield the current processor to other threads.
5875 *
72fd4a35 5876 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5877 * thread runnable and calls sys_sched_yield().
5878 */
5879void __sched yield(void)
5880{
5881 set_current_state(TASK_RUNNING);
5882 sys_sched_yield();
5883}
1da177e4
LT
5884EXPORT_SYMBOL(yield);
5885
5886/*
41a2d6cf 5887 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5888 * that process accounting knows that this is a task in IO wait state.
5889 *
5890 * But don't do that if it is a deliberate, throttling IO wait (this task
5891 * has set its backing_dev_info: the queue against which it should throttle)
5892 */
5893void __sched io_schedule(void)
5894{
70b97a7f 5895 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5896
0ff92245 5897 delayacct_blkio_start();
1da177e4
LT
5898 atomic_inc(&rq->nr_iowait);
5899 schedule();
5900 atomic_dec(&rq->nr_iowait);
0ff92245 5901 delayacct_blkio_end();
1da177e4 5902}
1da177e4
LT
5903EXPORT_SYMBOL(io_schedule);
5904
5905long __sched io_schedule_timeout(long timeout)
5906{
70b97a7f 5907 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5908 long ret;
5909
0ff92245 5910 delayacct_blkio_start();
1da177e4
LT
5911 atomic_inc(&rq->nr_iowait);
5912 ret = schedule_timeout(timeout);
5913 atomic_dec(&rq->nr_iowait);
0ff92245 5914 delayacct_blkio_end();
1da177e4
LT
5915 return ret;
5916}
5917
5918/**
5919 * sys_sched_get_priority_max - return maximum RT priority.
5920 * @policy: scheduling class.
5921 *
5922 * this syscall returns the maximum rt_priority that can be used
5923 * by a given scheduling class.
5924 */
5add95d4 5925SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5926{
5927 int ret = -EINVAL;
5928
5929 switch (policy) {
5930 case SCHED_FIFO:
5931 case SCHED_RR:
5932 ret = MAX_USER_RT_PRIO-1;
5933 break;
5934 case SCHED_NORMAL:
b0a9499c 5935 case SCHED_BATCH:
dd41f596 5936 case SCHED_IDLE:
1da177e4
LT
5937 ret = 0;
5938 break;
5939 }
5940 return ret;
5941}
5942
5943/**
5944 * sys_sched_get_priority_min - return minimum RT priority.
5945 * @policy: scheduling class.
5946 *
5947 * this syscall returns the minimum rt_priority that can be used
5948 * by a given scheduling class.
5949 */
5add95d4 5950SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5951{
5952 int ret = -EINVAL;
5953
5954 switch (policy) {
5955 case SCHED_FIFO:
5956 case SCHED_RR:
5957 ret = 1;
5958 break;
5959 case SCHED_NORMAL:
b0a9499c 5960 case SCHED_BATCH:
dd41f596 5961 case SCHED_IDLE:
1da177e4
LT
5962 ret = 0;
5963 }
5964 return ret;
5965}
5966
5967/**
5968 * sys_sched_rr_get_interval - return the default timeslice of a process.
5969 * @pid: pid of the process.
5970 * @interval: userspace pointer to the timeslice value.
5971 *
5972 * this syscall writes the default timeslice value of a given process
5973 * into the user-space timespec buffer. A value of '0' means infinity.
5974 */
17da2bd9 5975SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5976 struct timespec __user *, interval)
1da177e4 5977{
36c8b586 5978 struct task_struct *p;
a4ec24b4 5979 unsigned int time_slice;
3a5c359a 5980 int retval;
1da177e4 5981 struct timespec t;
1da177e4
LT
5982
5983 if (pid < 0)
3a5c359a 5984 return -EINVAL;
1da177e4
LT
5985
5986 retval = -ESRCH;
5987 read_lock(&tasklist_lock);
5988 p = find_process_by_pid(pid);
5989 if (!p)
5990 goto out_unlock;
5991
5992 retval = security_task_getscheduler(p);
5993 if (retval)
5994 goto out_unlock;
5995
77034937
IM
5996 /*
5997 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5998 * tasks that are on an otherwise idle runqueue:
5999 */
6000 time_slice = 0;
6001 if (p->policy == SCHED_RR) {
a4ec24b4 6002 time_slice = DEF_TIMESLICE;
1868f958 6003 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6004 struct sched_entity *se = &p->se;
6005 unsigned long flags;
6006 struct rq *rq;
6007
6008 rq = task_rq_lock(p, &flags);
77034937
IM
6009 if (rq->cfs.load.weight)
6010 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6011 task_rq_unlock(rq, &flags);
6012 }
1da177e4 6013 read_unlock(&tasklist_lock);
a4ec24b4 6014 jiffies_to_timespec(time_slice, &t);
1da177e4 6015 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6016 return retval;
3a5c359a 6017
1da177e4
LT
6018out_unlock:
6019 read_unlock(&tasklist_lock);
6020 return retval;
6021}
6022
7c731e0a 6023static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6024
82a1fcb9 6025void sched_show_task(struct task_struct *p)
1da177e4 6026{
1da177e4 6027 unsigned long free = 0;
36c8b586 6028 unsigned state;
1da177e4 6029
1da177e4 6030 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6031 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6032 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6033#if BITS_PER_LONG == 32
1da177e4 6034 if (state == TASK_RUNNING)
cc4ea795 6035 printk(KERN_CONT " running ");
1da177e4 6036 else
cc4ea795 6037 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6038#else
6039 if (state == TASK_RUNNING)
cc4ea795 6040 printk(KERN_CONT " running task ");
1da177e4 6041 else
cc4ea795 6042 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6043#endif
6044#ifdef CONFIG_DEBUG_STACK_USAGE
6045 {
10ebffde 6046 unsigned long *n = end_of_stack(p);
1da177e4
LT
6047 while (!*n)
6048 n++;
10ebffde 6049 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6050 }
6051#endif
ba25f9dc 6052 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6053 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6054
5fb5e6de 6055 show_stack(p, NULL);
1da177e4
LT
6056}
6057
e59e2ae2 6058void show_state_filter(unsigned long state_filter)
1da177e4 6059{
36c8b586 6060 struct task_struct *g, *p;
1da177e4 6061
4bd77321
IM
6062#if BITS_PER_LONG == 32
6063 printk(KERN_INFO
6064 " task PC stack pid father\n");
1da177e4 6065#else
4bd77321
IM
6066 printk(KERN_INFO
6067 " task PC stack pid father\n");
1da177e4
LT
6068#endif
6069 read_lock(&tasklist_lock);
6070 do_each_thread(g, p) {
6071 /*
6072 * reset the NMI-timeout, listing all files on a slow
6073 * console might take alot of time:
6074 */
6075 touch_nmi_watchdog();
39bc89fd 6076 if (!state_filter || (p->state & state_filter))
82a1fcb9 6077 sched_show_task(p);
1da177e4
LT
6078 } while_each_thread(g, p);
6079
04c9167f
JF
6080 touch_all_softlockup_watchdogs();
6081
dd41f596
IM
6082#ifdef CONFIG_SCHED_DEBUG
6083 sysrq_sched_debug_show();
6084#endif
1da177e4 6085 read_unlock(&tasklist_lock);
e59e2ae2
IM
6086 /*
6087 * Only show locks if all tasks are dumped:
6088 */
6089 if (state_filter == -1)
6090 debug_show_all_locks();
1da177e4
LT
6091}
6092
1df21055
IM
6093void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6094{
dd41f596 6095 idle->sched_class = &idle_sched_class;
1df21055
IM
6096}
6097
f340c0d1
IM
6098/**
6099 * init_idle - set up an idle thread for a given CPU
6100 * @idle: task in question
6101 * @cpu: cpu the idle task belongs to
6102 *
6103 * NOTE: this function does not set the idle thread's NEED_RESCHED
6104 * flag, to make booting more robust.
6105 */
5c1e1767 6106void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6107{
70b97a7f 6108 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6109 unsigned long flags;
6110
5cbd54ef
IM
6111 spin_lock_irqsave(&rq->lock, flags);
6112
dd41f596
IM
6113 __sched_fork(idle);
6114 idle->se.exec_start = sched_clock();
6115
b29739f9 6116 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6117 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6118 __set_task_cpu(idle, cpu);
1da177e4 6119
1da177e4 6120 rq->curr = rq->idle = idle;
4866cde0
NP
6121#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6122 idle->oncpu = 1;
6123#endif
1da177e4
LT
6124 spin_unlock_irqrestore(&rq->lock, flags);
6125
6126 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6127#if defined(CONFIG_PREEMPT)
6128 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6129#else
a1261f54 6130 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6131#endif
dd41f596
IM
6132 /*
6133 * The idle tasks have their own, simple scheduling class:
6134 */
6135 idle->sched_class = &idle_sched_class;
fb52607a 6136 ftrace_graph_init_task(idle);
1da177e4
LT
6137}
6138
6139/*
6140 * In a system that switches off the HZ timer nohz_cpu_mask
6141 * indicates which cpus entered this state. This is used
6142 * in the rcu update to wait only for active cpus. For system
6143 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6144 * always be CPU_BITS_NONE.
1da177e4 6145 */
6a7b3dc3 6146cpumask_var_t nohz_cpu_mask;
1da177e4 6147
19978ca6
IM
6148/*
6149 * Increase the granularity value when there are more CPUs,
6150 * because with more CPUs the 'effective latency' as visible
6151 * to users decreases. But the relationship is not linear,
6152 * so pick a second-best guess by going with the log2 of the
6153 * number of CPUs.
6154 *
6155 * This idea comes from the SD scheduler of Con Kolivas:
6156 */
6157static inline void sched_init_granularity(void)
6158{
6159 unsigned int factor = 1 + ilog2(num_online_cpus());
6160 const unsigned long limit = 200000000;
6161
6162 sysctl_sched_min_granularity *= factor;
6163 if (sysctl_sched_min_granularity > limit)
6164 sysctl_sched_min_granularity = limit;
6165
6166 sysctl_sched_latency *= factor;
6167 if (sysctl_sched_latency > limit)
6168 sysctl_sched_latency = limit;
6169
6170 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6171
6172 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6173}
6174
1da177e4
LT
6175#ifdef CONFIG_SMP
6176/*
6177 * This is how migration works:
6178 *
70b97a7f 6179 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6180 * runqueue and wake up that CPU's migration thread.
6181 * 2) we down() the locked semaphore => thread blocks.
6182 * 3) migration thread wakes up (implicitly it forces the migrated
6183 * thread off the CPU)
6184 * 4) it gets the migration request and checks whether the migrated
6185 * task is still in the wrong runqueue.
6186 * 5) if it's in the wrong runqueue then the migration thread removes
6187 * it and puts it into the right queue.
6188 * 6) migration thread up()s the semaphore.
6189 * 7) we wake up and the migration is done.
6190 */
6191
6192/*
6193 * Change a given task's CPU affinity. Migrate the thread to a
6194 * proper CPU and schedule it away if the CPU it's executing on
6195 * is removed from the allowed bitmask.
6196 *
6197 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6198 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6199 * call is not atomic; no spinlocks may be held.
6200 */
96f874e2 6201int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6202{
70b97a7f 6203 struct migration_req req;
1da177e4 6204 unsigned long flags;
70b97a7f 6205 struct rq *rq;
48f24c4d 6206 int ret = 0;
1da177e4
LT
6207
6208 rq = task_rq_lock(p, &flags);
96f874e2 6209 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6210 ret = -EINVAL;
6211 goto out;
6212 }
6213
9985b0ba 6214 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6215 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6216 ret = -EINVAL;
6217 goto out;
6218 }
6219
73fe6aae 6220 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6221 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6222 else {
96f874e2
RR
6223 cpumask_copy(&p->cpus_allowed, new_mask);
6224 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6225 }
6226
1da177e4 6227 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6228 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6229 goto out;
6230
1e5ce4f4 6231 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6232 /* Need help from migration thread: drop lock and wait. */
6233 task_rq_unlock(rq, &flags);
6234 wake_up_process(rq->migration_thread);
6235 wait_for_completion(&req.done);
6236 tlb_migrate_finish(p->mm);
6237 return 0;
6238 }
6239out:
6240 task_rq_unlock(rq, &flags);
48f24c4d 6241
1da177e4
LT
6242 return ret;
6243}
cd8ba7cd 6244EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6245
6246/*
41a2d6cf 6247 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6248 * this because either it can't run here any more (set_cpus_allowed()
6249 * away from this CPU, or CPU going down), or because we're
6250 * attempting to rebalance this task on exec (sched_exec).
6251 *
6252 * So we race with normal scheduler movements, but that's OK, as long
6253 * as the task is no longer on this CPU.
efc30814
KK
6254 *
6255 * Returns non-zero if task was successfully migrated.
1da177e4 6256 */
efc30814 6257static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6258{
70b97a7f 6259 struct rq *rq_dest, *rq_src;
dd41f596 6260 int ret = 0, on_rq;
1da177e4 6261
e761b772 6262 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6263 return ret;
1da177e4
LT
6264
6265 rq_src = cpu_rq(src_cpu);
6266 rq_dest = cpu_rq(dest_cpu);
6267
6268 double_rq_lock(rq_src, rq_dest);
6269 /* Already moved. */
6270 if (task_cpu(p) != src_cpu)
b1e38734 6271 goto done;
1da177e4 6272 /* Affinity changed (again). */
96f874e2 6273 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6274 goto fail;
1da177e4 6275
dd41f596 6276 on_rq = p->se.on_rq;
6e82a3be 6277 if (on_rq)
2e1cb74a 6278 deactivate_task(rq_src, p, 0);
6e82a3be 6279
1da177e4 6280 set_task_cpu(p, dest_cpu);
dd41f596
IM
6281 if (on_rq) {
6282 activate_task(rq_dest, p, 0);
15afe09b 6283 check_preempt_curr(rq_dest, p, 0);
1da177e4 6284 }
b1e38734 6285done:
efc30814 6286 ret = 1;
b1e38734 6287fail:
1da177e4 6288 double_rq_unlock(rq_src, rq_dest);
efc30814 6289 return ret;
1da177e4
LT
6290}
6291
6292/*
6293 * migration_thread - this is a highprio system thread that performs
6294 * thread migration by bumping thread off CPU then 'pushing' onto
6295 * another runqueue.
6296 */
95cdf3b7 6297static int migration_thread(void *data)
1da177e4 6298{
1da177e4 6299 int cpu = (long)data;
70b97a7f 6300 struct rq *rq;
1da177e4
LT
6301
6302 rq = cpu_rq(cpu);
6303 BUG_ON(rq->migration_thread != current);
6304
6305 set_current_state(TASK_INTERRUPTIBLE);
6306 while (!kthread_should_stop()) {
70b97a7f 6307 struct migration_req *req;
1da177e4 6308 struct list_head *head;
1da177e4 6309
1da177e4
LT
6310 spin_lock_irq(&rq->lock);
6311
6312 if (cpu_is_offline(cpu)) {
6313 spin_unlock_irq(&rq->lock);
6314 goto wait_to_die;
6315 }
6316
6317 if (rq->active_balance) {
6318 active_load_balance(rq, cpu);
6319 rq->active_balance = 0;
6320 }
6321
6322 head = &rq->migration_queue;
6323
6324 if (list_empty(head)) {
6325 spin_unlock_irq(&rq->lock);
6326 schedule();
6327 set_current_state(TASK_INTERRUPTIBLE);
6328 continue;
6329 }
70b97a7f 6330 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6331 list_del_init(head->next);
6332
674311d5
NP
6333 spin_unlock(&rq->lock);
6334 __migrate_task(req->task, cpu, req->dest_cpu);
6335 local_irq_enable();
1da177e4
LT
6336
6337 complete(&req->done);
6338 }
6339 __set_current_state(TASK_RUNNING);
6340 return 0;
6341
6342wait_to_die:
6343 /* Wait for kthread_stop */
6344 set_current_state(TASK_INTERRUPTIBLE);
6345 while (!kthread_should_stop()) {
6346 schedule();
6347 set_current_state(TASK_INTERRUPTIBLE);
6348 }
6349 __set_current_state(TASK_RUNNING);
6350 return 0;
6351}
6352
6353#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6354
6355static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6356{
6357 int ret;
6358
6359 local_irq_disable();
6360 ret = __migrate_task(p, src_cpu, dest_cpu);
6361 local_irq_enable();
6362 return ret;
6363}
6364
054b9108 6365/*
3a4fa0a2 6366 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6367 */
48f24c4d 6368static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6369{
70b97a7f 6370 int dest_cpu;
6ca09dfc 6371 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6372
6373again:
6374 /* Look for allowed, online CPU in same node. */
6375 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6376 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6377 goto move;
6378
6379 /* Any allowed, online CPU? */
6380 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6381 if (dest_cpu < nr_cpu_ids)
6382 goto move;
6383
6384 /* No more Mr. Nice Guy. */
6385 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6386 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6387 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6388
e76bd8d9
RR
6389 /*
6390 * Don't tell them about moving exiting tasks or
6391 * kernel threads (both mm NULL), since they never
6392 * leave kernel.
6393 */
6394 if (p->mm && printk_ratelimit()) {
6395 printk(KERN_INFO "process %d (%s) no "
6396 "longer affine to cpu%d\n",
6397 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6398 }
e76bd8d9
RR
6399 }
6400
6401move:
6402 /* It can have affinity changed while we were choosing. */
6403 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6404 goto again;
1da177e4
LT
6405}
6406
6407/*
6408 * While a dead CPU has no uninterruptible tasks queued at this point,
6409 * it might still have a nonzero ->nr_uninterruptible counter, because
6410 * for performance reasons the counter is not stricly tracking tasks to
6411 * their home CPUs. So we just add the counter to another CPU's counter,
6412 * to keep the global sum constant after CPU-down:
6413 */
70b97a7f 6414static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6415{
1e5ce4f4 6416 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6417 unsigned long flags;
6418
6419 local_irq_save(flags);
6420 double_rq_lock(rq_src, rq_dest);
6421 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6422 rq_src->nr_uninterruptible = 0;
6423 double_rq_unlock(rq_src, rq_dest);
6424 local_irq_restore(flags);
6425}
6426
6427/* Run through task list and migrate tasks from the dead cpu. */
6428static void migrate_live_tasks(int src_cpu)
6429{
48f24c4d 6430 struct task_struct *p, *t;
1da177e4 6431
f7b4cddc 6432 read_lock(&tasklist_lock);
1da177e4 6433
48f24c4d
IM
6434 do_each_thread(t, p) {
6435 if (p == current)
1da177e4
LT
6436 continue;
6437
48f24c4d
IM
6438 if (task_cpu(p) == src_cpu)
6439 move_task_off_dead_cpu(src_cpu, p);
6440 } while_each_thread(t, p);
1da177e4 6441
f7b4cddc 6442 read_unlock(&tasklist_lock);
1da177e4
LT
6443}
6444
dd41f596
IM
6445/*
6446 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6447 * It does so by boosting its priority to highest possible.
6448 * Used by CPU offline code.
1da177e4
LT
6449 */
6450void sched_idle_next(void)
6451{
48f24c4d 6452 int this_cpu = smp_processor_id();
70b97a7f 6453 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6454 struct task_struct *p = rq->idle;
6455 unsigned long flags;
6456
6457 /* cpu has to be offline */
48f24c4d 6458 BUG_ON(cpu_online(this_cpu));
1da177e4 6459
48f24c4d
IM
6460 /*
6461 * Strictly not necessary since rest of the CPUs are stopped by now
6462 * and interrupts disabled on the current cpu.
1da177e4
LT
6463 */
6464 spin_lock_irqsave(&rq->lock, flags);
6465
dd41f596 6466 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6467
94bc9a7b
DA
6468 update_rq_clock(rq);
6469 activate_task(rq, p, 0);
1da177e4
LT
6470
6471 spin_unlock_irqrestore(&rq->lock, flags);
6472}
6473
48f24c4d
IM
6474/*
6475 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6476 * offline.
6477 */
6478void idle_task_exit(void)
6479{
6480 struct mm_struct *mm = current->active_mm;
6481
6482 BUG_ON(cpu_online(smp_processor_id()));
6483
6484 if (mm != &init_mm)
6485 switch_mm(mm, &init_mm, current);
6486 mmdrop(mm);
6487}
6488
054b9108 6489/* called under rq->lock with disabled interrupts */
36c8b586 6490static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6491{
70b97a7f 6492 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6493
6494 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6495 BUG_ON(!p->exit_state);
1da177e4
LT
6496
6497 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6498 BUG_ON(p->state == TASK_DEAD);
1da177e4 6499
48f24c4d 6500 get_task_struct(p);
1da177e4
LT
6501
6502 /*
6503 * Drop lock around migration; if someone else moves it,
41a2d6cf 6504 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6505 * fine.
6506 */
f7b4cddc 6507 spin_unlock_irq(&rq->lock);
48f24c4d 6508 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6509 spin_lock_irq(&rq->lock);
1da177e4 6510
48f24c4d 6511 put_task_struct(p);
1da177e4
LT
6512}
6513
6514/* release_task() removes task from tasklist, so we won't find dead tasks. */
6515static void migrate_dead_tasks(unsigned int dead_cpu)
6516{
70b97a7f 6517 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6518 struct task_struct *next;
48f24c4d 6519
dd41f596
IM
6520 for ( ; ; ) {
6521 if (!rq->nr_running)
6522 break;
a8e504d2 6523 update_rq_clock(rq);
b67802ea 6524 next = pick_next_task(rq);
dd41f596
IM
6525 if (!next)
6526 break;
79c53799 6527 next->sched_class->put_prev_task(rq, next);
dd41f596 6528 migrate_dead(dead_cpu, next);
e692ab53 6529
1da177e4
LT
6530 }
6531}
6532#endif /* CONFIG_HOTPLUG_CPU */
6533
e692ab53
NP
6534#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6535
6536static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6537 {
6538 .procname = "sched_domain",
c57baf1e 6539 .mode = 0555,
e0361851 6540 },
38605cae 6541 {0, },
e692ab53
NP
6542};
6543
6544static struct ctl_table sd_ctl_root[] = {
e0361851 6545 {
c57baf1e 6546 .ctl_name = CTL_KERN,
e0361851 6547 .procname = "kernel",
c57baf1e 6548 .mode = 0555,
e0361851
AD
6549 .child = sd_ctl_dir,
6550 },
38605cae 6551 {0, },
e692ab53
NP
6552};
6553
6554static struct ctl_table *sd_alloc_ctl_entry(int n)
6555{
6556 struct ctl_table *entry =
5cf9f062 6557 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6558
e692ab53
NP
6559 return entry;
6560}
6561
6382bc90
MM
6562static void sd_free_ctl_entry(struct ctl_table **tablep)
6563{
cd790076 6564 struct ctl_table *entry;
6382bc90 6565
cd790076
MM
6566 /*
6567 * In the intermediate directories, both the child directory and
6568 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6569 * will always be set. In the lowest directory the names are
cd790076
MM
6570 * static strings and all have proc handlers.
6571 */
6572 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6573 if (entry->child)
6574 sd_free_ctl_entry(&entry->child);
cd790076
MM
6575 if (entry->proc_handler == NULL)
6576 kfree(entry->procname);
6577 }
6382bc90
MM
6578
6579 kfree(*tablep);
6580 *tablep = NULL;
6581}
6582
e692ab53 6583static void
e0361851 6584set_table_entry(struct ctl_table *entry,
e692ab53
NP
6585 const char *procname, void *data, int maxlen,
6586 mode_t mode, proc_handler *proc_handler)
6587{
e692ab53
NP
6588 entry->procname = procname;
6589 entry->data = data;
6590 entry->maxlen = maxlen;
6591 entry->mode = mode;
6592 entry->proc_handler = proc_handler;
6593}
6594
6595static struct ctl_table *
6596sd_alloc_ctl_domain_table(struct sched_domain *sd)
6597{
a5d8c348 6598 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6599
ad1cdc1d
MM
6600 if (table == NULL)
6601 return NULL;
6602
e0361851 6603 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6604 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6605 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6606 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6607 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6608 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6609 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6610 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6611 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6612 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6613 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6614 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6615 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6616 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6617 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6618 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6619 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6620 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6621 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6622 &sd->cache_nice_tries,
6623 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6624 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6625 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6626 set_table_entry(&table[11], "name", sd->name,
6627 CORENAME_MAX_SIZE, 0444, proc_dostring);
6628 /* &table[12] is terminator */
e692ab53
NP
6629
6630 return table;
6631}
6632
9a4e7159 6633static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6634{
6635 struct ctl_table *entry, *table;
6636 struct sched_domain *sd;
6637 int domain_num = 0, i;
6638 char buf[32];
6639
6640 for_each_domain(cpu, sd)
6641 domain_num++;
6642 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6643 if (table == NULL)
6644 return NULL;
e692ab53
NP
6645
6646 i = 0;
6647 for_each_domain(cpu, sd) {
6648 snprintf(buf, 32, "domain%d", i);
e692ab53 6649 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6650 entry->mode = 0555;
e692ab53
NP
6651 entry->child = sd_alloc_ctl_domain_table(sd);
6652 entry++;
6653 i++;
6654 }
6655 return table;
6656}
6657
6658static struct ctl_table_header *sd_sysctl_header;
6382bc90 6659static void register_sched_domain_sysctl(void)
e692ab53
NP
6660{
6661 int i, cpu_num = num_online_cpus();
6662 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6663 char buf[32];
6664
7378547f
MM
6665 WARN_ON(sd_ctl_dir[0].child);
6666 sd_ctl_dir[0].child = entry;
6667
ad1cdc1d
MM
6668 if (entry == NULL)
6669 return;
6670
97b6ea7b 6671 for_each_online_cpu(i) {
e692ab53 6672 snprintf(buf, 32, "cpu%d", i);
e692ab53 6673 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6674 entry->mode = 0555;
e692ab53 6675 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6676 entry++;
e692ab53 6677 }
7378547f
MM
6678
6679 WARN_ON(sd_sysctl_header);
e692ab53
NP
6680 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6681}
6382bc90 6682
7378547f 6683/* may be called multiple times per register */
6382bc90
MM
6684static void unregister_sched_domain_sysctl(void)
6685{
7378547f
MM
6686 if (sd_sysctl_header)
6687 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6688 sd_sysctl_header = NULL;
7378547f
MM
6689 if (sd_ctl_dir[0].child)
6690 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6691}
e692ab53 6692#else
6382bc90
MM
6693static void register_sched_domain_sysctl(void)
6694{
6695}
6696static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6697{
6698}
6699#endif
6700
1f11eb6a
GH
6701static void set_rq_online(struct rq *rq)
6702{
6703 if (!rq->online) {
6704 const struct sched_class *class;
6705
c6c4927b 6706 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6707 rq->online = 1;
6708
6709 for_each_class(class) {
6710 if (class->rq_online)
6711 class->rq_online(rq);
6712 }
6713 }
6714}
6715
6716static void set_rq_offline(struct rq *rq)
6717{
6718 if (rq->online) {
6719 const struct sched_class *class;
6720
6721 for_each_class(class) {
6722 if (class->rq_offline)
6723 class->rq_offline(rq);
6724 }
6725
c6c4927b 6726 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6727 rq->online = 0;
6728 }
6729}
6730
1da177e4
LT
6731/*
6732 * migration_call - callback that gets triggered when a CPU is added.
6733 * Here we can start up the necessary migration thread for the new CPU.
6734 */
48f24c4d
IM
6735static int __cpuinit
6736migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6737{
1da177e4 6738 struct task_struct *p;
48f24c4d 6739 int cpu = (long)hcpu;
1da177e4 6740 unsigned long flags;
70b97a7f 6741 struct rq *rq;
1da177e4
LT
6742
6743 switch (action) {
5be9361c 6744
1da177e4 6745 case CPU_UP_PREPARE:
8bb78442 6746 case CPU_UP_PREPARE_FROZEN:
dd41f596 6747 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6748 if (IS_ERR(p))
6749 return NOTIFY_BAD;
1da177e4
LT
6750 kthread_bind(p, cpu);
6751 /* Must be high prio: stop_machine expects to yield to it. */
6752 rq = task_rq_lock(p, &flags);
dd41f596 6753 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6754 task_rq_unlock(rq, &flags);
6755 cpu_rq(cpu)->migration_thread = p;
6756 break;
48f24c4d 6757
1da177e4 6758 case CPU_ONLINE:
8bb78442 6759 case CPU_ONLINE_FROZEN:
3a4fa0a2 6760 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6761 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6762
6763 /* Update our root-domain */
6764 rq = cpu_rq(cpu);
6765 spin_lock_irqsave(&rq->lock, flags);
6766 if (rq->rd) {
c6c4927b 6767 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6768
6769 set_rq_online(rq);
1f94ef59
GH
6770 }
6771 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6772 break;
48f24c4d 6773
1da177e4
LT
6774#ifdef CONFIG_HOTPLUG_CPU
6775 case CPU_UP_CANCELED:
8bb78442 6776 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6777 if (!cpu_rq(cpu)->migration_thread)
6778 break;
41a2d6cf 6779 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6780 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6781 cpumask_any(cpu_online_mask));
1da177e4
LT
6782 kthread_stop(cpu_rq(cpu)->migration_thread);
6783 cpu_rq(cpu)->migration_thread = NULL;
6784 break;
48f24c4d 6785
1da177e4 6786 case CPU_DEAD:
8bb78442 6787 case CPU_DEAD_FROZEN:
470fd646 6788 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6789 migrate_live_tasks(cpu);
6790 rq = cpu_rq(cpu);
6791 kthread_stop(rq->migration_thread);
6792 rq->migration_thread = NULL;
6793 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6794 spin_lock_irq(&rq->lock);
a8e504d2 6795 update_rq_clock(rq);
2e1cb74a 6796 deactivate_task(rq, rq->idle, 0);
1da177e4 6797 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6798 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6799 rq->idle->sched_class = &idle_sched_class;
1da177e4 6800 migrate_dead_tasks(cpu);
d2da272a 6801 spin_unlock_irq(&rq->lock);
470fd646 6802 cpuset_unlock();
1da177e4
LT
6803 migrate_nr_uninterruptible(rq);
6804 BUG_ON(rq->nr_running != 0);
6805
41a2d6cf
IM
6806 /*
6807 * No need to migrate the tasks: it was best-effort if
6808 * they didn't take sched_hotcpu_mutex. Just wake up
6809 * the requestors.
6810 */
1da177e4
LT
6811 spin_lock_irq(&rq->lock);
6812 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6813 struct migration_req *req;
6814
1da177e4 6815 req = list_entry(rq->migration_queue.next,
70b97a7f 6816 struct migration_req, list);
1da177e4 6817 list_del_init(&req->list);
9a2bd244 6818 spin_unlock_irq(&rq->lock);
1da177e4 6819 complete(&req->done);
9a2bd244 6820 spin_lock_irq(&rq->lock);
1da177e4
LT
6821 }
6822 spin_unlock_irq(&rq->lock);
6823 break;
57d885fe 6824
08f503b0
GH
6825 case CPU_DYING:
6826 case CPU_DYING_FROZEN:
57d885fe
GH
6827 /* Update our root-domain */
6828 rq = cpu_rq(cpu);
6829 spin_lock_irqsave(&rq->lock, flags);
6830 if (rq->rd) {
c6c4927b 6831 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6832 set_rq_offline(rq);
57d885fe
GH
6833 }
6834 spin_unlock_irqrestore(&rq->lock, flags);
6835 break;
1da177e4
LT
6836#endif
6837 }
6838 return NOTIFY_OK;
6839}
6840
6841/* Register at highest priority so that task migration (migrate_all_tasks)
6842 * happens before everything else.
6843 */
26c2143b 6844static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6845 .notifier_call = migration_call,
6846 .priority = 10
6847};
6848
7babe8db 6849static int __init migration_init(void)
1da177e4
LT
6850{
6851 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6852 int err;
48f24c4d
IM
6853
6854 /* Start one for the boot CPU: */
07dccf33
AM
6855 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6856 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6857 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6858 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6859
6860 return err;
1da177e4 6861}
7babe8db 6862early_initcall(migration_init);
1da177e4
LT
6863#endif
6864
6865#ifdef CONFIG_SMP
476f3534 6866
3e9830dc 6867#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6868
7c16ec58 6869static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6870 struct cpumask *groupmask)
1da177e4 6871{
4dcf6aff 6872 struct sched_group *group = sd->groups;
434d53b0 6873 char str[256];
1da177e4 6874
968ea6d8 6875 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6876 cpumask_clear(groupmask);
4dcf6aff
IM
6877
6878 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6879
6880 if (!(sd->flags & SD_LOAD_BALANCE)) {
6881 printk("does not load-balance\n");
6882 if (sd->parent)
6883 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6884 " has parent");
6885 return -1;
41c7ce9a
NP
6886 }
6887
eefd796a 6888 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6889
758b2cdc 6890 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6891 printk(KERN_ERR "ERROR: domain->span does not contain "
6892 "CPU%d\n", cpu);
6893 }
758b2cdc 6894 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6895 printk(KERN_ERR "ERROR: domain->groups does not contain"
6896 " CPU%d\n", cpu);
6897 }
1da177e4 6898
4dcf6aff 6899 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6900 do {
4dcf6aff
IM
6901 if (!group) {
6902 printk("\n");
6903 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6904 break;
6905 }
6906
4dcf6aff
IM
6907 if (!group->__cpu_power) {
6908 printk(KERN_CONT "\n");
6909 printk(KERN_ERR "ERROR: domain->cpu_power not "
6910 "set\n");
6911 break;
6912 }
1da177e4 6913
758b2cdc 6914 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6915 printk(KERN_CONT "\n");
6916 printk(KERN_ERR "ERROR: empty group\n");
6917 break;
6918 }
1da177e4 6919
758b2cdc 6920 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6921 printk(KERN_CONT "\n");
6922 printk(KERN_ERR "ERROR: repeated CPUs\n");
6923 break;
6924 }
1da177e4 6925
758b2cdc 6926 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6927
968ea6d8 6928 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6929 printk(KERN_CONT " %s", str);
1da177e4 6930
4dcf6aff
IM
6931 group = group->next;
6932 } while (group != sd->groups);
6933 printk(KERN_CONT "\n");
1da177e4 6934
758b2cdc 6935 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6936 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6937
758b2cdc
RR
6938 if (sd->parent &&
6939 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6940 printk(KERN_ERR "ERROR: parent span is not a superset "
6941 "of domain->span\n");
6942 return 0;
6943}
1da177e4 6944
4dcf6aff
IM
6945static void sched_domain_debug(struct sched_domain *sd, int cpu)
6946{
d5dd3db1 6947 cpumask_var_t groupmask;
4dcf6aff 6948 int level = 0;
1da177e4 6949
4dcf6aff
IM
6950 if (!sd) {
6951 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6952 return;
6953 }
1da177e4 6954
4dcf6aff
IM
6955 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6956
d5dd3db1 6957 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6958 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6959 return;
6960 }
6961
4dcf6aff 6962 for (;;) {
7c16ec58 6963 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6964 break;
1da177e4
LT
6965 level++;
6966 sd = sd->parent;
33859f7f 6967 if (!sd)
4dcf6aff
IM
6968 break;
6969 }
d5dd3db1 6970 free_cpumask_var(groupmask);
1da177e4 6971}
6d6bc0ad 6972#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6973# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6974#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6975
1a20ff27 6976static int sd_degenerate(struct sched_domain *sd)
245af2c7 6977{
758b2cdc 6978 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6979 return 1;
6980
6981 /* Following flags need at least 2 groups */
6982 if (sd->flags & (SD_LOAD_BALANCE |
6983 SD_BALANCE_NEWIDLE |
6984 SD_BALANCE_FORK |
89c4710e
SS
6985 SD_BALANCE_EXEC |
6986 SD_SHARE_CPUPOWER |
6987 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6988 if (sd->groups != sd->groups->next)
6989 return 0;
6990 }
6991
6992 /* Following flags don't use groups */
6993 if (sd->flags & (SD_WAKE_IDLE |
6994 SD_WAKE_AFFINE |
6995 SD_WAKE_BALANCE))
6996 return 0;
6997
6998 return 1;
6999}
7000
48f24c4d
IM
7001static int
7002sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7003{
7004 unsigned long cflags = sd->flags, pflags = parent->flags;
7005
7006 if (sd_degenerate(parent))
7007 return 1;
7008
758b2cdc 7009 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7010 return 0;
7011
7012 /* Does parent contain flags not in child? */
7013 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7014 if (cflags & SD_WAKE_AFFINE)
7015 pflags &= ~SD_WAKE_BALANCE;
7016 /* Flags needing groups don't count if only 1 group in parent */
7017 if (parent->groups == parent->groups->next) {
7018 pflags &= ~(SD_LOAD_BALANCE |
7019 SD_BALANCE_NEWIDLE |
7020 SD_BALANCE_FORK |
89c4710e
SS
7021 SD_BALANCE_EXEC |
7022 SD_SHARE_CPUPOWER |
7023 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7024 if (nr_node_ids == 1)
7025 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7026 }
7027 if (~cflags & pflags)
7028 return 0;
7029
7030 return 1;
7031}
7032
c6c4927b
RR
7033static void free_rootdomain(struct root_domain *rd)
7034{
68e74568
RR
7035 cpupri_cleanup(&rd->cpupri);
7036
c6c4927b
RR
7037 free_cpumask_var(rd->rto_mask);
7038 free_cpumask_var(rd->online);
7039 free_cpumask_var(rd->span);
7040 kfree(rd);
7041}
7042
57d885fe
GH
7043static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7044{
a0490fa3 7045 struct root_domain *old_rd = NULL;
57d885fe 7046 unsigned long flags;
57d885fe
GH
7047
7048 spin_lock_irqsave(&rq->lock, flags);
7049
7050 if (rq->rd) {
a0490fa3 7051 old_rd = rq->rd;
57d885fe 7052
c6c4927b 7053 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7054 set_rq_offline(rq);
57d885fe 7055
c6c4927b 7056 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7057
a0490fa3
IM
7058 /*
7059 * If we dont want to free the old_rt yet then
7060 * set old_rd to NULL to skip the freeing later
7061 * in this function:
7062 */
7063 if (!atomic_dec_and_test(&old_rd->refcount))
7064 old_rd = NULL;
57d885fe
GH
7065 }
7066
7067 atomic_inc(&rd->refcount);
7068 rq->rd = rd;
7069
c6c4927b
RR
7070 cpumask_set_cpu(rq->cpu, rd->span);
7071 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7072 set_rq_online(rq);
57d885fe
GH
7073
7074 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7075
7076 if (old_rd)
7077 free_rootdomain(old_rd);
57d885fe
GH
7078}
7079
db2f59c8 7080static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7081{
7082 memset(rd, 0, sizeof(*rd));
7083
c6c4927b
RR
7084 if (bootmem) {
7085 alloc_bootmem_cpumask_var(&def_root_domain.span);
7086 alloc_bootmem_cpumask_var(&def_root_domain.online);
7087 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7088 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7089 return 0;
7090 }
7091
7092 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7093 goto out;
c6c4927b
RR
7094 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7095 goto free_span;
7096 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7097 goto free_online;
6e0534f2 7098
68e74568
RR
7099 if (cpupri_init(&rd->cpupri, false) != 0)
7100 goto free_rto_mask;
c6c4927b 7101 return 0;
6e0534f2 7102
68e74568
RR
7103free_rto_mask:
7104 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7105free_online:
7106 free_cpumask_var(rd->online);
7107free_span:
7108 free_cpumask_var(rd->span);
0c910d28 7109out:
c6c4927b 7110 return -ENOMEM;
57d885fe
GH
7111}
7112
7113static void init_defrootdomain(void)
7114{
c6c4927b
RR
7115 init_rootdomain(&def_root_domain, true);
7116
57d885fe
GH
7117 atomic_set(&def_root_domain.refcount, 1);
7118}
7119
dc938520 7120static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7121{
7122 struct root_domain *rd;
7123
7124 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7125 if (!rd)
7126 return NULL;
7127
c6c4927b
RR
7128 if (init_rootdomain(rd, false) != 0) {
7129 kfree(rd);
7130 return NULL;
7131 }
57d885fe
GH
7132
7133 return rd;
7134}
7135
1da177e4 7136/*
0eab9146 7137 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7138 * hold the hotplug lock.
7139 */
0eab9146
IM
7140static void
7141cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7142{
70b97a7f 7143 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7144 struct sched_domain *tmp;
7145
7146 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7147 for (tmp = sd; tmp; ) {
245af2c7
SS
7148 struct sched_domain *parent = tmp->parent;
7149 if (!parent)
7150 break;
f29c9b1c 7151
1a848870 7152 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7153 tmp->parent = parent->parent;
1a848870
SS
7154 if (parent->parent)
7155 parent->parent->child = tmp;
f29c9b1c
LZ
7156 } else
7157 tmp = tmp->parent;
245af2c7
SS
7158 }
7159
1a848870 7160 if (sd && sd_degenerate(sd)) {
245af2c7 7161 sd = sd->parent;
1a848870
SS
7162 if (sd)
7163 sd->child = NULL;
7164 }
1da177e4
LT
7165
7166 sched_domain_debug(sd, cpu);
7167
57d885fe 7168 rq_attach_root(rq, rd);
674311d5 7169 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7170}
7171
7172/* cpus with isolated domains */
dcc30a35 7173static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7174
7175/* Setup the mask of cpus configured for isolated domains */
7176static int __init isolated_cpu_setup(char *str)
7177{
968ea6d8 7178 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7179 return 1;
7180}
7181
8927f494 7182__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7183
7184/*
6711cab4
SS
7185 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7186 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7187 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7188 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7189 *
7190 * init_sched_build_groups will build a circular linked list of the groups
7191 * covered by the given span, and will set each group's ->cpumask correctly,
7192 * and ->cpu_power to 0.
7193 */
a616058b 7194static void
96f874e2
RR
7195init_sched_build_groups(const struct cpumask *span,
7196 const struct cpumask *cpu_map,
7197 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7198 struct sched_group **sg,
96f874e2
RR
7199 struct cpumask *tmpmask),
7200 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7201{
7202 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7203 int i;
7204
96f874e2 7205 cpumask_clear(covered);
7c16ec58 7206
abcd083a 7207 for_each_cpu(i, span) {
6711cab4 7208 struct sched_group *sg;
7c16ec58 7209 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7210 int j;
7211
758b2cdc 7212 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7213 continue;
7214
758b2cdc 7215 cpumask_clear(sched_group_cpus(sg));
5517d86b 7216 sg->__cpu_power = 0;
1da177e4 7217
abcd083a 7218 for_each_cpu(j, span) {
7c16ec58 7219 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7220 continue;
7221
96f874e2 7222 cpumask_set_cpu(j, covered);
758b2cdc 7223 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7224 }
7225 if (!first)
7226 first = sg;
7227 if (last)
7228 last->next = sg;
7229 last = sg;
7230 }
7231 last->next = first;
7232}
7233
9c1cfda2 7234#define SD_NODES_PER_DOMAIN 16
1da177e4 7235
9c1cfda2 7236#ifdef CONFIG_NUMA
198e2f18 7237
9c1cfda2
JH
7238/**
7239 * find_next_best_node - find the next node to include in a sched_domain
7240 * @node: node whose sched_domain we're building
7241 * @used_nodes: nodes already in the sched_domain
7242 *
41a2d6cf 7243 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7244 * finds the closest node not already in the @used_nodes map.
7245 *
7246 * Should use nodemask_t.
7247 */
c5f59f08 7248static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7249{
7250 int i, n, val, min_val, best_node = 0;
7251
7252 min_val = INT_MAX;
7253
076ac2af 7254 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7255 /* Start at @node */
076ac2af 7256 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7257
7258 if (!nr_cpus_node(n))
7259 continue;
7260
7261 /* Skip already used nodes */
c5f59f08 7262 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7263 continue;
7264
7265 /* Simple min distance search */
7266 val = node_distance(node, n);
7267
7268 if (val < min_val) {
7269 min_val = val;
7270 best_node = n;
7271 }
7272 }
7273
c5f59f08 7274 node_set(best_node, *used_nodes);
9c1cfda2
JH
7275 return best_node;
7276}
7277
7278/**
7279 * sched_domain_node_span - get a cpumask for a node's sched_domain
7280 * @node: node whose cpumask we're constructing
73486722 7281 * @span: resulting cpumask
9c1cfda2 7282 *
41a2d6cf 7283 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7284 * should be one that prevents unnecessary balancing, but also spreads tasks
7285 * out optimally.
7286 */
96f874e2 7287static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7288{
c5f59f08 7289 nodemask_t used_nodes;
48f24c4d 7290 int i;
9c1cfda2 7291
6ca09dfc 7292 cpumask_clear(span);
c5f59f08 7293 nodes_clear(used_nodes);
9c1cfda2 7294
6ca09dfc 7295 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7296 node_set(node, used_nodes);
9c1cfda2
JH
7297
7298 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7299 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7300
6ca09dfc 7301 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7302 }
9c1cfda2 7303}
6d6bc0ad 7304#endif /* CONFIG_NUMA */
9c1cfda2 7305
5c45bf27 7306int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7307
6c99e9ad
RR
7308/*
7309 * The cpus mask in sched_group and sched_domain hangs off the end.
7310 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7311 * for nr_cpu_ids < CONFIG_NR_CPUS.
7312 */
7313struct static_sched_group {
7314 struct sched_group sg;
7315 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7316};
7317
7318struct static_sched_domain {
7319 struct sched_domain sd;
7320 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7321};
7322
9c1cfda2 7323/*
48f24c4d 7324 * SMT sched-domains:
9c1cfda2 7325 */
1da177e4 7326#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7327static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7328static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7329
41a2d6cf 7330static int
96f874e2
RR
7331cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7332 struct sched_group **sg, struct cpumask *unused)
1da177e4 7333{
6711cab4 7334 if (sg)
6c99e9ad 7335 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7336 return cpu;
7337}
6d6bc0ad 7338#endif /* CONFIG_SCHED_SMT */
1da177e4 7339
48f24c4d
IM
7340/*
7341 * multi-core sched-domains:
7342 */
1e9f28fa 7343#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7344static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7345static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7346#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7347
7348#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7349static int
96f874e2
RR
7350cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7351 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7352{
6711cab4 7353 int group;
7c16ec58 7354
96f874e2
RR
7355 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7356 group = cpumask_first(mask);
6711cab4 7357 if (sg)
6c99e9ad 7358 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7359 return group;
1e9f28fa
SS
7360}
7361#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7362static int
96f874e2
RR
7363cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7364 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7365{
6711cab4 7366 if (sg)
6c99e9ad 7367 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7368 return cpu;
7369}
7370#endif
7371
6c99e9ad
RR
7372static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7373static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7374
41a2d6cf 7375static int
96f874e2
RR
7376cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7377 struct sched_group **sg, struct cpumask *mask)
1da177e4 7378{
6711cab4 7379 int group;
48f24c4d 7380#ifdef CONFIG_SCHED_MC
6ca09dfc 7381 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7382 group = cpumask_first(mask);
1e9f28fa 7383#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7384 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7385 group = cpumask_first(mask);
1da177e4 7386#else
6711cab4 7387 group = cpu;
1da177e4 7388#endif
6711cab4 7389 if (sg)
6c99e9ad 7390 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7391 return group;
1da177e4
LT
7392}
7393
7394#ifdef CONFIG_NUMA
1da177e4 7395/*
9c1cfda2
JH
7396 * The init_sched_build_groups can't handle what we want to do with node
7397 * groups, so roll our own. Now each node has its own list of groups which
7398 * gets dynamically allocated.
1da177e4 7399 */
62ea9ceb 7400static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7401static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7402
62ea9ceb 7403static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7404static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7405
96f874e2
RR
7406static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7407 struct sched_group **sg,
7408 struct cpumask *nodemask)
9c1cfda2 7409{
6711cab4
SS
7410 int group;
7411
6ca09dfc 7412 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7413 group = cpumask_first(nodemask);
6711cab4
SS
7414
7415 if (sg)
6c99e9ad 7416 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7417 return group;
1da177e4 7418}
6711cab4 7419
08069033
SS
7420static void init_numa_sched_groups_power(struct sched_group *group_head)
7421{
7422 struct sched_group *sg = group_head;
7423 int j;
7424
7425 if (!sg)
7426 return;
3a5c359a 7427 do {
758b2cdc 7428 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7429 struct sched_domain *sd;
08069033 7430
6c99e9ad 7431 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7432 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7433 /*
7434 * Only add "power" once for each
7435 * physical package.
7436 */
7437 continue;
7438 }
08069033 7439
3a5c359a
AK
7440 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7441 }
7442 sg = sg->next;
7443 } while (sg != group_head);
08069033 7444}
6d6bc0ad 7445#endif /* CONFIG_NUMA */
1da177e4 7446
a616058b 7447#ifdef CONFIG_NUMA
51888ca2 7448/* Free memory allocated for various sched_group structures */
96f874e2
RR
7449static void free_sched_groups(const struct cpumask *cpu_map,
7450 struct cpumask *nodemask)
51888ca2 7451{
a616058b 7452 int cpu, i;
51888ca2 7453
abcd083a 7454 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7455 struct sched_group **sched_group_nodes
7456 = sched_group_nodes_bycpu[cpu];
7457
51888ca2
SV
7458 if (!sched_group_nodes)
7459 continue;
7460
076ac2af 7461 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7462 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7463
6ca09dfc 7464 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7465 if (cpumask_empty(nodemask))
51888ca2
SV
7466 continue;
7467
7468 if (sg == NULL)
7469 continue;
7470 sg = sg->next;
7471next_sg:
7472 oldsg = sg;
7473 sg = sg->next;
7474 kfree(oldsg);
7475 if (oldsg != sched_group_nodes[i])
7476 goto next_sg;
7477 }
7478 kfree(sched_group_nodes);
7479 sched_group_nodes_bycpu[cpu] = NULL;
7480 }
51888ca2 7481}
6d6bc0ad 7482#else /* !CONFIG_NUMA */
96f874e2
RR
7483static void free_sched_groups(const struct cpumask *cpu_map,
7484 struct cpumask *nodemask)
a616058b
SS
7485{
7486}
6d6bc0ad 7487#endif /* CONFIG_NUMA */
51888ca2 7488
89c4710e
SS
7489/*
7490 * Initialize sched groups cpu_power.
7491 *
7492 * cpu_power indicates the capacity of sched group, which is used while
7493 * distributing the load between different sched groups in a sched domain.
7494 * Typically cpu_power for all the groups in a sched domain will be same unless
7495 * there are asymmetries in the topology. If there are asymmetries, group
7496 * having more cpu_power will pickup more load compared to the group having
7497 * less cpu_power.
7498 *
7499 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7500 * the maximum number of tasks a group can handle in the presence of other idle
7501 * or lightly loaded groups in the same sched domain.
7502 */
7503static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7504{
7505 struct sched_domain *child;
7506 struct sched_group *group;
7507
7508 WARN_ON(!sd || !sd->groups);
7509
758b2cdc 7510 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7511 return;
7512
7513 child = sd->child;
7514
5517d86b
ED
7515 sd->groups->__cpu_power = 0;
7516
89c4710e
SS
7517 /*
7518 * For perf policy, if the groups in child domain share resources
7519 * (for example cores sharing some portions of the cache hierarchy
7520 * or SMT), then set this domain groups cpu_power such that each group
7521 * can handle only one task, when there are other idle groups in the
7522 * same sched domain.
7523 */
7524 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7525 (child->flags &
7526 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7527 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7528 return;
7529 }
7530
89c4710e
SS
7531 /*
7532 * add cpu_power of each child group to this groups cpu_power
7533 */
7534 group = child->groups;
7535 do {
5517d86b 7536 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7537 group = group->next;
7538 } while (group != child->groups);
7539}
7540
7c16ec58
MT
7541/*
7542 * Initializers for schedule domains
7543 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7544 */
7545
a5d8c348
IM
7546#ifdef CONFIG_SCHED_DEBUG
7547# define SD_INIT_NAME(sd, type) sd->name = #type
7548#else
7549# define SD_INIT_NAME(sd, type) do { } while (0)
7550#endif
7551
7c16ec58 7552#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7553
7c16ec58
MT
7554#define SD_INIT_FUNC(type) \
7555static noinline void sd_init_##type(struct sched_domain *sd) \
7556{ \
7557 memset(sd, 0, sizeof(*sd)); \
7558 *sd = SD_##type##_INIT; \
1d3504fc 7559 sd->level = SD_LV_##type; \
a5d8c348 7560 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7561}
7562
7563SD_INIT_FUNC(CPU)
7564#ifdef CONFIG_NUMA
7565 SD_INIT_FUNC(ALLNODES)
7566 SD_INIT_FUNC(NODE)
7567#endif
7568#ifdef CONFIG_SCHED_SMT
7569 SD_INIT_FUNC(SIBLING)
7570#endif
7571#ifdef CONFIG_SCHED_MC
7572 SD_INIT_FUNC(MC)
7573#endif
7574
1d3504fc
HS
7575static int default_relax_domain_level = -1;
7576
7577static int __init setup_relax_domain_level(char *str)
7578{
30e0e178
LZ
7579 unsigned long val;
7580
7581 val = simple_strtoul(str, NULL, 0);
7582 if (val < SD_LV_MAX)
7583 default_relax_domain_level = val;
7584
1d3504fc
HS
7585 return 1;
7586}
7587__setup("relax_domain_level=", setup_relax_domain_level);
7588
7589static void set_domain_attribute(struct sched_domain *sd,
7590 struct sched_domain_attr *attr)
7591{
7592 int request;
7593
7594 if (!attr || attr->relax_domain_level < 0) {
7595 if (default_relax_domain_level < 0)
7596 return;
7597 else
7598 request = default_relax_domain_level;
7599 } else
7600 request = attr->relax_domain_level;
7601 if (request < sd->level) {
7602 /* turn off idle balance on this domain */
7603 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7604 } else {
7605 /* turn on idle balance on this domain */
7606 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7607 }
7608}
7609
1da177e4 7610/*
1a20ff27
DG
7611 * Build sched domains for a given set of cpus and attach the sched domains
7612 * to the individual cpus
1da177e4 7613 */
96f874e2 7614static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7615 struct sched_domain_attr *attr)
1da177e4 7616{
3404c8d9 7617 int i, err = -ENOMEM;
57d885fe 7618 struct root_domain *rd;
3404c8d9
RR
7619 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7620 tmpmask;
d1b55138 7621#ifdef CONFIG_NUMA
3404c8d9 7622 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7623 struct sched_group **sched_group_nodes = NULL;
6711cab4 7624 int sd_allnodes = 0;
d1b55138 7625
3404c8d9
RR
7626 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7627 goto out;
7628 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7629 goto free_domainspan;
7630 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7631 goto free_covered;
7632#endif
7633
7634 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7635 goto free_notcovered;
7636 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7637 goto free_nodemask;
7638 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7639 goto free_this_sibling_map;
7640 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7641 goto free_this_core_map;
7642 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7643 goto free_send_covered;
7644
7645#ifdef CONFIG_NUMA
d1b55138
JH
7646 /*
7647 * Allocate the per-node list of sched groups
7648 */
076ac2af 7649 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7650 GFP_KERNEL);
d1b55138
JH
7651 if (!sched_group_nodes) {
7652 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7653 goto free_tmpmask;
d1b55138 7654 }
d1b55138 7655#endif
1da177e4 7656
dc938520 7657 rd = alloc_rootdomain();
57d885fe
GH
7658 if (!rd) {
7659 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7660 goto free_sched_groups;
57d885fe
GH
7661 }
7662
7c16ec58 7663#ifdef CONFIG_NUMA
96f874e2 7664 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7665#endif
7666
1da177e4 7667 /*
1a20ff27 7668 * Set up domains for cpus specified by the cpu_map.
1da177e4 7669 */
abcd083a 7670 for_each_cpu(i, cpu_map) {
1da177e4 7671 struct sched_domain *sd = NULL, *p;
1da177e4 7672
6ca09dfc 7673 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7674
7675#ifdef CONFIG_NUMA
96f874e2
RR
7676 if (cpumask_weight(cpu_map) >
7677 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7678 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7679 SD_INIT(sd, ALLNODES);
1d3504fc 7680 set_domain_attribute(sd, attr);
758b2cdc 7681 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7682 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7683 p = sd;
6711cab4 7684 sd_allnodes = 1;
9c1cfda2
JH
7685 } else
7686 p = NULL;
7687
62ea9ceb 7688 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7689 SD_INIT(sd, NODE);
1d3504fc 7690 set_domain_attribute(sd, attr);
758b2cdc 7691 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7692 sd->parent = p;
1a848870
SS
7693 if (p)
7694 p->child = sd;
758b2cdc
RR
7695 cpumask_and(sched_domain_span(sd),
7696 sched_domain_span(sd), cpu_map);
1da177e4
LT
7697#endif
7698
7699 p = sd;
6c99e9ad 7700 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7701 SD_INIT(sd, CPU);
1d3504fc 7702 set_domain_attribute(sd, attr);
758b2cdc 7703 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7704 sd->parent = p;
1a848870
SS
7705 if (p)
7706 p->child = sd;
7c16ec58 7707 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7708
1e9f28fa
SS
7709#ifdef CONFIG_SCHED_MC
7710 p = sd;
6c99e9ad 7711 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7712 SD_INIT(sd, MC);
1d3504fc 7713 set_domain_attribute(sd, attr);
6ca09dfc
MT
7714 cpumask_and(sched_domain_span(sd), cpu_map,
7715 cpu_coregroup_mask(i));
1e9f28fa 7716 sd->parent = p;
1a848870 7717 p->child = sd;
7c16ec58 7718 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7719#endif
7720
1da177e4
LT
7721#ifdef CONFIG_SCHED_SMT
7722 p = sd;
6c99e9ad 7723 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7724 SD_INIT(sd, SIBLING);
1d3504fc 7725 set_domain_attribute(sd, attr);
758b2cdc
RR
7726 cpumask_and(sched_domain_span(sd),
7727 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7728 sd->parent = p;
1a848870 7729 p->child = sd;
7c16ec58 7730 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7731#endif
7732 }
7733
7734#ifdef CONFIG_SCHED_SMT
7735 /* Set up CPU (sibling) groups */
abcd083a 7736 for_each_cpu(i, cpu_map) {
96f874e2
RR
7737 cpumask_and(this_sibling_map,
7738 &per_cpu(cpu_sibling_map, i), cpu_map);
7739 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7740 continue;
7741
dd41f596 7742 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7743 &cpu_to_cpu_group,
7744 send_covered, tmpmask);
1da177e4
LT
7745 }
7746#endif
7747
1e9f28fa
SS
7748#ifdef CONFIG_SCHED_MC
7749 /* Set up multi-core groups */
abcd083a 7750 for_each_cpu(i, cpu_map) {
6ca09dfc 7751 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7752 if (i != cpumask_first(this_core_map))
1e9f28fa 7753 continue;
7c16ec58 7754
dd41f596 7755 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7756 &cpu_to_core_group,
7757 send_covered, tmpmask);
1e9f28fa
SS
7758 }
7759#endif
7760
1da177e4 7761 /* Set up physical groups */
076ac2af 7762 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7763 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7764 if (cpumask_empty(nodemask))
1da177e4
LT
7765 continue;
7766
7c16ec58
MT
7767 init_sched_build_groups(nodemask, cpu_map,
7768 &cpu_to_phys_group,
7769 send_covered, tmpmask);
1da177e4
LT
7770 }
7771
7772#ifdef CONFIG_NUMA
7773 /* Set up node groups */
7c16ec58 7774 if (sd_allnodes) {
7c16ec58
MT
7775 init_sched_build_groups(cpu_map, cpu_map,
7776 &cpu_to_allnodes_group,
7777 send_covered, tmpmask);
7778 }
9c1cfda2 7779
076ac2af 7780 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7781 /* Set up node groups */
7782 struct sched_group *sg, *prev;
9c1cfda2
JH
7783 int j;
7784
96f874e2 7785 cpumask_clear(covered);
6ca09dfc 7786 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7787 if (cpumask_empty(nodemask)) {
d1b55138 7788 sched_group_nodes[i] = NULL;
9c1cfda2 7789 continue;
d1b55138 7790 }
9c1cfda2 7791
4bdbaad3 7792 sched_domain_node_span(i, domainspan);
96f874e2 7793 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7794
6c99e9ad
RR
7795 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7796 GFP_KERNEL, i);
51888ca2
SV
7797 if (!sg) {
7798 printk(KERN_WARNING "Can not alloc domain group for "
7799 "node %d\n", i);
7800 goto error;
7801 }
9c1cfda2 7802 sched_group_nodes[i] = sg;
abcd083a 7803 for_each_cpu(j, nodemask) {
9c1cfda2 7804 struct sched_domain *sd;
9761eea8 7805
62ea9ceb 7806 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7807 sd->groups = sg;
9c1cfda2 7808 }
5517d86b 7809 sg->__cpu_power = 0;
758b2cdc 7810 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7811 sg->next = sg;
96f874e2 7812 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7813 prev = sg;
7814
076ac2af 7815 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7816 int n = (i + j) % nr_node_ids;
9c1cfda2 7817
96f874e2
RR
7818 cpumask_complement(notcovered, covered);
7819 cpumask_and(tmpmask, notcovered, cpu_map);
7820 cpumask_and(tmpmask, tmpmask, domainspan);
7821 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7822 break;
7823
6ca09dfc 7824 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7825 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7826 continue;
7827
6c99e9ad
RR
7828 sg = kmalloc_node(sizeof(struct sched_group) +
7829 cpumask_size(),
15f0b676 7830 GFP_KERNEL, i);
9c1cfda2
JH
7831 if (!sg) {
7832 printk(KERN_WARNING
7833 "Can not alloc domain group for node %d\n", j);
51888ca2 7834 goto error;
9c1cfda2 7835 }
5517d86b 7836 sg->__cpu_power = 0;
758b2cdc 7837 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7838 sg->next = prev->next;
96f874e2 7839 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7840 prev->next = sg;
7841 prev = sg;
7842 }
9c1cfda2 7843 }
1da177e4
LT
7844#endif
7845
7846 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7847#ifdef CONFIG_SCHED_SMT
abcd083a 7848 for_each_cpu(i, cpu_map) {
6c99e9ad 7849 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7850
89c4710e 7851 init_sched_groups_power(i, sd);
5c45bf27 7852 }
1da177e4 7853#endif
1e9f28fa 7854#ifdef CONFIG_SCHED_MC
abcd083a 7855 for_each_cpu(i, cpu_map) {
6c99e9ad 7856 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7857
89c4710e 7858 init_sched_groups_power(i, sd);
5c45bf27
SS
7859 }
7860#endif
1e9f28fa 7861
abcd083a 7862 for_each_cpu(i, cpu_map) {
6c99e9ad 7863 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7864
89c4710e 7865 init_sched_groups_power(i, sd);
1da177e4
LT
7866 }
7867
9c1cfda2 7868#ifdef CONFIG_NUMA
076ac2af 7869 for (i = 0; i < nr_node_ids; i++)
08069033 7870 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7871
6711cab4
SS
7872 if (sd_allnodes) {
7873 struct sched_group *sg;
f712c0c7 7874
96f874e2 7875 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7876 tmpmask);
f712c0c7
SS
7877 init_numa_sched_groups_power(sg);
7878 }
9c1cfda2
JH
7879#endif
7880
1da177e4 7881 /* Attach the domains */
abcd083a 7882 for_each_cpu(i, cpu_map) {
1da177e4
LT
7883 struct sched_domain *sd;
7884#ifdef CONFIG_SCHED_SMT
6c99e9ad 7885 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7886#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7887 sd = &per_cpu(core_domains, i).sd;
1da177e4 7888#else
6c99e9ad 7889 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7890#endif
57d885fe 7891 cpu_attach_domain(sd, rd, i);
1da177e4 7892 }
51888ca2 7893
3404c8d9
RR
7894 err = 0;
7895
7896free_tmpmask:
7897 free_cpumask_var(tmpmask);
7898free_send_covered:
7899 free_cpumask_var(send_covered);
7900free_this_core_map:
7901 free_cpumask_var(this_core_map);
7902free_this_sibling_map:
7903 free_cpumask_var(this_sibling_map);
7904free_nodemask:
7905 free_cpumask_var(nodemask);
7906free_notcovered:
7907#ifdef CONFIG_NUMA
7908 free_cpumask_var(notcovered);
7909free_covered:
7910 free_cpumask_var(covered);
7911free_domainspan:
7912 free_cpumask_var(domainspan);
7913out:
7914#endif
7915 return err;
7916
7917free_sched_groups:
7918#ifdef CONFIG_NUMA
7919 kfree(sched_group_nodes);
7920#endif
7921 goto free_tmpmask;
51888ca2 7922
a616058b 7923#ifdef CONFIG_NUMA
51888ca2 7924error:
7c16ec58 7925 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7926 free_rootdomain(rd);
3404c8d9 7927 goto free_tmpmask;
a616058b 7928#endif
1da177e4 7929}
029190c5 7930
96f874e2 7931static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7932{
7933 return __build_sched_domains(cpu_map, NULL);
7934}
7935
96f874e2 7936static struct cpumask *doms_cur; /* current sched domains */
029190c5 7937static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7938static struct sched_domain_attr *dattr_cur;
7939 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7940
7941/*
7942 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7943 * cpumask) fails, then fallback to a single sched domain,
7944 * as determined by the single cpumask fallback_doms.
029190c5 7945 */
4212823f 7946static cpumask_var_t fallback_doms;
029190c5 7947
ee79d1bd
HC
7948/*
7949 * arch_update_cpu_topology lets virtualized architectures update the
7950 * cpu core maps. It is supposed to return 1 if the topology changed
7951 * or 0 if it stayed the same.
7952 */
7953int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7954{
ee79d1bd 7955 return 0;
22e52b07
HC
7956}
7957
1a20ff27 7958/*
41a2d6cf 7959 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7960 * For now this just excludes isolated cpus, but could be used to
7961 * exclude other special cases in the future.
1a20ff27 7962 */
96f874e2 7963static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7964{
7378547f
MM
7965 int err;
7966
22e52b07 7967 arch_update_cpu_topology();
029190c5 7968 ndoms_cur = 1;
96f874e2 7969 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7970 if (!doms_cur)
4212823f 7971 doms_cur = fallback_doms;
dcc30a35 7972 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7973 dattr_cur = NULL;
7378547f 7974 err = build_sched_domains(doms_cur);
6382bc90 7975 register_sched_domain_sysctl();
7378547f
MM
7976
7977 return err;
1a20ff27
DG
7978}
7979
96f874e2
RR
7980static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7981 struct cpumask *tmpmask)
1da177e4 7982{
7c16ec58 7983 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7984}
1da177e4 7985
1a20ff27
DG
7986/*
7987 * Detach sched domains from a group of cpus specified in cpu_map
7988 * These cpus will now be attached to the NULL domain
7989 */
96f874e2 7990static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7991{
96f874e2
RR
7992 /* Save because hotplug lock held. */
7993 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7994 int i;
7995
abcd083a 7996 for_each_cpu(i, cpu_map)
57d885fe 7997 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7998 synchronize_sched();
96f874e2 7999 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8000}
8001
1d3504fc
HS
8002/* handle null as "default" */
8003static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8004 struct sched_domain_attr *new, int idx_new)
8005{
8006 struct sched_domain_attr tmp;
8007
8008 /* fast path */
8009 if (!new && !cur)
8010 return 1;
8011
8012 tmp = SD_ATTR_INIT;
8013 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8014 new ? (new + idx_new) : &tmp,
8015 sizeof(struct sched_domain_attr));
8016}
8017
029190c5
PJ
8018/*
8019 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8020 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8021 * doms_new[] to the current sched domain partitioning, doms_cur[].
8022 * It destroys each deleted domain and builds each new domain.
8023 *
96f874e2 8024 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8025 * The masks don't intersect (don't overlap.) We should setup one
8026 * sched domain for each mask. CPUs not in any of the cpumasks will
8027 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8028 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8029 * it as it is.
8030 *
41a2d6cf
IM
8031 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8032 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8033 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8034 * ndoms_new == 1, and partition_sched_domains() will fallback to
8035 * the single partition 'fallback_doms', it also forces the domains
8036 * to be rebuilt.
029190c5 8037 *
96f874e2 8038 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8039 * ndoms_new == 0 is a special case for destroying existing domains,
8040 * and it will not create the default domain.
dfb512ec 8041 *
029190c5
PJ
8042 * Call with hotplug lock held
8043 */
96f874e2
RR
8044/* FIXME: Change to struct cpumask *doms_new[] */
8045void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8046 struct sched_domain_attr *dattr_new)
029190c5 8047{
dfb512ec 8048 int i, j, n;
d65bd5ec 8049 int new_topology;
029190c5 8050
712555ee 8051 mutex_lock(&sched_domains_mutex);
a1835615 8052
7378547f
MM
8053 /* always unregister in case we don't destroy any domains */
8054 unregister_sched_domain_sysctl();
8055
d65bd5ec
HC
8056 /* Let architecture update cpu core mappings. */
8057 new_topology = arch_update_cpu_topology();
8058
dfb512ec 8059 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8060
8061 /* Destroy deleted domains */
8062 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8063 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8064 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8065 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8066 goto match1;
8067 }
8068 /* no match - a current sched domain not in new doms_new[] */
8069 detach_destroy_domains(doms_cur + i);
8070match1:
8071 ;
8072 }
8073
e761b772
MK
8074 if (doms_new == NULL) {
8075 ndoms_cur = 0;
4212823f 8076 doms_new = fallback_doms;
dcc30a35 8077 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8078 WARN_ON_ONCE(dattr_new);
e761b772
MK
8079 }
8080
029190c5
PJ
8081 /* Build new domains */
8082 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8083 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8084 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8085 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8086 goto match2;
8087 }
8088 /* no match - add a new doms_new */
1d3504fc
HS
8089 __build_sched_domains(doms_new + i,
8090 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8091match2:
8092 ;
8093 }
8094
8095 /* Remember the new sched domains */
4212823f 8096 if (doms_cur != fallback_doms)
029190c5 8097 kfree(doms_cur);
1d3504fc 8098 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8099 doms_cur = doms_new;
1d3504fc 8100 dattr_cur = dattr_new;
029190c5 8101 ndoms_cur = ndoms_new;
7378547f
MM
8102
8103 register_sched_domain_sysctl();
a1835615 8104
712555ee 8105 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8106}
8107
5c45bf27 8108#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8109static void arch_reinit_sched_domains(void)
5c45bf27 8110{
95402b38 8111 get_online_cpus();
dfb512ec
MK
8112
8113 /* Destroy domains first to force the rebuild */
8114 partition_sched_domains(0, NULL, NULL);
8115
e761b772 8116 rebuild_sched_domains();
95402b38 8117 put_online_cpus();
5c45bf27
SS
8118}
8119
8120static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8121{
afb8a9b7 8122 unsigned int level = 0;
5c45bf27 8123
afb8a9b7
GS
8124 if (sscanf(buf, "%u", &level) != 1)
8125 return -EINVAL;
8126
8127 /*
8128 * level is always be positive so don't check for
8129 * level < POWERSAVINGS_BALANCE_NONE which is 0
8130 * What happens on 0 or 1 byte write,
8131 * need to check for count as well?
8132 */
8133
8134 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8135 return -EINVAL;
8136
8137 if (smt)
afb8a9b7 8138 sched_smt_power_savings = level;
5c45bf27 8139 else
afb8a9b7 8140 sched_mc_power_savings = level;
5c45bf27 8141
c70f22d2 8142 arch_reinit_sched_domains();
5c45bf27 8143
c70f22d2 8144 return count;
5c45bf27
SS
8145}
8146
5c45bf27 8147#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8148static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8149 char *page)
5c45bf27
SS
8150{
8151 return sprintf(page, "%u\n", sched_mc_power_savings);
8152}
f718cd4a 8153static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8154 const char *buf, size_t count)
5c45bf27
SS
8155{
8156 return sched_power_savings_store(buf, count, 0);
8157}
f718cd4a
AK
8158static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8159 sched_mc_power_savings_show,
8160 sched_mc_power_savings_store);
5c45bf27
SS
8161#endif
8162
8163#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8164static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8165 char *page)
5c45bf27
SS
8166{
8167 return sprintf(page, "%u\n", sched_smt_power_savings);
8168}
f718cd4a 8169static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8170 const char *buf, size_t count)
5c45bf27
SS
8171{
8172 return sched_power_savings_store(buf, count, 1);
8173}
f718cd4a
AK
8174static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8175 sched_smt_power_savings_show,
6707de00
AB
8176 sched_smt_power_savings_store);
8177#endif
8178
39aac648 8179int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8180{
8181 int err = 0;
8182
8183#ifdef CONFIG_SCHED_SMT
8184 if (smt_capable())
8185 err = sysfs_create_file(&cls->kset.kobj,
8186 &attr_sched_smt_power_savings.attr);
8187#endif
8188#ifdef CONFIG_SCHED_MC
8189 if (!err && mc_capable())
8190 err = sysfs_create_file(&cls->kset.kobj,
8191 &attr_sched_mc_power_savings.attr);
8192#endif
8193 return err;
8194}
6d6bc0ad 8195#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8196
e761b772 8197#ifndef CONFIG_CPUSETS
1da177e4 8198/*
e761b772
MK
8199 * Add online and remove offline CPUs from the scheduler domains.
8200 * When cpusets are enabled they take over this function.
1da177e4
LT
8201 */
8202static int update_sched_domains(struct notifier_block *nfb,
8203 unsigned long action, void *hcpu)
e761b772
MK
8204{
8205 switch (action) {
8206 case CPU_ONLINE:
8207 case CPU_ONLINE_FROZEN:
8208 case CPU_DEAD:
8209 case CPU_DEAD_FROZEN:
dfb512ec 8210 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8211 return NOTIFY_OK;
8212
8213 default:
8214 return NOTIFY_DONE;
8215 }
8216}
8217#endif
8218
8219static int update_runtime(struct notifier_block *nfb,
8220 unsigned long action, void *hcpu)
1da177e4 8221{
7def2be1
PZ
8222 int cpu = (int)(long)hcpu;
8223
1da177e4 8224 switch (action) {
1da177e4 8225 case CPU_DOWN_PREPARE:
8bb78442 8226 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8227 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8228 return NOTIFY_OK;
8229
1da177e4 8230 case CPU_DOWN_FAILED:
8bb78442 8231 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8232 case CPU_ONLINE:
8bb78442 8233 case CPU_ONLINE_FROZEN:
7def2be1 8234 enable_runtime(cpu_rq(cpu));
e761b772
MK
8235 return NOTIFY_OK;
8236
1da177e4
LT
8237 default:
8238 return NOTIFY_DONE;
8239 }
1da177e4 8240}
1da177e4
LT
8241
8242void __init sched_init_smp(void)
8243{
dcc30a35
RR
8244 cpumask_var_t non_isolated_cpus;
8245
8246 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8247
434d53b0
MT
8248#if defined(CONFIG_NUMA)
8249 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8250 GFP_KERNEL);
8251 BUG_ON(sched_group_nodes_bycpu == NULL);
8252#endif
95402b38 8253 get_online_cpus();
712555ee 8254 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8255 arch_init_sched_domains(cpu_online_mask);
8256 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8257 if (cpumask_empty(non_isolated_cpus))
8258 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8259 mutex_unlock(&sched_domains_mutex);
95402b38 8260 put_online_cpus();
e761b772
MK
8261
8262#ifndef CONFIG_CPUSETS
1da177e4
LT
8263 /* XXX: Theoretical race here - CPU may be hotplugged now */
8264 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8265#endif
8266
8267 /* RT runtime code needs to handle some hotplug events */
8268 hotcpu_notifier(update_runtime, 0);
8269
b328ca18 8270 init_hrtick();
5c1e1767
NP
8271
8272 /* Move init over to a non-isolated CPU */
dcc30a35 8273 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8274 BUG();
19978ca6 8275 sched_init_granularity();
dcc30a35 8276 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8277
8278 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8279 init_sched_rt_class();
1da177e4
LT
8280}
8281#else
8282void __init sched_init_smp(void)
8283{
19978ca6 8284 sched_init_granularity();
1da177e4
LT
8285}
8286#endif /* CONFIG_SMP */
8287
8288int in_sched_functions(unsigned long addr)
8289{
1da177e4
LT
8290 return in_lock_functions(addr) ||
8291 (addr >= (unsigned long)__sched_text_start
8292 && addr < (unsigned long)__sched_text_end);
8293}
8294
a9957449 8295static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8296{
8297 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8298 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8299#ifdef CONFIG_FAIR_GROUP_SCHED
8300 cfs_rq->rq = rq;
8301#endif
67e9fb2a 8302 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8303}
8304
fa85ae24
PZ
8305static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8306{
8307 struct rt_prio_array *array;
8308 int i;
8309
8310 array = &rt_rq->active;
8311 for (i = 0; i < MAX_RT_PRIO; i++) {
8312 INIT_LIST_HEAD(array->queue + i);
8313 __clear_bit(i, array->bitmap);
8314 }
8315 /* delimiter for bitsearch: */
8316 __set_bit(MAX_RT_PRIO, array->bitmap);
8317
052f1dc7 8318#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8319 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8320#ifdef CONFIG_SMP
e864c499 8321 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8322#endif
48d5e258 8323#endif
fa85ae24
PZ
8324#ifdef CONFIG_SMP
8325 rt_rq->rt_nr_migratory = 0;
fa85ae24 8326 rt_rq->overloaded = 0;
917b627d 8327 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8328#endif
8329
8330 rt_rq->rt_time = 0;
8331 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8332 rt_rq->rt_runtime = 0;
8333 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8334
052f1dc7 8335#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8336 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8337 rt_rq->rq = rq;
8338#endif
fa85ae24
PZ
8339}
8340
6f505b16 8341#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8342static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8343 struct sched_entity *se, int cpu, int add,
8344 struct sched_entity *parent)
6f505b16 8345{
ec7dc8ac 8346 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8347 tg->cfs_rq[cpu] = cfs_rq;
8348 init_cfs_rq(cfs_rq, rq);
8349 cfs_rq->tg = tg;
8350 if (add)
8351 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8352
8353 tg->se[cpu] = se;
354d60c2
DG
8354 /* se could be NULL for init_task_group */
8355 if (!se)
8356 return;
8357
ec7dc8ac
DG
8358 if (!parent)
8359 se->cfs_rq = &rq->cfs;
8360 else
8361 se->cfs_rq = parent->my_q;
8362
6f505b16
PZ
8363 se->my_q = cfs_rq;
8364 se->load.weight = tg->shares;
e05510d0 8365 se->load.inv_weight = 0;
ec7dc8ac 8366 se->parent = parent;
6f505b16 8367}
052f1dc7 8368#endif
6f505b16 8369
052f1dc7 8370#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8371static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8372 struct sched_rt_entity *rt_se, int cpu, int add,
8373 struct sched_rt_entity *parent)
6f505b16 8374{
ec7dc8ac
DG
8375 struct rq *rq = cpu_rq(cpu);
8376
6f505b16
PZ
8377 tg->rt_rq[cpu] = rt_rq;
8378 init_rt_rq(rt_rq, rq);
8379 rt_rq->tg = tg;
8380 rt_rq->rt_se = rt_se;
ac086bc2 8381 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8382 if (add)
8383 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8384
8385 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8386 if (!rt_se)
8387 return;
8388
ec7dc8ac
DG
8389 if (!parent)
8390 rt_se->rt_rq = &rq->rt;
8391 else
8392 rt_se->rt_rq = parent->my_q;
8393
6f505b16 8394 rt_se->my_q = rt_rq;
ec7dc8ac 8395 rt_se->parent = parent;
6f505b16
PZ
8396 INIT_LIST_HEAD(&rt_se->run_list);
8397}
8398#endif
8399
1da177e4
LT
8400void __init sched_init(void)
8401{
dd41f596 8402 int i, j;
434d53b0
MT
8403 unsigned long alloc_size = 0, ptr;
8404
8405#ifdef CONFIG_FAIR_GROUP_SCHED
8406 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8407#endif
8408#ifdef CONFIG_RT_GROUP_SCHED
8409 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8410#endif
8411#ifdef CONFIG_USER_SCHED
8412 alloc_size *= 2;
434d53b0
MT
8413#endif
8414 /*
8415 * As sched_init() is called before page_alloc is setup,
8416 * we use alloc_bootmem().
8417 */
8418 if (alloc_size) {
5a9d3225 8419 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8420
8421#ifdef CONFIG_FAIR_GROUP_SCHED
8422 init_task_group.se = (struct sched_entity **)ptr;
8423 ptr += nr_cpu_ids * sizeof(void **);
8424
8425 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8426 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8427
8428#ifdef CONFIG_USER_SCHED
8429 root_task_group.se = (struct sched_entity **)ptr;
8430 ptr += nr_cpu_ids * sizeof(void **);
8431
8432 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8433 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8434#endif /* CONFIG_USER_SCHED */
8435#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8436#ifdef CONFIG_RT_GROUP_SCHED
8437 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8438 ptr += nr_cpu_ids * sizeof(void **);
8439
8440 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8441 ptr += nr_cpu_ids * sizeof(void **);
8442
8443#ifdef CONFIG_USER_SCHED
8444 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8445 ptr += nr_cpu_ids * sizeof(void **);
8446
8447 root_task_group.rt_rq = (struct rt_rq **)ptr;
8448 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8449#endif /* CONFIG_USER_SCHED */
8450#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8451 }
dd41f596 8452
57d885fe
GH
8453#ifdef CONFIG_SMP
8454 init_defrootdomain();
8455#endif
8456
d0b27fa7
PZ
8457 init_rt_bandwidth(&def_rt_bandwidth,
8458 global_rt_period(), global_rt_runtime());
8459
8460#ifdef CONFIG_RT_GROUP_SCHED
8461 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8462 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8463#ifdef CONFIG_USER_SCHED
8464 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8465 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8466#endif /* CONFIG_USER_SCHED */
8467#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8468
052f1dc7 8469#ifdef CONFIG_GROUP_SCHED
6f505b16 8470 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8471 INIT_LIST_HEAD(&init_task_group.children);
8472
8473#ifdef CONFIG_USER_SCHED
8474 INIT_LIST_HEAD(&root_task_group.children);
8475 init_task_group.parent = &root_task_group;
8476 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8477#endif /* CONFIG_USER_SCHED */
8478#endif /* CONFIG_GROUP_SCHED */
6f505b16 8479
0a945022 8480 for_each_possible_cpu(i) {
70b97a7f 8481 struct rq *rq;
1da177e4
LT
8482
8483 rq = cpu_rq(i);
8484 spin_lock_init(&rq->lock);
7897986b 8485 rq->nr_running = 0;
dd41f596 8486 init_cfs_rq(&rq->cfs, rq);
6f505b16 8487 init_rt_rq(&rq->rt, rq);
dd41f596 8488#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8489 init_task_group.shares = init_task_group_load;
6f505b16 8490 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8491#ifdef CONFIG_CGROUP_SCHED
8492 /*
8493 * How much cpu bandwidth does init_task_group get?
8494 *
8495 * In case of task-groups formed thr' the cgroup filesystem, it
8496 * gets 100% of the cpu resources in the system. This overall
8497 * system cpu resource is divided among the tasks of
8498 * init_task_group and its child task-groups in a fair manner,
8499 * based on each entity's (task or task-group's) weight
8500 * (se->load.weight).
8501 *
8502 * In other words, if init_task_group has 10 tasks of weight
8503 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8504 * then A0's share of the cpu resource is:
8505 *
8506 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8507 *
8508 * We achieve this by letting init_task_group's tasks sit
8509 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8510 */
ec7dc8ac 8511 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8512#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8513 root_task_group.shares = NICE_0_LOAD;
8514 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8515 /*
8516 * In case of task-groups formed thr' the user id of tasks,
8517 * init_task_group represents tasks belonging to root user.
8518 * Hence it forms a sibling of all subsequent groups formed.
8519 * In this case, init_task_group gets only a fraction of overall
8520 * system cpu resource, based on the weight assigned to root
8521 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8522 * by letting tasks of init_task_group sit in a separate cfs_rq
8523 * (init_cfs_rq) and having one entity represent this group of
8524 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8525 */
ec7dc8ac 8526 init_tg_cfs_entry(&init_task_group,
6f505b16 8527 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8528 &per_cpu(init_sched_entity, i), i, 1,
8529 root_task_group.se[i]);
6f505b16 8530
052f1dc7 8531#endif
354d60c2
DG
8532#endif /* CONFIG_FAIR_GROUP_SCHED */
8533
8534 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8535#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8536 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8537#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8538 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8539#elif defined CONFIG_USER_SCHED
eff766a6 8540 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8541 init_tg_rt_entry(&init_task_group,
6f505b16 8542 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8543 &per_cpu(init_sched_rt_entity, i), i, 1,
8544 root_task_group.rt_se[i]);
354d60c2 8545#endif
dd41f596 8546#endif
1da177e4 8547
dd41f596
IM
8548 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8549 rq->cpu_load[j] = 0;
1da177e4 8550#ifdef CONFIG_SMP
41c7ce9a 8551 rq->sd = NULL;
57d885fe 8552 rq->rd = NULL;
1da177e4 8553 rq->active_balance = 0;
dd41f596 8554 rq->next_balance = jiffies;
1da177e4 8555 rq->push_cpu = 0;
0a2966b4 8556 rq->cpu = i;
1f11eb6a 8557 rq->online = 0;
1da177e4
LT
8558 rq->migration_thread = NULL;
8559 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8560 rq_attach_root(rq, &def_root_domain);
1da177e4 8561#endif
8f4d37ec 8562 init_rq_hrtick(rq);
1da177e4 8563 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8564 }
8565
2dd73a4f 8566 set_load_weight(&init_task);
b50f60ce 8567
e107be36
AK
8568#ifdef CONFIG_PREEMPT_NOTIFIERS
8569 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8570#endif
8571
c9819f45 8572#ifdef CONFIG_SMP
962cf36c 8573 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8574#endif
8575
b50f60ce
HC
8576#ifdef CONFIG_RT_MUTEXES
8577 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8578#endif
8579
1da177e4
LT
8580 /*
8581 * The boot idle thread does lazy MMU switching as well:
8582 */
8583 atomic_inc(&init_mm.mm_count);
8584 enter_lazy_tlb(&init_mm, current);
8585
8586 /*
8587 * Make us the idle thread. Technically, schedule() should not be
8588 * called from this thread, however somewhere below it might be,
8589 * but because we are the idle thread, we just pick up running again
8590 * when this runqueue becomes "idle".
8591 */
8592 init_idle(current, smp_processor_id());
dd41f596
IM
8593 /*
8594 * During early bootup we pretend to be a normal task:
8595 */
8596 current->sched_class = &fair_sched_class;
6892b75e 8597
6a7b3dc3
RR
8598 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8599 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8600#ifdef CONFIG_SMP
7d1e6a9b
RR
8601#ifdef CONFIG_NO_HZ
8602 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8603#endif
dcc30a35 8604 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8605#endif /* SMP */
6a7b3dc3 8606
6892b75e 8607 scheduler_running = 1;
1da177e4
LT
8608}
8609
8610#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8611void __might_sleep(char *file, int line)
8612{
48f24c4d 8613#ifdef in_atomic
1da177e4
LT
8614 static unsigned long prev_jiffy; /* ratelimiting */
8615
aef745fc
IM
8616 if ((!in_atomic() && !irqs_disabled()) ||
8617 system_state != SYSTEM_RUNNING || oops_in_progress)
8618 return;
8619 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8620 return;
8621 prev_jiffy = jiffies;
8622
8623 printk(KERN_ERR
8624 "BUG: sleeping function called from invalid context at %s:%d\n",
8625 file, line);
8626 printk(KERN_ERR
8627 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8628 in_atomic(), irqs_disabled(),
8629 current->pid, current->comm);
8630
8631 debug_show_held_locks(current);
8632 if (irqs_disabled())
8633 print_irqtrace_events(current);
8634 dump_stack();
1da177e4
LT
8635#endif
8636}
8637EXPORT_SYMBOL(__might_sleep);
8638#endif
8639
8640#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8641static void normalize_task(struct rq *rq, struct task_struct *p)
8642{
8643 int on_rq;
3e51f33f 8644
3a5e4dc1
AK
8645 update_rq_clock(rq);
8646 on_rq = p->se.on_rq;
8647 if (on_rq)
8648 deactivate_task(rq, p, 0);
8649 __setscheduler(rq, p, SCHED_NORMAL, 0);
8650 if (on_rq) {
8651 activate_task(rq, p, 0);
8652 resched_task(rq->curr);
8653 }
8654}
8655
1da177e4
LT
8656void normalize_rt_tasks(void)
8657{
a0f98a1c 8658 struct task_struct *g, *p;
1da177e4 8659 unsigned long flags;
70b97a7f 8660 struct rq *rq;
1da177e4 8661
4cf5d77a 8662 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8663 do_each_thread(g, p) {
178be793
IM
8664 /*
8665 * Only normalize user tasks:
8666 */
8667 if (!p->mm)
8668 continue;
8669
6cfb0d5d 8670 p->se.exec_start = 0;
6cfb0d5d 8671#ifdef CONFIG_SCHEDSTATS
dd41f596 8672 p->se.wait_start = 0;
dd41f596 8673 p->se.sleep_start = 0;
dd41f596 8674 p->se.block_start = 0;
6cfb0d5d 8675#endif
dd41f596
IM
8676
8677 if (!rt_task(p)) {
8678 /*
8679 * Renice negative nice level userspace
8680 * tasks back to 0:
8681 */
8682 if (TASK_NICE(p) < 0 && p->mm)
8683 set_user_nice(p, 0);
1da177e4 8684 continue;
dd41f596 8685 }
1da177e4 8686
4cf5d77a 8687 spin_lock(&p->pi_lock);
b29739f9 8688 rq = __task_rq_lock(p);
1da177e4 8689
178be793 8690 normalize_task(rq, p);
3a5e4dc1 8691
b29739f9 8692 __task_rq_unlock(rq);
4cf5d77a 8693 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8694 } while_each_thread(g, p);
8695
4cf5d77a 8696 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8697}
8698
8699#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8700
8701#ifdef CONFIG_IA64
8702/*
8703 * These functions are only useful for the IA64 MCA handling.
8704 *
8705 * They can only be called when the whole system has been
8706 * stopped - every CPU needs to be quiescent, and no scheduling
8707 * activity can take place. Using them for anything else would
8708 * be a serious bug, and as a result, they aren't even visible
8709 * under any other configuration.
8710 */
8711
8712/**
8713 * curr_task - return the current task for a given cpu.
8714 * @cpu: the processor in question.
8715 *
8716 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8717 */
36c8b586 8718struct task_struct *curr_task(int cpu)
1df5c10a
LT
8719{
8720 return cpu_curr(cpu);
8721}
8722
8723/**
8724 * set_curr_task - set the current task for a given cpu.
8725 * @cpu: the processor in question.
8726 * @p: the task pointer to set.
8727 *
8728 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8729 * are serviced on a separate stack. It allows the architecture to switch the
8730 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8731 * must be called with all CPU's synchronized, and interrupts disabled, the
8732 * and caller must save the original value of the current task (see
8733 * curr_task() above) and restore that value before reenabling interrupts and
8734 * re-starting the system.
8735 *
8736 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8737 */
36c8b586 8738void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8739{
8740 cpu_curr(cpu) = p;
8741}
8742
8743#endif
29f59db3 8744
bccbe08a
PZ
8745#ifdef CONFIG_FAIR_GROUP_SCHED
8746static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8747{
8748 int i;
8749
8750 for_each_possible_cpu(i) {
8751 if (tg->cfs_rq)
8752 kfree(tg->cfs_rq[i]);
8753 if (tg->se)
8754 kfree(tg->se[i]);
6f505b16
PZ
8755 }
8756
8757 kfree(tg->cfs_rq);
8758 kfree(tg->se);
6f505b16
PZ
8759}
8760
ec7dc8ac
DG
8761static
8762int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8763{
29f59db3 8764 struct cfs_rq *cfs_rq;
eab17229 8765 struct sched_entity *se;
9b5b7751 8766 struct rq *rq;
29f59db3
SV
8767 int i;
8768
434d53b0 8769 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8770 if (!tg->cfs_rq)
8771 goto err;
434d53b0 8772 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8773 if (!tg->se)
8774 goto err;
052f1dc7
PZ
8775
8776 tg->shares = NICE_0_LOAD;
29f59db3
SV
8777
8778 for_each_possible_cpu(i) {
9b5b7751 8779 rq = cpu_rq(i);
29f59db3 8780
eab17229
LZ
8781 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8782 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8783 if (!cfs_rq)
8784 goto err;
8785
eab17229
LZ
8786 se = kzalloc_node(sizeof(struct sched_entity),
8787 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8788 if (!se)
8789 goto err;
8790
eab17229 8791 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8792 }
8793
8794 return 1;
8795
8796 err:
8797 return 0;
8798}
8799
8800static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8801{
8802 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8803 &cpu_rq(cpu)->leaf_cfs_rq_list);
8804}
8805
8806static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8807{
8808 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8809}
6d6bc0ad 8810#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8811static inline void free_fair_sched_group(struct task_group *tg)
8812{
8813}
8814
ec7dc8ac
DG
8815static inline
8816int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8817{
8818 return 1;
8819}
8820
8821static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8822{
8823}
8824
8825static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8826{
8827}
6d6bc0ad 8828#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8829
8830#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8831static void free_rt_sched_group(struct task_group *tg)
8832{
8833 int i;
8834
d0b27fa7
PZ
8835 destroy_rt_bandwidth(&tg->rt_bandwidth);
8836
bccbe08a
PZ
8837 for_each_possible_cpu(i) {
8838 if (tg->rt_rq)
8839 kfree(tg->rt_rq[i]);
8840 if (tg->rt_se)
8841 kfree(tg->rt_se[i]);
8842 }
8843
8844 kfree(tg->rt_rq);
8845 kfree(tg->rt_se);
8846}
8847
ec7dc8ac
DG
8848static
8849int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8850{
8851 struct rt_rq *rt_rq;
eab17229 8852 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8853 struct rq *rq;
8854 int i;
8855
434d53b0 8856 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8857 if (!tg->rt_rq)
8858 goto err;
434d53b0 8859 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8860 if (!tg->rt_se)
8861 goto err;
8862
d0b27fa7
PZ
8863 init_rt_bandwidth(&tg->rt_bandwidth,
8864 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8865
8866 for_each_possible_cpu(i) {
8867 rq = cpu_rq(i);
8868
eab17229
LZ
8869 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8870 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8871 if (!rt_rq)
8872 goto err;
29f59db3 8873
eab17229
LZ
8874 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8875 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8876 if (!rt_se)
8877 goto err;
29f59db3 8878
eab17229 8879 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8880 }
8881
bccbe08a
PZ
8882 return 1;
8883
8884 err:
8885 return 0;
8886}
8887
8888static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8889{
8890 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8891 &cpu_rq(cpu)->leaf_rt_rq_list);
8892}
8893
8894static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8895{
8896 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8897}
6d6bc0ad 8898#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8899static inline void free_rt_sched_group(struct task_group *tg)
8900{
8901}
8902
ec7dc8ac
DG
8903static inline
8904int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8905{
8906 return 1;
8907}
8908
8909static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8910{
8911}
8912
8913static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8914{
8915}
6d6bc0ad 8916#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8917
d0b27fa7 8918#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8919static void free_sched_group(struct task_group *tg)
8920{
8921 free_fair_sched_group(tg);
8922 free_rt_sched_group(tg);
8923 kfree(tg);
8924}
8925
8926/* allocate runqueue etc for a new task group */
ec7dc8ac 8927struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8928{
8929 struct task_group *tg;
8930 unsigned long flags;
8931 int i;
8932
8933 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8934 if (!tg)
8935 return ERR_PTR(-ENOMEM);
8936
ec7dc8ac 8937 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8938 goto err;
8939
ec7dc8ac 8940 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8941 goto err;
8942
8ed36996 8943 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8944 for_each_possible_cpu(i) {
bccbe08a
PZ
8945 register_fair_sched_group(tg, i);
8946 register_rt_sched_group(tg, i);
9b5b7751 8947 }
6f505b16 8948 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8949
8950 WARN_ON(!parent); /* root should already exist */
8951
8952 tg->parent = parent;
f473aa5e 8953 INIT_LIST_HEAD(&tg->children);
09f2724a 8954 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8955 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8956
9b5b7751 8957 return tg;
29f59db3
SV
8958
8959err:
6f505b16 8960 free_sched_group(tg);
29f59db3
SV
8961 return ERR_PTR(-ENOMEM);
8962}
8963
9b5b7751 8964/* rcu callback to free various structures associated with a task group */
6f505b16 8965static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8966{
29f59db3 8967 /* now it should be safe to free those cfs_rqs */
6f505b16 8968 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8969}
8970
9b5b7751 8971/* Destroy runqueue etc associated with a task group */
4cf86d77 8972void sched_destroy_group(struct task_group *tg)
29f59db3 8973{
8ed36996 8974 unsigned long flags;
9b5b7751 8975 int i;
29f59db3 8976
8ed36996 8977 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8978 for_each_possible_cpu(i) {
bccbe08a
PZ
8979 unregister_fair_sched_group(tg, i);
8980 unregister_rt_sched_group(tg, i);
9b5b7751 8981 }
6f505b16 8982 list_del_rcu(&tg->list);
f473aa5e 8983 list_del_rcu(&tg->siblings);
8ed36996 8984 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8985
9b5b7751 8986 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8987 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8988}
8989
9b5b7751 8990/* change task's runqueue when it moves between groups.
3a252015
IM
8991 * The caller of this function should have put the task in its new group
8992 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8993 * reflect its new group.
9b5b7751
SV
8994 */
8995void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8996{
8997 int on_rq, running;
8998 unsigned long flags;
8999 struct rq *rq;
9000
9001 rq = task_rq_lock(tsk, &flags);
9002
29f59db3
SV
9003 update_rq_clock(rq);
9004
051a1d1a 9005 running = task_current(rq, tsk);
29f59db3
SV
9006 on_rq = tsk->se.on_rq;
9007
0e1f3483 9008 if (on_rq)
29f59db3 9009 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9010 if (unlikely(running))
9011 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9012
6f505b16 9013 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9014
810b3817
PZ
9015#ifdef CONFIG_FAIR_GROUP_SCHED
9016 if (tsk->sched_class->moved_group)
9017 tsk->sched_class->moved_group(tsk);
9018#endif
9019
0e1f3483
HS
9020 if (unlikely(running))
9021 tsk->sched_class->set_curr_task(rq);
9022 if (on_rq)
7074badb 9023 enqueue_task(rq, tsk, 0);
29f59db3 9024
29f59db3
SV
9025 task_rq_unlock(rq, &flags);
9026}
6d6bc0ad 9027#endif /* CONFIG_GROUP_SCHED */
29f59db3 9028
052f1dc7 9029#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9030static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9031{
9032 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9033 int on_rq;
9034
29f59db3 9035 on_rq = se->on_rq;
62fb1851 9036 if (on_rq)
29f59db3
SV
9037 dequeue_entity(cfs_rq, se, 0);
9038
9039 se->load.weight = shares;
e05510d0 9040 se->load.inv_weight = 0;
29f59db3 9041
62fb1851 9042 if (on_rq)
29f59db3 9043 enqueue_entity(cfs_rq, se, 0);
c09595f6 9044}
62fb1851 9045
c09595f6
PZ
9046static void set_se_shares(struct sched_entity *se, unsigned long shares)
9047{
9048 struct cfs_rq *cfs_rq = se->cfs_rq;
9049 struct rq *rq = cfs_rq->rq;
9050 unsigned long flags;
9051
9052 spin_lock_irqsave(&rq->lock, flags);
9053 __set_se_shares(se, shares);
9054 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9055}
9056
8ed36996
PZ
9057static DEFINE_MUTEX(shares_mutex);
9058
4cf86d77 9059int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9060{
9061 int i;
8ed36996 9062 unsigned long flags;
c61935fd 9063
ec7dc8ac
DG
9064 /*
9065 * We can't change the weight of the root cgroup.
9066 */
9067 if (!tg->se[0])
9068 return -EINVAL;
9069
18d95a28
PZ
9070 if (shares < MIN_SHARES)
9071 shares = MIN_SHARES;
cb4ad1ff
MX
9072 else if (shares > MAX_SHARES)
9073 shares = MAX_SHARES;
62fb1851 9074
8ed36996 9075 mutex_lock(&shares_mutex);
9b5b7751 9076 if (tg->shares == shares)
5cb350ba 9077 goto done;
29f59db3 9078
8ed36996 9079 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9080 for_each_possible_cpu(i)
9081 unregister_fair_sched_group(tg, i);
f473aa5e 9082 list_del_rcu(&tg->siblings);
8ed36996 9083 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9084
9085 /* wait for any ongoing reference to this group to finish */
9086 synchronize_sched();
9087
9088 /*
9089 * Now we are free to modify the group's share on each cpu
9090 * w/o tripping rebalance_share or load_balance_fair.
9091 */
9b5b7751 9092 tg->shares = shares;
c09595f6
PZ
9093 for_each_possible_cpu(i) {
9094 /*
9095 * force a rebalance
9096 */
9097 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9098 set_se_shares(tg->se[i], shares);
c09595f6 9099 }
29f59db3 9100
6b2d7700
SV
9101 /*
9102 * Enable load balance activity on this group, by inserting it back on
9103 * each cpu's rq->leaf_cfs_rq_list.
9104 */
8ed36996 9105 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9106 for_each_possible_cpu(i)
9107 register_fair_sched_group(tg, i);
f473aa5e 9108 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9109 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9110done:
8ed36996 9111 mutex_unlock(&shares_mutex);
9b5b7751 9112 return 0;
29f59db3
SV
9113}
9114
5cb350ba
DG
9115unsigned long sched_group_shares(struct task_group *tg)
9116{
9117 return tg->shares;
9118}
052f1dc7 9119#endif
5cb350ba 9120
052f1dc7 9121#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9122/*
9f0c1e56 9123 * Ensure that the real time constraints are schedulable.
6f505b16 9124 */
9f0c1e56
PZ
9125static DEFINE_MUTEX(rt_constraints_mutex);
9126
9127static unsigned long to_ratio(u64 period, u64 runtime)
9128{
9129 if (runtime == RUNTIME_INF)
9a7e0b18 9130 return 1ULL << 20;
9f0c1e56 9131
9a7e0b18 9132 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9133}
9134
9a7e0b18
PZ
9135/* Must be called with tasklist_lock held */
9136static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9137{
9a7e0b18 9138 struct task_struct *g, *p;
b40b2e8e 9139
9a7e0b18
PZ
9140 do_each_thread(g, p) {
9141 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9142 return 1;
9143 } while_each_thread(g, p);
b40b2e8e 9144
9a7e0b18
PZ
9145 return 0;
9146}
b40b2e8e 9147
9a7e0b18
PZ
9148struct rt_schedulable_data {
9149 struct task_group *tg;
9150 u64 rt_period;
9151 u64 rt_runtime;
9152};
b40b2e8e 9153
9a7e0b18
PZ
9154static int tg_schedulable(struct task_group *tg, void *data)
9155{
9156 struct rt_schedulable_data *d = data;
9157 struct task_group *child;
9158 unsigned long total, sum = 0;
9159 u64 period, runtime;
b40b2e8e 9160
9a7e0b18
PZ
9161 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9162 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9163
9a7e0b18
PZ
9164 if (tg == d->tg) {
9165 period = d->rt_period;
9166 runtime = d->rt_runtime;
b40b2e8e 9167 }
b40b2e8e 9168
98a4826b
PZ
9169#ifdef CONFIG_USER_SCHED
9170 if (tg == &root_task_group) {
9171 period = global_rt_period();
9172 runtime = global_rt_runtime();
9173 }
9174#endif
9175
4653f803
PZ
9176 /*
9177 * Cannot have more runtime than the period.
9178 */
9179 if (runtime > period && runtime != RUNTIME_INF)
9180 return -EINVAL;
6f505b16 9181
4653f803
PZ
9182 /*
9183 * Ensure we don't starve existing RT tasks.
9184 */
9a7e0b18
PZ
9185 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9186 return -EBUSY;
6f505b16 9187
9a7e0b18 9188 total = to_ratio(period, runtime);
6f505b16 9189
4653f803
PZ
9190 /*
9191 * Nobody can have more than the global setting allows.
9192 */
9193 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9194 return -EINVAL;
6f505b16 9195
4653f803
PZ
9196 /*
9197 * The sum of our children's runtime should not exceed our own.
9198 */
9a7e0b18
PZ
9199 list_for_each_entry_rcu(child, &tg->children, siblings) {
9200 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9201 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9202
9a7e0b18
PZ
9203 if (child == d->tg) {
9204 period = d->rt_period;
9205 runtime = d->rt_runtime;
9206 }
6f505b16 9207
9a7e0b18 9208 sum += to_ratio(period, runtime);
9f0c1e56 9209 }
6f505b16 9210
9a7e0b18
PZ
9211 if (sum > total)
9212 return -EINVAL;
9213
9214 return 0;
6f505b16
PZ
9215}
9216
9a7e0b18 9217static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9218{
9a7e0b18
PZ
9219 struct rt_schedulable_data data = {
9220 .tg = tg,
9221 .rt_period = period,
9222 .rt_runtime = runtime,
9223 };
9224
9225 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9226}
9227
d0b27fa7
PZ
9228static int tg_set_bandwidth(struct task_group *tg,
9229 u64 rt_period, u64 rt_runtime)
6f505b16 9230{
ac086bc2 9231 int i, err = 0;
9f0c1e56 9232
9f0c1e56 9233 mutex_lock(&rt_constraints_mutex);
521f1a24 9234 read_lock(&tasklist_lock);
9a7e0b18
PZ
9235 err = __rt_schedulable(tg, rt_period, rt_runtime);
9236 if (err)
9f0c1e56 9237 goto unlock;
ac086bc2
PZ
9238
9239 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9240 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9241 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9242
9243 for_each_possible_cpu(i) {
9244 struct rt_rq *rt_rq = tg->rt_rq[i];
9245
9246 spin_lock(&rt_rq->rt_runtime_lock);
9247 rt_rq->rt_runtime = rt_runtime;
9248 spin_unlock(&rt_rq->rt_runtime_lock);
9249 }
9250 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9251 unlock:
521f1a24 9252 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9253 mutex_unlock(&rt_constraints_mutex);
9254
9255 return err;
6f505b16
PZ
9256}
9257
d0b27fa7
PZ
9258int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9259{
9260 u64 rt_runtime, rt_period;
9261
9262 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9263 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9264 if (rt_runtime_us < 0)
9265 rt_runtime = RUNTIME_INF;
9266
9267 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9268}
9269
9f0c1e56
PZ
9270long sched_group_rt_runtime(struct task_group *tg)
9271{
9272 u64 rt_runtime_us;
9273
d0b27fa7 9274 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9275 return -1;
9276
d0b27fa7 9277 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9278 do_div(rt_runtime_us, NSEC_PER_USEC);
9279 return rt_runtime_us;
9280}
d0b27fa7
PZ
9281
9282int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9283{
9284 u64 rt_runtime, rt_period;
9285
9286 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9287 rt_runtime = tg->rt_bandwidth.rt_runtime;
9288
619b0488
R
9289 if (rt_period == 0)
9290 return -EINVAL;
9291
d0b27fa7
PZ
9292 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9293}
9294
9295long sched_group_rt_period(struct task_group *tg)
9296{
9297 u64 rt_period_us;
9298
9299 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9300 do_div(rt_period_us, NSEC_PER_USEC);
9301 return rt_period_us;
9302}
9303
9304static int sched_rt_global_constraints(void)
9305{
4653f803 9306 u64 runtime, period;
d0b27fa7
PZ
9307 int ret = 0;
9308
ec5d4989
HS
9309 if (sysctl_sched_rt_period <= 0)
9310 return -EINVAL;
9311
4653f803
PZ
9312 runtime = global_rt_runtime();
9313 period = global_rt_period();
9314
9315 /*
9316 * Sanity check on the sysctl variables.
9317 */
9318 if (runtime > period && runtime != RUNTIME_INF)
9319 return -EINVAL;
10b612f4 9320
d0b27fa7 9321 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9322 read_lock(&tasklist_lock);
4653f803 9323 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9324 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9325 mutex_unlock(&rt_constraints_mutex);
9326
9327 return ret;
9328}
54e99124
DG
9329
9330int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9331{
9332 /* Don't accept realtime tasks when there is no way for them to run */
9333 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9334 return 0;
9335
9336 return 1;
9337}
9338
6d6bc0ad 9339#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9340static int sched_rt_global_constraints(void)
9341{
ac086bc2
PZ
9342 unsigned long flags;
9343 int i;
9344
ec5d4989
HS
9345 if (sysctl_sched_rt_period <= 0)
9346 return -EINVAL;
9347
ac086bc2
PZ
9348 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9349 for_each_possible_cpu(i) {
9350 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9351
9352 spin_lock(&rt_rq->rt_runtime_lock);
9353 rt_rq->rt_runtime = global_rt_runtime();
9354 spin_unlock(&rt_rq->rt_runtime_lock);
9355 }
9356 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9357
d0b27fa7
PZ
9358 return 0;
9359}
6d6bc0ad 9360#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9361
9362int sched_rt_handler(struct ctl_table *table, int write,
9363 struct file *filp, void __user *buffer, size_t *lenp,
9364 loff_t *ppos)
9365{
9366 int ret;
9367 int old_period, old_runtime;
9368 static DEFINE_MUTEX(mutex);
9369
9370 mutex_lock(&mutex);
9371 old_period = sysctl_sched_rt_period;
9372 old_runtime = sysctl_sched_rt_runtime;
9373
9374 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9375
9376 if (!ret && write) {
9377 ret = sched_rt_global_constraints();
9378 if (ret) {
9379 sysctl_sched_rt_period = old_period;
9380 sysctl_sched_rt_runtime = old_runtime;
9381 } else {
9382 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9383 def_rt_bandwidth.rt_period =
9384 ns_to_ktime(global_rt_period());
9385 }
9386 }
9387 mutex_unlock(&mutex);
9388
9389 return ret;
9390}
68318b8e 9391
052f1dc7 9392#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9393
9394/* return corresponding task_group object of a cgroup */
2b01dfe3 9395static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9396{
2b01dfe3
PM
9397 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9398 struct task_group, css);
68318b8e
SV
9399}
9400
9401static struct cgroup_subsys_state *
2b01dfe3 9402cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9403{
ec7dc8ac 9404 struct task_group *tg, *parent;
68318b8e 9405
2b01dfe3 9406 if (!cgrp->parent) {
68318b8e 9407 /* This is early initialization for the top cgroup */
68318b8e
SV
9408 return &init_task_group.css;
9409 }
9410
ec7dc8ac
DG
9411 parent = cgroup_tg(cgrp->parent);
9412 tg = sched_create_group(parent);
68318b8e
SV
9413 if (IS_ERR(tg))
9414 return ERR_PTR(-ENOMEM);
9415
68318b8e
SV
9416 return &tg->css;
9417}
9418
41a2d6cf
IM
9419static void
9420cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9421{
2b01dfe3 9422 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9423
9424 sched_destroy_group(tg);
9425}
9426
41a2d6cf
IM
9427static int
9428cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9429 struct task_struct *tsk)
68318b8e 9430{
b68aa230 9431#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9432 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9433 return -EINVAL;
9434#else
68318b8e
SV
9435 /* We don't support RT-tasks being in separate groups */
9436 if (tsk->sched_class != &fair_sched_class)
9437 return -EINVAL;
b68aa230 9438#endif
68318b8e
SV
9439
9440 return 0;
9441}
9442
9443static void
2b01dfe3 9444cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9445 struct cgroup *old_cont, struct task_struct *tsk)
9446{
9447 sched_move_task(tsk);
9448}
9449
052f1dc7 9450#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9451static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9452 u64 shareval)
68318b8e 9453{
2b01dfe3 9454 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9455}
9456
f4c753b7 9457static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9458{
2b01dfe3 9459 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9460
9461 return (u64) tg->shares;
9462}
6d6bc0ad 9463#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9464
052f1dc7 9465#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9466static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9467 s64 val)
6f505b16 9468{
06ecb27c 9469 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9470}
9471
06ecb27c 9472static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9473{
06ecb27c 9474 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9475}
d0b27fa7
PZ
9476
9477static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9478 u64 rt_period_us)
9479{
9480 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9481}
9482
9483static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9484{
9485 return sched_group_rt_period(cgroup_tg(cgrp));
9486}
6d6bc0ad 9487#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9488
fe5c7cc2 9489static struct cftype cpu_files[] = {
052f1dc7 9490#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9491 {
9492 .name = "shares",
f4c753b7
PM
9493 .read_u64 = cpu_shares_read_u64,
9494 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9495 },
052f1dc7
PZ
9496#endif
9497#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9498 {
9f0c1e56 9499 .name = "rt_runtime_us",
06ecb27c
PM
9500 .read_s64 = cpu_rt_runtime_read,
9501 .write_s64 = cpu_rt_runtime_write,
6f505b16 9502 },
d0b27fa7
PZ
9503 {
9504 .name = "rt_period_us",
f4c753b7
PM
9505 .read_u64 = cpu_rt_period_read_uint,
9506 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9507 },
052f1dc7 9508#endif
68318b8e
SV
9509};
9510
9511static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9512{
fe5c7cc2 9513 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9514}
9515
9516struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9517 .name = "cpu",
9518 .create = cpu_cgroup_create,
9519 .destroy = cpu_cgroup_destroy,
9520 .can_attach = cpu_cgroup_can_attach,
9521 .attach = cpu_cgroup_attach,
9522 .populate = cpu_cgroup_populate,
9523 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9524 .early_init = 1,
9525};
9526
052f1dc7 9527#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9528
9529#ifdef CONFIG_CGROUP_CPUACCT
9530
9531/*
9532 * CPU accounting code for task groups.
9533 *
9534 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9535 * (balbir@in.ibm.com).
9536 */
9537
934352f2 9538/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9539struct cpuacct {
9540 struct cgroup_subsys_state css;
9541 /* cpuusage holds pointer to a u64-type object on every cpu */
9542 u64 *cpuusage;
934352f2 9543 struct cpuacct *parent;
d842de87
SV
9544};
9545
9546struct cgroup_subsys cpuacct_subsys;
9547
9548/* return cpu accounting group corresponding to this container */
32cd756a 9549static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9550{
32cd756a 9551 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9552 struct cpuacct, css);
9553}
9554
9555/* return cpu accounting group to which this task belongs */
9556static inline struct cpuacct *task_ca(struct task_struct *tsk)
9557{
9558 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9559 struct cpuacct, css);
9560}
9561
9562/* create a new cpu accounting group */
9563static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9564 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9565{
9566 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9567
9568 if (!ca)
9569 return ERR_PTR(-ENOMEM);
9570
9571 ca->cpuusage = alloc_percpu(u64);
9572 if (!ca->cpuusage) {
9573 kfree(ca);
9574 return ERR_PTR(-ENOMEM);
9575 }
9576
934352f2
BR
9577 if (cgrp->parent)
9578 ca->parent = cgroup_ca(cgrp->parent);
9579
d842de87
SV
9580 return &ca->css;
9581}
9582
9583/* destroy an existing cpu accounting group */
41a2d6cf 9584static void
32cd756a 9585cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9586{
32cd756a 9587 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9588
9589 free_percpu(ca->cpuusage);
9590 kfree(ca);
9591}
9592
720f5498
KC
9593static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9594{
9595 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9596 u64 data;
9597
9598#ifndef CONFIG_64BIT
9599 /*
9600 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9601 */
9602 spin_lock_irq(&cpu_rq(cpu)->lock);
9603 data = *cpuusage;
9604 spin_unlock_irq(&cpu_rq(cpu)->lock);
9605#else
9606 data = *cpuusage;
9607#endif
9608
9609 return data;
9610}
9611
9612static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9613{
9614 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9615
9616#ifndef CONFIG_64BIT
9617 /*
9618 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9619 */
9620 spin_lock_irq(&cpu_rq(cpu)->lock);
9621 *cpuusage = val;
9622 spin_unlock_irq(&cpu_rq(cpu)->lock);
9623#else
9624 *cpuusage = val;
9625#endif
9626}
9627
d842de87 9628/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9629static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9630{
32cd756a 9631 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9632 u64 totalcpuusage = 0;
9633 int i;
9634
720f5498
KC
9635 for_each_present_cpu(i)
9636 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9637
9638 return totalcpuusage;
9639}
9640
0297b803
DG
9641static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9642 u64 reset)
9643{
9644 struct cpuacct *ca = cgroup_ca(cgrp);
9645 int err = 0;
9646 int i;
9647
9648 if (reset) {
9649 err = -EINVAL;
9650 goto out;
9651 }
9652
720f5498
KC
9653 for_each_present_cpu(i)
9654 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9655
0297b803
DG
9656out:
9657 return err;
9658}
9659
e9515c3c
KC
9660static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9661 struct seq_file *m)
9662{
9663 struct cpuacct *ca = cgroup_ca(cgroup);
9664 u64 percpu;
9665 int i;
9666
9667 for_each_present_cpu(i) {
9668 percpu = cpuacct_cpuusage_read(ca, i);
9669 seq_printf(m, "%llu ", (unsigned long long) percpu);
9670 }
9671 seq_printf(m, "\n");
9672 return 0;
9673}
9674
d842de87
SV
9675static struct cftype files[] = {
9676 {
9677 .name = "usage",
f4c753b7
PM
9678 .read_u64 = cpuusage_read,
9679 .write_u64 = cpuusage_write,
d842de87 9680 },
e9515c3c
KC
9681 {
9682 .name = "usage_percpu",
9683 .read_seq_string = cpuacct_percpu_seq_read,
9684 },
9685
d842de87
SV
9686};
9687
32cd756a 9688static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9689{
32cd756a 9690 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9691}
9692
9693/*
9694 * charge this task's execution time to its accounting group.
9695 *
9696 * called with rq->lock held.
9697 */
9698static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9699{
9700 struct cpuacct *ca;
934352f2 9701 int cpu;
d842de87 9702
c40c6f85 9703 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9704 return;
9705
934352f2 9706 cpu = task_cpu(tsk);
d842de87 9707 ca = task_ca(tsk);
d842de87 9708
934352f2
BR
9709 for (; ca; ca = ca->parent) {
9710 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9711 *cpuusage += cputime;
9712 }
9713}
9714
9715struct cgroup_subsys cpuacct_subsys = {
9716 .name = "cpuacct",
9717 .create = cpuacct_create,
9718 .destroy = cpuacct_destroy,
9719 .populate = cpuacct_populate,
9720 .subsys_id = cpuacct_subsys_id,
9721};
9722#endif /* CONFIG_CGROUP_CPUACCT */