sched: Add support for throttling group entities
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
969c7921 59#include <linux/stop_machine.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1
PZ
70#include <linux/debugfs.h>
71#include <linux/ctype.h>
6cd8a4bb 72#include <linux/ftrace.h>
5a0e3ad6 73#include <linux/slab.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
335d7afb 77#include <asm/mutex.h>
e6e6685a
GC
78#ifdef CONFIG_PARAVIRT
79#include <asm/paravirt.h>
80#endif
1da177e4 81
6e0534f2 82#include "sched_cpupri.h"
21aa9af0 83#include "workqueue_sched.h"
5091faa4 84#include "sched_autogroup.h"
6e0534f2 85
a8d154b0 86#define CREATE_TRACE_POINTS
ad8d75ff 87#include <trace/events/sched.h>
a8d154b0 88
1da177e4
LT
89/*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98/*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107/*
d7876a08 108 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 109 */
d6322faf 110#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 111
6aa645ea
IM
112#define NICE_0_LOAD SCHED_LOAD_SCALE
113#define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
1da177e4
LT
115/*
116 * These are the 'tuning knobs' of the scheduler:
117 *
a4ec24b4 118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
119 * Timeslices get refilled after they expire.
120 */
1da177e4 121#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 122
d0b27fa7
PZ
123/*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126#define RUNTIME_INF ((u64)~0ULL)
127
e05606d3
IM
128static inline int rt_policy(int policy)
129{
63f01241 130 if (policy == SCHED_FIFO || policy == SCHED_RR)
e05606d3
IM
131 return 1;
132 return 0;
133}
134
135static inline int task_has_rt_policy(struct task_struct *p)
136{
137 return rt_policy(p->policy);
138}
139
1da177e4 140/*
6aa645ea 141 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 142 */
6aa645ea
IM
143struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146};
147
d0b27fa7 148struct rt_bandwidth {
ea736ed5 149 /* nests inside the rq lock: */
0986b11b 150 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
d0b27fa7
PZ
154};
155
156static struct rt_bandwidth def_rt_bandwidth;
157
158static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161{
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179}
180
181static
182void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183{
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
0986b11b 187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 188
d0b27fa7
PZ
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
192}
193
c8bfff6d
KH
194static inline int rt_bandwidth_enabled(void)
195{
196 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
197}
198
58088ad0 199static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 200{
58088ad0
PT
201 unsigned long delta;
202 ktime_t soft, hard, now;
d0b27fa7 203
58088ad0
PT
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
cac64d00 221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
0986b11b 227 raw_spin_lock(&rt_b->rt_runtime_lock);
58088ad0 228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
0986b11b 229 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
230}
231
232#ifdef CONFIG_RT_GROUP_SCHED
233static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234{
235 hrtimer_cancel(&rt_b->rt_period_timer);
236}
237#endif
238
712555ee 239/*
c4a8849a 240 * sched_domains_mutex serializes calls to init_sched_domains,
712555ee
HC
241 * detach_destroy_domains and partition_sched_domains.
242 */
243static DEFINE_MUTEX(sched_domains_mutex);
244
7c941438 245#ifdef CONFIG_CGROUP_SCHED
29f59db3 246
68318b8e
SV
247#include <linux/cgroup.h>
248
29f59db3
SV
249struct cfs_rq;
250
6f505b16
PZ
251static LIST_HEAD(task_groups);
252
ab84d31e
PT
253struct cfs_bandwidth {
254#ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
ec12cb7f 257 u64 quota, runtime;
a790de99 258 s64 hierarchal_quota;
a9cf55b2 259 u64 runtime_expires;
58088ad0
PT
260
261 int idle, timer_active;
262 struct hrtimer period_timer;
85dac906
PT
263 struct list_head throttled_cfs_rq;
264
ab84d31e
PT
265#endif
266};
267
29f59db3 268/* task group related information */
4cf86d77 269struct task_group {
68318b8e 270 struct cgroup_subsys_state css;
6c415b92 271
052f1dc7 272#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
273 /* schedulable entities of this group on each cpu */
274 struct sched_entity **se;
275 /* runqueue "owned" by this group on each cpu */
276 struct cfs_rq **cfs_rq;
277 unsigned long shares;
2069dd75
PZ
278
279 atomic_t load_weight;
052f1dc7
PZ
280#endif
281
282#ifdef CONFIG_RT_GROUP_SCHED
283 struct sched_rt_entity **rt_se;
284 struct rt_rq **rt_rq;
285
d0b27fa7 286 struct rt_bandwidth rt_bandwidth;
052f1dc7 287#endif
6b2d7700 288
ae8393e5 289 struct rcu_head rcu;
6f505b16 290 struct list_head list;
f473aa5e
PZ
291
292 struct task_group *parent;
293 struct list_head siblings;
294 struct list_head children;
5091faa4
MG
295
296#ifdef CONFIG_SCHED_AUTOGROUP
297 struct autogroup *autogroup;
298#endif
ab84d31e
PT
299
300 struct cfs_bandwidth cfs_bandwidth;
29f59db3
SV
301};
302
3d4b47b4 303/* task_group_lock serializes the addition/removal of task groups */
8ed36996 304static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 305
e9036b36
CG
306#ifdef CONFIG_FAIR_GROUP_SCHED
307
07e06b01 308# define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 309
cb4ad1ff 310/*
2e084786
LJ
311 * A weight of 0 or 1 can cause arithmetics problems.
312 * A weight of a cfs_rq is the sum of weights of which entities
313 * are queued on this cfs_rq, so a weight of a entity should not be
314 * too large, so as the shares value of a task group.
cb4ad1ff
MX
315 * (The default weight is 1024 - so there's no practical
316 * limitation from this.)
317 */
cd62287e
MG
318#define MIN_SHARES (1UL << 1)
319#define MAX_SHARES (1UL << 18)
18d95a28 320
07e06b01 321static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
052f1dc7
PZ
322#endif
323
29f59db3 324/* Default task group.
3a252015 325 * Every task in system belong to this group at bootup.
29f59db3 326 */
07e06b01 327struct task_group root_task_group;
29f59db3 328
7c941438 329#endif /* CONFIG_CGROUP_SCHED */
29f59db3 330
6aa645ea
IM
331/* CFS-related fields in a runqueue */
332struct cfs_rq {
333 struct load_weight load;
953bfcd1 334 unsigned long nr_running, h_nr_running;
6aa645ea 335
6aa645ea 336 u64 exec_clock;
e9acbff6 337 u64 min_vruntime;
3fe1698b
PZ
338#ifndef CONFIG_64BIT
339 u64 min_vruntime_copy;
340#endif
6aa645ea
IM
341
342 struct rb_root tasks_timeline;
343 struct rb_node *rb_leftmost;
4a55bd5e
PZ
344
345 struct list_head tasks;
346 struct list_head *balance_iterator;
347
348 /*
349 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
350 * It is set to NULL otherwise (i.e when none are currently running).
351 */
ac53db59 352 struct sched_entity *curr, *next, *last, *skip;
ddc97297 353
4934a4d3 354#ifdef CONFIG_SCHED_DEBUG
5ac5c4d6 355 unsigned int nr_spread_over;
4934a4d3 356#endif
ddc97297 357
62160e3f 358#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
359 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
360
41a2d6cf
IM
361 /*
362 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
363 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
364 * (like users, containers etc.)
365 *
366 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
367 * list is used during load balance.
368 */
3d4b47b4 369 int on_list;
41a2d6cf
IM
370 struct list_head leaf_cfs_rq_list;
371 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
372
373#ifdef CONFIG_SMP
c09595f6 374 /*
c8cba857 375 * the part of load.weight contributed by tasks
c09595f6 376 */
c8cba857 377 unsigned long task_weight;
c09595f6 378
c8cba857
PZ
379 /*
380 * h_load = weight * f(tg)
381 *
382 * Where f(tg) is the recursive weight fraction assigned to
383 * this group.
384 */
385 unsigned long h_load;
c09595f6 386
c8cba857 387 /*
3b3d190e
PT
388 * Maintaining per-cpu shares distribution for group scheduling
389 *
390 * load_stamp is the last time we updated the load average
391 * load_last is the last time we updated the load average and saw load
392 * load_unacc_exec_time is currently unaccounted execution time
c8cba857 393 */
2069dd75
PZ
394 u64 load_avg;
395 u64 load_period;
3b3d190e 396 u64 load_stamp, load_last, load_unacc_exec_time;
f1d239f7 397
2069dd75 398 unsigned long load_contribution;
c09595f6 399#endif
ab84d31e
PT
400#ifdef CONFIG_CFS_BANDWIDTH
401 int runtime_enabled;
a9cf55b2 402 u64 runtime_expires;
ab84d31e 403 s64 runtime_remaining;
85dac906
PT
404
405 int throttled;
406 struct list_head throttled_list;
ab84d31e 407#endif
6aa645ea
IM
408#endif
409};
1da177e4 410
ab84d31e
PT
411#ifdef CONFIG_FAIR_GROUP_SCHED
412#ifdef CONFIG_CFS_BANDWIDTH
413static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
414{
415 return &tg->cfs_bandwidth;
416}
417
418static inline u64 default_cfs_period(void);
58088ad0
PT
419static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
420
421static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
422{
423 struct cfs_bandwidth *cfs_b =
424 container_of(timer, struct cfs_bandwidth, period_timer);
425 ktime_t now;
426 int overrun;
427 int idle = 0;
428
429 for (;;) {
430 now = hrtimer_cb_get_time(timer);
431 overrun = hrtimer_forward(timer, now, cfs_b->period);
432
433 if (!overrun)
434 break;
435
436 idle = do_sched_cfs_period_timer(cfs_b, overrun);
437 }
438
439 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
440}
ab84d31e
PT
441
442static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
443{
444 raw_spin_lock_init(&cfs_b->lock);
ec12cb7f 445 cfs_b->runtime = 0;
ab84d31e
PT
446 cfs_b->quota = RUNTIME_INF;
447 cfs_b->period = ns_to_ktime(default_cfs_period());
58088ad0 448
85dac906 449 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
58088ad0
PT
450 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
451 cfs_b->period_timer.function = sched_cfs_period_timer;
ab84d31e
PT
452}
453
454static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
455{
456 cfs_rq->runtime_enabled = 0;
85dac906 457 INIT_LIST_HEAD(&cfs_rq->throttled_list);
ab84d31e
PT
458}
459
58088ad0
PT
460/* requires cfs_b->lock, may release to reprogram timer */
461static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
462{
463 /*
464 * The timer may be active because we're trying to set a new bandwidth
465 * period or because we're racing with the tear-down path
466 * (timer_active==0 becomes visible before the hrtimer call-back
467 * terminates). In either case we ensure that it's re-programmed
468 */
469 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
470 raw_spin_unlock(&cfs_b->lock);
471 /* ensure cfs_b->lock is available while we wait */
472 hrtimer_cancel(&cfs_b->period_timer);
473
474 raw_spin_lock(&cfs_b->lock);
475 /* if someone else restarted the timer then we're done */
476 if (cfs_b->timer_active)
477 return;
478 }
479
480 cfs_b->timer_active = 1;
481 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
482}
483
ab84d31e 484static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
58088ad0
PT
485{
486 hrtimer_cancel(&cfs_b->period_timer);
487}
ab84d31e
PT
488#else
489static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
490static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
491static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
492
493static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
494{
495 return NULL;
496}
497#endif /* CONFIG_CFS_BANDWIDTH */
498#endif /* CONFIG_FAIR_GROUP_SCHED */
499
6aa645ea
IM
500/* Real-Time classes' related field in a runqueue: */
501struct rt_rq {
502 struct rt_prio_array active;
63489e45 503 unsigned long rt_nr_running;
052f1dc7 504#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
505 struct {
506 int curr; /* highest queued rt task prio */
398a153b 507#ifdef CONFIG_SMP
e864c499 508 int next; /* next highest */
398a153b 509#endif
e864c499 510 } highest_prio;
6f505b16 511#endif
fa85ae24 512#ifdef CONFIG_SMP
73fe6aae 513 unsigned long rt_nr_migratory;
a1ba4d8b 514 unsigned long rt_nr_total;
a22d7fc1 515 int overloaded;
917b627d 516 struct plist_head pushable_tasks;
fa85ae24 517#endif
6f505b16 518 int rt_throttled;
fa85ae24 519 u64 rt_time;
ac086bc2 520 u64 rt_runtime;
ea736ed5 521 /* Nests inside the rq lock: */
0986b11b 522 raw_spinlock_t rt_runtime_lock;
6f505b16 523
052f1dc7 524#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
525 unsigned long rt_nr_boosted;
526
6f505b16
PZ
527 struct rq *rq;
528 struct list_head leaf_rt_rq_list;
529 struct task_group *tg;
6f505b16 530#endif
6aa645ea
IM
531};
532
57d885fe
GH
533#ifdef CONFIG_SMP
534
535/*
536 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
537 * variables. Each exclusive cpuset essentially defines an island domain by
538 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
539 * exclusive cpuset is created, we also create and attach a new root-domain
540 * object.
541 *
57d885fe
GH
542 */
543struct root_domain {
544 atomic_t refcount;
26a148eb 545 atomic_t rto_count;
dce840a0 546 struct rcu_head rcu;
c6c4927b
RR
547 cpumask_var_t span;
548 cpumask_var_t online;
637f5085 549
0eab9146 550 /*
637f5085
GH
551 * The "RT overload" flag: it gets set if a CPU has more than
552 * one runnable RT task.
553 */
c6c4927b 554 cpumask_var_t rto_mask;
6e0534f2 555 struct cpupri cpupri;
57d885fe
GH
556};
557
dc938520
GH
558/*
559 * By default the system creates a single root-domain with all cpus as
560 * members (mimicking the global state we have today).
561 */
57d885fe
GH
562static struct root_domain def_root_domain;
563
ed2d372c 564#endif /* CONFIG_SMP */
57d885fe 565
1da177e4
LT
566/*
567 * This is the main, per-CPU runqueue data structure.
568 *
569 * Locking rule: those places that want to lock multiple runqueues
570 * (such as the load balancing or the thread migration code), lock
571 * acquire operations must be ordered by ascending &runqueue.
572 */
70b97a7f 573struct rq {
d8016491 574 /* runqueue lock: */
05fa785c 575 raw_spinlock_t lock;
1da177e4
LT
576
577 /*
578 * nr_running and cpu_load should be in the same cacheline because
579 * remote CPUs use both these fields when doing load calculation.
580 */
581 unsigned long nr_running;
6aa645ea
IM
582 #define CPU_LOAD_IDX_MAX 5
583 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
fdf3e95d 584 unsigned long last_load_update_tick;
46cb4b7c 585#ifdef CONFIG_NO_HZ
39c0cbe2 586 u64 nohz_stamp;
83cd4fe2 587 unsigned char nohz_balance_kick;
46cb4b7c 588#endif
61eadef6 589 int skip_clock_update;
a64692a3 590
d8016491
IM
591 /* capture load from *all* tasks on this cpu: */
592 struct load_weight load;
6aa645ea
IM
593 unsigned long nr_load_updates;
594 u64 nr_switches;
595
596 struct cfs_rq cfs;
6f505b16 597 struct rt_rq rt;
6f505b16 598
6aa645ea 599#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
600 /* list of leaf cfs_rq on this cpu: */
601 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
602#endif
603#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 604 struct list_head leaf_rt_rq_list;
1da177e4 605#endif
1da177e4
LT
606
607 /*
608 * This is part of a global counter where only the total sum
609 * over all CPUs matters. A task can increase this counter on
610 * one CPU and if it got migrated afterwards it may decrease
611 * it on another CPU. Always updated under the runqueue lock:
612 */
613 unsigned long nr_uninterruptible;
614
34f971f6 615 struct task_struct *curr, *idle, *stop;
c9819f45 616 unsigned long next_balance;
1da177e4 617 struct mm_struct *prev_mm;
6aa645ea 618
3e51f33f 619 u64 clock;
305e6835 620 u64 clock_task;
6aa645ea 621
1da177e4
LT
622 atomic_t nr_iowait;
623
624#ifdef CONFIG_SMP
0eab9146 625 struct root_domain *rd;
1da177e4
LT
626 struct sched_domain *sd;
627
e51fd5e2
PZ
628 unsigned long cpu_power;
629
a0a522ce 630 unsigned char idle_at_tick;
1da177e4 631 /* For active balancing */
3f029d3c 632 int post_schedule;
1da177e4
LT
633 int active_balance;
634 int push_cpu;
969c7921 635 struct cpu_stop_work active_balance_work;
d8016491
IM
636 /* cpu of this runqueue: */
637 int cpu;
1f11eb6a 638 int online;
1da177e4 639
e9e9250b
PZ
640 u64 rt_avg;
641 u64 age_stamp;
1b9508f6
MG
642 u64 idle_stamp;
643 u64 avg_idle;
1da177e4
LT
644#endif
645
aa483808
VP
646#ifdef CONFIG_IRQ_TIME_ACCOUNTING
647 u64 prev_irq_time;
648#endif
e6e6685a
GC
649#ifdef CONFIG_PARAVIRT
650 u64 prev_steal_time;
651#endif
095c0aa8
GC
652#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
653 u64 prev_steal_time_rq;
654#endif
aa483808 655
dce48a84
TG
656 /* calc_load related fields */
657 unsigned long calc_load_update;
658 long calc_load_active;
659
8f4d37ec 660#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
661#ifdef CONFIG_SMP
662 int hrtick_csd_pending;
663 struct call_single_data hrtick_csd;
664#endif
8f4d37ec
PZ
665 struct hrtimer hrtick_timer;
666#endif
667
1da177e4
LT
668#ifdef CONFIG_SCHEDSTATS
669 /* latency stats */
670 struct sched_info rq_sched_info;
9c2c4802
KC
671 unsigned long long rq_cpu_time;
672 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
673
674 /* sys_sched_yield() stats */
480b9434 675 unsigned int yld_count;
1da177e4
LT
676
677 /* schedule() stats */
480b9434
KC
678 unsigned int sched_switch;
679 unsigned int sched_count;
680 unsigned int sched_goidle;
1da177e4
LT
681
682 /* try_to_wake_up() stats */
480b9434
KC
683 unsigned int ttwu_count;
684 unsigned int ttwu_local;
1da177e4 685#endif
317f3941
PZ
686
687#ifdef CONFIG_SMP
688 struct task_struct *wake_list;
689#endif
1da177e4
LT
690};
691
f34e3b61 692static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 693
a64692a3 694
1e5a7405 695static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
dd41f596 696
0a2966b4
CL
697static inline int cpu_of(struct rq *rq)
698{
699#ifdef CONFIG_SMP
700 return rq->cpu;
701#else
702 return 0;
703#endif
704}
705
497f0ab3 706#define rcu_dereference_check_sched_domain(p) \
d11c563d 707 rcu_dereference_check((p), \
d11c563d
PM
708 lockdep_is_held(&sched_domains_mutex))
709
674311d5
NP
710/*
711 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 712 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
713 *
714 * The domain tree of any CPU may only be accessed from within
715 * preempt-disabled sections.
716 */
48f24c4d 717#define for_each_domain(cpu, __sd) \
497f0ab3 718 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
719
720#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
721#define this_rq() (&__get_cpu_var(runqueues))
722#define task_rq(p) cpu_rq(task_cpu(p))
723#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 724#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 725
dc61b1d6
PZ
726#ifdef CONFIG_CGROUP_SCHED
727
728/*
729 * Return the group to which this tasks belongs.
730 *
6c6c54e1
PZ
731 * We use task_subsys_state_check() and extend the RCU verification with
732 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
733 * task it moves into the cgroup. Therefore by holding either of those locks,
734 * we pin the task to the current cgroup.
dc61b1d6
PZ
735 */
736static inline struct task_group *task_group(struct task_struct *p)
737{
5091faa4 738 struct task_group *tg;
dc61b1d6
PZ
739 struct cgroup_subsys_state *css;
740
741 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
6c6c54e1
PZ
742 lockdep_is_held(&p->pi_lock) ||
743 lockdep_is_held(&task_rq(p)->lock));
5091faa4
MG
744 tg = container_of(css, struct task_group, css);
745
746 return autogroup_task_group(p, tg);
dc61b1d6
PZ
747}
748
749/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
750static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
751{
752#ifdef CONFIG_FAIR_GROUP_SCHED
753 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
754 p->se.parent = task_group(p)->se[cpu];
755#endif
756
757#ifdef CONFIG_RT_GROUP_SCHED
758 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
759 p->rt.parent = task_group(p)->rt_se[cpu];
760#endif
761}
762
763#else /* CONFIG_CGROUP_SCHED */
764
765static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
766static inline struct task_group *task_group(struct task_struct *p)
767{
768 return NULL;
769}
770
771#endif /* CONFIG_CGROUP_SCHED */
772
fe44d621 773static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 774
fe44d621 775static void update_rq_clock(struct rq *rq)
3e51f33f 776{
fe44d621 777 s64 delta;
305e6835 778
61eadef6 779 if (rq->skip_clock_update > 0)
f26f9aff 780 return;
aa483808 781
fe44d621
PZ
782 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
783 rq->clock += delta;
784 update_rq_clock_task(rq, delta);
3e51f33f
PZ
785}
786
bf5c91ba
IM
787/*
788 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
789 */
790#ifdef CONFIG_SCHED_DEBUG
791# define const_debug __read_mostly
792#else
793# define const_debug static const
794#endif
795
017730c1 796/**
1fd06bb1 797 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
e17b38bf 798 * @cpu: the processor in question.
017730c1 799 *
017730c1
IM
800 * This interface allows printk to be called with the runqueue lock
801 * held and know whether or not it is OK to wake up the klogd.
802 */
89f19f04 803int runqueue_is_locked(int cpu)
017730c1 804{
05fa785c 805 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
806}
807
bf5c91ba
IM
808/*
809 * Debugging: various feature bits
810 */
f00b45c1
PZ
811
812#define SCHED_FEAT(name, enabled) \
813 __SCHED_FEAT_##name ,
814
bf5c91ba 815enum {
f00b45c1 816#include "sched_features.h"
bf5c91ba
IM
817};
818
f00b45c1
PZ
819#undef SCHED_FEAT
820
821#define SCHED_FEAT(name, enabled) \
822 (1UL << __SCHED_FEAT_##name) * enabled |
823
bf5c91ba 824const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
825#include "sched_features.h"
826 0;
827
828#undef SCHED_FEAT
829
830#ifdef CONFIG_SCHED_DEBUG
831#define SCHED_FEAT(name, enabled) \
832 #name ,
833
983ed7a6 834static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
835#include "sched_features.h"
836 NULL
837};
838
839#undef SCHED_FEAT
840
34f3a814 841static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 842{
f00b45c1
PZ
843 int i;
844
845 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
846 if (!(sysctl_sched_features & (1UL << i)))
847 seq_puts(m, "NO_");
848 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 849 }
34f3a814 850 seq_puts(m, "\n");
f00b45c1 851
34f3a814 852 return 0;
f00b45c1
PZ
853}
854
855static ssize_t
856sched_feat_write(struct file *filp, const char __user *ubuf,
857 size_t cnt, loff_t *ppos)
858{
859 char buf[64];
7740191c 860 char *cmp;
f00b45c1
PZ
861 int neg = 0;
862 int i;
863
864 if (cnt > 63)
865 cnt = 63;
866
867 if (copy_from_user(&buf, ubuf, cnt))
868 return -EFAULT;
869
870 buf[cnt] = 0;
7740191c 871 cmp = strstrip(buf);
f00b45c1 872
524429c3 873 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
874 neg = 1;
875 cmp += 3;
876 }
877
878 for (i = 0; sched_feat_names[i]; i++) {
7740191c 879 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f00b45c1
PZ
880 if (neg)
881 sysctl_sched_features &= ~(1UL << i);
882 else
883 sysctl_sched_features |= (1UL << i);
884 break;
885 }
886 }
887
888 if (!sched_feat_names[i])
889 return -EINVAL;
890
42994724 891 *ppos += cnt;
f00b45c1
PZ
892
893 return cnt;
894}
895
34f3a814
LZ
896static int sched_feat_open(struct inode *inode, struct file *filp)
897{
898 return single_open(filp, sched_feat_show, NULL);
899}
900
828c0950 901static const struct file_operations sched_feat_fops = {
34f3a814
LZ
902 .open = sched_feat_open,
903 .write = sched_feat_write,
904 .read = seq_read,
905 .llseek = seq_lseek,
906 .release = single_release,
f00b45c1
PZ
907};
908
909static __init int sched_init_debug(void)
910{
f00b45c1
PZ
911 debugfs_create_file("sched_features", 0644, NULL, NULL,
912 &sched_feat_fops);
913
914 return 0;
915}
916late_initcall(sched_init_debug);
917
918#endif
919
920#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 921
b82d9fdd
PZ
922/*
923 * Number of tasks to iterate in a single balance run.
924 * Limited because this is done with IRQs disabled.
925 */
926const_debug unsigned int sysctl_sched_nr_migrate = 32;
927
e9e9250b
PZ
928/*
929 * period over which we average the RT time consumption, measured
930 * in ms.
931 *
932 * default: 1s
933 */
934const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
935
fa85ae24 936/*
9f0c1e56 937 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
938 * default: 1s
939 */
9f0c1e56 940unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 941
6892b75e
IM
942static __read_mostly int scheduler_running;
943
9f0c1e56
PZ
944/*
945 * part of the period that we allow rt tasks to run in us.
946 * default: 0.95s
947 */
948int sysctl_sched_rt_runtime = 950000;
fa85ae24 949
d0b27fa7
PZ
950static inline u64 global_rt_period(void)
951{
952 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
953}
954
955static inline u64 global_rt_runtime(void)
956{
e26873bb 957 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
958 return RUNTIME_INF;
959
960 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
961}
fa85ae24 962
1da177e4 963#ifndef prepare_arch_switch
4866cde0
NP
964# define prepare_arch_switch(next) do { } while (0)
965#endif
966#ifndef finish_arch_switch
967# define finish_arch_switch(prev) do { } while (0)
968#endif
969
051a1d1a
DA
970static inline int task_current(struct rq *rq, struct task_struct *p)
971{
972 return rq->curr == p;
973}
974
70b97a7f 975static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 976{
3ca7a440
PZ
977#ifdef CONFIG_SMP
978 return p->on_cpu;
979#else
051a1d1a 980 return task_current(rq, p);
3ca7a440 981#endif
4866cde0
NP
982}
983
3ca7a440 984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 985static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0 986{
3ca7a440
PZ
987#ifdef CONFIG_SMP
988 /*
989 * We can optimise this out completely for !SMP, because the
990 * SMP rebalancing from interrupt is the only thing that cares
991 * here.
992 */
993 next->on_cpu = 1;
994#endif
4866cde0
NP
995}
996
70b97a7f 997static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 998{
3ca7a440
PZ
999#ifdef CONFIG_SMP
1000 /*
1001 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1002 * We must ensure this doesn't happen until the switch is completely
1003 * finished.
1004 */
1005 smp_wmb();
1006 prev->on_cpu = 0;
1007#endif
da04c035
IM
1008#ifdef CONFIG_DEBUG_SPINLOCK
1009 /* this is a valid case when another task releases the spinlock */
1010 rq->lock.owner = current;
1011#endif
8a25d5de
IM
1012 /*
1013 * If we are tracking spinlock dependencies then we have to
1014 * fix up the runqueue lock - which gets 'carried over' from
1015 * prev into current:
1016 */
1017 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1018
05fa785c 1019 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
1020}
1021
1022#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 1023static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1024{
1025#ifdef CONFIG_SMP
1026 /*
1027 * We can optimise this out completely for !SMP, because the
1028 * SMP rebalancing from interrupt is the only thing that cares
1029 * here.
1030 */
3ca7a440 1031 next->on_cpu = 1;
4866cde0
NP
1032#endif
1033#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 1034 raw_spin_unlock_irq(&rq->lock);
4866cde0 1035#else
05fa785c 1036 raw_spin_unlock(&rq->lock);
4866cde0
NP
1037#endif
1038}
1039
70b97a7f 1040static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
1041{
1042#ifdef CONFIG_SMP
1043 /*
3ca7a440 1044 * After ->on_cpu is cleared, the task can be moved to a different CPU.
4866cde0
NP
1045 * We must ensure this doesn't happen until the switch is completely
1046 * finished.
1047 */
1048 smp_wmb();
3ca7a440 1049 prev->on_cpu = 0;
4866cde0
NP
1050#endif
1051#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1052 local_irq_enable();
1da177e4 1053#endif
4866cde0
NP
1054}
1055#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 1056
0970d299 1057/*
0122ec5b 1058 * __task_rq_lock - lock the rq @p resides on.
b29739f9 1059 */
70b97a7f 1060static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
1061 __acquires(rq->lock)
1062{
0970d299
PZ
1063 struct rq *rq;
1064
0122ec5b
PZ
1065 lockdep_assert_held(&p->pi_lock);
1066
3a5c359a 1067 for (;;) {
0970d299 1068 rq = task_rq(p);
05fa785c 1069 raw_spin_lock(&rq->lock);
65cc8e48 1070 if (likely(rq == task_rq(p)))
3a5c359a 1071 return rq;
05fa785c 1072 raw_spin_unlock(&rq->lock);
b29739f9 1073 }
b29739f9
IM
1074}
1075
1da177e4 1076/*
0122ec5b 1077 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 1078 */
70b97a7f 1079static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 1080 __acquires(p->pi_lock)
1da177e4
LT
1081 __acquires(rq->lock)
1082{
70b97a7f 1083 struct rq *rq;
1da177e4 1084
3a5c359a 1085 for (;;) {
0122ec5b 1086 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 1087 rq = task_rq(p);
05fa785c 1088 raw_spin_lock(&rq->lock);
65cc8e48 1089 if (likely(rq == task_rq(p)))
3a5c359a 1090 return rq;
0122ec5b
PZ
1091 raw_spin_unlock(&rq->lock);
1092 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 1093 }
1da177e4
LT
1094}
1095
a9957449 1096static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1097 __releases(rq->lock)
1098{
05fa785c 1099 raw_spin_unlock(&rq->lock);
b29739f9
IM
1100}
1101
0122ec5b
PZ
1102static inline void
1103task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 1104 __releases(rq->lock)
0122ec5b 1105 __releases(p->pi_lock)
1da177e4 1106{
0122ec5b
PZ
1107 raw_spin_unlock(&rq->lock);
1108 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
1109}
1110
1da177e4 1111/*
cc2a73b5 1112 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1113 */
a9957449 1114static struct rq *this_rq_lock(void)
1da177e4
LT
1115 __acquires(rq->lock)
1116{
70b97a7f 1117 struct rq *rq;
1da177e4
LT
1118
1119 local_irq_disable();
1120 rq = this_rq();
05fa785c 1121 raw_spin_lock(&rq->lock);
1da177e4
LT
1122
1123 return rq;
1124}
1125
8f4d37ec
PZ
1126#ifdef CONFIG_SCHED_HRTICK
1127/*
1128 * Use HR-timers to deliver accurate preemption points.
1129 *
1130 * Its all a bit involved since we cannot program an hrt while holding the
1131 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1132 * reschedule event.
1133 *
1134 * When we get rescheduled we reprogram the hrtick_timer outside of the
1135 * rq->lock.
1136 */
8f4d37ec
PZ
1137
1138/*
1139 * Use hrtick when:
1140 * - enabled by features
1141 * - hrtimer is actually high res
1142 */
1143static inline int hrtick_enabled(struct rq *rq)
1144{
1145 if (!sched_feat(HRTICK))
1146 return 0;
ba42059f 1147 if (!cpu_active(cpu_of(rq)))
b328ca18 1148 return 0;
8f4d37ec
PZ
1149 return hrtimer_is_hres_active(&rq->hrtick_timer);
1150}
1151
8f4d37ec
PZ
1152static void hrtick_clear(struct rq *rq)
1153{
1154 if (hrtimer_active(&rq->hrtick_timer))
1155 hrtimer_cancel(&rq->hrtick_timer);
1156}
1157
8f4d37ec
PZ
1158/*
1159 * High-resolution timer tick.
1160 * Runs from hardirq context with interrupts disabled.
1161 */
1162static enum hrtimer_restart hrtick(struct hrtimer *timer)
1163{
1164 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1165
1166 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1167
05fa785c 1168 raw_spin_lock(&rq->lock);
3e51f33f 1169 update_rq_clock(rq);
8f4d37ec 1170 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1171 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1172
1173 return HRTIMER_NORESTART;
1174}
1175
95e904c7 1176#ifdef CONFIG_SMP
31656519
PZ
1177/*
1178 * called from hardirq (IPI) context
1179 */
1180static void __hrtick_start(void *arg)
b328ca18 1181{
31656519 1182 struct rq *rq = arg;
b328ca18 1183
05fa785c 1184 raw_spin_lock(&rq->lock);
31656519
PZ
1185 hrtimer_restart(&rq->hrtick_timer);
1186 rq->hrtick_csd_pending = 0;
05fa785c 1187 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1188}
1189
31656519
PZ
1190/*
1191 * Called to set the hrtick timer state.
1192 *
1193 * called with rq->lock held and irqs disabled
1194 */
1195static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1196{
31656519
PZ
1197 struct hrtimer *timer = &rq->hrtick_timer;
1198 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1199
cc584b21 1200 hrtimer_set_expires(timer, time);
31656519
PZ
1201
1202 if (rq == this_rq()) {
1203 hrtimer_restart(timer);
1204 } else if (!rq->hrtick_csd_pending) {
6e275637 1205 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1206 rq->hrtick_csd_pending = 1;
1207 }
b328ca18
PZ
1208}
1209
1210static int
1211hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1212{
1213 int cpu = (int)(long)hcpu;
1214
1215 switch (action) {
1216 case CPU_UP_CANCELED:
1217 case CPU_UP_CANCELED_FROZEN:
1218 case CPU_DOWN_PREPARE:
1219 case CPU_DOWN_PREPARE_FROZEN:
1220 case CPU_DEAD:
1221 case CPU_DEAD_FROZEN:
31656519 1222 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1223 return NOTIFY_OK;
1224 }
1225
1226 return NOTIFY_DONE;
1227}
1228
fa748203 1229static __init void init_hrtick(void)
b328ca18
PZ
1230{
1231 hotcpu_notifier(hotplug_hrtick, 0);
1232}
31656519
PZ
1233#else
1234/*
1235 * Called to set the hrtick timer state.
1236 *
1237 * called with rq->lock held and irqs disabled
1238 */
1239static void hrtick_start(struct rq *rq, u64 delay)
1240{
7f1e2ca9 1241 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1242 HRTIMER_MODE_REL_PINNED, 0);
31656519 1243}
b328ca18 1244
006c75f1 1245static inline void init_hrtick(void)
8f4d37ec 1246{
8f4d37ec 1247}
31656519 1248#endif /* CONFIG_SMP */
8f4d37ec 1249
31656519 1250static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1251{
31656519
PZ
1252#ifdef CONFIG_SMP
1253 rq->hrtick_csd_pending = 0;
8f4d37ec 1254
31656519
PZ
1255 rq->hrtick_csd.flags = 0;
1256 rq->hrtick_csd.func = __hrtick_start;
1257 rq->hrtick_csd.info = rq;
1258#endif
8f4d37ec 1259
31656519
PZ
1260 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1261 rq->hrtick_timer.function = hrtick;
8f4d37ec 1262}
006c75f1 1263#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1264static inline void hrtick_clear(struct rq *rq)
1265{
1266}
1267
8f4d37ec
PZ
1268static inline void init_rq_hrtick(struct rq *rq)
1269{
1270}
1271
b328ca18
PZ
1272static inline void init_hrtick(void)
1273{
1274}
006c75f1 1275#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1276
c24d20db
IM
1277/*
1278 * resched_task - mark a task 'to be rescheduled now'.
1279 *
1280 * On UP this means the setting of the need_resched flag, on SMP it
1281 * might also involve a cross-CPU call to trigger the scheduler on
1282 * the target CPU.
1283 */
1284#ifdef CONFIG_SMP
1285
1286#ifndef tsk_is_polling
1287#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1288#endif
1289
31656519 1290static void resched_task(struct task_struct *p)
c24d20db
IM
1291{
1292 int cpu;
1293
05fa785c 1294 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1295
5ed0cec0 1296 if (test_tsk_need_resched(p))
c24d20db
IM
1297 return;
1298
5ed0cec0 1299 set_tsk_need_resched(p);
c24d20db
IM
1300
1301 cpu = task_cpu(p);
1302 if (cpu == smp_processor_id())
1303 return;
1304
1305 /* NEED_RESCHED must be visible before we test polling */
1306 smp_mb();
1307 if (!tsk_is_polling(p))
1308 smp_send_reschedule(cpu);
1309}
1310
1311static void resched_cpu(int cpu)
1312{
1313 struct rq *rq = cpu_rq(cpu);
1314 unsigned long flags;
1315
05fa785c 1316 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1317 return;
1318 resched_task(cpu_curr(cpu));
05fa785c 1319 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1320}
06d8308c
TG
1321
1322#ifdef CONFIG_NO_HZ
83cd4fe2
VP
1323/*
1324 * In the semi idle case, use the nearest busy cpu for migrating timers
1325 * from an idle cpu. This is good for power-savings.
1326 *
1327 * We don't do similar optimization for completely idle system, as
1328 * selecting an idle cpu will add more delays to the timers than intended
1329 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1330 */
1331int get_nohz_timer_target(void)
1332{
1333 int cpu = smp_processor_id();
1334 int i;
1335 struct sched_domain *sd;
1336
057f3fad 1337 rcu_read_lock();
83cd4fe2 1338 for_each_domain(cpu, sd) {
057f3fad
PZ
1339 for_each_cpu(i, sched_domain_span(sd)) {
1340 if (!idle_cpu(i)) {
1341 cpu = i;
1342 goto unlock;
1343 }
1344 }
83cd4fe2 1345 }
057f3fad
PZ
1346unlock:
1347 rcu_read_unlock();
83cd4fe2
VP
1348 return cpu;
1349}
06d8308c
TG
1350/*
1351 * When add_timer_on() enqueues a timer into the timer wheel of an
1352 * idle CPU then this timer might expire before the next timer event
1353 * which is scheduled to wake up that CPU. In case of a completely
1354 * idle system the next event might even be infinite time into the
1355 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1356 * leaves the inner idle loop so the newly added timer is taken into
1357 * account when the CPU goes back to idle and evaluates the timer
1358 * wheel for the next timer event.
1359 */
1360void wake_up_idle_cpu(int cpu)
1361{
1362 struct rq *rq = cpu_rq(cpu);
1363
1364 if (cpu == smp_processor_id())
1365 return;
1366
1367 /*
1368 * This is safe, as this function is called with the timer
1369 * wheel base lock of (cpu) held. When the CPU is on the way
1370 * to idle and has not yet set rq->curr to idle then it will
1371 * be serialized on the timer wheel base lock and take the new
1372 * timer into account automatically.
1373 */
1374 if (rq->curr != rq->idle)
1375 return;
1376
1377 /*
1378 * We can set TIF_RESCHED on the idle task of the other CPU
1379 * lockless. The worst case is that the other CPU runs the
1380 * idle task through an additional NOOP schedule()
1381 */
5ed0cec0 1382 set_tsk_need_resched(rq->idle);
06d8308c
TG
1383
1384 /* NEED_RESCHED must be visible before we test polling */
1385 smp_mb();
1386 if (!tsk_is_polling(rq->idle))
1387 smp_send_reschedule(cpu);
1388}
39c0cbe2 1389
6d6bc0ad 1390#endif /* CONFIG_NO_HZ */
06d8308c 1391
e9e9250b
PZ
1392static u64 sched_avg_period(void)
1393{
1394 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1395}
1396
1397static void sched_avg_update(struct rq *rq)
1398{
1399 s64 period = sched_avg_period();
1400
1401 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
1402 /*
1403 * Inline assembly required to prevent the compiler
1404 * optimising this loop into a divmod call.
1405 * See __iter_div_u64_rem() for another example of this.
1406 */
1407 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
1408 rq->age_stamp += period;
1409 rq->rt_avg /= 2;
1410 }
1411}
1412
1413static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1414{
1415 rq->rt_avg += rt_delta;
1416 sched_avg_update(rq);
1417}
1418
6d6bc0ad 1419#else /* !CONFIG_SMP */
31656519 1420static void resched_task(struct task_struct *p)
c24d20db 1421{
05fa785c 1422 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1423 set_tsk_need_resched(p);
c24d20db 1424}
e9e9250b
PZ
1425
1426static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1427{
1428}
da2b71ed
SS
1429
1430static void sched_avg_update(struct rq *rq)
1431{
1432}
6d6bc0ad 1433#endif /* CONFIG_SMP */
c24d20db 1434
45bf76df
IM
1435#if BITS_PER_LONG == 32
1436# define WMULT_CONST (~0UL)
1437#else
1438# define WMULT_CONST (1UL << 32)
1439#endif
1440
1441#define WMULT_SHIFT 32
1442
194081eb
IM
1443/*
1444 * Shift right and round:
1445 */
cf2ab469 1446#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1447
a7be37ac
PZ
1448/*
1449 * delta *= weight / lw
1450 */
cb1c4fc9 1451static unsigned long
45bf76df
IM
1452calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1453 struct load_weight *lw)
1454{
1455 u64 tmp;
1456
c8b28116
NR
1457 /*
1458 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1459 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1460 * 2^SCHED_LOAD_RESOLUTION.
1461 */
1462 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1463 tmp = (u64)delta_exec * scale_load_down(weight);
1464 else
1465 tmp = (u64)delta_exec;
db670dac 1466
7a232e03 1467 if (!lw->inv_weight) {
c8b28116
NR
1468 unsigned long w = scale_load_down(lw->weight);
1469
1470 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
7a232e03 1471 lw->inv_weight = 1;
c8b28116
NR
1472 else if (unlikely(!w))
1473 lw->inv_weight = WMULT_CONST;
7a232e03 1474 else
c8b28116 1475 lw->inv_weight = WMULT_CONST / w;
7a232e03 1476 }
45bf76df 1477
45bf76df
IM
1478 /*
1479 * Check whether we'd overflow the 64-bit multiplication:
1480 */
194081eb 1481 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1482 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1483 WMULT_SHIFT/2);
1484 else
cf2ab469 1485 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1486
ecf691da 1487 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1488}
1489
1091985b 1490static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1491{
1492 lw->weight += inc;
e89996ae 1493 lw->inv_weight = 0;
45bf76df
IM
1494}
1495
1091985b 1496static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1497{
1498 lw->weight -= dec;
e89996ae 1499 lw->inv_weight = 0;
45bf76df
IM
1500}
1501
2069dd75
PZ
1502static inline void update_load_set(struct load_weight *lw, unsigned long w)
1503{
1504 lw->weight = w;
1505 lw->inv_weight = 0;
1506}
1507
2dd73a4f
PW
1508/*
1509 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1510 * of tasks with abnormal "nice" values across CPUs the contribution that
1511 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1512 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1513 * scaled version of the new time slice allocation that they receive on time
1514 * slice expiry etc.
1515 */
1516
cce7ade8
PZ
1517#define WEIGHT_IDLEPRIO 3
1518#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1519
1520/*
1521 * Nice levels are multiplicative, with a gentle 10% change for every
1522 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1523 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1524 * that remained on nice 0.
1525 *
1526 * The "10% effect" is relative and cumulative: from _any_ nice level,
1527 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1528 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1529 * If a task goes up by ~10% and another task goes down by ~10% then
1530 * the relative distance between them is ~25%.)
dd41f596
IM
1531 */
1532static const int prio_to_weight[40] = {
254753dc
IM
1533 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1534 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1535 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1536 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1537 /* 0 */ 1024, 820, 655, 526, 423,
1538 /* 5 */ 335, 272, 215, 172, 137,
1539 /* 10 */ 110, 87, 70, 56, 45,
1540 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1541};
1542
5714d2de
IM
1543/*
1544 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1545 *
1546 * In cases where the weight does not change often, we can use the
1547 * precalculated inverse to speed up arithmetics by turning divisions
1548 * into multiplications:
1549 */
dd41f596 1550static const u32 prio_to_wmult[40] = {
254753dc
IM
1551 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1552 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1553 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1554 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1555 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1556 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1557 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1558 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1559};
2dd73a4f 1560
ef12fefa
BR
1561/* Time spent by the tasks of the cpu accounting group executing in ... */
1562enum cpuacct_stat_index {
1563 CPUACCT_STAT_USER, /* ... user mode */
1564 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1565
1566 CPUACCT_STAT_NSTATS,
1567};
1568
d842de87
SV
1569#ifdef CONFIG_CGROUP_CPUACCT
1570static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1571static void cpuacct_update_stats(struct task_struct *tsk,
1572 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1573#else
1574static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1575static inline void cpuacct_update_stats(struct task_struct *tsk,
1576 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1577#endif
1578
18d95a28
PZ
1579static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1580{
1581 update_load_add(&rq->load, load);
1582}
1583
1584static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1585{
1586 update_load_sub(&rq->load, load);
1587}
1588
a790de99
PT
1589#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1590 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
eb755805 1591typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1592
1593/*
1594 * Iterate the full tree, calling @down when first entering a node and @up when
1595 * leaving it for the final time.
1596 */
eb755805 1597static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1598{
1599 struct task_group *parent, *child;
eb755805 1600 int ret;
c09595f6
PZ
1601
1602 rcu_read_lock();
1603 parent = &root_task_group;
1604down:
eb755805
PZ
1605 ret = (*down)(parent, data);
1606 if (ret)
1607 goto out_unlock;
c09595f6
PZ
1608 list_for_each_entry_rcu(child, &parent->children, siblings) {
1609 parent = child;
1610 goto down;
1611
1612up:
1613 continue;
1614 }
eb755805
PZ
1615 ret = (*up)(parent, data);
1616 if (ret)
1617 goto out_unlock;
c09595f6
PZ
1618
1619 child = parent;
1620 parent = parent->parent;
1621 if (parent)
1622 goto up;
eb755805 1623out_unlock:
c09595f6 1624 rcu_read_unlock();
eb755805
PZ
1625
1626 return ret;
c09595f6
PZ
1627}
1628
eb755805
PZ
1629static int tg_nop(struct task_group *tg, void *data)
1630{
1631 return 0;
c09595f6 1632}
eb755805
PZ
1633#endif
1634
1635#ifdef CONFIG_SMP
f5f08f39
PZ
1636/* Used instead of source_load when we know the type == 0 */
1637static unsigned long weighted_cpuload(const int cpu)
1638{
1639 return cpu_rq(cpu)->load.weight;
1640}
1641
1642/*
1643 * Return a low guess at the load of a migration-source cpu weighted
1644 * according to the scheduling class and "nice" value.
1645 *
1646 * We want to under-estimate the load of migration sources, to
1647 * balance conservatively.
1648 */
1649static unsigned long source_load(int cpu, int type)
1650{
1651 struct rq *rq = cpu_rq(cpu);
1652 unsigned long total = weighted_cpuload(cpu);
1653
1654 if (type == 0 || !sched_feat(LB_BIAS))
1655 return total;
1656
1657 return min(rq->cpu_load[type-1], total);
1658}
1659
1660/*
1661 * Return a high guess at the load of a migration-target cpu weighted
1662 * according to the scheduling class and "nice" value.
1663 */
1664static unsigned long target_load(int cpu, int type)
1665{
1666 struct rq *rq = cpu_rq(cpu);
1667 unsigned long total = weighted_cpuload(cpu);
1668
1669 if (type == 0 || !sched_feat(LB_BIAS))
1670 return total;
1671
1672 return max(rq->cpu_load[type-1], total);
1673}
1674
ae154be1
PZ
1675static unsigned long power_of(int cpu)
1676{
e51fd5e2 1677 return cpu_rq(cpu)->cpu_power;
ae154be1
PZ
1678}
1679
eb755805
PZ
1680static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1681
1682static unsigned long cpu_avg_load_per_task(int cpu)
1683{
1684 struct rq *rq = cpu_rq(cpu);
af6d596f 1685 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1686
4cd42620 1687 if (nr_running)
e2b245f8 1688 return rq->load.weight / nr_running;
eb755805 1689
e2b245f8 1690 return 0;
eb755805
PZ
1691}
1692
8f45e2b5
GH
1693#ifdef CONFIG_PREEMPT
1694
b78bb868
PZ
1695static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1696
70574a99 1697/*
8f45e2b5
GH
1698 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1699 * way at the expense of forcing extra atomic operations in all
1700 * invocations. This assures that the double_lock is acquired using the
1701 * same underlying policy as the spinlock_t on this architecture, which
1702 * reduces latency compared to the unfair variant below. However, it
1703 * also adds more overhead and therefore may reduce throughput.
70574a99 1704 */
8f45e2b5
GH
1705static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 __releases(this_rq->lock)
1707 __acquires(busiest->lock)
1708 __acquires(this_rq->lock)
1709{
05fa785c 1710 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1711 double_rq_lock(this_rq, busiest);
1712
1713 return 1;
1714}
1715
1716#else
1717/*
1718 * Unfair double_lock_balance: Optimizes throughput at the expense of
1719 * latency by eliminating extra atomic operations when the locks are
1720 * already in proper order on entry. This favors lower cpu-ids and will
1721 * grant the double lock to lower cpus over higher ids under contention,
1722 * regardless of entry order into the function.
1723 */
1724static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1725 __releases(this_rq->lock)
1726 __acquires(busiest->lock)
1727 __acquires(this_rq->lock)
1728{
1729 int ret = 0;
1730
05fa785c 1731 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1732 if (busiest < this_rq) {
05fa785c
TG
1733 raw_spin_unlock(&this_rq->lock);
1734 raw_spin_lock(&busiest->lock);
1735 raw_spin_lock_nested(&this_rq->lock,
1736 SINGLE_DEPTH_NESTING);
70574a99
AD
1737 ret = 1;
1738 } else
05fa785c
TG
1739 raw_spin_lock_nested(&busiest->lock,
1740 SINGLE_DEPTH_NESTING);
70574a99
AD
1741 }
1742 return ret;
1743}
1744
8f45e2b5
GH
1745#endif /* CONFIG_PREEMPT */
1746
1747/*
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1749 */
1750static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1751{
1752 if (unlikely(!irqs_disabled())) {
1753 /* printk() doesn't work good under rq->lock */
05fa785c 1754 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1755 BUG_ON(1);
1756 }
1757
1758 return _double_lock_balance(this_rq, busiest);
1759}
1760
70574a99
AD
1761static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1762 __releases(busiest->lock)
1763{
05fa785c 1764 raw_spin_unlock(&busiest->lock);
70574a99
AD
1765 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1766}
1e3c88bd
PZ
1767
1768/*
1769 * double_rq_lock - safely lock two runqueues
1770 *
1771 * Note this does not disable interrupts like task_rq_lock,
1772 * you need to do so manually before calling.
1773 */
1774static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1775 __acquires(rq1->lock)
1776 __acquires(rq2->lock)
1777{
1778 BUG_ON(!irqs_disabled());
1779 if (rq1 == rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 __acquire(rq2->lock); /* Fake it out ;) */
1782 } else {
1783 if (rq1 < rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1786 } else {
1787 raw_spin_lock(&rq2->lock);
1788 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1789 }
1790 }
1e3c88bd
PZ
1791}
1792
1793/*
1794 * double_rq_unlock - safely unlock two runqueues
1795 *
1796 * Note this does not restore interrupts like task_rq_unlock,
1797 * you need to do so manually after calling.
1798 */
1799static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1800 __releases(rq1->lock)
1801 __releases(rq2->lock)
1802{
1803 raw_spin_unlock(&rq1->lock);
1804 if (rq1 != rq2)
1805 raw_spin_unlock(&rq2->lock);
1806 else
1807 __release(rq2->lock);
1808}
1809
d95f4122
MG
1810#else /* CONFIG_SMP */
1811
1812/*
1813 * double_rq_lock - safely lock two runqueues
1814 *
1815 * Note this does not disable interrupts like task_rq_lock,
1816 * you need to do so manually before calling.
1817 */
1818static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1819 __acquires(rq1->lock)
1820 __acquires(rq2->lock)
1821{
1822 BUG_ON(!irqs_disabled());
1823 BUG_ON(rq1 != rq2);
1824 raw_spin_lock(&rq1->lock);
1825 __acquire(rq2->lock); /* Fake it out ;) */
1826}
1827
1828/*
1829 * double_rq_unlock - safely unlock two runqueues
1830 *
1831 * Note this does not restore interrupts like task_rq_unlock,
1832 * you need to do so manually after calling.
1833 */
1834static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1835 __releases(rq1->lock)
1836 __releases(rq2->lock)
1837{
1838 BUG_ON(rq1 != rq2);
1839 raw_spin_unlock(&rq1->lock);
1840 __release(rq2->lock);
1841}
1842
18d95a28
PZ
1843#endif
1844
74f5187a 1845static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1846static void update_sysctl(void);
acb4a848 1847static int get_update_sysctl_factor(void);
fdf3e95d 1848static void update_cpu_load(struct rq *this_rq);
dce48a84 1849
cd29fe6f
PZ
1850static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1851{
1852 set_task_rq(p, cpu);
1853#ifdef CONFIG_SMP
1854 /*
1855 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1856 * successfuly executed on another CPU. We must ensure that updates of
1857 * per-task data have been completed by this moment.
1858 */
1859 smp_wmb();
1860 task_thread_info(p)->cpu = cpu;
1861#endif
1862}
dce48a84 1863
1e3c88bd 1864static const struct sched_class rt_sched_class;
dd41f596 1865
34f971f6 1866#define sched_class_highest (&stop_sched_class)
1f11eb6a
GH
1867#define for_each_class(class) \
1868 for (class = sched_class_highest; class; class = class->next)
dd41f596 1869
1e3c88bd
PZ
1870#include "sched_stats.h"
1871
c09595f6 1872static void inc_nr_running(struct rq *rq)
9c217245
IM
1873{
1874 rq->nr_running++;
9c217245
IM
1875}
1876
c09595f6 1877static void dec_nr_running(struct rq *rq)
9c217245
IM
1878{
1879 rq->nr_running--;
9c217245
IM
1880}
1881
45bf76df
IM
1882static void set_load_weight(struct task_struct *p)
1883{
f05998d4
NR
1884 int prio = p->static_prio - MAX_RT_PRIO;
1885 struct load_weight *load = &p->se.load;
1886
dd41f596
IM
1887 /*
1888 * SCHED_IDLE tasks get minimal weight:
1889 */
1890 if (p->policy == SCHED_IDLE) {
c8b28116 1891 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1892 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1893 return;
1894 }
71f8bd46 1895
c8b28116 1896 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 1897 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
1898}
1899
371fd7e7 1900static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 1901{
a64692a3 1902 update_rq_clock(rq);
dd41f596 1903 sched_info_queued(p);
371fd7e7 1904 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
1905}
1906
371fd7e7 1907static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1908{
a64692a3 1909 update_rq_clock(rq);
46ac22ba 1910 sched_info_dequeued(p);
371fd7e7 1911 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
1912}
1913
1e3c88bd
PZ
1914/*
1915 * activate_task - move a task to the runqueue.
1916 */
371fd7e7 1917static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1918{
1919 if (task_contributes_to_load(p))
1920 rq->nr_uninterruptible--;
1921
371fd7e7 1922 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1923}
1924
1925/*
1926 * deactivate_task - remove a task from the runqueue.
1927 */
371fd7e7 1928static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1929{
1930 if (task_contributes_to_load(p))
1931 rq->nr_uninterruptible++;
1932
371fd7e7 1933 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1934}
1935
b52bfee4
VP
1936#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1937
305e6835
VP
1938/*
1939 * There are no locks covering percpu hardirq/softirq time.
1940 * They are only modified in account_system_vtime, on corresponding CPU
1941 * with interrupts disabled. So, writes are safe.
1942 * They are read and saved off onto struct rq in update_rq_clock().
1943 * This may result in other CPU reading this CPU's irq time and can
1944 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
1945 * or new value with a side effect of accounting a slice of irq time to wrong
1946 * task when irq is in progress while we read rq->clock. That is a worthy
1947 * compromise in place of having locks on each irq in account_system_time.
305e6835 1948 */
b52bfee4
VP
1949static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1950static DEFINE_PER_CPU(u64, cpu_softirq_time);
1951
1952static DEFINE_PER_CPU(u64, irq_start_time);
1953static int sched_clock_irqtime;
1954
1955void enable_sched_clock_irqtime(void)
1956{
1957 sched_clock_irqtime = 1;
1958}
1959
1960void disable_sched_clock_irqtime(void)
1961{
1962 sched_clock_irqtime = 0;
1963}
1964
8e92c201
PZ
1965#ifndef CONFIG_64BIT
1966static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1967
1968static inline void irq_time_write_begin(void)
1969{
1970 __this_cpu_inc(irq_time_seq.sequence);
1971 smp_wmb();
1972}
1973
1974static inline void irq_time_write_end(void)
1975{
1976 smp_wmb();
1977 __this_cpu_inc(irq_time_seq.sequence);
1978}
1979
1980static inline u64 irq_time_read(int cpu)
1981{
1982 u64 irq_time;
1983 unsigned seq;
1984
1985 do {
1986 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1987 irq_time = per_cpu(cpu_softirq_time, cpu) +
1988 per_cpu(cpu_hardirq_time, cpu);
1989 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1990
1991 return irq_time;
1992}
1993#else /* CONFIG_64BIT */
1994static inline void irq_time_write_begin(void)
1995{
1996}
1997
1998static inline void irq_time_write_end(void)
1999{
2000}
2001
2002static inline u64 irq_time_read(int cpu)
305e6835 2003{
305e6835
VP
2004 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2005}
8e92c201 2006#endif /* CONFIG_64BIT */
305e6835 2007
fe44d621
PZ
2008/*
2009 * Called before incrementing preempt_count on {soft,}irq_enter
2010 * and before decrementing preempt_count on {soft,}irq_exit.
2011 */
b52bfee4
VP
2012void account_system_vtime(struct task_struct *curr)
2013{
2014 unsigned long flags;
fe44d621 2015 s64 delta;
b52bfee4 2016 int cpu;
b52bfee4
VP
2017
2018 if (!sched_clock_irqtime)
2019 return;
2020
2021 local_irq_save(flags);
2022
b52bfee4 2023 cpu = smp_processor_id();
fe44d621
PZ
2024 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2025 __this_cpu_add(irq_start_time, delta);
2026
8e92c201 2027 irq_time_write_begin();
b52bfee4
VP
2028 /*
2029 * We do not account for softirq time from ksoftirqd here.
2030 * We want to continue accounting softirq time to ksoftirqd thread
2031 * in that case, so as not to confuse scheduler with a special task
2032 * that do not consume any time, but still wants to run.
2033 */
2034 if (hardirq_count())
fe44d621 2035 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 2036 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 2037 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 2038
8e92c201 2039 irq_time_write_end();
b52bfee4
VP
2040 local_irq_restore(flags);
2041}
b7dadc38 2042EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 2043
e6e6685a
GC
2044#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2045
2046#ifdef CONFIG_PARAVIRT
2047static inline u64 steal_ticks(u64 steal)
aa483808 2048{
e6e6685a
GC
2049 if (unlikely(steal > NSEC_PER_SEC))
2050 return div_u64(steal, TICK_NSEC);
fe44d621 2051
e6e6685a
GC
2052 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2053}
2054#endif
2055
fe44d621 2056static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 2057{
095c0aa8
GC
2058/*
2059 * In theory, the compile should just see 0 here, and optimize out the call
2060 * to sched_rt_avg_update. But I don't trust it...
2061 */
2062#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2063 s64 steal = 0, irq_delta = 0;
2064#endif
2065#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 2066 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
2067
2068 /*
2069 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2070 * this case when a previous update_rq_clock() happened inside a
2071 * {soft,}irq region.
2072 *
2073 * When this happens, we stop ->clock_task and only update the
2074 * prev_irq_time stamp to account for the part that fit, so that a next
2075 * update will consume the rest. This ensures ->clock_task is
2076 * monotonic.
2077 *
2078 * It does however cause some slight miss-attribution of {soft,}irq
2079 * time, a more accurate solution would be to update the irq_time using
2080 * the current rq->clock timestamp, except that would require using
2081 * atomic ops.
2082 */
2083 if (irq_delta > delta)
2084 irq_delta = delta;
2085
2086 rq->prev_irq_time += irq_delta;
2087 delta -= irq_delta;
095c0aa8
GC
2088#endif
2089#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2090 if (static_branch((&paravirt_steal_rq_enabled))) {
2091 u64 st;
2092
2093 steal = paravirt_steal_clock(cpu_of(rq));
2094 steal -= rq->prev_steal_time_rq;
2095
2096 if (unlikely(steal > delta))
2097 steal = delta;
2098
2099 st = steal_ticks(steal);
2100 steal = st * TICK_NSEC;
2101
2102 rq->prev_steal_time_rq += steal;
2103
2104 delta -= steal;
2105 }
2106#endif
2107
fe44d621
PZ
2108 rq->clock_task += delta;
2109
095c0aa8
GC
2110#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2111 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2112 sched_rt_avg_update(rq, irq_delta + steal);
2113#endif
aa483808
VP
2114}
2115
095c0aa8 2116#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
2117static int irqtime_account_hi_update(void)
2118{
2119 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2120 unsigned long flags;
2121 u64 latest_ns;
2122 int ret = 0;
2123
2124 local_irq_save(flags);
2125 latest_ns = this_cpu_read(cpu_hardirq_time);
2126 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2127 ret = 1;
2128 local_irq_restore(flags);
2129 return ret;
2130}
2131
2132static int irqtime_account_si_update(void)
2133{
2134 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2135 unsigned long flags;
2136 u64 latest_ns;
2137 int ret = 0;
2138
2139 local_irq_save(flags);
2140 latest_ns = this_cpu_read(cpu_softirq_time);
2141 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2142 ret = 1;
2143 local_irq_restore(flags);
2144 return ret;
2145}
2146
fe44d621 2147#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 2148
abb74cef
VP
2149#define sched_clock_irqtime (0)
2150
095c0aa8 2151#endif
b52bfee4 2152
1e3c88bd
PZ
2153#include "sched_idletask.c"
2154#include "sched_fair.c"
2155#include "sched_rt.c"
5091faa4 2156#include "sched_autogroup.c"
34f971f6 2157#include "sched_stoptask.c"
1e3c88bd
PZ
2158#ifdef CONFIG_SCHED_DEBUG
2159# include "sched_debug.c"
2160#endif
2161
34f971f6
PZ
2162void sched_set_stop_task(int cpu, struct task_struct *stop)
2163{
2164 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2165 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2166
2167 if (stop) {
2168 /*
2169 * Make it appear like a SCHED_FIFO task, its something
2170 * userspace knows about and won't get confused about.
2171 *
2172 * Also, it will make PI more or less work without too
2173 * much confusion -- but then, stop work should not
2174 * rely on PI working anyway.
2175 */
2176 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2177
2178 stop->sched_class = &stop_sched_class;
2179 }
2180
2181 cpu_rq(cpu)->stop = stop;
2182
2183 if (old_stop) {
2184 /*
2185 * Reset it back to a normal scheduling class so that
2186 * it can die in pieces.
2187 */
2188 old_stop->sched_class = &rt_sched_class;
2189 }
2190}
2191
14531189 2192/*
dd41f596 2193 * __normal_prio - return the priority that is based on the static prio
14531189 2194 */
14531189
IM
2195static inline int __normal_prio(struct task_struct *p)
2196{
dd41f596 2197 return p->static_prio;
14531189
IM
2198}
2199
b29739f9
IM
2200/*
2201 * Calculate the expected normal priority: i.e. priority
2202 * without taking RT-inheritance into account. Might be
2203 * boosted by interactivity modifiers. Changes upon fork,
2204 * setprio syscalls, and whenever the interactivity
2205 * estimator recalculates.
2206 */
36c8b586 2207static inline int normal_prio(struct task_struct *p)
b29739f9
IM
2208{
2209 int prio;
2210
e05606d3 2211 if (task_has_rt_policy(p))
b29739f9
IM
2212 prio = MAX_RT_PRIO-1 - p->rt_priority;
2213 else
2214 prio = __normal_prio(p);
2215 return prio;
2216}
2217
2218/*
2219 * Calculate the current priority, i.e. the priority
2220 * taken into account by the scheduler. This value might
2221 * be boosted by RT tasks, or might be boosted by
2222 * interactivity modifiers. Will be RT if the task got
2223 * RT-boosted. If not then it returns p->normal_prio.
2224 */
36c8b586 2225static int effective_prio(struct task_struct *p)
b29739f9
IM
2226{
2227 p->normal_prio = normal_prio(p);
2228 /*
2229 * If we are RT tasks or we were boosted to RT priority,
2230 * keep the priority unchanged. Otherwise, update priority
2231 * to the normal priority:
2232 */
2233 if (!rt_prio(p->prio))
2234 return p->normal_prio;
2235 return p->prio;
2236}
2237
1da177e4
LT
2238/**
2239 * task_curr - is this task currently executing on a CPU?
2240 * @p: the task in question.
2241 */
36c8b586 2242inline int task_curr(const struct task_struct *p)
1da177e4
LT
2243{
2244 return cpu_curr(task_cpu(p)) == p;
2245}
2246
cb469845
SR
2247static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2248 const struct sched_class *prev_class,
da7a735e 2249 int oldprio)
cb469845
SR
2250{
2251 if (prev_class != p->sched_class) {
2252 if (prev_class->switched_from)
da7a735e
PZ
2253 prev_class->switched_from(rq, p);
2254 p->sched_class->switched_to(rq, p);
2255 } else if (oldprio != p->prio)
2256 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2257}
2258
1e5a7405
PZ
2259static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2260{
2261 const struct sched_class *class;
2262
2263 if (p->sched_class == rq->curr->sched_class) {
2264 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2265 } else {
2266 for_each_class(class) {
2267 if (class == rq->curr->sched_class)
2268 break;
2269 if (class == p->sched_class) {
2270 resched_task(rq->curr);
2271 break;
2272 }
2273 }
2274 }
2275
2276 /*
2277 * A queue event has occurred, and we're going to schedule. In
2278 * this case, we can save a useless back to back clock update.
2279 */
fd2f4419 2280 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
2281 rq->skip_clock_update = 1;
2282}
2283
1da177e4 2284#ifdef CONFIG_SMP
cc367732
IM
2285/*
2286 * Is this task likely cache-hot:
2287 */
e7693a36 2288static int
cc367732
IM
2289task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2290{
2291 s64 delta;
2292
e6c8fba7
PZ
2293 if (p->sched_class != &fair_sched_class)
2294 return 0;
2295
ef8002f6
NR
2296 if (unlikely(p->policy == SCHED_IDLE))
2297 return 0;
2298
f540a608
IM
2299 /*
2300 * Buddy candidates are cache hot:
2301 */
f685ceac 2302 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2303 (&p->se == cfs_rq_of(&p->se)->next ||
2304 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2305 return 1;
2306
6bc1665b
IM
2307 if (sysctl_sched_migration_cost == -1)
2308 return 1;
2309 if (sysctl_sched_migration_cost == 0)
2310 return 0;
2311
cc367732
IM
2312 delta = now - p->se.exec_start;
2313
2314 return delta < (s64)sysctl_sched_migration_cost;
2315}
2316
dd41f596 2317void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2318{
e2912009
PZ
2319#ifdef CONFIG_SCHED_DEBUG
2320 /*
2321 * We should never call set_task_cpu() on a blocked task,
2322 * ttwu() will sort out the placement.
2323 */
077614ee
PZ
2324 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2325 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
2326
2327#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
2328 /*
2329 * The caller should hold either p->pi_lock or rq->lock, when changing
2330 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2331 *
2332 * sched_move_task() holds both and thus holding either pins the cgroup,
2333 * see set_task_rq().
2334 *
2335 * Furthermore, all task_rq users should acquire both locks, see
2336 * task_rq_lock().
2337 */
0122ec5b
PZ
2338 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2339 lockdep_is_held(&task_rq(p)->lock)));
2340#endif
e2912009
PZ
2341#endif
2342
de1d7286 2343 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2344
0c69774e
PZ
2345 if (task_cpu(p) != new_cpu) {
2346 p->se.nr_migrations++;
a8b0ca17 2347 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 2348 }
dd41f596
IM
2349
2350 __set_task_cpu(p, new_cpu);
c65cc870
IM
2351}
2352
969c7921 2353struct migration_arg {
36c8b586 2354 struct task_struct *task;
1da177e4 2355 int dest_cpu;
70b97a7f 2356};
1da177e4 2357
969c7921
TH
2358static int migration_cpu_stop(void *data);
2359
1da177e4
LT
2360/*
2361 * wait_task_inactive - wait for a thread to unschedule.
2362 *
85ba2d86
RM
2363 * If @match_state is nonzero, it's the @p->state value just checked and
2364 * not expected to change. If it changes, i.e. @p might have woken up,
2365 * then return zero. When we succeed in waiting for @p to be off its CPU,
2366 * we return a positive number (its total switch count). If a second call
2367 * a short while later returns the same number, the caller can be sure that
2368 * @p has remained unscheduled the whole time.
2369 *
1da177e4
LT
2370 * The caller must ensure that the task *will* unschedule sometime soon,
2371 * else this function might spin for a *long* time. This function can't
2372 * be called with interrupts off, or it may introduce deadlock with
2373 * smp_call_function() if an IPI is sent by the same process we are
2374 * waiting to become inactive.
2375 */
85ba2d86 2376unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2377{
2378 unsigned long flags;
dd41f596 2379 int running, on_rq;
85ba2d86 2380 unsigned long ncsw;
70b97a7f 2381 struct rq *rq;
1da177e4 2382
3a5c359a
AK
2383 for (;;) {
2384 /*
2385 * We do the initial early heuristics without holding
2386 * any task-queue locks at all. We'll only try to get
2387 * the runqueue lock when things look like they will
2388 * work out!
2389 */
2390 rq = task_rq(p);
fa490cfd 2391
3a5c359a
AK
2392 /*
2393 * If the task is actively running on another CPU
2394 * still, just relax and busy-wait without holding
2395 * any locks.
2396 *
2397 * NOTE! Since we don't hold any locks, it's not
2398 * even sure that "rq" stays as the right runqueue!
2399 * But we don't care, since "task_running()" will
2400 * return false if the runqueue has changed and p
2401 * is actually now running somewhere else!
2402 */
85ba2d86
RM
2403 while (task_running(rq, p)) {
2404 if (match_state && unlikely(p->state != match_state))
2405 return 0;
3a5c359a 2406 cpu_relax();
85ba2d86 2407 }
fa490cfd 2408
3a5c359a
AK
2409 /*
2410 * Ok, time to look more closely! We need the rq
2411 * lock now, to be *sure*. If we're wrong, we'll
2412 * just go back and repeat.
2413 */
2414 rq = task_rq_lock(p, &flags);
27a9da65 2415 trace_sched_wait_task(p);
3a5c359a 2416 running = task_running(rq, p);
fd2f4419 2417 on_rq = p->on_rq;
85ba2d86 2418 ncsw = 0;
f31e11d8 2419 if (!match_state || p->state == match_state)
93dcf55f 2420 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 2421 task_rq_unlock(rq, p, &flags);
fa490cfd 2422
85ba2d86
RM
2423 /*
2424 * If it changed from the expected state, bail out now.
2425 */
2426 if (unlikely(!ncsw))
2427 break;
2428
3a5c359a
AK
2429 /*
2430 * Was it really running after all now that we
2431 * checked with the proper locks actually held?
2432 *
2433 * Oops. Go back and try again..
2434 */
2435 if (unlikely(running)) {
2436 cpu_relax();
2437 continue;
2438 }
fa490cfd 2439
3a5c359a
AK
2440 /*
2441 * It's not enough that it's not actively running,
2442 * it must be off the runqueue _entirely_, and not
2443 * preempted!
2444 *
80dd99b3 2445 * So if it was still runnable (but just not actively
3a5c359a
AK
2446 * running right now), it's preempted, and we should
2447 * yield - it could be a while.
2448 */
2449 if (unlikely(on_rq)) {
8eb90c30
TG
2450 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2451
2452 set_current_state(TASK_UNINTERRUPTIBLE);
2453 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
2454 continue;
2455 }
fa490cfd 2456
3a5c359a
AK
2457 /*
2458 * Ahh, all good. It wasn't running, and it wasn't
2459 * runnable, which means that it will never become
2460 * running in the future either. We're all done!
2461 */
2462 break;
2463 }
85ba2d86
RM
2464
2465 return ncsw;
1da177e4
LT
2466}
2467
2468/***
2469 * kick_process - kick a running thread to enter/exit the kernel
2470 * @p: the to-be-kicked thread
2471 *
2472 * Cause a process which is running on another CPU to enter
2473 * kernel-mode, without any delay. (to get signals handled.)
2474 *
25985edc 2475 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
2476 * because all it wants to ensure is that the remote task enters
2477 * the kernel. If the IPI races and the task has been migrated
2478 * to another CPU then no harm is done and the purpose has been
2479 * achieved as well.
2480 */
36c8b586 2481void kick_process(struct task_struct *p)
1da177e4
LT
2482{
2483 int cpu;
2484
2485 preempt_disable();
2486 cpu = task_cpu(p);
2487 if ((cpu != smp_processor_id()) && task_curr(p))
2488 smp_send_reschedule(cpu);
2489 preempt_enable();
2490}
b43e3521 2491EXPORT_SYMBOL_GPL(kick_process);
476d139c 2492#endif /* CONFIG_SMP */
1da177e4 2493
970b13ba 2494#ifdef CONFIG_SMP
30da688e 2495/*
013fdb80 2496 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 2497 */
5da9a0fb
PZ
2498static int select_fallback_rq(int cpu, struct task_struct *p)
2499{
2500 int dest_cpu;
2501 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2502
2503 /* Look for allowed, online CPU in same node. */
2504 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2505 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2506 return dest_cpu;
2507
2508 /* Any allowed, online CPU? */
2509 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2510 if (dest_cpu < nr_cpu_ids)
2511 return dest_cpu;
2512
2513 /* No more Mr. Nice Guy. */
48c5ccae
PZ
2514 dest_cpu = cpuset_cpus_allowed_fallback(p);
2515 /*
2516 * Don't tell them about moving exiting tasks or
2517 * kernel threads (both mm NULL), since they never
2518 * leave kernel.
2519 */
2520 if (p->mm && printk_ratelimit()) {
2521 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2522 task_pid_nr(p), p->comm, cpu);
5da9a0fb
PZ
2523 }
2524
2525 return dest_cpu;
2526}
2527
e2912009 2528/*
013fdb80 2529 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 2530 */
970b13ba 2531static inline
7608dec2 2532int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2533{
7608dec2 2534 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
2535
2536 /*
2537 * In order not to call set_task_cpu() on a blocking task we need
2538 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2539 * cpu.
2540 *
2541 * Since this is common to all placement strategies, this lives here.
2542 *
2543 * [ this allows ->select_task() to simply return task_cpu(p) and
2544 * not worry about this generic constraint ]
2545 */
2546 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2547 !cpu_online(cpu)))
5da9a0fb 2548 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2549
2550 return cpu;
970b13ba 2551}
09a40af5
MG
2552
2553static void update_avg(u64 *avg, u64 sample)
2554{
2555 s64 diff = sample - *avg;
2556 *avg += diff >> 3;
2557}
970b13ba
PZ
2558#endif
2559
d7c01d27 2560static void
b84cb5df 2561ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 2562{
d7c01d27 2563#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
2564 struct rq *rq = this_rq();
2565
d7c01d27
PZ
2566#ifdef CONFIG_SMP
2567 int this_cpu = smp_processor_id();
2568
2569 if (cpu == this_cpu) {
2570 schedstat_inc(rq, ttwu_local);
2571 schedstat_inc(p, se.statistics.nr_wakeups_local);
2572 } else {
2573 struct sched_domain *sd;
2574
2575 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 2576 rcu_read_lock();
d7c01d27
PZ
2577 for_each_domain(this_cpu, sd) {
2578 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2579 schedstat_inc(sd, ttwu_wake_remote);
2580 break;
2581 }
2582 }
057f3fad 2583 rcu_read_unlock();
d7c01d27 2584 }
f339b9dc
PZ
2585
2586 if (wake_flags & WF_MIGRATED)
2587 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2588
d7c01d27
PZ
2589#endif /* CONFIG_SMP */
2590
2591 schedstat_inc(rq, ttwu_count);
9ed3811a 2592 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
2593
2594 if (wake_flags & WF_SYNC)
9ed3811a 2595 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 2596
d7c01d27
PZ
2597#endif /* CONFIG_SCHEDSTATS */
2598}
2599
2600static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2601{
9ed3811a 2602 activate_task(rq, p, en_flags);
fd2f4419 2603 p->on_rq = 1;
c2f7115e
PZ
2604
2605 /* if a worker is waking up, notify workqueue */
2606 if (p->flags & PF_WQ_WORKER)
2607 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
2608}
2609
23f41eeb
PZ
2610/*
2611 * Mark the task runnable and perform wakeup-preemption.
2612 */
89363381 2613static void
23f41eeb 2614ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 2615{
89363381 2616 trace_sched_wakeup(p, true);
9ed3811a
TH
2617 check_preempt_curr(rq, p, wake_flags);
2618
2619 p->state = TASK_RUNNING;
2620#ifdef CONFIG_SMP
2621 if (p->sched_class->task_woken)
2622 p->sched_class->task_woken(rq, p);
2623
e69c6341 2624 if (rq->idle_stamp) {
9ed3811a
TH
2625 u64 delta = rq->clock - rq->idle_stamp;
2626 u64 max = 2*sysctl_sched_migration_cost;
2627
2628 if (delta > max)
2629 rq->avg_idle = max;
2630 else
2631 update_avg(&rq->avg_idle, delta);
2632 rq->idle_stamp = 0;
2633 }
2634#endif
2635}
2636
c05fbafb
PZ
2637static void
2638ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2639{
2640#ifdef CONFIG_SMP
2641 if (p->sched_contributes_to_load)
2642 rq->nr_uninterruptible--;
2643#endif
2644
2645 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2646 ttwu_do_wakeup(rq, p, wake_flags);
2647}
2648
2649/*
2650 * Called in case the task @p isn't fully descheduled from its runqueue,
2651 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2652 * since all we need to do is flip p->state to TASK_RUNNING, since
2653 * the task is still ->on_rq.
2654 */
2655static int ttwu_remote(struct task_struct *p, int wake_flags)
2656{
2657 struct rq *rq;
2658 int ret = 0;
2659
2660 rq = __task_rq_lock(p);
2661 if (p->on_rq) {
2662 ttwu_do_wakeup(rq, p, wake_flags);
2663 ret = 1;
2664 }
2665 __task_rq_unlock(rq);
2666
2667 return ret;
2668}
2669
317f3941 2670#ifdef CONFIG_SMP
c5d753a5 2671static void sched_ttwu_do_pending(struct task_struct *list)
317f3941
PZ
2672{
2673 struct rq *rq = this_rq();
317f3941
PZ
2674
2675 raw_spin_lock(&rq->lock);
2676
2677 while (list) {
2678 struct task_struct *p = list;
2679 list = list->wake_entry;
2680 ttwu_do_activate(rq, p, 0);
2681 }
2682
2683 raw_spin_unlock(&rq->lock);
2684}
2685
c5d753a5
PZ
2686#ifdef CONFIG_HOTPLUG_CPU
2687
2688static void sched_ttwu_pending(void)
2689{
2690 struct rq *rq = this_rq();
2691 struct task_struct *list = xchg(&rq->wake_list, NULL);
2692
2693 if (!list)
2694 return;
2695
2696 sched_ttwu_do_pending(list);
2697}
2698
2699#endif /* CONFIG_HOTPLUG_CPU */
2700
317f3941
PZ
2701void scheduler_ipi(void)
2702{
c5d753a5
PZ
2703 struct rq *rq = this_rq();
2704 struct task_struct *list = xchg(&rq->wake_list, NULL);
2705
2706 if (!list)
2707 return;
2708
2709 /*
2710 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2711 * traditionally all their work was done from the interrupt return
2712 * path. Now that we actually do some work, we need to make sure
2713 * we do call them.
2714 *
2715 * Some archs already do call them, luckily irq_enter/exit nest
2716 * properly.
2717 *
2718 * Arguably we should visit all archs and update all handlers,
2719 * however a fair share of IPIs are still resched only so this would
2720 * somewhat pessimize the simple resched case.
2721 */
2722 irq_enter();
2723 sched_ttwu_do_pending(list);
2724 irq_exit();
317f3941
PZ
2725}
2726
2727static void ttwu_queue_remote(struct task_struct *p, int cpu)
2728{
2729 struct rq *rq = cpu_rq(cpu);
2730 struct task_struct *next = rq->wake_list;
2731
2732 for (;;) {
2733 struct task_struct *old = next;
2734
2735 p->wake_entry = next;
2736 next = cmpxchg(&rq->wake_list, old, p);
2737 if (next == old)
2738 break;
2739 }
2740
2741 if (!next)
2742 smp_send_reschedule(cpu);
2743}
d6aa8f85
PZ
2744
2745#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2746static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2747{
2748 struct rq *rq;
2749 int ret = 0;
2750
2751 rq = __task_rq_lock(p);
2752 if (p->on_cpu) {
2753 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2754 ttwu_do_wakeup(rq, p, wake_flags);
2755 ret = 1;
2756 }
2757 __task_rq_unlock(rq);
2758
2759 return ret;
2760
2761}
2762#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2763#endif /* CONFIG_SMP */
317f3941 2764
c05fbafb
PZ
2765static void ttwu_queue(struct task_struct *p, int cpu)
2766{
2767 struct rq *rq = cpu_rq(cpu);
2768
17d9f311 2769#if defined(CONFIG_SMP)
317f3941 2770 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
f01114cb 2771 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
2772 ttwu_queue_remote(p, cpu);
2773 return;
2774 }
2775#endif
2776
c05fbafb
PZ
2777 raw_spin_lock(&rq->lock);
2778 ttwu_do_activate(rq, p, 0);
2779 raw_spin_unlock(&rq->lock);
9ed3811a
TH
2780}
2781
2782/**
1da177e4 2783 * try_to_wake_up - wake up a thread
9ed3811a 2784 * @p: the thread to be awakened
1da177e4 2785 * @state: the mask of task states that can be woken
9ed3811a 2786 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2787 *
2788 * Put it on the run-queue if it's not already there. The "current"
2789 * thread is always on the run-queue (except when the actual
2790 * re-schedule is in progress), and as such you're allowed to do
2791 * the simpler "current->state = TASK_RUNNING" to mark yourself
2792 * runnable without the overhead of this.
2793 *
9ed3811a
TH
2794 * Returns %true if @p was woken up, %false if it was already running
2795 * or @state didn't match @p's state.
1da177e4 2796 */
e4a52bcb
PZ
2797static int
2798try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2799{
1da177e4 2800 unsigned long flags;
c05fbafb 2801 int cpu, success = 0;
2398f2c6 2802
04e2f174 2803 smp_wmb();
013fdb80 2804 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2805 if (!(p->state & state))
1da177e4
LT
2806 goto out;
2807
c05fbafb 2808 success = 1; /* we're going to change ->state */
1da177e4 2809 cpu = task_cpu(p);
1da177e4 2810
c05fbafb
PZ
2811 if (p->on_rq && ttwu_remote(p, wake_flags))
2812 goto stat;
1da177e4 2813
1da177e4 2814#ifdef CONFIG_SMP
e9c84311 2815 /*
c05fbafb
PZ
2816 * If the owning (remote) cpu is still in the middle of schedule() with
2817 * this task as prev, wait until its done referencing the task.
e9c84311 2818 */
e4a52bcb
PZ
2819 while (p->on_cpu) {
2820#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821 /*
d6aa8f85
PZ
2822 * In case the architecture enables interrupts in
2823 * context_switch(), we cannot busy wait, since that
2824 * would lead to deadlocks when an interrupt hits and
2825 * tries to wake up @prev. So bail and do a complete
2826 * remote wakeup.
e4a52bcb 2827 */
d6aa8f85 2828 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 2829 goto stat;
d6aa8f85 2830#else
e4a52bcb 2831 cpu_relax();
d6aa8f85 2832#endif
371fd7e7 2833 }
0970d299 2834 /*
e4a52bcb 2835 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 2836 */
e4a52bcb 2837 smp_rmb();
1da177e4 2838
a8e4f2ea 2839 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2840 p->state = TASK_WAKING;
e7693a36 2841
e4a52bcb 2842 if (p->sched_class->task_waking)
74f8e4b2 2843 p->sched_class->task_waking(p);
efbbd05a 2844
7608dec2 2845 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2846 if (task_cpu(p) != cpu) {
2847 wake_flags |= WF_MIGRATED;
e4a52bcb 2848 set_task_cpu(p, cpu);
f339b9dc 2849 }
1da177e4 2850#endif /* CONFIG_SMP */
1da177e4 2851
c05fbafb
PZ
2852 ttwu_queue(p, cpu);
2853stat:
b84cb5df 2854 ttwu_stat(p, cpu, wake_flags);
1da177e4 2855out:
013fdb80 2856 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2857
2858 return success;
2859}
2860
21aa9af0
TH
2861/**
2862 * try_to_wake_up_local - try to wake up a local task with rq lock held
2863 * @p: the thread to be awakened
2864 *
2acca55e 2865 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2866 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2867 * the current task.
21aa9af0
TH
2868 */
2869static void try_to_wake_up_local(struct task_struct *p)
2870{
2871 struct rq *rq = task_rq(p);
21aa9af0
TH
2872
2873 BUG_ON(rq != this_rq());
2874 BUG_ON(p == current);
2875 lockdep_assert_held(&rq->lock);
2876
2acca55e
PZ
2877 if (!raw_spin_trylock(&p->pi_lock)) {
2878 raw_spin_unlock(&rq->lock);
2879 raw_spin_lock(&p->pi_lock);
2880 raw_spin_lock(&rq->lock);
2881 }
2882
21aa9af0 2883 if (!(p->state & TASK_NORMAL))
2acca55e 2884 goto out;
21aa9af0 2885
fd2f4419 2886 if (!p->on_rq)
d7c01d27
PZ
2887 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2888
23f41eeb 2889 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2890 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2891out:
2892 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2893}
2894
50fa610a
DH
2895/**
2896 * wake_up_process - Wake up a specific process
2897 * @p: The process to be woken up.
2898 *
2899 * Attempt to wake up the nominated process and move it to the set of runnable
2900 * processes. Returns 1 if the process was woken up, 0 if it was already
2901 * running.
2902 *
2903 * It may be assumed that this function implies a write memory barrier before
2904 * changing the task state if and only if any tasks are woken up.
2905 */
7ad5b3a5 2906int wake_up_process(struct task_struct *p)
1da177e4 2907{
d9514f6c 2908 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2909}
1da177e4
LT
2910EXPORT_SYMBOL(wake_up_process);
2911
7ad5b3a5 2912int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2913{
2914 return try_to_wake_up(p, state, 0);
2915}
2916
1da177e4
LT
2917/*
2918 * Perform scheduler related setup for a newly forked process p.
2919 * p is forked by current.
dd41f596
IM
2920 *
2921 * __sched_fork() is basic setup used by init_idle() too:
2922 */
2923static void __sched_fork(struct task_struct *p)
2924{
fd2f4419
PZ
2925 p->on_rq = 0;
2926
2927 p->se.on_rq = 0;
dd41f596
IM
2928 p->se.exec_start = 0;
2929 p->se.sum_exec_runtime = 0;
f6cf891c 2930 p->se.prev_sum_exec_runtime = 0;
6c594c21 2931 p->se.nr_migrations = 0;
da7a735e 2932 p->se.vruntime = 0;
fd2f4419 2933 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
2934
2935#ifdef CONFIG_SCHEDSTATS
41acab88 2936 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2937#endif
476d139c 2938
fa717060 2939 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2940
e107be36
AK
2941#ifdef CONFIG_PREEMPT_NOTIFIERS
2942 INIT_HLIST_HEAD(&p->preempt_notifiers);
2943#endif
dd41f596
IM
2944}
2945
2946/*
2947 * fork()/clone()-time setup:
2948 */
3e51e3ed 2949void sched_fork(struct task_struct *p)
dd41f596 2950{
0122ec5b 2951 unsigned long flags;
dd41f596
IM
2952 int cpu = get_cpu();
2953
2954 __sched_fork(p);
06b83b5f 2955 /*
0017d735 2956 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2957 * nobody will actually run it, and a signal or other external
2958 * event cannot wake it up and insert it on the runqueue either.
2959 */
0017d735 2960 p->state = TASK_RUNNING;
dd41f596 2961
c350a04e
MG
2962 /*
2963 * Make sure we do not leak PI boosting priority to the child.
2964 */
2965 p->prio = current->normal_prio;
2966
b9dc29e7
MG
2967 /*
2968 * Revert to default priority/policy on fork if requested.
2969 */
2970 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 2971 if (task_has_rt_policy(p)) {
b9dc29e7 2972 p->policy = SCHED_NORMAL;
6c697bdf 2973 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2974 p->rt_priority = 0;
2975 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2976 p->static_prio = NICE_TO_PRIO(0);
2977
2978 p->prio = p->normal_prio = __normal_prio(p);
2979 set_load_weight(p);
6c697bdf 2980
b9dc29e7
MG
2981 /*
2982 * We don't need the reset flag anymore after the fork. It has
2983 * fulfilled its duty:
2984 */
2985 p->sched_reset_on_fork = 0;
2986 }
ca94c442 2987
2ddbf952
HS
2988 if (!rt_prio(p->prio))
2989 p->sched_class = &fair_sched_class;
b29739f9 2990
cd29fe6f
PZ
2991 if (p->sched_class->task_fork)
2992 p->sched_class->task_fork(p);
2993
86951599
PZ
2994 /*
2995 * The child is not yet in the pid-hash so no cgroup attach races,
2996 * and the cgroup is pinned to this child due to cgroup_fork()
2997 * is ran before sched_fork().
2998 *
2999 * Silence PROVE_RCU.
3000 */
0122ec5b 3001 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 3002 set_task_cpu(p, cpu);
0122ec5b 3003 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 3004
52f17b6c 3005#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 3006 if (likely(sched_info_on()))
52f17b6c 3007 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 3008#endif
3ca7a440
PZ
3009#if defined(CONFIG_SMP)
3010 p->on_cpu = 0;
4866cde0 3011#endif
bdd4e85d 3012#ifdef CONFIG_PREEMPT_COUNT
4866cde0 3013 /* Want to start with kernel preemption disabled. */
a1261f54 3014 task_thread_info(p)->preempt_count = 1;
1da177e4 3015#endif
806c09a7 3016#ifdef CONFIG_SMP
917b627d 3017 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 3018#endif
917b627d 3019
476d139c 3020 put_cpu();
1da177e4
LT
3021}
3022
3023/*
3024 * wake_up_new_task - wake up a newly created task for the first time.
3025 *
3026 * This function will do some initial scheduler statistics housekeeping
3027 * that must be done for every newly created context, then puts the task
3028 * on the runqueue and wakes it.
3029 */
3e51e3ed 3030void wake_up_new_task(struct task_struct *p)
1da177e4
LT
3031{
3032 unsigned long flags;
dd41f596 3033 struct rq *rq;
fabf318e 3034
ab2515c4 3035 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
3036#ifdef CONFIG_SMP
3037 /*
3038 * Fork balancing, do it here and not earlier because:
3039 * - cpus_allowed can change in the fork path
3040 * - any previously selected cpu might disappear through hotplug
fabf318e 3041 */
ab2515c4 3042 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
3043#endif
3044
ab2515c4 3045 rq = __task_rq_lock(p);
cd29fe6f 3046 activate_task(rq, p, 0);
fd2f4419 3047 p->on_rq = 1;
89363381 3048 trace_sched_wakeup_new(p, true);
a7558e01 3049 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 3050#ifdef CONFIG_SMP
efbbd05a
PZ
3051 if (p->sched_class->task_woken)
3052 p->sched_class->task_woken(rq, p);
9a897c5a 3053#endif
0122ec5b 3054 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3055}
3056
e107be36
AK
3057#ifdef CONFIG_PREEMPT_NOTIFIERS
3058
3059/**
80dd99b3 3060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 3061 * @notifier: notifier struct to register
e107be36
AK
3062 */
3063void preempt_notifier_register(struct preempt_notifier *notifier)
3064{
3065 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3066}
3067EXPORT_SYMBOL_GPL(preempt_notifier_register);
3068
3069/**
3070 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 3071 * @notifier: notifier struct to unregister
e107be36
AK
3072 *
3073 * This is safe to call from within a preemption notifier.
3074 */
3075void preempt_notifier_unregister(struct preempt_notifier *notifier)
3076{
3077 hlist_del(&notifier->link);
3078}
3079EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3080
3081static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3082{
3083 struct preempt_notifier *notifier;
3084 struct hlist_node *node;
3085
3086 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3087 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3088}
3089
3090static void
3091fire_sched_out_preempt_notifiers(struct task_struct *curr,
3092 struct task_struct *next)
3093{
3094 struct preempt_notifier *notifier;
3095 struct hlist_node *node;
3096
3097 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3098 notifier->ops->sched_out(notifier, next);
3099}
3100
6d6bc0ad 3101#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
3102
3103static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3104{
3105}
3106
3107static void
3108fire_sched_out_preempt_notifiers(struct task_struct *curr,
3109 struct task_struct *next)
3110{
3111}
3112
6d6bc0ad 3113#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 3114
4866cde0
NP
3115/**
3116 * prepare_task_switch - prepare to switch tasks
3117 * @rq: the runqueue preparing to switch
421cee29 3118 * @prev: the current task that is being switched out
4866cde0
NP
3119 * @next: the task we are going to switch to.
3120 *
3121 * This is called with the rq lock held and interrupts off. It must
3122 * be paired with a subsequent finish_task_switch after the context
3123 * switch.
3124 *
3125 * prepare_task_switch sets up locking and calls architecture specific
3126 * hooks.
3127 */
e107be36
AK
3128static inline void
3129prepare_task_switch(struct rq *rq, struct task_struct *prev,
3130 struct task_struct *next)
4866cde0 3131{
fe4b04fa
PZ
3132 sched_info_switch(prev, next);
3133 perf_event_task_sched_out(prev, next);
e107be36 3134 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
3135 prepare_lock_switch(rq, next);
3136 prepare_arch_switch(next);
fe4b04fa 3137 trace_sched_switch(prev, next);
4866cde0
NP
3138}
3139
1da177e4
LT
3140/**
3141 * finish_task_switch - clean up after a task-switch
344babaa 3142 * @rq: runqueue associated with task-switch
1da177e4
LT
3143 * @prev: the thread we just switched away from.
3144 *
4866cde0
NP
3145 * finish_task_switch must be called after the context switch, paired
3146 * with a prepare_task_switch call before the context switch.
3147 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3148 * and do any other architecture-specific cleanup actions.
1da177e4
LT
3149 *
3150 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 3151 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
3152 * with the lock held can cause deadlocks; see schedule() for
3153 * details.)
3154 */
a9957449 3155static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
3156 __releases(rq->lock)
3157{
1da177e4 3158 struct mm_struct *mm = rq->prev_mm;
55a101f8 3159 long prev_state;
1da177e4
LT
3160
3161 rq->prev_mm = NULL;
3162
3163 /*
3164 * A task struct has one reference for the use as "current".
c394cc9f 3165 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
3166 * schedule one last time. The schedule call will never return, and
3167 * the scheduled task must drop that reference.
c394cc9f 3168 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
3169 * still held, otherwise prev could be scheduled on another cpu, die
3170 * there before we look at prev->state, and then the reference would
3171 * be dropped twice.
3172 * Manfred Spraul <manfred@colorfullife.com>
3173 */
55a101f8 3174 prev_state = prev->state;
4866cde0 3175 finish_arch_switch(prev);
8381f65d
JI
3176#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3177 local_irq_disable();
3178#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 3179 perf_event_task_sched_in(current);
8381f65d
JI
3180#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3181 local_irq_enable();
3182#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 3183 finish_lock_switch(rq, prev);
e8fa1362 3184
e107be36 3185 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
3186 if (mm)
3187 mmdrop(mm);
c394cc9f 3188 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 3189 /*
3190 * Remove function-return probe instances associated with this
3191 * task and put them back on the free list.
9761eea8 3192 */
c6fd91f0 3193 kprobe_flush_task(prev);
1da177e4 3194 put_task_struct(prev);
c6fd91f0 3195 }
1da177e4
LT
3196}
3197
3f029d3c
GH
3198#ifdef CONFIG_SMP
3199
3200/* assumes rq->lock is held */
3201static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3202{
3203 if (prev->sched_class->pre_schedule)
3204 prev->sched_class->pre_schedule(rq, prev);
3205}
3206
3207/* rq->lock is NOT held, but preemption is disabled */
3208static inline void post_schedule(struct rq *rq)
3209{
3210 if (rq->post_schedule) {
3211 unsigned long flags;
3212
05fa785c 3213 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
3214 if (rq->curr->sched_class->post_schedule)
3215 rq->curr->sched_class->post_schedule(rq);
05fa785c 3216 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
3217
3218 rq->post_schedule = 0;
3219 }
3220}
3221
3222#else
da19ab51 3223
3f029d3c
GH
3224static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3225{
3226}
3227
3228static inline void post_schedule(struct rq *rq)
3229{
1da177e4
LT
3230}
3231
3f029d3c
GH
3232#endif
3233
1da177e4
LT
3234/**
3235 * schedule_tail - first thing a freshly forked thread must call.
3236 * @prev: the thread we just switched away from.
3237 */
36c8b586 3238asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
3239 __releases(rq->lock)
3240{
70b97a7f
IM
3241 struct rq *rq = this_rq();
3242
4866cde0 3243 finish_task_switch(rq, prev);
da19ab51 3244
3f029d3c
GH
3245 /*
3246 * FIXME: do we need to worry about rq being invalidated by the
3247 * task_switch?
3248 */
3249 post_schedule(rq);
70b97a7f 3250
4866cde0
NP
3251#ifdef __ARCH_WANT_UNLOCKED_CTXSW
3252 /* In this case, finish_task_switch does not reenable preemption */
3253 preempt_enable();
3254#endif
1da177e4 3255 if (current->set_child_tid)
b488893a 3256 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
3257}
3258
3259/*
3260 * context_switch - switch to the new MM and the new
3261 * thread's register state.
3262 */
dd41f596 3263static inline void
70b97a7f 3264context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 3265 struct task_struct *next)
1da177e4 3266{
dd41f596 3267 struct mm_struct *mm, *oldmm;
1da177e4 3268
e107be36 3269 prepare_task_switch(rq, prev, next);
fe4b04fa 3270
dd41f596
IM
3271 mm = next->mm;
3272 oldmm = prev->active_mm;
9226d125
ZA
3273 /*
3274 * For paravirt, this is coupled with an exit in switch_to to
3275 * combine the page table reload and the switch backend into
3276 * one hypercall.
3277 */
224101ed 3278 arch_start_context_switch(prev);
9226d125 3279
31915ab4 3280 if (!mm) {
1da177e4
LT
3281 next->active_mm = oldmm;
3282 atomic_inc(&oldmm->mm_count);
3283 enter_lazy_tlb(oldmm, next);
3284 } else
3285 switch_mm(oldmm, mm, next);
3286
31915ab4 3287 if (!prev->mm) {
1da177e4 3288 prev->active_mm = NULL;
1da177e4
LT
3289 rq->prev_mm = oldmm;
3290 }
3a5f5e48
IM
3291 /*
3292 * Since the runqueue lock will be released by the next
3293 * task (which is an invalid locking op but in the case
3294 * of the scheduler it's an obvious special-case), so we
3295 * do an early lockdep release here:
3296 */
3297#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 3298 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 3299#endif
1da177e4
LT
3300
3301 /* Here we just switch the register state and the stack. */
3302 switch_to(prev, next, prev);
3303
dd41f596
IM
3304 barrier();
3305 /*
3306 * this_rq must be evaluated again because prev may have moved
3307 * CPUs since it called schedule(), thus the 'rq' on its stack
3308 * frame will be invalid.
3309 */
3310 finish_task_switch(this_rq(), prev);
1da177e4
LT
3311}
3312
3313/*
3314 * nr_running, nr_uninterruptible and nr_context_switches:
3315 *
3316 * externally visible scheduler statistics: current number of runnable
3317 * threads, current number of uninterruptible-sleeping threads, total
3318 * number of context switches performed since bootup.
3319 */
3320unsigned long nr_running(void)
3321{
3322 unsigned long i, sum = 0;
3323
3324 for_each_online_cpu(i)
3325 sum += cpu_rq(i)->nr_running;
3326
3327 return sum;
f711f609 3328}
1da177e4
LT
3329
3330unsigned long nr_uninterruptible(void)
f711f609 3331{
1da177e4 3332 unsigned long i, sum = 0;
f711f609 3333
0a945022 3334 for_each_possible_cpu(i)
1da177e4 3335 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
3336
3337 /*
1da177e4
LT
3338 * Since we read the counters lockless, it might be slightly
3339 * inaccurate. Do not allow it to go below zero though:
f711f609 3340 */
1da177e4
LT
3341 if (unlikely((long)sum < 0))
3342 sum = 0;
f711f609 3343
1da177e4 3344 return sum;
f711f609 3345}
f711f609 3346
1da177e4 3347unsigned long long nr_context_switches(void)
46cb4b7c 3348{
cc94abfc
SR
3349 int i;
3350 unsigned long long sum = 0;
46cb4b7c 3351
0a945022 3352 for_each_possible_cpu(i)
1da177e4 3353 sum += cpu_rq(i)->nr_switches;
46cb4b7c 3354
1da177e4
LT
3355 return sum;
3356}
483b4ee6 3357
1da177e4
LT
3358unsigned long nr_iowait(void)
3359{
3360 unsigned long i, sum = 0;
483b4ee6 3361
0a945022 3362 for_each_possible_cpu(i)
1da177e4 3363 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 3364
1da177e4
LT
3365 return sum;
3366}
483b4ee6 3367
8c215bd3 3368unsigned long nr_iowait_cpu(int cpu)
69d25870 3369{
8c215bd3 3370 struct rq *this = cpu_rq(cpu);
69d25870
AV
3371 return atomic_read(&this->nr_iowait);
3372}
46cb4b7c 3373
69d25870
AV
3374unsigned long this_cpu_load(void)
3375{
3376 struct rq *this = this_rq();
3377 return this->cpu_load[0];
3378}
e790fb0b 3379
46cb4b7c 3380
dce48a84
TG
3381/* Variables and functions for calc_load */
3382static atomic_long_t calc_load_tasks;
3383static unsigned long calc_load_update;
3384unsigned long avenrun[3];
3385EXPORT_SYMBOL(avenrun);
46cb4b7c 3386
74f5187a
PZ
3387static long calc_load_fold_active(struct rq *this_rq)
3388{
3389 long nr_active, delta = 0;
3390
3391 nr_active = this_rq->nr_running;
3392 nr_active += (long) this_rq->nr_uninterruptible;
3393
3394 if (nr_active != this_rq->calc_load_active) {
3395 delta = nr_active - this_rq->calc_load_active;
3396 this_rq->calc_load_active = nr_active;
3397 }
3398
3399 return delta;
3400}
3401
0f004f5a
PZ
3402static unsigned long
3403calc_load(unsigned long load, unsigned long exp, unsigned long active)
3404{
3405 load *= exp;
3406 load += active * (FIXED_1 - exp);
3407 load += 1UL << (FSHIFT - 1);
3408 return load >> FSHIFT;
3409}
3410
74f5187a
PZ
3411#ifdef CONFIG_NO_HZ
3412/*
3413 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3414 *
3415 * When making the ILB scale, we should try to pull this in as well.
3416 */
3417static atomic_long_t calc_load_tasks_idle;
3418
3419static void calc_load_account_idle(struct rq *this_rq)
3420{
3421 long delta;
3422
3423 delta = calc_load_fold_active(this_rq);
3424 if (delta)
3425 atomic_long_add(delta, &calc_load_tasks_idle);
3426}
3427
3428static long calc_load_fold_idle(void)
3429{
3430 long delta = 0;
3431
3432 /*
3433 * Its got a race, we don't care...
3434 */
3435 if (atomic_long_read(&calc_load_tasks_idle))
3436 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3437
3438 return delta;
3439}
0f004f5a
PZ
3440
3441/**
3442 * fixed_power_int - compute: x^n, in O(log n) time
3443 *
3444 * @x: base of the power
3445 * @frac_bits: fractional bits of @x
3446 * @n: power to raise @x to.
3447 *
3448 * By exploiting the relation between the definition of the natural power
3449 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3450 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3451 * (where: n_i \elem {0, 1}, the binary vector representing n),
3452 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3453 * of course trivially computable in O(log_2 n), the length of our binary
3454 * vector.
3455 */
3456static unsigned long
3457fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3458{
3459 unsigned long result = 1UL << frac_bits;
3460
3461 if (n) for (;;) {
3462 if (n & 1) {
3463 result *= x;
3464 result += 1UL << (frac_bits - 1);
3465 result >>= frac_bits;
3466 }
3467 n >>= 1;
3468 if (!n)
3469 break;
3470 x *= x;
3471 x += 1UL << (frac_bits - 1);
3472 x >>= frac_bits;
3473 }
3474
3475 return result;
3476}
3477
3478/*
3479 * a1 = a0 * e + a * (1 - e)
3480 *
3481 * a2 = a1 * e + a * (1 - e)
3482 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3483 * = a0 * e^2 + a * (1 - e) * (1 + e)
3484 *
3485 * a3 = a2 * e + a * (1 - e)
3486 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3487 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3488 *
3489 * ...
3490 *
3491 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3492 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3493 * = a0 * e^n + a * (1 - e^n)
3494 *
3495 * [1] application of the geometric series:
3496 *
3497 * n 1 - x^(n+1)
3498 * S_n := \Sum x^i = -------------
3499 * i=0 1 - x
3500 */
3501static unsigned long
3502calc_load_n(unsigned long load, unsigned long exp,
3503 unsigned long active, unsigned int n)
3504{
3505
3506 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3507}
3508
3509/*
3510 * NO_HZ can leave us missing all per-cpu ticks calling
3511 * calc_load_account_active(), but since an idle CPU folds its delta into
3512 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3513 * in the pending idle delta if our idle period crossed a load cycle boundary.
3514 *
3515 * Once we've updated the global active value, we need to apply the exponential
3516 * weights adjusted to the number of cycles missed.
3517 */
3518static void calc_global_nohz(unsigned long ticks)
3519{
3520 long delta, active, n;
3521
3522 if (time_before(jiffies, calc_load_update))
3523 return;
3524
3525 /*
3526 * If we crossed a calc_load_update boundary, make sure to fold
3527 * any pending idle changes, the respective CPUs might have
3528 * missed the tick driven calc_load_account_active() update
3529 * due to NO_HZ.
3530 */
3531 delta = calc_load_fold_idle();
3532 if (delta)
3533 atomic_long_add(delta, &calc_load_tasks);
3534
3535 /*
3536 * If we were idle for multiple load cycles, apply them.
3537 */
3538 if (ticks >= LOAD_FREQ) {
3539 n = ticks / LOAD_FREQ;
3540
3541 active = atomic_long_read(&calc_load_tasks);
3542 active = active > 0 ? active * FIXED_1 : 0;
3543
3544 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3545 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3546 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3547
3548 calc_load_update += n * LOAD_FREQ;
3549 }
3550
3551 /*
3552 * Its possible the remainder of the above division also crosses
3553 * a LOAD_FREQ period, the regular check in calc_global_load()
3554 * which comes after this will take care of that.
3555 *
3556 * Consider us being 11 ticks before a cycle completion, and us
3557 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3558 * age us 4 cycles, and the test in calc_global_load() will
3559 * pick up the final one.
3560 */
3561}
74f5187a
PZ
3562#else
3563static void calc_load_account_idle(struct rq *this_rq)
3564{
3565}
3566
3567static inline long calc_load_fold_idle(void)
3568{
3569 return 0;
3570}
0f004f5a
PZ
3571
3572static void calc_global_nohz(unsigned long ticks)
3573{
3574}
74f5187a
PZ
3575#endif
3576
2d02494f
TG
3577/**
3578 * get_avenrun - get the load average array
3579 * @loads: pointer to dest load array
3580 * @offset: offset to add
3581 * @shift: shift count to shift the result left
3582 *
3583 * These values are estimates at best, so no need for locking.
3584 */
3585void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3586{
3587 loads[0] = (avenrun[0] + offset) << shift;
3588 loads[1] = (avenrun[1] + offset) << shift;
3589 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3590}
46cb4b7c 3591
46cb4b7c 3592/*
dce48a84
TG
3593 * calc_load - update the avenrun load estimates 10 ticks after the
3594 * CPUs have updated calc_load_tasks.
7835b98b 3595 */
0f004f5a 3596void calc_global_load(unsigned long ticks)
7835b98b 3597{
dce48a84 3598 long active;
1da177e4 3599
0f004f5a
PZ
3600 calc_global_nohz(ticks);
3601
3602 if (time_before(jiffies, calc_load_update + 10))
dce48a84 3603 return;
1da177e4 3604
dce48a84
TG
3605 active = atomic_long_read(&calc_load_tasks);
3606 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3607
dce48a84
TG
3608 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3609 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3610 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3611
dce48a84
TG
3612 calc_load_update += LOAD_FREQ;
3613}
1da177e4 3614
dce48a84 3615/*
74f5187a
PZ
3616 * Called from update_cpu_load() to periodically update this CPU's
3617 * active count.
dce48a84
TG
3618 */
3619static void calc_load_account_active(struct rq *this_rq)
3620{
74f5187a 3621 long delta;
08c183f3 3622
74f5187a
PZ
3623 if (time_before(jiffies, this_rq->calc_load_update))
3624 return;
783609c6 3625
74f5187a
PZ
3626 delta = calc_load_fold_active(this_rq);
3627 delta += calc_load_fold_idle();
3628 if (delta)
dce48a84 3629 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3630
3631 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3632}
3633
fdf3e95d
VP
3634/*
3635 * The exact cpuload at various idx values, calculated at every tick would be
3636 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3637 *
3638 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3639 * on nth tick when cpu may be busy, then we have:
3640 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3641 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3642 *
3643 * decay_load_missed() below does efficient calculation of
3644 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3645 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3646 *
3647 * The calculation is approximated on a 128 point scale.
3648 * degrade_zero_ticks is the number of ticks after which load at any
3649 * particular idx is approximated to be zero.
3650 * degrade_factor is a precomputed table, a row for each load idx.
3651 * Each column corresponds to degradation factor for a power of two ticks,
3652 * based on 128 point scale.
3653 * Example:
3654 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3655 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3656 *
3657 * With this power of 2 load factors, we can degrade the load n times
3658 * by looking at 1 bits in n and doing as many mult/shift instead of
3659 * n mult/shifts needed by the exact degradation.
3660 */
3661#define DEGRADE_SHIFT 7
3662static const unsigned char
3663 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3664static const unsigned char
3665 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3666 {0, 0, 0, 0, 0, 0, 0, 0},
3667 {64, 32, 8, 0, 0, 0, 0, 0},
3668 {96, 72, 40, 12, 1, 0, 0},
3669 {112, 98, 75, 43, 15, 1, 0},
3670 {120, 112, 98, 76, 45, 16, 2} };
3671
3672/*
3673 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3674 * would be when CPU is idle and so we just decay the old load without
3675 * adding any new load.
3676 */
3677static unsigned long
3678decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3679{
3680 int j = 0;
3681
3682 if (!missed_updates)
3683 return load;
3684
3685 if (missed_updates >= degrade_zero_ticks[idx])
3686 return 0;
3687
3688 if (idx == 1)
3689 return load >> missed_updates;
3690
3691 while (missed_updates) {
3692 if (missed_updates % 2)
3693 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3694
3695 missed_updates >>= 1;
3696 j++;
3697 }
3698 return load;
3699}
3700
46cb4b7c 3701/*
dd41f596 3702 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
3703 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3704 * every tick. We fix it up based on jiffies.
46cb4b7c 3705 */
dd41f596 3706static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3707{
495eca49 3708 unsigned long this_load = this_rq->load.weight;
fdf3e95d
VP
3709 unsigned long curr_jiffies = jiffies;
3710 unsigned long pending_updates;
dd41f596 3711 int i, scale;
46cb4b7c 3712
dd41f596 3713 this_rq->nr_load_updates++;
46cb4b7c 3714
fdf3e95d
VP
3715 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3716 if (curr_jiffies == this_rq->last_load_update_tick)
3717 return;
3718
3719 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3720 this_rq->last_load_update_tick = curr_jiffies;
3721
dd41f596 3722 /* Update our load: */
fdf3e95d
VP
3723 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3724 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 3725 unsigned long old_load, new_load;
7d1e6a9b 3726
dd41f596 3727 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3728
dd41f596 3729 old_load = this_rq->cpu_load[i];
fdf3e95d 3730 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 3731 new_load = this_load;
a25707f3
IM
3732 /*
3733 * Round up the averaging division if load is increasing. This
3734 * prevents us from getting stuck on 9 if the load is 10, for
3735 * example.
3736 */
3737 if (new_load > old_load)
fdf3e95d
VP
3738 new_load += scale - 1;
3739
3740 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 3741 }
da2b71ed
SS
3742
3743 sched_avg_update(this_rq);
fdf3e95d
VP
3744}
3745
3746static void update_cpu_load_active(struct rq *this_rq)
3747{
3748 update_cpu_load(this_rq);
46cb4b7c 3749
74f5187a 3750 calc_load_account_active(this_rq);
46cb4b7c
SS
3751}
3752
dd41f596 3753#ifdef CONFIG_SMP
8a0be9ef 3754
46cb4b7c 3755/*
38022906
PZ
3756 * sched_exec - execve() is a valuable balancing opportunity, because at
3757 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3758 */
38022906 3759void sched_exec(void)
46cb4b7c 3760{
38022906 3761 struct task_struct *p = current;
1da177e4 3762 unsigned long flags;
0017d735 3763 int dest_cpu;
46cb4b7c 3764
8f42ced9 3765 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 3766 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
3767 if (dest_cpu == smp_processor_id())
3768 goto unlock;
38022906 3769
8f42ced9 3770 if (likely(cpu_active(dest_cpu))) {
969c7921 3771 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 3772
8f42ced9
PZ
3773 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3774 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
3775 return;
3776 }
0017d735 3777unlock:
8f42ced9 3778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 3779}
dd41f596 3780
1da177e4
LT
3781#endif
3782
1da177e4
LT
3783DEFINE_PER_CPU(struct kernel_stat, kstat);
3784
3785EXPORT_PER_CPU_SYMBOL(kstat);
3786
3787/*
c5f8d995 3788 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3789 * @p in case that task is currently running.
c5f8d995
HS
3790 *
3791 * Called with task_rq_lock() held on @rq.
1da177e4 3792 */
c5f8d995
HS
3793static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3794{
3795 u64 ns = 0;
3796
3797 if (task_current(rq, p)) {
3798 update_rq_clock(rq);
305e6835 3799 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
3800 if ((s64)ns < 0)
3801 ns = 0;
3802 }
3803
3804 return ns;
3805}
3806
bb34d92f 3807unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3808{
1da177e4 3809 unsigned long flags;
41b86e9c 3810 struct rq *rq;
bb34d92f 3811 u64 ns = 0;
48f24c4d 3812
41b86e9c 3813 rq = task_rq_lock(p, &flags);
c5f8d995 3814 ns = do_task_delta_exec(p, rq);
0122ec5b 3815 task_rq_unlock(rq, p, &flags);
1508487e 3816
c5f8d995
HS
3817 return ns;
3818}
f06febc9 3819
c5f8d995
HS
3820/*
3821 * Return accounted runtime for the task.
3822 * In case the task is currently running, return the runtime plus current's
3823 * pending runtime that have not been accounted yet.
3824 */
3825unsigned long long task_sched_runtime(struct task_struct *p)
3826{
3827 unsigned long flags;
3828 struct rq *rq;
3829 u64 ns = 0;
3830
3831 rq = task_rq_lock(p, &flags);
3832 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3833 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
3834
3835 return ns;
3836}
48f24c4d 3837
c5f8d995
HS
3838/*
3839 * Return sum_exec_runtime for the thread group.
3840 * In case the task is currently running, return the sum plus current's
3841 * pending runtime that have not been accounted yet.
3842 *
3843 * Note that the thread group might have other running tasks as well,
3844 * so the return value not includes other pending runtime that other
3845 * running tasks might have.
3846 */
3847unsigned long long thread_group_sched_runtime(struct task_struct *p)
3848{
3849 struct task_cputime totals;
3850 unsigned long flags;
3851 struct rq *rq;
3852 u64 ns;
3853
3854 rq = task_rq_lock(p, &flags);
3855 thread_group_cputime(p, &totals);
3856 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 3857 task_rq_unlock(rq, p, &flags);
48f24c4d 3858
1da177e4
LT
3859 return ns;
3860}
3861
1da177e4
LT
3862/*
3863 * Account user cpu time to a process.
3864 * @p: the process that the cpu time gets accounted to
1da177e4 3865 * @cputime: the cpu time spent in user space since the last update
457533a7 3866 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3867 */
457533a7
MS
3868void account_user_time(struct task_struct *p, cputime_t cputime,
3869 cputime_t cputime_scaled)
1da177e4
LT
3870{
3871 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3872 cputime64_t tmp;
3873
457533a7 3874 /* Add user time to process. */
1da177e4 3875 p->utime = cputime_add(p->utime, cputime);
457533a7 3876 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3877 account_group_user_time(p, cputime);
1da177e4
LT
3878
3879 /* Add user time to cpustat. */
3880 tmp = cputime_to_cputime64(cputime);
3881 if (TASK_NICE(p) > 0)
3882 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3883 else
3884 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3885
3886 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3887 /* Account for user time used */
3888 acct_update_integrals(p);
1da177e4
LT
3889}
3890
94886b84
LV
3891/*
3892 * Account guest cpu time to a process.
3893 * @p: the process that the cpu time gets accounted to
3894 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3895 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3896 */
457533a7
MS
3897static void account_guest_time(struct task_struct *p, cputime_t cputime,
3898 cputime_t cputime_scaled)
94886b84
LV
3899{
3900 cputime64_t tmp;
3901 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3902
3903 tmp = cputime_to_cputime64(cputime);
3904
457533a7 3905 /* Add guest time to process. */
94886b84 3906 p->utime = cputime_add(p->utime, cputime);
457533a7 3907 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3908 account_group_user_time(p, cputime);
94886b84
LV
3909 p->gtime = cputime_add(p->gtime, cputime);
3910
457533a7 3911 /* Add guest time to cpustat. */
ce0e7b28
RO
3912 if (TASK_NICE(p) > 0) {
3913 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3914 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3915 } else {
3916 cpustat->user = cputime64_add(cpustat->user, tmp);
3917 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3918 }
94886b84
LV
3919}
3920
70a89a66
VP
3921/*
3922 * Account system cpu time to a process and desired cpustat field
3923 * @p: the process that the cpu time gets accounted to
3924 * @cputime: the cpu time spent in kernel space since the last update
3925 * @cputime_scaled: cputime scaled by cpu frequency
3926 * @target_cputime64: pointer to cpustat field that has to be updated
3927 */
3928static inline
3929void __account_system_time(struct task_struct *p, cputime_t cputime,
3930 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3931{
3932 cputime64_t tmp = cputime_to_cputime64(cputime);
3933
3934 /* Add system time to process. */
3935 p->stime = cputime_add(p->stime, cputime);
3936 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3937 account_group_system_time(p, cputime);
3938
3939 /* Add system time to cpustat. */
3940 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3941 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3942
3943 /* Account for system time used */
3944 acct_update_integrals(p);
3945}
3946
1da177e4
LT
3947/*
3948 * Account system cpu time to a process.
3949 * @p: the process that the cpu time gets accounted to
3950 * @hardirq_offset: the offset to subtract from hardirq_count()
3951 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3952 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3953 */
3954void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3955 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3956{
3957 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70a89a66 3958 cputime64_t *target_cputime64;
1da177e4 3959
983ed7a6 3960 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3961 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3962 return;
3963 }
94886b84 3964
1da177e4 3965 if (hardirq_count() - hardirq_offset)
70a89a66 3966 target_cputime64 = &cpustat->irq;
75e1056f 3967 else if (in_serving_softirq())
70a89a66 3968 target_cputime64 = &cpustat->softirq;
1da177e4 3969 else
70a89a66 3970 target_cputime64 = &cpustat->system;
ef12fefa 3971
70a89a66 3972 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
1da177e4
LT
3973}
3974
c66f08be 3975/*
1da177e4 3976 * Account for involuntary wait time.
544b4a1f 3977 * @cputime: the cpu time spent in involuntary wait
c66f08be 3978 */
79741dd3 3979void account_steal_time(cputime_t cputime)
c66f08be 3980{
79741dd3
MS
3981 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3982 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3983
3984 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3985}
3986
1da177e4 3987/*
79741dd3
MS
3988 * Account for idle time.
3989 * @cputime: the cpu time spent in idle wait
1da177e4 3990 */
79741dd3 3991void account_idle_time(cputime_t cputime)
1da177e4
LT
3992{
3993 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3994 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3995 struct rq *rq = this_rq();
1da177e4 3996
79741dd3
MS
3997 if (atomic_read(&rq->nr_iowait) > 0)
3998 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3999 else
4000 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4001}
4002
e6e6685a
GC
4003static __always_inline bool steal_account_process_tick(void)
4004{
4005#ifdef CONFIG_PARAVIRT
4006 if (static_branch(&paravirt_steal_enabled)) {
4007 u64 steal, st = 0;
4008
4009 steal = paravirt_steal_clock(smp_processor_id());
4010 steal -= this_rq()->prev_steal_time;
4011
4012 st = steal_ticks(steal);
4013 this_rq()->prev_steal_time += st * TICK_NSEC;
4014
4015 account_steal_time(st);
4016 return st;
4017 }
4018#endif
4019 return false;
4020}
4021
79741dd3
MS
4022#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4023
abb74cef
VP
4024#ifdef CONFIG_IRQ_TIME_ACCOUNTING
4025/*
4026 * Account a tick to a process and cpustat
4027 * @p: the process that the cpu time gets accounted to
4028 * @user_tick: is the tick from userspace
4029 * @rq: the pointer to rq
4030 *
4031 * Tick demultiplexing follows the order
4032 * - pending hardirq update
4033 * - pending softirq update
4034 * - user_time
4035 * - idle_time
4036 * - system time
4037 * - check for guest_time
4038 * - else account as system_time
4039 *
4040 * Check for hardirq is done both for system and user time as there is
4041 * no timer going off while we are on hardirq and hence we may never get an
4042 * opportunity to update it solely in system time.
4043 * p->stime and friends are only updated on system time and not on irq
4044 * softirq as those do not count in task exec_runtime any more.
4045 */
4046static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4047 struct rq *rq)
4048{
4049 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4050 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4052
e6e6685a
GC
4053 if (steal_account_process_tick())
4054 return;
4055
abb74cef
VP
4056 if (irqtime_account_hi_update()) {
4057 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4058 } else if (irqtime_account_si_update()) {
4059 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
414bee9b
VP
4060 } else if (this_cpu_ksoftirqd() == p) {
4061 /*
4062 * ksoftirqd time do not get accounted in cpu_softirq_time.
4063 * So, we have to handle it separately here.
4064 * Also, p->stime needs to be updated for ksoftirqd.
4065 */
4066 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4067 &cpustat->softirq);
abb74cef
VP
4068 } else if (user_tick) {
4069 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4070 } else if (p == rq->idle) {
4071 account_idle_time(cputime_one_jiffy);
4072 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4073 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4074 } else {
4075 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4076 &cpustat->system);
4077 }
4078}
4079
4080static void irqtime_account_idle_ticks(int ticks)
4081{
4082 int i;
4083 struct rq *rq = this_rq();
4084
4085 for (i = 0; i < ticks; i++)
4086 irqtime_account_process_tick(current, 0, rq);
4087}
544b4a1f 4088#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
4089static void irqtime_account_idle_ticks(int ticks) {}
4090static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4091 struct rq *rq) {}
544b4a1f 4092#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
4093
4094/*
4095 * Account a single tick of cpu time.
4096 * @p: the process that the cpu time gets accounted to
4097 * @user_tick: indicates if the tick is a user or a system tick
4098 */
4099void account_process_tick(struct task_struct *p, int user_tick)
4100{
a42548a1 4101 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
4102 struct rq *rq = this_rq();
4103
abb74cef
VP
4104 if (sched_clock_irqtime) {
4105 irqtime_account_process_tick(p, user_tick, rq);
4106 return;
4107 }
4108
e6e6685a
GC
4109 if (steal_account_process_tick())
4110 return;
4111
79741dd3 4112 if (user_tick)
a42548a1 4113 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 4114 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 4115 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
4116 one_jiffy_scaled);
4117 else
a42548a1 4118 account_idle_time(cputime_one_jiffy);
79741dd3
MS
4119}
4120
4121/*
4122 * Account multiple ticks of steal time.
4123 * @p: the process from which the cpu time has been stolen
4124 * @ticks: number of stolen ticks
4125 */
4126void account_steal_ticks(unsigned long ticks)
4127{
4128 account_steal_time(jiffies_to_cputime(ticks));
4129}
4130
4131/*
4132 * Account multiple ticks of idle time.
4133 * @ticks: number of stolen ticks
4134 */
4135void account_idle_ticks(unsigned long ticks)
4136{
abb74cef
VP
4137
4138 if (sched_clock_irqtime) {
4139 irqtime_account_idle_ticks(ticks);
4140 return;
4141 }
4142
79741dd3 4143 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4144}
4145
79741dd3
MS
4146#endif
4147
49048622
BS
4148/*
4149 * Use precise platform statistics if available:
4150 */
4151#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 4152void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4153{
d99ca3b9
HS
4154 *ut = p->utime;
4155 *st = p->stime;
49048622
BS
4156}
4157
0cf55e1e 4158void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4159{
0cf55e1e
HS
4160 struct task_cputime cputime;
4161
4162 thread_group_cputime(p, &cputime);
4163
4164 *ut = cputime.utime;
4165 *st = cputime.stime;
49048622
BS
4166}
4167#else
761b1d26
HS
4168
4169#ifndef nsecs_to_cputime
b7b20df9 4170# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
4171#endif
4172
d180c5bc 4173void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4174{
d99ca3b9 4175 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
4176
4177 /*
4178 * Use CFS's precise accounting:
4179 */
d180c5bc 4180 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
4181
4182 if (total) {
e75e863d 4183 u64 temp = rtime;
d180c5bc 4184
e75e863d 4185 temp *= utime;
49048622 4186 do_div(temp, total);
d180c5bc
HS
4187 utime = (cputime_t)temp;
4188 } else
4189 utime = rtime;
49048622 4190
d180c5bc
HS
4191 /*
4192 * Compare with previous values, to keep monotonicity:
4193 */
761b1d26 4194 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 4195 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 4196
d99ca3b9
HS
4197 *ut = p->prev_utime;
4198 *st = p->prev_stime;
49048622
BS
4199}
4200
0cf55e1e
HS
4201/*
4202 * Must be called with siglock held.
4203 */
4204void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 4205{
0cf55e1e
HS
4206 struct signal_struct *sig = p->signal;
4207 struct task_cputime cputime;
4208 cputime_t rtime, utime, total;
49048622 4209
0cf55e1e 4210 thread_group_cputime(p, &cputime);
49048622 4211
0cf55e1e
HS
4212 total = cputime_add(cputime.utime, cputime.stime);
4213 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 4214
0cf55e1e 4215 if (total) {
e75e863d 4216 u64 temp = rtime;
49048622 4217
e75e863d 4218 temp *= cputime.utime;
0cf55e1e
HS
4219 do_div(temp, total);
4220 utime = (cputime_t)temp;
4221 } else
4222 utime = rtime;
4223
4224 sig->prev_utime = max(sig->prev_utime, utime);
4225 sig->prev_stime = max(sig->prev_stime,
4226 cputime_sub(rtime, sig->prev_utime));
4227
4228 *ut = sig->prev_utime;
4229 *st = sig->prev_stime;
49048622 4230}
49048622 4231#endif
49048622 4232
7835b98b
CL
4233/*
4234 * This function gets called by the timer code, with HZ frequency.
4235 * We call it with interrupts disabled.
7835b98b
CL
4236 */
4237void scheduler_tick(void)
4238{
7835b98b
CL
4239 int cpu = smp_processor_id();
4240 struct rq *rq = cpu_rq(cpu);
dd41f596 4241 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4242
4243 sched_clock_tick();
dd41f596 4244
05fa785c 4245 raw_spin_lock(&rq->lock);
3e51f33f 4246 update_rq_clock(rq);
fdf3e95d 4247 update_cpu_load_active(rq);
fa85ae24 4248 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 4249 raw_spin_unlock(&rq->lock);
7835b98b 4250
e9d2b064 4251 perf_event_task_tick();
e220d2dc 4252
e418e1c2 4253#ifdef CONFIG_SMP
dd41f596
IM
4254 rq->idle_at_tick = idle_cpu(cpu);
4255 trigger_load_balance(rq, cpu);
e418e1c2 4256#endif
1da177e4
LT
4257}
4258
132380a0 4259notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4260{
4261 if (in_lock_functions(addr)) {
4262 addr = CALLER_ADDR2;
4263 if (in_lock_functions(addr))
4264 addr = CALLER_ADDR3;
4265 }
4266 return addr;
4267}
1da177e4 4268
7e49fcce
SR
4269#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4270 defined(CONFIG_PREEMPT_TRACER))
4271
43627582 4272void __kprobes add_preempt_count(int val)
1da177e4 4273{
6cd8a4bb 4274#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4275 /*
4276 * Underflow?
4277 */
9a11b49a
IM
4278 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4279 return;
6cd8a4bb 4280#endif
1da177e4 4281 preempt_count() += val;
6cd8a4bb 4282#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4283 /*
4284 * Spinlock count overflowing soon?
4285 */
33859f7f
MOS
4286 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4287 PREEMPT_MASK - 10);
6cd8a4bb
SR
4288#endif
4289 if (preempt_count() == val)
4290 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4291}
4292EXPORT_SYMBOL(add_preempt_count);
4293
43627582 4294void __kprobes sub_preempt_count(int val)
1da177e4 4295{
6cd8a4bb 4296#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4297 /*
4298 * Underflow?
4299 */
01e3eb82 4300 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4301 return;
1da177e4
LT
4302 /*
4303 * Is the spinlock portion underflowing?
4304 */
9a11b49a
IM
4305 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4306 !(preempt_count() & PREEMPT_MASK)))
4307 return;
6cd8a4bb 4308#endif
9a11b49a 4309
6cd8a4bb
SR
4310 if (preempt_count() == val)
4311 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4312 preempt_count() -= val;
4313}
4314EXPORT_SYMBOL(sub_preempt_count);
4315
4316#endif
4317
4318/*
dd41f596 4319 * Print scheduling while atomic bug:
1da177e4 4320 */
dd41f596 4321static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4322{
838225b4
SS
4323 struct pt_regs *regs = get_irq_regs();
4324
3df0fc5b
PZ
4325 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4326 prev->comm, prev->pid, preempt_count());
838225b4 4327
dd41f596 4328 debug_show_held_locks(prev);
e21f5b15 4329 print_modules();
dd41f596
IM
4330 if (irqs_disabled())
4331 print_irqtrace_events(prev);
838225b4
SS
4332
4333 if (regs)
4334 show_regs(regs);
4335 else
4336 dump_stack();
dd41f596 4337}
1da177e4 4338
dd41f596
IM
4339/*
4340 * Various schedule()-time debugging checks and statistics:
4341 */
4342static inline void schedule_debug(struct task_struct *prev)
4343{
1da177e4 4344 /*
41a2d6cf 4345 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4346 * schedule() atomically, we ignore that path for now.
4347 * Otherwise, whine if we are scheduling when we should not be.
4348 */
3f33a7ce 4349 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4350 __schedule_bug(prev);
4351
1da177e4
LT
4352 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4353
2d72376b 4354 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
4355}
4356
6cecd084 4357static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 4358{
61eadef6 4359 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 4360 update_rq_clock(rq);
6cecd084 4361 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
4362}
4363
dd41f596
IM
4364/*
4365 * Pick up the highest-prio task:
4366 */
4367static inline struct task_struct *
b67802ea 4368pick_next_task(struct rq *rq)
dd41f596 4369{
5522d5d5 4370 const struct sched_class *class;
dd41f596 4371 struct task_struct *p;
1da177e4
LT
4372
4373 /*
dd41f596
IM
4374 * Optimization: we know that if all tasks are in
4375 * the fair class we can call that function directly:
1da177e4 4376 */
953bfcd1 4377 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 4378 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4379 if (likely(p))
4380 return p;
1da177e4
LT
4381 }
4382
34f971f6 4383 for_each_class(class) {
fb8d4724 4384 p = class->pick_next_task(rq);
dd41f596
IM
4385 if (p)
4386 return p;
dd41f596 4387 }
34f971f6
PZ
4388
4389 BUG(); /* the idle class will always have a runnable task */
dd41f596 4390}
1da177e4 4391
dd41f596
IM
4392/*
4393 * schedule() is the main scheduler function.
4394 */
ff743345 4395asmlinkage void __sched schedule(void)
dd41f596
IM
4396{
4397 struct task_struct *prev, *next;
67ca7bde 4398 unsigned long *switch_count;
dd41f596 4399 struct rq *rq;
31656519 4400 int cpu;
dd41f596 4401
ff743345
PZ
4402need_resched:
4403 preempt_disable();
dd41f596
IM
4404 cpu = smp_processor_id();
4405 rq = cpu_rq(cpu);
25502a6c 4406 rcu_note_context_switch(cpu);
dd41f596 4407 prev = rq->curr;
dd41f596 4408
dd41f596 4409 schedule_debug(prev);
1da177e4 4410
31656519 4411 if (sched_feat(HRTICK))
f333fdc9 4412 hrtick_clear(rq);
8f4d37ec 4413
05fa785c 4414 raw_spin_lock_irq(&rq->lock);
1da177e4 4415
246d86b5 4416 switch_count = &prev->nivcsw;
1da177e4 4417 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 4418 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 4419 prev->state = TASK_RUNNING;
21aa9af0 4420 } else {
2acca55e
PZ
4421 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4422 prev->on_rq = 0;
4423
21aa9af0 4424 /*
2acca55e
PZ
4425 * If a worker went to sleep, notify and ask workqueue
4426 * whether it wants to wake up a task to maintain
4427 * concurrency.
21aa9af0
TH
4428 */
4429 if (prev->flags & PF_WQ_WORKER) {
4430 struct task_struct *to_wakeup;
4431
4432 to_wakeup = wq_worker_sleeping(prev, cpu);
4433 if (to_wakeup)
4434 try_to_wake_up_local(to_wakeup);
4435 }
fd2f4419 4436
6631e635 4437 /*
2acca55e
PZ
4438 * If we are going to sleep and we have plugged IO
4439 * queued, make sure to submit it to avoid deadlocks.
6631e635
LT
4440 */
4441 if (blk_needs_flush_plug(prev)) {
4442 raw_spin_unlock(&rq->lock);
a237c1c5 4443 blk_schedule_flush_plug(prev);
6631e635
LT
4444 raw_spin_lock(&rq->lock);
4445 }
21aa9af0 4446 }
dd41f596 4447 switch_count = &prev->nvcsw;
1da177e4
LT
4448 }
4449
3f029d3c 4450 pre_schedule(rq, prev);
f65eda4f 4451
dd41f596 4452 if (unlikely(!rq->nr_running))
1da177e4 4453 idle_balance(cpu, rq);
1da177e4 4454
df1c99d4 4455 put_prev_task(rq, prev);
b67802ea 4456 next = pick_next_task(rq);
f26f9aff
MG
4457 clear_tsk_need_resched(prev);
4458 rq->skip_clock_update = 0;
1da177e4 4459
1da177e4 4460 if (likely(prev != next)) {
1da177e4
LT
4461 rq->nr_switches++;
4462 rq->curr = next;
4463 ++*switch_count;
4464
dd41f596 4465 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 4466 /*
246d86b5
ON
4467 * The context switch have flipped the stack from under us
4468 * and restored the local variables which were saved when
4469 * this task called schedule() in the past. prev == current
4470 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
4471 */
4472 cpu = smp_processor_id();
4473 rq = cpu_rq(cpu);
1da177e4 4474 } else
05fa785c 4475 raw_spin_unlock_irq(&rq->lock);
1da177e4 4476
3f029d3c 4477 post_schedule(rq);
1da177e4 4478
1da177e4 4479 preempt_enable_no_resched();
ff743345 4480 if (need_resched())
1da177e4
LT
4481 goto need_resched;
4482}
1da177e4
LT
4483EXPORT_SYMBOL(schedule);
4484
c08f7829 4485#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 4486
c6eb3dda
PZ
4487static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4488{
c6eb3dda 4489 if (lock->owner != owner)
307bf980 4490 return false;
0d66bf6d
PZ
4491
4492 /*
c6eb3dda
PZ
4493 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4494 * lock->owner still matches owner, if that fails, owner might
4495 * point to free()d memory, if it still matches, the rcu_read_lock()
4496 * ensures the memory stays valid.
0d66bf6d 4497 */
c6eb3dda 4498 barrier();
0d66bf6d 4499
307bf980 4500 return owner->on_cpu;
c6eb3dda 4501}
0d66bf6d 4502
c6eb3dda
PZ
4503/*
4504 * Look out! "owner" is an entirely speculative pointer
4505 * access and not reliable.
4506 */
4507int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4508{
4509 if (!sched_feat(OWNER_SPIN))
4510 return 0;
0d66bf6d 4511
307bf980 4512 rcu_read_lock();
c6eb3dda
PZ
4513 while (owner_running(lock, owner)) {
4514 if (need_resched())
307bf980 4515 break;
0d66bf6d 4516
335d7afb 4517 arch_mutex_cpu_relax();
0d66bf6d 4518 }
307bf980 4519 rcu_read_unlock();
4b402210 4520
c6eb3dda 4521 /*
307bf980
TG
4522 * We break out the loop above on need_resched() and when the
4523 * owner changed, which is a sign for heavy contention. Return
4524 * success only when lock->owner is NULL.
c6eb3dda 4525 */
307bf980 4526 return lock->owner == NULL;
0d66bf6d
PZ
4527}
4528#endif
4529
1da177e4
LT
4530#ifdef CONFIG_PREEMPT
4531/*
2ed6e34f 4532 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4533 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4534 * occur there and call schedule directly.
4535 */
d1f74e20 4536asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
4537{
4538 struct thread_info *ti = current_thread_info();
6478d880 4539
1da177e4
LT
4540 /*
4541 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4542 * we do not want to preempt the current task. Just return..
1da177e4 4543 */
beed33a8 4544 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4545 return;
4546
3a5c359a 4547 do {
d1f74e20 4548 add_preempt_count_notrace(PREEMPT_ACTIVE);
3a5c359a 4549 schedule();
d1f74e20 4550 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 4551
3a5c359a
AK
4552 /*
4553 * Check again in case we missed a preemption opportunity
4554 * between schedule and now.
4555 */
4556 barrier();
5ed0cec0 4557 } while (need_resched());
1da177e4 4558}
1da177e4
LT
4559EXPORT_SYMBOL(preempt_schedule);
4560
4561/*
2ed6e34f 4562 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4563 * off of irq context.
4564 * Note, that this is called and return with irqs disabled. This will
4565 * protect us against recursive calling from irq.
4566 */
4567asmlinkage void __sched preempt_schedule_irq(void)
4568{
4569 struct thread_info *ti = current_thread_info();
6478d880 4570
2ed6e34f 4571 /* Catch callers which need to be fixed */
1da177e4
LT
4572 BUG_ON(ti->preempt_count || !irqs_disabled());
4573
3a5c359a
AK
4574 do {
4575 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4576 local_irq_enable();
4577 schedule();
4578 local_irq_disable();
3a5c359a 4579 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4580
3a5c359a
AK
4581 /*
4582 * Check again in case we missed a preemption opportunity
4583 * between schedule and now.
4584 */
4585 barrier();
5ed0cec0 4586 } while (need_resched());
1da177e4
LT
4587}
4588
4589#endif /* CONFIG_PREEMPT */
4590
63859d4f 4591int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 4592 void *key)
1da177e4 4593{
63859d4f 4594 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 4595}
1da177e4
LT
4596EXPORT_SYMBOL(default_wake_function);
4597
4598/*
41a2d6cf
IM
4599 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4600 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4601 * number) then we wake all the non-exclusive tasks and one exclusive task.
4602 *
4603 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4604 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4605 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4606 */
78ddb08f 4607static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 4608 int nr_exclusive, int wake_flags, void *key)
1da177e4 4609{
2e45874c 4610 wait_queue_t *curr, *next;
1da177e4 4611
2e45874c 4612 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4613 unsigned flags = curr->flags;
4614
63859d4f 4615 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 4616 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4617 break;
4618 }
4619}
4620
4621/**
4622 * __wake_up - wake up threads blocked on a waitqueue.
4623 * @q: the waitqueue
4624 * @mode: which threads
4625 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4626 * @key: is directly passed to the wakeup function
50fa610a
DH
4627 *
4628 * It may be assumed that this function implies a write memory barrier before
4629 * changing the task state if and only if any tasks are woken up.
1da177e4 4630 */
7ad5b3a5 4631void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4632 int nr_exclusive, void *key)
1da177e4
LT
4633{
4634 unsigned long flags;
4635
4636 spin_lock_irqsave(&q->lock, flags);
4637 __wake_up_common(q, mode, nr_exclusive, 0, key);
4638 spin_unlock_irqrestore(&q->lock, flags);
4639}
1da177e4
LT
4640EXPORT_SYMBOL(__wake_up);
4641
4642/*
4643 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4644 */
7ad5b3a5 4645void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4646{
4647 __wake_up_common(q, mode, 1, 0, NULL);
4648}
22c43c81 4649EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 4650
4ede816a
DL
4651void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4652{
4653 __wake_up_common(q, mode, 1, 0, key);
4654}
bf294b41 4655EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 4656
1da177e4 4657/**
4ede816a 4658 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
4659 * @q: the waitqueue
4660 * @mode: which threads
4661 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 4662 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
4663 *
4664 * The sync wakeup differs that the waker knows that it will schedule
4665 * away soon, so while the target thread will be woken up, it will not
4666 * be migrated to another CPU - ie. the two threads are 'synchronized'
4667 * with each other. This can prevent needless bouncing between CPUs.
4668 *
4669 * On UP it can prevent extra preemption.
50fa610a
DH
4670 *
4671 * It may be assumed that this function implies a write memory barrier before
4672 * changing the task state if and only if any tasks are woken up.
1da177e4 4673 */
4ede816a
DL
4674void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4675 int nr_exclusive, void *key)
1da177e4
LT
4676{
4677 unsigned long flags;
7d478721 4678 int wake_flags = WF_SYNC;
1da177e4
LT
4679
4680 if (unlikely(!q))
4681 return;
4682
4683 if (unlikely(!nr_exclusive))
7d478721 4684 wake_flags = 0;
1da177e4
LT
4685
4686 spin_lock_irqsave(&q->lock, flags);
7d478721 4687 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
4688 spin_unlock_irqrestore(&q->lock, flags);
4689}
4ede816a
DL
4690EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4691
4692/*
4693 * __wake_up_sync - see __wake_up_sync_key()
4694 */
4695void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4696{
4697 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4698}
1da177e4
LT
4699EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4700
65eb3dc6
KD
4701/**
4702 * complete: - signals a single thread waiting on this completion
4703 * @x: holds the state of this particular completion
4704 *
4705 * This will wake up a single thread waiting on this completion. Threads will be
4706 * awakened in the same order in which they were queued.
4707 *
4708 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
4709 *
4710 * It may be assumed that this function implies a write memory barrier before
4711 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4712 */
b15136e9 4713void complete(struct completion *x)
1da177e4
LT
4714{
4715 unsigned long flags;
4716
4717 spin_lock_irqsave(&x->wait.lock, flags);
4718 x->done++;
d9514f6c 4719 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4720 spin_unlock_irqrestore(&x->wait.lock, flags);
4721}
4722EXPORT_SYMBOL(complete);
4723
65eb3dc6
KD
4724/**
4725 * complete_all: - signals all threads waiting on this completion
4726 * @x: holds the state of this particular completion
4727 *
4728 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
4729 *
4730 * It may be assumed that this function implies a write memory barrier before
4731 * changing the task state if and only if any tasks are woken up.
65eb3dc6 4732 */
b15136e9 4733void complete_all(struct completion *x)
1da177e4
LT
4734{
4735 unsigned long flags;
4736
4737 spin_lock_irqsave(&x->wait.lock, flags);
4738 x->done += UINT_MAX/2;
d9514f6c 4739 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4740 spin_unlock_irqrestore(&x->wait.lock, flags);
4741}
4742EXPORT_SYMBOL(complete_all);
4743
8cbbe86d
AK
4744static inline long __sched
4745do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4746{
1da177e4
LT
4747 if (!x->done) {
4748 DECLARE_WAITQUEUE(wait, current);
4749
a93d2f17 4750 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 4751 do {
94d3d824 4752 if (signal_pending_state(state, current)) {
ea71a546
ON
4753 timeout = -ERESTARTSYS;
4754 break;
8cbbe86d
AK
4755 }
4756 __set_current_state(state);
1da177e4
LT
4757 spin_unlock_irq(&x->wait.lock);
4758 timeout = schedule_timeout(timeout);
4759 spin_lock_irq(&x->wait.lock);
ea71a546 4760 } while (!x->done && timeout);
1da177e4 4761 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4762 if (!x->done)
4763 return timeout;
1da177e4
LT
4764 }
4765 x->done--;
ea71a546 4766 return timeout ?: 1;
1da177e4 4767}
1da177e4 4768
8cbbe86d
AK
4769static long __sched
4770wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4771{
1da177e4
LT
4772 might_sleep();
4773
4774 spin_lock_irq(&x->wait.lock);
8cbbe86d 4775 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4776 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4777 return timeout;
4778}
1da177e4 4779
65eb3dc6
KD
4780/**
4781 * wait_for_completion: - waits for completion of a task
4782 * @x: holds the state of this particular completion
4783 *
4784 * This waits to be signaled for completion of a specific task. It is NOT
4785 * interruptible and there is no timeout.
4786 *
4787 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4788 * and interrupt capability. Also see complete().
4789 */
b15136e9 4790void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4791{
4792 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4793}
8cbbe86d 4794EXPORT_SYMBOL(wait_for_completion);
1da177e4 4795
65eb3dc6
KD
4796/**
4797 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4798 * @x: holds the state of this particular completion
4799 * @timeout: timeout value in jiffies
4800 *
4801 * This waits for either a completion of a specific task to be signaled or for a
4802 * specified timeout to expire. The timeout is in jiffies. It is not
4803 * interruptible.
4804 */
b15136e9 4805unsigned long __sched
8cbbe86d 4806wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4807{
8cbbe86d 4808 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4809}
8cbbe86d 4810EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4811
65eb3dc6
KD
4812/**
4813 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4814 * @x: holds the state of this particular completion
4815 *
4816 * This waits for completion of a specific task to be signaled. It is
4817 * interruptible.
4818 */
8cbbe86d 4819int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4820{
51e97990
AK
4821 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4822 if (t == -ERESTARTSYS)
4823 return t;
4824 return 0;
0fec171c 4825}
8cbbe86d 4826EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4827
65eb3dc6
KD
4828/**
4829 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4830 * @x: holds the state of this particular completion
4831 * @timeout: timeout value in jiffies
4832 *
4833 * This waits for either a completion of a specific task to be signaled or for a
4834 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4835 */
6bf41237 4836long __sched
8cbbe86d
AK
4837wait_for_completion_interruptible_timeout(struct completion *x,
4838 unsigned long timeout)
0fec171c 4839{
8cbbe86d 4840 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4841}
8cbbe86d 4842EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4843
65eb3dc6
KD
4844/**
4845 * wait_for_completion_killable: - waits for completion of a task (killable)
4846 * @x: holds the state of this particular completion
4847 *
4848 * This waits to be signaled for completion of a specific task. It can be
4849 * interrupted by a kill signal.
4850 */
009e577e
MW
4851int __sched wait_for_completion_killable(struct completion *x)
4852{
4853 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4854 if (t == -ERESTARTSYS)
4855 return t;
4856 return 0;
4857}
4858EXPORT_SYMBOL(wait_for_completion_killable);
4859
0aa12fb4
SW
4860/**
4861 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4862 * @x: holds the state of this particular completion
4863 * @timeout: timeout value in jiffies
4864 *
4865 * This waits for either a completion of a specific task to be
4866 * signaled or for a specified timeout to expire. It can be
4867 * interrupted by a kill signal. The timeout is in jiffies.
4868 */
6bf41237 4869long __sched
0aa12fb4
SW
4870wait_for_completion_killable_timeout(struct completion *x,
4871 unsigned long timeout)
4872{
4873 return wait_for_common(x, timeout, TASK_KILLABLE);
4874}
4875EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4876
be4de352
DC
4877/**
4878 * try_wait_for_completion - try to decrement a completion without blocking
4879 * @x: completion structure
4880 *
4881 * Returns: 0 if a decrement cannot be done without blocking
4882 * 1 if a decrement succeeded.
4883 *
4884 * If a completion is being used as a counting completion,
4885 * attempt to decrement the counter without blocking. This
4886 * enables us to avoid waiting if the resource the completion
4887 * is protecting is not available.
4888 */
4889bool try_wait_for_completion(struct completion *x)
4890{
7539a3b3 4891 unsigned long flags;
be4de352
DC
4892 int ret = 1;
4893
7539a3b3 4894 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4895 if (!x->done)
4896 ret = 0;
4897 else
4898 x->done--;
7539a3b3 4899 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4900 return ret;
4901}
4902EXPORT_SYMBOL(try_wait_for_completion);
4903
4904/**
4905 * completion_done - Test to see if a completion has any waiters
4906 * @x: completion structure
4907 *
4908 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4909 * 1 if there are no waiters.
4910 *
4911 */
4912bool completion_done(struct completion *x)
4913{
7539a3b3 4914 unsigned long flags;
be4de352
DC
4915 int ret = 1;
4916
7539a3b3 4917 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4918 if (!x->done)
4919 ret = 0;
7539a3b3 4920 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4921 return ret;
4922}
4923EXPORT_SYMBOL(completion_done);
4924
8cbbe86d
AK
4925static long __sched
4926sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4927{
0fec171c
IM
4928 unsigned long flags;
4929 wait_queue_t wait;
4930
4931 init_waitqueue_entry(&wait, current);
1da177e4 4932
8cbbe86d 4933 __set_current_state(state);
1da177e4 4934
8cbbe86d
AK
4935 spin_lock_irqsave(&q->lock, flags);
4936 __add_wait_queue(q, &wait);
4937 spin_unlock(&q->lock);
4938 timeout = schedule_timeout(timeout);
4939 spin_lock_irq(&q->lock);
4940 __remove_wait_queue(q, &wait);
4941 spin_unlock_irqrestore(&q->lock, flags);
4942
4943 return timeout;
4944}
4945
4946void __sched interruptible_sleep_on(wait_queue_head_t *q)
4947{
4948 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4949}
1da177e4
LT
4950EXPORT_SYMBOL(interruptible_sleep_on);
4951
0fec171c 4952long __sched
95cdf3b7 4953interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4954{
8cbbe86d 4955 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4956}
1da177e4
LT
4957EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4958
0fec171c 4959void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4960{
8cbbe86d 4961 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4962}
1da177e4
LT
4963EXPORT_SYMBOL(sleep_on);
4964
0fec171c 4965long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4966{
8cbbe86d 4967 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4968}
1da177e4
LT
4969EXPORT_SYMBOL(sleep_on_timeout);
4970
b29739f9
IM
4971#ifdef CONFIG_RT_MUTEXES
4972
4973/*
4974 * rt_mutex_setprio - set the current priority of a task
4975 * @p: task
4976 * @prio: prio value (kernel-internal form)
4977 *
4978 * This function changes the 'effective' priority of a task. It does
4979 * not touch ->normal_prio like __setscheduler().
4980 *
4981 * Used by the rt_mutex code to implement priority inheritance logic.
4982 */
36c8b586 4983void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 4984{
83b699ed 4985 int oldprio, on_rq, running;
70b97a7f 4986 struct rq *rq;
83ab0aa0 4987 const struct sched_class *prev_class;
b29739f9
IM
4988
4989 BUG_ON(prio < 0 || prio > MAX_PRIO);
4990
0122ec5b 4991 rq = __task_rq_lock(p);
b29739f9 4992
a8027073 4993 trace_sched_pi_setprio(p, prio);
d5f9f942 4994 oldprio = p->prio;
83ab0aa0 4995 prev_class = p->sched_class;
fd2f4419 4996 on_rq = p->on_rq;
051a1d1a 4997 running = task_current(rq, p);
0e1f3483 4998 if (on_rq)
69be72c1 4999 dequeue_task(rq, p, 0);
0e1f3483
HS
5000 if (running)
5001 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5002
5003 if (rt_prio(prio))
5004 p->sched_class = &rt_sched_class;
5005 else
5006 p->sched_class = &fair_sched_class;
5007
b29739f9
IM
5008 p->prio = prio;
5009
0e1f3483
HS
5010 if (running)
5011 p->sched_class->set_curr_task(rq);
da7a735e 5012 if (on_rq)
371fd7e7 5013 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 5014
da7a735e 5015 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5016 __task_rq_unlock(rq);
b29739f9
IM
5017}
5018
5019#endif
5020
36c8b586 5021void set_user_nice(struct task_struct *p, long nice)
1da177e4 5022{
dd41f596 5023 int old_prio, delta, on_rq;
1da177e4 5024 unsigned long flags;
70b97a7f 5025 struct rq *rq;
1da177e4
LT
5026
5027 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5028 return;
5029 /*
5030 * We have to be careful, if called from sys_setpriority(),
5031 * the task might be in the middle of scheduling on another CPU.
5032 */
5033 rq = task_rq_lock(p, &flags);
5034 /*
5035 * The RT priorities are set via sched_setscheduler(), but we still
5036 * allow the 'normal' nice value to be set - but as expected
5037 * it wont have any effect on scheduling until the task is
dd41f596 5038 * SCHED_FIFO/SCHED_RR:
1da177e4 5039 */
e05606d3 5040 if (task_has_rt_policy(p)) {
1da177e4
LT
5041 p->static_prio = NICE_TO_PRIO(nice);
5042 goto out_unlock;
5043 }
fd2f4419 5044 on_rq = p->on_rq;
c09595f6 5045 if (on_rq)
69be72c1 5046 dequeue_task(rq, p, 0);
1da177e4 5047
1da177e4 5048 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5049 set_load_weight(p);
b29739f9
IM
5050 old_prio = p->prio;
5051 p->prio = effective_prio(p);
5052 delta = p->prio - old_prio;
1da177e4 5053
dd41f596 5054 if (on_rq) {
371fd7e7 5055 enqueue_task(rq, p, 0);
1da177e4 5056 /*
d5f9f942
AM
5057 * If the task increased its priority or is running and
5058 * lowered its priority, then reschedule its CPU:
1da177e4 5059 */
d5f9f942 5060 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5061 resched_task(rq->curr);
5062 }
5063out_unlock:
0122ec5b 5064 task_rq_unlock(rq, p, &flags);
1da177e4 5065}
1da177e4
LT
5066EXPORT_SYMBOL(set_user_nice);
5067
e43379f1
MM
5068/*
5069 * can_nice - check if a task can reduce its nice value
5070 * @p: task
5071 * @nice: nice value
5072 */
36c8b586 5073int can_nice(const struct task_struct *p, const int nice)
e43379f1 5074{
024f4747
MM
5075 /* convert nice value [19,-20] to rlimit style value [1,40] */
5076 int nice_rlim = 20 - nice;
48f24c4d 5077
78d7d407 5078 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
5079 capable(CAP_SYS_NICE));
5080}
5081
1da177e4
LT
5082#ifdef __ARCH_WANT_SYS_NICE
5083
5084/*
5085 * sys_nice - change the priority of the current process.
5086 * @increment: priority increment
5087 *
5088 * sys_setpriority is a more generic, but much slower function that
5089 * does similar things.
5090 */
5add95d4 5091SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5092{
48f24c4d 5093 long nice, retval;
1da177e4
LT
5094
5095 /*
5096 * Setpriority might change our priority at the same moment.
5097 * We don't have to worry. Conceptually one call occurs first
5098 * and we have a single winner.
5099 */
e43379f1
MM
5100 if (increment < -40)
5101 increment = -40;
1da177e4
LT
5102 if (increment > 40)
5103 increment = 40;
5104
2b8f836f 5105 nice = TASK_NICE(current) + increment;
1da177e4
LT
5106 if (nice < -20)
5107 nice = -20;
5108 if (nice > 19)
5109 nice = 19;
5110
e43379f1
MM
5111 if (increment < 0 && !can_nice(current, nice))
5112 return -EPERM;
5113
1da177e4
LT
5114 retval = security_task_setnice(current, nice);
5115 if (retval)
5116 return retval;
5117
5118 set_user_nice(current, nice);
5119 return 0;
5120}
5121
5122#endif
5123
5124/**
5125 * task_prio - return the priority value of a given task.
5126 * @p: the task in question.
5127 *
5128 * This is the priority value as seen by users in /proc.
5129 * RT tasks are offset by -200. Normal tasks are centered
5130 * around 0, value goes from -16 to +15.
5131 */
36c8b586 5132int task_prio(const struct task_struct *p)
1da177e4
LT
5133{
5134 return p->prio - MAX_RT_PRIO;
5135}
5136
5137/**
5138 * task_nice - return the nice value of a given task.
5139 * @p: the task in question.
5140 */
36c8b586 5141int task_nice(const struct task_struct *p)
1da177e4
LT
5142{
5143 return TASK_NICE(p);
5144}
150d8bed 5145EXPORT_SYMBOL(task_nice);
1da177e4
LT
5146
5147/**
5148 * idle_cpu - is a given cpu idle currently?
5149 * @cpu: the processor in question.
5150 */
5151int idle_cpu(int cpu)
5152{
5153 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5154}
5155
1da177e4
LT
5156/**
5157 * idle_task - return the idle task for a given cpu.
5158 * @cpu: the processor in question.
5159 */
36c8b586 5160struct task_struct *idle_task(int cpu)
1da177e4
LT
5161{
5162 return cpu_rq(cpu)->idle;
5163}
5164
5165/**
5166 * find_process_by_pid - find a process with a matching PID value.
5167 * @pid: the pid in question.
5168 */
a9957449 5169static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5170{
228ebcbe 5171 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5172}
5173
5174/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5175static void
5176__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5177{
1da177e4
LT
5178 p->policy = policy;
5179 p->rt_priority = prio;
b29739f9
IM
5180 p->normal_prio = normal_prio(p);
5181 /* we are holding p->pi_lock already */
5182 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
5183 if (rt_prio(p->prio))
5184 p->sched_class = &rt_sched_class;
5185 else
5186 p->sched_class = &fair_sched_class;
2dd73a4f 5187 set_load_weight(p);
1da177e4
LT
5188}
5189
c69e8d9c
DH
5190/*
5191 * check the target process has a UID that matches the current process's
5192 */
5193static bool check_same_owner(struct task_struct *p)
5194{
5195 const struct cred *cred = current_cred(), *pcred;
5196 bool match;
5197
5198 rcu_read_lock();
5199 pcred = __task_cred(p);
b0e77598
SH
5200 if (cred->user->user_ns == pcred->user->user_ns)
5201 match = (cred->euid == pcred->euid ||
5202 cred->euid == pcred->uid);
5203 else
5204 match = false;
c69e8d9c
DH
5205 rcu_read_unlock();
5206 return match;
5207}
5208
961ccddd 5209static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5210 const struct sched_param *param, bool user)
1da177e4 5211{
83b699ed 5212 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5213 unsigned long flags;
83ab0aa0 5214 const struct sched_class *prev_class;
70b97a7f 5215 struct rq *rq;
ca94c442 5216 int reset_on_fork;
1da177e4 5217
66e5393a
SR
5218 /* may grab non-irq protected spin_locks */
5219 BUG_ON(in_interrupt());
1da177e4
LT
5220recheck:
5221 /* double check policy once rq lock held */
ca94c442
LP
5222 if (policy < 0) {
5223 reset_on_fork = p->sched_reset_on_fork;
1da177e4 5224 policy = oldpolicy = p->policy;
ca94c442
LP
5225 } else {
5226 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5227 policy &= ~SCHED_RESET_ON_FORK;
5228
5229 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5230 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5231 policy != SCHED_IDLE)
5232 return -EINVAL;
5233 }
5234
1da177e4
LT
5235 /*
5236 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5237 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5238 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5239 */
5240 if (param->sched_priority < 0 ||
95cdf3b7 5241 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5242 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5243 return -EINVAL;
e05606d3 5244 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5245 return -EINVAL;
5246
37e4ab3f
OC
5247 /*
5248 * Allow unprivileged RT tasks to decrease priority:
5249 */
961ccddd 5250 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5251 if (rt_policy(policy)) {
a44702e8
ON
5252 unsigned long rlim_rtprio =
5253 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
5254
5255 /* can't set/change the rt policy */
5256 if (policy != p->policy && !rlim_rtprio)
5257 return -EPERM;
5258
5259 /* can't increase priority */
5260 if (param->sched_priority > p->rt_priority &&
5261 param->sched_priority > rlim_rtprio)
5262 return -EPERM;
5263 }
c02aa73b 5264
dd41f596 5265 /*
c02aa73b
DH
5266 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5267 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 5268 */
c02aa73b
DH
5269 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5270 if (!can_nice(p, TASK_NICE(p)))
5271 return -EPERM;
5272 }
5fe1d75f 5273
37e4ab3f 5274 /* can't change other user's priorities */
c69e8d9c 5275 if (!check_same_owner(p))
37e4ab3f 5276 return -EPERM;
ca94c442
LP
5277
5278 /* Normal users shall not reset the sched_reset_on_fork flag */
5279 if (p->sched_reset_on_fork && !reset_on_fork)
5280 return -EPERM;
37e4ab3f 5281 }
1da177e4 5282
725aad24 5283 if (user) {
b0ae1981 5284 retval = security_task_setscheduler(p);
725aad24
JF
5285 if (retval)
5286 return retval;
5287 }
5288
b29739f9
IM
5289 /*
5290 * make sure no PI-waiters arrive (or leave) while we are
5291 * changing the priority of the task:
0122ec5b 5292 *
25985edc 5293 * To be able to change p->policy safely, the appropriate
1da177e4
LT
5294 * runqueue lock must be held.
5295 */
0122ec5b 5296 rq = task_rq_lock(p, &flags);
dc61b1d6 5297
34f971f6
PZ
5298 /*
5299 * Changing the policy of the stop threads its a very bad idea
5300 */
5301 if (p == rq->stop) {
0122ec5b 5302 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
5303 return -EINVAL;
5304 }
5305
a51e9198
DF
5306 /*
5307 * If not changing anything there's no need to proceed further:
5308 */
5309 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5310 param->sched_priority == p->rt_priority))) {
5311
5312 __task_rq_unlock(rq);
5313 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5314 return 0;
5315 }
5316
dc61b1d6
PZ
5317#ifdef CONFIG_RT_GROUP_SCHED
5318 if (user) {
5319 /*
5320 * Do not allow realtime tasks into groups that have no runtime
5321 * assigned.
5322 */
5323 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
5324 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5325 !task_group_is_autogroup(task_group(p))) {
0122ec5b 5326 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
5327 return -EPERM;
5328 }
5329 }
5330#endif
5331
1da177e4
LT
5332 /* recheck policy now with rq lock held */
5333 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5334 policy = oldpolicy = -1;
0122ec5b 5335 task_rq_unlock(rq, p, &flags);
1da177e4
LT
5336 goto recheck;
5337 }
fd2f4419 5338 on_rq = p->on_rq;
051a1d1a 5339 running = task_current(rq, p);
0e1f3483 5340 if (on_rq)
2e1cb74a 5341 deactivate_task(rq, p, 0);
0e1f3483
HS
5342 if (running)
5343 p->sched_class->put_prev_task(rq, p);
f6b53205 5344
ca94c442
LP
5345 p->sched_reset_on_fork = reset_on_fork;
5346
1da177e4 5347 oldprio = p->prio;
83ab0aa0 5348 prev_class = p->sched_class;
dd41f596 5349 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5350
0e1f3483
HS
5351 if (running)
5352 p->sched_class->set_curr_task(rq);
da7a735e 5353 if (on_rq)
dd41f596 5354 activate_task(rq, p, 0);
cb469845 5355
da7a735e 5356 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 5357 task_rq_unlock(rq, p, &flags);
b29739f9 5358
95e02ca9
TG
5359 rt_mutex_adjust_pi(p);
5360
1da177e4
LT
5361 return 0;
5362}
961ccddd
RR
5363
5364/**
5365 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5366 * @p: the task in question.
5367 * @policy: new policy.
5368 * @param: structure containing the new RT priority.
5369 *
5370 * NOTE that the task may be already dead.
5371 */
5372int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 5373 const struct sched_param *param)
961ccddd
RR
5374{
5375 return __sched_setscheduler(p, policy, param, true);
5376}
1da177e4
LT
5377EXPORT_SYMBOL_GPL(sched_setscheduler);
5378
961ccddd
RR
5379/**
5380 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5381 * @p: the task in question.
5382 * @policy: new policy.
5383 * @param: structure containing the new RT priority.
5384 *
5385 * Just like sched_setscheduler, only don't bother checking if the
5386 * current context has permission. For example, this is needed in
5387 * stop_machine(): we create temporary high priority worker threads,
5388 * but our caller might not have that capability.
5389 */
5390int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 5391 const struct sched_param *param)
961ccddd
RR
5392{
5393 return __sched_setscheduler(p, policy, param, false);
5394}
5395
95cdf3b7
IM
5396static int
5397do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5398{
1da177e4
LT
5399 struct sched_param lparam;
5400 struct task_struct *p;
36c8b586 5401 int retval;
1da177e4
LT
5402
5403 if (!param || pid < 0)
5404 return -EINVAL;
5405 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5406 return -EFAULT;
5fe1d75f
ON
5407
5408 rcu_read_lock();
5409 retval = -ESRCH;
1da177e4 5410 p = find_process_by_pid(pid);
5fe1d75f
ON
5411 if (p != NULL)
5412 retval = sched_setscheduler(p, policy, &lparam);
5413 rcu_read_unlock();
36c8b586 5414
1da177e4
LT
5415 return retval;
5416}
5417
5418/**
5419 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5420 * @pid: the pid in question.
5421 * @policy: new policy.
5422 * @param: structure containing the new RT priority.
5423 */
5add95d4
HC
5424SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5425 struct sched_param __user *, param)
1da177e4 5426{
c21761f1
JB
5427 /* negative values for policy are not valid */
5428 if (policy < 0)
5429 return -EINVAL;
5430
1da177e4
LT
5431 return do_sched_setscheduler(pid, policy, param);
5432}
5433
5434/**
5435 * sys_sched_setparam - set/change the RT priority of a thread
5436 * @pid: the pid in question.
5437 * @param: structure containing the new RT priority.
5438 */
5add95d4 5439SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5440{
5441 return do_sched_setscheduler(pid, -1, param);
5442}
5443
5444/**
5445 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5446 * @pid: the pid in question.
5447 */
5add95d4 5448SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5449{
36c8b586 5450 struct task_struct *p;
3a5c359a 5451 int retval;
1da177e4
LT
5452
5453 if (pid < 0)
3a5c359a 5454 return -EINVAL;
1da177e4
LT
5455
5456 retval = -ESRCH;
5fe85be0 5457 rcu_read_lock();
1da177e4
LT
5458 p = find_process_by_pid(pid);
5459 if (p) {
5460 retval = security_task_getscheduler(p);
5461 if (!retval)
ca94c442
LP
5462 retval = p->policy
5463 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 5464 }
5fe85be0 5465 rcu_read_unlock();
1da177e4
LT
5466 return retval;
5467}
5468
5469/**
ca94c442 5470 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
5471 * @pid: the pid in question.
5472 * @param: structure containing the RT priority.
5473 */
5add95d4 5474SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5475{
5476 struct sched_param lp;
36c8b586 5477 struct task_struct *p;
3a5c359a 5478 int retval;
1da177e4
LT
5479
5480 if (!param || pid < 0)
3a5c359a 5481 return -EINVAL;
1da177e4 5482
5fe85be0 5483 rcu_read_lock();
1da177e4
LT
5484 p = find_process_by_pid(pid);
5485 retval = -ESRCH;
5486 if (!p)
5487 goto out_unlock;
5488
5489 retval = security_task_getscheduler(p);
5490 if (retval)
5491 goto out_unlock;
5492
5493 lp.sched_priority = p->rt_priority;
5fe85be0 5494 rcu_read_unlock();
1da177e4
LT
5495
5496 /*
5497 * This one might sleep, we cannot do it with a spinlock held ...
5498 */
5499 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5500
1da177e4
LT
5501 return retval;
5502
5503out_unlock:
5fe85be0 5504 rcu_read_unlock();
1da177e4
LT
5505 return retval;
5506}
5507
96f874e2 5508long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5509{
5a16f3d3 5510 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5511 struct task_struct *p;
5512 int retval;
1da177e4 5513
95402b38 5514 get_online_cpus();
23f5d142 5515 rcu_read_lock();
1da177e4
LT
5516
5517 p = find_process_by_pid(pid);
5518 if (!p) {
23f5d142 5519 rcu_read_unlock();
95402b38 5520 put_online_cpus();
1da177e4
LT
5521 return -ESRCH;
5522 }
5523
23f5d142 5524 /* Prevent p going away */
1da177e4 5525 get_task_struct(p);
23f5d142 5526 rcu_read_unlock();
1da177e4 5527
5a16f3d3
RR
5528 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5529 retval = -ENOMEM;
5530 goto out_put_task;
5531 }
5532 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5533 retval = -ENOMEM;
5534 goto out_free_cpus_allowed;
5535 }
1da177e4 5536 retval = -EPERM;
b0e77598 5537 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
1da177e4
LT
5538 goto out_unlock;
5539
b0ae1981 5540 retval = security_task_setscheduler(p);
e7834f8f
DQ
5541 if (retval)
5542 goto out_unlock;
5543
5a16f3d3
RR
5544 cpuset_cpus_allowed(p, cpus_allowed);
5545 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 5546again:
5a16f3d3 5547 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5548
8707d8b8 5549 if (!retval) {
5a16f3d3
RR
5550 cpuset_cpus_allowed(p, cpus_allowed);
5551 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5552 /*
5553 * We must have raced with a concurrent cpuset
5554 * update. Just reset the cpus_allowed to the
5555 * cpuset's cpus_allowed
5556 */
5a16f3d3 5557 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5558 goto again;
5559 }
5560 }
1da177e4 5561out_unlock:
5a16f3d3
RR
5562 free_cpumask_var(new_mask);
5563out_free_cpus_allowed:
5564 free_cpumask_var(cpus_allowed);
5565out_put_task:
1da177e4 5566 put_task_struct(p);
95402b38 5567 put_online_cpus();
1da177e4
LT
5568 return retval;
5569}
5570
5571static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5572 struct cpumask *new_mask)
1da177e4 5573{
96f874e2
RR
5574 if (len < cpumask_size())
5575 cpumask_clear(new_mask);
5576 else if (len > cpumask_size())
5577 len = cpumask_size();
5578
1da177e4
LT
5579 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5580}
5581
5582/**
5583 * sys_sched_setaffinity - set the cpu affinity of a process
5584 * @pid: pid of the process
5585 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5586 * @user_mask_ptr: user-space pointer to the new cpu mask
5587 */
5add95d4
HC
5588SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5589 unsigned long __user *, user_mask_ptr)
1da177e4 5590{
5a16f3d3 5591 cpumask_var_t new_mask;
1da177e4
LT
5592 int retval;
5593
5a16f3d3
RR
5594 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5595 return -ENOMEM;
1da177e4 5596
5a16f3d3
RR
5597 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5598 if (retval == 0)
5599 retval = sched_setaffinity(pid, new_mask);
5600 free_cpumask_var(new_mask);
5601 return retval;
1da177e4
LT
5602}
5603
96f874e2 5604long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5605{
36c8b586 5606 struct task_struct *p;
31605683 5607 unsigned long flags;
1da177e4 5608 int retval;
1da177e4 5609
95402b38 5610 get_online_cpus();
23f5d142 5611 rcu_read_lock();
1da177e4
LT
5612
5613 retval = -ESRCH;
5614 p = find_process_by_pid(pid);
5615 if (!p)
5616 goto out_unlock;
5617
e7834f8f
DQ
5618 retval = security_task_getscheduler(p);
5619 if (retval)
5620 goto out_unlock;
5621
013fdb80 5622 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 5623 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 5624 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5625
5626out_unlock:
23f5d142 5627 rcu_read_unlock();
95402b38 5628 put_online_cpus();
1da177e4 5629
9531b62f 5630 return retval;
1da177e4
LT
5631}
5632
5633/**
5634 * sys_sched_getaffinity - get the cpu affinity of a process
5635 * @pid: pid of the process
5636 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5637 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5638 */
5add95d4
HC
5639SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5640 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5641{
5642 int ret;
f17c8607 5643 cpumask_var_t mask;
1da177e4 5644
84fba5ec 5645 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
5646 return -EINVAL;
5647 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
5648 return -EINVAL;
5649
f17c8607
RR
5650 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5651 return -ENOMEM;
1da177e4 5652
f17c8607
RR
5653 ret = sched_getaffinity(pid, mask);
5654 if (ret == 0) {
8bc037fb 5655 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
5656
5657 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
5658 ret = -EFAULT;
5659 else
cd3d8031 5660 ret = retlen;
f17c8607
RR
5661 }
5662 free_cpumask_var(mask);
1da177e4 5663
f17c8607 5664 return ret;
1da177e4
LT
5665}
5666
5667/**
5668 * sys_sched_yield - yield the current processor to other threads.
5669 *
dd41f596
IM
5670 * This function yields the current CPU to other tasks. If there are no
5671 * other threads running on this CPU then this function will return.
1da177e4 5672 */
5add95d4 5673SYSCALL_DEFINE0(sched_yield)
1da177e4 5674{
70b97a7f 5675 struct rq *rq = this_rq_lock();
1da177e4 5676
2d72376b 5677 schedstat_inc(rq, yld_count);
4530d7ab 5678 current->sched_class->yield_task(rq);
1da177e4
LT
5679
5680 /*
5681 * Since we are going to call schedule() anyway, there's
5682 * no need to preempt or enable interrupts:
5683 */
5684 __release(rq->lock);
8a25d5de 5685 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 5686 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
5687 preempt_enable_no_resched();
5688
5689 schedule();
5690
5691 return 0;
5692}
5693
d86ee480
PZ
5694static inline int should_resched(void)
5695{
5696 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5697}
5698
e7b38404 5699static void __cond_resched(void)
1da177e4 5700{
e7aaaa69
FW
5701 add_preempt_count(PREEMPT_ACTIVE);
5702 schedule();
5703 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
5704}
5705
02b67cc3 5706int __sched _cond_resched(void)
1da177e4 5707{
d86ee480 5708 if (should_resched()) {
1da177e4
LT
5709 __cond_resched();
5710 return 1;
5711 }
5712 return 0;
5713}
02b67cc3 5714EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5715
5716/*
613afbf8 5717 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
5718 * call schedule, and on return reacquire the lock.
5719 *
41a2d6cf 5720 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5721 * operations here to prevent schedule() from being called twice (once via
5722 * spin_unlock(), once by hand).
5723 */
613afbf8 5724int __cond_resched_lock(spinlock_t *lock)
1da177e4 5725{
d86ee480 5726 int resched = should_resched();
6df3cecb
JK
5727 int ret = 0;
5728
f607c668
PZ
5729 lockdep_assert_held(lock);
5730
95c354fe 5731 if (spin_needbreak(lock) || resched) {
1da177e4 5732 spin_unlock(lock);
d86ee480 5733 if (resched)
95c354fe
NP
5734 __cond_resched();
5735 else
5736 cpu_relax();
6df3cecb 5737 ret = 1;
1da177e4 5738 spin_lock(lock);
1da177e4 5739 }
6df3cecb 5740 return ret;
1da177e4 5741}
613afbf8 5742EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 5743
613afbf8 5744int __sched __cond_resched_softirq(void)
1da177e4
LT
5745{
5746 BUG_ON(!in_softirq());
5747
d86ee480 5748 if (should_resched()) {
98d82567 5749 local_bh_enable();
1da177e4
LT
5750 __cond_resched();
5751 local_bh_disable();
5752 return 1;
5753 }
5754 return 0;
5755}
613afbf8 5756EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 5757
1da177e4
LT
5758/**
5759 * yield - yield the current processor to other threads.
5760 *
72fd4a35 5761 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5762 * thread runnable and calls sys_sched_yield().
5763 */
5764void __sched yield(void)
5765{
5766 set_current_state(TASK_RUNNING);
5767 sys_sched_yield();
5768}
1da177e4
LT
5769EXPORT_SYMBOL(yield);
5770
d95f4122
MG
5771/**
5772 * yield_to - yield the current processor to another thread in
5773 * your thread group, or accelerate that thread toward the
5774 * processor it's on.
16addf95
RD
5775 * @p: target task
5776 * @preempt: whether task preemption is allowed or not
d95f4122
MG
5777 *
5778 * It's the caller's job to ensure that the target task struct
5779 * can't go away on us before we can do any checks.
5780 *
5781 * Returns true if we indeed boosted the target task.
5782 */
5783bool __sched yield_to(struct task_struct *p, bool preempt)
5784{
5785 struct task_struct *curr = current;
5786 struct rq *rq, *p_rq;
5787 unsigned long flags;
5788 bool yielded = 0;
5789
5790 local_irq_save(flags);
5791 rq = this_rq();
5792
5793again:
5794 p_rq = task_rq(p);
5795 double_rq_lock(rq, p_rq);
5796 while (task_rq(p) != p_rq) {
5797 double_rq_unlock(rq, p_rq);
5798 goto again;
5799 }
5800
5801 if (!curr->sched_class->yield_to_task)
5802 goto out;
5803
5804 if (curr->sched_class != p->sched_class)
5805 goto out;
5806
5807 if (task_running(p_rq, p) || p->state)
5808 goto out;
5809
5810 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5811 if (yielded) {
d95f4122 5812 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5813 /*
5814 * Make p's CPU reschedule; pick_next_entity takes care of
5815 * fairness.
5816 */
5817 if (preempt && rq != p_rq)
5818 resched_task(p_rq->curr);
5819 }
d95f4122
MG
5820
5821out:
5822 double_rq_unlock(rq, p_rq);
5823 local_irq_restore(flags);
5824
5825 if (yielded)
5826 schedule();
5827
5828 return yielded;
5829}
5830EXPORT_SYMBOL_GPL(yield_to);
5831
1da177e4 5832/*
41a2d6cf 5833 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5834 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5835 */
5836void __sched io_schedule(void)
5837{
54d35f29 5838 struct rq *rq = raw_rq();
1da177e4 5839
0ff92245 5840 delayacct_blkio_start();
1da177e4 5841 atomic_inc(&rq->nr_iowait);
73c10101 5842 blk_flush_plug(current);
8f0dfc34 5843 current->in_iowait = 1;
1da177e4 5844 schedule();
8f0dfc34 5845 current->in_iowait = 0;
1da177e4 5846 atomic_dec(&rq->nr_iowait);
0ff92245 5847 delayacct_blkio_end();
1da177e4 5848}
1da177e4
LT
5849EXPORT_SYMBOL(io_schedule);
5850
5851long __sched io_schedule_timeout(long timeout)
5852{
54d35f29 5853 struct rq *rq = raw_rq();
1da177e4
LT
5854 long ret;
5855
0ff92245 5856 delayacct_blkio_start();
1da177e4 5857 atomic_inc(&rq->nr_iowait);
73c10101 5858 blk_flush_plug(current);
8f0dfc34 5859 current->in_iowait = 1;
1da177e4 5860 ret = schedule_timeout(timeout);
8f0dfc34 5861 current->in_iowait = 0;
1da177e4 5862 atomic_dec(&rq->nr_iowait);
0ff92245 5863 delayacct_blkio_end();
1da177e4
LT
5864 return ret;
5865}
5866
5867/**
5868 * sys_sched_get_priority_max - return maximum RT priority.
5869 * @policy: scheduling class.
5870 *
5871 * this syscall returns the maximum rt_priority that can be used
5872 * by a given scheduling class.
5873 */
5add95d4 5874SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5875{
5876 int ret = -EINVAL;
5877
5878 switch (policy) {
5879 case SCHED_FIFO:
5880 case SCHED_RR:
5881 ret = MAX_USER_RT_PRIO-1;
5882 break;
5883 case SCHED_NORMAL:
b0a9499c 5884 case SCHED_BATCH:
dd41f596 5885 case SCHED_IDLE:
1da177e4
LT
5886 ret = 0;
5887 break;
5888 }
5889 return ret;
5890}
5891
5892/**
5893 * sys_sched_get_priority_min - return minimum RT priority.
5894 * @policy: scheduling class.
5895 *
5896 * this syscall returns the minimum rt_priority that can be used
5897 * by a given scheduling class.
5898 */
5add95d4 5899SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5900{
5901 int ret = -EINVAL;
5902
5903 switch (policy) {
5904 case SCHED_FIFO:
5905 case SCHED_RR:
5906 ret = 1;
5907 break;
5908 case SCHED_NORMAL:
b0a9499c 5909 case SCHED_BATCH:
dd41f596 5910 case SCHED_IDLE:
1da177e4
LT
5911 ret = 0;
5912 }
5913 return ret;
5914}
5915
5916/**
5917 * sys_sched_rr_get_interval - return the default timeslice of a process.
5918 * @pid: pid of the process.
5919 * @interval: userspace pointer to the timeslice value.
5920 *
5921 * this syscall writes the default timeslice value of a given process
5922 * into the user-space timespec buffer. A value of '0' means infinity.
5923 */
17da2bd9 5924SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5925 struct timespec __user *, interval)
1da177e4 5926{
36c8b586 5927 struct task_struct *p;
a4ec24b4 5928 unsigned int time_slice;
dba091b9
TG
5929 unsigned long flags;
5930 struct rq *rq;
3a5c359a 5931 int retval;
1da177e4 5932 struct timespec t;
1da177e4
LT
5933
5934 if (pid < 0)
3a5c359a 5935 return -EINVAL;
1da177e4
LT
5936
5937 retval = -ESRCH;
1a551ae7 5938 rcu_read_lock();
1da177e4
LT
5939 p = find_process_by_pid(pid);
5940 if (!p)
5941 goto out_unlock;
5942
5943 retval = security_task_getscheduler(p);
5944 if (retval)
5945 goto out_unlock;
5946
dba091b9
TG
5947 rq = task_rq_lock(p, &flags);
5948 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 5949 task_rq_unlock(rq, p, &flags);
a4ec24b4 5950
1a551ae7 5951 rcu_read_unlock();
a4ec24b4 5952 jiffies_to_timespec(time_slice, &t);
1da177e4 5953 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5954 return retval;
3a5c359a 5955
1da177e4 5956out_unlock:
1a551ae7 5957 rcu_read_unlock();
1da177e4
LT
5958 return retval;
5959}
5960
7c731e0a 5961static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5962
82a1fcb9 5963void sched_show_task(struct task_struct *p)
1da177e4 5964{
1da177e4 5965 unsigned long free = 0;
36c8b586 5966 unsigned state;
1da177e4 5967
1da177e4 5968 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 5969 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5970 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5971#if BITS_PER_LONG == 32
1da177e4 5972 if (state == TASK_RUNNING)
3df0fc5b 5973 printk(KERN_CONT " running ");
1da177e4 5974 else
3df0fc5b 5975 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5976#else
5977 if (state == TASK_RUNNING)
3df0fc5b 5978 printk(KERN_CONT " running task ");
1da177e4 5979 else
3df0fc5b 5980 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5981#endif
5982#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5983 free = stack_not_used(p);
1da177e4 5984#endif
3df0fc5b 5985 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5986 task_pid_nr(p), task_pid_nr(p->real_parent),
5987 (unsigned long)task_thread_info(p)->flags);
1da177e4 5988
5fb5e6de 5989 show_stack(p, NULL);
1da177e4
LT
5990}
5991
e59e2ae2 5992void show_state_filter(unsigned long state_filter)
1da177e4 5993{
36c8b586 5994 struct task_struct *g, *p;
1da177e4 5995
4bd77321 5996#if BITS_PER_LONG == 32
3df0fc5b
PZ
5997 printk(KERN_INFO
5998 " task PC stack pid father\n");
1da177e4 5999#else
3df0fc5b
PZ
6000 printk(KERN_INFO
6001 " task PC stack pid father\n");
1da177e4
LT
6002#endif
6003 read_lock(&tasklist_lock);
6004 do_each_thread(g, p) {
6005 /*
6006 * reset the NMI-timeout, listing all files on a slow
25985edc 6007 * console might take a lot of time:
1da177e4
LT
6008 */
6009 touch_nmi_watchdog();
39bc89fd 6010 if (!state_filter || (p->state & state_filter))
82a1fcb9 6011 sched_show_task(p);
1da177e4
LT
6012 } while_each_thread(g, p);
6013
04c9167f
JF
6014 touch_all_softlockup_watchdogs();
6015
dd41f596
IM
6016#ifdef CONFIG_SCHED_DEBUG
6017 sysrq_sched_debug_show();
6018#endif
1da177e4 6019 read_unlock(&tasklist_lock);
e59e2ae2
IM
6020 /*
6021 * Only show locks if all tasks are dumped:
6022 */
93335a21 6023 if (!state_filter)
e59e2ae2 6024 debug_show_all_locks();
1da177e4
LT
6025}
6026
1df21055
IM
6027void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6028{
dd41f596 6029 idle->sched_class = &idle_sched_class;
1df21055
IM
6030}
6031
f340c0d1
IM
6032/**
6033 * init_idle - set up an idle thread for a given CPU
6034 * @idle: task in question
6035 * @cpu: cpu the idle task belongs to
6036 *
6037 * NOTE: this function does not set the idle thread's NEED_RESCHED
6038 * flag, to make booting more robust.
6039 */
5c1e1767 6040void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6041{
70b97a7f 6042 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6043 unsigned long flags;
6044
05fa785c 6045 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 6046
dd41f596 6047 __sched_fork(idle);
06b83b5f 6048 idle->state = TASK_RUNNING;
dd41f596
IM
6049 idle->se.exec_start = sched_clock();
6050
1e1b6c51 6051 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
6052 /*
6053 * We're having a chicken and egg problem, even though we are
6054 * holding rq->lock, the cpu isn't yet set to this cpu so the
6055 * lockdep check in task_group() will fail.
6056 *
6057 * Similar case to sched_fork(). / Alternatively we could
6058 * use task_rq_lock() here and obtain the other rq->lock.
6059 *
6060 * Silence PROVE_RCU
6061 */
6062 rcu_read_lock();
dd41f596 6063 __set_task_cpu(idle, cpu);
6506cf6c 6064 rcu_read_unlock();
1da177e4 6065
1da177e4 6066 rq->curr = rq->idle = idle;
3ca7a440
PZ
6067#if defined(CONFIG_SMP)
6068 idle->on_cpu = 1;
4866cde0 6069#endif
05fa785c 6070 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
6071
6072 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 6073 task_thread_info(idle)->preempt_count = 0;
625f2a37 6074
dd41f596
IM
6075 /*
6076 * The idle tasks have their own, simple scheduling class:
6077 */
6078 idle->sched_class = &idle_sched_class;
868baf07 6079 ftrace_graph_init_idle_task(idle, cpu);
1da177e4
LT
6080}
6081
6082/*
6083 * In a system that switches off the HZ timer nohz_cpu_mask
6084 * indicates which cpus entered this state. This is used
6085 * in the rcu update to wait only for active cpus. For system
6086 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6087 * always be CPU_BITS_NONE.
1da177e4 6088 */
6a7b3dc3 6089cpumask_var_t nohz_cpu_mask;
1da177e4 6090
19978ca6
IM
6091/*
6092 * Increase the granularity value when there are more CPUs,
6093 * because with more CPUs the 'effective latency' as visible
6094 * to users decreases. But the relationship is not linear,
6095 * so pick a second-best guess by going with the log2 of the
6096 * number of CPUs.
6097 *
6098 * This idea comes from the SD scheduler of Con Kolivas:
6099 */
acb4a848 6100static int get_update_sysctl_factor(void)
19978ca6 6101{
4ca3ef71 6102 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
6103 unsigned int factor;
6104
6105 switch (sysctl_sched_tunable_scaling) {
6106 case SCHED_TUNABLESCALING_NONE:
6107 factor = 1;
6108 break;
6109 case SCHED_TUNABLESCALING_LINEAR:
6110 factor = cpus;
6111 break;
6112 case SCHED_TUNABLESCALING_LOG:
6113 default:
6114 factor = 1 + ilog2(cpus);
6115 break;
6116 }
19978ca6 6117
acb4a848
CE
6118 return factor;
6119}
19978ca6 6120
acb4a848
CE
6121static void update_sysctl(void)
6122{
6123 unsigned int factor = get_update_sysctl_factor();
19978ca6 6124
0bcdcf28
CE
6125#define SET_SYSCTL(name) \
6126 (sysctl_##name = (factor) * normalized_sysctl_##name)
6127 SET_SYSCTL(sched_min_granularity);
6128 SET_SYSCTL(sched_latency);
6129 SET_SYSCTL(sched_wakeup_granularity);
0bcdcf28
CE
6130#undef SET_SYSCTL
6131}
55cd5340 6132
0bcdcf28
CE
6133static inline void sched_init_granularity(void)
6134{
6135 update_sysctl();
19978ca6
IM
6136}
6137
1da177e4 6138#ifdef CONFIG_SMP
1e1b6c51
KM
6139void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6140{
6141 if (p->sched_class && p->sched_class->set_cpus_allowed)
6142 p->sched_class->set_cpus_allowed(p, new_mask);
6143 else {
6144 cpumask_copy(&p->cpus_allowed, new_mask);
6145 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6146 }
6147}
6148
1da177e4
LT
6149/*
6150 * This is how migration works:
6151 *
969c7921
TH
6152 * 1) we invoke migration_cpu_stop() on the target CPU using
6153 * stop_one_cpu().
6154 * 2) stopper starts to run (implicitly forcing the migrated thread
6155 * off the CPU)
6156 * 3) it checks whether the migrated task is still in the wrong runqueue.
6157 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 6158 * it and puts it into the right queue.
969c7921
TH
6159 * 5) stopper completes and stop_one_cpu() returns and the migration
6160 * is done.
1da177e4
LT
6161 */
6162
6163/*
6164 * Change a given task's CPU affinity. Migrate the thread to a
6165 * proper CPU and schedule it away if the CPU it's executing on
6166 * is removed from the allowed bitmask.
6167 *
6168 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6169 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6170 * call is not atomic; no spinlocks may be held.
6171 */
96f874e2 6172int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
6173{
6174 unsigned long flags;
70b97a7f 6175 struct rq *rq;
969c7921 6176 unsigned int dest_cpu;
48f24c4d 6177 int ret = 0;
1da177e4
LT
6178
6179 rq = task_rq_lock(p, &flags);
e2912009 6180
db44fc01
YZ
6181 if (cpumask_equal(&p->cpus_allowed, new_mask))
6182 goto out;
6183
6ad4c188 6184 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
6185 ret = -EINVAL;
6186 goto out;
6187 }
6188
db44fc01 6189 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
6190 ret = -EINVAL;
6191 goto out;
6192 }
6193
1e1b6c51 6194 do_set_cpus_allowed(p, new_mask);
73fe6aae 6195
1da177e4 6196 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6197 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6198 goto out;
6199
969c7921 6200 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 6201 if (p->on_rq) {
969c7921 6202 struct migration_arg arg = { p, dest_cpu };
1da177e4 6203 /* Need help from migration thread: drop lock and wait. */
0122ec5b 6204 task_rq_unlock(rq, p, &flags);
969c7921 6205 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
6206 tlb_migrate_finish(p->mm);
6207 return 0;
6208 }
6209out:
0122ec5b 6210 task_rq_unlock(rq, p, &flags);
48f24c4d 6211
1da177e4
LT
6212 return ret;
6213}
cd8ba7cd 6214EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6215
6216/*
41a2d6cf 6217 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6218 * this because either it can't run here any more (set_cpus_allowed()
6219 * away from this CPU, or CPU going down), or because we're
6220 * attempting to rebalance this task on exec (sched_exec).
6221 *
6222 * So we race with normal scheduler movements, but that's OK, as long
6223 * as the task is no longer on this CPU.
efc30814
KK
6224 *
6225 * Returns non-zero if task was successfully migrated.
1da177e4 6226 */
efc30814 6227static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6228{
70b97a7f 6229 struct rq *rq_dest, *rq_src;
e2912009 6230 int ret = 0;
1da177e4 6231
e761b772 6232 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6233 return ret;
1da177e4
LT
6234
6235 rq_src = cpu_rq(src_cpu);
6236 rq_dest = cpu_rq(dest_cpu);
6237
0122ec5b 6238 raw_spin_lock(&p->pi_lock);
1da177e4
LT
6239 double_rq_lock(rq_src, rq_dest);
6240 /* Already moved. */
6241 if (task_cpu(p) != src_cpu)
b1e38734 6242 goto done;
1da177e4 6243 /* Affinity changed (again). */
96f874e2 6244 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6245 goto fail;
1da177e4 6246
e2912009
PZ
6247 /*
6248 * If we're not on a rq, the next wake-up will ensure we're
6249 * placed properly.
6250 */
fd2f4419 6251 if (p->on_rq) {
2e1cb74a 6252 deactivate_task(rq_src, p, 0);
e2912009 6253 set_task_cpu(p, dest_cpu);
dd41f596 6254 activate_task(rq_dest, p, 0);
15afe09b 6255 check_preempt_curr(rq_dest, p, 0);
1da177e4 6256 }
b1e38734 6257done:
efc30814 6258 ret = 1;
b1e38734 6259fail:
1da177e4 6260 double_rq_unlock(rq_src, rq_dest);
0122ec5b 6261 raw_spin_unlock(&p->pi_lock);
efc30814 6262 return ret;
1da177e4
LT
6263}
6264
6265/*
969c7921
TH
6266 * migration_cpu_stop - this will be executed by a highprio stopper thread
6267 * and performs thread migration by bumping thread off CPU then
6268 * 'pushing' onto another runqueue.
1da177e4 6269 */
969c7921 6270static int migration_cpu_stop(void *data)
1da177e4 6271{
969c7921 6272 struct migration_arg *arg = data;
f7b4cddc 6273
969c7921
TH
6274 /*
6275 * The original target cpu might have gone down and we might
6276 * be on another cpu but it doesn't matter.
6277 */
f7b4cddc 6278 local_irq_disable();
969c7921 6279 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 6280 local_irq_enable();
1da177e4 6281 return 0;
f7b4cddc
ON
6282}
6283
1da177e4 6284#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 6285
054b9108 6286/*
48c5ccae
PZ
6287 * Ensures that the idle task is using init_mm right before its cpu goes
6288 * offline.
054b9108 6289 */
48c5ccae 6290void idle_task_exit(void)
1da177e4 6291{
48c5ccae 6292 struct mm_struct *mm = current->active_mm;
e76bd8d9 6293
48c5ccae 6294 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 6295
48c5ccae
PZ
6296 if (mm != &init_mm)
6297 switch_mm(mm, &init_mm, current);
6298 mmdrop(mm);
1da177e4
LT
6299}
6300
6301/*
6302 * While a dead CPU has no uninterruptible tasks queued at this point,
6303 * it might still have a nonzero ->nr_uninterruptible counter, because
6304 * for performance reasons the counter is not stricly tracking tasks to
6305 * their home CPUs. So we just add the counter to another CPU's counter,
6306 * to keep the global sum constant after CPU-down:
6307 */
70b97a7f 6308static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6309{
6ad4c188 6310 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 6311
1da177e4
LT
6312 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6313 rq_src->nr_uninterruptible = 0;
1da177e4
LT
6314}
6315
dd41f596 6316/*
48c5ccae 6317 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 6318 */
48c5ccae 6319static void calc_global_load_remove(struct rq *rq)
1da177e4 6320{
48c5ccae
PZ
6321 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6322 rq->calc_load_active = 0;
1da177e4
LT
6323}
6324
48f24c4d 6325/*
48c5ccae
PZ
6326 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6327 * try_to_wake_up()->select_task_rq().
6328 *
6329 * Called with rq->lock held even though we'er in stop_machine() and
6330 * there's no concurrency possible, we hold the required locks anyway
6331 * because of lock validation efforts.
1da177e4 6332 */
48c5ccae 6333static void migrate_tasks(unsigned int dead_cpu)
1da177e4 6334{
70b97a7f 6335 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
6336 struct task_struct *next, *stop = rq->stop;
6337 int dest_cpu;
1da177e4
LT
6338
6339 /*
48c5ccae
PZ
6340 * Fudge the rq selection such that the below task selection loop
6341 * doesn't get stuck on the currently eligible stop task.
6342 *
6343 * We're currently inside stop_machine() and the rq is either stuck
6344 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6345 * either way we should never end up calling schedule() until we're
6346 * done here.
1da177e4 6347 */
48c5ccae 6348 rq->stop = NULL;
48f24c4d 6349
dd41f596 6350 for ( ; ; ) {
48c5ccae
PZ
6351 /*
6352 * There's this thread running, bail when that's the only
6353 * remaining thread.
6354 */
6355 if (rq->nr_running == 1)
dd41f596 6356 break;
48c5ccae 6357
b67802ea 6358 next = pick_next_task(rq);
48c5ccae 6359 BUG_ON(!next);
79c53799 6360 next->sched_class->put_prev_task(rq, next);
e692ab53 6361
48c5ccae
PZ
6362 /* Find suitable destination for @next, with force if needed. */
6363 dest_cpu = select_fallback_rq(dead_cpu, next);
6364 raw_spin_unlock(&rq->lock);
6365
6366 __migrate_task(next, dead_cpu, dest_cpu);
6367
6368 raw_spin_lock(&rq->lock);
1da177e4 6369 }
dce48a84 6370
48c5ccae 6371 rq->stop = stop;
dce48a84 6372}
48c5ccae 6373
1da177e4
LT
6374#endif /* CONFIG_HOTPLUG_CPU */
6375
e692ab53
NP
6376#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6377
6378static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6379 {
6380 .procname = "sched_domain",
c57baf1e 6381 .mode = 0555,
e0361851 6382 },
56992309 6383 {}
e692ab53
NP
6384};
6385
6386static struct ctl_table sd_ctl_root[] = {
e0361851
AD
6387 {
6388 .procname = "kernel",
c57baf1e 6389 .mode = 0555,
e0361851
AD
6390 .child = sd_ctl_dir,
6391 },
56992309 6392 {}
e692ab53
NP
6393};
6394
6395static struct ctl_table *sd_alloc_ctl_entry(int n)
6396{
6397 struct ctl_table *entry =
5cf9f062 6398 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6399
e692ab53
NP
6400 return entry;
6401}
6402
6382bc90
MM
6403static void sd_free_ctl_entry(struct ctl_table **tablep)
6404{
cd790076 6405 struct ctl_table *entry;
6382bc90 6406
cd790076
MM
6407 /*
6408 * In the intermediate directories, both the child directory and
6409 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6410 * will always be set. In the lowest directory the names are
cd790076
MM
6411 * static strings and all have proc handlers.
6412 */
6413 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6414 if (entry->child)
6415 sd_free_ctl_entry(&entry->child);
cd790076
MM
6416 if (entry->proc_handler == NULL)
6417 kfree(entry->procname);
6418 }
6382bc90
MM
6419
6420 kfree(*tablep);
6421 *tablep = NULL;
6422}
6423
e692ab53 6424static void
e0361851 6425set_table_entry(struct ctl_table *entry,
e692ab53
NP
6426 const char *procname, void *data, int maxlen,
6427 mode_t mode, proc_handler *proc_handler)
6428{
e692ab53
NP
6429 entry->procname = procname;
6430 entry->data = data;
6431 entry->maxlen = maxlen;
6432 entry->mode = mode;
6433 entry->proc_handler = proc_handler;
6434}
6435
6436static struct ctl_table *
6437sd_alloc_ctl_domain_table(struct sched_domain *sd)
6438{
a5d8c348 6439 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6440
ad1cdc1d
MM
6441 if (table == NULL)
6442 return NULL;
6443
e0361851 6444 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6445 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6446 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6447 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6448 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6449 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6450 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6451 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6452 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6453 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6454 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6455 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6456 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6458 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6460 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6461 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6462 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6463 &sd->cache_nice_tries,
6464 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6465 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6466 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6467 set_table_entry(&table[11], "name", sd->name,
6468 CORENAME_MAX_SIZE, 0444, proc_dostring);
6469 /* &table[12] is terminator */
e692ab53
NP
6470
6471 return table;
6472}
6473
9a4e7159 6474static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6475{
6476 struct ctl_table *entry, *table;
6477 struct sched_domain *sd;
6478 int domain_num = 0, i;
6479 char buf[32];
6480
6481 for_each_domain(cpu, sd)
6482 domain_num++;
6483 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6484 if (table == NULL)
6485 return NULL;
e692ab53
NP
6486
6487 i = 0;
6488 for_each_domain(cpu, sd) {
6489 snprintf(buf, 32, "domain%d", i);
e692ab53 6490 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6491 entry->mode = 0555;
e692ab53
NP
6492 entry->child = sd_alloc_ctl_domain_table(sd);
6493 entry++;
6494 i++;
6495 }
6496 return table;
6497}
6498
6499static struct ctl_table_header *sd_sysctl_header;
6382bc90 6500static void register_sched_domain_sysctl(void)
e692ab53 6501{
6ad4c188 6502 int i, cpu_num = num_possible_cpus();
e692ab53
NP
6503 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6504 char buf[32];
6505
7378547f
MM
6506 WARN_ON(sd_ctl_dir[0].child);
6507 sd_ctl_dir[0].child = entry;
6508
ad1cdc1d
MM
6509 if (entry == NULL)
6510 return;
6511
6ad4c188 6512 for_each_possible_cpu(i) {
e692ab53 6513 snprintf(buf, 32, "cpu%d", i);
e692ab53 6514 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6515 entry->mode = 0555;
e692ab53 6516 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6517 entry++;
e692ab53 6518 }
7378547f
MM
6519
6520 WARN_ON(sd_sysctl_header);
e692ab53
NP
6521 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6522}
6382bc90 6523
7378547f 6524/* may be called multiple times per register */
6382bc90
MM
6525static void unregister_sched_domain_sysctl(void)
6526{
7378547f
MM
6527 if (sd_sysctl_header)
6528 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6529 sd_sysctl_header = NULL;
7378547f
MM
6530 if (sd_ctl_dir[0].child)
6531 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6532}
e692ab53 6533#else
6382bc90
MM
6534static void register_sched_domain_sysctl(void)
6535{
6536}
6537static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6538{
6539}
6540#endif
6541
1f11eb6a
GH
6542static void set_rq_online(struct rq *rq)
6543{
6544 if (!rq->online) {
6545 const struct sched_class *class;
6546
c6c4927b 6547 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6548 rq->online = 1;
6549
6550 for_each_class(class) {
6551 if (class->rq_online)
6552 class->rq_online(rq);
6553 }
6554 }
6555}
6556
6557static void set_rq_offline(struct rq *rq)
6558{
6559 if (rq->online) {
6560 const struct sched_class *class;
6561
6562 for_each_class(class) {
6563 if (class->rq_offline)
6564 class->rq_offline(rq);
6565 }
6566
c6c4927b 6567 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6568 rq->online = 0;
6569 }
6570}
6571
1da177e4
LT
6572/*
6573 * migration_call - callback that gets triggered when a CPU is added.
6574 * Here we can start up the necessary migration thread for the new CPU.
6575 */
48f24c4d
IM
6576static int __cpuinit
6577migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6578{
48f24c4d 6579 int cpu = (long)hcpu;
1da177e4 6580 unsigned long flags;
969c7921 6581 struct rq *rq = cpu_rq(cpu);
1da177e4 6582
48c5ccae 6583 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 6584
1da177e4 6585 case CPU_UP_PREPARE:
a468d389 6586 rq->calc_load_update = calc_load_update;
1da177e4 6587 break;
48f24c4d 6588
1da177e4 6589 case CPU_ONLINE:
1f94ef59 6590 /* Update our root-domain */
05fa785c 6591 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 6592 if (rq->rd) {
c6c4927b 6593 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6594
6595 set_rq_online(rq);
1f94ef59 6596 }
05fa785c 6597 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6598 break;
48f24c4d 6599
1da177e4 6600#ifdef CONFIG_HOTPLUG_CPU
08f503b0 6601 case CPU_DYING:
317f3941 6602 sched_ttwu_pending();
57d885fe 6603 /* Update our root-domain */
05fa785c 6604 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 6605 if (rq->rd) {
c6c4927b 6606 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6607 set_rq_offline(rq);
57d885fe 6608 }
48c5ccae
PZ
6609 migrate_tasks(cpu);
6610 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 6611 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
6612
6613 migrate_nr_uninterruptible(rq);
6614 calc_global_load_remove(rq);
57d885fe 6615 break;
1da177e4
LT
6616#endif
6617 }
49c022e6
PZ
6618
6619 update_max_interval();
6620
1da177e4
LT
6621 return NOTIFY_OK;
6622}
6623
f38b0820
PM
6624/*
6625 * Register at high priority so that task migration (migrate_all_tasks)
6626 * happens before everything else. This has to be lower priority than
cdd6c482 6627 * the notifier in the perf_event subsystem, though.
1da177e4 6628 */
26c2143b 6629static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 6630 .notifier_call = migration_call,
50a323b7 6631 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
6632};
6633
3a101d05
TH
6634static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6635 unsigned long action, void *hcpu)
6636{
6637 switch (action & ~CPU_TASKS_FROZEN) {
6638 case CPU_ONLINE:
6639 case CPU_DOWN_FAILED:
6640 set_cpu_active((long)hcpu, true);
6641 return NOTIFY_OK;
6642 default:
6643 return NOTIFY_DONE;
6644 }
6645}
6646
6647static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6648 unsigned long action, void *hcpu)
6649{
6650 switch (action & ~CPU_TASKS_FROZEN) {
6651 case CPU_DOWN_PREPARE:
6652 set_cpu_active((long)hcpu, false);
6653 return NOTIFY_OK;
6654 default:
6655 return NOTIFY_DONE;
6656 }
6657}
6658
7babe8db 6659static int __init migration_init(void)
1da177e4
LT
6660{
6661 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6662 int err;
48f24c4d 6663
3a101d05 6664 /* Initialize migration for the boot CPU */
07dccf33
AM
6665 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6666 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6667 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6668 register_cpu_notifier(&migration_notifier);
7babe8db 6669
3a101d05
TH
6670 /* Register cpu active notifiers */
6671 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6672 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6673
a004cd42 6674 return 0;
1da177e4 6675}
7babe8db 6676early_initcall(migration_init);
1da177e4
LT
6677#endif
6678
6679#ifdef CONFIG_SMP
476f3534 6680
4cb98839
PZ
6681static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6682
3e9830dc 6683#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6684
f6630114
MT
6685static __read_mostly int sched_domain_debug_enabled;
6686
6687static int __init sched_domain_debug_setup(char *str)
6688{
6689 sched_domain_debug_enabled = 1;
6690
6691 return 0;
6692}
6693early_param("sched_debug", sched_domain_debug_setup);
6694
7c16ec58 6695static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6696 struct cpumask *groupmask)
1da177e4 6697{
4dcf6aff 6698 struct sched_group *group = sd->groups;
434d53b0 6699 char str[256];
1da177e4 6700
968ea6d8 6701 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6702 cpumask_clear(groupmask);
4dcf6aff
IM
6703
6704 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6705
6706 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6707 printk("does not load-balance\n");
4dcf6aff 6708 if (sd->parent)
3df0fc5b
PZ
6709 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6710 " has parent");
4dcf6aff 6711 return -1;
41c7ce9a
NP
6712 }
6713
3df0fc5b 6714 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6715
758b2cdc 6716 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6717 printk(KERN_ERR "ERROR: domain->span does not contain "
6718 "CPU%d\n", cpu);
4dcf6aff 6719 }
758b2cdc 6720 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6721 printk(KERN_ERR "ERROR: domain->groups does not contain"
6722 " CPU%d\n", cpu);
4dcf6aff 6723 }
1da177e4 6724
4dcf6aff 6725 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6726 do {
4dcf6aff 6727 if (!group) {
3df0fc5b
PZ
6728 printk("\n");
6729 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6730 break;
6731 }
6732
9c3f75cb 6733 if (!group->sgp->power) {
3df0fc5b
PZ
6734 printk(KERN_CONT "\n");
6735 printk(KERN_ERR "ERROR: domain->cpu_power not "
6736 "set\n");
4dcf6aff
IM
6737 break;
6738 }
1da177e4 6739
758b2cdc 6740 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6741 printk(KERN_CONT "\n");
6742 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6743 break;
6744 }
1da177e4 6745
758b2cdc 6746 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6747 printk(KERN_CONT "\n");
6748 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6749 break;
6750 }
1da177e4 6751
758b2cdc 6752 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6753
968ea6d8 6754 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6755
3df0fc5b 6756 printk(KERN_CONT " %s", str);
9c3f75cb 6757 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 6758 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 6759 group->sgp->power);
381512cf 6760 }
1da177e4 6761
4dcf6aff
IM
6762 group = group->next;
6763 } while (group != sd->groups);
3df0fc5b 6764 printk(KERN_CONT "\n");
1da177e4 6765
758b2cdc 6766 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6767 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6768
758b2cdc
RR
6769 if (sd->parent &&
6770 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6771 printk(KERN_ERR "ERROR: parent span is not a superset "
6772 "of domain->span\n");
4dcf6aff
IM
6773 return 0;
6774}
1da177e4 6775
4dcf6aff
IM
6776static void sched_domain_debug(struct sched_domain *sd, int cpu)
6777{
6778 int level = 0;
1da177e4 6779
f6630114
MT
6780 if (!sched_domain_debug_enabled)
6781 return;
6782
4dcf6aff
IM
6783 if (!sd) {
6784 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6785 return;
6786 }
1da177e4 6787
4dcf6aff
IM
6788 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6789
6790 for (;;) {
4cb98839 6791 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 6792 break;
1da177e4
LT
6793 level++;
6794 sd = sd->parent;
33859f7f 6795 if (!sd)
4dcf6aff
IM
6796 break;
6797 }
1da177e4 6798}
6d6bc0ad 6799#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6800# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6801#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6802
1a20ff27 6803static int sd_degenerate(struct sched_domain *sd)
245af2c7 6804{
758b2cdc 6805 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6806 return 1;
6807
6808 /* Following flags need at least 2 groups */
6809 if (sd->flags & (SD_LOAD_BALANCE |
6810 SD_BALANCE_NEWIDLE |
6811 SD_BALANCE_FORK |
89c4710e
SS
6812 SD_BALANCE_EXEC |
6813 SD_SHARE_CPUPOWER |
6814 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6815 if (sd->groups != sd->groups->next)
6816 return 0;
6817 }
6818
6819 /* Following flags don't use groups */
c88d5910 6820 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6821 return 0;
6822
6823 return 1;
6824}
6825
48f24c4d
IM
6826static int
6827sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6828{
6829 unsigned long cflags = sd->flags, pflags = parent->flags;
6830
6831 if (sd_degenerate(parent))
6832 return 1;
6833
758b2cdc 6834 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6835 return 0;
6836
245af2c7
SS
6837 /* Flags needing groups don't count if only 1 group in parent */
6838 if (parent->groups == parent->groups->next) {
6839 pflags &= ~(SD_LOAD_BALANCE |
6840 SD_BALANCE_NEWIDLE |
6841 SD_BALANCE_FORK |
89c4710e
SS
6842 SD_BALANCE_EXEC |
6843 SD_SHARE_CPUPOWER |
6844 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6845 if (nr_node_ids == 1)
6846 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6847 }
6848 if (~cflags & pflags)
6849 return 0;
6850
6851 return 1;
6852}
6853
dce840a0 6854static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 6855{
dce840a0 6856 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 6857
68e74568 6858 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
6859 free_cpumask_var(rd->rto_mask);
6860 free_cpumask_var(rd->online);
6861 free_cpumask_var(rd->span);
6862 kfree(rd);
6863}
6864
57d885fe
GH
6865static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6866{
a0490fa3 6867 struct root_domain *old_rd = NULL;
57d885fe 6868 unsigned long flags;
57d885fe 6869
05fa785c 6870 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6871
6872 if (rq->rd) {
a0490fa3 6873 old_rd = rq->rd;
57d885fe 6874
c6c4927b 6875 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6876 set_rq_offline(rq);
57d885fe 6877
c6c4927b 6878 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6879
a0490fa3
IM
6880 /*
6881 * If we dont want to free the old_rt yet then
6882 * set old_rd to NULL to skip the freeing later
6883 * in this function:
6884 */
6885 if (!atomic_dec_and_test(&old_rd->refcount))
6886 old_rd = NULL;
57d885fe
GH
6887 }
6888
6889 atomic_inc(&rd->refcount);
6890 rq->rd = rd;
6891
c6c4927b 6892 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6893 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6894 set_rq_online(rq);
57d885fe 6895
05fa785c 6896 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6897
6898 if (old_rd)
dce840a0 6899 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
6900}
6901
68c38fc3 6902static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
6903{
6904 memset(rd, 0, sizeof(*rd));
6905
68c38fc3 6906 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6907 goto out;
68c38fc3 6908 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 6909 goto free_span;
68c38fc3 6910 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 6911 goto free_online;
6e0534f2 6912
68c38fc3 6913 if (cpupri_init(&rd->cpupri) != 0)
68e74568 6914 goto free_rto_mask;
c6c4927b 6915 return 0;
6e0534f2 6916
68e74568
RR
6917free_rto_mask:
6918 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6919free_online:
6920 free_cpumask_var(rd->online);
6921free_span:
6922 free_cpumask_var(rd->span);
0c910d28 6923out:
c6c4927b 6924 return -ENOMEM;
57d885fe
GH
6925}
6926
6927static void init_defrootdomain(void)
6928{
68c38fc3 6929 init_rootdomain(&def_root_domain);
c6c4927b 6930
57d885fe
GH
6931 atomic_set(&def_root_domain.refcount, 1);
6932}
6933
dc938520 6934static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6935{
6936 struct root_domain *rd;
6937
6938 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6939 if (!rd)
6940 return NULL;
6941
68c38fc3 6942 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6943 kfree(rd);
6944 return NULL;
6945 }
57d885fe
GH
6946
6947 return rd;
6948}
6949
e3589f6c
PZ
6950static void free_sched_groups(struct sched_group *sg, int free_sgp)
6951{
6952 struct sched_group *tmp, *first;
6953
6954 if (!sg)
6955 return;
6956
6957 first = sg;
6958 do {
6959 tmp = sg->next;
6960
6961 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6962 kfree(sg->sgp);
6963
6964 kfree(sg);
6965 sg = tmp;
6966 } while (sg != first);
6967}
6968
dce840a0
PZ
6969static void free_sched_domain(struct rcu_head *rcu)
6970{
6971 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6972
6973 /*
6974 * If its an overlapping domain it has private groups, iterate and
6975 * nuke them all.
6976 */
6977 if (sd->flags & SD_OVERLAP) {
6978 free_sched_groups(sd->groups, 1);
6979 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 6980 kfree(sd->groups->sgp);
dce840a0 6981 kfree(sd->groups);
9c3f75cb 6982 }
dce840a0
PZ
6983 kfree(sd);
6984}
6985
6986static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6987{
6988 call_rcu(&sd->rcu, free_sched_domain);
6989}
6990
6991static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6992{
6993 for (; sd; sd = sd->parent)
6994 destroy_sched_domain(sd, cpu);
6995}
6996
1da177e4 6997/*
0eab9146 6998 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6999 * hold the hotplug lock.
7000 */
0eab9146
IM
7001static void
7002cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7003{
70b97a7f 7004 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7005 struct sched_domain *tmp;
7006
7007 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7008 for (tmp = sd; tmp; ) {
245af2c7
SS
7009 struct sched_domain *parent = tmp->parent;
7010 if (!parent)
7011 break;
f29c9b1c 7012
1a848870 7013 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7014 tmp->parent = parent->parent;
1a848870
SS
7015 if (parent->parent)
7016 parent->parent->child = tmp;
dce840a0 7017 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
7018 } else
7019 tmp = tmp->parent;
245af2c7
SS
7020 }
7021
1a848870 7022 if (sd && sd_degenerate(sd)) {
dce840a0 7023 tmp = sd;
245af2c7 7024 sd = sd->parent;
dce840a0 7025 destroy_sched_domain(tmp, cpu);
1a848870
SS
7026 if (sd)
7027 sd->child = NULL;
7028 }
1da177e4 7029
4cb98839 7030 sched_domain_debug(sd, cpu);
1da177e4 7031
57d885fe 7032 rq_attach_root(rq, rd);
dce840a0 7033 tmp = rq->sd;
674311d5 7034 rcu_assign_pointer(rq->sd, sd);
dce840a0 7035 destroy_sched_domains(tmp, cpu);
1da177e4
LT
7036}
7037
7038/* cpus with isolated domains */
dcc30a35 7039static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7040
7041/* Setup the mask of cpus configured for isolated domains */
7042static int __init isolated_cpu_setup(char *str)
7043{
bdddd296 7044 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 7045 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7046 return 1;
7047}
7048
8927f494 7049__setup("isolcpus=", isolated_cpu_setup);
1da177e4 7050
9c1cfda2 7051#define SD_NODES_PER_DOMAIN 16
1da177e4 7052
9c1cfda2 7053#ifdef CONFIG_NUMA
198e2f18 7054
9c1cfda2
JH
7055/**
7056 * find_next_best_node - find the next node to include in a sched_domain
7057 * @node: node whose sched_domain we're building
7058 * @used_nodes: nodes already in the sched_domain
7059 *
41a2d6cf 7060 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7061 * finds the closest node not already in the @used_nodes map.
7062 *
7063 * Should use nodemask_t.
7064 */
c5f59f08 7065static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2 7066{
7142d17e 7067 int i, n, val, min_val, best_node = -1;
9c1cfda2
JH
7068
7069 min_val = INT_MAX;
7070
076ac2af 7071 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7072 /* Start at @node */
076ac2af 7073 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7074
7075 if (!nr_cpus_node(n))
7076 continue;
7077
7078 /* Skip already used nodes */
c5f59f08 7079 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7080 continue;
7081
7082 /* Simple min distance search */
7083 val = node_distance(node, n);
7084
7085 if (val < min_val) {
7086 min_val = val;
7087 best_node = n;
7088 }
7089 }
7090
7142d17e
HD
7091 if (best_node != -1)
7092 node_set(best_node, *used_nodes);
9c1cfda2
JH
7093 return best_node;
7094}
7095
7096/**
7097 * sched_domain_node_span - get a cpumask for a node's sched_domain
7098 * @node: node whose cpumask we're constructing
73486722 7099 * @span: resulting cpumask
9c1cfda2 7100 *
41a2d6cf 7101 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7102 * should be one that prevents unnecessary balancing, but also spreads tasks
7103 * out optimally.
7104 */
96f874e2 7105static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7106{
c5f59f08 7107 nodemask_t used_nodes;
48f24c4d 7108 int i;
9c1cfda2 7109
6ca09dfc 7110 cpumask_clear(span);
c5f59f08 7111 nodes_clear(used_nodes);
9c1cfda2 7112
6ca09dfc 7113 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7114 node_set(node, used_nodes);
9c1cfda2
JH
7115
7116 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7117 int next_node = find_next_best_node(node, &used_nodes);
7142d17e
HD
7118 if (next_node < 0)
7119 break;
6ca09dfc 7120 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7121 }
9c1cfda2 7122}
d3081f52
PZ
7123
7124static const struct cpumask *cpu_node_mask(int cpu)
7125{
7126 lockdep_assert_held(&sched_domains_mutex);
7127
7128 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7129
7130 return sched_domains_tmpmask;
7131}
2c402dc3
PZ
7132
7133static const struct cpumask *cpu_allnodes_mask(int cpu)
7134{
7135 return cpu_possible_mask;
7136}
6d6bc0ad 7137#endif /* CONFIG_NUMA */
9c1cfda2 7138
d3081f52
PZ
7139static const struct cpumask *cpu_cpu_mask(int cpu)
7140{
7141 return cpumask_of_node(cpu_to_node(cpu));
7142}
7143
5c45bf27 7144int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7145
dce840a0
PZ
7146struct sd_data {
7147 struct sched_domain **__percpu sd;
7148 struct sched_group **__percpu sg;
9c3f75cb 7149 struct sched_group_power **__percpu sgp;
dce840a0
PZ
7150};
7151
49a02c51 7152struct s_data {
21d42ccf 7153 struct sched_domain ** __percpu sd;
49a02c51
AH
7154 struct root_domain *rd;
7155};
7156
2109b99e 7157enum s_alloc {
2109b99e 7158 sa_rootdomain,
21d42ccf 7159 sa_sd,
dce840a0 7160 sa_sd_storage,
2109b99e
AH
7161 sa_none,
7162};
7163
54ab4ff4
PZ
7164struct sched_domain_topology_level;
7165
7166typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
7167typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7168
e3589f6c
PZ
7169#define SDTL_OVERLAP 0x01
7170
eb7a74e6 7171struct sched_domain_topology_level {
2c402dc3
PZ
7172 sched_domain_init_f init;
7173 sched_domain_mask_f mask;
e3589f6c 7174 int flags;
54ab4ff4 7175 struct sd_data data;
eb7a74e6
PZ
7176};
7177
e3589f6c
PZ
7178static int
7179build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7180{
7181 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7182 const struct cpumask *span = sched_domain_span(sd);
7183 struct cpumask *covered = sched_domains_tmpmask;
7184 struct sd_data *sdd = sd->private;
7185 struct sched_domain *child;
7186 int i;
7187
7188 cpumask_clear(covered);
7189
7190 for_each_cpu(i, span) {
7191 struct cpumask *sg_span;
7192
7193 if (cpumask_test_cpu(i, covered))
7194 continue;
7195
7196 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7197 GFP_KERNEL, cpu_to_node(i));
7198
7199 if (!sg)
7200 goto fail;
7201
7202 sg_span = sched_group_cpus(sg);
7203
7204 child = *per_cpu_ptr(sdd->sd, i);
7205 if (child->child) {
7206 child = child->child;
7207 cpumask_copy(sg_span, sched_domain_span(child));
7208 } else
7209 cpumask_set_cpu(i, sg_span);
7210
7211 cpumask_or(covered, covered, sg_span);
7212
7213 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7214 atomic_inc(&sg->sgp->ref);
7215
7216 if (cpumask_test_cpu(cpu, sg_span))
7217 groups = sg;
7218
7219 if (!first)
7220 first = sg;
7221 if (last)
7222 last->next = sg;
7223 last = sg;
7224 last->next = first;
7225 }
7226 sd->groups = groups;
7227
7228 return 0;
7229
7230fail:
7231 free_sched_groups(first, 0);
7232
7233 return -ENOMEM;
7234}
7235
dce840a0 7236static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 7237{
dce840a0
PZ
7238 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7239 struct sched_domain *child = sd->child;
1da177e4 7240
dce840a0
PZ
7241 if (child)
7242 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 7243
9c3f75cb 7244 if (sg) {
dce840a0 7245 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 7246 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 7247 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 7248 }
dce840a0
PZ
7249
7250 return cpu;
1e9f28fa 7251}
1e9f28fa 7252
01a08546 7253/*
dce840a0
PZ
7254 * build_sched_groups will build a circular linked list of the groups
7255 * covered by the given span, and will set each group's ->cpumask correctly,
7256 * and ->cpu_power to 0.
e3589f6c
PZ
7257 *
7258 * Assumes the sched_domain tree is fully constructed
01a08546 7259 */
e3589f6c
PZ
7260static int
7261build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 7262{
dce840a0
PZ
7263 struct sched_group *first = NULL, *last = NULL;
7264 struct sd_data *sdd = sd->private;
7265 const struct cpumask *span = sched_domain_span(sd);
f96225fd 7266 struct cpumask *covered;
dce840a0 7267 int i;
9c1cfda2 7268
e3589f6c
PZ
7269 get_group(cpu, sdd, &sd->groups);
7270 atomic_inc(&sd->groups->ref);
7271
7272 if (cpu != cpumask_first(sched_domain_span(sd)))
7273 return 0;
7274
f96225fd
PZ
7275 lockdep_assert_held(&sched_domains_mutex);
7276 covered = sched_domains_tmpmask;
7277
dce840a0 7278 cpumask_clear(covered);
6711cab4 7279
dce840a0
PZ
7280 for_each_cpu(i, span) {
7281 struct sched_group *sg;
7282 int group = get_group(i, sdd, &sg);
7283 int j;
6711cab4 7284
dce840a0
PZ
7285 if (cpumask_test_cpu(i, covered))
7286 continue;
6711cab4 7287
dce840a0 7288 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 7289 sg->sgp->power = 0;
0601a88d 7290
dce840a0
PZ
7291 for_each_cpu(j, span) {
7292 if (get_group(j, sdd, NULL) != group)
7293 continue;
0601a88d 7294
dce840a0
PZ
7295 cpumask_set_cpu(j, covered);
7296 cpumask_set_cpu(j, sched_group_cpus(sg));
7297 }
0601a88d 7298
dce840a0
PZ
7299 if (!first)
7300 first = sg;
7301 if (last)
7302 last->next = sg;
7303 last = sg;
7304 }
7305 last->next = first;
e3589f6c
PZ
7306
7307 return 0;
0601a88d 7308}
51888ca2 7309
89c4710e
SS
7310/*
7311 * Initialize sched groups cpu_power.
7312 *
7313 * cpu_power indicates the capacity of sched group, which is used while
7314 * distributing the load between different sched groups in a sched domain.
7315 * Typically cpu_power for all the groups in a sched domain will be same unless
7316 * there are asymmetries in the topology. If there are asymmetries, group
7317 * having more cpu_power will pickup more load compared to the group having
7318 * less cpu_power.
89c4710e
SS
7319 */
7320static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7321{
e3589f6c 7322 struct sched_group *sg = sd->groups;
89c4710e 7323
e3589f6c
PZ
7324 WARN_ON(!sd || !sg);
7325
7326 do {
7327 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7328 sg = sg->next;
7329 } while (sg != sd->groups);
89c4710e 7330
e3589f6c
PZ
7331 if (cpu != group_first_cpu(sg))
7332 return;
aae6d3dd 7333
d274cb30 7334 update_group_power(sd, cpu);
89c4710e
SS
7335}
7336
7c16ec58
MT
7337/*
7338 * Initializers for schedule domains
7339 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7340 */
7341
a5d8c348
IM
7342#ifdef CONFIG_SCHED_DEBUG
7343# define SD_INIT_NAME(sd, type) sd->name = #type
7344#else
7345# define SD_INIT_NAME(sd, type) do { } while (0)
7346#endif
7347
54ab4ff4
PZ
7348#define SD_INIT_FUNC(type) \
7349static noinline struct sched_domain * \
7350sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7351{ \
7352 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7353 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
7354 SD_INIT_NAME(sd, type); \
7355 sd->private = &tl->data; \
7356 return sd; \
7c16ec58
MT
7357}
7358
7359SD_INIT_FUNC(CPU)
7360#ifdef CONFIG_NUMA
7361 SD_INIT_FUNC(ALLNODES)
7362 SD_INIT_FUNC(NODE)
7363#endif
7364#ifdef CONFIG_SCHED_SMT
7365 SD_INIT_FUNC(SIBLING)
7366#endif
7367#ifdef CONFIG_SCHED_MC
7368 SD_INIT_FUNC(MC)
7369#endif
01a08546
HC
7370#ifdef CONFIG_SCHED_BOOK
7371 SD_INIT_FUNC(BOOK)
7372#endif
7c16ec58 7373
1d3504fc 7374static int default_relax_domain_level = -1;
60495e77 7375int sched_domain_level_max;
1d3504fc
HS
7376
7377static int __init setup_relax_domain_level(char *str)
7378{
30e0e178
LZ
7379 unsigned long val;
7380
7381 val = simple_strtoul(str, NULL, 0);
60495e77 7382 if (val < sched_domain_level_max)
30e0e178
LZ
7383 default_relax_domain_level = val;
7384
1d3504fc
HS
7385 return 1;
7386}
7387__setup("relax_domain_level=", setup_relax_domain_level);
7388
7389static void set_domain_attribute(struct sched_domain *sd,
7390 struct sched_domain_attr *attr)
7391{
7392 int request;
7393
7394 if (!attr || attr->relax_domain_level < 0) {
7395 if (default_relax_domain_level < 0)
7396 return;
7397 else
7398 request = default_relax_domain_level;
7399 } else
7400 request = attr->relax_domain_level;
7401 if (request < sd->level) {
7402 /* turn off idle balance on this domain */
c88d5910 7403 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7404 } else {
7405 /* turn on idle balance on this domain */
c88d5910 7406 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
7407 }
7408}
7409
54ab4ff4
PZ
7410static void __sdt_free(const struct cpumask *cpu_map);
7411static int __sdt_alloc(const struct cpumask *cpu_map);
7412
2109b99e
AH
7413static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7414 const struct cpumask *cpu_map)
7415{
7416 switch (what) {
2109b99e 7417 case sa_rootdomain:
822ff793
PZ
7418 if (!atomic_read(&d->rd->refcount))
7419 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
7420 case sa_sd:
7421 free_percpu(d->sd); /* fall through */
dce840a0 7422 case sa_sd_storage:
54ab4ff4 7423 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
7424 case sa_none:
7425 break;
7426 }
7427}
3404c8d9 7428
2109b99e
AH
7429static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7430 const struct cpumask *cpu_map)
7431{
dce840a0
PZ
7432 memset(d, 0, sizeof(*d));
7433
54ab4ff4
PZ
7434 if (__sdt_alloc(cpu_map))
7435 return sa_sd_storage;
dce840a0
PZ
7436 d->sd = alloc_percpu(struct sched_domain *);
7437 if (!d->sd)
7438 return sa_sd_storage;
2109b99e 7439 d->rd = alloc_rootdomain();
dce840a0 7440 if (!d->rd)
21d42ccf 7441 return sa_sd;
2109b99e
AH
7442 return sa_rootdomain;
7443}
57d885fe 7444
dce840a0
PZ
7445/*
7446 * NULL the sd_data elements we've used to build the sched_domain and
7447 * sched_group structure so that the subsequent __free_domain_allocs()
7448 * will not free the data we're using.
7449 */
7450static void claim_allocations(int cpu, struct sched_domain *sd)
7451{
7452 struct sd_data *sdd = sd->private;
dce840a0
PZ
7453
7454 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7455 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7456
e3589f6c 7457 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 7458 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
7459
7460 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 7461 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
7462}
7463
2c402dc3
PZ
7464#ifdef CONFIG_SCHED_SMT
7465static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 7466{
2c402dc3 7467 return topology_thread_cpumask(cpu);
3bd65a80 7468}
2c402dc3 7469#endif
7f4588f3 7470
d069b916
PZ
7471/*
7472 * Topology list, bottom-up.
7473 */
2c402dc3 7474static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
7475#ifdef CONFIG_SCHED_SMT
7476 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 7477#endif
1e9f28fa 7478#ifdef CONFIG_SCHED_MC
2c402dc3 7479 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 7480#endif
d069b916
PZ
7481#ifdef CONFIG_SCHED_BOOK
7482 { sd_init_BOOK, cpu_book_mask, },
7483#endif
7484 { sd_init_CPU, cpu_cpu_mask, },
7485#ifdef CONFIG_NUMA
e3589f6c 7486 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
d069b916 7487 { sd_init_ALLNODES, cpu_allnodes_mask, },
1da177e4 7488#endif
eb7a74e6
PZ
7489 { NULL, },
7490};
7491
7492static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7493
54ab4ff4
PZ
7494static int __sdt_alloc(const struct cpumask *cpu_map)
7495{
7496 struct sched_domain_topology_level *tl;
7497 int j;
7498
7499 for (tl = sched_domain_topology; tl->init; tl++) {
7500 struct sd_data *sdd = &tl->data;
7501
7502 sdd->sd = alloc_percpu(struct sched_domain *);
7503 if (!sdd->sd)
7504 return -ENOMEM;
7505
7506 sdd->sg = alloc_percpu(struct sched_group *);
7507 if (!sdd->sg)
7508 return -ENOMEM;
7509
9c3f75cb
PZ
7510 sdd->sgp = alloc_percpu(struct sched_group_power *);
7511 if (!sdd->sgp)
7512 return -ENOMEM;
7513
54ab4ff4
PZ
7514 for_each_cpu(j, cpu_map) {
7515 struct sched_domain *sd;
7516 struct sched_group *sg;
9c3f75cb 7517 struct sched_group_power *sgp;
54ab4ff4
PZ
7518
7519 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7520 GFP_KERNEL, cpu_to_node(j));
7521 if (!sd)
7522 return -ENOMEM;
7523
7524 *per_cpu_ptr(sdd->sd, j) = sd;
7525
7526 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7527 GFP_KERNEL, cpu_to_node(j));
7528 if (!sg)
7529 return -ENOMEM;
7530
7531 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb
PZ
7532
7533 sgp = kzalloc_node(sizeof(struct sched_group_power),
7534 GFP_KERNEL, cpu_to_node(j));
7535 if (!sgp)
7536 return -ENOMEM;
7537
7538 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
7539 }
7540 }
7541
7542 return 0;
7543}
7544
7545static void __sdt_free(const struct cpumask *cpu_map)
7546{
7547 struct sched_domain_topology_level *tl;
7548 int j;
7549
7550 for (tl = sched_domain_topology; tl->init; tl++) {
7551 struct sd_data *sdd = &tl->data;
7552
7553 for_each_cpu(j, cpu_map) {
e3589f6c
PZ
7554 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7555 if (sd && (sd->flags & SD_OVERLAP))
7556 free_sched_groups(sd->groups, 0);
54ab4ff4 7557 kfree(*per_cpu_ptr(sdd->sg, j));
9c3f75cb 7558 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
7559 }
7560 free_percpu(sdd->sd);
7561 free_percpu(sdd->sg);
9c3f75cb 7562 free_percpu(sdd->sgp);
54ab4ff4
PZ
7563 }
7564}
7565
2c402dc3
PZ
7566struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7567 struct s_data *d, const struct cpumask *cpu_map,
d069b916 7568 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
7569 int cpu)
7570{
54ab4ff4 7571 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 7572 if (!sd)
d069b916 7573 return child;
2c402dc3
PZ
7574
7575 set_domain_attribute(sd, attr);
7576 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7577 if (child) {
7578 sd->level = child->level + 1;
7579 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7580 child->parent = sd;
60495e77 7581 }
d069b916 7582 sd->child = child;
2c402dc3
PZ
7583
7584 return sd;
7585}
7586
2109b99e
AH
7587/*
7588 * Build sched domains for a given set of cpus and attach the sched domains
7589 * to the individual cpus
7590 */
dce840a0
PZ
7591static int build_sched_domains(const struct cpumask *cpu_map,
7592 struct sched_domain_attr *attr)
2109b99e
AH
7593{
7594 enum s_alloc alloc_state = sa_none;
dce840a0 7595 struct sched_domain *sd;
2109b99e 7596 struct s_data d;
822ff793 7597 int i, ret = -ENOMEM;
9c1cfda2 7598
2109b99e
AH
7599 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7600 if (alloc_state != sa_rootdomain)
7601 goto error;
9c1cfda2 7602
dce840a0 7603 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7604 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7605 struct sched_domain_topology_level *tl;
7606
3bd65a80 7607 sd = NULL;
e3589f6c 7608 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 7609 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
7610 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7611 sd->flags |= SD_OVERLAP;
d110235d
PZ
7612 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7613 break;
e3589f6c 7614 }
d274cb30 7615
d069b916
PZ
7616 while (sd->child)
7617 sd = sd->child;
7618
21d42ccf 7619 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
7620 }
7621
7622 /* Build the groups for the domains */
7623 for_each_cpu(i, cpu_map) {
7624 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7625 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7626 if (sd->flags & SD_OVERLAP) {
7627 if (build_overlap_sched_groups(sd, i))
7628 goto error;
7629 } else {
7630 if (build_sched_groups(sd, i))
7631 goto error;
7632 }
1cf51902 7633 }
a06dadbe 7634 }
9c1cfda2 7635
1da177e4 7636 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
7637 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7638 if (!cpumask_test_cpu(i, cpu_map))
7639 continue;
9c1cfda2 7640
dce840a0
PZ
7641 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7642 claim_allocations(i, sd);
cd4ea6ae 7643 init_sched_groups_power(i, sd);
dce840a0 7644 }
f712c0c7 7645 }
9c1cfda2 7646
1da177e4 7647 /* Attach the domains */
dce840a0 7648 rcu_read_lock();
abcd083a 7649 for_each_cpu(i, cpu_map) {
21d42ccf 7650 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7651 cpu_attach_domain(sd, d.rd, i);
1da177e4 7652 }
dce840a0 7653 rcu_read_unlock();
51888ca2 7654
822ff793 7655 ret = 0;
51888ca2 7656error:
2109b99e 7657 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7658 return ret;
1da177e4 7659}
029190c5 7660
acc3f5d7 7661static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7662static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7663static struct sched_domain_attr *dattr_cur;
7664 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7665
7666/*
7667 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7668 * cpumask) fails, then fallback to a single sched domain,
7669 * as determined by the single cpumask fallback_doms.
029190c5 7670 */
4212823f 7671static cpumask_var_t fallback_doms;
029190c5 7672
ee79d1bd
HC
7673/*
7674 * arch_update_cpu_topology lets virtualized architectures update the
7675 * cpu core maps. It is supposed to return 1 if the topology changed
7676 * or 0 if it stayed the same.
7677 */
7678int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7679{
ee79d1bd 7680 return 0;
22e52b07
HC
7681}
7682
acc3f5d7
RR
7683cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7684{
7685 int i;
7686 cpumask_var_t *doms;
7687
7688 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7689 if (!doms)
7690 return NULL;
7691 for (i = 0; i < ndoms; i++) {
7692 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7693 free_sched_domains(doms, i);
7694 return NULL;
7695 }
7696 }
7697 return doms;
7698}
7699
7700void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7701{
7702 unsigned int i;
7703 for (i = 0; i < ndoms; i++)
7704 free_cpumask_var(doms[i]);
7705 kfree(doms);
7706}
7707
1a20ff27 7708/*
41a2d6cf 7709 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7710 * For now this just excludes isolated cpus, but could be used to
7711 * exclude other special cases in the future.
1a20ff27 7712 */
c4a8849a 7713static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7714{
7378547f
MM
7715 int err;
7716
22e52b07 7717 arch_update_cpu_topology();
029190c5 7718 ndoms_cur = 1;
acc3f5d7 7719 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7720 if (!doms_cur)
acc3f5d7
RR
7721 doms_cur = &fallback_doms;
7722 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7723 dattr_cur = NULL;
dce840a0 7724 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7725 register_sched_domain_sysctl();
7378547f
MM
7726
7727 return err;
1a20ff27
DG
7728}
7729
1a20ff27
DG
7730/*
7731 * Detach sched domains from a group of cpus specified in cpu_map
7732 * These cpus will now be attached to the NULL domain
7733 */
96f874e2 7734static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7735{
7736 int i;
7737
dce840a0 7738 rcu_read_lock();
abcd083a 7739 for_each_cpu(i, cpu_map)
57d885fe 7740 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7741 rcu_read_unlock();
1a20ff27
DG
7742}
7743
1d3504fc
HS
7744/* handle null as "default" */
7745static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7746 struct sched_domain_attr *new, int idx_new)
7747{
7748 struct sched_domain_attr tmp;
7749
7750 /* fast path */
7751 if (!new && !cur)
7752 return 1;
7753
7754 tmp = SD_ATTR_INIT;
7755 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7756 new ? (new + idx_new) : &tmp,
7757 sizeof(struct sched_domain_attr));
7758}
7759
029190c5
PJ
7760/*
7761 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7762 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7763 * doms_new[] to the current sched domain partitioning, doms_cur[].
7764 * It destroys each deleted domain and builds each new domain.
7765 *
acc3f5d7 7766 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7767 * The masks don't intersect (don't overlap.) We should setup one
7768 * sched domain for each mask. CPUs not in any of the cpumasks will
7769 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7770 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7771 * it as it is.
7772 *
acc3f5d7
RR
7773 * The passed in 'doms_new' should be allocated using
7774 * alloc_sched_domains. This routine takes ownership of it and will
7775 * free_sched_domains it when done with it. If the caller failed the
7776 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7777 * and partition_sched_domains() will fallback to the single partition
7778 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7779 *
96f874e2 7780 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7781 * ndoms_new == 0 is a special case for destroying existing domains,
7782 * and it will not create the default domain.
dfb512ec 7783 *
029190c5
PJ
7784 * Call with hotplug lock held
7785 */
acc3f5d7 7786void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7787 struct sched_domain_attr *dattr_new)
029190c5 7788{
dfb512ec 7789 int i, j, n;
d65bd5ec 7790 int new_topology;
029190c5 7791
712555ee 7792 mutex_lock(&sched_domains_mutex);
a1835615 7793
7378547f
MM
7794 /* always unregister in case we don't destroy any domains */
7795 unregister_sched_domain_sysctl();
7796
d65bd5ec
HC
7797 /* Let architecture update cpu core mappings. */
7798 new_topology = arch_update_cpu_topology();
7799
dfb512ec 7800 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7801
7802 /* Destroy deleted domains */
7803 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7804 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7805 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7806 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7807 goto match1;
7808 }
7809 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7810 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7811match1:
7812 ;
7813 }
7814
e761b772
MK
7815 if (doms_new == NULL) {
7816 ndoms_cur = 0;
acc3f5d7 7817 doms_new = &fallback_doms;
6ad4c188 7818 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7819 WARN_ON_ONCE(dattr_new);
e761b772
MK
7820 }
7821
029190c5
PJ
7822 /* Build new domains */
7823 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7824 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7825 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7826 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7827 goto match2;
7828 }
7829 /* no match - add a new doms_new */
dce840a0 7830 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7831match2:
7832 ;
7833 }
7834
7835 /* Remember the new sched domains */
acc3f5d7
RR
7836 if (doms_cur != &fallback_doms)
7837 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7838 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7839 doms_cur = doms_new;
1d3504fc 7840 dattr_cur = dattr_new;
029190c5 7841 ndoms_cur = ndoms_new;
7378547f
MM
7842
7843 register_sched_domain_sysctl();
a1835615 7844
712555ee 7845 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7846}
7847
5c45bf27 7848#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c4a8849a 7849static void reinit_sched_domains(void)
5c45bf27 7850{
95402b38 7851 get_online_cpus();
dfb512ec
MK
7852
7853 /* Destroy domains first to force the rebuild */
7854 partition_sched_domains(0, NULL, NULL);
7855
e761b772 7856 rebuild_sched_domains();
95402b38 7857 put_online_cpus();
5c45bf27
SS
7858}
7859
7860static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7861{
afb8a9b7 7862 unsigned int level = 0;
5c45bf27 7863
afb8a9b7
GS
7864 if (sscanf(buf, "%u", &level) != 1)
7865 return -EINVAL;
7866
7867 /*
7868 * level is always be positive so don't check for
7869 * level < POWERSAVINGS_BALANCE_NONE which is 0
7870 * What happens on 0 or 1 byte write,
7871 * need to check for count as well?
7872 */
7873
7874 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7875 return -EINVAL;
7876
7877 if (smt)
afb8a9b7 7878 sched_smt_power_savings = level;
5c45bf27 7879 else
afb8a9b7 7880 sched_mc_power_savings = level;
5c45bf27 7881
c4a8849a 7882 reinit_sched_domains();
5c45bf27 7883
c70f22d2 7884 return count;
5c45bf27
SS
7885}
7886
5c45bf27 7887#ifdef CONFIG_SCHED_MC
f718cd4a 7888static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7889 struct sysdev_class_attribute *attr,
f718cd4a 7890 char *page)
5c45bf27
SS
7891{
7892 return sprintf(page, "%u\n", sched_mc_power_savings);
7893}
f718cd4a 7894static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7895 struct sysdev_class_attribute *attr,
48f24c4d 7896 const char *buf, size_t count)
5c45bf27
SS
7897{
7898 return sched_power_savings_store(buf, count, 0);
7899}
f718cd4a
AK
7900static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7901 sched_mc_power_savings_show,
7902 sched_mc_power_savings_store);
5c45bf27
SS
7903#endif
7904
7905#ifdef CONFIG_SCHED_SMT
f718cd4a 7906static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7907 struct sysdev_class_attribute *attr,
f718cd4a 7908 char *page)
5c45bf27
SS
7909{
7910 return sprintf(page, "%u\n", sched_smt_power_savings);
7911}
f718cd4a 7912static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7913 struct sysdev_class_attribute *attr,
48f24c4d 7914 const char *buf, size_t count)
5c45bf27
SS
7915{
7916 return sched_power_savings_store(buf, count, 1);
7917}
f718cd4a
AK
7918static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7919 sched_smt_power_savings_show,
6707de00
AB
7920 sched_smt_power_savings_store);
7921#endif
7922
39aac648 7923int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7924{
7925 int err = 0;
7926
7927#ifdef CONFIG_SCHED_SMT
7928 if (smt_capable())
7929 err = sysfs_create_file(&cls->kset.kobj,
7930 &attr_sched_smt_power_savings.attr);
7931#endif
7932#ifdef CONFIG_SCHED_MC
7933 if (!err && mc_capable())
7934 err = sysfs_create_file(&cls->kset.kobj,
7935 &attr_sched_mc_power_savings.attr);
7936#endif
7937 return err;
7938}
6d6bc0ad 7939#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7940
1da177e4 7941/*
3a101d05
TH
7942 * Update cpusets according to cpu_active mask. If cpusets are
7943 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7944 * around partition_sched_domains().
1da177e4 7945 */
0b2e918a
TH
7946static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7947 void *hcpu)
e761b772 7948{
3a101d05 7949 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 7950 case CPU_ONLINE:
6ad4c188 7951 case CPU_DOWN_FAILED:
3a101d05 7952 cpuset_update_active_cpus();
e761b772 7953 return NOTIFY_OK;
3a101d05
TH
7954 default:
7955 return NOTIFY_DONE;
7956 }
7957}
e761b772 7958
0b2e918a
TH
7959static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7960 void *hcpu)
3a101d05
TH
7961{
7962 switch (action & ~CPU_TASKS_FROZEN) {
7963 case CPU_DOWN_PREPARE:
7964 cpuset_update_active_cpus();
7965 return NOTIFY_OK;
e761b772
MK
7966 default:
7967 return NOTIFY_DONE;
7968 }
7969}
e761b772
MK
7970
7971static int update_runtime(struct notifier_block *nfb,
7972 unsigned long action, void *hcpu)
1da177e4 7973{
7def2be1
PZ
7974 int cpu = (int)(long)hcpu;
7975
1da177e4 7976 switch (action) {
1da177e4 7977 case CPU_DOWN_PREPARE:
8bb78442 7978 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7979 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7980 return NOTIFY_OK;
7981
1da177e4 7982 case CPU_DOWN_FAILED:
8bb78442 7983 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7984 case CPU_ONLINE:
8bb78442 7985 case CPU_ONLINE_FROZEN:
7def2be1 7986 enable_runtime(cpu_rq(cpu));
e761b772
MK
7987 return NOTIFY_OK;
7988
1da177e4
LT
7989 default:
7990 return NOTIFY_DONE;
7991 }
1da177e4 7992}
1da177e4
LT
7993
7994void __init sched_init_smp(void)
7995{
dcc30a35
RR
7996 cpumask_var_t non_isolated_cpus;
7997
7998 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7999 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 8000
95402b38 8001 get_online_cpus();
712555ee 8002 mutex_lock(&sched_domains_mutex);
c4a8849a 8003 init_sched_domains(cpu_active_mask);
dcc30a35
RR
8004 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8005 if (cpumask_empty(non_isolated_cpus))
8006 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8007 mutex_unlock(&sched_domains_mutex);
95402b38 8008 put_online_cpus();
e761b772 8009
3a101d05
TH
8010 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8011 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
8012
8013 /* RT runtime code needs to handle some hotplug events */
8014 hotcpu_notifier(update_runtime, 0);
8015
b328ca18 8016 init_hrtick();
5c1e1767
NP
8017
8018 /* Move init over to a non-isolated CPU */
dcc30a35 8019 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8020 BUG();
19978ca6 8021 sched_init_granularity();
dcc30a35 8022 free_cpumask_var(non_isolated_cpus);
4212823f 8023
0e3900e6 8024 init_sched_rt_class();
1da177e4
LT
8025}
8026#else
8027void __init sched_init_smp(void)
8028{
19978ca6 8029 sched_init_granularity();
1da177e4
LT
8030}
8031#endif /* CONFIG_SMP */
8032
cd1bb94b
AB
8033const_debug unsigned int sysctl_timer_migration = 1;
8034
1da177e4
LT
8035int in_sched_functions(unsigned long addr)
8036{
1da177e4
LT
8037 return in_lock_functions(addr) ||
8038 (addr >= (unsigned long)__sched_text_start
8039 && addr < (unsigned long)__sched_text_end);
8040}
8041
acb5a9ba 8042static void init_cfs_rq(struct cfs_rq *cfs_rq)
dd41f596
IM
8043{
8044 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8045 INIT_LIST_HEAD(&cfs_rq->tasks);
67e9fb2a 8046 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
c64be78f
PZ
8047#ifndef CONFIG_64BIT
8048 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8049#endif
dd41f596
IM
8050}
8051
fa85ae24
PZ
8052static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8053{
8054 struct rt_prio_array *array;
8055 int i;
8056
8057 array = &rt_rq->active;
8058 for (i = 0; i < MAX_RT_PRIO; i++) {
8059 INIT_LIST_HEAD(array->queue + i);
8060 __clear_bit(i, array->bitmap);
8061 }
8062 /* delimiter for bitsearch: */
8063 __set_bit(MAX_RT_PRIO, array->bitmap);
8064
acb5a9ba 8065#if defined CONFIG_SMP
e864c499
GH
8066 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8067 rt_rq->highest_prio.next = MAX_RT_PRIO;
fa85ae24 8068 rt_rq->rt_nr_migratory = 0;
fa85ae24 8069 rt_rq->overloaded = 0;
732375c6 8070 plist_head_init(&rt_rq->pushable_tasks);
fa85ae24
PZ
8071#endif
8072
8073 rt_rq->rt_time = 0;
8074 rt_rq->rt_throttled = 0;
ac086bc2 8075 rt_rq->rt_runtime = 0;
0986b11b 8076 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
fa85ae24
PZ
8077}
8078
6f505b16 8079#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac 8080static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
3d4b47b4 8081 struct sched_entity *se, int cpu,
ec7dc8ac 8082 struct sched_entity *parent)
6f505b16 8083{
ec7dc8ac 8084 struct rq *rq = cpu_rq(cpu);
acb5a9ba 8085
6f505b16 8086 cfs_rq->tg = tg;
acb5a9ba
JS
8087 cfs_rq->rq = rq;
8088#ifdef CONFIG_SMP
8089 /* allow initial update_cfs_load() to truncate */
8090 cfs_rq->load_stamp = 1;
8091#endif
ab84d31e 8092 init_cfs_rq_runtime(cfs_rq);
6f505b16 8093
acb5a9ba 8094 tg->cfs_rq[cpu] = cfs_rq;
6f505b16 8095 tg->se[cpu] = se;
acb5a9ba 8096
07e06b01 8097 /* se could be NULL for root_task_group */
354d60c2
DG
8098 if (!se)
8099 return;
8100
ec7dc8ac
DG
8101 if (!parent)
8102 se->cfs_rq = &rq->cfs;
8103 else
8104 se->cfs_rq = parent->my_q;
8105
6f505b16 8106 se->my_q = cfs_rq;
9437178f 8107 update_load_set(&se->load, 0);
ec7dc8ac 8108 se->parent = parent;
6f505b16 8109}
052f1dc7 8110#endif
6f505b16 8111
052f1dc7 8112#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac 8113static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
3d4b47b4 8114 struct sched_rt_entity *rt_se, int cpu,
ec7dc8ac 8115 struct sched_rt_entity *parent)
6f505b16 8116{
ec7dc8ac
DG
8117 struct rq *rq = cpu_rq(cpu);
8118
acb5a9ba
JS
8119 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8120 rt_rq->rt_nr_boosted = 0;
8121 rt_rq->rq = rq;
6f505b16 8122 rt_rq->tg = tg;
6f505b16 8123
acb5a9ba 8124 tg->rt_rq[cpu] = rt_rq;
6f505b16 8125 tg->rt_se[cpu] = rt_se;
acb5a9ba 8126
354d60c2
DG
8127 if (!rt_se)
8128 return;
8129
ec7dc8ac
DG
8130 if (!parent)
8131 rt_se->rt_rq = &rq->rt;
8132 else
8133 rt_se->rt_rq = parent->my_q;
8134
6f505b16 8135 rt_se->my_q = rt_rq;
ec7dc8ac 8136 rt_se->parent = parent;
6f505b16
PZ
8137 INIT_LIST_HEAD(&rt_se->run_list);
8138}
8139#endif
8140
1da177e4
LT
8141void __init sched_init(void)
8142{
dd41f596 8143 int i, j;
434d53b0
MT
8144 unsigned long alloc_size = 0, ptr;
8145
8146#ifdef CONFIG_FAIR_GROUP_SCHED
8147 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8148#endif
8149#ifdef CONFIG_RT_GROUP_SCHED
8150 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 8151#endif
df7c8e84 8152#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8153 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 8154#endif
434d53b0 8155 if (alloc_size) {
36b7b6d4 8156 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
8157
8158#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8159 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
8160 ptr += nr_cpu_ids * sizeof(void **);
8161
07e06b01 8162 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 8163 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 8164
6d6bc0ad 8165#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 8166#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8167 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
8168 ptr += nr_cpu_ids * sizeof(void **);
8169
07e06b01 8170 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8171 ptr += nr_cpu_ids * sizeof(void **);
8172
6d6bc0ad 8173#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8174#ifdef CONFIG_CPUMASK_OFFSTACK
8175 for_each_possible_cpu(i) {
8176 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8177 ptr += cpumask_size();
8178 }
8179#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8180 }
dd41f596 8181
57d885fe
GH
8182#ifdef CONFIG_SMP
8183 init_defrootdomain();
8184#endif
8185
d0b27fa7
PZ
8186 init_rt_bandwidth(&def_rt_bandwidth,
8187 global_rt_period(), global_rt_runtime());
8188
8189#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 8190 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 8191 global_rt_period(), global_rt_runtime());
6d6bc0ad 8192#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8193
7c941438 8194#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
8195 list_add(&root_task_group.list, &task_groups);
8196 INIT_LIST_HEAD(&root_task_group.children);
5091faa4 8197 autogroup_init(&init_task);
7c941438 8198#endif /* CONFIG_CGROUP_SCHED */
6f505b16 8199
0a945022 8200 for_each_possible_cpu(i) {
70b97a7f 8201 struct rq *rq;
1da177e4
LT
8202
8203 rq = cpu_rq(i);
05fa785c 8204 raw_spin_lock_init(&rq->lock);
7897986b 8205 rq->nr_running = 0;
dce48a84
TG
8206 rq->calc_load_active = 0;
8207 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 8208 init_cfs_rq(&rq->cfs);
6f505b16 8209 init_rt_rq(&rq->rt, rq);
dd41f596 8210#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 8211 root_task_group.shares = root_task_group_load;
6f505b16 8212 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 8213 /*
07e06b01 8214 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
8215 *
8216 * In case of task-groups formed thr' the cgroup filesystem, it
8217 * gets 100% of the cpu resources in the system. This overall
8218 * system cpu resource is divided among the tasks of
07e06b01 8219 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
8220 * based on each entity's (task or task-group's) weight
8221 * (se->load.weight).
8222 *
07e06b01 8223 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
8224 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8225 * then A0's share of the cpu resource is:
8226 *
0d905bca 8227 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 8228 *
07e06b01
YZ
8229 * We achieve this by letting root_task_group's tasks sit
8230 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 8231 */
ab84d31e 8232 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 8233 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
8234#endif /* CONFIG_FAIR_GROUP_SCHED */
8235
8236 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8237#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8238 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 8239 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 8240#endif
1da177e4 8241
dd41f596
IM
8242 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8243 rq->cpu_load[j] = 0;
fdf3e95d
VP
8244
8245 rq->last_load_update_tick = jiffies;
8246
1da177e4 8247#ifdef CONFIG_SMP
41c7ce9a 8248 rq->sd = NULL;
57d885fe 8249 rq->rd = NULL;
1399fa78 8250 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 8251 rq->post_schedule = 0;
1da177e4 8252 rq->active_balance = 0;
dd41f596 8253 rq->next_balance = jiffies;
1da177e4 8254 rq->push_cpu = 0;
0a2966b4 8255 rq->cpu = i;
1f11eb6a 8256 rq->online = 0;
eae0c9df
MG
8257 rq->idle_stamp = 0;
8258 rq->avg_idle = 2*sysctl_sched_migration_cost;
dc938520 8259 rq_attach_root(rq, &def_root_domain);
83cd4fe2
VP
8260#ifdef CONFIG_NO_HZ
8261 rq->nohz_balance_kick = 0;
8262 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8263#endif
1da177e4 8264#endif
8f4d37ec 8265 init_rq_hrtick(rq);
1da177e4 8266 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8267 }
8268
2dd73a4f 8269 set_load_weight(&init_task);
b50f60ce 8270
e107be36
AK
8271#ifdef CONFIG_PREEMPT_NOTIFIERS
8272 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8273#endif
8274
c9819f45 8275#ifdef CONFIG_SMP
962cf36c 8276 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8277#endif
8278
b50f60ce 8279#ifdef CONFIG_RT_MUTEXES
732375c6 8280 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
8281#endif
8282
1da177e4
LT
8283 /*
8284 * The boot idle thread does lazy MMU switching as well:
8285 */
8286 atomic_inc(&init_mm.mm_count);
8287 enter_lazy_tlb(&init_mm, current);
8288
8289 /*
8290 * Make us the idle thread. Technically, schedule() should not be
8291 * called from this thread, however somewhere below it might be,
8292 * but because we are the idle thread, we just pick up running again
8293 * when this runqueue becomes "idle".
8294 */
8295 init_idle(current, smp_processor_id());
dce48a84
TG
8296
8297 calc_load_update = jiffies + LOAD_FREQ;
8298
dd41f596
IM
8299 /*
8300 * During early bootup we pretend to be a normal task:
8301 */
8302 current->sched_class = &fair_sched_class;
6892b75e 8303
6a7b3dc3 8304 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 8305 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 8306#ifdef CONFIG_SMP
4cb98839 8307 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7d1e6a9b 8308#ifdef CONFIG_NO_HZ
83cd4fe2
VP
8309 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8310 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8311 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8312 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8313 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7d1e6a9b 8314#endif
bdddd296
RR
8315 /* May be allocated at isolcpus cmdline parse time */
8316 if (cpu_isolated_map == NULL)
8317 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 8318#endif /* SMP */
6a7b3dc3 8319
6892b75e 8320 scheduler_running = 1;
1da177e4
LT
8321}
8322
d902db1e 8323#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
8324static inline int preempt_count_equals(int preempt_offset)
8325{
234da7bc 8326 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 8327
4ba8216c 8328 return (nested == preempt_offset);
e4aafea2
FW
8329}
8330
d894837f 8331void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 8332{
1da177e4
LT
8333 static unsigned long prev_jiffy; /* ratelimiting */
8334
e4aafea2
FW
8335 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8336 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
8337 return;
8338 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8339 return;
8340 prev_jiffy = jiffies;
8341
3df0fc5b
PZ
8342 printk(KERN_ERR
8343 "BUG: sleeping function called from invalid context at %s:%d\n",
8344 file, line);
8345 printk(KERN_ERR
8346 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8347 in_atomic(), irqs_disabled(),
8348 current->pid, current->comm);
aef745fc
IM
8349
8350 debug_show_held_locks(current);
8351 if (irqs_disabled())
8352 print_irqtrace_events(current);
8353 dump_stack();
1da177e4
LT
8354}
8355EXPORT_SYMBOL(__might_sleep);
8356#endif
8357
8358#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8359static void normalize_task(struct rq *rq, struct task_struct *p)
8360{
da7a735e
PZ
8361 const struct sched_class *prev_class = p->sched_class;
8362 int old_prio = p->prio;
3a5e4dc1 8363 int on_rq;
3e51f33f 8364
fd2f4419 8365 on_rq = p->on_rq;
3a5e4dc1
AK
8366 if (on_rq)
8367 deactivate_task(rq, p, 0);
8368 __setscheduler(rq, p, SCHED_NORMAL, 0);
8369 if (on_rq) {
8370 activate_task(rq, p, 0);
8371 resched_task(rq->curr);
8372 }
da7a735e
PZ
8373
8374 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
8375}
8376
1da177e4
LT
8377void normalize_rt_tasks(void)
8378{
a0f98a1c 8379 struct task_struct *g, *p;
1da177e4 8380 unsigned long flags;
70b97a7f 8381 struct rq *rq;
1da177e4 8382
4cf5d77a 8383 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8384 do_each_thread(g, p) {
178be793
IM
8385 /*
8386 * Only normalize user tasks:
8387 */
8388 if (!p->mm)
8389 continue;
8390
6cfb0d5d 8391 p->se.exec_start = 0;
6cfb0d5d 8392#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
8393 p->se.statistics.wait_start = 0;
8394 p->se.statistics.sleep_start = 0;
8395 p->se.statistics.block_start = 0;
6cfb0d5d 8396#endif
dd41f596
IM
8397
8398 if (!rt_task(p)) {
8399 /*
8400 * Renice negative nice level userspace
8401 * tasks back to 0:
8402 */
8403 if (TASK_NICE(p) < 0 && p->mm)
8404 set_user_nice(p, 0);
1da177e4 8405 continue;
dd41f596 8406 }
1da177e4 8407
1d615482 8408 raw_spin_lock(&p->pi_lock);
b29739f9 8409 rq = __task_rq_lock(p);
1da177e4 8410
178be793 8411 normalize_task(rq, p);
3a5e4dc1 8412
b29739f9 8413 __task_rq_unlock(rq);
1d615482 8414 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
8415 } while_each_thread(g, p);
8416
4cf5d77a 8417 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8418}
8419
8420#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 8421
67fc4e0c 8422#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 8423/*
67fc4e0c 8424 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
8425 *
8426 * They can only be called when the whole system has been
8427 * stopped - every CPU needs to be quiescent, and no scheduling
8428 * activity can take place. Using them for anything else would
8429 * be a serious bug, and as a result, they aren't even visible
8430 * under any other configuration.
8431 */
8432
8433/**
8434 * curr_task - return the current task for a given cpu.
8435 * @cpu: the processor in question.
8436 *
8437 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8438 */
36c8b586 8439struct task_struct *curr_task(int cpu)
1df5c10a
LT
8440{
8441 return cpu_curr(cpu);
8442}
8443
67fc4e0c
JW
8444#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8445
8446#ifdef CONFIG_IA64
1df5c10a
LT
8447/**
8448 * set_curr_task - set the current task for a given cpu.
8449 * @cpu: the processor in question.
8450 * @p: the task pointer to set.
8451 *
8452 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8453 * are serviced on a separate stack. It allows the architecture to switch the
8454 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8455 * must be called with all CPU's synchronized, and interrupts disabled, the
8456 * and caller must save the original value of the current task (see
8457 * curr_task() above) and restore that value before reenabling interrupts and
8458 * re-starting the system.
8459 *
8460 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8461 */
36c8b586 8462void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8463{
8464 cpu_curr(cpu) = p;
8465}
8466
8467#endif
29f59db3 8468
bccbe08a
PZ
8469#ifdef CONFIG_FAIR_GROUP_SCHED
8470static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8471{
8472 int i;
8473
ab84d31e
PT
8474 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8475
6f505b16
PZ
8476 for_each_possible_cpu(i) {
8477 if (tg->cfs_rq)
8478 kfree(tg->cfs_rq[i]);
8479 if (tg->se)
8480 kfree(tg->se[i]);
6f505b16
PZ
8481 }
8482
8483 kfree(tg->cfs_rq);
8484 kfree(tg->se);
6f505b16
PZ
8485}
8486
ec7dc8ac
DG
8487static
8488int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8489{
29f59db3 8490 struct cfs_rq *cfs_rq;
eab17229 8491 struct sched_entity *se;
29f59db3
SV
8492 int i;
8493
434d53b0 8494 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8495 if (!tg->cfs_rq)
8496 goto err;
434d53b0 8497 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8498 if (!tg->se)
8499 goto err;
052f1dc7
PZ
8500
8501 tg->shares = NICE_0_LOAD;
29f59db3 8502
ab84d31e
PT
8503 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8504
29f59db3 8505 for_each_possible_cpu(i) {
eab17229
LZ
8506 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8507 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8508 if (!cfs_rq)
8509 goto err;
8510
eab17229
LZ
8511 se = kzalloc_node(sizeof(struct sched_entity),
8512 GFP_KERNEL, cpu_to_node(i));
29f59db3 8513 if (!se)
dfc12eb2 8514 goto err_free_rq;
29f59db3 8515
acb5a9ba 8516 init_cfs_rq(cfs_rq);
3d4b47b4 8517 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
bccbe08a
PZ
8518 }
8519
8520 return 1;
8521
49246274 8522err_free_rq:
dfc12eb2 8523 kfree(cfs_rq);
49246274 8524err:
bccbe08a
PZ
8525 return 0;
8526}
8527
bccbe08a
PZ
8528static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8529{
3d4b47b4
PZ
8530 struct rq *rq = cpu_rq(cpu);
8531 unsigned long flags;
3d4b47b4
PZ
8532
8533 /*
8534 * Only empty task groups can be destroyed; so we can speculatively
8535 * check on_list without danger of it being re-added.
8536 */
8537 if (!tg->cfs_rq[cpu]->on_list)
8538 return;
8539
8540 raw_spin_lock_irqsave(&rq->lock, flags);
822bc180 8541 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
3d4b47b4 8542 raw_spin_unlock_irqrestore(&rq->lock, flags);
bccbe08a 8543}
5f817d67 8544#else /* !CONFIG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8545static inline void free_fair_sched_group(struct task_group *tg)
8546{
8547}
8548
ec7dc8ac
DG
8549static inline
8550int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8551{
8552 return 1;
8553}
8554
bccbe08a
PZ
8555static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8556{
8557}
6d6bc0ad 8558#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8559
8560#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8561static void free_rt_sched_group(struct task_group *tg)
8562{
8563 int i;
8564
99bc5242
BL
8565 if (tg->rt_se)
8566 destroy_rt_bandwidth(&tg->rt_bandwidth);
d0b27fa7 8567
bccbe08a
PZ
8568 for_each_possible_cpu(i) {
8569 if (tg->rt_rq)
8570 kfree(tg->rt_rq[i]);
8571 if (tg->rt_se)
8572 kfree(tg->rt_se[i]);
8573 }
8574
8575 kfree(tg->rt_rq);
8576 kfree(tg->rt_se);
8577}
8578
ec7dc8ac
DG
8579static
8580int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8581{
8582 struct rt_rq *rt_rq;
eab17229 8583 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8584 int i;
8585
434d53b0 8586 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8587 if (!tg->rt_rq)
8588 goto err;
434d53b0 8589 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8590 if (!tg->rt_se)
8591 goto err;
8592
d0b27fa7
PZ
8593 init_rt_bandwidth(&tg->rt_bandwidth,
8594 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8595
8596 for_each_possible_cpu(i) {
eab17229
LZ
8597 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8598 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8599 if (!rt_rq)
8600 goto err;
29f59db3 8601
eab17229
LZ
8602 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8603 GFP_KERNEL, cpu_to_node(i));
6f505b16 8604 if (!rt_se)
dfc12eb2 8605 goto err_free_rq;
29f59db3 8606
acb5a9ba
JS
8607 init_rt_rq(rt_rq, cpu_rq(i));
8608 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
3d4b47b4 8609 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
29f59db3
SV
8610 }
8611
bccbe08a
PZ
8612 return 1;
8613
49246274 8614err_free_rq:
dfc12eb2 8615 kfree(rt_rq);
49246274 8616err:
bccbe08a
PZ
8617 return 0;
8618}
6d6bc0ad 8619#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8620static inline void free_rt_sched_group(struct task_group *tg)
8621{
8622}
8623
ec7dc8ac
DG
8624static inline
8625int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8626{
8627 return 1;
8628}
6d6bc0ad 8629#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8630
7c941438 8631#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8632static void free_sched_group(struct task_group *tg)
8633{
8634 free_fair_sched_group(tg);
8635 free_rt_sched_group(tg);
e9aa1dd1 8636 autogroup_free(tg);
bccbe08a
PZ
8637 kfree(tg);
8638}
8639
8640/* allocate runqueue etc for a new task group */
ec7dc8ac 8641struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8642{
8643 struct task_group *tg;
8644 unsigned long flags;
bccbe08a
PZ
8645
8646 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8647 if (!tg)
8648 return ERR_PTR(-ENOMEM);
8649
ec7dc8ac 8650 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8651 goto err;
8652
ec7dc8ac 8653 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8654 goto err;
8655
8ed36996 8656 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8657 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8658
8659 WARN_ON(!parent); /* root should already exist */
8660
8661 tg->parent = parent;
f473aa5e 8662 INIT_LIST_HEAD(&tg->children);
09f2724a 8663 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8664 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8665
9b5b7751 8666 return tg;
29f59db3
SV
8667
8668err:
6f505b16 8669 free_sched_group(tg);
29f59db3
SV
8670 return ERR_PTR(-ENOMEM);
8671}
8672
9b5b7751 8673/* rcu callback to free various structures associated with a task group */
6f505b16 8674static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8675{
29f59db3 8676 /* now it should be safe to free those cfs_rqs */
6f505b16 8677 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8678}
8679
9b5b7751 8680/* Destroy runqueue etc associated with a task group */
4cf86d77 8681void sched_destroy_group(struct task_group *tg)
29f59db3 8682{
8ed36996 8683 unsigned long flags;
9b5b7751 8684 int i;
29f59db3 8685
3d4b47b4
PZ
8686 /* end participation in shares distribution */
8687 for_each_possible_cpu(i)
bccbe08a 8688 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
8689
8690 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 8691 list_del_rcu(&tg->list);
f473aa5e 8692 list_del_rcu(&tg->siblings);
8ed36996 8693 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8694
9b5b7751 8695 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8696 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8697}
8698
9b5b7751 8699/* change task's runqueue when it moves between groups.
3a252015
IM
8700 * The caller of this function should have put the task in its new group
8701 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8702 * reflect its new group.
9b5b7751
SV
8703 */
8704void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8705{
8706 int on_rq, running;
8707 unsigned long flags;
8708 struct rq *rq;
8709
8710 rq = task_rq_lock(tsk, &flags);
8711
051a1d1a 8712 running = task_current(rq, tsk);
fd2f4419 8713 on_rq = tsk->on_rq;
29f59db3 8714
0e1f3483 8715 if (on_rq)
29f59db3 8716 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8717 if (unlikely(running))
8718 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8719
810b3817 8720#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
8721 if (tsk->sched_class->task_move_group)
8722 tsk->sched_class->task_move_group(tsk, on_rq);
8723 else
810b3817 8724#endif
b2b5ce02 8725 set_task_rq(tsk, task_cpu(tsk));
810b3817 8726
0e1f3483
HS
8727 if (unlikely(running))
8728 tsk->sched_class->set_curr_task(rq);
8729 if (on_rq)
371fd7e7 8730 enqueue_task(rq, tsk, 0);
29f59db3 8731
0122ec5b 8732 task_rq_unlock(rq, tsk, &flags);
29f59db3 8733}
7c941438 8734#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8735
052f1dc7 8736#ifdef CONFIG_FAIR_GROUP_SCHED
8ed36996
PZ
8737static DEFINE_MUTEX(shares_mutex);
8738
4cf86d77 8739int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8740{
8741 int i;
8ed36996 8742 unsigned long flags;
c61935fd 8743
ec7dc8ac
DG
8744 /*
8745 * We can't change the weight of the root cgroup.
8746 */
8747 if (!tg->se[0])
8748 return -EINVAL;
8749
cd62287e 8750 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
62fb1851 8751
8ed36996 8752 mutex_lock(&shares_mutex);
9b5b7751 8753 if (tg->shares == shares)
5cb350ba 8754 goto done;
29f59db3 8755
9b5b7751 8756 tg->shares = shares;
c09595f6 8757 for_each_possible_cpu(i) {
9437178f
PT
8758 struct rq *rq = cpu_rq(i);
8759 struct sched_entity *se;
8760
8761 se = tg->se[i];
8762 /* Propagate contribution to hierarchy */
8763 raw_spin_lock_irqsave(&rq->lock, flags);
8764 for_each_sched_entity(se)
6d5ab293 8765 update_cfs_shares(group_cfs_rq(se));
9437178f 8766 raw_spin_unlock_irqrestore(&rq->lock, flags);
c09595f6 8767 }
29f59db3 8768
5cb350ba 8769done:
8ed36996 8770 mutex_unlock(&shares_mutex);
9b5b7751 8771 return 0;
29f59db3
SV
8772}
8773
5cb350ba
DG
8774unsigned long sched_group_shares(struct task_group *tg)
8775{
8776 return tg->shares;
8777}
052f1dc7 8778#endif
5cb350ba 8779
a790de99 8780#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
8781static unsigned long to_ratio(u64 period, u64 runtime)
8782{
8783 if (runtime == RUNTIME_INF)
9a7e0b18 8784 return 1ULL << 20;
9f0c1e56 8785
9a7e0b18 8786 return div64_u64(runtime << 20, period);
9f0c1e56 8787}
a790de99
PT
8788#endif
8789
8790#ifdef CONFIG_RT_GROUP_SCHED
8791/*
8792 * Ensure that the real time constraints are schedulable.
8793 */
8794static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 8795
9a7e0b18
PZ
8796/* Must be called with tasklist_lock held */
8797static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8798{
9a7e0b18 8799 struct task_struct *g, *p;
b40b2e8e 8800
9a7e0b18
PZ
8801 do_each_thread(g, p) {
8802 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8803 return 1;
8804 } while_each_thread(g, p);
b40b2e8e 8805
9a7e0b18
PZ
8806 return 0;
8807}
b40b2e8e 8808
9a7e0b18
PZ
8809struct rt_schedulable_data {
8810 struct task_group *tg;
8811 u64 rt_period;
8812 u64 rt_runtime;
8813};
b40b2e8e 8814
a790de99 8815static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
8816{
8817 struct rt_schedulable_data *d = data;
8818 struct task_group *child;
8819 unsigned long total, sum = 0;
8820 u64 period, runtime;
b40b2e8e 8821
9a7e0b18
PZ
8822 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8823 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8824
9a7e0b18
PZ
8825 if (tg == d->tg) {
8826 period = d->rt_period;
8827 runtime = d->rt_runtime;
b40b2e8e 8828 }
b40b2e8e 8829
4653f803
PZ
8830 /*
8831 * Cannot have more runtime than the period.
8832 */
8833 if (runtime > period && runtime != RUNTIME_INF)
8834 return -EINVAL;
6f505b16 8835
4653f803
PZ
8836 /*
8837 * Ensure we don't starve existing RT tasks.
8838 */
9a7e0b18
PZ
8839 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8840 return -EBUSY;
6f505b16 8841
9a7e0b18 8842 total = to_ratio(period, runtime);
6f505b16 8843
4653f803
PZ
8844 /*
8845 * Nobody can have more than the global setting allows.
8846 */
8847 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8848 return -EINVAL;
6f505b16 8849
4653f803
PZ
8850 /*
8851 * The sum of our children's runtime should not exceed our own.
8852 */
9a7e0b18
PZ
8853 list_for_each_entry_rcu(child, &tg->children, siblings) {
8854 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8855 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8856
9a7e0b18
PZ
8857 if (child == d->tg) {
8858 period = d->rt_period;
8859 runtime = d->rt_runtime;
8860 }
6f505b16 8861
9a7e0b18 8862 sum += to_ratio(period, runtime);
9f0c1e56 8863 }
6f505b16 8864
9a7e0b18
PZ
8865 if (sum > total)
8866 return -EINVAL;
8867
8868 return 0;
6f505b16
PZ
8869}
8870
9a7e0b18 8871static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8872{
9a7e0b18
PZ
8873 struct rt_schedulable_data data = {
8874 .tg = tg,
8875 .rt_period = period,
8876 .rt_runtime = runtime,
8877 };
8878
a790de99 8879 return walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
521f1a24
DG
8880}
8881
ab84d31e 8882static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8883 u64 rt_period, u64 rt_runtime)
6f505b16 8884{
ac086bc2 8885 int i, err = 0;
9f0c1e56 8886
9f0c1e56 8887 mutex_lock(&rt_constraints_mutex);
521f1a24 8888 read_lock(&tasklist_lock);
9a7e0b18
PZ
8889 err = __rt_schedulable(tg, rt_period, rt_runtime);
8890 if (err)
9f0c1e56 8891 goto unlock;
ac086bc2 8892
0986b11b 8893 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8894 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8895 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8896
8897 for_each_possible_cpu(i) {
8898 struct rt_rq *rt_rq = tg->rt_rq[i];
8899
0986b11b 8900 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8901 rt_rq->rt_runtime = rt_runtime;
0986b11b 8902 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8903 }
0986b11b 8904 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8905unlock:
521f1a24 8906 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8907 mutex_unlock(&rt_constraints_mutex);
8908
8909 return err;
6f505b16
PZ
8910}
8911
d0b27fa7
PZ
8912int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8913{
8914 u64 rt_runtime, rt_period;
8915
8916 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8917 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8918 if (rt_runtime_us < 0)
8919 rt_runtime = RUNTIME_INF;
8920
ab84d31e 8921 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8922}
8923
9f0c1e56
PZ
8924long sched_group_rt_runtime(struct task_group *tg)
8925{
8926 u64 rt_runtime_us;
8927
d0b27fa7 8928 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8929 return -1;
8930
d0b27fa7 8931 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8932 do_div(rt_runtime_us, NSEC_PER_USEC);
8933 return rt_runtime_us;
8934}
d0b27fa7
PZ
8935
8936int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8937{
8938 u64 rt_runtime, rt_period;
8939
8940 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8941 rt_runtime = tg->rt_bandwidth.rt_runtime;
8942
619b0488
R
8943 if (rt_period == 0)
8944 return -EINVAL;
8945
ab84d31e 8946 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8947}
8948
8949long sched_group_rt_period(struct task_group *tg)
8950{
8951 u64 rt_period_us;
8952
8953 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8954 do_div(rt_period_us, NSEC_PER_USEC);
8955 return rt_period_us;
8956}
8957
8958static int sched_rt_global_constraints(void)
8959{
4653f803 8960 u64 runtime, period;
d0b27fa7
PZ
8961 int ret = 0;
8962
ec5d4989
HS
8963 if (sysctl_sched_rt_period <= 0)
8964 return -EINVAL;
8965
4653f803
PZ
8966 runtime = global_rt_runtime();
8967 period = global_rt_period();
8968
8969 /*
8970 * Sanity check on the sysctl variables.
8971 */
8972 if (runtime > period && runtime != RUNTIME_INF)
8973 return -EINVAL;
10b612f4 8974
d0b27fa7 8975 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8976 read_lock(&tasklist_lock);
4653f803 8977 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8978 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8979 mutex_unlock(&rt_constraints_mutex);
8980
8981 return ret;
8982}
54e99124
DG
8983
8984int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8985{
8986 /* Don't accept realtime tasks when there is no way for them to run */
8987 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8988 return 0;
8989
8990 return 1;
8991}
8992
6d6bc0ad 8993#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8994static int sched_rt_global_constraints(void)
8995{
ac086bc2
PZ
8996 unsigned long flags;
8997 int i;
8998
ec5d4989
HS
8999 if (sysctl_sched_rt_period <= 0)
9000 return -EINVAL;
9001
60aa605d
PZ
9002 /*
9003 * There's always some RT tasks in the root group
9004 * -- migration, kstopmachine etc..
9005 */
9006 if (sysctl_sched_rt_runtime == 0)
9007 return -EBUSY;
9008
0986b11b 9009 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
9010 for_each_possible_cpu(i) {
9011 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9012
0986b11b 9013 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 9014 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 9015 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 9016 }
0986b11b 9017 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 9018
d0b27fa7
PZ
9019 return 0;
9020}
6d6bc0ad 9021#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9022
9023int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 9024 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
9025 loff_t *ppos)
9026{
9027 int ret;
9028 int old_period, old_runtime;
9029 static DEFINE_MUTEX(mutex);
9030
9031 mutex_lock(&mutex);
9032 old_period = sysctl_sched_rt_period;
9033 old_runtime = sysctl_sched_rt_runtime;
9034
8d65af78 9035 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
9036
9037 if (!ret && write) {
9038 ret = sched_rt_global_constraints();
9039 if (ret) {
9040 sysctl_sched_rt_period = old_period;
9041 sysctl_sched_rt_runtime = old_runtime;
9042 } else {
9043 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9044 def_rt_bandwidth.rt_period =
9045 ns_to_ktime(global_rt_period());
9046 }
9047 }
9048 mutex_unlock(&mutex);
9049
9050 return ret;
9051}
68318b8e 9052
052f1dc7 9053#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9054
9055/* return corresponding task_group object of a cgroup */
2b01dfe3 9056static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9057{
2b01dfe3
PM
9058 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9059 struct task_group, css);
68318b8e
SV
9060}
9061
9062static struct cgroup_subsys_state *
2b01dfe3 9063cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9064{
ec7dc8ac 9065 struct task_group *tg, *parent;
68318b8e 9066
2b01dfe3 9067 if (!cgrp->parent) {
68318b8e 9068 /* This is early initialization for the top cgroup */
07e06b01 9069 return &root_task_group.css;
68318b8e
SV
9070 }
9071
ec7dc8ac
DG
9072 parent = cgroup_tg(cgrp->parent);
9073 tg = sched_create_group(parent);
68318b8e
SV
9074 if (IS_ERR(tg))
9075 return ERR_PTR(-ENOMEM);
9076
68318b8e
SV
9077 return &tg->css;
9078}
9079
41a2d6cf
IM
9080static void
9081cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9082{
2b01dfe3 9083 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9084
9085 sched_destroy_group(tg);
9086}
9087
41a2d6cf 9088static int
be367d09 9089cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 9090{
b68aa230 9091#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9092 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9093 return -EINVAL;
9094#else
68318b8e
SV
9095 /* We don't support RT-tasks being in separate groups */
9096 if (tsk->sched_class != &fair_sched_class)
9097 return -EINVAL;
b68aa230 9098#endif
be367d09
BB
9099 return 0;
9100}
68318b8e 9101
68318b8e 9102static void
f780bdb7 9103cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
9104{
9105 sched_move_task(tsk);
9106}
9107
068c5cc5 9108static void
d41d5a01
PZ
9109cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9110 struct cgroup *old_cgrp, struct task_struct *task)
068c5cc5
PZ
9111{
9112 /*
9113 * cgroup_exit() is called in the copy_process() failure path.
9114 * Ignore this case since the task hasn't ran yet, this avoids
9115 * trying to poke a half freed task state from generic code.
9116 */
9117 if (!(task->flags & PF_EXITING))
9118 return;
9119
9120 sched_move_task(task);
9121}
9122
052f1dc7 9123#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9124static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9125 u64 shareval)
68318b8e 9126{
c8b28116 9127 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
9128}
9129
f4c753b7 9130static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9131{
2b01dfe3 9132 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 9133
c8b28116 9134 return (u64) scale_load_down(tg->shares);
68318b8e 9135}
ab84d31e
PT
9136
9137#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
9138static DEFINE_MUTEX(cfs_constraints_mutex);
9139
ab84d31e
PT
9140const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9141const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9142
a790de99
PT
9143static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9144
ab84d31e
PT
9145static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9146{
58088ad0 9147 int i, ret = 0, runtime_enabled;
ab84d31e 9148 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
ab84d31e
PT
9149
9150 if (tg == &root_task_group)
9151 return -EINVAL;
9152
9153 /*
9154 * Ensure we have at some amount of bandwidth every period. This is
9155 * to prevent reaching a state of large arrears when throttled via
9156 * entity_tick() resulting in prolonged exit starvation.
9157 */
9158 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9159 return -EINVAL;
9160
9161 /*
9162 * Likewise, bound things on the otherside by preventing insane quota
9163 * periods. This also allows us to normalize in computing quota
9164 * feasibility.
9165 */
9166 if (period > max_cfs_quota_period)
9167 return -EINVAL;
9168
a790de99
PT
9169 mutex_lock(&cfs_constraints_mutex);
9170 ret = __cfs_schedulable(tg, period, quota);
9171 if (ret)
9172 goto out_unlock;
9173
58088ad0 9174 runtime_enabled = quota != RUNTIME_INF;
ab84d31e
PT
9175 raw_spin_lock_irq(&cfs_b->lock);
9176 cfs_b->period = ns_to_ktime(period);
9177 cfs_b->quota = quota;
58088ad0 9178
a9cf55b2 9179 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
9180 /* restart the period timer (if active) to handle new period expiry */
9181 if (runtime_enabled && cfs_b->timer_active) {
9182 /* force a reprogram */
9183 cfs_b->timer_active = 0;
9184 __start_cfs_bandwidth(cfs_b);
9185 }
ab84d31e
PT
9186 raw_spin_unlock_irq(&cfs_b->lock);
9187
9188 for_each_possible_cpu(i) {
9189 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9190 struct rq *rq = rq_of(cfs_rq);
9191
9192 raw_spin_lock_irq(&rq->lock);
58088ad0 9193 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e
PT
9194 cfs_rq->runtime_remaining = 0;
9195 raw_spin_unlock_irq(&rq->lock);
9196 }
a790de99
PT
9197out_unlock:
9198 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 9199
a790de99 9200 return ret;
ab84d31e
PT
9201}
9202
9203int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9204{
9205 u64 quota, period;
9206
9207 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9208 if (cfs_quota_us < 0)
9209 quota = RUNTIME_INF;
9210 else
9211 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9212
9213 return tg_set_cfs_bandwidth(tg, period, quota);
9214}
9215
9216long tg_get_cfs_quota(struct task_group *tg)
9217{
9218 u64 quota_us;
9219
9220 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9221 return -1;
9222
9223 quota_us = tg_cfs_bandwidth(tg)->quota;
9224 do_div(quota_us, NSEC_PER_USEC);
9225
9226 return quota_us;
9227}
9228
9229int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9230{
9231 u64 quota, period;
9232
9233 period = (u64)cfs_period_us * NSEC_PER_USEC;
9234 quota = tg_cfs_bandwidth(tg)->quota;
9235
9236 if (period <= 0)
9237 return -EINVAL;
9238
9239 return tg_set_cfs_bandwidth(tg, period, quota);
9240}
9241
9242long tg_get_cfs_period(struct task_group *tg)
9243{
9244 u64 cfs_period_us;
9245
9246 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9247 do_div(cfs_period_us, NSEC_PER_USEC);
9248
9249 return cfs_period_us;
9250}
9251
9252static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9253{
9254 return tg_get_cfs_quota(cgroup_tg(cgrp));
9255}
9256
9257static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9258 s64 cfs_quota_us)
9259{
9260 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9261}
9262
9263static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9264{
9265 return tg_get_cfs_period(cgroup_tg(cgrp));
9266}
9267
9268static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9269 u64 cfs_period_us)
9270{
9271 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9272}
9273
a790de99
PT
9274struct cfs_schedulable_data {
9275 struct task_group *tg;
9276 u64 period, quota;
9277};
9278
9279/*
9280 * normalize group quota/period to be quota/max_period
9281 * note: units are usecs
9282 */
9283static u64 normalize_cfs_quota(struct task_group *tg,
9284 struct cfs_schedulable_data *d)
9285{
9286 u64 quota, period;
9287
9288 if (tg == d->tg) {
9289 period = d->period;
9290 quota = d->quota;
9291 } else {
9292 period = tg_get_cfs_period(tg);
9293 quota = tg_get_cfs_quota(tg);
9294 }
9295
9296 /* note: these should typically be equivalent */
9297 if (quota == RUNTIME_INF || quota == -1)
9298 return RUNTIME_INF;
9299
9300 return to_ratio(period, quota);
9301}
9302
9303static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9304{
9305 struct cfs_schedulable_data *d = data;
9306 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9307 s64 quota = 0, parent_quota = -1;
9308
9309 if (!tg->parent) {
9310 quota = RUNTIME_INF;
9311 } else {
9312 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9313
9314 quota = normalize_cfs_quota(tg, d);
9315 parent_quota = parent_b->hierarchal_quota;
9316
9317 /*
9318 * ensure max(child_quota) <= parent_quota, inherit when no
9319 * limit is set
9320 */
9321 if (quota == RUNTIME_INF)
9322 quota = parent_quota;
9323 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9324 return -EINVAL;
9325 }
9326 cfs_b->hierarchal_quota = quota;
9327
9328 return 0;
9329}
9330
9331static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9332{
9333 struct cfs_schedulable_data data = {
9334 .tg = tg,
9335 .period = period,
9336 .quota = quota,
9337 };
9338
9339 if (quota != RUNTIME_INF) {
9340 do_div(data.period, NSEC_PER_USEC);
9341 do_div(data.quota, NSEC_PER_USEC);
9342 }
9343
9344 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9345}
ab84d31e 9346#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 9347#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9348
052f1dc7 9349#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9350static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9351 s64 val)
6f505b16 9352{
06ecb27c 9353 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9354}
9355
06ecb27c 9356static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9357{
06ecb27c 9358 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9359}
d0b27fa7
PZ
9360
9361static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9362 u64 rt_period_us)
9363{
9364 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9365}
9366
9367static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9368{
9369 return sched_group_rt_period(cgroup_tg(cgrp));
9370}
6d6bc0ad 9371#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9372
fe5c7cc2 9373static struct cftype cpu_files[] = {
052f1dc7 9374#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9375 {
9376 .name = "shares",
f4c753b7
PM
9377 .read_u64 = cpu_shares_read_u64,
9378 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9379 },
052f1dc7 9380#endif
ab84d31e
PT
9381#ifdef CONFIG_CFS_BANDWIDTH
9382 {
9383 .name = "cfs_quota_us",
9384 .read_s64 = cpu_cfs_quota_read_s64,
9385 .write_s64 = cpu_cfs_quota_write_s64,
9386 },
9387 {
9388 .name = "cfs_period_us",
9389 .read_u64 = cpu_cfs_period_read_u64,
9390 .write_u64 = cpu_cfs_period_write_u64,
9391 },
9392#endif
052f1dc7 9393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9394 {
9f0c1e56 9395 .name = "rt_runtime_us",
06ecb27c
PM
9396 .read_s64 = cpu_rt_runtime_read,
9397 .write_s64 = cpu_rt_runtime_write,
6f505b16 9398 },
d0b27fa7
PZ
9399 {
9400 .name = "rt_period_us",
f4c753b7
PM
9401 .read_u64 = cpu_rt_period_read_uint,
9402 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9403 },
052f1dc7 9404#endif
68318b8e
SV
9405};
9406
9407static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9408{
fe5c7cc2 9409 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9410}
9411
9412struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9413 .name = "cpu",
9414 .create = cpu_cgroup_create,
9415 .destroy = cpu_cgroup_destroy,
f780bdb7
BB
9416 .can_attach_task = cpu_cgroup_can_attach_task,
9417 .attach_task = cpu_cgroup_attach_task,
068c5cc5 9418 .exit = cpu_cgroup_exit,
38605cae
IM
9419 .populate = cpu_cgroup_populate,
9420 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9421 .early_init = 1,
9422};
9423
052f1dc7 9424#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9425
9426#ifdef CONFIG_CGROUP_CPUACCT
9427
9428/*
9429 * CPU accounting code for task groups.
9430 *
9431 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9432 * (balbir@in.ibm.com).
9433 */
9434
934352f2 9435/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9436struct cpuacct {
9437 struct cgroup_subsys_state css;
9438 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 9439 u64 __percpu *cpuusage;
ef12fefa 9440 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 9441 struct cpuacct *parent;
d842de87
SV
9442};
9443
9444struct cgroup_subsys cpuacct_subsys;
9445
9446/* return cpu accounting group corresponding to this container */
32cd756a 9447static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9448{
32cd756a 9449 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9450 struct cpuacct, css);
9451}
9452
9453/* return cpu accounting group to which this task belongs */
9454static inline struct cpuacct *task_ca(struct task_struct *tsk)
9455{
9456 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9457 struct cpuacct, css);
9458}
9459
9460/* create a new cpu accounting group */
9461static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9462 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9463{
9464 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 9465 int i;
d842de87
SV
9466
9467 if (!ca)
ef12fefa 9468 goto out;
d842de87
SV
9469
9470 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
9471 if (!ca->cpuusage)
9472 goto out_free_ca;
9473
9474 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9475 if (percpu_counter_init(&ca->cpustat[i], 0))
9476 goto out_free_counters;
d842de87 9477
934352f2
BR
9478 if (cgrp->parent)
9479 ca->parent = cgroup_ca(cgrp->parent);
9480
d842de87 9481 return &ca->css;
ef12fefa
BR
9482
9483out_free_counters:
9484 while (--i >= 0)
9485 percpu_counter_destroy(&ca->cpustat[i]);
9486 free_percpu(ca->cpuusage);
9487out_free_ca:
9488 kfree(ca);
9489out:
9490 return ERR_PTR(-ENOMEM);
d842de87
SV
9491}
9492
9493/* destroy an existing cpu accounting group */
41a2d6cf 9494static void
32cd756a 9495cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9496{
32cd756a 9497 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 9498 int i;
d842de87 9499
ef12fefa
BR
9500 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9501 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
9502 free_percpu(ca->cpuusage);
9503 kfree(ca);
9504}
9505
720f5498
KC
9506static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9507{
b36128c8 9508 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9509 u64 data;
9510
9511#ifndef CONFIG_64BIT
9512 /*
9513 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9514 */
05fa785c 9515 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9516 data = *cpuusage;
05fa785c 9517 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9518#else
9519 data = *cpuusage;
9520#endif
9521
9522 return data;
9523}
9524
9525static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9526{
b36128c8 9527 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9528
9529#ifndef CONFIG_64BIT
9530 /*
9531 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9532 */
05fa785c 9533 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 9534 *cpuusage = val;
05fa785c 9535 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
9536#else
9537 *cpuusage = val;
9538#endif
9539}
9540
d842de87 9541/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9542static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9543{
32cd756a 9544 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9545 u64 totalcpuusage = 0;
9546 int i;
9547
720f5498
KC
9548 for_each_present_cpu(i)
9549 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9550
9551 return totalcpuusage;
9552}
9553
0297b803
DG
9554static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9555 u64 reset)
9556{
9557 struct cpuacct *ca = cgroup_ca(cgrp);
9558 int err = 0;
9559 int i;
9560
9561 if (reset) {
9562 err = -EINVAL;
9563 goto out;
9564 }
9565
720f5498
KC
9566 for_each_present_cpu(i)
9567 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9568
0297b803
DG
9569out:
9570 return err;
9571}
9572
e9515c3c
KC
9573static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9574 struct seq_file *m)
9575{
9576 struct cpuacct *ca = cgroup_ca(cgroup);
9577 u64 percpu;
9578 int i;
9579
9580 for_each_present_cpu(i) {
9581 percpu = cpuacct_cpuusage_read(ca, i);
9582 seq_printf(m, "%llu ", (unsigned long long) percpu);
9583 }
9584 seq_printf(m, "\n");
9585 return 0;
9586}
9587
ef12fefa
BR
9588static const char *cpuacct_stat_desc[] = {
9589 [CPUACCT_STAT_USER] = "user",
9590 [CPUACCT_STAT_SYSTEM] = "system",
9591};
9592
9593static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9594 struct cgroup_map_cb *cb)
9595{
9596 struct cpuacct *ca = cgroup_ca(cgrp);
9597 int i;
9598
9599 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9600 s64 val = percpu_counter_read(&ca->cpustat[i]);
9601 val = cputime64_to_clock_t(val);
9602 cb->fill(cb, cpuacct_stat_desc[i], val);
9603 }
9604 return 0;
9605}
9606
d842de87
SV
9607static struct cftype files[] = {
9608 {
9609 .name = "usage",
f4c753b7
PM
9610 .read_u64 = cpuusage_read,
9611 .write_u64 = cpuusage_write,
d842de87 9612 },
e9515c3c
KC
9613 {
9614 .name = "usage_percpu",
9615 .read_seq_string = cpuacct_percpu_seq_read,
9616 },
ef12fefa
BR
9617 {
9618 .name = "stat",
9619 .read_map = cpuacct_stats_show,
9620 },
d842de87
SV
9621};
9622
32cd756a 9623static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9624{
32cd756a 9625 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9626}
9627
9628/*
9629 * charge this task's execution time to its accounting group.
9630 *
9631 * called with rq->lock held.
9632 */
9633static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9634{
9635 struct cpuacct *ca;
934352f2 9636 int cpu;
d842de87 9637
c40c6f85 9638 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9639 return;
9640
934352f2 9641 cpu = task_cpu(tsk);
a18b83b7
BR
9642
9643 rcu_read_lock();
9644
d842de87 9645 ca = task_ca(tsk);
d842de87 9646
934352f2 9647 for (; ca; ca = ca->parent) {
b36128c8 9648 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9649 *cpuusage += cputime;
9650 }
a18b83b7
BR
9651
9652 rcu_read_unlock();
d842de87
SV
9653}
9654
fa535a77
AB
9655/*
9656 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9657 * in cputime_t units. As a result, cpuacct_update_stats calls
9658 * percpu_counter_add with values large enough to always overflow the
9659 * per cpu batch limit causing bad SMP scalability.
9660 *
9661 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9662 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9663 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9664 */
9665#ifdef CONFIG_SMP
9666#define CPUACCT_BATCH \
9667 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9668#else
9669#define CPUACCT_BATCH 0
9670#endif
9671
ef12fefa
BR
9672/*
9673 * Charge the system/user time to the task's accounting group.
9674 */
9675static void cpuacct_update_stats(struct task_struct *tsk,
9676 enum cpuacct_stat_index idx, cputime_t val)
9677{
9678 struct cpuacct *ca;
fa535a77 9679 int batch = CPUACCT_BATCH;
ef12fefa
BR
9680
9681 if (unlikely(!cpuacct_subsys.active))
9682 return;
9683
9684 rcu_read_lock();
9685 ca = task_ca(tsk);
9686
9687 do {
fa535a77 9688 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9689 ca = ca->parent;
9690 } while (ca);
9691 rcu_read_unlock();
9692}
9693
d842de87
SV
9694struct cgroup_subsys cpuacct_subsys = {
9695 .name = "cpuacct",
9696 .create = cpuacct_create,
9697 .destroy = cpuacct_destroy,
9698 .populate = cpuacct_populate,
9699 .subsys_id = cpuacct_subsys_id,
9700};
9701#endif /* CONFIG_CGROUP_CPUACCT */