sched: Remove USER_SCHED
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
a8d154b0 80#define CREATE_TRACE_POINTS
ad8d75ff 81#include <trace/events/sched.h>
a8d154b0 82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
e05606d3
IM
122static inline int rt_policy(int policy)
123{
3f33a7ce 124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
125 return 1;
126 return 0;
127}
128
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
1da177e4 134/*
6aa645ea 135 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 136 */
6aa645ea
IM
137struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140};
141
d0b27fa7 142struct rt_bandwidth {
ea736ed5 143 /* nests inside the rq lock: */
0986b11b 144 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
d0b27fa7
PZ
148};
149
150static struct rt_bandwidth def_rt_bandwidth;
151
152static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155{
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173}
174
175static
176void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177{
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
0986b11b 181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 182
d0b27fa7
PZ
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
186}
187
c8bfff6d
KH
188static inline int rt_bandwidth_enabled(void)
189{
190 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
191}
192
193static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194{
195 ktime_t now;
196
cac64d00 197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
0986b11b 203 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 204 for (;;) {
7f1e2ca9
PZ
205 unsigned long delta;
206 ktime_t soft, hard;
207
d0b27fa7
PZ
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 218 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 219 }
0986b11b 220 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
221}
222
223#ifdef CONFIG_RT_GROUP_SCHED
224static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225{
226 hrtimer_cancel(&rt_b->rt_period_timer);
227}
228#endif
229
712555ee
HC
230/*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234static DEFINE_MUTEX(sched_domains_mutex);
235
7c941438 236#ifdef CONFIG_CGROUP_SCHED
29f59db3 237
68318b8e
SV
238#include <linux/cgroup.h>
239
29f59db3
SV
240struct cfs_rq;
241
6f505b16
PZ
242static LIST_HEAD(task_groups);
243
29f59db3 244/* task group related information */
4cf86d77 245struct task_group {
68318b8e 246 struct cgroup_subsys_state css;
6c415b92 247
052f1dc7 248#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
052f1dc7
PZ
254#endif
255
256#ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
d0b27fa7 260 struct rt_bandwidth rt_bandwidth;
052f1dc7 261#endif
6b2d7700 262
ae8393e5 263 struct rcu_head rcu;
6f505b16 264 struct list_head list;
f473aa5e
PZ
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
29f59db3
SV
269};
270
eff766a6 271#define root_task_group init_task_group
6f505b16 272
8ed36996 273/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
274 * a task group's cpu shares.
275 */
8ed36996 276static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 277
e9036b36
CG
278#ifdef CONFIG_FAIR_GROUP_SCHED
279
57310a98
PZ
280#ifdef CONFIG_SMP
281static int root_task_group_empty(void)
282{
283 return list_empty(&root_task_group.children);
284}
285#endif
286
052f1dc7 287# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 288
cb4ad1ff 289/*
2e084786
LJ
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
cb4ad1ff
MX
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
18d95a28 297#define MIN_SHARES 2
2e084786 298#define MAX_SHARES (1UL << 18)
18d95a28 299
052f1dc7
PZ
300static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301#endif
302
29f59db3 303/* Default task group.
3a252015 304 * Every task in system belong to this group at bootup.
29f59db3 305 */
434d53b0 306struct task_group init_task_group;
29f59db3
SV
307
308/* return group to which a task belongs */
4cf86d77 309static inline struct task_group *task_group(struct task_struct *p)
29f59db3 310{
4cf86d77 311 struct task_group *tg;
9b5b7751 312
7c941438 313#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
24e377a8 316#else
41a2d6cf 317 tg = &init_task_group;
24e377a8 318#endif
9b5b7751 319 return tg;
29f59db3
SV
320}
321
322/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 323static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 324{
052f1dc7 325#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
052f1dc7 328#endif
6f505b16 329
052f1dc7 330#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 333#endif
29f59db3
SV
334}
335
336#else
337
6f505b16 338static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
339static inline struct task_group *task_group(struct task_struct *p)
340{
341 return NULL;
342}
29f59db3 343
7c941438 344#endif /* CONFIG_CGROUP_SCHED */
29f59db3 345
6aa645ea
IM
346/* CFS-related fields in a runqueue */
347struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
6aa645ea 351 u64 exec_clock;
e9acbff6 352 u64 min_vruntime;
6aa645ea
IM
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
4a55bd5e
PZ
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
4793241b 364 struct sched_entity *curr, *next, *last;
ddc97297 365
5ac5c4d6 366 unsigned int nr_spread_over;
ddc97297 367
62160e3f 368#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
41a2d6cf
IM
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
41a2d6cf
IM
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
381
382#ifdef CONFIG_SMP
c09595f6 383 /*
c8cba857 384 * the part of load.weight contributed by tasks
c09595f6 385 */
c8cba857 386 unsigned long task_weight;
c09595f6 387
c8cba857
PZ
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
c09595f6 395
c8cba857
PZ
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
f1d239f7
PZ
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
c09595f6 405#endif
6aa645ea
IM
406#endif
407};
1da177e4 408
6aa645ea
IM
409/* Real-Time classes' related field in a runqueue: */
410struct rt_rq {
411 struct rt_prio_array active;
63489e45 412 unsigned long rt_nr_running;
052f1dc7 413#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
414 struct {
415 int curr; /* highest queued rt task prio */
398a153b 416#ifdef CONFIG_SMP
e864c499 417 int next; /* next highest */
398a153b 418#endif
e864c499 419 } highest_prio;
6f505b16 420#endif
fa85ae24 421#ifdef CONFIG_SMP
73fe6aae 422 unsigned long rt_nr_migratory;
a1ba4d8b 423 unsigned long rt_nr_total;
a22d7fc1 424 int overloaded;
917b627d 425 struct plist_head pushable_tasks;
fa85ae24 426#endif
6f505b16 427 int rt_throttled;
fa85ae24 428 u64 rt_time;
ac086bc2 429 u64 rt_runtime;
ea736ed5 430 /* Nests inside the rq lock: */
0986b11b 431 raw_spinlock_t rt_runtime_lock;
6f505b16 432
052f1dc7 433#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
434 unsigned long rt_nr_boosted;
435
6f505b16
PZ
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 struct sched_rt_entity *rt_se;
440#endif
6aa645ea
IM
441};
442
57d885fe
GH
443#ifdef CONFIG_SMP
444
445/*
446 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
57d885fe
GH
452 */
453struct root_domain {
454 atomic_t refcount;
c6c4927b
RR
455 cpumask_var_t span;
456 cpumask_var_t online;
637f5085 457
0eab9146 458 /*
637f5085
GH
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
c6c4927b 462 cpumask_var_t rto_mask;
0eab9146 463 atomic_t rto_count;
6e0534f2
GH
464#ifdef CONFIG_SMP
465 struct cpupri cpupri;
466#endif
57d885fe
GH
467};
468
dc938520
GH
469/*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
57d885fe
GH
473static struct root_domain def_root_domain;
474
475#endif
476
1da177e4
LT
477/*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
70b97a7f 484struct rq {
d8016491 485 /* runqueue lock: */
05fa785c 486 raw_spinlock_t lock;
1da177e4
LT
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
6aa645ea
IM
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
495#ifdef CONFIG_NO_HZ
496 unsigned char in_nohz_recently;
497#endif
d8016491
IM
498 /* capture load from *all* tasks on this cpu: */
499 struct load_weight load;
6aa645ea
IM
500 unsigned long nr_load_updates;
501 u64 nr_switches;
502
503 struct cfs_rq cfs;
6f505b16 504 struct rt_rq rt;
6f505b16 505
6aa645ea 506#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
507 /* list of leaf cfs_rq on this cpu: */
508 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
509#endif
510#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 511 struct list_head leaf_rt_rq_list;
1da177e4 512#endif
1da177e4
LT
513
514 /*
515 * This is part of a global counter where only the total sum
516 * over all CPUs matters. A task can increase this counter on
517 * one CPU and if it got migrated afterwards it may decrease
518 * it on another CPU. Always updated under the runqueue lock:
519 */
520 unsigned long nr_uninterruptible;
521
36c8b586 522 struct task_struct *curr, *idle;
c9819f45 523 unsigned long next_balance;
1da177e4 524 struct mm_struct *prev_mm;
6aa645ea 525
3e51f33f 526 u64 clock;
6aa645ea 527
1da177e4
LT
528 atomic_t nr_iowait;
529
530#ifdef CONFIG_SMP
0eab9146 531 struct root_domain *rd;
1da177e4
LT
532 struct sched_domain *sd;
533
a0a522ce 534 unsigned char idle_at_tick;
1da177e4 535 /* For active balancing */
3f029d3c 536 int post_schedule;
1da177e4
LT
537 int active_balance;
538 int push_cpu;
d8016491
IM
539 /* cpu of this runqueue: */
540 int cpu;
1f11eb6a 541 int online;
1da177e4 542
a8a51d5e 543 unsigned long avg_load_per_task;
1da177e4 544
36c8b586 545 struct task_struct *migration_thread;
1da177e4 546 struct list_head migration_queue;
e9e9250b
PZ
547
548 u64 rt_avg;
549 u64 age_stamp;
1b9508f6
MG
550 u64 idle_stamp;
551 u64 avg_idle;
1da177e4
LT
552#endif
553
dce48a84
TG
554 /* calc_load related fields */
555 unsigned long calc_load_update;
556 long calc_load_active;
557
8f4d37ec 558#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
559#ifdef CONFIG_SMP
560 int hrtick_csd_pending;
561 struct call_single_data hrtick_csd;
562#endif
8f4d37ec
PZ
563 struct hrtimer hrtick_timer;
564#endif
565
1da177e4
LT
566#ifdef CONFIG_SCHEDSTATS
567 /* latency stats */
568 struct sched_info rq_sched_info;
9c2c4802
KC
569 unsigned long long rq_cpu_time;
570 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
571
572 /* sys_sched_yield() stats */
480b9434 573 unsigned int yld_count;
1da177e4
LT
574
575 /* schedule() stats */
480b9434
KC
576 unsigned int sched_switch;
577 unsigned int sched_count;
578 unsigned int sched_goidle;
1da177e4
LT
579
580 /* try_to_wake_up() stats */
480b9434
KC
581 unsigned int ttwu_count;
582 unsigned int ttwu_local;
b8efb561
IM
583
584 /* BKL stats */
480b9434 585 unsigned int bkl_count;
1da177e4
LT
586#endif
587};
588
f34e3b61 589static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 590
7d478721
PZ
591static inline
592void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 593{
7d478721 594 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
595}
596
0a2966b4
CL
597static inline int cpu_of(struct rq *rq)
598{
599#ifdef CONFIG_SMP
600 return rq->cpu;
601#else
602 return 0;
603#endif
604}
605
674311d5
NP
606/*
607 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 608 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
609 *
610 * The domain tree of any CPU may only be accessed from within
611 * preempt-disabled sections.
612 */
48f24c4d
IM
613#define for_each_domain(cpu, __sd) \
614 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
615
616#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
617#define this_rq() (&__get_cpu_var(runqueues))
618#define task_rq(p) cpu_rq(task_cpu(p))
619#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 620#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 621
aa9c4c0f 622inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
623{
624 rq->clock = sched_clock_cpu(cpu_of(rq));
625}
626
bf5c91ba
IM
627/*
628 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
629 */
630#ifdef CONFIG_SCHED_DEBUG
631# define const_debug __read_mostly
632#else
633# define const_debug static const
634#endif
635
017730c1
IM
636/**
637 * runqueue_is_locked
e17b38bf 638 * @cpu: the processor in question.
017730c1
IM
639 *
640 * Returns true if the current cpu runqueue is locked.
641 * This interface allows printk to be called with the runqueue lock
642 * held and know whether or not it is OK to wake up the klogd.
643 */
89f19f04 644int runqueue_is_locked(int cpu)
017730c1 645{
05fa785c 646 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
647}
648
bf5c91ba
IM
649/*
650 * Debugging: various feature bits
651 */
f00b45c1
PZ
652
653#define SCHED_FEAT(name, enabled) \
654 __SCHED_FEAT_##name ,
655
bf5c91ba 656enum {
f00b45c1 657#include "sched_features.h"
bf5c91ba
IM
658};
659
f00b45c1
PZ
660#undef SCHED_FEAT
661
662#define SCHED_FEAT(name, enabled) \
663 (1UL << __SCHED_FEAT_##name) * enabled |
664
bf5c91ba 665const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
666#include "sched_features.h"
667 0;
668
669#undef SCHED_FEAT
670
671#ifdef CONFIG_SCHED_DEBUG
672#define SCHED_FEAT(name, enabled) \
673 #name ,
674
983ed7a6 675static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
676#include "sched_features.h"
677 NULL
678};
679
680#undef SCHED_FEAT
681
34f3a814 682static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 683{
f00b45c1
PZ
684 int i;
685
686 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
687 if (!(sysctl_sched_features & (1UL << i)))
688 seq_puts(m, "NO_");
689 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 690 }
34f3a814 691 seq_puts(m, "\n");
f00b45c1 692
34f3a814 693 return 0;
f00b45c1
PZ
694}
695
696static ssize_t
697sched_feat_write(struct file *filp, const char __user *ubuf,
698 size_t cnt, loff_t *ppos)
699{
700 char buf[64];
701 char *cmp = buf;
702 int neg = 0;
703 int i;
704
705 if (cnt > 63)
706 cnt = 63;
707
708 if (copy_from_user(&buf, ubuf, cnt))
709 return -EFAULT;
710
711 buf[cnt] = 0;
712
c24b7c52 713 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
714 neg = 1;
715 cmp += 3;
716 }
717
718 for (i = 0; sched_feat_names[i]; i++) {
719 int len = strlen(sched_feat_names[i]);
720
721 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
722 if (neg)
723 sysctl_sched_features &= ~(1UL << i);
724 else
725 sysctl_sched_features |= (1UL << i);
726 break;
727 }
728 }
729
730 if (!sched_feat_names[i])
731 return -EINVAL;
732
42994724 733 *ppos += cnt;
f00b45c1
PZ
734
735 return cnt;
736}
737
34f3a814
LZ
738static int sched_feat_open(struct inode *inode, struct file *filp)
739{
740 return single_open(filp, sched_feat_show, NULL);
741}
742
828c0950 743static const struct file_operations sched_feat_fops = {
34f3a814
LZ
744 .open = sched_feat_open,
745 .write = sched_feat_write,
746 .read = seq_read,
747 .llseek = seq_lseek,
748 .release = single_release,
f00b45c1
PZ
749};
750
751static __init int sched_init_debug(void)
752{
f00b45c1
PZ
753 debugfs_create_file("sched_features", 0644, NULL, NULL,
754 &sched_feat_fops);
755
756 return 0;
757}
758late_initcall(sched_init_debug);
759
760#endif
761
762#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 763
b82d9fdd
PZ
764/*
765 * Number of tasks to iterate in a single balance run.
766 * Limited because this is done with IRQs disabled.
767 */
768const_debug unsigned int sysctl_sched_nr_migrate = 32;
769
2398f2c6
PZ
770/*
771 * ratelimit for updating the group shares.
55cd5340 772 * default: 0.25ms
2398f2c6 773 */
55cd5340 774unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 775unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 776
ffda12a1
PZ
777/*
778 * Inject some fuzzyness into changing the per-cpu group shares
779 * this avoids remote rq-locks at the expense of fairness.
780 * default: 4
781 */
782unsigned int sysctl_sched_shares_thresh = 4;
783
e9e9250b
PZ
784/*
785 * period over which we average the RT time consumption, measured
786 * in ms.
787 *
788 * default: 1s
789 */
790const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
791
fa85ae24 792/*
9f0c1e56 793 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
794 * default: 1s
795 */
9f0c1e56 796unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 797
6892b75e
IM
798static __read_mostly int scheduler_running;
799
9f0c1e56
PZ
800/*
801 * part of the period that we allow rt tasks to run in us.
802 * default: 0.95s
803 */
804int sysctl_sched_rt_runtime = 950000;
fa85ae24 805
d0b27fa7
PZ
806static inline u64 global_rt_period(void)
807{
808 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
809}
810
811static inline u64 global_rt_runtime(void)
812{
e26873bb 813 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
814 return RUNTIME_INF;
815
816 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
817}
fa85ae24 818
1da177e4 819#ifndef prepare_arch_switch
4866cde0
NP
820# define prepare_arch_switch(next) do { } while (0)
821#endif
822#ifndef finish_arch_switch
823# define finish_arch_switch(prev) do { } while (0)
824#endif
825
051a1d1a
DA
826static inline int task_current(struct rq *rq, struct task_struct *p)
827{
828 return rq->curr == p;
829}
830
4866cde0 831#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 832static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 833{
051a1d1a 834 return task_current(rq, p);
4866cde0
NP
835}
836
70b97a7f 837static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
838{
839}
840
70b97a7f 841static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 842{
da04c035
IM
843#ifdef CONFIG_DEBUG_SPINLOCK
844 /* this is a valid case when another task releases the spinlock */
845 rq->lock.owner = current;
846#endif
8a25d5de
IM
847 /*
848 * If we are tracking spinlock dependencies then we have to
849 * fix up the runqueue lock - which gets 'carried over' from
850 * prev into current:
851 */
852 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
853
05fa785c 854 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
855}
856
857#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 858static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
859{
860#ifdef CONFIG_SMP
861 return p->oncpu;
862#else
051a1d1a 863 return task_current(rq, p);
4866cde0
NP
864#endif
865}
866
70b97a7f 867static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
868{
869#ifdef CONFIG_SMP
870 /*
871 * We can optimise this out completely for !SMP, because the
872 * SMP rebalancing from interrupt is the only thing that cares
873 * here.
874 */
875 next->oncpu = 1;
876#endif
877#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 878 raw_spin_unlock_irq(&rq->lock);
4866cde0 879#else
05fa785c 880 raw_spin_unlock(&rq->lock);
4866cde0
NP
881#endif
882}
883
70b97a7f 884static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
885{
886#ifdef CONFIG_SMP
887 /*
888 * After ->oncpu is cleared, the task can be moved to a different CPU.
889 * We must ensure this doesn't happen until the switch is completely
890 * finished.
891 */
892 smp_wmb();
893 prev->oncpu = 0;
894#endif
895#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
896 local_irq_enable();
1da177e4 897#endif
4866cde0
NP
898}
899#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 900
b29739f9
IM
901/*
902 * __task_rq_lock - lock the runqueue a given task resides on.
903 * Must be called interrupts disabled.
904 */
70b97a7f 905static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
906 __acquires(rq->lock)
907{
3a5c359a
AK
908 for (;;) {
909 struct rq *rq = task_rq(p);
05fa785c 910 raw_spin_lock(&rq->lock);
3a5c359a
AK
911 if (likely(rq == task_rq(p)))
912 return rq;
05fa785c 913 raw_spin_unlock(&rq->lock);
b29739f9 914 }
b29739f9
IM
915}
916
1da177e4
LT
917/*
918 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 919 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
920 * explicitly disabling preemption.
921 */
70b97a7f 922static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
923 __acquires(rq->lock)
924{
70b97a7f 925 struct rq *rq;
1da177e4 926
3a5c359a
AK
927 for (;;) {
928 local_irq_save(*flags);
929 rq = task_rq(p);
05fa785c 930 raw_spin_lock(&rq->lock);
3a5c359a
AK
931 if (likely(rq == task_rq(p)))
932 return rq;
05fa785c 933 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 934 }
1da177e4
LT
935}
936
ad474cac
ON
937void task_rq_unlock_wait(struct task_struct *p)
938{
939 struct rq *rq = task_rq(p);
940
941 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 942 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
943}
944
a9957449 945static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
946 __releases(rq->lock)
947{
05fa785c 948 raw_spin_unlock(&rq->lock);
b29739f9
IM
949}
950
70b97a7f 951static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
952 __releases(rq->lock)
953{
05fa785c 954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
955}
956
1da177e4 957/*
cc2a73b5 958 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 959 */
a9957449 960static struct rq *this_rq_lock(void)
1da177e4
LT
961 __acquires(rq->lock)
962{
70b97a7f 963 struct rq *rq;
1da177e4
LT
964
965 local_irq_disable();
966 rq = this_rq();
05fa785c 967 raw_spin_lock(&rq->lock);
1da177e4
LT
968
969 return rq;
970}
971
8f4d37ec
PZ
972#ifdef CONFIG_SCHED_HRTICK
973/*
974 * Use HR-timers to deliver accurate preemption points.
975 *
976 * Its all a bit involved since we cannot program an hrt while holding the
977 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
978 * reschedule event.
979 *
980 * When we get rescheduled we reprogram the hrtick_timer outside of the
981 * rq->lock.
982 */
8f4d37ec
PZ
983
984/*
985 * Use hrtick when:
986 * - enabled by features
987 * - hrtimer is actually high res
988 */
989static inline int hrtick_enabled(struct rq *rq)
990{
991 if (!sched_feat(HRTICK))
992 return 0;
ba42059f 993 if (!cpu_active(cpu_of(rq)))
b328ca18 994 return 0;
8f4d37ec
PZ
995 return hrtimer_is_hres_active(&rq->hrtick_timer);
996}
997
8f4d37ec
PZ
998static void hrtick_clear(struct rq *rq)
999{
1000 if (hrtimer_active(&rq->hrtick_timer))
1001 hrtimer_cancel(&rq->hrtick_timer);
1002}
1003
8f4d37ec
PZ
1004/*
1005 * High-resolution timer tick.
1006 * Runs from hardirq context with interrupts disabled.
1007 */
1008static enum hrtimer_restart hrtick(struct hrtimer *timer)
1009{
1010 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1011
1012 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1013
05fa785c 1014 raw_spin_lock(&rq->lock);
3e51f33f 1015 update_rq_clock(rq);
8f4d37ec 1016 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1017 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1018
1019 return HRTIMER_NORESTART;
1020}
1021
95e904c7 1022#ifdef CONFIG_SMP
31656519
PZ
1023/*
1024 * called from hardirq (IPI) context
1025 */
1026static void __hrtick_start(void *arg)
b328ca18 1027{
31656519 1028 struct rq *rq = arg;
b328ca18 1029
05fa785c 1030 raw_spin_lock(&rq->lock);
31656519
PZ
1031 hrtimer_restart(&rq->hrtick_timer);
1032 rq->hrtick_csd_pending = 0;
05fa785c 1033 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1034}
1035
31656519
PZ
1036/*
1037 * Called to set the hrtick timer state.
1038 *
1039 * called with rq->lock held and irqs disabled
1040 */
1041static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1042{
31656519
PZ
1043 struct hrtimer *timer = &rq->hrtick_timer;
1044 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1045
cc584b21 1046 hrtimer_set_expires(timer, time);
31656519
PZ
1047
1048 if (rq == this_rq()) {
1049 hrtimer_restart(timer);
1050 } else if (!rq->hrtick_csd_pending) {
6e275637 1051 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1052 rq->hrtick_csd_pending = 1;
1053 }
b328ca18
PZ
1054}
1055
1056static int
1057hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1058{
1059 int cpu = (int)(long)hcpu;
1060
1061 switch (action) {
1062 case CPU_UP_CANCELED:
1063 case CPU_UP_CANCELED_FROZEN:
1064 case CPU_DOWN_PREPARE:
1065 case CPU_DOWN_PREPARE_FROZEN:
1066 case CPU_DEAD:
1067 case CPU_DEAD_FROZEN:
31656519 1068 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1069 return NOTIFY_OK;
1070 }
1071
1072 return NOTIFY_DONE;
1073}
1074
fa748203 1075static __init void init_hrtick(void)
b328ca18
PZ
1076{
1077 hotcpu_notifier(hotplug_hrtick, 0);
1078}
31656519
PZ
1079#else
1080/*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085static void hrtick_start(struct rq *rq, u64 delay)
1086{
7f1e2ca9 1087 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1088 HRTIMER_MODE_REL_PINNED, 0);
31656519 1089}
b328ca18 1090
006c75f1 1091static inline void init_hrtick(void)
8f4d37ec 1092{
8f4d37ec 1093}
31656519 1094#endif /* CONFIG_SMP */
8f4d37ec 1095
31656519 1096static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1097{
31656519
PZ
1098#ifdef CONFIG_SMP
1099 rq->hrtick_csd_pending = 0;
8f4d37ec 1100
31656519
PZ
1101 rq->hrtick_csd.flags = 0;
1102 rq->hrtick_csd.func = __hrtick_start;
1103 rq->hrtick_csd.info = rq;
1104#endif
8f4d37ec 1105
31656519
PZ
1106 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1107 rq->hrtick_timer.function = hrtick;
8f4d37ec 1108}
006c75f1 1109#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1110static inline void hrtick_clear(struct rq *rq)
1111{
1112}
1113
8f4d37ec
PZ
1114static inline void init_rq_hrtick(struct rq *rq)
1115{
1116}
1117
b328ca18
PZ
1118static inline void init_hrtick(void)
1119{
1120}
006c75f1 1121#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1122
c24d20db
IM
1123/*
1124 * resched_task - mark a task 'to be rescheduled now'.
1125 *
1126 * On UP this means the setting of the need_resched flag, on SMP it
1127 * might also involve a cross-CPU call to trigger the scheduler on
1128 * the target CPU.
1129 */
1130#ifdef CONFIG_SMP
1131
1132#ifndef tsk_is_polling
1133#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1134#endif
1135
31656519 1136static void resched_task(struct task_struct *p)
c24d20db
IM
1137{
1138 int cpu;
1139
05fa785c 1140 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1141
5ed0cec0 1142 if (test_tsk_need_resched(p))
c24d20db
IM
1143 return;
1144
5ed0cec0 1145 set_tsk_need_resched(p);
c24d20db
IM
1146
1147 cpu = task_cpu(p);
1148 if (cpu == smp_processor_id())
1149 return;
1150
1151 /* NEED_RESCHED must be visible before we test polling */
1152 smp_mb();
1153 if (!tsk_is_polling(p))
1154 smp_send_reschedule(cpu);
1155}
1156
1157static void resched_cpu(int cpu)
1158{
1159 struct rq *rq = cpu_rq(cpu);
1160 unsigned long flags;
1161
05fa785c 1162 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1163 return;
1164 resched_task(cpu_curr(cpu));
05fa785c 1165 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1166}
06d8308c
TG
1167
1168#ifdef CONFIG_NO_HZ
1169/*
1170 * When add_timer_on() enqueues a timer into the timer wheel of an
1171 * idle CPU then this timer might expire before the next timer event
1172 * which is scheduled to wake up that CPU. In case of a completely
1173 * idle system the next event might even be infinite time into the
1174 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1175 * leaves the inner idle loop so the newly added timer is taken into
1176 * account when the CPU goes back to idle and evaluates the timer
1177 * wheel for the next timer event.
1178 */
1179void wake_up_idle_cpu(int cpu)
1180{
1181 struct rq *rq = cpu_rq(cpu);
1182
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /*
1187 * This is safe, as this function is called with the timer
1188 * wheel base lock of (cpu) held. When the CPU is on the way
1189 * to idle and has not yet set rq->curr to idle then it will
1190 * be serialized on the timer wheel base lock and take the new
1191 * timer into account automatically.
1192 */
1193 if (rq->curr != rq->idle)
1194 return;
1195
1196 /*
1197 * We can set TIF_RESCHED on the idle task of the other CPU
1198 * lockless. The worst case is that the other CPU runs the
1199 * idle task through an additional NOOP schedule()
1200 */
5ed0cec0 1201 set_tsk_need_resched(rq->idle);
06d8308c
TG
1202
1203 /* NEED_RESCHED must be visible before we test polling */
1204 smp_mb();
1205 if (!tsk_is_polling(rq->idle))
1206 smp_send_reschedule(cpu);
1207}
6d6bc0ad 1208#endif /* CONFIG_NO_HZ */
06d8308c 1209
e9e9250b
PZ
1210static u64 sched_avg_period(void)
1211{
1212 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1213}
1214
1215static void sched_avg_update(struct rq *rq)
1216{
1217 s64 period = sched_avg_period();
1218
1219 while ((s64)(rq->clock - rq->age_stamp) > period) {
1220 rq->age_stamp += period;
1221 rq->rt_avg /= 2;
1222 }
1223}
1224
1225static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1226{
1227 rq->rt_avg += rt_delta;
1228 sched_avg_update(rq);
1229}
1230
6d6bc0ad 1231#else /* !CONFIG_SMP */
31656519 1232static void resched_task(struct task_struct *p)
c24d20db 1233{
05fa785c 1234 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1235 set_tsk_need_resched(p);
c24d20db 1236}
e9e9250b
PZ
1237
1238static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1239{
1240}
6d6bc0ad 1241#endif /* CONFIG_SMP */
c24d20db 1242
45bf76df
IM
1243#if BITS_PER_LONG == 32
1244# define WMULT_CONST (~0UL)
1245#else
1246# define WMULT_CONST (1UL << 32)
1247#endif
1248
1249#define WMULT_SHIFT 32
1250
194081eb
IM
1251/*
1252 * Shift right and round:
1253 */
cf2ab469 1254#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1255
a7be37ac
PZ
1256/*
1257 * delta *= weight / lw
1258 */
cb1c4fc9 1259static unsigned long
45bf76df
IM
1260calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1261 struct load_weight *lw)
1262{
1263 u64 tmp;
1264
7a232e03
LJ
1265 if (!lw->inv_weight) {
1266 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1267 lw->inv_weight = 1;
1268 else
1269 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1270 / (lw->weight+1);
1271 }
45bf76df
IM
1272
1273 tmp = (u64)delta_exec * weight;
1274 /*
1275 * Check whether we'd overflow the 64-bit multiplication:
1276 */
194081eb 1277 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1278 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1279 WMULT_SHIFT/2);
1280 else
cf2ab469 1281 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1282
ecf691da 1283 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1284}
1285
1091985b 1286static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1287{
1288 lw->weight += inc;
e89996ae 1289 lw->inv_weight = 0;
45bf76df
IM
1290}
1291
1091985b 1292static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1293{
1294 lw->weight -= dec;
e89996ae 1295 lw->inv_weight = 0;
45bf76df
IM
1296}
1297
2dd73a4f
PW
1298/*
1299 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1300 * of tasks with abnormal "nice" values across CPUs the contribution that
1301 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1302 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1303 * scaled version of the new time slice allocation that they receive on time
1304 * slice expiry etc.
1305 */
1306
cce7ade8
PZ
1307#define WEIGHT_IDLEPRIO 3
1308#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1309
1310/*
1311 * Nice levels are multiplicative, with a gentle 10% change for every
1312 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1313 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1314 * that remained on nice 0.
1315 *
1316 * The "10% effect" is relative and cumulative: from _any_ nice level,
1317 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1318 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1319 * If a task goes up by ~10% and another task goes down by ~10% then
1320 * the relative distance between them is ~25%.)
dd41f596
IM
1321 */
1322static const int prio_to_weight[40] = {
254753dc
IM
1323 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1324 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1325 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1326 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1327 /* 0 */ 1024, 820, 655, 526, 423,
1328 /* 5 */ 335, 272, 215, 172, 137,
1329 /* 10 */ 110, 87, 70, 56, 45,
1330 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1331};
1332
5714d2de
IM
1333/*
1334 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1335 *
1336 * In cases where the weight does not change often, we can use the
1337 * precalculated inverse to speed up arithmetics by turning divisions
1338 * into multiplications:
1339 */
dd41f596 1340static const u32 prio_to_wmult[40] = {
254753dc
IM
1341 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1342 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1343 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1344 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1345 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1346 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1347 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1348 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1349};
2dd73a4f 1350
ef12fefa
BR
1351/* Time spent by the tasks of the cpu accounting group executing in ... */
1352enum cpuacct_stat_index {
1353 CPUACCT_STAT_USER, /* ... user mode */
1354 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1355
1356 CPUACCT_STAT_NSTATS,
1357};
1358
d842de87
SV
1359#ifdef CONFIG_CGROUP_CPUACCT
1360static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1361static void cpuacct_update_stats(struct task_struct *tsk,
1362 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1363#else
1364static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1365static inline void cpuacct_update_stats(struct task_struct *tsk,
1366 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1367#endif
1368
18d95a28
PZ
1369static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1370{
1371 update_load_add(&rq->load, load);
1372}
1373
1374static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1375{
1376 update_load_sub(&rq->load, load);
1377}
1378
7940ca36 1379#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1380typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1381
1382/*
1383 * Iterate the full tree, calling @down when first entering a node and @up when
1384 * leaving it for the final time.
1385 */
eb755805 1386static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1387{
1388 struct task_group *parent, *child;
eb755805 1389 int ret;
c09595f6
PZ
1390
1391 rcu_read_lock();
1392 parent = &root_task_group;
1393down:
eb755805
PZ
1394 ret = (*down)(parent, data);
1395 if (ret)
1396 goto out_unlock;
c09595f6
PZ
1397 list_for_each_entry_rcu(child, &parent->children, siblings) {
1398 parent = child;
1399 goto down;
1400
1401up:
1402 continue;
1403 }
eb755805
PZ
1404 ret = (*up)(parent, data);
1405 if (ret)
1406 goto out_unlock;
c09595f6
PZ
1407
1408 child = parent;
1409 parent = parent->parent;
1410 if (parent)
1411 goto up;
eb755805 1412out_unlock:
c09595f6 1413 rcu_read_unlock();
eb755805
PZ
1414
1415 return ret;
c09595f6
PZ
1416}
1417
eb755805
PZ
1418static int tg_nop(struct task_group *tg, void *data)
1419{
1420 return 0;
c09595f6 1421}
eb755805
PZ
1422#endif
1423
1424#ifdef CONFIG_SMP
f5f08f39
PZ
1425/* Used instead of source_load when we know the type == 0 */
1426static unsigned long weighted_cpuload(const int cpu)
1427{
1428 return cpu_rq(cpu)->load.weight;
1429}
1430
1431/*
1432 * Return a low guess at the load of a migration-source cpu weighted
1433 * according to the scheduling class and "nice" value.
1434 *
1435 * We want to under-estimate the load of migration sources, to
1436 * balance conservatively.
1437 */
1438static unsigned long source_load(int cpu, int type)
1439{
1440 struct rq *rq = cpu_rq(cpu);
1441 unsigned long total = weighted_cpuload(cpu);
1442
1443 if (type == 0 || !sched_feat(LB_BIAS))
1444 return total;
1445
1446 return min(rq->cpu_load[type-1], total);
1447}
1448
1449/*
1450 * Return a high guess at the load of a migration-target cpu weighted
1451 * according to the scheduling class and "nice" value.
1452 */
1453static unsigned long target_load(int cpu, int type)
1454{
1455 struct rq *rq = cpu_rq(cpu);
1456 unsigned long total = weighted_cpuload(cpu);
1457
1458 if (type == 0 || !sched_feat(LB_BIAS))
1459 return total;
1460
1461 return max(rq->cpu_load[type-1], total);
1462}
1463
ae154be1
PZ
1464static struct sched_group *group_of(int cpu)
1465{
1466 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1467
1468 if (!sd)
1469 return NULL;
1470
1471 return sd->groups;
1472}
1473
1474static unsigned long power_of(int cpu)
1475{
1476 struct sched_group *group = group_of(cpu);
1477
1478 if (!group)
1479 return SCHED_LOAD_SCALE;
1480
1481 return group->cpu_power;
1482}
1483
eb755805
PZ
1484static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1485
1486static unsigned long cpu_avg_load_per_task(int cpu)
1487{
1488 struct rq *rq = cpu_rq(cpu);
af6d596f 1489 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1490
4cd42620
SR
1491 if (nr_running)
1492 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1493 else
1494 rq->avg_load_per_task = 0;
eb755805
PZ
1495
1496 return rq->avg_load_per_task;
1497}
1498
1499#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1500
4a6cc4bd 1501static __read_mostly unsigned long *update_shares_data;
34d76c41 1502
c09595f6
PZ
1503static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1504
1505/*
1506 * Calculate and set the cpu's group shares.
1507 */
34d76c41
PZ
1508static void update_group_shares_cpu(struct task_group *tg, int cpu,
1509 unsigned long sd_shares,
1510 unsigned long sd_rq_weight,
4a6cc4bd 1511 unsigned long *usd_rq_weight)
18d95a28 1512{
34d76c41 1513 unsigned long shares, rq_weight;
a5004278 1514 int boost = 0;
c09595f6 1515
4a6cc4bd 1516 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1517 if (!rq_weight) {
1518 boost = 1;
1519 rq_weight = NICE_0_LOAD;
1520 }
c8cba857 1521
c09595f6 1522 /*
a8af7246
PZ
1523 * \Sum_j shares_j * rq_weight_i
1524 * shares_i = -----------------------------
1525 * \Sum_j rq_weight_j
c09595f6 1526 */
ec4e0e2f 1527 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1528 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1529
ffda12a1
PZ
1530 if (abs(shares - tg->se[cpu]->load.weight) >
1531 sysctl_sched_shares_thresh) {
1532 struct rq *rq = cpu_rq(cpu);
1533 unsigned long flags;
c09595f6 1534
05fa785c 1535 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1536 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1537 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1538 __set_se_shares(tg->se[cpu], shares);
05fa785c 1539 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1540 }
18d95a28 1541}
c09595f6
PZ
1542
1543/*
c8cba857
PZ
1544 * Re-compute the task group their per cpu shares over the given domain.
1545 * This needs to be done in a bottom-up fashion because the rq weight of a
1546 * parent group depends on the shares of its child groups.
c09595f6 1547 */
eb755805 1548static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1549{
cd8ad40d 1550 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1551 unsigned long *usd_rq_weight;
eb755805 1552 struct sched_domain *sd = data;
34d76c41 1553 unsigned long flags;
c8cba857 1554 int i;
c09595f6 1555
34d76c41
PZ
1556 if (!tg->se[0])
1557 return 0;
1558
1559 local_irq_save(flags);
4a6cc4bd 1560 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1561
758b2cdc 1562 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1563 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1564 usd_rq_weight[i] = weight;
34d76c41 1565
cd8ad40d 1566 rq_weight += weight;
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
ec4e0e2f
KC
1572 if (!weight)
1573 weight = NICE_0_LOAD;
1574
cd8ad40d 1575 sum_weight += weight;
c8cba857 1576 shares += tg->cfs_rq[i]->shares;
c09595f6 1577 }
c09595f6 1578
cd8ad40d
PZ
1579 if (!rq_weight)
1580 rq_weight = sum_weight;
1581
c8cba857
PZ
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1584
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
c09595f6 1587
758b2cdc 1588 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1589 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1590
1591 local_irq_restore(flags);
eb755805
PZ
1592
1593 return 0;
c09595f6
PZ
1594}
1595
1596/*
c8cba857
PZ
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
c09595f6 1600 */
eb755805 1601static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1602{
c8cba857 1603 unsigned long load;
eb755805 1604 long cpu = (long)data;
c09595f6 1605
c8cba857
PZ
1606 if (!tg->parent) {
1607 load = cpu_rq(cpu)->load.weight;
1608 } else {
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 }
c09595f6 1613
c8cba857 1614 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1615
eb755805 1616 return 0;
c09595f6
PZ
1617}
1618
c8cba857 1619static void update_shares(struct sched_domain *sd)
4d8d595d 1620{
e7097159
PZ
1621 s64 elapsed;
1622 u64 now;
1623
1624 if (root_task_group_empty())
1625 return;
1626
1627 now = cpu_clock(raw_smp_processor_id());
1628 elapsed = now - sd->last_update;
2398f2c6
PZ
1629
1630 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1631 sd->last_update = now;
eb755805 1632 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1633 }
4d8d595d
PZ
1634}
1635
3e5459b4
PZ
1636static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1637{
e7097159
PZ
1638 if (root_task_group_empty())
1639 return;
1640
05fa785c 1641 raw_spin_unlock(&rq->lock);
3e5459b4 1642 update_shares(sd);
05fa785c 1643 raw_spin_lock(&rq->lock);
3e5459b4
PZ
1644}
1645
eb755805 1646static void update_h_load(long cpu)
c09595f6 1647{
e7097159
PZ
1648 if (root_task_group_empty())
1649 return;
1650
eb755805 1651 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1652}
1653
c09595f6
PZ
1654#else
1655
c8cba857 1656static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1657{
1658}
1659
3e5459b4
PZ
1660static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1661{
1662}
1663
18d95a28
PZ
1664#endif
1665
8f45e2b5
GH
1666#ifdef CONFIG_PREEMPT
1667
b78bb868
PZ
1668static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1669
70574a99 1670/*
8f45e2b5
GH
1671 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1672 * way at the expense of forcing extra atomic operations in all
1673 * invocations. This assures that the double_lock is acquired using the
1674 * same underlying policy as the spinlock_t on this architecture, which
1675 * reduces latency compared to the unfair variant below. However, it
1676 * also adds more overhead and therefore may reduce throughput.
70574a99 1677 */
8f45e2b5
GH
1678static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1679 __releases(this_rq->lock)
1680 __acquires(busiest->lock)
1681 __acquires(this_rq->lock)
1682{
05fa785c 1683 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1684 double_rq_lock(this_rq, busiest);
1685
1686 return 1;
1687}
1688
1689#else
1690/*
1691 * Unfair double_lock_balance: Optimizes throughput at the expense of
1692 * latency by eliminating extra atomic operations when the locks are
1693 * already in proper order on entry. This favors lower cpu-ids and will
1694 * grant the double lock to lower cpus over higher ids under contention,
1695 * regardless of entry order into the function.
1696 */
1697static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1698 __releases(this_rq->lock)
1699 __acquires(busiest->lock)
1700 __acquires(this_rq->lock)
1701{
1702 int ret = 0;
1703
05fa785c 1704 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1705 if (busiest < this_rq) {
05fa785c
TG
1706 raw_spin_unlock(&this_rq->lock);
1707 raw_spin_lock(&busiest->lock);
1708 raw_spin_lock_nested(&this_rq->lock,
1709 SINGLE_DEPTH_NESTING);
70574a99
AD
1710 ret = 1;
1711 } else
05fa785c
TG
1712 raw_spin_lock_nested(&busiest->lock,
1713 SINGLE_DEPTH_NESTING);
70574a99
AD
1714 }
1715 return ret;
1716}
1717
8f45e2b5
GH
1718#endif /* CONFIG_PREEMPT */
1719
1720/*
1721 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1722 */
1723static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1724{
1725 if (unlikely(!irqs_disabled())) {
1726 /* printk() doesn't work good under rq->lock */
05fa785c 1727 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1728 BUG_ON(1);
1729 }
1730
1731 return _double_lock_balance(this_rq, busiest);
1732}
1733
70574a99
AD
1734static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1735 __releases(busiest->lock)
1736{
05fa785c 1737 raw_spin_unlock(&busiest->lock);
70574a99
AD
1738 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1739}
1e3c88bd
PZ
1740
1741/*
1742 * double_rq_lock - safely lock two runqueues
1743 *
1744 * Note this does not disable interrupts like task_rq_lock,
1745 * you need to do so manually before calling.
1746 */
1747static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1748 __acquires(rq1->lock)
1749 __acquires(rq2->lock)
1750{
1751 BUG_ON(!irqs_disabled());
1752 if (rq1 == rq2) {
1753 raw_spin_lock(&rq1->lock);
1754 __acquire(rq2->lock); /* Fake it out ;) */
1755 } else {
1756 if (rq1 < rq2) {
1757 raw_spin_lock(&rq1->lock);
1758 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1759 } else {
1760 raw_spin_lock(&rq2->lock);
1761 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1762 }
1763 }
1764 update_rq_clock(rq1);
1765 update_rq_clock(rq2);
1766}
1767
1768/*
1769 * double_rq_unlock - safely unlock two runqueues
1770 *
1771 * Note this does not restore interrupts like task_rq_unlock,
1772 * you need to do so manually after calling.
1773 */
1774static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1775 __releases(rq1->lock)
1776 __releases(rq2->lock)
1777{
1778 raw_spin_unlock(&rq1->lock);
1779 if (rq1 != rq2)
1780 raw_spin_unlock(&rq2->lock);
1781 else
1782 __release(rq2->lock);
1783}
1784
18d95a28
PZ
1785#endif
1786
30432094 1787#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1788static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1789{
30432094 1790#ifdef CONFIG_SMP
34e83e85
IM
1791 cfs_rq->shares = shares;
1792#endif
1793}
30432094 1794#endif
e7693a36 1795
dce48a84 1796static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1797static void update_sysctl(void);
acb4a848 1798static int get_update_sysctl_factor(void);
dce48a84 1799
cd29fe6f
PZ
1800static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1801{
1802 set_task_rq(p, cpu);
1803#ifdef CONFIG_SMP
1804 /*
1805 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1806 * successfuly executed on another CPU. We must ensure that updates of
1807 * per-task data have been completed by this moment.
1808 */
1809 smp_wmb();
1810 task_thread_info(p)->cpu = cpu;
1811#endif
1812}
dce48a84 1813
1e3c88bd 1814static const struct sched_class rt_sched_class;
dd41f596
IM
1815
1816#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1817#define for_each_class(class) \
1818 for (class = sched_class_highest; class; class = class->next)
dd41f596 1819
1e3c88bd
PZ
1820#include "sched_stats.h"
1821
c09595f6 1822static void inc_nr_running(struct rq *rq)
9c217245
IM
1823{
1824 rq->nr_running++;
9c217245
IM
1825}
1826
c09595f6 1827static void dec_nr_running(struct rq *rq)
9c217245
IM
1828{
1829 rq->nr_running--;
9c217245
IM
1830}
1831
45bf76df
IM
1832static void set_load_weight(struct task_struct *p)
1833{
1834 if (task_has_rt_policy(p)) {
dd41f596
IM
1835 p->se.load.weight = prio_to_weight[0] * 2;
1836 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1837 return;
1838 }
45bf76df 1839
dd41f596
IM
1840 /*
1841 * SCHED_IDLE tasks get minimal weight:
1842 */
1843 if (p->policy == SCHED_IDLE) {
1844 p->se.load.weight = WEIGHT_IDLEPRIO;
1845 p->se.load.inv_weight = WMULT_IDLEPRIO;
1846 return;
1847 }
71f8bd46 1848
dd41f596
IM
1849 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1850 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1851}
1852
2087a1ad
GH
1853static void update_avg(u64 *avg, u64 sample)
1854{
1855 s64 diff = sample - *avg;
1856 *avg += diff >> 3;
1857}
1858
8159f87e 1859static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1860{
831451ac
PZ
1861 if (wakeup)
1862 p->se.start_runtime = p->se.sum_exec_runtime;
1863
dd41f596 1864 sched_info_queued(p);
fd390f6a 1865 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1866 p->se.on_rq = 1;
71f8bd46
IM
1867}
1868
69be72c1 1869static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1870{
831451ac
PZ
1871 if (sleep) {
1872 if (p->se.last_wakeup) {
1873 update_avg(&p->se.avg_overlap,
1874 p->se.sum_exec_runtime - p->se.last_wakeup);
1875 p->se.last_wakeup = 0;
1876 } else {
1877 update_avg(&p->se.avg_wakeup,
1878 sysctl_sched_wakeup_granularity);
1879 }
2087a1ad
GH
1880 }
1881
46ac22ba 1882 sched_info_dequeued(p);
f02231e5 1883 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1884 p->se.on_rq = 0;
71f8bd46
IM
1885}
1886
1e3c88bd
PZ
1887/*
1888 * activate_task - move a task to the runqueue.
1889 */
1890static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1891{
1892 if (task_contributes_to_load(p))
1893 rq->nr_uninterruptible--;
1894
1895 enqueue_task(rq, p, wakeup);
1896 inc_nr_running(rq);
1897}
1898
1899/*
1900 * deactivate_task - remove a task from the runqueue.
1901 */
1902static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1903{
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible++;
1906
1907 dequeue_task(rq, p, sleep);
1908 dec_nr_running(rq);
1909}
1910
1911#include "sched_idletask.c"
1912#include "sched_fair.c"
1913#include "sched_rt.c"
1914#ifdef CONFIG_SCHED_DEBUG
1915# include "sched_debug.c"
1916#endif
1917
14531189 1918/*
dd41f596 1919 * __normal_prio - return the priority that is based on the static prio
14531189 1920 */
14531189
IM
1921static inline int __normal_prio(struct task_struct *p)
1922{
dd41f596 1923 return p->static_prio;
14531189
IM
1924}
1925
b29739f9
IM
1926/*
1927 * Calculate the expected normal priority: i.e. priority
1928 * without taking RT-inheritance into account. Might be
1929 * boosted by interactivity modifiers. Changes upon fork,
1930 * setprio syscalls, and whenever the interactivity
1931 * estimator recalculates.
1932 */
36c8b586 1933static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1934{
1935 int prio;
1936
e05606d3 1937 if (task_has_rt_policy(p))
b29739f9
IM
1938 prio = MAX_RT_PRIO-1 - p->rt_priority;
1939 else
1940 prio = __normal_prio(p);
1941 return prio;
1942}
1943
1944/*
1945 * Calculate the current priority, i.e. the priority
1946 * taken into account by the scheduler. This value might
1947 * be boosted by RT tasks, or might be boosted by
1948 * interactivity modifiers. Will be RT if the task got
1949 * RT-boosted. If not then it returns p->normal_prio.
1950 */
36c8b586 1951static int effective_prio(struct task_struct *p)
b29739f9
IM
1952{
1953 p->normal_prio = normal_prio(p);
1954 /*
1955 * If we are RT tasks or we were boosted to RT priority,
1956 * keep the priority unchanged. Otherwise, update priority
1957 * to the normal priority:
1958 */
1959 if (!rt_prio(p->prio))
1960 return p->normal_prio;
1961 return p->prio;
1962}
1963
1da177e4
LT
1964/**
1965 * task_curr - is this task currently executing on a CPU?
1966 * @p: the task in question.
1967 */
36c8b586 1968inline int task_curr(const struct task_struct *p)
1da177e4
LT
1969{
1970 return cpu_curr(task_cpu(p)) == p;
1971}
1972
cb469845
SR
1973static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1974 const struct sched_class *prev_class,
1975 int oldprio, int running)
1976{
1977 if (prev_class != p->sched_class) {
1978 if (prev_class->switched_from)
1979 prev_class->switched_from(rq, p, running);
1980 p->sched_class->switched_to(rq, p, running);
1981 } else
1982 p->sched_class->prio_changed(rq, p, oldprio, running);
1983}
1984
1da177e4 1985#ifdef CONFIG_SMP
cc367732
IM
1986/*
1987 * Is this task likely cache-hot:
1988 */
e7693a36 1989static int
cc367732
IM
1990task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1991{
1992 s64 delta;
1993
e6c8fba7
PZ
1994 if (p->sched_class != &fair_sched_class)
1995 return 0;
1996
f540a608
IM
1997 /*
1998 * Buddy candidates are cache hot:
1999 */
f685ceac 2000 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2001 (&p->se == cfs_rq_of(&p->se)->next ||
2002 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2003 return 1;
2004
6bc1665b
IM
2005 if (sysctl_sched_migration_cost == -1)
2006 return 1;
2007 if (sysctl_sched_migration_cost == 0)
2008 return 0;
2009
cc367732
IM
2010 delta = now - p->se.exec_start;
2011
2012 return delta < (s64)sysctl_sched_migration_cost;
2013}
2014
dd41f596 2015void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2016{
e2912009
PZ
2017#ifdef CONFIG_SCHED_DEBUG
2018 /*
2019 * We should never call set_task_cpu() on a blocked task,
2020 * ttwu() will sort out the placement.
2021 */
077614ee
PZ
2022 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2023 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2024#endif
2025
de1d7286 2026 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2027
0c69774e
PZ
2028 if (task_cpu(p) != new_cpu) {
2029 p->se.nr_migrations++;
2030 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2031 }
dd41f596
IM
2032
2033 __set_task_cpu(p, new_cpu);
c65cc870
IM
2034}
2035
70b97a7f 2036struct migration_req {
1da177e4 2037 struct list_head list;
1da177e4 2038
36c8b586 2039 struct task_struct *task;
1da177e4
LT
2040 int dest_cpu;
2041
1da177e4 2042 struct completion done;
70b97a7f 2043};
1da177e4
LT
2044
2045/*
2046 * The task's runqueue lock must be held.
2047 * Returns true if you have to wait for migration thread.
2048 */
36c8b586 2049static int
70b97a7f 2050migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2051{
70b97a7f 2052 struct rq *rq = task_rq(p);
1da177e4
LT
2053
2054 /*
2055 * If the task is not on a runqueue (and not running), then
e2912009 2056 * the next wake-up will properly place the task.
1da177e4 2057 */
e2912009 2058 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2059 return 0;
1da177e4
LT
2060
2061 init_completion(&req->done);
1da177e4
LT
2062 req->task = p;
2063 req->dest_cpu = dest_cpu;
2064 list_add(&req->list, &rq->migration_queue);
48f24c4d 2065
1da177e4
LT
2066 return 1;
2067}
2068
a26b89f0
MM
2069/*
2070 * wait_task_context_switch - wait for a thread to complete at least one
2071 * context switch.
2072 *
2073 * @p must not be current.
2074 */
2075void wait_task_context_switch(struct task_struct *p)
2076{
2077 unsigned long nvcsw, nivcsw, flags;
2078 int running;
2079 struct rq *rq;
2080
2081 nvcsw = p->nvcsw;
2082 nivcsw = p->nivcsw;
2083 for (;;) {
2084 /*
2085 * The runqueue is assigned before the actual context
2086 * switch. We need to take the runqueue lock.
2087 *
2088 * We could check initially without the lock but it is
2089 * very likely that we need to take the lock in every
2090 * iteration.
2091 */
2092 rq = task_rq_lock(p, &flags);
2093 running = task_running(rq, p);
2094 task_rq_unlock(rq, &flags);
2095
2096 if (likely(!running))
2097 break;
2098 /*
2099 * The switch count is incremented before the actual
2100 * context switch. We thus wait for two switches to be
2101 * sure at least one completed.
2102 */
2103 if ((p->nvcsw - nvcsw) > 1)
2104 break;
2105 if ((p->nivcsw - nivcsw) > 1)
2106 break;
2107
2108 cpu_relax();
2109 }
2110}
2111
1da177e4
LT
2112/*
2113 * wait_task_inactive - wait for a thread to unschedule.
2114 *
85ba2d86
RM
2115 * If @match_state is nonzero, it's the @p->state value just checked and
2116 * not expected to change. If it changes, i.e. @p might have woken up,
2117 * then return zero. When we succeed in waiting for @p to be off its CPU,
2118 * we return a positive number (its total switch count). If a second call
2119 * a short while later returns the same number, the caller can be sure that
2120 * @p has remained unscheduled the whole time.
2121 *
1da177e4
LT
2122 * The caller must ensure that the task *will* unschedule sometime soon,
2123 * else this function might spin for a *long* time. This function can't
2124 * be called with interrupts off, or it may introduce deadlock with
2125 * smp_call_function() if an IPI is sent by the same process we are
2126 * waiting to become inactive.
2127 */
85ba2d86 2128unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2129{
2130 unsigned long flags;
dd41f596 2131 int running, on_rq;
85ba2d86 2132 unsigned long ncsw;
70b97a7f 2133 struct rq *rq;
1da177e4 2134
3a5c359a
AK
2135 for (;;) {
2136 /*
2137 * We do the initial early heuristics without holding
2138 * any task-queue locks at all. We'll only try to get
2139 * the runqueue lock when things look like they will
2140 * work out!
2141 */
2142 rq = task_rq(p);
fa490cfd 2143
3a5c359a
AK
2144 /*
2145 * If the task is actively running on another CPU
2146 * still, just relax and busy-wait without holding
2147 * any locks.
2148 *
2149 * NOTE! Since we don't hold any locks, it's not
2150 * even sure that "rq" stays as the right runqueue!
2151 * But we don't care, since "task_running()" will
2152 * return false if the runqueue has changed and p
2153 * is actually now running somewhere else!
2154 */
85ba2d86
RM
2155 while (task_running(rq, p)) {
2156 if (match_state && unlikely(p->state != match_state))
2157 return 0;
3a5c359a 2158 cpu_relax();
85ba2d86 2159 }
fa490cfd 2160
3a5c359a
AK
2161 /*
2162 * Ok, time to look more closely! We need the rq
2163 * lock now, to be *sure*. If we're wrong, we'll
2164 * just go back and repeat.
2165 */
2166 rq = task_rq_lock(p, &flags);
0a16b607 2167 trace_sched_wait_task(rq, p);
3a5c359a
AK
2168 running = task_running(rq, p);
2169 on_rq = p->se.on_rq;
85ba2d86 2170 ncsw = 0;
f31e11d8 2171 if (!match_state || p->state == match_state)
93dcf55f 2172 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2173 task_rq_unlock(rq, &flags);
fa490cfd 2174
85ba2d86
RM
2175 /*
2176 * If it changed from the expected state, bail out now.
2177 */
2178 if (unlikely(!ncsw))
2179 break;
2180
3a5c359a
AK
2181 /*
2182 * Was it really running after all now that we
2183 * checked with the proper locks actually held?
2184 *
2185 * Oops. Go back and try again..
2186 */
2187 if (unlikely(running)) {
2188 cpu_relax();
2189 continue;
2190 }
fa490cfd 2191
3a5c359a
AK
2192 /*
2193 * It's not enough that it's not actively running,
2194 * it must be off the runqueue _entirely_, and not
2195 * preempted!
2196 *
80dd99b3 2197 * So if it was still runnable (but just not actively
3a5c359a
AK
2198 * running right now), it's preempted, and we should
2199 * yield - it could be a while.
2200 */
2201 if (unlikely(on_rq)) {
2202 schedule_timeout_uninterruptible(1);
2203 continue;
2204 }
fa490cfd 2205
3a5c359a
AK
2206 /*
2207 * Ahh, all good. It wasn't running, and it wasn't
2208 * runnable, which means that it will never become
2209 * running in the future either. We're all done!
2210 */
2211 break;
2212 }
85ba2d86
RM
2213
2214 return ncsw;
1da177e4
LT
2215}
2216
2217/***
2218 * kick_process - kick a running thread to enter/exit the kernel
2219 * @p: the to-be-kicked thread
2220 *
2221 * Cause a process which is running on another CPU to enter
2222 * kernel-mode, without any delay. (to get signals handled.)
2223 *
2224 * NOTE: this function doesnt have to take the runqueue lock,
2225 * because all it wants to ensure is that the remote task enters
2226 * the kernel. If the IPI races and the task has been migrated
2227 * to another CPU then no harm is done and the purpose has been
2228 * achieved as well.
2229 */
36c8b586 2230void kick_process(struct task_struct *p)
1da177e4
LT
2231{
2232 int cpu;
2233
2234 preempt_disable();
2235 cpu = task_cpu(p);
2236 if ((cpu != smp_processor_id()) && task_curr(p))
2237 smp_send_reschedule(cpu);
2238 preempt_enable();
2239}
b43e3521 2240EXPORT_SYMBOL_GPL(kick_process);
476d139c 2241#endif /* CONFIG_SMP */
1da177e4 2242
0793a61d
TG
2243/**
2244 * task_oncpu_function_call - call a function on the cpu on which a task runs
2245 * @p: the task to evaluate
2246 * @func: the function to be called
2247 * @info: the function call argument
2248 *
2249 * Calls the function @func when the task is currently running. This might
2250 * be on the current CPU, which just calls the function directly
2251 */
2252void task_oncpu_function_call(struct task_struct *p,
2253 void (*func) (void *info), void *info)
2254{
2255 int cpu;
2256
2257 preempt_disable();
2258 cpu = task_cpu(p);
2259 if (task_curr(p))
2260 smp_call_function_single(cpu, func, info, 1);
2261 preempt_enable();
2262}
2263
970b13ba 2264#ifdef CONFIG_SMP
5da9a0fb
PZ
2265static int select_fallback_rq(int cpu, struct task_struct *p)
2266{
2267 int dest_cpu;
2268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2269
2270 /* Look for allowed, online CPU in same node. */
2271 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2272 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2273 return dest_cpu;
2274
2275 /* Any allowed, online CPU? */
2276 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2277 if (dest_cpu < nr_cpu_ids)
2278 return dest_cpu;
2279
2280 /* No more Mr. Nice Guy. */
2281 if (dest_cpu >= nr_cpu_ids) {
2282 rcu_read_lock();
2283 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2284 rcu_read_unlock();
2285 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2286
2287 /*
2288 * Don't tell them about moving exiting tasks or
2289 * kernel threads (both mm NULL), since they never
2290 * leave kernel.
2291 */
2292 if (p->mm && printk_ratelimit()) {
2293 printk(KERN_INFO "process %d (%s) no "
2294 "longer affine to cpu%d\n",
2295 task_pid_nr(p), p->comm, cpu);
2296 }
2297 }
2298
2299 return dest_cpu;
2300}
2301
e2912009
PZ
2302/*
2303 * Called from:
2304 *
2305 * - fork, @p is stable because it isn't on the tasklist yet
2306 *
38022906 2307 * - exec, @p is unstable, retry loop
e2912009
PZ
2308 *
2309 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2310 * we should be good.
2311 */
970b13ba
PZ
2312static inline
2313int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2314{
e2912009
PZ
2315 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2316
2317 /*
2318 * In order not to call set_task_cpu() on a blocking task we need
2319 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2320 * cpu.
2321 *
2322 * Since this is common to all placement strategies, this lives here.
2323 *
2324 * [ this allows ->select_task() to simply return task_cpu(p) and
2325 * not worry about this generic constraint ]
2326 */
2327 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2328 !cpu_online(cpu)))
5da9a0fb 2329 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2330
2331 return cpu;
970b13ba
PZ
2332}
2333#endif
2334
1da177e4
LT
2335/***
2336 * try_to_wake_up - wake up a thread
2337 * @p: the to-be-woken-up thread
2338 * @state: the mask of task states that can be woken
2339 * @sync: do a synchronous wakeup?
2340 *
2341 * Put it on the run-queue if it's not already there. The "current"
2342 * thread is always on the run-queue (except when the actual
2343 * re-schedule is in progress), and as such you're allowed to do
2344 * the simpler "current->state = TASK_RUNNING" to mark yourself
2345 * runnable without the overhead of this.
2346 *
2347 * returns failure only if the task is already active.
2348 */
7d478721
PZ
2349static int try_to_wake_up(struct task_struct *p, unsigned int state,
2350 int wake_flags)
1da177e4 2351{
cc367732 2352 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2353 unsigned long flags;
f5dc3753 2354 struct rq *rq, *orig_rq;
1da177e4 2355
b85d0667 2356 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2357 wake_flags &= ~WF_SYNC;
2398f2c6 2358
e9c84311 2359 this_cpu = get_cpu();
2398f2c6 2360
04e2f174 2361 smp_wmb();
f5dc3753 2362 rq = orig_rq = task_rq_lock(p, &flags);
03e89e45 2363 update_rq_clock(rq);
e9c84311 2364 if (!(p->state & state))
1da177e4
LT
2365 goto out;
2366
dd41f596 2367 if (p->se.on_rq)
1da177e4
LT
2368 goto out_running;
2369
2370 cpu = task_cpu(p);
cc367732 2371 orig_cpu = cpu;
1da177e4
LT
2372
2373#ifdef CONFIG_SMP
2374 if (unlikely(task_running(rq, p)))
2375 goto out_activate;
2376
e9c84311
PZ
2377 /*
2378 * In order to handle concurrent wakeups and release the rq->lock
2379 * we put the task in TASK_WAKING state.
eb24073b
IM
2380 *
2381 * First fix up the nr_uninterruptible count:
e9c84311 2382 */
eb24073b
IM
2383 if (task_contributes_to_load(p))
2384 rq->nr_uninterruptible--;
e9c84311 2385 p->state = TASK_WAKING;
efbbd05a
PZ
2386
2387 if (p->sched_class->task_waking)
2388 p->sched_class->task_waking(rq, p);
2389
ab19cb23 2390 __task_rq_unlock(rq);
e9c84311 2391
970b13ba 2392 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
ab19cb23 2393 if (cpu != orig_cpu)
5d2f5a61 2394 set_task_cpu(p, cpu);
ab19cb23
PZ
2395
2396 rq = __task_rq_lock(p);
2397 update_rq_clock(rq);
f5dc3753 2398
e9c84311
PZ
2399 WARN_ON(p->state != TASK_WAKING);
2400 cpu = task_cpu(p);
1da177e4 2401
e7693a36
GH
2402#ifdef CONFIG_SCHEDSTATS
2403 schedstat_inc(rq, ttwu_count);
2404 if (cpu == this_cpu)
2405 schedstat_inc(rq, ttwu_local);
2406 else {
2407 struct sched_domain *sd;
2408 for_each_domain(this_cpu, sd) {
758b2cdc 2409 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2410 schedstat_inc(sd, ttwu_wake_remote);
2411 break;
2412 }
2413 }
2414 }
6d6bc0ad 2415#endif /* CONFIG_SCHEDSTATS */
e7693a36 2416
1da177e4
LT
2417out_activate:
2418#endif /* CONFIG_SMP */
cc367732 2419 schedstat_inc(p, se.nr_wakeups);
7d478721 2420 if (wake_flags & WF_SYNC)
cc367732
IM
2421 schedstat_inc(p, se.nr_wakeups_sync);
2422 if (orig_cpu != cpu)
2423 schedstat_inc(p, se.nr_wakeups_migrate);
2424 if (cpu == this_cpu)
2425 schedstat_inc(p, se.nr_wakeups_local);
2426 else
2427 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2428 activate_task(rq, p, 1);
1da177e4
LT
2429 success = 1;
2430
831451ac
PZ
2431 /*
2432 * Only attribute actual wakeups done by this task.
2433 */
2434 if (!in_interrupt()) {
2435 struct sched_entity *se = &current->se;
2436 u64 sample = se->sum_exec_runtime;
2437
2438 if (se->last_wakeup)
2439 sample -= se->last_wakeup;
2440 else
2441 sample -= se->start_runtime;
2442 update_avg(&se->avg_wakeup, sample);
2443
2444 se->last_wakeup = se->sum_exec_runtime;
2445 }
2446
1da177e4 2447out_running:
468a15bb 2448 trace_sched_wakeup(rq, p, success);
7d478721 2449 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2450
1da177e4 2451 p->state = TASK_RUNNING;
9a897c5a 2452#ifdef CONFIG_SMP
efbbd05a
PZ
2453 if (p->sched_class->task_woken)
2454 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2455
2456 if (unlikely(rq->idle_stamp)) {
2457 u64 delta = rq->clock - rq->idle_stamp;
2458 u64 max = 2*sysctl_sched_migration_cost;
2459
2460 if (delta > max)
2461 rq->avg_idle = max;
2462 else
2463 update_avg(&rq->avg_idle, delta);
2464 rq->idle_stamp = 0;
2465 }
9a897c5a 2466#endif
1da177e4
LT
2467out:
2468 task_rq_unlock(rq, &flags);
e9c84311 2469 put_cpu();
1da177e4
LT
2470
2471 return success;
2472}
2473
50fa610a
DH
2474/**
2475 * wake_up_process - Wake up a specific process
2476 * @p: The process to be woken up.
2477 *
2478 * Attempt to wake up the nominated process and move it to the set of runnable
2479 * processes. Returns 1 if the process was woken up, 0 if it was already
2480 * running.
2481 *
2482 * It may be assumed that this function implies a write memory barrier before
2483 * changing the task state if and only if any tasks are woken up.
2484 */
7ad5b3a5 2485int wake_up_process(struct task_struct *p)
1da177e4 2486{
d9514f6c 2487 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2488}
1da177e4
LT
2489EXPORT_SYMBOL(wake_up_process);
2490
7ad5b3a5 2491int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2492{
2493 return try_to_wake_up(p, state, 0);
2494}
2495
1da177e4
LT
2496/*
2497 * Perform scheduler related setup for a newly forked process p.
2498 * p is forked by current.
dd41f596
IM
2499 *
2500 * __sched_fork() is basic setup used by init_idle() too:
2501 */
2502static void __sched_fork(struct task_struct *p)
2503{
dd41f596
IM
2504 p->se.exec_start = 0;
2505 p->se.sum_exec_runtime = 0;
f6cf891c 2506 p->se.prev_sum_exec_runtime = 0;
6c594c21 2507 p->se.nr_migrations = 0;
4ae7d5ce
IM
2508 p->se.last_wakeup = 0;
2509 p->se.avg_overlap = 0;
831451ac
PZ
2510 p->se.start_runtime = 0;
2511 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2512
2513#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2514 p->se.wait_start = 0;
2515 p->se.wait_max = 0;
2516 p->se.wait_count = 0;
2517 p->se.wait_sum = 0;
2518
2519 p->se.sleep_start = 0;
2520 p->se.sleep_max = 0;
2521 p->se.sum_sleep_runtime = 0;
2522
2523 p->se.block_start = 0;
2524 p->se.block_max = 0;
2525 p->se.exec_max = 0;
2526 p->se.slice_max = 0;
2527
2528 p->se.nr_migrations_cold = 0;
2529 p->se.nr_failed_migrations_affine = 0;
2530 p->se.nr_failed_migrations_running = 0;
2531 p->se.nr_failed_migrations_hot = 0;
2532 p->se.nr_forced_migrations = 0;
7793527b
LDM
2533
2534 p->se.nr_wakeups = 0;
2535 p->se.nr_wakeups_sync = 0;
2536 p->se.nr_wakeups_migrate = 0;
2537 p->se.nr_wakeups_local = 0;
2538 p->se.nr_wakeups_remote = 0;
2539 p->se.nr_wakeups_affine = 0;
2540 p->se.nr_wakeups_affine_attempts = 0;
2541 p->se.nr_wakeups_passive = 0;
2542 p->se.nr_wakeups_idle = 0;
2543
6cfb0d5d 2544#endif
476d139c 2545
fa717060 2546 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2547 p->se.on_rq = 0;
4a55bd5e 2548 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2549
e107be36
AK
2550#ifdef CONFIG_PREEMPT_NOTIFIERS
2551 INIT_HLIST_HEAD(&p->preempt_notifiers);
2552#endif
dd41f596
IM
2553}
2554
2555/*
2556 * fork()/clone()-time setup:
2557 */
2558void sched_fork(struct task_struct *p, int clone_flags)
2559{
2560 int cpu = get_cpu();
2561
2562 __sched_fork(p);
06b83b5f
PZ
2563 /*
2564 * We mark the process as waking here. This guarantees that
2565 * nobody will actually run it, and a signal or other external
2566 * event cannot wake it up and insert it on the runqueue either.
2567 */
2568 p->state = TASK_WAKING;
dd41f596 2569
b9dc29e7
MG
2570 /*
2571 * Revert to default priority/policy on fork if requested.
2572 */
2573 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2574 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2575 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2576 p->normal_prio = p->static_prio;
2577 }
b9dc29e7 2578
6c697bdf
MG
2579 if (PRIO_TO_NICE(p->static_prio) < 0) {
2580 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2581 p->normal_prio = p->static_prio;
6c697bdf
MG
2582 set_load_weight(p);
2583 }
2584
b9dc29e7
MG
2585 /*
2586 * We don't need the reset flag anymore after the fork. It has
2587 * fulfilled its duty:
2588 */
2589 p->sched_reset_on_fork = 0;
2590 }
ca94c442 2591
f83f9ac2
PW
2592 /*
2593 * Make sure we do not leak PI boosting priority to the child.
2594 */
2595 p->prio = current->normal_prio;
2596
2ddbf952
HS
2597 if (!rt_prio(p->prio))
2598 p->sched_class = &fair_sched_class;
b29739f9 2599
cd29fe6f
PZ
2600 if (p->sched_class->task_fork)
2601 p->sched_class->task_fork(p);
2602
5f3edc1b 2603#ifdef CONFIG_SMP
970b13ba 2604 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
5f3edc1b
PZ
2605#endif
2606 set_task_cpu(p, cpu);
2607
52f17b6c 2608#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2609 if (likely(sched_info_on()))
52f17b6c 2610 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2611#endif
d6077cb8 2612#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2613 p->oncpu = 0;
2614#endif
1da177e4 2615#ifdef CONFIG_PREEMPT
4866cde0 2616 /* Want to start with kernel preemption disabled. */
a1261f54 2617 task_thread_info(p)->preempt_count = 1;
1da177e4 2618#endif
917b627d
GH
2619 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2620
476d139c 2621 put_cpu();
1da177e4
LT
2622}
2623
2624/*
2625 * wake_up_new_task - wake up a newly created task for the first time.
2626 *
2627 * This function will do some initial scheduler statistics housekeeping
2628 * that must be done for every newly created context, then puts the task
2629 * on the runqueue and wakes it.
2630 */
7ad5b3a5 2631void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2632{
2633 unsigned long flags;
dd41f596 2634 struct rq *rq;
1da177e4
LT
2635
2636 rq = task_rq_lock(p, &flags);
06b83b5f
PZ
2637 BUG_ON(p->state != TASK_WAKING);
2638 p->state = TASK_RUNNING;
a8e504d2 2639 update_rq_clock(rq);
cd29fe6f 2640 activate_task(rq, p, 0);
c71dd42d 2641 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2642 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2643#ifdef CONFIG_SMP
efbbd05a
PZ
2644 if (p->sched_class->task_woken)
2645 p->sched_class->task_woken(rq, p);
9a897c5a 2646#endif
dd41f596 2647 task_rq_unlock(rq, &flags);
1da177e4
LT
2648}
2649
e107be36
AK
2650#ifdef CONFIG_PREEMPT_NOTIFIERS
2651
2652/**
80dd99b3 2653 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2654 * @notifier: notifier struct to register
e107be36
AK
2655 */
2656void preempt_notifier_register(struct preempt_notifier *notifier)
2657{
2658 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2659}
2660EXPORT_SYMBOL_GPL(preempt_notifier_register);
2661
2662/**
2663 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2664 * @notifier: notifier struct to unregister
e107be36
AK
2665 *
2666 * This is safe to call from within a preemption notifier.
2667 */
2668void preempt_notifier_unregister(struct preempt_notifier *notifier)
2669{
2670 hlist_del(&notifier->link);
2671}
2672EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2673
2674static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2675{
2676 struct preempt_notifier *notifier;
2677 struct hlist_node *node;
2678
2679 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2680 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2681}
2682
2683static void
2684fire_sched_out_preempt_notifiers(struct task_struct *curr,
2685 struct task_struct *next)
2686{
2687 struct preempt_notifier *notifier;
2688 struct hlist_node *node;
2689
2690 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2691 notifier->ops->sched_out(notifier, next);
2692}
2693
6d6bc0ad 2694#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2695
2696static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2697{
2698}
2699
2700static void
2701fire_sched_out_preempt_notifiers(struct task_struct *curr,
2702 struct task_struct *next)
2703{
2704}
2705
6d6bc0ad 2706#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2707
4866cde0
NP
2708/**
2709 * prepare_task_switch - prepare to switch tasks
2710 * @rq: the runqueue preparing to switch
421cee29 2711 * @prev: the current task that is being switched out
4866cde0
NP
2712 * @next: the task we are going to switch to.
2713 *
2714 * This is called with the rq lock held and interrupts off. It must
2715 * be paired with a subsequent finish_task_switch after the context
2716 * switch.
2717 *
2718 * prepare_task_switch sets up locking and calls architecture specific
2719 * hooks.
2720 */
e107be36
AK
2721static inline void
2722prepare_task_switch(struct rq *rq, struct task_struct *prev,
2723 struct task_struct *next)
4866cde0 2724{
e107be36 2725 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2726 prepare_lock_switch(rq, next);
2727 prepare_arch_switch(next);
2728}
2729
1da177e4
LT
2730/**
2731 * finish_task_switch - clean up after a task-switch
344babaa 2732 * @rq: runqueue associated with task-switch
1da177e4
LT
2733 * @prev: the thread we just switched away from.
2734 *
4866cde0
NP
2735 * finish_task_switch must be called after the context switch, paired
2736 * with a prepare_task_switch call before the context switch.
2737 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2738 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2739 *
2740 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2741 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2742 * with the lock held can cause deadlocks; see schedule() for
2743 * details.)
2744 */
a9957449 2745static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2746 __releases(rq->lock)
2747{
1da177e4 2748 struct mm_struct *mm = rq->prev_mm;
55a101f8 2749 long prev_state;
1da177e4
LT
2750
2751 rq->prev_mm = NULL;
2752
2753 /*
2754 * A task struct has one reference for the use as "current".
c394cc9f 2755 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2756 * schedule one last time. The schedule call will never return, and
2757 * the scheduled task must drop that reference.
c394cc9f 2758 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2759 * still held, otherwise prev could be scheduled on another cpu, die
2760 * there before we look at prev->state, and then the reference would
2761 * be dropped twice.
2762 * Manfred Spraul <manfred@colorfullife.com>
2763 */
55a101f8 2764 prev_state = prev->state;
4866cde0 2765 finish_arch_switch(prev);
cdd6c482 2766 perf_event_task_sched_in(current, cpu_of(rq));
4866cde0 2767 finish_lock_switch(rq, prev);
e8fa1362 2768
e107be36 2769 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2770 if (mm)
2771 mmdrop(mm);
c394cc9f 2772 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2773 /*
2774 * Remove function-return probe instances associated with this
2775 * task and put them back on the free list.
9761eea8 2776 */
c6fd91f0 2777 kprobe_flush_task(prev);
1da177e4 2778 put_task_struct(prev);
c6fd91f0 2779 }
1da177e4
LT
2780}
2781
3f029d3c
GH
2782#ifdef CONFIG_SMP
2783
2784/* assumes rq->lock is held */
2785static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2786{
2787 if (prev->sched_class->pre_schedule)
2788 prev->sched_class->pre_schedule(rq, prev);
2789}
2790
2791/* rq->lock is NOT held, but preemption is disabled */
2792static inline void post_schedule(struct rq *rq)
2793{
2794 if (rq->post_schedule) {
2795 unsigned long flags;
2796
05fa785c 2797 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2798 if (rq->curr->sched_class->post_schedule)
2799 rq->curr->sched_class->post_schedule(rq);
05fa785c 2800 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2801
2802 rq->post_schedule = 0;
2803 }
2804}
2805
2806#else
da19ab51 2807
3f029d3c
GH
2808static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2809{
2810}
2811
2812static inline void post_schedule(struct rq *rq)
2813{
1da177e4
LT
2814}
2815
3f029d3c
GH
2816#endif
2817
1da177e4
LT
2818/**
2819 * schedule_tail - first thing a freshly forked thread must call.
2820 * @prev: the thread we just switched away from.
2821 */
36c8b586 2822asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2823 __releases(rq->lock)
2824{
70b97a7f
IM
2825 struct rq *rq = this_rq();
2826
4866cde0 2827 finish_task_switch(rq, prev);
da19ab51 2828
3f029d3c
GH
2829 /*
2830 * FIXME: do we need to worry about rq being invalidated by the
2831 * task_switch?
2832 */
2833 post_schedule(rq);
70b97a7f 2834
4866cde0
NP
2835#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2836 /* In this case, finish_task_switch does not reenable preemption */
2837 preempt_enable();
2838#endif
1da177e4 2839 if (current->set_child_tid)
b488893a 2840 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2841}
2842
2843/*
2844 * context_switch - switch to the new MM and the new
2845 * thread's register state.
2846 */
dd41f596 2847static inline void
70b97a7f 2848context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2849 struct task_struct *next)
1da177e4 2850{
dd41f596 2851 struct mm_struct *mm, *oldmm;
1da177e4 2852
e107be36 2853 prepare_task_switch(rq, prev, next);
0a16b607 2854 trace_sched_switch(rq, prev, next);
dd41f596
IM
2855 mm = next->mm;
2856 oldmm = prev->active_mm;
9226d125
ZA
2857 /*
2858 * For paravirt, this is coupled with an exit in switch_to to
2859 * combine the page table reload and the switch backend into
2860 * one hypercall.
2861 */
224101ed 2862 arch_start_context_switch(prev);
9226d125 2863
710390d9 2864 if (likely(!mm)) {
1da177e4
LT
2865 next->active_mm = oldmm;
2866 atomic_inc(&oldmm->mm_count);
2867 enter_lazy_tlb(oldmm, next);
2868 } else
2869 switch_mm(oldmm, mm, next);
2870
710390d9 2871 if (likely(!prev->mm)) {
1da177e4 2872 prev->active_mm = NULL;
1da177e4
LT
2873 rq->prev_mm = oldmm;
2874 }
3a5f5e48
IM
2875 /*
2876 * Since the runqueue lock will be released by the next
2877 * task (which is an invalid locking op but in the case
2878 * of the scheduler it's an obvious special-case), so we
2879 * do an early lockdep release here:
2880 */
2881#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2882 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2883#endif
1da177e4
LT
2884
2885 /* Here we just switch the register state and the stack. */
2886 switch_to(prev, next, prev);
2887
dd41f596
IM
2888 barrier();
2889 /*
2890 * this_rq must be evaluated again because prev may have moved
2891 * CPUs since it called schedule(), thus the 'rq' on its stack
2892 * frame will be invalid.
2893 */
2894 finish_task_switch(this_rq(), prev);
1da177e4
LT
2895}
2896
2897/*
2898 * nr_running, nr_uninterruptible and nr_context_switches:
2899 *
2900 * externally visible scheduler statistics: current number of runnable
2901 * threads, current number of uninterruptible-sleeping threads, total
2902 * number of context switches performed since bootup.
2903 */
2904unsigned long nr_running(void)
2905{
2906 unsigned long i, sum = 0;
2907
2908 for_each_online_cpu(i)
2909 sum += cpu_rq(i)->nr_running;
2910
2911 return sum;
2912}
2913
2914unsigned long nr_uninterruptible(void)
2915{
2916 unsigned long i, sum = 0;
2917
0a945022 2918 for_each_possible_cpu(i)
1da177e4
LT
2919 sum += cpu_rq(i)->nr_uninterruptible;
2920
2921 /*
2922 * Since we read the counters lockless, it might be slightly
2923 * inaccurate. Do not allow it to go below zero though:
2924 */
2925 if (unlikely((long)sum < 0))
2926 sum = 0;
2927
2928 return sum;
2929}
2930
2931unsigned long long nr_context_switches(void)
2932{
cc94abfc
SR
2933 int i;
2934 unsigned long long sum = 0;
1da177e4 2935
0a945022 2936 for_each_possible_cpu(i)
1da177e4
LT
2937 sum += cpu_rq(i)->nr_switches;
2938
2939 return sum;
2940}
2941
2942unsigned long nr_iowait(void)
2943{
2944 unsigned long i, sum = 0;
2945
0a945022 2946 for_each_possible_cpu(i)
1da177e4
LT
2947 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2948
2949 return sum;
2950}
2951
69d25870
AV
2952unsigned long nr_iowait_cpu(void)
2953{
2954 struct rq *this = this_rq();
2955 return atomic_read(&this->nr_iowait);
2956}
2957
2958unsigned long this_cpu_load(void)
2959{
2960 struct rq *this = this_rq();
2961 return this->cpu_load[0];
2962}
2963
2964
dce48a84
TG
2965/* Variables and functions for calc_load */
2966static atomic_long_t calc_load_tasks;
2967static unsigned long calc_load_update;
2968unsigned long avenrun[3];
2969EXPORT_SYMBOL(avenrun);
2970
2d02494f
TG
2971/**
2972 * get_avenrun - get the load average array
2973 * @loads: pointer to dest load array
2974 * @offset: offset to add
2975 * @shift: shift count to shift the result left
2976 *
2977 * These values are estimates at best, so no need for locking.
2978 */
2979void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2980{
2981 loads[0] = (avenrun[0] + offset) << shift;
2982 loads[1] = (avenrun[1] + offset) << shift;
2983 loads[2] = (avenrun[2] + offset) << shift;
2984}
2985
dce48a84
TG
2986static unsigned long
2987calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2988{
dce48a84
TG
2989 load *= exp;
2990 load += active * (FIXED_1 - exp);
2991 return load >> FSHIFT;
2992}
db1b1fef 2993
dce48a84
TG
2994/*
2995 * calc_load - update the avenrun load estimates 10 ticks after the
2996 * CPUs have updated calc_load_tasks.
2997 */
2998void calc_global_load(void)
2999{
3000 unsigned long upd = calc_load_update + 10;
3001 long active;
3002
3003 if (time_before(jiffies, upd))
3004 return;
db1b1fef 3005
dce48a84
TG
3006 active = atomic_long_read(&calc_load_tasks);
3007 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3008
dce48a84
TG
3009 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3010 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3011 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3012
3013 calc_load_update += LOAD_FREQ;
3014}
3015
3016/*
3017 * Either called from update_cpu_load() or from a cpu going idle
3018 */
3019static void calc_load_account_active(struct rq *this_rq)
3020{
3021 long nr_active, delta;
3022
3023 nr_active = this_rq->nr_running;
3024 nr_active += (long) this_rq->nr_uninterruptible;
3025
3026 if (nr_active != this_rq->calc_load_active) {
3027 delta = nr_active - this_rq->calc_load_active;
3028 this_rq->calc_load_active = nr_active;
3029 atomic_long_add(delta, &calc_load_tasks);
3030 }
db1b1fef
JS
3031}
3032
48f24c4d 3033/*
dd41f596
IM
3034 * Update rq->cpu_load[] statistics. This function is usually called every
3035 * scheduler tick (TICK_NSEC).
48f24c4d 3036 */
dd41f596 3037static void update_cpu_load(struct rq *this_rq)
48f24c4d 3038{
495eca49 3039 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3040 int i, scale;
3041
3042 this_rq->nr_load_updates++;
dd41f596
IM
3043
3044 /* Update our load: */
3045 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3046 unsigned long old_load, new_load;
3047
3048 /* scale is effectively 1 << i now, and >> i divides by scale */
3049
3050 old_load = this_rq->cpu_load[i];
3051 new_load = this_load;
a25707f3
IM
3052 /*
3053 * Round up the averaging division if load is increasing. This
3054 * prevents us from getting stuck on 9 if the load is 10, for
3055 * example.
3056 */
3057 if (new_load > old_load)
3058 new_load += scale-1;
dd41f596
IM
3059 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3060 }
dce48a84
TG
3061
3062 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3063 this_rq->calc_load_update += LOAD_FREQ;
3064 calc_load_account_active(this_rq);
3065 }
48f24c4d
IM
3066}
3067
dd41f596
IM
3068#ifdef CONFIG_SMP
3069
1da177e4 3070/*
38022906
PZ
3071 * sched_exec - execve() is a valuable balancing opportunity, because at
3072 * this point the task has the smallest effective memory and cache footprint.
1da177e4 3073 */
38022906 3074void sched_exec(void)
1da177e4 3075{
38022906 3076 struct task_struct *p = current;
70b97a7f 3077 struct migration_req req;
38022906 3078 int dest_cpu, this_cpu;
1da177e4 3079 unsigned long flags;
70b97a7f 3080 struct rq *rq;
1da177e4 3081
38022906
PZ
3082again:
3083 this_cpu = get_cpu();
3084 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3085 if (dest_cpu == this_cpu) {
3086 put_cpu();
3087 return;
3088 }
3089
1da177e4 3090 rq = task_rq_lock(p, &flags);
38022906
PZ
3091 put_cpu();
3092
3093 /*
3094 * select_task_rq() can race against ->cpus_allowed
3095 */
96f874e2 3096 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3097 || unlikely(!cpu_active(dest_cpu))) {
3098 task_rq_unlock(rq, &flags);
3099 goto again;
3100 }
1da177e4
LT
3101
3102 /* force the process onto the specified CPU */
3103 if (migrate_task(p, dest_cpu, &req)) {
3104 /* Need to wait for migration thread (might exit: take ref). */
3105 struct task_struct *mt = rq->migration_thread;
36c8b586 3106
1da177e4
LT
3107 get_task_struct(mt);
3108 task_rq_unlock(rq, &flags);
3109 wake_up_process(mt);
3110 put_task_struct(mt);
3111 wait_for_completion(&req.done);
36c8b586 3112
1da177e4
LT
3113 return;
3114 }
1da177e4
LT
3115 task_rq_unlock(rq, &flags);
3116}
3117
1da177e4
LT
3118#endif
3119
1da177e4
LT
3120DEFINE_PER_CPU(struct kernel_stat, kstat);
3121
3122EXPORT_PER_CPU_SYMBOL(kstat);
3123
3124/*
c5f8d995 3125 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3126 * @p in case that task is currently running.
c5f8d995
HS
3127 *
3128 * Called with task_rq_lock() held on @rq.
1da177e4 3129 */
c5f8d995
HS
3130static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3131{
3132 u64 ns = 0;
3133
3134 if (task_current(rq, p)) {
3135 update_rq_clock(rq);
3136 ns = rq->clock - p->se.exec_start;
3137 if ((s64)ns < 0)
3138 ns = 0;
3139 }
3140
3141 return ns;
3142}
3143
bb34d92f 3144unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3145{
1da177e4 3146 unsigned long flags;
41b86e9c 3147 struct rq *rq;
bb34d92f 3148 u64 ns = 0;
48f24c4d 3149
41b86e9c 3150 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3151 ns = do_task_delta_exec(p, rq);
3152 task_rq_unlock(rq, &flags);
1508487e 3153
c5f8d995
HS
3154 return ns;
3155}
f06febc9 3156
c5f8d995
HS
3157/*
3158 * Return accounted runtime for the task.
3159 * In case the task is currently running, return the runtime plus current's
3160 * pending runtime that have not been accounted yet.
3161 */
3162unsigned long long task_sched_runtime(struct task_struct *p)
3163{
3164 unsigned long flags;
3165 struct rq *rq;
3166 u64 ns = 0;
3167
3168 rq = task_rq_lock(p, &flags);
3169 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3170 task_rq_unlock(rq, &flags);
3171
3172 return ns;
3173}
48f24c4d 3174
c5f8d995
HS
3175/*
3176 * Return sum_exec_runtime for the thread group.
3177 * In case the task is currently running, return the sum plus current's
3178 * pending runtime that have not been accounted yet.
3179 *
3180 * Note that the thread group might have other running tasks as well,
3181 * so the return value not includes other pending runtime that other
3182 * running tasks might have.
3183 */
3184unsigned long long thread_group_sched_runtime(struct task_struct *p)
3185{
3186 struct task_cputime totals;
3187 unsigned long flags;
3188 struct rq *rq;
3189 u64 ns;
3190
3191 rq = task_rq_lock(p, &flags);
3192 thread_group_cputime(p, &totals);
3193 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3194 task_rq_unlock(rq, &flags);
48f24c4d 3195
1da177e4
LT
3196 return ns;
3197}
3198
1da177e4
LT
3199/*
3200 * Account user cpu time to a process.
3201 * @p: the process that the cpu time gets accounted to
1da177e4 3202 * @cputime: the cpu time spent in user space since the last update
457533a7 3203 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3204 */
457533a7
MS
3205void account_user_time(struct task_struct *p, cputime_t cputime,
3206 cputime_t cputime_scaled)
1da177e4
LT
3207{
3208 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3209 cputime64_t tmp;
3210
457533a7 3211 /* Add user time to process. */
1da177e4 3212 p->utime = cputime_add(p->utime, cputime);
457533a7 3213 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3214 account_group_user_time(p, cputime);
1da177e4
LT
3215
3216 /* Add user time to cpustat. */
3217 tmp = cputime_to_cputime64(cputime);
3218 if (TASK_NICE(p) > 0)
3219 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3220 else
3221 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3222
3223 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3224 /* Account for user time used */
3225 acct_update_integrals(p);
1da177e4
LT
3226}
3227
94886b84
LV
3228/*
3229 * Account guest cpu time to a process.
3230 * @p: the process that the cpu time gets accounted to
3231 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3232 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3233 */
457533a7
MS
3234static void account_guest_time(struct task_struct *p, cputime_t cputime,
3235 cputime_t cputime_scaled)
94886b84
LV
3236{
3237 cputime64_t tmp;
3238 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3239
3240 tmp = cputime_to_cputime64(cputime);
3241
457533a7 3242 /* Add guest time to process. */
94886b84 3243 p->utime = cputime_add(p->utime, cputime);
457533a7 3244 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3245 account_group_user_time(p, cputime);
94886b84
LV
3246 p->gtime = cputime_add(p->gtime, cputime);
3247
457533a7 3248 /* Add guest time to cpustat. */
ce0e7b28
RO
3249 if (TASK_NICE(p) > 0) {
3250 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3251 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3252 } else {
3253 cpustat->user = cputime64_add(cpustat->user, tmp);
3254 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3255 }
94886b84
LV
3256}
3257
1da177e4
LT
3258/*
3259 * Account system cpu time to a process.
3260 * @p: the process that the cpu time gets accounted to
3261 * @hardirq_offset: the offset to subtract from hardirq_count()
3262 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3263 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3264 */
3265void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3266 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3267{
3268 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3269 cputime64_t tmp;
3270
983ed7a6 3271 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3272 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3273 return;
3274 }
94886b84 3275
457533a7 3276 /* Add system time to process. */
1da177e4 3277 p->stime = cputime_add(p->stime, cputime);
457533a7 3278 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3279 account_group_system_time(p, cputime);
1da177e4
LT
3280
3281 /* Add system time to cpustat. */
3282 tmp = cputime_to_cputime64(cputime);
3283 if (hardirq_count() - hardirq_offset)
3284 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3285 else if (softirq_count())
3286 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3287 else
79741dd3
MS
3288 cpustat->system = cputime64_add(cpustat->system, tmp);
3289
ef12fefa
BR
3290 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3291
1da177e4
LT
3292 /* Account for system time used */
3293 acct_update_integrals(p);
1da177e4
LT
3294}
3295
c66f08be 3296/*
1da177e4 3297 * Account for involuntary wait time.
1da177e4 3298 * @steal: the cpu time spent in involuntary wait
c66f08be 3299 */
79741dd3 3300void account_steal_time(cputime_t cputime)
c66f08be 3301{
79741dd3
MS
3302 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3303 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3304
3305 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3306}
3307
1da177e4 3308/*
79741dd3
MS
3309 * Account for idle time.
3310 * @cputime: the cpu time spent in idle wait
1da177e4 3311 */
79741dd3 3312void account_idle_time(cputime_t cputime)
1da177e4
LT
3313{
3314 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3315 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3316 struct rq *rq = this_rq();
1da177e4 3317
79741dd3
MS
3318 if (atomic_read(&rq->nr_iowait) > 0)
3319 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3320 else
3321 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3322}
3323
79741dd3
MS
3324#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3325
3326/*
3327 * Account a single tick of cpu time.
3328 * @p: the process that the cpu time gets accounted to
3329 * @user_tick: indicates if the tick is a user or a system tick
3330 */
3331void account_process_tick(struct task_struct *p, int user_tick)
3332{
a42548a1 3333 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3334 struct rq *rq = this_rq();
3335
3336 if (user_tick)
a42548a1 3337 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3338 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3339 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3340 one_jiffy_scaled);
3341 else
a42548a1 3342 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3343}
3344
3345/*
3346 * Account multiple ticks of steal time.
3347 * @p: the process from which the cpu time has been stolen
3348 * @ticks: number of stolen ticks
3349 */
3350void account_steal_ticks(unsigned long ticks)
3351{
3352 account_steal_time(jiffies_to_cputime(ticks));
3353}
3354
3355/*
3356 * Account multiple ticks of idle time.
3357 * @ticks: number of stolen ticks
3358 */
3359void account_idle_ticks(unsigned long ticks)
3360{
3361 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3362}
3363
79741dd3
MS
3364#endif
3365
49048622
BS
3366/*
3367 * Use precise platform statistics if available:
3368 */
3369#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3370void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3371{
d99ca3b9
HS
3372 *ut = p->utime;
3373 *st = p->stime;
49048622
BS
3374}
3375
0cf55e1e 3376void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3377{
0cf55e1e
HS
3378 struct task_cputime cputime;
3379
3380 thread_group_cputime(p, &cputime);
3381
3382 *ut = cputime.utime;
3383 *st = cputime.stime;
49048622
BS
3384}
3385#else
761b1d26
HS
3386
3387#ifndef nsecs_to_cputime
b7b20df9 3388# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3389#endif
3390
d180c5bc 3391void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3392{
d99ca3b9 3393 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3394
3395 /*
3396 * Use CFS's precise accounting:
3397 */
d180c5bc 3398 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3399
3400 if (total) {
d180c5bc
HS
3401 u64 temp;
3402
3403 temp = (u64)(rtime * utime);
49048622 3404 do_div(temp, total);
d180c5bc
HS
3405 utime = (cputime_t)temp;
3406 } else
3407 utime = rtime;
49048622 3408
d180c5bc
HS
3409 /*
3410 * Compare with previous values, to keep monotonicity:
3411 */
761b1d26 3412 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3413 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3414
d99ca3b9
HS
3415 *ut = p->prev_utime;
3416 *st = p->prev_stime;
49048622
BS
3417}
3418
0cf55e1e
HS
3419/*
3420 * Must be called with siglock held.
3421 */
3422void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3423{
0cf55e1e
HS
3424 struct signal_struct *sig = p->signal;
3425 struct task_cputime cputime;
3426 cputime_t rtime, utime, total;
49048622 3427
0cf55e1e 3428 thread_group_cputime(p, &cputime);
49048622 3429
0cf55e1e
HS
3430 total = cputime_add(cputime.utime, cputime.stime);
3431 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3432
0cf55e1e
HS
3433 if (total) {
3434 u64 temp;
49048622 3435
0cf55e1e
HS
3436 temp = (u64)(rtime * cputime.utime);
3437 do_div(temp, total);
3438 utime = (cputime_t)temp;
3439 } else
3440 utime = rtime;
3441
3442 sig->prev_utime = max(sig->prev_utime, utime);
3443 sig->prev_stime = max(sig->prev_stime,
3444 cputime_sub(rtime, sig->prev_utime));
3445
3446 *ut = sig->prev_utime;
3447 *st = sig->prev_stime;
49048622 3448}
49048622 3449#endif
49048622 3450
7835b98b
CL
3451/*
3452 * This function gets called by the timer code, with HZ frequency.
3453 * We call it with interrupts disabled.
3454 *
3455 * It also gets called by the fork code, when changing the parent's
3456 * timeslices.
3457 */
3458void scheduler_tick(void)
3459{
7835b98b
CL
3460 int cpu = smp_processor_id();
3461 struct rq *rq = cpu_rq(cpu);
dd41f596 3462 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3463
3464 sched_clock_tick();
dd41f596 3465
05fa785c 3466 raw_spin_lock(&rq->lock);
3e51f33f 3467 update_rq_clock(rq);
f1a438d8 3468 update_cpu_load(rq);
fa85ae24 3469 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3470 raw_spin_unlock(&rq->lock);
7835b98b 3471
cdd6c482 3472 perf_event_task_tick(curr, cpu);
e220d2dc 3473
e418e1c2 3474#ifdef CONFIG_SMP
dd41f596
IM
3475 rq->idle_at_tick = idle_cpu(cpu);
3476 trigger_load_balance(rq, cpu);
e418e1c2 3477#endif
1da177e4
LT
3478}
3479
132380a0 3480notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3481{
3482 if (in_lock_functions(addr)) {
3483 addr = CALLER_ADDR2;
3484 if (in_lock_functions(addr))
3485 addr = CALLER_ADDR3;
3486 }
3487 return addr;
3488}
1da177e4 3489
7e49fcce
SR
3490#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3491 defined(CONFIG_PREEMPT_TRACER))
3492
43627582 3493void __kprobes add_preempt_count(int val)
1da177e4 3494{
6cd8a4bb 3495#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3496 /*
3497 * Underflow?
3498 */
9a11b49a
IM
3499 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3500 return;
6cd8a4bb 3501#endif
1da177e4 3502 preempt_count() += val;
6cd8a4bb 3503#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3504 /*
3505 * Spinlock count overflowing soon?
3506 */
33859f7f
MOS
3507 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3508 PREEMPT_MASK - 10);
6cd8a4bb
SR
3509#endif
3510 if (preempt_count() == val)
3511 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3512}
3513EXPORT_SYMBOL(add_preempt_count);
3514
43627582 3515void __kprobes sub_preempt_count(int val)
1da177e4 3516{
6cd8a4bb 3517#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3518 /*
3519 * Underflow?
3520 */
01e3eb82 3521 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3522 return;
1da177e4
LT
3523 /*
3524 * Is the spinlock portion underflowing?
3525 */
9a11b49a
IM
3526 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3527 !(preempt_count() & PREEMPT_MASK)))
3528 return;
6cd8a4bb 3529#endif
9a11b49a 3530
6cd8a4bb
SR
3531 if (preempt_count() == val)
3532 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3533 preempt_count() -= val;
3534}
3535EXPORT_SYMBOL(sub_preempt_count);
3536
3537#endif
3538
3539/*
dd41f596 3540 * Print scheduling while atomic bug:
1da177e4 3541 */
dd41f596 3542static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3543{
838225b4
SS
3544 struct pt_regs *regs = get_irq_regs();
3545
3df0fc5b
PZ
3546 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3547 prev->comm, prev->pid, preempt_count());
838225b4 3548
dd41f596 3549 debug_show_held_locks(prev);
e21f5b15 3550 print_modules();
dd41f596
IM
3551 if (irqs_disabled())
3552 print_irqtrace_events(prev);
838225b4
SS
3553
3554 if (regs)
3555 show_regs(regs);
3556 else
3557 dump_stack();
dd41f596 3558}
1da177e4 3559
dd41f596
IM
3560/*
3561 * Various schedule()-time debugging checks and statistics:
3562 */
3563static inline void schedule_debug(struct task_struct *prev)
3564{
1da177e4 3565 /*
41a2d6cf 3566 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3567 * schedule() atomically, we ignore that path for now.
3568 * Otherwise, whine if we are scheduling when we should not be.
3569 */
3f33a7ce 3570 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3571 __schedule_bug(prev);
3572
1da177e4
LT
3573 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3574
2d72376b 3575 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3576#ifdef CONFIG_SCHEDSTATS
3577 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3578 schedstat_inc(this_rq(), bkl_count);
3579 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3580 }
3581#endif
dd41f596
IM
3582}
3583
6cecd084 3584static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3585{
6cecd084
PZ
3586 if (prev->state == TASK_RUNNING) {
3587 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3588
6cecd084
PZ
3589 runtime -= prev->se.prev_sum_exec_runtime;
3590 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3591
3592 /*
3593 * In order to avoid avg_overlap growing stale when we are
3594 * indeed overlapping and hence not getting put to sleep, grow
3595 * the avg_overlap on preemption.
3596 *
3597 * We use the average preemption runtime because that
3598 * correlates to the amount of cache footprint a task can
3599 * build up.
3600 */
6cecd084 3601 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3602 }
6cecd084 3603 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3604}
3605
dd41f596
IM
3606/*
3607 * Pick up the highest-prio task:
3608 */
3609static inline struct task_struct *
b67802ea 3610pick_next_task(struct rq *rq)
dd41f596 3611{
5522d5d5 3612 const struct sched_class *class;
dd41f596 3613 struct task_struct *p;
1da177e4
LT
3614
3615 /*
dd41f596
IM
3616 * Optimization: we know that if all tasks are in
3617 * the fair class we can call that function directly:
1da177e4 3618 */
dd41f596 3619 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3620 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3621 if (likely(p))
3622 return p;
1da177e4
LT
3623 }
3624
dd41f596
IM
3625 class = sched_class_highest;
3626 for ( ; ; ) {
fb8d4724 3627 p = class->pick_next_task(rq);
dd41f596
IM
3628 if (p)
3629 return p;
3630 /*
3631 * Will never be NULL as the idle class always
3632 * returns a non-NULL p:
3633 */
3634 class = class->next;
3635 }
3636}
1da177e4 3637
dd41f596
IM
3638/*
3639 * schedule() is the main scheduler function.
3640 */
ff743345 3641asmlinkage void __sched schedule(void)
dd41f596
IM
3642{
3643 struct task_struct *prev, *next;
67ca7bde 3644 unsigned long *switch_count;
dd41f596 3645 struct rq *rq;
31656519 3646 int cpu;
dd41f596 3647
ff743345
PZ
3648need_resched:
3649 preempt_disable();
dd41f596
IM
3650 cpu = smp_processor_id();
3651 rq = cpu_rq(cpu);
d6714c22 3652 rcu_sched_qs(cpu);
dd41f596
IM
3653 prev = rq->curr;
3654 switch_count = &prev->nivcsw;
3655
3656 release_kernel_lock(prev);
3657need_resched_nonpreemptible:
3658
3659 schedule_debug(prev);
1da177e4 3660
31656519 3661 if (sched_feat(HRTICK))
f333fdc9 3662 hrtick_clear(rq);
8f4d37ec 3663
05fa785c 3664 raw_spin_lock_irq(&rq->lock);
3e51f33f 3665 update_rq_clock(rq);
1e819950 3666 clear_tsk_need_resched(prev);
1da177e4 3667
1da177e4 3668 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3669 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3670 prev->state = TASK_RUNNING;
16882c1e 3671 else
2e1cb74a 3672 deactivate_task(rq, prev, 1);
dd41f596 3673 switch_count = &prev->nvcsw;
1da177e4
LT
3674 }
3675
3f029d3c 3676 pre_schedule(rq, prev);
f65eda4f 3677
dd41f596 3678 if (unlikely(!rq->nr_running))
1da177e4 3679 idle_balance(cpu, rq);
1da177e4 3680
df1c99d4 3681 put_prev_task(rq, prev);
b67802ea 3682 next = pick_next_task(rq);
1da177e4 3683
1da177e4 3684 if (likely(prev != next)) {
673a90a1 3685 sched_info_switch(prev, next);
cdd6c482 3686 perf_event_task_sched_out(prev, next, cpu);
673a90a1 3687
1da177e4
LT
3688 rq->nr_switches++;
3689 rq->curr = next;
3690 ++*switch_count;
3691
dd41f596 3692 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3693 /*
3694 * the context switch might have flipped the stack from under
3695 * us, hence refresh the local variables.
3696 */
3697 cpu = smp_processor_id();
3698 rq = cpu_rq(cpu);
1da177e4 3699 } else
05fa785c 3700 raw_spin_unlock_irq(&rq->lock);
1da177e4 3701
3f029d3c 3702 post_schedule(rq);
1da177e4 3703
8f4d37ec 3704 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 3705 goto need_resched_nonpreemptible;
8f4d37ec 3706
1da177e4 3707 preempt_enable_no_resched();
ff743345 3708 if (need_resched())
1da177e4
LT
3709 goto need_resched;
3710}
1da177e4
LT
3711EXPORT_SYMBOL(schedule);
3712
c08f7829 3713#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3714/*
3715 * Look out! "owner" is an entirely speculative pointer
3716 * access and not reliable.
3717 */
3718int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3719{
3720 unsigned int cpu;
3721 struct rq *rq;
3722
3723 if (!sched_feat(OWNER_SPIN))
3724 return 0;
3725
3726#ifdef CONFIG_DEBUG_PAGEALLOC
3727 /*
3728 * Need to access the cpu field knowing that
3729 * DEBUG_PAGEALLOC could have unmapped it if
3730 * the mutex owner just released it and exited.
3731 */
3732 if (probe_kernel_address(&owner->cpu, cpu))
3733 goto out;
3734#else
3735 cpu = owner->cpu;
3736#endif
3737
3738 /*
3739 * Even if the access succeeded (likely case),
3740 * the cpu field may no longer be valid.
3741 */
3742 if (cpu >= nr_cpumask_bits)
3743 goto out;
3744
3745 /*
3746 * We need to validate that we can do a
3747 * get_cpu() and that we have the percpu area.
3748 */
3749 if (!cpu_online(cpu))
3750 goto out;
3751
3752 rq = cpu_rq(cpu);
3753
3754 for (;;) {
3755 /*
3756 * Owner changed, break to re-assess state.
3757 */
3758 if (lock->owner != owner)
3759 break;
3760
3761 /*
3762 * Is that owner really running on that cpu?
3763 */
3764 if (task_thread_info(rq->curr) != owner || need_resched())
3765 return 0;
3766
3767 cpu_relax();
3768 }
3769out:
3770 return 1;
3771}
3772#endif
3773
1da177e4
LT
3774#ifdef CONFIG_PREEMPT
3775/*
2ed6e34f 3776 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3777 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3778 * occur there and call schedule directly.
3779 */
3780asmlinkage void __sched preempt_schedule(void)
3781{
3782 struct thread_info *ti = current_thread_info();
6478d880 3783
1da177e4
LT
3784 /*
3785 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3786 * we do not want to preempt the current task. Just return..
1da177e4 3787 */
beed33a8 3788 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3789 return;
3790
3a5c359a
AK
3791 do {
3792 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3793 schedule();
3a5c359a 3794 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3795
3a5c359a
AK
3796 /*
3797 * Check again in case we missed a preemption opportunity
3798 * between schedule and now.
3799 */
3800 barrier();
5ed0cec0 3801 } while (need_resched());
1da177e4 3802}
1da177e4
LT
3803EXPORT_SYMBOL(preempt_schedule);
3804
3805/*
2ed6e34f 3806 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3807 * off of irq context.
3808 * Note, that this is called and return with irqs disabled. This will
3809 * protect us against recursive calling from irq.
3810 */
3811asmlinkage void __sched preempt_schedule_irq(void)
3812{
3813 struct thread_info *ti = current_thread_info();
6478d880 3814
2ed6e34f 3815 /* Catch callers which need to be fixed */
1da177e4
LT
3816 BUG_ON(ti->preempt_count || !irqs_disabled());
3817
3a5c359a
AK
3818 do {
3819 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3820 local_irq_enable();
3821 schedule();
3822 local_irq_disable();
3a5c359a 3823 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3824
3a5c359a
AK
3825 /*
3826 * Check again in case we missed a preemption opportunity
3827 * between schedule and now.
3828 */
3829 barrier();
5ed0cec0 3830 } while (need_resched());
1da177e4
LT
3831}
3832
3833#endif /* CONFIG_PREEMPT */
3834
63859d4f 3835int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3836 void *key)
1da177e4 3837{
63859d4f 3838 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3839}
1da177e4
LT
3840EXPORT_SYMBOL(default_wake_function);
3841
3842/*
41a2d6cf
IM
3843 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3844 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3845 * number) then we wake all the non-exclusive tasks and one exclusive task.
3846 *
3847 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3848 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3849 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3850 */
78ddb08f 3851static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3852 int nr_exclusive, int wake_flags, void *key)
1da177e4 3853{
2e45874c 3854 wait_queue_t *curr, *next;
1da177e4 3855
2e45874c 3856 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3857 unsigned flags = curr->flags;
3858
63859d4f 3859 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3860 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3861 break;
3862 }
3863}
3864
3865/**
3866 * __wake_up - wake up threads blocked on a waitqueue.
3867 * @q: the waitqueue
3868 * @mode: which threads
3869 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3870 * @key: is directly passed to the wakeup function
50fa610a
DH
3871 *
3872 * It may be assumed that this function implies a write memory barrier before
3873 * changing the task state if and only if any tasks are woken up.
1da177e4 3874 */
7ad5b3a5 3875void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3876 int nr_exclusive, void *key)
1da177e4
LT
3877{
3878 unsigned long flags;
3879
3880 spin_lock_irqsave(&q->lock, flags);
3881 __wake_up_common(q, mode, nr_exclusive, 0, key);
3882 spin_unlock_irqrestore(&q->lock, flags);
3883}
1da177e4
LT
3884EXPORT_SYMBOL(__wake_up);
3885
3886/*
3887 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3888 */
7ad5b3a5 3889void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3890{
3891 __wake_up_common(q, mode, 1, 0, NULL);
3892}
3893
4ede816a
DL
3894void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3895{
3896 __wake_up_common(q, mode, 1, 0, key);
3897}
3898
1da177e4 3899/**
4ede816a 3900 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3901 * @q: the waitqueue
3902 * @mode: which threads
3903 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3904 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3905 *
3906 * The sync wakeup differs that the waker knows that it will schedule
3907 * away soon, so while the target thread will be woken up, it will not
3908 * be migrated to another CPU - ie. the two threads are 'synchronized'
3909 * with each other. This can prevent needless bouncing between CPUs.
3910 *
3911 * On UP it can prevent extra preemption.
50fa610a
DH
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
1da177e4 3915 */
4ede816a
DL
3916void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3917 int nr_exclusive, void *key)
1da177e4
LT
3918{
3919 unsigned long flags;
7d478721 3920 int wake_flags = WF_SYNC;
1da177e4
LT
3921
3922 if (unlikely(!q))
3923 return;
3924
3925 if (unlikely(!nr_exclusive))
7d478721 3926 wake_flags = 0;
1da177e4
LT
3927
3928 spin_lock_irqsave(&q->lock, flags);
7d478721 3929 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3930 spin_unlock_irqrestore(&q->lock, flags);
3931}
4ede816a
DL
3932EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3933
3934/*
3935 * __wake_up_sync - see __wake_up_sync_key()
3936 */
3937void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3938{
3939 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3940}
1da177e4
LT
3941EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3942
65eb3dc6
KD
3943/**
3944 * complete: - signals a single thread waiting on this completion
3945 * @x: holds the state of this particular completion
3946 *
3947 * This will wake up a single thread waiting on this completion. Threads will be
3948 * awakened in the same order in which they were queued.
3949 *
3950 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3951 *
3952 * It may be assumed that this function implies a write memory barrier before
3953 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3954 */
b15136e9 3955void complete(struct completion *x)
1da177e4
LT
3956{
3957 unsigned long flags;
3958
3959 spin_lock_irqsave(&x->wait.lock, flags);
3960 x->done++;
d9514f6c 3961 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3962 spin_unlock_irqrestore(&x->wait.lock, flags);
3963}
3964EXPORT_SYMBOL(complete);
3965
65eb3dc6
KD
3966/**
3967 * complete_all: - signals all threads waiting on this completion
3968 * @x: holds the state of this particular completion
3969 *
3970 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3971 *
3972 * It may be assumed that this function implies a write memory barrier before
3973 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3974 */
b15136e9 3975void complete_all(struct completion *x)
1da177e4
LT
3976{
3977 unsigned long flags;
3978
3979 spin_lock_irqsave(&x->wait.lock, flags);
3980 x->done += UINT_MAX/2;
d9514f6c 3981 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3982 spin_unlock_irqrestore(&x->wait.lock, flags);
3983}
3984EXPORT_SYMBOL(complete_all);
3985
8cbbe86d
AK
3986static inline long __sched
3987do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3988{
1da177e4
LT
3989 if (!x->done) {
3990 DECLARE_WAITQUEUE(wait, current);
3991
3992 wait.flags |= WQ_FLAG_EXCLUSIVE;
3993 __add_wait_queue_tail(&x->wait, &wait);
3994 do {
94d3d824 3995 if (signal_pending_state(state, current)) {
ea71a546
ON
3996 timeout = -ERESTARTSYS;
3997 break;
8cbbe86d
AK
3998 }
3999 __set_current_state(state);
1da177e4
LT
4000 spin_unlock_irq(&x->wait.lock);
4001 timeout = schedule_timeout(timeout);
4002 spin_lock_irq(&x->wait.lock);
ea71a546 4003 } while (!x->done && timeout);
1da177e4 4004 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4005 if (!x->done)
4006 return timeout;
1da177e4
LT
4007 }
4008 x->done--;
ea71a546 4009 return timeout ?: 1;
1da177e4 4010}
1da177e4 4011
8cbbe86d
AK
4012static long __sched
4013wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4014{
1da177e4
LT
4015 might_sleep();
4016
4017 spin_lock_irq(&x->wait.lock);
8cbbe86d 4018 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4019 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4020 return timeout;
4021}
1da177e4 4022
65eb3dc6
KD
4023/**
4024 * wait_for_completion: - waits for completion of a task
4025 * @x: holds the state of this particular completion
4026 *
4027 * This waits to be signaled for completion of a specific task. It is NOT
4028 * interruptible and there is no timeout.
4029 *
4030 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4031 * and interrupt capability. Also see complete().
4032 */
b15136e9 4033void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4034{
4035 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4036}
8cbbe86d 4037EXPORT_SYMBOL(wait_for_completion);
1da177e4 4038
65eb3dc6
KD
4039/**
4040 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4041 * @x: holds the state of this particular completion
4042 * @timeout: timeout value in jiffies
4043 *
4044 * This waits for either a completion of a specific task to be signaled or for a
4045 * specified timeout to expire. The timeout is in jiffies. It is not
4046 * interruptible.
4047 */
b15136e9 4048unsigned long __sched
8cbbe86d 4049wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4050{
8cbbe86d 4051 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4052}
8cbbe86d 4053EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4054
65eb3dc6
KD
4055/**
4056 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4057 * @x: holds the state of this particular completion
4058 *
4059 * This waits for completion of a specific task to be signaled. It is
4060 * interruptible.
4061 */
8cbbe86d 4062int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4063{
51e97990
AK
4064 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4065 if (t == -ERESTARTSYS)
4066 return t;
4067 return 0;
0fec171c 4068}
8cbbe86d 4069EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4070
65eb3dc6
KD
4071/**
4072 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4073 * @x: holds the state of this particular completion
4074 * @timeout: timeout value in jiffies
4075 *
4076 * This waits for either a completion of a specific task to be signaled or for a
4077 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4078 */
b15136e9 4079unsigned long __sched
8cbbe86d
AK
4080wait_for_completion_interruptible_timeout(struct completion *x,
4081 unsigned long timeout)
0fec171c 4082{
8cbbe86d 4083 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4084}
8cbbe86d 4085EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4086
65eb3dc6
KD
4087/**
4088 * wait_for_completion_killable: - waits for completion of a task (killable)
4089 * @x: holds the state of this particular completion
4090 *
4091 * This waits to be signaled for completion of a specific task. It can be
4092 * interrupted by a kill signal.
4093 */
009e577e
MW
4094int __sched wait_for_completion_killable(struct completion *x)
4095{
4096 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4097 if (t == -ERESTARTSYS)
4098 return t;
4099 return 0;
4100}
4101EXPORT_SYMBOL(wait_for_completion_killable);
4102
be4de352
DC
4103/**
4104 * try_wait_for_completion - try to decrement a completion without blocking
4105 * @x: completion structure
4106 *
4107 * Returns: 0 if a decrement cannot be done without blocking
4108 * 1 if a decrement succeeded.
4109 *
4110 * If a completion is being used as a counting completion,
4111 * attempt to decrement the counter without blocking. This
4112 * enables us to avoid waiting if the resource the completion
4113 * is protecting is not available.
4114 */
4115bool try_wait_for_completion(struct completion *x)
4116{
7539a3b3 4117 unsigned long flags;
be4de352
DC
4118 int ret = 1;
4119
7539a3b3 4120 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4121 if (!x->done)
4122 ret = 0;
4123 else
4124 x->done--;
7539a3b3 4125 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4126 return ret;
4127}
4128EXPORT_SYMBOL(try_wait_for_completion);
4129
4130/**
4131 * completion_done - Test to see if a completion has any waiters
4132 * @x: completion structure
4133 *
4134 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4135 * 1 if there are no waiters.
4136 *
4137 */
4138bool completion_done(struct completion *x)
4139{
7539a3b3 4140 unsigned long flags;
be4de352
DC
4141 int ret = 1;
4142
7539a3b3 4143 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4144 if (!x->done)
4145 ret = 0;
7539a3b3 4146 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4147 return ret;
4148}
4149EXPORT_SYMBOL(completion_done);
4150
8cbbe86d
AK
4151static long __sched
4152sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4153{
0fec171c
IM
4154 unsigned long flags;
4155 wait_queue_t wait;
4156
4157 init_waitqueue_entry(&wait, current);
1da177e4 4158
8cbbe86d 4159 __set_current_state(state);
1da177e4 4160
8cbbe86d
AK
4161 spin_lock_irqsave(&q->lock, flags);
4162 __add_wait_queue(q, &wait);
4163 spin_unlock(&q->lock);
4164 timeout = schedule_timeout(timeout);
4165 spin_lock_irq(&q->lock);
4166 __remove_wait_queue(q, &wait);
4167 spin_unlock_irqrestore(&q->lock, flags);
4168
4169 return timeout;
4170}
4171
4172void __sched interruptible_sleep_on(wait_queue_head_t *q)
4173{
4174 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4175}
1da177e4
LT
4176EXPORT_SYMBOL(interruptible_sleep_on);
4177
0fec171c 4178long __sched
95cdf3b7 4179interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4180{
8cbbe86d 4181 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4182}
1da177e4
LT
4183EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4184
0fec171c 4185void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4186{
8cbbe86d 4187 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4188}
1da177e4
LT
4189EXPORT_SYMBOL(sleep_on);
4190
0fec171c 4191long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4192{
8cbbe86d 4193 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4194}
1da177e4
LT
4195EXPORT_SYMBOL(sleep_on_timeout);
4196
b29739f9
IM
4197#ifdef CONFIG_RT_MUTEXES
4198
4199/*
4200 * rt_mutex_setprio - set the current priority of a task
4201 * @p: task
4202 * @prio: prio value (kernel-internal form)
4203 *
4204 * This function changes the 'effective' priority of a task. It does
4205 * not touch ->normal_prio like __setscheduler().
4206 *
4207 * Used by the rt_mutex code to implement priority inheritance logic.
4208 */
36c8b586 4209void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4210{
4211 unsigned long flags;
83b699ed 4212 int oldprio, on_rq, running;
70b97a7f 4213 struct rq *rq;
cb469845 4214 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4215
4216 BUG_ON(prio < 0 || prio > MAX_PRIO);
4217
4218 rq = task_rq_lock(p, &flags);
a8e504d2 4219 update_rq_clock(rq);
b29739f9 4220
d5f9f942 4221 oldprio = p->prio;
dd41f596 4222 on_rq = p->se.on_rq;
051a1d1a 4223 running = task_current(rq, p);
0e1f3483 4224 if (on_rq)
69be72c1 4225 dequeue_task(rq, p, 0);
0e1f3483
HS
4226 if (running)
4227 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4228
4229 if (rt_prio(prio))
4230 p->sched_class = &rt_sched_class;
4231 else
4232 p->sched_class = &fair_sched_class;
4233
b29739f9
IM
4234 p->prio = prio;
4235
0e1f3483
HS
4236 if (running)
4237 p->sched_class->set_curr_task(rq);
dd41f596 4238 if (on_rq) {
8159f87e 4239 enqueue_task(rq, p, 0);
cb469845
SR
4240
4241 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4242 }
4243 task_rq_unlock(rq, &flags);
4244}
4245
4246#endif
4247
36c8b586 4248void set_user_nice(struct task_struct *p, long nice)
1da177e4 4249{
dd41f596 4250 int old_prio, delta, on_rq;
1da177e4 4251 unsigned long flags;
70b97a7f 4252 struct rq *rq;
1da177e4
LT
4253
4254 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4255 return;
4256 /*
4257 * We have to be careful, if called from sys_setpriority(),
4258 * the task might be in the middle of scheduling on another CPU.
4259 */
4260 rq = task_rq_lock(p, &flags);
a8e504d2 4261 update_rq_clock(rq);
1da177e4
LT
4262 /*
4263 * The RT priorities are set via sched_setscheduler(), but we still
4264 * allow the 'normal' nice value to be set - but as expected
4265 * it wont have any effect on scheduling until the task is
dd41f596 4266 * SCHED_FIFO/SCHED_RR:
1da177e4 4267 */
e05606d3 4268 if (task_has_rt_policy(p)) {
1da177e4
LT
4269 p->static_prio = NICE_TO_PRIO(nice);
4270 goto out_unlock;
4271 }
dd41f596 4272 on_rq = p->se.on_rq;
c09595f6 4273 if (on_rq)
69be72c1 4274 dequeue_task(rq, p, 0);
1da177e4 4275
1da177e4 4276 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4277 set_load_weight(p);
b29739f9
IM
4278 old_prio = p->prio;
4279 p->prio = effective_prio(p);
4280 delta = p->prio - old_prio;
1da177e4 4281
dd41f596 4282 if (on_rq) {
8159f87e 4283 enqueue_task(rq, p, 0);
1da177e4 4284 /*
d5f9f942
AM
4285 * If the task increased its priority or is running and
4286 * lowered its priority, then reschedule its CPU:
1da177e4 4287 */
d5f9f942 4288 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4289 resched_task(rq->curr);
4290 }
4291out_unlock:
4292 task_rq_unlock(rq, &flags);
4293}
1da177e4
LT
4294EXPORT_SYMBOL(set_user_nice);
4295
e43379f1
MM
4296/*
4297 * can_nice - check if a task can reduce its nice value
4298 * @p: task
4299 * @nice: nice value
4300 */
36c8b586 4301int can_nice(const struct task_struct *p, const int nice)
e43379f1 4302{
024f4747
MM
4303 /* convert nice value [19,-20] to rlimit style value [1,40] */
4304 int nice_rlim = 20 - nice;
48f24c4d 4305
e43379f1
MM
4306 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4307 capable(CAP_SYS_NICE));
4308}
4309
1da177e4
LT
4310#ifdef __ARCH_WANT_SYS_NICE
4311
4312/*
4313 * sys_nice - change the priority of the current process.
4314 * @increment: priority increment
4315 *
4316 * sys_setpriority is a more generic, but much slower function that
4317 * does similar things.
4318 */
5add95d4 4319SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4320{
48f24c4d 4321 long nice, retval;
1da177e4
LT
4322
4323 /*
4324 * Setpriority might change our priority at the same moment.
4325 * We don't have to worry. Conceptually one call occurs first
4326 * and we have a single winner.
4327 */
e43379f1
MM
4328 if (increment < -40)
4329 increment = -40;
1da177e4
LT
4330 if (increment > 40)
4331 increment = 40;
4332
2b8f836f 4333 nice = TASK_NICE(current) + increment;
1da177e4
LT
4334 if (nice < -20)
4335 nice = -20;
4336 if (nice > 19)
4337 nice = 19;
4338
e43379f1
MM
4339 if (increment < 0 && !can_nice(current, nice))
4340 return -EPERM;
4341
1da177e4
LT
4342 retval = security_task_setnice(current, nice);
4343 if (retval)
4344 return retval;
4345
4346 set_user_nice(current, nice);
4347 return 0;
4348}
4349
4350#endif
4351
4352/**
4353 * task_prio - return the priority value of a given task.
4354 * @p: the task in question.
4355 *
4356 * This is the priority value as seen by users in /proc.
4357 * RT tasks are offset by -200. Normal tasks are centered
4358 * around 0, value goes from -16 to +15.
4359 */
36c8b586 4360int task_prio(const struct task_struct *p)
1da177e4
LT
4361{
4362 return p->prio - MAX_RT_PRIO;
4363}
4364
4365/**
4366 * task_nice - return the nice value of a given task.
4367 * @p: the task in question.
4368 */
36c8b586 4369int task_nice(const struct task_struct *p)
1da177e4
LT
4370{
4371 return TASK_NICE(p);
4372}
150d8bed 4373EXPORT_SYMBOL(task_nice);
1da177e4
LT
4374
4375/**
4376 * idle_cpu - is a given cpu idle currently?
4377 * @cpu: the processor in question.
4378 */
4379int idle_cpu(int cpu)
4380{
4381 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4382}
4383
1da177e4
LT
4384/**
4385 * idle_task - return the idle task for a given cpu.
4386 * @cpu: the processor in question.
4387 */
36c8b586 4388struct task_struct *idle_task(int cpu)
1da177e4
LT
4389{
4390 return cpu_rq(cpu)->idle;
4391}
4392
4393/**
4394 * find_process_by_pid - find a process with a matching PID value.
4395 * @pid: the pid in question.
4396 */
a9957449 4397static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4398{
228ebcbe 4399 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4400}
4401
4402/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4403static void
4404__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4405{
dd41f596 4406 BUG_ON(p->se.on_rq);
48f24c4d 4407
1da177e4
LT
4408 p->policy = policy;
4409 p->rt_priority = prio;
b29739f9
IM
4410 p->normal_prio = normal_prio(p);
4411 /* we are holding p->pi_lock already */
4412 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4413 if (rt_prio(p->prio))
4414 p->sched_class = &rt_sched_class;
4415 else
4416 p->sched_class = &fair_sched_class;
2dd73a4f 4417 set_load_weight(p);
1da177e4
LT
4418}
4419
c69e8d9c
DH
4420/*
4421 * check the target process has a UID that matches the current process's
4422 */
4423static bool check_same_owner(struct task_struct *p)
4424{
4425 const struct cred *cred = current_cred(), *pcred;
4426 bool match;
4427
4428 rcu_read_lock();
4429 pcred = __task_cred(p);
4430 match = (cred->euid == pcred->euid ||
4431 cred->euid == pcred->uid);
4432 rcu_read_unlock();
4433 return match;
4434}
4435
961ccddd
RR
4436static int __sched_setscheduler(struct task_struct *p, int policy,
4437 struct sched_param *param, bool user)
1da177e4 4438{
83b699ed 4439 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4440 unsigned long flags;
cb469845 4441 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4442 struct rq *rq;
ca94c442 4443 int reset_on_fork;
1da177e4 4444
66e5393a
SR
4445 /* may grab non-irq protected spin_locks */
4446 BUG_ON(in_interrupt());
1da177e4
LT
4447recheck:
4448 /* double check policy once rq lock held */
ca94c442
LP
4449 if (policy < 0) {
4450 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4451 policy = oldpolicy = p->policy;
ca94c442
LP
4452 } else {
4453 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4454 policy &= ~SCHED_RESET_ON_FORK;
4455
4456 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4457 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4458 policy != SCHED_IDLE)
4459 return -EINVAL;
4460 }
4461
1da177e4
LT
4462 /*
4463 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4464 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4465 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4466 */
4467 if (param->sched_priority < 0 ||
95cdf3b7 4468 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4469 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4470 return -EINVAL;
e05606d3 4471 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4472 return -EINVAL;
4473
37e4ab3f
OC
4474 /*
4475 * Allow unprivileged RT tasks to decrease priority:
4476 */
961ccddd 4477 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4478 if (rt_policy(policy)) {
8dc3e909 4479 unsigned long rlim_rtprio;
8dc3e909
ON
4480
4481 if (!lock_task_sighand(p, &flags))
4482 return -ESRCH;
4483 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4484 unlock_task_sighand(p, &flags);
4485
4486 /* can't set/change the rt policy */
4487 if (policy != p->policy && !rlim_rtprio)
4488 return -EPERM;
4489
4490 /* can't increase priority */
4491 if (param->sched_priority > p->rt_priority &&
4492 param->sched_priority > rlim_rtprio)
4493 return -EPERM;
4494 }
dd41f596
IM
4495 /*
4496 * Like positive nice levels, dont allow tasks to
4497 * move out of SCHED_IDLE either:
4498 */
4499 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4500 return -EPERM;
5fe1d75f 4501
37e4ab3f 4502 /* can't change other user's priorities */
c69e8d9c 4503 if (!check_same_owner(p))
37e4ab3f 4504 return -EPERM;
ca94c442
LP
4505
4506 /* Normal users shall not reset the sched_reset_on_fork flag */
4507 if (p->sched_reset_on_fork && !reset_on_fork)
4508 return -EPERM;
37e4ab3f 4509 }
1da177e4 4510
725aad24 4511 if (user) {
b68aa230 4512#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4513 /*
4514 * Do not allow realtime tasks into groups that have no runtime
4515 * assigned.
4516 */
9a7e0b18
PZ
4517 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4518 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4519 return -EPERM;
b68aa230
PZ
4520#endif
4521
725aad24
JF
4522 retval = security_task_setscheduler(p, policy, param);
4523 if (retval)
4524 return retval;
4525 }
4526
b29739f9
IM
4527 /*
4528 * make sure no PI-waiters arrive (or leave) while we are
4529 * changing the priority of the task:
4530 */
1d615482 4531 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4532 /*
4533 * To be able to change p->policy safely, the apropriate
4534 * runqueue lock must be held.
4535 */
b29739f9 4536 rq = __task_rq_lock(p);
1da177e4
LT
4537 /* recheck policy now with rq lock held */
4538 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4539 policy = oldpolicy = -1;
b29739f9 4540 __task_rq_unlock(rq);
1d615482 4541 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4542 goto recheck;
4543 }
2daa3577 4544 update_rq_clock(rq);
dd41f596 4545 on_rq = p->se.on_rq;
051a1d1a 4546 running = task_current(rq, p);
0e1f3483 4547 if (on_rq)
2e1cb74a 4548 deactivate_task(rq, p, 0);
0e1f3483
HS
4549 if (running)
4550 p->sched_class->put_prev_task(rq, p);
f6b53205 4551
ca94c442
LP
4552 p->sched_reset_on_fork = reset_on_fork;
4553
1da177e4 4554 oldprio = p->prio;
dd41f596 4555 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4556
0e1f3483
HS
4557 if (running)
4558 p->sched_class->set_curr_task(rq);
dd41f596
IM
4559 if (on_rq) {
4560 activate_task(rq, p, 0);
cb469845
SR
4561
4562 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4563 }
b29739f9 4564 __task_rq_unlock(rq);
1d615482 4565 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4566
95e02ca9
TG
4567 rt_mutex_adjust_pi(p);
4568
1da177e4
LT
4569 return 0;
4570}
961ccddd
RR
4571
4572/**
4573 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4574 * @p: the task in question.
4575 * @policy: new policy.
4576 * @param: structure containing the new RT priority.
4577 *
4578 * NOTE that the task may be already dead.
4579 */
4580int sched_setscheduler(struct task_struct *p, int policy,
4581 struct sched_param *param)
4582{
4583 return __sched_setscheduler(p, policy, param, true);
4584}
1da177e4
LT
4585EXPORT_SYMBOL_GPL(sched_setscheduler);
4586
961ccddd
RR
4587/**
4588 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4589 * @p: the task in question.
4590 * @policy: new policy.
4591 * @param: structure containing the new RT priority.
4592 *
4593 * Just like sched_setscheduler, only don't bother checking if the
4594 * current context has permission. For example, this is needed in
4595 * stop_machine(): we create temporary high priority worker threads,
4596 * but our caller might not have that capability.
4597 */
4598int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4599 struct sched_param *param)
4600{
4601 return __sched_setscheduler(p, policy, param, false);
4602}
4603
95cdf3b7
IM
4604static int
4605do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4606{
1da177e4
LT
4607 struct sched_param lparam;
4608 struct task_struct *p;
36c8b586 4609 int retval;
1da177e4
LT
4610
4611 if (!param || pid < 0)
4612 return -EINVAL;
4613 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4614 return -EFAULT;
5fe1d75f
ON
4615
4616 rcu_read_lock();
4617 retval = -ESRCH;
1da177e4 4618 p = find_process_by_pid(pid);
5fe1d75f
ON
4619 if (p != NULL)
4620 retval = sched_setscheduler(p, policy, &lparam);
4621 rcu_read_unlock();
36c8b586 4622
1da177e4
LT
4623 return retval;
4624}
4625
4626/**
4627 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4628 * @pid: the pid in question.
4629 * @policy: new policy.
4630 * @param: structure containing the new RT priority.
4631 */
5add95d4
HC
4632SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4633 struct sched_param __user *, param)
1da177e4 4634{
c21761f1
JB
4635 /* negative values for policy are not valid */
4636 if (policy < 0)
4637 return -EINVAL;
4638
1da177e4
LT
4639 return do_sched_setscheduler(pid, policy, param);
4640}
4641
4642/**
4643 * sys_sched_setparam - set/change the RT priority of a thread
4644 * @pid: the pid in question.
4645 * @param: structure containing the new RT priority.
4646 */
5add95d4 4647SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4648{
4649 return do_sched_setscheduler(pid, -1, param);
4650}
4651
4652/**
4653 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4654 * @pid: the pid in question.
4655 */
5add95d4 4656SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4657{
36c8b586 4658 struct task_struct *p;
3a5c359a 4659 int retval;
1da177e4
LT
4660
4661 if (pid < 0)
3a5c359a 4662 return -EINVAL;
1da177e4
LT
4663
4664 retval = -ESRCH;
5fe85be0 4665 rcu_read_lock();
1da177e4
LT
4666 p = find_process_by_pid(pid);
4667 if (p) {
4668 retval = security_task_getscheduler(p);
4669 if (!retval)
ca94c442
LP
4670 retval = p->policy
4671 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4672 }
5fe85be0 4673 rcu_read_unlock();
1da177e4
LT
4674 return retval;
4675}
4676
4677/**
ca94c442 4678 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4679 * @pid: the pid in question.
4680 * @param: structure containing the RT priority.
4681 */
5add95d4 4682SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4683{
4684 struct sched_param lp;
36c8b586 4685 struct task_struct *p;
3a5c359a 4686 int retval;
1da177e4
LT
4687
4688 if (!param || pid < 0)
3a5c359a 4689 return -EINVAL;
1da177e4 4690
5fe85be0 4691 rcu_read_lock();
1da177e4
LT
4692 p = find_process_by_pid(pid);
4693 retval = -ESRCH;
4694 if (!p)
4695 goto out_unlock;
4696
4697 retval = security_task_getscheduler(p);
4698 if (retval)
4699 goto out_unlock;
4700
4701 lp.sched_priority = p->rt_priority;
5fe85be0 4702 rcu_read_unlock();
1da177e4
LT
4703
4704 /*
4705 * This one might sleep, we cannot do it with a spinlock held ...
4706 */
4707 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4708
1da177e4
LT
4709 return retval;
4710
4711out_unlock:
5fe85be0 4712 rcu_read_unlock();
1da177e4
LT
4713 return retval;
4714}
4715
96f874e2 4716long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4717{
5a16f3d3 4718 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4719 struct task_struct *p;
4720 int retval;
1da177e4 4721
95402b38 4722 get_online_cpus();
23f5d142 4723 rcu_read_lock();
1da177e4
LT
4724
4725 p = find_process_by_pid(pid);
4726 if (!p) {
23f5d142 4727 rcu_read_unlock();
95402b38 4728 put_online_cpus();
1da177e4
LT
4729 return -ESRCH;
4730 }
4731
23f5d142 4732 /* Prevent p going away */
1da177e4 4733 get_task_struct(p);
23f5d142 4734 rcu_read_unlock();
1da177e4 4735
5a16f3d3
RR
4736 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4737 retval = -ENOMEM;
4738 goto out_put_task;
4739 }
4740 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4741 retval = -ENOMEM;
4742 goto out_free_cpus_allowed;
4743 }
1da177e4 4744 retval = -EPERM;
c69e8d9c 4745 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4746 goto out_unlock;
4747
e7834f8f
DQ
4748 retval = security_task_setscheduler(p, 0, NULL);
4749 if (retval)
4750 goto out_unlock;
4751
5a16f3d3
RR
4752 cpuset_cpus_allowed(p, cpus_allowed);
4753 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4754 again:
5a16f3d3 4755 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4756
8707d8b8 4757 if (!retval) {
5a16f3d3
RR
4758 cpuset_cpus_allowed(p, cpus_allowed);
4759 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4760 /*
4761 * We must have raced with a concurrent cpuset
4762 * update. Just reset the cpus_allowed to the
4763 * cpuset's cpus_allowed
4764 */
5a16f3d3 4765 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4766 goto again;
4767 }
4768 }
1da177e4 4769out_unlock:
5a16f3d3
RR
4770 free_cpumask_var(new_mask);
4771out_free_cpus_allowed:
4772 free_cpumask_var(cpus_allowed);
4773out_put_task:
1da177e4 4774 put_task_struct(p);
95402b38 4775 put_online_cpus();
1da177e4
LT
4776 return retval;
4777}
4778
4779static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4780 struct cpumask *new_mask)
1da177e4 4781{
96f874e2
RR
4782 if (len < cpumask_size())
4783 cpumask_clear(new_mask);
4784 else if (len > cpumask_size())
4785 len = cpumask_size();
4786
1da177e4
LT
4787 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4788}
4789
4790/**
4791 * sys_sched_setaffinity - set the cpu affinity of a process
4792 * @pid: pid of the process
4793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4794 * @user_mask_ptr: user-space pointer to the new cpu mask
4795 */
5add95d4
HC
4796SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4797 unsigned long __user *, user_mask_ptr)
1da177e4 4798{
5a16f3d3 4799 cpumask_var_t new_mask;
1da177e4
LT
4800 int retval;
4801
5a16f3d3
RR
4802 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4803 return -ENOMEM;
1da177e4 4804
5a16f3d3
RR
4805 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4806 if (retval == 0)
4807 retval = sched_setaffinity(pid, new_mask);
4808 free_cpumask_var(new_mask);
4809 return retval;
1da177e4
LT
4810}
4811
96f874e2 4812long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4813{
36c8b586 4814 struct task_struct *p;
31605683
TG
4815 unsigned long flags;
4816 struct rq *rq;
1da177e4 4817 int retval;
1da177e4 4818
95402b38 4819 get_online_cpus();
23f5d142 4820 rcu_read_lock();
1da177e4
LT
4821
4822 retval = -ESRCH;
4823 p = find_process_by_pid(pid);
4824 if (!p)
4825 goto out_unlock;
4826
e7834f8f
DQ
4827 retval = security_task_getscheduler(p);
4828 if (retval)
4829 goto out_unlock;
4830
31605683 4831 rq = task_rq_lock(p, &flags);
96f874e2 4832 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4833 task_rq_unlock(rq, &flags);
1da177e4
LT
4834
4835out_unlock:
23f5d142 4836 rcu_read_unlock();
95402b38 4837 put_online_cpus();
1da177e4 4838
9531b62f 4839 return retval;
1da177e4
LT
4840}
4841
4842/**
4843 * sys_sched_getaffinity - get the cpu affinity of a process
4844 * @pid: pid of the process
4845 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4846 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4847 */
5add95d4
HC
4848SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4849 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4850{
4851 int ret;
f17c8607 4852 cpumask_var_t mask;
1da177e4 4853
f17c8607 4854 if (len < cpumask_size())
1da177e4
LT
4855 return -EINVAL;
4856
f17c8607
RR
4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 return -ENOMEM;
1da177e4 4859
f17c8607
RR
4860 ret = sched_getaffinity(pid, mask);
4861 if (ret == 0) {
4862 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4863 ret = -EFAULT;
4864 else
4865 ret = cpumask_size();
4866 }
4867 free_cpumask_var(mask);
1da177e4 4868
f17c8607 4869 return ret;
1da177e4
LT
4870}
4871
4872/**
4873 * sys_sched_yield - yield the current processor to other threads.
4874 *
dd41f596
IM
4875 * This function yields the current CPU to other tasks. If there are no
4876 * other threads running on this CPU then this function will return.
1da177e4 4877 */
5add95d4 4878SYSCALL_DEFINE0(sched_yield)
1da177e4 4879{
70b97a7f 4880 struct rq *rq = this_rq_lock();
1da177e4 4881
2d72376b 4882 schedstat_inc(rq, yld_count);
4530d7ab 4883 current->sched_class->yield_task(rq);
1da177e4
LT
4884
4885 /*
4886 * Since we are going to call schedule() anyway, there's
4887 * no need to preempt or enable interrupts:
4888 */
4889 __release(rq->lock);
8a25d5de 4890 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4891 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4892 preempt_enable_no_resched();
4893
4894 schedule();
4895
4896 return 0;
4897}
4898
d86ee480
PZ
4899static inline int should_resched(void)
4900{
4901 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4902}
4903
e7b38404 4904static void __cond_resched(void)
1da177e4 4905{
e7aaaa69
FW
4906 add_preempt_count(PREEMPT_ACTIVE);
4907 schedule();
4908 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4909}
4910
02b67cc3 4911int __sched _cond_resched(void)
1da177e4 4912{
d86ee480 4913 if (should_resched()) {
1da177e4
LT
4914 __cond_resched();
4915 return 1;
4916 }
4917 return 0;
4918}
02b67cc3 4919EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4920
4921/*
613afbf8 4922 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4923 * call schedule, and on return reacquire the lock.
4924 *
41a2d6cf 4925 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4926 * operations here to prevent schedule() from being called twice (once via
4927 * spin_unlock(), once by hand).
4928 */
613afbf8 4929int __cond_resched_lock(spinlock_t *lock)
1da177e4 4930{
d86ee480 4931 int resched = should_resched();
6df3cecb
JK
4932 int ret = 0;
4933
f607c668
PZ
4934 lockdep_assert_held(lock);
4935
95c354fe 4936 if (spin_needbreak(lock) || resched) {
1da177e4 4937 spin_unlock(lock);
d86ee480 4938 if (resched)
95c354fe
NP
4939 __cond_resched();
4940 else
4941 cpu_relax();
6df3cecb 4942 ret = 1;
1da177e4 4943 spin_lock(lock);
1da177e4 4944 }
6df3cecb 4945 return ret;
1da177e4 4946}
613afbf8 4947EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4948
613afbf8 4949int __sched __cond_resched_softirq(void)
1da177e4
LT
4950{
4951 BUG_ON(!in_softirq());
4952
d86ee480 4953 if (should_resched()) {
98d82567 4954 local_bh_enable();
1da177e4
LT
4955 __cond_resched();
4956 local_bh_disable();
4957 return 1;
4958 }
4959 return 0;
4960}
613afbf8 4961EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4962
1da177e4
LT
4963/**
4964 * yield - yield the current processor to other threads.
4965 *
72fd4a35 4966 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4967 * thread runnable and calls sys_sched_yield().
4968 */
4969void __sched yield(void)
4970{
4971 set_current_state(TASK_RUNNING);
4972 sys_sched_yield();
4973}
1da177e4
LT
4974EXPORT_SYMBOL(yield);
4975
4976/*
41a2d6cf 4977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4978 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4979 */
4980void __sched io_schedule(void)
4981{
54d35f29 4982 struct rq *rq = raw_rq();
1da177e4 4983
0ff92245 4984 delayacct_blkio_start();
1da177e4 4985 atomic_inc(&rq->nr_iowait);
8f0dfc34 4986 current->in_iowait = 1;
1da177e4 4987 schedule();
8f0dfc34 4988 current->in_iowait = 0;
1da177e4 4989 atomic_dec(&rq->nr_iowait);
0ff92245 4990 delayacct_blkio_end();
1da177e4 4991}
1da177e4
LT
4992EXPORT_SYMBOL(io_schedule);
4993
4994long __sched io_schedule_timeout(long timeout)
4995{
54d35f29 4996 struct rq *rq = raw_rq();
1da177e4
LT
4997 long ret;
4998
0ff92245 4999 delayacct_blkio_start();
1da177e4 5000 atomic_inc(&rq->nr_iowait);
8f0dfc34 5001 current->in_iowait = 1;
1da177e4 5002 ret = schedule_timeout(timeout);
8f0dfc34 5003 current->in_iowait = 0;
1da177e4 5004 atomic_dec(&rq->nr_iowait);
0ff92245 5005 delayacct_blkio_end();
1da177e4
LT
5006 return ret;
5007}
5008
5009/**
5010 * sys_sched_get_priority_max - return maximum RT priority.
5011 * @policy: scheduling class.
5012 *
5013 * this syscall returns the maximum rt_priority that can be used
5014 * by a given scheduling class.
5015 */
5add95d4 5016SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5017{
5018 int ret = -EINVAL;
5019
5020 switch (policy) {
5021 case SCHED_FIFO:
5022 case SCHED_RR:
5023 ret = MAX_USER_RT_PRIO-1;
5024 break;
5025 case SCHED_NORMAL:
b0a9499c 5026 case SCHED_BATCH:
dd41f596 5027 case SCHED_IDLE:
1da177e4
LT
5028 ret = 0;
5029 break;
5030 }
5031 return ret;
5032}
5033
5034/**
5035 * sys_sched_get_priority_min - return minimum RT priority.
5036 * @policy: scheduling class.
5037 *
5038 * this syscall returns the minimum rt_priority that can be used
5039 * by a given scheduling class.
5040 */
5add95d4 5041SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5042{
5043 int ret = -EINVAL;
5044
5045 switch (policy) {
5046 case SCHED_FIFO:
5047 case SCHED_RR:
5048 ret = 1;
5049 break;
5050 case SCHED_NORMAL:
b0a9499c 5051 case SCHED_BATCH:
dd41f596 5052 case SCHED_IDLE:
1da177e4
LT
5053 ret = 0;
5054 }
5055 return ret;
5056}
5057
5058/**
5059 * sys_sched_rr_get_interval - return the default timeslice of a process.
5060 * @pid: pid of the process.
5061 * @interval: userspace pointer to the timeslice value.
5062 *
5063 * this syscall writes the default timeslice value of a given process
5064 * into the user-space timespec buffer. A value of '0' means infinity.
5065 */
17da2bd9 5066SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5067 struct timespec __user *, interval)
1da177e4 5068{
36c8b586 5069 struct task_struct *p;
a4ec24b4 5070 unsigned int time_slice;
dba091b9
TG
5071 unsigned long flags;
5072 struct rq *rq;
3a5c359a 5073 int retval;
1da177e4 5074 struct timespec t;
1da177e4
LT
5075
5076 if (pid < 0)
3a5c359a 5077 return -EINVAL;
1da177e4
LT
5078
5079 retval = -ESRCH;
1a551ae7 5080 rcu_read_lock();
1da177e4
LT
5081 p = find_process_by_pid(pid);
5082 if (!p)
5083 goto out_unlock;
5084
5085 retval = security_task_getscheduler(p);
5086 if (retval)
5087 goto out_unlock;
5088
dba091b9
TG
5089 rq = task_rq_lock(p, &flags);
5090 time_slice = p->sched_class->get_rr_interval(rq, p);
5091 task_rq_unlock(rq, &flags);
a4ec24b4 5092
1a551ae7 5093 rcu_read_unlock();
a4ec24b4 5094 jiffies_to_timespec(time_slice, &t);
1da177e4 5095 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5096 return retval;
3a5c359a 5097
1da177e4 5098out_unlock:
1a551ae7 5099 rcu_read_unlock();
1da177e4
LT
5100 return retval;
5101}
5102
7c731e0a 5103static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5104
82a1fcb9 5105void sched_show_task(struct task_struct *p)
1da177e4 5106{
1da177e4 5107 unsigned long free = 0;
36c8b586 5108 unsigned state;
1da177e4 5109
1da177e4 5110 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5111 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5112 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5113#if BITS_PER_LONG == 32
1da177e4 5114 if (state == TASK_RUNNING)
3df0fc5b 5115 printk(KERN_CONT " running ");
1da177e4 5116 else
3df0fc5b 5117 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5118#else
5119 if (state == TASK_RUNNING)
3df0fc5b 5120 printk(KERN_CONT " running task ");
1da177e4 5121 else
3df0fc5b 5122 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5123#endif
5124#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5125 free = stack_not_used(p);
1da177e4 5126#endif
3df0fc5b 5127 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5128 task_pid_nr(p), task_pid_nr(p->real_parent),
5129 (unsigned long)task_thread_info(p)->flags);
1da177e4 5130
5fb5e6de 5131 show_stack(p, NULL);
1da177e4
LT
5132}
5133
e59e2ae2 5134void show_state_filter(unsigned long state_filter)
1da177e4 5135{
36c8b586 5136 struct task_struct *g, *p;
1da177e4 5137
4bd77321 5138#if BITS_PER_LONG == 32
3df0fc5b
PZ
5139 printk(KERN_INFO
5140 " task PC stack pid father\n");
1da177e4 5141#else
3df0fc5b
PZ
5142 printk(KERN_INFO
5143 " task PC stack pid father\n");
1da177e4
LT
5144#endif
5145 read_lock(&tasklist_lock);
5146 do_each_thread(g, p) {
5147 /*
5148 * reset the NMI-timeout, listing all files on a slow
5149 * console might take alot of time:
5150 */
5151 touch_nmi_watchdog();
39bc89fd 5152 if (!state_filter || (p->state & state_filter))
82a1fcb9 5153 sched_show_task(p);
1da177e4
LT
5154 } while_each_thread(g, p);
5155
04c9167f
JF
5156 touch_all_softlockup_watchdogs();
5157
dd41f596
IM
5158#ifdef CONFIG_SCHED_DEBUG
5159 sysrq_sched_debug_show();
5160#endif
1da177e4 5161 read_unlock(&tasklist_lock);
e59e2ae2
IM
5162 /*
5163 * Only show locks if all tasks are dumped:
5164 */
93335a21 5165 if (!state_filter)
e59e2ae2 5166 debug_show_all_locks();
1da177e4
LT
5167}
5168
1df21055
IM
5169void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5170{
dd41f596 5171 idle->sched_class = &idle_sched_class;
1df21055
IM
5172}
5173
f340c0d1
IM
5174/**
5175 * init_idle - set up an idle thread for a given CPU
5176 * @idle: task in question
5177 * @cpu: cpu the idle task belongs to
5178 *
5179 * NOTE: this function does not set the idle thread's NEED_RESCHED
5180 * flag, to make booting more robust.
5181 */
5c1e1767 5182void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5183{
70b97a7f 5184 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5185 unsigned long flags;
5186
05fa785c 5187 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5188
dd41f596 5189 __sched_fork(idle);
06b83b5f 5190 idle->state = TASK_RUNNING;
dd41f596
IM
5191 idle->se.exec_start = sched_clock();
5192
96f874e2 5193 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5194 __set_task_cpu(idle, cpu);
1da177e4 5195
1da177e4 5196 rq->curr = rq->idle = idle;
4866cde0
NP
5197#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5198 idle->oncpu = 1;
5199#endif
05fa785c 5200 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5201
5202 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5203#if defined(CONFIG_PREEMPT)
5204 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5205#else
a1261f54 5206 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5207#endif
dd41f596
IM
5208 /*
5209 * The idle tasks have their own, simple scheduling class:
5210 */
5211 idle->sched_class = &idle_sched_class;
fb52607a 5212 ftrace_graph_init_task(idle);
1da177e4
LT
5213}
5214
5215/*
5216 * In a system that switches off the HZ timer nohz_cpu_mask
5217 * indicates which cpus entered this state. This is used
5218 * in the rcu update to wait only for active cpus. For system
5219 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5220 * always be CPU_BITS_NONE.
1da177e4 5221 */
6a7b3dc3 5222cpumask_var_t nohz_cpu_mask;
1da177e4 5223
19978ca6
IM
5224/*
5225 * Increase the granularity value when there are more CPUs,
5226 * because with more CPUs the 'effective latency' as visible
5227 * to users decreases. But the relationship is not linear,
5228 * so pick a second-best guess by going with the log2 of the
5229 * number of CPUs.
5230 *
5231 * This idea comes from the SD scheduler of Con Kolivas:
5232 */
acb4a848 5233static int get_update_sysctl_factor(void)
19978ca6 5234{
4ca3ef71 5235 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5236 unsigned int factor;
5237
5238 switch (sysctl_sched_tunable_scaling) {
5239 case SCHED_TUNABLESCALING_NONE:
5240 factor = 1;
5241 break;
5242 case SCHED_TUNABLESCALING_LINEAR:
5243 factor = cpus;
5244 break;
5245 case SCHED_TUNABLESCALING_LOG:
5246 default:
5247 factor = 1 + ilog2(cpus);
5248 break;
5249 }
19978ca6 5250
acb4a848
CE
5251 return factor;
5252}
19978ca6 5253
acb4a848
CE
5254static void update_sysctl(void)
5255{
5256 unsigned int factor = get_update_sysctl_factor();
19978ca6 5257
0bcdcf28
CE
5258#define SET_SYSCTL(name) \
5259 (sysctl_##name = (factor) * normalized_sysctl_##name)
5260 SET_SYSCTL(sched_min_granularity);
5261 SET_SYSCTL(sched_latency);
5262 SET_SYSCTL(sched_wakeup_granularity);
5263 SET_SYSCTL(sched_shares_ratelimit);
5264#undef SET_SYSCTL
5265}
55cd5340 5266
0bcdcf28
CE
5267static inline void sched_init_granularity(void)
5268{
5269 update_sysctl();
19978ca6
IM
5270}
5271
1da177e4
LT
5272#ifdef CONFIG_SMP
5273/*
5274 * This is how migration works:
5275 *
70b97a7f 5276 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5277 * runqueue and wake up that CPU's migration thread.
5278 * 2) we down() the locked semaphore => thread blocks.
5279 * 3) migration thread wakes up (implicitly it forces the migrated
5280 * thread off the CPU)
5281 * 4) it gets the migration request and checks whether the migrated
5282 * task is still in the wrong runqueue.
5283 * 5) if it's in the wrong runqueue then the migration thread removes
5284 * it and puts it into the right queue.
5285 * 6) migration thread up()s the semaphore.
5286 * 7) we wake up and the migration is done.
5287 */
5288
5289/*
5290 * Change a given task's CPU affinity. Migrate the thread to a
5291 * proper CPU and schedule it away if the CPU it's executing on
5292 * is removed from the allowed bitmask.
5293 *
5294 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5295 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5296 * call is not atomic; no spinlocks may be held.
5297 */
96f874e2 5298int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5299{
70b97a7f 5300 struct migration_req req;
1da177e4 5301 unsigned long flags;
70b97a7f 5302 struct rq *rq;
48f24c4d 5303 int ret = 0;
1da177e4 5304
e2912009
PZ
5305 /*
5306 * Since we rely on wake-ups to migrate sleeping tasks, don't change
5307 * the ->cpus_allowed mask from under waking tasks, which would be
5308 * possible when we change rq->lock in ttwu(), so synchronize against
5309 * TASK_WAKING to avoid that.
5310 */
5311again:
5312 while (p->state == TASK_WAKING)
5313 cpu_relax();
5314
1da177e4 5315 rq = task_rq_lock(p, &flags);
e2912009
PZ
5316
5317 if (p->state == TASK_WAKING) {
5318 task_rq_unlock(rq, &flags);
5319 goto again;
5320 }
5321
6ad4c188 5322 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5323 ret = -EINVAL;
5324 goto out;
5325 }
5326
9985b0ba 5327 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5328 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5329 ret = -EINVAL;
5330 goto out;
5331 }
5332
73fe6aae 5333 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5334 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5335 else {
96f874e2
RR
5336 cpumask_copy(&p->cpus_allowed, new_mask);
5337 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5338 }
5339
1da177e4 5340 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5341 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5342 goto out;
5343
6ad4c188 5344 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5345 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5346 struct task_struct *mt = rq->migration_thread;
5347
5348 get_task_struct(mt);
1da177e4
LT
5349 task_rq_unlock(rq, &flags);
5350 wake_up_process(rq->migration_thread);
693525e3 5351 put_task_struct(mt);
1da177e4
LT
5352 wait_for_completion(&req.done);
5353 tlb_migrate_finish(p->mm);
5354 return 0;
5355 }
5356out:
5357 task_rq_unlock(rq, &flags);
48f24c4d 5358
1da177e4
LT
5359 return ret;
5360}
cd8ba7cd 5361EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5362
5363/*
41a2d6cf 5364 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5365 * this because either it can't run here any more (set_cpus_allowed()
5366 * away from this CPU, or CPU going down), or because we're
5367 * attempting to rebalance this task on exec (sched_exec).
5368 *
5369 * So we race with normal scheduler movements, but that's OK, as long
5370 * as the task is no longer on this CPU.
efc30814
KK
5371 *
5372 * Returns non-zero if task was successfully migrated.
1da177e4 5373 */
efc30814 5374static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5375{
70b97a7f 5376 struct rq *rq_dest, *rq_src;
e2912009 5377 int ret = 0;
1da177e4 5378
e761b772 5379 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5380 return ret;
1da177e4
LT
5381
5382 rq_src = cpu_rq(src_cpu);
5383 rq_dest = cpu_rq(dest_cpu);
5384
5385 double_rq_lock(rq_src, rq_dest);
5386 /* Already moved. */
5387 if (task_cpu(p) != src_cpu)
b1e38734 5388 goto done;
1da177e4 5389 /* Affinity changed (again). */
96f874e2 5390 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5391 goto fail;
1da177e4 5392
e2912009
PZ
5393 /*
5394 * If we're not on a rq, the next wake-up will ensure we're
5395 * placed properly.
5396 */
5397 if (p->se.on_rq) {
2e1cb74a 5398 deactivate_task(rq_src, p, 0);
e2912009 5399 set_task_cpu(p, dest_cpu);
dd41f596 5400 activate_task(rq_dest, p, 0);
15afe09b 5401 check_preempt_curr(rq_dest, p, 0);
1da177e4 5402 }
b1e38734 5403done:
efc30814 5404 ret = 1;
b1e38734 5405fail:
1da177e4 5406 double_rq_unlock(rq_src, rq_dest);
efc30814 5407 return ret;
1da177e4
LT
5408}
5409
03b042bf
PM
5410#define RCU_MIGRATION_IDLE 0
5411#define RCU_MIGRATION_NEED_QS 1
5412#define RCU_MIGRATION_GOT_QS 2
5413#define RCU_MIGRATION_MUST_SYNC 3
5414
1da177e4
LT
5415/*
5416 * migration_thread - this is a highprio system thread that performs
5417 * thread migration by bumping thread off CPU then 'pushing' onto
5418 * another runqueue.
5419 */
95cdf3b7 5420static int migration_thread(void *data)
1da177e4 5421{
03b042bf 5422 int badcpu;
1da177e4 5423 int cpu = (long)data;
70b97a7f 5424 struct rq *rq;
1da177e4
LT
5425
5426 rq = cpu_rq(cpu);
5427 BUG_ON(rq->migration_thread != current);
5428
5429 set_current_state(TASK_INTERRUPTIBLE);
5430 while (!kthread_should_stop()) {
70b97a7f 5431 struct migration_req *req;
1da177e4 5432 struct list_head *head;
1da177e4 5433
05fa785c 5434 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5435
5436 if (cpu_is_offline(cpu)) {
05fa785c 5437 raw_spin_unlock_irq(&rq->lock);
371cbb38 5438 break;
1da177e4
LT
5439 }
5440
5441 if (rq->active_balance) {
5442 active_load_balance(rq, cpu);
5443 rq->active_balance = 0;
5444 }
5445
5446 head = &rq->migration_queue;
5447
5448 if (list_empty(head)) {
05fa785c 5449 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5450 schedule();
5451 set_current_state(TASK_INTERRUPTIBLE);
5452 continue;
5453 }
70b97a7f 5454 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5455 list_del_init(head->next);
5456
03b042bf 5457 if (req->task != NULL) {
05fa785c 5458 raw_spin_unlock(&rq->lock);
03b042bf
PM
5459 __migrate_task(req->task, cpu, req->dest_cpu);
5460 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5461 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5462 raw_spin_unlock(&rq->lock);
03b042bf
PM
5463 } else {
5464 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5465 raw_spin_unlock(&rq->lock);
03b042bf
PM
5466 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5467 }
674311d5 5468 local_irq_enable();
1da177e4
LT
5469
5470 complete(&req->done);
5471 }
5472 __set_current_state(TASK_RUNNING);
1da177e4 5473
1da177e4
LT
5474 return 0;
5475}
5476
5477#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5478
5479static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5480{
5481 int ret;
5482
5483 local_irq_disable();
5484 ret = __migrate_task(p, src_cpu, dest_cpu);
5485 local_irq_enable();
5486 return ret;
5487}
5488
054b9108 5489/*
3a4fa0a2 5490 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5491 */
48f24c4d 5492static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5493{
70b97a7f 5494 int dest_cpu;
e76bd8d9
RR
5495
5496again:
5da9a0fb 5497 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5498
e76bd8d9
RR
5499 /* It can have affinity changed while we were choosing. */
5500 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5501 goto again;
1da177e4
LT
5502}
5503
5504/*
5505 * While a dead CPU has no uninterruptible tasks queued at this point,
5506 * it might still have a nonzero ->nr_uninterruptible counter, because
5507 * for performance reasons the counter is not stricly tracking tasks to
5508 * their home CPUs. So we just add the counter to another CPU's counter,
5509 * to keep the global sum constant after CPU-down:
5510 */
70b97a7f 5511static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5512{
6ad4c188 5513 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5514 unsigned long flags;
5515
5516 local_irq_save(flags);
5517 double_rq_lock(rq_src, rq_dest);
5518 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5519 rq_src->nr_uninterruptible = 0;
5520 double_rq_unlock(rq_src, rq_dest);
5521 local_irq_restore(flags);
5522}
5523
5524/* Run through task list and migrate tasks from the dead cpu. */
5525static void migrate_live_tasks(int src_cpu)
5526{
48f24c4d 5527 struct task_struct *p, *t;
1da177e4 5528
f7b4cddc 5529 read_lock(&tasklist_lock);
1da177e4 5530
48f24c4d
IM
5531 do_each_thread(t, p) {
5532 if (p == current)
1da177e4
LT
5533 continue;
5534
48f24c4d
IM
5535 if (task_cpu(p) == src_cpu)
5536 move_task_off_dead_cpu(src_cpu, p);
5537 } while_each_thread(t, p);
1da177e4 5538
f7b4cddc 5539 read_unlock(&tasklist_lock);
1da177e4
LT
5540}
5541
dd41f596
IM
5542/*
5543 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5544 * It does so by boosting its priority to highest possible.
5545 * Used by CPU offline code.
1da177e4
LT
5546 */
5547void sched_idle_next(void)
5548{
48f24c4d 5549 int this_cpu = smp_processor_id();
70b97a7f 5550 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5551 struct task_struct *p = rq->idle;
5552 unsigned long flags;
5553
5554 /* cpu has to be offline */
48f24c4d 5555 BUG_ON(cpu_online(this_cpu));
1da177e4 5556
48f24c4d
IM
5557 /*
5558 * Strictly not necessary since rest of the CPUs are stopped by now
5559 * and interrupts disabled on the current cpu.
1da177e4 5560 */
05fa785c 5561 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5562
dd41f596 5563 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5564
94bc9a7b
DA
5565 update_rq_clock(rq);
5566 activate_task(rq, p, 0);
1da177e4 5567
05fa785c 5568 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5569}
5570
48f24c4d
IM
5571/*
5572 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5573 * offline.
5574 */
5575void idle_task_exit(void)
5576{
5577 struct mm_struct *mm = current->active_mm;
5578
5579 BUG_ON(cpu_online(smp_processor_id()));
5580
5581 if (mm != &init_mm)
5582 switch_mm(mm, &init_mm, current);
5583 mmdrop(mm);
5584}
5585
054b9108 5586/* called under rq->lock with disabled interrupts */
36c8b586 5587static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5588{
70b97a7f 5589 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5590
5591 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5592 BUG_ON(!p->exit_state);
1da177e4
LT
5593
5594 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5595 BUG_ON(p->state == TASK_DEAD);
1da177e4 5596
48f24c4d 5597 get_task_struct(p);
1da177e4
LT
5598
5599 /*
5600 * Drop lock around migration; if someone else moves it,
41a2d6cf 5601 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5602 * fine.
5603 */
05fa785c 5604 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5605 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5606 raw_spin_lock_irq(&rq->lock);
1da177e4 5607
48f24c4d 5608 put_task_struct(p);
1da177e4
LT
5609}
5610
5611/* release_task() removes task from tasklist, so we won't find dead tasks. */
5612static void migrate_dead_tasks(unsigned int dead_cpu)
5613{
70b97a7f 5614 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5615 struct task_struct *next;
48f24c4d 5616
dd41f596
IM
5617 for ( ; ; ) {
5618 if (!rq->nr_running)
5619 break;
a8e504d2 5620 update_rq_clock(rq);
b67802ea 5621 next = pick_next_task(rq);
dd41f596
IM
5622 if (!next)
5623 break;
79c53799 5624 next->sched_class->put_prev_task(rq, next);
dd41f596 5625 migrate_dead(dead_cpu, next);
e692ab53 5626
1da177e4
LT
5627 }
5628}
dce48a84
TG
5629
5630/*
5631 * remove the tasks which were accounted by rq from calc_load_tasks.
5632 */
5633static void calc_global_load_remove(struct rq *rq)
5634{
5635 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5636 rq->calc_load_active = 0;
dce48a84 5637}
1da177e4
LT
5638#endif /* CONFIG_HOTPLUG_CPU */
5639
e692ab53
NP
5640#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5641
5642static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5643 {
5644 .procname = "sched_domain",
c57baf1e 5645 .mode = 0555,
e0361851 5646 },
56992309 5647 {}
e692ab53
NP
5648};
5649
5650static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5651 {
5652 .procname = "kernel",
c57baf1e 5653 .mode = 0555,
e0361851
AD
5654 .child = sd_ctl_dir,
5655 },
56992309 5656 {}
e692ab53
NP
5657};
5658
5659static struct ctl_table *sd_alloc_ctl_entry(int n)
5660{
5661 struct ctl_table *entry =
5cf9f062 5662 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5663
e692ab53
NP
5664 return entry;
5665}
5666
6382bc90
MM
5667static void sd_free_ctl_entry(struct ctl_table **tablep)
5668{
cd790076 5669 struct ctl_table *entry;
6382bc90 5670
cd790076
MM
5671 /*
5672 * In the intermediate directories, both the child directory and
5673 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5674 * will always be set. In the lowest directory the names are
cd790076
MM
5675 * static strings and all have proc handlers.
5676 */
5677 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5678 if (entry->child)
5679 sd_free_ctl_entry(&entry->child);
cd790076
MM
5680 if (entry->proc_handler == NULL)
5681 kfree(entry->procname);
5682 }
6382bc90
MM
5683
5684 kfree(*tablep);
5685 *tablep = NULL;
5686}
5687
e692ab53 5688static void
e0361851 5689set_table_entry(struct ctl_table *entry,
e692ab53
NP
5690 const char *procname, void *data, int maxlen,
5691 mode_t mode, proc_handler *proc_handler)
5692{
e692ab53
NP
5693 entry->procname = procname;
5694 entry->data = data;
5695 entry->maxlen = maxlen;
5696 entry->mode = mode;
5697 entry->proc_handler = proc_handler;
5698}
5699
5700static struct ctl_table *
5701sd_alloc_ctl_domain_table(struct sched_domain *sd)
5702{
a5d8c348 5703 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5704
ad1cdc1d
MM
5705 if (table == NULL)
5706 return NULL;
5707
e0361851 5708 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5709 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5710 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5711 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5712 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5713 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5714 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5715 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5716 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5717 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5718 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5719 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5720 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5721 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5722 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5723 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5724 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5725 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5726 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5727 &sd->cache_nice_tries,
5728 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5729 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5730 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5731 set_table_entry(&table[11], "name", sd->name,
5732 CORENAME_MAX_SIZE, 0444, proc_dostring);
5733 /* &table[12] is terminator */
e692ab53
NP
5734
5735 return table;
5736}
5737
9a4e7159 5738static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5739{
5740 struct ctl_table *entry, *table;
5741 struct sched_domain *sd;
5742 int domain_num = 0, i;
5743 char buf[32];
5744
5745 for_each_domain(cpu, sd)
5746 domain_num++;
5747 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5748 if (table == NULL)
5749 return NULL;
e692ab53
NP
5750
5751 i = 0;
5752 for_each_domain(cpu, sd) {
5753 snprintf(buf, 32, "domain%d", i);
e692ab53 5754 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5755 entry->mode = 0555;
e692ab53
NP
5756 entry->child = sd_alloc_ctl_domain_table(sd);
5757 entry++;
5758 i++;
5759 }
5760 return table;
5761}
5762
5763static struct ctl_table_header *sd_sysctl_header;
6382bc90 5764static void register_sched_domain_sysctl(void)
e692ab53 5765{
6ad4c188 5766 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5767 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5768 char buf[32];
5769
7378547f
MM
5770 WARN_ON(sd_ctl_dir[0].child);
5771 sd_ctl_dir[0].child = entry;
5772
ad1cdc1d
MM
5773 if (entry == NULL)
5774 return;
5775
6ad4c188 5776 for_each_possible_cpu(i) {
e692ab53 5777 snprintf(buf, 32, "cpu%d", i);
e692ab53 5778 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5779 entry->mode = 0555;
e692ab53 5780 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5781 entry++;
e692ab53 5782 }
7378547f
MM
5783
5784 WARN_ON(sd_sysctl_header);
e692ab53
NP
5785 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5786}
6382bc90 5787
7378547f 5788/* may be called multiple times per register */
6382bc90
MM
5789static void unregister_sched_domain_sysctl(void)
5790{
7378547f
MM
5791 if (sd_sysctl_header)
5792 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5793 sd_sysctl_header = NULL;
7378547f
MM
5794 if (sd_ctl_dir[0].child)
5795 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5796}
e692ab53 5797#else
6382bc90
MM
5798static void register_sched_domain_sysctl(void)
5799{
5800}
5801static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5802{
5803}
5804#endif
5805
1f11eb6a
GH
5806static void set_rq_online(struct rq *rq)
5807{
5808 if (!rq->online) {
5809 const struct sched_class *class;
5810
c6c4927b 5811 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5812 rq->online = 1;
5813
5814 for_each_class(class) {
5815 if (class->rq_online)
5816 class->rq_online(rq);
5817 }
5818 }
5819}
5820
5821static void set_rq_offline(struct rq *rq)
5822{
5823 if (rq->online) {
5824 const struct sched_class *class;
5825
5826 for_each_class(class) {
5827 if (class->rq_offline)
5828 class->rq_offline(rq);
5829 }
5830
c6c4927b 5831 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5832 rq->online = 0;
5833 }
5834}
5835
1da177e4
LT
5836/*
5837 * migration_call - callback that gets triggered when a CPU is added.
5838 * Here we can start up the necessary migration thread for the new CPU.
5839 */
48f24c4d
IM
5840static int __cpuinit
5841migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5842{
1da177e4 5843 struct task_struct *p;
48f24c4d 5844 int cpu = (long)hcpu;
1da177e4 5845 unsigned long flags;
70b97a7f 5846 struct rq *rq;
1da177e4
LT
5847
5848 switch (action) {
5be9361c 5849
1da177e4 5850 case CPU_UP_PREPARE:
8bb78442 5851 case CPU_UP_PREPARE_FROZEN:
dd41f596 5852 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5853 if (IS_ERR(p))
5854 return NOTIFY_BAD;
1da177e4
LT
5855 kthread_bind(p, cpu);
5856 /* Must be high prio: stop_machine expects to yield to it. */
5857 rq = task_rq_lock(p, &flags);
dd41f596 5858 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5859 task_rq_unlock(rq, &flags);
371cbb38 5860 get_task_struct(p);
1da177e4 5861 cpu_rq(cpu)->migration_thread = p;
a468d389 5862 rq->calc_load_update = calc_load_update;
1da177e4 5863 break;
48f24c4d 5864
1da177e4 5865 case CPU_ONLINE:
8bb78442 5866 case CPU_ONLINE_FROZEN:
3a4fa0a2 5867 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5868 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5869
5870 /* Update our root-domain */
5871 rq = cpu_rq(cpu);
05fa785c 5872 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5873 if (rq->rd) {
c6c4927b 5874 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5875
5876 set_rq_online(rq);
1f94ef59 5877 }
05fa785c 5878 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5879 break;
48f24c4d 5880
1da177e4
LT
5881#ifdef CONFIG_HOTPLUG_CPU
5882 case CPU_UP_CANCELED:
8bb78442 5883 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5884 if (!cpu_rq(cpu)->migration_thread)
5885 break;
41a2d6cf 5886 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5887 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5888 cpumask_any(cpu_online_mask));
1da177e4 5889 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5890 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5891 cpu_rq(cpu)->migration_thread = NULL;
5892 break;
48f24c4d 5893
1da177e4 5894 case CPU_DEAD:
8bb78442 5895 case CPU_DEAD_FROZEN:
470fd646 5896 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5897 migrate_live_tasks(cpu);
5898 rq = cpu_rq(cpu);
5899 kthread_stop(rq->migration_thread);
371cbb38 5900 put_task_struct(rq->migration_thread);
1da177e4
LT
5901 rq->migration_thread = NULL;
5902 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5903 raw_spin_lock_irq(&rq->lock);
a8e504d2 5904 update_rq_clock(rq);
2e1cb74a 5905 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5906 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5907 rq->idle->sched_class = &idle_sched_class;
1da177e4 5908 migrate_dead_tasks(cpu);
05fa785c 5909 raw_spin_unlock_irq(&rq->lock);
470fd646 5910 cpuset_unlock();
1da177e4
LT
5911 migrate_nr_uninterruptible(rq);
5912 BUG_ON(rq->nr_running != 0);
dce48a84 5913 calc_global_load_remove(rq);
41a2d6cf
IM
5914 /*
5915 * No need to migrate the tasks: it was best-effort if
5916 * they didn't take sched_hotcpu_mutex. Just wake up
5917 * the requestors.
5918 */
05fa785c 5919 raw_spin_lock_irq(&rq->lock);
1da177e4 5920 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5921 struct migration_req *req;
5922
1da177e4 5923 req = list_entry(rq->migration_queue.next,
70b97a7f 5924 struct migration_req, list);
1da177e4 5925 list_del_init(&req->list);
05fa785c 5926 raw_spin_unlock_irq(&rq->lock);
1da177e4 5927 complete(&req->done);
05fa785c 5928 raw_spin_lock_irq(&rq->lock);
1da177e4 5929 }
05fa785c 5930 raw_spin_unlock_irq(&rq->lock);
1da177e4 5931 break;
57d885fe 5932
08f503b0
GH
5933 case CPU_DYING:
5934 case CPU_DYING_FROZEN:
57d885fe
GH
5935 /* Update our root-domain */
5936 rq = cpu_rq(cpu);
05fa785c 5937 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5938 if (rq->rd) {
c6c4927b 5939 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5940 set_rq_offline(rq);
57d885fe 5941 }
05fa785c 5942 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5943 break;
1da177e4
LT
5944#endif
5945 }
5946 return NOTIFY_OK;
5947}
5948
f38b0820
PM
5949/*
5950 * Register at high priority so that task migration (migrate_all_tasks)
5951 * happens before everything else. This has to be lower priority than
cdd6c482 5952 * the notifier in the perf_event subsystem, though.
1da177e4 5953 */
26c2143b 5954static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5955 .notifier_call = migration_call,
5956 .priority = 10
5957};
5958
7babe8db 5959static int __init migration_init(void)
1da177e4
LT
5960{
5961 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5962 int err;
48f24c4d
IM
5963
5964 /* Start one for the boot CPU: */
07dccf33
AM
5965 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5966 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5967 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5968 register_cpu_notifier(&migration_notifier);
7babe8db 5969
a004cd42 5970 return 0;
1da177e4 5971}
7babe8db 5972early_initcall(migration_init);
1da177e4
LT
5973#endif
5974
5975#ifdef CONFIG_SMP
476f3534 5976
3e9830dc 5977#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5978
f6630114
MT
5979static __read_mostly int sched_domain_debug_enabled;
5980
5981static int __init sched_domain_debug_setup(char *str)
5982{
5983 sched_domain_debug_enabled = 1;
5984
5985 return 0;
5986}
5987early_param("sched_debug", sched_domain_debug_setup);
5988
7c16ec58 5989static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5990 struct cpumask *groupmask)
1da177e4 5991{
4dcf6aff 5992 struct sched_group *group = sd->groups;
434d53b0 5993 char str[256];
1da177e4 5994
968ea6d8 5995 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5996 cpumask_clear(groupmask);
4dcf6aff
IM
5997
5998 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5999
6000 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6001 printk("does not load-balance\n");
4dcf6aff 6002 if (sd->parent)
3df0fc5b
PZ
6003 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6004 " has parent");
4dcf6aff 6005 return -1;
41c7ce9a
NP
6006 }
6007
3df0fc5b 6008 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6009
758b2cdc 6010 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6011 printk(KERN_ERR "ERROR: domain->span does not contain "
6012 "CPU%d\n", cpu);
4dcf6aff 6013 }
758b2cdc 6014 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6015 printk(KERN_ERR "ERROR: domain->groups does not contain"
6016 " CPU%d\n", cpu);
4dcf6aff 6017 }
1da177e4 6018
4dcf6aff 6019 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6020 do {
4dcf6aff 6021 if (!group) {
3df0fc5b
PZ
6022 printk("\n");
6023 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6024 break;
6025 }
6026
18a3885f 6027 if (!group->cpu_power) {
3df0fc5b
PZ
6028 printk(KERN_CONT "\n");
6029 printk(KERN_ERR "ERROR: domain->cpu_power not "
6030 "set\n");
4dcf6aff
IM
6031 break;
6032 }
1da177e4 6033
758b2cdc 6034 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6035 printk(KERN_CONT "\n");
6036 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6037 break;
6038 }
1da177e4 6039
758b2cdc 6040 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6041 printk(KERN_CONT "\n");
6042 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6043 break;
6044 }
1da177e4 6045
758b2cdc 6046 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6047
968ea6d8 6048 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6049
3df0fc5b 6050 printk(KERN_CONT " %s", str);
18a3885f 6051 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6052 printk(KERN_CONT " (cpu_power = %d)",
6053 group->cpu_power);
381512cf 6054 }
1da177e4 6055
4dcf6aff
IM
6056 group = group->next;
6057 } while (group != sd->groups);
3df0fc5b 6058 printk(KERN_CONT "\n");
1da177e4 6059
758b2cdc 6060 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6061 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6062
758b2cdc
RR
6063 if (sd->parent &&
6064 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6065 printk(KERN_ERR "ERROR: parent span is not a superset "
6066 "of domain->span\n");
4dcf6aff
IM
6067 return 0;
6068}
1da177e4 6069
4dcf6aff
IM
6070static void sched_domain_debug(struct sched_domain *sd, int cpu)
6071{
d5dd3db1 6072 cpumask_var_t groupmask;
4dcf6aff 6073 int level = 0;
1da177e4 6074
f6630114
MT
6075 if (!sched_domain_debug_enabled)
6076 return;
6077
4dcf6aff
IM
6078 if (!sd) {
6079 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6080 return;
6081 }
1da177e4 6082
4dcf6aff
IM
6083 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6084
d5dd3db1 6085 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6086 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6087 return;
6088 }
6089
4dcf6aff 6090 for (;;) {
7c16ec58 6091 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6092 break;
1da177e4
LT
6093 level++;
6094 sd = sd->parent;
33859f7f 6095 if (!sd)
4dcf6aff
IM
6096 break;
6097 }
d5dd3db1 6098 free_cpumask_var(groupmask);
1da177e4 6099}
6d6bc0ad 6100#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6101# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6102#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6103
1a20ff27 6104static int sd_degenerate(struct sched_domain *sd)
245af2c7 6105{
758b2cdc 6106 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6107 return 1;
6108
6109 /* Following flags need at least 2 groups */
6110 if (sd->flags & (SD_LOAD_BALANCE |
6111 SD_BALANCE_NEWIDLE |
6112 SD_BALANCE_FORK |
89c4710e
SS
6113 SD_BALANCE_EXEC |
6114 SD_SHARE_CPUPOWER |
6115 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6116 if (sd->groups != sd->groups->next)
6117 return 0;
6118 }
6119
6120 /* Following flags don't use groups */
c88d5910 6121 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6122 return 0;
6123
6124 return 1;
6125}
6126
48f24c4d
IM
6127static int
6128sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6129{
6130 unsigned long cflags = sd->flags, pflags = parent->flags;
6131
6132 if (sd_degenerate(parent))
6133 return 1;
6134
758b2cdc 6135 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6136 return 0;
6137
245af2c7
SS
6138 /* Flags needing groups don't count if only 1 group in parent */
6139 if (parent->groups == parent->groups->next) {
6140 pflags &= ~(SD_LOAD_BALANCE |
6141 SD_BALANCE_NEWIDLE |
6142 SD_BALANCE_FORK |
89c4710e
SS
6143 SD_BALANCE_EXEC |
6144 SD_SHARE_CPUPOWER |
6145 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6146 if (nr_node_ids == 1)
6147 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6148 }
6149 if (~cflags & pflags)
6150 return 0;
6151
6152 return 1;
6153}
6154
c6c4927b
RR
6155static void free_rootdomain(struct root_domain *rd)
6156{
047106ad
PZ
6157 synchronize_sched();
6158
68e74568
RR
6159 cpupri_cleanup(&rd->cpupri);
6160
c6c4927b
RR
6161 free_cpumask_var(rd->rto_mask);
6162 free_cpumask_var(rd->online);
6163 free_cpumask_var(rd->span);
6164 kfree(rd);
6165}
6166
57d885fe
GH
6167static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6168{
a0490fa3 6169 struct root_domain *old_rd = NULL;
57d885fe 6170 unsigned long flags;
57d885fe 6171
05fa785c 6172 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6173
6174 if (rq->rd) {
a0490fa3 6175 old_rd = rq->rd;
57d885fe 6176
c6c4927b 6177 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6178 set_rq_offline(rq);
57d885fe 6179
c6c4927b 6180 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6181
a0490fa3
IM
6182 /*
6183 * If we dont want to free the old_rt yet then
6184 * set old_rd to NULL to skip the freeing later
6185 * in this function:
6186 */
6187 if (!atomic_dec_and_test(&old_rd->refcount))
6188 old_rd = NULL;
57d885fe
GH
6189 }
6190
6191 atomic_inc(&rd->refcount);
6192 rq->rd = rd;
6193
c6c4927b 6194 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6195 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6196 set_rq_online(rq);
57d885fe 6197
05fa785c 6198 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6199
6200 if (old_rd)
6201 free_rootdomain(old_rd);
57d885fe
GH
6202}
6203
fd5e1b5d 6204static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6205{
36b7b6d4
PE
6206 gfp_t gfp = GFP_KERNEL;
6207
57d885fe
GH
6208 memset(rd, 0, sizeof(*rd));
6209
36b7b6d4
PE
6210 if (bootmem)
6211 gfp = GFP_NOWAIT;
c6c4927b 6212
36b7b6d4 6213 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6214 goto out;
36b7b6d4 6215 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6216 goto free_span;
36b7b6d4 6217 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6218 goto free_online;
6e0534f2 6219
0fb53029 6220 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6221 goto free_rto_mask;
c6c4927b 6222 return 0;
6e0534f2 6223
68e74568
RR
6224free_rto_mask:
6225 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6226free_online:
6227 free_cpumask_var(rd->online);
6228free_span:
6229 free_cpumask_var(rd->span);
0c910d28 6230out:
c6c4927b 6231 return -ENOMEM;
57d885fe
GH
6232}
6233
6234static void init_defrootdomain(void)
6235{
c6c4927b
RR
6236 init_rootdomain(&def_root_domain, true);
6237
57d885fe
GH
6238 atomic_set(&def_root_domain.refcount, 1);
6239}
6240
dc938520 6241static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6242{
6243 struct root_domain *rd;
6244
6245 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6246 if (!rd)
6247 return NULL;
6248
c6c4927b
RR
6249 if (init_rootdomain(rd, false) != 0) {
6250 kfree(rd);
6251 return NULL;
6252 }
57d885fe
GH
6253
6254 return rd;
6255}
6256
1da177e4 6257/*
0eab9146 6258 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6259 * hold the hotplug lock.
6260 */
0eab9146
IM
6261static void
6262cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6263{
70b97a7f 6264 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6265 struct sched_domain *tmp;
6266
6267 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6268 for (tmp = sd; tmp; ) {
245af2c7
SS
6269 struct sched_domain *parent = tmp->parent;
6270 if (!parent)
6271 break;
f29c9b1c 6272
1a848870 6273 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6274 tmp->parent = parent->parent;
1a848870
SS
6275 if (parent->parent)
6276 parent->parent->child = tmp;
f29c9b1c
LZ
6277 } else
6278 tmp = tmp->parent;
245af2c7
SS
6279 }
6280
1a848870 6281 if (sd && sd_degenerate(sd)) {
245af2c7 6282 sd = sd->parent;
1a848870
SS
6283 if (sd)
6284 sd->child = NULL;
6285 }
1da177e4
LT
6286
6287 sched_domain_debug(sd, cpu);
6288
57d885fe 6289 rq_attach_root(rq, rd);
674311d5 6290 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6291}
6292
6293/* cpus with isolated domains */
dcc30a35 6294static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6295
6296/* Setup the mask of cpus configured for isolated domains */
6297static int __init isolated_cpu_setup(char *str)
6298{
bdddd296 6299 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6300 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6301 return 1;
6302}
6303
8927f494 6304__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6305
6306/*
6711cab4
SS
6307 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6308 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6309 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6310 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6311 *
6312 * init_sched_build_groups will build a circular linked list of the groups
6313 * covered by the given span, and will set each group's ->cpumask correctly,
6314 * and ->cpu_power to 0.
6315 */
a616058b 6316static void
96f874e2
RR
6317init_sched_build_groups(const struct cpumask *span,
6318 const struct cpumask *cpu_map,
6319 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6320 struct sched_group **sg,
96f874e2
RR
6321 struct cpumask *tmpmask),
6322 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6323{
6324 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6325 int i;
6326
96f874e2 6327 cpumask_clear(covered);
7c16ec58 6328
abcd083a 6329 for_each_cpu(i, span) {
6711cab4 6330 struct sched_group *sg;
7c16ec58 6331 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6332 int j;
6333
758b2cdc 6334 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6335 continue;
6336
758b2cdc 6337 cpumask_clear(sched_group_cpus(sg));
18a3885f 6338 sg->cpu_power = 0;
1da177e4 6339
abcd083a 6340 for_each_cpu(j, span) {
7c16ec58 6341 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6342 continue;
6343
96f874e2 6344 cpumask_set_cpu(j, covered);
758b2cdc 6345 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6346 }
6347 if (!first)
6348 first = sg;
6349 if (last)
6350 last->next = sg;
6351 last = sg;
6352 }
6353 last->next = first;
6354}
6355
9c1cfda2 6356#define SD_NODES_PER_DOMAIN 16
1da177e4 6357
9c1cfda2 6358#ifdef CONFIG_NUMA
198e2f18 6359
9c1cfda2
JH
6360/**
6361 * find_next_best_node - find the next node to include in a sched_domain
6362 * @node: node whose sched_domain we're building
6363 * @used_nodes: nodes already in the sched_domain
6364 *
41a2d6cf 6365 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6366 * finds the closest node not already in the @used_nodes map.
6367 *
6368 * Should use nodemask_t.
6369 */
c5f59f08 6370static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6371{
6372 int i, n, val, min_val, best_node = 0;
6373
6374 min_val = INT_MAX;
6375
076ac2af 6376 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6377 /* Start at @node */
076ac2af 6378 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6379
6380 if (!nr_cpus_node(n))
6381 continue;
6382
6383 /* Skip already used nodes */
c5f59f08 6384 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6385 continue;
6386
6387 /* Simple min distance search */
6388 val = node_distance(node, n);
6389
6390 if (val < min_val) {
6391 min_val = val;
6392 best_node = n;
6393 }
6394 }
6395
c5f59f08 6396 node_set(best_node, *used_nodes);
9c1cfda2
JH
6397 return best_node;
6398}
6399
6400/**
6401 * sched_domain_node_span - get a cpumask for a node's sched_domain
6402 * @node: node whose cpumask we're constructing
73486722 6403 * @span: resulting cpumask
9c1cfda2 6404 *
41a2d6cf 6405 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6406 * should be one that prevents unnecessary balancing, but also spreads tasks
6407 * out optimally.
6408 */
96f874e2 6409static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6410{
c5f59f08 6411 nodemask_t used_nodes;
48f24c4d 6412 int i;
9c1cfda2 6413
6ca09dfc 6414 cpumask_clear(span);
c5f59f08 6415 nodes_clear(used_nodes);
9c1cfda2 6416
6ca09dfc 6417 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6418 node_set(node, used_nodes);
9c1cfda2
JH
6419
6420 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6421 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6422
6ca09dfc 6423 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6424 }
9c1cfda2 6425}
6d6bc0ad 6426#endif /* CONFIG_NUMA */
9c1cfda2 6427
5c45bf27 6428int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6429
6c99e9ad
RR
6430/*
6431 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6432 *
6433 * ( See the the comments in include/linux/sched.h:struct sched_group
6434 * and struct sched_domain. )
6c99e9ad
RR
6435 */
6436struct static_sched_group {
6437 struct sched_group sg;
6438 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6439};
6440
6441struct static_sched_domain {
6442 struct sched_domain sd;
6443 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6444};
6445
49a02c51
AH
6446struct s_data {
6447#ifdef CONFIG_NUMA
6448 int sd_allnodes;
6449 cpumask_var_t domainspan;
6450 cpumask_var_t covered;
6451 cpumask_var_t notcovered;
6452#endif
6453 cpumask_var_t nodemask;
6454 cpumask_var_t this_sibling_map;
6455 cpumask_var_t this_core_map;
6456 cpumask_var_t send_covered;
6457 cpumask_var_t tmpmask;
6458 struct sched_group **sched_group_nodes;
6459 struct root_domain *rd;
6460};
6461
2109b99e
AH
6462enum s_alloc {
6463 sa_sched_groups = 0,
6464 sa_rootdomain,
6465 sa_tmpmask,
6466 sa_send_covered,
6467 sa_this_core_map,
6468 sa_this_sibling_map,
6469 sa_nodemask,
6470 sa_sched_group_nodes,
6471#ifdef CONFIG_NUMA
6472 sa_notcovered,
6473 sa_covered,
6474 sa_domainspan,
6475#endif
6476 sa_none,
6477};
6478
9c1cfda2 6479/*
48f24c4d 6480 * SMT sched-domains:
9c1cfda2 6481 */
1da177e4 6482#ifdef CONFIG_SCHED_SMT
6c99e9ad 6483static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6484static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6485
41a2d6cf 6486static int
96f874e2
RR
6487cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6488 struct sched_group **sg, struct cpumask *unused)
1da177e4 6489{
6711cab4 6490 if (sg)
1871e52c 6491 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6492 return cpu;
6493}
6d6bc0ad 6494#endif /* CONFIG_SCHED_SMT */
1da177e4 6495
48f24c4d
IM
6496/*
6497 * multi-core sched-domains:
6498 */
1e9f28fa 6499#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6500static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6501static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6502#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6503
6504#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6505static int
96f874e2
RR
6506cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6507 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6508{
6711cab4 6509 int group;
7c16ec58 6510
c69fc56d 6511 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6512 group = cpumask_first(mask);
6711cab4 6513 if (sg)
6c99e9ad 6514 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6515 return group;
1e9f28fa
SS
6516}
6517#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6518static int
96f874e2
RR
6519cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6520 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6521{
6711cab4 6522 if (sg)
6c99e9ad 6523 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6524 return cpu;
6525}
6526#endif
6527
6c99e9ad
RR
6528static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6529static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6530
41a2d6cf 6531static int
96f874e2
RR
6532cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6533 struct sched_group **sg, struct cpumask *mask)
1da177e4 6534{
6711cab4 6535 int group;
48f24c4d 6536#ifdef CONFIG_SCHED_MC
6ca09dfc 6537 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6538 group = cpumask_first(mask);
1e9f28fa 6539#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6540 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6541 group = cpumask_first(mask);
1da177e4 6542#else
6711cab4 6543 group = cpu;
1da177e4 6544#endif
6711cab4 6545 if (sg)
6c99e9ad 6546 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6547 return group;
1da177e4
LT
6548}
6549
6550#ifdef CONFIG_NUMA
1da177e4 6551/*
9c1cfda2
JH
6552 * The init_sched_build_groups can't handle what we want to do with node
6553 * groups, so roll our own. Now each node has its own list of groups which
6554 * gets dynamically allocated.
1da177e4 6555 */
62ea9ceb 6556static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6557static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6558
62ea9ceb 6559static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6560static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6561
96f874e2
RR
6562static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6563 struct sched_group **sg,
6564 struct cpumask *nodemask)
9c1cfda2 6565{
6711cab4
SS
6566 int group;
6567
6ca09dfc 6568 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6569 group = cpumask_first(nodemask);
6711cab4
SS
6570
6571 if (sg)
6c99e9ad 6572 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6573 return group;
1da177e4 6574}
6711cab4 6575
08069033
SS
6576static void init_numa_sched_groups_power(struct sched_group *group_head)
6577{
6578 struct sched_group *sg = group_head;
6579 int j;
6580
6581 if (!sg)
6582 return;
3a5c359a 6583 do {
758b2cdc 6584 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6585 struct sched_domain *sd;
08069033 6586
6c99e9ad 6587 sd = &per_cpu(phys_domains, j).sd;
13318a71 6588 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6589 /*
6590 * Only add "power" once for each
6591 * physical package.
6592 */
6593 continue;
6594 }
08069033 6595
18a3885f 6596 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6597 }
6598 sg = sg->next;
6599 } while (sg != group_head);
08069033 6600}
0601a88d
AH
6601
6602static int build_numa_sched_groups(struct s_data *d,
6603 const struct cpumask *cpu_map, int num)
6604{
6605 struct sched_domain *sd;
6606 struct sched_group *sg, *prev;
6607 int n, j;
6608
6609 cpumask_clear(d->covered);
6610 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6611 if (cpumask_empty(d->nodemask)) {
6612 d->sched_group_nodes[num] = NULL;
6613 goto out;
6614 }
6615
6616 sched_domain_node_span(num, d->domainspan);
6617 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6618
6619 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6620 GFP_KERNEL, num);
6621 if (!sg) {
3df0fc5b
PZ
6622 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6623 num);
0601a88d
AH
6624 return -ENOMEM;
6625 }
6626 d->sched_group_nodes[num] = sg;
6627
6628 for_each_cpu(j, d->nodemask) {
6629 sd = &per_cpu(node_domains, j).sd;
6630 sd->groups = sg;
6631 }
6632
18a3885f 6633 sg->cpu_power = 0;
0601a88d
AH
6634 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6635 sg->next = sg;
6636 cpumask_or(d->covered, d->covered, d->nodemask);
6637
6638 prev = sg;
6639 for (j = 0; j < nr_node_ids; j++) {
6640 n = (num + j) % nr_node_ids;
6641 cpumask_complement(d->notcovered, d->covered);
6642 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6643 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6644 if (cpumask_empty(d->tmpmask))
6645 break;
6646 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6647 if (cpumask_empty(d->tmpmask))
6648 continue;
6649 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6650 GFP_KERNEL, num);
6651 if (!sg) {
3df0fc5b
PZ
6652 printk(KERN_WARNING
6653 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6654 return -ENOMEM;
6655 }
18a3885f 6656 sg->cpu_power = 0;
0601a88d
AH
6657 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6658 sg->next = prev->next;
6659 cpumask_or(d->covered, d->covered, d->tmpmask);
6660 prev->next = sg;
6661 prev = sg;
6662 }
6663out:
6664 return 0;
6665}
6d6bc0ad 6666#endif /* CONFIG_NUMA */
1da177e4 6667
a616058b 6668#ifdef CONFIG_NUMA
51888ca2 6669/* Free memory allocated for various sched_group structures */
96f874e2
RR
6670static void free_sched_groups(const struct cpumask *cpu_map,
6671 struct cpumask *nodemask)
51888ca2 6672{
a616058b 6673 int cpu, i;
51888ca2 6674
abcd083a 6675 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6676 struct sched_group **sched_group_nodes
6677 = sched_group_nodes_bycpu[cpu];
6678
51888ca2
SV
6679 if (!sched_group_nodes)
6680 continue;
6681
076ac2af 6682 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6683 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6684
6ca09dfc 6685 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6686 if (cpumask_empty(nodemask))
51888ca2
SV
6687 continue;
6688
6689 if (sg == NULL)
6690 continue;
6691 sg = sg->next;
6692next_sg:
6693 oldsg = sg;
6694 sg = sg->next;
6695 kfree(oldsg);
6696 if (oldsg != sched_group_nodes[i])
6697 goto next_sg;
6698 }
6699 kfree(sched_group_nodes);
6700 sched_group_nodes_bycpu[cpu] = NULL;
6701 }
51888ca2 6702}
6d6bc0ad 6703#else /* !CONFIG_NUMA */
96f874e2
RR
6704static void free_sched_groups(const struct cpumask *cpu_map,
6705 struct cpumask *nodemask)
a616058b
SS
6706{
6707}
6d6bc0ad 6708#endif /* CONFIG_NUMA */
51888ca2 6709
89c4710e
SS
6710/*
6711 * Initialize sched groups cpu_power.
6712 *
6713 * cpu_power indicates the capacity of sched group, which is used while
6714 * distributing the load between different sched groups in a sched domain.
6715 * Typically cpu_power for all the groups in a sched domain will be same unless
6716 * there are asymmetries in the topology. If there are asymmetries, group
6717 * having more cpu_power will pickup more load compared to the group having
6718 * less cpu_power.
89c4710e
SS
6719 */
6720static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6721{
6722 struct sched_domain *child;
6723 struct sched_group *group;
f93e65c1
PZ
6724 long power;
6725 int weight;
89c4710e
SS
6726
6727 WARN_ON(!sd || !sd->groups);
6728
13318a71 6729 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6730 return;
6731
6732 child = sd->child;
6733
18a3885f 6734 sd->groups->cpu_power = 0;
5517d86b 6735
f93e65c1
PZ
6736 if (!child) {
6737 power = SCHED_LOAD_SCALE;
6738 weight = cpumask_weight(sched_domain_span(sd));
6739 /*
6740 * SMT siblings share the power of a single core.
a52bfd73
PZ
6741 * Usually multiple threads get a better yield out of
6742 * that one core than a single thread would have,
6743 * reflect that in sd->smt_gain.
f93e65c1 6744 */
a52bfd73
PZ
6745 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6746 power *= sd->smt_gain;
f93e65c1 6747 power /= weight;
a52bfd73
PZ
6748 power >>= SCHED_LOAD_SHIFT;
6749 }
18a3885f 6750 sd->groups->cpu_power += power;
89c4710e
SS
6751 return;
6752 }
6753
89c4710e 6754 /*
f93e65c1 6755 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6756 */
6757 group = child->groups;
6758 do {
18a3885f 6759 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6760 group = group->next;
6761 } while (group != child->groups);
6762}
6763
7c16ec58
MT
6764/*
6765 * Initializers for schedule domains
6766 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6767 */
6768
a5d8c348
IM
6769#ifdef CONFIG_SCHED_DEBUG
6770# define SD_INIT_NAME(sd, type) sd->name = #type
6771#else
6772# define SD_INIT_NAME(sd, type) do { } while (0)
6773#endif
6774
7c16ec58 6775#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6776
7c16ec58
MT
6777#define SD_INIT_FUNC(type) \
6778static noinline void sd_init_##type(struct sched_domain *sd) \
6779{ \
6780 memset(sd, 0, sizeof(*sd)); \
6781 *sd = SD_##type##_INIT; \
1d3504fc 6782 sd->level = SD_LV_##type; \
a5d8c348 6783 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6784}
6785
6786SD_INIT_FUNC(CPU)
6787#ifdef CONFIG_NUMA
6788 SD_INIT_FUNC(ALLNODES)
6789 SD_INIT_FUNC(NODE)
6790#endif
6791#ifdef CONFIG_SCHED_SMT
6792 SD_INIT_FUNC(SIBLING)
6793#endif
6794#ifdef CONFIG_SCHED_MC
6795 SD_INIT_FUNC(MC)
6796#endif
6797
1d3504fc
HS
6798static int default_relax_domain_level = -1;
6799
6800static int __init setup_relax_domain_level(char *str)
6801{
30e0e178
LZ
6802 unsigned long val;
6803
6804 val = simple_strtoul(str, NULL, 0);
6805 if (val < SD_LV_MAX)
6806 default_relax_domain_level = val;
6807
1d3504fc
HS
6808 return 1;
6809}
6810__setup("relax_domain_level=", setup_relax_domain_level);
6811
6812static void set_domain_attribute(struct sched_domain *sd,
6813 struct sched_domain_attr *attr)
6814{
6815 int request;
6816
6817 if (!attr || attr->relax_domain_level < 0) {
6818 if (default_relax_domain_level < 0)
6819 return;
6820 else
6821 request = default_relax_domain_level;
6822 } else
6823 request = attr->relax_domain_level;
6824 if (request < sd->level) {
6825 /* turn off idle balance on this domain */
c88d5910 6826 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6827 } else {
6828 /* turn on idle balance on this domain */
c88d5910 6829 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6830 }
6831}
6832
2109b99e
AH
6833static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6834 const struct cpumask *cpu_map)
6835{
6836 switch (what) {
6837 case sa_sched_groups:
6838 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6839 d->sched_group_nodes = NULL;
6840 case sa_rootdomain:
6841 free_rootdomain(d->rd); /* fall through */
6842 case sa_tmpmask:
6843 free_cpumask_var(d->tmpmask); /* fall through */
6844 case sa_send_covered:
6845 free_cpumask_var(d->send_covered); /* fall through */
6846 case sa_this_core_map:
6847 free_cpumask_var(d->this_core_map); /* fall through */
6848 case sa_this_sibling_map:
6849 free_cpumask_var(d->this_sibling_map); /* fall through */
6850 case sa_nodemask:
6851 free_cpumask_var(d->nodemask); /* fall through */
6852 case sa_sched_group_nodes:
d1b55138 6853#ifdef CONFIG_NUMA
2109b99e
AH
6854 kfree(d->sched_group_nodes); /* fall through */
6855 case sa_notcovered:
6856 free_cpumask_var(d->notcovered); /* fall through */
6857 case sa_covered:
6858 free_cpumask_var(d->covered); /* fall through */
6859 case sa_domainspan:
6860 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6861#endif
2109b99e
AH
6862 case sa_none:
6863 break;
6864 }
6865}
3404c8d9 6866
2109b99e
AH
6867static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6868 const struct cpumask *cpu_map)
6869{
3404c8d9 6870#ifdef CONFIG_NUMA
2109b99e
AH
6871 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6872 return sa_none;
6873 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6874 return sa_domainspan;
6875 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6876 return sa_covered;
6877 /* Allocate the per-node list of sched groups */
6878 d->sched_group_nodes = kcalloc(nr_node_ids,
6879 sizeof(struct sched_group *), GFP_KERNEL);
6880 if (!d->sched_group_nodes) {
3df0fc5b 6881 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6882 return sa_notcovered;
d1b55138 6883 }
2109b99e 6884 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6885#endif
2109b99e
AH
6886 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6887 return sa_sched_group_nodes;
6888 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6889 return sa_nodemask;
6890 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6891 return sa_this_sibling_map;
6892 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6893 return sa_this_core_map;
6894 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6895 return sa_send_covered;
6896 d->rd = alloc_rootdomain();
6897 if (!d->rd) {
3df0fc5b 6898 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6899 return sa_tmpmask;
57d885fe 6900 }
2109b99e
AH
6901 return sa_rootdomain;
6902}
57d885fe 6903
7f4588f3
AH
6904static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6905 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6906{
6907 struct sched_domain *sd = NULL;
7c16ec58 6908#ifdef CONFIG_NUMA
7f4588f3 6909 struct sched_domain *parent;
1da177e4 6910
7f4588f3
AH
6911 d->sd_allnodes = 0;
6912 if (cpumask_weight(cpu_map) >
6913 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6914 sd = &per_cpu(allnodes_domains, i).sd;
6915 SD_INIT(sd, ALLNODES);
1d3504fc 6916 set_domain_attribute(sd, attr);
7f4588f3
AH
6917 cpumask_copy(sched_domain_span(sd), cpu_map);
6918 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6919 d->sd_allnodes = 1;
6920 }
6921 parent = sd;
6922
6923 sd = &per_cpu(node_domains, i).sd;
6924 SD_INIT(sd, NODE);
6925 set_domain_attribute(sd, attr);
6926 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6927 sd->parent = parent;
6928 if (parent)
6929 parent->child = sd;
6930 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6931#endif
7f4588f3
AH
6932 return sd;
6933}
1da177e4 6934
87cce662
AH
6935static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6936 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6937 struct sched_domain *parent, int i)
6938{
6939 struct sched_domain *sd;
6940 sd = &per_cpu(phys_domains, i).sd;
6941 SD_INIT(sd, CPU);
6942 set_domain_attribute(sd, attr);
6943 cpumask_copy(sched_domain_span(sd), d->nodemask);
6944 sd->parent = parent;
6945 if (parent)
6946 parent->child = sd;
6947 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6948 return sd;
6949}
1da177e4 6950
410c4081
AH
6951static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6952 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6953 struct sched_domain *parent, int i)
6954{
6955 struct sched_domain *sd = parent;
1e9f28fa 6956#ifdef CONFIG_SCHED_MC
410c4081
AH
6957 sd = &per_cpu(core_domains, i).sd;
6958 SD_INIT(sd, MC);
6959 set_domain_attribute(sd, attr);
6960 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6961 sd->parent = parent;
6962 parent->child = sd;
6963 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6964#endif
410c4081
AH
6965 return sd;
6966}
1e9f28fa 6967
d8173535
AH
6968static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6969 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6970 struct sched_domain *parent, int i)
6971{
6972 struct sched_domain *sd = parent;
1da177e4 6973#ifdef CONFIG_SCHED_SMT
d8173535
AH
6974 sd = &per_cpu(cpu_domains, i).sd;
6975 SD_INIT(sd, SIBLING);
6976 set_domain_attribute(sd, attr);
6977 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6978 sd->parent = parent;
6979 parent->child = sd;
6980 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6981#endif
d8173535
AH
6982 return sd;
6983}
1da177e4 6984
0e8e85c9
AH
6985static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6986 const struct cpumask *cpu_map, int cpu)
6987{
6988 switch (l) {
1da177e4 6989#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6990 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6991 cpumask_and(d->this_sibling_map, cpu_map,
6992 topology_thread_cpumask(cpu));
6993 if (cpu == cpumask_first(d->this_sibling_map))
6994 init_sched_build_groups(d->this_sibling_map, cpu_map,
6995 &cpu_to_cpu_group,
6996 d->send_covered, d->tmpmask);
6997 break;
1da177e4 6998#endif
1e9f28fa 6999#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7000 case SD_LV_MC: /* set up multi-core groups */
7001 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7002 if (cpu == cpumask_first(d->this_core_map))
7003 init_sched_build_groups(d->this_core_map, cpu_map,
7004 &cpu_to_core_group,
7005 d->send_covered, d->tmpmask);
7006 break;
1e9f28fa 7007#endif
86548096
AH
7008 case SD_LV_CPU: /* set up physical groups */
7009 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7010 if (!cpumask_empty(d->nodemask))
7011 init_sched_build_groups(d->nodemask, cpu_map,
7012 &cpu_to_phys_group,
7013 d->send_covered, d->tmpmask);
7014 break;
1da177e4 7015#ifdef CONFIG_NUMA
de616e36
AH
7016 case SD_LV_ALLNODES:
7017 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7018 d->send_covered, d->tmpmask);
7019 break;
7020#endif
0e8e85c9
AH
7021 default:
7022 break;
7c16ec58 7023 }
0e8e85c9 7024}
9c1cfda2 7025
2109b99e
AH
7026/*
7027 * Build sched domains for a given set of cpus and attach the sched domains
7028 * to the individual cpus
7029 */
7030static int __build_sched_domains(const struct cpumask *cpu_map,
7031 struct sched_domain_attr *attr)
7032{
7033 enum s_alloc alloc_state = sa_none;
7034 struct s_data d;
294b0c96 7035 struct sched_domain *sd;
2109b99e 7036 int i;
7c16ec58 7037#ifdef CONFIG_NUMA
2109b99e 7038 d.sd_allnodes = 0;
7c16ec58 7039#endif
9c1cfda2 7040
2109b99e
AH
7041 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7042 if (alloc_state != sa_rootdomain)
7043 goto error;
7044 alloc_state = sa_sched_groups;
9c1cfda2 7045
1da177e4 7046 /*
1a20ff27 7047 * Set up domains for cpus specified by the cpu_map.
1da177e4 7048 */
abcd083a 7049 for_each_cpu(i, cpu_map) {
49a02c51
AH
7050 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7051 cpu_map);
9761eea8 7052
7f4588f3 7053 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7054 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7055 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7056 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7057 }
9c1cfda2 7058
abcd083a 7059 for_each_cpu(i, cpu_map) {
0e8e85c9 7060 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7061 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7062 }
9c1cfda2 7063
1da177e4 7064 /* Set up physical groups */
86548096
AH
7065 for (i = 0; i < nr_node_ids; i++)
7066 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7067
1da177e4
LT
7068#ifdef CONFIG_NUMA
7069 /* Set up node groups */
de616e36
AH
7070 if (d.sd_allnodes)
7071 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7072
0601a88d
AH
7073 for (i = 0; i < nr_node_ids; i++)
7074 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7075 goto error;
1da177e4
LT
7076#endif
7077
7078 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7079#ifdef CONFIG_SCHED_SMT
abcd083a 7080 for_each_cpu(i, cpu_map) {
294b0c96 7081 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7082 init_sched_groups_power(i, sd);
5c45bf27 7083 }
1da177e4 7084#endif
1e9f28fa 7085#ifdef CONFIG_SCHED_MC
abcd083a 7086 for_each_cpu(i, cpu_map) {
294b0c96 7087 sd = &per_cpu(core_domains, i).sd;
89c4710e 7088 init_sched_groups_power(i, sd);
5c45bf27
SS
7089 }
7090#endif
1e9f28fa 7091
abcd083a 7092 for_each_cpu(i, cpu_map) {
294b0c96 7093 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7094 init_sched_groups_power(i, sd);
1da177e4
LT
7095 }
7096
9c1cfda2 7097#ifdef CONFIG_NUMA
076ac2af 7098 for (i = 0; i < nr_node_ids; i++)
49a02c51 7099 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7100
49a02c51 7101 if (d.sd_allnodes) {
6711cab4 7102 struct sched_group *sg;
f712c0c7 7103
96f874e2 7104 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7105 d.tmpmask);
f712c0c7
SS
7106 init_numa_sched_groups_power(sg);
7107 }
9c1cfda2
JH
7108#endif
7109
1da177e4 7110 /* Attach the domains */
abcd083a 7111 for_each_cpu(i, cpu_map) {
1da177e4 7112#ifdef CONFIG_SCHED_SMT
6c99e9ad 7113 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7114#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7115 sd = &per_cpu(core_domains, i).sd;
1da177e4 7116#else
6c99e9ad 7117 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7118#endif
49a02c51 7119 cpu_attach_domain(sd, d.rd, i);
1da177e4 7120 }
51888ca2 7121
2109b99e
AH
7122 d.sched_group_nodes = NULL; /* don't free this we still need it */
7123 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7124 return 0;
51888ca2 7125
51888ca2 7126error:
2109b99e
AH
7127 __free_domain_allocs(&d, alloc_state, cpu_map);
7128 return -ENOMEM;
1da177e4 7129}
029190c5 7130
96f874e2 7131static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7132{
7133 return __build_sched_domains(cpu_map, NULL);
7134}
7135
acc3f5d7 7136static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7137static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7138static struct sched_domain_attr *dattr_cur;
7139 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7140
7141/*
7142 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7143 * cpumask) fails, then fallback to a single sched domain,
7144 * as determined by the single cpumask fallback_doms.
029190c5 7145 */
4212823f 7146static cpumask_var_t fallback_doms;
029190c5 7147
ee79d1bd
HC
7148/*
7149 * arch_update_cpu_topology lets virtualized architectures update the
7150 * cpu core maps. It is supposed to return 1 if the topology changed
7151 * or 0 if it stayed the same.
7152 */
7153int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7154{
ee79d1bd 7155 return 0;
22e52b07
HC
7156}
7157
acc3f5d7
RR
7158cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7159{
7160 int i;
7161 cpumask_var_t *doms;
7162
7163 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7164 if (!doms)
7165 return NULL;
7166 for (i = 0; i < ndoms; i++) {
7167 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7168 free_sched_domains(doms, i);
7169 return NULL;
7170 }
7171 }
7172 return doms;
7173}
7174
7175void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7176{
7177 unsigned int i;
7178 for (i = 0; i < ndoms; i++)
7179 free_cpumask_var(doms[i]);
7180 kfree(doms);
7181}
7182
1a20ff27 7183/*
41a2d6cf 7184 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7185 * For now this just excludes isolated cpus, but could be used to
7186 * exclude other special cases in the future.
1a20ff27 7187 */
96f874e2 7188static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7189{
7378547f
MM
7190 int err;
7191
22e52b07 7192 arch_update_cpu_topology();
029190c5 7193 ndoms_cur = 1;
acc3f5d7 7194 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7195 if (!doms_cur)
acc3f5d7
RR
7196 doms_cur = &fallback_doms;
7197 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7198 dattr_cur = NULL;
acc3f5d7 7199 err = build_sched_domains(doms_cur[0]);
6382bc90 7200 register_sched_domain_sysctl();
7378547f
MM
7201
7202 return err;
1a20ff27
DG
7203}
7204
96f874e2
RR
7205static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7206 struct cpumask *tmpmask)
1da177e4 7207{
7c16ec58 7208 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7209}
1da177e4 7210
1a20ff27
DG
7211/*
7212 * Detach sched domains from a group of cpus specified in cpu_map
7213 * These cpus will now be attached to the NULL domain
7214 */
96f874e2 7215static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7216{
96f874e2
RR
7217 /* Save because hotplug lock held. */
7218 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7219 int i;
7220
abcd083a 7221 for_each_cpu(i, cpu_map)
57d885fe 7222 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7223 synchronize_sched();
96f874e2 7224 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7225}
7226
1d3504fc
HS
7227/* handle null as "default" */
7228static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7229 struct sched_domain_attr *new, int idx_new)
7230{
7231 struct sched_domain_attr tmp;
7232
7233 /* fast path */
7234 if (!new && !cur)
7235 return 1;
7236
7237 tmp = SD_ATTR_INIT;
7238 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7239 new ? (new + idx_new) : &tmp,
7240 sizeof(struct sched_domain_attr));
7241}
7242
029190c5
PJ
7243/*
7244 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7245 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7246 * doms_new[] to the current sched domain partitioning, doms_cur[].
7247 * It destroys each deleted domain and builds each new domain.
7248 *
acc3f5d7 7249 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7250 * The masks don't intersect (don't overlap.) We should setup one
7251 * sched domain for each mask. CPUs not in any of the cpumasks will
7252 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7253 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7254 * it as it is.
7255 *
acc3f5d7
RR
7256 * The passed in 'doms_new' should be allocated using
7257 * alloc_sched_domains. This routine takes ownership of it and will
7258 * free_sched_domains it when done with it. If the caller failed the
7259 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7260 * and partition_sched_domains() will fallback to the single partition
7261 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7262 *
96f874e2 7263 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7264 * ndoms_new == 0 is a special case for destroying existing domains,
7265 * and it will not create the default domain.
dfb512ec 7266 *
029190c5
PJ
7267 * Call with hotplug lock held
7268 */
acc3f5d7 7269void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7270 struct sched_domain_attr *dattr_new)
029190c5 7271{
dfb512ec 7272 int i, j, n;
d65bd5ec 7273 int new_topology;
029190c5 7274
712555ee 7275 mutex_lock(&sched_domains_mutex);
a1835615 7276
7378547f
MM
7277 /* always unregister in case we don't destroy any domains */
7278 unregister_sched_domain_sysctl();
7279
d65bd5ec
HC
7280 /* Let architecture update cpu core mappings. */
7281 new_topology = arch_update_cpu_topology();
7282
dfb512ec 7283 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7284
7285 /* Destroy deleted domains */
7286 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7287 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7288 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7289 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7290 goto match1;
7291 }
7292 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7293 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7294match1:
7295 ;
7296 }
7297
e761b772
MK
7298 if (doms_new == NULL) {
7299 ndoms_cur = 0;
acc3f5d7 7300 doms_new = &fallback_doms;
6ad4c188 7301 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7302 WARN_ON_ONCE(dattr_new);
e761b772
MK
7303 }
7304
029190c5
PJ
7305 /* Build new domains */
7306 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7307 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7308 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7309 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7310 goto match2;
7311 }
7312 /* no match - add a new doms_new */
acc3f5d7 7313 __build_sched_domains(doms_new[i],
1d3504fc 7314 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7315match2:
7316 ;
7317 }
7318
7319 /* Remember the new sched domains */
acc3f5d7
RR
7320 if (doms_cur != &fallback_doms)
7321 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7322 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7323 doms_cur = doms_new;
1d3504fc 7324 dattr_cur = dattr_new;
029190c5 7325 ndoms_cur = ndoms_new;
7378547f
MM
7326
7327 register_sched_domain_sysctl();
a1835615 7328
712555ee 7329 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7330}
7331
5c45bf27 7332#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7333static void arch_reinit_sched_domains(void)
5c45bf27 7334{
95402b38 7335 get_online_cpus();
dfb512ec
MK
7336
7337 /* Destroy domains first to force the rebuild */
7338 partition_sched_domains(0, NULL, NULL);
7339
e761b772 7340 rebuild_sched_domains();
95402b38 7341 put_online_cpus();
5c45bf27
SS
7342}
7343
7344static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7345{
afb8a9b7 7346 unsigned int level = 0;
5c45bf27 7347
afb8a9b7
GS
7348 if (sscanf(buf, "%u", &level) != 1)
7349 return -EINVAL;
7350
7351 /*
7352 * level is always be positive so don't check for
7353 * level < POWERSAVINGS_BALANCE_NONE which is 0
7354 * What happens on 0 or 1 byte write,
7355 * need to check for count as well?
7356 */
7357
7358 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7359 return -EINVAL;
7360
7361 if (smt)
afb8a9b7 7362 sched_smt_power_savings = level;
5c45bf27 7363 else
afb8a9b7 7364 sched_mc_power_savings = level;
5c45bf27 7365
c70f22d2 7366 arch_reinit_sched_domains();
5c45bf27 7367
c70f22d2 7368 return count;
5c45bf27
SS
7369}
7370
5c45bf27 7371#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7372static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7373 char *page)
5c45bf27
SS
7374{
7375 return sprintf(page, "%u\n", sched_mc_power_savings);
7376}
f718cd4a 7377static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7378 const char *buf, size_t count)
5c45bf27
SS
7379{
7380 return sched_power_savings_store(buf, count, 0);
7381}
f718cd4a
AK
7382static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7383 sched_mc_power_savings_show,
7384 sched_mc_power_savings_store);
5c45bf27
SS
7385#endif
7386
7387#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7388static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7389 char *page)
5c45bf27
SS
7390{
7391 return sprintf(page, "%u\n", sched_smt_power_savings);
7392}
f718cd4a 7393static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7394 const char *buf, size_t count)
5c45bf27
SS
7395{
7396 return sched_power_savings_store(buf, count, 1);
7397}
f718cd4a
AK
7398static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7399 sched_smt_power_savings_show,
6707de00
AB
7400 sched_smt_power_savings_store);
7401#endif
7402
39aac648 7403int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7404{
7405 int err = 0;
7406
7407#ifdef CONFIG_SCHED_SMT
7408 if (smt_capable())
7409 err = sysfs_create_file(&cls->kset.kobj,
7410 &attr_sched_smt_power_savings.attr);
7411#endif
7412#ifdef CONFIG_SCHED_MC
7413 if (!err && mc_capable())
7414 err = sysfs_create_file(&cls->kset.kobj,
7415 &attr_sched_mc_power_savings.attr);
7416#endif
7417 return err;
7418}
6d6bc0ad 7419#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7420
e761b772 7421#ifndef CONFIG_CPUSETS
1da177e4 7422/*
e761b772
MK
7423 * Add online and remove offline CPUs from the scheduler domains.
7424 * When cpusets are enabled they take over this function.
1da177e4
LT
7425 */
7426static int update_sched_domains(struct notifier_block *nfb,
7427 unsigned long action, void *hcpu)
e761b772
MK
7428{
7429 switch (action) {
7430 case CPU_ONLINE:
7431 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7432 case CPU_DOWN_PREPARE:
7433 case CPU_DOWN_PREPARE_FROZEN:
7434 case CPU_DOWN_FAILED:
7435 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7436 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7437 return NOTIFY_OK;
7438
7439 default:
7440 return NOTIFY_DONE;
7441 }
7442}
7443#endif
7444
7445static int update_runtime(struct notifier_block *nfb,
7446 unsigned long action, void *hcpu)
1da177e4 7447{
7def2be1
PZ
7448 int cpu = (int)(long)hcpu;
7449
1da177e4 7450 switch (action) {
1da177e4 7451 case CPU_DOWN_PREPARE:
8bb78442 7452 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7453 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7454 return NOTIFY_OK;
7455
1da177e4 7456 case CPU_DOWN_FAILED:
8bb78442 7457 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7458 case CPU_ONLINE:
8bb78442 7459 case CPU_ONLINE_FROZEN:
7def2be1 7460 enable_runtime(cpu_rq(cpu));
e761b772
MK
7461 return NOTIFY_OK;
7462
1da177e4
LT
7463 default:
7464 return NOTIFY_DONE;
7465 }
1da177e4 7466}
1da177e4
LT
7467
7468void __init sched_init_smp(void)
7469{
dcc30a35
RR
7470 cpumask_var_t non_isolated_cpus;
7471
7472 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7473 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7474
434d53b0
MT
7475#if defined(CONFIG_NUMA)
7476 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7477 GFP_KERNEL);
7478 BUG_ON(sched_group_nodes_bycpu == NULL);
7479#endif
95402b38 7480 get_online_cpus();
712555ee 7481 mutex_lock(&sched_domains_mutex);
6ad4c188 7482 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7483 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7484 if (cpumask_empty(non_isolated_cpus))
7485 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7486 mutex_unlock(&sched_domains_mutex);
95402b38 7487 put_online_cpus();
e761b772
MK
7488
7489#ifndef CONFIG_CPUSETS
1da177e4
LT
7490 /* XXX: Theoretical race here - CPU may be hotplugged now */
7491 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7492#endif
7493
7494 /* RT runtime code needs to handle some hotplug events */
7495 hotcpu_notifier(update_runtime, 0);
7496
b328ca18 7497 init_hrtick();
5c1e1767
NP
7498
7499 /* Move init over to a non-isolated CPU */
dcc30a35 7500 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7501 BUG();
19978ca6 7502 sched_init_granularity();
dcc30a35 7503 free_cpumask_var(non_isolated_cpus);
4212823f 7504
0e3900e6 7505 init_sched_rt_class();
1da177e4
LT
7506}
7507#else
7508void __init sched_init_smp(void)
7509{
19978ca6 7510 sched_init_granularity();
1da177e4
LT
7511}
7512#endif /* CONFIG_SMP */
7513
cd1bb94b
AB
7514const_debug unsigned int sysctl_timer_migration = 1;
7515
1da177e4
LT
7516int in_sched_functions(unsigned long addr)
7517{
1da177e4
LT
7518 return in_lock_functions(addr) ||
7519 (addr >= (unsigned long)__sched_text_start
7520 && addr < (unsigned long)__sched_text_end);
7521}
7522
a9957449 7523static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7524{
7525 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7526 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7527#ifdef CONFIG_FAIR_GROUP_SCHED
7528 cfs_rq->rq = rq;
7529#endif
67e9fb2a 7530 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7531}
7532
fa85ae24
PZ
7533static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7534{
7535 struct rt_prio_array *array;
7536 int i;
7537
7538 array = &rt_rq->active;
7539 for (i = 0; i < MAX_RT_PRIO; i++) {
7540 INIT_LIST_HEAD(array->queue + i);
7541 __clear_bit(i, array->bitmap);
7542 }
7543 /* delimiter for bitsearch: */
7544 __set_bit(MAX_RT_PRIO, array->bitmap);
7545
052f1dc7 7546#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7547 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7548#ifdef CONFIG_SMP
e864c499 7549 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7550#endif
48d5e258 7551#endif
fa85ae24
PZ
7552#ifdef CONFIG_SMP
7553 rt_rq->rt_nr_migratory = 0;
fa85ae24 7554 rt_rq->overloaded = 0;
05fa785c 7555 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7556#endif
7557
7558 rt_rq->rt_time = 0;
7559 rt_rq->rt_throttled = 0;
ac086bc2 7560 rt_rq->rt_runtime = 0;
0986b11b 7561 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7562
052f1dc7 7563#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7564 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7565 rt_rq->rq = rq;
7566#endif
fa85ae24
PZ
7567}
7568
6f505b16 7569#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7570static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7571 struct sched_entity *se, int cpu, int add,
7572 struct sched_entity *parent)
6f505b16 7573{
ec7dc8ac 7574 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7575 tg->cfs_rq[cpu] = cfs_rq;
7576 init_cfs_rq(cfs_rq, rq);
7577 cfs_rq->tg = tg;
7578 if (add)
7579 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7580
7581 tg->se[cpu] = se;
354d60c2
DG
7582 /* se could be NULL for init_task_group */
7583 if (!se)
7584 return;
7585
ec7dc8ac
DG
7586 if (!parent)
7587 se->cfs_rq = &rq->cfs;
7588 else
7589 se->cfs_rq = parent->my_q;
7590
6f505b16
PZ
7591 se->my_q = cfs_rq;
7592 se->load.weight = tg->shares;
e05510d0 7593 se->load.inv_weight = 0;
ec7dc8ac 7594 se->parent = parent;
6f505b16 7595}
052f1dc7 7596#endif
6f505b16 7597
052f1dc7 7598#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7599static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7600 struct sched_rt_entity *rt_se, int cpu, int add,
7601 struct sched_rt_entity *parent)
6f505b16 7602{
ec7dc8ac
DG
7603 struct rq *rq = cpu_rq(cpu);
7604
6f505b16
PZ
7605 tg->rt_rq[cpu] = rt_rq;
7606 init_rt_rq(rt_rq, rq);
7607 rt_rq->tg = tg;
7608 rt_rq->rt_se = rt_se;
ac086bc2 7609 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7610 if (add)
7611 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7612
7613 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7614 if (!rt_se)
7615 return;
7616
ec7dc8ac
DG
7617 if (!parent)
7618 rt_se->rt_rq = &rq->rt;
7619 else
7620 rt_se->rt_rq = parent->my_q;
7621
6f505b16 7622 rt_se->my_q = rt_rq;
ec7dc8ac 7623 rt_se->parent = parent;
6f505b16
PZ
7624 INIT_LIST_HEAD(&rt_se->run_list);
7625}
7626#endif
7627
1da177e4
LT
7628void __init sched_init(void)
7629{
dd41f596 7630 int i, j;
434d53b0
MT
7631 unsigned long alloc_size = 0, ptr;
7632
7633#ifdef CONFIG_FAIR_GROUP_SCHED
7634 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7635#endif
7636#ifdef CONFIG_RT_GROUP_SCHED
7637 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7638#endif
df7c8e84 7639#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7640 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7641#endif
434d53b0 7642 if (alloc_size) {
36b7b6d4 7643 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7644
7645#ifdef CONFIG_FAIR_GROUP_SCHED
7646 init_task_group.se = (struct sched_entity **)ptr;
7647 ptr += nr_cpu_ids * sizeof(void **);
7648
7649 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7650 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7651
6d6bc0ad 7652#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7653#ifdef CONFIG_RT_GROUP_SCHED
7654 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7655 ptr += nr_cpu_ids * sizeof(void **);
7656
7657 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7658 ptr += nr_cpu_ids * sizeof(void **);
7659
6d6bc0ad 7660#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7661#ifdef CONFIG_CPUMASK_OFFSTACK
7662 for_each_possible_cpu(i) {
7663 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7664 ptr += cpumask_size();
7665 }
7666#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7667 }
dd41f596 7668
57d885fe
GH
7669#ifdef CONFIG_SMP
7670 init_defrootdomain();
7671#endif
7672
d0b27fa7
PZ
7673 init_rt_bandwidth(&def_rt_bandwidth,
7674 global_rt_period(), global_rt_runtime());
7675
7676#ifdef CONFIG_RT_GROUP_SCHED
7677 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7678 global_rt_period(), global_rt_runtime());
6d6bc0ad 7679#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7680
7c941438 7681#ifdef CONFIG_CGROUP_SCHED
6f505b16 7682 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7683 INIT_LIST_HEAD(&init_task_group.children);
7684
7c941438 7685#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7686
4a6cc4bd
JK
7687#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7688 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7689 __alignof__(unsigned long));
7690#endif
0a945022 7691 for_each_possible_cpu(i) {
70b97a7f 7692 struct rq *rq;
1da177e4
LT
7693
7694 rq = cpu_rq(i);
05fa785c 7695 raw_spin_lock_init(&rq->lock);
7897986b 7696 rq->nr_running = 0;
dce48a84
TG
7697 rq->calc_load_active = 0;
7698 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7699 init_cfs_rq(&rq->cfs, rq);
6f505b16 7700 init_rt_rq(&rq->rt, rq);
dd41f596 7701#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7702 init_task_group.shares = init_task_group_load;
6f505b16 7703 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7704#ifdef CONFIG_CGROUP_SCHED
7705 /*
7706 * How much cpu bandwidth does init_task_group get?
7707 *
7708 * In case of task-groups formed thr' the cgroup filesystem, it
7709 * gets 100% of the cpu resources in the system. This overall
7710 * system cpu resource is divided among the tasks of
7711 * init_task_group and its child task-groups in a fair manner,
7712 * based on each entity's (task or task-group's) weight
7713 * (se->load.weight).
7714 *
7715 * In other words, if init_task_group has 10 tasks of weight
7716 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7717 * then A0's share of the cpu resource is:
7718 *
0d905bca 7719 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7720 *
7721 * We achieve this by letting init_task_group's tasks sit
7722 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7723 */
ec7dc8ac 7724 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7725#endif
354d60c2
DG
7726#endif /* CONFIG_FAIR_GROUP_SCHED */
7727
7728 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7729#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7730 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7731#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7732 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7733#endif
dd41f596 7734#endif
1da177e4 7735
dd41f596
IM
7736 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7737 rq->cpu_load[j] = 0;
1da177e4 7738#ifdef CONFIG_SMP
41c7ce9a 7739 rq->sd = NULL;
57d885fe 7740 rq->rd = NULL;
3f029d3c 7741 rq->post_schedule = 0;
1da177e4 7742 rq->active_balance = 0;
dd41f596 7743 rq->next_balance = jiffies;
1da177e4 7744 rq->push_cpu = 0;
0a2966b4 7745 rq->cpu = i;
1f11eb6a 7746 rq->online = 0;
1da177e4 7747 rq->migration_thread = NULL;
eae0c9df
MG
7748 rq->idle_stamp = 0;
7749 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7750 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7751 rq_attach_root(rq, &def_root_domain);
1da177e4 7752#endif
8f4d37ec 7753 init_rq_hrtick(rq);
1da177e4 7754 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7755 }
7756
2dd73a4f 7757 set_load_weight(&init_task);
b50f60ce 7758
e107be36
AK
7759#ifdef CONFIG_PREEMPT_NOTIFIERS
7760 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7761#endif
7762
c9819f45 7763#ifdef CONFIG_SMP
962cf36c 7764 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7765#endif
7766
b50f60ce 7767#ifdef CONFIG_RT_MUTEXES
1d615482 7768 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7769#endif
7770
1da177e4
LT
7771 /*
7772 * The boot idle thread does lazy MMU switching as well:
7773 */
7774 atomic_inc(&init_mm.mm_count);
7775 enter_lazy_tlb(&init_mm, current);
7776
7777 /*
7778 * Make us the idle thread. Technically, schedule() should not be
7779 * called from this thread, however somewhere below it might be,
7780 * but because we are the idle thread, we just pick up running again
7781 * when this runqueue becomes "idle".
7782 */
7783 init_idle(current, smp_processor_id());
dce48a84
TG
7784
7785 calc_load_update = jiffies + LOAD_FREQ;
7786
dd41f596
IM
7787 /*
7788 * During early bootup we pretend to be a normal task:
7789 */
7790 current->sched_class = &fair_sched_class;
6892b75e 7791
6a7b3dc3 7792 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7793 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7794#ifdef CONFIG_SMP
7d1e6a9b 7795#ifdef CONFIG_NO_HZ
49557e62 7796 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7797 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7798#endif
bdddd296
RR
7799 /* May be allocated at isolcpus cmdline parse time */
7800 if (cpu_isolated_map == NULL)
7801 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7802#endif /* SMP */
6a7b3dc3 7803
cdd6c482 7804 perf_event_init();
0d905bca 7805
6892b75e 7806 scheduler_running = 1;
1da177e4
LT
7807}
7808
7809#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7810static inline int preempt_count_equals(int preempt_offset)
7811{
234da7bc 7812 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7813
7814 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7815}
7816
d894837f 7817void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7818{
48f24c4d 7819#ifdef in_atomic
1da177e4
LT
7820 static unsigned long prev_jiffy; /* ratelimiting */
7821
e4aafea2
FW
7822 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7823 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7824 return;
7825 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7826 return;
7827 prev_jiffy = jiffies;
7828
3df0fc5b
PZ
7829 printk(KERN_ERR
7830 "BUG: sleeping function called from invalid context at %s:%d\n",
7831 file, line);
7832 printk(KERN_ERR
7833 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7834 in_atomic(), irqs_disabled(),
7835 current->pid, current->comm);
aef745fc
IM
7836
7837 debug_show_held_locks(current);
7838 if (irqs_disabled())
7839 print_irqtrace_events(current);
7840 dump_stack();
1da177e4
LT
7841#endif
7842}
7843EXPORT_SYMBOL(__might_sleep);
7844#endif
7845
7846#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7847static void normalize_task(struct rq *rq, struct task_struct *p)
7848{
7849 int on_rq;
3e51f33f 7850
3a5e4dc1
AK
7851 update_rq_clock(rq);
7852 on_rq = p->se.on_rq;
7853 if (on_rq)
7854 deactivate_task(rq, p, 0);
7855 __setscheduler(rq, p, SCHED_NORMAL, 0);
7856 if (on_rq) {
7857 activate_task(rq, p, 0);
7858 resched_task(rq->curr);
7859 }
7860}
7861
1da177e4
LT
7862void normalize_rt_tasks(void)
7863{
a0f98a1c 7864 struct task_struct *g, *p;
1da177e4 7865 unsigned long flags;
70b97a7f 7866 struct rq *rq;
1da177e4 7867
4cf5d77a 7868 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7869 do_each_thread(g, p) {
178be793
IM
7870 /*
7871 * Only normalize user tasks:
7872 */
7873 if (!p->mm)
7874 continue;
7875
6cfb0d5d 7876 p->se.exec_start = 0;
6cfb0d5d 7877#ifdef CONFIG_SCHEDSTATS
dd41f596 7878 p->se.wait_start = 0;
dd41f596 7879 p->se.sleep_start = 0;
dd41f596 7880 p->se.block_start = 0;
6cfb0d5d 7881#endif
dd41f596
IM
7882
7883 if (!rt_task(p)) {
7884 /*
7885 * Renice negative nice level userspace
7886 * tasks back to 0:
7887 */
7888 if (TASK_NICE(p) < 0 && p->mm)
7889 set_user_nice(p, 0);
1da177e4 7890 continue;
dd41f596 7891 }
1da177e4 7892
1d615482 7893 raw_spin_lock(&p->pi_lock);
b29739f9 7894 rq = __task_rq_lock(p);
1da177e4 7895
178be793 7896 normalize_task(rq, p);
3a5e4dc1 7897
b29739f9 7898 __task_rq_unlock(rq);
1d615482 7899 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7900 } while_each_thread(g, p);
7901
4cf5d77a 7902 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7903}
7904
7905#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7906
7907#ifdef CONFIG_IA64
7908/*
7909 * These functions are only useful for the IA64 MCA handling.
7910 *
7911 * They can only be called when the whole system has been
7912 * stopped - every CPU needs to be quiescent, and no scheduling
7913 * activity can take place. Using them for anything else would
7914 * be a serious bug, and as a result, they aren't even visible
7915 * under any other configuration.
7916 */
7917
7918/**
7919 * curr_task - return the current task for a given cpu.
7920 * @cpu: the processor in question.
7921 *
7922 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7923 */
36c8b586 7924struct task_struct *curr_task(int cpu)
1df5c10a
LT
7925{
7926 return cpu_curr(cpu);
7927}
7928
7929/**
7930 * set_curr_task - set the current task for a given cpu.
7931 * @cpu: the processor in question.
7932 * @p: the task pointer to set.
7933 *
7934 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7935 * are serviced on a separate stack. It allows the architecture to switch the
7936 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7937 * must be called with all CPU's synchronized, and interrupts disabled, the
7938 * and caller must save the original value of the current task (see
7939 * curr_task() above) and restore that value before reenabling interrupts and
7940 * re-starting the system.
7941 *
7942 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7943 */
36c8b586 7944void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7945{
7946 cpu_curr(cpu) = p;
7947}
7948
7949#endif
29f59db3 7950
bccbe08a
PZ
7951#ifdef CONFIG_FAIR_GROUP_SCHED
7952static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7953{
7954 int i;
7955
7956 for_each_possible_cpu(i) {
7957 if (tg->cfs_rq)
7958 kfree(tg->cfs_rq[i]);
7959 if (tg->se)
7960 kfree(tg->se[i]);
6f505b16
PZ
7961 }
7962
7963 kfree(tg->cfs_rq);
7964 kfree(tg->se);
6f505b16
PZ
7965}
7966
ec7dc8ac
DG
7967static
7968int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7969{
29f59db3 7970 struct cfs_rq *cfs_rq;
eab17229 7971 struct sched_entity *se;
9b5b7751 7972 struct rq *rq;
29f59db3
SV
7973 int i;
7974
434d53b0 7975 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7976 if (!tg->cfs_rq)
7977 goto err;
434d53b0 7978 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7979 if (!tg->se)
7980 goto err;
052f1dc7
PZ
7981
7982 tg->shares = NICE_0_LOAD;
29f59db3
SV
7983
7984 for_each_possible_cpu(i) {
9b5b7751 7985 rq = cpu_rq(i);
29f59db3 7986
eab17229
LZ
7987 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7988 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7989 if (!cfs_rq)
7990 goto err;
7991
eab17229
LZ
7992 se = kzalloc_node(sizeof(struct sched_entity),
7993 GFP_KERNEL, cpu_to_node(i));
29f59db3 7994 if (!se)
dfc12eb2 7995 goto err_free_rq;
29f59db3 7996
eab17229 7997 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
7998 }
7999
8000 return 1;
8001
dfc12eb2
PC
8002 err_free_rq:
8003 kfree(cfs_rq);
bccbe08a
PZ
8004 err:
8005 return 0;
8006}
8007
8008static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8009{
8010 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8011 &cpu_rq(cpu)->leaf_cfs_rq_list);
8012}
8013
8014static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8015{
8016 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8017}
6d6bc0ad 8018#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8019static inline void free_fair_sched_group(struct task_group *tg)
8020{
8021}
8022
ec7dc8ac
DG
8023static inline
8024int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8025{
8026 return 1;
8027}
8028
8029static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8030{
8031}
8032
8033static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8034{
8035}
6d6bc0ad 8036#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8037
8038#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8039static void free_rt_sched_group(struct task_group *tg)
8040{
8041 int i;
8042
d0b27fa7
PZ
8043 destroy_rt_bandwidth(&tg->rt_bandwidth);
8044
bccbe08a
PZ
8045 for_each_possible_cpu(i) {
8046 if (tg->rt_rq)
8047 kfree(tg->rt_rq[i]);
8048 if (tg->rt_se)
8049 kfree(tg->rt_se[i]);
8050 }
8051
8052 kfree(tg->rt_rq);
8053 kfree(tg->rt_se);
8054}
8055
ec7dc8ac
DG
8056static
8057int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8058{
8059 struct rt_rq *rt_rq;
eab17229 8060 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8061 struct rq *rq;
8062 int i;
8063
434d53b0 8064 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8065 if (!tg->rt_rq)
8066 goto err;
434d53b0 8067 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8068 if (!tg->rt_se)
8069 goto err;
8070
d0b27fa7
PZ
8071 init_rt_bandwidth(&tg->rt_bandwidth,
8072 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8073
8074 for_each_possible_cpu(i) {
8075 rq = cpu_rq(i);
8076
eab17229
LZ
8077 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8078 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8079 if (!rt_rq)
8080 goto err;
29f59db3 8081
eab17229
LZ
8082 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8083 GFP_KERNEL, cpu_to_node(i));
6f505b16 8084 if (!rt_se)
dfc12eb2 8085 goto err_free_rq;
29f59db3 8086
eab17229 8087 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8088 }
8089
bccbe08a
PZ
8090 return 1;
8091
dfc12eb2
PC
8092 err_free_rq:
8093 kfree(rt_rq);
bccbe08a
PZ
8094 err:
8095 return 0;
8096}
8097
8098static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8099{
8100 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8101 &cpu_rq(cpu)->leaf_rt_rq_list);
8102}
8103
8104static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8105{
8106 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8107}
6d6bc0ad 8108#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8109static inline void free_rt_sched_group(struct task_group *tg)
8110{
8111}
8112
ec7dc8ac
DG
8113static inline
8114int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8115{
8116 return 1;
8117}
8118
8119static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8120{
8121}
8122
8123static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8124{
8125}
6d6bc0ad 8126#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8127
7c941438 8128#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8129static void free_sched_group(struct task_group *tg)
8130{
8131 free_fair_sched_group(tg);
8132 free_rt_sched_group(tg);
8133 kfree(tg);
8134}
8135
8136/* allocate runqueue etc for a new task group */
ec7dc8ac 8137struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8138{
8139 struct task_group *tg;
8140 unsigned long flags;
8141 int i;
8142
8143 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8144 if (!tg)
8145 return ERR_PTR(-ENOMEM);
8146
ec7dc8ac 8147 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8148 goto err;
8149
ec7dc8ac 8150 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8151 goto err;
8152
8ed36996 8153 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8154 for_each_possible_cpu(i) {
bccbe08a
PZ
8155 register_fair_sched_group(tg, i);
8156 register_rt_sched_group(tg, i);
9b5b7751 8157 }
6f505b16 8158 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8159
8160 WARN_ON(!parent); /* root should already exist */
8161
8162 tg->parent = parent;
f473aa5e 8163 INIT_LIST_HEAD(&tg->children);
09f2724a 8164 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8165 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8166
9b5b7751 8167 return tg;
29f59db3
SV
8168
8169err:
6f505b16 8170 free_sched_group(tg);
29f59db3
SV
8171 return ERR_PTR(-ENOMEM);
8172}
8173
9b5b7751 8174/* rcu callback to free various structures associated with a task group */
6f505b16 8175static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8176{
29f59db3 8177 /* now it should be safe to free those cfs_rqs */
6f505b16 8178 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8179}
8180
9b5b7751 8181/* Destroy runqueue etc associated with a task group */
4cf86d77 8182void sched_destroy_group(struct task_group *tg)
29f59db3 8183{
8ed36996 8184 unsigned long flags;
9b5b7751 8185 int i;
29f59db3 8186
8ed36996 8187 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8188 for_each_possible_cpu(i) {
bccbe08a
PZ
8189 unregister_fair_sched_group(tg, i);
8190 unregister_rt_sched_group(tg, i);
9b5b7751 8191 }
6f505b16 8192 list_del_rcu(&tg->list);
f473aa5e 8193 list_del_rcu(&tg->siblings);
8ed36996 8194 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8195
9b5b7751 8196 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8197 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8198}
8199
9b5b7751 8200/* change task's runqueue when it moves between groups.
3a252015
IM
8201 * The caller of this function should have put the task in its new group
8202 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8203 * reflect its new group.
9b5b7751
SV
8204 */
8205void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8206{
8207 int on_rq, running;
8208 unsigned long flags;
8209 struct rq *rq;
8210
8211 rq = task_rq_lock(tsk, &flags);
8212
29f59db3
SV
8213 update_rq_clock(rq);
8214
051a1d1a 8215 running = task_current(rq, tsk);
29f59db3
SV
8216 on_rq = tsk->se.on_rq;
8217
0e1f3483 8218 if (on_rq)
29f59db3 8219 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8220 if (unlikely(running))
8221 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8222
6f505b16 8223 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8224
810b3817
PZ
8225#ifdef CONFIG_FAIR_GROUP_SCHED
8226 if (tsk->sched_class->moved_group)
88ec22d3 8227 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8228#endif
8229
0e1f3483
HS
8230 if (unlikely(running))
8231 tsk->sched_class->set_curr_task(rq);
8232 if (on_rq)
7074badb 8233 enqueue_task(rq, tsk, 0);
29f59db3 8234
29f59db3
SV
8235 task_rq_unlock(rq, &flags);
8236}
7c941438 8237#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8238
052f1dc7 8239#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8240static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8241{
8242 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8243 int on_rq;
8244
29f59db3 8245 on_rq = se->on_rq;
62fb1851 8246 if (on_rq)
29f59db3
SV
8247 dequeue_entity(cfs_rq, se, 0);
8248
8249 se->load.weight = shares;
e05510d0 8250 se->load.inv_weight = 0;
29f59db3 8251
62fb1851 8252 if (on_rq)
29f59db3 8253 enqueue_entity(cfs_rq, se, 0);
c09595f6 8254}
62fb1851 8255
c09595f6
PZ
8256static void set_se_shares(struct sched_entity *se, unsigned long shares)
8257{
8258 struct cfs_rq *cfs_rq = se->cfs_rq;
8259 struct rq *rq = cfs_rq->rq;
8260 unsigned long flags;
8261
05fa785c 8262 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8263 __set_se_shares(se, shares);
05fa785c 8264 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8265}
8266
8ed36996
PZ
8267static DEFINE_MUTEX(shares_mutex);
8268
4cf86d77 8269int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8270{
8271 int i;
8ed36996 8272 unsigned long flags;
c61935fd 8273
ec7dc8ac
DG
8274 /*
8275 * We can't change the weight of the root cgroup.
8276 */
8277 if (!tg->se[0])
8278 return -EINVAL;
8279
18d95a28
PZ
8280 if (shares < MIN_SHARES)
8281 shares = MIN_SHARES;
cb4ad1ff
MX
8282 else if (shares > MAX_SHARES)
8283 shares = MAX_SHARES;
62fb1851 8284
8ed36996 8285 mutex_lock(&shares_mutex);
9b5b7751 8286 if (tg->shares == shares)
5cb350ba 8287 goto done;
29f59db3 8288
8ed36996 8289 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8290 for_each_possible_cpu(i)
8291 unregister_fair_sched_group(tg, i);
f473aa5e 8292 list_del_rcu(&tg->siblings);
8ed36996 8293 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8294
8295 /* wait for any ongoing reference to this group to finish */
8296 synchronize_sched();
8297
8298 /*
8299 * Now we are free to modify the group's share on each cpu
8300 * w/o tripping rebalance_share or load_balance_fair.
8301 */
9b5b7751 8302 tg->shares = shares;
c09595f6
PZ
8303 for_each_possible_cpu(i) {
8304 /*
8305 * force a rebalance
8306 */
8307 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8308 set_se_shares(tg->se[i], shares);
c09595f6 8309 }
29f59db3 8310
6b2d7700
SV
8311 /*
8312 * Enable load balance activity on this group, by inserting it back on
8313 * each cpu's rq->leaf_cfs_rq_list.
8314 */
8ed36996 8315 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8316 for_each_possible_cpu(i)
8317 register_fair_sched_group(tg, i);
f473aa5e 8318 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8319 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8320done:
8ed36996 8321 mutex_unlock(&shares_mutex);
9b5b7751 8322 return 0;
29f59db3
SV
8323}
8324
5cb350ba
DG
8325unsigned long sched_group_shares(struct task_group *tg)
8326{
8327 return tg->shares;
8328}
052f1dc7 8329#endif
5cb350ba 8330
052f1dc7 8331#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8332/*
9f0c1e56 8333 * Ensure that the real time constraints are schedulable.
6f505b16 8334 */
9f0c1e56
PZ
8335static DEFINE_MUTEX(rt_constraints_mutex);
8336
8337static unsigned long to_ratio(u64 period, u64 runtime)
8338{
8339 if (runtime == RUNTIME_INF)
9a7e0b18 8340 return 1ULL << 20;
9f0c1e56 8341
9a7e0b18 8342 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8343}
8344
9a7e0b18
PZ
8345/* Must be called with tasklist_lock held */
8346static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8347{
9a7e0b18 8348 struct task_struct *g, *p;
b40b2e8e 8349
9a7e0b18
PZ
8350 do_each_thread(g, p) {
8351 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8352 return 1;
8353 } while_each_thread(g, p);
b40b2e8e 8354
9a7e0b18
PZ
8355 return 0;
8356}
b40b2e8e 8357
9a7e0b18
PZ
8358struct rt_schedulable_data {
8359 struct task_group *tg;
8360 u64 rt_period;
8361 u64 rt_runtime;
8362};
b40b2e8e 8363
9a7e0b18
PZ
8364static int tg_schedulable(struct task_group *tg, void *data)
8365{
8366 struct rt_schedulable_data *d = data;
8367 struct task_group *child;
8368 unsigned long total, sum = 0;
8369 u64 period, runtime;
b40b2e8e 8370
9a7e0b18
PZ
8371 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8372 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8373
9a7e0b18
PZ
8374 if (tg == d->tg) {
8375 period = d->rt_period;
8376 runtime = d->rt_runtime;
b40b2e8e 8377 }
b40b2e8e 8378
4653f803
PZ
8379 /*
8380 * Cannot have more runtime than the period.
8381 */
8382 if (runtime > period && runtime != RUNTIME_INF)
8383 return -EINVAL;
6f505b16 8384
4653f803
PZ
8385 /*
8386 * Ensure we don't starve existing RT tasks.
8387 */
9a7e0b18
PZ
8388 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8389 return -EBUSY;
6f505b16 8390
9a7e0b18 8391 total = to_ratio(period, runtime);
6f505b16 8392
4653f803
PZ
8393 /*
8394 * Nobody can have more than the global setting allows.
8395 */
8396 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8397 return -EINVAL;
6f505b16 8398
4653f803
PZ
8399 /*
8400 * The sum of our children's runtime should not exceed our own.
8401 */
9a7e0b18
PZ
8402 list_for_each_entry_rcu(child, &tg->children, siblings) {
8403 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8404 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8405
9a7e0b18
PZ
8406 if (child == d->tg) {
8407 period = d->rt_period;
8408 runtime = d->rt_runtime;
8409 }
6f505b16 8410
9a7e0b18 8411 sum += to_ratio(period, runtime);
9f0c1e56 8412 }
6f505b16 8413
9a7e0b18
PZ
8414 if (sum > total)
8415 return -EINVAL;
8416
8417 return 0;
6f505b16
PZ
8418}
8419
9a7e0b18 8420static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8421{
9a7e0b18
PZ
8422 struct rt_schedulable_data data = {
8423 .tg = tg,
8424 .rt_period = period,
8425 .rt_runtime = runtime,
8426 };
8427
8428 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8429}
8430
d0b27fa7
PZ
8431static int tg_set_bandwidth(struct task_group *tg,
8432 u64 rt_period, u64 rt_runtime)
6f505b16 8433{
ac086bc2 8434 int i, err = 0;
9f0c1e56 8435
9f0c1e56 8436 mutex_lock(&rt_constraints_mutex);
521f1a24 8437 read_lock(&tasklist_lock);
9a7e0b18
PZ
8438 err = __rt_schedulable(tg, rt_period, rt_runtime);
8439 if (err)
9f0c1e56 8440 goto unlock;
ac086bc2 8441
0986b11b 8442 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8443 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8444 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8445
8446 for_each_possible_cpu(i) {
8447 struct rt_rq *rt_rq = tg->rt_rq[i];
8448
0986b11b 8449 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8450 rt_rq->rt_runtime = rt_runtime;
0986b11b 8451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8452 }
0986b11b 8453 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8454 unlock:
521f1a24 8455 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8456 mutex_unlock(&rt_constraints_mutex);
8457
8458 return err;
6f505b16
PZ
8459}
8460
d0b27fa7
PZ
8461int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8462{
8463 u64 rt_runtime, rt_period;
8464
8465 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8466 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8467 if (rt_runtime_us < 0)
8468 rt_runtime = RUNTIME_INF;
8469
8470 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8471}
8472
9f0c1e56
PZ
8473long sched_group_rt_runtime(struct task_group *tg)
8474{
8475 u64 rt_runtime_us;
8476
d0b27fa7 8477 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8478 return -1;
8479
d0b27fa7 8480 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8481 do_div(rt_runtime_us, NSEC_PER_USEC);
8482 return rt_runtime_us;
8483}
d0b27fa7
PZ
8484
8485int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8486{
8487 u64 rt_runtime, rt_period;
8488
8489 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8490 rt_runtime = tg->rt_bandwidth.rt_runtime;
8491
619b0488
R
8492 if (rt_period == 0)
8493 return -EINVAL;
8494
d0b27fa7
PZ
8495 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8496}
8497
8498long sched_group_rt_period(struct task_group *tg)
8499{
8500 u64 rt_period_us;
8501
8502 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8503 do_div(rt_period_us, NSEC_PER_USEC);
8504 return rt_period_us;
8505}
8506
8507static int sched_rt_global_constraints(void)
8508{
4653f803 8509 u64 runtime, period;
d0b27fa7
PZ
8510 int ret = 0;
8511
ec5d4989
HS
8512 if (sysctl_sched_rt_period <= 0)
8513 return -EINVAL;
8514
4653f803
PZ
8515 runtime = global_rt_runtime();
8516 period = global_rt_period();
8517
8518 /*
8519 * Sanity check on the sysctl variables.
8520 */
8521 if (runtime > period && runtime != RUNTIME_INF)
8522 return -EINVAL;
10b612f4 8523
d0b27fa7 8524 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8525 read_lock(&tasklist_lock);
4653f803 8526 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8527 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8528 mutex_unlock(&rt_constraints_mutex);
8529
8530 return ret;
8531}
54e99124
DG
8532
8533int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8534{
8535 /* Don't accept realtime tasks when there is no way for them to run */
8536 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8537 return 0;
8538
8539 return 1;
8540}
8541
6d6bc0ad 8542#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8543static int sched_rt_global_constraints(void)
8544{
ac086bc2
PZ
8545 unsigned long flags;
8546 int i;
8547
ec5d4989
HS
8548 if (sysctl_sched_rt_period <= 0)
8549 return -EINVAL;
8550
60aa605d
PZ
8551 /*
8552 * There's always some RT tasks in the root group
8553 * -- migration, kstopmachine etc..
8554 */
8555 if (sysctl_sched_rt_runtime == 0)
8556 return -EBUSY;
8557
0986b11b 8558 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8559 for_each_possible_cpu(i) {
8560 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8561
0986b11b 8562 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8563 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8564 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8565 }
0986b11b 8566 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8567
d0b27fa7
PZ
8568 return 0;
8569}
6d6bc0ad 8570#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8571
8572int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8573 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8574 loff_t *ppos)
8575{
8576 int ret;
8577 int old_period, old_runtime;
8578 static DEFINE_MUTEX(mutex);
8579
8580 mutex_lock(&mutex);
8581 old_period = sysctl_sched_rt_period;
8582 old_runtime = sysctl_sched_rt_runtime;
8583
8d65af78 8584 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8585
8586 if (!ret && write) {
8587 ret = sched_rt_global_constraints();
8588 if (ret) {
8589 sysctl_sched_rt_period = old_period;
8590 sysctl_sched_rt_runtime = old_runtime;
8591 } else {
8592 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8593 def_rt_bandwidth.rt_period =
8594 ns_to_ktime(global_rt_period());
8595 }
8596 }
8597 mutex_unlock(&mutex);
8598
8599 return ret;
8600}
68318b8e 8601
052f1dc7 8602#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8603
8604/* return corresponding task_group object of a cgroup */
2b01dfe3 8605static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8606{
2b01dfe3
PM
8607 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8608 struct task_group, css);
68318b8e
SV
8609}
8610
8611static struct cgroup_subsys_state *
2b01dfe3 8612cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8613{
ec7dc8ac 8614 struct task_group *tg, *parent;
68318b8e 8615
2b01dfe3 8616 if (!cgrp->parent) {
68318b8e 8617 /* This is early initialization for the top cgroup */
68318b8e
SV
8618 return &init_task_group.css;
8619 }
8620
ec7dc8ac
DG
8621 parent = cgroup_tg(cgrp->parent);
8622 tg = sched_create_group(parent);
68318b8e
SV
8623 if (IS_ERR(tg))
8624 return ERR_PTR(-ENOMEM);
8625
68318b8e
SV
8626 return &tg->css;
8627}
8628
41a2d6cf
IM
8629static void
8630cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8631{
2b01dfe3 8632 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8633
8634 sched_destroy_group(tg);
8635}
8636
41a2d6cf 8637static int
be367d09 8638cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8639{
b68aa230 8640#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8641 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8642 return -EINVAL;
8643#else
68318b8e
SV
8644 /* We don't support RT-tasks being in separate groups */
8645 if (tsk->sched_class != &fair_sched_class)
8646 return -EINVAL;
b68aa230 8647#endif
be367d09
BB
8648 return 0;
8649}
68318b8e 8650
be367d09
BB
8651static int
8652cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8653 struct task_struct *tsk, bool threadgroup)
8654{
8655 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8656 if (retval)
8657 return retval;
8658 if (threadgroup) {
8659 struct task_struct *c;
8660 rcu_read_lock();
8661 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8662 retval = cpu_cgroup_can_attach_task(cgrp, c);
8663 if (retval) {
8664 rcu_read_unlock();
8665 return retval;
8666 }
8667 }
8668 rcu_read_unlock();
8669 }
68318b8e
SV
8670 return 0;
8671}
8672
8673static void
2b01dfe3 8674cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8675 struct cgroup *old_cont, struct task_struct *tsk,
8676 bool threadgroup)
68318b8e
SV
8677{
8678 sched_move_task(tsk);
be367d09
BB
8679 if (threadgroup) {
8680 struct task_struct *c;
8681 rcu_read_lock();
8682 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8683 sched_move_task(c);
8684 }
8685 rcu_read_unlock();
8686 }
68318b8e
SV
8687}
8688
052f1dc7 8689#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8690static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8691 u64 shareval)
68318b8e 8692{
2b01dfe3 8693 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8694}
8695
f4c753b7 8696static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8697{
2b01dfe3 8698 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8699
8700 return (u64) tg->shares;
8701}
6d6bc0ad 8702#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8703
052f1dc7 8704#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8705static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8706 s64 val)
6f505b16 8707{
06ecb27c 8708 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8709}
8710
06ecb27c 8711static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8712{
06ecb27c 8713 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8714}
d0b27fa7
PZ
8715
8716static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8717 u64 rt_period_us)
8718{
8719 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8720}
8721
8722static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8723{
8724 return sched_group_rt_period(cgroup_tg(cgrp));
8725}
6d6bc0ad 8726#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8727
fe5c7cc2 8728static struct cftype cpu_files[] = {
052f1dc7 8729#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8730 {
8731 .name = "shares",
f4c753b7
PM
8732 .read_u64 = cpu_shares_read_u64,
8733 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8734 },
052f1dc7
PZ
8735#endif
8736#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8737 {
9f0c1e56 8738 .name = "rt_runtime_us",
06ecb27c
PM
8739 .read_s64 = cpu_rt_runtime_read,
8740 .write_s64 = cpu_rt_runtime_write,
6f505b16 8741 },
d0b27fa7
PZ
8742 {
8743 .name = "rt_period_us",
f4c753b7
PM
8744 .read_u64 = cpu_rt_period_read_uint,
8745 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8746 },
052f1dc7 8747#endif
68318b8e
SV
8748};
8749
8750static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8751{
fe5c7cc2 8752 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8753}
8754
8755struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8756 .name = "cpu",
8757 .create = cpu_cgroup_create,
8758 .destroy = cpu_cgroup_destroy,
8759 .can_attach = cpu_cgroup_can_attach,
8760 .attach = cpu_cgroup_attach,
8761 .populate = cpu_cgroup_populate,
8762 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8763 .early_init = 1,
8764};
8765
052f1dc7 8766#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8767
8768#ifdef CONFIG_CGROUP_CPUACCT
8769
8770/*
8771 * CPU accounting code for task groups.
8772 *
8773 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8774 * (balbir@in.ibm.com).
8775 */
8776
934352f2 8777/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8778struct cpuacct {
8779 struct cgroup_subsys_state css;
8780 /* cpuusage holds pointer to a u64-type object on every cpu */
8781 u64 *cpuusage;
ef12fefa 8782 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8783 struct cpuacct *parent;
d842de87
SV
8784};
8785
8786struct cgroup_subsys cpuacct_subsys;
8787
8788/* return cpu accounting group corresponding to this container */
32cd756a 8789static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8790{
32cd756a 8791 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8792 struct cpuacct, css);
8793}
8794
8795/* return cpu accounting group to which this task belongs */
8796static inline struct cpuacct *task_ca(struct task_struct *tsk)
8797{
8798 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8799 struct cpuacct, css);
8800}
8801
8802/* create a new cpu accounting group */
8803static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8804 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8805{
8806 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8807 int i;
d842de87
SV
8808
8809 if (!ca)
ef12fefa 8810 goto out;
d842de87
SV
8811
8812 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8813 if (!ca->cpuusage)
8814 goto out_free_ca;
8815
8816 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8817 if (percpu_counter_init(&ca->cpustat[i], 0))
8818 goto out_free_counters;
d842de87 8819
934352f2
BR
8820 if (cgrp->parent)
8821 ca->parent = cgroup_ca(cgrp->parent);
8822
d842de87 8823 return &ca->css;
ef12fefa
BR
8824
8825out_free_counters:
8826 while (--i >= 0)
8827 percpu_counter_destroy(&ca->cpustat[i]);
8828 free_percpu(ca->cpuusage);
8829out_free_ca:
8830 kfree(ca);
8831out:
8832 return ERR_PTR(-ENOMEM);
d842de87
SV
8833}
8834
8835/* destroy an existing cpu accounting group */
41a2d6cf 8836static void
32cd756a 8837cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8838{
32cd756a 8839 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8840 int i;
d842de87 8841
ef12fefa
BR
8842 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8843 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8844 free_percpu(ca->cpuusage);
8845 kfree(ca);
8846}
8847
720f5498
KC
8848static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8849{
b36128c8 8850 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8851 u64 data;
8852
8853#ifndef CONFIG_64BIT
8854 /*
8855 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8856 */
05fa785c 8857 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8858 data = *cpuusage;
05fa785c 8859 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8860#else
8861 data = *cpuusage;
8862#endif
8863
8864 return data;
8865}
8866
8867static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8868{
b36128c8 8869 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8870
8871#ifndef CONFIG_64BIT
8872 /*
8873 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8874 */
05fa785c 8875 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8876 *cpuusage = val;
05fa785c 8877 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8878#else
8879 *cpuusage = val;
8880#endif
8881}
8882
d842de87 8883/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8884static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8885{
32cd756a 8886 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8887 u64 totalcpuusage = 0;
8888 int i;
8889
720f5498
KC
8890 for_each_present_cpu(i)
8891 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8892
8893 return totalcpuusage;
8894}
8895
0297b803
DG
8896static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8897 u64 reset)
8898{
8899 struct cpuacct *ca = cgroup_ca(cgrp);
8900 int err = 0;
8901 int i;
8902
8903 if (reset) {
8904 err = -EINVAL;
8905 goto out;
8906 }
8907
720f5498
KC
8908 for_each_present_cpu(i)
8909 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8910
0297b803
DG
8911out:
8912 return err;
8913}
8914
e9515c3c
KC
8915static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8916 struct seq_file *m)
8917{
8918 struct cpuacct *ca = cgroup_ca(cgroup);
8919 u64 percpu;
8920 int i;
8921
8922 for_each_present_cpu(i) {
8923 percpu = cpuacct_cpuusage_read(ca, i);
8924 seq_printf(m, "%llu ", (unsigned long long) percpu);
8925 }
8926 seq_printf(m, "\n");
8927 return 0;
8928}
8929
ef12fefa
BR
8930static const char *cpuacct_stat_desc[] = {
8931 [CPUACCT_STAT_USER] = "user",
8932 [CPUACCT_STAT_SYSTEM] = "system",
8933};
8934
8935static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8936 struct cgroup_map_cb *cb)
8937{
8938 struct cpuacct *ca = cgroup_ca(cgrp);
8939 int i;
8940
8941 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8942 s64 val = percpu_counter_read(&ca->cpustat[i]);
8943 val = cputime64_to_clock_t(val);
8944 cb->fill(cb, cpuacct_stat_desc[i], val);
8945 }
8946 return 0;
8947}
8948
d842de87
SV
8949static struct cftype files[] = {
8950 {
8951 .name = "usage",
f4c753b7
PM
8952 .read_u64 = cpuusage_read,
8953 .write_u64 = cpuusage_write,
d842de87 8954 },
e9515c3c
KC
8955 {
8956 .name = "usage_percpu",
8957 .read_seq_string = cpuacct_percpu_seq_read,
8958 },
ef12fefa
BR
8959 {
8960 .name = "stat",
8961 .read_map = cpuacct_stats_show,
8962 },
d842de87
SV
8963};
8964
32cd756a 8965static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8966{
32cd756a 8967 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8968}
8969
8970/*
8971 * charge this task's execution time to its accounting group.
8972 *
8973 * called with rq->lock held.
8974 */
8975static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8976{
8977 struct cpuacct *ca;
934352f2 8978 int cpu;
d842de87 8979
c40c6f85 8980 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8981 return;
8982
934352f2 8983 cpu = task_cpu(tsk);
a18b83b7
BR
8984
8985 rcu_read_lock();
8986
d842de87 8987 ca = task_ca(tsk);
d842de87 8988
934352f2 8989 for (; ca; ca = ca->parent) {
b36128c8 8990 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8991 *cpuusage += cputime;
8992 }
a18b83b7
BR
8993
8994 rcu_read_unlock();
d842de87
SV
8995}
8996
ef12fefa
BR
8997/*
8998 * Charge the system/user time to the task's accounting group.
8999 */
9000static void cpuacct_update_stats(struct task_struct *tsk,
9001 enum cpuacct_stat_index idx, cputime_t val)
9002{
9003 struct cpuacct *ca;
9004
9005 if (unlikely(!cpuacct_subsys.active))
9006 return;
9007
9008 rcu_read_lock();
9009 ca = task_ca(tsk);
9010
9011 do {
9012 percpu_counter_add(&ca->cpustat[idx], val);
9013 ca = ca->parent;
9014 } while (ca);
9015 rcu_read_unlock();
9016}
9017
d842de87
SV
9018struct cgroup_subsys cpuacct_subsys = {
9019 .name = "cpuacct",
9020 .create = cpuacct_create,
9021 .destroy = cpuacct_destroy,
9022 .populate = cpuacct_populate,
9023 .subsys_id = cpuacct_subsys_id,
9024};
9025#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9026
9027#ifndef CONFIG_SMP
9028
9029int rcu_expedited_torture_stats(char *page)
9030{
9031 return 0;
9032}
9033EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9034
9035void synchronize_sched_expedited(void)
9036{
9037}
9038EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9039
9040#else /* #ifndef CONFIG_SMP */
9041
9042static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9043static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9044
9045#define RCU_EXPEDITED_STATE_POST -2
9046#define RCU_EXPEDITED_STATE_IDLE -1
9047
9048static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9049
9050int rcu_expedited_torture_stats(char *page)
9051{
9052 int cnt = 0;
9053 int cpu;
9054
9055 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9056 for_each_online_cpu(cpu) {
9057 cnt += sprintf(&page[cnt], " %d:%d",
9058 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9059 }
9060 cnt += sprintf(&page[cnt], "\n");
9061 return cnt;
9062}
9063EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9064
9065static long synchronize_sched_expedited_count;
9066
9067/*
9068 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9069 * approach to force grace period to end quickly. This consumes
9070 * significant time on all CPUs, and is thus not recommended for
9071 * any sort of common-case code.
9072 *
9073 * Note that it is illegal to call this function while holding any
9074 * lock that is acquired by a CPU-hotplug notifier. Failing to
9075 * observe this restriction will result in deadlock.
9076 */
9077void synchronize_sched_expedited(void)
9078{
9079 int cpu;
9080 unsigned long flags;
9081 bool need_full_sync = 0;
9082 struct rq *rq;
9083 struct migration_req *req;
9084 long snap;
9085 int trycount = 0;
9086
9087 smp_mb(); /* ensure prior mod happens before capturing snap. */
9088 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9089 get_online_cpus();
9090 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9091 put_online_cpus();
9092 if (trycount++ < 10)
9093 udelay(trycount * num_online_cpus());
9094 else {
9095 synchronize_sched();
9096 return;
9097 }
9098 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9099 smp_mb(); /* ensure test happens before caller kfree */
9100 return;
9101 }
9102 get_online_cpus();
9103 }
9104 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9105 for_each_online_cpu(cpu) {
9106 rq = cpu_rq(cpu);
9107 req = &per_cpu(rcu_migration_req, cpu);
9108 init_completion(&req->done);
9109 req->task = NULL;
9110 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9111 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9112 list_add(&req->list, &rq->migration_queue);
05fa785c 9113 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9114 wake_up_process(rq->migration_thread);
9115 }
9116 for_each_online_cpu(cpu) {
9117 rcu_expedited_state = cpu;
9118 req = &per_cpu(rcu_migration_req, cpu);
9119 rq = cpu_rq(cpu);
9120 wait_for_completion(&req->done);
05fa785c 9121 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9122 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9123 need_full_sync = 1;
9124 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9125 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9126 }
9127 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9128 synchronize_sched_expedited_count++;
03b042bf
PM
9129 mutex_unlock(&rcu_sched_expedited_mutex);
9130 put_online_cpus();
9131 if (need_full_sync)
9132 synchronize_sched();
9133}
9134EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9135
9136#endif /* #else #ifndef CONFIG_SMP */