sched: Cure load average vs NO_HZ woes
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
052f1dc7 326#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
327 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
328 p->se.parent = task_group(p)->se[cpu];
052f1dc7 329#endif
6f505b16 330
052f1dc7 331#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
332 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
333 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 334#endif
29f59db3
SV
335}
336
337#else
338
6f505b16 339static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
340static inline struct task_group *task_group(struct task_struct *p)
341{
342 return NULL;
343}
29f59db3 344
7c941438 345#endif /* CONFIG_CGROUP_SCHED */
29f59db3 346
6aa645ea
IM
347/* CFS-related fields in a runqueue */
348struct cfs_rq {
349 struct load_weight load;
350 unsigned long nr_running;
351
6aa645ea 352 u64 exec_clock;
e9acbff6 353 u64 min_vruntime;
6aa645ea
IM
354
355 struct rb_root tasks_timeline;
356 struct rb_node *rb_leftmost;
4a55bd5e
PZ
357
358 struct list_head tasks;
359 struct list_head *balance_iterator;
360
361 /*
362 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
363 * It is set to NULL otherwise (i.e when none are currently running).
364 */
4793241b 365 struct sched_entity *curr, *next, *last;
ddc97297 366
5ac5c4d6 367 unsigned int nr_spread_over;
ddc97297 368
62160e3f 369#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
41a2d6cf
IM
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
41a2d6cf
IM
380 struct list_head leaf_cfs_rq_list;
381 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
382
383#ifdef CONFIG_SMP
c09595f6 384 /*
c8cba857 385 * the part of load.weight contributed by tasks
c09595f6 386 */
c8cba857 387 unsigned long task_weight;
c09595f6 388
c8cba857
PZ
389 /*
390 * h_load = weight * f(tg)
391 *
392 * Where f(tg) is the recursive weight fraction assigned to
393 * this group.
394 */
395 unsigned long h_load;
c09595f6 396
c8cba857
PZ
397 /*
398 * this cpu's part of tg->shares
399 */
400 unsigned long shares;
f1d239f7
PZ
401
402 /*
403 * load.weight at the time we set shares
404 */
405 unsigned long rq_weight;
c09595f6 406#endif
6aa645ea
IM
407#endif
408};
1da177e4 409
6aa645ea
IM
410/* Real-Time classes' related field in a runqueue: */
411struct rt_rq {
412 struct rt_prio_array active;
63489e45 413 unsigned long rt_nr_running;
052f1dc7 414#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
415 struct {
416 int curr; /* highest queued rt task prio */
398a153b 417#ifdef CONFIG_SMP
e864c499 418 int next; /* next highest */
398a153b 419#endif
e864c499 420 } highest_prio;
6f505b16 421#endif
fa85ae24 422#ifdef CONFIG_SMP
73fe6aae 423 unsigned long rt_nr_migratory;
a1ba4d8b 424 unsigned long rt_nr_total;
a22d7fc1 425 int overloaded;
917b627d 426 struct plist_head pushable_tasks;
fa85ae24 427#endif
6f505b16 428 int rt_throttled;
fa85ae24 429 u64 rt_time;
ac086bc2 430 u64 rt_runtime;
ea736ed5 431 /* Nests inside the rq lock: */
0986b11b 432 raw_spinlock_t rt_runtime_lock;
6f505b16 433
052f1dc7 434#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
435 unsigned long rt_nr_boosted;
436
6f505b16
PZ
437 struct rq *rq;
438 struct list_head leaf_rt_rq_list;
439 struct task_group *tg;
6f505b16 440#endif
6aa645ea
IM
441};
442
57d885fe
GH
443#ifdef CONFIG_SMP
444
445/*
446 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
447 * variables. Each exclusive cpuset essentially defines an island domain by
448 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
449 * exclusive cpuset is created, we also create and attach a new root-domain
450 * object.
451 *
57d885fe
GH
452 */
453struct root_domain {
454 atomic_t refcount;
c6c4927b
RR
455 cpumask_var_t span;
456 cpumask_var_t online;
637f5085 457
0eab9146 458 /*
637f5085
GH
459 * The "RT overload" flag: it gets set if a CPU has more than
460 * one runnable RT task.
461 */
c6c4927b 462 cpumask_var_t rto_mask;
0eab9146 463 atomic_t rto_count;
6e0534f2
GH
464#ifdef CONFIG_SMP
465 struct cpupri cpupri;
466#endif
57d885fe
GH
467};
468
dc938520
GH
469/*
470 * By default the system creates a single root-domain with all cpus as
471 * members (mimicking the global state we have today).
472 */
57d885fe
GH
473static struct root_domain def_root_domain;
474
475#endif
476
1da177e4
LT
477/*
478 * This is the main, per-CPU runqueue data structure.
479 *
480 * Locking rule: those places that want to lock multiple runqueues
481 * (such as the load balancing or the thread migration code), lock
482 * acquire operations must be ordered by ascending &runqueue.
483 */
70b97a7f 484struct rq {
d8016491 485 /* runqueue lock: */
05fa785c 486 raw_spinlock_t lock;
1da177e4
LT
487
488 /*
489 * nr_running and cpu_load should be in the same cacheline because
490 * remote CPUs use both these fields when doing load calculation.
491 */
492 unsigned long nr_running;
6aa645ea
IM
493 #define CPU_LOAD_IDX_MAX 5
494 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 495#ifdef CONFIG_NO_HZ
39c0cbe2 496 u64 nohz_stamp;
46cb4b7c
SS
497 unsigned char in_nohz_recently;
498#endif
a64692a3
MG
499 unsigned int skip_clock_update;
500
d8016491
IM
501 /* capture load from *all* tasks on this cpu: */
502 struct load_weight load;
6aa645ea
IM
503 unsigned long nr_load_updates;
504 u64 nr_switches;
505
506 struct cfs_rq cfs;
6f505b16 507 struct rt_rq rt;
6f505b16 508
6aa645ea 509#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
510 /* list of leaf cfs_rq on this cpu: */
511 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
512#endif
513#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 514 struct list_head leaf_rt_rq_list;
1da177e4 515#endif
1da177e4
LT
516
517 /*
518 * This is part of a global counter where only the total sum
519 * over all CPUs matters. A task can increase this counter on
520 * one CPU and if it got migrated afterwards it may decrease
521 * it on another CPU. Always updated under the runqueue lock:
522 */
523 unsigned long nr_uninterruptible;
524
36c8b586 525 struct task_struct *curr, *idle;
c9819f45 526 unsigned long next_balance;
1da177e4 527 struct mm_struct *prev_mm;
6aa645ea 528
3e51f33f 529 u64 clock;
6aa645ea 530
1da177e4
LT
531 atomic_t nr_iowait;
532
533#ifdef CONFIG_SMP
0eab9146 534 struct root_domain *rd;
1da177e4
LT
535 struct sched_domain *sd;
536
a0a522ce 537 unsigned char idle_at_tick;
1da177e4 538 /* For active balancing */
3f029d3c 539 int post_schedule;
1da177e4
LT
540 int active_balance;
541 int push_cpu;
d8016491
IM
542 /* cpu of this runqueue: */
543 int cpu;
1f11eb6a 544 int online;
1da177e4 545
a8a51d5e 546 unsigned long avg_load_per_task;
1da177e4 547
36c8b586 548 struct task_struct *migration_thread;
1da177e4 549 struct list_head migration_queue;
e9e9250b
PZ
550
551 u64 rt_avg;
552 u64 age_stamp;
1b9508f6
MG
553 u64 idle_stamp;
554 u64 avg_idle;
1da177e4
LT
555#endif
556
dce48a84
TG
557 /* calc_load related fields */
558 unsigned long calc_load_update;
559 long calc_load_active;
560
8f4d37ec 561#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
562#ifdef CONFIG_SMP
563 int hrtick_csd_pending;
564 struct call_single_data hrtick_csd;
565#endif
8f4d37ec
PZ
566 struct hrtimer hrtick_timer;
567#endif
568
1da177e4
LT
569#ifdef CONFIG_SCHEDSTATS
570 /* latency stats */
571 struct sched_info rq_sched_info;
9c2c4802
KC
572 unsigned long long rq_cpu_time;
573 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
574
575 /* sys_sched_yield() stats */
480b9434 576 unsigned int yld_count;
1da177e4
LT
577
578 /* schedule() stats */
480b9434
KC
579 unsigned int sched_switch;
580 unsigned int sched_count;
581 unsigned int sched_goidle;
1da177e4
LT
582
583 /* try_to_wake_up() stats */
480b9434
KC
584 unsigned int ttwu_count;
585 unsigned int ttwu_local;
b8efb561
IM
586
587 /* BKL stats */
480b9434 588 unsigned int bkl_count;
1da177e4
LT
589#endif
590};
591
f34e3b61 592static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 593
7d478721
PZ
594static inline
595void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 596{
7d478721 597 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
a64692a3
MG
598
599 /*
600 * A queue event has occurred, and we're going to schedule. In
601 * this case, we can save a useless back to back clock update.
602 */
603 if (test_tsk_need_resched(p))
604 rq->skip_clock_update = 1;
dd41f596
IM
605}
606
0a2966b4
CL
607static inline int cpu_of(struct rq *rq)
608{
609#ifdef CONFIG_SMP
610 return rq->cpu;
611#else
612 return 0;
613#endif
614}
615
497f0ab3 616#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d 628#define for_each_domain(cpu, __sd) \
497f0ab3 629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 635#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 636
aa9c4c0f 637inline void update_rq_clock(struct rq *rq)
3e51f33f 638{
a64692a3
MG
639 if (!rq->skip_clock_update)
640 rq->clock = sched_clock_cpu(cpu_of(rq));
3e51f33f
PZ
641}
642
bf5c91ba
IM
643/*
644 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 */
646#ifdef CONFIG_SCHED_DEBUG
647# define const_debug __read_mostly
648#else
649# define const_debug static const
650#endif
651
017730c1
IM
652/**
653 * runqueue_is_locked
e17b38bf 654 * @cpu: the processor in question.
017730c1
IM
655 *
656 * Returns true if the current cpu runqueue is locked.
657 * This interface allows printk to be called with the runqueue lock
658 * held and know whether or not it is OK to wake up the klogd.
659 */
89f19f04 660int runqueue_is_locked(int cpu)
017730c1 661{
05fa785c 662 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
663}
664
bf5c91ba
IM
665/*
666 * Debugging: various feature bits
667 */
f00b45c1
PZ
668
669#define SCHED_FEAT(name, enabled) \
670 __SCHED_FEAT_##name ,
671
bf5c91ba 672enum {
f00b45c1 673#include "sched_features.h"
bf5c91ba
IM
674};
675
f00b45c1
PZ
676#undef SCHED_FEAT
677
678#define SCHED_FEAT(name, enabled) \
679 (1UL << __SCHED_FEAT_##name) * enabled |
680
bf5c91ba 681const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
682#include "sched_features.h"
683 0;
684
685#undef SCHED_FEAT
686
687#ifdef CONFIG_SCHED_DEBUG
688#define SCHED_FEAT(name, enabled) \
689 #name ,
690
983ed7a6 691static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
692#include "sched_features.h"
693 NULL
694};
695
696#undef SCHED_FEAT
697
34f3a814 698static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 699{
f00b45c1
PZ
700 int i;
701
702 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
703 if (!(sysctl_sched_features & (1UL << i)))
704 seq_puts(m, "NO_");
705 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 706 }
34f3a814 707 seq_puts(m, "\n");
f00b45c1 708
34f3a814 709 return 0;
f00b45c1
PZ
710}
711
712static ssize_t
713sched_feat_write(struct file *filp, const char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char buf[64];
717 char *cmp = buf;
718 int neg = 0;
719 int i;
720
721 if (cnt > 63)
722 cnt = 63;
723
724 if (copy_from_user(&buf, ubuf, cnt))
725 return -EFAULT;
726
727 buf[cnt] = 0;
728
c24b7c52 729 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
730 neg = 1;
731 cmp += 3;
732 }
733
734 for (i = 0; sched_feat_names[i]; i++) {
735 int len = strlen(sched_feat_names[i]);
736
737 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
738 if (neg)
739 sysctl_sched_features &= ~(1UL << i);
740 else
741 sysctl_sched_features |= (1UL << i);
742 break;
743 }
744 }
745
746 if (!sched_feat_names[i])
747 return -EINVAL;
748
42994724 749 *ppos += cnt;
f00b45c1
PZ
750
751 return cnt;
752}
753
34f3a814
LZ
754static int sched_feat_open(struct inode *inode, struct file *filp)
755{
756 return single_open(filp, sched_feat_show, NULL);
757}
758
828c0950 759static const struct file_operations sched_feat_fops = {
34f3a814
LZ
760 .open = sched_feat_open,
761 .write = sched_feat_write,
762 .read = seq_read,
763 .llseek = seq_lseek,
764 .release = single_release,
f00b45c1
PZ
765};
766
767static __init int sched_init_debug(void)
768{
f00b45c1
PZ
769 debugfs_create_file("sched_features", 0644, NULL, NULL,
770 &sched_feat_fops);
771
772 return 0;
773}
774late_initcall(sched_init_debug);
775
776#endif
777
778#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 779
b82d9fdd
PZ
780/*
781 * Number of tasks to iterate in a single balance run.
782 * Limited because this is done with IRQs disabled.
783 */
784const_debug unsigned int sysctl_sched_nr_migrate = 32;
785
2398f2c6
PZ
786/*
787 * ratelimit for updating the group shares.
55cd5340 788 * default: 0.25ms
2398f2c6 789 */
55cd5340 790unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 791unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 792
ffda12a1
PZ
793/*
794 * Inject some fuzzyness into changing the per-cpu group shares
795 * this avoids remote rq-locks at the expense of fairness.
796 * default: 4
797 */
798unsigned int sysctl_sched_shares_thresh = 4;
799
e9e9250b
PZ
800/*
801 * period over which we average the RT time consumption, measured
802 * in ms.
803 *
804 * default: 1s
805 */
806const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
807
fa85ae24 808/*
9f0c1e56 809 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
810 * default: 1s
811 */
9f0c1e56 812unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 813
6892b75e
IM
814static __read_mostly int scheduler_running;
815
9f0c1e56
PZ
816/*
817 * part of the period that we allow rt tasks to run in us.
818 * default: 0.95s
819 */
820int sysctl_sched_rt_runtime = 950000;
fa85ae24 821
d0b27fa7
PZ
822static inline u64 global_rt_period(void)
823{
824 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
825}
826
827static inline u64 global_rt_runtime(void)
828{
e26873bb 829 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
830 return RUNTIME_INF;
831
832 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
833}
fa85ae24 834
1da177e4 835#ifndef prepare_arch_switch
4866cde0
NP
836# define prepare_arch_switch(next) do { } while (0)
837#endif
838#ifndef finish_arch_switch
839# define finish_arch_switch(prev) do { } while (0)
840#endif
841
051a1d1a
DA
842static inline int task_current(struct rq *rq, struct task_struct *p)
843{
844 return rq->curr == p;
845}
846
4866cde0 847#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 848static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 849{
051a1d1a 850 return task_current(rq, p);
4866cde0
NP
851}
852
70b97a7f 853static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
854{
855}
856
70b97a7f 857static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 858{
da04c035
IM
859#ifdef CONFIG_DEBUG_SPINLOCK
860 /* this is a valid case when another task releases the spinlock */
861 rq->lock.owner = current;
862#endif
8a25d5de
IM
863 /*
864 * If we are tracking spinlock dependencies then we have to
865 * fix up the runqueue lock - which gets 'carried over' from
866 * prev into current:
867 */
868 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869
05fa785c 870 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
871}
872
873#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
875{
876#ifdef CONFIG_SMP
877 return p->oncpu;
878#else
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880#endif
881}
882
70b97a7f 883static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
884{
885#ifdef CONFIG_SMP
886 /*
887 * We can optimise this out completely for !SMP, because the
888 * SMP rebalancing from interrupt is the only thing that cares
889 * here.
890 */
891 next->oncpu = 1;
892#endif
893#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 894 raw_spin_unlock_irq(&rq->lock);
4866cde0 895#else
05fa785c 896 raw_spin_unlock(&rq->lock);
4866cde0
NP
897#endif
898}
899
70b97a7f 900static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 /*
904 * After ->oncpu is cleared, the task can be moved to a different CPU.
905 * We must ensure this doesn't happen until the switch is completely
906 * finished.
907 */
908 smp_wmb();
909 prev->oncpu = 0;
910#endif
911#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 local_irq_enable();
1da177e4 913#endif
4866cde0
NP
914}
915#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 916
0970d299 917/*
65cc8e48
PZ
918 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
919 * against ttwu().
0970d299
PZ
920 */
921static inline int task_is_waking(struct task_struct *p)
922{
0017d735 923 return unlikely(p->state == TASK_WAKING);
0970d299
PZ
924}
925
b29739f9
IM
926/*
927 * __task_rq_lock - lock the runqueue a given task resides on.
928 * Must be called interrupts disabled.
929 */
70b97a7f 930static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
931 __acquires(rq->lock)
932{
0970d299
PZ
933 struct rq *rq;
934
3a5c359a 935 for (;;) {
0970d299 936 rq = task_rq(p);
05fa785c 937 raw_spin_lock(&rq->lock);
65cc8e48 938 if (likely(rq == task_rq(p)))
3a5c359a 939 return rq;
05fa785c 940 raw_spin_unlock(&rq->lock);
b29739f9 941 }
b29739f9
IM
942}
943
1da177e4
LT
944/*
945 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 946 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
947 * explicitly disabling preemption.
948 */
70b97a7f 949static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
950 __acquires(rq->lock)
951{
70b97a7f 952 struct rq *rq;
1da177e4 953
3a5c359a
AK
954 for (;;) {
955 local_irq_save(*flags);
956 rq = task_rq(p);
05fa785c 957 raw_spin_lock(&rq->lock);
65cc8e48 958 if (likely(rq == task_rq(p)))
3a5c359a 959 return rq;
05fa785c 960 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 961 }
1da177e4
LT
962}
963
ad474cac
ON
964void task_rq_unlock_wait(struct task_struct *p)
965{
966 struct rq *rq = task_rq(p);
967
968 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 969 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
970}
971
a9957449 972static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
973 __releases(rq->lock)
974{
05fa785c 975 raw_spin_unlock(&rq->lock);
b29739f9
IM
976}
977
70b97a7f 978static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
979 __releases(rq->lock)
980{
05fa785c 981 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
982}
983
1da177e4 984/*
cc2a73b5 985 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 986 */
a9957449 987static struct rq *this_rq_lock(void)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4
LT
991
992 local_irq_disable();
993 rq = this_rq();
05fa785c 994 raw_spin_lock(&rq->lock);
1da177e4
LT
995
996 return rq;
997}
998
8f4d37ec
PZ
999#ifdef CONFIG_SCHED_HRTICK
1000/*
1001 * Use HR-timers to deliver accurate preemption points.
1002 *
1003 * Its all a bit involved since we cannot program an hrt while holding the
1004 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1005 * reschedule event.
1006 *
1007 * When we get rescheduled we reprogram the hrtick_timer outside of the
1008 * rq->lock.
1009 */
8f4d37ec
PZ
1010
1011/*
1012 * Use hrtick when:
1013 * - enabled by features
1014 * - hrtimer is actually high res
1015 */
1016static inline int hrtick_enabled(struct rq *rq)
1017{
1018 if (!sched_feat(HRTICK))
1019 return 0;
ba42059f 1020 if (!cpu_active(cpu_of(rq)))
b328ca18 1021 return 0;
8f4d37ec
PZ
1022 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023}
1024
8f4d37ec
PZ
1025static void hrtick_clear(struct rq *rq)
1026{
1027 if (hrtimer_active(&rq->hrtick_timer))
1028 hrtimer_cancel(&rq->hrtick_timer);
1029}
1030
8f4d37ec
PZ
1031/*
1032 * High-resolution timer tick.
1033 * Runs from hardirq context with interrupts disabled.
1034 */
1035static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036{
1037 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038
1039 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040
05fa785c 1041 raw_spin_lock(&rq->lock);
3e51f33f 1042 update_rq_clock(rq);
8f4d37ec 1043 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1044 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1045
1046 return HRTIMER_NORESTART;
1047}
1048
95e904c7 1049#ifdef CONFIG_SMP
31656519
PZ
1050/*
1051 * called from hardirq (IPI) context
1052 */
1053static void __hrtick_start(void *arg)
b328ca18 1054{
31656519 1055 struct rq *rq = arg;
b328ca18 1056
05fa785c 1057 raw_spin_lock(&rq->lock);
31656519
PZ
1058 hrtimer_restart(&rq->hrtick_timer);
1059 rq->hrtick_csd_pending = 0;
05fa785c 1060 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1061}
1062
31656519
PZ
1063/*
1064 * Called to set the hrtick timer state.
1065 *
1066 * called with rq->lock held and irqs disabled
1067 */
1068static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1069{
31656519
PZ
1070 struct hrtimer *timer = &rq->hrtick_timer;
1071 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1072
cc584b21 1073 hrtimer_set_expires(timer, time);
31656519
PZ
1074
1075 if (rq == this_rq()) {
1076 hrtimer_restart(timer);
1077 } else if (!rq->hrtick_csd_pending) {
6e275637 1078 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1079 rq->hrtick_csd_pending = 1;
1080 }
b328ca18
PZ
1081}
1082
1083static int
1084hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085{
1086 int cpu = (int)(long)hcpu;
1087
1088 switch (action) {
1089 case CPU_UP_CANCELED:
1090 case CPU_UP_CANCELED_FROZEN:
1091 case CPU_DOWN_PREPARE:
1092 case CPU_DOWN_PREPARE_FROZEN:
1093 case CPU_DEAD:
1094 case CPU_DEAD_FROZEN:
31656519 1095 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1096 return NOTIFY_OK;
1097 }
1098
1099 return NOTIFY_DONE;
1100}
1101
fa748203 1102static __init void init_hrtick(void)
b328ca18
PZ
1103{
1104 hotcpu_notifier(hotplug_hrtick, 0);
1105}
31656519
PZ
1106#else
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
1113{
7f1e2ca9 1114 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1115 HRTIMER_MODE_REL_PINNED, 0);
31656519 1116}
b328ca18 1117
006c75f1 1118static inline void init_hrtick(void)
8f4d37ec 1119{
8f4d37ec 1120}
31656519 1121#endif /* CONFIG_SMP */
8f4d37ec 1122
31656519 1123static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1124{
31656519
PZ
1125#ifdef CONFIG_SMP
1126 rq->hrtick_csd_pending = 0;
8f4d37ec 1127
31656519
PZ
1128 rq->hrtick_csd.flags = 0;
1129 rq->hrtick_csd.func = __hrtick_start;
1130 rq->hrtick_csd.info = rq;
1131#endif
8f4d37ec 1132
31656519
PZ
1133 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1134 rq->hrtick_timer.function = hrtick;
8f4d37ec 1135}
006c75f1 1136#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1137static inline void hrtick_clear(struct rq *rq)
1138{
1139}
1140
8f4d37ec
PZ
1141static inline void init_rq_hrtick(struct rq *rq)
1142{
1143}
1144
b328ca18
PZ
1145static inline void init_hrtick(void)
1146{
1147}
006c75f1 1148#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1149
c24d20db
IM
1150/*
1151 * resched_task - mark a task 'to be rescheduled now'.
1152 *
1153 * On UP this means the setting of the need_resched flag, on SMP it
1154 * might also involve a cross-CPU call to trigger the scheduler on
1155 * the target CPU.
1156 */
1157#ifdef CONFIG_SMP
1158
1159#ifndef tsk_is_polling
1160#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1161#endif
1162
31656519 1163static void resched_task(struct task_struct *p)
c24d20db
IM
1164{
1165 int cpu;
1166
05fa785c 1167 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1168
5ed0cec0 1169 if (test_tsk_need_resched(p))
c24d20db
IM
1170 return;
1171
5ed0cec0 1172 set_tsk_need_resched(p);
c24d20db
IM
1173
1174 cpu = task_cpu(p);
1175 if (cpu == smp_processor_id())
1176 return;
1177
1178 /* NEED_RESCHED must be visible before we test polling */
1179 smp_mb();
1180 if (!tsk_is_polling(p))
1181 smp_send_reschedule(cpu);
1182}
1183
1184static void resched_cpu(int cpu)
1185{
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long flags;
1188
05fa785c 1189 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1190 return;
1191 resched_task(cpu_curr(cpu));
05fa785c 1192 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1193}
06d8308c
TG
1194
1195#ifdef CONFIG_NO_HZ
1196/*
1197 * When add_timer_on() enqueues a timer into the timer wheel of an
1198 * idle CPU then this timer might expire before the next timer event
1199 * which is scheduled to wake up that CPU. In case of a completely
1200 * idle system the next event might even be infinite time into the
1201 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1202 * leaves the inner idle loop so the newly added timer is taken into
1203 * account when the CPU goes back to idle and evaluates the timer
1204 * wheel for the next timer event.
1205 */
1206void wake_up_idle_cpu(int cpu)
1207{
1208 struct rq *rq = cpu_rq(cpu);
1209
1210 if (cpu == smp_processor_id())
1211 return;
1212
1213 /*
1214 * This is safe, as this function is called with the timer
1215 * wheel base lock of (cpu) held. When the CPU is on the way
1216 * to idle and has not yet set rq->curr to idle then it will
1217 * be serialized on the timer wheel base lock and take the new
1218 * timer into account automatically.
1219 */
1220 if (rq->curr != rq->idle)
1221 return;
1222
1223 /*
1224 * We can set TIF_RESCHED on the idle task of the other CPU
1225 * lockless. The worst case is that the other CPU runs the
1226 * idle task through an additional NOOP schedule()
1227 */
5ed0cec0 1228 set_tsk_need_resched(rq->idle);
06d8308c
TG
1229
1230 /* NEED_RESCHED must be visible before we test polling */
1231 smp_mb();
1232 if (!tsk_is_polling(rq->idle))
1233 smp_send_reschedule(cpu);
1234}
39c0cbe2
MG
1235
1236int nohz_ratelimit(int cpu)
1237{
1238 struct rq *rq = cpu_rq(cpu);
1239 u64 diff = rq->clock - rq->nohz_stamp;
1240
1241 rq->nohz_stamp = rq->clock;
1242
1243 return diff < (NSEC_PER_SEC / HZ) >> 1;
1244}
1245
6d6bc0ad 1246#endif /* CONFIG_NO_HZ */
06d8308c 1247
e9e9250b
PZ
1248static u64 sched_avg_period(void)
1249{
1250 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1251}
1252
1253static void sched_avg_update(struct rq *rq)
1254{
1255 s64 period = sched_avg_period();
1256
1257 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 rq->age_stamp += period;
1259 rq->rt_avg /= 2;
1260 }
1261}
1262
1263static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1264{
1265 rq->rt_avg += rt_delta;
1266 sched_avg_update(rq);
1267}
1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
31656519 1270static void resched_task(struct task_struct *p)
c24d20db 1271{
05fa785c 1272 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1273 set_tsk_need_resched(p);
c24d20db 1274}
e9e9250b
PZ
1275
1276static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1277{
1278}
6d6bc0ad 1279#endif /* CONFIG_SMP */
c24d20db 1280
45bf76df
IM
1281#if BITS_PER_LONG == 32
1282# define WMULT_CONST (~0UL)
1283#else
1284# define WMULT_CONST (1UL << 32)
1285#endif
1286
1287#define WMULT_SHIFT 32
1288
194081eb
IM
1289/*
1290 * Shift right and round:
1291 */
cf2ab469 1292#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1293
a7be37ac
PZ
1294/*
1295 * delta *= weight / lw
1296 */
cb1c4fc9 1297static unsigned long
45bf76df
IM
1298calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1299 struct load_weight *lw)
1300{
1301 u64 tmp;
1302
7a232e03
LJ
1303 if (!lw->inv_weight) {
1304 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1305 lw->inv_weight = 1;
1306 else
1307 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1308 / (lw->weight+1);
1309 }
45bf76df
IM
1310
1311 tmp = (u64)delta_exec * weight;
1312 /*
1313 * Check whether we'd overflow the 64-bit multiplication:
1314 */
194081eb 1315 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1316 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1317 WMULT_SHIFT/2);
1318 else
cf2ab469 1319 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1320
ecf691da 1321 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1322}
1323
1091985b 1324static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1325{
1326 lw->weight += inc;
e89996ae 1327 lw->inv_weight = 0;
45bf76df
IM
1328}
1329
1091985b 1330static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1331{
1332 lw->weight -= dec;
e89996ae 1333 lw->inv_weight = 0;
45bf76df
IM
1334}
1335
2dd73a4f
PW
1336/*
1337 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1338 * of tasks with abnormal "nice" values across CPUs the contribution that
1339 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1340 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1341 * scaled version of the new time slice allocation that they receive on time
1342 * slice expiry etc.
1343 */
1344
cce7ade8
PZ
1345#define WEIGHT_IDLEPRIO 3
1346#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1347
1348/*
1349 * Nice levels are multiplicative, with a gentle 10% change for every
1350 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1351 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1352 * that remained on nice 0.
1353 *
1354 * The "10% effect" is relative and cumulative: from _any_ nice level,
1355 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1356 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1357 * If a task goes up by ~10% and another task goes down by ~10% then
1358 * the relative distance between them is ~25%.)
dd41f596
IM
1359 */
1360static const int prio_to_weight[40] = {
254753dc
IM
1361 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1362 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1363 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1364 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1365 /* 0 */ 1024, 820, 655, 526, 423,
1366 /* 5 */ 335, 272, 215, 172, 137,
1367 /* 10 */ 110, 87, 70, 56, 45,
1368 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1369};
1370
5714d2de
IM
1371/*
1372 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1373 *
1374 * In cases where the weight does not change often, we can use the
1375 * precalculated inverse to speed up arithmetics by turning divisions
1376 * into multiplications:
1377 */
dd41f596 1378static const u32 prio_to_wmult[40] = {
254753dc
IM
1379 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1380 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1381 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1382 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1383 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1384 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1385 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1386 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1387};
2dd73a4f 1388
ef12fefa
BR
1389/* Time spent by the tasks of the cpu accounting group executing in ... */
1390enum cpuacct_stat_index {
1391 CPUACCT_STAT_USER, /* ... user mode */
1392 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1393
1394 CPUACCT_STAT_NSTATS,
1395};
1396
d842de87
SV
1397#ifdef CONFIG_CGROUP_CPUACCT
1398static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1399static void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1401#else
1402static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1403static inline void cpuacct_update_stats(struct task_struct *tsk,
1404 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1405#endif
1406
18d95a28
PZ
1407static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_add(&rq->load, load);
1410}
1411
1412static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1413{
1414 update_load_sub(&rq->load, load);
1415}
1416
7940ca36 1417#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1418typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1419
1420/*
1421 * Iterate the full tree, calling @down when first entering a node and @up when
1422 * leaving it for the final time.
1423 */
eb755805 1424static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1425{
1426 struct task_group *parent, *child;
eb755805 1427 int ret;
c09595f6
PZ
1428
1429 rcu_read_lock();
1430 parent = &root_task_group;
1431down:
eb755805
PZ
1432 ret = (*down)(parent, data);
1433 if (ret)
1434 goto out_unlock;
c09595f6
PZ
1435 list_for_each_entry_rcu(child, &parent->children, siblings) {
1436 parent = child;
1437 goto down;
1438
1439up:
1440 continue;
1441 }
eb755805
PZ
1442 ret = (*up)(parent, data);
1443 if (ret)
1444 goto out_unlock;
c09595f6
PZ
1445
1446 child = parent;
1447 parent = parent->parent;
1448 if (parent)
1449 goto up;
eb755805 1450out_unlock:
c09595f6 1451 rcu_read_unlock();
eb755805
PZ
1452
1453 return ret;
c09595f6
PZ
1454}
1455
eb755805
PZ
1456static int tg_nop(struct task_group *tg, void *data)
1457{
1458 return 0;
c09595f6 1459}
eb755805
PZ
1460#endif
1461
1462#ifdef CONFIG_SMP
f5f08f39
PZ
1463/* Used instead of source_load when we know the type == 0 */
1464static unsigned long weighted_cpuload(const int cpu)
1465{
1466 return cpu_rq(cpu)->load.weight;
1467}
1468
1469/*
1470 * Return a low guess at the load of a migration-source cpu weighted
1471 * according to the scheduling class and "nice" value.
1472 *
1473 * We want to under-estimate the load of migration sources, to
1474 * balance conservatively.
1475 */
1476static unsigned long source_load(int cpu, int type)
1477{
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return min(rq->cpu_load[type-1], total);
1485}
1486
1487/*
1488 * Return a high guess at the load of a migration-target cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 */
1491static unsigned long target_load(int cpu, int type)
1492{
1493 struct rq *rq = cpu_rq(cpu);
1494 unsigned long total = weighted_cpuload(cpu);
1495
1496 if (type == 0 || !sched_feat(LB_BIAS))
1497 return total;
1498
1499 return max(rq->cpu_load[type-1], total);
1500}
1501
ae154be1
PZ
1502static struct sched_group *group_of(int cpu)
1503{
d11c563d 1504 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1505
1506 if (!sd)
1507 return NULL;
1508
1509 return sd->groups;
1510}
1511
1512static unsigned long power_of(int cpu)
1513{
1514 struct sched_group *group = group_of(cpu);
1515
1516 if (!group)
1517 return SCHED_LOAD_SCALE;
1518
1519 return group->cpu_power;
1520}
1521
eb755805
PZ
1522static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1523
1524static unsigned long cpu_avg_load_per_task(int cpu)
1525{
1526 struct rq *rq = cpu_rq(cpu);
af6d596f 1527 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1528
4cd42620
SR
1529 if (nr_running)
1530 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1531 else
1532 rq->avg_load_per_task = 0;
eb755805
PZ
1533
1534 return rq->avg_load_per_task;
1535}
1536
1537#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1538
43cf38eb 1539static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1540
c09595f6
PZ
1541static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1542
1543/*
1544 * Calculate and set the cpu's group shares.
1545 */
34d76c41
PZ
1546static void update_group_shares_cpu(struct task_group *tg, int cpu,
1547 unsigned long sd_shares,
1548 unsigned long sd_rq_weight,
4a6cc4bd 1549 unsigned long *usd_rq_weight)
18d95a28 1550{
34d76c41 1551 unsigned long shares, rq_weight;
a5004278 1552 int boost = 0;
c09595f6 1553
4a6cc4bd 1554 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1555 if (!rq_weight) {
1556 boost = 1;
1557 rq_weight = NICE_0_LOAD;
1558 }
c8cba857 1559
c09595f6 1560 /*
a8af7246
PZ
1561 * \Sum_j shares_j * rq_weight_i
1562 * shares_i = -----------------------------
1563 * \Sum_j rq_weight_j
c09595f6 1564 */
ec4e0e2f 1565 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1566 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1567
ffda12a1
PZ
1568 if (abs(shares - tg->se[cpu]->load.weight) >
1569 sysctl_sched_shares_thresh) {
1570 struct rq *rq = cpu_rq(cpu);
1571 unsigned long flags;
c09595f6 1572
05fa785c 1573 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1574 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1575 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1576 __set_se_shares(tg->se[cpu], shares);
05fa785c 1577 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1578 }
18d95a28 1579}
c09595f6
PZ
1580
1581/*
c8cba857
PZ
1582 * Re-compute the task group their per cpu shares over the given domain.
1583 * This needs to be done in a bottom-up fashion because the rq weight of a
1584 * parent group depends on the shares of its child groups.
c09595f6 1585 */
eb755805 1586static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1587{
cd8ad40d 1588 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1589 unsigned long *usd_rq_weight;
eb755805 1590 struct sched_domain *sd = data;
34d76c41 1591 unsigned long flags;
c8cba857 1592 int i;
c09595f6 1593
34d76c41
PZ
1594 if (!tg->se[0])
1595 return 0;
1596
1597 local_irq_save(flags);
4a6cc4bd 1598 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1599
758b2cdc 1600 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1601 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1602 usd_rq_weight[i] = weight;
34d76c41 1603
cd8ad40d 1604 rq_weight += weight;
ec4e0e2f
KC
1605 /*
1606 * If there are currently no tasks on the cpu pretend there
1607 * is one of average load so that when a new task gets to
1608 * run here it will not get delayed by group starvation.
1609 */
ec4e0e2f
KC
1610 if (!weight)
1611 weight = NICE_0_LOAD;
1612
cd8ad40d 1613 sum_weight += weight;
c8cba857 1614 shares += tg->cfs_rq[i]->shares;
c09595f6 1615 }
c09595f6 1616
cd8ad40d
PZ
1617 if (!rq_weight)
1618 rq_weight = sum_weight;
1619
c8cba857
PZ
1620 if ((!shares && rq_weight) || shares > tg->shares)
1621 shares = tg->shares;
1622
1623 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1624 shares = tg->shares;
c09595f6 1625
758b2cdc 1626 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1627 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1628
1629 local_irq_restore(flags);
eb755805
PZ
1630
1631 return 0;
c09595f6
PZ
1632}
1633
1634/*
c8cba857
PZ
1635 * Compute the cpu's hierarchical load factor for each task group.
1636 * This needs to be done in a top-down fashion because the load of a child
1637 * group is a fraction of its parents load.
c09595f6 1638 */
eb755805 1639static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1640{
c8cba857 1641 unsigned long load;
eb755805 1642 long cpu = (long)data;
c09595f6 1643
c8cba857
PZ
1644 if (!tg->parent) {
1645 load = cpu_rq(cpu)->load.weight;
1646 } else {
1647 load = tg->parent->cfs_rq[cpu]->h_load;
1648 load *= tg->cfs_rq[cpu]->shares;
1649 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1650 }
c09595f6 1651
c8cba857 1652 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1653
eb755805 1654 return 0;
c09595f6
PZ
1655}
1656
c8cba857 1657static void update_shares(struct sched_domain *sd)
4d8d595d 1658{
e7097159
PZ
1659 s64 elapsed;
1660 u64 now;
1661
1662 if (root_task_group_empty())
1663 return;
1664
1665 now = cpu_clock(raw_smp_processor_id());
1666 elapsed = now - sd->last_update;
2398f2c6
PZ
1667
1668 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1669 sd->last_update = now;
eb755805 1670 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1671 }
4d8d595d
PZ
1672}
1673
eb755805 1674static void update_h_load(long cpu)
c09595f6 1675{
e7097159
PZ
1676 if (root_task_group_empty())
1677 return;
1678
eb755805 1679 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1680}
1681
c09595f6
PZ
1682#else
1683
c8cba857 1684static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1685{
1686}
1687
18d95a28
PZ
1688#endif
1689
8f45e2b5
GH
1690#ifdef CONFIG_PREEMPT
1691
b78bb868
PZ
1692static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1693
70574a99 1694/*
8f45e2b5
GH
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
70574a99 1701 */
8f45e2b5
GH
1702static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1703 __releases(this_rq->lock)
1704 __acquires(busiest->lock)
1705 __acquires(this_rq->lock)
1706{
05fa785c 1707 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1708 double_rq_lock(this_rq, busiest);
1709
1710 return 1;
1711}
1712
1713#else
1714/*
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1720 */
1721static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1722 __releases(this_rq->lock)
1723 __acquires(busiest->lock)
1724 __acquires(this_rq->lock)
1725{
1726 int ret = 0;
1727
05fa785c 1728 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1729 if (busiest < this_rq) {
05fa785c
TG
1730 raw_spin_unlock(&this_rq->lock);
1731 raw_spin_lock(&busiest->lock);
1732 raw_spin_lock_nested(&this_rq->lock,
1733 SINGLE_DEPTH_NESTING);
70574a99
AD
1734 ret = 1;
1735 } else
05fa785c
TG
1736 raw_spin_lock_nested(&busiest->lock,
1737 SINGLE_DEPTH_NESTING);
70574a99
AD
1738 }
1739 return ret;
1740}
1741
8f45e2b5
GH
1742#endif /* CONFIG_PREEMPT */
1743
1744/*
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1746 */
1747static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748{
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
05fa785c 1751 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1752 BUG_ON(1);
1753 }
1754
1755 return _double_lock_balance(this_rq, busiest);
1756}
1757
70574a99
AD
1758static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1759 __releases(busiest->lock)
1760{
05fa785c 1761 raw_spin_unlock(&busiest->lock);
70574a99
AD
1762 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1763}
1e3c88bd
PZ
1764
1765/*
1766 * double_rq_lock - safely lock two runqueues
1767 *
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1770 */
1771static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1772 __acquires(rq1->lock)
1773 __acquires(rq2->lock)
1774{
1775 BUG_ON(!irqs_disabled());
1776 if (rq1 == rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 __acquire(rq2->lock); /* Fake it out ;) */
1779 } else {
1780 if (rq1 < rq2) {
1781 raw_spin_lock(&rq1->lock);
1782 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1783 } else {
1784 raw_spin_lock(&rq2->lock);
1785 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1786 }
1787 }
1e3c88bd
PZ
1788}
1789
1790/*
1791 * double_rq_unlock - safely unlock two runqueues
1792 *
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1795 */
1796static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1797 __releases(rq1->lock)
1798 __releases(rq2->lock)
1799{
1800 raw_spin_unlock(&rq1->lock);
1801 if (rq1 != rq2)
1802 raw_spin_unlock(&rq2->lock);
1803 else
1804 __release(rq2->lock);
1805}
1806
18d95a28
PZ
1807#endif
1808
30432094 1809#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1810static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1811{
30432094 1812#ifdef CONFIG_SMP
34e83e85
IM
1813 cfs_rq->shares = shares;
1814#endif
1815}
30432094 1816#endif
e7693a36 1817
74f5187a 1818static void calc_load_account_idle(struct rq *this_rq);
0bcdcf28 1819static void update_sysctl(void);
acb4a848 1820static int get_update_sysctl_factor(void);
dce48a84 1821
cd29fe6f
PZ
1822static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1823{
1824 set_task_rq(p, cpu);
1825#ifdef CONFIG_SMP
1826 /*
1827 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1828 * successfuly executed on another CPU. We must ensure that updates of
1829 * per-task data have been completed by this moment.
1830 */
1831 smp_wmb();
1832 task_thread_info(p)->cpu = cpu;
1833#endif
1834}
dce48a84 1835
1e3c88bd 1836static const struct sched_class rt_sched_class;
dd41f596
IM
1837
1838#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1839#define for_each_class(class) \
1840 for (class = sched_class_highest; class; class = class->next)
dd41f596 1841
1e3c88bd
PZ
1842#include "sched_stats.h"
1843
c09595f6 1844static void inc_nr_running(struct rq *rq)
9c217245
IM
1845{
1846 rq->nr_running++;
9c217245
IM
1847}
1848
c09595f6 1849static void dec_nr_running(struct rq *rq)
9c217245
IM
1850{
1851 rq->nr_running--;
9c217245
IM
1852}
1853
45bf76df
IM
1854static void set_load_weight(struct task_struct *p)
1855{
1856 if (task_has_rt_policy(p)) {
dd41f596
IM
1857 p->se.load.weight = prio_to_weight[0] * 2;
1858 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1859 return;
1860 }
45bf76df 1861
dd41f596
IM
1862 /*
1863 * SCHED_IDLE tasks get minimal weight:
1864 */
1865 if (p->policy == SCHED_IDLE) {
1866 p->se.load.weight = WEIGHT_IDLEPRIO;
1867 p->se.load.inv_weight = WMULT_IDLEPRIO;
1868 return;
1869 }
71f8bd46 1870
dd41f596
IM
1871 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1872 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1873}
1874
371fd7e7 1875static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1876{
a64692a3 1877 update_rq_clock(rq);
dd41f596 1878 sched_info_queued(p);
371fd7e7 1879 p->sched_class->enqueue_task(rq, p, flags);
dd41f596 1880 p->se.on_rq = 1;
71f8bd46
IM
1881}
1882
371fd7e7 1883static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 1884{
a64692a3 1885 update_rq_clock(rq);
46ac22ba 1886 sched_info_dequeued(p);
371fd7e7 1887 p->sched_class->dequeue_task(rq, p, flags);
dd41f596 1888 p->se.on_rq = 0;
71f8bd46
IM
1889}
1890
1e3c88bd
PZ
1891/*
1892 * activate_task - move a task to the runqueue.
1893 */
371fd7e7 1894static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1895{
1896 if (task_contributes_to_load(p))
1897 rq->nr_uninterruptible--;
1898
371fd7e7 1899 enqueue_task(rq, p, flags);
1e3c88bd
PZ
1900 inc_nr_running(rq);
1901}
1902
1903/*
1904 * deactivate_task - remove a task from the runqueue.
1905 */
371fd7e7 1906static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
1907{
1908 if (task_contributes_to_load(p))
1909 rq->nr_uninterruptible++;
1910
371fd7e7 1911 dequeue_task(rq, p, flags);
1e3c88bd
PZ
1912 dec_nr_running(rq);
1913}
1914
1915#include "sched_idletask.c"
1916#include "sched_fair.c"
1917#include "sched_rt.c"
1918#ifdef CONFIG_SCHED_DEBUG
1919# include "sched_debug.c"
1920#endif
1921
14531189 1922/*
dd41f596 1923 * __normal_prio - return the priority that is based on the static prio
14531189 1924 */
14531189
IM
1925static inline int __normal_prio(struct task_struct *p)
1926{
dd41f596 1927 return p->static_prio;
14531189
IM
1928}
1929
b29739f9
IM
1930/*
1931 * Calculate the expected normal priority: i.e. priority
1932 * without taking RT-inheritance into account. Might be
1933 * boosted by interactivity modifiers. Changes upon fork,
1934 * setprio syscalls, and whenever the interactivity
1935 * estimator recalculates.
1936 */
36c8b586 1937static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1938{
1939 int prio;
1940
e05606d3 1941 if (task_has_rt_policy(p))
b29739f9
IM
1942 prio = MAX_RT_PRIO-1 - p->rt_priority;
1943 else
1944 prio = __normal_prio(p);
1945 return prio;
1946}
1947
1948/*
1949 * Calculate the current priority, i.e. the priority
1950 * taken into account by the scheduler. This value might
1951 * be boosted by RT tasks, or might be boosted by
1952 * interactivity modifiers. Will be RT if the task got
1953 * RT-boosted. If not then it returns p->normal_prio.
1954 */
36c8b586 1955static int effective_prio(struct task_struct *p)
b29739f9
IM
1956{
1957 p->normal_prio = normal_prio(p);
1958 /*
1959 * If we are RT tasks or we were boosted to RT priority,
1960 * keep the priority unchanged. Otherwise, update priority
1961 * to the normal priority:
1962 */
1963 if (!rt_prio(p->prio))
1964 return p->normal_prio;
1965 return p->prio;
1966}
1967
1da177e4
LT
1968/**
1969 * task_curr - is this task currently executing on a CPU?
1970 * @p: the task in question.
1971 */
36c8b586 1972inline int task_curr(const struct task_struct *p)
1da177e4
LT
1973{
1974 return cpu_curr(task_cpu(p)) == p;
1975}
1976
cb469845
SR
1977static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1978 const struct sched_class *prev_class,
1979 int oldprio, int running)
1980{
1981 if (prev_class != p->sched_class) {
1982 if (prev_class->switched_from)
1983 prev_class->switched_from(rq, p, running);
1984 p->sched_class->switched_to(rq, p, running);
1985 } else
1986 p->sched_class->prio_changed(rq, p, oldprio, running);
1987}
1988
1da177e4 1989#ifdef CONFIG_SMP
cc367732
IM
1990/*
1991 * Is this task likely cache-hot:
1992 */
e7693a36 1993static int
cc367732
IM
1994task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1995{
1996 s64 delta;
1997
e6c8fba7
PZ
1998 if (p->sched_class != &fair_sched_class)
1999 return 0;
2000
f540a608
IM
2001 /*
2002 * Buddy candidates are cache hot:
2003 */
f685ceac 2004 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2005 (&p->se == cfs_rq_of(&p->se)->next ||
2006 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2007 return 1;
2008
6bc1665b
IM
2009 if (sysctl_sched_migration_cost == -1)
2010 return 1;
2011 if (sysctl_sched_migration_cost == 0)
2012 return 0;
2013
cc367732
IM
2014 delta = now - p->se.exec_start;
2015
2016 return delta < (s64)sysctl_sched_migration_cost;
2017}
2018
dd41f596 2019void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2020{
e2912009
PZ
2021#ifdef CONFIG_SCHED_DEBUG
2022 /*
2023 * We should never call set_task_cpu() on a blocked task,
2024 * ttwu() will sort out the placement.
2025 */
077614ee
PZ
2026 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2027 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2028#endif
2029
de1d7286 2030 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2031
0c69774e
PZ
2032 if (task_cpu(p) != new_cpu) {
2033 p->se.nr_migrations++;
2034 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2035 }
dd41f596
IM
2036
2037 __set_task_cpu(p, new_cpu);
c65cc870
IM
2038}
2039
70b97a7f 2040struct migration_req {
1da177e4 2041 struct list_head list;
1da177e4 2042
36c8b586 2043 struct task_struct *task;
1da177e4
LT
2044 int dest_cpu;
2045
1da177e4 2046 struct completion done;
70b97a7f 2047};
1da177e4
LT
2048
2049/*
2050 * The task's runqueue lock must be held.
2051 * Returns true if you have to wait for migration thread.
2052 */
36c8b586 2053static int
70b97a7f 2054migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2055{
70b97a7f 2056 struct rq *rq = task_rq(p);
1da177e4
LT
2057
2058 /*
2059 * If the task is not on a runqueue (and not running), then
e2912009 2060 * the next wake-up will properly place the task.
1da177e4 2061 */
e2912009 2062 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2063 return 0;
1da177e4
LT
2064
2065 init_completion(&req->done);
1da177e4
LT
2066 req->task = p;
2067 req->dest_cpu = dest_cpu;
2068 list_add(&req->list, &rq->migration_queue);
48f24c4d 2069
1da177e4
LT
2070 return 1;
2071}
2072
a26b89f0
MM
2073/*
2074 * wait_task_context_switch - wait for a thread to complete at least one
2075 * context switch.
2076 *
2077 * @p must not be current.
2078 */
2079void wait_task_context_switch(struct task_struct *p)
2080{
2081 unsigned long nvcsw, nivcsw, flags;
2082 int running;
2083 struct rq *rq;
2084
2085 nvcsw = p->nvcsw;
2086 nivcsw = p->nivcsw;
2087 for (;;) {
2088 /*
2089 * The runqueue is assigned before the actual context
2090 * switch. We need to take the runqueue lock.
2091 *
2092 * We could check initially without the lock but it is
2093 * very likely that we need to take the lock in every
2094 * iteration.
2095 */
2096 rq = task_rq_lock(p, &flags);
2097 running = task_running(rq, p);
2098 task_rq_unlock(rq, &flags);
2099
2100 if (likely(!running))
2101 break;
2102 /*
2103 * The switch count is incremented before the actual
2104 * context switch. We thus wait for two switches to be
2105 * sure at least one completed.
2106 */
2107 if ((p->nvcsw - nvcsw) > 1)
2108 break;
2109 if ((p->nivcsw - nivcsw) > 1)
2110 break;
2111
2112 cpu_relax();
2113 }
2114}
2115
1da177e4
LT
2116/*
2117 * wait_task_inactive - wait for a thread to unschedule.
2118 *
85ba2d86
RM
2119 * If @match_state is nonzero, it's the @p->state value just checked and
2120 * not expected to change. If it changes, i.e. @p might have woken up,
2121 * then return zero. When we succeed in waiting for @p to be off its CPU,
2122 * we return a positive number (its total switch count). If a second call
2123 * a short while later returns the same number, the caller can be sure that
2124 * @p has remained unscheduled the whole time.
2125 *
1da177e4
LT
2126 * The caller must ensure that the task *will* unschedule sometime soon,
2127 * else this function might spin for a *long* time. This function can't
2128 * be called with interrupts off, or it may introduce deadlock with
2129 * smp_call_function() if an IPI is sent by the same process we are
2130 * waiting to become inactive.
2131 */
85ba2d86 2132unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2133{
2134 unsigned long flags;
dd41f596 2135 int running, on_rq;
85ba2d86 2136 unsigned long ncsw;
70b97a7f 2137 struct rq *rq;
1da177e4 2138
3a5c359a
AK
2139 for (;;) {
2140 /*
2141 * We do the initial early heuristics without holding
2142 * any task-queue locks at all. We'll only try to get
2143 * the runqueue lock when things look like they will
2144 * work out!
2145 */
2146 rq = task_rq(p);
fa490cfd 2147
3a5c359a
AK
2148 /*
2149 * If the task is actively running on another CPU
2150 * still, just relax and busy-wait without holding
2151 * any locks.
2152 *
2153 * NOTE! Since we don't hold any locks, it's not
2154 * even sure that "rq" stays as the right runqueue!
2155 * But we don't care, since "task_running()" will
2156 * return false if the runqueue has changed and p
2157 * is actually now running somewhere else!
2158 */
85ba2d86
RM
2159 while (task_running(rq, p)) {
2160 if (match_state && unlikely(p->state != match_state))
2161 return 0;
3a5c359a 2162 cpu_relax();
85ba2d86 2163 }
fa490cfd 2164
3a5c359a
AK
2165 /*
2166 * Ok, time to look more closely! We need the rq
2167 * lock now, to be *sure*. If we're wrong, we'll
2168 * just go back and repeat.
2169 */
2170 rq = task_rq_lock(p, &flags);
0a16b607 2171 trace_sched_wait_task(rq, p);
3a5c359a
AK
2172 running = task_running(rq, p);
2173 on_rq = p->se.on_rq;
85ba2d86 2174 ncsw = 0;
f31e11d8 2175 if (!match_state || p->state == match_state)
93dcf55f 2176 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2177 task_rq_unlock(rq, &flags);
fa490cfd 2178
85ba2d86
RM
2179 /*
2180 * If it changed from the expected state, bail out now.
2181 */
2182 if (unlikely(!ncsw))
2183 break;
2184
3a5c359a
AK
2185 /*
2186 * Was it really running after all now that we
2187 * checked with the proper locks actually held?
2188 *
2189 * Oops. Go back and try again..
2190 */
2191 if (unlikely(running)) {
2192 cpu_relax();
2193 continue;
2194 }
fa490cfd 2195
3a5c359a
AK
2196 /*
2197 * It's not enough that it's not actively running,
2198 * it must be off the runqueue _entirely_, and not
2199 * preempted!
2200 *
80dd99b3 2201 * So if it was still runnable (but just not actively
3a5c359a
AK
2202 * running right now), it's preempted, and we should
2203 * yield - it could be a while.
2204 */
2205 if (unlikely(on_rq)) {
2206 schedule_timeout_uninterruptible(1);
2207 continue;
2208 }
fa490cfd 2209
3a5c359a
AK
2210 /*
2211 * Ahh, all good. It wasn't running, and it wasn't
2212 * runnable, which means that it will never become
2213 * running in the future either. We're all done!
2214 */
2215 break;
2216 }
85ba2d86
RM
2217
2218 return ncsw;
1da177e4
LT
2219}
2220
2221/***
2222 * kick_process - kick a running thread to enter/exit the kernel
2223 * @p: the to-be-kicked thread
2224 *
2225 * Cause a process which is running on another CPU to enter
2226 * kernel-mode, without any delay. (to get signals handled.)
2227 *
2228 * NOTE: this function doesnt have to take the runqueue lock,
2229 * because all it wants to ensure is that the remote task enters
2230 * the kernel. If the IPI races and the task has been migrated
2231 * to another CPU then no harm is done and the purpose has been
2232 * achieved as well.
2233 */
36c8b586 2234void kick_process(struct task_struct *p)
1da177e4
LT
2235{
2236 int cpu;
2237
2238 preempt_disable();
2239 cpu = task_cpu(p);
2240 if ((cpu != smp_processor_id()) && task_curr(p))
2241 smp_send_reschedule(cpu);
2242 preempt_enable();
2243}
b43e3521 2244EXPORT_SYMBOL_GPL(kick_process);
476d139c 2245#endif /* CONFIG_SMP */
1da177e4 2246
0793a61d
TG
2247/**
2248 * task_oncpu_function_call - call a function on the cpu on which a task runs
2249 * @p: the task to evaluate
2250 * @func: the function to be called
2251 * @info: the function call argument
2252 *
2253 * Calls the function @func when the task is currently running. This might
2254 * be on the current CPU, which just calls the function directly
2255 */
2256void task_oncpu_function_call(struct task_struct *p,
2257 void (*func) (void *info), void *info)
2258{
2259 int cpu;
2260
2261 preempt_disable();
2262 cpu = task_cpu(p);
2263 if (task_curr(p))
2264 smp_call_function_single(cpu, func, info, 1);
2265 preempt_enable();
2266}
2267
970b13ba 2268#ifdef CONFIG_SMP
30da688e
ON
2269/*
2270 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2271 */
5da9a0fb
PZ
2272static int select_fallback_rq(int cpu, struct task_struct *p)
2273{
2274 int dest_cpu;
2275 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2276
2277 /* Look for allowed, online CPU in same node. */
2278 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2279 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2280 return dest_cpu;
2281
2282 /* Any allowed, online CPU? */
2283 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2284 if (dest_cpu < nr_cpu_ids)
2285 return dest_cpu;
2286
2287 /* No more Mr. Nice Guy. */
897f0b3c 2288 if (unlikely(dest_cpu >= nr_cpu_ids)) {
9084bb82 2289 dest_cpu = cpuset_cpus_allowed_fallback(p);
5da9a0fb
PZ
2290 /*
2291 * Don't tell them about moving exiting tasks or
2292 * kernel threads (both mm NULL), since they never
2293 * leave kernel.
2294 */
2295 if (p->mm && printk_ratelimit()) {
2296 printk(KERN_INFO "process %d (%s) no "
2297 "longer affine to cpu%d\n",
2298 task_pid_nr(p), p->comm, cpu);
2299 }
2300 }
2301
2302 return dest_cpu;
2303}
2304
e2912009 2305/*
30da688e 2306 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
e2912009 2307 */
970b13ba 2308static inline
0017d735 2309int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 2310{
0017d735 2311 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
e2912009
PZ
2312
2313 /*
2314 * In order not to call set_task_cpu() on a blocking task we need
2315 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2316 * cpu.
2317 *
2318 * Since this is common to all placement strategies, this lives here.
2319 *
2320 * [ this allows ->select_task() to simply return task_cpu(p) and
2321 * not worry about this generic constraint ]
2322 */
2323 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2324 !cpu_online(cpu)))
5da9a0fb 2325 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2326
2327 return cpu;
970b13ba 2328}
09a40af5
MG
2329
2330static void update_avg(u64 *avg, u64 sample)
2331{
2332 s64 diff = sample - *avg;
2333 *avg += diff >> 3;
2334}
970b13ba
PZ
2335#endif
2336
1da177e4
LT
2337/***
2338 * try_to_wake_up - wake up a thread
2339 * @p: the to-be-woken-up thread
2340 * @state: the mask of task states that can be woken
2341 * @sync: do a synchronous wakeup?
2342 *
2343 * Put it on the run-queue if it's not already there. The "current"
2344 * thread is always on the run-queue (except when the actual
2345 * re-schedule is in progress), and as such you're allowed to do
2346 * the simpler "current->state = TASK_RUNNING" to mark yourself
2347 * runnable without the overhead of this.
2348 *
2349 * returns failure only if the task is already active.
2350 */
7d478721
PZ
2351static int try_to_wake_up(struct task_struct *p, unsigned int state,
2352 int wake_flags)
1da177e4 2353{
cc367732 2354 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2355 unsigned long flags;
371fd7e7 2356 unsigned long en_flags = ENQUEUE_WAKEUP;
ab3b3aa5 2357 struct rq *rq;
1da177e4 2358
e9c84311 2359 this_cpu = get_cpu();
2398f2c6 2360
04e2f174 2361 smp_wmb();
ab3b3aa5 2362 rq = task_rq_lock(p, &flags);
e9c84311 2363 if (!(p->state & state))
1da177e4
LT
2364 goto out;
2365
dd41f596 2366 if (p->se.on_rq)
1da177e4
LT
2367 goto out_running;
2368
2369 cpu = task_cpu(p);
cc367732 2370 orig_cpu = cpu;
1da177e4
LT
2371
2372#ifdef CONFIG_SMP
2373 if (unlikely(task_running(rq, p)))
2374 goto out_activate;
2375
e9c84311
PZ
2376 /*
2377 * In order to handle concurrent wakeups and release the rq->lock
2378 * we put the task in TASK_WAKING state.
eb24073b
IM
2379 *
2380 * First fix up the nr_uninterruptible count:
e9c84311 2381 */
cc87f76a
PZ
2382 if (task_contributes_to_load(p)) {
2383 if (likely(cpu_online(orig_cpu)))
2384 rq->nr_uninterruptible--;
2385 else
2386 this_rq()->nr_uninterruptible--;
2387 }
e9c84311 2388 p->state = TASK_WAKING;
efbbd05a 2389
371fd7e7 2390 if (p->sched_class->task_waking) {
efbbd05a 2391 p->sched_class->task_waking(rq, p);
371fd7e7
PZ
2392 en_flags |= ENQUEUE_WAKING;
2393 }
efbbd05a 2394
0017d735
PZ
2395 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2396 if (cpu != orig_cpu)
5d2f5a61 2397 set_task_cpu(p, cpu);
0017d735 2398 __task_rq_unlock(rq);
ab19cb23 2399
0970d299
PZ
2400 rq = cpu_rq(cpu);
2401 raw_spin_lock(&rq->lock);
f5dc3753 2402
0970d299
PZ
2403 /*
2404 * We migrated the task without holding either rq->lock, however
2405 * since the task is not on the task list itself, nobody else
2406 * will try and migrate the task, hence the rq should match the
2407 * cpu we just moved it to.
2408 */
2409 WARN_ON(task_cpu(p) != cpu);
e9c84311 2410 WARN_ON(p->state != TASK_WAKING);
1da177e4 2411
e7693a36
GH
2412#ifdef CONFIG_SCHEDSTATS
2413 schedstat_inc(rq, ttwu_count);
2414 if (cpu == this_cpu)
2415 schedstat_inc(rq, ttwu_local);
2416 else {
2417 struct sched_domain *sd;
2418 for_each_domain(this_cpu, sd) {
758b2cdc 2419 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2420 schedstat_inc(sd, ttwu_wake_remote);
2421 break;
2422 }
2423 }
2424 }
6d6bc0ad 2425#endif /* CONFIG_SCHEDSTATS */
e7693a36 2426
1da177e4
LT
2427out_activate:
2428#endif /* CONFIG_SMP */
41acab88 2429 schedstat_inc(p, se.statistics.nr_wakeups);
7d478721 2430 if (wake_flags & WF_SYNC)
41acab88 2431 schedstat_inc(p, se.statistics.nr_wakeups_sync);
cc367732 2432 if (orig_cpu != cpu)
41acab88 2433 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
cc367732 2434 if (cpu == this_cpu)
41acab88 2435 schedstat_inc(p, se.statistics.nr_wakeups_local);
cc367732 2436 else
41acab88 2437 schedstat_inc(p, se.statistics.nr_wakeups_remote);
371fd7e7 2438 activate_task(rq, p, en_flags);
1da177e4
LT
2439 success = 1;
2440
2441out_running:
468a15bb 2442 trace_sched_wakeup(rq, p, success);
7d478721 2443 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2444
1da177e4 2445 p->state = TASK_RUNNING;
9a897c5a 2446#ifdef CONFIG_SMP
efbbd05a
PZ
2447 if (p->sched_class->task_woken)
2448 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2449
2450 if (unlikely(rq->idle_stamp)) {
2451 u64 delta = rq->clock - rq->idle_stamp;
2452 u64 max = 2*sysctl_sched_migration_cost;
2453
2454 if (delta > max)
2455 rq->avg_idle = max;
2456 else
2457 update_avg(&rq->avg_idle, delta);
2458 rq->idle_stamp = 0;
2459 }
9a897c5a 2460#endif
1da177e4
LT
2461out:
2462 task_rq_unlock(rq, &flags);
e9c84311 2463 put_cpu();
1da177e4
LT
2464
2465 return success;
2466}
2467
50fa610a
DH
2468/**
2469 * wake_up_process - Wake up a specific process
2470 * @p: The process to be woken up.
2471 *
2472 * Attempt to wake up the nominated process and move it to the set of runnable
2473 * processes. Returns 1 if the process was woken up, 0 if it was already
2474 * running.
2475 *
2476 * It may be assumed that this function implies a write memory barrier before
2477 * changing the task state if and only if any tasks are woken up.
2478 */
7ad5b3a5 2479int wake_up_process(struct task_struct *p)
1da177e4 2480{
d9514f6c 2481 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2482}
1da177e4
LT
2483EXPORT_SYMBOL(wake_up_process);
2484
7ad5b3a5 2485int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2486{
2487 return try_to_wake_up(p, state, 0);
2488}
2489
1da177e4
LT
2490/*
2491 * Perform scheduler related setup for a newly forked process p.
2492 * p is forked by current.
dd41f596
IM
2493 *
2494 * __sched_fork() is basic setup used by init_idle() too:
2495 */
2496static void __sched_fork(struct task_struct *p)
2497{
dd41f596
IM
2498 p->se.exec_start = 0;
2499 p->se.sum_exec_runtime = 0;
f6cf891c 2500 p->se.prev_sum_exec_runtime = 0;
6c594c21 2501 p->se.nr_migrations = 0;
6cfb0d5d
IM
2502
2503#ifdef CONFIG_SCHEDSTATS
41acab88 2504 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2505#endif
476d139c 2506
fa717060 2507 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2508 p->se.on_rq = 0;
4a55bd5e 2509 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2510
e107be36
AK
2511#ifdef CONFIG_PREEMPT_NOTIFIERS
2512 INIT_HLIST_HEAD(&p->preempt_notifiers);
2513#endif
dd41f596
IM
2514}
2515
2516/*
2517 * fork()/clone()-time setup:
2518 */
2519void sched_fork(struct task_struct *p, int clone_flags)
2520{
2521 int cpu = get_cpu();
2522
2523 __sched_fork(p);
06b83b5f 2524 /*
0017d735 2525 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2526 * nobody will actually run it, and a signal or other external
2527 * event cannot wake it up and insert it on the runqueue either.
2528 */
0017d735 2529 p->state = TASK_RUNNING;
dd41f596 2530
b9dc29e7
MG
2531 /*
2532 * Revert to default priority/policy on fork if requested.
2533 */
2534 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2535 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2536 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2537 p->normal_prio = p->static_prio;
2538 }
b9dc29e7 2539
6c697bdf
MG
2540 if (PRIO_TO_NICE(p->static_prio) < 0) {
2541 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2542 p->normal_prio = p->static_prio;
6c697bdf
MG
2543 set_load_weight(p);
2544 }
2545
b9dc29e7
MG
2546 /*
2547 * We don't need the reset flag anymore after the fork. It has
2548 * fulfilled its duty:
2549 */
2550 p->sched_reset_on_fork = 0;
2551 }
ca94c442 2552
f83f9ac2
PW
2553 /*
2554 * Make sure we do not leak PI boosting priority to the child.
2555 */
2556 p->prio = current->normal_prio;
2557
2ddbf952
HS
2558 if (!rt_prio(p->prio))
2559 p->sched_class = &fair_sched_class;
b29739f9 2560
cd29fe6f
PZ
2561 if (p->sched_class->task_fork)
2562 p->sched_class->task_fork(p);
2563
5f3edc1b
PZ
2564 set_task_cpu(p, cpu);
2565
52f17b6c 2566#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2567 if (likely(sched_info_on()))
52f17b6c 2568 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2569#endif
d6077cb8 2570#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2571 p->oncpu = 0;
2572#endif
1da177e4 2573#ifdef CONFIG_PREEMPT
4866cde0 2574 /* Want to start with kernel preemption disabled. */
a1261f54 2575 task_thread_info(p)->preempt_count = 1;
1da177e4 2576#endif
917b627d
GH
2577 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2578
476d139c 2579 put_cpu();
1da177e4
LT
2580}
2581
2582/*
2583 * wake_up_new_task - wake up a newly created task for the first time.
2584 *
2585 * This function will do some initial scheduler statistics housekeeping
2586 * that must be done for every newly created context, then puts the task
2587 * on the runqueue and wakes it.
2588 */
7ad5b3a5 2589void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2590{
2591 unsigned long flags;
dd41f596 2592 struct rq *rq;
c890692b 2593 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2594
2595#ifdef CONFIG_SMP
0017d735
PZ
2596 rq = task_rq_lock(p, &flags);
2597 p->state = TASK_WAKING;
2598
fabf318e
PZ
2599 /*
2600 * Fork balancing, do it here and not earlier because:
2601 * - cpus_allowed can change in the fork path
2602 * - any previously selected cpu might disappear through hotplug
2603 *
0017d735
PZ
2604 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2605 * without people poking at ->cpus_allowed.
fabf318e 2606 */
0017d735 2607 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
fabf318e 2608 set_task_cpu(p, cpu);
0970d299 2609
06b83b5f 2610 p->state = TASK_RUNNING;
0017d735
PZ
2611 task_rq_unlock(rq, &flags);
2612#endif
2613
2614 rq = task_rq_lock(p, &flags);
cd29fe6f 2615 activate_task(rq, p, 0);
c71dd42d 2616 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2617 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2618#ifdef CONFIG_SMP
efbbd05a
PZ
2619 if (p->sched_class->task_woken)
2620 p->sched_class->task_woken(rq, p);
9a897c5a 2621#endif
dd41f596 2622 task_rq_unlock(rq, &flags);
fabf318e 2623 put_cpu();
1da177e4
LT
2624}
2625
e107be36
AK
2626#ifdef CONFIG_PREEMPT_NOTIFIERS
2627
2628/**
80dd99b3 2629 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2630 * @notifier: notifier struct to register
e107be36
AK
2631 */
2632void preempt_notifier_register(struct preempt_notifier *notifier)
2633{
2634 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2635}
2636EXPORT_SYMBOL_GPL(preempt_notifier_register);
2637
2638/**
2639 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2640 * @notifier: notifier struct to unregister
e107be36
AK
2641 *
2642 * This is safe to call from within a preemption notifier.
2643 */
2644void preempt_notifier_unregister(struct preempt_notifier *notifier)
2645{
2646 hlist_del(&notifier->link);
2647}
2648EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2649
2650static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651{
2652 struct preempt_notifier *notifier;
2653 struct hlist_node *node;
2654
2655 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2656 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2657}
2658
2659static void
2660fire_sched_out_preempt_notifiers(struct task_struct *curr,
2661 struct task_struct *next)
2662{
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_out(notifier, next);
2668}
2669
6d6bc0ad 2670#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2671
2672static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673{
2674}
2675
2676static void
2677fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2679{
2680}
2681
6d6bc0ad 2682#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2683
4866cde0
NP
2684/**
2685 * prepare_task_switch - prepare to switch tasks
2686 * @rq: the runqueue preparing to switch
421cee29 2687 * @prev: the current task that is being switched out
4866cde0
NP
2688 * @next: the task we are going to switch to.
2689 *
2690 * This is called with the rq lock held and interrupts off. It must
2691 * be paired with a subsequent finish_task_switch after the context
2692 * switch.
2693 *
2694 * prepare_task_switch sets up locking and calls architecture specific
2695 * hooks.
2696 */
e107be36
AK
2697static inline void
2698prepare_task_switch(struct rq *rq, struct task_struct *prev,
2699 struct task_struct *next)
4866cde0 2700{
e107be36 2701 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2702 prepare_lock_switch(rq, next);
2703 prepare_arch_switch(next);
2704}
2705
1da177e4
LT
2706/**
2707 * finish_task_switch - clean up after a task-switch
344babaa 2708 * @rq: runqueue associated with task-switch
1da177e4
LT
2709 * @prev: the thread we just switched away from.
2710 *
4866cde0
NP
2711 * finish_task_switch must be called after the context switch, paired
2712 * with a prepare_task_switch call before the context switch.
2713 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2714 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2715 *
2716 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2717 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2718 * with the lock held can cause deadlocks; see schedule() for
2719 * details.)
2720 */
a9957449 2721static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2722 __releases(rq->lock)
2723{
1da177e4 2724 struct mm_struct *mm = rq->prev_mm;
55a101f8 2725 long prev_state;
1da177e4
LT
2726
2727 rq->prev_mm = NULL;
2728
2729 /*
2730 * A task struct has one reference for the use as "current".
c394cc9f 2731 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2732 * schedule one last time. The schedule call will never return, and
2733 * the scheduled task must drop that reference.
c394cc9f 2734 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2735 * still held, otherwise prev could be scheduled on another cpu, die
2736 * there before we look at prev->state, and then the reference would
2737 * be dropped twice.
2738 * Manfred Spraul <manfred@colorfullife.com>
2739 */
55a101f8 2740 prev_state = prev->state;
4866cde0 2741 finish_arch_switch(prev);
8381f65d
JI
2742#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2743 local_irq_disable();
2744#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2745 perf_event_task_sched_in(current);
8381f65d
JI
2746#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2747 local_irq_enable();
2748#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2749 finish_lock_switch(rq, prev);
e8fa1362 2750
e107be36 2751 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2752 if (mm)
2753 mmdrop(mm);
c394cc9f 2754 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2755 /*
2756 * Remove function-return probe instances associated with this
2757 * task and put them back on the free list.
9761eea8 2758 */
c6fd91f0 2759 kprobe_flush_task(prev);
1da177e4 2760 put_task_struct(prev);
c6fd91f0 2761 }
1da177e4
LT
2762}
2763
3f029d3c
GH
2764#ifdef CONFIG_SMP
2765
2766/* assumes rq->lock is held */
2767static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2768{
2769 if (prev->sched_class->pre_schedule)
2770 prev->sched_class->pre_schedule(rq, prev);
2771}
2772
2773/* rq->lock is NOT held, but preemption is disabled */
2774static inline void post_schedule(struct rq *rq)
2775{
2776 if (rq->post_schedule) {
2777 unsigned long flags;
2778
05fa785c 2779 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2780 if (rq->curr->sched_class->post_schedule)
2781 rq->curr->sched_class->post_schedule(rq);
05fa785c 2782 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2783
2784 rq->post_schedule = 0;
2785 }
2786}
2787
2788#else
da19ab51 2789
3f029d3c
GH
2790static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2791{
2792}
2793
2794static inline void post_schedule(struct rq *rq)
2795{
1da177e4
LT
2796}
2797
3f029d3c
GH
2798#endif
2799
1da177e4
LT
2800/**
2801 * schedule_tail - first thing a freshly forked thread must call.
2802 * @prev: the thread we just switched away from.
2803 */
36c8b586 2804asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2805 __releases(rq->lock)
2806{
70b97a7f
IM
2807 struct rq *rq = this_rq();
2808
4866cde0 2809 finish_task_switch(rq, prev);
da19ab51 2810
3f029d3c
GH
2811 /*
2812 * FIXME: do we need to worry about rq being invalidated by the
2813 * task_switch?
2814 */
2815 post_schedule(rq);
70b97a7f 2816
4866cde0
NP
2817#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2818 /* In this case, finish_task_switch does not reenable preemption */
2819 preempt_enable();
2820#endif
1da177e4 2821 if (current->set_child_tid)
b488893a 2822 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2823}
2824
2825/*
2826 * context_switch - switch to the new MM and the new
2827 * thread's register state.
2828 */
dd41f596 2829static inline void
70b97a7f 2830context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2831 struct task_struct *next)
1da177e4 2832{
dd41f596 2833 struct mm_struct *mm, *oldmm;
1da177e4 2834
e107be36 2835 prepare_task_switch(rq, prev, next);
0a16b607 2836 trace_sched_switch(rq, prev, next);
dd41f596
IM
2837 mm = next->mm;
2838 oldmm = prev->active_mm;
9226d125
ZA
2839 /*
2840 * For paravirt, this is coupled with an exit in switch_to to
2841 * combine the page table reload and the switch backend into
2842 * one hypercall.
2843 */
224101ed 2844 arch_start_context_switch(prev);
9226d125 2845
710390d9 2846 if (likely(!mm)) {
1da177e4
LT
2847 next->active_mm = oldmm;
2848 atomic_inc(&oldmm->mm_count);
2849 enter_lazy_tlb(oldmm, next);
2850 } else
2851 switch_mm(oldmm, mm, next);
2852
710390d9 2853 if (likely(!prev->mm)) {
1da177e4 2854 prev->active_mm = NULL;
1da177e4
LT
2855 rq->prev_mm = oldmm;
2856 }
3a5f5e48
IM
2857 /*
2858 * Since the runqueue lock will be released by the next
2859 * task (which is an invalid locking op but in the case
2860 * of the scheduler it's an obvious special-case), so we
2861 * do an early lockdep release here:
2862 */
2863#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2864 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2865#endif
1da177e4
LT
2866
2867 /* Here we just switch the register state and the stack. */
2868 switch_to(prev, next, prev);
2869
dd41f596
IM
2870 barrier();
2871 /*
2872 * this_rq must be evaluated again because prev may have moved
2873 * CPUs since it called schedule(), thus the 'rq' on its stack
2874 * frame will be invalid.
2875 */
2876 finish_task_switch(this_rq(), prev);
1da177e4
LT
2877}
2878
2879/*
2880 * nr_running, nr_uninterruptible and nr_context_switches:
2881 *
2882 * externally visible scheduler statistics: current number of runnable
2883 * threads, current number of uninterruptible-sleeping threads, total
2884 * number of context switches performed since bootup.
2885 */
2886unsigned long nr_running(void)
2887{
2888 unsigned long i, sum = 0;
2889
2890 for_each_online_cpu(i)
2891 sum += cpu_rq(i)->nr_running;
2892
2893 return sum;
f711f609 2894}
1da177e4
LT
2895
2896unsigned long nr_uninterruptible(void)
f711f609 2897{
1da177e4 2898 unsigned long i, sum = 0;
f711f609 2899
0a945022 2900 for_each_possible_cpu(i)
1da177e4 2901 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2902
2903 /*
1da177e4
LT
2904 * Since we read the counters lockless, it might be slightly
2905 * inaccurate. Do not allow it to go below zero though:
f711f609 2906 */
1da177e4
LT
2907 if (unlikely((long)sum < 0))
2908 sum = 0;
f711f609 2909
1da177e4 2910 return sum;
f711f609 2911}
f711f609 2912
1da177e4 2913unsigned long long nr_context_switches(void)
46cb4b7c 2914{
cc94abfc
SR
2915 int i;
2916 unsigned long long sum = 0;
46cb4b7c 2917
0a945022 2918 for_each_possible_cpu(i)
1da177e4 2919 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2920
1da177e4
LT
2921 return sum;
2922}
483b4ee6 2923
1da177e4
LT
2924unsigned long nr_iowait(void)
2925{
2926 unsigned long i, sum = 0;
483b4ee6 2927
0a945022 2928 for_each_possible_cpu(i)
1da177e4 2929 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2930
1da177e4
LT
2931 return sum;
2932}
483b4ee6 2933
69d25870
AV
2934unsigned long nr_iowait_cpu(void)
2935{
2936 struct rq *this = this_rq();
2937 return atomic_read(&this->nr_iowait);
2938}
46cb4b7c 2939
69d25870
AV
2940unsigned long this_cpu_load(void)
2941{
2942 struct rq *this = this_rq();
2943 return this->cpu_load[0];
2944}
e790fb0b 2945
46cb4b7c 2946
dce48a84
TG
2947/* Variables and functions for calc_load */
2948static atomic_long_t calc_load_tasks;
2949static unsigned long calc_load_update;
2950unsigned long avenrun[3];
2951EXPORT_SYMBOL(avenrun);
46cb4b7c 2952
74f5187a
PZ
2953static long calc_load_fold_active(struct rq *this_rq)
2954{
2955 long nr_active, delta = 0;
2956
2957 nr_active = this_rq->nr_running;
2958 nr_active += (long) this_rq->nr_uninterruptible;
2959
2960 if (nr_active != this_rq->calc_load_active) {
2961 delta = nr_active - this_rq->calc_load_active;
2962 this_rq->calc_load_active = nr_active;
2963 }
2964
2965 return delta;
2966}
2967
2968#ifdef CONFIG_NO_HZ
2969/*
2970 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2971 *
2972 * When making the ILB scale, we should try to pull this in as well.
2973 */
2974static atomic_long_t calc_load_tasks_idle;
2975
2976static void calc_load_account_idle(struct rq *this_rq)
2977{
2978 long delta;
2979
2980 delta = calc_load_fold_active(this_rq);
2981 if (delta)
2982 atomic_long_add(delta, &calc_load_tasks_idle);
2983}
2984
2985static long calc_load_fold_idle(void)
2986{
2987 long delta = 0;
2988
2989 /*
2990 * Its got a race, we don't care...
2991 */
2992 if (atomic_long_read(&calc_load_tasks_idle))
2993 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2994
2995 return delta;
2996}
2997#else
2998static void calc_load_account_idle(struct rq *this_rq)
2999{
3000}
3001
3002static inline long calc_load_fold_idle(void)
3003{
3004 return 0;
3005}
3006#endif
3007
2d02494f
TG
3008/**
3009 * get_avenrun - get the load average array
3010 * @loads: pointer to dest load array
3011 * @offset: offset to add
3012 * @shift: shift count to shift the result left
3013 *
3014 * These values are estimates at best, so no need for locking.
3015 */
3016void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3017{
3018 loads[0] = (avenrun[0] + offset) << shift;
3019 loads[1] = (avenrun[1] + offset) << shift;
3020 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 3021}
46cb4b7c 3022
dce48a84
TG
3023static unsigned long
3024calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3025{
dce48a84
TG
3026 load *= exp;
3027 load += active * (FIXED_1 - exp);
3028 return load >> FSHIFT;
3029}
46cb4b7c
SS
3030
3031/*
dce48a84
TG
3032 * calc_load - update the avenrun load estimates 10 ticks after the
3033 * CPUs have updated calc_load_tasks.
7835b98b 3034 */
dce48a84 3035void calc_global_load(void)
7835b98b 3036{
dce48a84
TG
3037 unsigned long upd = calc_load_update + 10;
3038 long active;
1da177e4 3039
dce48a84
TG
3040 if (time_before(jiffies, upd))
3041 return;
1da177e4 3042
dce48a84
TG
3043 active = atomic_long_read(&calc_load_tasks);
3044 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3045
dce48a84
TG
3046 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3047 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3048 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3049
dce48a84
TG
3050 calc_load_update += LOAD_FREQ;
3051}
1da177e4 3052
dce48a84 3053/*
74f5187a
PZ
3054 * Called from update_cpu_load() to periodically update this CPU's
3055 * active count.
dce48a84
TG
3056 */
3057static void calc_load_account_active(struct rq *this_rq)
3058{
74f5187a 3059 long delta;
08c183f3 3060
74f5187a
PZ
3061 if (time_before(jiffies, this_rq->calc_load_update))
3062 return;
783609c6 3063
74f5187a
PZ
3064 delta = calc_load_fold_active(this_rq);
3065 delta += calc_load_fold_idle();
3066 if (delta)
dce48a84 3067 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
3068
3069 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
3070}
3071
3072/*
dd41f596
IM
3073 * Update rq->cpu_load[] statistics. This function is usually called every
3074 * scheduler tick (TICK_NSEC).
46cb4b7c 3075 */
dd41f596 3076static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3077{
495eca49 3078 unsigned long this_load = this_rq->load.weight;
dd41f596 3079 int i, scale;
46cb4b7c 3080
dd41f596 3081 this_rq->nr_load_updates++;
46cb4b7c 3082
dd41f596
IM
3083 /* Update our load: */
3084 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3085 unsigned long old_load, new_load;
7d1e6a9b 3086
dd41f596 3087 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3088
dd41f596
IM
3089 old_load = this_rq->cpu_load[i];
3090 new_load = this_load;
a25707f3
IM
3091 /*
3092 * Round up the averaging division if load is increasing. This
3093 * prevents us from getting stuck on 9 if the load is 10, for
3094 * example.
3095 */
3096 if (new_load > old_load)
3097 new_load += scale-1;
dd41f596
IM
3098 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3099 }
46cb4b7c 3100
74f5187a 3101 calc_load_account_active(this_rq);
46cb4b7c
SS
3102}
3103
dd41f596 3104#ifdef CONFIG_SMP
8a0be9ef 3105
46cb4b7c 3106/*
38022906
PZ
3107 * sched_exec - execve() is a valuable balancing opportunity, because at
3108 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3109 */
38022906 3110void sched_exec(void)
46cb4b7c 3111{
38022906 3112 struct task_struct *p = current;
70b97a7f 3113 struct migration_req req;
1da177e4 3114 unsigned long flags;
70b97a7f 3115 struct rq *rq;
0017d735 3116 int dest_cpu;
46cb4b7c 3117
1da177e4 3118 rq = task_rq_lock(p, &flags);
0017d735
PZ
3119 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3120 if (dest_cpu == smp_processor_id())
3121 goto unlock;
3122
46cb4b7c 3123 /*
38022906 3124 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3125 */
30da688e
ON
3126 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3127 likely(cpu_active(dest_cpu)) &&
3128 migrate_task(p, dest_cpu, &req)) {
1da177e4
LT
3129 /* Need to wait for migration thread (might exit: take ref). */
3130 struct task_struct *mt = rq->migration_thread;
dd41f596 3131
1da177e4
LT
3132 get_task_struct(mt);
3133 task_rq_unlock(rq, &flags);
3134 wake_up_process(mt);
3135 put_task_struct(mt);
3136 wait_for_completion(&req.done);
dd41f596 3137
1da177e4
LT
3138 return;
3139 }
0017d735 3140unlock:
1da177e4 3141 task_rq_unlock(rq, &flags);
1da177e4 3142}
dd41f596 3143
1da177e4
LT
3144#endif
3145
1da177e4
LT
3146DEFINE_PER_CPU(struct kernel_stat, kstat);
3147
3148EXPORT_PER_CPU_SYMBOL(kstat);
3149
3150/*
c5f8d995 3151 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3152 * @p in case that task is currently running.
c5f8d995
HS
3153 *
3154 * Called with task_rq_lock() held on @rq.
1da177e4 3155 */
c5f8d995
HS
3156static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3157{
3158 u64 ns = 0;
3159
3160 if (task_current(rq, p)) {
3161 update_rq_clock(rq);
3162 ns = rq->clock - p->se.exec_start;
3163 if ((s64)ns < 0)
3164 ns = 0;
3165 }
3166
3167 return ns;
3168}
3169
bb34d92f 3170unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3171{
1da177e4 3172 unsigned long flags;
41b86e9c 3173 struct rq *rq;
bb34d92f 3174 u64 ns = 0;
48f24c4d 3175
41b86e9c 3176 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3177 ns = do_task_delta_exec(p, rq);
3178 task_rq_unlock(rq, &flags);
1508487e 3179
c5f8d995
HS
3180 return ns;
3181}
f06febc9 3182
c5f8d995
HS
3183/*
3184 * Return accounted runtime for the task.
3185 * In case the task is currently running, return the runtime plus current's
3186 * pending runtime that have not been accounted yet.
3187 */
3188unsigned long long task_sched_runtime(struct task_struct *p)
3189{
3190 unsigned long flags;
3191 struct rq *rq;
3192 u64 ns = 0;
3193
3194 rq = task_rq_lock(p, &flags);
3195 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3196 task_rq_unlock(rq, &flags);
3197
3198 return ns;
3199}
48f24c4d 3200
c5f8d995
HS
3201/*
3202 * Return sum_exec_runtime for the thread group.
3203 * In case the task is currently running, return the sum plus current's
3204 * pending runtime that have not been accounted yet.
3205 *
3206 * Note that the thread group might have other running tasks as well,
3207 * so the return value not includes other pending runtime that other
3208 * running tasks might have.
3209 */
3210unsigned long long thread_group_sched_runtime(struct task_struct *p)
3211{
3212 struct task_cputime totals;
3213 unsigned long flags;
3214 struct rq *rq;
3215 u64 ns;
3216
3217 rq = task_rq_lock(p, &flags);
3218 thread_group_cputime(p, &totals);
3219 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3220 task_rq_unlock(rq, &flags);
48f24c4d 3221
1da177e4
LT
3222 return ns;
3223}
3224
1da177e4
LT
3225/*
3226 * Account user cpu time to a process.
3227 * @p: the process that the cpu time gets accounted to
1da177e4 3228 * @cputime: the cpu time spent in user space since the last update
457533a7 3229 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3230 */
457533a7
MS
3231void account_user_time(struct task_struct *p, cputime_t cputime,
3232 cputime_t cputime_scaled)
1da177e4
LT
3233{
3234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3235 cputime64_t tmp;
3236
457533a7 3237 /* Add user time to process. */
1da177e4 3238 p->utime = cputime_add(p->utime, cputime);
457533a7 3239 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3240 account_group_user_time(p, cputime);
1da177e4
LT
3241
3242 /* Add user time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (TASK_NICE(p) > 0)
3245 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3246 else
3247 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3248
3249 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3250 /* Account for user time used */
3251 acct_update_integrals(p);
1da177e4
LT
3252}
3253
94886b84
LV
3254/*
3255 * Account guest cpu time to a process.
3256 * @p: the process that the cpu time gets accounted to
3257 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3258 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3259 */
457533a7
MS
3260static void account_guest_time(struct task_struct *p, cputime_t cputime,
3261 cputime_t cputime_scaled)
94886b84
LV
3262{
3263 cputime64_t tmp;
3264 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3265
3266 tmp = cputime_to_cputime64(cputime);
3267
457533a7 3268 /* Add guest time to process. */
94886b84 3269 p->utime = cputime_add(p->utime, cputime);
457533a7 3270 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3271 account_group_user_time(p, cputime);
94886b84
LV
3272 p->gtime = cputime_add(p->gtime, cputime);
3273
457533a7 3274 /* Add guest time to cpustat. */
ce0e7b28
RO
3275 if (TASK_NICE(p) > 0) {
3276 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3277 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3278 } else {
3279 cpustat->user = cputime64_add(cpustat->user, tmp);
3280 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3281 }
94886b84
LV
3282}
3283
1da177e4
LT
3284/*
3285 * Account system cpu time to a process.
3286 * @p: the process that the cpu time gets accounted to
3287 * @hardirq_offset: the offset to subtract from hardirq_count()
3288 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3289 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3290 */
3291void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3292 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3293{
3294 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3295 cputime64_t tmp;
3296
983ed7a6 3297 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3298 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3299 return;
3300 }
94886b84 3301
457533a7 3302 /* Add system time to process. */
1da177e4 3303 p->stime = cputime_add(p->stime, cputime);
457533a7 3304 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3305 account_group_system_time(p, cputime);
1da177e4
LT
3306
3307 /* Add system time to cpustat. */
3308 tmp = cputime_to_cputime64(cputime);
3309 if (hardirq_count() - hardirq_offset)
3310 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3311 else if (softirq_count())
3312 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3313 else
79741dd3
MS
3314 cpustat->system = cputime64_add(cpustat->system, tmp);
3315
ef12fefa
BR
3316 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3317
1da177e4
LT
3318 /* Account for system time used */
3319 acct_update_integrals(p);
1da177e4
LT
3320}
3321
c66f08be 3322/*
1da177e4 3323 * Account for involuntary wait time.
1da177e4 3324 * @steal: the cpu time spent in involuntary wait
c66f08be 3325 */
79741dd3 3326void account_steal_time(cputime_t cputime)
c66f08be 3327{
79741dd3
MS
3328 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3329 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3330
3331 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3332}
3333
1da177e4 3334/*
79741dd3
MS
3335 * Account for idle time.
3336 * @cputime: the cpu time spent in idle wait
1da177e4 3337 */
79741dd3 3338void account_idle_time(cputime_t cputime)
1da177e4
LT
3339{
3340 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3341 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3342 struct rq *rq = this_rq();
1da177e4 3343
79741dd3
MS
3344 if (atomic_read(&rq->nr_iowait) > 0)
3345 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3346 else
3347 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3348}
3349
79741dd3
MS
3350#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3351
3352/*
3353 * Account a single tick of cpu time.
3354 * @p: the process that the cpu time gets accounted to
3355 * @user_tick: indicates if the tick is a user or a system tick
3356 */
3357void account_process_tick(struct task_struct *p, int user_tick)
3358{
a42548a1 3359 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3360 struct rq *rq = this_rq();
3361
3362 if (user_tick)
a42548a1 3363 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3364 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3365 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3366 one_jiffy_scaled);
3367 else
a42548a1 3368 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3369}
3370
3371/*
3372 * Account multiple ticks of steal time.
3373 * @p: the process from which the cpu time has been stolen
3374 * @ticks: number of stolen ticks
3375 */
3376void account_steal_ticks(unsigned long ticks)
3377{
3378 account_steal_time(jiffies_to_cputime(ticks));
3379}
3380
3381/*
3382 * Account multiple ticks of idle time.
3383 * @ticks: number of stolen ticks
3384 */
3385void account_idle_ticks(unsigned long ticks)
3386{
3387 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3388}
3389
79741dd3
MS
3390#endif
3391
49048622
BS
3392/*
3393 * Use precise platform statistics if available:
3394 */
3395#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3396void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3397{
d99ca3b9
HS
3398 *ut = p->utime;
3399 *st = p->stime;
49048622
BS
3400}
3401
0cf55e1e 3402void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3403{
0cf55e1e
HS
3404 struct task_cputime cputime;
3405
3406 thread_group_cputime(p, &cputime);
3407
3408 *ut = cputime.utime;
3409 *st = cputime.stime;
49048622
BS
3410}
3411#else
761b1d26
HS
3412
3413#ifndef nsecs_to_cputime
b7b20df9 3414# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3415#endif
3416
d180c5bc 3417void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3418{
d99ca3b9 3419 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3420
3421 /*
3422 * Use CFS's precise accounting:
3423 */
d180c5bc 3424 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3425
3426 if (total) {
d180c5bc
HS
3427 u64 temp;
3428
3429 temp = (u64)(rtime * utime);
49048622 3430 do_div(temp, total);
d180c5bc
HS
3431 utime = (cputime_t)temp;
3432 } else
3433 utime = rtime;
49048622 3434
d180c5bc
HS
3435 /*
3436 * Compare with previous values, to keep monotonicity:
3437 */
761b1d26 3438 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3439 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3440
d99ca3b9
HS
3441 *ut = p->prev_utime;
3442 *st = p->prev_stime;
49048622
BS
3443}
3444
0cf55e1e
HS
3445/*
3446 * Must be called with siglock held.
3447 */
3448void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3449{
0cf55e1e
HS
3450 struct signal_struct *sig = p->signal;
3451 struct task_cputime cputime;
3452 cputime_t rtime, utime, total;
49048622 3453
0cf55e1e 3454 thread_group_cputime(p, &cputime);
49048622 3455
0cf55e1e
HS
3456 total = cputime_add(cputime.utime, cputime.stime);
3457 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3458
0cf55e1e
HS
3459 if (total) {
3460 u64 temp;
49048622 3461
0cf55e1e
HS
3462 temp = (u64)(rtime * cputime.utime);
3463 do_div(temp, total);
3464 utime = (cputime_t)temp;
3465 } else
3466 utime = rtime;
3467
3468 sig->prev_utime = max(sig->prev_utime, utime);
3469 sig->prev_stime = max(sig->prev_stime,
3470 cputime_sub(rtime, sig->prev_utime));
3471
3472 *ut = sig->prev_utime;
3473 *st = sig->prev_stime;
49048622 3474}
49048622 3475#endif
49048622 3476
7835b98b
CL
3477/*
3478 * This function gets called by the timer code, with HZ frequency.
3479 * We call it with interrupts disabled.
3480 *
3481 * It also gets called by the fork code, when changing the parent's
3482 * timeslices.
3483 */
3484void scheduler_tick(void)
3485{
7835b98b
CL
3486 int cpu = smp_processor_id();
3487 struct rq *rq = cpu_rq(cpu);
dd41f596 3488 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3489
3490 sched_clock_tick();
dd41f596 3491
05fa785c 3492 raw_spin_lock(&rq->lock);
3e51f33f 3493 update_rq_clock(rq);
f1a438d8 3494 update_cpu_load(rq);
fa85ae24 3495 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3496 raw_spin_unlock(&rq->lock);
7835b98b 3497
49f47433 3498 perf_event_task_tick(curr);
e220d2dc 3499
e418e1c2 3500#ifdef CONFIG_SMP
dd41f596
IM
3501 rq->idle_at_tick = idle_cpu(cpu);
3502 trigger_load_balance(rq, cpu);
e418e1c2 3503#endif
1da177e4
LT
3504}
3505
132380a0 3506notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3507{
3508 if (in_lock_functions(addr)) {
3509 addr = CALLER_ADDR2;
3510 if (in_lock_functions(addr))
3511 addr = CALLER_ADDR3;
3512 }
3513 return addr;
3514}
1da177e4 3515
7e49fcce
SR
3516#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3517 defined(CONFIG_PREEMPT_TRACER))
3518
43627582 3519void __kprobes add_preempt_count(int val)
1da177e4 3520{
6cd8a4bb 3521#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3522 /*
3523 * Underflow?
3524 */
9a11b49a
IM
3525 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3526 return;
6cd8a4bb 3527#endif
1da177e4 3528 preempt_count() += val;
6cd8a4bb 3529#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3530 /*
3531 * Spinlock count overflowing soon?
3532 */
33859f7f
MOS
3533 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3534 PREEMPT_MASK - 10);
6cd8a4bb
SR
3535#endif
3536 if (preempt_count() == val)
3537 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3538}
3539EXPORT_SYMBOL(add_preempt_count);
3540
43627582 3541void __kprobes sub_preempt_count(int val)
1da177e4 3542{
6cd8a4bb 3543#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3544 /*
3545 * Underflow?
3546 */
01e3eb82 3547 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3548 return;
1da177e4
LT
3549 /*
3550 * Is the spinlock portion underflowing?
3551 */
9a11b49a
IM
3552 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3553 !(preempt_count() & PREEMPT_MASK)))
3554 return;
6cd8a4bb 3555#endif
9a11b49a 3556
6cd8a4bb
SR
3557 if (preempt_count() == val)
3558 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3559 preempt_count() -= val;
3560}
3561EXPORT_SYMBOL(sub_preempt_count);
3562
3563#endif
3564
3565/*
dd41f596 3566 * Print scheduling while atomic bug:
1da177e4 3567 */
dd41f596 3568static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3569{
838225b4
SS
3570 struct pt_regs *regs = get_irq_regs();
3571
3df0fc5b
PZ
3572 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3573 prev->comm, prev->pid, preempt_count());
838225b4 3574
dd41f596 3575 debug_show_held_locks(prev);
e21f5b15 3576 print_modules();
dd41f596
IM
3577 if (irqs_disabled())
3578 print_irqtrace_events(prev);
838225b4
SS
3579
3580 if (regs)
3581 show_regs(regs);
3582 else
3583 dump_stack();
dd41f596 3584}
1da177e4 3585
dd41f596
IM
3586/*
3587 * Various schedule()-time debugging checks and statistics:
3588 */
3589static inline void schedule_debug(struct task_struct *prev)
3590{
1da177e4 3591 /*
41a2d6cf 3592 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3593 * schedule() atomically, we ignore that path for now.
3594 * Otherwise, whine if we are scheduling when we should not be.
3595 */
3f33a7ce 3596 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3597 __schedule_bug(prev);
3598
1da177e4
LT
3599 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3600
2d72376b 3601 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3602#ifdef CONFIG_SCHEDSTATS
3603 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3604 schedstat_inc(this_rq(), bkl_count);
3605 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3606 }
3607#endif
dd41f596
IM
3608}
3609
6cecd084 3610static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3611{
a64692a3
MG
3612 if (prev->se.on_rq)
3613 update_rq_clock(rq);
3614 rq->skip_clock_update = 0;
6cecd084 3615 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3616}
3617
dd41f596
IM
3618/*
3619 * Pick up the highest-prio task:
3620 */
3621static inline struct task_struct *
b67802ea 3622pick_next_task(struct rq *rq)
dd41f596 3623{
5522d5d5 3624 const struct sched_class *class;
dd41f596 3625 struct task_struct *p;
1da177e4
LT
3626
3627 /*
dd41f596
IM
3628 * Optimization: we know that if all tasks are in
3629 * the fair class we can call that function directly:
1da177e4 3630 */
dd41f596 3631 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3632 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3633 if (likely(p))
3634 return p;
1da177e4
LT
3635 }
3636
dd41f596
IM
3637 class = sched_class_highest;
3638 for ( ; ; ) {
fb8d4724 3639 p = class->pick_next_task(rq);
dd41f596
IM
3640 if (p)
3641 return p;
3642 /*
3643 * Will never be NULL as the idle class always
3644 * returns a non-NULL p:
3645 */
3646 class = class->next;
3647 }
3648}
1da177e4 3649
dd41f596
IM
3650/*
3651 * schedule() is the main scheduler function.
3652 */
ff743345 3653asmlinkage void __sched schedule(void)
dd41f596
IM
3654{
3655 struct task_struct *prev, *next;
67ca7bde 3656 unsigned long *switch_count;
dd41f596 3657 struct rq *rq;
31656519 3658 int cpu;
dd41f596 3659
ff743345
PZ
3660need_resched:
3661 preempt_disable();
dd41f596
IM
3662 cpu = smp_processor_id();
3663 rq = cpu_rq(cpu);
d6714c22 3664 rcu_sched_qs(cpu);
dd41f596
IM
3665 prev = rq->curr;
3666 switch_count = &prev->nivcsw;
3667
3668 release_kernel_lock(prev);
3669need_resched_nonpreemptible:
3670
3671 schedule_debug(prev);
1da177e4 3672
31656519 3673 if (sched_feat(HRTICK))
f333fdc9 3674 hrtick_clear(rq);
8f4d37ec 3675
05fa785c 3676 raw_spin_lock_irq(&rq->lock);
1e819950 3677 clear_tsk_need_resched(prev);
1da177e4 3678
1da177e4 3679 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3680 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3681 prev->state = TASK_RUNNING;
16882c1e 3682 else
371fd7e7 3683 deactivate_task(rq, prev, DEQUEUE_SLEEP);
dd41f596 3684 switch_count = &prev->nvcsw;
1da177e4
LT
3685 }
3686
3f029d3c 3687 pre_schedule(rq, prev);
f65eda4f 3688
dd41f596 3689 if (unlikely(!rq->nr_running))
1da177e4 3690 idle_balance(cpu, rq);
1da177e4 3691
df1c99d4 3692 put_prev_task(rq, prev);
b67802ea 3693 next = pick_next_task(rq);
1da177e4 3694
1da177e4 3695 if (likely(prev != next)) {
673a90a1 3696 sched_info_switch(prev, next);
49f47433 3697 perf_event_task_sched_out(prev, next);
673a90a1 3698
1da177e4
LT
3699 rq->nr_switches++;
3700 rq->curr = next;
3701 ++*switch_count;
3702
dd41f596 3703 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3704 /*
3705 * the context switch might have flipped the stack from under
3706 * us, hence refresh the local variables.
3707 */
3708 cpu = smp_processor_id();
3709 rq = cpu_rq(cpu);
1da177e4 3710 } else
05fa785c 3711 raw_spin_unlock_irq(&rq->lock);
1da177e4 3712
3f029d3c 3713 post_schedule(rq);
1da177e4 3714
6d558c3a
YZ
3715 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3716 prev = rq->curr;
3717 switch_count = &prev->nivcsw;
1da177e4 3718 goto need_resched_nonpreemptible;
6d558c3a 3719 }
8f4d37ec 3720
1da177e4 3721 preempt_enable_no_resched();
ff743345 3722 if (need_resched())
1da177e4
LT
3723 goto need_resched;
3724}
1da177e4
LT
3725EXPORT_SYMBOL(schedule);
3726
c08f7829 3727#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3728/*
3729 * Look out! "owner" is an entirely speculative pointer
3730 * access and not reliable.
3731 */
3732int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3733{
3734 unsigned int cpu;
3735 struct rq *rq;
3736
3737 if (!sched_feat(OWNER_SPIN))
3738 return 0;
3739
3740#ifdef CONFIG_DEBUG_PAGEALLOC
3741 /*
3742 * Need to access the cpu field knowing that
3743 * DEBUG_PAGEALLOC could have unmapped it if
3744 * the mutex owner just released it and exited.
3745 */
3746 if (probe_kernel_address(&owner->cpu, cpu))
3747 goto out;
3748#else
3749 cpu = owner->cpu;
3750#endif
3751
3752 /*
3753 * Even if the access succeeded (likely case),
3754 * the cpu field may no longer be valid.
3755 */
3756 if (cpu >= nr_cpumask_bits)
3757 goto out;
3758
3759 /*
3760 * We need to validate that we can do a
3761 * get_cpu() and that we have the percpu area.
3762 */
3763 if (!cpu_online(cpu))
3764 goto out;
3765
3766 rq = cpu_rq(cpu);
3767
3768 for (;;) {
3769 /*
3770 * Owner changed, break to re-assess state.
3771 */
3772 if (lock->owner != owner)
3773 break;
3774
3775 /*
3776 * Is that owner really running on that cpu?
3777 */
3778 if (task_thread_info(rq->curr) != owner || need_resched())
3779 return 0;
3780
3781 cpu_relax();
3782 }
3783out:
3784 return 1;
3785}
3786#endif
3787
1da177e4
LT
3788#ifdef CONFIG_PREEMPT
3789/*
2ed6e34f 3790 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3791 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3792 * occur there and call schedule directly.
3793 */
3794asmlinkage void __sched preempt_schedule(void)
3795{
3796 struct thread_info *ti = current_thread_info();
6478d880 3797
1da177e4
LT
3798 /*
3799 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3800 * we do not want to preempt the current task. Just return..
1da177e4 3801 */
beed33a8 3802 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3803 return;
3804
3a5c359a
AK
3805 do {
3806 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3807 schedule();
3a5c359a 3808 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3809
3a5c359a
AK
3810 /*
3811 * Check again in case we missed a preemption opportunity
3812 * between schedule and now.
3813 */
3814 barrier();
5ed0cec0 3815 } while (need_resched());
1da177e4 3816}
1da177e4
LT
3817EXPORT_SYMBOL(preempt_schedule);
3818
3819/*
2ed6e34f 3820 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3821 * off of irq context.
3822 * Note, that this is called and return with irqs disabled. This will
3823 * protect us against recursive calling from irq.
3824 */
3825asmlinkage void __sched preempt_schedule_irq(void)
3826{
3827 struct thread_info *ti = current_thread_info();
6478d880 3828
2ed6e34f 3829 /* Catch callers which need to be fixed */
1da177e4
LT
3830 BUG_ON(ti->preempt_count || !irqs_disabled());
3831
3a5c359a
AK
3832 do {
3833 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3834 local_irq_enable();
3835 schedule();
3836 local_irq_disable();
3a5c359a 3837 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3838
3a5c359a
AK
3839 /*
3840 * Check again in case we missed a preemption opportunity
3841 * between schedule and now.
3842 */
3843 barrier();
5ed0cec0 3844 } while (need_resched());
1da177e4
LT
3845}
3846
3847#endif /* CONFIG_PREEMPT */
3848
63859d4f 3849int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3850 void *key)
1da177e4 3851{
63859d4f 3852 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3853}
1da177e4
LT
3854EXPORT_SYMBOL(default_wake_function);
3855
3856/*
41a2d6cf
IM
3857 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3858 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3859 * number) then we wake all the non-exclusive tasks and one exclusive task.
3860 *
3861 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3862 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3863 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3864 */
78ddb08f 3865static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3866 int nr_exclusive, int wake_flags, void *key)
1da177e4 3867{
2e45874c 3868 wait_queue_t *curr, *next;
1da177e4 3869
2e45874c 3870 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3871 unsigned flags = curr->flags;
3872
63859d4f 3873 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3874 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3875 break;
3876 }
3877}
3878
3879/**
3880 * __wake_up - wake up threads blocked on a waitqueue.
3881 * @q: the waitqueue
3882 * @mode: which threads
3883 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3884 * @key: is directly passed to the wakeup function
50fa610a
DH
3885 *
3886 * It may be assumed that this function implies a write memory barrier before
3887 * changing the task state if and only if any tasks are woken up.
1da177e4 3888 */
7ad5b3a5 3889void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3890 int nr_exclusive, void *key)
1da177e4
LT
3891{
3892 unsigned long flags;
3893
3894 spin_lock_irqsave(&q->lock, flags);
3895 __wake_up_common(q, mode, nr_exclusive, 0, key);
3896 spin_unlock_irqrestore(&q->lock, flags);
3897}
1da177e4
LT
3898EXPORT_SYMBOL(__wake_up);
3899
3900/*
3901 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3902 */
7ad5b3a5 3903void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3904{
3905 __wake_up_common(q, mode, 1, 0, NULL);
3906}
3907
4ede816a
DL
3908void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3909{
3910 __wake_up_common(q, mode, 1, 0, key);
3911}
3912
1da177e4 3913/**
4ede816a 3914 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3915 * @q: the waitqueue
3916 * @mode: which threads
3917 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3918 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3919 *
3920 * The sync wakeup differs that the waker knows that it will schedule
3921 * away soon, so while the target thread will be woken up, it will not
3922 * be migrated to another CPU - ie. the two threads are 'synchronized'
3923 * with each other. This can prevent needless bouncing between CPUs.
3924 *
3925 * On UP it can prevent extra preemption.
50fa610a
DH
3926 *
3927 * It may be assumed that this function implies a write memory barrier before
3928 * changing the task state if and only if any tasks are woken up.
1da177e4 3929 */
4ede816a
DL
3930void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3931 int nr_exclusive, void *key)
1da177e4
LT
3932{
3933 unsigned long flags;
7d478721 3934 int wake_flags = WF_SYNC;
1da177e4
LT
3935
3936 if (unlikely(!q))
3937 return;
3938
3939 if (unlikely(!nr_exclusive))
7d478721 3940 wake_flags = 0;
1da177e4
LT
3941
3942 spin_lock_irqsave(&q->lock, flags);
7d478721 3943 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3944 spin_unlock_irqrestore(&q->lock, flags);
3945}
4ede816a
DL
3946EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3947
3948/*
3949 * __wake_up_sync - see __wake_up_sync_key()
3950 */
3951void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3952{
3953 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3954}
1da177e4
LT
3955EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3956
65eb3dc6
KD
3957/**
3958 * complete: - signals a single thread waiting on this completion
3959 * @x: holds the state of this particular completion
3960 *
3961 * This will wake up a single thread waiting on this completion. Threads will be
3962 * awakened in the same order in which they were queued.
3963 *
3964 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3965 *
3966 * It may be assumed that this function implies a write memory barrier before
3967 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3968 */
b15136e9 3969void complete(struct completion *x)
1da177e4
LT
3970{
3971 unsigned long flags;
3972
3973 spin_lock_irqsave(&x->wait.lock, flags);
3974 x->done++;
d9514f6c 3975 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3976 spin_unlock_irqrestore(&x->wait.lock, flags);
3977}
3978EXPORT_SYMBOL(complete);
3979
65eb3dc6
KD
3980/**
3981 * complete_all: - signals all threads waiting on this completion
3982 * @x: holds the state of this particular completion
3983 *
3984 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3985 *
3986 * It may be assumed that this function implies a write memory barrier before
3987 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3988 */
b15136e9 3989void complete_all(struct completion *x)
1da177e4
LT
3990{
3991 unsigned long flags;
3992
3993 spin_lock_irqsave(&x->wait.lock, flags);
3994 x->done += UINT_MAX/2;
d9514f6c 3995 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3996 spin_unlock_irqrestore(&x->wait.lock, flags);
3997}
3998EXPORT_SYMBOL(complete_all);
3999
8cbbe86d
AK
4000static inline long __sched
4001do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4002{
1da177e4
LT
4003 if (!x->done) {
4004 DECLARE_WAITQUEUE(wait, current);
4005
4006 wait.flags |= WQ_FLAG_EXCLUSIVE;
4007 __add_wait_queue_tail(&x->wait, &wait);
4008 do {
94d3d824 4009 if (signal_pending_state(state, current)) {
ea71a546
ON
4010 timeout = -ERESTARTSYS;
4011 break;
8cbbe86d
AK
4012 }
4013 __set_current_state(state);
1da177e4
LT
4014 spin_unlock_irq(&x->wait.lock);
4015 timeout = schedule_timeout(timeout);
4016 spin_lock_irq(&x->wait.lock);
ea71a546 4017 } while (!x->done && timeout);
1da177e4 4018 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4019 if (!x->done)
4020 return timeout;
1da177e4
LT
4021 }
4022 x->done--;
ea71a546 4023 return timeout ?: 1;
1da177e4 4024}
1da177e4 4025
8cbbe86d
AK
4026static long __sched
4027wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4028{
1da177e4
LT
4029 might_sleep();
4030
4031 spin_lock_irq(&x->wait.lock);
8cbbe86d 4032 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4033 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4034 return timeout;
4035}
1da177e4 4036
65eb3dc6
KD
4037/**
4038 * wait_for_completion: - waits for completion of a task
4039 * @x: holds the state of this particular completion
4040 *
4041 * This waits to be signaled for completion of a specific task. It is NOT
4042 * interruptible and there is no timeout.
4043 *
4044 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4045 * and interrupt capability. Also see complete().
4046 */
b15136e9 4047void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4048{
4049 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4050}
8cbbe86d 4051EXPORT_SYMBOL(wait_for_completion);
1da177e4 4052
65eb3dc6
KD
4053/**
4054 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4055 * @x: holds the state of this particular completion
4056 * @timeout: timeout value in jiffies
4057 *
4058 * This waits for either a completion of a specific task to be signaled or for a
4059 * specified timeout to expire. The timeout is in jiffies. It is not
4060 * interruptible.
4061 */
b15136e9 4062unsigned long __sched
8cbbe86d 4063wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4064{
8cbbe86d 4065 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4066}
8cbbe86d 4067EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4068
65eb3dc6
KD
4069/**
4070 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4071 * @x: holds the state of this particular completion
4072 *
4073 * This waits for completion of a specific task to be signaled. It is
4074 * interruptible.
4075 */
8cbbe86d 4076int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4077{
51e97990
AK
4078 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4079 if (t == -ERESTARTSYS)
4080 return t;
4081 return 0;
0fec171c 4082}
8cbbe86d 4083EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4084
65eb3dc6
KD
4085/**
4086 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4087 * @x: holds the state of this particular completion
4088 * @timeout: timeout value in jiffies
4089 *
4090 * This waits for either a completion of a specific task to be signaled or for a
4091 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4092 */
b15136e9 4093unsigned long __sched
8cbbe86d
AK
4094wait_for_completion_interruptible_timeout(struct completion *x,
4095 unsigned long timeout)
0fec171c 4096{
8cbbe86d 4097 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4098}
8cbbe86d 4099EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4100
65eb3dc6
KD
4101/**
4102 * wait_for_completion_killable: - waits for completion of a task (killable)
4103 * @x: holds the state of this particular completion
4104 *
4105 * This waits to be signaled for completion of a specific task. It can be
4106 * interrupted by a kill signal.
4107 */
009e577e
MW
4108int __sched wait_for_completion_killable(struct completion *x)
4109{
4110 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4111 if (t == -ERESTARTSYS)
4112 return t;
4113 return 0;
4114}
4115EXPORT_SYMBOL(wait_for_completion_killable);
4116
be4de352
DC
4117/**
4118 * try_wait_for_completion - try to decrement a completion without blocking
4119 * @x: completion structure
4120 *
4121 * Returns: 0 if a decrement cannot be done without blocking
4122 * 1 if a decrement succeeded.
4123 *
4124 * If a completion is being used as a counting completion,
4125 * attempt to decrement the counter without blocking. This
4126 * enables us to avoid waiting if the resource the completion
4127 * is protecting is not available.
4128 */
4129bool try_wait_for_completion(struct completion *x)
4130{
7539a3b3 4131 unsigned long flags;
be4de352
DC
4132 int ret = 1;
4133
7539a3b3 4134 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4135 if (!x->done)
4136 ret = 0;
4137 else
4138 x->done--;
7539a3b3 4139 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4140 return ret;
4141}
4142EXPORT_SYMBOL(try_wait_for_completion);
4143
4144/**
4145 * completion_done - Test to see if a completion has any waiters
4146 * @x: completion structure
4147 *
4148 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4149 * 1 if there are no waiters.
4150 *
4151 */
4152bool completion_done(struct completion *x)
4153{
7539a3b3 4154 unsigned long flags;
be4de352
DC
4155 int ret = 1;
4156
7539a3b3 4157 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4158 if (!x->done)
4159 ret = 0;
7539a3b3 4160 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4161 return ret;
4162}
4163EXPORT_SYMBOL(completion_done);
4164
8cbbe86d
AK
4165static long __sched
4166sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4167{
0fec171c
IM
4168 unsigned long flags;
4169 wait_queue_t wait;
4170
4171 init_waitqueue_entry(&wait, current);
1da177e4 4172
8cbbe86d 4173 __set_current_state(state);
1da177e4 4174
8cbbe86d
AK
4175 spin_lock_irqsave(&q->lock, flags);
4176 __add_wait_queue(q, &wait);
4177 spin_unlock(&q->lock);
4178 timeout = schedule_timeout(timeout);
4179 spin_lock_irq(&q->lock);
4180 __remove_wait_queue(q, &wait);
4181 spin_unlock_irqrestore(&q->lock, flags);
4182
4183 return timeout;
4184}
4185
4186void __sched interruptible_sleep_on(wait_queue_head_t *q)
4187{
4188 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4189}
1da177e4
LT
4190EXPORT_SYMBOL(interruptible_sleep_on);
4191
0fec171c 4192long __sched
95cdf3b7 4193interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4194{
8cbbe86d 4195 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4196}
1da177e4
LT
4197EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4198
0fec171c 4199void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4200{
8cbbe86d 4201 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4202}
1da177e4
LT
4203EXPORT_SYMBOL(sleep_on);
4204
0fec171c 4205long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4206{
8cbbe86d 4207 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4208}
1da177e4
LT
4209EXPORT_SYMBOL(sleep_on_timeout);
4210
b29739f9
IM
4211#ifdef CONFIG_RT_MUTEXES
4212
4213/*
4214 * rt_mutex_setprio - set the current priority of a task
4215 * @p: task
4216 * @prio: prio value (kernel-internal form)
4217 *
4218 * This function changes the 'effective' priority of a task. It does
4219 * not touch ->normal_prio like __setscheduler().
4220 *
4221 * Used by the rt_mutex code to implement priority inheritance logic.
4222 */
36c8b586 4223void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4224{
4225 unsigned long flags;
83b699ed 4226 int oldprio, on_rq, running;
70b97a7f 4227 struct rq *rq;
83ab0aa0 4228 const struct sched_class *prev_class;
b29739f9
IM
4229
4230 BUG_ON(prio < 0 || prio > MAX_PRIO);
4231
4232 rq = task_rq_lock(p, &flags);
4233
d5f9f942 4234 oldprio = p->prio;
83ab0aa0 4235 prev_class = p->sched_class;
dd41f596 4236 on_rq = p->se.on_rq;
051a1d1a 4237 running = task_current(rq, p);
0e1f3483 4238 if (on_rq)
69be72c1 4239 dequeue_task(rq, p, 0);
0e1f3483
HS
4240 if (running)
4241 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4242
4243 if (rt_prio(prio))
4244 p->sched_class = &rt_sched_class;
4245 else
4246 p->sched_class = &fair_sched_class;
4247
b29739f9
IM
4248 p->prio = prio;
4249
0e1f3483
HS
4250 if (running)
4251 p->sched_class->set_curr_task(rq);
dd41f596 4252 if (on_rq) {
371fd7e7 4253 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845
SR
4254
4255 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4256 }
4257 task_rq_unlock(rq, &flags);
4258}
4259
4260#endif
4261
36c8b586 4262void set_user_nice(struct task_struct *p, long nice)
1da177e4 4263{
dd41f596 4264 int old_prio, delta, on_rq;
1da177e4 4265 unsigned long flags;
70b97a7f 4266 struct rq *rq;
1da177e4
LT
4267
4268 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4269 return;
4270 /*
4271 * We have to be careful, if called from sys_setpriority(),
4272 * the task might be in the middle of scheduling on another CPU.
4273 */
4274 rq = task_rq_lock(p, &flags);
4275 /*
4276 * The RT priorities are set via sched_setscheduler(), but we still
4277 * allow the 'normal' nice value to be set - but as expected
4278 * it wont have any effect on scheduling until the task is
dd41f596 4279 * SCHED_FIFO/SCHED_RR:
1da177e4 4280 */
e05606d3 4281 if (task_has_rt_policy(p)) {
1da177e4
LT
4282 p->static_prio = NICE_TO_PRIO(nice);
4283 goto out_unlock;
4284 }
dd41f596 4285 on_rq = p->se.on_rq;
c09595f6 4286 if (on_rq)
69be72c1 4287 dequeue_task(rq, p, 0);
1da177e4 4288
1da177e4 4289 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4290 set_load_weight(p);
b29739f9
IM
4291 old_prio = p->prio;
4292 p->prio = effective_prio(p);
4293 delta = p->prio - old_prio;
1da177e4 4294
dd41f596 4295 if (on_rq) {
371fd7e7 4296 enqueue_task(rq, p, 0);
1da177e4 4297 /*
d5f9f942
AM
4298 * If the task increased its priority or is running and
4299 * lowered its priority, then reschedule its CPU:
1da177e4 4300 */
d5f9f942 4301 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4302 resched_task(rq->curr);
4303 }
4304out_unlock:
4305 task_rq_unlock(rq, &flags);
4306}
1da177e4
LT
4307EXPORT_SYMBOL(set_user_nice);
4308
e43379f1
MM
4309/*
4310 * can_nice - check if a task can reduce its nice value
4311 * @p: task
4312 * @nice: nice value
4313 */
36c8b586 4314int can_nice(const struct task_struct *p, const int nice)
e43379f1 4315{
024f4747
MM
4316 /* convert nice value [19,-20] to rlimit style value [1,40] */
4317 int nice_rlim = 20 - nice;
48f24c4d 4318
78d7d407 4319 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4320 capable(CAP_SYS_NICE));
4321}
4322
1da177e4
LT
4323#ifdef __ARCH_WANT_SYS_NICE
4324
4325/*
4326 * sys_nice - change the priority of the current process.
4327 * @increment: priority increment
4328 *
4329 * sys_setpriority is a more generic, but much slower function that
4330 * does similar things.
4331 */
5add95d4 4332SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4333{
48f24c4d 4334 long nice, retval;
1da177e4
LT
4335
4336 /*
4337 * Setpriority might change our priority at the same moment.
4338 * We don't have to worry. Conceptually one call occurs first
4339 * and we have a single winner.
4340 */
e43379f1
MM
4341 if (increment < -40)
4342 increment = -40;
1da177e4
LT
4343 if (increment > 40)
4344 increment = 40;
4345
2b8f836f 4346 nice = TASK_NICE(current) + increment;
1da177e4
LT
4347 if (nice < -20)
4348 nice = -20;
4349 if (nice > 19)
4350 nice = 19;
4351
e43379f1
MM
4352 if (increment < 0 && !can_nice(current, nice))
4353 return -EPERM;
4354
1da177e4
LT
4355 retval = security_task_setnice(current, nice);
4356 if (retval)
4357 return retval;
4358
4359 set_user_nice(current, nice);
4360 return 0;
4361}
4362
4363#endif
4364
4365/**
4366 * task_prio - return the priority value of a given task.
4367 * @p: the task in question.
4368 *
4369 * This is the priority value as seen by users in /proc.
4370 * RT tasks are offset by -200. Normal tasks are centered
4371 * around 0, value goes from -16 to +15.
4372 */
36c8b586 4373int task_prio(const struct task_struct *p)
1da177e4
LT
4374{
4375 return p->prio - MAX_RT_PRIO;
4376}
4377
4378/**
4379 * task_nice - return the nice value of a given task.
4380 * @p: the task in question.
4381 */
36c8b586 4382int task_nice(const struct task_struct *p)
1da177e4
LT
4383{
4384 return TASK_NICE(p);
4385}
150d8bed 4386EXPORT_SYMBOL(task_nice);
1da177e4
LT
4387
4388/**
4389 * idle_cpu - is a given cpu idle currently?
4390 * @cpu: the processor in question.
4391 */
4392int idle_cpu(int cpu)
4393{
4394 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4395}
4396
1da177e4
LT
4397/**
4398 * idle_task - return the idle task for a given cpu.
4399 * @cpu: the processor in question.
4400 */
36c8b586 4401struct task_struct *idle_task(int cpu)
1da177e4
LT
4402{
4403 return cpu_rq(cpu)->idle;
4404}
4405
4406/**
4407 * find_process_by_pid - find a process with a matching PID value.
4408 * @pid: the pid in question.
4409 */
a9957449 4410static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4411{
228ebcbe 4412 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4413}
4414
4415/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4416static void
4417__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4418{
dd41f596 4419 BUG_ON(p->se.on_rq);
48f24c4d 4420
1da177e4
LT
4421 p->policy = policy;
4422 p->rt_priority = prio;
b29739f9
IM
4423 p->normal_prio = normal_prio(p);
4424 /* we are holding p->pi_lock already */
4425 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4426 if (rt_prio(p->prio))
4427 p->sched_class = &rt_sched_class;
4428 else
4429 p->sched_class = &fair_sched_class;
2dd73a4f 4430 set_load_weight(p);
1da177e4
LT
4431}
4432
c69e8d9c
DH
4433/*
4434 * check the target process has a UID that matches the current process's
4435 */
4436static bool check_same_owner(struct task_struct *p)
4437{
4438 const struct cred *cred = current_cred(), *pcred;
4439 bool match;
4440
4441 rcu_read_lock();
4442 pcred = __task_cred(p);
4443 match = (cred->euid == pcred->euid ||
4444 cred->euid == pcred->uid);
4445 rcu_read_unlock();
4446 return match;
4447}
4448
961ccddd
RR
4449static int __sched_setscheduler(struct task_struct *p, int policy,
4450 struct sched_param *param, bool user)
1da177e4 4451{
83b699ed 4452 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4453 unsigned long flags;
83ab0aa0 4454 const struct sched_class *prev_class;
70b97a7f 4455 struct rq *rq;
ca94c442 4456 int reset_on_fork;
1da177e4 4457
66e5393a
SR
4458 /* may grab non-irq protected spin_locks */
4459 BUG_ON(in_interrupt());
1da177e4
LT
4460recheck:
4461 /* double check policy once rq lock held */
ca94c442
LP
4462 if (policy < 0) {
4463 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4464 policy = oldpolicy = p->policy;
ca94c442
LP
4465 } else {
4466 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4467 policy &= ~SCHED_RESET_ON_FORK;
4468
4469 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4470 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4471 policy != SCHED_IDLE)
4472 return -EINVAL;
4473 }
4474
1da177e4
LT
4475 /*
4476 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4477 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4478 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4479 */
4480 if (param->sched_priority < 0 ||
95cdf3b7 4481 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4482 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4483 return -EINVAL;
e05606d3 4484 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4485 return -EINVAL;
4486
37e4ab3f
OC
4487 /*
4488 * Allow unprivileged RT tasks to decrease priority:
4489 */
961ccddd 4490 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4491 if (rt_policy(policy)) {
8dc3e909 4492 unsigned long rlim_rtprio;
8dc3e909
ON
4493
4494 if (!lock_task_sighand(p, &flags))
4495 return -ESRCH;
78d7d407 4496 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4497 unlock_task_sighand(p, &flags);
4498
4499 /* can't set/change the rt policy */
4500 if (policy != p->policy && !rlim_rtprio)
4501 return -EPERM;
4502
4503 /* can't increase priority */
4504 if (param->sched_priority > p->rt_priority &&
4505 param->sched_priority > rlim_rtprio)
4506 return -EPERM;
4507 }
dd41f596
IM
4508 /*
4509 * Like positive nice levels, dont allow tasks to
4510 * move out of SCHED_IDLE either:
4511 */
4512 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4513 return -EPERM;
5fe1d75f 4514
37e4ab3f 4515 /* can't change other user's priorities */
c69e8d9c 4516 if (!check_same_owner(p))
37e4ab3f 4517 return -EPERM;
ca94c442
LP
4518
4519 /* Normal users shall not reset the sched_reset_on_fork flag */
4520 if (p->sched_reset_on_fork && !reset_on_fork)
4521 return -EPERM;
37e4ab3f 4522 }
1da177e4 4523
725aad24 4524 if (user) {
b68aa230 4525#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4526 /*
4527 * Do not allow realtime tasks into groups that have no runtime
4528 * assigned.
4529 */
9a7e0b18
PZ
4530 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4531 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4532 return -EPERM;
b68aa230
PZ
4533#endif
4534
725aad24
JF
4535 retval = security_task_setscheduler(p, policy, param);
4536 if (retval)
4537 return retval;
4538 }
4539
b29739f9
IM
4540 /*
4541 * make sure no PI-waiters arrive (or leave) while we are
4542 * changing the priority of the task:
4543 */
1d615482 4544 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4545 /*
4546 * To be able to change p->policy safely, the apropriate
4547 * runqueue lock must be held.
4548 */
b29739f9 4549 rq = __task_rq_lock(p);
1da177e4
LT
4550 /* recheck policy now with rq lock held */
4551 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4552 policy = oldpolicy = -1;
b29739f9 4553 __task_rq_unlock(rq);
1d615482 4554 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4555 goto recheck;
4556 }
dd41f596 4557 on_rq = p->se.on_rq;
051a1d1a 4558 running = task_current(rq, p);
0e1f3483 4559 if (on_rq)
2e1cb74a 4560 deactivate_task(rq, p, 0);
0e1f3483
HS
4561 if (running)
4562 p->sched_class->put_prev_task(rq, p);
f6b53205 4563
ca94c442
LP
4564 p->sched_reset_on_fork = reset_on_fork;
4565
1da177e4 4566 oldprio = p->prio;
83ab0aa0 4567 prev_class = p->sched_class;
dd41f596 4568 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4569
0e1f3483
HS
4570 if (running)
4571 p->sched_class->set_curr_task(rq);
dd41f596
IM
4572 if (on_rq) {
4573 activate_task(rq, p, 0);
cb469845
SR
4574
4575 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4576 }
b29739f9 4577 __task_rq_unlock(rq);
1d615482 4578 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4579
95e02ca9
TG
4580 rt_mutex_adjust_pi(p);
4581
1da177e4
LT
4582 return 0;
4583}
961ccddd
RR
4584
4585/**
4586 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4587 * @p: the task in question.
4588 * @policy: new policy.
4589 * @param: structure containing the new RT priority.
4590 *
4591 * NOTE that the task may be already dead.
4592 */
4593int sched_setscheduler(struct task_struct *p, int policy,
4594 struct sched_param *param)
4595{
4596 return __sched_setscheduler(p, policy, param, true);
4597}
1da177e4
LT
4598EXPORT_SYMBOL_GPL(sched_setscheduler);
4599
961ccddd
RR
4600/**
4601 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4602 * @p: the task in question.
4603 * @policy: new policy.
4604 * @param: structure containing the new RT priority.
4605 *
4606 * Just like sched_setscheduler, only don't bother checking if the
4607 * current context has permission. For example, this is needed in
4608 * stop_machine(): we create temporary high priority worker threads,
4609 * but our caller might not have that capability.
4610 */
4611int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4612 struct sched_param *param)
4613{
4614 return __sched_setscheduler(p, policy, param, false);
4615}
4616
95cdf3b7
IM
4617static int
4618do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4619{
1da177e4
LT
4620 struct sched_param lparam;
4621 struct task_struct *p;
36c8b586 4622 int retval;
1da177e4
LT
4623
4624 if (!param || pid < 0)
4625 return -EINVAL;
4626 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4627 return -EFAULT;
5fe1d75f
ON
4628
4629 rcu_read_lock();
4630 retval = -ESRCH;
1da177e4 4631 p = find_process_by_pid(pid);
5fe1d75f
ON
4632 if (p != NULL)
4633 retval = sched_setscheduler(p, policy, &lparam);
4634 rcu_read_unlock();
36c8b586 4635
1da177e4
LT
4636 return retval;
4637}
4638
4639/**
4640 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4641 * @pid: the pid in question.
4642 * @policy: new policy.
4643 * @param: structure containing the new RT priority.
4644 */
5add95d4
HC
4645SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4646 struct sched_param __user *, param)
1da177e4 4647{
c21761f1
JB
4648 /* negative values for policy are not valid */
4649 if (policy < 0)
4650 return -EINVAL;
4651
1da177e4
LT
4652 return do_sched_setscheduler(pid, policy, param);
4653}
4654
4655/**
4656 * sys_sched_setparam - set/change the RT priority of a thread
4657 * @pid: the pid in question.
4658 * @param: structure containing the new RT priority.
4659 */
5add95d4 4660SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4661{
4662 return do_sched_setscheduler(pid, -1, param);
4663}
4664
4665/**
4666 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4667 * @pid: the pid in question.
4668 */
5add95d4 4669SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4670{
36c8b586 4671 struct task_struct *p;
3a5c359a 4672 int retval;
1da177e4
LT
4673
4674 if (pid < 0)
3a5c359a 4675 return -EINVAL;
1da177e4
LT
4676
4677 retval = -ESRCH;
5fe85be0 4678 rcu_read_lock();
1da177e4
LT
4679 p = find_process_by_pid(pid);
4680 if (p) {
4681 retval = security_task_getscheduler(p);
4682 if (!retval)
ca94c442
LP
4683 retval = p->policy
4684 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4685 }
5fe85be0 4686 rcu_read_unlock();
1da177e4
LT
4687 return retval;
4688}
4689
4690/**
ca94c442 4691 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4692 * @pid: the pid in question.
4693 * @param: structure containing the RT priority.
4694 */
5add95d4 4695SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4696{
4697 struct sched_param lp;
36c8b586 4698 struct task_struct *p;
3a5c359a 4699 int retval;
1da177e4
LT
4700
4701 if (!param || pid < 0)
3a5c359a 4702 return -EINVAL;
1da177e4 4703
5fe85be0 4704 rcu_read_lock();
1da177e4
LT
4705 p = find_process_by_pid(pid);
4706 retval = -ESRCH;
4707 if (!p)
4708 goto out_unlock;
4709
4710 retval = security_task_getscheduler(p);
4711 if (retval)
4712 goto out_unlock;
4713
4714 lp.sched_priority = p->rt_priority;
5fe85be0 4715 rcu_read_unlock();
1da177e4
LT
4716
4717 /*
4718 * This one might sleep, we cannot do it with a spinlock held ...
4719 */
4720 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4721
1da177e4
LT
4722 return retval;
4723
4724out_unlock:
5fe85be0 4725 rcu_read_unlock();
1da177e4
LT
4726 return retval;
4727}
4728
96f874e2 4729long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4730{
5a16f3d3 4731 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4732 struct task_struct *p;
4733 int retval;
1da177e4 4734
95402b38 4735 get_online_cpus();
23f5d142 4736 rcu_read_lock();
1da177e4
LT
4737
4738 p = find_process_by_pid(pid);
4739 if (!p) {
23f5d142 4740 rcu_read_unlock();
95402b38 4741 put_online_cpus();
1da177e4
LT
4742 return -ESRCH;
4743 }
4744
23f5d142 4745 /* Prevent p going away */
1da177e4 4746 get_task_struct(p);
23f5d142 4747 rcu_read_unlock();
1da177e4 4748
5a16f3d3
RR
4749 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4750 retval = -ENOMEM;
4751 goto out_put_task;
4752 }
4753 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4754 retval = -ENOMEM;
4755 goto out_free_cpus_allowed;
4756 }
1da177e4 4757 retval = -EPERM;
c69e8d9c 4758 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4759 goto out_unlock;
4760
e7834f8f
DQ
4761 retval = security_task_setscheduler(p, 0, NULL);
4762 if (retval)
4763 goto out_unlock;
4764
5a16f3d3
RR
4765 cpuset_cpus_allowed(p, cpus_allowed);
4766 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4767 again:
5a16f3d3 4768 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4769
8707d8b8 4770 if (!retval) {
5a16f3d3
RR
4771 cpuset_cpus_allowed(p, cpus_allowed);
4772 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4773 /*
4774 * We must have raced with a concurrent cpuset
4775 * update. Just reset the cpus_allowed to the
4776 * cpuset's cpus_allowed
4777 */
5a16f3d3 4778 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4779 goto again;
4780 }
4781 }
1da177e4 4782out_unlock:
5a16f3d3
RR
4783 free_cpumask_var(new_mask);
4784out_free_cpus_allowed:
4785 free_cpumask_var(cpus_allowed);
4786out_put_task:
1da177e4 4787 put_task_struct(p);
95402b38 4788 put_online_cpus();
1da177e4
LT
4789 return retval;
4790}
4791
4792static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4793 struct cpumask *new_mask)
1da177e4 4794{
96f874e2
RR
4795 if (len < cpumask_size())
4796 cpumask_clear(new_mask);
4797 else if (len > cpumask_size())
4798 len = cpumask_size();
4799
1da177e4
LT
4800 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4801}
4802
4803/**
4804 * sys_sched_setaffinity - set the cpu affinity of a process
4805 * @pid: pid of the process
4806 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4807 * @user_mask_ptr: user-space pointer to the new cpu mask
4808 */
5add95d4
HC
4809SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4810 unsigned long __user *, user_mask_ptr)
1da177e4 4811{
5a16f3d3 4812 cpumask_var_t new_mask;
1da177e4
LT
4813 int retval;
4814
5a16f3d3
RR
4815 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4816 return -ENOMEM;
1da177e4 4817
5a16f3d3
RR
4818 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4819 if (retval == 0)
4820 retval = sched_setaffinity(pid, new_mask);
4821 free_cpumask_var(new_mask);
4822 return retval;
1da177e4
LT
4823}
4824
96f874e2 4825long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4826{
36c8b586 4827 struct task_struct *p;
31605683
TG
4828 unsigned long flags;
4829 struct rq *rq;
1da177e4 4830 int retval;
1da177e4 4831
95402b38 4832 get_online_cpus();
23f5d142 4833 rcu_read_lock();
1da177e4
LT
4834
4835 retval = -ESRCH;
4836 p = find_process_by_pid(pid);
4837 if (!p)
4838 goto out_unlock;
4839
e7834f8f
DQ
4840 retval = security_task_getscheduler(p);
4841 if (retval)
4842 goto out_unlock;
4843
31605683 4844 rq = task_rq_lock(p, &flags);
96f874e2 4845 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4846 task_rq_unlock(rq, &flags);
1da177e4
LT
4847
4848out_unlock:
23f5d142 4849 rcu_read_unlock();
95402b38 4850 put_online_cpus();
1da177e4 4851
9531b62f 4852 return retval;
1da177e4
LT
4853}
4854
4855/**
4856 * sys_sched_getaffinity - get the cpu affinity of a process
4857 * @pid: pid of the process
4858 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4859 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4860 */
5add95d4
HC
4861SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4862 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4863{
4864 int ret;
f17c8607 4865 cpumask_var_t mask;
1da177e4 4866
84fba5ec 4867 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4868 return -EINVAL;
4869 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4870 return -EINVAL;
4871
f17c8607
RR
4872 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4873 return -ENOMEM;
1da177e4 4874
f17c8607
RR
4875 ret = sched_getaffinity(pid, mask);
4876 if (ret == 0) {
8bc037fb 4877 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4878
4879 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4880 ret = -EFAULT;
4881 else
cd3d8031 4882 ret = retlen;
f17c8607
RR
4883 }
4884 free_cpumask_var(mask);
1da177e4 4885
f17c8607 4886 return ret;
1da177e4
LT
4887}
4888
4889/**
4890 * sys_sched_yield - yield the current processor to other threads.
4891 *
dd41f596
IM
4892 * This function yields the current CPU to other tasks. If there are no
4893 * other threads running on this CPU then this function will return.
1da177e4 4894 */
5add95d4 4895SYSCALL_DEFINE0(sched_yield)
1da177e4 4896{
70b97a7f 4897 struct rq *rq = this_rq_lock();
1da177e4 4898
2d72376b 4899 schedstat_inc(rq, yld_count);
4530d7ab 4900 current->sched_class->yield_task(rq);
1da177e4
LT
4901
4902 /*
4903 * Since we are going to call schedule() anyway, there's
4904 * no need to preempt or enable interrupts:
4905 */
4906 __release(rq->lock);
8a25d5de 4907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4908 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4909 preempt_enable_no_resched();
4910
4911 schedule();
4912
4913 return 0;
4914}
4915
d86ee480
PZ
4916static inline int should_resched(void)
4917{
4918 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4919}
4920
e7b38404 4921static void __cond_resched(void)
1da177e4 4922{
e7aaaa69
FW
4923 add_preempt_count(PREEMPT_ACTIVE);
4924 schedule();
4925 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4926}
4927
02b67cc3 4928int __sched _cond_resched(void)
1da177e4 4929{
d86ee480 4930 if (should_resched()) {
1da177e4
LT
4931 __cond_resched();
4932 return 1;
4933 }
4934 return 0;
4935}
02b67cc3 4936EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4937
4938/*
613afbf8 4939 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4940 * call schedule, and on return reacquire the lock.
4941 *
41a2d6cf 4942 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4943 * operations here to prevent schedule() from being called twice (once via
4944 * spin_unlock(), once by hand).
4945 */
613afbf8 4946int __cond_resched_lock(spinlock_t *lock)
1da177e4 4947{
d86ee480 4948 int resched = should_resched();
6df3cecb
JK
4949 int ret = 0;
4950
f607c668
PZ
4951 lockdep_assert_held(lock);
4952
95c354fe 4953 if (spin_needbreak(lock) || resched) {
1da177e4 4954 spin_unlock(lock);
d86ee480 4955 if (resched)
95c354fe
NP
4956 __cond_resched();
4957 else
4958 cpu_relax();
6df3cecb 4959 ret = 1;
1da177e4 4960 spin_lock(lock);
1da177e4 4961 }
6df3cecb 4962 return ret;
1da177e4 4963}
613afbf8 4964EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4965
613afbf8 4966int __sched __cond_resched_softirq(void)
1da177e4
LT
4967{
4968 BUG_ON(!in_softirq());
4969
d86ee480 4970 if (should_resched()) {
98d82567 4971 local_bh_enable();
1da177e4
LT
4972 __cond_resched();
4973 local_bh_disable();
4974 return 1;
4975 }
4976 return 0;
4977}
613afbf8 4978EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4979
1da177e4
LT
4980/**
4981 * yield - yield the current processor to other threads.
4982 *
72fd4a35 4983 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4984 * thread runnable and calls sys_sched_yield().
4985 */
4986void __sched yield(void)
4987{
4988 set_current_state(TASK_RUNNING);
4989 sys_sched_yield();
4990}
1da177e4
LT
4991EXPORT_SYMBOL(yield);
4992
4993/*
41a2d6cf 4994 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4995 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4996 */
4997void __sched io_schedule(void)
4998{
54d35f29 4999 struct rq *rq = raw_rq();
1da177e4 5000
0ff92245 5001 delayacct_blkio_start();
1da177e4 5002 atomic_inc(&rq->nr_iowait);
8f0dfc34 5003 current->in_iowait = 1;
1da177e4 5004 schedule();
8f0dfc34 5005 current->in_iowait = 0;
1da177e4 5006 atomic_dec(&rq->nr_iowait);
0ff92245 5007 delayacct_blkio_end();
1da177e4 5008}
1da177e4
LT
5009EXPORT_SYMBOL(io_schedule);
5010
5011long __sched io_schedule_timeout(long timeout)
5012{
54d35f29 5013 struct rq *rq = raw_rq();
1da177e4
LT
5014 long ret;
5015
0ff92245 5016 delayacct_blkio_start();
1da177e4 5017 atomic_inc(&rq->nr_iowait);
8f0dfc34 5018 current->in_iowait = 1;
1da177e4 5019 ret = schedule_timeout(timeout);
8f0dfc34 5020 current->in_iowait = 0;
1da177e4 5021 atomic_dec(&rq->nr_iowait);
0ff92245 5022 delayacct_blkio_end();
1da177e4
LT
5023 return ret;
5024}
5025
5026/**
5027 * sys_sched_get_priority_max - return maximum RT priority.
5028 * @policy: scheduling class.
5029 *
5030 * this syscall returns the maximum rt_priority that can be used
5031 * by a given scheduling class.
5032 */
5add95d4 5033SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5034{
5035 int ret = -EINVAL;
5036
5037 switch (policy) {
5038 case SCHED_FIFO:
5039 case SCHED_RR:
5040 ret = MAX_USER_RT_PRIO-1;
5041 break;
5042 case SCHED_NORMAL:
b0a9499c 5043 case SCHED_BATCH:
dd41f596 5044 case SCHED_IDLE:
1da177e4
LT
5045 ret = 0;
5046 break;
5047 }
5048 return ret;
5049}
5050
5051/**
5052 * sys_sched_get_priority_min - return minimum RT priority.
5053 * @policy: scheduling class.
5054 *
5055 * this syscall returns the minimum rt_priority that can be used
5056 * by a given scheduling class.
5057 */
5add95d4 5058SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5059{
5060 int ret = -EINVAL;
5061
5062 switch (policy) {
5063 case SCHED_FIFO:
5064 case SCHED_RR:
5065 ret = 1;
5066 break;
5067 case SCHED_NORMAL:
b0a9499c 5068 case SCHED_BATCH:
dd41f596 5069 case SCHED_IDLE:
1da177e4
LT
5070 ret = 0;
5071 }
5072 return ret;
5073}
5074
5075/**
5076 * sys_sched_rr_get_interval - return the default timeslice of a process.
5077 * @pid: pid of the process.
5078 * @interval: userspace pointer to the timeslice value.
5079 *
5080 * this syscall writes the default timeslice value of a given process
5081 * into the user-space timespec buffer. A value of '0' means infinity.
5082 */
17da2bd9 5083SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5084 struct timespec __user *, interval)
1da177e4 5085{
36c8b586 5086 struct task_struct *p;
a4ec24b4 5087 unsigned int time_slice;
dba091b9
TG
5088 unsigned long flags;
5089 struct rq *rq;
3a5c359a 5090 int retval;
1da177e4 5091 struct timespec t;
1da177e4
LT
5092
5093 if (pid < 0)
3a5c359a 5094 return -EINVAL;
1da177e4
LT
5095
5096 retval = -ESRCH;
1a551ae7 5097 rcu_read_lock();
1da177e4
LT
5098 p = find_process_by_pid(pid);
5099 if (!p)
5100 goto out_unlock;
5101
5102 retval = security_task_getscheduler(p);
5103 if (retval)
5104 goto out_unlock;
5105
dba091b9
TG
5106 rq = task_rq_lock(p, &flags);
5107 time_slice = p->sched_class->get_rr_interval(rq, p);
5108 task_rq_unlock(rq, &flags);
a4ec24b4 5109
1a551ae7 5110 rcu_read_unlock();
a4ec24b4 5111 jiffies_to_timespec(time_slice, &t);
1da177e4 5112 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5113 return retval;
3a5c359a 5114
1da177e4 5115out_unlock:
1a551ae7 5116 rcu_read_unlock();
1da177e4
LT
5117 return retval;
5118}
5119
7c731e0a 5120static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5121
82a1fcb9 5122void sched_show_task(struct task_struct *p)
1da177e4 5123{
1da177e4 5124 unsigned long free = 0;
36c8b586 5125 unsigned state;
1da177e4 5126
1da177e4 5127 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5128 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5129 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5130#if BITS_PER_LONG == 32
1da177e4 5131 if (state == TASK_RUNNING)
3df0fc5b 5132 printk(KERN_CONT " running ");
1da177e4 5133 else
3df0fc5b 5134 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5135#else
5136 if (state == TASK_RUNNING)
3df0fc5b 5137 printk(KERN_CONT " running task ");
1da177e4 5138 else
3df0fc5b 5139 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5140#endif
5141#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5142 free = stack_not_used(p);
1da177e4 5143#endif
3df0fc5b 5144 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5145 task_pid_nr(p), task_pid_nr(p->real_parent),
5146 (unsigned long)task_thread_info(p)->flags);
1da177e4 5147
5fb5e6de 5148 show_stack(p, NULL);
1da177e4
LT
5149}
5150
e59e2ae2 5151void show_state_filter(unsigned long state_filter)
1da177e4 5152{
36c8b586 5153 struct task_struct *g, *p;
1da177e4 5154
4bd77321 5155#if BITS_PER_LONG == 32
3df0fc5b
PZ
5156 printk(KERN_INFO
5157 " task PC stack pid father\n");
1da177e4 5158#else
3df0fc5b
PZ
5159 printk(KERN_INFO
5160 " task PC stack pid father\n");
1da177e4
LT
5161#endif
5162 read_lock(&tasklist_lock);
5163 do_each_thread(g, p) {
5164 /*
5165 * reset the NMI-timeout, listing all files on a slow
5166 * console might take alot of time:
5167 */
5168 touch_nmi_watchdog();
39bc89fd 5169 if (!state_filter || (p->state & state_filter))
82a1fcb9 5170 sched_show_task(p);
1da177e4
LT
5171 } while_each_thread(g, p);
5172
04c9167f
JF
5173 touch_all_softlockup_watchdogs();
5174
dd41f596
IM
5175#ifdef CONFIG_SCHED_DEBUG
5176 sysrq_sched_debug_show();
5177#endif
1da177e4 5178 read_unlock(&tasklist_lock);
e59e2ae2
IM
5179 /*
5180 * Only show locks if all tasks are dumped:
5181 */
93335a21 5182 if (!state_filter)
e59e2ae2 5183 debug_show_all_locks();
1da177e4
LT
5184}
5185
1df21055
IM
5186void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5187{
dd41f596 5188 idle->sched_class = &idle_sched_class;
1df21055
IM
5189}
5190
f340c0d1
IM
5191/**
5192 * init_idle - set up an idle thread for a given CPU
5193 * @idle: task in question
5194 * @cpu: cpu the idle task belongs to
5195 *
5196 * NOTE: this function does not set the idle thread's NEED_RESCHED
5197 * flag, to make booting more robust.
5198 */
5c1e1767 5199void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5200{
70b97a7f 5201 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5202 unsigned long flags;
5203
05fa785c 5204 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5205
dd41f596 5206 __sched_fork(idle);
06b83b5f 5207 idle->state = TASK_RUNNING;
dd41f596
IM
5208 idle->se.exec_start = sched_clock();
5209
96f874e2 5210 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5211 __set_task_cpu(idle, cpu);
1da177e4 5212
1da177e4 5213 rq->curr = rq->idle = idle;
4866cde0
NP
5214#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5215 idle->oncpu = 1;
5216#endif
05fa785c 5217 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5218
5219 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5220#if defined(CONFIG_PREEMPT)
5221 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5222#else
a1261f54 5223 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5224#endif
dd41f596
IM
5225 /*
5226 * The idle tasks have their own, simple scheduling class:
5227 */
5228 idle->sched_class = &idle_sched_class;
fb52607a 5229 ftrace_graph_init_task(idle);
1da177e4
LT
5230}
5231
5232/*
5233 * In a system that switches off the HZ timer nohz_cpu_mask
5234 * indicates which cpus entered this state. This is used
5235 * in the rcu update to wait only for active cpus. For system
5236 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5237 * always be CPU_BITS_NONE.
1da177e4 5238 */
6a7b3dc3 5239cpumask_var_t nohz_cpu_mask;
1da177e4 5240
19978ca6
IM
5241/*
5242 * Increase the granularity value when there are more CPUs,
5243 * because with more CPUs the 'effective latency' as visible
5244 * to users decreases. But the relationship is not linear,
5245 * so pick a second-best guess by going with the log2 of the
5246 * number of CPUs.
5247 *
5248 * This idea comes from the SD scheduler of Con Kolivas:
5249 */
acb4a848 5250static int get_update_sysctl_factor(void)
19978ca6 5251{
4ca3ef71 5252 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5253 unsigned int factor;
5254
5255 switch (sysctl_sched_tunable_scaling) {
5256 case SCHED_TUNABLESCALING_NONE:
5257 factor = 1;
5258 break;
5259 case SCHED_TUNABLESCALING_LINEAR:
5260 factor = cpus;
5261 break;
5262 case SCHED_TUNABLESCALING_LOG:
5263 default:
5264 factor = 1 + ilog2(cpus);
5265 break;
5266 }
19978ca6 5267
acb4a848
CE
5268 return factor;
5269}
19978ca6 5270
acb4a848
CE
5271static void update_sysctl(void)
5272{
5273 unsigned int factor = get_update_sysctl_factor();
19978ca6 5274
0bcdcf28
CE
5275#define SET_SYSCTL(name) \
5276 (sysctl_##name = (factor) * normalized_sysctl_##name)
5277 SET_SYSCTL(sched_min_granularity);
5278 SET_SYSCTL(sched_latency);
5279 SET_SYSCTL(sched_wakeup_granularity);
5280 SET_SYSCTL(sched_shares_ratelimit);
5281#undef SET_SYSCTL
5282}
55cd5340 5283
0bcdcf28
CE
5284static inline void sched_init_granularity(void)
5285{
5286 update_sysctl();
19978ca6
IM
5287}
5288
1da177e4
LT
5289#ifdef CONFIG_SMP
5290/*
5291 * This is how migration works:
5292 *
70b97a7f 5293 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5294 * runqueue and wake up that CPU's migration thread.
5295 * 2) we down() the locked semaphore => thread blocks.
5296 * 3) migration thread wakes up (implicitly it forces the migrated
5297 * thread off the CPU)
5298 * 4) it gets the migration request and checks whether the migrated
5299 * task is still in the wrong runqueue.
5300 * 5) if it's in the wrong runqueue then the migration thread removes
5301 * it and puts it into the right queue.
5302 * 6) migration thread up()s the semaphore.
5303 * 7) we wake up and the migration is done.
5304 */
5305
5306/*
5307 * Change a given task's CPU affinity. Migrate the thread to a
5308 * proper CPU and schedule it away if the CPU it's executing on
5309 * is removed from the allowed bitmask.
5310 *
5311 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5312 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5313 * call is not atomic; no spinlocks may be held.
5314 */
96f874e2 5315int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5316{
70b97a7f 5317 struct migration_req req;
1da177e4 5318 unsigned long flags;
70b97a7f 5319 struct rq *rq;
48f24c4d 5320 int ret = 0;
1da177e4 5321
65cc8e48
PZ
5322 /*
5323 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5324 * drop the rq->lock and still rely on ->cpus_allowed.
5325 */
5326again:
5327 while (task_is_waking(p))
5328 cpu_relax();
1da177e4 5329 rq = task_rq_lock(p, &flags);
65cc8e48
PZ
5330 if (task_is_waking(p)) {
5331 task_rq_unlock(rq, &flags);
5332 goto again;
5333 }
e2912009 5334
6ad4c188 5335 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5336 ret = -EINVAL;
5337 goto out;
5338 }
5339
9985b0ba 5340 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5341 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5342 ret = -EINVAL;
5343 goto out;
5344 }
5345
73fe6aae 5346 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5347 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5348 else {
96f874e2
RR
5349 cpumask_copy(&p->cpus_allowed, new_mask);
5350 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5351 }
5352
1da177e4 5353 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5354 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5355 goto out;
5356
6ad4c188 5357 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5358 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5359 struct task_struct *mt = rq->migration_thread;
5360
5361 get_task_struct(mt);
1da177e4 5362 task_rq_unlock(rq, &flags);
47a70985 5363 wake_up_process(mt);
693525e3 5364 put_task_struct(mt);
1da177e4
LT
5365 wait_for_completion(&req.done);
5366 tlb_migrate_finish(p->mm);
5367 return 0;
5368 }
5369out:
5370 task_rq_unlock(rq, &flags);
48f24c4d 5371
1da177e4
LT
5372 return ret;
5373}
cd8ba7cd 5374EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5375
5376/*
41a2d6cf 5377 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5378 * this because either it can't run here any more (set_cpus_allowed()
5379 * away from this CPU, or CPU going down), or because we're
5380 * attempting to rebalance this task on exec (sched_exec).
5381 *
5382 * So we race with normal scheduler movements, but that's OK, as long
5383 * as the task is no longer on this CPU.
efc30814
KK
5384 *
5385 * Returns non-zero if task was successfully migrated.
1da177e4 5386 */
efc30814 5387static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5388{
70b97a7f 5389 struct rq *rq_dest, *rq_src;
e2912009 5390 int ret = 0;
1da177e4 5391
e761b772 5392 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5393 return ret;
1da177e4
LT
5394
5395 rq_src = cpu_rq(src_cpu);
5396 rq_dest = cpu_rq(dest_cpu);
5397
5398 double_rq_lock(rq_src, rq_dest);
5399 /* Already moved. */
5400 if (task_cpu(p) != src_cpu)
b1e38734 5401 goto done;
1da177e4 5402 /* Affinity changed (again). */
96f874e2 5403 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5404 goto fail;
1da177e4 5405
e2912009
PZ
5406 /*
5407 * If we're not on a rq, the next wake-up will ensure we're
5408 * placed properly.
5409 */
5410 if (p->se.on_rq) {
2e1cb74a 5411 deactivate_task(rq_src, p, 0);
e2912009 5412 set_task_cpu(p, dest_cpu);
dd41f596 5413 activate_task(rq_dest, p, 0);
15afe09b 5414 check_preempt_curr(rq_dest, p, 0);
1da177e4 5415 }
b1e38734 5416done:
efc30814 5417 ret = 1;
b1e38734 5418fail:
1da177e4 5419 double_rq_unlock(rq_src, rq_dest);
efc30814 5420 return ret;
1da177e4
LT
5421}
5422
03b042bf
PM
5423#define RCU_MIGRATION_IDLE 0
5424#define RCU_MIGRATION_NEED_QS 1
5425#define RCU_MIGRATION_GOT_QS 2
5426#define RCU_MIGRATION_MUST_SYNC 3
5427
1da177e4
LT
5428/*
5429 * migration_thread - this is a highprio system thread that performs
5430 * thread migration by bumping thread off CPU then 'pushing' onto
5431 * another runqueue.
5432 */
95cdf3b7 5433static int migration_thread(void *data)
1da177e4 5434{
03b042bf 5435 int badcpu;
1da177e4 5436 int cpu = (long)data;
70b97a7f 5437 struct rq *rq;
1da177e4
LT
5438
5439 rq = cpu_rq(cpu);
5440 BUG_ON(rq->migration_thread != current);
5441
5442 set_current_state(TASK_INTERRUPTIBLE);
5443 while (!kthread_should_stop()) {
70b97a7f 5444 struct migration_req *req;
1da177e4 5445 struct list_head *head;
1da177e4 5446
05fa785c 5447 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5448
5449 if (cpu_is_offline(cpu)) {
05fa785c 5450 raw_spin_unlock_irq(&rq->lock);
371cbb38 5451 break;
1da177e4
LT
5452 }
5453
5454 if (rq->active_balance) {
5455 active_load_balance(rq, cpu);
5456 rq->active_balance = 0;
5457 }
5458
5459 head = &rq->migration_queue;
5460
5461 if (list_empty(head)) {
05fa785c 5462 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5463 schedule();
5464 set_current_state(TASK_INTERRUPTIBLE);
5465 continue;
5466 }
70b97a7f 5467 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5468 list_del_init(head->next);
5469
03b042bf 5470 if (req->task != NULL) {
05fa785c 5471 raw_spin_unlock(&rq->lock);
03b042bf
PM
5472 __migrate_task(req->task, cpu, req->dest_cpu);
5473 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5474 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5475 raw_spin_unlock(&rq->lock);
03b042bf
PM
5476 } else {
5477 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5478 raw_spin_unlock(&rq->lock);
03b042bf
PM
5479 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5480 }
674311d5 5481 local_irq_enable();
1da177e4
LT
5482
5483 complete(&req->done);
5484 }
5485 __set_current_state(TASK_RUNNING);
1da177e4 5486
1da177e4
LT
5487 return 0;
5488}
5489
5490#ifdef CONFIG_HOTPLUG_CPU
054b9108 5491/*
3a4fa0a2 5492 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5493 */
6a1bdc1b 5494void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5495{
1445c08d
ON
5496 struct rq *rq = cpu_rq(dead_cpu);
5497 int needs_cpu, uninitialized_var(dest_cpu);
5498 unsigned long flags;
c1804d54 5499
1445c08d
ON
5500 local_irq_save(flags);
5501
5502 raw_spin_lock(&rq->lock);
5503 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5504 if (needs_cpu)
5505 dest_cpu = select_fallback_rq(dead_cpu, p);
5506 raw_spin_unlock(&rq->lock);
c1804d54
ON
5507 /*
5508 * It can only fail if we race with set_cpus_allowed(),
5509 * in the racer should migrate the task anyway.
5510 */
1445c08d 5511 if (needs_cpu)
c1804d54 5512 __migrate_task(p, dead_cpu, dest_cpu);
1445c08d 5513 local_irq_restore(flags);
1da177e4
LT
5514}
5515
5516/*
5517 * While a dead CPU has no uninterruptible tasks queued at this point,
5518 * it might still have a nonzero ->nr_uninterruptible counter, because
5519 * for performance reasons the counter is not stricly tracking tasks to
5520 * their home CPUs. So we just add the counter to another CPU's counter,
5521 * to keep the global sum constant after CPU-down:
5522 */
70b97a7f 5523static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5524{
6ad4c188 5525 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5526 unsigned long flags;
5527
5528 local_irq_save(flags);
5529 double_rq_lock(rq_src, rq_dest);
5530 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5531 rq_src->nr_uninterruptible = 0;
5532 double_rq_unlock(rq_src, rq_dest);
5533 local_irq_restore(flags);
5534}
5535
5536/* Run through task list and migrate tasks from the dead cpu. */
5537static void migrate_live_tasks(int src_cpu)
5538{
48f24c4d 5539 struct task_struct *p, *t;
1da177e4 5540
f7b4cddc 5541 read_lock(&tasklist_lock);
1da177e4 5542
48f24c4d
IM
5543 do_each_thread(t, p) {
5544 if (p == current)
1da177e4
LT
5545 continue;
5546
48f24c4d
IM
5547 if (task_cpu(p) == src_cpu)
5548 move_task_off_dead_cpu(src_cpu, p);
5549 } while_each_thread(t, p);
1da177e4 5550
f7b4cddc 5551 read_unlock(&tasklist_lock);
1da177e4
LT
5552}
5553
dd41f596
IM
5554/*
5555 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5556 * It does so by boosting its priority to highest possible.
5557 * Used by CPU offline code.
1da177e4
LT
5558 */
5559void sched_idle_next(void)
5560{
48f24c4d 5561 int this_cpu = smp_processor_id();
70b97a7f 5562 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5563 struct task_struct *p = rq->idle;
5564 unsigned long flags;
5565
5566 /* cpu has to be offline */
48f24c4d 5567 BUG_ON(cpu_online(this_cpu));
1da177e4 5568
48f24c4d
IM
5569 /*
5570 * Strictly not necessary since rest of the CPUs are stopped by now
5571 * and interrupts disabled on the current cpu.
1da177e4 5572 */
05fa785c 5573 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5574
dd41f596 5575 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5576
94bc9a7b 5577 activate_task(rq, p, 0);
1da177e4 5578
05fa785c 5579 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5580}
5581
48f24c4d
IM
5582/*
5583 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5584 * offline.
5585 */
5586void idle_task_exit(void)
5587{
5588 struct mm_struct *mm = current->active_mm;
5589
5590 BUG_ON(cpu_online(smp_processor_id()));
5591
5592 if (mm != &init_mm)
5593 switch_mm(mm, &init_mm, current);
5594 mmdrop(mm);
5595}
5596
054b9108 5597/* called under rq->lock with disabled interrupts */
36c8b586 5598static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5599{
70b97a7f 5600 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5601
5602 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5603 BUG_ON(!p->exit_state);
1da177e4
LT
5604
5605 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5606 BUG_ON(p->state == TASK_DEAD);
1da177e4 5607
48f24c4d 5608 get_task_struct(p);
1da177e4
LT
5609
5610 /*
5611 * Drop lock around migration; if someone else moves it,
41a2d6cf 5612 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5613 * fine.
5614 */
05fa785c 5615 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5616 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5617 raw_spin_lock_irq(&rq->lock);
1da177e4 5618
48f24c4d 5619 put_task_struct(p);
1da177e4
LT
5620}
5621
5622/* release_task() removes task from tasklist, so we won't find dead tasks. */
5623static void migrate_dead_tasks(unsigned int dead_cpu)
5624{
70b97a7f 5625 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5626 struct task_struct *next;
48f24c4d 5627
dd41f596
IM
5628 for ( ; ; ) {
5629 if (!rq->nr_running)
5630 break;
b67802ea 5631 next = pick_next_task(rq);
dd41f596
IM
5632 if (!next)
5633 break;
79c53799 5634 next->sched_class->put_prev_task(rq, next);
dd41f596 5635 migrate_dead(dead_cpu, next);
e692ab53 5636
1da177e4
LT
5637 }
5638}
dce48a84
TG
5639
5640/*
5641 * remove the tasks which were accounted by rq from calc_load_tasks.
5642 */
5643static void calc_global_load_remove(struct rq *rq)
5644{
5645 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5646 rq->calc_load_active = 0;
dce48a84 5647}
1da177e4
LT
5648#endif /* CONFIG_HOTPLUG_CPU */
5649
e692ab53
NP
5650#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5651
5652static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5653 {
5654 .procname = "sched_domain",
c57baf1e 5655 .mode = 0555,
e0361851 5656 },
56992309 5657 {}
e692ab53
NP
5658};
5659
5660static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5661 {
5662 .procname = "kernel",
c57baf1e 5663 .mode = 0555,
e0361851
AD
5664 .child = sd_ctl_dir,
5665 },
56992309 5666 {}
e692ab53
NP
5667};
5668
5669static struct ctl_table *sd_alloc_ctl_entry(int n)
5670{
5671 struct ctl_table *entry =
5cf9f062 5672 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5673
e692ab53
NP
5674 return entry;
5675}
5676
6382bc90
MM
5677static void sd_free_ctl_entry(struct ctl_table **tablep)
5678{
cd790076 5679 struct ctl_table *entry;
6382bc90 5680
cd790076
MM
5681 /*
5682 * In the intermediate directories, both the child directory and
5683 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5684 * will always be set. In the lowest directory the names are
cd790076
MM
5685 * static strings and all have proc handlers.
5686 */
5687 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5688 if (entry->child)
5689 sd_free_ctl_entry(&entry->child);
cd790076
MM
5690 if (entry->proc_handler == NULL)
5691 kfree(entry->procname);
5692 }
6382bc90
MM
5693
5694 kfree(*tablep);
5695 *tablep = NULL;
5696}
5697
e692ab53 5698static void
e0361851 5699set_table_entry(struct ctl_table *entry,
e692ab53
NP
5700 const char *procname, void *data, int maxlen,
5701 mode_t mode, proc_handler *proc_handler)
5702{
e692ab53
NP
5703 entry->procname = procname;
5704 entry->data = data;
5705 entry->maxlen = maxlen;
5706 entry->mode = mode;
5707 entry->proc_handler = proc_handler;
5708}
5709
5710static struct ctl_table *
5711sd_alloc_ctl_domain_table(struct sched_domain *sd)
5712{
a5d8c348 5713 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5714
ad1cdc1d
MM
5715 if (table == NULL)
5716 return NULL;
5717
e0361851 5718 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5719 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5720 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5721 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5722 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5723 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5724 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5725 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5726 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5727 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5728 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5729 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5730 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5731 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5732 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5733 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5734 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5735 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5736 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5737 &sd->cache_nice_tries,
5738 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5739 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5740 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5741 set_table_entry(&table[11], "name", sd->name,
5742 CORENAME_MAX_SIZE, 0444, proc_dostring);
5743 /* &table[12] is terminator */
e692ab53
NP
5744
5745 return table;
5746}
5747
9a4e7159 5748static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5749{
5750 struct ctl_table *entry, *table;
5751 struct sched_domain *sd;
5752 int domain_num = 0, i;
5753 char buf[32];
5754
5755 for_each_domain(cpu, sd)
5756 domain_num++;
5757 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5758 if (table == NULL)
5759 return NULL;
e692ab53
NP
5760
5761 i = 0;
5762 for_each_domain(cpu, sd) {
5763 snprintf(buf, 32, "domain%d", i);
e692ab53 5764 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5765 entry->mode = 0555;
e692ab53
NP
5766 entry->child = sd_alloc_ctl_domain_table(sd);
5767 entry++;
5768 i++;
5769 }
5770 return table;
5771}
5772
5773static struct ctl_table_header *sd_sysctl_header;
6382bc90 5774static void register_sched_domain_sysctl(void)
e692ab53 5775{
6ad4c188 5776 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5777 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5778 char buf[32];
5779
7378547f
MM
5780 WARN_ON(sd_ctl_dir[0].child);
5781 sd_ctl_dir[0].child = entry;
5782
ad1cdc1d
MM
5783 if (entry == NULL)
5784 return;
5785
6ad4c188 5786 for_each_possible_cpu(i) {
e692ab53 5787 snprintf(buf, 32, "cpu%d", i);
e692ab53 5788 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5789 entry->mode = 0555;
e692ab53 5790 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5791 entry++;
e692ab53 5792 }
7378547f
MM
5793
5794 WARN_ON(sd_sysctl_header);
e692ab53
NP
5795 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5796}
6382bc90 5797
7378547f 5798/* may be called multiple times per register */
6382bc90
MM
5799static void unregister_sched_domain_sysctl(void)
5800{
7378547f
MM
5801 if (sd_sysctl_header)
5802 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5803 sd_sysctl_header = NULL;
7378547f
MM
5804 if (sd_ctl_dir[0].child)
5805 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5806}
e692ab53 5807#else
6382bc90
MM
5808static void register_sched_domain_sysctl(void)
5809{
5810}
5811static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5812{
5813}
5814#endif
5815
1f11eb6a
GH
5816static void set_rq_online(struct rq *rq)
5817{
5818 if (!rq->online) {
5819 const struct sched_class *class;
5820
c6c4927b 5821 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5822 rq->online = 1;
5823
5824 for_each_class(class) {
5825 if (class->rq_online)
5826 class->rq_online(rq);
5827 }
5828 }
5829}
5830
5831static void set_rq_offline(struct rq *rq)
5832{
5833 if (rq->online) {
5834 const struct sched_class *class;
5835
5836 for_each_class(class) {
5837 if (class->rq_offline)
5838 class->rq_offline(rq);
5839 }
5840
c6c4927b 5841 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5842 rq->online = 0;
5843 }
5844}
5845
1da177e4
LT
5846/*
5847 * migration_call - callback that gets triggered when a CPU is added.
5848 * Here we can start up the necessary migration thread for the new CPU.
5849 */
48f24c4d
IM
5850static int __cpuinit
5851migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5852{
1da177e4 5853 struct task_struct *p;
48f24c4d 5854 int cpu = (long)hcpu;
1da177e4 5855 unsigned long flags;
70b97a7f 5856 struct rq *rq;
1da177e4
LT
5857
5858 switch (action) {
5be9361c 5859
1da177e4 5860 case CPU_UP_PREPARE:
8bb78442 5861 case CPU_UP_PREPARE_FROZEN:
dd41f596 5862 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5863 if (IS_ERR(p))
5864 return NOTIFY_BAD;
1da177e4
LT
5865 kthread_bind(p, cpu);
5866 /* Must be high prio: stop_machine expects to yield to it. */
5867 rq = task_rq_lock(p, &flags);
dd41f596 5868 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5869 task_rq_unlock(rq, &flags);
371cbb38 5870 get_task_struct(p);
1da177e4 5871 cpu_rq(cpu)->migration_thread = p;
a468d389 5872 rq->calc_load_update = calc_load_update;
1da177e4 5873 break;
48f24c4d 5874
1da177e4 5875 case CPU_ONLINE:
8bb78442 5876 case CPU_ONLINE_FROZEN:
3a4fa0a2 5877 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5878 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5879
5880 /* Update our root-domain */
5881 rq = cpu_rq(cpu);
05fa785c 5882 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5883 if (rq->rd) {
c6c4927b 5884 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5885
5886 set_rq_online(rq);
1f94ef59 5887 }
05fa785c 5888 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5889 break;
48f24c4d 5890
1da177e4
LT
5891#ifdef CONFIG_HOTPLUG_CPU
5892 case CPU_UP_CANCELED:
8bb78442 5893 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5894 if (!cpu_rq(cpu)->migration_thread)
5895 break;
41a2d6cf 5896 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5897 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5898 cpumask_any(cpu_online_mask));
1da177e4 5899 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5900 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5901 cpu_rq(cpu)->migration_thread = NULL;
5902 break;
48f24c4d 5903
1da177e4 5904 case CPU_DEAD:
8bb78442 5905 case CPU_DEAD_FROZEN:
1da177e4
LT
5906 migrate_live_tasks(cpu);
5907 rq = cpu_rq(cpu);
5908 kthread_stop(rq->migration_thread);
371cbb38 5909 put_task_struct(rq->migration_thread);
1da177e4
LT
5910 rq->migration_thread = NULL;
5911 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5912 raw_spin_lock_irq(&rq->lock);
2e1cb74a 5913 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5914 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5915 rq->idle->sched_class = &idle_sched_class;
1da177e4 5916 migrate_dead_tasks(cpu);
05fa785c 5917 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5918 migrate_nr_uninterruptible(rq);
5919 BUG_ON(rq->nr_running != 0);
dce48a84 5920 calc_global_load_remove(rq);
41a2d6cf
IM
5921 /*
5922 * No need to migrate the tasks: it was best-effort if
5923 * they didn't take sched_hotcpu_mutex. Just wake up
5924 * the requestors.
5925 */
05fa785c 5926 raw_spin_lock_irq(&rq->lock);
1da177e4 5927 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5928 struct migration_req *req;
5929
1da177e4 5930 req = list_entry(rq->migration_queue.next,
70b97a7f 5931 struct migration_req, list);
1da177e4 5932 list_del_init(&req->list);
05fa785c 5933 raw_spin_unlock_irq(&rq->lock);
1da177e4 5934 complete(&req->done);
05fa785c 5935 raw_spin_lock_irq(&rq->lock);
1da177e4 5936 }
05fa785c 5937 raw_spin_unlock_irq(&rq->lock);
1da177e4 5938 break;
57d885fe 5939
08f503b0
GH
5940 case CPU_DYING:
5941 case CPU_DYING_FROZEN:
57d885fe
GH
5942 /* Update our root-domain */
5943 rq = cpu_rq(cpu);
05fa785c 5944 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5945 if (rq->rd) {
c6c4927b 5946 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5947 set_rq_offline(rq);
57d885fe 5948 }
05fa785c 5949 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5950 break;
1da177e4
LT
5951#endif
5952 }
5953 return NOTIFY_OK;
5954}
5955
f38b0820
PM
5956/*
5957 * Register at high priority so that task migration (migrate_all_tasks)
5958 * happens before everything else. This has to be lower priority than
cdd6c482 5959 * the notifier in the perf_event subsystem, though.
1da177e4 5960 */
26c2143b 5961static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5962 .notifier_call = migration_call,
5963 .priority = 10
5964};
5965
7babe8db 5966static int __init migration_init(void)
1da177e4
LT
5967{
5968 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5969 int err;
48f24c4d
IM
5970
5971 /* Start one for the boot CPU: */
07dccf33
AM
5972 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5973 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5974 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5975 register_cpu_notifier(&migration_notifier);
7babe8db 5976
a004cd42 5977 return 0;
1da177e4 5978}
7babe8db 5979early_initcall(migration_init);
1da177e4
LT
5980#endif
5981
5982#ifdef CONFIG_SMP
476f3534 5983
3e9830dc 5984#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5985
f6630114
MT
5986static __read_mostly int sched_domain_debug_enabled;
5987
5988static int __init sched_domain_debug_setup(char *str)
5989{
5990 sched_domain_debug_enabled = 1;
5991
5992 return 0;
5993}
5994early_param("sched_debug", sched_domain_debug_setup);
5995
7c16ec58 5996static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5997 struct cpumask *groupmask)
1da177e4 5998{
4dcf6aff 5999 struct sched_group *group = sd->groups;
434d53b0 6000 char str[256];
1da177e4 6001
968ea6d8 6002 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6003 cpumask_clear(groupmask);
4dcf6aff
IM
6004
6005 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6006
6007 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6008 printk("does not load-balance\n");
4dcf6aff 6009 if (sd->parent)
3df0fc5b
PZ
6010 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6011 " has parent");
4dcf6aff 6012 return -1;
41c7ce9a
NP
6013 }
6014
3df0fc5b 6015 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6016
758b2cdc 6017 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6018 printk(KERN_ERR "ERROR: domain->span does not contain "
6019 "CPU%d\n", cpu);
4dcf6aff 6020 }
758b2cdc 6021 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6022 printk(KERN_ERR "ERROR: domain->groups does not contain"
6023 " CPU%d\n", cpu);
4dcf6aff 6024 }
1da177e4 6025
4dcf6aff 6026 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6027 do {
4dcf6aff 6028 if (!group) {
3df0fc5b
PZ
6029 printk("\n");
6030 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6031 break;
6032 }
6033
18a3885f 6034 if (!group->cpu_power) {
3df0fc5b
PZ
6035 printk(KERN_CONT "\n");
6036 printk(KERN_ERR "ERROR: domain->cpu_power not "
6037 "set\n");
4dcf6aff
IM
6038 break;
6039 }
1da177e4 6040
758b2cdc 6041 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6042 printk(KERN_CONT "\n");
6043 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6044 break;
6045 }
1da177e4 6046
758b2cdc 6047 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6048 printk(KERN_CONT "\n");
6049 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6050 break;
6051 }
1da177e4 6052
758b2cdc 6053 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6054
968ea6d8 6055 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6056
3df0fc5b 6057 printk(KERN_CONT " %s", str);
18a3885f 6058 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6059 printk(KERN_CONT " (cpu_power = %d)",
6060 group->cpu_power);
381512cf 6061 }
1da177e4 6062
4dcf6aff
IM
6063 group = group->next;
6064 } while (group != sd->groups);
3df0fc5b 6065 printk(KERN_CONT "\n");
1da177e4 6066
758b2cdc 6067 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6068 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6069
758b2cdc
RR
6070 if (sd->parent &&
6071 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6072 printk(KERN_ERR "ERROR: parent span is not a superset "
6073 "of domain->span\n");
4dcf6aff
IM
6074 return 0;
6075}
1da177e4 6076
4dcf6aff
IM
6077static void sched_domain_debug(struct sched_domain *sd, int cpu)
6078{
d5dd3db1 6079 cpumask_var_t groupmask;
4dcf6aff 6080 int level = 0;
1da177e4 6081
f6630114
MT
6082 if (!sched_domain_debug_enabled)
6083 return;
6084
4dcf6aff
IM
6085 if (!sd) {
6086 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6087 return;
6088 }
1da177e4 6089
4dcf6aff
IM
6090 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6091
d5dd3db1 6092 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6093 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6094 return;
6095 }
6096
4dcf6aff 6097 for (;;) {
7c16ec58 6098 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6099 break;
1da177e4
LT
6100 level++;
6101 sd = sd->parent;
33859f7f 6102 if (!sd)
4dcf6aff
IM
6103 break;
6104 }
d5dd3db1 6105 free_cpumask_var(groupmask);
1da177e4 6106}
6d6bc0ad 6107#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6108# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6109#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6110
1a20ff27 6111static int sd_degenerate(struct sched_domain *sd)
245af2c7 6112{
758b2cdc 6113 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6114 return 1;
6115
6116 /* Following flags need at least 2 groups */
6117 if (sd->flags & (SD_LOAD_BALANCE |
6118 SD_BALANCE_NEWIDLE |
6119 SD_BALANCE_FORK |
89c4710e
SS
6120 SD_BALANCE_EXEC |
6121 SD_SHARE_CPUPOWER |
6122 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6123 if (sd->groups != sd->groups->next)
6124 return 0;
6125 }
6126
6127 /* Following flags don't use groups */
c88d5910 6128 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6129 return 0;
6130
6131 return 1;
6132}
6133
48f24c4d
IM
6134static int
6135sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6136{
6137 unsigned long cflags = sd->flags, pflags = parent->flags;
6138
6139 if (sd_degenerate(parent))
6140 return 1;
6141
758b2cdc 6142 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6143 return 0;
6144
245af2c7
SS
6145 /* Flags needing groups don't count if only 1 group in parent */
6146 if (parent->groups == parent->groups->next) {
6147 pflags &= ~(SD_LOAD_BALANCE |
6148 SD_BALANCE_NEWIDLE |
6149 SD_BALANCE_FORK |
89c4710e
SS
6150 SD_BALANCE_EXEC |
6151 SD_SHARE_CPUPOWER |
6152 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6153 if (nr_node_ids == 1)
6154 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6155 }
6156 if (~cflags & pflags)
6157 return 0;
6158
6159 return 1;
6160}
6161
c6c4927b
RR
6162static void free_rootdomain(struct root_domain *rd)
6163{
047106ad
PZ
6164 synchronize_sched();
6165
68e74568
RR
6166 cpupri_cleanup(&rd->cpupri);
6167
c6c4927b
RR
6168 free_cpumask_var(rd->rto_mask);
6169 free_cpumask_var(rd->online);
6170 free_cpumask_var(rd->span);
6171 kfree(rd);
6172}
6173
57d885fe
GH
6174static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6175{
a0490fa3 6176 struct root_domain *old_rd = NULL;
57d885fe 6177 unsigned long flags;
57d885fe 6178
05fa785c 6179 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6180
6181 if (rq->rd) {
a0490fa3 6182 old_rd = rq->rd;
57d885fe 6183
c6c4927b 6184 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6185 set_rq_offline(rq);
57d885fe 6186
c6c4927b 6187 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6188
a0490fa3
IM
6189 /*
6190 * If we dont want to free the old_rt yet then
6191 * set old_rd to NULL to skip the freeing later
6192 * in this function:
6193 */
6194 if (!atomic_dec_and_test(&old_rd->refcount))
6195 old_rd = NULL;
57d885fe
GH
6196 }
6197
6198 atomic_inc(&rd->refcount);
6199 rq->rd = rd;
6200
c6c4927b 6201 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6202 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6203 set_rq_online(rq);
57d885fe 6204
05fa785c 6205 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6206
6207 if (old_rd)
6208 free_rootdomain(old_rd);
57d885fe
GH
6209}
6210
fd5e1b5d 6211static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6212{
36b7b6d4
PE
6213 gfp_t gfp = GFP_KERNEL;
6214
57d885fe
GH
6215 memset(rd, 0, sizeof(*rd));
6216
36b7b6d4
PE
6217 if (bootmem)
6218 gfp = GFP_NOWAIT;
c6c4927b 6219
36b7b6d4 6220 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6221 goto out;
36b7b6d4 6222 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6223 goto free_span;
36b7b6d4 6224 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6225 goto free_online;
6e0534f2 6226
0fb53029 6227 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6228 goto free_rto_mask;
c6c4927b 6229 return 0;
6e0534f2 6230
68e74568
RR
6231free_rto_mask:
6232 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6233free_online:
6234 free_cpumask_var(rd->online);
6235free_span:
6236 free_cpumask_var(rd->span);
0c910d28 6237out:
c6c4927b 6238 return -ENOMEM;
57d885fe
GH
6239}
6240
6241static void init_defrootdomain(void)
6242{
c6c4927b
RR
6243 init_rootdomain(&def_root_domain, true);
6244
57d885fe
GH
6245 atomic_set(&def_root_domain.refcount, 1);
6246}
6247
dc938520 6248static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6249{
6250 struct root_domain *rd;
6251
6252 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6253 if (!rd)
6254 return NULL;
6255
c6c4927b
RR
6256 if (init_rootdomain(rd, false) != 0) {
6257 kfree(rd);
6258 return NULL;
6259 }
57d885fe
GH
6260
6261 return rd;
6262}
6263
1da177e4 6264/*
0eab9146 6265 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6266 * hold the hotplug lock.
6267 */
0eab9146
IM
6268static void
6269cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6270{
70b97a7f 6271 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6272 struct sched_domain *tmp;
6273
6274 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6275 for (tmp = sd; tmp; ) {
245af2c7
SS
6276 struct sched_domain *parent = tmp->parent;
6277 if (!parent)
6278 break;
f29c9b1c 6279
1a848870 6280 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6281 tmp->parent = parent->parent;
1a848870
SS
6282 if (parent->parent)
6283 parent->parent->child = tmp;
f29c9b1c
LZ
6284 } else
6285 tmp = tmp->parent;
245af2c7
SS
6286 }
6287
1a848870 6288 if (sd && sd_degenerate(sd)) {
245af2c7 6289 sd = sd->parent;
1a848870
SS
6290 if (sd)
6291 sd->child = NULL;
6292 }
1da177e4
LT
6293
6294 sched_domain_debug(sd, cpu);
6295
57d885fe 6296 rq_attach_root(rq, rd);
674311d5 6297 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6298}
6299
6300/* cpus with isolated domains */
dcc30a35 6301static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6302
6303/* Setup the mask of cpus configured for isolated domains */
6304static int __init isolated_cpu_setup(char *str)
6305{
bdddd296 6306 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6307 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6308 return 1;
6309}
6310
8927f494 6311__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6312
6313/*
6711cab4
SS
6314 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6315 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6316 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6317 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6318 *
6319 * init_sched_build_groups will build a circular linked list of the groups
6320 * covered by the given span, and will set each group's ->cpumask correctly,
6321 * and ->cpu_power to 0.
6322 */
a616058b 6323static void
96f874e2
RR
6324init_sched_build_groups(const struct cpumask *span,
6325 const struct cpumask *cpu_map,
6326 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6327 struct sched_group **sg,
96f874e2
RR
6328 struct cpumask *tmpmask),
6329 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6330{
6331 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6332 int i;
6333
96f874e2 6334 cpumask_clear(covered);
7c16ec58 6335
abcd083a 6336 for_each_cpu(i, span) {
6711cab4 6337 struct sched_group *sg;
7c16ec58 6338 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6339 int j;
6340
758b2cdc 6341 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6342 continue;
6343
758b2cdc 6344 cpumask_clear(sched_group_cpus(sg));
18a3885f 6345 sg->cpu_power = 0;
1da177e4 6346
abcd083a 6347 for_each_cpu(j, span) {
7c16ec58 6348 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6349 continue;
6350
96f874e2 6351 cpumask_set_cpu(j, covered);
758b2cdc 6352 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6353 }
6354 if (!first)
6355 first = sg;
6356 if (last)
6357 last->next = sg;
6358 last = sg;
6359 }
6360 last->next = first;
6361}
6362
9c1cfda2 6363#define SD_NODES_PER_DOMAIN 16
1da177e4 6364
9c1cfda2 6365#ifdef CONFIG_NUMA
198e2f18 6366
9c1cfda2
JH
6367/**
6368 * find_next_best_node - find the next node to include in a sched_domain
6369 * @node: node whose sched_domain we're building
6370 * @used_nodes: nodes already in the sched_domain
6371 *
41a2d6cf 6372 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6373 * finds the closest node not already in the @used_nodes map.
6374 *
6375 * Should use nodemask_t.
6376 */
c5f59f08 6377static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6378{
6379 int i, n, val, min_val, best_node = 0;
6380
6381 min_val = INT_MAX;
6382
076ac2af 6383 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6384 /* Start at @node */
076ac2af 6385 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6386
6387 if (!nr_cpus_node(n))
6388 continue;
6389
6390 /* Skip already used nodes */
c5f59f08 6391 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6392 continue;
6393
6394 /* Simple min distance search */
6395 val = node_distance(node, n);
6396
6397 if (val < min_val) {
6398 min_val = val;
6399 best_node = n;
6400 }
6401 }
6402
c5f59f08 6403 node_set(best_node, *used_nodes);
9c1cfda2
JH
6404 return best_node;
6405}
6406
6407/**
6408 * sched_domain_node_span - get a cpumask for a node's sched_domain
6409 * @node: node whose cpumask we're constructing
73486722 6410 * @span: resulting cpumask
9c1cfda2 6411 *
41a2d6cf 6412 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6413 * should be one that prevents unnecessary balancing, but also spreads tasks
6414 * out optimally.
6415 */
96f874e2 6416static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6417{
c5f59f08 6418 nodemask_t used_nodes;
48f24c4d 6419 int i;
9c1cfda2 6420
6ca09dfc 6421 cpumask_clear(span);
c5f59f08 6422 nodes_clear(used_nodes);
9c1cfda2 6423
6ca09dfc 6424 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6425 node_set(node, used_nodes);
9c1cfda2
JH
6426
6427 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6428 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6429
6ca09dfc 6430 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6431 }
9c1cfda2 6432}
6d6bc0ad 6433#endif /* CONFIG_NUMA */
9c1cfda2 6434
5c45bf27 6435int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6436
6c99e9ad
RR
6437/*
6438 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6439 *
6440 * ( See the the comments in include/linux/sched.h:struct sched_group
6441 * and struct sched_domain. )
6c99e9ad
RR
6442 */
6443struct static_sched_group {
6444 struct sched_group sg;
6445 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6446};
6447
6448struct static_sched_domain {
6449 struct sched_domain sd;
6450 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6451};
6452
49a02c51
AH
6453struct s_data {
6454#ifdef CONFIG_NUMA
6455 int sd_allnodes;
6456 cpumask_var_t domainspan;
6457 cpumask_var_t covered;
6458 cpumask_var_t notcovered;
6459#endif
6460 cpumask_var_t nodemask;
6461 cpumask_var_t this_sibling_map;
6462 cpumask_var_t this_core_map;
6463 cpumask_var_t send_covered;
6464 cpumask_var_t tmpmask;
6465 struct sched_group **sched_group_nodes;
6466 struct root_domain *rd;
6467};
6468
2109b99e
AH
6469enum s_alloc {
6470 sa_sched_groups = 0,
6471 sa_rootdomain,
6472 sa_tmpmask,
6473 sa_send_covered,
6474 sa_this_core_map,
6475 sa_this_sibling_map,
6476 sa_nodemask,
6477 sa_sched_group_nodes,
6478#ifdef CONFIG_NUMA
6479 sa_notcovered,
6480 sa_covered,
6481 sa_domainspan,
6482#endif
6483 sa_none,
6484};
6485
9c1cfda2 6486/*
48f24c4d 6487 * SMT sched-domains:
9c1cfda2 6488 */
1da177e4 6489#ifdef CONFIG_SCHED_SMT
6c99e9ad 6490static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6491static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6492
41a2d6cf 6493static int
96f874e2
RR
6494cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6495 struct sched_group **sg, struct cpumask *unused)
1da177e4 6496{
6711cab4 6497 if (sg)
1871e52c 6498 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6499 return cpu;
6500}
6d6bc0ad 6501#endif /* CONFIG_SCHED_SMT */
1da177e4 6502
48f24c4d
IM
6503/*
6504 * multi-core sched-domains:
6505 */
1e9f28fa 6506#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6507static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6508static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6509#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6510
6511#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6512static int
96f874e2
RR
6513cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6514 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6515{
6711cab4 6516 int group;
7c16ec58 6517
c69fc56d 6518 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6519 group = cpumask_first(mask);
6711cab4 6520 if (sg)
6c99e9ad 6521 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6522 return group;
1e9f28fa
SS
6523}
6524#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6525static int
96f874e2
RR
6526cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6527 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6528{
6711cab4 6529 if (sg)
6c99e9ad 6530 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6531 return cpu;
6532}
6533#endif
6534
6c99e9ad
RR
6535static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6536static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6537
41a2d6cf 6538static int
96f874e2
RR
6539cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6540 struct sched_group **sg, struct cpumask *mask)
1da177e4 6541{
6711cab4 6542 int group;
48f24c4d 6543#ifdef CONFIG_SCHED_MC
6ca09dfc 6544 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6545 group = cpumask_first(mask);
1e9f28fa 6546#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6547 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6548 group = cpumask_first(mask);
1da177e4 6549#else
6711cab4 6550 group = cpu;
1da177e4 6551#endif
6711cab4 6552 if (sg)
6c99e9ad 6553 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6554 return group;
1da177e4
LT
6555}
6556
6557#ifdef CONFIG_NUMA
1da177e4 6558/*
9c1cfda2
JH
6559 * The init_sched_build_groups can't handle what we want to do with node
6560 * groups, so roll our own. Now each node has its own list of groups which
6561 * gets dynamically allocated.
1da177e4 6562 */
62ea9ceb 6563static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6564static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6565
62ea9ceb 6566static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6567static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6568
96f874e2
RR
6569static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6570 struct sched_group **sg,
6571 struct cpumask *nodemask)
9c1cfda2 6572{
6711cab4
SS
6573 int group;
6574
6ca09dfc 6575 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6576 group = cpumask_first(nodemask);
6711cab4
SS
6577
6578 if (sg)
6c99e9ad 6579 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6580 return group;
1da177e4 6581}
6711cab4 6582
08069033
SS
6583static void init_numa_sched_groups_power(struct sched_group *group_head)
6584{
6585 struct sched_group *sg = group_head;
6586 int j;
6587
6588 if (!sg)
6589 return;
3a5c359a 6590 do {
758b2cdc 6591 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6592 struct sched_domain *sd;
08069033 6593
6c99e9ad 6594 sd = &per_cpu(phys_domains, j).sd;
13318a71 6595 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6596 /*
6597 * Only add "power" once for each
6598 * physical package.
6599 */
6600 continue;
6601 }
08069033 6602
18a3885f 6603 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6604 }
6605 sg = sg->next;
6606 } while (sg != group_head);
08069033 6607}
0601a88d
AH
6608
6609static int build_numa_sched_groups(struct s_data *d,
6610 const struct cpumask *cpu_map, int num)
6611{
6612 struct sched_domain *sd;
6613 struct sched_group *sg, *prev;
6614 int n, j;
6615
6616 cpumask_clear(d->covered);
6617 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6618 if (cpumask_empty(d->nodemask)) {
6619 d->sched_group_nodes[num] = NULL;
6620 goto out;
6621 }
6622
6623 sched_domain_node_span(num, d->domainspan);
6624 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6625
6626 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6627 GFP_KERNEL, num);
6628 if (!sg) {
3df0fc5b
PZ
6629 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6630 num);
0601a88d
AH
6631 return -ENOMEM;
6632 }
6633 d->sched_group_nodes[num] = sg;
6634
6635 for_each_cpu(j, d->nodemask) {
6636 sd = &per_cpu(node_domains, j).sd;
6637 sd->groups = sg;
6638 }
6639
18a3885f 6640 sg->cpu_power = 0;
0601a88d
AH
6641 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6642 sg->next = sg;
6643 cpumask_or(d->covered, d->covered, d->nodemask);
6644
6645 prev = sg;
6646 for (j = 0; j < nr_node_ids; j++) {
6647 n = (num + j) % nr_node_ids;
6648 cpumask_complement(d->notcovered, d->covered);
6649 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6650 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6651 if (cpumask_empty(d->tmpmask))
6652 break;
6653 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6654 if (cpumask_empty(d->tmpmask))
6655 continue;
6656 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6657 GFP_KERNEL, num);
6658 if (!sg) {
3df0fc5b
PZ
6659 printk(KERN_WARNING
6660 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6661 return -ENOMEM;
6662 }
18a3885f 6663 sg->cpu_power = 0;
0601a88d
AH
6664 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6665 sg->next = prev->next;
6666 cpumask_or(d->covered, d->covered, d->tmpmask);
6667 prev->next = sg;
6668 prev = sg;
6669 }
6670out:
6671 return 0;
6672}
6d6bc0ad 6673#endif /* CONFIG_NUMA */
1da177e4 6674
a616058b 6675#ifdef CONFIG_NUMA
51888ca2 6676/* Free memory allocated for various sched_group structures */
96f874e2
RR
6677static void free_sched_groups(const struct cpumask *cpu_map,
6678 struct cpumask *nodemask)
51888ca2 6679{
a616058b 6680 int cpu, i;
51888ca2 6681
abcd083a 6682 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6683 struct sched_group **sched_group_nodes
6684 = sched_group_nodes_bycpu[cpu];
6685
51888ca2
SV
6686 if (!sched_group_nodes)
6687 continue;
6688
076ac2af 6689 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6690 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6691
6ca09dfc 6692 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6693 if (cpumask_empty(nodemask))
51888ca2
SV
6694 continue;
6695
6696 if (sg == NULL)
6697 continue;
6698 sg = sg->next;
6699next_sg:
6700 oldsg = sg;
6701 sg = sg->next;
6702 kfree(oldsg);
6703 if (oldsg != sched_group_nodes[i])
6704 goto next_sg;
6705 }
6706 kfree(sched_group_nodes);
6707 sched_group_nodes_bycpu[cpu] = NULL;
6708 }
51888ca2 6709}
6d6bc0ad 6710#else /* !CONFIG_NUMA */
96f874e2
RR
6711static void free_sched_groups(const struct cpumask *cpu_map,
6712 struct cpumask *nodemask)
a616058b
SS
6713{
6714}
6d6bc0ad 6715#endif /* CONFIG_NUMA */
51888ca2 6716
89c4710e
SS
6717/*
6718 * Initialize sched groups cpu_power.
6719 *
6720 * cpu_power indicates the capacity of sched group, which is used while
6721 * distributing the load between different sched groups in a sched domain.
6722 * Typically cpu_power for all the groups in a sched domain will be same unless
6723 * there are asymmetries in the topology. If there are asymmetries, group
6724 * having more cpu_power will pickup more load compared to the group having
6725 * less cpu_power.
89c4710e
SS
6726 */
6727static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6728{
6729 struct sched_domain *child;
6730 struct sched_group *group;
f93e65c1
PZ
6731 long power;
6732 int weight;
89c4710e
SS
6733
6734 WARN_ON(!sd || !sd->groups);
6735
13318a71 6736 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6737 return;
6738
6739 child = sd->child;
6740
18a3885f 6741 sd->groups->cpu_power = 0;
5517d86b 6742
f93e65c1
PZ
6743 if (!child) {
6744 power = SCHED_LOAD_SCALE;
6745 weight = cpumask_weight(sched_domain_span(sd));
6746 /*
6747 * SMT siblings share the power of a single core.
a52bfd73
PZ
6748 * Usually multiple threads get a better yield out of
6749 * that one core than a single thread would have,
6750 * reflect that in sd->smt_gain.
f93e65c1 6751 */
a52bfd73
PZ
6752 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6753 power *= sd->smt_gain;
f93e65c1 6754 power /= weight;
a52bfd73
PZ
6755 power >>= SCHED_LOAD_SHIFT;
6756 }
18a3885f 6757 sd->groups->cpu_power += power;
89c4710e
SS
6758 return;
6759 }
6760
89c4710e 6761 /*
f93e65c1 6762 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6763 */
6764 group = child->groups;
6765 do {
18a3885f 6766 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6767 group = group->next;
6768 } while (group != child->groups);
6769}
6770
7c16ec58
MT
6771/*
6772 * Initializers for schedule domains
6773 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6774 */
6775
a5d8c348
IM
6776#ifdef CONFIG_SCHED_DEBUG
6777# define SD_INIT_NAME(sd, type) sd->name = #type
6778#else
6779# define SD_INIT_NAME(sd, type) do { } while (0)
6780#endif
6781
7c16ec58 6782#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6783
7c16ec58
MT
6784#define SD_INIT_FUNC(type) \
6785static noinline void sd_init_##type(struct sched_domain *sd) \
6786{ \
6787 memset(sd, 0, sizeof(*sd)); \
6788 *sd = SD_##type##_INIT; \
1d3504fc 6789 sd->level = SD_LV_##type; \
a5d8c348 6790 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6791}
6792
6793SD_INIT_FUNC(CPU)
6794#ifdef CONFIG_NUMA
6795 SD_INIT_FUNC(ALLNODES)
6796 SD_INIT_FUNC(NODE)
6797#endif
6798#ifdef CONFIG_SCHED_SMT
6799 SD_INIT_FUNC(SIBLING)
6800#endif
6801#ifdef CONFIG_SCHED_MC
6802 SD_INIT_FUNC(MC)
6803#endif
6804
1d3504fc
HS
6805static int default_relax_domain_level = -1;
6806
6807static int __init setup_relax_domain_level(char *str)
6808{
30e0e178
LZ
6809 unsigned long val;
6810
6811 val = simple_strtoul(str, NULL, 0);
6812 if (val < SD_LV_MAX)
6813 default_relax_domain_level = val;
6814
1d3504fc
HS
6815 return 1;
6816}
6817__setup("relax_domain_level=", setup_relax_domain_level);
6818
6819static void set_domain_attribute(struct sched_domain *sd,
6820 struct sched_domain_attr *attr)
6821{
6822 int request;
6823
6824 if (!attr || attr->relax_domain_level < 0) {
6825 if (default_relax_domain_level < 0)
6826 return;
6827 else
6828 request = default_relax_domain_level;
6829 } else
6830 request = attr->relax_domain_level;
6831 if (request < sd->level) {
6832 /* turn off idle balance on this domain */
c88d5910 6833 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6834 } else {
6835 /* turn on idle balance on this domain */
c88d5910 6836 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6837 }
6838}
6839
2109b99e
AH
6840static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6841 const struct cpumask *cpu_map)
6842{
6843 switch (what) {
6844 case sa_sched_groups:
6845 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6846 d->sched_group_nodes = NULL;
6847 case sa_rootdomain:
6848 free_rootdomain(d->rd); /* fall through */
6849 case sa_tmpmask:
6850 free_cpumask_var(d->tmpmask); /* fall through */
6851 case sa_send_covered:
6852 free_cpumask_var(d->send_covered); /* fall through */
6853 case sa_this_core_map:
6854 free_cpumask_var(d->this_core_map); /* fall through */
6855 case sa_this_sibling_map:
6856 free_cpumask_var(d->this_sibling_map); /* fall through */
6857 case sa_nodemask:
6858 free_cpumask_var(d->nodemask); /* fall through */
6859 case sa_sched_group_nodes:
d1b55138 6860#ifdef CONFIG_NUMA
2109b99e
AH
6861 kfree(d->sched_group_nodes); /* fall through */
6862 case sa_notcovered:
6863 free_cpumask_var(d->notcovered); /* fall through */
6864 case sa_covered:
6865 free_cpumask_var(d->covered); /* fall through */
6866 case sa_domainspan:
6867 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6868#endif
2109b99e
AH
6869 case sa_none:
6870 break;
6871 }
6872}
3404c8d9 6873
2109b99e
AH
6874static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6875 const struct cpumask *cpu_map)
6876{
3404c8d9 6877#ifdef CONFIG_NUMA
2109b99e
AH
6878 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6879 return sa_none;
6880 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6881 return sa_domainspan;
6882 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6883 return sa_covered;
6884 /* Allocate the per-node list of sched groups */
6885 d->sched_group_nodes = kcalloc(nr_node_ids,
6886 sizeof(struct sched_group *), GFP_KERNEL);
6887 if (!d->sched_group_nodes) {
3df0fc5b 6888 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6889 return sa_notcovered;
d1b55138 6890 }
2109b99e 6891 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6892#endif
2109b99e
AH
6893 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6894 return sa_sched_group_nodes;
6895 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6896 return sa_nodemask;
6897 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6898 return sa_this_sibling_map;
6899 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6900 return sa_this_core_map;
6901 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6902 return sa_send_covered;
6903 d->rd = alloc_rootdomain();
6904 if (!d->rd) {
3df0fc5b 6905 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6906 return sa_tmpmask;
57d885fe 6907 }
2109b99e
AH
6908 return sa_rootdomain;
6909}
57d885fe 6910
7f4588f3
AH
6911static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6912 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6913{
6914 struct sched_domain *sd = NULL;
7c16ec58 6915#ifdef CONFIG_NUMA
7f4588f3 6916 struct sched_domain *parent;
1da177e4 6917
7f4588f3
AH
6918 d->sd_allnodes = 0;
6919 if (cpumask_weight(cpu_map) >
6920 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6921 sd = &per_cpu(allnodes_domains, i).sd;
6922 SD_INIT(sd, ALLNODES);
1d3504fc 6923 set_domain_attribute(sd, attr);
7f4588f3
AH
6924 cpumask_copy(sched_domain_span(sd), cpu_map);
6925 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6926 d->sd_allnodes = 1;
6927 }
6928 parent = sd;
6929
6930 sd = &per_cpu(node_domains, i).sd;
6931 SD_INIT(sd, NODE);
6932 set_domain_attribute(sd, attr);
6933 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6934 sd->parent = parent;
6935 if (parent)
6936 parent->child = sd;
6937 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6938#endif
7f4588f3
AH
6939 return sd;
6940}
1da177e4 6941
87cce662
AH
6942static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6943 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6944 struct sched_domain *parent, int i)
6945{
6946 struct sched_domain *sd;
6947 sd = &per_cpu(phys_domains, i).sd;
6948 SD_INIT(sd, CPU);
6949 set_domain_attribute(sd, attr);
6950 cpumask_copy(sched_domain_span(sd), d->nodemask);
6951 sd->parent = parent;
6952 if (parent)
6953 parent->child = sd;
6954 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6955 return sd;
6956}
1da177e4 6957
410c4081
AH
6958static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6959 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6960 struct sched_domain *parent, int i)
6961{
6962 struct sched_domain *sd = parent;
1e9f28fa 6963#ifdef CONFIG_SCHED_MC
410c4081
AH
6964 sd = &per_cpu(core_domains, i).sd;
6965 SD_INIT(sd, MC);
6966 set_domain_attribute(sd, attr);
6967 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6968 sd->parent = parent;
6969 parent->child = sd;
6970 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6971#endif
410c4081
AH
6972 return sd;
6973}
1e9f28fa 6974
d8173535
AH
6975static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6977 struct sched_domain *parent, int i)
6978{
6979 struct sched_domain *sd = parent;
1da177e4 6980#ifdef CONFIG_SCHED_SMT
d8173535
AH
6981 sd = &per_cpu(cpu_domains, i).sd;
6982 SD_INIT(sd, SIBLING);
6983 set_domain_attribute(sd, attr);
6984 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6985 sd->parent = parent;
6986 parent->child = sd;
6987 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6988#endif
d8173535
AH
6989 return sd;
6990}
1da177e4 6991
0e8e85c9
AH
6992static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6993 const struct cpumask *cpu_map, int cpu)
6994{
6995 switch (l) {
1da177e4 6996#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6997 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6998 cpumask_and(d->this_sibling_map, cpu_map,
6999 topology_thread_cpumask(cpu));
7000 if (cpu == cpumask_first(d->this_sibling_map))
7001 init_sched_build_groups(d->this_sibling_map, cpu_map,
7002 &cpu_to_cpu_group,
7003 d->send_covered, d->tmpmask);
7004 break;
1da177e4 7005#endif
1e9f28fa 7006#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7007 case SD_LV_MC: /* set up multi-core groups */
7008 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7009 if (cpu == cpumask_first(d->this_core_map))
7010 init_sched_build_groups(d->this_core_map, cpu_map,
7011 &cpu_to_core_group,
7012 d->send_covered, d->tmpmask);
7013 break;
1e9f28fa 7014#endif
86548096
AH
7015 case SD_LV_CPU: /* set up physical groups */
7016 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7017 if (!cpumask_empty(d->nodemask))
7018 init_sched_build_groups(d->nodemask, cpu_map,
7019 &cpu_to_phys_group,
7020 d->send_covered, d->tmpmask);
7021 break;
1da177e4 7022#ifdef CONFIG_NUMA
de616e36
AH
7023 case SD_LV_ALLNODES:
7024 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7025 d->send_covered, d->tmpmask);
7026 break;
7027#endif
0e8e85c9
AH
7028 default:
7029 break;
7c16ec58 7030 }
0e8e85c9 7031}
9c1cfda2 7032
2109b99e
AH
7033/*
7034 * Build sched domains for a given set of cpus and attach the sched domains
7035 * to the individual cpus
7036 */
7037static int __build_sched_domains(const struct cpumask *cpu_map,
7038 struct sched_domain_attr *attr)
7039{
7040 enum s_alloc alloc_state = sa_none;
7041 struct s_data d;
294b0c96 7042 struct sched_domain *sd;
2109b99e 7043 int i;
7c16ec58 7044#ifdef CONFIG_NUMA
2109b99e 7045 d.sd_allnodes = 0;
7c16ec58 7046#endif
9c1cfda2 7047
2109b99e
AH
7048 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7049 if (alloc_state != sa_rootdomain)
7050 goto error;
7051 alloc_state = sa_sched_groups;
9c1cfda2 7052
1da177e4 7053 /*
1a20ff27 7054 * Set up domains for cpus specified by the cpu_map.
1da177e4 7055 */
abcd083a 7056 for_each_cpu(i, cpu_map) {
49a02c51
AH
7057 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7058 cpu_map);
9761eea8 7059
7f4588f3 7060 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7061 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7062 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7063 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7064 }
9c1cfda2 7065
abcd083a 7066 for_each_cpu(i, cpu_map) {
0e8e85c9 7067 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7068 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7069 }
9c1cfda2 7070
1da177e4 7071 /* Set up physical groups */
86548096
AH
7072 for (i = 0; i < nr_node_ids; i++)
7073 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7074
1da177e4
LT
7075#ifdef CONFIG_NUMA
7076 /* Set up node groups */
de616e36
AH
7077 if (d.sd_allnodes)
7078 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7079
0601a88d
AH
7080 for (i = 0; i < nr_node_ids; i++)
7081 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7082 goto error;
1da177e4
LT
7083#endif
7084
7085 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7086#ifdef CONFIG_SCHED_SMT
abcd083a 7087 for_each_cpu(i, cpu_map) {
294b0c96 7088 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7089 init_sched_groups_power(i, sd);
5c45bf27 7090 }
1da177e4 7091#endif
1e9f28fa 7092#ifdef CONFIG_SCHED_MC
abcd083a 7093 for_each_cpu(i, cpu_map) {
294b0c96 7094 sd = &per_cpu(core_domains, i).sd;
89c4710e 7095 init_sched_groups_power(i, sd);
5c45bf27
SS
7096 }
7097#endif
1e9f28fa 7098
abcd083a 7099 for_each_cpu(i, cpu_map) {
294b0c96 7100 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7101 init_sched_groups_power(i, sd);
1da177e4
LT
7102 }
7103
9c1cfda2 7104#ifdef CONFIG_NUMA
076ac2af 7105 for (i = 0; i < nr_node_ids; i++)
49a02c51 7106 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7107
49a02c51 7108 if (d.sd_allnodes) {
6711cab4 7109 struct sched_group *sg;
f712c0c7 7110
96f874e2 7111 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7112 d.tmpmask);
f712c0c7
SS
7113 init_numa_sched_groups_power(sg);
7114 }
9c1cfda2
JH
7115#endif
7116
1da177e4 7117 /* Attach the domains */
abcd083a 7118 for_each_cpu(i, cpu_map) {
1da177e4 7119#ifdef CONFIG_SCHED_SMT
6c99e9ad 7120 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7121#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7122 sd = &per_cpu(core_domains, i).sd;
1da177e4 7123#else
6c99e9ad 7124 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7125#endif
49a02c51 7126 cpu_attach_domain(sd, d.rd, i);
1da177e4 7127 }
51888ca2 7128
2109b99e
AH
7129 d.sched_group_nodes = NULL; /* don't free this we still need it */
7130 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7131 return 0;
51888ca2 7132
51888ca2 7133error:
2109b99e
AH
7134 __free_domain_allocs(&d, alloc_state, cpu_map);
7135 return -ENOMEM;
1da177e4 7136}
029190c5 7137
96f874e2 7138static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7139{
7140 return __build_sched_domains(cpu_map, NULL);
7141}
7142
acc3f5d7 7143static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7144static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7145static struct sched_domain_attr *dattr_cur;
7146 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7147
7148/*
7149 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7150 * cpumask) fails, then fallback to a single sched domain,
7151 * as determined by the single cpumask fallback_doms.
029190c5 7152 */
4212823f 7153static cpumask_var_t fallback_doms;
029190c5 7154
ee79d1bd
HC
7155/*
7156 * arch_update_cpu_topology lets virtualized architectures update the
7157 * cpu core maps. It is supposed to return 1 if the topology changed
7158 * or 0 if it stayed the same.
7159 */
7160int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7161{
ee79d1bd 7162 return 0;
22e52b07
HC
7163}
7164
acc3f5d7
RR
7165cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7166{
7167 int i;
7168 cpumask_var_t *doms;
7169
7170 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7171 if (!doms)
7172 return NULL;
7173 for (i = 0; i < ndoms; i++) {
7174 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7175 free_sched_domains(doms, i);
7176 return NULL;
7177 }
7178 }
7179 return doms;
7180}
7181
7182void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7183{
7184 unsigned int i;
7185 for (i = 0; i < ndoms; i++)
7186 free_cpumask_var(doms[i]);
7187 kfree(doms);
7188}
7189
1a20ff27 7190/*
41a2d6cf 7191 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7192 * For now this just excludes isolated cpus, but could be used to
7193 * exclude other special cases in the future.
1a20ff27 7194 */
96f874e2 7195static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7196{
7378547f
MM
7197 int err;
7198
22e52b07 7199 arch_update_cpu_topology();
029190c5 7200 ndoms_cur = 1;
acc3f5d7 7201 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7202 if (!doms_cur)
acc3f5d7
RR
7203 doms_cur = &fallback_doms;
7204 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7205 dattr_cur = NULL;
acc3f5d7 7206 err = build_sched_domains(doms_cur[0]);
6382bc90 7207 register_sched_domain_sysctl();
7378547f
MM
7208
7209 return err;
1a20ff27
DG
7210}
7211
96f874e2
RR
7212static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7213 struct cpumask *tmpmask)
1da177e4 7214{
7c16ec58 7215 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7216}
1da177e4 7217
1a20ff27
DG
7218/*
7219 * Detach sched domains from a group of cpus specified in cpu_map
7220 * These cpus will now be attached to the NULL domain
7221 */
96f874e2 7222static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7223{
96f874e2
RR
7224 /* Save because hotplug lock held. */
7225 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7226 int i;
7227
abcd083a 7228 for_each_cpu(i, cpu_map)
57d885fe 7229 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7230 synchronize_sched();
96f874e2 7231 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7232}
7233
1d3504fc
HS
7234/* handle null as "default" */
7235static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7236 struct sched_domain_attr *new, int idx_new)
7237{
7238 struct sched_domain_attr tmp;
7239
7240 /* fast path */
7241 if (!new && !cur)
7242 return 1;
7243
7244 tmp = SD_ATTR_INIT;
7245 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7246 new ? (new + idx_new) : &tmp,
7247 sizeof(struct sched_domain_attr));
7248}
7249
029190c5
PJ
7250/*
7251 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7252 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7253 * doms_new[] to the current sched domain partitioning, doms_cur[].
7254 * It destroys each deleted domain and builds each new domain.
7255 *
acc3f5d7 7256 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7257 * The masks don't intersect (don't overlap.) We should setup one
7258 * sched domain for each mask. CPUs not in any of the cpumasks will
7259 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7260 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7261 * it as it is.
7262 *
acc3f5d7
RR
7263 * The passed in 'doms_new' should be allocated using
7264 * alloc_sched_domains. This routine takes ownership of it and will
7265 * free_sched_domains it when done with it. If the caller failed the
7266 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7267 * and partition_sched_domains() will fallback to the single partition
7268 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7269 *
96f874e2 7270 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7271 * ndoms_new == 0 is a special case for destroying existing domains,
7272 * and it will not create the default domain.
dfb512ec 7273 *
029190c5
PJ
7274 * Call with hotplug lock held
7275 */
acc3f5d7 7276void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7277 struct sched_domain_attr *dattr_new)
029190c5 7278{
dfb512ec 7279 int i, j, n;
d65bd5ec 7280 int new_topology;
029190c5 7281
712555ee 7282 mutex_lock(&sched_domains_mutex);
a1835615 7283
7378547f
MM
7284 /* always unregister in case we don't destroy any domains */
7285 unregister_sched_domain_sysctl();
7286
d65bd5ec
HC
7287 /* Let architecture update cpu core mappings. */
7288 new_topology = arch_update_cpu_topology();
7289
dfb512ec 7290 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7291
7292 /* Destroy deleted domains */
7293 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7294 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7295 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7296 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7297 goto match1;
7298 }
7299 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7300 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7301match1:
7302 ;
7303 }
7304
e761b772
MK
7305 if (doms_new == NULL) {
7306 ndoms_cur = 0;
acc3f5d7 7307 doms_new = &fallback_doms;
6ad4c188 7308 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7309 WARN_ON_ONCE(dattr_new);
e761b772
MK
7310 }
7311
029190c5
PJ
7312 /* Build new domains */
7313 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7314 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7315 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7316 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7317 goto match2;
7318 }
7319 /* no match - add a new doms_new */
acc3f5d7 7320 __build_sched_domains(doms_new[i],
1d3504fc 7321 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7322match2:
7323 ;
7324 }
7325
7326 /* Remember the new sched domains */
acc3f5d7
RR
7327 if (doms_cur != &fallback_doms)
7328 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7329 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7330 doms_cur = doms_new;
1d3504fc 7331 dattr_cur = dattr_new;
029190c5 7332 ndoms_cur = ndoms_new;
7378547f
MM
7333
7334 register_sched_domain_sysctl();
a1835615 7335
712555ee 7336 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7337}
7338
5c45bf27 7339#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7340static void arch_reinit_sched_domains(void)
5c45bf27 7341{
95402b38 7342 get_online_cpus();
dfb512ec
MK
7343
7344 /* Destroy domains first to force the rebuild */
7345 partition_sched_domains(0, NULL, NULL);
7346
e761b772 7347 rebuild_sched_domains();
95402b38 7348 put_online_cpus();
5c45bf27
SS
7349}
7350
7351static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7352{
afb8a9b7 7353 unsigned int level = 0;
5c45bf27 7354
afb8a9b7
GS
7355 if (sscanf(buf, "%u", &level) != 1)
7356 return -EINVAL;
7357
7358 /*
7359 * level is always be positive so don't check for
7360 * level < POWERSAVINGS_BALANCE_NONE which is 0
7361 * What happens on 0 or 1 byte write,
7362 * need to check for count as well?
7363 */
7364
7365 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7366 return -EINVAL;
7367
7368 if (smt)
afb8a9b7 7369 sched_smt_power_savings = level;
5c45bf27 7370 else
afb8a9b7 7371 sched_mc_power_savings = level;
5c45bf27 7372
c70f22d2 7373 arch_reinit_sched_domains();
5c45bf27 7374
c70f22d2 7375 return count;
5c45bf27
SS
7376}
7377
5c45bf27 7378#ifdef CONFIG_SCHED_MC
f718cd4a 7379static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7380 struct sysdev_class_attribute *attr,
f718cd4a 7381 char *page)
5c45bf27
SS
7382{
7383 return sprintf(page, "%u\n", sched_mc_power_savings);
7384}
f718cd4a 7385static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7386 struct sysdev_class_attribute *attr,
48f24c4d 7387 const char *buf, size_t count)
5c45bf27
SS
7388{
7389 return sched_power_savings_store(buf, count, 0);
7390}
f718cd4a
AK
7391static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7392 sched_mc_power_savings_show,
7393 sched_mc_power_savings_store);
5c45bf27
SS
7394#endif
7395
7396#ifdef CONFIG_SCHED_SMT
f718cd4a 7397static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7398 struct sysdev_class_attribute *attr,
f718cd4a 7399 char *page)
5c45bf27
SS
7400{
7401 return sprintf(page, "%u\n", sched_smt_power_savings);
7402}
f718cd4a 7403static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7404 struct sysdev_class_attribute *attr,
48f24c4d 7405 const char *buf, size_t count)
5c45bf27
SS
7406{
7407 return sched_power_savings_store(buf, count, 1);
7408}
f718cd4a
AK
7409static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7410 sched_smt_power_savings_show,
6707de00
AB
7411 sched_smt_power_savings_store);
7412#endif
7413
39aac648 7414int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7415{
7416 int err = 0;
7417
7418#ifdef CONFIG_SCHED_SMT
7419 if (smt_capable())
7420 err = sysfs_create_file(&cls->kset.kobj,
7421 &attr_sched_smt_power_savings.attr);
7422#endif
7423#ifdef CONFIG_SCHED_MC
7424 if (!err && mc_capable())
7425 err = sysfs_create_file(&cls->kset.kobj,
7426 &attr_sched_mc_power_savings.attr);
7427#endif
7428 return err;
7429}
6d6bc0ad 7430#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7431
e761b772 7432#ifndef CONFIG_CPUSETS
1da177e4 7433/*
e761b772
MK
7434 * Add online and remove offline CPUs from the scheduler domains.
7435 * When cpusets are enabled they take over this function.
1da177e4
LT
7436 */
7437static int update_sched_domains(struct notifier_block *nfb,
7438 unsigned long action, void *hcpu)
e761b772
MK
7439{
7440 switch (action) {
7441 case CPU_ONLINE:
7442 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7443 case CPU_DOWN_PREPARE:
7444 case CPU_DOWN_PREPARE_FROZEN:
7445 case CPU_DOWN_FAILED:
7446 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7447 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7448 return NOTIFY_OK;
7449
7450 default:
7451 return NOTIFY_DONE;
7452 }
7453}
7454#endif
7455
7456static int update_runtime(struct notifier_block *nfb,
7457 unsigned long action, void *hcpu)
1da177e4 7458{
7def2be1
PZ
7459 int cpu = (int)(long)hcpu;
7460
1da177e4 7461 switch (action) {
1da177e4 7462 case CPU_DOWN_PREPARE:
8bb78442 7463 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7464 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7465 return NOTIFY_OK;
7466
1da177e4 7467 case CPU_DOWN_FAILED:
8bb78442 7468 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7469 case CPU_ONLINE:
8bb78442 7470 case CPU_ONLINE_FROZEN:
7def2be1 7471 enable_runtime(cpu_rq(cpu));
e761b772
MK
7472 return NOTIFY_OK;
7473
1da177e4
LT
7474 default:
7475 return NOTIFY_DONE;
7476 }
1da177e4 7477}
1da177e4
LT
7478
7479void __init sched_init_smp(void)
7480{
dcc30a35
RR
7481 cpumask_var_t non_isolated_cpus;
7482
7483 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7484 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7485
434d53b0
MT
7486#if defined(CONFIG_NUMA)
7487 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7488 GFP_KERNEL);
7489 BUG_ON(sched_group_nodes_bycpu == NULL);
7490#endif
95402b38 7491 get_online_cpus();
712555ee 7492 mutex_lock(&sched_domains_mutex);
6ad4c188 7493 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7494 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7495 if (cpumask_empty(non_isolated_cpus))
7496 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7497 mutex_unlock(&sched_domains_mutex);
95402b38 7498 put_online_cpus();
e761b772
MK
7499
7500#ifndef CONFIG_CPUSETS
1da177e4
LT
7501 /* XXX: Theoretical race here - CPU may be hotplugged now */
7502 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7503#endif
7504
7505 /* RT runtime code needs to handle some hotplug events */
7506 hotcpu_notifier(update_runtime, 0);
7507
b328ca18 7508 init_hrtick();
5c1e1767
NP
7509
7510 /* Move init over to a non-isolated CPU */
dcc30a35 7511 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7512 BUG();
19978ca6 7513 sched_init_granularity();
dcc30a35 7514 free_cpumask_var(non_isolated_cpus);
4212823f 7515
0e3900e6 7516 init_sched_rt_class();
1da177e4
LT
7517}
7518#else
7519void __init sched_init_smp(void)
7520{
19978ca6 7521 sched_init_granularity();
1da177e4
LT
7522}
7523#endif /* CONFIG_SMP */
7524
cd1bb94b
AB
7525const_debug unsigned int sysctl_timer_migration = 1;
7526
1da177e4
LT
7527int in_sched_functions(unsigned long addr)
7528{
1da177e4
LT
7529 return in_lock_functions(addr) ||
7530 (addr >= (unsigned long)__sched_text_start
7531 && addr < (unsigned long)__sched_text_end);
7532}
7533
a9957449 7534static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7535{
7536 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7537 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7538#ifdef CONFIG_FAIR_GROUP_SCHED
7539 cfs_rq->rq = rq;
7540#endif
67e9fb2a 7541 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7542}
7543
fa85ae24
PZ
7544static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7545{
7546 struct rt_prio_array *array;
7547 int i;
7548
7549 array = &rt_rq->active;
7550 for (i = 0; i < MAX_RT_PRIO; i++) {
7551 INIT_LIST_HEAD(array->queue + i);
7552 __clear_bit(i, array->bitmap);
7553 }
7554 /* delimiter for bitsearch: */
7555 __set_bit(MAX_RT_PRIO, array->bitmap);
7556
052f1dc7 7557#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7558 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7559#ifdef CONFIG_SMP
e864c499 7560 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7561#endif
48d5e258 7562#endif
fa85ae24
PZ
7563#ifdef CONFIG_SMP
7564 rt_rq->rt_nr_migratory = 0;
fa85ae24 7565 rt_rq->overloaded = 0;
05fa785c 7566 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7567#endif
7568
7569 rt_rq->rt_time = 0;
7570 rt_rq->rt_throttled = 0;
ac086bc2 7571 rt_rq->rt_runtime = 0;
0986b11b 7572 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7573
052f1dc7 7574#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7575 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7576 rt_rq->rq = rq;
7577#endif
fa85ae24
PZ
7578}
7579
6f505b16 7580#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7581static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7582 struct sched_entity *se, int cpu, int add,
7583 struct sched_entity *parent)
6f505b16 7584{
ec7dc8ac 7585 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7586 tg->cfs_rq[cpu] = cfs_rq;
7587 init_cfs_rq(cfs_rq, rq);
7588 cfs_rq->tg = tg;
7589 if (add)
7590 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7591
7592 tg->se[cpu] = se;
354d60c2
DG
7593 /* se could be NULL for init_task_group */
7594 if (!se)
7595 return;
7596
ec7dc8ac
DG
7597 if (!parent)
7598 se->cfs_rq = &rq->cfs;
7599 else
7600 se->cfs_rq = parent->my_q;
7601
6f505b16
PZ
7602 se->my_q = cfs_rq;
7603 se->load.weight = tg->shares;
e05510d0 7604 se->load.inv_weight = 0;
ec7dc8ac 7605 se->parent = parent;
6f505b16 7606}
052f1dc7 7607#endif
6f505b16 7608
052f1dc7 7609#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7610static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7611 struct sched_rt_entity *rt_se, int cpu, int add,
7612 struct sched_rt_entity *parent)
6f505b16 7613{
ec7dc8ac
DG
7614 struct rq *rq = cpu_rq(cpu);
7615
6f505b16
PZ
7616 tg->rt_rq[cpu] = rt_rq;
7617 init_rt_rq(rt_rq, rq);
7618 rt_rq->tg = tg;
ac086bc2 7619 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7620 if (add)
7621 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7622
7623 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7624 if (!rt_se)
7625 return;
7626
ec7dc8ac
DG
7627 if (!parent)
7628 rt_se->rt_rq = &rq->rt;
7629 else
7630 rt_se->rt_rq = parent->my_q;
7631
6f505b16 7632 rt_se->my_q = rt_rq;
ec7dc8ac 7633 rt_se->parent = parent;
6f505b16
PZ
7634 INIT_LIST_HEAD(&rt_se->run_list);
7635}
7636#endif
7637
1da177e4
LT
7638void __init sched_init(void)
7639{
dd41f596 7640 int i, j;
434d53b0
MT
7641 unsigned long alloc_size = 0, ptr;
7642
7643#ifdef CONFIG_FAIR_GROUP_SCHED
7644 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7645#endif
7646#ifdef CONFIG_RT_GROUP_SCHED
7647 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7648#endif
df7c8e84 7649#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7650 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7651#endif
434d53b0 7652 if (alloc_size) {
36b7b6d4 7653 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7654
7655#ifdef CONFIG_FAIR_GROUP_SCHED
7656 init_task_group.se = (struct sched_entity **)ptr;
7657 ptr += nr_cpu_ids * sizeof(void **);
7658
7659 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7660 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7661
6d6bc0ad 7662#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7663#ifdef CONFIG_RT_GROUP_SCHED
7664 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7665 ptr += nr_cpu_ids * sizeof(void **);
7666
7667 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7668 ptr += nr_cpu_ids * sizeof(void **);
7669
6d6bc0ad 7670#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7671#ifdef CONFIG_CPUMASK_OFFSTACK
7672 for_each_possible_cpu(i) {
7673 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7674 ptr += cpumask_size();
7675 }
7676#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7677 }
dd41f596 7678
57d885fe
GH
7679#ifdef CONFIG_SMP
7680 init_defrootdomain();
7681#endif
7682
d0b27fa7
PZ
7683 init_rt_bandwidth(&def_rt_bandwidth,
7684 global_rt_period(), global_rt_runtime());
7685
7686#ifdef CONFIG_RT_GROUP_SCHED
7687 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7688 global_rt_period(), global_rt_runtime());
6d6bc0ad 7689#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7690
7c941438 7691#ifdef CONFIG_CGROUP_SCHED
6f505b16 7692 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7693 INIT_LIST_HEAD(&init_task_group.children);
7694
7c941438 7695#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7696
4a6cc4bd
JK
7697#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7698 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7699 __alignof__(unsigned long));
7700#endif
0a945022 7701 for_each_possible_cpu(i) {
70b97a7f 7702 struct rq *rq;
1da177e4
LT
7703
7704 rq = cpu_rq(i);
05fa785c 7705 raw_spin_lock_init(&rq->lock);
7897986b 7706 rq->nr_running = 0;
dce48a84
TG
7707 rq->calc_load_active = 0;
7708 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7709 init_cfs_rq(&rq->cfs, rq);
6f505b16 7710 init_rt_rq(&rq->rt, rq);
dd41f596 7711#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7712 init_task_group.shares = init_task_group_load;
6f505b16 7713 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7714#ifdef CONFIG_CGROUP_SCHED
7715 /*
7716 * How much cpu bandwidth does init_task_group get?
7717 *
7718 * In case of task-groups formed thr' the cgroup filesystem, it
7719 * gets 100% of the cpu resources in the system. This overall
7720 * system cpu resource is divided among the tasks of
7721 * init_task_group and its child task-groups in a fair manner,
7722 * based on each entity's (task or task-group's) weight
7723 * (se->load.weight).
7724 *
7725 * In other words, if init_task_group has 10 tasks of weight
7726 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7727 * then A0's share of the cpu resource is:
7728 *
0d905bca 7729 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7730 *
7731 * We achieve this by letting init_task_group's tasks sit
7732 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7733 */
ec7dc8ac 7734 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7735#endif
354d60c2
DG
7736#endif /* CONFIG_FAIR_GROUP_SCHED */
7737
7738 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7739#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7740 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7741#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7742 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7743#endif
dd41f596 7744#endif
1da177e4 7745
dd41f596
IM
7746 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7747 rq->cpu_load[j] = 0;
1da177e4 7748#ifdef CONFIG_SMP
41c7ce9a 7749 rq->sd = NULL;
57d885fe 7750 rq->rd = NULL;
3f029d3c 7751 rq->post_schedule = 0;
1da177e4 7752 rq->active_balance = 0;
dd41f596 7753 rq->next_balance = jiffies;
1da177e4 7754 rq->push_cpu = 0;
0a2966b4 7755 rq->cpu = i;
1f11eb6a 7756 rq->online = 0;
1da177e4 7757 rq->migration_thread = NULL;
eae0c9df
MG
7758 rq->idle_stamp = 0;
7759 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7760 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7761 rq_attach_root(rq, &def_root_domain);
1da177e4 7762#endif
8f4d37ec 7763 init_rq_hrtick(rq);
1da177e4 7764 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7765 }
7766
2dd73a4f 7767 set_load_weight(&init_task);
b50f60ce 7768
e107be36
AK
7769#ifdef CONFIG_PREEMPT_NOTIFIERS
7770 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7771#endif
7772
c9819f45 7773#ifdef CONFIG_SMP
962cf36c 7774 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7775#endif
7776
b50f60ce 7777#ifdef CONFIG_RT_MUTEXES
1d615482 7778 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7779#endif
7780
1da177e4
LT
7781 /*
7782 * The boot idle thread does lazy MMU switching as well:
7783 */
7784 atomic_inc(&init_mm.mm_count);
7785 enter_lazy_tlb(&init_mm, current);
7786
7787 /*
7788 * Make us the idle thread. Technically, schedule() should not be
7789 * called from this thread, however somewhere below it might be,
7790 * but because we are the idle thread, we just pick up running again
7791 * when this runqueue becomes "idle".
7792 */
7793 init_idle(current, smp_processor_id());
dce48a84
TG
7794
7795 calc_load_update = jiffies + LOAD_FREQ;
7796
dd41f596
IM
7797 /*
7798 * During early bootup we pretend to be a normal task:
7799 */
7800 current->sched_class = &fair_sched_class;
6892b75e 7801
6a7b3dc3 7802 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7803 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7804#ifdef CONFIG_SMP
7d1e6a9b 7805#ifdef CONFIG_NO_HZ
49557e62 7806 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7807 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7808#endif
bdddd296
RR
7809 /* May be allocated at isolcpus cmdline parse time */
7810 if (cpu_isolated_map == NULL)
7811 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7812#endif /* SMP */
6a7b3dc3 7813
cdd6c482 7814 perf_event_init();
0d905bca 7815
6892b75e 7816 scheduler_running = 1;
1da177e4
LT
7817}
7818
7819#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7820static inline int preempt_count_equals(int preempt_offset)
7821{
234da7bc 7822 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7823
7824 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7825}
7826
d894837f 7827void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7828{
48f24c4d 7829#ifdef in_atomic
1da177e4
LT
7830 static unsigned long prev_jiffy; /* ratelimiting */
7831
e4aafea2
FW
7832 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7833 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7834 return;
7835 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7836 return;
7837 prev_jiffy = jiffies;
7838
3df0fc5b
PZ
7839 printk(KERN_ERR
7840 "BUG: sleeping function called from invalid context at %s:%d\n",
7841 file, line);
7842 printk(KERN_ERR
7843 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7844 in_atomic(), irqs_disabled(),
7845 current->pid, current->comm);
aef745fc
IM
7846
7847 debug_show_held_locks(current);
7848 if (irqs_disabled())
7849 print_irqtrace_events(current);
7850 dump_stack();
1da177e4
LT
7851#endif
7852}
7853EXPORT_SYMBOL(__might_sleep);
7854#endif
7855
7856#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7857static void normalize_task(struct rq *rq, struct task_struct *p)
7858{
7859 int on_rq;
3e51f33f 7860
3a5e4dc1
AK
7861 on_rq = p->se.on_rq;
7862 if (on_rq)
7863 deactivate_task(rq, p, 0);
7864 __setscheduler(rq, p, SCHED_NORMAL, 0);
7865 if (on_rq) {
7866 activate_task(rq, p, 0);
7867 resched_task(rq->curr);
7868 }
7869}
7870
1da177e4
LT
7871void normalize_rt_tasks(void)
7872{
a0f98a1c 7873 struct task_struct *g, *p;
1da177e4 7874 unsigned long flags;
70b97a7f 7875 struct rq *rq;
1da177e4 7876
4cf5d77a 7877 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7878 do_each_thread(g, p) {
178be793
IM
7879 /*
7880 * Only normalize user tasks:
7881 */
7882 if (!p->mm)
7883 continue;
7884
6cfb0d5d 7885 p->se.exec_start = 0;
6cfb0d5d 7886#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7887 p->se.statistics.wait_start = 0;
7888 p->se.statistics.sleep_start = 0;
7889 p->se.statistics.block_start = 0;
6cfb0d5d 7890#endif
dd41f596
IM
7891
7892 if (!rt_task(p)) {
7893 /*
7894 * Renice negative nice level userspace
7895 * tasks back to 0:
7896 */
7897 if (TASK_NICE(p) < 0 && p->mm)
7898 set_user_nice(p, 0);
1da177e4 7899 continue;
dd41f596 7900 }
1da177e4 7901
1d615482 7902 raw_spin_lock(&p->pi_lock);
b29739f9 7903 rq = __task_rq_lock(p);
1da177e4 7904
178be793 7905 normalize_task(rq, p);
3a5e4dc1 7906
b29739f9 7907 __task_rq_unlock(rq);
1d615482 7908 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7909 } while_each_thread(g, p);
7910
4cf5d77a 7911 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7912}
7913
7914#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7915
7916#ifdef CONFIG_IA64
7917/*
7918 * These functions are only useful for the IA64 MCA handling.
7919 *
7920 * They can only be called when the whole system has been
7921 * stopped - every CPU needs to be quiescent, and no scheduling
7922 * activity can take place. Using them for anything else would
7923 * be a serious bug, and as a result, they aren't even visible
7924 * under any other configuration.
7925 */
7926
7927/**
7928 * curr_task - return the current task for a given cpu.
7929 * @cpu: the processor in question.
7930 *
7931 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7932 */
36c8b586 7933struct task_struct *curr_task(int cpu)
1df5c10a
LT
7934{
7935 return cpu_curr(cpu);
7936}
7937
7938/**
7939 * set_curr_task - set the current task for a given cpu.
7940 * @cpu: the processor in question.
7941 * @p: the task pointer to set.
7942 *
7943 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7944 * are serviced on a separate stack. It allows the architecture to switch the
7945 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7946 * must be called with all CPU's synchronized, and interrupts disabled, the
7947 * and caller must save the original value of the current task (see
7948 * curr_task() above) and restore that value before reenabling interrupts and
7949 * re-starting the system.
7950 *
7951 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7952 */
36c8b586 7953void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7954{
7955 cpu_curr(cpu) = p;
7956}
7957
7958#endif
29f59db3 7959
bccbe08a
PZ
7960#ifdef CONFIG_FAIR_GROUP_SCHED
7961static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7962{
7963 int i;
7964
7965 for_each_possible_cpu(i) {
7966 if (tg->cfs_rq)
7967 kfree(tg->cfs_rq[i]);
7968 if (tg->se)
7969 kfree(tg->se[i]);
6f505b16
PZ
7970 }
7971
7972 kfree(tg->cfs_rq);
7973 kfree(tg->se);
6f505b16
PZ
7974}
7975
ec7dc8ac
DG
7976static
7977int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7978{
29f59db3 7979 struct cfs_rq *cfs_rq;
eab17229 7980 struct sched_entity *se;
9b5b7751 7981 struct rq *rq;
29f59db3
SV
7982 int i;
7983
434d53b0 7984 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7985 if (!tg->cfs_rq)
7986 goto err;
434d53b0 7987 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7988 if (!tg->se)
7989 goto err;
052f1dc7
PZ
7990
7991 tg->shares = NICE_0_LOAD;
29f59db3
SV
7992
7993 for_each_possible_cpu(i) {
9b5b7751 7994 rq = cpu_rq(i);
29f59db3 7995
eab17229
LZ
7996 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7997 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
7998 if (!cfs_rq)
7999 goto err;
8000
eab17229
LZ
8001 se = kzalloc_node(sizeof(struct sched_entity),
8002 GFP_KERNEL, cpu_to_node(i));
29f59db3 8003 if (!se)
dfc12eb2 8004 goto err_free_rq;
29f59db3 8005
eab17229 8006 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8007 }
8008
8009 return 1;
8010
dfc12eb2
PC
8011 err_free_rq:
8012 kfree(cfs_rq);
bccbe08a
PZ
8013 err:
8014 return 0;
8015}
8016
8017static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8018{
8019 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8020 &cpu_rq(cpu)->leaf_cfs_rq_list);
8021}
8022
8023static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8024{
8025 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8026}
6d6bc0ad 8027#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8028static inline void free_fair_sched_group(struct task_group *tg)
8029{
8030}
8031
ec7dc8ac
DG
8032static inline
8033int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8034{
8035 return 1;
8036}
8037
8038static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8039{
8040}
8041
8042static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8043{
8044}
6d6bc0ad 8045#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8046
8047#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8048static void free_rt_sched_group(struct task_group *tg)
8049{
8050 int i;
8051
d0b27fa7
PZ
8052 destroy_rt_bandwidth(&tg->rt_bandwidth);
8053
bccbe08a
PZ
8054 for_each_possible_cpu(i) {
8055 if (tg->rt_rq)
8056 kfree(tg->rt_rq[i]);
8057 if (tg->rt_se)
8058 kfree(tg->rt_se[i]);
8059 }
8060
8061 kfree(tg->rt_rq);
8062 kfree(tg->rt_se);
8063}
8064
ec7dc8ac
DG
8065static
8066int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8067{
8068 struct rt_rq *rt_rq;
eab17229 8069 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8070 struct rq *rq;
8071 int i;
8072
434d53b0 8073 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8074 if (!tg->rt_rq)
8075 goto err;
434d53b0 8076 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8077 if (!tg->rt_se)
8078 goto err;
8079
d0b27fa7
PZ
8080 init_rt_bandwidth(&tg->rt_bandwidth,
8081 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8082
8083 for_each_possible_cpu(i) {
8084 rq = cpu_rq(i);
8085
eab17229
LZ
8086 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8087 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8088 if (!rt_rq)
8089 goto err;
29f59db3 8090
eab17229
LZ
8091 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8092 GFP_KERNEL, cpu_to_node(i));
6f505b16 8093 if (!rt_se)
dfc12eb2 8094 goto err_free_rq;
29f59db3 8095
eab17229 8096 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8097 }
8098
bccbe08a
PZ
8099 return 1;
8100
dfc12eb2
PC
8101 err_free_rq:
8102 kfree(rt_rq);
bccbe08a
PZ
8103 err:
8104 return 0;
8105}
8106
8107static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8108{
8109 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8110 &cpu_rq(cpu)->leaf_rt_rq_list);
8111}
8112
8113static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8114{
8115 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8116}
6d6bc0ad 8117#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8118static inline void free_rt_sched_group(struct task_group *tg)
8119{
8120}
8121
ec7dc8ac
DG
8122static inline
8123int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8124{
8125 return 1;
8126}
8127
8128static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8129{
8130}
8131
8132static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8133{
8134}
6d6bc0ad 8135#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8136
7c941438 8137#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8138static void free_sched_group(struct task_group *tg)
8139{
8140 free_fair_sched_group(tg);
8141 free_rt_sched_group(tg);
8142 kfree(tg);
8143}
8144
8145/* allocate runqueue etc for a new task group */
ec7dc8ac 8146struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8147{
8148 struct task_group *tg;
8149 unsigned long flags;
8150 int i;
8151
8152 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8153 if (!tg)
8154 return ERR_PTR(-ENOMEM);
8155
ec7dc8ac 8156 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8157 goto err;
8158
ec7dc8ac 8159 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8160 goto err;
8161
8ed36996 8162 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8163 for_each_possible_cpu(i) {
bccbe08a
PZ
8164 register_fair_sched_group(tg, i);
8165 register_rt_sched_group(tg, i);
9b5b7751 8166 }
6f505b16 8167 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8168
8169 WARN_ON(!parent); /* root should already exist */
8170
8171 tg->parent = parent;
f473aa5e 8172 INIT_LIST_HEAD(&tg->children);
09f2724a 8173 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8174 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8175
9b5b7751 8176 return tg;
29f59db3
SV
8177
8178err:
6f505b16 8179 free_sched_group(tg);
29f59db3
SV
8180 return ERR_PTR(-ENOMEM);
8181}
8182
9b5b7751 8183/* rcu callback to free various structures associated with a task group */
6f505b16 8184static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8185{
29f59db3 8186 /* now it should be safe to free those cfs_rqs */
6f505b16 8187 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8188}
8189
9b5b7751 8190/* Destroy runqueue etc associated with a task group */
4cf86d77 8191void sched_destroy_group(struct task_group *tg)
29f59db3 8192{
8ed36996 8193 unsigned long flags;
9b5b7751 8194 int i;
29f59db3 8195
8ed36996 8196 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8197 for_each_possible_cpu(i) {
bccbe08a
PZ
8198 unregister_fair_sched_group(tg, i);
8199 unregister_rt_sched_group(tg, i);
9b5b7751 8200 }
6f505b16 8201 list_del_rcu(&tg->list);
f473aa5e 8202 list_del_rcu(&tg->siblings);
8ed36996 8203 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8204
9b5b7751 8205 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8206 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8207}
8208
9b5b7751 8209/* change task's runqueue when it moves between groups.
3a252015
IM
8210 * The caller of this function should have put the task in its new group
8211 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8212 * reflect its new group.
9b5b7751
SV
8213 */
8214void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8215{
8216 int on_rq, running;
8217 unsigned long flags;
8218 struct rq *rq;
8219
8220 rq = task_rq_lock(tsk, &flags);
8221
051a1d1a 8222 running = task_current(rq, tsk);
29f59db3
SV
8223 on_rq = tsk->se.on_rq;
8224
0e1f3483 8225 if (on_rq)
29f59db3 8226 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8227 if (unlikely(running))
8228 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8229
6f505b16 8230 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8231
810b3817
PZ
8232#ifdef CONFIG_FAIR_GROUP_SCHED
8233 if (tsk->sched_class->moved_group)
88ec22d3 8234 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8235#endif
8236
0e1f3483
HS
8237 if (unlikely(running))
8238 tsk->sched_class->set_curr_task(rq);
8239 if (on_rq)
371fd7e7 8240 enqueue_task(rq, tsk, 0);
29f59db3 8241
29f59db3
SV
8242 task_rq_unlock(rq, &flags);
8243}
7c941438 8244#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8245
052f1dc7 8246#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8247static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8248{
8249 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8250 int on_rq;
8251
29f59db3 8252 on_rq = se->on_rq;
62fb1851 8253 if (on_rq)
29f59db3
SV
8254 dequeue_entity(cfs_rq, se, 0);
8255
8256 se->load.weight = shares;
e05510d0 8257 se->load.inv_weight = 0;
29f59db3 8258
62fb1851 8259 if (on_rq)
29f59db3 8260 enqueue_entity(cfs_rq, se, 0);
c09595f6 8261}
62fb1851 8262
c09595f6
PZ
8263static void set_se_shares(struct sched_entity *se, unsigned long shares)
8264{
8265 struct cfs_rq *cfs_rq = se->cfs_rq;
8266 struct rq *rq = cfs_rq->rq;
8267 unsigned long flags;
8268
05fa785c 8269 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8270 __set_se_shares(se, shares);
05fa785c 8271 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8272}
8273
8ed36996
PZ
8274static DEFINE_MUTEX(shares_mutex);
8275
4cf86d77 8276int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8277{
8278 int i;
8ed36996 8279 unsigned long flags;
c61935fd 8280
ec7dc8ac
DG
8281 /*
8282 * We can't change the weight of the root cgroup.
8283 */
8284 if (!tg->se[0])
8285 return -EINVAL;
8286
18d95a28
PZ
8287 if (shares < MIN_SHARES)
8288 shares = MIN_SHARES;
cb4ad1ff
MX
8289 else if (shares > MAX_SHARES)
8290 shares = MAX_SHARES;
62fb1851 8291
8ed36996 8292 mutex_lock(&shares_mutex);
9b5b7751 8293 if (tg->shares == shares)
5cb350ba 8294 goto done;
29f59db3 8295
8ed36996 8296 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8297 for_each_possible_cpu(i)
8298 unregister_fair_sched_group(tg, i);
f473aa5e 8299 list_del_rcu(&tg->siblings);
8ed36996 8300 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8301
8302 /* wait for any ongoing reference to this group to finish */
8303 synchronize_sched();
8304
8305 /*
8306 * Now we are free to modify the group's share on each cpu
8307 * w/o tripping rebalance_share or load_balance_fair.
8308 */
9b5b7751 8309 tg->shares = shares;
c09595f6
PZ
8310 for_each_possible_cpu(i) {
8311 /*
8312 * force a rebalance
8313 */
8314 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8315 set_se_shares(tg->se[i], shares);
c09595f6 8316 }
29f59db3 8317
6b2d7700
SV
8318 /*
8319 * Enable load balance activity on this group, by inserting it back on
8320 * each cpu's rq->leaf_cfs_rq_list.
8321 */
8ed36996 8322 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8323 for_each_possible_cpu(i)
8324 register_fair_sched_group(tg, i);
f473aa5e 8325 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8326 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8327done:
8ed36996 8328 mutex_unlock(&shares_mutex);
9b5b7751 8329 return 0;
29f59db3
SV
8330}
8331
5cb350ba
DG
8332unsigned long sched_group_shares(struct task_group *tg)
8333{
8334 return tg->shares;
8335}
052f1dc7 8336#endif
5cb350ba 8337
052f1dc7 8338#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8339/*
9f0c1e56 8340 * Ensure that the real time constraints are schedulable.
6f505b16 8341 */
9f0c1e56
PZ
8342static DEFINE_MUTEX(rt_constraints_mutex);
8343
8344static unsigned long to_ratio(u64 period, u64 runtime)
8345{
8346 if (runtime == RUNTIME_INF)
9a7e0b18 8347 return 1ULL << 20;
9f0c1e56 8348
9a7e0b18 8349 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8350}
8351
9a7e0b18
PZ
8352/* Must be called with tasklist_lock held */
8353static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8354{
9a7e0b18 8355 struct task_struct *g, *p;
b40b2e8e 8356
9a7e0b18
PZ
8357 do_each_thread(g, p) {
8358 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8359 return 1;
8360 } while_each_thread(g, p);
b40b2e8e 8361
9a7e0b18
PZ
8362 return 0;
8363}
b40b2e8e 8364
9a7e0b18
PZ
8365struct rt_schedulable_data {
8366 struct task_group *tg;
8367 u64 rt_period;
8368 u64 rt_runtime;
8369};
b40b2e8e 8370
9a7e0b18
PZ
8371static int tg_schedulable(struct task_group *tg, void *data)
8372{
8373 struct rt_schedulable_data *d = data;
8374 struct task_group *child;
8375 unsigned long total, sum = 0;
8376 u64 period, runtime;
b40b2e8e 8377
9a7e0b18
PZ
8378 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8379 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8380
9a7e0b18
PZ
8381 if (tg == d->tg) {
8382 period = d->rt_period;
8383 runtime = d->rt_runtime;
b40b2e8e 8384 }
b40b2e8e 8385
4653f803
PZ
8386 /*
8387 * Cannot have more runtime than the period.
8388 */
8389 if (runtime > period && runtime != RUNTIME_INF)
8390 return -EINVAL;
6f505b16 8391
4653f803
PZ
8392 /*
8393 * Ensure we don't starve existing RT tasks.
8394 */
9a7e0b18
PZ
8395 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8396 return -EBUSY;
6f505b16 8397
9a7e0b18 8398 total = to_ratio(period, runtime);
6f505b16 8399
4653f803
PZ
8400 /*
8401 * Nobody can have more than the global setting allows.
8402 */
8403 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8404 return -EINVAL;
6f505b16 8405
4653f803
PZ
8406 /*
8407 * The sum of our children's runtime should not exceed our own.
8408 */
9a7e0b18
PZ
8409 list_for_each_entry_rcu(child, &tg->children, siblings) {
8410 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8411 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8412
9a7e0b18
PZ
8413 if (child == d->tg) {
8414 period = d->rt_period;
8415 runtime = d->rt_runtime;
8416 }
6f505b16 8417
9a7e0b18 8418 sum += to_ratio(period, runtime);
9f0c1e56 8419 }
6f505b16 8420
9a7e0b18
PZ
8421 if (sum > total)
8422 return -EINVAL;
8423
8424 return 0;
6f505b16
PZ
8425}
8426
9a7e0b18 8427static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8428{
9a7e0b18
PZ
8429 struct rt_schedulable_data data = {
8430 .tg = tg,
8431 .rt_period = period,
8432 .rt_runtime = runtime,
8433 };
8434
8435 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8436}
8437
d0b27fa7
PZ
8438static int tg_set_bandwidth(struct task_group *tg,
8439 u64 rt_period, u64 rt_runtime)
6f505b16 8440{
ac086bc2 8441 int i, err = 0;
9f0c1e56 8442
9f0c1e56 8443 mutex_lock(&rt_constraints_mutex);
521f1a24 8444 read_lock(&tasklist_lock);
9a7e0b18
PZ
8445 err = __rt_schedulable(tg, rt_period, rt_runtime);
8446 if (err)
9f0c1e56 8447 goto unlock;
ac086bc2 8448
0986b11b 8449 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8450 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8451 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8452
8453 for_each_possible_cpu(i) {
8454 struct rt_rq *rt_rq = tg->rt_rq[i];
8455
0986b11b 8456 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8457 rt_rq->rt_runtime = rt_runtime;
0986b11b 8458 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8459 }
0986b11b 8460 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8461 unlock:
521f1a24 8462 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8463 mutex_unlock(&rt_constraints_mutex);
8464
8465 return err;
6f505b16
PZ
8466}
8467
d0b27fa7
PZ
8468int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8469{
8470 u64 rt_runtime, rt_period;
8471
8472 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8473 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8474 if (rt_runtime_us < 0)
8475 rt_runtime = RUNTIME_INF;
8476
8477 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8478}
8479
9f0c1e56
PZ
8480long sched_group_rt_runtime(struct task_group *tg)
8481{
8482 u64 rt_runtime_us;
8483
d0b27fa7 8484 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8485 return -1;
8486
d0b27fa7 8487 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8488 do_div(rt_runtime_us, NSEC_PER_USEC);
8489 return rt_runtime_us;
8490}
d0b27fa7
PZ
8491
8492int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8493{
8494 u64 rt_runtime, rt_period;
8495
8496 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8497 rt_runtime = tg->rt_bandwidth.rt_runtime;
8498
619b0488
R
8499 if (rt_period == 0)
8500 return -EINVAL;
8501
d0b27fa7
PZ
8502 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8503}
8504
8505long sched_group_rt_period(struct task_group *tg)
8506{
8507 u64 rt_period_us;
8508
8509 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8510 do_div(rt_period_us, NSEC_PER_USEC);
8511 return rt_period_us;
8512}
8513
8514static int sched_rt_global_constraints(void)
8515{
4653f803 8516 u64 runtime, period;
d0b27fa7
PZ
8517 int ret = 0;
8518
ec5d4989
HS
8519 if (sysctl_sched_rt_period <= 0)
8520 return -EINVAL;
8521
4653f803
PZ
8522 runtime = global_rt_runtime();
8523 period = global_rt_period();
8524
8525 /*
8526 * Sanity check on the sysctl variables.
8527 */
8528 if (runtime > period && runtime != RUNTIME_INF)
8529 return -EINVAL;
10b612f4 8530
d0b27fa7 8531 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8532 read_lock(&tasklist_lock);
4653f803 8533 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8534 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8535 mutex_unlock(&rt_constraints_mutex);
8536
8537 return ret;
8538}
54e99124
DG
8539
8540int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8541{
8542 /* Don't accept realtime tasks when there is no way for them to run */
8543 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8544 return 0;
8545
8546 return 1;
8547}
8548
6d6bc0ad 8549#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8550static int sched_rt_global_constraints(void)
8551{
ac086bc2
PZ
8552 unsigned long flags;
8553 int i;
8554
ec5d4989
HS
8555 if (sysctl_sched_rt_period <= 0)
8556 return -EINVAL;
8557
60aa605d
PZ
8558 /*
8559 * There's always some RT tasks in the root group
8560 * -- migration, kstopmachine etc..
8561 */
8562 if (sysctl_sched_rt_runtime == 0)
8563 return -EBUSY;
8564
0986b11b 8565 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8566 for_each_possible_cpu(i) {
8567 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8568
0986b11b 8569 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8570 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8571 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8572 }
0986b11b 8573 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8574
d0b27fa7
PZ
8575 return 0;
8576}
6d6bc0ad 8577#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8578
8579int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8580 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8581 loff_t *ppos)
8582{
8583 int ret;
8584 int old_period, old_runtime;
8585 static DEFINE_MUTEX(mutex);
8586
8587 mutex_lock(&mutex);
8588 old_period = sysctl_sched_rt_period;
8589 old_runtime = sysctl_sched_rt_runtime;
8590
8d65af78 8591 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8592
8593 if (!ret && write) {
8594 ret = sched_rt_global_constraints();
8595 if (ret) {
8596 sysctl_sched_rt_period = old_period;
8597 sysctl_sched_rt_runtime = old_runtime;
8598 } else {
8599 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8600 def_rt_bandwidth.rt_period =
8601 ns_to_ktime(global_rt_period());
8602 }
8603 }
8604 mutex_unlock(&mutex);
8605
8606 return ret;
8607}
68318b8e 8608
052f1dc7 8609#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8610
8611/* return corresponding task_group object of a cgroup */
2b01dfe3 8612static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8613{
2b01dfe3
PM
8614 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8615 struct task_group, css);
68318b8e
SV
8616}
8617
8618static struct cgroup_subsys_state *
2b01dfe3 8619cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8620{
ec7dc8ac 8621 struct task_group *tg, *parent;
68318b8e 8622
2b01dfe3 8623 if (!cgrp->parent) {
68318b8e 8624 /* This is early initialization for the top cgroup */
68318b8e
SV
8625 return &init_task_group.css;
8626 }
8627
ec7dc8ac
DG
8628 parent = cgroup_tg(cgrp->parent);
8629 tg = sched_create_group(parent);
68318b8e
SV
8630 if (IS_ERR(tg))
8631 return ERR_PTR(-ENOMEM);
8632
68318b8e
SV
8633 return &tg->css;
8634}
8635
41a2d6cf
IM
8636static void
8637cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8638{
2b01dfe3 8639 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8640
8641 sched_destroy_group(tg);
8642}
8643
41a2d6cf 8644static int
be367d09 8645cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8646{
b68aa230 8647#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8648 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8649 return -EINVAL;
8650#else
68318b8e
SV
8651 /* We don't support RT-tasks being in separate groups */
8652 if (tsk->sched_class != &fair_sched_class)
8653 return -EINVAL;
b68aa230 8654#endif
be367d09
BB
8655 return 0;
8656}
68318b8e 8657
be367d09
BB
8658static int
8659cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8660 struct task_struct *tsk, bool threadgroup)
8661{
8662 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8663 if (retval)
8664 return retval;
8665 if (threadgroup) {
8666 struct task_struct *c;
8667 rcu_read_lock();
8668 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8669 retval = cpu_cgroup_can_attach_task(cgrp, c);
8670 if (retval) {
8671 rcu_read_unlock();
8672 return retval;
8673 }
8674 }
8675 rcu_read_unlock();
8676 }
68318b8e
SV
8677 return 0;
8678}
8679
8680static void
2b01dfe3 8681cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8682 struct cgroup *old_cont, struct task_struct *tsk,
8683 bool threadgroup)
68318b8e
SV
8684{
8685 sched_move_task(tsk);
be367d09
BB
8686 if (threadgroup) {
8687 struct task_struct *c;
8688 rcu_read_lock();
8689 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8690 sched_move_task(c);
8691 }
8692 rcu_read_unlock();
8693 }
68318b8e
SV
8694}
8695
052f1dc7 8696#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8697static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8698 u64 shareval)
68318b8e 8699{
2b01dfe3 8700 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8701}
8702
f4c753b7 8703static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8704{
2b01dfe3 8705 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8706
8707 return (u64) tg->shares;
8708}
6d6bc0ad 8709#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8710
052f1dc7 8711#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8712static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8713 s64 val)
6f505b16 8714{
06ecb27c 8715 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8716}
8717
06ecb27c 8718static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8719{
06ecb27c 8720 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8721}
d0b27fa7
PZ
8722
8723static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8724 u64 rt_period_us)
8725{
8726 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8727}
8728
8729static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8730{
8731 return sched_group_rt_period(cgroup_tg(cgrp));
8732}
6d6bc0ad 8733#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8734
fe5c7cc2 8735static struct cftype cpu_files[] = {
052f1dc7 8736#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8737 {
8738 .name = "shares",
f4c753b7
PM
8739 .read_u64 = cpu_shares_read_u64,
8740 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8741 },
052f1dc7
PZ
8742#endif
8743#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8744 {
9f0c1e56 8745 .name = "rt_runtime_us",
06ecb27c
PM
8746 .read_s64 = cpu_rt_runtime_read,
8747 .write_s64 = cpu_rt_runtime_write,
6f505b16 8748 },
d0b27fa7
PZ
8749 {
8750 .name = "rt_period_us",
f4c753b7
PM
8751 .read_u64 = cpu_rt_period_read_uint,
8752 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8753 },
052f1dc7 8754#endif
68318b8e
SV
8755};
8756
8757static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8758{
fe5c7cc2 8759 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8760}
8761
8762struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8763 .name = "cpu",
8764 .create = cpu_cgroup_create,
8765 .destroy = cpu_cgroup_destroy,
8766 .can_attach = cpu_cgroup_can_attach,
8767 .attach = cpu_cgroup_attach,
8768 .populate = cpu_cgroup_populate,
8769 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8770 .early_init = 1,
8771};
8772
052f1dc7 8773#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8774
8775#ifdef CONFIG_CGROUP_CPUACCT
8776
8777/*
8778 * CPU accounting code for task groups.
8779 *
8780 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8781 * (balbir@in.ibm.com).
8782 */
8783
934352f2 8784/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8785struct cpuacct {
8786 struct cgroup_subsys_state css;
8787 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8788 u64 __percpu *cpuusage;
ef12fefa 8789 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8790 struct cpuacct *parent;
d842de87
SV
8791};
8792
8793struct cgroup_subsys cpuacct_subsys;
8794
8795/* return cpu accounting group corresponding to this container */
32cd756a 8796static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8797{
32cd756a 8798 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8799 struct cpuacct, css);
8800}
8801
8802/* return cpu accounting group to which this task belongs */
8803static inline struct cpuacct *task_ca(struct task_struct *tsk)
8804{
8805 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8806 struct cpuacct, css);
8807}
8808
8809/* create a new cpu accounting group */
8810static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8811 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8812{
8813 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8814 int i;
d842de87
SV
8815
8816 if (!ca)
ef12fefa 8817 goto out;
d842de87
SV
8818
8819 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8820 if (!ca->cpuusage)
8821 goto out_free_ca;
8822
8823 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8824 if (percpu_counter_init(&ca->cpustat[i], 0))
8825 goto out_free_counters;
d842de87 8826
934352f2
BR
8827 if (cgrp->parent)
8828 ca->parent = cgroup_ca(cgrp->parent);
8829
d842de87 8830 return &ca->css;
ef12fefa
BR
8831
8832out_free_counters:
8833 while (--i >= 0)
8834 percpu_counter_destroy(&ca->cpustat[i]);
8835 free_percpu(ca->cpuusage);
8836out_free_ca:
8837 kfree(ca);
8838out:
8839 return ERR_PTR(-ENOMEM);
d842de87
SV
8840}
8841
8842/* destroy an existing cpu accounting group */
41a2d6cf 8843static void
32cd756a 8844cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8845{
32cd756a 8846 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8847 int i;
d842de87 8848
ef12fefa
BR
8849 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8850 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8851 free_percpu(ca->cpuusage);
8852 kfree(ca);
8853}
8854
720f5498
KC
8855static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8856{
b36128c8 8857 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8858 u64 data;
8859
8860#ifndef CONFIG_64BIT
8861 /*
8862 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8863 */
05fa785c 8864 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8865 data = *cpuusage;
05fa785c 8866 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8867#else
8868 data = *cpuusage;
8869#endif
8870
8871 return data;
8872}
8873
8874static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8875{
b36128c8 8876 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8877
8878#ifndef CONFIG_64BIT
8879 /*
8880 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8881 */
05fa785c 8882 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8883 *cpuusage = val;
05fa785c 8884 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8885#else
8886 *cpuusage = val;
8887#endif
8888}
8889
d842de87 8890/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8891static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8892{
32cd756a 8893 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8894 u64 totalcpuusage = 0;
8895 int i;
8896
720f5498
KC
8897 for_each_present_cpu(i)
8898 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8899
8900 return totalcpuusage;
8901}
8902
0297b803
DG
8903static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8904 u64 reset)
8905{
8906 struct cpuacct *ca = cgroup_ca(cgrp);
8907 int err = 0;
8908 int i;
8909
8910 if (reset) {
8911 err = -EINVAL;
8912 goto out;
8913 }
8914
720f5498
KC
8915 for_each_present_cpu(i)
8916 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8917
0297b803
DG
8918out:
8919 return err;
8920}
8921
e9515c3c
KC
8922static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8923 struct seq_file *m)
8924{
8925 struct cpuacct *ca = cgroup_ca(cgroup);
8926 u64 percpu;
8927 int i;
8928
8929 for_each_present_cpu(i) {
8930 percpu = cpuacct_cpuusage_read(ca, i);
8931 seq_printf(m, "%llu ", (unsigned long long) percpu);
8932 }
8933 seq_printf(m, "\n");
8934 return 0;
8935}
8936
ef12fefa
BR
8937static const char *cpuacct_stat_desc[] = {
8938 [CPUACCT_STAT_USER] = "user",
8939 [CPUACCT_STAT_SYSTEM] = "system",
8940};
8941
8942static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8943 struct cgroup_map_cb *cb)
8944{
8945 struct cpuacct *ca = cgroup_ca(cgrp);
8946 int i;
8947
8948 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8949 s64 val = percpu_counter_read(&ca->cpustat[i]);
8950 val = cputime64_to_clock_t(val);
8951 cb->fill(cb, cpuacct_stat_desc[i], val);
8952 }
8953 return 0;
8954}
8955
d842de87
SV
8956static struct cftype files[] = {
8957 {
8958 .name = "usage",
f4c753b7
PM
8959 .read_u64 = cpuusage_read,
8960 .write_u64 = cpuusage_write,
d842de87 8961 },
e9515c3c
KC
8962 {
8963 .name = "usage_percpu",
8964 .read_seq_string = cpuacct_percpu_seq_read,
8965 },
ef12fefa
BR
8966 {
8967 .name = "stat",
8968 .read_map = cpuacct_stats_show,
8969 },
d842de87
SV
8970};
8971
32cd756a 8972static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8973{
32cd756a 8974 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8975}
8976
8977/*
8978 * charge this task's execution time to its accounting group.
8979 *
8980 * called with rq->lock held.
8981 */
8982static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8983{
8984 struct cpuacct *ca;
934352f2 8985 int cpu;
d842de87 8986
c40c6f85 8987 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8988 return;
8989
934352f2 8990 cpu = task_cpu(tsk);
a18b83b7
BR
8991
8992 rcu_read_lock();
8993
d842de87 8994 ca = task_ca(tsk);
d842de87 8995
934352f2 8996 for (; ca; ca = ca->parent) {
b36128c8 8997 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8998 *cpuusage += cputime;
8999 }
a18b83b7
BR
9000
9001 rcu_read_unlock();
d842de87
SV
9002}
9003
fa535a77
AB
9004/*
9005 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9006 * in cputime_t units. As a result, cpuacct_update_stats calls
9007 * percpu_counter_add with values large enough to always overflow the
9008 * per cpu batch limit causing bad SMP scalability.
9009 *
9010 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9011 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9012 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9013 */
9014#ifdef CONFIG_SMP
9015#define CPUACCT_BATCH \
9016 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9017#else
9018#define CPUACCT_BATCH 0
9019#endif
9020
ef12fefa
BR
9021/*
9022 * Charge the system/user time to the task's accounting group.
9023 */
9024static void cpuacct_update_stats(struct task_struct *tsk,
9025 enum cpuacct_stat_index idx, cputime_t val)
9026{
9027 struct cpuacct *ca;
fa535a77 9028 int batch = CPUACCT_BATCH;
ef12fefa
BR
9029
9030 if (unlikely(!cpuacct_subsys.active))
9031 return;
9032
9033 rcu_read_lock();
9034 ca = task_ca(tsk);
9035
9036 do {
fa535a77 9037 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9038 ca = ca->parent;
9039 } while (ca);
9040 rcu_read_unlock();
9041}
9042
d842de87
SV
9043struct cgroup_subsys cpuacct_subsys = {
9044 .name = "cpuacct",
9045 .create = cpuacct_create,
9046 .destroy = cpuacct_destroy,
9047 .populate = cpuacct_populate,
9048 .subsys_id = cpuacct_subsys_id,
9049};
9050#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9051
9052#ifndef CONFIG_SMP
9053
9054int rcu_expedited_torture_stats(char *page)
9055{
9056 return 0;
9057}
9058EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9059
9060void synchronize_sched_expedited(void)
9061{
9062}
9063EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9064
9065#else /* #ifndef CONFIG_SMP */
9066
9067static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9068static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9069
9070#define RCU_EXPEDITED_STATE_POST -2
9071#define RCU_EXPEDITED_STATE_IDLE -1
9072
9073static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9074
9075int rcu_expedited_torture_stats(char *page)
9076{
9077 int cnt = 0;
9078 int cpu;
9079
9080 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9081 for_each_online_cpu(cpu) {
9082 cnt += sprintf(&page[cnt], " %d:%d",
9083 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9084 }
9085 cnt += sprintf(&page[cnt], "\n");
9086 return cnt;
9087}
9088EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9089
9090static long synchronize_sched_expedited_count;
9091
9092/*
9093 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9094 * approach to force grace period to end quickly. This consumes
9095 * significant time on all CPUs, and is thus not recommended for
9096 * any sort of common-case code.
9097 *
9098 * Note that it is illegal to call this function while holding any
9099 * lock that is acquired by a CPU-hotplug notifier. Failing to
9100 * observe this restriction will result in deadlock.
9101 */
9102void synchronize_sched_expedited(void)
9103{
9104 int cpu;
9105 unsigned long flags;
9106 bool need_full_sync = 0;
9107 struct rq *rq;
9108 struct migration_req *req;
9109 long snap;
9110 int trycount = 0;
9111
9112 smp_mb(); /* ensure prior mod happens before capturing snap. */
9113 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9114 get_online_cpus();
9115 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9116 put_online_cpus();
9117 if (trycount++ < 10)
9118 udelay(trycount * num_online_cpus());
9119 else {
9120 synchronize_sched();
9121 return;
9122 }
9123 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9124 smp_mb(); /* ensure test happens before caller kfree */
9125 return;
9126 }
9127 get_online_cpus();
9128 }
9129 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9130 for_each_online_cpu(cpu) {
9131 rq = cpu_rq(cpu);
9132 req = &per_cpu(rcu_migration_req, cpu);
9133 init_completion(&req->done);
9134 req->task = NULL;
9135 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9136 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9137 list_add(&req->list, &rq->migration_queue);
05fa785c 9138 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9139 wake_up_process(rq->migration_thread);
9140 }
9141 for_each_online_cpu(cpu) {
9142 rcu_expedited_state = cpu;
9143 req = &per_cpu(rcu_migration_req, cpu);
9144 rq = cpu_rq(cpu);
9145 wait_for_completion(&req->done);
05fa785c 9146 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9147 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9148 need_full_sync = 1;
9149 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9150 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9151 }
9152 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9153 synchronize_sched_expedited_count++;
03b042bf
PM
9154 mutex_unlock(&rcu_sched_expedited_mutex);
9155 put_online_cpus();
9156 if (need_full_sync)
9157 synchronize_sched();
9158}
9159EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9160
9161#endif /* #else #ifndef CONFIG_SMP */