sched: move double_unlock_balance() higher
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
4793241b 400 struct sched_entity *curr, *next, *last;
ddc97297 401
5ac5c4d6 402 unsigned int nr_spread_over;
ddc97297 403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
34f3a814 706static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 707{
f00b45c1
PZ
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 714 }
34f3a814 715 seq_puts(m, "\n");
f00b45c1 716
34f3a814 717 return 0;
f00b45c1
PZ
718}
719
720static ssize_t
721sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723{
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
c24b7c52 737 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 filp->f_pos += cnt;
758
759 return cnt;
760}
761
34f3a814
LZ
762static int sched_feat_open(struct inode *inode, struct file *filp)
763{
764 return single_open(filp, sched_feat_show, NULL);
765}
766
f00b45c1 767static struct file_operations sched_feat_fops = {
34f3a814
LZ
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
f00b45c1
PZ
773};
774
775static __init int sched_init_debug(void)
776{
f00b45c1
PZ
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781}
782late_initcall(sched_init_debug);
783
784#endif
785
786#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 787
b82d9fdd
PZ
788/*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
2398f2c6
PZ
794/*
795 * ratelimit for updating the group shares.
55cd5340 796 * default: 0.25ms
2398f2c6 797 */
55cd5340 798unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 799
ffda12a1
PZ
800/*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805unsigned int sysctl_sched_shares_thresh = 4;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
4866cde0
NP
869 spin_unlock_irq(&rq->lock);
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 spin_unlock_irq(&rq->lock);
894#else
895 spin_unlock(&rq->lock);
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
b29739f9
IM
916/*
917 * __task_rq_lock - lock the runqueue a given task resides on.
918 * Must be called interrupts disabled.
919 */
70b97a7f 920static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
921 __acquires(rq->lock)
922{
3a5c359a
AK
923 for (;;) {
924 struct rq *rq = task_rq(p);
925 spin_lock(&rq->lock);
926 if (likely(rq == task_rq(p)))
927 return rq;
b29739f9 928 spin_unlock(&rq->lock);
b29739f9 929 }
b29739f9
IM
930}
931
1da177e4
LT
932/*
933 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 934 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
935 * explicitly disabling preemption.
936 */
70b97a7f 937static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
938 __acquires(rq->lock)
939{
70b97a7f 940 struct rq *rq;
1da177e4 941
3a5c359a
AK
942 for (;;) {
943 local_irq_save(*flags);
944 rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
1da177e4 948 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 949 }
1da177e4
LT
950}
951
ad474cac
ON
952void task_rq_unlock_wait(struct task_struct *p)
953{
954 struct rq *rq = task_rq(p);
955
956 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
957 spin_unlock_wait(&rq->lock);
958}
959
a9957449 960static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
961 __releases(rq->lock)
962{
963 spin_unlock(&rq->lock);
964}
965
70b97a7f 966static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
967 __releases(rq->lock)
968{
969 spin_unlock_irqrestore(&rq->lock, *flags);
970}
971
1da177e4 972/*
cc2a73b5 973 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 974 */
a9957449 975static struct rq *this_rq_lock(void)
1da177e4
LT
976 __acquires(rq->lock)
977{
70b97a7f 978 struct rq *rq;
1da177e4
LT
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985}
986
8f4d37ec
PZ
987#ifdef CONFIG_SCHED_HRTICK
988/*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
8f4d37ec
PZ
998
999/*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004static inline int hrtick_enabled(struct rq *rq)
1005{
1006 if (!sched_feat(HRTICK))
1007 return 0;
ba42059f 1008 if (!cpu_active(cpu_of(rq)))
b328ca18 1009 return 0;
8f4d37ec
PZ
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011}
1012
8f4d37ec
PZ
1013static void hrtick_clear(struct rq *rq)
1014{
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019/*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024{
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
3e51f33f 1030 update_rq_clock(rq);
8f4d37ec
PZ
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035}
1036
95e904c7 1037#ifdef CONFIG_SMP
31656519
PZ
1038/*
1039 * called from hardirq (IPI) context
1040 */
1041static void __hrtick_start(void *arg)
b328ca18 1042{
31656519 1043 struct rq *rq = arg;
b328ca18 1044
31656519
PZ
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
b328ca18
PZ
1049}
1050
31656519
PZ
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1057{
31656519
PZ
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1060
cc584b21 1061 hrtimer_set_expires(timer, time);
31656519
PZ
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
b328ca18
PZ
1069}
1070
1071static int
1072hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073{
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
31656519 1083 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088}
1089
fa748203 1090static __init void init_hrtick(void)
b328ca18
PZ
1091{
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093}
31656519
PZ
1094#else
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103}
b328ca18 1104
006c75f1 1105static inline void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
ccc7dadf 1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1123}
006c75f1 1124#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1125static inline void hrtick_clear(struct rq *rq)
1126{
1127}
1128
8f4d37ec
PZ
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131}
1132
b328ca18
PZ
1133static inline void init_hrtick(void)
1134{
1135}
006c75f1 1136#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1137
c24d20db
IM
1138/*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145#ifdef CONFIG_SMP
1146
1147#ifndef tsk_is_polling
1148#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149#endif
1150
31656519 1151static void resched_task(struct task_struct *p)
c24d20db
IM
1152{
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
31656519 1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1158 return;
1159
31656519 1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170}
1171
1172static void resched_cpu(int cpu)
1173{
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181}
06d8308c
TG
1182
1183#ifdef CONFIG_NO_HZ
1184/*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194void wake_up_idle_cpu(int cpu)
1195{
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222}
6d6bc0ad 1223#endif /* CONFIG_NO_HZ */
06d8308c 1224
6d6bc0ad 1225#else /* !CONFIG_SMP */
31656519 1226static void resched_task(struct task_struct *p)
c24d20db
IM
1227{
1228 assert_spin_locked(&task_rq(p)->lock);
31656519 1229 set_tsk_need_resched(p);
c24d20db 1230}
6d6bc0ad 1231#endif /* CONFIG_SMP */
c24d20db 1232
45bf76df
IM
1233#if BITS_PER_LONG == 32
1234# define WMULT_CONST (~0UL)
1235#else
1236# define WMULT_CONST (1UL << 32)
1237#endif
1238
1239#define WMULT_SHIFT 32
1240
194081eb
IM
1241/*
1242 * Shift right and round:
1243 */
cf2ab469 1244#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1245
a7be37ac
PZ
1246/*
1247 * delta *= weight / lw
1248 */
cb1c4fc9 1249static unsigned long
45bf76df
IM
1250calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252{
1253 u64 tmp;
1254
7a232e03
LJ
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
45bf76df
IM
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
194081eb 1267 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1269 WMULT_SHIFT/2);
1270 else
cf2ab469 1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1272
ecf691da 1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1274}
1275
1091985b 1276static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1277{
1278 lw->weight += inc;
e89996ae 1279 lw->inv_weight = 0;
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1283{
1284 lw->weight -= dec;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
2dd73a4f
PW
1288/*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
dd41f596
IM
1297#define WEIGHT_IDLEPRIO 2
1298#define WMULT_IDLEPRIO (1 << 31)
1299
1300/*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
dd41f596
IM
1311 */
1312static const int prio_to_weight[40] = {
254753dc
IM
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1321};
1322
5714d2de
IM
1323/*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
dd41f596 1330static const u32 prio_to_wmult[40] = {
254753dc
IM
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1339};
2dd73a4f 1340
dd41f596
IM
1341static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343/*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352};
1353
e1d1484f
PW
1354#ifdef CONFIG_SMP
1355static unsigned long
1356balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361static int
1362iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
e1d1484f 1365#endif
dd41f596 1366
d842de87
SV
1367#ifdef CONFIG_CGROUP_CPUACCT
1368static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369#else
1370static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371#endif
1372
18d95a28
PZ
1373static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374{
1375 update_load_add(&rq->load, load);
1376}
1377
1378static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379{
1380 update_load_sub(&rq->load, load);
1381}
1382
7940ca36 1383#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1384typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1385
1386/*
1387 * Iterate the full tree, calling @down when first entering a node and @up when
1388 * leaving it for the final time.
1389 */
eb755805 1390static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1391{
1392 struct task_group *parent, *child;
eb755805 1393 int ret;
c09595f6
PZ
1394
1395 rcu_read_lock();
1396 parent = &root_task_group;
1397down:
eb755805
PZ
1398 ret = (*down)(parent, data);
1399 if (ret)
1400 goto out_unlock;
c09595f6
PZ
1401 list_for_each_entry_rcu(child, &parent->children, siblings) {
1402 parent = child;
1403 goto down;
1404
1405up:
1406 continue;
1407 }
eb755805
PZ
1408 ret = (*up)(parent, data);
1409 if (ret)
1410 goto out_unlock;
c09595f6
PZ
1411
1412 child = parent;
1413 parent = parent->parent;
1414 if (parent)
1415 goto up;
eb755805 1416out_unlock:
c09595f6 1417 rcu_read_unlock();
eb755805
PZ
1418
1419 return ret;
c09595f6
PZ
1420}
1421
eb755805
PZ
1422static int tg_nop(struct task_group *tg, void *data)
1423{
1424 return 0;
c09595f6 1425}
eb755805
PZ
1426#endif
1427
1428#ifdef CONFIG_SMP
1429static unsigned long source_load(int cpu, int type);
1430static unsigned long target_load(int cpu, int type);
1431static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1432
1433static unsigned long cpu_avg_load_per_task(int cpu)
1434{
1435 struct rq *rq = cpu_rq(cpu);
4cd42620 1436 unsigned long nr_running = rq->nr_running;
eb755805 1437
4cd42620
SR
1438 if (nr_running)
1439 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1440 else
1441 rq->avg_load_per_task = 0;
eb755805
PZ
1442
1443 return rq->avg_load_per_task;
1444}
1445
1446#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1447
c09595f6
PZ
1448static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1449
1450/*
1451 * Calculate and set the cpu's group shares.
1452 */
1453static void
ffda12a1
PZ
1454update_group_shares_cpu(struct task_group *tg, int cpu,
1455 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1456{
c09595f6
PZ
1457 unsigned long shares;
1458 unsigned long rq_weight;
1459
c8cba857 1460 if (!tg->se[cpu])
c09595f6
PZ
1461 return;
1462
ec4e0e2f 1463 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1464
c09595f6
PZ
1465 /*
1466 * \Sum shares * rq_weight
1467 * shares = -----------------------
1468 * \Sum rq_weight
1469 *
1470 */
ec4e0e2f 1471 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1472 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1473
ffda12a1
PZ
1474 if (abs(shares - tg->se[cpu]->load.weight) >
1475 sysctl_sched_shares_thresh) {
1476 struct rq *rq = cpu_rq(cpu);
1477 unsigned long flags;
c09595f6 1478
ffda12a1 1479 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1480 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1481
ffda12a1
PZ
1482 __set_se_shares(tg->se[cpu], shares);
1483 spin_unlock_irqrestore(&rq->lock, flags);
1484 }
18d95a28 1485}
c09595f6
PZ
1486
1487/*
c8cba857
PZ
1488 * Re-compute the task group their per cpu shares over the given domain.
1489 * This needs to be done in a bottom-up fashion because the rq weight of a
1490 * parent group depends on the shares of its child groups.
c09595f6 1491 */
eb755805 1492static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1493{
ec4e0e2f 1494 unsigned long weight, rq_weight = 0;
c8cba857 1495 unsigned long shares = 0;
eb755805 1496 struct sched_domain *sd = data;
c8cba857 1497 int i;
c09595f6 1498
c8cba857 1499 for_each_cpu_mask(i, sd->span) {
ec4e0e2f
KC
1500 /*
1501 * If there are currently no tasks on the cpu pretend there
1502 * is one of average load so that when a new task gets to
1503 * run here it will not get delayed by group starvation.
1504 */
1505 weight = tg->cfs_rq[i]->load.weight;
1506 if (!weight)
1507 weight = NICE_0_LOAD;
1508
1509 tg->cfs_rq[i]->rq_weight = weight;
1510 rq_weight += weight;
c8cba857 1511 shares += tg->cfs_rq[i]->shares;
c09595f6 1512 }
c09595f6 1513
c8cba857
PZ
1514 if ((!shares && rq_weight) || shares > tg->shares)
1515 shares = tg->shares;
1516
1517 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1518 shares = tg->shares;
c09595f6 1519
ffda12a1
PZ
1520 for_each_cpu_mask(i, sd->span)
1521 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1522
1523 return 0;
c09595f6
PZ
1524}
1525
1526/*
c8cba857
PZ
1527 * Compute the cpu's hierarchical load factor for each task group.
1528 * This needs to be done in a top-down fashion because the load of a child
1529 * group is a fraction of its parents load.
c09595f6 1530 */
eb755805 1531static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1532{
c8cba857 1533 unsigned long load;
eb755805 1534 long cpu = (long)data;
c09595f6 1535
c8cba857
PZ
1536 if (!tg->parent) {
1537 load = cpu_rq(cpu)->load.weight;
1538 } else {
1539 load = tg->parent->cfs_rq[cpu]->h_load;
1540 load *= tg->cfs_rq[cpu]->shares;
1541 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1542 }
c09595f6 1543
c8cba857 1544 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1545
eb755805 1546 return 0;
c09595f6
PZ
1547}
1548
c8cba857 1549static void update_shares(struct sched_domain *sd)
4d8d595d 1550{
2398f2c6
PZ
1551 u64 now = cpu_clock(raw_smp_processor_id());
1552 s64 elapsed = now - sd->last_update;
1553
1554 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1555 sd->last_update = now;
eb755805 1556 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1557 }
4d8d595d
PZ
1558}
1559
3e5459b4
PZ
1560static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1561{
1562 spin_unlock(&rq->lock);
1563 update_shares(sd);
1564 spin_lock(&rq->lock);
1565}
1566
eb755805 1567static void update_h_load(long cpu)
c09595f6 1568{
eb755805 1569 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1570}
1571
c09595f6
PZ
1572#else
1573
c8cba857 1574static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1575{
1576}
1577
3e5459b4
PZ
1578static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1579{
1580}
1581
18d95a28
PZ
1582#endif
1583
70574a99
AD
1584/*
1585 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1586 */
1587static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1588 __releases(this_rq->lock)
1589 __acquires(busiest->lock)
1590 __acquires(this_rq->lock)
1591{
1592 int ret = 0;
1593
1594 if (unlikely(!irqs_disabled())) {
1595 /* printk() doesn't work good under rq->lock */
1596 spin_unlock(&this_rq->lock);
1597 BUG_ON(1);
1598 }
1599 if (unlikely(!spin_trylock(&busiest->lock))) {
1600 if (busiest < this_rq) {
1601 spin_unlock(&this_rq->lock);
1602 spin_lock(&busiest->lock);
1603 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1604 ret = 1;
1605 } else
1606 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1607 }
1608 return ret;
1609}
1610
1611static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1612 __releases(busiest->lock)
1613{
1614 spin_unlock(&busiest->lock);
1615 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1616}
18d95a28
PZ
1617#endif
1618
30432094 1619#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1620static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1621{
30432094 1622#ifdef CONFIG_SMP
34e83e85
IM
1623 cfs_rq->shares = shares;
1624#endif
1625}
30432094 1626#endif
e7693a36 1627
dd41f596 1628#include "sched_stats.h"
dd41f596 1629#include "sched_idletask.c"
5522d5d5
IM
1630#include "sched_fair.c"
1631#include "sched_rt.c"
dd41f596
IM
1632#ifdef CONFIG_SCHED_DEBUG
1633# include "sched_debug.c"
1634#endif
1635
1636#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1637#define for_each_class(class) \
1638 for (class = sched_class_highest; class; class = class->next)
dd41f596 1639
c09595f6 1640static void inc_nr_running(struct rq *rq)
9c217245
IM
1641{
1642 rq->nr_running++;
9c217245
IM
1643}
1644
c09595f6 1645static void dec_nr_running(struct rq *rq)
9c217245
IM
1646{
1647 rq->nr_running--;
9c217245
IM
1648}
1649
45bf76df
IM
1650static void set_load_weight(struct task_struct *p)
1651{
1652 if (task_has_rt_policy(p)) {
dd41f596
IM
1653 p->se.load.weight = prio_to_weight[0] * 2;
1654 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1655 return;
1656 }
45bf76df 1657
dd41f596
IM
1658 /*
1659 * SCHED_IDLE tasks get minimal weight:
1660 */
1661 if (p->policy == SCHED_IDLE) {
1662 p->se.load.weight = WEIGHT_IDLEPRIO;
1663 p->se.load.inv_weight = WMULT_IDLEPRIO;
1664 return;
1665 }
71f8bd46 1666
dd41f596
IM
1667 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1668 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1669}
1670
2087a1ad
GH
1671static void update_avg(u64 *avg, u64 sample)
1672{
1673 s64 diff = sample - *avg;
1674 *avg += diff >> 3;
1675}
1676
8159f87e 1677static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1678{
dd41f596 1679 sched_info_queued(p);
fd390f6a 1680 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1681 p->se.on_rq = 1;
71f8bd46
IM
1682}
1683
69be72c1 1684static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1685{
2087a1ad
GH
1686 if (sleep && p->se.last_wakeup) {
1687 update_avg(&p->se.avg_overlap,
1688 p->se.sum_exec_runtime - p->se.last_wakeup);
1689 p->se.last_wakeup = 0;
1690 }
1691
46ac22ba 1692 sched_info_dequeued(p);
f02231e5 1693 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1694 p->se.on_rq = 0;
71f8bd46
IM
1695}
1696
14531189 1697/*
dd41f596 1698 * __normal_prio - return the priority that is based on the static prio
14531189 1699 */
14531189
IM
1700static inline int __normal_prio(struct task_struct *p)
1701{
dd41f596 1702 return p->static_prio;
14531189
IM
1703}
1704
b29739f9
IM
1705/*
1706 * Calculate the expected normal priority: i.e. priority
1707 * without taking RT-inheritance into account. Might be
1708 * boosted by interactivity modifiers. Changes upon fork,
1709 * setprio syscalls, and whenever the interactivity
1710 * estimator recalculates.
1711 */
36c8b586 1712static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1713{
1714 int prio;
1715
e05606d3 1716 if (task_has_rt_policy(p))
b29739f9
IM
1717 prio = MAX_RT_PRIO-1 - p->rt_priority;
1718 else
1719 prio = __normal_prio(p);
1720 return prio;
1721}
1722
1723/*
1724 * Calculate the current priority, i.e. the priority
1725 * taken into account by the scheduler. This value might
1726 * be boosted by RT tasks, or might be boosted by
1727 * interactivity modifiers. Will be RT if the task got
1728 * RT-boosted. If not then it returns p->normal_prio.
1729 */
36c8b586 1730static int effective_prio(struct task_struct *p)
b29739f9
IM
1731{
1732 p->normal_prio = normal_prio(p);
1733 /*
1734 * If we are RT tasks or we were boosted to RT priority,
1735 * keep the priority unchanged. Otherwise, update priority
1736 * to the normal priority:
1737 */
1738 if (!rt_prio(p->prio))
1739 return p->normal_prio;
1740 return p->prio;
1741}
1742
1da177e4 1743/*
dd41f596 1744 * activate_task - move a task to the runqueue.
1da177e4 1745 */
dd41f596 1746static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1747{
d9514f6c 1748 if (task_contributes_to_load(p))
dd41f596 1749 rq->nr_uninterruptible--;
1da177e4 1750
8159f87e 1751 enqueue_task(rq, p, wakeup);
c09595f6 1752 inc_nr_running(rq);
1da177e4
LT
1753}
1754
1da177e4
LT
1755/*
1756 * deactivate_task - remove a task from the runqueue.
1757 */
2e1cb74a 1758static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1759{
d9514f6c 1760 if (task_contributes_to_load(p))
dd41f596
IM
1761 rq->nr_uninterruptible++;
1762
69be72c1 1763 dequeue_task(rq, p, sleep);
c09595f6 1764 dec_nr_running(rq);
1da177e4
LT
1765}
1766
1da177e4
LT
1767/**
1768 * task_curr - is this task currently executing on a CPU?
1769 * @p: the task in question.
1770 */
36c8b586 1771inline int task_curr(const struct task_struct *p)
1da177e4
LT
1772{
1773 return cpu_curr(task_cpu(p)) == p;
1774}
1775
dd41f596
IM
1776static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1777{
6f505b16 1778 set_task_rq(p, cpu);
dd41f596 1779#ifdef CONFIG_SMP
ce96b5ac
DA
1780 /*
1781 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1782 * successfuly executed on another CPU. We must ensure that updates of
1783 * per-task data have been completed by this moment.
1784 */
1785 smp_wmb();
dd41f596 1786 task_thread_info(p)->cpu = cpu;
dd41f596 1787#endif
2dd73a4f
PW
1788}
1789
cb469845
SR
1790static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1791 const struct sched_class *prev_class,
1792 int oldprio, int running)
1793{
1794 if (prev_class != p->sched_class) {
1795 if (prev_class->switched_from)
1796 prev_class->switched_from(rq, p, running);
1797 p->sched_class->switched_to(rq, p, running);
1798 } else
1799 p->sched_class->prio_changed(rq, p, oldprio, running);
1800}
1801
1da177e4 1802#ifdef CONFIG_SMP
c65cc870 1803
e958b360
TG
1804/* Used instead of source_load when we know the type == 0 */
1805static unsigned long weighted_cpuload(const int cpu)
1806{
1807 return cpu_rq(cpu)->load.weight;
1808}
1809
cc367732
IM
1810/*
1811 * Is this task likely cache-hot:
1812 */
e7693a36 1813static int
cc367732
IM
1814task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1815{
1816 s64 delta;
1817
f540a608
IM
1818 /*
1819 * Buddy candidates are cache hot:
1820 */
4793241b
PZ
1821 if (sched_feat(CACHE_HOT_BUDDY) &&
1822 (&p->se == cfs_rq_of(&p->se)->next ||
1823 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1824 return 1;
1825
cc367732
IM
1826 if (p->sched_class != &fair_sched_class)
1827 return 0;
1828
6bc1665b
IM
1829 if (sysctl_sched_migration_cost == -1)
1830 return 1;
1831 if (sysctl_sched_migration_cost == 0)
1832 return 0;
1833
cc367732
IM
1834 delta = now - p->se.exec_start;
1835
1836 return delta < (s64)sysctl_sched_migration_cost;
1837}
1838
1839
dd41f596 1840void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1841{
dd41f596
IM
1842 int old_cpu = task_cpu(p);
1843 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1844 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1845 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1846 u64 clock_offset;
dd41f596
IM
1847
1848 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1849
1850#ifdef CONFIG_SCHEDSTATS
1851 if (p->se.wait_start)
1852 p->se.wait_start -= clock_offset;
dd41f596
IM
1853 if (p->se.sleep_start)
1854 p->se.sleep_start -= clock_offset;
1855 if (p->se.block_start)
1856 p->se.block_start -= clock_offset;
cc367732
IM
1857 if (old_cpu != new_cpu) {
1858 schedstat_inc(p, se.nr_migrations);
1859 if (task_hot(p, old_rq->clock, NULL))
1860 schedstat_inc(p, se.nr_forced2_migrations);
1861 }
6cfb0d5d 1862#endif
2830cf8c
SV
1863 p->se.vruntime -= old_cfsrq->min_vruntime -
1864 new_cfsrq->min_vruntime;
dd41f596
IM
1865
1866 __set_task_cpu(p, new_cpu);
c65cc870
IM
1867}
1868
70b97a7f 1869struct migration_req {
1da177e4 1870 struct list_head list;
1da177e4 1871
36c8b586 1872 struct task_struct *task;
1da177e4
LT
1873 int dest_cpu;
1874
1da177e4 1875 struct completion done;
70b97a7f 1876};
1da177e4
LT
1877
1878/*
1879 * The task's runqueue lock must be held.
1880 * Returns true if you have to wait for migration thread.
1881 */
36c8b586 1882static int
70b97a7f 1883migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1884{
70b97a7f 1885 struct rq *rq = task_rq(p);
1da177e4
LT
1886
1887 /*
1888 * If the task is not on a runqueue (and not running), then
1889 * it is sufficient to simply update the task's cpu field.
1890 */
dd41f596 1891 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1892 set_task_cpu(p, dest_cpu);
1893 return 0;
1894 }
1895
1896 init_completion(&req->done);
1da177e4
LT
1897 req->task = p;
1898 req->dest_cpu = dest_cpu;
1899 list_add(&req->list, &rq->migration_queue);
48f24c4d 1900
1da177e4
LT
1901 return 1;
1902}
1903
1904/*
1905 * wait_task_inactive - wait for a thread to unschedule.
1906 *
85ba2d86
RM
1907 * If @match_state is nonzero, it's the @p->state value just checked and
1908 * not expected to change. If it changes, i.e. @p might have woken up,
1909 * then return zero. When we succeed in waiting for @p to be off its CPU,
1910 * we return a positive number (its total switch count). If a second call
1911 * a short while later returns the same number, the caller can be sure that
1912 * @p has remained unscheduled the whole time.
1913 *
1da177e4
LT
1914 * The caller must ensure that the task *will* unschedule sometime soon,
1915 * else this function might spin for a *long* time. This function can't
1916 * be called with interrupts off, or it may introduce deadlock with
1917 * smp_call_function() if an IPI is sent by the same process we are
1918 * waiting to become inactive.
1919 */
85ba2d86 1920unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1921{
1922 unsigned long flags;
dd41f596 1923 int running, on_rq;
85ba2d86 1924 unsigned long ncsw;
70b97a7f 1925 struct rq *rq;
1da177e4 1926
3a5c359a
AK
1927 for (;;) {
1928 /*
1929 * We do the initial early heuristics without holding
1930 * any task-queue locks at all. We'll only try to get
1931 * the runqueue lock when things look like they will
1932 * work out!
1933 */
1934 rq = task_rq(p);
fa490cfd 1935
3a5c359a
AK
1936 /*
1937 * If the task is actively running on another CPU
1938 * still, just relax and busy-wait without holding
1939 * any locks.
1940 *
1941 * NOTE! Since we don't hold any locks, it's not
1942 * even sure that "rq" stays as the right runqueue!
1943 * But we don't care, since "task_running()" will
1944 * return false if the runqueue has changed and p
1945 * is actually now running somewhere else!
1946 */
85ba2d86
RM
1947 while (task_running(rq, p)) {
1948 if (match_state && unlikely(p->state != match_state))
1949 return 0;
3a5c359a 1950 cpu_relax();
85ba2d86 1951 }
fa490cfd 1952
3a5c359a
AK
1953 /*
1954 * Ok, time to look more closely! We need the rq
1955 * lock now, to be *sure*. If we're wrong, we'll
1956 * just go back and repeat.
1957 */
1958 rq = task_rq_lock(p, &flags);
0a16b607 1959 trace_sched_wait_task(rq, p);
3a5c359a
AK
1960 running = task_running(rq, p);
1961 on_rq = p->se.on_rq;
85ba2d86 1962 ncsw = 0;
f31e11d8 1963 if (!match_state || p->state == match_state)
93dcf55f 1964 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1965 task_rq_unlock(rq, &flags);
fa490cfd 1966
85ba2d86
RM
1967 /*
1968 * If it changed from the expected state, bail out now.
1969 */
1970 if (unlikely(!ncsw))
1971 break;
1972
3a5c359a
AK
1973 /*
1974 * Was it really running after all now that we
1975 * checked with the proper locks actually held?
1976 *
1977 * Oops. Go back and try again..
1978 */
1979 if (unlikely(running)) {
1980 cpu_relax();
1981 continue;
1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * It's not enough that it's not actively running,
1986 * it must be off the runqueue _entirely_, and not
1987 * preempted!
1988 *
1989 * So if it wa still runnable (but just not actively
1990 * running right now), it's preempted, and we should
1991 * yield - it could be a while.
1992 */
1993 if (unlikely(on_rq)) {
1994 schedule_timeout_uninterruptible(1);
1995 continue;
1996 }
fa490cfd 1997
3a5c359a
AK
1998 /*
1999 * Ahh, all good. It wasn't running, and it wasn't
2000 * runnable, which means that it will never become
2001 * running in the future either. We're all done!
2002 */
2003 break;
2004 }
85ba2d86
RM
2005
2006 return ncsw;
1da177e4
LT
2007}
2008
2009/***
2010 * kick_process - kick a running thread to enter/exit the kernel
2011 * @p: the to-be-kicked thread
2012 *
2013 * Cause a process which is running on another CPU to enter
2014 * kernel-mode, without any delay. (to get signals handled.)
2015 *
2016 * NOTE: this function doesnt have to take the runqueue lock,
2017 * because all it wants to ensure is that the remote task enters
2018 * the kernel. If the IPI races and the task has been migrated
2019 * to another CPU then no harm is done and the purpose has been
2020 * achieved as well.
2021 */
36c8b586 2022void kick_process(struct task_struct *p)
1da177e4
LT
2023{
2024 int cpu;
2025
2026 preempt_disable();
2027 cpu = task_cpu(p);
2028 if ((cpu != smp_processor_id()) && task_curr(p))
2029 smp_send_reschedule(cpu);
2030 preempt_enable();
2031}
2032
2033/*
2dd73a4f
PW
2034 * Return a low guess at the load of a migration-source cpu weighted
2035 * according to the scheduling class and "nice" value.
1da177e4
LT
2036 *
2037 * We want to under-estimate the load of migration sources, to
2038 * balance conservatively.
2039 */
a9957449 2040static unsigned long source_load(int cpu, int type)
1da177e4 2041{
70b97a7f 2042 struct rq *rq = cpu_rq(cpu);
dd41f596 2043 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2044
93b75217 2045 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2046 return total;
b910472d 2047
dd41f596 2048 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2049}
2050
2051/*
2dd73a4f
PW
2052 * Return a high guess at the load of a migration-target cpu weighted
2053 * according to the scheduling class and "nice" value.
1da177e4 2054 */
a9957449 2055static unsigned long target_load(int cpu, int type)
1da177e4 2056{
70b97a7f 2057 struct rq *rq = cpu_rq(cpu);
dd41f596 2058 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2059
93b75217 2060 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2061 return total;
3b0bd9bc 2062
dd41f596 2063 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2064}
2065
147cbb4b
NP
2066/*
2067 * find_idlest_group finds and returns the least busy CPU group within the
2068 * domain.
2069 */
2070static struct sched_group *
2071find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2072{
2073 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2074 unsigned long min_load = ULONG_MAX, this_load = 0;
2075 int load_idx = sd->forkexec_idx;
2076 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2077
2078 do {
2079 unsigned long load, avg_load;
2080 int local_group;
2081 int i;
2082
da5a5522
BD
2083 /* Skip over this group if it has no CPUs allowed */
2084 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2085 continue;
da5a5522 2086
147cbb4b 2087 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2088
2089 /* Tally up the load of all CPUs in the group */
2090 avg_load = 0;
2091
363ab6f1 2092 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2093 /* Bias balancing toward cpus of our domain */
2094 if (local_group)
2095 load = source_load(i, load_idx);
2096 else
2097 load = target_load(i, load_idx);
2098
2099 avg_load += load;
2100 }
2101
2102 /* Adjust by relative CPU power of the group */
5517d86b
ED
2103 avg_load = sg_div_cpu_power(group,
2104 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2105
2106 if (local_group) {
2107 this_load = avg_load;
2108 this = group;
2109 } else if (avg_load < min_load) {
2110 min_load = avg_load;
2111 idlest = group;
2112 }
3a5c359a 2113 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2114
2115 if (!idlest || 100*this_load < imbalance*min_load)
2116 return NULL;
2117 return idlest;
2118}
2119
2120/*
0feaece9 2121 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2122 */
95cdf3b7 2123static int
7c16ec58
MT
2124find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 cpumask_t *tmp)
147cbb4b
NP
2126{
2127 unsigned long load, min_load = ULONG_MAX;
2128 int idlest = -1;
2129 int i;
2130
da5a5522 2131 /* Traverse only the allowed CPUs */
7c16ec58 2132 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2133
363ab6f1 2134 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2135 load = weighted_cpuload(i);
147cbb4b
NP
2136
2137 if (load < min_load || (load == min_load && i == this_cpu)) {
2138 min_load = load;
2139 idlest = i;
2140 }
2141 }
2142
2143 return idlest;
2144}
2145
476d139c
NP
2146/*
2147 * sched_balance_self: balance the current task (running on cpu) in domains
2148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * SD_BALANCE_EXEC.
2150 *
2151 * Balance, ie. select the least loaded group.
2152 *
2153 * Returns the target CPU number, or the same CPU if no balancing is needed.
2154 *
2155 * preempt must be disabled.
2156 */
2157static int sched_balance_self(int cpu, int flag)
2158{
2159 struct task_struct *t = current;
2160 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2161
c96d145e 2162 for_each_domain(cpu, tmp) {
9761eea8
IM
2163 /*
2164 * If power savings logic is enabled for a domain, stop there.
2165 */
5c45bf27
SS
2166 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2167 break;
476d139c
NP
2168 if (tmp->flags & flag)
2169 sd = tmp;
c96d145e 2170 }
476d139c 2171
039a1c41
PZ
2172 if (sd)
2173 update_shares(sd);
2174
476d139c 2175 while (sd) {
7c16ec58 2176 cpumask_t span, tmpmask;
476d139c 2177 struct sched_group *group;
1a848870
SS
2178 int new_cpu, weight;
2179
2180 if (!(sd->flags & flag)) {
2181 sd = sd->child;
2182 continue;
2183 }
476d139c
NP
2184
2185 span = sd->span;
2186 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2187 if (!group) {
2188 sd = sd->child;
2189 continue;
2190 }
476d139c 2191
7c16ec58 2192 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2193 if (new_cpu == -1 || new_cpu == cpu) {
2194 /* Now try balancing at a lower domain level of cpu */
2195 sd = sd->child;
2196 continue;
2197 }
476d139c 2198
1a848870 2199 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2200 cpu = new_cpu;
476d139c
NP
2201 sd = NULL;
2202 weight = cpus_weight(span);
2203 for_each_domain(cpu, tmp) {
2204 if (weight <= cpus_weight(tmp->span))
2205 break;
2206 if (tmp->flags & flag)
2207 sd = tmp;
2208 }
2209 /* while loop will break here if sd == NULL */
2210 }
2211
2212 return cpu;
2213}
2214
2215#endif /* CONFIG_SMP */
1da177e4 2216
1da177e4
LT
2217/***
2218 * try_to_wake_up - wake up a thread
2219 * @p: the to-be-woken-up thread
2220 * @state: the mask of task states that can be woken
2221 * @sync: do a synchronous wakeup?
2222 *
2223 * Put it on the run-queue if it's not already there. The "current"
2224 * thread is always on the run-queue (except when the actual
2225 * re-schedule is in progress), and as such you're allowed to do
2226 * the simpler "current->state = TASK_RUNNING" to mark yourself
2227 * runnable without the overhead of this.
2228 *
2229 * returns failure only if the task is already active.
2230 */
36c8b586 2231static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2232{
cc367732 2233 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2234 unsigned long flags;
2235 long old_state;
70b97a7f 2236 struct rq *rq;
1da177e4 2237
b85d0667
IM
2238 if (!sched_feat(SYNC_WAKEUPS))
2239 sync = 0;
2240
2398f2c6
PZ
2241#ifdef CONFIG_SMP
2242 if (sched_feat(LB_WAKEUP_UPDATE)) {
2243 struct sched_domain *sd;
2244
2245 this_cpu = raw_smp_processor_id();
2246 cpu = task_cpu(p);
2247
2248 for_each_domain(this_cpu, sd) {
2249 if (cpu_isset(cpu, sd->span)) {
2250 update_shares(sd);
2251 break;
2252 }
2253 }
2254 }
2255#endif
2256
04e2f174 2257 smp_wmb();
1da177e4
LT
2258 rq = task_rq_lock(p, &flags);
2259 old_state = p->state;
2260 if (!(old_state & state))
2261 goto out;
2262
dd41f596 2263 if (p->se.on_rq)
1da177e4
LT
2264 goto out_running;
2265
2266 cpu = task_cpu(p);
cc367732 2267 orig_cpu = cpu;
1da177e4
LT
2268 this_cpu = smp_processor_id();
2269
2270#ifdef CONFIG_SMP
2271 if (unlikely(task_running(rq, p)))
2272 goto out_activate;
2273
5d2f5a61
DA
2274 cpu = p->sched_class->select_task_rq(p, sync);
2275 if (cpu != orig_cpu) {
2276 set_task_cpu(p, cpu);
1da177e4
LT
2277 task_rq_unlock(rq, &flags);
2278 /* might preempt at this point */
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
dd41f596 2283 if (p->se.on_rq)
1da177e4
LT
2284 goto out_running;
2285
2286 this_cpu = smp_processor_id();
2287 cpu = task_cpu(p);
2288 }
2289
e7693a36
GH
2290#ifdef CONFIG_SCHEDSTATS
2291 schedstat_inc(rq, ttwu_count);
2292 if (cpu == this_cpu)
2293 schedstat_inc(rq, ttwu_local);
2294 else {
2295 struct sched_domain *sd;
2296 for_each_domain(this_cpu, sd) {
2297 if (cpu_isset(cpu, sd->span)) {
2298 schedstat_inc(sd, ttwu_wake_remote);
2299 break;
2300 }
2301 }
2302 }
6d6bc0ad 2303#endif /* CONFIG_SCHEDSTATS */
e7693a36 2304
1da177e4
LT
2305out_activate:
2306#endif /* CONFIG_SMP */
cc367732
IM
2307 schedstat_inc(p, se.nr_wakeups);
2308 if (sync)
2309 schedstat_inc(p, se.nr_wakeups_sync);
2310 if (orig_cpu != cpu)
2311 schedstat_inc(p, se.nr_wakeups_migrate);
2312 if (cpu == this_cpu)
2313 schedstat_inc(p, se.nr_wakeups_local);
2314 else
2315 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2316 update_rq_clock(rq);
dd41f596 2317 activate_task(rq, p, 1);
1da177e4
LT
2318 success = 1;
2319
2320out_running:
0a16b607 2321 trace_sched_wakeup(rq, p);
15afe09b 2322 check_preempt_curr(rq, p, sync);
4ae7d5ce 2323
1da177e4 2324 p->state = TASK_RUNNING;
9a897c5a
SR
2325#ifdef CONFIG_SMP
2326 if (p->sched_class->task_wake_up)
2327 p->sched_class->task_wake_up(rq, p);
2328#endif
1da177e4 2329out:
2087a1ad
GH
2330 current->se.last_wakeup = current->se.sum_exec_runtime;
2331
1da177e4
LT
2332 task_rq_unlock(rq, &flags);
2333
2334 return success;
2335}
2336
7ad5b3a5 2337int wake_up_process(struct task_struct *p)
1da177e4 2338{
d9514f6c 2339 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2340}
1da177e4
LT
2341EXPORT_SYMBOL(wake_up_process);
2342
7ad5b3a5 2343int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2344{
2345 return try_to_wake_up(p, state, 0);
2346}
2347
1da177e4
LT
2348/*
2349 * Perform scheduler related setup for a newly forked process p.
2350 * p is forked by current.
dd41f596
IM
2351 *
2352 * __sched_fork() is basic setup used by init_idle() too:
2353 */
2354static void __sched_fork(struct task_struct *p)
2355{
dd41f596
IM
2356 p->se.exec_start = 0;
2357 p->se.sum_exec_runtime = 0;
f6cf891c 2358 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2359 p->se.last_wakeup = 0;
2360 p->se.avg_overlap = 0;
6cfb0d5d
IM
2361
2362#ifdef CONFIG_SCHEDSTATS
2363 p->se.wait_start = 0;
dd41f596
IM
2364 p->se.sum_sleep_runtime = 0;
2365 p->se.sleep_start = 0;
dd41f596
IM
2366 p->se.block_start = 0;
2367 p->se.sleep_max = 0;
2368 p->se.block_max = 0;
2369 p->se.exec_max = 0;
eba1ed4b 2370 p->se.slice_max = 0;
dd41f596 2371 p->se.wait_max = 0;
6cfb0d5d 2372#endif
476d139c 2373
fa717060 2374 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2375 p->se.on_rq = 0;
4a55bd5e 2376 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2377
e107be36
AK
2378#ifdef CONFIG_PREEMPT_NOTIFIERS
2379 INIT_HLIST_HEAD(&p->preempt_notifiers);
2380#endif
2381
1da177e4
LT
2382 /*
2383 * We mark the process as running here, but have not actually
2384 * inserted it onto the runqueue yet. This guarantees that
2385 * nobody will actually run it, and a signal or other external
2386 * event cannot wake it up and insert it on the runqueue either.
2387 */
2388 p->state = TASK_RUNNING;
dd41f596
IM
2389}
2390
2391/*
2392 * fork()/clone()-time setup:
2393 */
2394void sched_fork(struct task_struct *p, int clone_flags)
2395{
2396 int cpu = get_cpu();
2397
2398 __sched_fork(p);
2399
2400#ifdef CONFIG_SMP
2401 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2402#endif
02e4bac2 2403 set_task_cpu(p, cpu);
b29739f9
IM
2404
2405 /*
2406 * Make sure we do not leak PI boosting priority to the child:
2407 */
2408 p->prio = current->normal_prio;
2ddbf952
HS
2409 if (!rt_prio(p->prio))
2410 p->sched_class = &fair_sched_class;
b29739f9 2411
52f17b6c 2412#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2413 if (likely(sched_info_on()))
52f17b6c 2414 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2415#endif
d6077cb8 2416#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2417 p->oncpu = 0;
2418#endif
1da177e4 2419#ifdef CONFIG_PREEMPT
4866cde0 2420 /* Want to start with kernel preemption disabled. */
a1261f54 2421 task_thread_info(p)->preempt_count = 1;
1da177e4 2422#endif
476d139c 2423 put_cpu();
1da177e4
LT
2424}
2425
2426/*
2427 * wake_up_new_task - wake up a newly created task for the first time.
2428 *
2429 * This function will do some initial scheduler statistics housekeeping
2430 * that must be done for every newly created context, then puts the task
2431 * on the runqueue and wakes it.
2432 */
7ad5b3a5 2433void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2434{
2435 unsigned long flags;
dd41f596 2436 struct rq *rq;
1da177e4
LT
2437
2438 rq = task_rq_lock(p, &flags);
147cbb4b 2439 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2440 update_rq_clock(rq);
1da177e4
LT
2441
2442 p->prio = effective_prio(p);
2443
b9dca1e0 2444 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2445 activate_task(rq, p, 0);
1da177e4 2446 } else {
1da177e4 2447 /*
dd41f596
IM
2448 * Let the scheduling class do new task startup
2449 * management (if any):
1da177e4 2450 */
ee0827d8 2451 p->sched_class->task_new(rq, p);
c09595f6 2452 inc_nr_running(rq);
1da177e4 2453 }
0a16b607 2454 trace_sched_wakeup_new(rq, p);
15afe09b 2455 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2456#ifdef CONFIG_SMP
2457 if (p->sched_class->task_wake_up)
2458 p->sched_class->task_wake_up(rq, p);
2459#endif
dd41f596 2460 task_rq_unlock(rq, &flags);
1da177e4
LT
2461}
2462
e107be36
AK
2463#ifdef CONFIG_PREEMPT_NOTIFIERS
2464
2465/**
421cee29
RD
2466 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2467 * @notifier: notifier struct to register
e107be36
AK
2468 */
2469void preempt_notifier_register(struct preempt_notifier *notifier)
2470{
2471 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2472}
2473EXPORT_SYMBOL_GPL(preempt_notifier_register);
2474
2475/**
2476 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2477 * @notifier: notifier struct to unregister
e107be36
AK
2478 *
2479 * This is safe to call from within a preemption notifier.
2480 */
2481void preempt_notifier_unregister(struct preempt_notifier *notifier)
2482{
2483 hlist_del(&notifier->link);
2484}
2485EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2486
2487static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2488{
2489 struct preempt_notifier *notifier;
2490 struct hlist_node *node;
2491
2492 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2493 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2494}
2495
2496static void
2497fire_sched_out_preempt_notifiers(struct task_struct *curr,
2498 struct task_struct *next)
2499{
2500 struct preempt_notifier *notifier;
2501 struct hlist_node *node;
2502
2503 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2504 notifier->ops->sched_out(notifier, next);
2505}
2506
6d6bc0ad 2507#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2508
2509static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510{
2511}
2512
2513static void
2514fire_sched_out_preempt_notifiers(struct task_struct *curr,
2515 struct task_struct *next)
2516{
2517}
2518
6d6bc0ad 2519#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2520
4866cde0
NP
2521/**
2522 * prepare_task_switch - prepare to switch tasks
2523 * @rq: the runqueue preparing to switch
421cee29 2524 * @prev: the current task that is being switched out
4866cde0
NP
2525 * @next: the task we are going to switch to.
2526 *
2527 * This is called with the rq lock held and interrupts off. It must
2528 * be paired with a subsequent finish_task_switch after the context
2529 * switch.
2530 *
2531 * prepare_task_switch sets up locking and calls architecture specific
2532 * hooks.
2533 */
e107be36
AK
2534static inline void
2535prepare_task_switch(struct rq *rq, struct task_struct *prev,
2536 struct task_struct *next)
4866cde0 2537{
e107be36 2538 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2539 prepare_lock_switch(rq, next);
2540 prepare_arch_switch(next);
2541}
2542
1da177e4
LT
2543/**
2544 * finish_task_switch - clean up after a task-switch
344babaa 2545 * @rq: runqueue associated with task-switch
1da177e4
LT
2546 * @prev: the thread we just switched away from.
2547 *
4866cde0
NP
2548 * finish_task_switch must be called after the context switch, paired
2549 * with a prepare_task_switch call before the context switch.
2550 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2551 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2552 *
2553 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2554 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2555 * with the lock held can cause deadlocks; see schedule() for
2556 * details.)
2557 */
a9957449 2558static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2559 __releases(rq->lock)
2560{
1da177e4 2561 struct mm_struct *mm = rq->prev_mm;
55a101f8 2562 long prev_state;
1da177e4
LT
2563
2564 rq->prev_mm = NULL;
2565
2566 /*
2567 * A task struct has one reference for the use as "current".
c394cc9f 2568 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2569 * schedule one last time. The schedule call will never return, and
2570 * the scheduled task must drop that reference.
c394cc9f 2571 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2572 * still held, otherwise prev could be scheduled on another cpu, die
2573 * there before we look at prev->state, and then the reference would
2574 * be dropped twice.
2575 * Manfred Spraul <manfred@colorfullife.com>
2576 */
55a101f8 2577 prev_state = prev->state;
4866cde0
NP
2578 finish_arch_switch(prev);
2579 finish_lock_switch(rq, prev);
9a897c5a
SR
2580#ifdef CONFIG_SMP
2581 if (current->sched_class->post_schedule)
2582 current->sched_class->post_schedule(rq);
2583#endif
e8fa1362 2584
e107be36 2585 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2586 if (mm)
2587 mmdrop(mm);
c394cc9f 2588 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2589 /*
2590 * Remove function-return probe instances associated with this
2591 * task and put them back on the free list.
9761eea8 2592 */
c6fd91f0 2593 kprobe_flush_task(prev);
1da177e4 2594 put_task_struct(prev);
c6fd91f0 2595 }
1da177e4
LT
2596}
2597
2598/**
2599 * schedule_tail - first thing a freshly forked thread must call.
2600 * @prev: the thread we just switched away from.
2601 */
36c8b586 2602asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2603 __releases(rq->lock)
2604{
70b97a7f
IM
2605 struct rq *rq = this_rq();
2606
4866cde0
NP
2607 finish_task_switch(rq, prev);
2608#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2609 /* In this case, finish_task_switch does not reenable preemption */
2610 preempt_enable();
2611#endif
1da177e4 2612 if (current->set_child_tid)
b488893a 2613 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2614}
2615
2616/*
2617 * context_switch - switch to the new MM and the new
2618 * thread's register state.
2619 */
dd41f596 2620static inline void
70b97a7f 2621context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2622 struct task_struct *next)
1da177e4 2623{
dd41f596 2624 struct mm_struct *mm, *oldmm;
1da177e4 2625
e107be36 2626 prepare_task_switch(rq, prev, next);
0a16b607 2627 trace_sched_switch(rq, prev, next);
dd41f596
IM
2628 mm = next->mm;
2629 oldmm = prev->active_mm;
9226d125
ZA
2630 /*
2631 * For paravirt, this is coupled with an exit in switch_to to
2632 * combine the page table reload and the switch backend into
2633 * one hypercall.
2634 */
2635 arch_enter_lazy_cpu_mode();
2636
dd41f596 2637 if (unlikely(!mm)) {
1da177e4
LT
2638 next->active_mm = oldmm;
2639 atomic_inc(&oldmm->mm_count);
2640 enter_lazy_tlb(oldmm, next);
2641 } else
2642 switch_mm(oldmm, mm, next);
2643
dd41f596 2644 if (unlikely(!prev->mm)) {
1da177e4 2645 prev->active_mm = NULL;
1da177e4
LT
2646 rq->prev_mm = oldmm;
2647 }
3a5f5e48
IM
2648 /*
2649 * Since the runqueue lock will be released by the next
2650 * task (which is an invalid locking op but in the case
2651 * of the scheduler it's an obvious special-case), so we
2652 * do an early lockdep release here:
2653 */
2654#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2656#endif
1da177e4
LT
2657
2658 /* Here we just switch the register state and the stack. */
2659 switch_to(prev, next, prev);
2660
dd41f596
IM
2661 barrier();
2662 /*
2663 * this_rq must be evaluated again because prev may have moved
2664 * CPUs since it called schedule(), thus the 'rq' on its stack
2665 * frame will be invalid.
2666 */
2667 finish_task_switch(this_rq(), prev);
1da177e4
LT
2668}
2669
2670/*
2671 * nr_running, nr_uninterruptible and nr_context_switches:
2672 *
2673 * externally visible scheduler statistics: current number of runnable
2674 * threads, current number of uninterruptible-sleeping threads, total
2675 * number of context switches performed since bootup.
2676 */
2677unsigned long nr_running(void)
2678{
2679 unsigned long i, sum = 0;
2680
2681 for_each_online_cpu(i)
2682 sum += cpu_rq(i)->nr_running;
2683
2684 return sum;
2685}
2686
2687unsigned long nr_uninterruptible(void)
2688{
2689 unsigned long i, sum = 0;
2690
0a945022 2691 for_each_possible_cpu(i)
1da177e4
LT
2692 sum += cpu_rq(i)->nr_uninterruptible;
2693
2694 /*
2695 * Since we read the counters lockless, it might be slightly
2696 * inaccurate. Do not allow it to go below zero though:
2697 */
2698 if (unlikely((long)sum < 0))
2699 sum = 0;
2700
2701 return sum;
2702}
2703
2704unsigned long long nr_context_switches(void)
2705{
cc94abfc
SR
2706 int i;
2707 unsigned long long sum = 0;
1da177e4 2708
0a945022 2709 for_each_possible_cpu(i)
1da177e4
LT
2710 sum += cpu_rq(i)->nr_switches;
2711
2712 return sum;
2713}
2714
2715unsigned long nr_iowait(void)
2716{
2717 unsigned long i, sum = 0;
2718
0a945022 2719 for_each_possible_cpu(i)
1da177e4
LT
2720 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2721
2722 return sum;
2723}
2724
db1b1fef
JS
2725unsigned long nr_active(void)
2726{
2727 unsigned long i, running = 0, uninterruptible = 0;
2728
2729 for_each_online_cpu(i) {
2730 running += cpu_rq(i)->nr_running;
2731 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2732 }
2733
2734 if (unlikely((long)uninterruptible < 0))
2735 uninterruptible = 0;
2736
2737 return running + uninterruptible;
2738}
2739
48f24c4d 2740/*
dd41f596
IM
2741 * Update rq->cpu_load[] statistics. This function is usually called every
2742 * scheduler tick (TICK_NSEC).
48f24c4d 2743 */
dd41f596 2744static void update_cpu_load(struct rq *this_rq)
48f24c4d 2745{
495eca49 2746 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2747 int i, scale;
2748
2749 this_rq->nr_load_updates++;
dd41f596
IM
2750
2751 /* Update our load: */
2752 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2753 unsigned long old_load, new_load;
2754
2755 /* scale is effectively 1 << i now, and >> i divides by scale */
2756
2757 old_load = this_rq->cpu_load[i];
2758 new_load = this_load;
a25707f3
IM
2759 /*
2760 * Round up the averaging division if load is increasing. This
2761 * prevents us from getting stuck on 9 if the load is 10, for
2762 * example.
2763 */
2764 if (new_load > old_load)
2765 new_load += scale-1;
dd41f596
IM
2766 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2767 }
48f24c4d
IM
2768}
2769
dd41f596
IM
2770#ifdef CONFIG_SMP
2771
1da177e4
LT
2772/*
2773 * double_rq_lock - safely lock two runqueues
2774 *
2775 * Note this does not disable interrupts like task_rq_lock,
2776 * you need to do so manually before calling.
2777 */
70b97a7f 2778static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2779 __acquires(rq1->lock)
2780 __acquires(rq2->lock)
2781{
054b9108 2782 BUG_ON(!irqs_disabled());
1da177e4
LT
2783 if (rq1 == rq2) {
2784 spin_lock(&rq1->lock);
2785 __acquire(rq2->lock); /* Fake it out ;) */
2786 } else {
c96d145e 2787 if (rq1 < rq2) {
1da177e4 2788 spin_lock(&rq1->lock);
5e710e37 2789 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2790 } else {
2791 spin_lock(&rq2->lock);
5e710e37 2792 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2793 }
2794 }
6e82a3be
IM
2795 update_rq_clock(rq1);
2796 update_rq_clock(rq2);
1da177e4
LT
2797}
2798
2799/*
2800 * double_rq_unlock - safely unlock two runqueues
2801 *
2802 * Note this does not restore interrupts like task_rq_unlock,
2803 * you need to do so manually after calling.
2804 */
70b97a7f 2805static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2806 __releases(rq1->lock)
2807 __releases(rq2->lock)
2808{
2809 spin_unlock(&rq1->lock);
2810 if (rq1 != rq2)
2811 spin_unlock(&rq2->lock);
2812 else
2813 __release(rq2->lock);
2814}
2815
1da177e4
LT
2816/*
2817 * If dest_cpu is allowed for this process, migrate the task to it.
2818 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2819 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2820 * the cpu_allowed mask is restored.
2821 */
36c8b586 2822static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2823{
70b97a7f 2824 struct migration_req req;
1da177e4 2825 unsigned long flags;
70b97a7f 2826 struct rq *rq;
1da177e4
LT
2827
2828 rq = task_rq_lock(p, &flags);
2829 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2830 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2831 goto out;
2832
0a16b607 2833 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2834 /* force the process onto the specified CPU */
2835 if (migrate_task(p, dest_cpu, &req)) {
2836 /* Need to wait for migration thread (might exit: take ref). */
2837 struct task_struct *mt = rq->migration_thread;
36c8b586 2838
1da177e4
LT
2839 get_task_struct(mt);
2840 task_rq_unlock(rq, &flags);
2841 wake_up_process(mt);
2842 put_task_struct(mt);
2843 wait_for_completion(&req.done);
36c8b586 2844
1da177e4
LT
2845 return;
2846 }
2847out:
2848 task_rq_unlock(rq, &flags);
2849}
2850
2851/*
476d139c
NP
2852 * sched_exec - execve() is a valuable balancing opportunity, because at
2853 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2854 */
2855void sched_exec(void)
2856{
1da177e4 2857 int new_cpu, this_cpu = get_cpu();
476d139c 2858 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2859 put_cpu();
476d139c
NP
2860 if (new_cpu != this_cpu)
2861 sched_migrate_task(current, new_cpu);
1da177e4
LT
2862}
2863
2864/*
2865 * pull_task - move a task from a remote runqueue to the local runqueue.
2866 * Both runqueues must be locked.
2867 */
dd41f596
IM
2868static void pull_task(struct rq *src_rq, struct task_struct *p,
2869 struct rq *this_rq, int this_cpu)
1da177e4 2870{
2e1cb74a 2871 deactivate_task(src_rq, p, 0);
1da177e4 2872 set_task_cpu(p, this_cpu);
dd41f596 2873 activate_task(this_rq, p, 0);
1da177e4
LT
2874 /*
2875 * Note that idle threads have a prio of MAX_PRIO, for this test
2876 * to be always true for them.
2877 */
15afe09b 2878 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2879}
2880
2881/*
2882 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2883 */
858119e1 2884static
70b97a7f 2885int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2886 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2887 int *all_pinned)
1da177e4
LT
2888{
2889 /*
2890 * We do not migrate tasks that are:
2891 * 1) running (obviously), or
2892 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2893 * 3) are cache-hot on their current CPU.
2894 */
cc367732
IM
2895 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2896 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2897 return 0;
cc367732 2898 }
81026794
NP
2899 *all_pinned = 0;
2900
cc367732
IM
2901 if (task_running(rq, p)) {
2902 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2903 return 0;
cc367732 2904 }
1da177e4 2905
da84d961
IM
2906 /*
2907 * Aggressive migration if:
2908 * 1) task is cache cold, or
2909 * 2) too many balance attempts have failed.
2910 */
2911
6bc1665b
IM
2912 if (!task_hot(p, rq->clock, sd) ||
2913 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2914#ifdef CONFIG_SCHEDSTATS
cc367732 2915 if (task_hot(p, rq->clock, sd)) {
da84d961 2916 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2917 schedstat_inc(p, se.nr_forced_migrations);
2918 }
da84d961
IM
2919#endif
2920 return 1;
2921 }
2922
cc367732
IM
2923 if (task_hot(p, rq->clock, sd)) {
2924 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2925 return 0;
cc367732 2926 }
1da177e4
LT
2927 return 1;
2928}
2929
e1d1484f
PW
2930static unsigned long
2931balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2932 unsigned long max_load_move, struct sched_domain *sd,
2933 enum cpu_idle_type idle, int *all_pinned,
2934 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2935{
051c6764 2936 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2937 struct task_struct *p;
2938 long rem_load_move = max_load_move;
1da177e4 2939
e1d1484f 2940 if (max_load_move == 0)
1da177e4
LT
2941 goto out;
2942
81026794
NP
2943 pinned = 1;
2944
1da177e4 2945 /*
dd41f596 2946 * Start the load-balancing iterator:
1da177e4 2947 */
dd41f596
IM
2948 p = iterator->start(iterator->arg);
2949next:
b82d9fdd 2950 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2951 goto out;
051c6764
PZ
2952
2953 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2954 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2955 p = iterator->next(iterator->arg);
2956 goto next;
1da177e4
LT
2957 }
2958
dd41f596 2959 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2960 pulled++;
dd41f596 2961 rem_load_move -= p->se.load.weight;
1da177e4 2962
2dd73a4f 2963 /*
b82d9fdd 2964 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2965 */
e1d1484f 2966 if (rem_load_move > 0) {
a4ac01c3
PW
2967 if (p->prio < *this_best_prio)
2968 *this_best_prio = p->prio;
dd41f596
IM
2969 p = iterator->next(iterator->arg);
2970 goto next;
1da177e4
LT
2971 }
2972out:
2973 /*
e1d1484f 2974 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2975 * so we can safely collect pull_task() stats here rather than
2976 * inside pull_task().
2977 */
2978 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2979
2980 if (all_pinned)
2981 *all_pinned = pinned;
e1d1484f
PW
2982
2983 return max_load_move - rem_load_move;
1da177e4
LT
2984}
2985
dd41f596 2986/*
43010659
PW
2987 * move_tasks tries to move up to max_load_move weighted load from busiest to
2988 * this_rq, as part of a balancing operation within domain "sd".
2989 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2990 *
2991 * Called with both runqueues locked.
2992 */
2993static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2994 unsigned long max_load_move,
dd41f596
IM
2995 struct sched_domain *sd, enum cpu_idle_type idle,
2996 int *all_pinned)
2997{
5522d5d5 2998 const struct sched_class *class = sched_class_highest;
43010659 2999 unsigned long total_load_moved = 0;
a4ac01c3 3000 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3001
3002 do {
43010659
PW
3003 total_load_moved +=
3004 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3005 max_load_move - total_load_moved,
a4ac01c3 3006 sd, idle, all_pinned, &this_best_prio);
dd41f596 3007 class = class->next;
c4acb2c0
GH
3008
3009 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3010 break;
3011
43010659 3012 } while (class && max_load_move > total_load_moved);
dd41f596 3013
43010659
PW
3014 return total_load_moved > 0;
3015}
3016
e1d1484f
PW
3017static int
3018iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 struct rq_iterator *iterator)
3021{
3022 struct task_struct *p = iterator->start(iterator->arg);
3023 int pinned = 0;
3024
3025 while (p) {
3026 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3027 pull_task(busiest, p, this_rq, this_cpu);
3028 /*
3029 * Right now, this is only the second place pull_task()
3030 * is called, so we can safely collect pull_task()
3031 * stats here rather than inside pull_task().
3032 */
3033 schedstat_inc(sd, lb_gained[idle]);
3034
3035 return 1;
3036 }
3037 p = iterator->next(iterator->arg);
3038 }
3039
3040 return 0;
3041}
3042
43010659
PW
3043/*
3044 * move_one_task tries to move exactly one task from busiest to this_rq, as
3045 * part of active balancing operations within "domain".
3046 * Returns 1 if successful and 0 otherwise.
3047 *
3048 * Called with both runqueues locked.
3049 */
3050static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3051 struct sched_domain *sd, enum cpu_idle_type idle)
3052{
5522d5d5 3053 const struct sched_class *class;
43010659
PW
3054
3055 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3056 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3057 return 1;
3058
3059 return 0;
dd41f596
IM
3060}
3061
1da177e4
LT
3062/*
3063 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3064 * domain. It calculates and returns the amount of weighted load which
3065 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3066 */
3067static struct sched_group *
3068find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3069 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3070 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3071{
3072 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3073 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3074 unsigned long max_pull;
2dd73a4f
PW
3075 unsigned long busiest_load_per_task, busiest_nr_running;
3076 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3077 int load_idx, group_imb = 0;
5c45bf27
SS
3078#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3079 int power_savings_balance = 1;
3080 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3081 unsigned long min_nr_running = ULONG_MAX;
3082 struct sched_group *group_min = NULL, *group_leader = NULL;
3083#endif
1da177e4
LT
3084
3085 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3086 busiest_load_per_task = busiest_nr_running = 0;
3087 this_load_per_task = this_nr_running = 0;
408ed066 3088
d15bcfdb 3089 if (idle == CPU_NOT_IDLE)
7897986b 3090 load_idx = sd->busy_idx;
d15bcfdb 3091 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3092 load_idx = sd->newidle_idx;
3093 else
3094 load_idx = sd->idle_idx;
1da177e4
LT
3095
3096 do {
908a7c1b 3097 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3098 int local_group;
3099 int i;
908a7c1b 3100 int __group_imb = 0;
783609c6 3101 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3102 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3103 unsigned long sum_avg_load_per_task;
3104 unsigned long avg_load_per_task;
1da177e4
LT
3105
3106 local_group = cpu_isset(this_cpu, group->cpumask);
3107
783609c6
SS
3108 if (local_group)
3109 balance_cpu = first_cpu(group->cpumask);
3110
1da177e4 3111 /* Tally up the load of all CPUs in the group */
2dd73a4f 3112 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3113 sum_avg_load_per_task = avg_load_per_task = 0;
3114
908a7c1b
KC
3115 max_cpu_load = 0;
3116 min_cpu_load = ~0UL;
1da177e4 3117
363ab6f1 3118 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3119 struct rq *rq;
3120
3121 if (!cpu_isset(i, *cpus))
3122 continue;
3123
3124 rq = cpu_rq(i);
2dd73a4f 3125
9439aab8 3126 if (*sd_idle && rq->nr_running)
5969fe06
NP
3127 *sd_idle = 0;
3128
1da177e4 3129 /* Bias balancing toward cpus of our domain */
783609c6
SS
3130 if (local_group) {
3131 if (idle_cpu(i) && !first_idle_cpu) {
3132 first_idle_cpu = 1;
3133 balance_cpu = i;
3134 }
3135
a2000572 3136 load = target_load(i, load_idx);
908a7c1b 3137 } else {
a2000572 3138 load = source_load(i, load_idx);
908a7c1b
KC
3139 if (load > max_cpu_load)
3140 max_cpu_load = load;
3141 if (min_cpu_load > load)
3142 min_cpu_load = load;
3143 }
1da177e4
LT
3144
3145 avg_load += load;
2dd73a4f 3146 sum_nr_running += rq->nr_running;
dd41f596 3147 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3148
3149 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3150 }
3151
783609c6
SS
3152 /*
3153 * First idle cpu or the first cpu(busiest) in this sched group
3154 * is eligible for doing load balancing at this and above
9439aab8
SS
3155 * domains. In the newly idle case, we will allow all the cpu's
3156 * to do the newly idle load balance.
783609c6 3157 */
9439aab8
SS
3158 if (idle != CPU_NEWLY_IDLE && local_group &&
3159 balance_cpu != this_cpu && balance) {
783609c6
SS
3160 *balance = 0;
3161 goto ret;
3162 }
3163
1da177e4 3164 total_load += avg_load;
5517d86b 3165 total_pwr += group->__cpu_power;
1da177e4
LT
3166
3167 /* Adjust by relative CPU power of the group */
5517d86b
ED
3168 avg_load = sg_div_cpu_power(group,
3169 avg_load * SCHED_LOAD_SCALE);
1da177e4 3170
408ed066
PZ
3171
3172 /*
3173 * Consider the group unbalanced when the imbalance is larger
3174 * than the average weight of two tasks.
3175 *
3176 * APZ: with cgroup the avg task weight can vary wildly and
3177 * might not be a suitable number - should we keep a
3178 * normalized nr_running number somewhere that negates
3179 * the hierarchy?
3180 */
3181 avg_load_per_task = sg_div_cpu_power(group,
3182 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3183
3184 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3185 __group_imb = 1;
3186
5517d86b 3187 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3188
1da177e4
LT
3189 if (local_group) {
3190 this_load = avg_load;
3191 this = group;
2dd73a4f
PW
3192 this_nr_running = sum_nr_running;
3193 this_load_per_task = sum_weighted_load;
3194 } else if (avg_load > max_load &&
908a7c1b 3195 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3196 max_load = avg_load;
3197 busiest = group;
2dd73a4f
PW
3198 busiest_nr_running = sum_nr_running;
3199 busiest_load_per_task = sum_weighted_load;
908a7c1b 3200 group_imb = __group_imb;
1da177e4 3201 }
5c45bf27
SS
3202
3203#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3204 /*
3205 * Busy processors will not participate in power savings
3206 * balance.
3207 */
dd41f596
IM
3208 if (idle == CPU_NOT_IDLE ||
3209 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3210 goto group_next;
5c45bf27
SS
3211
3212 /*
3213 * If the local group is idle or completely loaded
3214 * no need to do power savings balance at this domain
3215 */
3216 if (local_group && (this_nr_running >= group_capacity ||
3217 !this_nr_running))
3218 power_savings_balance = 0;
3219
dd41f596 3220 /*
5c45bf27
SS
3221 * If a group is already running at full capacity or idle,
3222 * don't include that group in power savings calculations
dd41f596
IM
3223 */
3224 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3225 || !sum_nr_running)
dd41f596 3226 goto group_next;
5c45bf27 3227
dd41f596 3228 /*
5c45bf27 3229 * Calculate the group which has the least non-idle load.
dd41f596
IM
3230 * This is the group from where we need to pick up the load
3231 * for saving power
3232 */
3233 if ((sum_nr_running < min_nr_running) ||
3234 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3235 first_cpu(group->cpumask) <
3236 first_cpu(group_min->cpumask))) {
dd41f596
IM
3237 group_min = group;
3238 min_nr_running = sum_nr_running;
5c45bf27
SS
3239 min_load_per_task = sum_weighted_load /
3240 sum_nr_running;
dd41f596 3241 }
5c45bf27 3242
dd41f596 3243 /*
5c45bf27 3244 * Calculate the group which is almost near its
dd41f596
IM
3245 * capacity but still has some space to pick up some load
3246 * from other group and save more power
3247 */
3248 if (sum_nr_running <= group_capacity - 1) {
3249 if (sum_nr_running > leader_nr_running ||
3250 (sum_nr_running == leader_nr_running &&
3251 first_cpu(group->cpumask) >
3252 first_cpu(group_leader->cpumask))) {
3253 group_leader = group;
3254 leader_nr_running = sum_nr_running;
3255 }
48f24c4d 3256 }
5c45bf27
SS
3257group_next:
3258#endif
1da177e4
LT
3259 group = group->next;
3260 } while (group != sd->groups);
3261
2dd73a4f 3262 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3263 goto out_balanced;
3264
3265 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3266
3267 if (this_load >= avg_load ||
3268 100*max_load <= sd->imbalance_pct*this_load)
3269 goto out_balanced;
3270
2dd73a4f 3271 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3272 if (group_imb)
3273 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3274
1da177e4
LT
3275 /*
3276 * We're trying to get all the cpus to the average_load, so we don't
3277 * want to push ourselves above the average load, nor do we wish to
3278 * reduce the max loaded cpu below the average load, as either of these
3279 * actions would just result in more rebalancing later, and ping-pong
3280 * tasks around. Thus we look for the minimum possible imbalance.
3281 * Negative imbalances (*we* are more loaded than anyone else) will
3282 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3283 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3284 * appear as very large values with unsigned longs.
3285 */
2dd73a4f
PW
3286 if (max_load <= busiest_load_per_task)
3287 goto out_balanced;
3288
3289 /*
3290 * In the presence of smp nice balancing, certain scenarios can have
3291 * max load less than avg load(as we skip the groups at or below
3292 * its cpu_power, while calculating max_load..)
3293 */
3294 if (max_load < avg_load) {
3295 *imbalance = 0;
3296 goto small_imbalance;
3297 }
0c117f1b
SS
3298
3299 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3300 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3301
1da177e4 3302 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3303 *imbalance = min(max_pull * busiest->__cpu_power,
3304 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3305 / SCHED_LOAD_SCALE;
3306
2dd73a4f
PW
3307 /*
3308 * if *imbalance is less than the average load per runnable task
3309 * there is no gaurantee that any tasks will be moved so we'll have
3310 * a think about bumping its value to force at least one task to be
3311 * moved
3312 */
7fd0d2dd 3313 if (*imbalance < busiest_load_per_task) {
48f24c4d 3314 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3315 unsigned int imbn;
3316
3317small_imbalance:
3318 pwr_move = pwr_now = 0;
3319 imbn = 2;
3320 if (this_nr_running) {
3321 this_load_per_task /= this_nr_running;
3322 if (busiest_load_per_task > this_load_per_task)
3323 imbn = 1;
3324 } else
408ed066 3325 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3326
01c8c57d 3327 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3328 busiest_load_per_task * imbn) {
2dd73a4f 3329 *imbalance = busiest_load_per_task;
1da177e4
LT
3330 return busiest;
3331 }
3332
3333 /*
3334 * OK, we don't have enough imbalance to justify moving tasks,
3335 * however we may be able to increase total CPU power used by
3336 * moving them.
3337 */
3338
5517d86b
ED
3339 pwr_now += busiest->__cpu_power *
3340 min(busiest_load_per_task, max_load);
3341 pwr_now += this->__cpu_power *
3342 min(this_load_per_task, this_load);
1da177e4
LT
3343 pwr_now /= SCHED_LOAD_SCALE;
3344
3345 /* Amount of load we'd subtract */
5517d86b
ED
3346 tmp = sg_div_cpu_power(busiest,
3347 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3348 if (max_load > tmp)
5517d86b 3349 pwr_move += busiest->__cpu_power *
2dd73a4f 3350 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3351
3352 /* Amount of load we'd add */
5517d86b 3353 if (max_load * busiest->__cpu_power <
33859f7f 3354 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3355 tmp = sg_div_cpu_power(this,
3356 max_load * busiest->__cpu_power);
1da177e4 3357 else
5517d86b
ED
3358 tmp = sg_div_cpu_power(this,
3359 busiest_load_per_task * SCHED_LOAD_SCALE);
3360 pwr_move += this->__cpu_power *
3361 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3362 pwr_move /= SCHED_LOAD_SCALE;
3363
3364 /* Move if we gain throughput */
7fd0d2dd
SS
3365 if (pwr_move > pwr_now)
3366 *imbalance = busiest_load_per_task;
1da177e4
LT
3367 }
3368
1da177e4
LT
3369 return busiest;
3370
3371out_balanced:
5c45bf27 3372#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3373 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3374 goto ret;
1da177e4 3375
5c45bf27
SS
3376 if (this == group_leader && group_leader != group_min) {
3377 *imbalance = min_load_per_task;
3378 return group_min;
3379 }
5c45bf27 3380#endif
783609c6 3381ret:
1da177e4
LT
3382 *imbalance = 0;
3383 return NULL;
3384}
3385
3386/*
3387 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3388 */
70b97a7f 3389static struct rq *
d15bcfdb 3390find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3391 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3392{
70b97a7f 3393 struct rq *busiest = NULL, *rq;
2dd73a4f 3394 unsigned long max_load = 0;
1da177e4
LT
3395 int i;
3396
363ab6f1 3397 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3398 unsigned long wl;
0a2966b4
CL
3399
3400 if (!cpu_isset(i, *cpus))
3401 continue;
3402
48f24c4d 3403 rq = cpu_rq(i);
dd41f596 3404 wl = weighted_cpuload(i);
2dd73a4f 3405
dd41f596 3406 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3407 continue;
1da177e4 3408
dd41f596
IM
3409 if (wl > max_load) {
3410 max_load = wl;
48f24c4d 3411 busiest = rq;
1da177e4
LT
3412 }
3413 }
3414
3415 return busiest;
3416}
3417
77391d71
NP
3418/*
3419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3420 * so long as it is large enough.
3421 */
3422#define MAX_PINNED_INTERVAL 512
3423
1da177e4
LT
3424/*
3425 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3426 * tasks if there is an imbalance.
1da177e4 3427 */
70b97a7f 3428static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3429 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3430 int *balance, cpumask_t *cpus)
1da177e4 3431{
43010659 3432 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3433 struct sched_group *group;
1da177e4 3434 unsigned long imbalance;
70b97a7f 3435 struct rq *busiest;
fe2eea3f 3436 unsigned long flags;
5969fe06 3437
7c16ec58
MT
3438 cpus_setall(*cpus);
3439
89c4710e
SS
3440 /*
3441 * When power savings policy is enabled for the parent domain, idle
3442 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3443 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3444 * portraying it as CPU_NOT_IDLE.
89c4710e 3445 */
d15bcfdb 3446 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3447 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3448 sd_idle = 1;
1da177e4 3449
2d72376b 3450 schedstat_inc(sd, lb_count[idle]);
1da177e4 3451
0a2966b4 3452redo:
c8cba857 3453 update_shares(sd);
0a2966b4 3454 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3455 cpus, balance);
783609c6 3456
06066714 3457 if (*balance == 0)
783609c6 3458 goto out_balanced;
783609c6 3459
1da177e4
LT
3460 if (!group) {
3461 schedstat_inc(sd, lb_nobusyg[idle]);
3462 goto out_balanced;
3463 }
3464
7c16ec58 3465 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3466 if (!busiest) {
3467 schedstat_inc(sd, lb_nobusyq[idle]);
3468 goto out_balanced;
3469 }
3470
db935dbd 3471 BUG_ON(busiest == this_rq);
1da177e4
LT
3472
3473 schedstat_add(sd, lb_imbalance[idle], imbalance);
3474
43010659 3475 ld_moved = 0;
1da177e4
LT
3476 if (busiest->nr_running > 1) {
3477 /*
3478 * Attempt to move tasks. If find_busiest_group has found
3479 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3480 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3481 * correctly treated as an imbalance.
3482 */
fe2eea3f 3483 local_irq_save(flags);
e17224bf 3484 double_rq_lock(this_rq, busiest);
43010659 3485 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3486 imbalance, sd, idle, &all_pinned);
e17224bf 3487 double_rq_unlock(this_rq, busiest);
fe2eea3f 3488 local_irq_restore(flags);
81026794 3489
46cb4b7c
SS
3490 /*
3491 * some other cpu did the load balance for us.
3492 */
43010659 3493 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3494 resched_cpu(this_cpu);
3495
81026794 3496 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3497 if (unlikely(all_pinned)) {
7c16ec58
MT
3498 cpu_clear(cpu_of(busiest), *cpus);
3499 if (!cpus_empty(*cpus))
0a2966b4 3500 goto redo;
81026794 3501 goto out_balanced;
0a2966b4 3502 }
1da177e4 3503 }
81026794 3504
43010659 3505 if (!ld_moved) {
1da177e4
LT
3506 schedstat_inc(sd, lb_failed[idle]);
3507 sd->nr_balance_failed++;
3508
3509 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3510
fe2eea3f 3511 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3512
3513 /* don't kick the migration_thread, if the curr
3514 * task on busiest cpu can't be moved to this_cpu
3515 */
3516 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3517 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3518 all_pinned = 1;
3519 goto out_one_pinned;
3520 }
3521
1da177e4
LT
3522 if (!busiest->active_balance) {
3523 busiest->active_balance = 1;
3524 busiest->push_cpu = this_cpu;
81026794 3525 active_balance = 1;
1da177e4 3526 }
fe2eea3f 3527 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3528 if (active_balance)
1da177e4
LT
3529 wake_up_process(busiest->migration_thread);
3530
3531 /*
3532 * We've kicked active balancing, reset the failure
3533 * counter.
3534 */
39507451 3535 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3536 }
81026794 3537 } else
1da177e4
LT
3538 sd->nr_balance_failed = 0;
3539
81026794 3540 if (likely(!active_balance)) {
1da177e4
LT
3541 /* We were unbalanced, so reset the balancing interval */
3542 sd->balance_interval = sd->min_interval;
81026794
NP
3543 } else {
3544 /*
3545 * If we've begun active balancing, start to back off. This
3546 * case may not be covered by the all_pinned logic if there
3547 * is only 1 task on the busy runqueue (because we don't call
3548 * move_tasks).
3549 */
3550 if (sd->balance_interval < sd->max_interval)
3551 sd->balance_interval *= 2;
1da177e4
LT
3552 }
3553
43010659 3554 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3555 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3556 ld_moved = -1;
3557
3558 goto out;
1da177e4
LT
3559
3560out_balanced:
1da177e4
LT
3561 schedstat_inc(sd, lb_balanced[idle]);
3562
16cfb1c0 3563 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3564
3565out_one_pinned:
1da177e4 3566 /* tune up the balancing interval */
77391d71
NP
3567 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3568 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3569 sd->balance_interval *= 2;
3570
48f24c4d 3571 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3572 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3573 ld_moved = -1;
3574 else
3575 ld_moved = 0;
3576out:
c8cba857
PZ
3577 if (ld_moved)
3578 update_shares(sd);
c09595f6 3579 return ld_moved;
1da177e4
LT
3580}
3581
3582/*
3583 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3584 * tasks if there is an imbalance.
3585 *
d15bcfdb 3586 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3587 * this_rq is locked.
3588 */
48f24c4d 3589static int
7c16ec58
MT
3590load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3591 cpumask_t *cpus)
1da177e4
LT
3592{
3593 struct sched_group *group;
70b97a7f 3594 struct rq *busiest = NULL;
1da177e4 3595 unsigned long imbalance;
43010659 3596 int ld_moved = 0;
5969fe06 3597 int sd_idle = 0;
969bb4e4 3598 int all_pinned = 0;
7c16ec58
MT
3599
3600 cpus_setall(*cpus);
5969fe06 3601
89c4710e
SS
3602 /*
3603 * When power savings policy is enabled for the parent domain, idle
3604 * sibling can pick up load irrespective of busy siblings. In this case,
3605 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3606 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3607 */
3608 if (sd->flags & SD_SHARE_CPUPOWER &&
3609 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3610 sd_idle = 1;
1da177e4 3611
2d72376b 3612 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3613redo:
3e5459b4 3614 update_shares_locked(this_rq, sd);
d15bcfdb 3615 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3616 &sd_idle, cpus, NULL);
1da177e4 3617 if (!group) {
d15bcfdb 3618 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3619 goto out_balanced;
1da177e4
LT
3620 }
3621
7c16ec58 3622 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3623 if (!busiest) {
d15bcfdb 3624 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3625 goto out_balanced;
1da177e4
LT
3626 }
3627
db935dbd
NP
3628 BUG_ON(busiest == this_rq);
3629
d15bcfdb 3630 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3631
43010659 3632 ld_moved = 0;
d6d5cfaf
NP
3633 if (busiest->nr_running > 1) {
3634 /* Attempt to move tasks */
3635 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3636 /* this_rq->clock is already updated */
3637 update_rq_clock(busiest);
43010659 3638 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3639 imbalance, sd, CPU_NEWLY_IDLE,
3640 &all_pinned);
1b12bbc7 3641 double_unlock_balance(this_rq, busiest);
0a2966b4 3642
969bb4e4 3643 if (unlikely(all_pinned)) {
7c16ec58
MT
3644 cpu_clear(cpu_of(busiest), *cpus);
3645 if (!cpus_empty(*cpus))
0a2966b4
CL
3646 goto redo;
3647 }
d6d5cfaf
NP
3648 }
3649
43010659 3650 if (!ld_moved) {
d15bcfdb 3651 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3652 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3653 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3654 return -1;
3655 } else
16cfb1c0 3656 sd->nr_balance_failed = 0;
1da177e4 3657
3e5459b4 3658 update_shares_locked(this_rq, sd);
43010659 3659 return ld_moved;
16cfb1c0
NP
3660
3661out_balanced:
d15bcfdb 3662 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3663 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3664 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3665 return -1;
16cfb1c0 3666 sd->nr_balance_failed = 0;
48f24c4d 3667
16cfb1c0 3668 return 0;
1da177e4
LT
3669}
3670
3671/*
3672 * idle_balance is called by schedule() if this_cpu is about to become
3673 * idle. Attempts to pull tasks from other CPUs.
3674 */
70b97a7f 3675static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3676{
3677 struct sched_domain *sd;
dd41f596
IM
3678 int pulled_task = -1;
3679 unsigned long next_balance = jiffies + HZ;
7c16ec58 3680 cpumask_t tmpmask;
1da177e4
LT
3681
3682 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3683 unsigned long interval;
3684
3685 if (!(sd->flags & SD_LOAD_BALANCE))
3686 continue;
3687
3688 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3689 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3690 pulled_task = load_balance_newidle(this_cpu, this_rq,
3691 sd, &tmpmask);
92c4ca5c
CL
3692
3693 interval = msecs_to_jiffies(sd->balance_interval);
3694 if (time_after(next_balance, sd->last_balance + interval))
3695 next_balance = sd->last_balance + interval;
3696 if (pulled_task)
3697 break;
1da177e4 3698 }
dd41f596 3699 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3700 /*
3701 * We are going idle. next_balance may be set based on
3702 * a busy processor. So reset next_balance.
3703 */
3704 this_rq->next_balance = next_balance;
dd41f596 3705 }
1da177e4
LT
3706}
3707
3708/*
3709 * active_load_balance is run by migration threads. It pushes running tasks
3710 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3711 * running on each physical CPU where possible, and avoids physical /
3712 * logical imbalances.
3713 *
3714 * Called with busiest_rq locked.
3715 */
70b97a7f 3716static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3717{
39507451 3718 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3719 struct sched_domain *sd;
3720 struct rq *target_rq;
39507451 3721
48f24c4d 3722 /* Is there any task to move? */
39507451 3723 if (busiest_rq->nr_running <= 1)
39507451
NP
3724 return;
3725
3726 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3727
3728 /*
39507451 3729 * This condition is "impossible", if it occurs
41a2d6cf 3730 * we need to fix it. Originally reported by
39507451 3731 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3732 */
39507451 3733 BUG_ON(busiest_rq == target_rq);
1da177e4 3734
39507451
NP
3735 /* move a task from busiest_rq to target_rq */
3736 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3737 update_rq_clock(busiest_rq);
3738 update_rq_clock(target_rq);
39507451
NP
3739
3740 /* Search for an sd spanning us and the target CPU. */
c96d145e 3741 for_each_domain(target_cpu, sd) {
39507451 3742 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3743 cpu_isset(busiest_cpu, sd->span))
39507451 3744 break;
c96d145e 3745 }
39507451 3746
48f24c4d 3747 if (likely(sd)) {
2d72376b 3748 schedstat_inc(sd, alb_count);
39507451 3749
43010659
PW
3750 if (move_one_task(target_rq, target_cpu, busiest_rq,
3751 sd, CPU_IDLE))
48f24c4d
IM
3752 schedstat_inc(sd, alb_pushed);
3753 else
3754 schedstat_inc(sd, alb_failed);
3755 }
1b12bbc7 3756 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3757}
3758
46cb4b7c
SS
3759#ifdef CONFIG_NO_HZ
3760static struct {
3761 atomic_t load_balancer;
41a2d6cf 3762 cpumask_t cpu_mask;
46cb4b7c
SS
3763} nohz ____cacheline_aligned = {
3764 .load_balancer = ATOMIC_INIT(-1),
3765 .cpu_mask = CPU_MASK_NONE,
3766};
3767
7835b98b 3768/*
46cb4b7c
SS
3769 * This routine will try to nominate the ilb (idle load balancing)
3770 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3771 * load balancing on behalf of all those cpus. If all the cpus in the system
3772 * go into this tickless mode, then there will be no ilb owner (as there is
3773 * no need for one) and all the cpus will sleep till the next wakeup event
3774 * arrives...
3775 *
3776 * For the ilb owner, tick is not stopped. And this tick will be used
3777 * for idle load balancing. ilb owner will still be part of
3778 * nohz.cpu_mask..
7835b98b 3779 *
46cb4b7c
SS
3780 * While stopping the tick, this cpu will become the ilb owner if there
3781 * is no other owner. And will be the owner till that cpu becomes busy
3782 * or if all cpus in the system stop their ticks at which point
3783 * there is no need for ilb owner.
3784 *
3785 * When the ilb owner becomes busy, it nominates another owner, during the
3786 * next busy scheduler_tick()
3787 */
3788int select_nohz_load_balancer(int stop_tick)
3789{
3790 int cpu = smp_processor_id();
3791
3792 if (stop_tick) {
3793 cpu_set(cpu, nohz.cpu_mask);
3794 cpu_rq(cpu)->in_nohz_recently = 1;
3795
3796 /*
3797 * If we are going offline and still the leader, give up!
3798 */
e761b772 3799 if (!cpu_active(cpu) &&
46cb4b7c
SS
3800 atomic_read(&nohz.load_balancer) == cpu) {
3801 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3802 BUG();
3803 return 0;
3804 }
3805
3806 /* time for ilb owner also to sleep */
3807 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3808 if (atomic_read(&nohz.load_balancer) == cpu)
3809 atomic_set(&nohz.load_balancer, -1);
3810 return 0;
3811 }
3812
3813 if (atomic_read(&nohz.load_balancer) == -1) {
3814 /* make me the ilb owner */
3815 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3816 return 1;
3817 } else if (atomic_read(&nohz.load_balancer) == cpu)
3818 return 1;
3819 } else {
3820 if (!cpu_isset(cpu, nohz.cpu_mask))
3821 return 0;
3822
3823 cpu_clear(cpu, nohz.cpu_mask);
3824
3825 if (atomic_read(&nohz.load_balancer) == cpu)
3826 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3827 BUG();
3828 }
3829 return 0;
3830}
3831#endif
3832
3833static DEFINE_SPINLOCK(balancing);
3834
3835/*
7835b98b
CL
3836 * It checks each scheduling domain to see if it is due to be balanced,
3837 * and initiates a balancing operation if so.
3838 *
3839 * Balancing parameters are set up in arch_init_sched_domains.
3840 */
a9957449 3841static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3842{
46cb4b7c
SS
3843 int balance = 1;
3844 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3845 unsigned long interval;
3846 struct sched_domain *sd;
46cb4b7c 3847 /* Earliest time when we have to do rebalance again */
c9819f45 3848 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3849 int update_next_balance = 0;
d07355f5 3850 int need_serialize;
7c16ec58 3851 cpumask_t tmp;
1da177e4 3852
46cb4b7c 3853 for_each_domain(cpu, sd) {
1da177e4
LT
3854 if (!(sd->flags & SD_LOAD_BALANCE))
3855 continue;
3856
3857 interval = sd->balance_interval;
d15bcfdb 3858 if (idle != CPU_IDLE)
1da177e4
LT
3859 interval *= sd->busy_factor;
3860
3861 /* scale ms to jiffies */
3862 interval = msecs_to_jiffies(interval);
3863 if (unlikely(!interval))
3864 interval = 1;
dd41f596
IM
3865 if (interval > HZ*NR_CPUS/10)
3866 interval = HZ*NR_CPUS/10;
3867
d07355f5 3868 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3869
d07355f5 3870 if (need_serialize) {
08c183f3
CL
3871 if (!spin_trylock(&balancing))
3872 goto out;
3873 }
3874
c9819f45 3875 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3876 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3877 /*
3878 * We've pulled tasks over so either we're no
5969fe06
NP
3879 * longer idle, or one of our SMT siblings is
3880 * not idle.
3881 */
d15bcfdb 3882 idle = CPU_NOT_IDLE;
1da177e4 3883 }
1bd77f2d 3884 sd->last_balance = jiffies;
1da177e4 3885 }
d07355f5 3886 if (need_serialize)
08c183f3
CL
3887 spin_unlock(&balancing);
3888out:
f549da84 3889 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3890 next_balance = sd->last_balance + interval;
f549da84
SS
3891 update_next_balance = 1;
3892 }
783609c6
SS
3893
3894 /*
3895 * Stop the load balance at this level. There is another
3896 * CPU in our sched group which is doing load balancing more
3897 * actively.
3898 */
3899 if (!balance)
3900 break;
1da177e4 3901 }
f549da84
SS
3902
3903 /*
3904 * next_balance will be updated only when there is a need.
3905 * When the cpu is attached to null domain for ex, it will not be
3906 * updated.
3907 */
3908 if (likely(update_next_balance))
3909 rq->next_balance = next_balance;
46cb4b7c
SS
3910}
3911
3912/*
3913 * run_rebalance_domains is triggered when needed from the scheduler tick.
3914 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3915 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3916 */
3917static void run_rebalance_domains(struct softirq_action *h)
3918{
dd41f596
IM
3919 int this_cpu = smp_processor_id();
3920 struct rq *this_rq = cpu_rq(this_cpu);
3921 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3922 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3923
dd41f596 3924 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3925
3926#ifdef CONFIG_NO_HZ
3927 /*
3928 * If this cpu is the owner for idle load balancing, then do the
3929 * balancing on behalf of the other idle cpus whose ticks are
3930 * stopped.
3931 */
dd41f596
IM
3932 if (this_rq->idle_at_tick &&
3933 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3934 cpumask_t cpus = nohz.cpu_mask;
3935 struct rq *rq;
3936 int balance_cpu;
3937
dd41f596 3938 cpu_clear(this_cpu, cpus);
363ab6f1 3939 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3940 /*
3941 * If this cpu gets work to do, stop the load balancing
3942 * work being done for other cpus. Next load
3943 * balancing owner will pick it up.
3944 */
3945 if (need_resched())
3946 break;
3947
de0cf899 3948 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3949
3950 rq = cpu_rq(balance_cpu);
dd41f596
IM
3951 if (time_after(this_rq->next_balance, rq->next_balance))
3952 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3953 }
3954 }
3955#endif
3956}
3957
3958/*
3959 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3960 *
3961 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3962 * idle load balancing owner or decide to stop the periodic load balancing,
3963 * if the whole system is idle.
3964 */
dd41f596 3965static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3966{
46cb4b7c
SS
3967#ifdef CONFIG_NO_HZ
3968 /*
3969 * If we were in the nohz mode recently and busy at the current
3970 * scheduler tick, then check if we need to nominate new idle
3971 * load balancer.
3972 */
3973 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3974 rq->in_nohz_recently = 0;
3975
3976 if (atomic_read(&nohz.load_balancer) == cpu) {
3977 cpu_clear(cpu, nohz.cpu_mask);
3978 atomic_set(&nohz.load_balancer, -1);
3979 }
3980
3981 if (atomic_read(&nohz.load_balancer) == -1) {
3982 /*
3983 * simple selection for now: Nominate the
3984 * first cpu in the nohz list to be the next
3985 * ilb owner.
3986 *
3987 * TBD: Traverse the sched domains and nominate
3988 * the nearest cpu in the nohz.cpu_mask.
3989 */
3990 int ilb = first_cpu(nohz.cpu_mask);
3991
434d53b0 3992 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3993 resched_cpu(ilb);
3994 }
3995 }
3996
3997 /*
3998 * If this cpu is idle and doing idle load balancing for all the
3999 * cpus with ticks stopped, is it time for that to stop?
4000 */
4001 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4002 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4003 resched_cpu(cpu);
4004 return;
4005 }
4006
4007 /*
4008 * If this cpu is idle and the idle load balancing is done by
4009 * someone else, then no need raise the SCHED_SOFTIRQ
4010 */
4011 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4012 cpu_isset(cpu, nohz.cpu_mask))
4013 return;
4014#endif
4015 if (time_after_eq(jiffies, rq->next_balance))
4016 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4017}
dd41f596
IM
4018
4019#else /* CONFIG_SMP */
4020
1da177e4
LT
4021/*
4022 * on UP we do not need to balance between CPUs:
4023 */
70b97a7f 4024static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4025{
4026}
dd41f596 4027
1da177e4
LT
4028#endif
4029
1da177e4
LT
4030DEFINE_PER_CPU(struct kernel_stat, kstat);
4031
4032EXPORT_PER_CPU_SYMBOL(kstat);
4033
4034/*
f06febc9
FM
4035 * Return any ns on the sched_clock that have not yet been banked in
4036 * @p in case that task is currently running.
1da177e4 4037 */
bb34d92f 4038unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4039{
1da177e4 4040 unsigned long flags;
41b86e9c 4041 struct rq *rq;
bb34d92f 4042 u64 ns = 0;
48f24c4d 4043
41b86e9c 4044 rq = task_rq_lock(p, &flags);
1508487e 4045
051a1d1a 4046 if (task_current(rq, p)) {
f06febc9
FM
4047 u64 delta_exec;
4048
a8e504d2
IM
4049 update_rq_clock(rq);
4050 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4051 if ((s64)delta_exec > 0)
bb34d92f 4052 ns = delta_exec;
41b86e9c 4053 }
48f24c4d 4054
41b86e9c 4055 task_rq_unlock(rq, &flags);
48f24c4d 4056
1da177e4
LT
4057 return ns;
4058}
4059
1da177e4
LT
4060/*
4061 * Account user cpu time to a process.
4062 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4063 * @cputime: the cpu time spent in user space since the last update
4064 */
4065void account_user_time(struct task_struct *p, cputime_t cputime)
4066{
4067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4068 cputime64_t tmp;
4069
4070 p->utime = cputime_add(p->utime, cputime);
f06febc9 4071 account_group_user_time(p, cputime);
1da177e4
LT
4072
4073 /* Add user time to cpustat. */
4074 tmp = cputime_to_cputime64(cputime);
4075 if (TASK_NICE(p) > 0)
4076 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4077 else
4078 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4079 /* Account for user time used */
4080 acct_update_integrals(p);
1da177e4
LT
4081}
4082
94886b84
LV
4083/*
4084 * Account guest cpu time to a process.
4085 * @p: the process that the cpu time gets accounted to
4086 * @cputime: the cpu time spent in virtual machine since the last update
4087 */
f7402e03 4088static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4089{
4090 cputime64_t tmp;
4091 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4092
4093 tmp = cputime_to_cputime64(cputime);
4094
4095 p->utime = cputime_add(p->utime, cputime);
f06febc9 4096 account_group_user_time(p, cputime);
94886b84
LV
4097 p->gtime = cputime_add(p->gtime, cputime);
4098
4099 cpustat->user = cputime64_add(cpustat->user, tmp);
4100 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4101}
4102
c66f08be
MN
4103/*
4104 * Account scaled user cpu time to a process.
4105 * @p: the process that the cpu time gets accounted to
4106 * @cputime: the cpu time spent in user space since the last update
4107 */
4108void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4109{
4110 p->utimescaled = cputime_add(p->utimescaled, cputime);
4111}
4112
1da177e4
LT
4113/*
4114 * Account system cpu time to a process.
4115 * @p: the process that the cpu time gets accounted to
4116 * @hardirq_offset: the offset to subtract from hardirq_count()
4117 * @cputime: the cpu time spent in kernel space since the last update
4118 */
4119void account_system_time(struct task_struct *p, int hardirq_offset,
4120 cputime_t cputime)
4121{
4122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4123 struct rq *rq = this_rq();
1da177e4
LT
4124 cputime64_t tmp;
4125
983ed7a6
HH
4126 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4127 account_guest_time(p, cputime);
4128 return;
4129 }
94886b84 4130
1da177e4 4131 p->stime = cputime_add(p->stime, cputime);
f06febc9 4132 account_group_system_time(p, cputime);
1da177e4
LT
4133
4134 /* Add system time to cpustat. */
4135 tmp = cputime_to_cputime64(cputime);
4136 if (hardirq_count() - hardirq_offset)
4137 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4138 else if (softirq_count())
4139 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4140 else if (p != rq->idle)
1da177e4 4141 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4142 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4143 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4144 else
4145 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4146 /* Account for system time used */
4147 acct_update_integrals(p);
1da177e4
LT
4148}
4149
c66f08be
MN
4150/*
4151 * Account scaled system cpu time to a process.
4152 * @p: the process that the cpu time gets accounted to
4153 * @hardirq_offset: the offset to subtract from hardirq_count()
4154 * @cputime: the cpu time spent in kernel space since the last update
4155 */
4156void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4157{
4158 p->stimescaled = cputime_add(p->stimescaled, cputime);
4159}
4160
1da177e4
LT
4161/*
4162 * Account for involuntary wait time.
4163 * @p: the process from which the cpu time has been stolen
4164 * @steal: the cpu time spent in involuntary wait
4165 */
4166void account_steal_time(struct task_struct *p, cputime_t steal)
4167{
4168 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4169 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4170 struct rq *rq = this_rq();
1da177e4
LT
4171
4172 if (p == rq->idle) {
4173 p->stime = cputime_add(p->stime, steal);
f06febc9 4174 account_group_system_time(p, steal);
1da177e4
LT
4175 if (atomic_read(&rq->nr_iowait) > 0)
4176 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4177 else
4178 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4179 } else
1da177e4
LT
4180 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4181}
4182
49048622
BS
4183/*
4184 * Use precise platform statistics if available:
4185 */
4186#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4187cputime_t task_utime(struct task_struct *p)
4188{
4189 return p->utime;
4190}
4191
4192cputime_t task_stime(struct task_struct *p)
4193{
4194 return p->stime;
4195}
4196#else
4197cputime_t task_utime(struct task_struct *p)
4198{
4199 clock_t utime = cputime_to_clock_t(p->utime),
4200 total = utime + cputime_to_clock_t(p->stime);
4201 u64 temp;
4202
4203 /*
4204 * Use CFS's precise accounting:
4205 */
4206 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4207
4208 if (total) {
4209 temp *= utime;
4210 do_div(temp, total);
4211 }
4212 utime = (clock_t)temp;
4213
4214 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4215 return p->prev_utime;
4216}
4217
4218cputime_t task_stime(struct task_struct *p)
4219{
4220 clock_t stime;
4221
4222 /*
4223 * Use CFS's precise accounting. (we subtract utime from
4224 * the total, to make sure the total observed by userspace
4225 * grows monotonically - apps rely on that):
4226 */
4227 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4228 cputime_to_clock_t(task_utime(p));
4229
4230 if (stime >= 0)
4231 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4232
4233 return p->prev_stime;
4234}
4235#endif
4236
4237inline cputime_t task_gtime(struct task_struct *p)
4238{
4239 return p->gtime;
4240}
4241
7835b98b
CL
4242/*
4243 * This function gets called by the timer code, with HZ frequency.
4244 * We call it with interrupts disabled.
4245 *
4246 * It also gets called by the fork code, when changing the parent's
4247 * timeslices.
4248 */
4249void scheduler_tick(void)
4250{
7835b98b
CL
4251 int cpu = smp_processor_id();
4252 struct rq *rq = cpu_rq(cpu);
dd41f596 4253 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4254
4255 sched_clock_tick();
dd41f596
IM
4256
4257 spin_lock(&rq->lock);
3e51f33f 4258 update_rq_clock(rq);
f1a438d8 4259 update_cpu_load(rq);
fa85ae24 4260 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4261 spin_unlock(&rq->lock);
7835b98b 4262
e418e1c2 4263#ifdef CONFIG_SMP
dd41f596
IM
4264 rq->idle_at_tick = idle_cpu(cpu);
4265 trigger_load_balance(rq, cpu);
e418e1c2 4266#endif
1da177e4
LT
4267}
4268
6cd8a4bb
SR
4269#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4270 defined(CONFIG_PREEMPT_TRACER))
4271
4272static inline unsigned long get_parent_ip(unsigned long addr)
4273{
4274 if (in_lock_functions(addr)) {
4275 addr = CALLER_ADDR2;
4276 if (in_lock_functions(addr))
4277 addr = CALLER_ADDR3;
4278 }
4279 return addr;
4280}
1da177e4 4281
43627582 4282void __kprobes add_preempt_count(int val)
1da177e4 4283{
6cd8a4bb 4284#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4285 /*
4286 * Underflow?
4287 */
9a11b49a
IM
4288 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4289 return;
6cd8a4bb 4290#endif
1da177e4 4291 preempt_count() += val;
6cd8a4bb 4292#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4293 /*
4294 * Spinlock count overflowing soon?
4295 */
33859f7f
MOS
4296 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4297 PREEMPT_MASK - 10);
6cd8a4bb
SR
4298#endif
4299 if (preempt_count() == val)
4300 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4301}
4302EXPORT_SYMBOL(add_preempt_count);
4303
43627582 4304void __kprobes sub_preempt_count(int val)
1da177e4 4305{
6cd8a4bb 4306#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4307 /*
4308 * Underflow?
4309 */
9a11b49a
IM
4310 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4311 return;
1da177e4
LT
4312 /*
4313 * Is the spinlock portion underflowing?
4314 */
9a11b49a
IM
4315 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4316 !(preempt_count() & PREEMPT_MASK)))
4317 return;
6cd8a4bb 4318#endif
9a11b49a 4319
6cd8a4bb
SR
4320 if (preempt_count() == val)
4321 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4322 preempt_count() -= val;
4323}
4324EXPORT_SYMBOL(sub_preempt_count);
4325
4326#endif
4327
4328/*
dd41f596 4329 * Print scheduling while atomic bug:
1da177e4 4330 */
dd41f596 4331static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4332{
838225b4
SS
4333 struct pt_regs *regs = get_irq_regs();
4334
4335 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4336 prev->comm, prev->pid, preempt_count());
4337
dd41f596 4338 debug_show_held_locks(prev);
e21f5b15 4339 print_modules();
dd41f596
IM
4340 if (irqs_disabled())
4341 print_irqtrace_events(prev);
838225b4
SS
4342
4343 if (regs)
4344 show_regs(regs);
4345 else
4346 dump_stack();
dd41f596 4347}
1da177e4 4348
dd41f596
IM
4349/*
4350 * Various schedule()-time debugging checks and statistics:
4351 */
4352static inline void schedule_debug(struct task_struct *prev)
4353{
1da177e4 4354 /*
41a2d6cf 4355 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4356 * schedule() atomically, we ignore that path for now.
4357 * Otherwise, whine if we are scheduling when we should not be.
4358 */
3f33a7ce 4359 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4360 __schedule_bug(prev);
4361
1da177e4
LT
4362 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4363
2d72376b 4364 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4365#ifdef CONFIG_SCHEDSTATS
4366 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4367 schedstat_inc(this_rq(), bkl_count);
4368 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4369 }
4370#endif
dd41f596
IM
4371}
4372
4373/*
4374 * Pick up the highest-prio task:
4375 */
4376static inline struct task_struct *
ff95f3df 4377pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4378{
5522d5d5 4379 const struct sched_class *class;
dd41f596 4380 struct task_struct *p;
1da177e4
LT
4381
4382 /*
dd41f596
IM
4383 * Optimization: we know that if all tasks are in
4384 * the fair class we can call that function directly:
1da177e4 4385 */
dd41f596 4386 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4387 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4388 if (likely(p))
4389 return p;
1da177e4
LT
4390 }
4391
dd41f596
IM
4392 class = sched_class_highest;
4393 for ( ; ; ) {
fb8d4724 4394 p = class->pick_next_task(rq);
dd41f596
IM
4395 if (p)
4396 return p;
4397 /*
4398 * Will never be NULL as the idle class always
4399 * returns a non-NULL p:
4400 */
4401 class = class->next;
4402 }
4403}
1da177e4 4404
dd41f596
IM
4405/*
4406 * schedule() is the main scheduler function.
4407 */
4408asmlinkage void __sched schedule(void)
4409{
4410 struct task_struct *prev, *next;
67ca7bde 4411 unsigned long *switch_count;
dd41f596 4412 struct rq *rq;
31656519 4413 int cpu;
dd41f596
IM
4414
4415need_resched:
4416 preempt_disable();
4417 cpu = smp_processor_id();
4418 rq = cpu_rq(cpu);
4419 rcu_qsctr_inc(cpu);
4420 prev = rq->curr;
4421 switch_count = &prev->nivcsw;
4422
4423 release_kernel_lock(prev);
4424need_resched_nonpreemptible:
4425
4426 schedule_debug(prev);
1da177e4 4427
31656519 4428 if (sched_feat(HRTICK))
f333fdc9 4429 hrtick_clear(rq);
8f4d37ec 4430
8cd162ce 4431 spin_lock_irq(&rq->lock);
3e51f33f 4432 update_rq_clock(rq);
1e819950 4433 clear_tsk_need_resched(prev);
1da177e4 4434
1da177e4 4435 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4436 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4437 prev->state = TASK_RUNNING;
16882c1e 4438 else
2e1cb74a 4439 deactivate_task(rq, prev, 1);
dd41f596 4440 switch_count = &prev->nvcsw;
1da177e4
LT
4441 }
4442
9a897c5a
SR
4443#ifdef CONFIG_SMP
4444 if (prev->sched_class->pre_schedule)
4445 prev->sched_class->pre_schedule(rq, prev);
4446#endif
f65eda4f 4447
dd41f596 4448 if (unlikely(!rq->nr_running))
1da177e4 4449 idle_balance(cpu, rq);
1da177e4 4450
31ee529c 4451 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4452 next = pick_next_task(rq, prev);
1da177e4 4453
1da177e4 4454 if (likely(prev != next)) {
673a90a1
DS
4455 sched_info_switch(prev, next);
4456
1da177e4
LT
4457 rq->nr_switches++;
4458 rq->curr = next;
4459 ++*switch_count;
4460
dd41f596 4461 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4462 /*
4463 * the context switch might have flipped the stack from under
4464 * us, hence refresh the local variables.
4465 */
4466 cpu = smp_processor_id();
4467 rq = cpu_rq(cpu);
1da177e4
LT
4468 } else
4469 spin_unlock_irq(&rq->lock);
4470
8f4d37ec 4471 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4472 goto need_resched_nonpreemptible;
8f4d37ec 4473
1da177e4
LT
4474 preempt_enable_no_resched();
4475 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4476 goto need_resched;
4477}
1da177e4
LT
4478EXPORT_SYMBOL(schedule);
4479
4480#ifdef CONFIG_PREEMPT
4481/*
2ed6e34f 4482 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4483 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4484 * occur there and call schedule directly.
4485 */
4486asmlinkage void __sched preempt_schedule(void)
4487{
4488 struct thread_info *ti = current_thread_info();
6478d880 4489
1da177e4
LT
4490 /*
4491 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4492 * we do not want to preempt the current task. Just return..
1da177e4 4493 */
beed33a8 4494 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4495 return;
4496
3a5c359a
AK
4497 do {
4498 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4499 schedule();
3a5c359a 4500 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4501
3a5c359a
AK
4502 /*
4503 * Check again in case we missed a preemption opportunity
4504 * between schedule and now.
4505 */
4506 barrier();
4507 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4508}
1da177e4
LT
4509EXPORT_SYMBOL(preempt_schedule);
4510
4511/*
2ed6e34f 4512 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4513 * off of irq context.
4514 * Note, that this is called and return with irqs disabled. This will
4515 * protect us against recursive calling from irq.
4516 */
4517asmlinkage void __sched preempt_schedule_irq(void)
4518{
4519 struct thread_info *ti = current_thread_info();
6478d880 4520
2ed6e34f 4521 /* Catch callers which need to be fixed */
1da177e4
LT
4522 BUG_ON(ti->preempt_count || !irqs_disabled());
4523
3a5c359a
AK
4524 do {
4525 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4526 local_irq_enable();
4527 schedule();
4528 local_irq_disable();
3a5c359a 4529 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4530
3a5c359a
AK
4531 /*
4532 * Check again in case we missed a preemption opportunity
4533 * between schedule and now.
4534 */
4535 barrier();
4536 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4537}
4538
4539#endif /* CONFIG_PREEMPT */
4540
95cdf3b7
IM
4541int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4542 void *key)
1da177e4 4543{
48f24c4d 4544 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4545}
1da177e4
LT
4546EXPORT_SYMBOL(default_wake_function);
4547
4548/*
41a2d6cf
IM
4549 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4550 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4551 * number) then we wake all the non-exclusive tasks and one exclusive task.
4552 *
4553 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4554 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4555 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4556 */
4557static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4558 int nr_exclusive, int sync, void *key)
4559{
2e45874c 4560 wait_queue_t *curr, *next;
1da177e4 4561
2e45874c 4562 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4563 unsigned flags = curr->flags;
4564
1da177e4 4565 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4566 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4567 break;
4568 }
4569}
4570
4571/**
4572 * __wake_up - wake up threads blocked on a waitqueue.
4573 * @q: the waitqueue
4574 * @mode: which threads
4575 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4576 * @key: is directly passed to the wakeup function
1da177e4 4577 */
7ad5b3a5 4578void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4579 int nr_exclusive, void *key)
1da177e4
LT
4580{
4581 unsigned long flags;
4582
4583 spin_lock_irqsave(&q->lock, flags);
4584 __wake_up_common(q, mode, nr_exclusive, 0, key);
4585 spin_unlock_irqrestore(&q->lock, flags);
4586}
1da177e4
LT
4587EXPORT_SYMBOL(__wake_up);
4588
4589/*
4590 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4591 */
7ad5b3a5 4592void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4593{
4594 __wake_up_common(q, mode, 1, 0, NULL);
4595}
4596
4597/**
67be2dd1 4598 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4599 * @q: the waitqueue
4600 * @mode: which threads
4601 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4602 *
4603 * The sync wakeup differs that the waker knows that it will schedule
4604 * away soon, so while the target thread will be woken up, it will not
4605 * be migrated to another CPU - ie. the two threads are 'synchronized'
4606 * with each other. This can prevent needless bouncing between CPUs.
4607 *
4608 * On UP it can prevent extra preemption.
4609 */
7ad5b3a5 4610void
95cdf3b7 4611__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4612{
4613 unsigned long flags;
4614 int sync = 1;
4615
4616 if (unlikely(!q))
4617 return;
4618
4619 if (unlikely(!nr_exclusive))
4620 sync = 0;
4621
4622 spin_lock_irqsave(&q->lock, flags);
4623 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4624 spin_unlock_irqrestore(&q->lock, flags);
4625}
4626EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4627
65eb3dc6
KD
4628/**
4629 * complete: - signals a single thread waiting on this completion
4630 * @x: holds the state of this particular completion
4631 *
4632 * This will wake up a single thread waiting on this completion. Threads will be
4633 * awakened in the same order in which they were queued.
4634 *
4635 * See also complete_all(), wait_for_completion() and related routines.
4636 */
b15136e9 4637void complete(struct completion *x)
1da177e4
LT
4638{
4639 unsigned long flags;
4640
4641 spin_lock_irqsave(&x->wait.lock, flags);
4642 x->done++;
d9514f6c 4643 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4644 spin_unlock_irqrestore(&x->wait.lock, flags);
4645}
4646EXPORT_SYMBOL(complete);
4647
65eb3dc6
KD
4648/**
4649 * complete_all: - signals all threads waiting on this completion
4650 * @x: holds the state of this particular completion
4651 *
4652 * This will wake up all threads waiting on this particular completion event.
4653 */
b15136e9 4654void complete_all(struct completion *x)
1da177e4
LT
4655{
4656 unsigned long flags;
4657
4658 spin_lock_irqsave(&x->wait.lock, flags);
4659 x->done += UINT_MAX/2;
d9514f6c 4660 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4661 spin_unlock_irqrestore(&x->wait.lock, flags);
4662}
4663EXPORT_SYMBOL(complete_all);
4664
8cbbe86d
AK
4665static inline long __sched
4666do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4667{
1da177e4
LT
4668 if (!x->done) {
4669 DECLARE_WAITQUEUE(wait, current);
4670
4671 wait.flags |= WQ_FLAG_EXCLUSIVE;
4672 __add_wait_queue_tail(&x->wait, &wait);
4673 do {
94d3d824 4674 if (signal_pending_state(state, current)) {
ea71a546
ON
4675 timeout = -ERESTARTSYS;
4676 break;
8cbbe86d
AK
4677 }
4678 __set_current_state(state);
1da177e4
LT
4679 spin_unlock_irq(&x->wait.lock);
4680 timeout = schedule_timeout(timeout);
4681 spin_lock_irq(&x->wait.lock);
ea71a546 4682 } while (!x->done && timeout);
1da177e4 4683 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4684 if (!x->done)
4685 return timeout;
1da177e4
LT
4686 }
4687 x->done--;
ea71a546 4688 return timeout ?: 1;
1da177e4 4689}
1da177e4 4690
8cbbe86d
AK
4691static long __sched
4692wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4693{
1da177e4
LT
4694 might_sleep();
4695
4696 spin_lock_irq(&x->wait.lock);
8cbbe86d 4697 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4698 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4699 return timeout;
4700}
1da177e4 4701
65eb3dc6
KD
4702/**
4703 * wait_for_completion: - waits for completion of a task
4704 * @x: holds the state of this particular completion
4705 *
4706 * This waits to be signaled for completion of a specific task. It is NOT
4707 * interruptible and there is no timeout.
4708 *
4709 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4710 * and interrupt capability. Also see complete().
4711 */
b15136e9 4712void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4713{
4714 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4715}
8cbbe86d 4716EXPORT_SYMBOL(wait_for_completion);
1da177e4 4717
65eb3dc6
KD
4718/**
4719 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4720 * @x: holds the state of this particular completion
4721 * @timeout: timeout value in jiffies
4722 *
4723 * This waits for either a completion of a specific task to be signaled or for a
4724 * specified timeout to expire. The timeout is in jiffies. It is not
4725 * interruptible.
4726 */
b15136e9 4727unsigned long __sched
8cbbe86d 4728wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4729{
8cbbe86d 4730 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4731}
8cbbe86d 4732EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4733
65eb3dc6
KD
4734/**
4735 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4736 * @x: holds the state of this particular completion
4737 *
4738 * This waits for completion of a specific task to be signaled. It is
4739 * interruptible.
4740 */
8cbbe86d 4741int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4742{
51e97990
AK
4743 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4744 if (t == -ERESTARTSYS)
4745 return t;
4746 return 0;
0fec171c 4747}
8cbbe86d 4748EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4749
65eb3dc6
KD
4750/**
4751 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4752 * @x: holds the state of this particular completion
4753 * @timeout: timeout value in jiffies
4754 *
4755 * This waits for either a completion of a specific task to be signaled or for a
4756 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4757 */
b15136e9 4758unsigned long __sched
8cbbe86d
AK
4759wait_for_completion_interruptible_timeout(struct completion *x,
4760 unsigned long timeout)
0fec171c 4761{
8cbbe86d 4762 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4763}
8cbbe86d 4764EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4765
65eb3dc6
KD
4766/**
4767 * wait_for_completion_killable: - waits for completion of a task (killable)
4768 * @x: holds the state of this particular completion
4769 *
4770 * This waits to be signaled for completion of a specific task. It can be
4771 * interrupted by a kill signal.
4772 */
009e577e
MW
4773int __sched wait_for_completion_killable(struct completion *x)
4774{
4775 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4776 if (t == -ERESTARTSYS)
4777 return t;
4778 return 0;
4779}
4780EXPORT_SYMBOL(wait_for_completion_killable);
4781
be4de352
DC
4782/**
4783 * try_wait_for_completion - try to decrement a completion without blocking
4784 * @x: completion structure
4785 *
4786 * Returns: 0 if a decrement cannot be done without blocking
4787 * 1 if a decrement succeeded.
4788 *
4789 * If a completion is being used as a counting completion,
4790 * attempt to decrement the counter without blocking. This
4791 * enables us to avoid waiting if the resource the completion
4792 * is protecting is not available.
4793 */
4794bool try_wait_for_completion(struct completion *x)
4795{
4796 int ret = 1;
4797
4798 spin_lock_irq(&x->wait.lock);
4799 if (!x->done)
4800 ret = 0;
4801 else
4802 x->done--;
4803 spin_unlock_irq(&x->wait.lock);
4804 return ret;
4805}
4806EXPORT_SYMBOL(try_wait_for_completion);
4807
4808/**
4809 * completion_done - Test to see if a completion has any waiters
4810 * @x: completion structure
4811 *
4812 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4813 * 1 if there are no waiters.
4814 *
4815 */
4816bool completion_done(struct completion *x)
4817{
4818 int ret = 1;
4819
4820 spin_lock_irq(&x->wait.lock);
4821 if (!x->done)
4822 ret = 0;
4823 spin_unlock_irq(&x->wait.lock);
4824 return ret;
4825}
4826EXPORT_SYMBOL(completion_done);
4827
8cbbe86d
AK
4828static long __sched
4829sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4830{
0fec171c
IM
4831 unsigned long flags;
4832 wait_queue_t wait;
4833
4834 init_waitqueue_entry(&wait, current);
1da177e4 4835
8cbbe86d 4836 __set_current_state(state);
1da177e4 4837
8cbbe86d
AK
4838 spin_lock_irqsave(&q->lock, flags);
4839 __add_wait_queue(q, &wait);
4840 spin_unlock(&q->lock);
4841 timeout = schedule_timeout(timeout);
4842 spin_lock_irq(&q->lock);
4843 __remove_wait_queue(q, &wait);
4844 spin_unlock_irqrestore(&q->lock, flags);
4845
4846 return timeout;
4847}
4848
4849void __sched interruptible_sleep_on(wait_queue_head_t *q)
4850{
4851 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4852}
1da177e4
LT
4853EXPORT_SYMBOL(interruptible_sleep_on);
4854
0fec171c 4855long __sched
95cdf3b7 4856interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4857{
8cbbe86d 4858 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4859}
1da177e4
LT
4860EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4861
0fec171c 4862void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4863{
8cbbe86d 4864 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4865}
1da177e4
LT
4866EXPORT_SYMBOL(sleep_on);
4867
0fec171c 4868long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4869{
8cbbe86d 4870 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4871}
1da177e4
LT
4872EXPORT_SYMBOL(sleep_on_timeout);
4873
b29739f9
IM
4874#ifdef CONFIG_RT_MUTEXES
4875
4876/*
4877 * rt_mutex_setprio - set the current priority of a task
4878 * @p: task
4879 * @prio: prio value (kernel-internal form)
4880 *
4881 * This function changes the 'effective' priority of a task. It does
4882 * not touch ->normal_prio like __setscheduler().
4883 *
4884 * Used by the rt_mutex code to implement priority inheritance logic.
4885 */
36c8b586 4886void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4887{
4888 unsigned long flags;
83b699ed 4889 int oldprio, on_rq, running;
70b97a7f 4890 struct rq *rq;
cb469845 4891 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4892
4893 BUG_ON(prio < 0 || prio > MAX_PRIO);
4894
4895 rq = task_rq_lock(p, &flags);
a8e504d2 4896 update_rq_clock(rq);
b29739f9 4897
d5f9f942 4898 oldprio = p->prio;
dd41f596 4899 on_rq = p->se.on_rq;
051a1d1a 4900 running = task_current(rq, p);
0e1f3483 4901 if (on_rq)
69be72c1 4902 dequeue_task(rq, p, 0);
0e1f3483
HS
4903 if (running)
4904 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4905
4906 if (rt_prio(prio))
4907 p->sched_class = &rt_sched_class;
4908 else
4909 p->sched_class = &fair_sched_class;
4910
b29739f9
IM
4911 p->prio = prio;
4912
0e1f3483
HS
4913 if (running)
4914 p->sched_class->set_curr_task(rq);
dd41f596 4915 if (on_rq) {
8159f87e 4916 enqueue_task(rq, p, 0);
cb469845
SR
4917
4918 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4919 }
4920 task_rq_unlock(rq, &flags);
4921}
4922
4923#endif
4924
36c8b586 4925void set_user_nice(struct task_struct *p, long nice)
1da177e4 4926{
dd41f596 4927 int old_prio, delta, on_rq;
1da177e4 4928 unsigned long flags;
70b97a7f 4929 struct rq *rq;
1da177e4
LT
4930
4931 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4932 return;
4933 /*
4934 * We have to be careful, if called from sys_setpriority(),
4935 * the task might be in the middle of scheduling on another CPU.
4936 */
4937 rq = task_rq_lock(p, &flags);
a8e504d2 4938 update_rq_clock(rq);
1da177e4
LT
4939 /*
4940 * The RT priorities are set via sched_setscheduler(), but we still
4941 * allow the 'normal' nice value to be set - but as expected
4942 * it wont have any effect on scheduling until the task is
dd41f596 4943 * SCHED_FIFO/SCHED_RR:
1da177e4 4944 */
e05606d3 4945 if (task_has_rt_policy(p)) {
1da177e4
LT
4946 p->static_prio = NICE_TO_PRIO(nice);
4947 goto out_unlock;
4948 }
dd41f596 4949 on_rq = p->se.on_rq;
c09595f6 4950 if (on_rq)
69be72c1 4951 dequeue_task(rq, p, 0);
1da177e4 4952
1da177e4 4953 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4954 set_load_weight(p);
b29739f9
IM
4955 old_prio = p->prio;
4956 p->prio = effective_prio(p);
4957 delta = p->prio - old_prio;
1da177e4 4958
dd41f596 4959 if (on_rq) {
8159f87e 4960 enqueue_task(rq, p, 0);
1da177e4 4961 /*
d5f9f942
AM
4962 * If the task increased its priority or is running and
4963 * lowered its priority, then reschedule its CPU:
1da177e4 4964 */
d5f9f942 4965 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4966 resched_task(rq->curr);
4967 }
4968out_unlock:
4969 task_rq_unlock(rq, &flags);
4970}
1da177e4
LT
4971EXPORT_SYMBOL(set_user_nice);
4972
e43379f1
MM
4973/*
4974 * can_nice - check if a task can reduce its nice value
4975 * @p: task
4976 * @nice: nice value
4977 */
36c8b586 4978int can_nice(const struct task_struct *p, const int nice)
e43379f1 4979{
024f4747
MM
4980 /* convert nice value [19,-20] to rlimit style value [1,40] */
4981 int nice_rlim = 20 - nice;
48f24c4d 4982
e43379f1
MM
4983 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4984 capable(CAP_SYS_NICE));
4985}
4986
1da177e4
LT
4987#ifdef __ARCH_WANT_SYS_NICE
4988
4989/*
4990 * sys_nice - change the priority of the current process.
4991 * @increment: priority increment
4992 *
4993 * sys_setpriority is a more generic, but much slower function that
4994 * does similar things.
4995 */
4996asmlinkage long sys_nice(int increment)
4997{
48f24c4d 4998 long nice, retval;
1da177e4
LT
4999
5000 /*
5001 * Setpriority might change our priority at the same moment.
5002 * We don't have to worry. Conceptually one call occurs first
5003 * and we have a single winner.
5004 */
e43379f1
MM
5005 if (increment < -40)
5006 increment = -40;
1da177e4
LT
5007 if (increment > 40)
5008 increment = 40;
5009
5010 nice = PRIO_TO_NICE(current->static_prio) + increment;
5011 if (nice < -20)
5012 nice = -20;
5013 if (nice > 19)
5014 nice = 19;
5015
e43379f1
MM
5016 if (increment < 0 && !can_nice(current, nice))
5017 return -EPERM;
5018
1da177e4
LT
5019 retval = security_task_setnice(current, nice);
5020 if (retval)
5021 return retval;
5022
5023 set_user_nice(current, nice);
5024 return 0;
5025}
5026
5027#endif
5028
5029/**
5030 * task_prio - return the priority value of a given task.
5031 * @p: the task in question.
5032 *
5033 * This is the priority value as seen by users in /proc.
5034 * RT tasks are offset by -200. Normal tasks are centered
5035 * around 0, value goes from -16 to +15.
5036 */
36c8b586 5037int task_prio(const struct task_struct *p)
1da177e4
LT
5038{
5039 return p->prio - MAX_RT_PRIO;
5040}
5041
5042/**
5043 * task_nice - return the nice value of a given task.
5044 * @p: the task in question.
5045 */
36c8b586 5046int task_nice(const struct task_struct *p)
1da177e4
LT
5047{
5048 return TASK_NICE(p);
5049}
150d8bed 5050EXPORT_SYMBOL(task_nice);
1da177e4
LT
5051
5052/**
5053 * idle_cpu - is a given cpu idle currently?
5054 * @cpu: the processor in question.
5055 */
5056int idle_cpu(int cpu)
5057{
5058 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5059}
5060
1da177e4
LT
5061/**
5062 * idle_task - return the idle task for a given cpu.
5063 * @cpu: the processor in question.
5064 */
36c8b586 5065struct task_struct *idle_task(int cpu)
1da177e4
LT
5066{
5067 return cpu_rq(cpu)->idle;
5068}
5069
5070/**
5071 * find_process_by_pid - find a process with a matching PID value.
5072 * @pid: the pid in question.
5073 */
a9957449 5074static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5075{
228ebcbe 5076 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5077}
5078
5079/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5080static void
5081__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5082{
dd41f596 5083 BUG_ON(p->se.on_rq);
48f24c4d 5084
1da177e4 5085 p->policy = policy;
dd41f596
IM
5086 switch (p->policy) {
5087 case SCHED_NORMAL:
5088 case SCHED_BATCH:
5089 case SCHED_IDLE:
5090 p->sched_class = &fair_sched_class;
5091 break;
5092 case SCHED_FIFO:
5093 case SCHED_RR:
5094 p->sched_class = &rt_sched_class;
5095 break;
5096 }
5097
1da177e4 5098 p->rt_priority = prio;
b29739f9
IM
5099 p->normal_prio = normal_prio(p);
5100 /* we are holding p->pi_lock already */
5101 p->prio = rt_mutex_getprio(p);
2dd73a4f 5102 set_load_weight(p);
1da177e4
LT
5103}
5104
961ccddd
RR
5105static int __sched_setscheduler(struct task_struct *p, int policy,
5106 struct sched_param *param, bool user)
1da177e4 5107{
83b699ed 5108 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5109 unsigned long flags;
cb469845 5110 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5111 struct rq *rq;
1da177e4 5112
66e5393a
SR
5113 /* may grab non-irq protected spin_locks */
5114 BUG_ON(in_interrupt());
1da177e4
LT
5115recheck:
5116 /* double check policy once rq lock held */
5117 if (policy < 0)
5118 policy = oldpolicy = p->policy;
5119 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5120 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5121 policy != SCHED_IDLE)
b0a9499c 5122 return -EINVAL;
1da177e4
LT
5123 /*
5124 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5125 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5126 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5127 */
5128 if (param->sched_priority < 0 ||
95cdf3b7 5129 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5130 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5131 return -EINVAL;
e05606d3 5132 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5133 return -EINVAL;
5134
37e4ab3f
OC
5135 /*
5136 * Allow unprivileged RT tasks to decrease priority:
5137 */
961ccddd 5138 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5139 if (rt_policy(policy)) {
8dc3e909 5140 unsigned long rlim_rtprio;
8dc3e909
ON
5141
5142 if (!lock_task_sighand(p, &flags))
5143 return -ESRCH;
5144 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5145 unlock_task_sighand(p, &flags);
5146
5147 /* can't set/change the rt policy */
5148 if (policy != p->policy && !rlim_rtprio)
5149 return -EPERM;
5150
5151 /* can't increase priority */
5152 if (param->sched_priority > p->rt_priority &&
5153 param->sched_priority > rlim_rtprio)
5154 return -EPERM;
5155 }
dd41f596
IM
5156 /*
5157 * Like positive nice levels, dont allow tasks to
5158 * move out of SCHED_IDLE either:
5159 */
5160 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5161 return -EPERM;
5fe1d75f 5162
37e4ab3f
OC
5163 /* can't change other user's priorities */
5164 if ((current->euid != p->euid) &&
5165 (current->euid != p->uid))
5166 return -EPERM;
5167 }
1da177e4 5168
725aad24 5169 if (user) {
b68aa230 5170#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5171 /*
5172 * Do not allow realtime tasks into groups that have no runtime
5173 * assigned.
5174 */
9a7e0b18
PZ
5175 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5176 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5177 return -EPERM;
b68aa230
PZ
5178#endif
5179
725aad24
JF
5180 retval = security_task_setscheduler(p, policy, param);
5181 if (retval)
5182 return retval;
5183 }
5184
b29739f9
IM
5185 /*
5186 * make sure no PI-waiters arrive (or leave) while we are
5187 * changing the priority of the task:
5188 */
5189 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5190 /*
5191 * To be able to change p->policy safely, the apropriate
5192 * runqueue lock must be held.
5193 */
b29739f9 5194 rq = __task_rq_lock(p);
1da177e4
LT
5195 /* recheck policy now with rq lock held */
5196 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5197 policy = oldpolicy = -1;
b29739f9
IM
5198 __task_rq_unlock(rq);
5199 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5200 goto recheck;
5201 }
2daa3577 5202 update_rq_clock(rq);
dd41f596 5203 on_rq = p->se.on_rq;
051a1d1a 5204 running = task_current(rq, p);
0e1f3483 5205 if (on_rq)
2e1cb74a 5206 deactivate_task(rq, p, 0);
0e1f3483
HS
5207 if (running)
5208 p->sched_class->put_prev_task(rq, p);
f6b53205 5209
1da177e4 5210 oldprio = p->prio;
dd41f596 5211 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5212
0e1f3483
HS
5213 if (running)
5214 p->sched_class->set_curr_task(rq);
dd41f596
IM
5215 if (on_rq) {
5216 activate_task(rq, p, 0);
cb469845
SR
5217
5218 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5219 }
b29739f9
IM
5220 __task_rq_unlock(rq);
5221 spin_unlock_irqrestore(&p->pi_lock, flags);
5222
95e02ca9
TG
5223 rt_mutex_adjust_pi(p);
5224
1da177e4
LT
5225 return 0;
5226}
961ccddd
RR
5227
5228/**
5229 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5230 * @p: the task in question.
5231 * @policy: new policy.
5232 * @param: structure containing the new RT priority.
5233 *
5234 * NOTE that the task may be already dead.
5235 */
5236int sched_setscheduler(struct task_struct *p, int policy,
5237 struct sched_param *param)
5238{
5239 return __sched_setscheduler(p, policy, param, true);
5240}
1da177e4
LT
5241EXPORT_SYMBOL_GPL(sched_setscheduler);
5242
961ccddd
RR
5243/**
5244 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5245 * @p: the task in question.
5246 * @policy: new policy.
5247 * @param: structure containing the new RT priority.
5248 *
5249 * Just like sched_setscheduler, only don't bother checking if the
5250 * current context has permission. For example, this is needed in
5251 * stop_machine(): we create temporary high priority worker threads,
5252 * but our caller might not have that capability.
5253 */
5254int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5255 struct sched_param *param)
5256{
5257 return __sched_setscheduler(p, policy, param, false);
5258}
5259
95cdf3b7
IM
5260static int
5261do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5262{
1da177e4
LT
5263 struct sched_param lparam;
5264 struct task_struct *p;
36c8b586 5265 int retval;
1da177e4
LT
5266
5267 if (!param || pid < 0)
5268 return -EINVAL;
5269 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5270 return -EFAULT;
5fe1d75f
ON
5271
5272 rcu_read_lock();
5273 retval = -ESRCH;
1da177e4 5274 p = find_process_by_pid(pid);
5fe1d75f
ON
5275 if (p != NULL)
5276 retval = sched_setscheduler(p, policy, &lparam);
5277 rcu_read_unlock();
36c8b586 5278
1da177e4
LT
5279 return retval;
5280}
5281
5282/**
5283 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5284 * @pid: the pid in question.
5285 * @policy: new policy.
5286 * @param: structure containing the new RT priority.
5287 */
41a2d6cf
IM
5288asmlinkage long
5289sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5290{
c21761f1
JB
5291 /* negative values for policy are not valid */
5292 if (policy < 0)
5293 return -EINVAL;
5294
1da177e4
LT
5295 return do_sched_setscheduler(pid, policy, param);
5296}
5297
5298/**
5299 * sys_sched_setparam - set/change the RT priority of a thread
5300 * @pid: the pid in question.
5301 * @param: structure containing the new RT priority.
5302 */
5303asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5304{
5305 return do_sched_setscheduler(pid, -1, param);
5306}
5307
5308/**
5309 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5310 * @pid: the pid in question.
5311 */
5312asmlinkage long sys_sched_getscheduler(pid_t pid)
5313{
36c8b586 5314 struct task_struct *p;
3a5c359a 5315 int retval;
1da177e4
LT
5316
5317 if (pid < 0)
3a5c359a 5318 return -EINVAL;
1da177e4
LT
5319
5320 retval = -ESRCH;
5321 read_lock(&tasklist_lock);
5322 p = find_process_by_pid(pid);
5323 if (p) {
5324 retval = security_task_getscheduler(p);
5325 if (!retval)
5326 retval = p->policy;
5327 }
5328 read_unlock(&tasklist_lock);
1da177e4
LT
5329 return retval;
5330}
5331
5332/**
5333 * sys_sched_getscheduler - get the RT priority of a thread
5334 * @pid: the pid in question.
5335 * @param: structure containing the RT priority.
5336 */
5337asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5338{
5339 struct sched_param lp;
36c8b586 5340 struct task_struct *p;
3a5c359a 5341 int retval;
1da177e4
LT
5342
5343 if (!param || pid < 0)
3a5c359a 5344 return -EINVAL;
1da177e4
LT
5345
5346 read_lock(&tasklist_lock);
5347 p = find_process_by_pid(pid);
5348 retval = -ESRCH;
5349 if (!p)
5350 goto out_unlock;
5351
5352 retval = security_task_getscheduler(p);
5353 if (retval)
5354 goto out_unlock;
5355
5356 lp.sched_priority = p->rt_priority;
5357 read_unlock(&tasklist_lock);
5358
5359 /*
5360 * This one might sleep, we cannot do it with a spinlock held ...
5361 */
5362 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5363
1da177e4
LT
5364 return retval;
5365
5366out_unlock:
5367 read_unlock(&tasklist_lock);
5368 return retval;
5369}
5370
b53e921b 5371long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5372{
1da177e4 5373 cpumask_t cpus_allowed;
b53e921b 5374 cpumask_t new_mask = *in_mask;
36c8b586
IM
5375 struct task_struct *p;
5376 int retval;
1da177e4 5377
95402b38 5378 get_online_cpus();
1da177e4
LT
5379 read_lock(&tasklist_lock);
5380
5381 p = find_process_by_pid(pid);
5382 if (!p) {
5383 read_unlock(&tasklist_lock);
95402b38 5384 put_online_cpus();
1da177e4
LT
5385 return -ESRCH;
5386 }
5387
5388 /*
5389 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5390 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5391 * usage count and then drop tasklist_lock.
5392 */
5393 get_task_struct(p);
5394 read_unlock(&tasklist_lock);
5395
5396 retval = -EPERM;
5397 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5398 !capable(CAP_SYS_NICE))
5399 goto out_unlock;
5400
e7834f8f
DQ
5401 retval = security_task_setscheduler(p, 0, NULL);
5402 if (retval)
5403 goto out_unlock;
5404
f9a86fcb 5405 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5406 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5407 again:
7c16ec58 5408 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5409
8707d8b8 5410 if (!retval) {
f9a86fcb 5411 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5412 if (!cpus_subset(new_mask, cpus_allowed)) {
5413 /*
5414 * We must have raced with a concurrent cpuset
5415 * update. Just reset the cpus_allowed to the
5416 * cpuset's cpus_allowed
5417 */
5418 new_mask = cpus_allowed;
5419 goto again;
5420 }
5421 }
1da177e4
LT
5422out_unlock:
5423 put_task_struct(p);
95402b38 5424 put_online_cpus();
1da177e4
LT
5425 return retval;
5426}
5427
5428static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5429 cpumask_t *new_mask)
5430{
5431 if (len < sizeof(cpumask_t)) {
5432 memset(new_mask, 0, sizeof(cpumask_t));
5433 } else if (len > sizeof(cpumask_t)) {
5434 len = sizeof(cpumask_t);
5435 }
5436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5437}
5438
5439/**
5440 * sys_sched_setaffinity - set the cpu affinity of a process
5441 * @pid: pid of the process
5442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5443 * @user_mask_ptr: user-space pointer to the new cpu mask
5444 */
5445asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5446 unsigned long __user *user_mask_ptr)
5447{
5448 cpumask_t new_mask;
5449 int retval;
5450
5451 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5452 if (retval)
5453 return retval;
5454
b53e921b 5455 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5456}
5457
1da177e4
LT
5458long sched_getaffinity(pid_t pid, cpumask_t *mask)
5459{
36c8b586 5460 struct task_struct *p;
1da177e4 5461 int retval;
1da177e4 5462
95402b38 5463 get_online_cpus();
1da177e4
LT
5464 read_lock(&tasklist_lock);
5465
5466 retval = -ESRCH;
5467 p = find_process_by_pid(pid);
5468 if (!p)
5469 goto out_unlock;
5470
e7834f8f
DQ
5471 retval = security_task_getscheduler(p);
5472 if (retval)
5473 goto out_unlock;
5474
2f7016d9 5475 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5476
5477out_unlock:
5478 read_unlock(&tasklist_lock);
95402b38 5479 put_online_cpus();
1da177e4 5480
9531b62f 5481 return retval;
1da177e4
LT
5482}
5483
5484/**
5485 * sys_sched_getaffinity - get the cpu affinity of a process
5486 * @pid: pid of the process
5487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5488 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5489 */
5490asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5491 unsigned long __user *user_mask_ptr)
5492{
5493 int ret;
5494 cpumask_t mask;
5495
5496 if (len < sizeof(cpumask_t))
5497 return -EINVAL;
5498
5499 ret = sched_getaffinity(pid, &mask);
5500 if (ret < 0)
5501 return ret;
5502
5503 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5504 return -EFAULT;
5505
5506 return sizeof(cpumask_t);
5507}
5508
5509/**
5510 * sys_sched_yield - yield the current processor to other threads.
5511 *
dd41f596
IM
5512 * This function yields the current CPU to other tasks. If there are no
5513 * other threads running on this CPU then this function will return.
1da177e4
LT
5514 */
5515asmlinkage long sys_sched_yield(void)
5516{
70b97a7f 5517 struct rq *rq = this_rq_lock();
1da177e4 5518
2d72376b 5519 schedstat_inc(rq, yld_count);
4530d7ab 5520 current->sched_class->yield_task(rq);
1da177e4
LT
5521
5522 /*
5523 * Since we are going to call schedule() anyway, there's
5524 * no need to preempt or enable interrupts:
5525 */
5526 __release(rq->lock);
8a25d5de 5527 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5528 _raw_spin_unlock(&rq->lock);
5529 preempt_enable_no_resched();
5530
5531 schedule();
5532
5533 return 0;
5534}
5535
e7b38404 5536static void __cond_resched(void)
1da177e4 5537{
8e0a43d8
IM
5538#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5539 __might_sleep(__FILE__, __LINE__);
5540#endif
5bbcfd90
IM
5541 /*
5542 * The BKS might be reacquired before we have dropped
5543 * PREEMPT_ACTIVE, which could trigger a second
5544 * cond_resched() call.
5545 */
1da177e4
LT
5546 do {
5547 add_preempt_count(PREEMPT_ACTIVE);
5548 schedule();
5549 sub_preempt_count(PREEMPT_ACTIVE);
5550 } while (need_resched());
5551}
5552
02b67cc3 5553int __sched _cond_resched(void)
1da177e4 5554{
9414232f
IM
5555 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5556 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5557 __cond_resched();
5558 return 1;
5559 }
5560 return 0;
5561}
02b67cc3 5562EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5563
5564/*
5565 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5566 * call schedule, and on return reacquire the lock.
5567 *
41a2d6cf 5568 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5569 * operations here to prevent schedule() from being called twice (once via
5570 * spin_unlock(), once by hand).
5571 */
95cdf3b7 5572int cond_resched_lock(spinlock_t *lock)
1da177e4 5573{
95c354fe 5574 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5575 int ret = 0;
5576
95c354fe 5577 if (spin_needbreak(lock) || resched) {
1da177e4 5578 spin_unlock(lock);
95c354fe
NP
5579 if (resched && need_resched())
5580 __cond_resched();
5581 else
5582 cpu_relax();
6df3cecb 5583 ret = 1;
1da177e4 5584 spin_lock(lock);
1da177e4 5585 }
6df3cecb 5586 return ret;
1da177e4 5587}
1da177e4
LT
5588EXPORT_SYMBOL(cond_resched_lock);
5589
5590int __sched cond_resched_softirq(void)
5591{
5592 BUG_ON(!in_softirq());
5593
9414232f 5594 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5595 local_bh_enable();
1da177e4
LT
5596 __cond_resched();
5597 local_bh_disable();
5598 return 1;
5599 }
5600 return 0;
5601}
1da177e4
LT
5602EXPORT_SYMBOL(cond_resched_softirq);
5603
1da177e4
LT
5604/**
5605 * yield - yield the current processor to other threads.
5606 *
72fd4a35 5607 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5608 * thread runnable and calls sys_sched_yield().
5609 */
5610void __sched yield(void)
5611{
5612 set_current_state(TASK_RUNNING);
5613 sys_sched_yield();
5614}
1da177e4
LT
5615EXPORT_SYMBOL(yield);
5616
5617/*
41a2d6cf 5618 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5619 * that process accounting knows that this is a task in IO wait state.
5620 *
5621 * But don't do that if it is a deliberate, throttling IO wait (this task
5622 * has set its backing_dev_info: the queue against which it should throttle)
5623 */
5624void __sched io_schedule(void)
5625{
70b97a7f 5626 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5627
0ff92245 5628 delayacct_blkio_start();
1da177e4
LT
5629 atomic_inc(&rq->nr_iowait);
5630 schedule();
5631 atomic_dec(&rq->nr_iowait);
0ff92245 5632 delayacct_blkio_end();
1da177e4 5633}
1da177e4
LT
5634EXPORT_SYMBOL(io_schedule);
5635
5636long __sched io_schedule_timeout(long timeout)
5637{
70b97a7f 5638 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5639 long ret;
5640
0ff92245 5641 delayacct_blkio_start();
1da177e4
LT
5642 atomic_inc(&rq->nr_iowait);
5643 ret = schedule_timeout(timeout);
5644 atomic_dec(&rq->nr_iowait);
0ff92245 5645 delayacct_blkio_end();
1da177e4
LT
5646 return ret;
5647}
5648
5649/**
5650 * sys_sched_get_priority_max - return maximum RT priority.
5651 * @policy: scheduling class.
5652 *
5653 * this syscall returns the maximum rt_priority that can be used
5654 * by a given scheduling class.
5655 */
5656asmlinkage long sys_sched_get_priority_max(int policy)
5657{
5658 int ret = -EINVAL;
5659
5660 switch (policy) {
5661 case SCHED_FIFO:
5662 case SCHED_RR:
5663 ret = MAX_USER_RT_PRIO-1;
5664 break;
5665 case SCHED_NORMAL:
b0a9499c 5666 case SCHED_BATCH:
dd41f596 5667 case SCHED_IDLE:
1da177e4
LT
5668 ret = 0;
5669 break;
5670 }
5671 return ret;
5672}
5673
5674/**
5675 * sys_sched_get_priority_min - return minimum RT priority.
5676 * @policy: scheduling class.
5677 *
5678 * this syscall returns the minimum rt_priority that can be used
5679 * by a given scheduling class.
5680 */
5681asmlinkage long sys_sched_get_priority_min(int policy)
5682{
5683 int ret = -EINVAL;
5684
5685 switch (policy) {
5686 case SCHED_FIFO:
5687 case SCHED_RR:
5688 ret = 1;
5689 break;
5690 case SCHED_NORMAL:
b0a9499c 5691 case SCHED_BATCH:
dd41f596 5692 case SCHED_IDLE:
1da177e4
LT
5693 ret = 0;
5694 }
5695 return ret;
5696}
5697
5698/**
5699 * sys_sched_rr_get_interval - return the default timeslice of a process.
5700 * @pid: pid of the process.
5701 * @interval: userspace pointer to the timeslice value.
5702 *
5703 * this syscall writes the default timeslice value of a given process
5704 * into the user-space timespec buffer. A value of '0' means infinity.
5705 */
5706asmlinkage
5707long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5708{
36c8b586 5709 struct task_struct *p;
a4ec24b4 5710 unsigned int time_slice;
3a5c359a 5711 int retval;
1da177e4 5712 struct timespec t;
1da177e4
LT
5713
5714 if (pid < 0)
3a5c359a 5715 return -EINVAL;
1da177e4
LT
5716
5717 retval = -ESRCH;
5718 read_lock(&tasklist_lock);
5719 p = find_process_by_pid(pid);
5720 if (!p)
5721 goto out_unlock;
5722
5723 retval = security_task_getscheduler(p);
5724 if (retval)
5725 goto out_unlock;
5726
77034937
IM
5727 /*
5728 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5729 * tasks that are on an otherwise idle runqueue:
5730 */
5731 time_slice = 0;
5732 if (p->policy == SCHED_RR) {
a4ec24b4 5733 time_slice = DEF_TIMESLICE;
1868f958 5734 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5735 struct sched_entity *se = &p->se;
5736 unsigned long flags;
5737 struct rq *rq;
5738
5739 rq = task_rq_lock(p, &flags);
77034937
IM
5740 if (rq->cfs.load.weight)
5741 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5742 task_rq_unlock(rq, &flags);
5743 }
1da177e4 5744 read_unlock(&tasklist_lock);
a4ec24b4 5745 jiffies_to_timespec(time_slice, &t);
1da177e4 5746 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5747 return retval;
3a5c359a 5748
1da177e4
LT
5749out_unlock:
5750 read_unlock(&tasklist_lock);
5751 return retval;
5752}
5753
7c731e0a 5754static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5755
82a1fcb9 5756void sched_show_task(struct task_struct *p)
1da177e4 5757{
1da177e4 5758 unsigned long free = 0;
36c8b586 5759 unsigned state;
1da177e4 5760
1da177e4 5761 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5762 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5763 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5764#if BITS_PER_LONG == 32
1da177e4 5765 if (state == TASK_RUNNING)
cc4ea795 5766 printk(KERN_CONT " running ");
1da177e4 5767 else
cc4ea795 5768 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5769#else
5770 if (state == TASK_RUNNING)
cc4ea795 5771 printk(KERN_CONT " running task ");
1da177e4 5772 else
cc4ea795 5773 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5774#endif
5775#ifdef CONFIG_DEBUG_STACK_USAGE
5776 {
10ebffde 5777 unsigned long *n = end_of_stack(p);
1da177e4
LT
5778 while (!*n)
5779 n++;
10ebffde 5780 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5781 }
5782#endif
ba25f9dc 5783 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5784 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5785
5fb5e6de 5786 show_stack(p, NULL);
1da177e4
LT
5787}
5788
e59e2ae2 5789void show_state_filter(unsigned long state_filter)
1da177e4 5790{
36c8b586 5791 struct task_struct *g, *p;
1da177e4 5792
4bd77321
IM
5793#if BITS_PER_LONG == 32
5794 printk(KERN_INFO
5795 " task PC stack pid father\n");
1da177e4 5796#else
4bd77321
IM
5797 printk(KERN_INFO
5798 " task PC stack pid father\n");
1da177e4
LT
5799#endif
5800 read_lock(&tasklist_lock);
5801 do_each_thread(g, p) {
5802 /*
5803 * reset the NMI-timeout, listing all files on a slow
5804 * console might take alot of time:
5805 */
5806 touch_nmi_watchdog();
39bc89fd 5807 if (!state_filter || (p->state & state_filter))
82a1fcb9 5808 sched_show_task(p);
1da177e4
LT
5809 } while_each_thread(g, p);
5810
04c9167f
JF
5811 touch_all_softlockup_watchdogs();
5812
dd41f596
IM
5813#ifdef CONFIG_SCHED_DEBUG
5814 sysrq_sched_debug_show();
5815#endif
1da177e4 5816 read_unlock(&tasklist_lock);
e59e2ae2
IM
5817 /*
5818 * Only show locks if all tasks are dumped:
5819 */
5820 if (state_filter == -1)
5821 debug_show_all_locks();
1da177e4
LT
5822}
5823
1df21055
IM
5824void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5825{
dd41f596 5826 idle->sched_class = &idle_sched_class;
1df21055
IM
5827}
5828
f340c0d1
IM
5829/**
5830 * init_idle - set up an idle thread for a given CPU
5831 * @idle: task in question
5832 * @cpu: cpu the idle task belongs to
5833 *
5834 * NOTE: this function does not set the idle thread's NEED_RESCHED
5835 * flag, to make booting more robust.
5836 */
5c1e1767 5837void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5838{
70b97a7f 5839 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5840 unsigned long flags;
5841
5cbd54ef
IM
5842 spin_lock_irqsave(&rq->lock, flags);
5843
dd41f596
IM
5844 __sched_fork(idle);
5845 idle->se.exec_start = sched_clock();
5846
b29739f9 5847 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5848 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5849 __set_task_cpu(idle, cpu);
1da177e4 5850
1da177e4 5851 rq->curr = rq->idle = idle;
4866cde0
NP
5852#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5853 idle->oncpu = 1;
5854#endif
1da177e4
LT
5855 spin_unlock_irqrestore(&rq->lock, flags);
5856
5857 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5858#if defined(CONFIG_PREEMPT)
5859 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5860#else
a1261f54 5861 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5862#endif
dd41f596
IM
5863 /*
5864 * The idle tasks have their own, simple scheduling class:
5865 */
5866 idle->sched_class = &idle_sched_class;
1da177e4
LT
5867}
5868
5869/*
5870 * In a system that switches off the HZ timer nohz_cpu_mask
5871 * indicates which cpus entered this state. This is used
5872 * in the rcu update to wait only for active cpus. For system
5873 * which do not switch off the HZ timer nohz_cpu_mask should
5874 * always be CPU_MASK_NONE.
5875 */
5876cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5877
19978ca6
IM
5878/*
5879 * Increase the granularity value when there are more CPUs,
5880 * because with more CPUs the 'effective latency' as visible
5881 * to users decreases. But the relationship is not linear,
5882 * so pick a second-best guess by going with the log2 of the
5883 * number of CPUs.
5884 *
5885 * This idea comes from the SD scheduler of Con Kolivas:
5886 */
5887static inline void sched_init_granularity(void)
5888{
5889 unsigned int factor = 1 + ilog2(num_online_cpus());
5890 const unsigned long limit = 200000000;
5891
5892 sysctl_sched_min_granularity *= factor;
5893 if (sysctl_sched_min_granularity > limit)
5894 sysctl_sched_min_granularity = limit;
5895
5896 sysctl_sched_latency *= factor;
5897 if (sysctl_sched_latency > limit)
5898 sysctl_sched_latency = limit;
5899
5900 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5901
5902 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5903}
5904
1da177e4
LT
5905#ifdef CONFIG_SMP
5906/*
5907 * This is how migration works:
5908 *
70b97a7f 5909 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5910 * runqueue and wake up that CPU's migration thread.
5911 * 2) we down() the locked semaphore => thread blocks.
5912 * 3) migration thread wakes up (implicitly it forces the migrated
5913 * thread off the CPU)
5914 * 4) it gets the migration request and checks whether the migrated
5915 * task is still in the wrong runqueue.
5916 * 5) if it's in the wrong runqueue then the migration thread removes
5917 * it and puts it into the right queue.
5918 * 6) migration thread up()s the semaphore.
5919 * 7) we wake up and the migration is done.
5920 */
5921
5922/*
5923 * Change a given task's CPU affinity. Migrate the thread to a
5924 * proper CPU and schedule it away if the CPU it's executing on
5925 * is removed from the allowed bitmask.
5926 *
5927 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5928 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5929 * call is not atomic; no spinlocks may be held.
5930 */
cd8ba7cd 5931int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5932{
70b97a7f 5933 struct migration_req req;
1da177e4 5934 unsigned long flags;
70b97a7f 5935 struct rq *rq;
48f24c4d 5936 int ret = 0;
1da177e4
LT
5937
5938 rq = task_rq_lock(p, &flags);
cd8ba7cd 5939 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5940 ret = -EINVAL;
5941 goto out;
5942 }
5943
9985b0ba
DR
5944 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5945 !cpus_equal(p->cpus_allowed, *new_mask))) {
5946 ret = -EINVAL;
5947 goto out;
5948 }
5949
73fe6aae 5950 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5951 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5952 else {
cd8ba7cd
MT
5953 p->cpus_allowed = *new_mask;
5954 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5955 }
5956
1da177e4 5957 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5958 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5959 goto out;
5960
cd8ba7cd 5961 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5962 /* Need help from migration thread: drop lock and wait. */
5963 task_rq_unlock(rq, &flags);
5964 wake_up_process(rq->migration_thread);
5965 wait_for_completion(&req.done);
5966 tlb_migrate_finish(p->mm);
5967 return 0;
5968 }
5969out:
5970 task_rq_unlock(rq, &flags);
48f24c4d 5971
1da177e4
LT
5972 return ret;
5973}
cd8ba7cd 5974EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5975
5976/*
41a2d6cf 5977 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5978 * this because either it can't run here any more (set_cpus_allowed()
5979 * away from this CPU, or CPU going down), or because we're
5980 * attempting to rebalance this task on exec (sched_exec).
5981 *
5982 * So we race with normal scheduler movements, but that's OK, as long
5983 * as the task is no longer on this CPU.
efc30814
KK
5984 *
5985 * Returns non-zero if task was successfully migrated.
1da177e4 5986 */
efc30814 5987static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5988{
70b97a7f 5989 struct rq *rq_dest, *rq_src;
dd41f596 5990 int ret = 0, on_rq;
1da177e4 5991
e761b772 5992 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5993 return ret;
1da177e4
LT
5994
5995 rq_src = cpu_rq(src_cpu);
5996 rq_dest = cpu_rq(dest_cpu);
5997
5998 double_rq_lock(rq_src, rq_dest);
5999 /* Already moved. */
6000 if (task_cpu(p) != src_cpu)
b1e38734 6001 goto done;
1da177e4
LT
6002 /* Affinity changed (again). */
6003 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6004 goto fail;
1da177e4 6005
dd41f596 6006 on_rq = p->se.on_rq;
6e82a3be 6007 if (on_rq)
2e1cb74a 6008 deactivate_task(rq_src, p, 0);
6e82a3be 6009
1da177e4 6010 set_task_cpu(p, dest_cpu);
dd41f596
IM
6011 if (on_rq) {
6012 activate_task(rq_dest, p, 0);
15afe09b 6013 check_preempt_curr(rq_dest, p, 0);
1da177e4 6014 }
b1e38734 6015done:
efc30814 6016 ret = 1;
b1e38734 6017fail:
1da177e4 6018 double_rq_unlock(rq_src, rq_dest);
efc30814 6019 return ret;
1da177e4
LT
6020}
6021
6022/*
6023 * migration_thread - this is a highprio system thread that performs
6024 * thread migration by bumping thread off CPU then 'pushing' onto
6025 * another runqueue.
6026 */
95cdf3b7 6027static int migration_thread(void *data)
1da177e4 6028{
1da177e4 6029 int cpu = (long)data;
70b97a7f 6030 struct rq *rq;
1da177e4
LT
6031
6032 rq = cpu_rq(cpu);
6033 BUG_ON(rq->migration_thread != current);
6034
6035 set_current_state(TASK_INTERRUPTIBLE);
6036 while (!kthread_should_stop()) {
70b97a7f 6037 struct migration_req *req;
1da177e4 6038 struct list_head *head;
1da177e4 6039
1da177e4
LT
6040 spin_lock_irq(&rq->lock);
6041
6042 if (cpu_is_offline(cpu)) {
6043 spin_unlock_irq(&rq->lock);
6044 goto wait_to_die;
6045 }
6046
6047 if (rq->active_balance) {
6048 active_load_balance(rq, cpu);
6049 rq->active_balance = 0;
6050 }
6051
6052 head = &rq->migration_queue;
6053
6054 if (list_empty(head)) {
6055 spin_unlock_irq(&rq->lock);
6056 schedule();
6057 set_current_state(TASK_INTERRUPTIBLE);
6058 continue;
6059 }
70b97a7f 6060 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6061 list_del_init(head->next);
6062
674311d5
NP
6063 spin_unlock(&rq->lock);
6064 __migrate_task(req->task, cpu, req->dest_cpu);
6065 local_irq_enable();
1da177e4
LT
6066
6067 complete(&req->done);
6068 }
6069 __set_current_state(TASK_RUNNING);
6070 return 0;
6071
6072wait_to_die:
6073 /* Wait for kthread_stop */
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 while (!kthread_should_stop()) {
6076 schedule();
6077 set_current_state(TASK_INTERRUPTIBLE);
6078 }
6079 __set_current_state(TASK_RUNNING);
6080 return 0;
6081}
6082
6083#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6084
6085static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6086{
6087 int ret;
6088
6089 local_irq_disable();
6090 ret = __migrate_task(p, src_cpu, dest_cpu);
6091 local_irq_enable();
6092 return ret;
6093}
6094
054b9108 6095/*
3a4fa0a2 6096 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6097 */
48f24c4d 6098static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6099{
efc30814 6100 unsigned long flags;
1da177e4 6101 cpumask_t mask;
70b97a7f
IM
6102 struct rq *rq;
6103 int dest_cpu;
1da177e4 6104
3a5c359a
AK
6105 do {
6106 /* On same node? */
6107 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6108 cpus_and(mask, mask, p->cpus_allowed);
6109 dest_cpu = any_online_cpu(mask);
6110
6111 /* On any allowed CPU? */
434d53b0 6112 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6113 dest_cpu = any_online_cpu(p->cpus_allowed);
6114
6115 /* No more Mr. Nice Guy. */
434d53b0 6116 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6117 cpumask_t cpus_allowed;
6118
6119 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6120 /*
6121 * Try to stay on the same cpuset, where the
6122 * current cpuset may be a subset of all cpus.
6123 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6124 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6125 * called within calls to cpuset_lock/cpuset_unlock.
6126 */
3a5c359a 6127 rq = task_rq_lock(p, &flags);
470fd646 6128 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6129 dest_cpu = any_online_cpu(p->cpus_allowed);
6130 task_rq_unlock(rq, &flags);
1da177e4 6131
3a5c359a
AK
6132 /*
6133 * Don't tell them about moving exiting tasks or
6134 * kernel threads (both mm NULL), since they never
6135 * leave kernel.
6136 */
41a2d6cf 6137 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6138 printk(KERN_INFO "process %d (%s) no "
6139 "longer affine to cpu%d\n",
41a2d6cf
IM
6140 task_pid_nr(p), p->comm, dead_cpu);
6141 }
3a5c359a 6142 }
f7b4cddc 6143 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6144}
6145
6146/*
6147 * While a dead CPU has no uninterruptible tasks queued at this point,
6148 * it might still have a nonzero ->nr_uninterruptible counter, because
6149 * for performance reasons the counter is not stricly tracking tasks to
6150 * their home CPUs. So we just add the counter to another CPU's counter,
6151 * to keep the global sum constant after CPU-down:
6152 */
70b97a7f 6153static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6154{
7c16ec58 6155 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6156 unsigned long flags;
6157
6158 local_irq_save(flags);
6159 double_rq_lock(rq_src, rq_dest);
6160 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6161 rq_src->nr_uninterruptible = 0;
6162 double_rq_unlock(rq_src, rq_dest);
6163 local_irq_restore(flags);
6164}
6165
6166/* Run through task list and migrate tasks from the dead cpu. */
6167static void migrate_live_tasks(int src_cpu)
6168{
48f24c4d 6169 struct task_struct *p, *t;
1da177e4 6170
f7b4cddc 6171 read_lock(&tasklist_lock);
1da177e4 6172
48f24c4d
IM
6173 do_each_thread(t, p) {
6174 if (p == current)
1da177e4
LT
6175 continue;
6176
48f24c4d
IM
6177 if (task_cpu(p) == src_cpu)
6178 move_task_off_dead_cpu(src_cpu, p);
6179 } while_each_thread(t, p);
1da177e4 6180
f7b4cddc 6181 read_unlock(&tasklist_lock);
1da177e4
LT
6182}
6183
dd41f596
IM
6184/*
6185 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6186 * It does so by boosting its priority to highest possible.
6187 * Used by CPU offline code.
1da177e4
LT
6188 */
6189void sched_idle_next(void)
6190{
48f24c4d 6191 int this_cpu = smp_processor_id();
70b97a7f 6192 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6193 struct task_struct *p = rq->idle;
6194 unsigned long flags;
6195
6196 /* cpu has to be offline */
48f24c4d 6197 BUG_ON(cpu_online(this_cpu));
1da177e4 6198
48f24c4d
IM
6199 /*
6200 * Strictly not necessary since rest of the CPUs are stopped by now
6201 * and interrupts disabled on the current cpu.
1da177e4
LT
6202 */
6203 spin_lock_irqsave(&rq->lock, flags);
6204
dd41f596 6205 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6206
94bc9a7b
DA
6207 update_rq_clock(rq);
6208 activate_task(rq, p, 0);
1da177e4
LT
6209
6210 spin_unlock_irqrestore(&rq->lock, flags);
6211}
6212
48f24c4d
IM
6213/*
6214 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6215 * offline.
6216 */
6217void idle_task_exit(void)
6218{
6219 struct mm_struct *mm = current->active_mm;
6220
6221 BUG_ON(cpu_online(smp_processor_id()));
6222
6223 if (mm != &init_mm)
6224 switch_mm(mm, &init_mm, current);
6225 mmdrop(mm);
6226}
6227
054b9108 6228/* called under rq->lock with disabled interrupts */
36c8b586 6229static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6230{
70b97a7f 6231 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6232
6233 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6234 BUG_ON(!p->exit_state);
1da177e4
LT
6235
6236 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6237 BUG_ON(p->state == TASK_DEAD);
1da177e4 6238
48f24c4d 6239 get_task_struct(p);
1da177e4
LT
6240
6241 /*
6242 * Drop lock around migration; if someone else moves it,
41a2d6cf 6243 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6244 * fine.
6245 */
f7b4cddc 6246 spin_unlock_irq(&rq->lock);
48f24c4d 6247 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6248 spin_lock_irq(&rq->lock);
1da177e4 6249
48f24c4d 6250 put_task_struct(p);
1da177e4
LT
6251}
6252
6253/* release_task() removes task from tasklist, so we won't find dead tasks. */
6254static void migrate_dead_tasks(unsigned int dead_cpu)
6255{
70b97a7f 6256 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6257 struct task_struct *next;
48f24c4d 6258
dd41f596
IM
6259 for ( ; ; ) {
6260 if (!rq->nr_running)
6261 break;
a8e504d2 6262 update_rq_clock(rq);
ff95f3df 6263 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6264 if (!next)
6265 break;
79c53799 6266 next->sched_class->put_prev_task(rq, next);
dd41f596 6267 migrate_dead(dead_cpu, next);
e692ab53 6268
1da177e4
LT
6269 }
6270}
6271#endif /* CONFIG_HOTPLUG_CPU */
6272
e692ab53
NP
6273#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6274
6275static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6276 {
6277 .procname = "sched_domain",
c57baf1e 6278 .mode = 0555,
e0361851 6279 },
38605cae 6280 {0, },
e692ab53
NP
6281};
6282
6283static struct ctl_table sd_ctl_root[] = {
e0361851 6284 {
c57baf1e 6285 .ctl_name = CTL_KERN,
e0361851 6286 .procname = "kernel",
c57baf1e 6287 .mode = 0555,
e0361851
AD
6288 .child = sd_ctl_dir,
6289 },
38605cae 6290 {0, },
e692ab53
NP
6291};
6292
6293static struct ctl_table *sd_alloc_ctl_entry(int n)
6294{
6295 struct ctl_table *entry =
5cf9f062 6296 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6297
e692ab53
NP
6298 return entry;
6299}
6300
6382bc90
MM
6301static void sd_free_ctl_entry(struct ctl_table **tablep)
6302{
cd790076 6303 struct ctl_table *entry;
6382bc90 6304
cd790076
MM
6305 /*
6306 * In the intermediate directories, both the child directory and
6307 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6308 * will always be set. In the lowest directory the names are
cd790076
MM
6309 * static strings and all have proc handlers.
6310 */
6311 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6312 if (entry->child)
6313 sd_free_ctl_entry(&entry->child);
cd790076
MM
6314 if (entry->proc_handler == NULL)
6315 kfree(entry->procname);
6316 }
6382bc90
MM
6317
6318 kfree(*tablep);
6319 *tablep = NULL;
6320}
6321
e692ab53 6322static void
e0361851 6323set_table_entry(struct ctl_table *entry,
e692ab53
NP
6324 const char *procname, void *data, int maxlen,
6325 mode_t mode, proc_handler *proc_handler)
6326{
e692ab53
NP
6327 entry->procname = procname;
6328 entry->data = data;
6329 entry->maxlen = maxlen;
6330 entry->mode = mode;
6331 entry->proc_handler = proc_handler;
6332}
6333
6334static struct ctl_table *
6335sd_alloc_ctl_domain_table(struct sched_domain *sd)
6336{
a5d8c348 6337 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6338
ad1cdc1d
MM
6339 if (table == NULL)
6340 return NULL;
6341
e0361851 6342 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6343 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6344 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6345 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6346 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6347 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6348 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6349 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6350 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6351 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6352 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6353 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6354 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6355 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6356 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6357 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6358 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6359 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6360 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6361 &sd->cache_nice_tries,
6362 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6363 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6364 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6365 set_table_entry(&table[11], "name", sd->name,
6366 CORENAME_MAX_SIZE, 0444, proc_dostring);
6367 /* &table[12] is terminator */
e692ab53
NP
6368
6369 return table;
6370}
6371
9a4e7159 6372static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6373{
6374 struct ctl_table *entry, *table;
6375 struct sched_domain *sd;
6376 int domain_num = 0, i;
6377 char buf[32];
6378
6379 for_each_domain(cpu, sd)
6380 domain_num++;
6381 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6382 if (table == NULL)
6383 return NULL;
e692ab53
NP
6384
6385 i = 0;
6386 for_each_domain(cpu, sd) {
6387 snprintf(buf, 32, "domain%d", i);
e692ab53 6388 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6389 entry->mode = 0555;
e692ab53
NP
6390 entry->child = sd_alloc_ctl_domain_table(sd);
6391 entry++;
6392 i++;
6393 }
6394 return table;
6395}
6396
6397static struct ctl_table_header *sd_sysctl_header;
6382bc90 6398static void register_sched_domain_sysctl(void)
e692ab53
NP
6399{
6400 int i, cpu_num = num_online_cpus();
6401 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6402 char buf[32];
6403
7378547f
MM
6404 WARN_ON(sd_ctl_dir[0].child);
6405 sd_ctl_dir[0].child = entry;
6406
ad1cdc1d
MM
6407 if (entry == NULL)
6408 return;
6409
97b6ea7b 6410 for_each_online_cpu(i) {
e692ab53 6411 snprintf(buf, 32, "cpu%d", i);
e692ab53 6412 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6413 entry->mode = 0555;
e692ab53 6414 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6415 entry++;
e692ab53 6416 }
7378547f
MM
6417
6418 WARN_ON(sd_sysctl_header);
e692ab53
NP
6419 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6420}
6382bc90 6421
7378547f 6422/* may be called multiple times per register */
6382bc90
MM
6423static void unregister_sched_domain_sysctl(void)
6424{
7378547f
MM
6425 if (sd_sysctl_header)
6426 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6427 sd_sysctl_header = NULL;
7378547f
MM
6428 if (sd_ctl_dir[0].child)
6429 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6430}
e692ab53 6431#else
6382bc90
MM
6432static void register_sched_domain_sysctl(void)
6433{
6434}
6435static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6436{
6437}
6438#endif
6439
1f11eb6a
GH
6440static void set_rq_online(struct rq *rq)
6441{
6442 if (!rq->online) {
6443 const struct sched_class *class;
6444
6445 cpu_set(rq->cpu, rq->rd->online);
6446 rq->online = 1;
6447
6448 for_each_class(class) {
6449 if (class->rq_online)
6450 class->rq_online(rq);
6451 }
6452 }
6453}
6454
6455static void set_rq_offline(struct rq *rq)
6456{
6457 if (rq->online) {
6458 const struct sched_class *class;
6459
6460 for_each_class(class) {
6461 if (class->rq_offline)
6462 class->rq_offline(rq);
6463 }
6464
6465 cpu_clear(rq->cpu, rq->rd->online);
6466 rq->online = 0;
6467 }
6468}
6469
1da177e4
LT
6470/*
6471 * migration_call - callback that gets triggered when a CPU is added.
6472 * Here we can start up the necessary migration thread for the new CPU.
6473 */
48f24c4d
IM
6474static int __cpuinit
6475migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6476{
1da177e4 6477 struct task_struct *p;
48f24c4d 6478 int cpu = (long)hcpu;
1da177e4 6479 unsigned long flags;
70b97a7f 6480 struct rq *rq;
1da177e4
LT
6481
6482 switch (action) {
5be9361c 6483
1da177e4 6484 case CPU_UP_PREPARE:
8bb78442 6485 case CPU_UP_PREPARE_FROZEN:
dd41f596 6486 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6487 if (IS_ERR(p))
6488 return NOTIFY_BAD;
1da177e4
LT
6489 kthread_bind(p, cpu);
6490 /* Must be high prio: stop_machine expects to yield to it. */
6491 rq = task_rq_lock(p, &flags);
dd41f596 6492 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6493 task_rq_unlock(rq, &flags);
6494 cpu_rq(cpu)->migration_thread = p;
6495 break;
48f24c4d 6496
1da177e4 6497 case CPU_ONLINE:
8bb78442 6498 case CPU_ONLINE_FROZEN:
3a4fa0a2 6499 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6500 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6501
6502 /* Update our root-domain */
6503 rq = cpu_rq(cpu);
6504 spin_lock_irqsave(&rq->lock, flags);
6505 if (rq->rd) {
6506 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6507
6508 set_rq_online(rq);
1f94ef59
GH
6509 }
6510 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6511 break;
48f24c4d 6512
1da177e4
LT
6513#ifdef CONFIG_HOTPLUG_CPU
6514 case CPU_UP_CANCELED:
8bb78442 6515 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6516 if (!cpu_rq(cpu)->migration_thread)
6517 break;
41a2d6cf 6518 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6519 kthread_bind(cpu_rq(cpu)->migration_thread,
6520 any_online_cpu(cpu_online_map));
1da177e4
LT
6521 kthread_stop(cpu_rq(cpu)->migration_thread);
6522 cpu_rq(cpu)->migration_thread = NULL;
6523 break;
48f24c4d 6524
1da177e4 6525 case CPU_DEAD:
8bb78442 6526 case CPU_DEAD_FROZEN:
470fd646 6527 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6528 migrate_live_tasks(cpu);
6529 rq = cpu_rq(cpu);
6530 kthread_stop(rq->migration_thread);
6531 rq->migration_thread = NULL;
6532 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6533 spin_lock_irq(&rq->lock);
a8e504d2 6534 update_rq_clock(rq);
2e1cb74a 6535 deactivate_task(rq, rq->idle, 0);
1da177e4 6536 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6537 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6538 rq->idle->sched_class = &idle_sched_class;
1da177e4 6539 migrate_dead_tasks(cpu);
d2da272a 6540 spin_unlock_irq(&rq->lock);
470fd646 6541 cpuset_unlock();
1da177e4
LT
6542 migrate_nr_uninterruptible(rq);
6543 BUG_ON(rq->nr_running != 0);
6544
41a2d6cf
IM
6545 /*
6546 * No need to migrate the tasks: it was best-effort if
6547 * they didn't take sched_hotcpu_mutex. Just wake up
6548 * the requestors.
6549 */
1da177e4
LT
6550 spin_lock_irq(&rq->lock);
6551 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6552 struct migration_req *req;
6553
1da177e4 6554 req = list_entry(rq->migration_queue.next,
70b97a7f 6555 struct migration_req, list);
1da177e4
LT
6556 list_del_init(&req->list);
6557 complete(&req->done);
6558 }
6559 spin_unlock_irq(&rq->lock);
6560 break;
57d885fe 6561
08f503b0
GH
6562 case CPU_DYING:
6563 case CPU_DYING_FROZEN:
57d885fe
GH
6564 /* Update our root-domain */
6565 rq = cpu_rq(cpu);
6566 spin_lock_irqsave(&rq->lock, flags);
6567 if (rq->rd) {
6568 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6569 set_rq_offline(rq);
57d885fe
GH
6570 }
6571 spin_unlock_irqrestore(&rq->lock, flags);
6572 break;
1da177e4
LT
6573#endif
6574 }
6575 return NOTIFY_OK;
6576}
6577
6578/* Register at highest priority so that task migration (migrate_all_tasks)
6579 * happens before everything else.
6580 */
26c2143b 6581static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6582 .notifier_call = migration_call,
6583 .priority = 10
6584};
6585
7babe8db 6586static int __init migration_init(void)
1da177e4
LT
6587{
6588 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6589 int err;
48f24c4d
IM
6590
6591 /* Start one for the boot CPU: */
07dccf33
AM
6592 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6593 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6594 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6595 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6596
6597 return err;
1da177e4 6598}
7babe8db 6599early_initcall(migration_init);
1da177e4
LT
6600#endif
6601
6602#ifdef CONFIG_SMP
476f3534 6603
3e9830dc 6604#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6605
7c16ec58
MT
6606static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6607 cpumask_t *groupmask)
1da177e4 6608{
4dcf6aff 6609 struct sched_group *group = sd->groups;
434d53b0 6610 char str[256];
1da177e4 6611
434d53b0 6612 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6613 cpus_clear(*groupmask);
4dcf6aff
IM
6614
6615 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6616
6617 if (!(sd->flags & SD_LOAD_BALANCE)) {
6618 printk("does not load-balance\n");
6619 if (sd->parent)
6620 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6621 " has parent");
6622 return -1;
41c7ce9a
NP
6623 }
6624
eefd796a 6625 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff
IM
6626
6627 if (!cpu_isset(cpu, sd->span)) {
6628 printk(KERN_ERR "ERROR: domain->span does not contain "
6629 "CPU%d\n", cpu);
6630 }
6631 if (!cpu_isset(cpu, group->cpumask)) {
6632 printk(KERN_ERR "ERROR: domain->groups does not contain"
6633 " CPU%d\n", cpu);
6634 }
1da177e4 6635
4dcf6aff 6636 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6637 do {
4dcf6aff
IM
6638 if (!group) {
6639 printk("\n");
6640 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6641 break;
6642 }
6643
4dcf6aff
IM
6644 if (!group->__cpu_power) {
6645 printk(KERN_CONT "\n");
6646 printk(KERN_ERR "ERROR: domain->cpu_power not "
6647 "set\n");
6648 break;
6649 }
1da177e4 6650
4dcf6aff
IM
6651 if (!cpus_weight(group->cpumask)) {
6652 printk(KERN_CONT "\n");
6653 printk(KERN_ERR "ERROR: empty group\n");
6654 break;
6655 }
1da177e4 6656
7c16ec58 6657 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6658 printk(KERN_CONT "\n");
6659 printk(KERN_ERR "ERROR: repeated CPUs\n");
6660 break;
6661 }
1da177e4 6662
7c16ec58 6663 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6664
434d53b0 6665 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6666 printk(KERN_CONT " %s", str);
1da177e4 6667
4dcf6aff
IM
6668 group = group->next;
6669 } while (group != sd->groups);
6670 printk(KERN_CONT "\n");
1da177e4 6671
7c16ec58 6672 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6673 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6674
7c16ec58 6675 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6676 printk(KERN_ERR "ERROR: parent span is not a superset "
6677 "of domain->span\n");
6678 return 0;
6679}
1da177e4 6680
4dcf6aff
IM
6681static void sched_domain_debug(struct sched_domain *sd, int cpu)
6682{
7c16ec58 6683 cpumask_t *groupmask;
4dcf6aff 6684 int level = 0;
1da177e4 6685
4dcf6aff
IM
6686 if (!sd) {
6687 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6688 return;
6689 }
1da177e4 6690
4dcf6aff
IM
6691 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6692
7c16ec58
MT
6693 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6694 if (!groupmask) {
6695 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6696 return;
6697 }
6698
4dcf6aff 6699 for (;;) {
7c16ec58 6700 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6701 break;
1da177e4
LT
6702 level++;
6703 sd = sd->parent;
33859f7f 6704 if (!sd)
4dcf6aff
IM
6705 break;
6706 }
7c16ec58 6707 kfree(groupmask);
1da177e4 6708}
6d6bc0ad 6709#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6710# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6711#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6712
1a20ff27 6713static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6714{
6715 if (cpus_weight(sd->span) == 1)
6716 return 1;
6717
6718 /* Following flags need at least 2 groups */
6719 if (sd->flags & (SD_LOAD_BALANCE |
6720 SD_BALANCE_NEWIDLE |
6721 SD_BALANCE_FORK |
89c4710e
SS
6722 SD_BALANCE_EXEC |
6723 SD_SHARE_CPUPOWER |
6724 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6725 if (sd->groups != sd->groups->next)
6726 return 0;
6727 }
6728
6729 /* Following flags don't use groups */
6730 if (sd->flags & (SD_WAKE_IDLE |
6731 SD_WAKE_AFFINE |
6732 SD_WAKE_BALANCE))
6733 return 0;
6734
6735 return 1;
6736}
6737
48f24c4d
IM
6738static int
6739sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6740{
6741 unsigned long cflags = sd->flags, pflags = parent->flags;
6742
6743 if (sd_degenerate(parent))
6744 return 1;
6745
6746 if (!cpus_equal(sd->span, parent->span))
6747 return 0;
6748
6749 /* Does parent contain flags not in child? */
6750 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6751 if (cflags & SD_WAKE_AFFINE)
6752 pflags &= ~SD_WAKE_BALANCE;
6753 /* Flags needing groups don't count if only 1 group in parent */
6754 if (parent->groups == parent->groups->next) {
6755 pflags &= ~(SD_LOAD_BALANCE |
6756 SD_BALANCE_NEWIDLE |
6757 SD_BALANCE_FORK |
89c4710e
SS
6758 SD_BALANCE_EXEC |
6759 SD_SHARE_CPUPOWER |
6760 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6761 }
6762 if (~cflags & pflags)
6763 return 0;
6764
6765 return 1;
6766}
6767
57d885fe
GH
6768static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6769{
6770 unsigned long flags;
57d885fe
GH
6771
6772 spin_lock_irqsave(&rq->lock, flags);
6773
6774 if (rq->rd) {
6775 struct root_domain *old_rd = rq->rd;
6776
1f11eb6a
GH
6777 if (cpu_isset(rq->cpu, old_rd->online))
6778 set_rq_offline(rq);
57d885fe 6779
dc938520 6780 cpu_clear(rq->cpu, old_rd->span);
dc938520 6781
57d885fe
GH
6782 if (atomic_dec_and_test(&old_rd->refcount))
6783 kfree(old_rd);
6784 }
6785
6786 atomic_inc(&rd->refcount);
6787 rq->rd = rd;
6788
dc938520 6789 cpu_set(rq->cpu, rd->span);
1f94ef59 6790 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6791 set_rq_online(rq);
57d885fe
GH
6792
6793 spin_unlock_irqrestore(&rq->lock, flags);
6794}
6795
dc938520 6796static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6797{
6798 memset(rd, 0, sizeof(*rd));
6799
dc938520
GH
6800 cpus_clear(rd->span);
6801 cpus_clear(rd->online);
6e0534f2
GH
6802
6803 cpupri_init(&rd->cpupri);
57d885fe
GH
6804}
6805
6806static void init_defrootdomain(void)
6807{
dc938520 6808 init_rootdomain(&def_root_domain);
57d885fe
GH
6809 atomic_set(&def_root_domain.refcount, 1);
6810}
6811
dc938520 6812static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6813{
6814 struct root_domain *rd;
6815
6816 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6817 if (!rd)
6818 return NULL;
6819
dc938520 6820 init_rootdomain(rd);
57d885fe
GH
6821
6822 return rd;
6823}
6824
1da177e4 6825/*
0eab9146 6826 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6827 * hold the hotplug lock.
6828 */
0eab9146
IM
6829static void
6830cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6831{
70b97a7f 6832 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6833 struct sched_domain *tmp;
6834
6835 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6836 for (tmp = sd; tmp; ) {
245af2c7
SS
6837 struct sched_domain *parent = tmp->parent;
6838 if (!parent)
6839 break;
f29c9b1c 6840
1a848870 6841 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6842 tmp->parent = parent->parent;
1a848870
SS
6843 if (parent->parent)
6844 parent->parent->child = tmp;
f29c9b1c
LZ
6845 } else
6846 tmp = tmp->parent;
245af2c7
SS
6847 }
6848
1a848870 6849 if (sd && sd_degenerate(sd)) {
245af2c7 6850 sd = sd->parent;
1a848870
SS
6851 if (sd)
6852 sd->child = NULL;
6853 }
1da177e4
LT
6854
6855 sched_domain_debug(sd, cpu);
6856
57d885fe 6857 rq_attach_root(rq, rd);
674311d5 6858 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6859}
6860
6861/* cpus with isolated domains */
67af63a6 6862static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6863
6864/* Setup the mask of cpus configured for isolated domains */
6865static int __init isolated_cpu_setup(char *str)
6866{
13b40c1e
MT
6867 static int __initdata ints[NR_CPUS];
6868 int i;
1da177e4
LT
6869
6870 str = get_options(str, ARRAY_SIZE(ints), ints);
6871 cpus_clear(cpu_isolated_map);
6872 for (i = 1; i <= ints[0]; i++)
6873 if (ints[i] < NR_CPUS)
6874 cpu_set(ints[i], cpu_isolated_map);
6875 return 1;
6876}
6877
8927f494 6878__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6879
6880/*
6711cab4
SS
6881 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6882 * to a function which identifies what group(along with sched group) a CPU
6883 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6884 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6885 *
6886 * init_sched_build_groups will build a circular linked list of the groups
6887 * covered by the given span, and will set each group's ->cpumask correctly,
6888 * and ->cpu_power to 0.
6889 */
a616058b 6890static void
7c16ec58 6891init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6892 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6893 struct sched_group **sg,
6894 cpumask_t *tmpmask),
6895 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6896{
6897 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6898 int i;
6899
7c16ec58
MT
6900 cpus_clear(*covered);
6901
363ab6f1 6902 for_each_cpu_mask_nr(i, *span) {
6711cab4 6903 struct sched_group *sg;
7c16ec58 6904 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6905 int j;
6906
7c16ec58 6907 if (cpu_isset(i, *covered))
1da177e4
LT
6908 continue;
6909
7c16ec58 6910 cpus_clear(sg->cpumask);
5517d86b 6911 sg->__cpu_power = 0;
1da177e4 6912
363ab6f1 6913 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6914 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6915 continue;
6916
7c16ec58 6917 cpu_set(j, *covered);
1da177e4
LT
6918 cpu_set(j, sg->cpumask);
6919 }
6920 if (!first)
6921 first = sg;
6922 if (last)
6923 last->next = sg;
6924 last = sg;
6925 }
6926 last->next = first;
6927}
6928
9c1cfda2 6929#define SD_NODES_PER_DOMAIN 16
1da177e4 6930
9c1cfda2 6931#ifdef CONFIG_NUMA
198e2f18 6932
9c1cfda2
JH
6933/**
6934 * find_next_best_node - find the next node to include in a sched_domain
6935 * @node: node whose sched_domain we're building
6936 * @used_nodes: nodes already in the sched_domain
6937 *
41a2d6cf 6938 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6939 * finds the closest node not already in the @used_nodes map.
6940 *
6941 * Should use nodemask_t.
6942 */
c5f59f08 6943static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6944{
6945 int i, n, val, min_val, best_node = 0;
6946
6947 min_val = INT_MAX;
6948
076ac2af 6949 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6950 /* Start at @node */
076ac2af 6951 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6952
6953 if (!nr_cpus_node(n))
6954 continue;
6955
6956 /* Skip already used nodes */
c5f59f08 6957 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6958 continue;
6959
6960 /* Simple min distance search */
6961 val = node_distance(node, n);
6962
6963 if (val < min_val) {
6964 min_val = val;
6965 best_node = n;
6966 }
6967 }
6968
c5f59f08 6969 node_set(best_node, *used_nodes);
9c1cfda2
JH
6970 return best_node;
6971}
6972
6973/**
6974 * sched_domain_node_span - get a cpumask for a node's sched_domain
6975 * @node: node whose cpumask we're constructing
73486722 6976 * @span: resulting cpumask
9c1cfda2 6977 *
41a2d6cf 6978 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6979 * should be one that prevents unnecessary balancing, but also spreads tasks
6980 * out optimally.
6981 */
4bdbaad3 6982static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6983{
c5f59f08 6984 nodemask_t used_nodes;
c5f59f08 6985 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6986 int i;
9c1cfda2 6987
4bdbaad3 6988 cpus_clear(*span);
c5f59f08 6989 nodes_clear(used_nodes);
9c1cfda2 6990
4bdbaad3 6991 cpus_or(*span, *span, *nodemask);
c5f59f08 6992 node_set(node, used_nodes);
9c1cfda2
JH
6993
6994 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6995 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6996
c5f59f08 6997 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6998 cpus_or(*span, *span, *nodemask);
9c1cfda2 6999 }
9c1cfda2 7000}
6d6bc0ad 7001#endif /* CONFIG_NUMA */
9c1cfda2 7002
5c45bf27 7003int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7004
9c1cfda2 7005/*
48f24c4d 7006 * SMT sched-domains:
9c1cfda2 7007 */
1da177e4
LT
7008#ifdef CONFIG_SCHED_SMT
7009static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7010static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7011
41a2d6cf 7012static int
7c16ec58
MT
7013cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7014 cpumask_t *unused)
1da177e4 7015{
6711cab4
SS
7016 if (sg)
7017 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7018 return cpu;
7019}
6d6bc0ad 7020#endif /* CONFIG_SCHED_SMT */
1da177e4 7021
48f24c4d
IM
7022/*
7023 * multi-core sched-domains:
7024 */
1e9f28fa
SS
7025#ifdef CONFIG_SCHED_MC
7026static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7027static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7028#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7029
7030#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7031static int
7c16ec58
MT
7032cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7033 cpumask_t *mask)
1e9f28fa 7034{
6711cab4 7035 int group;
7c16ec58
MT
7036
7037 *mask = per_cpu(cpu_sibling_map, cpu);
7038 cpus_and(*mask, *mask, *cpu_map);
7039 group = first_cpu(*mask);
6711cab4
SS
7040 if (sg)
7041 *sg = &per_cpu(sched_group_core, group);
7042 return group;
1e9f28fa
SS
7043}
7044#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7045static int
7c16ec58
MT
7046cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7047 cpumask_t *unused)
1e9f28fa 7048{
6711cab4
SS
7049 if (sg)
7050 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7051 return cpu;
7052}
7053#endif
7054
1da177e4 7055static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7056static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7057
41a2d6cf 7058static int
7c16ec58
MT
7059cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7060 cpumask_t *mask)
1da177e4 7061{
6711cab4 7062 int group;
48f24c4d 7063#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7064 *mask = cpu_coregroup_map(cpu);
7065 cpus_and(*mask, *mask, *cpu_map);
7066 group = first_cpu(*mask);
1e9f28fa 7067#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7068 *mask = per_cpu(cpu_sibling_map, cpu);
7069 cpus_and(*mask, *mask, *cpu_map);
7070 group = first_cpu(*mask);
1da177e4 7071#else
6711cab4 7072 group = cpu;
1da177e4 7073#endif
6711cab4
SS
7074 if (sg)
7075 *sg = &per_cpu(sched_group_phys, group);
7076 return group;
1da177e4
LT
7077}
7078
7079#ifdef CONFIG_NUMA
1da177e4 7080/*
9c1cfda2
JH
7081 * The init_sched_build_groups can't handle what we want to do with node
7082 * groups, so roll our own. Now each node has its own list of groups which
7083 * gets dynamically allocated.
1da177e4 7084 */
9c1cfda2 7085static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7086static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7087
9c1cfda2 7088static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7089static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7090
6711cab4 7091static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7092 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7093{
6711cab4
SS
7094 int group;
7095
7c16ec58
MT
7096 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7097 cpus_and(*nodemask, *nodemask, *cpu_map);
7098 group = first_cpu(*nodemask);
6711cab4
SS
7099
7100 if (sg)
7101 *sg = &per_cpu(sched_group_allnodes, group);
7102 return group;
1da177e4 7103}
6711cab4 7104
08069033
SS
7105static void init_numa_sched_groups_power(struct sched_group *group_head)
7106{
7107 struct sched_group *sg = group_head;
7108 int j;
7109
7110 if (!sg)
7111 return;
3a5c359a 7112 do {
363ab6f1 7113 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7114 struct sched_domain *sd;
08069033 7115
3a5c359a
AK
7116 sd = &per_cpu(phys_domains, j);
7117 if (j != first_cpu(sd->groups->cpumask)) {
7118 /*
7119 * Only add "power" once for each
7120 * physical package.
7121 */
7122 continue;
7123 }
08069033 7124
3a5c359a
AK
7125 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7126 }
7127 sg = sg->next;
7128 } while (sg != group_head);
08069033 7129}
6d6bc0ad 7130#endif /* CONFIG_NUMA */
1da177e4 7131
a616058b 7132#ifdef CONFIG_NUMA
51888ca2 7133/* Free memory allocated for various sched_group structures */
7c16ec58 7134static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7135{
a616058b 7136 int cpu, i;
51888ca2 7137
363ab6f1 7138 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7139 struct sched_group **sched_group_nodes
7140 = sched_group_nodes_bycpu[cpu];
7141
51888ca2
SV
7142 if (!sched_group_nodes)
7143 continue;
7144
076ac2af 7145 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7146 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7147
7c16ec58
MT
7148 *nodemask = node_to_cpumask(i);
7149 cpus_and(*nodemask, *nodemask, *cpu_map);
7150 if (cpus_empty(*nodemask))
51888ca2
SV
7151 continue;
7152
7153 if (sg == NULL)
7154 continue;
7155 sg = sg->next;
7156next_sg:
7157 oldsg = sg;
7158 sg = sg->next;
7159 kfree(oldsg);
7160 if (oldsg != sched_group_nodes[i])
7161 goto next_sg;
7162 }
7163 kfree(sched_group_nodes);
7164 sched_group_nodes_bycpu[cpu] = NULL;
7165 }
51888ca2 7166}
6d6bc0ad 7167#else /* !CONFIG_NUMA */
7c16ec58 7168static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7169{
7170}
6d6bc0ad 7171#endif /* CONFIG_NUMA */
51888ca2 7172
89c4710e
SS
7173/*
7174 * Initialize sched groups cpu_power.
7175 *
7176 * cpu_power indicates the capacity of sched group, which is used while
7177 * distributing the load between different sched groups in a sched domain.
7178 * Typically cpu_power for all the groups in a sched domain will be same unless
7179 * there are asymmetries in the topology. If there are asymmetries, group
7180 * having more cpu_power will pickup more load compared to the group having
7181 * less cpu_power.
7182 *
7183 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7184 * the maximum number of tasks a group can handle in the presence of other idle
7185 * or lightly loaded groups in the same sched domain.
7186 */
7187static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7188{
7189 struct sched_domain *child;
7190 struct sched_group *group;
7191
7192 WARN_ON(!sd || !sd->groups);
7193
7194 if (cpu != first_cpu(sd->groups->cpumask))
7195 return;
7196
7197 child = sd->child;
7198
5517d86b
ED
7199 sd->groups->__cpu_power = 0;
7200
89c4710e
SS
7201 /*
7202 * For perf policy, if the groups in child domain share resources
7203 * (for example cores sharing some portions of the cache hierarchy
7204 * or SMT), then set this domain groups cpu_power such that each group
7205 * can handle only one task, when there are other idle groups in the
7206 * same sched domain.
7207 */
7208 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7209 (child->flags &
7210 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7211 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7212 return;
7213 }
7214
89c4710e
SS
7215 /*
7216 * add cpu_power of each child group to this groups cpu_power
7217 */
7218 group = child->groups;
7219 do {
5517d86b 7220 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7221 group = group->next;
7222 } while (group != child->groups);
7223}
7224
7c16ec58
MT
7225/*
7226 * Initializers for schedule domains
7227 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7228 */
7229
a5d8c348
IM
7230#ifdef CONFIG_SCHED_DEBUG
7231# define SD_INIT_NAME(sd, type) sd->name = #type
7232#else
7233# define SD_INIT_NAME(sd, type) do { } while (0)
7234#endif
7235
7c16ec58 7236#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7237
7c16ec58
MT
7238#define SD_INIT_FUNC(type) \
7239static noinline void sd_init_##type(struct sched_domain *sd) \
7240{ \
7241 memset(sd, 0, sizeof(*sd)); \
7242 *sd = SD_##type##_INIT; \
1d3504fc 7243 sd->level = SD_LV_##type; \
a5d8c348 7244 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7245}
7246
7247SD_INIT_FUNC(CPU)
7248#ifdef CONFIG_NUMA
7249 SD_INIT_FUNC(ALLNODES)
7250 SD_INIT_FUNC(NODE)
7251#endif
7252#ifdef CONFIG_SCHED_SMT
7253 SD_INIT_FUNC(SIBLING)
7254#endif
7255#ifdef CONFIG_SCHED_MC
7256 SD_INIT_FUNC(MC)
7257#endif
7258
7259/*
7260 * To minimize stack usage kmalloc room for cpumasks and share the
7261 * space as the usage in build_sched_domains() dictates. Used only
7262 * if the amount of space is significant.
7263 */
7264struct allmasks {
7265 cpumask_t tmpmask; /* make this one first */
7266 union {
7267 cpumask_t nodemask;
7268 cpumask_t this_sibling_map;
7269 cpumask_t this_core_map;
7270 };
7271 cpumask_t send_covered;
7272
7273#ifdef CONFIG_NUMA
7274 cpumask_t domainspan;
7275 cpumask_t covered;
7276 cpumask_t notcovered;
7277#endif
7278};
7279
7280#if NR_CPUS > 128
6d21cd62
LZ
7281#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7282static inline void sched_cpumask_alloc(struct allmasks **masks)
7283{
7284 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7285}
7286static inline void sched_cpumask_free(struct allmasks *masks)
7287{
7288 kfree(masks);
7289}
7c16ec58 7290#else
6d21cd62
LZ
7291#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7292static inline void sched_cpumask_alloc(struct allmasks **masks)
7293{ }
7294static inline void sched_cpumask_free(struct allmasks *masks)
7295{ }
7c16ec58
MT
7296#endif
7297
7298#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7299 ((unsigned long)(a) + offsetof(struct allmasks, v))
7300
1d3504fc
HS
7301static int default_relax_domain_level = -1;
7302
7303static int __init setup_relax_domain_level(char *str)
7304{
30e0e178
LZ
7305 unsigned long val;
7306
7307 val = simple_strtoul(str, NULL, 0);
7308 if (val < SD_LV_MAX)
7309 default_relax_domain_level = val;
7310
1d3504fc
HS
7311 return 1;
7312}
7313__setup("relax_domain_level=", setup_relax_domain_level);
7314
7315static void set_domain_attribute(struct sched_domain *sd,
7316 struct sched_domain_attr *attr)
7317{
7318 int request;
7319
7320 if (!attr || attr->relax_domain_level < 0) {
7321 if (default_relax_domain_level < 0)
7322 return;
7323 else
7324 request = default_relax_domain_level;
7325 } else
7326 request = attr->relax_domain_level;
7327 if (request < sd->level) {
7328 /* turn off idle balance on this domain */
7329 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7330 } else {
7331 /* turn on idle balance on this domain */
7332 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7333 }
7334}
7335
1da177e4 7336/*
1a20ff27
DG
7337 * Build sched domains for a given set of cpus and attach the sched domains
7338 * to the individual cpus
1da177e4 7339 */
1d3504fc
HS
7340static int __build_sched_domains(const cpumask_t *cpu_map,
7341 struct sched_domain_attr *attr)
1da177e4
LT
7342{
7343 int i;
57d885fe 7344 struct root_domain *rd;
7c16ec58
MT
7345 SCHED_CPUMASK_DECLARE(allmasks);
7346 cpumask_t *tmpmask;
d1b55138
JH
7347#ifdef CONFIG_NUMA
7348 struct sched_group **sched_group_nodes = NULL;
6711cab4 7349 int sd_allnodes = 0;
d1b55138
JH
7350
7351 /*
7352 * Allocate the per-node list of sched groups
7353 */
076ac2af 7354 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7355 GFP_KERNEL);
d1b55138
JH
7356 if (!sched_group_nodes) {
7357 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7358 return -ENOMEM;
d1b55138 7359 }
d1b55138 7360#endif
1da177e4 7361
dc938520 7362 rd = alloc_rootdomain();
57d885fe
GH
7363 if (!rd) {
7364 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7365#ifdef CONFIG_NUMA
7366 kfree(sched_group_nodes);
7367#endif
57d885fe
GH
7368 return -ENOMEM;
7369 }
7370
7c16ec58 7371 /* get space for all scratch cpumask variables */
6d21cd62 7372 sched_cpumask_alloc(&allmasks);
7c16ec58
MT
7373 if (!allmasks) {
7374 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7375 kfree(rd);
7376#ifdef CONFIG_NUMA
7377 kfree(sched_group_nodes);
7378#endif
7379 return -ENOMEM;
7380 }
6d21cd62 7381
7c16ec58
MT
7382 tmpmask = (cpumask_t *)allmasks;
7383
7384
7385#ifdef CONFIG_NUMA
7386 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7387#endif
7388
1da177e4 7389 /*
1a20ff27 7390 * Set up domains for cpus specified by the cpu_map.
1da177e4 7391 */
363ab6f1 7392 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7393 struct sched_domain *sd = NULL, *p;
7c16ec58 7394 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7395
7c16ec58
MT
7396 *nodemask = node_to_cpumask(cpu_to_node(i));
7397 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7398
7399#ifdef CONFIG_NUMA
dd41f596 7400 if (cpus_weight(*cpu_map) >
7c16ec58 7401 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7402 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7403 SD_INIT(sd, ALLNODES);
1d3504fc 7404 set_domain_attribute(sd, attr);
9c1cfda2 7405 sd->span = *cpu_map;
7c16ec58 7406 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7407 p = sd;
6711cab4 7408 sd_allnodes = 1;
9c1cfda2
JH
7409 } else
7410 p = NULL;
7411
1da177e4 7412 sd = &per_cpu(node_domains, i);
7c16ec58 7413 SD_INIT(sd, NODE);
1d3504fc 7414 set_domain_attribute(sd, attr);
4bdbaad3 7415 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7416 sd->parent = p;
1a848870
SS
7417 if (p)
7418 p->child = sd;
9c1cfda2 7419 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7420#endif
7421
7422 p = sd;
7423 sd = &per_cpu(phys_domains, i);
7c16ec58 7424 SD_INIT(sd, CPU);
1d3504fc 7425 set_domain_attribute(sd, attr);
7c16ec58 7426 sd->span = *nodemask;
1da177e4 7427 sd->parent = p;
1a848870
SS
7428 if (p)
7429 p->child = sd;
7c16ec58 7430 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7431
1e9f28fa
SS
7432#ifdef CONFIG_SCHED_MC
7433 p = sd;
7434 sd = &per_cpu(core_domains, i);
7c16ec58 7435 SD_INIT(sd, MC);
1d3504fc 7436 set_domain_attribute(sd, attr);
1e9f28fa
SS
7437 sd->span = cpu_coregroup_map(i);
7438 cpus_and(sd->span, sd->span, *cpu_map);
7439 sd->parent = p;
1a848870 7440 p->child = sd;
7c16ec58 7441 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7442#endif
7443
1da177e4
LT
7444#ifdef CONFIG_SCHED_SMT
7445 p = sd;
7446 sd = &per_cpu(cpu_domains, i);
7c16ec58 7447 SD_INIT(sd, SIBLING);
1d3504fc 7448 set_domain_attribute(sd, attr);
d5a7430d 7449 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7450 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7451 sd->parent = p;
1a848870 7452 p->child = sd;
7c16ec58 7453 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7454#endif
7455 }
7456
7457#ifdef CONFIG_SCHED_SMT
7458 /* Set up CPU (sibling) groups */
363ab6f1 7459 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7460 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7461 SCHED_CPUMASK_VAR(send_covered, allmasks);
7462
7463 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7464 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7465 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7466 continue;
7467
dd41f596 7468 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7469 &cpu_to_cpu_group,
7470 send_covered, tmpmask);
1da177e4
LT
7471 }
7472#endif
7473
1e9f28fa
SS
7474#ifdef CONFIG_SCHED_MC
7475 /* Set up multi-core groups */
363ab6f1 7476 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7477 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7478 SCHED_CPUMASK_VAR(send_covered, allmasks);
7479
7480 *this_core_map = cpu_coregroup_map(i);
7481 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7482 if (i != first_cpu(*this_core_map))
1e9f28fa 7483 continue;
7c16ec58 7484
dd41f596 7485 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7486 &cpu_to_core_group,
7487 send_covered, tmpmask);
1e9f28fa
SS
7488 }
7489#endif
7490
1da177e4 7491 /* Set up physical groups */
076ac2af 7492 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7493 SCHED_CPUMASK_VAR(nodemask, allmasks);
7494 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7495
7c16ec58
MT
7496 *nodemask = node_to_cpumask(i);
7497 cpus_and(*nodemask, *nodemask, *cpu_map);
7498 if (cpus_empty(*nodemask))
1da177e4
LT
7499 continue;
7500
7c16ec58
MT
7501 init_sched_build_groups(nodemask, cpu_map,
7502 &cpu_to_phys_group,
7503 send_covered, tmpmask);
1da177e4
LT
7504 }
7505
7506#ifdef CONFIG_NUMA
7507 /* Set up node groups */
7c16ec58
MT
7508 if (sd_allnodes) {
7509 SCHED_CPUMASK_VAR(send_covered, allmasks);
7510
7511 init_sched_build_groups(cpu_map, cpu_map,
7512 &cpu_to_allnodes_group,
7513 send_covered, tmpmask);
7514 }
9c1cfda2 7515
076ac2af 7516 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7517 /* Set up node groups */
7518 struct sched_group *sg, *prev;
7c16ec58
MT
7519 SCHED_CPUMASK_VAR(nodemask, allmasks);
7520 SCHED_CPUMASK_VAR(domainspan, allmasks);
7521 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7522 int j;
7523
7c16ec58
MT
7524 *nodemask = node_to_cpumask(i);
7525 cpus_clear(*covered);
7526
7527 cpus_and(*nodemask, *nodemask, *cpu_map);
7528 if (cpus_empty(*nodemask)) {
d1b55138 7529 sched_group_nodes[i] = NULL;
9c1cfda2 7530 continue;
d1b55138 7531 }
9c1cfda2 7532
4bdbaad3 7533 sched_domain_node_span(i, domainspan);
7c16ec58 7534 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7535
15f0b676 7536 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7537 if (!sg) {
7538 printk(KERN_WARNING "Can not alloc domain group for "
7539 "node %d\n", i);
7540 goto error;
7541 }
9c1cfda2 7542 sched_group_nodes[i] = sg;
363ab6f1 7543 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7544 struct sched_domain *sd;
9761eea8 7545
9c1cfda2
JH
7546 sd = &per_cpu(node_domains, j);
7547 sd->groups = sg;
9c1cfda2 7548 }
5517d86b 7549 sg->__cpu_power = 0;
7c16ec58 7550 sg->cpumask = *nodemask;
51888ca2 7551 sg->next = sg;
7c16ec58 7552 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7553 prev = sg;
7554
076ac2af 7555 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7556 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7557 int n = (i + j) % nr_node_ids;
c5f59f08 7558 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7559
7c16ec58
MT
7560 cpus_complement(*notcovered, *covered);
7561 cpus_and(*tmpmask, *notcovered, *cpu_map);
7562 cpus_and(*tmpmask, *tmpmask, *domainspan);
7563 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7564 break;
7565
7c16ec58
MT
7566 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7567 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7568 continue;
7569
15f0b676
SV
7570 sg = kmalloc_node(sizeof(struct sched_group),
7571 GFP_KERNEL, i);
9c1cfda2
JH
7572 if (!sg) {
7573 printk(KERN_WARNING
7574 "Can not alloc domain group for node %d\n", j);
51888ca2 7575 goto error;
9c1cfda2 7576 }
5517d86b 7577 sg->__cpu_power = 0;
7c16ec58 7578 sg->cpumask = *tmpmask;
51888ca2 7579 sg->next = prev->next;
7c16ec58 7580 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7581 prev->next = sg;
7582 prev = sg;
7583 }
9c1cfda2 7584 }
1da177e4
LT
7585#endif
7586
7587 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7588#ifdef CONFIG_SCHED_SMT
363ab6f1 7589 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7590 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7591
89c4710e 7592 init_sched_groups_power(i, sd);
5c45bf27 7593 }
1da177e4 7594#endif
1e9f28fa 7595#ifdef CONFIG_SCHED_MC
363ab6f1 7596 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7597 struct sched_domain *sd = &per_cpu(core_domains, i);
7598
89c4710e 7599 init_sched_groups_power(i, sd);
5c45bf27
SS
7600 }
7601#endif
1e9f28fa 7602
363ab6f1 7603 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7604 struct sched_domain *sd = &per_cpu(phys_domains, i);
7605
89c4710e 7606 init_sched_groups_power(i, sd);
1da177e4
LT
7607 }
7608
9c1cfda2 7609#ifdef CONFIG_NUMA
076ac2af 7610 for (i = 0; i < nr_node_ids; i++)
08069033 7611 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7612
6711cab4
SS
7613 if (sd_allnodes) {
7614 struct sched_group *sg;
f712c0c7 7615
7c16ec58
MT
7616 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7617 tmpmask);
f712c0c7
SS
7618 init_numa_sched_groups_power(sg);
7619 }
9c1cfda2
JH
7620#endif
7621
1da177e4 7622 /* Attach the domains */
363ab6f1 7623 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7624 struct sched_domain *sd;
7625#ifdef CONFIG_SCHED_SMT
7626 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7627#elif defined(CONFIG_SCHED_MC)
7628 sd = &per_cpu(core_domains, i);
1da177e4
LT
7629#else
7630 sd = &per_cpu(phys_domains, i);
7631#endif
57d885fe 7632 cpu_attach_domain(sd, rd, i);
1da177e4 7633 }
51888ca2 7634
6d21cd62 7635 sched_cpumask_free(allmasks);
51888ca2
SV
7636 return 0;
7637
a616058b 7638#ifdef CONFIG_NUMA
51888ca2 7639error:
7c16ec58 7640 free_sched_groups(cpu_map, tmpmask);
6d21cd62 7641 sched_cpumask_free(allmasks);
ca3273f9 7642 kfree(rd);
51888ca2 7643 return -ENOMEM;
a616058b 7644#endif
1da177e4 7645}
029190c5 7646
1d3504fc
HS
7647static int build_sched_domains(const cpumask_t *cpu_map)
7648{
7649 return __build_sched_domains(cpu_map, NULL);
7650}
7651
029190c5
PJ
7652static cpumask_t *doms_cur; /* current sched domains */
7653static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7654static struct sched_domain_attr *dattr_cur;
7655 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7656
7657/*
7658 * Special case: If a kmalloc of a doms_cur partition (array of
7659 * cpumask_t) fails, then fallback to a single sched domain,
7660 * as determined by the single cpumask_t fallback_doms.
7661 */
7662static cpumask_t fallback_doms;
7663
22e52b07
HC
7664void __attribute__((weak)) arch_update_cpu_topology(void)
7665{
7666}
7667
1a20ff27 7668/*
41a2d6cf 7669 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7670 * For now this just excludes isolated cpus, but could be used to
7671 * exclude other special cases in the future.
1a20ff27 7672 */
51888ca2 7673static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7674{
7378547f
MM
7675 int err;
7676
22e52b07 7677 arch_update_cpu_topology();
029190c5
PJ
7678 ndoms_cur = 1;
7679 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7680 if (!doms_cur)
7681 doms_cur = &fallback_doms;
7682 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7683 dattr_cur = NULL;
7378547f 7684 err = build_sched_domains(doms_cur);
6382bc90 7685 register_sched_domain_sysctl();
7378547f
MM
7686
7687 return err;
1a20ff27
DG
7688}
7689
7c16ec58
MT
7690static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7691 cpumask_t *tmpmask)
1da177e4 7692{
7c16ec58 7693 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7694}
1da177e4 7695
1a20ff27
DG
7696/*
7697 * Detach sched domains from a group of cpus specified in cpu_map
7698 * These cpus will now be attached to the NULL domain
7699 */
858119e1 7700static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7701{
7c16ec58 7702 cpumask_t tmpmask;
1a20ff27
DG
7703 int i;
7704
363ab6f1 7705 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7706 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7707 synchronize_sched();
7c16ec58 7708 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7709}
7710
1d3504fc
HS
7711/* handle null as "default" */
7712static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7713 struct sched_domain_attr *new, int idx_new)
7714{
7715 struct sched_domain_attr tmp;
7716
7717 /* fast path */
7718 if (!new && !cur)
7719 return 1;
7720
7721 tmp = SD_ATTR_INIT;
7722 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7723 new ? (new + idx_new) : &tmp,
7724 sizeof(struct sched_domain_attr));
7725}
7726
029190c5
PJ
7727/*
7728 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7729 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7730 * doms_new[] to the current sched domain partitioning, doms_cur[].
7731 * It destroys each deleted domain and builds each new domain.
7732 *
7733 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7734 * The masks don't intersect (don't overlap.) We should setup one
7735 * sched domain for each mask. CPUs not in any of the cpumasks will
7736 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7737 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7738 * it as it is.
7739 *
41a2d6cf
IM
7740 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7741 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7742 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7743 * ndoms_new == 1, and partition_sched_domains() will fallback to
7744 * the single partition 'fallback_doms', it also forces the domains
7745 * to be rebuilt.
029190c5 7746 *
700018e0
LZ
7747 * If doms_new == NULL it will be replaced with cpu_online_map.
7748 * ndoms_new == 0 is a special case for destroying existing domains,
7749 * and it will not create the default domain.
dfb512ec 7750 *
029190c5
PJ
7751 * Call with hotplug lock held
7752 */
1d3504fc
HS
7753void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7754 struct sched_domain_attr *dattr_new)
029190c5 7755{
dfb512ec 7756 int i, j, n;
029190c5 7757
712555ee 7758 mutex_lock(&sched_domains_mutex);
a1835615 7759
7378547f
MM
7760 /* always unregister in case we don't destroy any domains */
7761 unregister_sched_domain_sysctl();
7762
dfb512ec 7763 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7764
7765 /* Destroy deleted domains */
7766 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7767 for (j = 0; j < n; j++) {
1d3504fc
HS
7768 if (cpus_equal(doms_cur[i], doms_new[j])
7769 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7770 goto match1;
7771 }
7772 /* no match - a current sched domain not in new doms_new[] */
7773 detach_destroy_domains(doms_cur + i);
7774match1:
7775 ;
7776 }
7777
e761b772
MK
7778 if (doms_new == NULL) {
7779 ndoms_cur = 0;
e761b772
MK
7780 doms_new = &fallback_doms;
7781 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
faa2f98f 7782 WARN_ON_ONCE(dattr_new);
e761b772
MK
7783 }
7784
029190c5
PJ
7785 /* Build new domains */
7786 for (i = 0; i < ndoms_new; i++) {
7787 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7788 if (cpus_equal(doms_new[i], doms_cur[j])
7789 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7790 goto match2;
7791 }
7792 /* no match - add a new doms_new */
1d3504fc
HS
7793 __build_sched_domains(doms_new + i,
7794 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7795match2:
7796 ;
7797 }
7798
7799 /* Remember the new sched domains */
7800 if (doms_cur != &fallback_doms)
7801 kfree(doms_cur);
1d3504fc 7802 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7803 doms_cur = doms_new;
1d3504fc 7804 dattr_cur = dattr_new;
029190c5 7805 ndoms_cur = ndoms_new;
7378547f
MM
7806
7807 register_sched_domain_sysctl();
a1835615 7808
712555ee 7809 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7810}
7811
5c45bf27 7812#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7813int arch_reinit_sched_domains(void)
5c45bf27 7814{
95402b38 7815 get_online_cpus();
dfb512ec
MK
7816
7817 /* Destroy domains first to force the rebuild */
7818 partition_sched_domains(0, NULL, NULL);
7819
e761b772 7820 rebuild_sched_domains();
95402b38 7821 put_online_cpus();
dfb512ec 7822
e761b772 7823 return 0;
5c45bf27
SS
7824}
7825
7826static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7827{
7828 int ret;
7829
7830 if (buf[0] != '0' && buf[0] != '1')
7831 return -EINVAL;
7832
7833 if (smt)
7834 sched_smt_power_savings = (buf[0] == '1');
7835 else
7836 sched_mc_power_savings = (buf[0] == '1');
7837
7838 ret = arch_reinit_sched_domains();
7839
7840 return ret ? ret : count;
7841}
7842
5c45bf27 7843#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7844static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7845 char *page)
5c45bf27
SS
7846{
7847 return sprintf(page, "%u\n", sched_mc_power_savings);
7848}
f718cd4a 7849static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7850 const char *buf, size_t count)
5c45bf27
SS
7851{
7852 return sched_power_savings_store(buf, count, 0);
7853}
f718cd4a
AK
7854static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7855 sched_mc_power_savings_show,
7856 sched_mc_power_savings_store);
5c45bf27
SS
7857#endif
7858
7859#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7860static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7861 char *page)
5c45bf27
SS
7862{
7863 return sprintf(page, "%u\n", sched_smt_power_savings);
7864}
f718cd4a 7865static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7866 const char *buf, size_t count)
5c45bf27
SS
7867{
7868 return sched_power_savings_store(buf, count, 1);
7869}
f718cd4a
AK
7870static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7871 sched_smt_power_savings_show,
6707de00
AB
7872 sched_smt_power_savings_store);
7873#endif
7874
7875int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7876{
7877 int err = 0;
7878
7879#ifdef CONFIG_SCHED_SMT
7880 if (smt_capable())
7881 err = sysfs_create_file(&cls->kset.kobj,
7882 &attr_sched_smt_power_savings.attr);
7883#endif
7884#ifdef CONFIG_SCHED_MC
7885 if (!err && mc_capable())
7886 err = sysfs_create_file(&cls->kset.kobj,
7887 &attr_sched_mc_power_savings.attr);
7888#endif
7889 return err;
7890}
6d6bc0ad 7891#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7892
e761b772 7893#ifndef CONFIG_CPUSETS
1da177e4 7894/*
e761b772
MK
7895 * Add online and remove offline CPUs from the scheduler domains.
7896 * When cpusets are enabled they take over this function.
1da177e4
LT
7897 */
7898static int update_sched_domains(struct notifier_block *nfb,
7899 unsigned long action, void *hcpu)
e761b772
MK
7900{
7901 switch (action) {
7902 case CPU_ONLINE:
7903 case CPU_ONLINE_FROZEN:
7904 case CPU_DEAD:
7905 case CPU_DEAD_FROZEN:
dfb512ec 7906 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7907 return NOTIFY_OK;
7908
7909 default:
7910 return NOTIFY_DONE;
7911 }
7912}
7913#endif
7914
7915static int update_runtime(struct notifier_block *nfb,
7916 unsigned long action, void *hcpu)
1da177e4 7917{
7def2be1
PZ
7918 int cpu = (int)(long)hcpu;
7919
1da177e4 7920 switch (action) {
1da177e4 7921 case CPU_DOWN_PREPARE:
8bb78442 7922 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7923 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7924 return NOTIFY_OK;
7925
1da177e4 7926 case CPU_DOWN_FAILED:
8bb78442 7927 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7928 case CPU_ONLINE:
8bb78442 7929 case CPU_ONLINE_FROZEN:
7def2be1 7930 enable_runtime(cpu_rq(cpu));
e761b772
MK
7931 return NOTIFY_OK;
7932
1da177e4
LT
7933 default:
7934 return NOTIFY_DONE;
7935 }
1da177e4 7936}
1da177e4
LT
7937
7938void __init sched_init_smp(void)
7939{
5c1e1767
NP
7940 cpumask_t non_isolated_cpus;
7941
434d53b0
MT
7942#if defined(CONFIG_NUMA)
7943 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7944 GFP_KERNEL);
7945 BUG_ON(sched_group_nodes_bycpu == NULL);
7946#endif
95402b38 7947 get_online_cpus();
712555ee 7948 mutex_lock(&sched_domains_mutex);
1a20ff27 7949 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7950 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7951 if (cpus_empty(non_isolated_cpus))
7952 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7953 mutex_unlock(&sched_domains_mutex);
95402b38 7954 put_online_cpus();
e761b772
MK
7955
7956#ifndef CONFIG_CPUSETS
1da177e4
LT
7957 /* XXX: Theoretical race here - CPU may be hotplugged now */
7958 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7959#endif
7960
7961 /* RT runtime code needs to handle some hotplug events */
7962 hotcpu_notifier(update_runtime, 0);
7963
b328ca18 7964 init_hrtick();
5c1e1767
NP
7965
7966 /* Move init over to a non-isolated CPU */
7c16ec58 7967 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7968 BUG();
19978ca6 7969 sched_init_granularity();
1da177e4
LT
7970}
7971#else
7972void __init sched_init_smp(void)
7973{
19978ca6 7974 sched_init_granularity();
1da177e4
LT
7975}
7976#endif /* CONFIG_SMP */
7977
7978int in_sched_functions(unsigned long addr)
7979{
1da177e4
LT
7980 return in_lock_functions(addr) ||
7981 (addr >= (unsigned long)__sched_text_start
7982 && addr < (unsigned long)__sched_text_end);
7983}
7984
a9957449 7985static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7986{
7987 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7988 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7989#ifdef CONFIG_FAIR_GROUP_SCHED
7990 cfs_rq->rq = rq;
7991#endif
67e9fb2a 7992 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7993}
7994
fa85ae24
PZ
7995static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7996{
7997 struct rt_prio_array *array;
7998 int i;
7999
8000 array = &rt_rq->active;
8001 for (i = 0; i < MAX_RT_PRIO; i++) {
8002 INIT_LIST_HEAD(array->queue + i);
8003 __clear_bit(i, array->bitmap);
8004 }
8005 /* delimiter for bitsearch: */
8006 __set_bit(MAX_RT_PRIO, array->bitmap);
8007
052f1dc7 8008#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8009 rt_rq->highest_prio = MAX_RT_PRIO;
8010#endif
fa85ae24
PZ
8011#ifdef CONFIG_SMP
8012 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8013 rt_rq->overloaded = 0;
8014#endif
8015
8016 rt_rq->rt_time = 0;
8017 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8018 rt_rq->rt_runtime = 0;
8019 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8020
052f1dc7 8021#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8022 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8023 rt_rq->rq = rq;
8024#endif
fa85ae24
PZ
8025}
8026
6f505b16 8027#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8028static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8029 struct sched_entity *se, int cpu, int add,
8030 struct sched_entity *parent)
6f505b16 8031{
ec7dc8ac 8032 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8033 tg->cfs_rq[cpu] = cfs_rq;
8034 init_cfs_rq(cfs_rq, rq);
8035 cfs_rq->tg = tg;
8036 if (add)
8037 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8038
8039 tg->se[cpu] = se;
354d60c2
DG
8040 /* se could be NULL for init_task_group */
8041 if (!se)
8042 return;
8043
ec7dc8ac
DG
8044 if (!parent)
8045 se->cfs_rq = &rq->cfs;
8046 else
8047 se->cfs_rq = parent->my_q;
8048
6f505b16
PZ
8049 se->my_q = cfs_rq;
8050 se->load.weight = tg->shares;
e05510d0 8051 se->load.inv_weight = 0;
ec7dc8ac 8052 se->parent = parent;
6f505b16 8053}
052f1dc7 8054#endif
6f505b16 8055
052f1dc7 8056#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8057static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8058 struct sched_rt_entity *rt_se, int cpu, int add,
8059 struct sched_rt_entity *parent)
6f505b16 8060{
ec7dc8ac
DG
8061 struct rq *rq = cpu_rq(cpu);
8062
6f505b16
PZ
8063 tg->rt_rq[cpu] = rt_rq;
8064 init_rt_rq(rt_rq, rq);
8065 rt_rq->tg = tg;
8066 rt_rq->rt_se = rt_se;
ac086bc2 8067 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8068 if (add)
8069 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8070
8071 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8072 if (!rt_se)
8073 return;
8074
ec7dc8ac
DG
8075 if (!parent)
8076 rt_se->rt_rq = &rq->rt;
8077 else
8078 rt_se->rt_rq = parent->my_q;
8079
6f505b16 8080 rt_se->my_q = rt_rq;
ec7dc8ac 8081 rt_se->parent = parent;
6f505b16
PZ
8082 INIT_LIST_HEAD(&rt_se->run_list);
8083}
8084#endif
8085
1da177e4
LT
8086void __init sched_init(void)
8087{
dd41f596 8088 int i, j;
434d53b0
MT
8089 unsigned long alloc_size = 0, ptr;
8090
8091#ifdef CONFIG_FAIR_GROUP_SCHED
8092 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8093#endif
8094#ifdef CONFIG_RT_GROUP_SCHED
8095 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8096#endif
8097#ifdef CONFIG_USER_SCHED
8098 alloc_size *= 2;
434d53b0
MT
8099#endif
8100 /*
8101 * As sched_init() is called before page_alloc is setup,
8102 * we use alloc_bootmem().
8103 */
8104 if (alloc_size) {
5a9d3225 8105 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8106
8107#ifdef CONFIG_FAIR_GROUP_SCHED
8108 init_task_group.se = (struct sched_entity **)ptr;
8109 ptr += nr_cpu_ids * sizeof(void **);
8110
8111 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8112 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8113
8114#ifdef CONFIG_USER_SCHED
8115 root_task_group.se = (struct sched_entity **)ptr;
8116 ptr += nr_cpu_ids * sizeof(void **);
8117
8118 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8119 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8120#endif /* CONFIG_USER_SCHED */
8121#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8122#ifdef CONFIG_RT_GROUP_SCHED
8123 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8124 ptr += nr_cpu_ids * sizeof(void **);
8125
8126 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8127 ptr += nr_cpu_ids * sizeof(void **);
8128
8129#ifdef CONFIG_USER_SCHED
8130 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8131 ptr += nr_cpu_ids * sizeof(void **);
8132
8133 root_task_group.rt_rq = (struct rt_rq **)ptr;
8134 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8135#endif /* CONFIG_USER_SCHED */
8136#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8137 }
dd41f596 8138
57d885fe
GH
8139#ifdef CONFIG_SMP
8140 init_defrootdomain();
8141#endif
8142
d0b27fa7
PZ
8143 init_rt_bandwidth(&def_rt_bandwidth,
8144 global_rt_period(), global_rt_runtime());
8145
8146#ifdef CONFIG_RT_GROUP_SCHED
8147 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8148 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8149#ifdef CONFIG_USER_SCHED
8150 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8151 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8152#endif /* CONFIG_USER_SCHED */
8153#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8154
052f1dc7 8155#ifdef CONFIG_GROUP_SCHED
6f505b16 8156 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8157 INIT_LIST_HEAD(&init_task_group.children);
8158
8159#ifdef CONFIG_USER_SCHED
8160 INIT_LIST_HEAD(&root_task_group.children);
8161 init_task_group.parent = &root_task_group;
8162 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8163#endif /* CONFIG_USER_SCHED */
8164#endif /* CONFIG_GROUP_SCHED */
6f505b16 8165
0a945022 8166 for_each_possible_cpu(i) {
70b97a7f 8167 struct rq *rq;
1da177e4
LT
8168
8169 rq = cpu_rq(i);
8170 spin_lock_init(&rq->lock);
7897986b 8171 rq->nr_running = 0;
dd41f596 8172 init_cfs_rq(&rq->cfs, rq);
6f505b16 8173 init_rt_rq(&rq->rt, rq);
dd41f596 8174#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8175 init_task_group.shares = init_task_group_load;
6f505b16 8176 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8177#ifdef CONFIG_CGROUP_SCHED
8178 /*
8179 * How much cpu bandwidth does init_task_group get?
8180 *
8181 * In case of task-groups formed thr' the cgroup filesystem, it
8182 * gets 100% of the cpu resources in the system. This overall
8183 * system cpu resource is divided among the tasks of
8184 * init_task_group and its child task-groups in a fair manner,
8185 * based on each entity's (task or task-group's) weight
8186 * (se->load.weight).
8187 *
8188 * In other words, if init_task_group has 10 tasks of weight
8189 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8190 * then A0's share of the cpu resource is:
8191 *
8192 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8193 *
8194 * We achieve this by letting init_task_group's tasks sit
8195 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8196 */
ec7dc8ac 8197 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8198#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8199 root_task_group.shares = NICE_0_LOAD;
8200 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8201 /*
8202 * In case of task-groups formed thr' the user id of tasks,
8203 * init_task_group represents tasks belonging to root user.
8204 * Hence it forms a sibling of all subsequent groups formed.
8205 * In this case, init_task_group gets only a fraction of overall
8206 * system cpu resource, based on the weight assigned to root
8207 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8208 * by letting tasks of init_task_group sit in a separate cfs_rq
8209 * (init_cfs_rq) and having one entity represent this group of
8210 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8211 */
ec7dc8ac 8212 init_tg_cfs_entry(&init_task_group,
6f505b16 8213 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8214 &per_cpu(init_sched_entity, i), i, 1,
8215 root_task_group.se[i]);
6f505b16 8216
052f1dc7 8217#endif
354d60c2
DG
8218#endif /* CONFIG_FAIR_GROUP_SCHED */
8219
8220 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8221#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8222 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8223#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8224 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8225#elif defined CONFIG_USER_SCHED
eff766a6 8226 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8227 init_tg_rt_entry(&init_task_group,
6f505b16 8228 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8229 &per_cpu(init_sched_rt_entity, i), i, 1,
8230 root_task_group.rt_se[i]);
354d60c2 8231#endif
dd41f596 8232#endif
1da177e4 8233
dd41f596
IM
8234 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8235 rq->cpu_load[j] = 0;
1da177e4 8236#ifdef CONFIG_SMP
41c7ce9a 8237 rq->sd = NULL;
57d885fe 8238 rq->rd = NULL;
1da177e4 8239 rq->active_balance = 0;
dd41f596 8240 rq->next_balance = jiffies;
1da177e4 8241 rq->push_cpu = 0;
0a2966b4 8242 rq->cpu = i;
1f11eb6a 8243 rq->online = 0;
1da177e4
LT
8244 rq->migration_thread = NULL;
8245 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8246 rq_attach_root(rq, &def_root_domain);
1da177e4 8247#endif
8f4d37ec 8248 init_rq_hrtick(rq);
1da177e4 8249 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8250 }
8251
2dd73a4f 8252 set_load_weight(&init_task);
b50f60ce 8253
e107be36
AK
8254#ifdef CONFIG_PREEMPT_NOTIFIERS
8255 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8256#endif
8257
c9819f45 8258#ifdef CONFIG_SMP
962cf36c 8259 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8260#endif
8261
b50f60ce
HC
8262#ifdef CONFIG_RT_MUTEXES
8263 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8264#endif
8265
1da177e4
LT
8266 /*
8267 * The boot idle thread does lazy MMU switching as well:
8268 */
8269 atomic_inc(&init_mm.mm_count);
8270 enter_lazy_tlb(&init_mm, current);
8271
8272 /*
8273 * Make us the idle thread. Technically, schedule() should not be
8274 * called from this thread, however somewhere below it might be,
8275 * but because we are the idle thread, we just pick up running again
8276 * when this runqueue becomes "idle".
8277 */
8278 init_idle(current, smp_processor_id());
dd41f596
IM
8279 /*
8280 * During early bootup we pretend to be a normal task:
8281 */
8282 current->sched_class = &fair_sched_class;
6892b75e
IM
8283
8284 scheduler_running = 1;
1da177e4
LT
8285}
8286
8287#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8288void __might_sleep(char *file, int line)
8289{
48f24c4d 8290#ifdef in_atomic
1da177e4
LT
8291 static unsigned long prev_jiffy; /* ratelimiting */
8292
aef745fc
IM
8293 if ((!in_atomic() && !irqs_disabled()) ||
8294 system_state != SYSTEM_RUNNING || oops_in_progress)
8295 return;
8296 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8297 return;
8298 prev_jiffy = jiffies;
8299
8300 printk(KERN_ERR
8301 "BUG: sleeping function called from invalid context at %s:%d\n",
8302 file, line);
8303 printk(KERN_ERR
8304 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8305 in_atomic(), irqs_disabled(),
8306 current->pid, current->comm);
8307
8308 debug_show_held_locks(current);
8309 if (irqs_disabled())
8310 print_irqtrace_events(current);
8311 dump_stack();
1da177e4
LT
8312#endif
8313}
8314EXPORT_SYMBOL(__might_sleep);
8315#endif
8316
8317#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8318static void normalize_task(struct rq *rq, struct task_struct *p)
8319{
8320 int on_rq;
3e51f33f 8321
3a5e4dc1
AK
8322 update_rq_clock(rq);
8323 on_rq = p->se.on_rq;
8324 if (on_rq)
8325 deactivate_task(rq, p, 0);
8326 __setscheduler(rq, p, SCHED_NORMAL, 0);
8327 if (on_rq) {
8328 activate_task(rq, p, 0);
8329 resched_task(rq->curr);
8330 }
8331}
8332
1da177e4
LT
8333void normalize_rt_tasks(void)
8334{
a0f98a1c 8335 struct task_struct *g, *p;
1da177e4 8336 unsigned long flags;
70b97a7f 8337 struct rq *rq;
1da177e4 8338
4cf5d77a 8339 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8340 do_each_thread(g, p) {
178be793
IM
8341 /*
8342 * Only normalize user tasks:
8343 */
8344 if (!p->mm)
8345 continue;
8346
6cfb0d5d 8347 p->se.exec_start = 0;
6cfb0d5d 8348#ifdef CONFIG_SCHEDSTATS
dd41f596 8349 p->se.wait_start = 0;
dd41f596 8350 p->se.sleep_start = 0;
dd41f596 8351 p->se.block_start = 0;
6cfb0d5d 8352#endif
dd41f596
IM
8353
8354 if (!rt_task(p)) {
8355 /*
8356 * Renice negative nice level userspace
8357 * tasks back to 0:
8358 */
8359 if (TASK_NICE(p) < 0 && p->mm)
8360 set_user_nice(p, 0);
1da177e4 8361 continue;
dd41f596 8362 }
1da177e4 8363
4cf5d77a 8364 spin_lock(&p->pi_lock);
b29739f9 8365 rq = __task_rq_lock(p);
1da177e4 8366
178be793 8367 normalize_task(rq, p);
3a5e4dc1 8368
b29739f9 8369 __task_rq_unlock(rq);
4cf5d77a 8370 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8371 } while_each_thread(g, p);
8372
4cf5d77a 8373 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8374}
8375
8376#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8377
8378#ifdef CONFIG_IA64
8379/*
8380 * These functions are only useful for the IA64 MCA handling.
8381 *
8382 * They can only be called when the whole system has been
8383 * stopped - every CPU needs to be quiescent, and no scheduling
8384 * activity can take place. Using them for anything else would
8385 * be a serious bug, and as a result, they aren't even visible
8386 * under any other configuration.
8387 */
8388
8389/**
8390 * curr_task - return the current task for a given cpu.
8391 * @cpu: the processor in question.
8392 *
8393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8394 */
36c8b586 8395struct task_struct *curr_task(int cpu)
1df5c10a
LT
8396{
8397 return cpu_curr(cpu);
8398}
8399
8400/**
8401 * set_curr_task - set the current task for a given cpu.
8402 * @cpu: the processor in question.
8403 * @p: the task pointer to set.
8404 *
8405 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8406 * are serviced on a separate stack. It allows the architecture to switch the
8407 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8408 * must be called with all CPU's synchronized, and interrupts disabled, the
8409 * and caller must save the original value of the current task (see
8410 * curr_task() above) and restore that value before reenabling interrupts and
8411 * re-starting the system.
8412 *
8413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8414 */
36c8b586 8415void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8416{
8417 cpu_curr(cpu) = p;
8418}
8419
8420#endif
29f59db3 8421
bccbe08a
PZ
8422#ifdef CONFIG_FAIR_GROUP_SCHED
8423static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8424{
8425 int i;
8426
8427 for_each_possible_cpu(i) {
8428 if (tg->cfs_rq)
8429 kfree(tg->cfs_rq[i]);
8430 if (tg->se)
8431 kfree(tg->se[i]);
6f505b16
PZ
8432 }
8433
8434 kfree(tg->cfs_rq);
8435 kfree(tg->se);
6f505b16
PZ
8436}
8437
ec7dc8ac
DG
8438static
8439int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8440{
29f59db3 8441 struct cfs_rq *cfs_rq;
eab17229 8442 struct sched_entity *se;
9b5b7751 8443 struct rq *rq;
29f59db3
SV
8444 int i;
8445
434d53b0 8446 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8447 if (!tg->cfs_rq)
8448 goto err;
434d53b0 8449 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8450 if (!tg->se)
8451 goto err;
052f1dc7
PZ
8452
8453 tg->shares = NICE_0_LOAD;
29f59db3
SV
8454
8455 for_each_possible_cpu(i) {
9b5b7751 8456 rq = cpu_rq(i);
29f59db3 8457
eab17229
LZ
8458 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8459 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8460 if (!cfs_rq)
8461 goto err;
8462
eab17229
LZ
8463 se = kzalloc_node(sizeof(struct sched_entity),
8464 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8465 if (!se)
8466 goto err;
8467
eab17229 8468 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8469 }
8470
8471 return 1;
8472
8473 err:
8474 return 0;
8475}
8476
8477static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8478{
8479 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8480 &cpu_rq(cpu)->leaf_cfs_rq_list);
8481}
8482
8483static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8484{
8485 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8486}
6d6bc0ad 8487#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8488static inline void free_fair_sched_group(struct task_group *tg)
8489{
8490}
8491
ec7dc8ac
DG
8492static inline
8493int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8494{
8495 return 1;
8496}
8497
8498static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8499{
8500}
8501
8502static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8503{
8504}
6d6bc0ad 8505#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8506
8507#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8508static void free_rt_sched_group(struct task_group *tg)
8509{
8510 int i;
8511
d0b27fa7
PZ
8512 destroy_rt_bandwidth(&tg->rt_bandwidth);
8513
bccbe08a
PZ
8514 for_each_possible_cpu(i) {
8515 if (tg->rt_rq)
8516 kfree(tg->rt_rq[i]);
8517 if (tg->rt_se)
8518 kfree(tg->rt_se[i]);
8519 }
8520
8521 kfree(tg->rt_rq);
8522 kfree(tg->rt_se);
8523}
8524
ec7dc8ac
DG
8525static
8526int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8527{
8528 struct rt_rq *rt_rq;
eab17229 8529 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8530 struct rq *rq;
8531 int i;
8532
434d53b0 8533 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8534 if (!tg->rt_rq)
8535 goto err;
434d53b0 8536 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8537 if (!tg->rt_se)
8538 goto err;
8539
d0b27fa7
PZ
8540 init_rt_bandwidth(&tg->rt_bandwidth,
8541 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8542
8543 for_each_possible_cpu(i) {
8544 rq = cpu_rq(i);
8545
eab17229
LZ
8546 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8547 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8548 if (!rt_rq)
8549 goto err;
29f59db3 8550
eab17229
LZ
8551 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8552 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8553 if (!rt_se)
8554 goto err;
29f59db3 8555
eab17229 8556 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8557 }
8558
bccbe08a
PZ
8559 return 1;
8560
8561 err:
8562 return 0;
8563}
8564
8565static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8566{
8567 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8568 &cpu_rq(cpu)->leaf_rt_rq_list);
8569}
8570
8571static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8572{
8573 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8574}
6d6bc0ad 8575#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8576static inline void free_rt_sched_group(struct task_group *tg)
8577{
8578}
8579
ec7dc8ac
DG
8580static inline
8581int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8582{
8583 return 1;
8584}
8585
8586static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8587{
8588}
8589
8590static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8591{
8592}
6d6bc0ad 8593#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8594
d0b27fa7 8595#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8596static void free_sched_group(struct task_group *tg)
8597{
8598 free_fair_sched_group(tg);
8599 free_rt_sched_group(tg);
8600 kfree(tg);
8601}
8602
8603/* allocate runqueue etc for a new task group */
ec7dc8ac 8604struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8605{
8606 struct task_group *tg;
8607 unsigned long flags;
8608 int i;
8609
8610 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8611 if (!tg)
8612 return ERR_PTR(-ENOMEM);
8613
ec7dc8ac 8614 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8615 goto err;
8616
ec7dc8ac 8617 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8618 goto err;
8619
8ed36996 8620 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8621 for_each_possible_cpu(i) {
bccbe08a
PZ
8622 register_fair_sched_group(tg, i);
8623 register_rt_sched_group(tg, i);
9b5b7751 8624 }
6f505b16 8625 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8626
8627 WARN_ON(!parent); /* root should already exist */
8628
8629 tg->parent = parent;
f473aa5e 8630 INIT_LIST_HEAD(&tg->children);
09f2724a 8631 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8632 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8633
9b5b7751 8634 return tg;
29f59db3
SV
8635
8636err:
6f505b16 8637 free_sched_group(tg);
29f59db3
SV
8638 return ERR_PTR(-ENOMEM);
8639}
8640
9b5b7751 8641/* rcu callback to free various structures associated with a task group */
6f505b16 8642static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8643{
29f59db3 8644 /* now it should be safe to free those cfs_rqs */
6f505b16 8645 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8646}
8647
9b5b7751 8648/* Destroy runqueue etc associated with a task group */
4cf86d77 8649void sched_destroy_group(struct task_group *tg)
29f59db3 8650{
8ed36996 8651 unsigned long flags;
9b5b7751 8652 int i;
29f59db3 8653
8ed36996 8654 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8655 for_each_possible_cpu(i) {
bccbe08a
PZ
8656 unregister_fair_sched_group(tg, i);
8657 unregister_rt_sched_group(tg, i);
9b5b7751 8658 }
6f505b16 8659 list_del_rcu(&tg->list);
f473aa5e 8660 list_del_rcu(&tg->siblings);
8ed36996 8661 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8662
9b5b7751 8663 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8664 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8665}
8666
9b5b7751 8667/* change task's runqueue when it moves between groups.
3a252015
IM
8668 * The caller of this function should have put the task in its new group
8669 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8670 * reflect its new group.
9b5b7751
SV
8671 */
8672void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8673{
8674 int on_rq, running;
8675 unsigned long flags;
8676 struct rq *rq;
8677
8678 rq = task_rq_lock(tsk, &flags);
8679
29f59db3
SV
8680 update_rq_clock(rq);
8681
051a1d1a 8682 running = task_current(rq, tsk);
29f59db3
SV
8683 on_rq = tsk->se.on_rq;
8684
0e1f3483 8685 if (on_rq)
29f59db3 8686 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8687 if (unlikely(running))
8688 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8689
6f505b16 8690 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8691
810b3817
PZ
8692#ifdef CONFIG_FAIR_GROUP_SCHED
8693 if (tsk->sched_class->moved_group)
8694 tsk->sched_class->moved_group(tsk);
8695#endif
8696
0e1f3483
HS
8697 if (unlikely(running))
8698 tsk->sched_class->set_curr_task(rq);
8699 if (on_rq)
7074badb 8700 enqueue_task(rq, tsk, 0);
29f59db3 8701
29f59db3
SV
8702 task_rq_unlock(rq, &flags);
8703}
6d6bc0ad 8704#endif /* CONFIG_GROUP_SCHED */
29f59db3 8705
052f1dc7 8706#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8707static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8708{
8709 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8710 int on_rq;
8711
29f59db3 8712 on_rq = se->on_rq;
62fb1851 8713 if (on_rq)
29f59db3
SV
8714 dequeue_entity(cfs_rq, se, 0);
8715
8716 se->load.weight = shares;
e05510d0 8717 se->load.inv_weight = 0;
29f59db3 8718
62fb1851 8719 if (on_rq)
29f59db3 8720 enqueue_entity(cfs_rq, se, 0);
c09595f6 8721}
62fb1851 8722
c09595f6
PZ
8723static void set_se_shares(struct sched_entity *se, unsigned long shares)
8724{
8725 struct cfs_rq *cfs_rq = se->cfs_rq;
8726 struct rq *rq = cfs_rq->rq;
8727 unsigned long flags;
8728
8729 spin_lock_irqsave(&rq->lock, flags);
8730 __set_se_shares(se, shares);
8731 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8732}
8733
8ed36996
PZ
8734static DEFINE_MUTEX(shares_mutex);
8735
4cf86d77 8736int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8737{
8738 int i;
8ed36996 8739 unsigned long flags;
c61935fd 8740
ec7dc8ac
DG
8741 /*
8742 * We can't change the weight of the root cgroup.
8743 */
8744 if (!tg->se[0])
8745 return -EINVAL;
8746
18d95a28
PZ
8747 if (shares < MIN_SHARES)
8748 shares = MIN_SHARES;
cb4ad1ff
MX
8749 else if (shares > MAX_SHARES)
8750 shares = MAX_SHARES;
62fb1851 8751
8ed36996 8752 mutex_lock(&shares_mutex);
9b5b7751 8753 if (tg->shares == shares)
5cb350ba 8754 goto done;
29f59db3 8755
8ed36996 8756 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8757 for_each_possible_cpu(i)
8758 unregister_fair_sched_group(tg, i);
f473aa5e 8759 list_del_rcu(&tg->siblings);
8ed36996 8760 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8761
8762 /* wait for any ongoing reference to this group to finish */
8763 synchronize_sched();
8764
8765 /*
8766 * Now we are free to modify the group's share on each cpu
8767 * w/o tripping rebalance_share or load_balance_fair.
8768 */
9b5b7751 8769 tg->shares = shares;
c09595f6
PZ
8770 for_each_possible_cpu(i) {
8771 /*
8772 * force a rebalance
8773 */
8774 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8775 set_se_shares(tg->se[i], shares);
c09595f6 8776 }
29f59db3 8777
6b2d7700
SV
8778 /*
8779 * Enable load balance activity on this group, by inserting it back on
8780 * each cpu's rq->leaf_cfs_rq_list.
8781 */
8ed36996 8782 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8783 for_each_possible_cpu(i)
8784 register_fair_sched_group(tg, i);
f473aa5e 8785 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8786 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8787done:
8ed36996 8788 mutex_unlock(&shares_mutex);
9b5b7751 8789 return 0;
29f59db3
SV
8790}
8791
5cb350ba
DG
8792unsigned long sched_group_shares(struct task_group *tg)
8793{
8794 return tg->shares;
8795}
052f1dc7 8796#endif
5cb350ba 8797
052f1dc7 8798#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8799/*
9f0c1e56 8800 * Ensure that the real time constraints are schedulable.
6f505b16 8801 */
9f0c1e56
PZ
8802static DEFINE_MUTEX(rt_constraints_mutex);
8803
8804static unsigned long to_ratio(u64 period, u64 runtime)
8805{
8806 if (runtime == RUNTIME_INF)
9a7e0b18 8807 return 1ULL << 20;
9f0c1e56 8808
9a7e0b18 8809 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8810}
8811
9a7e0b18
PZ
8812/* Must be called with tasklist_lock held */
8813static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8814{
9a7e0b18 8815 struct task_struct *g, *p;
b40b2e8e 8816
9a7e0b18
PZ
8817 do_each_thread(g, p) {
8818 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8819 return 1;
8820 } while_each_thread(g, p);
b40b2e8e 8821
9a7e0b18
PZ
8822 return 0;
8823}
b40b2e8e 8824
9a7e0b18
PZ
8825struct rt_schedulable_data {
8826 struct task_group *tg;
8827 u64 rt_period;
8828 u64 rt_runtime;
8829};
b40b2e8e 8830
9a7e0b18
PZ
8831static int tg_schedulable(struct task_group *tg, void *data)
8832{
8833 struct rt_schedulable_data *d = data;
8834 struct task_group *child;
8835 unsigned long total, sum = 0;
8836 u64 period, runtime;
b40b2e8e 8837
9a7e0b18
PZ
8838 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8839 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8840
9a7e0b18
PZ
8841 if (tg == d->tg) {
8842 period = d->rt_period;
8843 runtime = d->rt_runtime;
b40b2e8e 8844 }
b40b2e8e 8845
4653f803
PZ
8846 /*
8847 * Cannot have more runtime than the period.
8848 */
8849 if (runtime > period && runtime != RUNTIME_INF)
8850 return -EINVAL;
6f505b16 8851
4653f803
PZ
8852 /*
8853 * Ensure we don't starve existing RT tasks.
8854 */
9a7e0b18
PZ
8855 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8856 return -EBUSY;
6f505b16 8857
9a7e0b18 8858 total = to_ratio(period, runtime);
6f505b16 8859
4653f803
PZ
8860 /*
8861 * Nobody can have more than the global setting allows.
8862 */
8863 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8864 return -EINVAL;
6f505b16 8865
4653f803
PZ
8866 /*
8867 * The sum of our children's runtime should not exceed our own.
8868 */
9a7e0b18
PZ
8869 list_for_each_entry_rcu(child, &tg->children, siblings) {
8870 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8871 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8872
9a7e0b18
PZ
8873 if (child == d->tg) {
8874 period = d->rt_period;
8875 runtime = d->rt_runtime;
8876 }
6f505b16 8877
9a7e0b18 8878 sum += to_ratio(period, runtime);
9f0c1e56 8879 }
6f505b16 8880
9a7e0b18
PZ
8881 if (sum > total)
8882 return -EINVAL;
8883
8884 return 0;
6f505b16
PZ
8885}
8886
9a7e0b18 8887static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8888{
9a7e0b18
PZ
8889 struct rt_schedulable_data data = {
8890 .tg = tg,
8891 .rt_period = period,
8892 .rt_runtime = runtime,
8893 };
8894
8895 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8896}
8897
d0b27fa7
PZ
8898static int tg_set_bandwidth(struct task_group *tg,
8899 u64 rt_period, u64 rt_runtime)
6f505b16 8900{
ac086bc2 8901 int i, err = 0;
9f0c1e56 8902
9f0c1e56 8903 mutex_lock(&rt_constraints_mutex);
521f1a24 8904 read_lock(&tasklist_lock);
9a7e0b18
PZ
8905 err = __rt_schedulable(tg, rt_period, rt_runtime);
8906 if (err)
9f0c1e56 8907 goto unlock;
ac086bc2
PZ
8908
8909 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8910 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8911 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8912
8913 for_each_possible_cpu(i) {
8914 struct rt_rq *rt_rq = tg->rt_rq[i];
8915
8916 spin_lock(&rt_rq->rt_runtime_lock);
8917 rt_rq->rt_runtime = rt_runtime;
8918 spin_unlock(&rt_rq->rt_runtime_lock);
8919 }
8920 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8921 unlock:
521f1a24 8922 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8923 mutex_unlock(&rt_constraints_mutex);
8924
8925 return err;
6f505b16
PZ
8926}
8927
d0b27fa7
PZ
8928int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8929{
8930 u64 rt_runtime, rt_period;
8931
8932 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8933 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8934 if (rt_runtime_us < 0)
8935 rt_runtime = RUNTIME_INF;
8936
8937 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8938}
8939
9f0c1e56
PZ
8940long sched_group_rt_runtime(struct task_group *tg)
8941{
8942 u64 rt_runtime_us;
8943
d0b27fa7 8944 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8945 return -1;
8946
d0b27fa7 8947 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8948 do_div(rt_runtime_us, NSEC_PER_USEC);
8949 return rt_runtime_us;
8950}
d0b27fa7
PZ
8951
8952int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8953{
8954 u64 rt_runtime, rt_period;
8955
8956 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8957 rt_runtime = tg->rt_bandwidth.rt_runtime;
8958
619b0488
R
8959 if (rt_period == 0)
8960 return -EINVAL;
8961
d0b27fa7
PZ
8962 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8963}
8964
8965long sched_group_rt_period(struct task_group *tg)
8966{
8967 u64 rt_period_us;
8968
8969 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8970 do_div(rt_period_us, NSEC_PER_USEC);
8971 return rt_period_us;
8972}
8973
8974static int sched_rt_global_constraints(void)
8975{
4653f803 8976 u64 runtime, period;
d0b27fa7
PZ
8977 int ret = 0;
8978
ec5d4989
HS
8979 if (sysctl_sched_rt_period <= 0)
8980 return -EINVAL;
8981
4653f803
PZ
8982 runtime = global_rt_runtime();
8983 period = global_rt_period();
8984
8985 /*
8986 * Sanity check on the sysctl variables.
8987 */
8988 if (runtime > period && runtime != RUNTIME_INF)
8989 return -EINVAL;
10b612f4 8990
d0b27fa7 8991 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8992 read_lock(&tasklist_lock);
4653f803 8993 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8994 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8995 mutex_unlock(&rt_constraints_mutex);
8996
8997 return ret;
8998}
6d6bc0ad 8999#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9000static int sched_rt_global_constraints(void)
9001{
ac086bc2
PZ
9002 unsigned long flags;
9003 int i;
9004
ec5d4989
HS
9005 if (sysctl_sched_rt_period <= 0)
9006 return -EINVAL;
9007
ac086bc2
PZ
9008 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9009 for_each_possible_cpu(i) {
9010 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9011
9012 spin_lock(&rt_rq->rt_runtime_lock);
9013 rt_rq->rt_runtime = global_rt_runtime();
9014 spin_unlock(&rt_rq->rt_runtime_lock);
9015 }
9016 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9017
d0b27fa7
PZ
9018 return 0;
9019}
6d6bc0ad 9020#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9021
9022int sched_rt_handler(struct ctl_table *table, int write,
9023 struct file *filp, void __user *buffer, size_t *lenp,
9024 loff_t *ppos)
9025{
9026 int ret;
9027 int old_period, old_runtime;
9028 static DEFINE_MUTEX(mutex);
9029
9030 mutex_lock(&mutex);
9031 old_period = sysctl_sched_rt_period;
9032 old_runtime = sysctl_sched_rt_runtime;
9033
9034 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9035
9036 if (!ret && write) {
9037 ret = sched_rt_global_constraints();
9038 if (ret) {
9039 sysctl_sched_rt_period = old_period;
9040 sysctl_sched_rt_runtime = old_runtime;
9041 } else {
9042 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9043 def_rt_bandwidth.rt_period =
9044 ns_to_ktime(global_rt_period());
9045 }
9046 }
9047 mutex_unlock(&mutex);
9048
9049 return ret;
9050}
68318b8e 9051
052f1dc7 9052#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9053
9054/* return corresponding task_group object of a cgroup */
2b01dfe3 9055static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9056{
2b01dfe3
PM
9057 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9058 struct task_group, css);
68318b8e
SV
9059}
9060
9061static struct cgroup_subsys_state *
2b01dfe3 9062cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9063{
ec7dc8ac 9064 struct task_group *tg, *parent;
68318b8e 9065
2b01dfe3 9066 if (!cgrp->parent) {
68318b8e 9067 /* This is early initialization for the top cgroup */
68318b8e
SV
9068 return &init_task_group.css;
9069 }
9070
ec7dc8ac
DG
9071 parent = cgroup_tg(cgrp->parent);
9072 tg = sched_create_group(parent);
68318b8e
SV
9073 if (IS_ERR(tg))
9074 return ERR_PTR(-ENOMEM);
9075
68318b8e
SV
9076 return &tg->css;
9077}
9078
41a2d6cf
IM
9079static void
9080cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9081{
2b01dfe3 9082 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9083
9084 sched_destroy_group(tg);
9085}
9086
41a2d6cf
IM
9087static int
9088cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9089 struct task_struct *tsk)
68318b8e 9090{
b68aa230
PZ
9091#ifdef CONFIG_RT_GROUP_SCHED
9092 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9093 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9094 return -EINVAL;
9095#else
68318b8e
SV
9096 /* We don't support RT-tasks being in separate groups */
9097 if (tsk->sched_class != &fair_sched_class)
9098 return -EINVAL;
b68aa230 9099#endif
68318b8e
SV
9100
9101 return 0;
9102}
9103
9104static void
2b01dfe3 9105cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9106 struct cgroup *old_cont, struct task_struct *tsk)
9107{
9108 sched_move_task(tsk);
9109}
9110
052f1dc7 9111#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9112static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9113 u64 shareval)
68318b8e 9114{
2b01dfe3 9115 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9116}
9117
f4c753b7 9118static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9119{
2b01dfe3 9120 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9121
9122 return (u64) tg->shares;
9123}
6d6bc0ad 9124#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9125
052f1dc7 9126#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9127static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9128 s64 val)
6f505b16 9129{
06ecb27c 9130 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9131}
9132
06ecb27c 9133static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9134{
06ecb27c 9135 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9136}
d0b27fa7
PZ
9137
9138static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9139 u64 rt_period_us)
9140{
9141 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9142}
9143
9144static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9145{
9146 return sched_group_rt_period(cgroup_tg(cgrp));
9147}
6d6bc0ad 9148#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9149
fe5c7cc2 9150static struct cftype cpu_files[] = {
052f1dc7 9151#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9152 {
9153 .name = "shares",
f4c753b7
PM
9154 .read_u64 = cpu_shares_read_u64,
9155 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9156 },
052f1dc7
PZ
9157#endif
9158#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9159 {
9f0c1e56 9160 .name = "rt_runtime_us",
06ecb27c
PM
9161 .read_s64 = cpu_rt_runtime_read,
9162 .write_s64 = cpu_rt_runtime_write,
6f505b16 9163 },
d0b27fa7
PZ
9164 {
9165 .name = "rt_period_us",
f4c753b7
PM
9166 .read_u64 = cpu_rt_period_read_uint,
9167 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9168 },
052f1dc7 9169#endif
68318b8e
SV
9170};
9171
9172static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9173{
fe5c7cc2 9174 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9175}
9176
9177struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9178 .name = "cpu",
9179 .create = cpu_cgroup_create,
9180 .destroy = cpu_cgroup_destroy,
9181 .can_attach = cpu_cgroup_can_attach,
9182 .attach = cpu_cgroup_attach,
9183 .populate = cpu_cgroup_populate,
9184 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9185 .early_init = 1,
9186};
9187
052f1dc7 9188#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9189
9190#ifdef CONFIG_CGROUP_CPUACCT
9191
9192/*
9193 * CPU accounting code for task groups.
9194 *
9195 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9196 * (balbir@in.ibm.com).
9197 */
9198
934352f2 9199/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9200struct cpuacct {
9201 struct cgroup_subsys_state css;
9202 /* cpuusage holds pointer to a u64-type object on every cpu */
9203 u64 *cpuusage;
934352f2 9204 struct cpuacct *parent;
d842de87
SV
9205};
9206
9207struct cgroup_subsys cpuacct_subsys;
9208
9209/* return cpu accounting group corresponding to this container */
32cd756a 9210static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9211{
32cd756a 9212 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9213 struct cpuacct, css);
9214}
9215
9216/* return cpu accounting group to which this task belongs */
9217static inline struct cpuacct *task_ca(struct task_struct *tsk)
9218{
9219 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9220 struct cpuacct, css);
9221}
9222
9223/* create a new cpu accounting group */
9224static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9225 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9226{
9227 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9228
9229 if (!ca)
9230 return ERR_PTR(-ENOMEM);
9231
9232 ca->cpuusage = alloc_percpu(u64);
9233 if (!ca->cpuusage) {
9234 kfree(ca);
9235 return ERR_PTR(-ENOMEM);
9236 }
9237
934352f2
BR
9238 if (cgrp->parent)
9239 ca->parent = cgroup_ca(cgrp->parent);
9240
d842de87
SV
9241 return &ca->css;
9242}
9243
9244/* destroy an existing cpu accounting group */
41a2d6cf 9245static void
32cd756a 9246cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9247{
32cd756a 9248 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9249
9250 free_percpu(ca->cpuusage);
9251 kfree(ca);
9252}
9253
9254/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9255static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9256{
32cd756a 9257 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9258 u64 totalcpuusage = 0;
9259 int i;
9260
9261 for_each_possible_cpu(i) {
9262 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9263
9264 /*
9265 * Take rq->lock to make 64-bit addition safe on 32-bit
9266 * platforms.
9267 */
9268 spin_lock_irq(&cpu_rq(i)->lock);
9269 totalcpuusage += *cpuusage;
9270 spin_unlock_irq(&cpu_rq(i)->lock);
9271 }
9272
9273 return totalcpuusage;
9274}
9275
0297b803
DG
9276static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9277 u64 reset)
9278{
9279 struct cpuacct *ca = cgroup_ca(cgrp);
9280 int err = 0;
9281 int i;
9282
9283 if (reset) {
9284 err = -EINVAL;
9285 goto out;
9286 }
9287
9288 for_each_possible_cpu(i) {
9289 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9290
9291 spin_lock_irq(&cpu_rq(i)->lock);
9292 *cpuusage = 0;
9293 spin_unlock_irq(&cpu_rq(i)->lock);
9294 }
9295out:
9296 return err;
9297}
9298
d842de87
SV
9299static struct cftype files[] = {
9300 {
9301 .name = "usage",
f4c753b7
PM
9302 .read_u64 = cpuusage_read,
9303 .write_u64 = cpuusage_write,
d842de87
SV
9304 },
9305};
9306
32cd756a 9307static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9308{
32cd756a 9309 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9310}
9311
9312/*
9313 * charge this task's execution time to its accounting group.
9314 *
9315 * called with rq->lock held.
9316 */
9317static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9318{
9319 struct cpuacct *ca;
934352f2 9320 int cpu;
d842de87
SV
9321
9322 if (!cpuacct_subsys.active)
9323 return;
9324
934352f2 9325 cpu = task_cpu(tsk);
d842de87 9326 ca = task_ca(tsk);
d842de87 9327
934352f2
BR
9328 for (; ca; ca = ca->parent) {
9329 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9330 *cpuusage += cputime;
9331 }
9332}
9333
9334struct cgroup_subsys cpuacct_subsys = {
9335 .name = "cpuacct",
9336 .create = cpuacct_create,
9337 .destroy = cpuacct_destroy,
9338 .populate = cpuacct_populate,
9339 .subsys_id = cpuacct_subsys_id,
9340};
9341#endif /* CONFIG_CGROUP_CPUACCT */