sched: clean up this_rq use in kernel/sched_rt.c
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
55#include <linux/kthread.h>
56#include <linux/seq_file.h>
e692ab53 57#include <linux/sysctl.h>
1da177e4
LT
58#include <linux/syscalls.h>
59#include <linux/times.h>
8f0ab514 60#include <linux/tsacct_kern.h>
c6fd91f0 61#include <linux/kprobes.h>
0ff92245 62#include <linux/delayacct.h>
5517d86b 63#include <linux/reciprocal_div.h>
dff06c15 64#include <linux/unistd.h>
f5ff8422 65#include <linux/pagemap.h>
1da177e4 66
5517d86b 67#include <asm/tlb.h>
838225b4 68#include <asm/irq_regs.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
d6322faf 77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
d6322faf
ED
101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
6b2d7700
SV
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
29f59db3 206 unsigned long shares;
6b2d7700 207
ae8393e5 208 struct rcu_head rcu;
29f59db3
SV
209};
210
211/* Default task group's sched entity on each cpu */
212static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213/* Default task group's cfs_rq on each cpu */
214static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
9b5b7751
SV
216static struct sched_entity *init_sched_entity_p[NR_CPUS];
217static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 218
ec2c507f
SV
219/* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222static DEFINE_MUTEX(task_group_mutex);
223
a1835615
SV
224/* doms_cur_mutex serializes access to doms_cur[] array */
225static DEFINE_MUTEX(doms_cur_mutex);
226
6b2d7700
SV
227#ifdef CONFIG_SMP
228/* kernel thread that runs rebalance_shares() periodically */
229static struct task_struct *lb_monitor_task;
230static int load_balance_monitor(void *unused);
231#endif
232
233static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
29f59db3 235/* Default task group.
3a252015 236 * Every task in system belong to this group at bootup.
29f59db3 237 */
4cf86d77 238struct task_group init_task_group = {
3a252015
IM
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241};
9b5b7751 242
24e377a8 243#ifdef CONFIG_FAIR_USER_SCHED
93f992cc 244# define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
24e377a8 245#else
93f992cc 246# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
247#endif
248
6b2d7700
SV
249#define MIN_GROUP_SHARES 2
250
93f992cc 251static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
252
253/* return group to which a task belongs */
4cf86d77 254static inline struct task_group *task_group(struct task_struct *p)
29f59db3 255{
4cf86d77 256 struct task_group *tg;
9b5b7751 257
24e377a8
SV
258#ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
68318b8e
SV
260#elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
24e377a8 263#else
41a2d6cf 264 tg = &init_task_group;
24e377a8 265#endif
9b5b7751 266 return tg;
29f59db3
SV
267}
268
269/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 270static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 271{
ce96b5ac
DA
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
274}
275
ec2c507f
SV
276static inline void lock_task_group_list(void)
277{
278 mutex_lock(&task_group_mutex);
279}
280
281static inline void unlock_task_group_list(void)
282{
283 mutex_unlock(&task_group_mutex);
284}
285
a1835615
SV
286static inline void lock_doms_cur(void)
287{
288 mutex_lock(&doms_cur_mutex);
289}
290
291static inline void unlock_doms_cur(void)
292{
293 mutex_unlock(&doms_cur_mutex);
294}
295
29f59db3
SV
296#else
297
ce96b5ac 298static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
299static inline void lock_task_group_list(void) { }
300static inline void unlock_task_group_list(void) { }
a1835615
SV
301static inline void lock_doms_cur(void) { }
302static inline void unlock_doms_cur(void) { }
29f59db3
SV
303
304#endif /* CONFIG_FAIR_GROUP_SCHED */
305
6aa645ea
IM
306/* CFS-related fields in a runqueue */
307struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
6aa645ea 311 u64 exec_clock;
e9acbff6 312 u64 min_vruntime;
6aa645ea
IM
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
ddc97297
PZ
321
322 unsigned long nr_spread_over;
323
62160e3f 324#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
41a2d6cf
IM
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
41a2d6cf
IM
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
337#endif
338};
1da177e4 339
6aa645ea
IM
340/* Real-Time classes' related field in a runqueue: */
341struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 345 unsigned long rt_nr_running;
73fe6aae 346 unsigned long rt_nr_migratory;
764a9d6f
SR
347 /* highest queued rt task prio */
348 int highest_prio;
6aa645ea
IM
349};
350
1da177e4
LT
351/*
352 * This is the main, per-CPU runqueue data structure.
353 *
354 * Locking rule: those places that want to lock multiple runqueues
355 * (such as the load balancing or the thread migration code), lock
356 * acquire operations must be ordered by ascending &runqueue.
357 */
70b97a7f 358struct rq {
d8016491
IM
359 /* runqueue lock: */
360 spinlock_t lock;
1da177e4
LT
361
362 /*
363 * nr_running and cpu_load should be in the same cacheline because
364 * remote CPUs use both these fields when doing load calculation.
365 */
366 unsigned long nr_running;
6aa645ea
IM
367 #define CPU_LOAD_IDX_MAX 5
368 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 369 unsigned char idle_at_tick;
46cb4b7c
SS
370#ifdef CONFIG_NO_HZ
371 unsigned char in_nohz_recently;
372#endif
d8016491
IM
373 /* capture load from *all* tasks on this cpu: */
374 struct load_weight load;
6aa645ea
IM
375 unsigned long nr_load_updates;
376 u64 nr_switches;
377
378 struct cfs_rq cfs;
379#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
380 /* list of leaf cfs_rq on this cpu: */
381 struct list_head leaf_cfs_rq_list;
1da177e4 382#endif
41a2d6cf 383 struct rt_rq rt;
1da177e4
LT
384
385 /*
386 * This is part of a global counter where only the total sum
387 * over all CPUs matters. A task can increase this counter on
388 * one CPU and if it got migrated afterwards it may decrease
389 * it on another CPU. Always updated under the runqueue lock:
390 */
391 unsigned long nr_uninterruptible;
392
36c8b586 393 struct task_struct *curr, *idle;
c9819f45 394 unsigned long next_balance;
1da177e4 395 struct mm_struct *prev_mm;
6aa645ea 396
6aa645ea
IM
397 u64 clock, prev_clock_raw;
398 s64 clock_max_delta;
399
400 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
401 u64 idle_clock;
402 unsigned int clock_deep_idle_events;
529c7726 403 u64 tick_timestamp;
6aa645ea 404
1da177e4
LT
405 atomic_t nr_iowait;
406
407#ifdef CONFIG_SMP
408 struct sched_domain *sd;
409
410 /* For active balancing */
411 int active_balance;
412 int push_cpu;
d8016491
IM
413 /* cpu of this runqueue: */
414 int cpu;
1da177e4 415
36c8b586 416 struct task_struct *migration_thread;
1da177e4
LT
417 struct list_head migration_queue;
418#endif
419
420#ifdef CONFIG_SCHEDSTATS
421 /* latency stats */
422 struct sched_info rq_sched_info;
423
424 /* sys_sched_yield() stats */
480b9434
KC
425 unsigned int yld_exp_empty;
426 unsigned int yld_act_empty;
427 unsigned int yld_both_empty;
428 unsigned int yld_count;
1da177e4
LT
429
430 /* schedule() stats */
480b9434
KC
431 unsigned int sched_switch;
432 unsigned int sched_count;
433 unsigned int sched_goidle;
1da177e4
LT
434
435 /* try_to_wake_up() stats */
480b9434
KC
436 unsigned int ttwu_count;
437 unsigned int ttwu_local;
b8efb561
IM
438
439 /* BKL stats */
480b9434 440 unsigned int bkl_count;
1da177e4 441#endif
fcb99371 442 struct lock_class_key rq_lock_key;
1da177e4
LT
443};
444
f34e3b61 445static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 446
dd41f596
IM
447static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
448{
449 rq->curr->sched_class->check_preempt_curr(rq, p);
450}
451
0a2966b4
CL
452static inline int cpu_of(struct rq *rq)
453{
454#ifdef CONFIG_SMP
455 return rq->cpu;
456#else
457 return 0;
458#endif
459}
460
20d315d4 461/*
b04a0f4c
IM
462 * Update the per-runqueue clock, as finegrained as the platform can give
463 * us, but without assuming monotonicity, etc.:
20d315d4 464 */
b04a0f4c 465static void __update_rq_clock(struct rq *rq)
20d315d4
IM
466{
467 u64 prev_raw = rq->prev_clock_raw;
468 u64 now = sched_clock();
469 s64 delta = now - prev_raw;
470 u64 clock = rq->clock;
471
b04a0f4c
IM
472#ifdef CONFIG_SCHED_DEBUG
473 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
474#endif
20d315d4
IM
475 /*
476 * Protect against sched_clock() occasionally going backwards:
477 */
478 if (unlikely(delta < 0)) {
479 clock++;
480 rq->clock_warps++;
481 } else {
482 /*
483 * Catch too large forward jumps too:
484 */
529c7726
IM
485 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
486 if (clock < rq->tick_timestamp + TICK_NSEC)
487 clock = rq->tick_timestamp + TICK_NSEC;
488 else
489 clock++;
20d315d4
IM
490 rq->clock_overflows++;
491 } else {
492 if (unlikely(delta > rq->clock_max_delta))
493 rq->clock_max_delta = delta;
494 clock += delta;
495 }
496 }
497
498 rq->prev_clock_raw = now;
499 rq->clock = clock;
b04a0f4c 500}
20d315d4 501
b04a0f4c
IM
502static void update_rq_clock(struct rq *rq)
503{
504 if (likely(smp_processor_id() == cpu_of(rq)))
505 __update_rq_clock(rq);
20d315d4
IM
506}
507
674311d5
NP
508/*
509 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 510 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
511 *
512 * The domain tree of any CPU may only be accessed from within
513 * preempt-disabled sections.
514 */
48f24c4d
IM
515#define for_each_domain(cpu, __sd) \
516 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
517
518#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
519#define this_rq() (&__get_cpu_var(runqueues))
520#define task_rq(p) cpu_rq(task_cpu(p))
521#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
522
bf5c91ba
IM
523/*
524 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
525 */
526#ifdef CONFIG_SCHED_DEBUG
527# define const_debug __read_mostly
528#else
529# define const_debug static const
530#endif
531
532/*
533 * Debugging: various feature bits
534 */
535enum {
bbdba7c0 536 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
537 SCHED_FEAT_WAKEUP_PREEMPT = 2,
538 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
539 SCHED_FEAT_TREE_AVG = 8,
540 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
541};
542
543const_debug unsigned int sysctl_sched_features =
8401f775 544 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 545 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
546 SCHED_FEAT_START_DEBIT * 1 |
547 SCHED_FEAT_TREE_AVG * 0 |
9612633a 548 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
549
550#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
551
b82d9fdd
PZ
552/*
553 * Number of tasks to iterate in a single balance run.
554 * Limited because this is done with IRQs disabled.
555 */
556const_debug unsigned int sysctl_sched_nr_migrate = 32;
557
e436d800
IM
558/*
559 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
560 * clock constructed from sched_clock():
561 */
562unsigned long long cpu_clock(int cpu)
563{
e436d800
IM
564 unsigned long long now;
565 unsigned long flags;
b04a0f4c 566 struct rq *rq;
e436d800 567
2cd4d0ea 568 local_irq_save(flags);
b04a0f4c 569 rq = cpu_rq(cpu);
8ced5f69
IM
570 /*
571 * Only call sched_clock() if the scheduler has already been
572 * initialized (some code might call cpu_clock() very early):
573 */
574 if (rq->idle)
575 update_rq_clock(rq);
b04a0f4c 576 now = rq->clock;
2cd4d0ea 577 local_irq_restore(flags);
e436d800
IM
578
579 return now;
580}
a58f6f25 581EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 582
1da177e4 583#ifndef prepare_arch_switch
4866cde0
NP
584# define prepare_arch_switch(next) do { } while (0)
585#endif
586#ifndef finish_arch_switch
587# define finish_arch_switch(prev) do { } while (0)
588#endif
589
051a1d1a
DA
590static inline int task_current(struct rq *rq, struct task_struct *p)
591{
592 return rq->curr == p;
593}
594
4866cde0 595#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 596static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 597{
051a1d1a 598 return task_current(rq, p);
4866cde0
NP
599}
600
70b97a7f 601static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
602{
603}
604
70b97a7f 605static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 606{
da04c035
IM
607#ifdef CONFIG_DEBUG_SPINLOCK
608 /* this is a valid case when another task releases the spinlock */
609 rq->lock.owner = current;
610#endif
8a25d5de
IM
611 /*
612 * If we are tracking spinlock dependencies then we have to
613 * fix up the runqueue lock - which gets 'carried over' from
614 * prev into current:
615 */
616 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
617
4866cde0
NP
618 spin_unlock_irq(&rq->lock);
619}
620
621#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 622static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
623{
624#ifdef CONFIG_SMP
625 return p->oncpu;
626#else
051a1d1a 627 return task_current(rq, p);
4866cde0
NP
628#endif
629}
630
70b97a7f 631static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
632{
633#ifdef CONFIG_SMP
634 /*
635 * We can optimise this out completely for !SMP, because the
636 * SMP rebalancing from interrupt is the only thing that cares
637 * here.
638 */
639 next->oncpu = 1;
640#endif
641#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
642 spin_unlock_irq(&rq->lock);
643#else
644 spin_unlock(&rq->lock);
645#endif
646}
647
70b97a7f 648static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
649{
650#ifdef CONFIG_SMP
651 /*
652 * After ->oncpu is cleared, the task can be moved to a different CPU.
653 * We must ensure this doesn't happen until the switch is completely
654 * finished.
655 */
656 smp_wmb();
657 prev->oncpu = 0;
658#endif
659#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
660 local_irq_enable();
1da177e4 661#endif
4866cde0
NP
662}
663#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 664
b29739f9
IM
665/*
666 * __task_rq_lock - lock the runqueue a given task resides on.
667 * Must be called interrupts disabled.
668 */
70b97a7f 669static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
670 __acquires(rq->lock)
671{
3a5c359a
AK
672 for (;;) {
673 struct rq *rq = task_rq(p);
674 spin_lock(&rq->lock);
675 if (likely(rq == task_rq(p)))
676 return rq;
b29739f9 677 spin_unlock(&rq->lock);
b29739f9 678 }
b29739f9
IM
679}
680
1da177e4
LT
681/*
682 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 683 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
684 * explicitly disabling preemption.
685 */
70b97a7f 686static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
687 __acquires(rq->lock)
688{
70b97a7f 689 struct rq *rq;
1da177e4 690
3a5c359a
AK
691 for (;;) {
692 local_irq_save(*flags);
693 rq = task_rq(p);
694 spin_lock(&rq->lock);
695 if (likely(rq == task_rq(p)))
696 return rq;
1da177e4 697 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 698 }
1da177e4
LT
699}
700
a9957449 701static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
702 __releases(rq->lock)
703{
704 spin_unlock(&rq->lock);
705}
706
70b97a7f 707static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
708 __releases(rq->lock)
709{
710 spin_unlock_irqrestore(&rq->lock, *flags);
711}
712
1da177e4 713/*
cc2a73b5 714 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 715 */
a9957449 716static struct rq *this_rq_lock(void)
1da177e4
LT
717 __acquires(rq->lock)
718{
70b97a7f 719 struct rq *rq;
1da177e4
LT
720
721 local_irq_disable();
722 rq = this_rq();
723 spin_lock(&rq->lock);
724
725 return rq;
726}
727
1b9f19c2 728/*
2aa44d05 729 * We are going deep-idle (irqs are disabled):
1b9f19c2 730 */
2aa44d05 731void sched_clock_idle_sleep_event(void)
1b9f19c2 732{
2aa44d05
IM
733 struct rq *rq = cpu_rq(smp_processor_id());
734
735 spin_lock(&rq->lock);
736 __update_rq_clock(rq);
737 spin_unlock(&rq->lock);
738 rq->clock_deep_idle_events++;
739}
740EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
741
742/*
743 * We just idled delta nanoseconds (called with irqs disabled):
744 */
745void sched_clock_idle_wakeup_event(u64 delta_ns)
746{
747 struct rq *rq = cpu_rq(smp_processor_id());
748 u64 now = sched_clock();
1b9f19c2 749
2bacec8c 750 touch_softlockup_watchdog();
2aa44d05
IM
751 rq->idle_clock += delta_ns;
752 /*
753 * Override the previous timestamp and ignore all
754 * sched_clock() deltas that occured while we idled,
755 * and use the PM-provided delta_ns to advance the
756 * rq clock:
757 */
758 spin_lock(&rq->lock);
759 rq->prev_clock_raw = now;
760 rq->clock += delta_ns;
761 spin_unlock(&rq->lock);
1b9f19c2 762}
2aa44d05 763EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 764
c24d20db
IM
765/*
766 * resched_task - mark a task 'to be rescheduled now'.
767 *
768 * On UP this means the setting of the need_resched flag, on SMP it
769 * might also involve a cross-CPU call to trigger the scheduler on
770 * the target CPU.
771 */
772#ifdef CONFIG_SMP
773
774#ifndef tsk_is_polling
775#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
776#endif
777
778static void resched_task(struct task_struct *p)
779{
780 int cpu;
781
782 assert_spin_locked(&task_rq(p)->lock);
783
784 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
785 return;
786
787 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
788
789 cpu = task_cpu(p);
790 if (cpu == smp_processor_id())
791 return;
792
793 /* NEED_RESCHED must be visible before we test polling */
794 smp_mb();
795 if (!tsk_is_polling(p))
796 smp_send_reschedule(cpu);
797}
798
799static void resched_cpu(int cpu)
800{
801 struct rq *rq = cpu_rq(cpu);
802 unsigned long flags;
803
804 if (!spin_trylock_irqsave(&rq->lock, flags))
805 return;
806 resched_task(cpu_curr(cpu));
807 spin_unlock_irqrestore(&rq->lock, flags);
808}
809#else
810static inline void resched_task(struct task_struct *p)
811{
812 assert_spin_locked(&task_rq(p)->lock);
813 set_tsk_need_resched(p);
814}
815#endif
816
45bf76df
IM
817#if BITS_PER_LONG == 32
818# define WMULT_CONST (~0UL)
819#else
820# define WMULT_CONST (1UL << 32)
821#endif
822
823#define WMULT_SHIFT 32
824
194081eb
IM
825/*
826 * Shift right and round:
827 */
cf2ab469 828#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 829
cb1c4fc9 830static unsigned long
45bf76df
IM
831calc_delta_mine(unsigned long delta_exec, unsigned long weight,
832 struct load_weight *lw)
833{
834 u64 tmp;
835
836 if (unlikely(!lw->inv_weight))
194081eb 837 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
838
839 tmp = (u64)delta_exec * weight;
840 /*
841 * Check whether we'd overflow the 64-bit multiplication:
842 */
194081eb 843 if (unlikely(tmp > WMULT_CONST))
cf2ab469 844 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
845 WMULT_SHIFT/2);
846 else
cf2ab469 847 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 848
ecf691da 849 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
850}
851
852static inline unsigned long
853calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
854{
855 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
856}
857
1091985b 858static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
859{
860 lw->weight += inc;
45bf76df
IM
861}
862
1091985b 863static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
864{
865 lw->weight -= dec;
45bf76df
IM
866}
867
2dd73a4f
PW
868/*
869 * To aid in avoiding the subversion of "niceness" due to uneven distribution
870 * of tasks with abnormal "nice" values across CPUs the contribution that
871 * each task makes to its run queue's load is weighted according to its
41a2d6cf 872 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
873 * scaled version of the new time slice allocation that they receive on time
874 * slice expiry etc.
875 */
876
dd41f596
IM
877#define WEIGHT_IDLEPRIO 2
878#define WMULT_IDLEPRIO (1 << 31)
879
880/*
881 * Nice levels are multiplicative, with a gentle 10% change for every
882 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
883 * nice 1, it will get ~10% less CPU time than another CPU-bound task
884 * that remained on nice 0.
885 *
886 * The "10% effect" is relative and cumulative: from _any_ nice level,
887 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
888 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
889 * If a task goes up by ~10% and another task goes down by ~10% then
890 * the relative distance between them is ~25%.)
dd41f596
IM
891 */
892static const int prio_to_weight[40] = {
254753dc
IM
893 /* -20 */ 88761, 71755, 56483, 46273, 36291,
894 /* -15 */ 29154, 23254, 18705, 14949, 11916,
895 /* -10 */ 9548, 7620, 6100, 4904, 3906,
896 /* -5 */ 3121, 2501, 1991, 1586, 1277,
897 /* 0 */ 1024, 820, 655, 526, 423,
898 /* 5 */ 335, 272, 215, 172, 137,
899 /* 10 */ 110, 87, 70, 56, 45,
900 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
901};
902
5714d2de
IM
903/*
904 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
905 *
906 * In cases where the weight does not change often, we can use the
907 * precalculated inverse to speed up arithmetics by turning divisions
908 * into multiplications:
909 */
dd41f596 910static const u32 prio_to_wmult[40] = {
254753dc
IM
911 /* -20 */ 48388, 59856, 76040, 92818, 118348,
912 /* -15 */ 147320, 184698, 229616, 287308, 360437,
913 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
914 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
915 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
916 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
917 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
918 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 919};
2dd73a4f 920
dd41f596
IM
921static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
922
923/*
924 * runqueue iterator, to support SMP load-balancing between different
925 * scheduling classes, without having to expose their internal data
926 * structures to the load-balancing proper:
927 */
928struct rq_iterator {
929 void *arg;
930 struct task_struct *(*start)(void *);
931 struct task_struct *(*next)(void *);
932};
933
e1d1484f
PW
934#ifdef CONFIG_SMP
935static unsigned long
936balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
937 unsigned long max_load_move, struct sched_domain *sd,
938 enum cpu_idle_type idle, int *all_pinned,
939 int *this_best_prio, struct rq_iterator *iterator);
940
941static int
942iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
943 struct sched_domain *sd, enum cpu_idle_type idle,
944 struct rq_iterator *iterator);
e1d1484f 945#endif
dd41f596 946
d842de87
SV
947#ifdef CONFIG_CGROUP_CPUACCT
948static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
949#else
950static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
951#endif
952
58e2d4ca
SV
953static inline void inc_cpu_load(struct rq *rq, unsigned long load)
954{
955 update_load_add(&rq->load, load);
956}
957
958static inline void dec_cpu_load(struct rq *rq, unsigned long load)
959{
960 update_load_sub(&rq->load, load);
961}
962
dd41f596 963#include "sched_stats.h"
dd41f596 964#include "sched_idletask.c"
5522d5d5
IM
965#include "sched_fair.c"
966#include "sched_rt.c"
dd41f596
IM
967#ifdef CONFIG_SCHED_DEBUG
968# include "sched_debug.c"
969#endif
970
971#define sched_class_highest (&rt_sched_class)
972
e5fa2237 973static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
974{
975 rq->nr_running++;
9c217245
IM
976}
977
db53181e 978static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
979{
980 rq->nr_running--;
9c217245
IM
981}
982
45bf76df
IM
983static void set_load_weight(struct task_struct *p)
984{
985 if (task_has_rt_policy(p)) {
dd41f596
IM
986 p->se.load.weight = prio_to_weight[0] * 2;
987 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
988 return;
989 }
45bf76df 990
dd41f596
IM
991 /*
992 * SCHED_IDLE tasks get minimal weight:
993 */
994 if (p->policy == SCHED_IDLE) {
995 p->se.load.weight = WEIGHT_IDLEPRIO;
996 p->se.load.inv_weight = WMULT_IDLEPRIO;
997 return;
998 }
71f8bd46 999
dd41f596
IM
1000 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1001 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1002}
1003
8159f87e 1004static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1005{
dd41f596 1006 sched_info_queued(p);
fd390f6a 1007 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1008 p->se.on_rq = 1;
71f8bd46
IM
1009}
1010
69be72c1 1011static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1012{
f02231e5 1013 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1014 p->se.on_rq = 0;
71f8bd46
IM
1015}
1016
14531189 1017/*
dd41f596 1018 * __normal_prio - return the priority that is based on the static prio
14531189 1019 */
14531189
IM
1020static inline int __normal_prio(struct task_struct *p)
1021{
dd41f596 1022 return p->static_prio;
14531189
IM
1023}
1024
b29739f9
IM
1025/*
1026 * Calculate the expected normal priority: i.e. priority
1027 * without taking RT-inheritance into account. Might be
1028 * boosted by interactivity modifiers. Changes upon fork,
1029 * setprio syscalls, and whenever the interactivity
1030 * estimator recalculates.
1031 */
36c8b586 1032static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1033{
1034 int prio;
1035
e05606d3 1036 if (task_has_rt_policy(p))
b29739f9
IM
1037 prio = MAX_RT_PRIO-1 - p->rt_priority;
1038 else
1039 prio = __normal_prio(p);
1040 return prio;
1041}
1042
1043/*
1044 * Calculate the current priority, i.e. the priority
1045 * taken into account by the scheduler. This value might
1046 * be boosted by RT tasks, or might be boosted by
1047 * interactivity modifiers. Will be RT if the task got
1048 * RT-boosted. If not then it returns p->normal_prio.
1049 */
36c8b586 1050static int effective_prio(struct task_struct *p)
b29739f9
IM
1051{
1052 p->normal_prio = normal_prio(p);
1053 /*
1054 * If we are RT tasks or we were boosted to RT priority,
1055 * keep the priority unchanged. Otherwise, update priority
1056 * to the normal priority:
1057 */
1058 if (!rt_prio(p->prio))
1059 return p->normal_prio;
1060 return p->prio;
1061}
1062
1da177e4 1063/*
dd41f596 1064 * activate_task - move a task to the runqueue.
1da177e4 1065 */
dd41f596 1066static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1067{
dd41f596
IM
1068 if (p->state == TASK_UNINTERRUPTIBLE)
1069 rq->nr_uninterruptible--;
1da177e4 1070
8159f87e 1071 enqueue_task(rq, p, wakeup);
e5fa2237 1072 inc_nr_running(p, rq);
1da177e4
LT
1073}
1074
1da177e4
LT
1075/*
1076 * deactivate_task - remove a task from the runqueue.
1077 */
2e1cb74a 1078static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1079{
dd41f596
IM
1080 if (p->state == TASK_UNINTERRUPTIBLE)
1081 rq->nr_uninterruptible++;
1082
69be72c1 1083 dequeue_task(rq, p, sleep);
db53181e 1084 dec_nr_running(p, rq);
1da177e4
LT
1085}
1086
1da177e4
LT
1087/**
1088 * task_curr - is this task currently executing on a CPU?
1089 * @p: the task in question.
1090 */
36c8b586 1091inline int task_curr(const struct task_struct *p)
1da177e4
LT
1092{
1093 return cpu_curr(task_cpu(p)) == p;
1094}
1095
2dd73a4f
PW
1096/* Used instead of source_load when we know the type == 0 */
1097unsigned long weighted_cpuload(const int cpu)
1098{
495eca49 1099 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1100}
1101
1102static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1103{
ce96b5ac 1104 set_task_cfs_rq(p, cpu);
dd41f596 1105#ifdef CONFIG_SMP
ce96b5ac
DA
1106 /*
1107 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1108 * successfuly executed on another CPU. We must ensure that updates of
1109 * per-task data have been completed by this moment.
1110 */
1111 smp_wmb();
dd41f596 1112 task_thread_info(p)->cpu = cpu;
dd41f596 1113#endif
2dd73a4f
PW
1114}
1115
1da177e4 1116#ifdef CONFIG_SMP
c65cc870 1117
cc367732
IM
1118/*
1119 * Is this task likely cache-hot:
1120 */
1121static inline int
1122task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1123{
1124 s64 delta;
1125
1126 if (p->sched_class != &fair_sched_class)
1127 return 0;
1128
6bc1665b
IM
1129 if (sysctl_sched_migration_cost == -1)
1130 return 1;
1131 if (sysctl_sched_migration_cost == 0)
1132 return 0;
1133
cc367732
IM
1134 delta = now - p->se.exec_start;
1135
1136 return delta < (s64)sysctl_sched_migration_cost;
1137}
1138
1139
dd41f596 1140void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1141{
dd41f596
IM
1142 int old_cpu = task_cpu(p);
1143 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1144 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1145 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1146 u64 clock_offset;
dd41f596
IM
1147
1148 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1149
1150#ifdef CONFIG_SCHEDSTATS
1151 if (p->se.wait_start)
1152 p->se.wait_start -= clock_offset;
dd41f596
IM
1153 if (p->se.sleep_start)
1154 p->se.sleep_start -= clock_offset;
1155 if (p->se.block_start)
1156 p->se.block_start -= clock_offset;
cc367732
IM
1157 if (old_cpu != new_cpu) {
1158 schedstat_inc(p, se.nr_migrations);
1159 if (task_hot(p, old_rq->clock, NULL))
1160 schedstat_inc(p, se.nr_forced2_migrations);
1161 }
6cfb0d5d 1162#endif
2830cf8c
SV
1163 p->se.vruntime -= old_cfsrq->min_vruntime -
1164 new_cfsrq->min_vruntime;
dd41f596
IM
1165
1166 __set_task_cpu(p, new_cpu);
c65cc870
IM
1167}
1168
70b97a7f 1169struct migration_req {
1da177e4 1170 struct list_head list;
1da177e4 1171
36c8b586 1172 struct task_struct *task;
1da177e4
LT
1173 int dest_cpu;
1174
1da177e4 1175 struct completion done;
70b97a7f 1176};
1da177e4
LT
1177
1178/*
1179 * The task's runqueue lock must be held.
1180 * Returns true if you have to wait for migration thread.
1181 */
36c8b586 1182static int
70b97a7f 1183migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1184{
70b97a7f 1185 struct rq *rq = task_rq(p);
1da177e4
LT
1186
1187 /*
1188 * If the task is not on a runqueue (and not running), then
1189 * it is sufficient to simply update the task's cpu field.
1190 */
dd41f596 1191 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1192 set_task_cpu(p, dest_cpu);
1193 return 0;
1194 }
1195
1196 init_completion(&req->done);
1da177e4
LT
1197 req->task = p;
1198 req->dest_cpu = dest_cpu;
1199 list_add(&req->list, &rq->migration_queue);
48f24c4d 1200
1da177e4
LT
1201 return 1;
1202}
1203
1204/*
1205 * wait_task_inactive - wait for a thread to unschedule.
1206 *
1207 * The caller must ensure that the task *will* unschedule sometime soon,
1208 * else this function might spin for a *long* time. This function can't
1209 * be called with interrupts off, or it may introduce deadlock with
1210 * smp_call_function() if an IPI is sent by the same process we are
1211 * waiting to become inactive.
1212 */
36c8b586 1213void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1214{
1215 unsigned long flags;
dd41f596 1216 int running, on_rq;
70b97a7f 1217 struct rq *rq;
1da177e4 1218
3a5c359a
AK
1219 for (;;) {
1220 /*
1221 * We do the initial early heuristics without holding
1222 * any task-queue locks at all. We'll only try to get
1223 * the runqueue lock when things look like they will
1224 * work out!
1225 */
1226 rq = task_rq(p);
fa490cfd 1227
3a5c359a
AK
1228 /*
1229 * If the task is actively running on another CPU
1230 * still, just relax and busy-wait without holding
1231 * any locks.
1232 *
1233 * NOTE! Since we don't hold any locks, it's not
1234 * even sure that "rq" stays as the right runqueue!
1235 * But we don't care, since "task_running()" will
1236 * return false if the runqueue has changed and p
1237 * is actually now running somewhere else!
1238 */
1239 while (task_running(rq, p))
1240 cpu_relax();
fa490cfd 1241
3a5c359a
AK
1242 /*
1243 * Ok, time to look more closely! We need the rq
1244 * lock now, to be *sure*. If we're wrong, we'll
1245 * just go back and repeat.
1246 */
1247 rq = task_rq_lock(p, &flags);
1248 running = task_running(rq, p);
1249 on_rq = p->se.on_rq;
1250 task_rq_unlock(rq, &flags);
fa490cfd 1251
3a5c359a
AK
1252 /*
1253 * Was it really running after all now that we
1254 * checked with the proper locks actually held?
1255 *
1256 * Oops. Go back and try again..
1257 */
1258 if (unlikely(running)) {
1259 cpu_relax();
1260 continue;
1261 }
fa490cfd 1262
3a5c359a
AK
1263 /*
1264 * It's not enough that it's not actively running,
1265 * it must be off the runqueue _entirely_, and not
1266 * preempted!
1267 *
1268 * So if it wa still runnable (but just not actively
1269 * running right now), it's preempted, and we should
1270 * yield - it could be a while.
1271 */
1272 if (unlikely(on_rq)) {
1273 schedule_timeout_uninterruptible(1);
1274 continue;
1275 }
fa490cfd 1276
3a5c359a
AK
1277 /*
1278 * Ahh, all good. It wasn't running, and it wasn't
1279 * runnable, which means that it will never become
1280 * running in the future either. We're all done!
1281 */
1282 break;
1283 }
1da177e4
LT
1284}
1285
1286/***
1287 * kick_process - kick a running thread to enter/exit the kernel
1288 * @p: the to-be-kicked thread
1289 *
1290 * Cause a process which is running on another CPU to enter
1291 * kernel-mode, without any delay. (to get signals handled.)
1292 *
1293 * NOTE: this function doesnt have to take the runqueue lock,
1294 * because all it wants to ensure is that the remote task enters
1295 * the kernel. If the IPI races and the task has been migrated
1296 * to another CPU then no harm is done and the purpose has been
1297 * achieved as well.
1298 */
36c8b586 1299void kick_process(struct task_struct *p)
1da177e4
LT
1300{
1301 int cpu;
1302
1303 preempt_disable();
1304 cpu = task_cpu(p);
1305 if ((cpu != smp_processor_id()) && task_curr(p))
1306 smp_send_reschedule(cpu);
1307 preempt_enable();
1308}
1309
1310/*
2dd73a4f
PW
1311 * Return a low guess at the load of a migration-source cpu weighted
1312 * according to the scheduling class and "nice" value.
1da177e4
LT
1313 *
1314 * We want to under-estimate the load of migration sources, to
1315 * balance conservatively.
1316 */
a9957449 1317static unsigned long source_load(int cpu, int type)
1da177e4 1318{
70b97a7f 1319 struct rq *rq = cpu_rq(cpu);
dd41f596 1320 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1321
3b0bd9bc 1322 if (type == 0)
dd41f596 1323 return total;
b910472d 1324
dd41f596 1325 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1326}
1327
1328/*
2dd73a4f
PW
1329 * Return a high guess at the load of a migration-target cpu weighted
1330 * according to the scheduling class and "nice" value.
1da177e4 1331 */
a9957449 1332static unsigned long target_load(int cpu, int type)
1da177e4 1333{
70b97a7f 1334 struct rq *rq = cpu_rq(cpu);
dd41f596 1335 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1336
7897986b 1337 if (type == 0)
dd41f596 1338 return total;
3b0bd9bc 1339
dd41f596 1340 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1341}
1342
1343/*
1344 * Return the average load per task on the cpu's run queue
1345 */
1346static inline unsigned long cpu_avg_load_per_task(int cpu)
1347{
70b97a7f 1348 struct rq *rq = cpu_rq(cpu);
dd41f596 1349 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1350 unsigned long n = rq->nr_running;
1351
dd41f596 1352 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1353}
1354
147cbb4b
NP
1355/*
1356 * find_idlest_group finds and returns the least busy CPU group within the
1357 * domain.
1358 */
1359static struct sched_group *
1360find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1361{
1362 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1363 unsigned long min_load = ULONG_MAX, this_load = 0;
1364 int load_idx = sd->forkexec_idx;
1365 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1366
1367 do {
1368 unsigned long load, avg_load;
1369 int local_group;
1370 int i;
1371
da5a5522
BD
1372 /* Skip over this group if it has no CPUs allowed */
1373 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1374 continue;
da5a5522 1375
147cbb4b 1376 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1377
1378 /* Tally up the load of all CPUs in the group */
1379 avg_load = 0;
1380
1381 for_each_cpu_mask(i, group->cpumask) {
1382 /* Bias balancing toward cpus of our domain */
1383 if (local_group)
1384 load = source_load(i, load_idx);
1385 else
1386 load = target_load(i, load_idx);
1387
1388 avg_load += load;
1389 }
1390
1391 /* Adjust by relative CPU power of the group */
5517d86b
ED
1392 avg_load = sg_div_cpu_power(group,
1393 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1394
1395 if (local_group) {
1396 this_load = avg_load;
1397 this = group;
1398 } else if (avg_load < min_load) {
1399 min_load = avg_load;
1400 idlest = group;
1401 }
3a5c359a 1402 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1403
1404 if (!idlest || 100*this_load < imbalance*min_load)
1405 return NULL;
1406 return idlest;
1407}
1408
1409/*
0feaece9 1410 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1411 */
95cdf3b7
IM
1412static int
1413find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1414{
da5a5522 1415 cpumask_t tmp;
147cbb4b
NP
1416 unsigned long load, min_load = ULONG_MAX;
1417 int idlest = -1;
1418 int i;
1419
da5a5522
BD
1420 /* Traverse only the allowed CPUs */
1421 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1422
1423 for_each_cpu_mask(i, tmp) {
2dd73a4f 1424 load = weighted_cpuload(i);
147cbb4b
NP
1425
1426 if (load < min_load || (load == min_load && i == this_cpu)) {
1427 min_load = load;
1428 idlest = i;
1429 }
1430 }
1431
1432 return idlest;
1433}
1434
476d139c
NP
1435/*
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1439 *
1440 * Balance, ie. select the least loaded group.
1441 *
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 *
1444 * preempt must be disabled.
1445 */
1446static int sched_balance_self(int cpu, int flag)
1447{
1448 struct task_struct *t = current;
1449 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1450
c96d145e 1451 for_each_domain(cpu, tmp) {
9761eea8
IM
1452 /*
1453 * If power savings logic is enabled for a domain, stop there.
1454 */
5c45bf27
SS
1455 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1456 break;
476d139c
NP
1457 if (tmp->flags & flag)
1458 sd = tmp;
c96d145e 1459 }
476d139c
NP
1460
1461 while (sd) {
1462 cpumask_t span;
1463 struct sched_group *group;
1a848870
SS
1464 int new_cpu, weight;
1465
1466 if (!(sd->flags & flag)) {
1467 sd = sd->child;
1468 continue;
1469 }
476d139c
NP
1470
1471 span = sd->span;
1472 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1473 if (!group) {
1474 sd = sd->child;
1475 continue;
1476 }
476d139c 1477
da5a5522 1478 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1479 if (new_cpu == -1 || new_cpu == cpu) {
1480 /* Now try balancing at a lower domain level of cpu */
1481 sd = sd->child;
1482 continue;
1483 }
476d139c 1484
1a848870 1485 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1486 cpu = new_cpu;
476d139c
NP
1487 sd = NULL;
1488 weight = cpus_weight(span);
1489 for_each_domain(cpu, tmp) {
1490 if (weight <= cpus_weight(tmp->span))
1491 break;
1492 if (tmp->flags & flag)
1493 sd = tmp;
1494 }
1495 /* while loop will break here if sd == NULL */
1496 }
1497
1498 return cpu;
1499}
1500
1501#endif /* CONFIG_SMP */
1da177e4
LT
1502
1503/*
1504 * wake_idle() will wake a task on an idle cpu if task->cpu is
1505 * not idle and an idle cpu is available. The span of cpus to
1506 * search starts with cpus closest then further out as needed,
1507 * so we always favor a closer, idle cpu.
1508 *
1509 * Returns the CPU we should wake onto.
1510 */
1511#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1512static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1513{
1514 cpumask_t tmp;
1515 struct sched_domain *sd;
1516 int i;
1517
4953198b
SS
1518 /*
1519 * If it is idle, then it is the best cpu to run this task.
1520 *
1521 * This cpu is also the best, if it has more than one task already.
1522 * Siblings must be also busy(in most cases) as they didn't already
1523 * pickup the extra load from this cpu and hence we need not check
1524 * sibling runqueue info. This will avoid the checks and cache miss
1525 * penalities associated with that.
1526 */
1527 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1528 return cpu;
1529
1530 for_each_domain(cpu, sd) {
1531 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1532 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1533 for_each_cpu_mask(i, tmp) {
cc367732
IM
1534 if (idle_cpu(i)) {
1535 if (i != task_cpu(p)) {
1536 schedstat_inc(p,
1537 se.nr_wakeups_idle);
1538 }
1da177e4 1539 return i;
cc367732 1540 }
1da177e4 1541 }
9761eea8 1542 } else {
e0f364f4 1543 break;
9761eea8 1544 }
1da177e4
LT
1545 }
1546 return cpu;
1547}
1548#else
36c8b586 1549static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1550{
1551 return cpu;
1552}
1553#endif
1554
1555/***
1556 * try_to_wake_up - wake up a thread
1557 * @p: the to-be-woken-up thread
1558 * @state: the mask of task states that can be woken
1559 * @sync: do a synchronous wakeup?
1560 *
1561 * Put it on the run-queue if it's not already there. The "current"
1562 * thread is always on the run-queue (except when the actual
1563 * re-schedule is in progress), and as such you're allowed to do
1564 * the simpler "current->state = TASK_RUNNING" to mark yourself
1565 * runnable without the overhead of this.
1566 *
1567 * returns failure only if the task is already active.
1568 */
36c8b586 1569static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1570{
cc367732 1571 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1572 unsigned long flags;
1573 long old_state;
70b97a7f 1574 struct rq *rq;
1da177e4 1575#ifdef CONFIG_SMP
7897986b 1576 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1577 unsigned long load, this_load;
1da177e4
LT
1578 int new_cpu;
1579#endif
1580
1581 rq = task_rq_lock(p, &flags);
1582 old_state = p->state;
1583 if (!(old_state & state))
1584 goto out;
1585
dd41f596 1586 if (p->se.on_rq)
1da177e4
LT
1587 goto out_running;
1588
1589 cpu = task_cpu(p);
cc367732 1590 orig_cpu = cpu;
1da177e4
LT
1591 this_cpu = smp_processor_id();
1592
1593#ifdef CONFIG_SMP
1594 if (unlikely(task_running(rq, p)))
1595 goto out_activate;
1596
7897986b
NP
1597 new_cpu = cpu;
1598
2d72376b 1599 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1600 if (cpu == this_cpu) {
1601 schedstat_inc(rq, ttwu_local);
7897986b
NP
1602 goto out_set_cpu;
1603 }
1604
1605 for_each_domain(this_cpu, sd) {
1606 if (cpu_isset(cpu, sd->span)) {
1607 schedstat_inc(sd, ttwu_wake_remote);
1608 this_sd = sd;
1609 break;
1da177e4
LT
1610 }
1611 }
1da177e4 1612
7897986b 1613 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1614 goto out_set_cpu;
1615
1da177e4 1616 /*
7897986b 1617 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1618 */
7897986b
NP
1619 if (this_sd) {
1620 int idx = this_sd->wake_idx;
1621 unsigned int imbalance;
1da177e4 1622
a3f21bce
NP
1623 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1624
7897986b
NP
1625 load = source_load(cpu, idx);
1626 this_load = target_load(this_cpu, idx);
1da177e4 1627
7897986b
NP
1628 new_cpu = this_cpu; /* Wake to this CPU if we can */
1629
a3f21bce
NP
1630 if (this_sd->flags & SD_WAKE_AFFINE) {
1631 unsigned long tl = this_load;
33859f7f
MOS
1632 unsigned long tl_per_task;
1633
71e20f18
IM
1634 /*
1635 * Attract cache-cold tasks on sync wakeups:
1636 */
1637 if (sync && !task_hot(p, rq->clock, this_sd))
1638 goto out_set_cpu;
1639
cc367732 1640 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1641 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1642
1da177e4 1643 /*
a3f21bce
NP
1644 * If sync wakeup then subtract the (maximum possible)
1645 * effect of the currently running task from the load
1646 * of the current CPU:
1da177e4 1647 */
a3f21bce 1648 if (sync)
dd41f596 1649 tl -= current->se.load.weight;
a3f21bce
NP
1650
1651 if ((tl <= load &&
2dd73a4f 1652 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1653 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1654 /*
1655 * This domain has SD_WAKE_AFFINE and
1656 * p is cache cold in this domain, and
1657 * there is no bad imbalance.
1658 */
1659 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1660 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1661 goto out_set_cpu;
1662 }
1663 }
1664
1665 /*
1666 * Start passive balancing when half the imbalance_pct
1667 * limit is reached.
1668 */
1669 if (this_sd->flags & SD_WAKE_BALANCE) {
1670 if (imbalance*this_load <= 100*load) {
1671 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1672 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1673 goto out_set_cpu;
1674 }
1da177e4
LT
1675 }
1676 }
1677
1678 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1679out_set_cpu:
1680 new_cpu = wake_idle(new_cpu, p);
1681 if (new_cpu != cpu) {
1682 set_task_cpu(p, new_cpu);
1683 task_rq_unlock(rq, &flags);
1684 /* might preempt at this point */
1685 rq = task_rq_lock(p, &flags);
1686 old_state = p->state;
1687 if (!(old_state & state))
1688 goto out;
dd41f596 1689 if (p->se.on_rq)
1da177e4
LT
1690 goto out_running;
1691
1692 this_cpu = smp_processor_id();
1693 cpu = task_cpu(p);
1694 }
1695
1696out_activate:
1697#endif /* CONFIG_SMP */
cc367732
IM
1698 schedstat_inc(p, se.nr_wakeups);
1699 if (sync)
1700 schedstat_inc(p, se.nr_wakeups_sync);
1701 if (orig_cpu != cpu)
1702 schedstat_inc(p, se.nr_wakeups_migrate);
1703 if (cpu == this_cpu)
1704 schedstat_inc(p, se.nr_wakeups_local);
1705 else
1706 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1707 update_rq_clock(rq);
dd41f596 1708 activate_task(rq, p, 1);
9c63d9c0 1709 check_preempt_curr(rq, p);
1da177e4
LT
1710 success = 1;
1711
1712out_running:
1713 p->state = TASK_RUNNING;
4642dafd 1714 wakeup_balance_rt(rq, p);
1da177e4
LT
1715out:
1716 task_rq_unlock(rq, &flags);
1717
1718 return success;
1719}
1720
36c8b586 1721int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1722{
1723 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1724 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1725}
1da177e4
LT
1726EXPORT_SYMBOL(wake_up_process);
1727
36c8b586 1728int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1729{
1730 return try_to_wake_up(p, state, 0);
1731}
1732
1da177e4
LT
1733/*
1734 * Perform scheduler related setup for a newly forked process p.
1735 * p is forked by current.
dd41f596
IM
1736 *
1737 * __sched_fork() is basic setup used by init_idle() too:
1738 */
1739static void __sched_fork(struct task_struct *p)
1740{
dd41f596
IM
1741 p->se.exec_start = 0;
1742 p->se.sum_exec_runtime = 0;
f6cf891c 1743 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1744
1745#ifdef CONFIG_SCHEDSTATS
1746 p->se.wait_start = 0;
dd41f596
IM
1747 p->se.sum_sleep_runtime = 0;
1748 p->se.sleep_start = 0;
dd41f596
IM
1749 p->se.block_start = 0;
1750 p->se.sleep_max = 0;
1751 p->se.block_max = 0;
1752 p->se.exec_max = 0;
eba1ed4b 1753 p->se.slice_max = 0;
dd41f596 1754 p->se.wait_max = 0;
6cfb0d5d 1755#endif
476d139c 1756
dd41f596
IM
1757 INIT_LIST_HEAD(&p->run_list);
1758 p->se.on_rq = 0;
476d139c 1759
e107be36
AK
1760#ifdef CONFIG_PREEMPT_NOTIFIERS
1761 INIT_HLIST_HEAD(&p->preempt_notifiers);
1762#endif
1763
1da177e4
LT
1764 /*
1765 * We mark the process as running here, but have not actually
1766 * inserted it onto the runqueue yet. This guarantees that
1767 * nobody will actually run it, and a signal or other external
1768 * event cannot wake it up and insert it on the runqueue either.
1769 */
1770 p->state = TASK_RUNNING;
dd41f596
IM
1771}
1772
1773/*
1774 * fork()/clone()-time setup:
1775 */
1776void sched_fork(struct task_struct *p, int clone_flags)
1777{
1778 int cpu = get_cpu();
1779
1780 __sched_fork(p);
1781
1782#ifdef CONFIG_SMP
1783 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1784#endif
02e4bac2 1785 set_task_cpu(p, cpu);
b29739f9
IM
1786
1787 /*
1788 * Make sure we do not leak PI boosting priority to the child:
1789 */
1790 p->prio = current->normal_prio;
2ddbf952
HS
1791 if (!rt_prio(p->prio))
1792 p->sched_class = &fair_sched_class;
b29739f9 1793
52f17b6c 1794#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1795 if (likely(sched_info_on()))
52f17b6c 1796 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1797#endif
d6077cb8 1798#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1799 p->oncpu = 0;
1800#endif
1da177e4 1801#ifdef CONFIG_PREEMPT
4866cde0 1802 /* Want to start with kernel preemption disabled. */
a1261f54 1803 task_thread_info(p)->preempt_count = 1;
1da177e4 1804#endif
476d139c 1805 put_cpu();
1da177e4
LT
1806}
1807
1808/*
1809 * wake_up_new_task - wake up a newly created task for the first time.
1810 *
1811 * This function will do some initial scheduler statistics housekeeping
1812 * that must be done for every newly created context, then puts the task
1813 * on the runqueue and wakes it.
1814 */
36c8b586 1815void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1816{
1817 unsigned long flags;
dd41f596 1818 struct rq *rq;
1da177e4
LT
1819
1820 rq = task_rq_lock(p, &flags);
147cbb4b 1821 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1822 update_rq_clock(rq);
1da177e4
LT
1823
1824 p->prio = effective_prio(p);
1825
b9dca1e0 1826 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1827 activate_task(rq, p, 0);
1da177e4 1828 } else {
1da177e4 1829 /*
dd41f596
IM
1830 * Let the scheduling class do new task startup
1831 * management (if any):
1da177e4 1832 */
ee0827d8 1833 p->sched_class->task_new(rq, p);
e5fa2237 1834 inc_nr_running(p, rq);
1da177e4 1835 }
dd41f596
IM
1836 check_preempt_curr(rq, p);
1837 task_rq_unlock(rq, &flags);
1da177e4
LT
1838}
1839
e107be36
AK
1840#ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842/**
421cee29
RD
1843 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1844 * @notifier: notifier struct to register
e107be36
AK
1845 */
1846void preempt_notifier_register(struct preempt_notifier *notifier)
1847{
1848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849}
1850EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852/**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1854 * @notifier: notifier struct to unregister
e107be36
AK
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859{
1860 hlist_del(&notifier->link);
1861}
1862EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865{
1866 struct preempt_notifier *notifier;
1867 struct hlist_node *node;
1868
1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871}
1872
1873static void
1874fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 struct task_struct *next)
1876{
1877 struct preempt_notifier *notifier;
1878 struct hlist_node *node;
1879
1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 notifier->ops->sched_out(notifier, next);
1882}
1883
1884#else
1885
1886static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887{
1888}
1889
1890static void
1891fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 struct task_struct *next)
1893{
1894}
1895
1896#endif
1897
4866cde0
NP
1898/**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
421cee29 1901 * @prev: the current task that is being switched out
4866cde0
NP
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
e107be36
AK
1911static inline void
1912prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 struct task_struct *next)
4866cde0 1914{
e107be36 1915 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
1918}
1919
1da177e4
LT
1920/**
1921 * finish_task_switch - clean up after a task-switch
344babaa 1922 * @rq: runqueue associated with task-switch
1da177e4
LT
1923 * @prev: the thread we just switched away from.
1924 *
4866cde0
NP
1925 * finish_task_switch must be called after the context switch, paired
1926 * with a prepare_task_switch call before the context switch.
1927 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1928 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1929 *
1930 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1931 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1932 * with the lock held can cause deadlocks; see schedule() for
1933 * details.)
1934 */
a9957449 1935static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1936 __releases(rq->lock)
1937{
1da177e4 1938 struct mm_struct *mm = rq->prev_mm;
55a101f8 1939 long prev_state;
1da177e4
LT
1940
1941 rq->prev_mm = NULL;
1942
1943 /*
1944 * A task struct has one reference for the use as "current".
c394cc9f 1945 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1946 * schedule one last time. The schedule call will never return, and
1947 * the scheduled task must drop that reference.
c394cc9f 1948 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1949 * still held, otherwise prev could be scheduled on another cpu, die
1950 * there before we look at prev->state, and then the reference would
1951 * be dropped twice.
1952 * Manfred Spraul <manfred@colorfullife.com>
1953 */
55a101f8 1954 prev_state = prev->state;
4866cde0
NP
1955 finish_arch_switch(prev);
1956 finish_lock_switch(rq, prev);
e8fa1362
SR
1957 schedule_tail_balance_rt(rq);
1958
e107be36 1959 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1960 if (mm)
1961 mmdrop(mm);
c394cc9f 1962 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1963 /*
1964 * Remove function-return probe instances associated with this
1965 * task and put them back on the free list.
9761eea8 1966 */
c6fd91f0 1967 kprobe_flush_task(prev);
1da177e4 1968 put_task_struct(prev);
c6fd91f0 1969 }
1da177e4
LT
1970}
1971
1972/**
1973 * schedule_tail - first thing a freshly forked thread must call.
1974 * @prev: the thread we just switched away from.
1975 */
36c8b586 1976asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1977 __releases(rq->lock)
1978{
70b97a7f
IM
1979 struct rq *rq = this_rq();
1980
4866cde0
NP
1981 finish_task_switch(rq, prev);
1982#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1983 /* In this case, finish_task_switch does not reenable preemption */
1984 preempt_enable();
1985#endif
1da177e4 1986 if (current->set_child_tid)
b488893a 1987 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1988}
1989
1990/*
1991 * context_switch - switch to the new MM and the new
1992 * thread's register state.
1993 */
dd41f596 1994static inline void
70b97a7f 1995context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1996 struct task_struct *next)
1da177e4 1997{
dd41f596 1998 struct mm_struct *mm, *oldmm;
1da177e4 1999
e107be36 2000 prepare_task_switch(rq, prev, next);
dd41f596
IM
2001 mm = next->mm;
2002 oldmm = prev->active_mm;
9226d125
ZA
2003 /*
2004 * For paravirt, this is coupled with an exit in switch_to to
2005 * combine the page table reload and the switch backend into
2006 * one hypercall.
2007 */
2008 arch_enter_lazy_cpu_mode();
2009
dd41f596 2010 if (unlikely(!mm)) {
1da177e4
LT
2011 next->active_mm = oldmm;
2012 atomic_inc(&oldmm->mm_count);
2013 enter_lazy_tlb(oldmm, next);
2014 } else
2015 switch_mm(oldmm, mm, next);
2016
dd41f596 2017 if (unlikely(!prev->mm)) {
1da177e4 2018 prev->active_mm = NULL;
1da177e4
LT
2019 rq->prev_mm = oldmm;
2020 }
3a5f5e48
IM
2021 /*
2022 * Since the runqueue lock will be released by the next
2023 * task (which is an invalid locking op but in the case
2024 * of the scheduler it's an obvious special-case), so we
2025 * do an early lockdep release here:
2026 */
2027#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2028 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2029#endif
1da177e4
LT
2030
2031 /* Here we just switch the register state and the stack. */
2032 switch_to(prev, next, prev);
2033
dd41f596
IM
2034 barrier();
2035 /*
2036 * this_rq must be evaluated again because prev may have moved
2037 * CPUs since it called schedule(), thus the 'rq' on its stack
2038 * frame will be invalid.
2039 */
2040 finish_task_switch(this_rq(), prev);
1da177e4
LT
2041}
2042
2043/*
2044 * nr_running, nr_uninterruptible and nr_context_switches:
2045 *
2046 * externally visible scheduler statistics: current number of runnable
2047 * threads, current number of uninterruptible-sleeping threads, total
2048 * number of context switches performed since bootup.
2049 */
2050unsigned long nr_running(void)
2051{
2052 unsigned long i, sum = 0;
2053
2054 for_each_online_cpu(i)
2055 sum += cpu_rq(i)->nr_running;
2056
2057 return sum;
2058}
2059
2060unsigned long nr_uninterruptible(void)
2061{
2062 unsigned long i, sum = 0;
2063
0a945022 2064 for_each_possible_cpu(i)
1da177e4
LT
2065 sum += cpu_rq(i)->nr_uninterruptible;
2066
2067 /*
2068 * Since we read the counters lockless, it might be slightly
2069 * inaccurate. Do not allow it to go below zero though:
2070 */
2071 if (unlikely((long)sum < 0))
2072 sum = 0;
2073
2074 return sum;
2075}
2076
2077unsigned long long nr_context_switches(void)
2078{
cc94abfc
SR
2079 int i;
2080 unsigned long long sum = 0;
1da177e4 2081
0a945022 2082 for_each_possible_cpu(i)
1da177e4
LT
2083 sum += cpu_rq(i)->nr_switches;
2084
2085 return sum;
2086}
2087
2088unsigned long nr_iowait(void)
2089{
2090 unsigned long i, sum = 0;
2091
0a945022 2092 for_each_possible_cpu(i)
1da177e4
LT
2093 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2094
2095 return sum;
2096}
2097
db1b1fef
JS
2098unsigned long nr_active(void)
2099{
2100 unsigned long i, running = 0, uninterruptible = 0;
2101
2102 for_each_online_cpu(i) {
2103 running += cpu_rq(i)->nr_running;
2104 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2105 }
2106
2107 if (unlikely((long)uninterruptible < 0))
2108 uninterruptible = 0;
2109
2110 return running + uninterruptible;
2111}
2112
48f24c4d 2113/*
dd41f596
IM
2114 * Update rq->cpu_load[] statistics. This function is usually called every
2115 * scheduler tick (TICK_NSEC).
48f24c4d 2116 */
dd41f596 2117static void update_cpu_load(struct rq *this_rq)
48f24c4d 2118{
495eca49 2119 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2120 int i, scale;
2121
2122 this_rq->nr_load_updates++;
dd41f596
IM
2123
2124 /* Update our load: */
2125 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2126 unsigned long old_load, new_load;
2127
2128 /* scale is effectively 1 << i now, and >> i divides by scale */
2129
2130 old_load = this_rq->cpu_load[i];
2131 new_load = this_load;
a25707f3
IM
2132 /*
2133 * Round up the averaging division if load is increasing. This
2134 * prevents us from getting stuck on 9 if the load is 10, for
2135 * example.
2136 */
2137 if (new_load > old_load)
2138 new_load += scale-1;
dd41f596
IM
2139 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2140 }
48f24c4d
IM
2141}
2142
dd41f596
IM
2143#ifdef CONFIG_SMP
2144
1da177e4
LT
2145/*
2146 * double_rq_lock - safely lock two runqueues
2147 *
2148 * Note this does not disable interrupts like task_rq_lock,
2149 * you need to do so manually before calling.
2150 */
70b97a7f 2151static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2152 __acquires(rq1->lock)
2153 __acquires(rq2->lock)
2154{
054b9108 2155 BUG_ON(!irqs_disabled());
1da177e4
LT
2156 if (rq1 == rq2) {
2157 spin_lock(&rq1->lock);
2158 __acquire(rq2->lock); /* Fake it out ;) */
2159 } else {
c96d145e 2160 if (rq1 < rq2) {
1da177e4
LT
2161 spin_lock(&rq1->lock);
2162 spin_lock(&rq2->lock);
2163 } else {
2164 spin_lock(&rq2->lock);
2165 spin_lock(&rq1->lock);
2166 }
2167 }
6e82a3be
IM
2168 update_rq_clock(rq1);
2169 update_rq_clock(rq2);
1da177e4
LT
2170}
2171
2172/*
2173 * double_rq_unlock - safely unlock two runqueues
2174 *
2175 * Note this does not restore interrupts like task_rq_unlock,
2176 * you need to do so manually after calling.
2177 */
70b97a7f 2178static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2179 __releases(rq1->lock)
2180 __releases(rq2->lock)
2181{
2182 spin_unlock(&rq1->lock);
2183 if (rq1 != rq2)
2184 spin_unlock(&rq2->lock);
2185 else
2186 __release(rq2->lock);
2187}
2188
2189/*
2190 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2191 */
e8fa1362 2192static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2193 __releases(this_rq->lock)
2194 __acquires(busiest->lock)
2195 __acquires(this_rq->lock)
2196{
e8fa1362
SR
2197 int ret = 0;
2198
054b9108
KK
2199 if (unlikely(!irqs_disabled())) {
2200 /* printk() doesn't work good under rq->lock */
2201 spin_unlock(&this_rq->lock);
2202 BUG_ON(1);
2203 }
1da177e4 2204 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2205 if (busiest < this_rq) {
1da177e4
LT
2206 spin_unlock(&this_rq->lock);
2207 spin_lock(&busiest->lock);
2208 spin_lock(&this_rq->lock);
e8fa1362 2209 ret = 1;
1da177e4
LT
2210 } else
2211 spin_lock(&busiest->lock);
2212 }
e8fa1362 2213 return ret;
1da177e4
LT
2214}
2215
1da177e4
LT
2216/*
2217 * If dest_cpu is allowed for this process, migrate the task to it.
2218 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2219 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2220 * the cpu_allowed mask is restored.
2221 */
36c8b586 2222static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2223{
70b97a7f 2224 struct migration_req req;
1da177e4 2225 unsigned long flags;
70b97a7f 2226 struct rq *rq;
1da177e4
LT
2227
2228 rq = task_rq_lock(p, &flags);
2229 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2230 || unlikely(cpu_is_offline(dest_cpu)))
2231 goto out;
2232
2233 /* force the process onto the specified CPU */
2234 if (migrate_task(p, dest_cpu, &req)) {
2235 /* Need to wait for migration thread (might exit: take ref). */
2236 struct task_struct *mt = rq->migration_thread;
36c8b586 2237
1da177e4
LT
2238 get_task_struct(mt);
2239 task_rq_unlock(rq, &flags);
2240 wake_up_process(mt);
2241 put_task_struct(mt);
2242 wait_for_completion(&req.done);
36c8b586 2243
1da177e4
LT
2244 return;
2245 }
2246out:
2247 task_rq_unlock(rq, &flags);
2248}
2249
2250/*
476d139c
NP
2251 * sched_exec - execve() is a valuable balancing opportunity, because at
2252 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2253 */
2254void sched_exec(void)
2255{
1da177e4 2256 int new_cpu, this_cpu = get_cpu();
476d139c 2257 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2258 put_cpu();
476d139c
NP
2259 if (new_cpu != this_cpu)
2260 sched_migrate_task(current, new_cpu);
1da177e4
LT
2261}
2262
2263/*
2264 * pull_task - move a task from a remote runqueue to the local runqueue.
2265 * Both runqueues must be locked.
2266 */
dd41f596
IM
2267static void pull_task(struct rq *src_rq, struct task_struct *p,
2268 struct rq *this_rq, int this_cpu)
1da177e4 2269{
2e1cb74a 2270 deactivate_task(src_rq, p, 0);
1da177e4 2271 set_task_cpu(p, this_cpu);
dd41f596 2272 activate_task(this_rq, p, 0);
1da177e4
LT
2273 /*
2274 * Note that idle threads have a prio of MAX_PRIO, for this test
2275 * to be always true for them.
2276 */
dd41f596 2277 check_preempt_curr(this_rq, p);
1da177e4
LT
2278}
2279
2280/*
2281 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2282 */
858119e1 2283static
70b97a7f 2284int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2285 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2286 int *all_pinned)
1da177e4
LT
2287{
2288 /*
2289 * We do not migrate tasks that are:
2290 * 1) running (obviously), or
2291 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2292 * 3) are cache-hot on their current CPU.
2293 */
cc367732
IM
2294 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2295 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2296 return 0;
cc367732 2297 }
81026794
NP
2298 *all_pinned = 0;
2299
cc367732
IM
2300 if (task_running(rq, p)) {
2301 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2302 return 0;
cc367732 2303 }
1da177e4 2304
da84d961
IM
2305 /*
2306 * Aggressive migration if:
2307 * 1) task is cache cold, or
2308 * 2) too many balance attempts have failed.
2309 */
2310
6bc1665b
IM
2311 if (!task_hot(p, rq->clock, sd) ||
2312 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2313#ifdef CONFIG_SCHEDSTATS
cc367732 2314 if (task_hot(p, rq->clock, sd)) {
da84d961 2315 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2316 schedstat_inc(p, se.nr_forced_migrations);
2317 }
da84d961
IM
2318#endif
2319 return 1;
2320 }
2321
cc367732
IM
2322 if (task_hot(p, rq->clock, sd)) {
2323 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2324 return 0;
cc367732 2325 }
1da177e4
LT
2326 return 1;
2327}
2328
e1d1484f
PW
2329static unsigned long
2330balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2331 unsigned long max_load_move, struct sched_domain *sd,
2332 enum cpu_idle_type idle, int *all_pinned,
2333 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2334{
b82d9fdd 2335 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2336 struct task_struct *p;
2337 long rem_load_move = max_load_move;
1da177e4 2338
e1d1484f 2339 if (max_load_move == 0)
1da177e4
LT
2340 goto out;
2341
81026794
NP
2342 pinned = 1;
2343
1da177e4 2344 /*
dd41f596 2345 * Start the load-balancing iterator:
1da177e4 2346 */
dd41f596
IM
2347 p = iterator->start(iterator->arg);
2348next:
b82d9fdd 2349 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2350 goto out;
50ddd969 2351 /*
b82d9fdd 2352 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2353 * skip a task if it will be the highest priority task (i.e. smallest
2354 * prio value) on its new queue regardless of its load weight
2355 */
dd41f596
IM
2356 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2357 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2358 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2359 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2360 p = iterator->next(iterator->arg);
2361 goto next;
1da177e4
LT
2362 }
2363
dd41f596 2364 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2365 pulled++;
dd41f596 2366 rem_load_move -= p->se.load.weight;
1da177e4 2367
2dd73a4f 2368 /*
b82d9fdd 2369 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2370 */
e1d1484f 2371 if (rem_load_move > 0) {
a4ac01c3
PW
2372 if (p->prio < *this_best_prio)
2373 *this_best_prio = p->prio;
dd41f596
IM
2374 p = iterator->next(iterator->arg);
2375 goto next;
1da177e4
LT
2376 }
2377out:
2378 /*
e1d1484f 2379 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2380 * so we can safely collect pull_task() stats here rather than
2381 * inside pull_task().
2382 */
2383 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2384
2385 if (all_pinned)
2386 *all_pinned = pinned;
e1d1484f
PW
2387
2388 return max_load_move - rem_load_move;
1da177e4
LT
2389}
2390
dd41f596 2391/*
43010659
PW
2392 * move_tasks tries to move up to max_load_move weighted load from busiest to
2393 * this_rq, as part of a balancing operation within domain "sd".
2394 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2395 *
2396 * Called with both runqueues locked.
2397 */
2398static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2399 unsigned long max_load_move,
dd41f596
IM
2400 struct sched_domain *sd, enum cpu_idle_type idle,
2401 int *all_pinned)
2402{
5522d5d5 2403 const struct sched_class *class = sched_class_highest;
43010659 2404 unsigned long total_load_moved = 0;
a4ac01c3 2405 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2406
2407 do {
43010659
PW
2408 total_load_moved +=
2409 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2410 max_load_move - total_load_moved,
a4ac01c3 2411 sd, idle, all_pinned, &this_best_prio);
dd41f596 2412 class = class->next;
43010659 2413 } while (class && max_load_move > total_load_moved);
dd41f596 2414
43010659
PW
2415 return total_load_moved > 0;
2416}
2417
e1d1484f
PW
2418static int
2419iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2420 struct sched_domain *sd, enum cpu_idle_type idle,
2421 struct rq_iterator *iterator)
2422{
2423 struct task_struct *p = iterator->start(iterator->arg);
2424 int pinned = 0;
2425
2426 while (p) {
2427 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2428 pull_task(busiest, p, this_rq, this_cpu);
2429 /*
2430 * Right now, this is only the second place pull_task()
2431 * is called, so we can safely collect pull_task()
2432 * stats here rather than inside pull_task().
2433 */
2434 schedstat_inc(sd, lb_gained[idle]);
2435
2436 return 1;
2437 }
2438 p = iterator->next(iterator->arg);
2439 }
2440
2441 return 0;
2442}
2443
43010659
PW
2444/*
2445 * move_one_task tries to move exactly one task from busiest to this_rq, as
2446 * part of active balancing operations within "domain".
2447 * Returns 1 if successful and 0 otherwise.
2448 *
2449 * Called with both runqueues locked.
2450 */
2451static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2452 struct sched_domain *sd, enum cpu_idle_type idle)
2453{
5522d5d5 2454 const struct sched_class *class;
43010659
PW
2455
2456 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2457 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2458 return 1;
2459
2460 return 0;
dd41f596
IM
2461}
2462
1da177e4
LT
2463/*
2464 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2465 * domain. It calculates and returns the amount of weighted load which
2466 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2467 */
2468static struct sched_group *
2469find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2470 unsigned long *imbalance, enum cpu_idle_type idle,
2471 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2472{
2473 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2474 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2475 unsigned long max_pull;
2dd73a4f
PW
2476 unsigned long busiest_load_per_task, busiest_nr_running;
2477 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2478 int load_idx, group_imb = 0;
5c45bf27
SS
2479#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2480 int power_savings_balance = 1;
2481 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2482 unsigned long min_nr_running = ULONG_MAX;
2483 struct sched_group *group_min = NULL, *group_leader = NULL;
2484#endif
1da177e4
LT
2485
2486 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2487 busiest_load_per_task = busiest_nr_running = 0;
2488 this_load_per_task = this_nr_running = 0;
d15bcfdb 2489 if (idle == CPU_NOT_IDLE)
7897986b 2490 load_idx = sd->busy_idx;
d15bcfdb 2491 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2492 load_idx = sd->newidle_idx;
2493 else
2494 load_idx = sd->idle_idx;
1da177e4
LT
2495
2496 do {
908a7c1b 2497 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2498 int local_group;
2499 int i;
908a7c1b 2500 int __group_imb = 0;
783609c6 2501 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2502 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2503
2504 local_group = cpu_isset(this_cpu, group->cpumask);
2505
783609c6
SS
2506 if (local_group)
2507 balance_cpu = first_cpu(group->cpumask);
2508
1da177e4 2509 /* Tally up the load of all CPUs in the group */
2dd73a4f 2510 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2511 max_cpu_load = 0;
2512 min_cpu_load = ~0UL;
1da177e4
LT
2513
2514 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2515 struct rq *rq;
2516
2517 if (!cpu_isset(i, *cpus))
2518 continue;
2519
2520 rq = cpu_rq(i);
2dd73a4f 2521
9439aab8 2522 if (*sd_idle && rq->nr_running)
5969fe06
NP
2523 *sd_idle = 0;
2524
1da177e4 2525 /* Bias balancing toward cpus of our domain */
783609c6
SS
2526 if (local_group) {
2527 if (idle_cpu(i) && !first_idle_cpu) {
2528 first_idle_cpu = 1;
2529 balance_cpu = i;
2530 }
2531
a2000572 2532 load = target_load(i, load_idx);
908a7c1b 2533 } else {
a2000572 2534 load = source_load(i, load_idx);
908a7c1b
KC
2535 if (load > max_cpu_load)
2536 max_cpu_load = load;
2537 if (min_cpu_load > load)
2538 min_cpu_load = load;
2539 }
1da177e4
LT
2540
2541 avg_load += load;
2dd73a4f 2542 sum_nr_running += rq->nr_running;
dd41f596 2543 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2544 }
2545
783609c6
SS
2546 /*
2547 * First idle cpu or the first cpu(busiest) in this sched group
2548 * is eligible for doing load balancing at this and above
9439aab8
SS
2549 * domains. In the newly idle case, we will allow all the cpu's
2550 * to do the newly idle load balance.
783609c6 2551 */
9439aab8
SS
2552 if (idle != CPU_NEWLY_IDLE && local_group &&
2553 balance_cpu != this_cpu && balance) {
783609c6
SS
2554 *balance = 0;
2555 goto ret;
2556 }
2557
1da177e4 2558 total_load += avg_load;
5517d86b 2559 total_pwr += group->__cpu_power;
1da177e4
LT
2560
2561 /* Adjust by relative CPU power of the group */
5517d86b
ED
2562 avg_load = sg_div_cpu_power(group,
2563 avg_load * SCHED_LOAD_SCALE);
1da177e4 2564
908a7c1b
KC
2565 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2566 __group_imb = 1;
2567
5517d86b 2568 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2569
1da177e4
LT
2570 if (local_group) {
2571 this_load = avg_load;
2572 this = group;
2dd73a4f
PW
2573 this_nr_running = sum_nr_running;
2574 this_load_per_task = sum_weighted_load;
2575 } else if (avg_load > max_load &&
908a7c1b 2576 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2577 max_load = avg_load;
2578 busiest = group;
2dd73a4f
PW
2579 busiest_nr_running = sum_nr_running;
2580 busiest_load_per_task = sum_weighted_load;
908a7c1b 2581 group_imb = __group_imb;
1da177e4 2582 }
5c45bf27
SS
2583
2584#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2585 /*
2586 * Busy processors will not participate in power savings
2587 * balance.
2588 */
dd41f596
IM
2589 if (idle == CPU_NOT_IDLE ||
2590 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2591 goto group_next;
5c45bf27
SS
2592
2593 /*
2594 * If the local group is idle or completely loaded
2595 * no need to do power savings balance at this domain
2596 */
2597 if (local_group && (this_nr_running >= group_capacity ||
2598 !this_nr_running))
2599 power_savings_balance = 0;
2600
dd41f596 2601 /*
5c45bf27
SS
2602 * If a group is already running at full capacity or idle,
2603 * don't include that group in power savings calculations
dd41f596
IM
2604 */
2605 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2606 || !sum_nr_running)
dd41f596 2607 goto group_next;
5c45bf27 2608
dd41f596 2609 /*
5c45bf27 2610 * Calculate the group which has the least non-idle load.
dd41f596
IM
2611 * This is the group from where we need to pick up the load
2612 * for saving power
2613 */
2614 if ((sum_nr_running < min_nr_running) ||
2615 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2616 first_cpu(group->cpumask) <
2617 first_cpu(group_min->cpumask))) {
dd41f596
IM
2618 group_min = group;
2619 min_nr_running = sum_nr_running;
5c45bf27
SS
2620 min_load_per_task = sum_weighted_load /
2621 sum_nr_running;
dd41f596 2622 }
5c45bf27 2623
dd41f596 2624 /*
5c45bf27 2625 * Calculate the group which is almost near its
dd41f596
IM
2626 * capacity but still has some space to pick up some load
2627 * from other group and save more power
2628 */
2629 if (sum_nr_running <= group_capacity - 1) {
2630 if (sum_nr_running > leader_nr_running ||
2631 (sum_nr_running == leader_nr_running &&
2632 first_cpu(group->cpumask) >
2633 first_cpu(group_leader->cpumask))) {
2634 group_leader = group;
2635 leader_nr_running = sum_nr_running;
2636 }
48f24c4d 2637 }
5c45bf27
SS
2638group_next:
2639#endif
1da177e4
LT
2640 group = group->next;
2641 } while (group != sd->groups);
2642
2dd73a4f 2643 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2644 goto out_balanced;
2645
2646 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2647
2648 if (this_load >= avg_load ||
2649 100*max_load <= sd->imbalance_pct*this_load)
2650 goto out_balanced;
2651
2dd73a4f 2652 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2653 if (group_imb)
2654 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2655
1da177e4
LT
2656 /*
2657 * We're trying to get all the cpus to the average_load, so we don't
2658 * want to push ourselves above the average load, nor do we wish to
2659 * reduce the max loaded cpu below the average load, as either of these
2660 * actions would just result in more rebalancing later, and ping-pong
2661 * tasks around. Thus we look for the minimum possible imbalance.
2662 * Negative imbalances (*we* are more loaded than anyone else) will
2663 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2664 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2665 * appear as very large values with unsigned longs.
2666 */
2dd73a4f
PW
2667 if (max_load <= busiest_load_per_task)
2668 goto out_balanced;
2669
2670 /*
2671 * In the presence of smp nice balancing, certain scenarios can have
2672 * max load less than avg load(as we skip the groups at or below
2673 * its cpu_power, while calculating max_load..)
2674 */
2675 if (max_load < avg_load) {
2676 *imbalance = 0;
2677 goto small_imbalance;
2678 }
0c117f1b
SS
2679
2680 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2681 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2682
1da177e4 2683 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2684 *imbalance = min(max_pull * busiest->__cpu_power,
2685 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2686 / SCHED_LOAD_SCALE;
2687
2dd73a4f
PW
2688 /*
2689 * if *imbalance is less than the average load per runnable task
2690 * there is no gaurantee that any tasks will be moved so we'll have
2691 * a think about bumping its value to force at least one task to be
2692 * moved
2693 */
7fd0d2dd 2694 if (*imbalance < busiest_load_per_task) {
48f24c4d 2695 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2696 unsigned int imbn;
2697
2698small_imbalance:
2699 pwr_move = pwr_now = 0;
2700 imbn = 2;
2701 if (this_nr_running) {
2702 this_load_per_task /= this_nr_running;
2703 if (busiest_load_per_task > this_load_per_task)
2704 imbn = 1;
2705 } else
2706 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2707
dd41f596
IM
2708 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2709 busiest_load_per_task * imbn) {
2dd73a4f 2710 *imbalance = busiest_load_per_task;
1da177e4
LT
2711 return busiest;
2712 }
2713
2714 /*
2715 * OK, we don't have enough imbalance to justify moving tasks,
2716 * however we may be able to increase total CPU power used by
2717 * moving them.
2718 */
2719
5517d86b
ED
2720 pwr_now += busiest->__cpu_power *
2721 min(busiest_load_per_task, max_load);
2722 pwr_now += this->__cpu_power *
2723 min(this_load_per_task, this_load);
1da177e4
LT
2724 pwr_now /= SCHED_LOAD_SCALE;
2725
2726 /* Amount of load we'd subtract */
5517d86b
ED
2727 tmp = sg_div_cpu_power(busiest,
2728 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2729 if (max_load > tmp)
5517d86b 2730 pwr_move += busiest->__cpu_power *
2dd73a4f 2731 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2732
2733 /* Amount of load we'd add */
5517d86b 2734 if (max_load * busiest->__cpu_power <
33859f7f 2735 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2736 tmp = sg_div_cpu_power(this,
2737 max_load * busiest->__cpu_power);
1da177e4 2738 else
5517d86b
ED
2739 tmp = sg_div_cpu_power(this,
2740 busiest_load_per_task * SCHED_LOAD_SCALE);
2741 pwr_move += this->__cpu_power *
2742 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2743 pwr_move /= SCHED_LOAD_SCALE;
2744
2745 /* Move if we gain throughput */
7fd0d2dd
SS
2746 if (pwr_move > pwr_now)
2747 *imbalance = busiest_load_per_task;
1da177e4
LT
2748 }
2749
1da177e4
LT
2750 return busiest;
2751
2752out_balanced:
5c45bf27 2753#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2754 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2755 goto ret;
1da177e4 2756
5c45bf27
SS
2757 if (this == group_leader && group_leader != group_min) {
2758 *imbalance = min_load_per_task;
2759 return group_min;
2760 }
5c45bf27 2761#endif
783609c6 2762ret:
1da177e4
LT
2763 *imbalance = 0;
2764 return NULL;
2765}
2766
2767/*
2768 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2769 */
70b97a7f 2770static struct rq *
d15bcfdb 2771find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2772 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2773{
70b97a7f 2774 struct rq *busiest = NULL, *rq;
2dd73a4f 2775 unsigned long max_load = 0;
1da177e4
LT
2776 int i;
2777
2778 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2779 unsigned long wl;
0a2966b4
CL
2780
2781 if (!cpu_isset(i, *cpus))
2782 continue;
2783
48f24c4d 2784 rq = cpu_rq(i);
dd41f596 2785 wl = weighted_cpuload(i);
2dd73a4f 2786
dd41f596 2787 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2788 continue;
1da177e4 2789
dd41f596
IM
2790 if (wl > max_load) {
2791 max_load = wl;
48f24c4d 2792 busiest = rq;
1da177e4
LT
2793 }
2794 }
2795
2796 return busiest;
2797}
2798
77391d71
NP
2799/*
2800 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2801 * so long as it is large enough.
2802 */
2803#define MAX_PINNED_INTERVAL 512
2804
1da177e4
LT
2805/*
2806 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2807 * tasks if there is an imbalance.
1da177e4 2808 */
70b97a7f 2809static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2810 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2811 int *balance)
1da177e4 2812{
43010659 2813 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2814 struct sched_group *group;
1da177e4 2815 unsigned long imbalance;
70b97a7f 2816 struct rq *busiest;
0a2966b4 2817 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2818 unsigned long flags;
5969fe06 2819
89c4710e
SS
2820 /*
2821 * When power savings policy is enabled for the parent domain, idle
2822 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2823 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2824 * portraying it as CPU_NOT_IDLE.
89c4710e 2825 */
d15bcfdb 2826 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2827 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2828 sd_idle = 1;
1da177e4 2829
2d72376b 2830 schedstat_inc(sd, lb_count[idle]);
1da177e4 2831
0a2966b4
CL
2832redo:
2833 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2834 &cpus, balance);
2835
06066714 2836 if (*balance == 0)
783609c6 2837 goto out_balanced;
783609c6 2838
1da177e4
LT
2839 if (!group) {
2840 schedstat_inc(sd, lb_nobusyg[idle]);
2841 goto out_balanced;
2842 }
2843
0a2966b4 2844 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2845 if (!busiest) {
2846 schedstat_inc(sd, lb_nobusyq[idle]);
2847 goto out_balanced;
2848 }
2849
db935dbd 2850 BUG_ON(busiest == this_rq);
1da177e4
LT
2851
2852 schedstat_add(sd, lb_imbalance[idle], imbalance);
2853
43010659 2854 ld_moved = 0;
1da177e4
LT
2855 if (busiest->nr_running > 1) {
2856 /*
2857 * Attempt to move tasks. If find_busiest_group has found
2858 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2859 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2860 * correctly treated as an imbalance.
2861 */
fe2eea3f 2862 local_irq_save(flags);
e17224bf 2863 double_rq_lock(this_rq, busiest);
43010659 2864 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2865 imbalance, sd, idle, &all_pinned);
e17224bf 2866 double_rq_unlock(this_rq, busiest);
fe2eea3f 2867 local_irq_restore(flags);
81026794 2868
46cb4b7c
SS
2869 /*
2870 * some other cpu did the load balance for us.
2871 */
43010659 2872 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2873 resched_cpu(this_cpu);
2874
81026794 2875 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2876 if (unlikely(all_pinned)) {
2877 cpu_clear(cpu_of(busiest), cpus);
2878 if (!cpus_empty(cpus))
2879 goto redo;
81026794 2880 goto out_balanced;
0a2966b4 2881 }
1da177e4 2882 }
81026794 2883
43010659 2884 if (!ld_moved) {
1da177e4
LT
2885 schedstat_inc(sd, lb_failed[idle]);
2886 sd->nr_balance_failed++;
2887
2888 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2889
fe2eea3f 2890 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2891
2892 /* don't kick the migration_thread, if the curr
2893 * task on busiest cpu can't be moved to this_cpu
2894 */
2895 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2896 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2897 all_pinned = 1;
2898 goto out_one_pinned;
2899 }
2900
1da177e4
LT
2901 if (!busiest->active_balance) {
2902 busiest->active_balance = 1;
2903 busiest->push_cpu = this_cpu;
81026794 2904 active_balance = 1;
1da177e4 2905 }
fe2eea3f 2906 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2907 if (active_balance)
1da177e4
LT
2908 wake_up_process(busiest->migration_thread);
2909
2910 /*
2911 * We've kicked active balancing, reset the failure
2912 * counter.
2913 */
39507451 2914 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2915 }
81026794 2916 } else
1da177e4
LT
2917 sd->nr_balance_failed = 0;
2918
81026794 2919 if (likely(!active_balance)) {
1da177e4
LT
2920 /* We were unbalanced, so reset the balancing interval */
2921 sd->balance_interval = sd->min_interval;
81026794
NP
2922 } else {
2923 /*
2924 * If we've begun active balancing, start to back off. This
2925 * case may not be covered by the all_pinned logic if there
2926 * is only 1 task on the busy runqueue (because we don't call
2927 * move_tasks).
2928 */
2929 if (sd->balance_interval < sd->max_interval)
2930 sd->balance_interval *= 2;
1da177e4
LT
2931 }
2932
43010659 2933 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2934 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2935 return -1;
43010659 2936 return ld_moved;
1da177e4
LT
2937
2938out_balanced:
1da177e4
LT
2939 schedstat_inc(sd, lb_balanced[idle]);
2940
16cfb1c0 2941 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2942
2943out_one_pinned:
1da177e4 2944 /* tune up the balancing interval */
77391d71
NP
2945 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2946 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2947 sd->balance_interval *= 2;
2948
48f24c4d 2949 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2950 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2951 return -1;
1da177e4
LT
2952 return 0;
2953}
2954
2955/*
2956 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2957 * tasks if there is an imbalance.
2958 *
d15bcfdb 2959 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2960 * this_rq is locked.
2961 */
48f24c4d 2962static int
70b97a7f 2963load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2964{
2965 struct sched_group *group;
70b97a7f 2966 struct rq *busiest = NULL;
1da177e4 2967 unsigned long imbalance;
43010659 2968 int ld_moved = 0;
5969fe06 2969 int sd_idle = 0;
969bb4e4 2970 int all_pinned = 0;
0a2966b4 2971 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2972
89c4710e
SS
2973 /*
2974 * When power savings policy is enabled for the parent domain, idle
2975 * sibling can pick up load irrespective of busy siblings. In this case,
2976 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2977 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2978 */
2979 if (sd->flags & SD_SHARE_CPUPOWER &&
2980 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2981 sd_idle = 1;
1da177e4 2982
2d72376b 2983 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2984redo:
d15bcfdb 2985 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2986 &sd_idle, &cpus, NULL);
1da177e4 2987 if (!group) {
d15bcfdb 2988 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2989 goto out_balanced;
1da177e4
LT
2990 }
2991
d15bcfdb 2992 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2993 &cpus);
db935dbd 2994 if (!busiest) {
d15bcfdb 2995 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2996 goto out_balanced;
1da177e4
LT
2997 }
2998
db935dbd
NP
2999 BUG_ON(busiest == this_rq);
3000
d15bcfdb 3001 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3002
43010659 3003 ld_moved = 0;
d6d5cfaf
NP
3004 if (busiest->nr_running > 1) {
3005 /* Attempt to move tasks */
3006 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3007 /* this_rq->clock is already updated */
3008 update_rq_clock(busiest);
43010659 3009 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3010 imbalance, sd, CPU_NEWLY_IDLE,
3011 &all_pinned);
d6d5cfaf 3012 spin_unlock(&busiest->lock);
0a2966b4 3013
969bb4e4 3014 if (unlikely(all_pinned)) {
0a2966b4
CL
3015 cpu_clear(cpu_of(busiest), cpus);
3016 if (!cpus_empty(cpus))
3017 goto redo;
3018 }
d6d5cfaf
NP
3019 }
3020
43010659 3021 if (!ld_moved) {
d15bcfdb 3022 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3023 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3024 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3025 return -1;
3026 } else
16cfb1c0 3027 sd->nr_balance_failed = 0;
1da177e4 3028
43010659 3029 return ld_moved;
16cfb1c0
NP
3030
3031out_balanced:
d15bcfdb 3032 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3033 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3034 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3035 return -1;
16cfb1c0 3036 sd->nr_balance_failed = 0;
48f24c4d 3037
16cfb1c0 3038 return 0;
1da177e4
LT
3039}
3040
3041/*
3042 * idle_balance is called by schedule() if this_cpu is about to become
3043 * idle. Attempts to pull tasks from other CPUs.
3044 */
70b97a7f 3045static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3046{
3047 struct sched_domain *sd;
dd41f596
IM
3048 int pulled_task = -1;
3049 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3050
3051 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3052 unsigned long interval;
3053
3054 if (!(sd->flags & SD_LOAD_BALANCE))
3055 continue;
3056
3057 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3058 /* If we've pulled tasks over stop searching: */
1bd77f2d 3059 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
3060 this_rq, sd);
3061
3062 interval = msecs_to_jiffies(sd->balance_interval);
3063 if (time_after(next_balance, sd->last_balance + interval))
3064 next_balance = sd->last_balance + interval;
3065 if (pulled_task)
3066 break;
1da177e4 3067 }
dd41f596 3068 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3069 /*
3070 * We are going idle. next_balance may be set based on
3071 * a busy processor. So reset next_balance.
3072 */
3073 this_rq->next_balance = next_balance;
dd41f596 3074 }
1da177e4
LT
3075}
3076
3077/*
3078 * active_load_balance is run by migration threads. It pushes running tasks
3079 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3080 * running on each physical CPU where possible, and avoids physical /
3081 * logical imbalances.
3082 *
3083 * Called with busiest_rq locked.
3084 */
70b97a7f 3085static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3086{
39507451 3087 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3088 struct sched_domain *sd;
3089 struct rq *target_rq;
39507451 3090
48f24c4d 3091 /* Is there any task to move? */
39507451 3092 if (busiest_rq->nr_running <= 1)
39507451
NP
3093 return;
3094
3095 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3096
3097 /*
39507451 3098 * This condition is "impossible", if it occurs
41a2d6cf 3099 * we need to fix it. Originally reported by
39507451 3100 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3101 */
39507451 3102 BUG_ON(busiest_rq == target_rq);
1da177e4 3103
39507451
NP
3104 /* move a task from busiest_rq to target_rq */
3105 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3106 update_rq_clock(busiest_rq);
3107 update_rq_clock(target_rq);
39507451
NP
3108
3109 /* Search for an sd spanning us and the target CPU. */
c96d145e 3110 for_each_domain(target_cpu, sd) {
39507451 3111 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3112 cpu_isset(busiest_cpu, sd->span))
39507451 3113 break;
c96d145e 3114 }
39507451 3115
48f24c4d 3116 if (likely(sd)) {
2d72376b 3117 schedstat_inc(sd, alb_count);
39507451 3118
43010659
PW
3119 if (move_one_task(target_rq, target_cpu, busiest_rq,
3120 sd, CPU_IDLE))
48f24c4d
IM
3121 schedstat_inc(sd, alb_pushed);
3122 else
3123 schedstat_inc(sd, alb_failed);
3124 }
39507451 3125 spin_unlock(&target_rq->lock);
1da177e4
LT
3126}
3127
46cb4b7c
SS
3128#ifdef CONFIG_NO_HZ
3129static struct {
3130 atomic_t load_balancer;
41a2d6cf 3131 cpumask_t cpu_mask;
46cb4b7c
SS
3132} nohz ____cacheline_aligned = {
3133 .load_balancer = ATOMIC_INIT(-1),
3134 .cpu_mask = CPU_MASK_NONE,
3135};
3136
7835b98b 3137/*
46cb4b7c
SS
3138 * This routine will try to nominate the ilb (idle load balancing)
3139 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3140 * load balancing on behalf of all those cpus. If all the cpus in the system
3141 * go into this tickless mode, then there will be no ilb owner (as there is
3142 * no need for one) and all the cpus will sleep till the next wakeup event
3143 * arrives...
3144 *
3145 * For the ilb owner, tick is not stopped. And this tick will be used
3146 * for idle load balancing. ilb owner will still be part of
3147 * nohz.cpu_mask..
7835b98b 3148 *
46cb4b7c
SS
3149 * While stopping the tick, this cpu will become the ilb owner if there
3150 * is no other owner. And will be the owner till that cpu becomes busy
3151 * or if all cpus in the system stop their ticks at which point
3152 * there is no need for ilb owner.
3153 *
3154 * When the ilb owner becomes busy, it nominates another owner, during the
3155 * next busy scheduler_tick()
3156 */
3157int select_nohz_load_balancer(int stop_tick)
3158{
3159 int cpu = smp_processor_id();
3160
3161 if (stop_tick) {
3162 cpu_set(cpu, nohz.cpu_mask);
3163 cpu_rq(cpu)->in_nohz_recently = 1;
3164
3165 /*
3166 * If we are going offline and still the leader, give up!
3167 */
3168 if (cpu_is_offline(cpu) &&
3169 atomic_read(&nohz.load_balancer) == cpu) {
3170 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3171 BUG();
3172 return 0;
3173 }
3174
3175 /* time for ilb owner also to sleep */
3176 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3177 if (atomic_read(&nohz.load_balancer) == cpu)
3178 atomic_set(&nohz.load_balancer, -1);
3179 return 0;
3180 }
3181
3182 if (atomic_read(&nohz.load_balancer) == -1) {
3183 /* make me the ilb owner */
3184 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3185 return 1;
3186 } else if (atomic_read(&nohz.load_balancer) == cpu)
3187 return 1;
3188 } else {
3189 if (!cpu_isset(cpu, nohz.cpu_mask))
3190 return 0;
3191
3192 cpu_clear(cpu, nohz.cpu_mask);
3193
3194 if (atomic_read(&nohz.load_balancer) == cpu)
3195 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3196 BUG();
3197 }
3198 return 0;
3199}
3200#endif
3201
3202static DEFINE_SPINLOCK(balancing);
3203
3204/*
7835b98b
CL
3205 * It checks each scheduling domain to see if it is due to be balanced,
3206 * and initiates a balancing operation if so.
3207 *
3208 * Balancing parameters are set up in arch_init_sched_domains.
3209 */
a9957449 3210static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3211{
46cb4b7c
SS
3212 int balance = 1;
3213 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3214 unsigned long interval;
3215 struct sched_domain *sd;
46cb4b7c 3216 /* Earliest time when we have to do rebalance again */
c9819f45 3217 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3218 int update_next_balance = 0;
1da177e4 3219
46cb4b7c 3220 for_each_domain(cpu, sd) {
1da177e4
LT
3221 if (!(sd->flags & SD_LOAD_BALANCE))
3222 continue;
3223
3224 interval = sd->balance_interval;
d15bcfdb 3225 if (idle != CPU_IDLE)
1da177e4
LT
3226 interval *= sd->busy_factor;
3227
3228 /* scale ms to jiffies */
3229 interval = msecs_to_jiffies(interval);
3230 if (unlikely(!interval))
3231 interval = 1;
dd41f596
IM
3232 if (interval > HZ*NR_CPUS/10)
3233 interval = HZ*NR_CPUS/10;
3234
1da177e4 3235
08c183f3
CL
3236 if (sd->flags & SD_SERIALIZE) {
3237 if (!spin_trylock(&balancing))
3238 goto out;
3239 }
3240
c9819f45 3241 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3242 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3243 /*
3244 * We've pulled tasks over so either we're no
5969fe06
NP
3245 * longer idle, or one of our SMT siblings is
3246 * not idle.
3247 */
d15bcfdb 3248 idle = CPU_NOT_IDLE;
1da177e4 3249 }
1bd77f2d 3250 sd->last_balance = jiffies;
1da177e4 3251 }
08c183f3
CL
3252 if (sd->flags & SD_SERIALIZE)
3253 spin_unlock(&balancing);
3254out:
f549da84 3255 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3256 next_balance = sd->last_balance + interval;
f549da84
SS
3257 update_next_balance = 1;
3258 }
783609c6
SS
3259
3260 /*
3261 * Stop the load balance at this level. There is another
3262 * CPU in our sched group which is doing load balancing more
3263 * actively.
3264 */
3265 if (!balance)
3266 break;
1da177e4 3267 }
f549da84
SS
3268
3269 /*
3270 * next_balance will be updated only when there is a need.
3271 * When the cpu is attached to null domain for ex, it will not be
3272 * updated.
3273 */
3274 if (likely(update_next_balance))
3275 rq->next_balance = next_balance;
46cb4b7c
SS
3276}
3277
3278/*
3279 * run_rebalance_domains is triggered when needed from the scheduler tick.
3280 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3281 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3282 */
3283static void run_rebalance_domains(struct softirq_action *h)
3284{
dd41f596
IM
3285 int this_cpu = smp_processor_id();
3286 struct rq *this_rq = cpu_rq(this_cpu);
3287 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3288 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3289
dd41f596 3290 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3291
3292#ifdef CONFIG_NO_HZ
3293 /*
3294 * If this cpu is the owner for idle load balancing, then do the
3295 * balancing on behalf of the other idle cpus whose ticks are
3296 * stopped.
3297 */
dd41f596
IM
3298 if (this_rq->idle_at_tick &&
3299 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3300 cpumask_t cpus = nohz.cpu_mask;
3301 struct rq *rq;
3302 int balance_cpu;
3303
dd41f596 3304 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3305 for_each_cpu_mask(balance_cpu, cpus) {
3306 /*
3307 * If this cpu gets work to do, stop the load balancing
3308 * work being done for other cpus. Next load
3309 * balancing owner will pick it up.
3310 */
3311 if (need_resched())
3312 break;
3313
de0cf899 3314 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3315
3316 rq = cpu_rq(balance_cpu);
dd41f596
IM
3317 if (time_after(this_rq->next_balance, rq->next_balance))
3318 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3319 }
3320 }
3321#endif
3322}
3323
3324/*
3325 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3326 *
3327 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3328 * idle load balancing owner or decide to stop the periodic load balancing,
3329 * if the whole system is idle.
3330 */
dd41f596 3331static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3332{
46cb4b7c
SS
3333#ifdef CONFIG_NO_HZ
3334 /*
3335 * If we were in the nohz mode recently and busy at the current
3336 * scheduler tick, then check if we need to nominate new idle
3337 * load balancer.
3338 */
3339 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3340 rq->in_nohz_recently = 0;
3341
3342 if (atomic_read(&nohz.load_balancer) == cpu) {
3343 cpu_clear(cpu, nohz.cpu_mask);
3344 atomic_set(&nohz.load_balancer, -1);
3345 }
3346
3347 if (atomic_read(&nohz.load_balancer) == -1) {
3348 /*
3349 * simple selection for now: Nominate the
3350 * first cpu in the nohz list to be the next
3351 * ilb owner.
3352 *
3353 * TBD: Traverse the sched domains and nominate
3354 * the nearest cpu in the nohz.cpu_mask.
3355 */
3356 int ilb = first_cpu(nohz.cpu_mask);
3357
3358 if (ilb != NR_CPUS)
3359 resched_cpu(ilb);
3360 }
3361 }
3362
3363 /*
3364 * If this cpu is idle and doing idle load balancing for all the
3365 * cpus with ticks stopped, is it time for that to stop?
3366 */
3367 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3368 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3369 resched_cpu(cpu);
3370 return;
3371 }
3372
3373 /*
3374 * If this cpu is idle and the idle load balancing is done by
3375 * someone else, then no need raise the SCHED_SOFTIRQ
3376 */
3377 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3378 cpu_isset(cpu, nohz.cpu_mask))
3379 return;
3380#endif
3381 if (time_after_eq(jiffies, rq->next_balance))
3382 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3383}
dd41f596
IM
3384
3385#else /* CONFIG_SMP */
3386
1da177e4
LT
3387/*
3388 * on UP we do not need to balance between CPUs:
3389 */
70b97a7f 3390static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3391{
3392}
dd41f596 3393
1da177e4
LT
3394#endif
3395
1da177e4
LT
3396DEFINE_PER_CPU(struct kernel_stat, kstat);
3397
3398EXPORT_PER_CPU_SYMBOL(kstat);
3399
3400/*
41b86e9c
IM
3401 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3402 * that have not yet been banked in case the task is currently running.
1da177e4 3403 */
41b86e9c 3404unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3405{
1da177e4 3406 unsigned long flags;
41b86e9c
IM
3407 u64 ns, delta_exec;
3408 struct rq *rq;
48f24c4d 3409
41b86e9c
IM
3410 rq = task_rq_lock(p, &flags);
3411 ns = p->se.sum_exec_runtime;
051a1d1a 3412 if (task_current(rq, p)) {
a8e504d2
IM
3413 update_rq_clock(rq);
3414 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3415 if ((s64)delta_exec > 0)
3416 ns += delta_exec;
3417 }
3418 task_rq_unlock(rq, &flags);
48f24c4d 3419
1da177e4
LT
3420 return ns;
3421}
3422
1da177e4
LT
3423/*
3424 * Account user cpu time to a process.
3425 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3426 * @cputime: the cpu time spent in user space since the last update
3427 */
3428void account_user_time(struct task_struct *p, cputime_t cputime)
3429{
3430 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3431 cputime64_t tmp;
3432
3433 p->utime = cputime_add(p->utime, cputime);
3434
3435 /* Add user time to cpustat. */
3436 tmp = cputime_to_cputime64(cputime);
3437 if (TASK_NICE(p) > 0)
3438 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3439 else
3440 cpustat->user = cputime64_add(cpustat->user, tmp);
3441}
3442
94886b84
LV
3443/*
3444 * Account guest cpu time to a process.
3445 * @p: the process that the cpu time gets accounted to
3446 * @cputime: the cpu time spent in virtual machine since the last update
3447 */
f7402e03 3448static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3449{
3450 cputime64_t tmp;
3451 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3452
3453 tmp = cputime_to_cputime64(cputime);
3454
3455 p->utime = cputime_add(p->utime, cputime);
3456 p->gtime = cputime_add(p->gtime, cputime);
3457
3458 cpustat->user = cputime64_add(cpustat->user, tmp);
3459 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3460}
3461
c66f08be
MN
3462/*
3463 * Account scaled user cpu time to a process.
3464 * @p: the process that the cpu time gets accounted to
3465 * @cputime: the cpu time spent in user space since the last update
3466 */
3467void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3468{
3469 p->utimescaled = cputime_add(p->utimescaled, cputime);
3470}
3471
1da177e4
LT
3472/*
3473 * Account system cpu time to a process.
3474 * @p: the process that the cpu time gets accounted to
3475 * @hardirq_offset: the offset to subtract from hardirq_count()
3476 * @cputime: the cpu time spent in kernel space since the last update
3477 */
3478void account_system_time(struct task_struct *p, int hardirq_offset,
3479 cputime_t cputime)
3480{
3481 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3482 struct rq *rq = this_rq();
1da177e4
LT
3483 cputime64_t tmp;
3484
9778385d
CB
3485 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3486 return account_guest_time(p, cputime);
94886b84 3487
1da177e4
LT
3488 p->stime = cputime_add(p->stime, cputime);
3489
3490 /* Add system time to cpustat. */
3491 tmp = cputime_to_cputime64(cputime);
3492 if (hardirq_count() - hardirq_offset)
3493 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3494 else if (softirq_count())
3495 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3496 else if (p != rq->idle)
1da177e4 3497 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3498 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3499 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3500 else
3501 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3502 /* Account for system time used */
3503 acct_update_integrals(p);
1da177e4
LT
3504}
3505
c66f08be
MN
3506/*
3507 * Account scaled system cpu time to a process.
3508 * @p: the process that the cpu time gets accounted to
3509 * @hardirq_offset: the offset to subtract from hardirq_count()
3510 * @cputime: the cpu time spent in kernel space since the last update
3511 */
3512void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3513{
3514 p->stimescaled = cputime_add(p->stimescaled, cputime);
3515}
3516
1da177e4
LT
3517/*
3518 * Account for involuntary wait time.
3519 * @p: the process from which the cpu time has been stolen
3520 * @steal: the cpu time spent in involuntary wait
3521 */
3522void account_steal_time(struct task_struct *p, cputime_t steal)
3523{
3524 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3525 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3526 struct rq *rq = this_rq();
1da177e4
LT
3527
3528 if (p == rq->idle) {
3529 p->stime = cputime_add(p->stime, steal);
3530 if (atomic_read(&rq->nr_iowait) > 0)
3531 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3532 else
3533 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3534 } else
1da177e4
LT
3535 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3536}
3537
7835b98b
CL
3538/*
3539 * This function gets called by the timer code, with HZ frequency.
3540 * We call it with interrupts disabled.
3541 *
3542 * It also gets called by the fork code, when changing the parent's
3543 * timeslices.
3544 */
3545void scheduler_tick(void)
3546{
7835b98b
CL
3547 int cpu = smp_processor_id();
3548 struct rq *rq = cpu_rq(cpu);
dd41f596 3549 struct task_struct *curr = rq->curr;
529c7726 3550 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3551
3552 spin_lock(&rq->lock);
546fe3c9 3553 __update_rq_clock(rq);
529c7726
IM
3554 /*
3555 * Let rq->clock advance by at least TICK_NSEC:
3556 */
3557 if (unlikely(rq->clock < next_tick))
3558 rq->clock = next_tick;
3559 rq->tick_timestamp = rq->clock;
f1a438d8 3560 update_cpu_load(rq);
dd41f596
IM
3561 if (curr != rq->idle) /* FIXME: needed? */
3562 curr->sched_class->task_tick(rq, curr);
dd41f596 3563 spin_unlock(&rq->lock);
7835b98b 3564
e418e1c2 3565#ifdef CONFIG_SMP
dd41f596
IM
3566 rq->idle_at_tick = idle_cpu(cpu);
3567 trigger_load_balance(rq, cpu);
e418e1c2 3568#endif
1da177e4
LT
3569}
3570
1da177e4
LT
3571#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3572
3573void fastcall add_preempt_count(int val)
3574{
3575 /*
3576 * Underflow?
3577 */
9a11b49a
IM
3578 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3579 return;
1da177e4
LT
3580 preempt_count() += val;
3581 /*
3582 * Spinlock count overflowing soon?
3583 */
33859f7f
MOS
3584 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3585 PREEMPT_MASK - 10);
1da177e4
LT
3586}
3587EXPORT_SYMBOL(add_preempt_count);
3588
3589void fastcall sub_preempt_count(int val)
3590{
3591 /*
3592 * Underflow?
3593 */
9a11b49a
IM
3594 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3595 return;
1da177e4
LT
3596 /*
3597 * Is the spinlock portion underflowing?
3598 */
9a11b49a
IM
3599 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3600 !(preempt_count() & PREEMPT_MASK)))
3601 return;
3602
1da177e4
LT
3603 preempt_count() -= val;
3604}
3605EXPORT_SYMBOL(sub_preempt_count);
3606
3607#endif
3608
3609/*
dd41f596 3610 * Print scheduling while atomic bug:
1da177e4 3611 */
dd41f596 3612static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3613{
838225b4
SS
3614 struct pt_regs *regs = get_irq_regs();
3615
3616 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3617 prev->comm, prev->pid, preempt_count());
3618
dd41f596
IM
3619 debug_show_held_locks(prev);
3620 if (irqs_disabled())
3621 print_irqtrace_events(prev);
838225b4
SS
3622
3623 if (regs)
3624 show_regs(regs);
3625 else
3626 dump_stack();
dd41f596 3627}
1da177e4 3628
dd41f596
IM
3629/*
3630 * Various schedule()-time debugging checks and statistics:
3631 */
3632static inline void schedule_debug(struct task_struct *prev)
3633{
1da177e4 3634 /*
41a2d6cf 3635 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3636 * schedule() atomically, we ignore that path for now.
3637 * Otherwise, whine if we are scheduling when we should not be.
3638 */
dd41f596
IM
3639 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3640 __schedule_bug(prev);
3641
1da177e4
LT
3642 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3643
2d72376b 3644 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3645#ifdef CONFIG_SCHEDSTATS
3646 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3647 schedstat_inc(this_rq(), bkl_count);
3648 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3649 }
3650#endif
dd41f596
IM
3651}
3652
3653/*
3654 * Pick up the highest-prio task:
3655 */
3656static inline struct task_struct *
ff95f3df 3657pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3658{
5522d5d5 3659 const struct sched_class *class;
dd41f596 3660 struct task_struct *p;
1da177e4
LT
3661
3662 /*
dd41f596
IM
3663 * Optimization: we know that if all tasks are in
3664 * the fair class we can call that function directly:
1da177e4 3665 */
dd41f596 3666 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3667 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3668 if (likely(p))
3669 return p;
1da177e4
LT
3670 }
3671
dd41f596
IM
3672 class = sched_class_highest;
3673 for ( ; ; ) {
fb8d4724 3674 p = class->pick_next_task(rq);
dd41f596
IM
3675 if (p)
3676 return p;
3677 /*
3678 * Will never be NULL as the idle class always
3679 * returns a non-NULL p:
3680 */
3681 class = class->next;
3682 }
3683}
1da177e4 3684
dd41f596
IM
3685/*
3686 * schedule() is the main scheduler function.
3687 */
3688asmlinkage void __sched schedule(void)
3689{
3690 struct task_struct *prev, *next;
3691 long *switch_count;
3692 struct rq *rq;
dd41f596
IM
3693 int cpu;
3694
3695need_resched:
3696 preempt_disable();
3697 cpu = smp_processor_id();
3698 rq = cpu_rq(cpu);
3699 rcu_qsctr_inc(cpu);
3700 prev = rq->curr;
3701 switch_count = &prev->nivcsw;
3702
3703 release_kernel_lock(prev);
3704need_resched_nonpreemptible:
3705
3706 schedule_debug(prev);
1da177e4 3707
1e819950
IM
3708 /*
3709 * Do the rq-clock update outside the rq lock:
3710 */
3711 local_irq_disable();
c1b3da3e 3712 __update_rq_clock(rq);
1e819950
IM
3713 spin_lock(&rq->lock);
3714 clear_tsk_need_resched(prev);
1da177e4 3715
1da177e4 3716 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3717 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3718 unlikely(signal_pending(prev)))) {
1da177e4 3719 prev->state = TASK_RUNNING;
dd41f596 3720 } else {
2e1cb74a 3721 deactivate_task(rq, prev, 1);
1da177e4 3722 }
dd41f596 3723 switch_count = &prev->nvcsw;
1da177e4
LT
3724 }
3725
f65eda4f
SR
3726 schedule_balance_rt(rq, prev);
3727
dd41f596 3728 if (unlikely(!rq->nr_running))
1da177e4 3729 idle_balance(cpu, rq);
1da177e4 3730
31ee529c 3731 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3732 next = pick_next_task(rq, prev);
1da177e4
LT
3733
3734 sched_info_switch(prev, next);
dd41f596 3735
1da177e4 3736 if (likely(prev != next)) {
1da177e4
LT
3737 rq->nr_switches++;
3738 rq->curr = next;
3739 ++*switch_count;
3740
dd41f596 3741 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3742 } else
3743 spin_unlock_irq(&rq->lock);
3744
dd41f596
IM
3745 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3746 cpu = smp_processor_id();
3747 rq = cpu_rq(cpu);
1da177e4 3748 goto need_resched_nonpreemptible;
dd41f596 3749 }
1da177e4
LT
3750 preempt_enable_no_resched();
3751 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3752 goto need_resched;
3753}
1da177e4
LT
3754EXPORT_SYMBOL(schedule);
3755
3756#ifdef CONFIG_PREEMPT
3757/*
2ed6e34f 3758 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3759 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3760 * occur there and call schedule directly.
3761 */
3762asmlinkage void __sched preempt_schedule(void)
3763{
3764 struct thread_info *ti = current_thread_info();
3765#ifdef CONFIG_PREEMPT_BKL
3766 struct task_struct *task = current;
3767 int saved_lock_depth;
3768#endif
3769 /*
3770 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3771 * we do not want to preempt the current task. Just return..
1da177e4 3772 */
beed33a8 3773 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3774 return;
3775
3a5c359a
AK
3776 do {
3777 add_preempt_count(PREEMPT_ACTIVE);
3778
3779 /*
3780 * We keep the big kernel semaphore locked, but we
3781 * clear ->lock_depth so that schedule() doesnt
3782 * auto-release the semaphore:
3783 */
1da177e4 3784#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3785 saved_lock_depth = task->lock_depth;
3786 task->lock_depth = -1;
1da177e4 3787#endif
3a5c359a 3788 schedule();
1da177e4 3789#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3790 task->lock_depth = saved_lock_depth;
1da177e4 3791#endif
3a5c359a 3792 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3793
3a5c359a
AK
3794 /*
3795 * Check again in case we missed a preemption opportunity
3796 * between schedule and now.
3797 */
3798 barrier();
3799 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3800}
1da177e4
LT
3801EXPORT_SYMBOL(preempt_schedule);
3802
3803/*
2ed6e34f 3804 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3805 * off of irq context.
3806 * Note, that this is called and return with irqs disabled. This will
3807 * protect us against recursive calling from irq.
3808 */
3809asmlinkage void __sched preempt_schedule_irq(void)
3810{
3811 struct thread_info *ti = current_thread_info();
3812#ifdef CONFIG_PREEMPT_BKL
3813 struct task_struct *task = current;
3814 int saved_lock_depth;
3815#endif
2ed6e34f 3816 /* Catch callers which need to be fixed */
1da177e4
LT
3817 BUG_ON(ti->preempt_count || !irqs_disabled());
3818
3a5c359a
AK
3819 do {
3820 add_preempt_count(PREEMPT_ACTIVE);
3821
3822 /*
3823 * We keep the big kernel semaphore locked, but we
3824 * clear ->lock_depth so that schedule() doesnt
3825 * auto-release the semaphore:
3826 */
1da177e4 3827#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3828 saved_lock_depth = task->lock_depth;
3829 task->lock_depth = -1;
1da177e4 3830#endif
3a5c359a
AK
3831 local_irq_enable();
3832 schedule();
3833 local_irq_disable();
1da177e4 3834#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3835 task->lock_depth = saved_lock_depth;
1da177e4 3836#endif
3a5c359a 3837 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3838
3a5c359a
AK
3839 /*
3840 * Check again in case we missed a preemption opportunity
3841 * between schedule and now.
3842 */
3843 barrier();
3844 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3845}
3846
3847#endif /* CONFIG_PREEMPT */
3848
95cdf3b7
IM
3849int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3850 void *key)
1da177e4 3851{
48f24c4d 3852 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3853}
1da177e4
LT
3854EXPORT_SYMBOL(default_wake_function);
3855
3856/*
41a2d6cf
IM
3857 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3858 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3859 * number) then we wake all the non-exclusive tasks and one exclusive task.
3860 *
3861 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3862 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3863 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3864 */
3865static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3866 int nr_exclusive, int sync, void *key)
3867{
2e45874c 3868 wait_queue_t *curr, *next;
1da177e4 3869
2e45874c 3870 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3871 unsigned flags = curr->flags;
3872
1da177e4 3873 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3874 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3875 break;
3876 }
3877}
3878
3879/**
3880 * __wake_up - wake up threads blocked on a waitqueue.
3881 * @q: the waitqueue
3882 * @mode: which threads
3883 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3884 * @key: is directly passed to the wakeup function
1da177e4
LT
3885 */
3886void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3887 int nr_exclusive, void *key)
1da177e4
LT
3888{
3889 unsigned long flags;
3890
3891 spin_lock_irqsave(&q->lock, flags);
3892 __wake_up_common(q, mode, nr_exclusive, 0, key);
3893 spin_unlock_irqrestore(&q->lock, flags);
3894}
1da177e4
LT
3895EXPORT_SYMBOL(__wake_up);
3896
3897/*
3898 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3899 */
3900void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3901{
3902 __wake_up_common(q, mode, 1, 0, NULL);
3903}
3904
3905/**
67be2dd1 3906 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3907 * @q: the waitqueue
3908 * @mode: which threads
3909 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3910 *
3911 * The sync wakeup differs that the waker knows that it will schedule
3912 * away soon, so while the target thread will be woken up, it will not
3913 * be migrated to another CPU - ie. the two threads are 'synchronized'
3914 * with each other. This can prevent needless bouncing between CPUs.
3915 *
3916 * On UP it can prevent extra preemption.
3917 */
95cdf3b7
IM
3918void fastcall
3919__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3920{
3921 unsigned long flags;
3922 int sync = 1;
3923
3924 if (unlikely(!q))
3925 return;
3926
3927 if (unlikely(!nr_exclusive))
3928 sync = 0;
3929
3930 spin_lock_irqsave(&q->lock, flags);
3931 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3932 spin_unlock_irqrestore(&q->lock, flags);
3933}
3934EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3935
b15136e9 3936void complete(struct completion *x)
1da177e4
LT
3937{
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&x->wait.lock, flags);
3941 x->done++;
3942 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3943 1, 0, NULL);
3944 spin_unlock_irqrestore(&x->wait.lock, flags);
3945}
3946EXPORT_SYMBOL(complete);
3947
b15136e9 3948void complete_all(struct completion *x)
1da177e4
LT
3949{
3950 unsigned long flags;
3951
3952 spin_lock_irqsave(&x->wait.lock, flags);
3953 x->done += UINT_MAX/2;
3954 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3955 0, 0, NULL);
3956 spin_unlock_irqrestore(&x->wait.lock, flags);
3957}
3958EXPORT_SYMBOL(complete_all);
3959
8cbbe86d
AK
3960static inline long __sched
3961do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3962{
1da177e4
LT
3963 if (!x->done) {
3964 DECLARE_WAITQUEUE(wait, current);
3965
3966 wait.flags |= WQ_FLAG_EXCLUSIVE;
3967 __add_wait_queue_tail(&x->wait, &wait);
3968 do {
8cbbe86d
AK
3969 if (state == TASK_INTERRUPTIBLE &&
3970 signal_pending(current)) {
3971 __remove_wait_queue(&x->wait, &wait);
3972 return -ERESTARTSYS;
3973 }
3974 __set_current_state(state);
1da177e4
LT
3975 spin_unlock_irq(&x->wait.lock);
3976 timeout = schedule_timeout(timeout);
3977 spin_lock_irq(&x->wait.lock);
3978 if (!timeout) {
3979 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3980 return timeout;
1da177e4
LT
3981 }
3982 } while (!x->done);
3983 __remove_wait_queue(&x->wait, &wait);
3984 }
3985 x->done--;
1da177e4
LT
3986 return timeout;
3987}
1da177e4 3988
8cbbe86d
AK
3989static long __sched
3990wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3991{
1da177e4
LT
3992 might_sleep();
3993
3994 spin_lock_irq(&x->wait.lock);
8cbbe86d 3995 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3996 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3997 return timeout;
3998}
1da177e4 3999
b15136e9 4000void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4001{
4002 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4003}
8cbbe86d 4004EXPORT_SYMBOL(wait_for_completion);
1da177e4 4005
b15136e9 4006unsigned long __sched
8cbbe86d 4007wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4008{
8cbbe86d 4009 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4010}
8cbbe86d 4011EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4012
8cbbe86d 4013int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4014{
51e97990
AK
4015 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4016 if (t == -ERESTARTSYS)
4017 return t;
4018 return 0;
0fec171c 4019}
8cbbe86d 4020EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4021
b15136e9 4022unsigned long __sched
8cbbe86d
AK
4023wait_for_completion_interruptible_timeout(struct completion *x,
4024 unsigned long timeout)
0fec171c 4025{
8cbbe86d 4026 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4027}
8cbbe86d 4028EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4029
8cbbe86d
AK
4030static long __sched
4031sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4032{
0fec171c
IM
4033 unsigned long flags;
4034 wait_queue_t wait;
4035
4036 init_waitqueue_entry(&wait, current);
1da177e4 4037
8cbbe86d 4038 __set_current_state(state);
1da177e4 4039
8cbbe86d
AK
4040 spin_lock_irqsave(&q->lock, flags);
4041 __add_wait_queue(q, &wait);
4042 spin_unlock(&q->lock);
4043 timeout = schedule_timeout(timeout);
4044 spin_lock_irq(&q->lock);
4045 __remove_wait_queue(q, &wait);
4046 spin_unlock_irqrestore(&q->lock, flags);
4047
4048 return timeout;
4049}
4050
4051void __sched interruptible_sleep_on(wait_queue_head_t *q)
4052{
4053 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4054}
1da177e4
LT
4055EXPORT_SYMBOL(interruptible_sleep_on);
4056
0fec171c 4057long __sched
95cdf3b7 4058interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4059{
8cbbe86d 4060 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4061}
1da177e4
LT
4062EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4063
0fec171c 4064void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4065{
8cbbe86d 4066 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4067}
1da177e4
LT
4068EXPORT_SYMBOL(sleep_on);
4069
0fec171c 4070long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4071{
8cbbe86d 4072 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4073}
1da177e4
LT
4074EXPORT_SYMBOL(sleep_on_timeout);
4075
b29739f9
IM
4076#ifdef CONFIG_RT_MUTEXES
4077
4078/*
4079 * rt_mutex_setprio - set the current priority of a task
4080 * @p: task
4081 * @prio: prio value (kernel-internal form)
4082 *
4083 * This function changes the 'effective' priority of a task. It does
4084 * not touch ->normal_prio like __setscheduler().
4085 *
4086 * Used by the rt_mutex code to implement priority inheritance logic.
4087 */
36c8b586 4088void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4089{
4090 unsigned long flags;
83b699ed 4091 int oldprio, on_rq, running;
70b97a7f 4092 struct rq *rq;
b29739f9
IM
4093
4094 BUG_ON(prio < 0 || prio > MAX_PRIO);
4095
4096 rq = task_rq_lock(p, &flags);
a8e504d2 4097 update_rq_clock(rq);
b29739f9 4098
d5f9f942 4099 oldprio = p->prio;
dd41f596 4100 on_rq = p->se.on_rq;
051a1d1a 4101 running = task_current(rq, p);
83b699ed 4102 if (on_rq) {
69be72c1 4103 dequeue_task(rq, p, 0);
83b699ed
SV
4104 if (running)
4105 p->sched_class->put_prev_task(rq, p);
4106 }
dd41f596
IM
4107
4108 if (rt_prio(prio))
4109 p->sched_class = &rt_sched_class;
4110 else
4111 p->sched_class = &fair_sched_class;
4112
b29739f9
IM
4113 p->prio = prio;
4114
dd41f596 4115 if (on_rq) {
83b699ed
SV
4116 if (running)
4117 p->sched_class->set_curr_task(rq);
8159f87e 4118 enqueue_task(rq, p, 0);
b29739f9
IM
4119 /*
4120 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4121 * our priority decreased, or if we are not currently running on
4122 * this runqueue and our priority is higher than the current's
b29739f9 4123 */
83b699ed 4124 if (running) {
d5f9f942
AM
4125 if (p->prio > oldprio)
4126 resched_task(rq->curr);
dd41f596
IM
4127 } else {
4128 check_preempt_curr(rq, p);
4129 }
b29739f9
IM
4130 }
4131 task_rq_unlock(rq, &flags);
4132}
4133
4134#endif
4135
36c8b586 4136void set_user_nice(struct task_struct *p, long nice)
1da177e4 4137{
dd41f596 4138 int old_prio, delta, on_rq;
1da177e4 4139 unsigned long flags;
70b97a7f 4140 struct rq *rq;
1da177e4
LT
4141
4142 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4143 return;
4144 /*
4145 * We have to be careful, if called from sys_setpriority(),
4146 * the task might be in the middle of scheduling on another CPU.
4147 */
4148 rq = task_rq_lock(p, &flags);
a8e504d2 4149 update_rq_clock(rq);
1da177e4
LT
4150 /*
4151 * The RT priorities are set via sched_setscheduler(), but we still
4152 * allow the 'normal' nice value to be set - but as expected
4153 * it wont have any effect on scheduling until the task is
dd41f596 4154 * SCHED_FIFO/SCHED_RR:
1da177e4 4155 */
e05606d3 4156 if (task_has_rt_policy(p)) {
1da177e4
LT
4157 p->static_prio = NICE_TO_PRIO(nice);
4158 goto out_unlock;
4159 }
dd41f596 4160 on_rq = p->se.on_rq;
58e2d4ca 4161 if (on_rq)
69be72c1 4162 dequeue_task(rq, p, 0);
1da177e4 4163
1da177e4 4164 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4165 set_load_weight(p);
b29739f9
IM
4166 old_prio = p->prio;
4167 p->prio = effective_prio(p);
4168 delta = p->prio - old_prio;
1da177e4 4169
dd41f596 4170 if (on_rq) {
8159f87e 4171 enqueue_task(rq, p, 0);
1da177e4 4172 /*
d5f9f942
AM
4173 * If the task increased its priority or is running and
4174 * lowered its priority, then reschedule its CPU:
1da177e4 4175 */
d5f9f942 4176 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4177 resched_task(rq->curr);
4178 }
4179out_unlock:
4180 task_rq_unlock(rq, &flags);
4181}
1da177e4
LT
4182EXPORT_SYMBOL(set_user_nice);
4183
e43379f1
MM
4184/*
4185 * can_nice - check if a task can reduce its nice value
4186 * @p: task
4187 * @nice: nice value
4188 */
36c8b586 4189int can_nice(const struct task_struct *p, const int nice)
e43379f1 4190{
024f4747
MM
4191 /* convert nice value [19,-20] to rlimit style value [1,40] */
4192 int nice_rlim = 20 - nice;
48f24c4d 4193
e43379f1
MM
4194 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4195 capable(CAP_SYS_NICE));
4196}
4197
1da177e4
LT
4198#ifdef __ARCH_WANT_SYS_NICE
4199
4200/*
4201 * sys_nice - change the priority of the current process.
4202 * @increment: priority increment
4203 *
4204 * sys_setpriority is a more generic, but much slower function that
4205 * does similar things.
4206 */
4207asmlinkage long sys_nice(int increment)
4208{
48f24c4d 4209 long nice, retval;
1da177e4
LT
4210
4211 /*
4212 * Setpriority might change our priority at the same moment.
4213 * We don't have to worry. Conceptually one call occurs first
4214 * and we have a single winner.
4215 */
e43379f1
MM
4216 if (increment < -40)
4217 increment = -40;
1da177e4
LT
4218 if (increment > 40)
4219 increment = 40;
4220
4221 nice = PRIO_TO_NICE(current->static_prio) + increment;
4222 if (nice < -20)
4223 nice = -20;
4224 if (nice > 19)
4225 nice = 19;
4226
e43379f1
MM
4227 if (increment < 0 && !can_nice(current, nice))
4228 return -EPERM;
4229
1da177e4
LT
4230 retval = security_task_setnice(current, nice);
4231 if (retval)
4232 return retval;
4233
4234 set_user_nice(current, nice);
4235 return 0;
4236}
4237
4238#endif
4239
4240/**
4241 * task_prio - return the priority value of a given task.
4242 * @p: the task in question.
4243 *
4244 * This is the priority value as seen by users in /proc.
4245 * RT tasks are offset by -200. Normal tasks are centered
4246 * around 0, value goes from -16 to +15.
4247 */
36c8b586 4248int task_prio(const struct task_struct *p)
1da177e4
LT
4249{
4250 return p->prio - MAX_RT_PRIO;
4251}
4252
4253/**
4254 * task_nice - return the nice value of a given task.
4255 * @p: the task in question.
4256 */
36c8b586 4257int task_nice(const struct task_struct *p)
1da177e4
LT
4258{
4259 return TASK_NICE(p);
4260}
1da177e4 4261EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4262
4263/**
4264 * idle_cpu - is a given cpu idle currently?
4265 * @cpu: the processor in question.
4266 */
4267int idle_cpu(int cpu)
4268{
4269 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4270}
4271
1da177e4
LT
4272/**
4273 * idle_task - return the idle task for a given cpu.
4274 * @cpu: the processor in question.
4275 */
36c8b586 4276struct task_struct *idle_task(int cpu)
1da177e4
LT
4277{
4278 return cpu_rq(cpu)->idle;
4279}
4280
4281/**
4282 * find_process_by_pid - find a process with a matching PID value.
4283 * @pid: the pid in question.
4284 */
a9957449 4285static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4286{
228ebcbe 4287 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4288}
4289
4290/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4291static void
4292__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4293{
dd41f596 4294 BUG_ON(p->se.on_rq);
48f24c4d 4295
1da177e4 4296 p->policy = policy;
dd41f596
IM
4297 switch (p->policy) {
4298 case SCHED_NORMAL:
4299 case SCHED_BATCH:
4300 case SCHED_IDLE:
4301 p->sched_class = &fair_sched_class;
4302 break;
4303 case SCHED_FIFO:
4304 case SCHED_RR:
4305 p->sched_class = &rt_sched_class;
4306 break;
4307 }
4308
1da177e4 4309 p->rt_priority = prio;
b29739f9
IM
4310 p->normal_prio = normal_prio(p);
4311 /* we are holding p->pi_lock already */
4312 p->prio = rt_mutex_getprio(p);
2dd73a4f 4313 set_load_weight(p);
1da177e4
LT
4314}
4315
4316/**
72fd4a35 4317 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4318 * @p: the task in question.
4319 * @policy: new policy.
4320 * @param: structure containing the new RT priority.
5fe1d75f 4321 *
72fd4a35 4322 * NOTE that the task may be already dead.
1da177e4 4323 */
95cdf3b7
IM
4324int sched_setscheduler(struct task_struct *p, int policy,
4325 struct sched_param *param)
1da177e4 4326{
83b699ed 4327 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4328 unsigned long flags;
70b97a7f 4329 struct rq *rq;
1da177e4 4330
66e5393a
SR
4331 /* may grab non-irq protected spin_locks */
4332 BUG_ON(in_interrupt());
1da177e4
LT
4333recheck:
4334 /* double check policy once rq lock held */
4335 if (policy < 0)
4336 policy = oldpolicy = p->policy;
4337 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4338 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4339 policy != SCHED_IDLE)
b0a9499c 4340 return -EINVAL;
1da177e4
LT
4341 /*
4342 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4343 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4344 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4345 */
4346 if (param->sched_priority < 0 ||
95cdf3b7 4347 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4348 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4349 return -EINVAL;
e05606d3 4350 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4351 return -EINVAL;
4352
37e4ab3f
OC
4353 /*
4354 * Allow unprivileged RT tasks to decrease priority:
4355 */
4356 if (!capable(CAP_SYS_NICE)) {
e05606d3 4357 if (rt_policy(policy)) {
8dc3e909 4358 unsigned long rlim_rtprio;
8dc3e909
ON
4359
4360 if (!lock_task_sighand(p, &flags))
4361 return -ESRCH;
4362 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4363 unlock_task_sighand(p, &flags);
4364
4365 /* can't set/change the rt policy */
4366 if (policy != p->policy && !rlim_rtprio)
4367 return -EPERM;
4368
4369 /* can't increase priority */
4370 if (param->sched_priority > p->rt_priority &&
4371 param->sched_priority > rlim_rtprio)
4372 return -EPERM;
4373 }
dd41f596
IM
4374 /*
4375 * Like positive nice levels, dont allow tasks to
4376 * move out of SCHED_IDLE either:
4377 */
4378 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4379 return -EPERM;
5fe1d75f 4380
37e4ab3f
OC
4381 /* can't change other user's priorities */
4382 if ((current->euid != p->euid) &&
4383 (current->euid != p->uid))
4384 return -EPERM;
4385 }
1da177e4
LT
4386
4387 retval = security_task_setscheduler(p, policy, param);
4388 if (retval)
4389 return retval;
b29739f9
IM
4390 /*
4391 * make sure no PI-waiters arrive (or leave) while we are
4392 * changing the priority of the task:
4393 */
4394 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4395 /*
4396 * To be able to change p->policy safely, the apropriate
4397 * runqueue lock must be held.
4398 */
b29739f9 4399 rq = __task_rq_lock(p);
1da177e4
LT
4400 /* recheck policy now with rq lock held */
4401 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4402 policy = oldpolicy = -1;
b29739f9
IM
4403 __task_rq_unlock(rq);
4404 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4405 goto recheck;
4406 }
2daa3577 4407 update_rq_clock(rq);
dd41f596 4408 on_rq = p->se.on_rq;
051a1d1a 4409 running = task_current(rq, p);
83b699ed 4410 if (on_rq) {
2e1cb74a 4411 deactivate_task(rq, p, 0);
83b699ed
SV
4412 if (running)
4413 p->sched_class->put_prev_task(rq, p);
4414 }
f6b53205 4415
1da177e4 4416 oldprio = p->prio;
dd41f596 4417 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4418
dd41f596 4419 if (on_rq) {
83b699ed
SV
4420 if (running)
4421 p->sched_class->set_curr_task(rq);
dd41f596 4422 activate_task(rq, p, 0);
1da177e4
LT
4423 /*
4424 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4425 * our priority decreased, or if we are not currently running on
4426 * this runqueue and our priority is higher than the current's
1da177e4 4427 */
83b699ed 4428 if (running) {
d5f9f942
AM
4429 if (p->prio > oldprio)
4430 resched_task(rq->curr);
dd41f596
IM
4431 } else {
4432 check_preempt_curr(rq, p);
4433 }
1da177e4 4434 }
b29739f9
IM
4435 __task_rq_unlock(rq);
4436 spin_unlock_irqrestore(&p->pi_lock, flags);
4437
95e02ca9
TG
4438 rt_mutex_adjust_pi(p);
4439
1da177e4
LT
4440 return 0;
4441}
4442EXPORT_SYMBOL_GPL(sched_setscheduler);
4443
95cdf3b7
IM
4444static int
4445do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4446{
1da177e4
LT
4447 struct sched_param lparam;
4448 struct task_struct *p;
36c8b586 4449 int retval;
1da177e4
LT
4450
4451 if (!param || pid < 0)
4452 return -EINVAL;
4453 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4454 return -EFAULT;
5fe1d75f
ON
4455
4456 rcu_read_lock();
4457 retval = -ESRCH;
1da177e4 4458 p = find_process_by_pid(pid);
5fe1d75f
ON
4459 if (p != NULL)
4460 retval = sched_setscheduler(p, policy, &lparam);
4461 rcu_read_unlock();
36c8b586 4462
1da177e4
LT
4463 return retval;
4464}
4465
4466/**
4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468 * @pid: the pid in question.
4469 * @policy: new policy.
4470 * @param: structure containing the new RT priority.
4471 */
41a2d6cf
IM
4472asmlinkage long
4473sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4474{
c21761f1
JB
4475 /* negative values for policy are not valid */
4476 if (policy < 0)
4477 return -EINVAL;
4478
1da177e4
LT
4479 return do_sched_setscheduler(pid, policy, param);
4480}
4481
4482/**
4483 * sys_sched_setparam - set/change the RT priority of a thread
4484 * @pid: the pid in question.
4485 * @param: structure containing the new RT priority.
4486 */
4487asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4488{
4489 return do_sched_setscheduler(pid, -1, param);
4490}
4491
4492/**
4493 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4494 * @pid: the pid in question.
4495 */
4496asmlinkage long sys_sched_getscheduler(pid_t pid)
4497{
36c8b586 4498 struct task_struct *p;
3a5c359a 4499 int retval;
1da177e4
LT
4500
4501 if (pid < 0)
3a5c359a 4502 return -EINVAL;
1da177e4
LT
4503
4504 retval = -ESRCH;
4505 read_lock(&tasklist_lock);
4506 p = find_process_by_pid(pid);
4507 if (p) {
4508 retval = security_task_getscheduler(p);
4509 if (!retval)
4510 retval = p->policy;
4511 }
4512 read_unlock(&tasklist_lock);
1da177e4
LT
4513 return retval;
4514}
4515
4516/**
4517 * sys_sched_getscheduler - get the RT priority of a thread
4518 * @pid: the pid in question.
4519 * @param: structure containing the RT priority.
4520 */
4521asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4522{
4523 struct sched_param lp;
36c8b586 4524 struct task_struct *p;
3a5c359a 4525 int retval;
1da177e4
LT
4526
4527 if (!param || pid < 0)
3a5c359a 4528 return -EINVAL;
1da177e4
LT
4529
4530 read_lock(&tasklist_lock);
4531 p = find_process_by_pid(pid);
4532 retval = -ESRCH;
4533 if (!p)
4534 goto out_unlock;
4535
4536 retval = security_task_getscheduler(p);
4537 if (retval)
4538 goto out_unlock;
4539
4540 lp.sched_priority = p->rt_priority;
4541 read_unlock(&tasklist_lock);
4542
4543 /*
4544 * This one might sleep, we cannot do it with a spinlock held ...
4545 */
4546 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4547
1da177e4
LT
4548 return retval;
4549
4550out_unlock:
4551 read_unlock(&tasklist_lock);
4552 return retval;
4553}
4554
4555long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4556{
1da177e4 4557 cpumask_t cpus_allowed;
36c8b586
IM
4558 struct task_struct *p;
4559 int retval;
1da177e4 4560
95402b38 4561 get_online_cpus();
1da177e4
LT
4562 read_lock(&tasklist_lock);
4563
4564 p = find_process_by_pid(pid);
4565 if (!p) {
4566 read_unlock(&tasklist_lock);
95402b38 4567 put_online_cpus();
1da177e4
LT
4568 return -ESRCH;
4569 }
4570
4571 /*
4572 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4573 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4574 * usage count and then drop tasklist_lock.
4575 */
4576 get_task_struct(p);
4577 read_unlock(&tasklist_lock);
4578
4579 retval = -EPERM;
4580 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4581 !capable(CAP_SYS_NICE))
4582 goto out_unlock;
4583
e7834f8f
DQ
4584 retval = security_task_setscheduler(p, 0, NULL);
4585 if (retval)
4586 goto out_unlock;
4587
1da177e4
LT
4588 cpus_allowed = cpuset_cpus_allowed(p);
4589 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4590 again:
1da177e4
LT
4591 retval = set_cpus_allowed(p, new_mask);
4592
8707d8b8
PM
4593 if (!retval) {
4594 cpus_allowed = cpuset_cpus_allowed(p);
4595 if (!cpus_subset(new_mask, cpus_allowed)) {
4596 /*
4597 * We must have raced with a concurrent cpuset
4598 * update. Just reset the cpus_allowed to the
4599 * cpuset's cpus_allowed
4600 */
4601 new_mask = cpus_allowed;
4602 goto again;
4603 }
4604 }
1da177e4
LT
4605out_unlock:
4606 put_task_struct(p);
95402b38 4607 put_online_cpus();
1da177e4
LT
4608 return retval;
4609}
4610
4611static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4612 cpumask_t *new_mask)
4613{
4614 if (len < sizeof(cpumask_t)) {
4615 memset(new_mask, 0, sizeof(cpumask_t));
4616 } else if (len > sizeof(cpumask_t)) {
4617 len = sizeof(cpumask_t);
4618 }
4619 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4620}
4621
4622/**
4623 * sys_sched_setaffinity - set the cpu affinity of a process
4624 * @pid: pid of the process
4625 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4626 * @user_mask_ptr: user-space pointer to the new cpu mask
4627 */
4628asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4629 unsigned long __user *user_mask_ptr)
4630{
4631 cpumask_t new_mask;
4632 int retval;
4633
4634 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4635 if (retval)
4636 return retval;
4637
4638 return sched_setaffinity(pid, new_mask);
4639}
4640
4641/*
4642 * Represents all cpu's present in the system
4643 * In systems capable of hotplug, this map could dynamically grow
4644 * as new cpu's are detected in the system via any platform specific
4645 * method, such as ACPI for e.g.
4646 */
4647
4cef0c61 4648cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4649EXPORT_SYMBOL(cpu_present_map);
4650
4651#ifndef CONFIG_SMP
4cef0c61 4652cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4653EXPORT_SYMBOL(cpu_online_map);
4654
4cef0c61 4655cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4656EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4657#endif
4658
4659long sched_getaffinity(pid_t pid, cpumask_t *mask)
4660{
36c8b586 4661 struct task_struct *p;
1da177e4 4662 int retval;
1da177e4 4663
95402b38 4664 get_online_cpus();
1da177e4
LT
4665 read_lock(&tasklist_lock);
4666
4667 retval = -ESRCH;
4668 p = find_process_by_pid(pid);
4669 if (!p)
4670 goto out_unlock;
4671
e7834f8f
DQ
4672 retval = security_task_getscheduler(p);
4673 if (retval)
4674 goto out_unlock;
4675
2f7016d9 4676 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4677
4678out_unlock:
4679 read_unlock(&tasklist_lock);
95402b38 4680 put_online_cpus();
1da177e4 4681
9531b62f 4682 return retval;
1da177e4
LT
4683}
4684
4685/**
4686 * sys_sched_getaffinity - get the cpu affinity of a process
4687 * @pid: pid of the process
4688 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4689 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4690 */
4691asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4692 unsigned long __user *user_mask_ptr)
4693{
4694 int ret;
4695 cpumask_t mask;
4696
4697 if (len < sizeof(cpumask_t))
4698 return -EINVAL;
4699
4700 ret = sched_getaffinity(pid, &mask);
4701 if (ret < 0)
4702 return ret;
4703
4704 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4705 return -EFAULT;
4706
4707 return sizeof(cpumask_t);
4708}
4709
4710/**
4711 * sys_sched_yield - yield the current processor to other threads.
4712 *
dd41f596
IM
4713 * This function yields the current CPU to other tasks. If there are no
4714 * other threads running on this CPU then this function will return.
1da177e4
LT
4715 */
4716asmlinkage long sys_sched_yield(void)
4717{
70b97a7f 4718 struct rq *rq = this_rq_lock();
1da177e4 4719
2d72376b 4720 schedstat_inc(rq, yld_count);
4530d7ab 4721 current->sched_class->yield_task(rq);
1da177e4
LT
4722
4723 /*
4724 * Since we are going to call schedule() anyway, there's
4725 * no need to preempt or enable interrupts:
4726 */
4727 __release(rq->lock);
8a25d5de 4728 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4729 _raw_spin_unlock(&rq->lock);
4730 preempt_enable_no_resched();
4731
4732 schedule();
4733
4734 return 0;
4735}
4736
e7b38404 4737static void __cond_resched(void)
1da177e4 4738{
8e0a43d8
IM
4739#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4740 __might_sleep(__FILE__, __LINE__);
4741#endif
5bbcfd90
IM
4742 /*
4743 * The BKS might be reacquired before we have dropped
4744 * PREEMPT_ACTIVE, which could trigger a second
4745 * cond_resched() call.
4746 */
1da177e4
LT
4747 do {
4748 add_preempt_count(PREEMPT_ACTIVE);
4749 schedule();
4750 sub_preempt_count(PREEMPT_ACTIVE);
4751 } while (need_resched());
4752}
4753
4754int __sched cond_resched(void)
4755{
9414232f
IM
4756 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4757 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4758 __cond_resched();
4759 return 1;
4760 }
4761 return 0;
4762}
1da177e4
LT
4763EXPORT_SYMBOL(cond_resched);
4764
4765/*
4766 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4767 * call schedule, and on return reacquire the lock.
4768 *
41a2d6cf 4769 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4770 * operations here to prevent schedule() from being called twice (once via
4771 * spin_unlock(), once by hand).
4772 */
95cdf3b7 4773int cond_resched_lock(spinlock_t *lock)
1da177e4 4774{
6df3cecb
JK
4775 int ret = 0;
4776
1da177e4
LT
4777 if (need_lockbreak(lock)) {
4778 spin_unlock(lock);
4779 cpu_relax();
6df3cecb 4780 ret = 1;
1da177e4
LT
4781 spin_lock(lock);
4782 }
9414232f 4783 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4784 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4785 _raw_spin_unlock(lock);
4786 preempt_enable_no_resched();
4787 __cond_resched();
6df3cecb 4788 ret = 1;
1da177e4 4789 spin_lock(lock);
1da177e4 4790 }
6df3cecb 4791 return ret;
1da177e4 4792}
1da177e4
LT
4793EXPORT_SYMBOL(cond_resched_lock);
4794
4795int __sched cond_resched_softirq(void)
4796{
4797 BUG_ON(!in_softirq());
4798
9414232f 4799 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4800 local_bh_enable();
1da177e4
LT
4801 __cond_resched();
4802 local_bh_disable();
4803 return 1;
4804 }
4805 return 0;
4806}
1da177e4
LT
4807EXPORT_SYMBOL(cond_resched_softirq);
4808
1da177e4
LT
4809/**
4810 * yield - yield the current processor to other threads.
4811 *
72fd4a35 4812 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4813 * thread runnable and calls sys_sched_yield().
4814 */
4815void __sched yield(void)
4816{
4817 set_current_state(TASK_RUNNING);
4818 sys_sched_yield();
4819}
1da177e4
LT
4820EXPORT_SYMBOL(yield);
4821
4822/*
41a2d6cf 4823 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4824 * that process accounting knows that this is a task in IO wait state.
4825 *
4826 * But don't do that if it is a deliberate, throttling IO wait (this task
4827 * has set its backing_dev_info: the queue against which it should throttle)
4828 */
4829void __sched io_schedule(void)
4830{
70b97a7f 4831 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4832
0ff92245 4833 delayacct_blkio_start();
1da177e4
LT
4834 atomic_inc(&rq->nr_iowait);
4835 schedule();
4836 atomic_dec(&rq->nr_iowait);
0ff92245 4837 delayacct_blkio_end();
1da177e4 4838}
1da177e4
LT
4839EXPORT_SYMBOL(io_schedule);
4840
4841long __sched io_schedule_timeout(long timeout)
4842{
70b97a7f 4843 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4844 long ret;
4845
0ff92245 4846 delayacct_blkio_start();
1da177e4
LT
4847 atomic_inc(&rq->nr_iowait);
4848 ret = schedule_timeout(timeout);
4849 atomic_dec(&rq->nr_iowait);
0ff92245 4850 delayacct_blkio_end();
1da177e4
LT
4851 return ret;
4852}
4853
4854/**
4855 * sys_sched_get_priority_max - return maximum RT priority.
4856 * @policy: scheduling class.
4857 *
4858 * this syscall returns the maximum rt_priority that can be used
4859 * by a given scheduling class.
4860 */
4861asmlinkage long sys_sched_get_priority_max(int policy)
4862{
4863 int ret = -EINVAL;
4864
4865 switch (policy) {
4866 case SCHED_FIFO:
4867 case SCHED_RR:
4868 ret = MAX_USER_RT_PRIO-1;
4869 break;
4870 case SCHED_NORMAL:
b0a9499c 4871 case SCHED_BATCH:
dd41f596 4872 case SCHED_IDLE:
1da177e4
LT
4873 ret = 0;
4874 break;
4875 }
4876 return ret;
4877}
4878
4879/**
4880 * sys_sched_get_priority_min - return minimum RT priority.
4881 * @policy: scheduling class.
4882 *
4883 * this syscall returns the minimum rt_priority that can be used
4884 * by a given scheduling class.
4885 */
4886asmlinkage long sys_sched_get_priority_min(int policy)
4887{
4888 int ret = -EINVAL;
4889
4890 switch (policy) {
4891 case SCHED_FIFO:
4892 case SCHED_RR:
4893 ret = 1;
4894 break;
4895 case SCHED_NORMAL:
b0a9499c 4896 case SCHED_BATCH:
dd41f596 4897 case SCHED_IDLE:
1da177e4
LT
4898 ret = 0;
4899 }
4900 return ret;
4901}
4902
4903/**
4904 * sys_sched_rr_get_interval - return the default timeslice of a process.
4905 * @pid: pid of the process.
4906 * @interval: userspace pointer to the timeslice value.
4907 *
4908 * this syscall writes the default timeslice value of a given process
4909 * into the user-space timespec buffer. A value of '0' means infinity.
4910 */
4911asmlinkage
4912long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4913{
36c8b586 4914 struct task_struct *p;
a4ec24b4 4915 unsigned int time_slice;
3a5c359a 4916 int retval;
1da177e4 4917 struct timespec t;
1da177e4
LT
4918
4919 if (pid < 0)
3a5c359a 4920 return -EINVAL;
1da177e4
LT
4921
4922 retval = -ESRCH;
4923 read_lock(&tasklist_lock);
4924 p = find_process_by_pid(pid);
4925 if (!p)
4926 goto out_unlock;
4927
4928 retval = security_task_getscheduler(p);
4929 if (retval)
4930 goto out_unlock;
4931
77034937
IM
4932 /*
4933 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4934 * tasks that are on an otherwise idle runqueue:
4935 */
4936 time_slice = 0;
4937 if (p->policy == SCHED_RR) {
a4ec24b4 4938 time_slice = DEF_TIMESLICE;
77034937 4939 } else {
a4ec24b4
DA
4940 struct sched_entity *se = &p->se;
4941 unsigned long flags;
4942 struct rq *rq;
4943
4944 rq = task_rq_lock(p, &flags);
77034937
IM
4945 if (rq->cfs.load.weight)
4946 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4947 task_rq_unlock(rq, &flags);
4948 }
1da177e4 4949 read_unlock(&tasklist_lock);
a4ec24b4 4950 jiffies_to_timespec(time_slice, &t);
1da177e4 4951 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4952 return retval;
3a5c359a 4953
1da177e4
LT
4954out_unlock:
4955 read_unlock(&tasklist_lock);
4956 return retval;
4957}
4958
2ed6e34f 4959static const char stat_nam[] = "RSDTtZX";
36c8b586 4960
82a1fcb9 4961void sched_show_task(struct task_struct *p)
1da177e4 4962{
1da177e4 4963 unsigned long free = 0;
36c8b586 4964 unsigned state;
1da177e4 4965
1da177e4 4966 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4967 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4968 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4969#if BITS_PER_LONG == 32
1da177e4 4970 if (state == TASK_RUNNING)
cc4ea795 4971 printk(KERN_CONT " running ");
1da177e4 4972 else
cc4ea795 4973 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4974#else
4975 if (state == TASK_RUNNING)
cc4ea795 4976 printk(KERN_CONT " running task ");
1da177e4 4977 else
cc4ea795 4978 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4979#endif
4980#ifdef CONFIG_DEBUG_STACK_USAGE
4981 {
10ebffde 4982 unsigned long *n = end_of_stack(p);
1da177e4
LT
4983 while (!*n)
4984 n++;
10ebffde 4985 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4986 }
4987#endif
ba25f9dc 4988 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4989 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4990
4991 if (state != TASK_RUNNING)
4992 show_stack(p, NULL);
4993}
4994
e59e2ae2 4995void show_state_filter(unsigned long state_filter)
1da177e4 4996{
36c8b586 4997 struct task_struct *g, *p;
1da177e4 4998
4bd77321
IM
4999#if BITS_PER_LONG == 32
5000 printk(KERN_INFO
5001 " task PC stack pid father\n");
1da177e4 5002#else
4bd77321
IM
5003 printk(KERN_INFO
5004 " task PC stack pid father\n");
1da177e4
LT
5005#endif
5006 read_lock(&tasklist_lock);
5007 do_each_thread(g, p) {
5008 /*
5009 * reset the NMI-timeout, listing all files on a slow
5010 * console might take alot of time:
5011 */
5012 touch_nmi_watchdog();
39bc89fd 5013 if (!state_filter || (p->state & state_filter))
82a1fcb9 5014 sched_show_task(p);
1da177e4
LT
5015 } while_each_thread(g, p);
5016
04c9167f
JF
5017 touch_all_softlockup_watchdogs();
5018
dd41f596
IM
5019#ifdef CONFIG_SCHED_DEBUG
5020 sysrq_sched_debug_show();
5021#endif
1da177e4 5022 read_unlock(&tasklist_lock);
e59e2ae2
IM
5023 /*
5024 * Only show locks if all tasks are dumped:
5025 */
5026 if (state_filter == -1)
5027 debug_show_all_locks();
1da177e4
LT
5028}
5029
1df21055
IM
5030void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5031{
dd41f596 5032 idle->sched_class = &idle_sched_class;
1df21055
IM
5033}
5034
f340c0d1
IM
5035/**
5036 * init_idle - set up an idle thread for a given CPU
5037 * @idle: task in question
5038 * @cpu: cpu the idle task belongs to
5039 *
5040 * NOTE: this function does not set the idle thread's NEED_RESCHED
5041 * flag, to make booting more robust.
5042 */
5c1e1767 5043void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5044{
70b97a7f 5045 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5046 unsigned long flags;
5047
dd41f596
IM
5048 __sched_fork(idle);
5049 idle->se.exec_start = sched_clock();
5050
b29739f9 5051 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5052 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5053 __set_task_cpu(idle, cpu);
1da177e4
LT
5054
5055 spin_lock_irqsave(&rq->lock, flags);
5056 rq->curr = rq->idle = idle;
4866cde0
NP
5057#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5058 idle->oncpu = 1;
5059#endif
1da177e4
LT
5060 spin_unlock_irqrestore(&rq->lock, flags);
5061
5062 /* Set the preempt count _outside_ the spinlocks! */
5063#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 5064 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 5065#else
a1261f54 5066 task_thread_info(idle)->preempt_count = 0;
1da177e4 5067#endif
dd41f596
IM
5068 /*
5069 * The idle tasks have their own, simple scheduling class:
5070 */
5071 idle->sched_class = &idle_sched_class;
1da177e4
LT
5072}
5073
5074/*
5075 * In a system that switches off the HZ timer nohz_cpu_mask
5076 * indicates which cpus entered this state. This is used
5077 * in the rcu update to wait only for active cpus. For system
5078 * which do not switch off the HZ timer nohz_cpu_mask should
5079 * always be CPU_MASK_NONE.
5080 */
5081cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5082
19978ca6
IM
5083/*
5084 * Increase the granularity value when there are more CPUs,
5085 * because with more CPUs the 'effective latency' as visible
5086 * to users decreases. But the relationship is not linear,
5087 * so pick a second-best guess by going with the log2 of the
5088 * number of CPUs.
5089 *
5090 * This idea comes from the SD scheduler of Con Kolivas:
5091 */
5092static inline void sched_init_granularity(void)
5093{
5094 unsigned int factor = 1 + ilog2(num_online_cpus());
5095 const unsigned long limit = 200000000;
5096
5097 sysctl_sched_min_granularity *= factor;
5098 if (sysctl_sched_min_granularity > limit)
5099 sysctl_sched_min_granularity = limit;
5100
5101 sysctl_sched_latency *= factor;
5102 if (sysctl_sched_latency > limit)
5103 sysctl_sched_latency = limit;
5104
5105 sysctl_sched_wakeup_granularity *= factor;
5106 sysctl_sched_batch_wakeup_granularity *= factor;
5107}
5108
1da177e4
LT
5109#ifdef CONFIG_SMP
5110/*
5111 * This is how migration works:
5112 *
70b97a7f 5113 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5114 * runqueue and wake up that CPU's migration thread.
5115 * 2) we down() the locked semaphore => thread blocks.
5116 * 3) migration thread wakes up (implicitly it forces the migrated
5117 * thread off the CPU)
5118 * 4) it gets the migration request and checks whether the migrated
5119 * task is still in the wrong runqueue.
5120 * 5) if it's in the wrong runqueue then the migration thread removes
5121 * it and puts it into the right queue.
5122 * 6) migration thread up()s the semaphore.
5123 * 7) we wake up and the migration is done.
5124 */
5125
5126/*
5127 * Change a given task's CPU affinity. Migrate the thread to a
5128 * proper CPU and schedule it away if the CPU it's executing on
5129 * is removed from the allowed bitmask.
5130 *
5131 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5132 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5133 * call is not atomic; no spinlocks may be held.
5134 */
36c8b586 5135int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5136{
70b97a7f 5137 struct migration_req req;
1da177e4 5138 unsigned long flags;
70b97a7f 5139 struct rq *rq;
48f24c4d 5140 int ret = 0;
1da177e4
LT
5141
5142 rq = task_rq_lock(p, &flags);
5143 if (!cpus_intersects(new_mask, cpu_online_map)) {
5144 ret = -EINVAL;
5145 goto out;
5146 }
5147
73fe6aae
GH
5148 if (p->sched_class->set_cpus_allowed)
5149 p->sched_class->set_cpus_allowed(p, &new_mask);
5150 else {
5151 p->cpus_allowed = new_mask;
5152 p->nr_cpus_allowed = cpus_weight(new_mask);
5153 }
5154
1da177e4
LT
5155 /* Can the task run on the task's current CPU? If so, we're done */
5156 if (cpu_isset(task_cpu(p), new_mask))
5157 goto out;
5158
5159 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5160 /* Need help from migration thread: drop lock and wait. */
5161 task_rq_unlock(rq, &flags);
5162 wake_up_process(rq->migration_thread);
5163 wait_for_completion(&req.done);
5164 tlb_migrate_finish(p->mm);
5165 return 0;
5166 }
5167out:
5168 task_rq_unlock(rq, &flags);
48f24c4d 5169
1da177e4
LT
5170 return ret;
5171}
1da177e4
LT
5172EXPORT_SYMBOL_GPL(set_cpus_allowed);
5173
5174/*
41a2d6cf 5175 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5176 * this because either it can't run here any more (set_cpus_allowed()
5177 * away from this CPU, or CPU going down), or because we're
5178 * attempting to rebalance this task on exec (sched_exec).
5179 *
5180 * So we race with normal scheduler movements, but that's OK, as long
5181 * as the task is no longer on this CPU.
efc30814
KK
5182 *
5183 * Returns non-zero if task was successfully migrated.
1da177e4 5184 */
efc30814 5185static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5186{
70b97a7f 5187 struct rq *rq_dest, *rq_src;
dd41f596 5188 int ret = 0, on_rq;
1da177e4
LT
5189
5190 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5191 return ret;
1da177e4
LT
5192
5193 rq_src = cpu_rq(src_cpu);
5194 rq_dest = cpu_rq(dest_cpu);
5195
5196 double_rq_lock(rq_src, rq_dest);
5197 /* Already moved. */
5198 if (task_cpu(p) != src_cpu)
5199 goto out;
5200 /* Affinity changed (again). */
5201 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5202 goto out;
5203
dd41f596 5204 on_rq = p->se.on_rq;
6e82a3be 5205 if (on_rq)
2e1cb74a 5206 deactivate_task(rq_src, p, 0);
6e82a3be 5207
1da177e4 5208 set_task_cpu(p, dest_cpu);
dd41f596
IM
5209 if (on_rq) {
5210 activate_task(rq_dest, p, 0);
5211 check_preempt_curr(rq_dest, p);
1da177e4 5212 }
efc30814 5213 ret = 1;
1da177e4
LT
5214out:
5215 double_rq_unlock(rq_src, rq_dest);
efc30814 5216 return ret;
1da177e4
LT
5217}
5218
5219/*
5220 * migration_thread - this is a highprio system thread that performs
5221 * thread migration by bumping thread off CPU then 'pushing' onto
5222 * another runqueue.
5223 */
95cdf3b7 5224static int migration_thread(void *data)
1da177e4 5225{
1da177e4 5226 int cpu = (long)data;
70b97a7f 5227 struct rq *rq;
1da177e4
LT
5228
5229 rq = cpu_rq(cpu);
5230 BUG_ON(rq->migration_thread != current);
5231
5232 set_current_state(TASK_INTERRUPTIBLE);
5233 while (!kthread_should_stop()) {
70b97a7f 5234 struct migration_req *req;
1da177e4 5235 struct list_head *head;
1da177e4 5236
1da177e4
LT
5237 spin_lock_irq(&rq->lock);
5238
5239 if (cpu_is_offline(cpu)) {
5240 spin_unlock_irq(&rq->lock);
5241 goto wait_to_die;
5242 }
5243
5244 if (rq->active_balance) {
5245 active_load_balance(rq, cpu);
5246 rq->active_balance = 0;
5247 }
5248
5249 head = &rq->migration_queue;
5250
5251 if (list_empty(head)) {
5252 spin_unlock_irq(&rq->lock);
5253 schedule();
5254 set_current_state(TASK_INTERRUPTIBLE);
5255 continue;
5256 }
70b97a7f 5257 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5258 list_del_init(head->next);
5259
674311d5
NP
5260 spin_unlock(&rq->lock);
5261 __migrate_task(req->task, cpu, req->dest_cpu);
5262 local_irq_enable();
1da177e4
LT
5263
5264 complete(&req->done);
5265 }
5266 __set_current_state(TASK_RUNNING);
5267 return 0;
5268
5269wait_to_die:
5270 /* Wait for kthread_stop */
5271 set_current_state(TASK_INTERRUPTIBLE);
5272 while (!kthread_should_stop()) {
5273 schedule();
5274 set_current_state(TASK_INTERRUPTIBLE);
5275 }
5276 __set_current_state(TASK_RUNNING);
5277 return 0;
5278}
5279
5280#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5281
5282static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5283{
5284 int ret;
5285
5286 local_irq_disable();
5287 ret = __migrate_task(p, src_cpu, dest_cpu);
5288 local_irq_enable();
5289 return ret;
5290}
5291
054b9108 5292/*
3a4fa0a2 5293 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5294 * NOTE: interrupts should be disabled by the caller
5295 */
48f24c4d 5296static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5297{
efc30814 5298 unsigned long flags;
1da177e4 5299 cpumask_t mask;
70b97a7f
IM
5300 struct rq *rq;
5301 int dest_cpu;
1da177e4 5302
3a5c359a
AK
5303 do {
5304 /* On same node? */
5305 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5306 cpus_and(mask, mask, p->cpus_allowed);
5307 dest_cpu = any_online_cpu(mask);
5308
5309 /* On any allowed CPU? */
5310 if (dest_cpu == NR_CPUS)
5311 dest_cpu = any_online_cpu(p->cpus_allowed);
5312
5313 /* No more Mr. Nice Guy. */
5314 if (dest_cpu == NR_CPUS) {
470fd646
CW
5315 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5316 /*
5317 * Try to stay on the same cpuset, where the
5318 * current cpuset may be a subset of all cpus.
5319 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5320 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5321 * called within calls to cpuset_lock/cpuset_unlock.
5322 */
3a5c359a 5323 rq = task_rq_lock(p, &flags);
470fd646 5324 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5325 dest_cpu = any_online_cpu(p->cpus_allowed);
5326 task_rq_unlock(rq, &flags);
1da177e4 5327
3a5c359a
AK
5328 /*
5329 * Don't tell them about moving exiting tasks or
5330 * kernel threads (both mm NULL), since they never
5331 * leave kernel.
5332 */
41a2d6cf 5333 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5334 printk(KERN_INFO "process %d (%s) no "
5335 "longer affine to cpu%d\n",
41a2d6cf
IM
5336 task_pid_nr(p), p->comm, dead_cpu);
5337 }
3a5c359a 5338 }
f7b4cddc 5339 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5340}
5341
5342/*
5343 * While a dead CPU has no uninterruptible tasks queued at this point,
5344 * it might still have a nonzero ->nr_uninterruptible counter, because
5345 * for performance reasons the counter is not stricly tracking tasks to
5346 * their home CPUs. So we just add the counter to another CPU's counter,
5347 * to keep the global sum constant after CPU-down:
5348 */
70b97a7f 5349static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5350{
70b97a7f 5351 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5352 unsigned long flags;
5353
5354 local_irq_save(flags);
5355 double_rq_lock(rq_src, rq_dest);
5356 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5357 rq_src->nr_uninterruptible = 0;
5358 double_rq_unlock(rq_src, rq_dest);
5359 local_irq_restore(flags);
5360}
5361
5362/* Run through task list and migrate tasks from the dead cpu. */
5363static void migrate_live_tasks(int src_cpu)
5364{
48f24c4d 5365 struct task_struct *p, *t;
1da177e4 5366
f7b4cddc 5367 read_lock(&tasklist_lock);
1da177e4 5368
48f24c4d
IM
5369 do_each_thread(t, p) {
5370 if (p == current)
1da177e4
LT
5371 continue;
5372
48f24c4d
IM
5373 if (task_cpu(p) == src_cpu)
5374 move_task_off_dead_cpu(src_cpu, p);
5375 } while_each_thread(t, p);
1da177e4 5376
f7b4cddc 5377 read_unlock(&tasklist_lock);
1da177e4
LT
5378}
5379
dd41f596
IM
5380/*
5381 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5382 * It does so by boosting its priority to highest possible.
5383 * Used by CPU offline code.
1da177e4
LT
5384 */
5385void sched_idle_next(void)
5386{
48f24c4d 5387 int this_cpu = smp_processor_id();
70b97a7f 5388 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5389 struct task_struct *p = rq->idle;
5390 unsigned long flags;
5391
5392 /* cpu has to be offline */
48f24c4d 5393 BUG_ON(cpu_online(this_cpu));
1da177e4 5394
48f24c4d
IM
5395 /*
5396 * Strictly not necessary since rest of the CPUs are stopped by now
5397 * and interrupts disabled on the current cpu.
1da177e4
LT
5398 */
5399 spin_lock_irqsave(&rq->lock, flags);
5400
dd41f596 5401 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5402
94bc9a7b
DA
5403 update_rq_clock(rq);
5404 activate_task(rq, p, 0);
1da177e4
LT
5405
5406 spin_unlock_irqrestore(&rq->lock, flags);
5407}
5408
48f24c4d
IM
5409/*
5410 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5411 * offline.
5412 */
5413void idle_task_exit(void)
5414{
5415 struct mm_struct *mm = current->active_mm;
5416
5417 BUG_ON(cpu_online(smp_processor_id()));
5418
5419 if (mm != &init_mm)
5420 switch_mm(mm, &init_mm, current);
5421 mmdrop(mm);
5422}
5423
054b9108 5424/* called under rq->lock with disabled interrupts */
36c8b586 5425static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5426{
70b97a7f 5427 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5428
5429 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5430 BUG_ON(!p->exit_state);
1da177e4
LT
5431
5432 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5433 BUG_ON(p->state == TASK_DEAD);
1da177e4 5434
48f24c4d 5435 get_task_struct(p);
1da177e4
LT
5436
5437 /*
5438 * Drop lock around migration; if someone else moves it,
41a2d6cf 5439 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5440 * fine.
5441 */
f7b4cddc 5442 spin_unlock_irq(&rq->lock);
48f24c4d 5443 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5444 spin_lock_irq(&rq->lock);
1da177e4 5445
48f24c4d 5446 put_task_struct(p);
1da177e4
LT
5447}
5448
5449/* release_task() removes task from tasklist, so we won't find dead tasks. */
5450static void migrate_dead_tasks(unsigned int dead_cpu)
5451{
70b97a7f 5452 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5453 struct task_struct *next;
48f24c4d 5454
dd41f596
IM
5455 for ( ; ; ) {
5456 if (!rq->nr_running)
5457 break;
a8e504d2 5458 update_rq_clock(rq);
ff95f3df 5459 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5460 if (!next)
5461 break;
5462 migrate_dead(dead_cpu, next);
e692ab53 5463
1da177e4
LT
5464 }
5465}
5466#endif /* CONFIG_HOTPLUG_CPU */
5467
e692ab53
NP
5468#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5469
5470static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5471 {
5472 .procname = "sched_domain",
c57baf1e 5473 .mode = 0555,
e0361851 5474 },
38605cae 5475 {0, },
e692ab53
NP
5476};
5477
5478static struct ctl_table sd_ctl_root[] = {
e0361851 5479 {
c57baf1e 5480 .ctl_name = CTL_KERN,
e0361851 5481 .procname = "kernel",
c57baf1e 5482 .mode = 0555,
e0361851
AD
5483 .child = sd_ctl_dir,
5484 },
38605cae 5485 {0, },
e692ab53
NP
5486};
5487
5488static struct ctl_table *sd_alloc_ctl_entry(int n)
5489{
5490 struct ctl_table *entry =
5cf9f062 5491 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5492
e692ab53
NP
5493 return entry;
5494}
5495
6382bc90
MM
5496static void sd_free_ctl_entry(struct ctl_table **tablep)
5497{
cd790076 5498 struct ctl_table *entry;
6382bc90 5499
cd790076
MM
5500 /*
5501 * In the intermediate directories, both the child directory and
5502 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5503 * will always be set. In the lowest directory the names are
cd790076
MM
5504 * static strings and all have proc handlers.
5505 */
5506 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5507 if (entry->child)
5508 sd_free_ctl_entry(&entry->child);
cd790076
MM
5509 if (entry->proc_handler == NULL)
5510 kfree(entry->procname);
5511 }
6382bc90
MM
5512
5513 kfree(*tablep);
5514 *tablep = NULL;
5515}
5516
e692ab53 5517static void
e0361851 5518set_table_entry(struct ctl_table *entry,
e692ab53
NP
5519 const char *procname, void *data, int maxlen,
5520 mode_t mode, proc_handler *proc_handler)
5521{
e692ab53
NP
5522 entry->procname = procname;
5523 entry->data = data;
5524 entry->maxlen = maxlen;
5525 entry->mode = mode;
5526 entry->proc_handler = proc_handler;
5527}
5528
5529static struct ctl_table *
5530sd_alloc_ctl_domain_table(struct sched_domain *sd)
5531{
ace8b3d6 5532 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5533
ad1cdc1d
MM
5534 if (table == NULL)
5535 return NULL;
5536
e0361851 5537 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5538 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5539 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5540 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5541 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5542 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5543 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5544 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5545 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5546 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5547 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5548 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5549 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5550 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5551 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5552 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5553 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5554 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5555 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5556 &sd->cache_nice_tries,
5557 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5558 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5559 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5560 /* &table[11] is terminator */
e692ab53
NP
5561
5562 return table;
5563}
5564
9a4e7159 5565static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5566{
5567 struct ctl_table *entry, *table;
5568 struct sched_domain *sd;
5569 int domain_num = 0, i;
5570 char buf[32];
5571
5572 for_each_domain(cpu, sd)
5573 domain_num++;
5574 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5575 if (table == NULL)
5576 return NULL;
e692ab53
NP
5577
5578 i = 0;
5579 for_each_domain(cpu, sd) {
5580 snprintf(buf, 32, "domain%d", i);
e692ab53 5581 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5582 entry->mode = 0555;
e692ab53
NP
5583 entry->child = sd_alloc_ctl_domain_table(sd);
5584 entry++;
5585 i++;
5586 }
5587 return table;
5588}
5589
5590static struct ctl_table_header *sd_sysctl_header;
6382bc90 5591static void register_sched_domain_sysctl(void)
e692ab53
NP
5592{
5593 int i, cpu_num = num_online_cpus();
5594 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5595 char buf[32];
5596
7378547f
MM
5597 WARN_ON(sd_ctl_dir[0].child);
5598 sd_ctl_dir[0].child = entry;
5599
ad1cdc1d
MM
5600 if (entry == NULL)
5601 return;
5602
97b6ea7b 5603 for_each_online_cpu(i) {
e692ab53 5604 snprintf(buf, 32, "cpu%d", i);
e692ab53 5605 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5606 entry->mode = 0555;
e692ab53 5607 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5608 entry++;
e692ab53 5609 }
7378547f
MM
5610
5611 WARN_ON(sd_sysctl_header);
e692ab53
NP
5612 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5613}
6382bc90 5614
7378547f 5615/* may be called multiple times per register */
6382bc90
MM
5616static void unregister_sched_domain_sysctl(void)
5617{
7378547f
MM
5618 if (sd_sysctl_header)
5619 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5620 sd_sysctl_header = NULL;
7378547f
MM
5621 if (sd_ctl_dir[0].child)
5622 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5623}
e692ab53 5624#else
6382bc90
MM
5625static void register_sched_domain_sysctl(void)
5626{
5627}
5628static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5629{
5630}
5631#endif
5632
1da177e4
LT
5633/*
5634 * migration_call - callback that gets triggered when a CPU is added.
5635 * Here we can start up the necessary migration thread for the new CPU.
5636 */
48f24c4d
IM
5637static int __cpuinit
5638migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5639{
1da177e4 5640 struct task_struct *p;
48f24c4d 5641 int cpu = (long)hcpu;
1da177e4 5642 unsigned long flags;
70b97a7f 5643 struct rq *rq;
1da177e4
LT
5644
5645 switch (action) {
5be9361c 5646
1da177e4 5647 case CPU_UP_PREPARE:
8bb78442 5648 case CPU_UP_PREPARE_FROZEN:
dd41f596 5649 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5650 if (IS_ERR(p))
5651 return NOTIFY_BAD;
1da177e4
LT
5652 kthread_bind(p, cpu);
5653 /* Must be high prio: stop_machine expects to yield to it. */
5654 rq = task_rq_lock(p, &flags);
dd41f596 5655 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5656 task_rq_unlock(rq, &flags);
5657 cpu_rq(cpu)->migration_thread = p;
5658 break;
48f24c4d 5659
1da177e4 5660 case CPU_ONLINE:
8bb78442 5661 case CPU_ONLINE_FROZEN:
3a4fa0a2 5662 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5663 wake_up_process(cpu_rq(cpu)->migration_thread);
5664 break;
48f24c4d 5665
1da177e4
LT
5666#ifdef CONFIG_HOTPLUG_CPU
5667 case CPU_UP_CANCELED:
8bb78442 5668 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5669 if (!cpu_rq(cpu)->migration_thread)
5670 break;
41a2d6cf 5671 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5672 kthread_bind(cpu_rq(cpu)->migration_thread,
5673 any_online_cpu(cpu_online_map));
1da177e4
LT
5674 kthread_stop(cpu_rq(cpu)->migration_thread);
5675 cpu_rq(cpu)->migration_thread = NULL;
5676 break;
48f24c4d 5677
1da177e4 5678 case CPU_DEAD:
8bb78442 5679 case CPU_DEAD_FROZEN:
470fd646 5680 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5681 migrate_live_tasks(cpu);
5682 rq = cpu_rq(cpu);
5683 kthread_stop(rq->migration_thread);
5684 rq->migration_thread = NULL;
5685 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5686 spin_lock_irq(&rq->lock);
a8e504d2 5687 update_rq_clock(rq);
2e1cb74a 5688 deactivate_task(rq, rq->idle, 0);
1da177e4 5689 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5690 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5691 rq->idle->sched_class = &idle_sched_class;
1da177e4 5692 migrate_dead_tasks(cpu);
d2da272a 5693 spin_unlock_irq(&rq->lock);
470fd646 5694 cpuset_unlock();
1da177e4
LT
5695 migrate_nr_uninterruptible(rq);
5696 BUG_ON(rq->nr_running != 0);
5697
41a2d6cf
IM
5698 /*
5699 * No need to migrate the tasks: it was best-effort if
5700 * they didn't take sched_hotcpu_mutex. Just wake up
5701 * the requestors.
5702 */
1da177e4
LT
5703 spin_lock_irq(&rq->lock);
5704 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5705 struct migration_req *req;
5706
1da177e4 5707 req = list_entry(rq->migration_queue.next,
70b97a7f 5708 struct migration_req, list);
1da177e4
LT
5709 list_del_init(&req->list);
5710 complete(&req->done);
5711 }
5712 spin_unlock_irq(&rq->lock);
5713 break;
5714#endif
5715 }
5716 return NOTIFY_OK;
5717}
5718
5719/* Register at highest priority so that task migration (migrate_all_tasks)
5720 * happens before everything else.
5721 */
26c2143b 5722static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5723 .notifier_call = migration_call,
5724 .priority = 10
5725};
5726
e6fe6649 5727void __init migration_init(void)
1da177e4
LT
5728{
5729 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5730 int err;
48f24c4d
IM
5731
5732 /* Start one for the boot CPU: */
07dccf33
AM
5733 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5734 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5735 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5736 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5737}
5738#endif
5739
5740#ifdef CONFIG_SMP
476f3534
CL
5741
5742/* Number of possible processor ids */
5743int nr_cpu_ids __read_mostly = NR_CPUS;
5744EXPORT_SYMBOL(nr_cpu_ids);
5745
3e9830dc 5746#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5747
5748static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5749{
4dcf6aff
IM
5750 struct sched_group *group = sd->groups;
5751 cpumask_t groupmask;
5752 char str[NR_CPUS];
1da177e4 5753
4dcf6aff
IM
5754 cpumask_scnprintf(str, NR_CPUS, sd->span);
5755 cpus_clear(groupmask);
5756
5757 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5758
5759 if (!(sd->flags & SD_LOAD_BALANCE)) {
5760 printk("does not load-balance\n");
5761 if (sd->parent)
5762 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5763 " has parent");
5764 return -1;
41c7ce9a
NP
5765 }
5766
4dcf6aff
IM
5767 printk(KERN_CONT "span %s\n", str);
5768
5769 if (!cpu_isset(cpu, sd->span)) {
5770 printk(KERN_ERR "ERROR: domain->span does not contain "
5771 "CPU%d\n", cpu);
5772 }
5773 if (!cpu_isset(cpu, group->cpumask)) {
5774 printk(KERN_ERR "ERROR: domain->groups does not contain"
5775 " CPU%d\n", cpu);
5776 }
1da177e4 5777
4dcf6aff 5778 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5779 do {
4dcf6aff
IM
5780 if (!group) {
5781 printk("\n");
5782 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5783 break;
5784 }
5785
4dcf6aff
IM
5786 if (!group->__cpu_power) {
5787 printk(KERN_CONT "\n");
5788 printk(KERN_ERR "ERROR: domain->cpu_power not "
5789 "set\n");
5790 break;
5791 }
1da177e4 5792
4dcf6aff
IM
5793 if (!cpus_weight(group->cpumask)) {
5794 printk(KERN_CONT "\n");
5795 printk(KERN_ERR "ERROR: empty group\n");
5796 break;
5797 }
1da177e4 5798
4dcf6aff
IM
5799 if (cpus_intersects(groupmask, group->cpumask)) {
5800 printk(KERN_CONT "\n");
5801 printk(KERN_ERR "ERROR: repeated CPUs\n");
5802 break;
5803 }
1da177e4 5804
4dcf6aff 5805 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5806
4dcf6aff
IM
5807 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5808 printk(KERN_CONT " %s", str);
1da177e4 5809
4dcf6aff
IM
5810 group = group->next;
5811 } while (group != sd->groups);
5812 printk(KERN_CONT "\n");
1da177e4 5813
4dcf6aff
IM
5814 if (!cpus_equal(sd->span, groupmask))
5815 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5816
4dcf6aff
IM
5817 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5818 printk(KERN_ERR "ERROR: parent span is not a superset "
5819 "of domain->span\n");
5820 return 0;
5821}
1da177e4 5822
4dcf6aff
IM
5823static void sched_domain_debug(struct sched_domain *sd, int cpu)
5824{
5825 int level = 0;
1da177e4 5826
4dcf6aff
IM
5827 if (!sd) {
5828 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5829 return;
5830 }
1da177e4 5831
4dcf6aff
IM
5832 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5833
5834 for (;;) {
5835 if (sched_domain_debug_one(sd, cpu, level))
5836 break;
1da177e4
LT
5837 level++;
5838 sd = sd->parent;
33859f7f 5839 if (!sd)
4dcf6aff
IM
5840 break;
5841 }
1da177e4
LT
5842}
5843#else
48f24c4d 5844# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5845#endif
5846
1a20ff27 5847static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5848{
5849 if (cpus_weight(sd->span) == 1)
5850 return 1;
5851
5852 /* Following flags need at least 2 groups */
5853 if (sd->flags & (SD_LOAD_BALANCE |
5854 SD_BALANCE_NEWIDLE |
5855 SD_BALANCE_FORK |
89c4710e
SS
5856 SD_BALANCE_EXEC |
5857 SD_SHARE_CPUPOWER |
5858 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5859 if (sd->groups != sd->groups->next)
5860 return 0;
5861 }
5862
5863 /* Following flags don't use groups */
5864 if (sd->flags & (SD_WAKE_IDLE |
5865 SD_WAKE_AFFINE |
5866 SD_WAKE_BALANCE))
5867 return 0;
5868
5869 return 1;
5870}
5871
48f24c4d
IM
5872static int
5873sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5874{
5875 unsigned long cflags = sd->flags, pflags = parent->flags;
5876
5877 if (sd_degenerate(parent))
5878 return 1;
5879
5880 if (!cpus_equal(sd->span, parent->span))
5881 return 0;
5882
5883 /* Does parent contain flags not in child? */
5884 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5885 if (cflags & SD_WAKE_AFFINE)
5886 pflags &= ~SD_WAKE_BALANCE;
5887 /* Flags needing groups don't count if only 1 group in parent */
5888 if (parent->groups == parent->groups->next) {
5889 pflags &= ~(SD_LOAD_BALANCE |
5890 SD_BALANCE_NEWIDLE |
5891 SD_BALANCE_FORK |
89c4710e
SS
5892 SD_BALANCE_EXEC |
5893 SD_SHARE_CPUPOWER |
5894 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5895 }
5896 if (~cflags & pflags)
5897 return 0;
5898
5899 return 1;
5900}
5901
1da177e4
LT
5902/*
5903 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5904 * hold the hotplug lock.
5905 */
9c1cfda2 5906static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5907{
70b97a7f 5908 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5909 struct sched_domain *tmp;
5910
5911 /* Remove the sched domains which do not contribute to scheduling. */
5912 for (tmp = sd; tmp; tmp = tmp->parent) {
5913 struct sched_domain *parent = tmp->parent;
5914 if (!parent)
5915 break;
1a848870 5916 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5917 tmp->parent = parent->parent;
1a848870
SS
5918 if (parent->parent)
5919 parent->parent->child = tmp;
5920 }
245af2c7
SS
5921 }
5922
1a848870 5923 if (sd && sd_degenerate(sd)) {
245af2c7 5924 sd = sd->parent;
1a848870
SS
5925 if (sd)
5926 sd->child = NULL;
5927 }
1da177e4
LT
5928
5929 sched_domain_debug(sd, cpu);
5930
674311d5 5931 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5932}
5933
5934/* cpus with isolated domains */
67af63a6 5935static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5936
5937/* Setup the mask of cpus configured for isolated domains */
5938static int __init isolated_cpu_setup(char *str)
5939{
5940 int ints[NR_CPUS], i;
5941
5942 str = get_options(str, ARRAY_SIZE(ints), ints);
5943 cpus_clear(cpu_isolated_map);
5944 for (i = 1; i <= ints[0]; i++)
5945 if (ints[i] < NR_CPUS)
5946 cpu_set(ints[i], cpu_isolated_map);
5947 return 1;
5948}
5949
8927f494 5950__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5951
5952/*
6711cab4
SS
5953 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5954 * to a function which identifies what group(along with sched group) a CPU
5955 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5956 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5957 *
5958 * init_sched_build_groups will build a circular linked list of the groups
5959 * covered by the given span, and will set each group's ->cpumask correctly,
5960 * and ->cpu_power to 0.
5961 */
a616058b 5962static void
6711cab4
SS
5963init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5964 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5965 struct sched_group **sg))
1da177e4
LT
5966{
5967 struct sched_group *first = NULL, *last = NULL;
5968 cpumask_t covered = CPU_MASK_NONE;
5969 int i;
5970
5971 for_each_cpu_mask(i, span) {
6711cab4
SS
5972 struct sched_group *sg;
5973 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5974 int j;
5975
5976 if (cpu_isset(i, covered))
5977 continue;
5978
5979 sg->cpumask = CPU_MASK_NONE;
5517d86b 5980 sg->__cpu_power = 0;
1da177e4
LT
5981
5982 for_each_cpu_mask(j, span) {
6711cab4 5983 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5984 continue;
5985
5986 cpu_set(j, covered);
5987 cpu_set(j, sg->cpumask);
5988 }
5989 if (!first)
5990 first = sg;
5991 if (last)
5992 last->next = sg;
5993 last = sg;
5994 }
5995 last->next = first;
5996}
5997
9c1cfda2 5998#define SD_NODES_PER_DOMAIN 16
1da177e4 5999
9c1cfda2 6000#ifdef CONFIG_NUMA
198e2f18 6001
9c1cfda2
JH
6002/**
6003 * find_next_best_node - find the next node to include in a sched_domain
6004 * @node: node whose sched_domain we're building
6005 * @used_nodes: nodes already in the sched_domain
6006 *
41a2d6cf 6007 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6008 * finds the closest node not already in the @used_nodes map.
6009 *
6010 * Should use nodemask_t.
6011 */
6012static int find_next_best_node(int node, unsigned long *used_nodes)
6013{
6014 int i, n, val, min_val, best_node = 0;
6015
6016 min_val = INT_MAX;
6017
6018 for (i = 0; i < MAX_NUMNODES; i++) {
6019 /* Start at @node */
6020 n = (node + i) % MAX_NUMNODES;
6021
6022 if (!nr_cpus_node(n))
6023 continue;
6024
6025 /* Skip already used nodes */
6026 if (test_bit(n, used_nodes))
6027 continue;
6028
6029 /* Simple min distance search */
6030 val = node_distance(node, n);
6031
6032 if (val < min_val) {
6033 min_val = val;
6034 best_node = n;
6035 }
6036 }
6037
6038 set_bit(best_node, used_nodes);
6039 return best_node;
6040}
6041
6042/**
6043 * sched_domain_node_span - get a cpumask for a node's sched_domain
6044 * @node: node whose cpumask we're constructing
6045 * @size: number of nodes to include in this span
6046 *
41a2d6cf 6047 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6048 * should be one that prevents unnecessary balancing, but also spreads tasks
6049 * out optimally.
6050 */
6051static cpumask_t sched_domain_node_span(int node)
6052{
9c1cfda2 6053 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6054 cpumask_t span, nodemask;
6055 int i;
9c1cfda2
JH
6056
6057 cpus_clear(span);
6058 bitmap_zero(used_nodes, MAX_NUMNODES);
6059
6060 nodemask = node_to_cpumask(node);
6061 cpus_or(span, span, nodemask);
6062 set_bit(node, used_nodes);
6063
6064 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6065 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6066
9c1cfda2
JH
6067 nodemask = node_to_cpumask(next_node);
6068 cpus_or(span, span, nodemask);
6069 }
6070
6071 return span;
6072}
6073#endif
6074
5c45bf27 6075int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6076
9c1cfda2 6077/*
48f24c4d 6078 * SMT sched-domains:
9c1cfda2 6079 */
1da177e4
LT
6080#ifdef CONFIG_SCHED_SMT
6081static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6082static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6083
41a2d6cf
IM
6084static int
6085cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6086{
6711cab4
SS
6087 if (sg)
6088 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6089 return cpu;
6090}
6091#endif
6092
48f24c4d
IM
6093/*
6094 * multi-core sched-domains:
6095 */
1e9f28fa
SS
6096#ifdef CONFIG_SCHED_MC
6097static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6098static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6099#endif
6100
6101#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6102static int
6103cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6104{
6711cab4 6105 int group;
d5a7430d 6106 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6107 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6108 group = first_cpu(mask);
6109 if (sg)
6110 *sg = &per_cpu(sched_group_core, group);
6111 return group;
1e9f28fa
SS
6112}
6113#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6114static int
6115cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6116{
6711cab4
SS
6117 if (sg)
6118 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6119 return cpu;
6120}
6121#endif
6122
1da177e4 6123static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6124static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6125
41a2d6cf
IM
6126static int
6127cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6128{
6711cab4 6129 int group;
48f24c4d 6130#ifdef CONFIG_SCHED_MC
1e9f28fa 6131 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6132 cpus_and(mask, mask, *cpu_map);
6711cab4 6133 group = first_cpu(mask);
1e9f28fa 6134#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6135 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6136 cpus_and(mask, mask, *cpu_map);
6711cab4 6137 group = first_cpu(mask);
1da177e4 6138#else
6711cab4 6139 group = cpu;
1da177e4 6140#endif
6711cab4
SS
6141 if (sg)
6142 *sg = &per_cpu(sched_group_phys, group);
6143 return group;
1da177e4
LT
6144}
6145
6146#ifdef CONFIG_NUMA
1da177e4 6147/*
9c1cfda2
JH
6148 * The init_sched_build_groups can't handle what we want to do with node
6149 * groups, so roll our own. Now each node has its own list of groups which
6150 * gets dynamically allocated.
1da177e4 6151 */
9c1cfda2 6152static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6153static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6154
9c1cfda2 6155static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6156static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6157
6711cab4
SS
6158static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6159 struct sched_group **sg)
9c1cfda2 6160{
6711cab4
SS
6161 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6162 int group;
6163
6164 cpus_and(nodemask, nodemask, *cpu_map);
6165 group = first_cpu(nodemask);
6166
6167 if (sg)
6168 *sg = &per_cpu(sched_group_allnodes, group);
6169 return group;
1da177e4 6170}
6711cab4 6171
08069033
SS
6172static void init_numa_sched_groups_power(struct sched_group *group_head)
6173{
6174 struct sched_group *sg = group_head;
6175 int j;
6176
6177 if (!sg)
6178 return;
3a5c359a
AK
6179 do {
6180 for_each_cpu_mask(j, sg->cpumask) {
6181 struct sched_domain *sd;
08069033 6182
3a5c359a
AK
6183 sd = &per_cpu(phys_domains, j);
6184 if (j != first_cpu(sd->groups->cpumask)) {
6185 /*
6186 * Only add "power" once for each
6187 * physical package.
6188 */
6189 continue;
6190 }
08069033 6191
3a5c359a
AK
6192 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6193 }
6194 sg = sg->next;
6195 } while (sg != group_head);
08069033 6196}
1da177e4
LT
6197#endif
6198
a616058b 6199#ifdef CONFIG_NUMA
51888ca2
SV
6200/* Free memory allocated for various sched_group structures */
6201static void free_sched_groups(const cpumask_t *cpu_map)
6202{
a616058b 6203 int cpu, i;
51888ca2
SV
6204
6205 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6206 struct sched_group **sched_group_nodes
6207 = sched_group_nodes_bycpu[cpu];
6208
51888ca2
SV
6209 if (!sched_group_nodes)
6210 continue;
6211
6212 for (i = 0; i < MAX_NUMNODES; i++) {
6213 cpumask_t nodemask = node_to_cpumask(i);
6214 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6215
6216 cpus_and(nodemask, nodemask, *cpu_map);
6217 if (cpus_empty(nodemask))
6218 continue;
6219
6220 if (sg == NULL)
6221 continue;
6222 sg = sg->next;
6223next_sg:
6224 oldsg = sg;
6225 sg = sg->next;
6226 kfree(oldsg);
6227 if (oldsg != sched_group_nodes[i])
6228 goto next_sg;
6229 }
6230 kfree(sched_group_nodes);
6231 sched_group_nodes_bycpu[cpu] = NULL;
6232 }
51888ca2 6233}
a616058b
SS
6234#else
6235static void free_sched_groups(const cpumask_t *cpu_map)
6236{
6237}
6238#endif
51888ca2 6239
89c4710e
SS
6240/*
6241 * Initialize sched groups cpu_power.
6242 *
6243 * cpu_power indicates the capacity of sched group, which is used while
6244 * distributing the load between different sched groups in a sched domain.
6245 * Typically cpu_power for all the groups in a sched domain will be same unless
6246 * there are asymmetries in the topology. If there are asymmetries, group
6247 * having more cpu_power will pickup more load compared to the group having
6248 * less cpu_power.
6249 *
6250 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6251 * the maximum number of tasks a group can handle in the presence of other idle
6252 * or lightly loaded groups in the same sched domain.
6253 */
6254static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6255{
6256 struct sched_domain *child;
6257 struct sched_group *group;
6258
6259 WARN_ON(!sd || !sd->groups);
6260
6261 if (cpu != first_cpu(sd->groups->cpumask))
6262 return;
6263
6264 child = sd->child;
6265
5517d86b
ED
6266 sd->groups->__cpu_power = 0;
6267
89c4710e
SS
6268 /*
6269 * For perf policy, if the groups in child domain share resources
6270 * (for example cores sharing some portions of the cache hierarchy
6271 * or SMT), then set this domain groups cpu_power such that each group
6272 * can handle only one task, when there are other idle groups in the
6273 * same sched domain.
6274 */
6275 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6276 (child->flags &
6277 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6278 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6279 return;
6280 }
6281
89c4710e
SS
6282 /*
6283 * add cpu_power of each child group to this groups cpu_power
6284 */
6285 group = child->groups;
6286 do {
5517d86b 6287 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6288 group = group->next;
6289 } while (group != child->groups);
6290}
6291
1da177e4 6292/*
1a20ff27
DG
6293 * Build sched domains for a given set of cpus and attach the sched domains
6294 * to the individual cpus
1da177e4 6295 */
51888ca2 6296static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6297{
6298 int i;
d1b55138
JH
6299#ifdef CONFIG_NUMA
6300 struct sched_group **sched_group_nodes = NULL;
6711cab4 6301 int sd_allnodes = 0;
d1b55138
JH
6302
6303 /*
6304 * Allocate the per-node list of sched groups
6305 */
5cf9f062 6306 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6307 GFP_KERNEL);
d1b55138
JH
6308 if (!sched_group_nodes) {
6309 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6310 return -ENOMEM;
d1b55138
JH
6311 }
6312 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6313#endif
1da177e4
LT
6314
6315 /*
1a20ff27 6316 * Set up domains for cpus specified by the cpu_map.
1da177e4 6317 */
1a20ff27 6318 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6319 struct sched_domain *sd = NULL, *p;
6320 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6321
1a20ff27 6322 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6323
6324#ifdef CONFIG_NUMA
dd41f596
IM
6325 if (cpus_weight(*cpu_map) >
6326 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6327 sd = &per_cpu(allnodes_domains, i);
6328 *sd = SD_ALLNODES_INIT;
6329 sd->span = *cpu_map;
6711cab4 6330 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6331 p = sd;
6711cab4 6332 sd_allnodes = 1;
9c1cfda2
JH
6333 } else
6334 p = NULL;
6335
1da177e4 6336 sd = &per_cpu(node_domains, i);
1da177e4 6337 *sd = SD_NODE_INIT;
9c1cfda2
JH
6338 sd->span = sched_domain_node_span(cpu_to_node(i));
6339 sd->parent = p;
1a848870
SS
6340 if (p)
6341 p->child = sd;
9c1cfda2 6342 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6343#endif
6344
6345 p = sd;
6346 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6347 *sd = SD_CPU_INIT;
6348 sd->span = nodemask;
6349 sd->parent = p;
1a848870
SS
6350 if (p)
6351 p->child = sd;
6711cab4 6352 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6353
1e9f28fa
SS
6354#ifdef CONFIG_SCHED_MC
6355 p = sd;
6356 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6357 *sd = SD_MC_INIT;
6358 sd->span = cpu_coregroup_map(i);
6359 cpus_and(sd->span, sd->span, *cpu_map);
6360 sd->parent = p;
1a848870 6361 p->child = sd;
6711cab4 6362 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6363#endif
6364
1da177e4
LT
6365#ifdef CONFIG_SCHED_SMT
6366 p = sd;
6367 sd = &per_cpu(cpu_domains, i);
1da177e4 6368 *sd = SD_SIBLING_INIT;
d5a7430d 6369 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6370 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6371 sd->parent = p;
1a848870 6372 p->child = sd;
6711cab4 6373 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6374#endif
6375 }
6376
6377#ifdef CONFIG_SCHED_SMT
6378 /* Set up CPU (sibling) groups */
9c1cfda2 6379 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6380 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6381 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6382 if (i != first_cpu(this_sibling_map))
6383 continue;
6384
dd41f596
IM
6385 init_sched_build_groups(this_sibling_map, cpu_map,
6386 &cpu_to_cpu_group);
1da177e4
LT
6387 }
6388#endif
6389
1e9f28fa
SS
6390#ifdef CONFIG_SCHED_MC
6391 /* Set up multi-core groups */
6392 for_each_cpu_mask(i, *cpu_map) {
6393 cpumask_t this_core_map = cpu_coregroup_map(i);
6394 cpus_and(this_core_map, this_core_map, *cpu_map);
6395 if (i != first_cpu(this_core_map))
6396 continue;
dd41f596
IM
6397 init_sched_build_groups(this_core_map, cpu_map,
6398 &cpu_to_core_group);
1e9f28fa
SS
6399 }
6400#endif
6401
1da177e4
LT
6402 /* Set up physical groups */
6403 for (i = 0; i < MAX_NUMNODES; i++) {
6404 cpumask_t nodemask = node_to_cpumask(i);
6405
1a20ff27 6406 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6407 if (cpus_empty(nodemask))
6408 continue;
6409
6711cab4 6410 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6411 }
6412
6413#ifdef CONFIG_NUMA
6414 /* Set up node groups */
6711cab4 6415 if (sd_allnodes)
dd41f596
IM
6416 init_sched_build_groups(*cpu_map, cpu_map,
6417 &cpu_to_allnodes_group);
9c1cfda2
JH
6418
6419 for (i = 0; i < MAX_NUMNODES; i++) {
6420 /* Set up node groups */
6421 struct sched_group *sg, *prev;
6422 cpumask_t nodemask = node_to_cpumask(i);
6423 cpumask_t domainspan;
6424 cpumask_t covered = CPU_MASK_NONE;
6425 int j;
6426
6427 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6428 if (cpus_empty(nodemask)) {
6429 sched_group_nodes[i] = NULL;
9c1cfda2 6430 continue;
d1b55138 6431 }
9c1cfda2
JH
6432
6433 domainspan = sched_domain_node_span(i);
6434 cpus_and(domainspan, domainspan, *cpu_map);
6435
15f0b676 6436 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6437 if (!sg) {
6438 printk(KERN_WARNING "Can not alloc domain group for "
6439 "node %d\n", i);
6440 goto error;
6441 }
9c1cfda2
JH
6442 sched_group_nodes[i] = sg;
6443 for_each_cpu_mask(j, nodemask) {
6444 struct sched_domain *sd;
9761eea8 6445
9c1cfda2
JH
6446 sd = &per_cpu(node_domains, j);
6447 sd->groups = sg;
9c1cfda2 6448 }
5517d86b 6449 sg->__cpu_power = 0;
9c1cfda2 6450 sg->cpumask = nodemask;
51888ca2 6451 sg->next = sg;
9c1cfda2
JH
6452 cpus_or(covered, covered, nodemask);
6453 prev = sg;
6454
6455 for (j = 0; j < MAX_NUMNODES; j++) {
6456 cpumask_t tmp, notcovered;
6457 int n = (i + j) % MAX_NUMNODES;
6458
6459 cpus_complement(notcovered, covered);
6460 cpus_and(tmp, notcovered, *cpu_map);
6461 cpus_and(tmp, tmp, domainspan);
6462 if (cpus_empty(tmp))
6463 break;
6464
6465 nodemask = node_to_cpumask(n);
6466 cpus_and(tmp, tmp, nodemask);
6467 if (cpus_empty(tmp))
6468 continue;
6469
15f0b676
SV
6470 sg = kmalloc_node(sizeof(struct sched_group),
6471 GFP_KERNEL, i);
9c1cfda2
JH
6472 if (!sg) {
6473 printk(KERN_WARNING
6474 "Can not alloc domain group for node %d\n", j);
51888ca2 6475 goto error;
9c1cfda2 6476 }
5517d86b 6477 sg->__cpu_power = 0;
9c1cfda2 6478 sg->cpumask = tmp;
51888ca2 6479 sg->next = prev->next;
9c1cfda2
JH
6480 cpus_or(covered, covered, tmp);
6481 prev->next = sg;
6482 prev = sg;
6483 }
9c1cfda2 6484 }
1da177e4
LT
6485#endif
6486
6487 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6488#ifdef CONFIG_SCHED_SMT
1a20ff27 6489 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6490 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6491
89c4710e 6492 init_sched_groups_power(i, sd);
5c45bf27 6493 }
1da177e4 6494#endif
1e9f28fa 6495#ifdef CONFIG_SCHED_MC
5c45bf27 6496 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6497 struct sched_domain *sd = &per_cpu(core_domains, i);
6498
89c4710e 6499 init_sched_groups_power(i, sd);
5c45bf27
SS
6500 }
6501#endif
1e9f28fa 6502
5c45bf27 6503 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6504 struct sched_domain *sd = &per_cpu(phys_domains, i);
6505
89c4710e 6506 init_sched_groups_power(i, sd);
1da177e4
LT
6507 }
6508
9c1cfda2 6509#ifdef CONFIG_NUMA
08069033
SS
6510 for (i = 0; i < MAX_NUMNODES; i++)
6511 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6512
6711cab4
SS
6513 if (sd_allnodes) {
6514 struct sched_group *sg;
f712c0c7 6515
6711cab4 6516 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6517 init_numa_sched_groups_power(sg);
6518 }
9c1cfda2
JH
6519#endif
6520
1da177e4 6521 /* Attach the domains */
1a20ff27 6522 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6523 struct sched_domain *sd;
6524#ifdef CONFIG_SCHED_SMT
6525 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6526#elif defined(CONFIG_SCHED_MC)
6527 sd = &per_cpu(core_domains, i);
1da177e4
LT
6528#else
6529 sd = &per_cpu(phys_domains, i);
6530#endif
6531 cpu_attach_domain(sd, i);
6532 }
51888ca2
SV
6533
6534 return 0;
6535
a616058b 6536#ifdef CONFIG_NUMA
51888ca2
SV
6537error:
6538 free_sched_groups(cpu_map);
6539 return -ENOMEM;
a616058b 6540#endif
1da177e4 6541}
029190c5
PJ
6542
6543static cpumask_t *doms_cur; /* current sched domains */
6544static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6545
6546/*
6547 * Special case: If a kmalloc of a doms_cur partition (array of
6548 * cpumask_t) fails, then fallback to a single sched domain,
6549 * as determined by the single cpumask_t fallback_doms.
6550 */
6551static cpumask_t fallback_doms;
6552
1a20ff27 6553/*
41a2d6cf 6554 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6555 * For now this just excludes isolated cpus, but could be used to
6556 * exclude other special cases in the future.
1a20ff27 6557 */
51888ca2 6558static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6559{
7378547f
MM
6560 int err;
6561
029190c5
PJ
6562 ndoms_cur = 1;
6563 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6564 if (!doms_cur)
6565 doms_cur = &fallback_doms;
6566 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6567 err = build_sched_domains(doms_cur);
6382bc90 6568 register_sched_domain_sysctl();
7378547f
MM
6569
6570 return err;
1a20ff27
DG
6571}
6572
6573static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6574{
51888ca2 6575 free_sched_groups(cpu_map);
9c1cfda2 6576}
1da177e4 6577
1a20ff27
DG
6578/*
6579 * Detach sched domains from a group of cpus specified in cpu_map
6580 * These cpus will now be attached to the NULL domain
6581 */
858119e1 6582static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6583{
6584 int i;
6585
6382bc90
MM
6586 unregister_sched_domain_sysctl();
6587
1a20ff27
DG
6588 for_each_cpu_mask(i, *cpu_map)
6589 cpu_attach_domain(NULL, i);
6590 synchronize_sched();
6591 arch_destroy_sched_domains(cpu_map);
6592}
6593
029190c5
PJ
6594/*
6595 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6596 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6597 * doms_new[] to the current sched domain partitioning, doms_cur[].
6598 * It destroys each deleted domain and builds each new domain.
6599 *
6600 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6601 * The masks don't intersect (don't overlap.) We should setup one
6602 * sched domain for each mask. CPUs not in any of the cpumasks will
6603 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6604 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6605 * it as it is.
6606 *
41a2d6cf
IM
6607 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6608 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6609 * failed the kmalloc call, then it can pass in doms_new == NULL,
6610 * and partition_sched_domains() will fallback to the single partition
6611 * 'fallback_doms'.
6612 *
6613 * Call with hotplug lock held
6614 */
6615void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6616{
6617 int i, j;
6618
a1835615
SV
6619 lock_doms_cur();
6620
7378547f
MM
6621 /* always unregister in case we don't destroy any domains */
6622 unregister_sched_domain_sysctl();
6623
029190c5
PJ
6624 if (doms_new == NULL) {
6625 ndoms_new = 1;
6626 doms_new = &fallback_doms;
6627 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6628 }
6629
6630 /* Destroy deleted domains */
6631 for (i = 0; i < ndoms_cur; i++) {
6632 for (j = 0; j < ndoms_new; j++) {
6633 if (cpus_equal(doms_cur[i], doms_new[j]))
6634 goto match1;
6635 }
6636 /* no match - a current sched domain not in new doms_new[] */
6637 detach_destroy_domains(doms_cur + i);
6638match1:
6639 ;
6640 }
6641
6642 /* Build new domains */
6643 for (i = 0; i < ndoms_new; i++) {
6644 for (j = 0; j < ndoms_cur; j++) {
6645 if (cpus_equal(doms_new[i], doms_cur[j]))
6646 goto match2;
6647 }
6648 /* no match - add a new doms_new */
6649 build_sched_domains(doms_new + i);
6650match2:
6651 ;
6652 }
6653
6654 /* Remember the new sched domains */
6655 if (doms_cur != &fallback_doms)
6656 kfree(doms_cur);
6657 doms_cur = doms_new;
6658 ndoms_cur = ndoms_new;
7378547f
MM
6659
6660 register_sched_domain_sysctl();
a1835615
SV
6661
6662 unlock_doms_cur();
029190c5
PJ
6663}
6664
5c45bf27 6665#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6666static int arch_reinit_sched_domains(void)
5c45bf27
SS
6667{
6668 int err;
6669
95402b38 6670 get_online_cpus();
5c45bf27
SS
6671 detach_destroy_domains(&cpu_online_map);
6672 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6673 put_online_cpus();
5c45bf27
SS
6674
6675 return err;
6676}
6677
6678static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6679{
6680 int ret;
6681
6682 if (buf[0] != '0' && buf[0] != '1')
6683 return -EINVAL;
6684
6685 if (smt)
6686 sched_smt_power_savings = (buf[0] == '1');
6687 else
6688 sched_mc_power_savings = (buf[0] == '1');
6689
6690 ret = arch_reinit_sched_domains();
6691
6692 return ret ? ret : count;
6693}
6694
5c45bf27
SS
6695#ifdef CONFIG_SCHED_MC
6696static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6697{
6698 return sprintf(page, "%u\n", sched_mc_power_savings);
6699}
48f24c4d
IM
6700static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6701 const char *buf, size_t count)
5c45bf27
SS
6702{
6703 return sched_power_savings_store(buf, count, 0);
6704}
6707de00
AB
6705static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6706 sched_mc_power_savings_store);
5c45bf27
SS
6707#endif
6708
6709#ifdef CONFIG_SCHED_SMT
6710static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6711{
6712 return sprintf(page, "%u\n", sched_smt_power_savings);
6713}
48f24c4d
IM
6714static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6715 const char *buf, size_t count)
5c45bf27
SS
6716{
6717 return sched_power_savings_store(buf, count, 1);
6718}
6707de00
AB
6719static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6720 sched_smt_power_savings_store);
6721#endif
6722
6723int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6724{
6725 int err = 0;
6726
6727#ifdef CONFIG_SCHED_SMT
6728 if (smt_capable())
6729 err = sysfs_create_file(&cls->kset.kobj,
6730 &attr_sched_smt_power_savings.attr);
6731#endif
6732#ifdef CONFIG_SCHED_MC
6733 if (!err && mc_capable())
6734 err = sysfs_create_file(&cls->kset.kobj,
6735 &attr_sched_mc_power_savings.attr);
6736#endif
6737 return err;
6738}
5c45bf27
SS
6739#endif
6740
1da177e4 6741/*
41a2d6cf 6742 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6743 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6744 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6745 * which will prevent rebalancing while the sched domains are recalculated.
6746 */
6747static int update_sched_domains(struct notifier_block *nfb,
6748 unsigned long action, void *hcpu)
6749{
1da177e4
LT
6750 switch (action) {
6751 case CPU_UP_PREPARE:
8bb78442 6752 case CPU_UP_PREPARE_FROZEN:
1da177e4 6753 case CPU_DOWN_PREPARE:
8bb78442 6754 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6755 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6756 return NOTIFY_OK;
6757
6758 case CPU_UP_CANCELED:
8bb78442 6759 case CPU_UP_CANCELED_FROZEN:
1da177e4 6760 case CPU_DOWN_FAILED:
8bb78442 6761 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6762 case CPU_ONLINE:
8bb78442 6763 case CPU_ONLINE_FROZEN:
1da177e4 6764 case CPU_DEAD:
8bb78442 6765 case CPU_DEAD_FROZEN:
1da177e4
LT
6766 /*
6767 * Fall through and re-initialise the domains.
6768 */
6769 break;
6770 default:
6771 return NOTIFY_DONE;
6772 }
6773
6774 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6775 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6776
6777 return NOTIFY_OK;
6778}
1da177e4
LT
6779
6780void __init sched_init_smp(void)
6781{
5c1e1767
NP
6782 cpumask_t non_isolated_cpus;
6783
95402b38 6784 get_online_cpus();
1a20ff27 6785 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6786 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6787 if (cpus_empty(non_isolated_cpus))
6788 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6789 put_online_cpus();
1da177e4
LT
6790 /* XXX: Theoretical race here - CPU may be hotplugged now */
6791 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6792
6793 /* Move init over to a non-isolated CPU */
6794 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6795 BUG();
19978ca6 6796 sched_init_granularity();
6b2d7700
SV
6797
6798#ifdef CONFIG_FAIR_GROUP_SCHED
6799 if (nr_cpu_ids == 1)
6800 return;
6801
6802 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6803 "group_balance");
6804 if (!IS_ERR(lb_monitor_task)) {
6805 lb_monitor_task->flags |= PF_NOFREEZE;
6806 wake_up_process(lb_monitor_task);
6807 } else {
6808 printk(KERN_ERR "Could not create load balance monitor thread"
6809 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6810 }
6811#endif
1da177e4
LT
6812}
6813#else
6814void __init sched_init_smp(void)
6815{
19978ca6 6816 sched_init_granularity();
1da177e4
LT
6817}
6818#endif /* CONFIG_SMP */
6819
6820int in_sched_functions(unsigned long addr)
6821{
1da177e4
LT
6822 return in_lock_functions(addr) ||
6823 (addr >= (unsigned long)__sched_text_start
6824 && addr < (unsigned long)__sched_text_end);
6825}
6826
a9957449 6827static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6828{
6829 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6830#ifdef CONFIG_FAIR_GROUP_SCHED
6831 cfs_rq->rq = rq;
6832#endif
67e9fb2a 6833 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6834}
6835
1da177e4
LT
6836void __init sched_init(void)
6837{
476f3534 6838 int highest_cpu = 0;
dd41f596
IM
6839 int i, j;
6840
0a945022 6841 for_each_possible_cpu(i) {
dd41f596 6842 struct rt_prio_array *array;
70b97a7f 6843 struct rq *rq;
1da177e4
LT
6844
6845 rq = cpu_rq(i);
6846 spin_lock_init(&rq->lock);
fcb99371 6847 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6848 rq->nr_running = 0;
dd41f596
IM
6849 rq->clock = 1;
6850 init_cfs_rq(&rq->cfs, rq);
6851#ifdef CONFIG_FAIR_GROUP_SCHED
6852 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6853 {
6854 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6855 struct sched_entity *se =
6856 &per_cpu(init_sched_entity, i);
6857
6858 init_cfs_rq_p[i] = cfs_rq;
6859 init_cfs_rq(cfs_rq, rq);
4cf86d77 6860 cfs_rq->tg = &init_task_group;
3a252015 6861 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6862 &rq->leaf_cfs_rq_list);
6863
3a252015
IM
6864 init_sched_entity_p[i] = se;
6865 se->cfs_rq = &rq->cfs;
6866 se->my_q = cfs_rq;
4cf86d77 6867 se->load.weight = init_task_group_load;
9b5b7751 6868 se->load.inv_weight =
4cf86d77 6869 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6870 se->parent = NULL;
6871 }
4cf86d77 6872 init_task_group.shares = init_task_group_load;
dd41f596 6873#endif
1da177e4 6874
dd41f596
IM
6875 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6876 rq->cpu_load[j] = 0;
1da177e4 6877#ifdef CONFIG_SMP
41c7ce9a 6878 rq->sd = NULL;
1da177e4 6879 rq->active_balance = 0;
dd41f596 6880 rq->next_balance = jiffies;
1da177e4 6881 rq->push_cpu = 0;
0a2966b4 6882 rq->cpu = i;
1da177e4
LT
6883 rq->migration_thread = NULL;
6884 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6885 rq->rt.highest_prio = MAX_RT_PRIO;
1da177e4
LT
6886#endif
6887 atomic_set(&rq->nr_iowait, 0);
6888
dd41f596
IM
6889 array = &rq->rt.active;
6890 for (j = 0; j < MAX_RT_PRIO; j++) {
6891 INIT_LIST_HEAD(array->queue + j);
6892 __clear_bit(j, array->bitmap);
1da177e4 6893 }
476f3534 6894 highest_cpu = i;
dd41f596
IM
6895 /* delimiter for bitsearch: */
6896 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6897 }
6898
2dd73a4f 6899 set_load_weight(&init_task);
b50f60ce 6900
e107be36
AK
6901#ifdef CONFIG_PREEMPT_NOTIFIERS
6902 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6903#endif
6904
c9819f45 6905#ifdef CONFIG_SMP
476f3534 6906 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6907 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6908#endif
6909
b50f60ce
HC
6910#ifdef CONFIG_RT_MUTEXES
6911 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6912#endif
6913
1da177e4
LT
6914 /*
6915 * The boot idle thread does lazy MMU switching as well:
6916 */
6917 atomic_inc(&init_mm.mm_count);
6918 enter_lazy_tlb(&init_mm, current);
6919
6920 /*
6921 * Make us the idle thread. Technically, schedule() should not be
6922 * called from this thread, however somewhere below it might be,
6923 * but because we are the idle thread, we just pick up running again
6924 * when this runqueue becomes "idle".
6925 */
6926 init_idle(current, smp_processor_id());
dd41f596
IM
6927 /*
6928 * During early bootup we pretend to be a normal task:
6929 */
6930 current->sched_class = &fair_sched_class;
1da177e4
LT
6931}
6932
6933#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6934void __might_sleep(char *file, int line)
6935{
48f24c4d 6936#ifdef in_atomic
1da177e4
LT
6937 static unsigned long prev_jiffy; /* ratelimiting */
6938
6939 if ((in_atomic() || irqs_disabled()) &&
6940 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6941 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6942 return;
6943 prev_jiffy = jiffies;
91368d73 6944 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6945 " context at %s:%d\n", file, line);
6946 printk("in_atomic():%d, irqs_disabled():%d\n",
6947 in_atomic(), irqs_disabled());
a4c410f0 6948 debug_show_held_locks(current);
3117df04
IM
6949 if (irqs_disabled())
6950 print_irqtrace_events(current);
1da177e4
LT
6951 dump_stack();
6952 }
6953#endif
6954}
6955EXPORT_SYMBOL(__might_sleep);
6956#endif
6957
6958#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6959static void normalize_task(struct rq *rq, struct task_struct *p)
6960{
6961 int on_rq;
6962 update_rq_clock(rq);
6963 on_rq = p->se.on_rq;
6964 if (on_rq)
6965 deactivate_task(rq, p, 0);
6966 __setscheduler(rq, p, SCHED_NORMAL, 0);
6967 if (on_rq) {
6968 activate_task(rq, p, 0);
6969 resched_task(rq->curr);
6970 }
6971}
6972
1da177e4
LT
6973void normalize_rt_tasks(void)
6974{
a0f98a1c 6975 struct task_struct *g, *p;
1da177e4 6976 unsigned long flags;
70b97a7f 6977 struct rq *rq;
1da177e4
LT
6978
6979 read_lock_irq(&tasklist_lock);
a0f98a1c 6980 do_each_thread(g, p) {
178be793
IM
6981 /*
6982 * Only normalize user tasks:
6983 */
6984 if (!p->mm)
6985 continue;
6986
6cfb0d5d 6987 p->se.exec_start = 0;
6cfb0d5d 6988#ifdef CONFIG_SCHEDSTATS
dd41f596 6989 p->se.wait_start = 0;
dd41f596 6990 p->se.sleep_start = 0;
dd41f596 6991 p->se.block_start = 0;
6cfb0d5d 6992#endif
dd41f596
IM
6993 task_rq(p)->clock = 0;
6994
6995 if (!rt_task(p)) {
6996 /*
6997 * Renice negative nice level userspace
6998 * tasks back to 0:
6999 */
7000 if (TASK_NICE(p) < 0 && p->mm)
7001 set_user_nice(p, 0);
1da177e4 7002 continue;
dd41f596 7003 }
1da177e4 7004
b29739f9
IM
7005 spin_lock_irqsave(&p->pi_lock, flags);
7006 rq = __task_rq_lock(p);
1da177e4 7007
178be793 7008 normalize_task(rq, p);
3a5e4dc1 7009
b29739f9
IM
7010 __task_rq_unlock(rq);
7011 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7012 } while_each_thread(g, p);
7013
1da177e4
LT
7014 read_unlock_irq(&tasklist_lock);
7015}
7016
7017#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7018
7019#ifdef CONFIG_IA64
7020/*
7021 * These functions are only useful for the IA64 MCA handling.
7022 *
7023 * They can only be called when the whole system has been
7024 * stopped - every CPU needs to be quiescent, and no scheduling
7025 * activity can take place. Using them for anything else would
7026 * be a serious bug, and as a result, they aren't even visible
7027 * under any other configuration.
7028 */
7029
7030/**
7031 * curr_task - return the current task for a given cpu.
7032 * @cpu: the processor in question.
7033 *
7034 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7035 */
36c8b586 7036struct task_struct *curr_task(int cpu)
1df5c10a
LT
7037{
7038 return cpu_curr(cpu);
7039}
7040
7041/**
7042 * set_curr_task - set the current task for a given cpu.
7043 * @cpu: the processor in question.
7044 * @p: the task pointer to set.
7045 *
7046 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7047 * are serviced on a separate stack. It allows the architecture to switch the
7048 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7049 * must be called with all CPU's synchronized, and interrupts disabled, the
7050 * and caller must save the original value of the current task (see
7051 * curr_task() above) and restore that value before reenabling interrupts and
7052 * re-starting the system.
7053 *
7054 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7055 */
36c8b586 7056void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7057{
7058 cpu_curr(cpu) = p;
7059}
7060
7061#endif
29f59db3
SV
7062
7063#ifdef CONFIG_FAIR_GROUP_SCHED
7064
6b2d7700
SV
7065#ifdef CONFIG_SMP
7066/*
7067 * distribute shares of all task groups among their schedulable entities,
7068 * to reflect load distrbution across cpus.
7069 */
7070static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7071{
7072 struct cfs_rq *cfs_rq;
7073 struct rq *rq = cpu_rq(this_cpu);
7074 cpumask_t sdspan = sd->span;
7075 int balanced = 1;
7076
7077 /* Walk thr' all the task groups that we have */
7078 for_each_leaf_cfs_rq(rq, cfs_rq) {
7079 int i;
7080 unsigned long total_load = 0, total_shares;
7081 struct task_group *tg = cfs_rq->tg;
7082
7083 /* Gather total task load of this group across cpus */
7084 for_each_cpu_mask(i, sdspan)
7085 total_load += tg->cfs_rq[i]->load.weight;
7086
7087 /* Nothing to do if this group has no load */
7088 if (!total_load)
7089 continue;
7090
7091 /*
7092 * tg->shares represents the number of cpu shares the task group
7093 * is eligible to hold on a single cpu. On N cpus, it is
7094 * eligible to hold (N * tg->shares) number of cpu shares.
7095 */
7096 total_shares = tg->shares * cpus_weight(sdspan);
7097
7098 /*
7099 * redistribute total_shares across cpus as per the task load
7100 * distribution.
7101 */
7102 for_each_cpu_mask(i, sdspan) {
7103 unsigned long local_load, local_shares;
7104
7105 local_load = tg->cfs_rq[i]->load.weight;
7106 local_shares = (local_load * total_shares) / total_load;
7107 if (!local_shares)
7108 local_shares = MIN_GROUP_SHARES;
7109 if (local_shares == tg->se[i]->load.weight)
7110 continue;
7111
7112 spin_lock_irq(&cpu_rq(i)->lock);
7113 set_se_shares(tg->se[i], local_shares);
7114 spin_unlock_irq(&cpu_rq(i)->lock);
7115 balanced = 0;
7116 }
7117 }
7118
7119 return balanced;
7120}
7121
7122/*
7123 * How frequently should we rebalance_shares() across cpus?
7124 *
7125 * The more frequently we rebalance shares, the more accurate is the fairness
7126 * of cpu bandwidth distribution between task groups. However higher frequency
7127 * also implies increased scheduling overhead.
7128 *
7129 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7130 * consecutive calls to rebalance_shares() in the same sched domain.
7131 *
7132 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7133 * consecutive calls to rebalance_shares() in the same sched domain.
7134 *
7135 * These settings allows for the appropriate tradeoff between accuracy of
7136 * fairness and the associated overhead.
7137 *
7138 */
7139
7140/* default: 8ms, units: milliseconds */
7141const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7142
7143/* default: 128ms, units: milliseconds */
7144const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7145
7146/* kernel thread that runs rebalance_shares() periodically */
7147static int load_balance_monitor(void *unused)
7148{
7149 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7150 struct sched_param schedparm;
7151 int ret;
7152
7153 /*
7154 * We don't want this thread's execution to be limited by the shares
7155 * assigned to default group (init_task_group). Hence make it run
7156 * as a SCHED_RR RT task at the lowest priority.
7157 */
7158 schedparm.sched_priority = 1;
7159 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7160 if (ret)
7161 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7162 " monitor thread (error = %d) \n", ret);
7163
7164 while (!kthread_should_stop()) {
7165 int i, cpu, balanced = 1;
7166
7167 /* Prevent cpus going down or coming up */
86ef5c9a 7168 get_online_cpus();
6b2d7700
SV
7169 /* lockout changes to doms_cur[] array */
7170 lock_doms_cur();
7171 /*
7172 * Enter a rcu read-side critical section to safely walk rq->sd
7173 * chain on various cpus and to walk task group list
7174 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7175 */
7176 rcu_read_lock();
7177
7178 for (i = 0; i < ndoms_cur; i++) {
7179 cpumask_t cpumap = doms_cur[i];
7180 struct sched_domain *sd = NULL, *sd_prev = NULL;
7181
7182 cpu = first_cpu(cpumap);
7183
7184 /* Find the highest domain at which to balance shares */
7185 for_each_domain(cpu, sd) {
7186 if (!(sd->flags & SD_LOAD_BALANCE))
7187 continue;
7188 sd_prev = sd;
7189 }
7190
7191 sd = sd_prev;
7192 /* sd == NULL? No load balance reqd in this domain */
7193 if (!sd)
7194 continue;
7195
7196 balanced &= rebalance_shares(sd, cpu);
7197 }
7198
7199 rcu_read_unlock();
7200
7201 unlock_doms_cur();
86ef5c9a 7202 put_online_cpus();
6b2d7700
SV
7203
7204 if (!balanced)
7205 timeout = sysctl_sched_min_bal_int_shares;
7206 else if (timeout < sysctl_sched_max_bal_int_shares)
7207 timeout *= 2;
7208
7209 msleep_interruptible(timeout);
7210 }
7211
7212 return 0;
7213}
7214#endif /* CONFIG_SMP */
7215
29f59db3 7216/* allocate runqueue etc for a new task group */
4cf86d77 7217struct task_group *sched_create_group(void)
29f59db3 7218{
4cf86d77 7219 struct task_group *tg;
29f59db3
SV
7220 struct cfs_rq *cfs_rq;
7221 struct sched_entity *se;
9b5b7751 7222 struct rq *rq;
29f59db3
SV
7223 int i;
7224
29f59db3
SV
7225 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7226 if (!tg)
7227 return ERR_PTR(-ENOMEM);
7228
9b5b7751 7229 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7230 if (!tg->cfs_rq)
7231 goto err;
9b5b7751 7232 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7233 if (!tg->se)
7234 goto err;
7235
7236 for_each_possible_cpu(i) {
9b5b7751 7237 rq = cpu_rq(i);
29f59db3
SV
7238
7239 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7240 cpu_to_node(i));
7241 if (!cfs_rq)
7242 goto err;
7243
7244 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7245 cpu_to_node(i));
7246 if (!se)
7247 goto err;
7248
7249 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7250 memset(se, 0, sizeof(struct sched_entity));
7251
7252 tg->cfs_rq[i] = cfs_rq;
7253 init_cfs_rq(cfs_rq, rq);
7254 cfs_rq->tg = tg;
29f59db3
SV
7255
7256 tg->se[i] = se;
7257 se->cfs_rq = &rq->cfs;
7258 se->my_q = cfs_rq;
7259 se->load.weight = NICE_0_LOAD;
7260 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7261 se->parent = NULL;
7262 }
7263
ec2c507f
SV
7264 tg->shares = NICE_0_LOAD;
7265
7266 lock_task_group_list();
9b5b7751
SV
7267 for_each_possible_cpu(i) {
7268 rq = cpu_rq(i);
7269 cfs_rq = tg->cfs_rq[i];
7270 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7271 }
ec2c507f 7272 unlock_task_group_list();
29f59db3 7273
9b5b7751 7274 return tg;
29f59db3
SV
7275
7276err:
7277 for_each_possible_cpu(i) {
a65914b3 7278 if (tg->cfs_rq)
29f59db3 7279 kfree(tg->cfs_rq[i]);
a65914b3 7280 if (tg->se)
29f59db3
SV
7281 kfree(tg->se[i]);
7282 }
a65914b3
IM
7283 kfree(tg->cfs_rq);
7284 kfree(tg->se);
7285 kfree(tg);
29f59db3
SV
7286
7287 return ERR_PTR(-ENOMEM);
7288}
7289
9b5b7751
SV
7290/* rcu callback to free various structures associated with a task group */
7291static void free_sched_group(struct rcu_head *rhp)
29f59db3 7292{
ae8393e5
SV
7293 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7294 struct cfs_rq *cfs_rq;
29f59db3
SV
7295 struct sched_entity *se;
7296 int i;
7297
29f59db3
SV
7298 /* now it should be safe to free those cfs_rqs */
7299 for_each_possible_cpu(i) {
7300 cfs_rq = tg->cfs_rq[i];
7301 kfree(cfs_rq);
7302
7303 se = tg->se[i];
7304 kfree(se);
7305 }
7306
7307 kfree(tg->cfs_rq);
7308 kfree(tg->se);
7309 kfree(tg);
7310}
7311
9b5b7751 7312/* Destroy runqueue etc associated with a task group */
4cf86d77 7313void sched_destroy_group(struct task_group *tg)
29f59db3 7314{
7bae49d4 7315 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7316 int i;
29f59db3 7317
ec2c507f 7318 lock_task_group_list();
9b5b7751
SV
7319 for_each_possible_cpu(i) {
7320 cfs_rq = tg->cfs_rq[i];
7321 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7322 }
ec2c507f 7323 unlock_task_group_list();
9b5b7751 7324
7bae49d4 7325 BUG_ON(!cfs_rq);
9b5b7751
SV
7326
7327 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7328 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7329}
7330
9b5b7751 7331/* change task's runqueue when it moves between groups.
3a252015
IM
7332 * The caller of this function should have put the task in its new group
7333 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7334 * reflect its new group.
9b5b7751
SV
7335 */
7336void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7337{
7338 int on_rq, running;
7339 unsigned long flags;
7340 struct rq *rq;
7341
7342 rq = task_rq_lock(tsk, &flags);
7343
dae51f56 7344 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7345 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7346 goto done;
dae51f56 7347 }
29f59db3
SV
7348
7349 update_rq_clock(rq);
7350
051a1d1a 7351 running = task_current(rq, tsk);
29f59db3
SV
7352 on_rq = tsk->se.on_rq;
7353
83b699ed 7354 if (on_rq) {
29f59db3 7355 dequeue_task(rq, tsk, 0);
83b699ed
SV
7356 if (unlikely(running))
7357 tsk->sched_class->put_prev_task(rq, tsk);
7358 }
29f59db3 7359
ce96b5ac 7360 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7361
83b699ed
SV
7362 if (on_rq) {
7363 if (unlikely(running))
7364 tsk->sched_class->set_curr_task(rq);
7074badb 7365 enqueue_task(rq, tsk, 0);
83b699ed 7366 }
29f59db3
SV
7367
7368done:
7369 task_rq_unlock(rq, &flags);
7370}
7371
6b2d7700 7372/* rq->lock to be locked by caller */
29f59db3
SV
7373static void set_se_shares(struct sched_entity *se, unsigned long shares)
7374{
7375 struct cfs_rq *cfs_rq = se->cfs_rq;
7376 struct rq *rq = cfs_rq->rq;
7377 int on_rq;
7378
6b2d7700
SV
7379 if (!shares)
7380 shares = MIN_GROUP_SHARES;
29f59db3
SV
7381
7382 on_rq = se->on_rq;
6b2d7700 7383 if (on_rq) {
29f59db3 7384 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7385 dec_cpu_load(rq, se->load.weight);
7386 }
29f59db3
SV
7387
7388 se->load.weight = shares;
7389 se->load.inv_weight = div64_64((1ULL<<32), shares);
7390
6b2d7700 7391 if (on_rq) {
29f59db3 7392 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7393 inc_cpu_load(rq, se->load.weight);
7394 }
29f59db3
SV
7395}
7396
4cf86d77 7397int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7398{
7399 int i;
6b2d7700
SV
7400 struct cfs_rq *cfs_rq;
7401 struct rq *rq;
c61935fd 7402
ec2c507f 7403 lock_task_group_list();
9b5b7751 7404 if (tg->shares == shares)
5cb350ba 7405 goto done;
29f59db3 7406
6b2d7700
SV
7407 if (shares < MIN_GROUP_SHARES)
7408 shares = MIN_GROUP_SHARES;
7409
7410 /*
7411 * Prevent any load balance activity (rebalance_shares,
7412 * load_balance_fair) from referring to this group first,
7413 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7414 */
7415 for_each_possible_cpu(i) {
7416 cfs_rq = tg->cfs_rq[i];
7417 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7418 }
7419
7420 /* wait for any ongoing reference to this group to finish */
7421 synchronize_sched();
7422
7423 /*
7424 * Now we are free to modify the group's share on each cpu
7425 * w/o tripping rebalance_share or load_balance_fair.
7426 */
9b5b7751 7427 tg->shares = shares;
6b2d7700
SV
7428 for_each_possible_cpu(i) {
7429 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7430 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7431 spin_unlock_irq(&cpu_rq(i)->lock);
7432 }
29f59db3 7433
6b2d7700
SV
7434 /*
7435 * Enable load balance activity on this group, by inserting it back on
7436 * each cpu's rq->leaf_cfs_rq_list.
7437 */
7438 for_each_possible_cpu(i) {
7439 rq = cpu_rq(i);
7440 cfs_rq = tg->cfs_rq[i];
7441 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7442 }
5cb350ba 7443done:
ec2c507f 7444 unlock_task_group_list();
9b5b7751 7445 return 0;
29f59db3
SV
7446}
7447
5cb350ba
DG
7448unsigned long sched_group_shares(struct task_group *tg)
7449{
7450 return tg->shares;
7451}
7452
3a252015 7453#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7454
7455#ifdef CONFIG_FAIR_CGROUP_SCHED
7456
7457/* return corresponding task_group object of a cgroup */
2b01dfe3 7458static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7459{
2b01dfe3
PM
7460 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7461 struct task_group, css);
68318b8e
SV
7462}
7463
7464static struct cgroup_subsys_state *
2b01dfe3 7465cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7466{
7467 struct task_group *tg;
7468
2b01dfe3 7469 if (!cgrp->parent) {
68318b8e 7470 /* This is early initialization for the top cgroup */
2b01dfe3 7471 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7472 return &init_task_group.css;
7473 }
7474
7475 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7476 if (cgrp->parent->parent)
68318b8e
SV
7477 return ERR_PTR(-EINVAL);
7478
7479 tg = sched_create_group();
7480 if (IS_ERR(tg))
7481 return ERR_PTR(-ENOMEM);
7482
7483 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7484 tg->css.cgroup = cgrp;
68318b8e
SV
7485
7486 return &tg->css;
7487}
7488
41a2d6cf
IM
7489static void
7490cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7491{
2b01dfe3 7492 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7493
7494 sched_destroy_group(tg);
7495}
7496
41a2d6cf
IM
7497static int
7498cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7499 struct task_struct *tsk)
68318b8e
SV
7500{
7501 /* We don't support RT-tasks being in separate groups */
7502 if (tsk->sched_class != &fair_sched_class)
7503 return -EINVAL;
7504
7505 return 0;
7506}
7507
7508static void
2b01dfe3 7509cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7510 struct cgroup *old_cont, struct task_struct *tsk)
7511{
7512 sched_move_task(tsk);
7513}
7514
2b01dfe3
PM
7515static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7516 u64 shareval)
68318b8e 7517{
2b01dfe3 7518 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7519}
7520
2b01dfe3 7521static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7522{
2b01dfe3 7523 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7524
7525 return (u64) tg->shares;
7526}
7527
fe5c7cc2
PM
7528static struct cftype cpu_files[] = {
7529 {
7530 .name = "shares",
7531 .read_uint = cpu_shares_read_uint,
7532 .write_uint = cpu_shares_write_uint,
7533 },
68318b8e
SV
7534};
7535
7536static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7537{
fe5c7cc2 7538 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7539}
7540
7541struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7542 .name = "cpu",
7543 .create = cpu_cgroup_create,
7544 .destroy = cpu_cgroup_destroy,
7545 .can_attach = cpu_cgroup_can_attach,
7546 .attach = cpu_cgroup_attach,
7547 .populate = cpu_cgroup_populate,
7548 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7549 .early_init = 1,
7550};
7551
7552#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7553
7554#ifdef CONFIG_CGROUP_CPUACCT
7555
7556/*
7557 * CPU accounting code for task groups.
7558 *
7559 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7560 * (balbir@in.ibm.com).
7561 */
7562
7563/* track cpu usage of a group of tasks */
7564struct cpuacct {
7565 struct cgroup_subsys_state css;
7566 /* cpuusage holds pointer to a u64-type object on every cpu */
7567 u64 *cpuusage;
7568};
7569
7570struct cgroup_subsys cpuacct_subsys;
7571
7572/* return cpu accounting group corresponding to this container */
7573static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7574{
7575 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7576 struct cpuacct, css);
7577}
7578
7579/* return cpu accounting group to which this task belongs */
7580static inline struct cpuacct *task_ca(struct task_struct *tsk)
7581{
7582 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7583 struct cpuacct, css);
7584}
7585
7586/* create a new cpu accounting group */
7587static struct cgroup_subsys_state *cpuacct_create(
7588 struct cgroup_subsys *ss, struct cgroup *cont)
7589{
7590 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7591
7592 if (!ca)
7593 return ERR_PTR(-ENOMEM);
7594
7595 ca->cpuusage = alloc_percpu(u64);
7596 if (!ca->cpuusage) {
7597 kfree(ca);
7598 return ERR_PTR(-ENOMEM);
7599 }
7600
7601 return &ca->css;
7602}
7603
7604/* destroy an existing cpu accounting group */
41a2d6cf
IM
7605static void
7606cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7607{
7608 struct cpuacct *ca = cgroup_ca(cont);
7609
7610 free_percpu(ca->cpuusage);
7611 kfree(ca);
7612}
7613
7614/* return total cpu usage (in nanoseconds) of a group */
7615static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7616{
7617 struct cpuacct *ca = cgroup_ca(cont);
7618 u64 totalcpuusage = 0;
7619 int i;
7620
7621 for_each_possible_cpu(i) {
7622 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7623
7624 /*
7625 * Take rq->lock to make 64-bit addition safe on 32-bit
7626 * platforms.
7627 */
7628 spin_lock_irq(&cpu_rq(i)->lock);
7629 totalcpuusage += *cpuusage;
7630 spin_unlock_irq(&cpu_rq(i)->lock);
7631 }
7632
7633 return totalcpuusage;
7634}
7635
7636static struct cftype files[] = {
7637 {
7638 .name = "usage",
7639 .read_uint = cpuusage_read,
7640 },
7641};
7642
7643static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7644{
7645 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7646}
7647
7648/*
7649 * charge this task's execution time to its accounting group.
7650 *
7651 * called with rq->lock held.
7652 */
7653static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7654{
7655 struct cpuacct *ca;
7656
7657 if (!cpuacct_subsys.active)
7658 return;
7659
7660 ca = task_ca(tsk);
7661 if (ca) {
7662 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7663
7664 *cpuusage += cputime;
7665 }
7666}
7667
7668struct cgroup_subsys cpuacct_subsys = {
7669 .name = "cpuacct",
7670 .create = cpuacct_create,
7671 .destroy = cpuacct_destroy,
7672 .populate = cpuacct_populate,
7673 .subsys_id = cpuacct_subsys_id,
7674};
7675#endif /* CONFIG_CGROUP_CPUACCT */