Merge branch 'linus' into sched/urgent
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
212}
213
c8bfff6d
KH
214static inline int rt_bandwidth_enabled(void)
215{
216 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
221 ktime_t now;
222
0b148fa0 223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
d0b27fa7
PZ
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240}
241
242#ifdef CONFIG_RT_GROUP_SCHED
243static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244{
245 hrtimer_cancel(&rt_b->rt_period_timer);
246}
247#endif
248
712555ee
HC
249/*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253static DEFINE_MUTEX(sched_domains_mutex);
254
052f1dc7 255#ifdef CONFIG_GROUP_SCHED
29f59db3 256
68318b8e
SV
257#include <linux/cgroup.h>
258
29f59db3
SV
259struct cfs_rq;
260
6f505b16
PZ
261static LIST_HEAD(task_groups);
262
29f59db3 263/* task group related information */
4cf86d77 264struct task_group {
052f1dc7 265#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
266 struct cgroup_subsys_state css;
267#endif
052f1dc7 268
6c415b92
AB
269#ifdef CONFIG_USER_SCHED
270 uid_t uid;
271#endif
272
052f1dc7 273#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
052f1dc7
PZ
279#endif
280
281#ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
d0b27fa7 285 struct rt_bandwidth rt_bandwidth;
052f1dc7 286#endif
6b2d7700 287
ae8393e5 288 struct rcu_head rcu;
6f505b16 289 struct list_head list;
f473aa5e
PZ
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
29f59db3
SV
294};
295
354d60c2 296#ifdef CONFIG_USER_SCHED
eff766a6 297
6c415b92
AB
298/* Helper function to pass uid information to create_sched_user() */
299void set_tg_uid(struct user_struct *user)
300{
301 user->tg->uid = user->uid;
302}
303
eff766a6
PZ
304/*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309struct task_group root_task_group;
310
052f1dc7 311#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
312/* Default task group's sched entity on each cpu */
313static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314/* Default task group's cfs_rq on each cpu */
315static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 316#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
317
318#ifdef CONFIG_RT_GROUP_SCHED
319static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 321#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 322#else /* !CONFIG_USER_SCHED */
eff766a6 323#define root_task_group init_task_group
9a7e0b18 324#endif /* CONFIG_USER_SCHED */
6f505b16 325
8ed36996 326/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
327 * a task group's cpu shares.
328 */
8ed36996 329static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 330
052f1dc7 331#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
332#ifdef CONFIG_USER_SCHED
333# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 334#else /* !CONFIG_USER_SCHED */
052f1dc7 335# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 336#endif /* CONFIG_USER_SCHED */
052f1dc7 337
cb4ad1ff 338/*
2e084786
LJ
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
cb4ad1ff
MX
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
18d95a28 346#define MIN_SHARES 2
2e084786 347#define MAX_SHARES (1UL << 18)
18d95a28 348
052f1dc7
PZ
349static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350#endif
351
29f59db3 352/* Default task group.
3a252015 353 * Every task in system belong to this group at bootup.
29f59db3 354 */
434d53b0 355struct task_group init_task_group;
29f59db3
SV
356
357/* return group to which a task belongs */
4cf86d77 358static inline struct task_group *task_group(struct task_struct *p)
29f59db3 359{
4cf86d77 360 struct task_group *tg;
9b5b7751 361
052f1dc7 362#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
052f1dc7 366#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
24e377a8 369#else
41a2d6cf 370 tg = &init_task_group;
24e377a8 371#endif
9b5b7751 372 return tg;
29f59db3
SV
373}
374
375/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 376static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 377{
052f1dc7 378#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
052f1dc7 381#endif
6f505b16 382
052f1dc7 383#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 386#endif
29f59db3
SV
387}
388
389#else
390
6f505b16 391static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
392static inline struct task_group *task_group(struct task_struct *p)
393{
394 return NULL;
395}
29f59db3 396
052f1dc7 397#endif /* CONFIG_GROUP_SCHED */
29f59db3 398
6aa645ea
IM
399/* CFS-related fields in a runqueue */
400struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
6aa645ea 404 u64 exec_clock;
e9acbff6 405 u64 min_vruntime;
6aa645ea
IM
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
4a55bd5e
PZ
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
4793241b 417 struct sched_entity *curr, *next, *last;
ddc97297 418
5ac5c4d6 419 unsigned int nr_spread_over;
ddc97297 420
62160e3f 421#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
41a2d6cf
IM
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
41a2d6cf
IM
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
434
435#ifdef CONFIG_SMP
c09595f6 436 /*
c8cba857 437 * the part of load.weight contributed by tasks
c09595f6 438 */
c8cba857 439 unsigned long task_weight;
c09595f6 440
c8cba857
PZ
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
c09595f6 448
c8cba857
PZ
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
f1d239f7
PZ
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
c09595f6 458#endif
6aa645ea
IM
459#endif
460};
1da177e4 461
6aa645ea
IM
462/* Real-Time classes' related field in a runqueue: */
463struct rt_rq {
464 struct rt_prio_array active;
63489e45 465 unsigned long rt_nr_running;
052f1dc7 466#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
467 int highest_prio; /* highest queued rt task prio */
468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a22d7fc1 471 int overloaded;
fa85ae24 472#endif
6f505b16 473 int rt_throttled;
fa85ae24 474 u64 rt_time;
ac086bc2 475 u64 rt_runtime;
ea736ed5 476 /* Nests inside the rq lock: */
ac086bc2 477 spinlock_t rt_runtime_lock;
6f505b16 478
052f1dc7 479#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
480 unsigned long rt_nr_boosted;
481
6f505b16
PZ
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486#endif
6aa645ea
IM
487};
488
57d885fe
GH
489#ifdef CONFIG_SMP
490
491/*
492 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
57d885fe
GH
498 */
499struct root_domain {
500 atomic_t refcount;
c6c4927b
RR
501 cpumask_var_t span;
502 cpumask_var_t online;
637f5085 503
0eab9146 504 /*
637f5085
GH
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
c6c4927b 508 cpumask_var_t rto_mask;
0eab9146 509 atomic_t rto_count;
6e0534f2
GH
510#ifdef CONFIG_SMP
511 struct cpupri cpupri;
512#endif
7a09b1a2
VS
513#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
514 /*
515 * Preferred wake up cpu nominated by sched_mc balance that will be
516 * used when most cpus are idle in the system indicating overall very
517 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
518 */
519 unsigned int sched_mc_preferred_wakeup_cpu;
520#endif
57d885fe
GH
521};
522
dc938520
GH
523/*
524 * By default the system creates a single root-domain with all cpus as
525 * members (mimicking the global state we have today).
526 */
57d885fe
GH
527static struct root_domain def_root_domain;
528
529#endif
530
1da177e4
LT
531/*
532 * This is the main, per-CPU runqueue data structure.
533 *
534 * Locking rule: those places that want to lock multiple runqueues
535 * (such as the load balancing or the thread migration code), lock
536 * acquire operations must be ordered by ascending &runqueue.
537 */
70b97a7f 538struct rq {
d8016491
IM
539 /* runqueue lock: */
540 spinlock_t lock;
1da177e4
LT
541
542 /*
543 * nr_running and cpu_load should be in the same cacheline because
544 * remote CPUs use both these fields when doing load calculation.
545 */
546 unsigned long nr_running;
6aa645ea
IM
547 #define CPU_LOAD_IDX_MAX 5
548 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 549 unsigned char idle_at_tick;
46cb4b7c 550#ifdef CONFIG_NO_HZ
15934a37 551 unsigned long last_tick_seen;
46cb4b7c
SS
552 unsigned char in_nohz_recently;
553#endif
d8016491
IM
554 /* capture load from *all* tasks on this cpu: */
555 struct load_weight load;
6aa645ea
IM
556 unsigned long nr_load_updates;
557 u64 nr_switches;
558
559 struct cfs_rq cfs;
6f505b16 560 struct rt_rq rt;
6f505b16 561
6aa645ea 562#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
563 /* list of leaf cfs_rq on this cpu: */
564 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
565#endif
566#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 567 struct list_head leaf_rt_rq_list;
1da177e4 568#endif
1da177e4
LT
569
570 /*
571 * This is part of a global counter where only the total sum
572 * over all CPUs matters. A task can increase this counter on
573 * one CPU and if it got migrated afterwards it may decrease
574 * it on another CPU. Always updated under the runqueue lock:
575 */
576 unsigned long nr_uninterruptible;
577
36c8b586 578 struct task_struct *curr, *idle;
c9819f45 579 unsigned long next_balance;
1da177e4 580 struct mm_struct *prev_mm;
6aa645ea 581
3e51f33f 582 u64 clock;
6aa645ea 583
1da177e4
LT
584 atomic_t nr_iowait;
585
586#ifdef CONFIG_SMP
0eab9146 587 struct root_domain *rd;
1da177e4
LT
588 struct sched_domain *sd;
589
590 /* For active balancing */
591 int active_balance;
592 int push_cpu;
d8016491
IM
593 /* cpu of this runqueue: */
594 int cpu;
1f11eb6a 595 int online;
1da177e4 596
a8a51d5e 597 unsigned long avg_load_per_task;
1da177e4 598
36c8b586 599 struct task_struct *migration_thread;
1da177e4
LT
600 struct list_head migration_queue;
601#endif
602
8f4d37ec 603#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
604#ifdef CONFIG_SMP
605 int hrtick_csd_pending;
606 struct call_single_data hrtick_csd;
607#endif
8f4d37ec
PZ
608 struct hrtimer hrtick_timer;
609#endif
610
1da177e4
LT
611#ifdef CONFIG_SCHEDSTATS
612 /* latency stats */
613 struct sched_info rq_sched_info;
9c2c4802
KC
614 unsigned long long rq_cpu_time;
615 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
616
617 /* sys_sched_yield() stats */
480b9434
KC
618 unsigned int yld_exp_empty;
619 unsigned int yld_act_empty;
620 unsigned int yld_both_empty;
621 unsigned int yld_count;
1da177e4
LT
622
623 /* schedule() stats */
480b9434
KC
624 unsigned int sched_switch;
625 unsigned int sched_count;
626 unsigned int sched_goidle;
1da177e4
LT
627
628 /* try_to_wake_up() stats */
480b9434
KC
629 unsigned int ttwu_count;
630 unsigned int ttwu_local;
b8efb561
IM
631
632 /* BKL stats */
480b9434 633 unsigned int bkl_count;
1da177e4
LT
634#endif
635};
636
f34e3b61 637static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 638
15afe09b 639static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 640{
15afe09b 641 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
642}
643
0a2966b4
CL
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
674311d5
NP
653/*
654 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 655 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
656 *
657 * The domain tree of any CPU may only be accessed from within
658 * preempt-disabled sections.
659 */
48f24c4d
IM
660#define for_each_domain(cpu, __sd) \
661 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
662
663#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
664#define this_rq() (&__get_cpu_var(runqueues))
665#define task_rq(p) cpu_rq(task_cpu(p))
666#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
667
3e51f33f
PZ
668static inline void update_rq_clock(struct rq *rq)
669{
670 rq->clock = sched_clock_cpu(cpu_of(rq));
671}
672
bf5c91ba
IM
673/*
674 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
675 */
676#ifdef CONFIG_SCHED_DEBUG
677# define const_debug __read_mostly
678#else
679# define const_debug static const
680#endif
681
017730c1
IM
682/**
683 * runqueue_is_locked
684 *
685 * Returns true if the current cpu runqueue is locked.
686 * This interface allows printk to be called with the runqueue lock
687 * held and know whether or not it is OK to wake up the klogd.
688 */
689int runqueue_is_locked(void)
690{
691 int cpu = get_cpu();
692 struct rq *rq = cpu_rq(cpu);
693 int ret;
694
695 ret = spin_is_locked(&rq->lock);
696 put_cpu();
697 return ret;
698}
699
bf5c91ba
IM
700/*
701 * Debugging: various feature bits
702 */
f00b45c1
PZ
703
704#define SCHED_FEAT(name, enabled) \
705 __SCHED_FEAT_##name ,
706
bf5c91ba 707enum {
f00b45c1 708#include "sched_features.h"
bf5c91ba
IM
709};
710
f00b45c1
PZ
711#undef SCHED_FEAT
712
713#define SCHED_FEAT(name, enabled) \
714 (1UL << __SCHED_FEAT_##name) * enabled |
715
bf5c91ba 716const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
717#include "sched_features.h"
718 0;
719
720#undef SCHED_FEAT
721
722#ifdef CONFIG_SCHED_DEBUG
723#define SCHED_FEAT(name, enabled) \
724 #name ,
725
983ed7a6 726static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
727#include "sched_features.h"
728 NULL
729};
730
731#undef SCHED_FEAT
732
34f3a814 733static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 734{
f00b45c1
PZ
735 int i;
736
737 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
738 if (!(sysctl_sched_features & (1UL << i)))
739 seq_puts(m, "NO_");
740 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 741 }
34f3a814 742 seq_puts(m, "\n");
f00b45c1 743
34f3a814 744 return 0;
f00b45c1
PZ
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
34f3a814
LZ
789static int sched_feat_open(struct inode *inode, struct file *filp)
790{
791 return single_open(filp, sched_feat_show, NULL);
792}
793
f00b45c1 794static struct file_operations sched_feat_fops = {
34f3a814
LZ
795 .open = sched_feat_open,
796 .write = sched_feat_write,
797 .read = seq_read,
798 .llseek = seq_lseek,
799 .release = single_release,
f00b45c1
PZ
800};
801
802static __init int sched_init_debug(void)
803{
f00b45c1
PZ
804 debugfs_create_file("sched_features", 0644, NULL, NULL,
805 &sched_feat_fops);
806
807 return 0;
808}
809late_initcall(sched_init_debug);
810
811#endif
812
813#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 814
b82d9fdd
PZ
815/*
816 * Number of tasks to iterate in a single balance run.
817 * Limited because this is done with IRQs disabled.
818 */
819const_debug unsigned int sysctl_sched_nr_migrate = 32;
820
2398f2c6
PZ
821/*
822 * ratelimit for updating the group shares.
55cd5340 823 * default: 0.25ms
2398f2c6 824 */
55cd5340 825unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 826
ffda12a1
PZ
827/*
828 * Inject some fuzzyness into changing the per-cpu group shares
829 * this avoids remote rq-locks at the expense of fairness.
830 * default: 4
831 */
832unsigned int sysctl_sched_shares_thresh = 4;
833
fa85ae24 834/*
9f0c1e56 835 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
836 * default: 1s
837 */
9f0c1e56 838unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 839
6892b75e
IM
840static __read_mostly int scheduler_running;
841
9f0c1e56
PZ
842/*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846int sysctl_sched_rt_runtime = 950000;
fa85ae24 847
d0b27fa7
PZ
848static inline u64 global_rt_period(void)
849{
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851}
852
853static inline u64 global_rt_runtime(void)
854{
e26873bb 855 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859}
fa85ae24 860
1da177e4 861#ifndef prepare_arch_switch
4866cde0
NP
862# define prepare_arch_switch(next) do { } while (0)
863#endif
864#ifndef finish_arch_switch
865# define finish_arch_switch(prev) do { } while (0)
866#endif
867
051a1d1a
DA
868static inline int task_current(struct rq *rq, struct task_struct *p)
869{
870 return rq->curr == p;
871}
872
4866cde0 873#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 874static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 875{
051a1d1a 876 return task_current(rq, p);
4866cde0
NP
877}
878
70b97a7f 879static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
880{
881}
882
70b97a7f 883static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 884{
da04c035
IM
885#ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888#endif
8a25d5de
IM
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
4866cde0
NP
896 spin_unlock_irq(&rq->lock);
897}
898
899#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 900static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
901{
902#ifdef CONFIG_SMP
903 return p->oncpu;
904#else
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906#endif
907}
908
70b97a7f 909static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918#endif
919#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 spin_unlock_irq(&rq->lock);
921#else
922 spin_unlock(&rq->lock);
923#endif
924}
925
70b97a7f 926static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
927{
928#ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936#endif
937#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
1da177e4 939#endif
4866cde0
NP
940}
941#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 942
b29739f9
IM
943/*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
70b97a7f 947static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
948 __acquires(rq->lock)
949{
3a5c359a
AK
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
b29739f9 955 spin_unlock(&rq->lock);
b29739f9 956 }
b29739f9
IM
957}
958
1da177e4
LT
959/*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 961 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
962 * explicitly disabling preemption.
963 */
70b97a7f 964static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
965 __acquires(rq->lock)
966{
70b97a7f 967 struct rq *rq;
1da177e4 968
3a5c359a
AK
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
1da177e4 975 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 976 }
1da177e4
LT
977}
978
ad474cac
ON
979void task_rq_unlock_wait(struct task_struct *p)
980{
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 spin_unlock_wait(&rq->lock);
985}
986
a9957449 987static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
988 __releases(rq->lock)
989{
990 spin_unlock(&rq->lock);
991}
992
70b97a7f 993static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
994 __releases(rq->lock)
995{
996 spin_unlock_irqrestore(&rq->lock, *flags);
997}
998
1da177e4 999/*
cc2a73b5 1000 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1001 */
a9957449 1002static struct rq *this_rq_lock(void)
1da177e4
LT
1003 __acquires(rq->lock)
1004{
70b97a7f 1005 struct rq *rq;
1da177e4
LT
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 spin_lock(&rq->lock);
1010
1011 return rq;
1012}
1013
8f4d37ec
PZ
1014#ifdef CONFIG_SCHED_HRTICK
1015/*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
8f4d37ec
PZ
1025
1026/*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031static inline int hrtick_enabled(struct rq *rq)
1032{
1033 if (!sched_feat(HRTICK))
1034 return 0;
ba42059f 1035 if (!cpu_active(cpu_of(rq)))
b328ca18 1036 return 0;
8f4d37ec
PZ
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038}
1039
8f4d37ec
PZ
1040static void hrtick_clear(struct rq *rq)
1041{
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044}
1045
8f4d37ec
PZ
1046/*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051{
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 spin_lock(&rq->lock);
3e51f33f 1057 update_rq_clock(rq);
8f4d37ec
PZ
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062}
1063
95e904c7 1064#ifdef CONFIG_SMP
31656519
PZ
1065/*
1066 * called from hardirq (IPI) context
1067 */
1068static void __hrtick_start(void *arg)
b328ca18 1069{
31656519 1070 struct rq *rq = arg;
b328ca18 1071
31656519
PZ
1072 spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 spin_unlock(&rq->lock);
b328ca18
PZ
1076}
1077
31656519
PZ
1078/*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1084{
31656519
PZ
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1087
cc584b21 1088 hrtimer_set_expires(timer, time);
31656519
PZ
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1094 rq->hrtick_csd_pending = 1;
1095 }
b328ca18
PZ
1096}
1097
1098static int
1099hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100{
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
31656519 1110 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115}
1116
fa748203 1117static __init void init_hrtick(void)
b328ca18
PZ
1118{
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120}
31656519
PZ
1121#else
1122/*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127static void hrtick_start(struct rq *rq, u64 delay)
1128{
1129 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1130}
b328ca18 1131
006c75f1 1132static inline void init_hrtick(void)
8f4d37ec 1133{
8f4d37ec 1134}
31656519 1135#endif /* CONFIG_SMP */
8f4d37ec 1136
31656519 1137static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1138{
31656519
PZ
1139#ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
8f4d37ec 1141
31656519
PZ
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145#endif
8f4d37ec 1146
31656519
PZ
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
31656519 1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1184 return;
1185
31656519 1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
6d6bc0ad 1251#else /* !CONFIG_SMP */
31656519 1252static void resched_task(struct task_struct *p)
c24d20db
IM
1253{
1254 assert_spin_locked(&task_rq(p)->lock);
31656519 1255 set_tsk_need_resched(p);
c24d20db 1256}
6d6bc0ad 1257#endif /* CONFIG_SMP */
c24d20db 1258
45bf76df
IM
1259#if BITS_PER_LONG == 32
1260# define WMULT_CONST (~0UL)
1261#else
1262# define WMULT_CONST (1UL << 32)
1263#endif
1264
1265#define WMULT_SHIFT 32
1266
194081eb
IM
1267/*
1268 * Shift right and round:
1269 */
cf2ab469 1270#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1271
a7be37ac
PZ
1272/*
1273 * delta *= weight / lw
1274 */
cb1c4fc9 1275static unsigned long
45bf76df
IM
1276calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278{
1279 u64 tmp;
1280
7a232e03
LJ
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
45bf76df
IM
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
194081eb 1293 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1295 WMULT_SHIFT/2);
1296 else
cf2ab469 1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1298
ecf691da 1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1303{
1304 lw->weight += inc;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
1091985b 1308static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1309{
1310 lw->weight -= dec;
e89996ae 1311 lw->inv_weight = 0;
45bf76df
IM
1312}
1313
2dd73a4f
PW
1314/*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
dd41f596
IM
1323#define WEIGHT_IDLEPRIO 2
1324#define WMULT_IDLEPRIO (1 << 31)
1325
1326/*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
dd41f596
IM
1337 */
1338static const int prio_to_weight[40] = {
254753dc
IM
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1347};
1348
5714d2de
IM
1349/*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
dd41f596 1356static const u32 prio_to_wmult[40] = {
254753dc
IM
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1365};
2dd73a4f 1366
dd41f596
IM
1367static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369/*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378};
1379
e1d1484f
PW
1380#ifdef CONFIG_SMP
1381static unsigned long
1382balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387static int
1388iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
e1d1484f 1391#endif
dd41f596 1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395#else
1396static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397#endif
1398
18d95a28
PZ
1399static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400{
1401 update_load_add(&rq->load, load);
1402}
1403
1404static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405{
1406 update_load_sub(&rq->load, load);
1407}
1408
7940ca36 1409#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1410typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1411
1412/*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
eb755805 1416static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1417{
1418 struct task_group *parent, *child;
eb755805 1419 int ret;
c09595f6
PZ
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423down:
eb755805
PZ
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
c09595f6
PZ
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431up:
1432 continue;
1433 }
eb755805
PZ
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
eb755805 1442out_unlock:
c09595f6 1443 rcu_read_unlock();
eb755805
PZ
1444
1445 return ret;
c09595f6
PZ
1446}
1447
eb755805
PZ
1448static int tg_nop(struct task_group *tg, void *data)
1449{
1450 return 0;
c09595f6 1451}
eb755805
PZ
1452#endif
1453
1454#ifdef CONFIG_SMP
1455static unsigned long source_load(int cpu, int type);
1456static unsigned long target_load(int cpu, int type);
1457static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459static unsigned long cpu_avg_load_per_task(int cpu)
1460{
1461 struct rq *rq = cpu_rq(cpu);
af6d596f 1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1463
4cd42620
SR
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1466 else
1467 rq->avg_load_per_task = 0;
eb755805
PZ
1468
1469 return rq->avg_load_per_task;
1470}
1471
1472#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1473
c09595f6
PZ
1474static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476/*
1477 * Calculate and set the cpu's group shares.
1478 */
1479static void
ffda12a1
PZ
1480update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1482{
c09595f6
PZ
1483 unsigned long shares;
1484 unsigned long rq_weight;
1485
c8cba857 1486 if (!tg->se[cpu])
c09595f6
PZ
1487 return;
1488
ec4e0e2f 1489 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1490
c09595f6
PZ
1491 /*
1492 * \Sum shares * rq_weight
1493 * shares = -----------------------
1494 * \Sum rq_weight
1495 *
1496 */
ec4e0e2f 1497 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1498 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1499
ffda12a1
PZ
1500 if (abs(shares - tg->se[cpu]->load.weight) >
1501 sysctl_sched_shares_thresh) {
1502 struct rq *rq = cpu_rq(cpu);
1503 unsigned long flags;
c09595f6 1504
ffda12a1 1505 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1506 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1507
ffda12a1
PZ
1508 __set_se_shares(tg->se[cpu], shares);
1509 spin_unlock_irqrestore(&rq->lock, flags);
1510 }
18d95a28 1511}
c09595f6
PZ
1512
1513/*
c8cba857
PZ
1514 * Re-compute the task group their per cpu shares over the given domain.
1515 * This needs to be done in a bottom-up fashion because the rq weight of a
1516 * parent group depends on the shares of its child groups.
c09595f6 1517 */
eb755805 1518static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1519{
ec4e0e2f 1520 unsigned long weight, rq_weight = 0;
c8cba857 1521 unsigned long shares = 0;
eb755805 1522 struct sched_domain *sd = data;
c8cba857 1523 int i;
c09595f6 1524
758b2cdc 1525 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1526 /*
1527 * If there are currently no tasks on the cpu pretend there
1528 * is one of average load so that when a new task gets to
1529 * run here it will not get delayed by group starvation.
1530 */
1531 weight = tg->cfs_rq[i]->load.weight;
1532 if (!weight)
1533 weight = NICE_0_LOAD;
1534
1535 tg->cfs_rq[i]->rq_weight = weight;
1536 rq_weight += weight;
c8cba857 1537 shares += tg->cfs_rq[i]->shares;
c09595f6 1538 }
c09595f6 1539
c8cba857
PZ
1540 if ((!shares && rq_weight) || shares > tg->shares)
1541 shares = tg->shares;
1542
1543 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1544 shares = tg->shares;
c09595f6 1545
758b2cdc 1546 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1547 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1548
1549 return 0;
c09595f6
PZ
1550}
1551
1552/*
c8cba857
PZ
1553 * Compute the cpu's hierarchical load factor for each task group.
1554 * This needs to be done in a top-down fashion because the load of a child
1555 * group is a fraction of its parents load.
c09595f6 1556 */
eb755805 1557static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1558{
c8cba857 1559 unsigned long load;
eb755805 1560 long cpu = (long)data;
c09595f6 1561
c8cba857
PZ
1562 if (!tg->parent) {
1563 load = cpu_rq(cpu)->load.weight;
1564 } else {
1565 load = tg->parent->cfs_rq[cpu]->h_load;
1566 load *= tg->cfs_rq[cpu]->shares;
1567 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1568 }
c09595f6 1569
c8cba857 1570 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1571
eb755805 1572 return 0;
c09595f6
PZ
1573}
1574
c8cba857 1575static void update_shares(struct sched_domain *sd)
4d8d595d 1576{
2398f2c6
PZ
1577 u64 now = cpu_clock(raw_smp_processor_id());
1578 s64 elapsed = now - sd->last_update;
1579
1580 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1581 sd->last_update = now;
eb755805 1582 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1583 }
4d8d595d
PZ
1584}
1585
3e5459b4
PZ
1586static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1587{
1588 spin_unlock(&rq->lock);
1589 update_shares(sd);
1590 spin_lock(&rq->lock);
1591}
1592
eb755805 1593static void update_h_load(long cpu)
c09595f6 1594{
eb755805 1595 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1596}
1597
c09595f6
PZ
1598#else
1599
c8cba857 1600static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1601{
1602}
1603
3e5459b4
PZ
1604static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1605{
1606}
1607
18d95a28
PZ
1608#endif
1609
70574a99
AD
1610/*
1611 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1612 */
1613static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1614 __releases(this_rq->lock)
1615 __acquires(busiest->lock)
1616 __acquires(this_rq->lock)
1617{
1618 int ret = 0;
1619
1620 if (unlikely(!irqs_disabled())) {
1621 /* printk() doesn't work good under rq->lock */
1622 spin_unlock(&this_rq->lock);
1623 BUG_ON(1);
1624 }
1625 if (unlikely(!spin_trylock(&busiest->lock))) {
1626 if (busiest < this_rq) {
1627 spin_unlock(&this_rq->lock);
1628 spin_lock(&busiest->lock);
1629 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1630 ret = 1;
1631 } else
1632 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1633 }
1634 return ret;
1635}
1636
1637static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1638 __releases(busiest->lock)
1639{
1640 spin_unlock(&busiest->lock);
1641 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1642}
18d95a28
PZ
1643#endif
1644
30432094 1645#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1646static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1647{
30432094 1648#ifdef CONFIG_SMP
34e83e85
IM
1649 cfs_rq->shares = shares;
1650#endif
1651}
30432094 1652#endif
e7693a36 1653
dd41f596 1654#include "sched_stats.h"
dd41f596 1655#include "sched_idletask.c"
5522d5d5
IM
1656#include "sched_fair.c"
1657#include "sched_rt.c"
dd41f596
IM
1658#ifdef CONFIG_SCHED_DEBUG
1659# include "sched_debug.c"
1660#endif
1661
1662#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1663#define for_each_class(class) \
1664 for (class = sched_class_highest; class; class = class->next)
dd41f596 1665
c09595f6 1666static void inc_nr_running(struct rq *rq)
9c217245
IM
1667{
1668 rq->nr_running++;
9c217245
IM
1669}
1670
c09595f6 1671static void dec_nr_running(struct rq *rq)
9c217245
IM
1672{
1673 rq->nr_running--;
9c217245
IM
1674}
1675
45bf76df
IM
1676static void set_load_weight(struct task_struct *p)
1677{
1678 if (task_has_rt_policy(p)) {
dd41f596
IM
1679 p->se.load.weight = prio_to_weight[0] * 2;
1680 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1681 return;
1682 }
45bf76df 1683
dd41f596
IM
1684 /*
1685 * SCHED_IDLE tasks get minimal weight:
1686 */
1687 if (p->policy == SCHED_IDLE) {
1688 p->se.load.weight = WEIGHT_IDLEPRIO;
1689 p->se.load.inv_weight = WMULT_IDLEPRIO;
1690 return;
1691 }
71f8bd46 1692
dd41f596
IM
1693 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1694 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1695}
1696
2087a1ad
GH
1697static void update_avg(u64 *avg, u64 sample)
1698{
1699 s64 diff = sample - *avg;
1700 *avg += diff >> 3;
1701}
1702
8159f87e 1703static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1704{
dd41f596 1705 sched_info_queued(p);
fd390f6a 1706 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1707 p->se.on_rq = 1;
71f8bd46
IM
1708}
1709
69be72c1 1710static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1711{
2087a1ad
GH
1712 if (sleep && p->se.last_wakeup) {
1713 update_avg(&p->se.avg_overlap,
1714 p->se.sum_exec_runtime - p->se.last_wakeup);
1715 p->se.last_wakeup = 0;
1716 }
1717
46ac22ba 1718 sched_info_dequeued(p);
f02231e5 1719 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1720 p->se.on_rq = 0;
71f8bd46
IM
1721}
1722
14531189 1723/*
dd41f596 1724 * __normal_prio - return the priority that is based on the static prio
14531189 1725 */
14531189
IM
1726static inline int __normal_prio(struct task_struct *p)
1727{
dd41f596 1728 return p->static_prio;
14531189
IM
1729}
1730
b29739f9
IM
1731/*
1732 * Calculate the expected normal priority: i.e. priority
1733 * without taking RT-inheritance into account. Might be
1734 * boosted by interactivity modifiers. Changes upon fork,
1735 * setprio syscalls, and whenever the interactivity
1736 * estimator recalculates.
1737 */
36c8b586 1738static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1739{
1740 int prio;
1741
e05606d3 1742 if (task_has_rt_policy(p))
b29739f9
IM
1743 prio = MAX_RT_PRIO-1 - p->rt_priority;
1744 else
1745 prio = __normal_prio(p);
1746 return prio;
1747}
1748
1749/*
1750 * Calculate the current priority, i.e. the priority
1751 * taken into account by the scheduler. This value might
1752 * be boosted by RT tasks, or might be boosted by
1753 * interactivity modifiers. Will be RT if the task got
1754 * RT-boosted. If not then it returns p->normal_prio.
1755 */
36c8b586 1756static int effective_prio(struct task_struct *p)
b29739f9
IM
1757{
1758 p->normal_prio = normal_prio(p);
1759 /*
1760 * If we are RT tasks or we were boosted to RT priority,
1761 * keep the priority unchanged. Otherwise, update priority
1762 * to the normal priority:
1763 */
1764 if (!rt_prio(p->prio))
1765 return p->normal_prio;
1766 return p->prio;
1767}
1768
1da177e4 1769/*
dd41f596 1770 * activate_task - move a task to the runqueue.
1da177e4 1771 */
dd41f596 1772static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1773{
d9514f6c 1774 if (task_contributes_to_load(p))
dd41f596 1775 rq->nr_uninterruptible--;
1da177e4 1776
8159f87e 1777 enqueue_task(rq, p, wakeup);
c09595f6 1778 inc_nr_running(rq);
1da177e4
LT
1779}
1780
1da177e4
LT
1781/*
1782 * deactivate_task - remove a task from the runqueue.
1783 */
2e1cb74a 1784static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1785{
d9514f6c 1786 if (task_contributes_to_load(p))
dd41f596
IM
1787 rq->nr_uninterruptible++;
1788
69be72c1 1789 dequeue_task(rq, p, sleep);
c09595f6 1790 dec_nr_running(rq);
1da177e4
LT
1791}
1792
1da177e4
LT
1793/**
1794 * task_curr - is this task currently executing on a CPU?
1795 * @p: the task in question.
1796 */
36c8b586 1797inline int task_curr(const struct task_struct *p)
1da177e4
LT
1798{
1799 return cpu_curr(task_cpu(p)) == p;
1800}
1801
dd41f596
IM
1802static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1803{
6f505b16 1804 set_task_rq(p, cpu);
dd41f596 1805#ifdef CONFIG_SMP
ce96b5ac
DA
1806 /*
1807 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1808 * successfuly executed on another CPU. We must ensure that updates of
1809 * per-task data have been completed by this moment.
1810 */
1811 smp_wmb();
dd41f596 1812 task_thread_info(p)->cpu = cpu;
dd41f596 1813#endif
2dd73a4f
PW
1814}
1815
cb469845
SR
1816static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1817 const struct sched_class *prev_class,
1818 int oldprio, int running)
1819{
1820 if (prev_class != p->sched_class) {
1821 if (prev_class->switched_from)
1822 prev_class->switched_from(rq, p, running);
1823 p->sched_class->switched_to(rq, p, running);
1824 } else
1825 p->sched_class->prio_changed(rq, p, oldprio, running);
1826}
1827
1da177e4 1828#ifdef CONFIG_SMP
c65cc870 1829
e958b360
TG
1830/* Used instead of source_load when we know the type == 0 */
1831static unsigned long weighted_cpuload(const int cpu)
1832{
1833 return cpu_rq(cpu)->load.weight;
1834}
1835
cc367732
IM
1836/*
1837 * Is this task likely cache-hot:
1838 */
e7693a36 1839static int
cc367732
IM
1840task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1841{
1842 s64 delta;
1843
f540a608
IM
1844 /*
1845 * Buddy candidates are cache hot:
1846 */
4793241b
PZ
1847 if (sched_feat(CACHE_HOT_BUDDY) &&
1848 (&p->se == cfs_rq_of(&p->se)->next ||
1849 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1850 return 1;
1851
cc367732
IM
1852 if (p->sched_class != &fair_sched_class)
1853 return 0;
1854
6bc1665b
IM
1855 if (sysctl_sched_migration_cost == -1)
1856 return 1;
1857 if (sysctl_sched_migration_cost == 0)
1858 return 0;
1859
cc367732
IM
1860 delta = now - p->se.exec_start;
1861
1862 return delta < (s64)sysctl_sched_migration_cost;
1863}
1864
1865
dd41f596 1866void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1867{
dd41f596
IM
1868 int old_cpu = task_cpu(p);
1869 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1870 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1871 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1872 u64 clock_offset;
dd41f596
IM
1873
1874 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1875
cbc34ed1
PZ
1876 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1877
6cfb0d5d
IM
1878#ifdef CONFIG_SCHEDSTATS
1879 if (p->se.wait_start)
1880 p->se.wait_start -= clock_offset;
dd41f596
IM
1881 if (p->se.sleep_start)
1882 p->se.sleep_start -= clock_offset;
1883 if (p->se.block_start)
1884 p->se.block_start -= clock_offset;
cc367732
IM
1885 if (old_cpu != new_cpu) {
1886 schedstat_inc(p, se.nr_migrations);
1887 if (task_hot(p, old_rq->clock, NULL))
1888 schedstat_inc(p, se.nr_forced2_migrations);
1889 }
6cfb0d5d 1890#endif
2830cf8c
SV
1891 p->se.vruntime -= old_cfsrq->min_vruntime -
1892 new_cfsrq->min_vruntime;
dd41f596
IM
1893
1894 __set_task_cpu(p, new_cpu);
c65cc870
IM
1895}
1896
70b97a7f 1897struct migration_req {
1da177e4 1898 struct list_head list;
1da177e4 1899
36c8b586 1900 struct task_struct *task;
1da177e4
LT
1901 int dest_cpu;
1902
1da177e4 1903 struct completion done;
70b97a7f 1904};
1da177e4
LT
1905
1906/*
1907 * The task's runqueue lock must be held.
1908 * Returns true if you have to wait for migration thread.
1909 */
36c8b586 1910static int
70b97a7f 1911migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1912{
70b97a7f 1913 struct rq *rq = task_rq(p);
1da177e4
LT
1914
1915 /*
1916 * If the task is not on a runqueue (and not running), then
1917 * it is sufficient to simply update the task's cpu field.
1918 */
dd41f596 1919 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1920 set_task_cpu(p, dest_cpu);
1921 return 0;
1922 }
1923
1924 init_completion(&req->done);
1da177e4
LT
1925 req->task = p;
1926 req->dest_cpu = dest_cpu;
1927 list_add(&req->list, &rq->migration_queue);
48f24c4d 1928
1da177e4
LT
1929 return 1;
1930}
1931
1932/*
1933 * wait_task_inactive - wait for a thread to unschedule.
1934 *
85ba2d86
RM
1935 * If @match_state is nonzero, it's the @p->state value just checked and
1936 * not expected to change. If it changes, i.e. @p might have woken up,
1937 * then return zero. When we succeed in waiting for @p to be off its CPU,
1938 * we return a positive number (its total switch count). If a second call
1939 * a short while later returns the same number, the caller can be sure that
1940 * @p has remained unscheduled the whole time.
1941 *
1da177e4
LT
1942 * The caller must ensure that the task *will* unschedule sometime soon,
1943 * else this function might spin for a *long* time. This function can't
1944 * be called with interrupts off, or it may introduce deadlock with
1945 * smp_call_function() if an IPI is sent by the same process we are
1946 * waiting to become inactive.
1947 */
85ba2d86 1948unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1949{
1950 unsigned long flags;
dd41f596 1951 int running, on_rq;
85ba2d86 1952 unsigned long ncsw;
70b97a7f 1953 struct rq *rq;
1da177e4 1954
3a5c359a
AK
1955 for (;;) {
1956 /*
1957 * We do the initial early heuristics without holding
1958 * any task-queue locks at all. We'll only try to get
1959 * the runqueue lock when things look like they will
1960 * work out!
1961 */
1962 rq = task_rq(p);
fa490cfd 1963
3a5c359a
AK
1964 /*
1965 * If the task is actively running on another CPU
1966 * still, just relax and busy-wait without holding
1967 * any locks.
1968 *
1969 * NOTE! Since we don't hold any locks, it's not
1970 * even sure that "rq" stays as the right runqueue!
1971 * But we don't care, since "task_running()" will
1972 * return false if the runqueue has changed and p
1973 * is actually now running somewhere else!
1974 */
85ba2d86
RM
1975 while (task_running(rq, p)) {
1976 if (match_state && unlikely(p->state != match_state))
1977 return 0;
3a5c359a 1978 cpu_relax();
85ba2d86 1979 }
fa490cfd 1980
3a5c359a
AK
1981 /*
1982 * Ok, time to look more closely! We need the rq
1983 * lock now, to be *sure*. If we're wrong, we'll
1984 * just go back and repeat.
1985 */
1986 rq = task_rq_lock(p, &flags);
0a16b607 1987 trace_sched_wait_task(rq, p);
3a5c359a
AK
1988 running = task_running(rq, p);
1989 on_rq = p->se.on_rq;
85ba2d86 1990 ncsw = 0;
f31e11d8 1991 if (!match_state || p->state == match_state)
93dcf55f 1992 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1993 task_rq_unlock(rq, &flags);
fa490cfd 1994
85ba2d86
RM
1995 /*
1996 * If it changed from the expected state, bail out now.
1997 */
1998 if (unlikely(!ncsw))
1999 break;
2000
3a5c359a
AK
2001 /*
2002 * Was it really running after all now that we
2003 * checked with the proper locks actually held?
2004 *
2005 * Oops. Go back and try again..
2006 */
2007 if (unlikely(running)) {
2008 cpu_relax();
2009 continue;
2010 }
fa490cfd 2011
3a5c359a
AK
2012 /*
2013 * It's not enough that it's not actively running,
2014 * it must be off the runqueue _entirely_, and not
2015 * preempted!
2016 *
2017 * So if it wa still runnable (but just not actively
2018 * running right now), it's preempted, and we should
2019 * yield - it could be a while.
2020 */
2021 if (unlikely(on_rq)) {
2022 schedule_timeout_uninterruptible(1);
2023 continue;
2024 }
fa490cfd 2025
3a5c359a
AK
2026 /*
2027 * Ahh, all good. It wasn't running, and it wasn't
2028 * runnable, which means that it will never become
2029 * running in the future either. We're all done!
2030 */
2031 break;
2032 }
85ba2d86
RM
2033
2034 return ncsw;
1da177e4
LT
2035}
2036
2037/***
2038 * kick_process - kick a running thread to enter/exit the kernel
2039 * @p: the to-be-kicked thread
2040 *
2041 * Cause a process which is running on another CPU to enter
2042 * kernel-mode, without any delay. (to get signals handled.)
2043 *
2044 * NOTE: this function doesnt have to take the runqueue lock,
2045 * because all it wants to ensure is that the remote task enters
2046 * the kernel. If the IPI races and the task has been migrated
2047 * to another CPU then no harm is done and the purpose has been
2048 * achieved as well.
2049 */
36c8b586 2050void kick_process(struct task_struct *p)
1da177e4
LT
2051{
2052 int cpu;
2053
2054 preempt_disable();
2055 cpu = task_cpu(p);
2056 if ((cpu != smp_processor_id()) && task_curr(p))
2057 smp_send_reschedule(cpu);
2058 preempt_enable();
2059}
2060
2061/*
2dd73a4f
PW
2062 * Return a low guess at the load of a migration-source cpu weighted
2063 * according to the scheduling class and "nice" value.
1da177e4
LT
2064 *
2065 * We want to under-estimate the load of migration sources, to
2066 * balance conservatively.
2067 */
a9957449 2068static unsigned long source_load(int cpu, int type)
1da177e4 2069{
70b97a7f 2070 struct rq *rq = cpu_rq(cpu);
dd41f596 2071 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2072
93b75217 2073 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2074 return total;
b910472d 2075
dd41f596 2076 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2077}
2078
2079/*
2dd73a4f
PW
2080 * Return a high guess at the load of a migration-target cpu weighted
2081 * according to the scheduling class and "nice" value.
1da177e4 2082 */
a9957449 2083static unsigned long target_load(int cpu, int type)
1da177e4 2084{
70b97a7f 2085 struct rq *rq = cpu_rq(cpu);
dd41f596 2086 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2087
93b75217 2088 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2089 return total;
3b0bd9bc 2090
dd41f596 2091 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2092}
2093
147cbb4b
NP
2094/*
2095 * find_idlest_group finds and returns the least busy CPU group within the
2096 * domain.
2097 */
2098static struct sched_group *
2099find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2100{
2101 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2102 unsigned long min_load = ULONG_MAX, this_load = 0;
2103 int load_idx = sd->forkexec_idx;
2104 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2105
2106 do {
2107 unsigned long load, avg_load;
2108 int local_group;
2109 int i;
2110
da5a5522 2111 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2112 if (!cpumask_intersects(sched_group_cpus(group),
2113 &p->cpus_allowed))
3a5c359a 2114 continue;
da5a5522 2115
758b2cdc
RR
2116 local_group = cpumask_test_cpu(this_cpu,
2117 sched_group_cpus(group));
147cbb4b
NP
2118
2119 /* Tally up the load of all CPUs in the group */
2120 avg_load = 0;
2121
758b2cdc 2122 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2123 /* Bias balancing toward cpus of our domain */
2124 if (local_group)
2125 load = source_load(i, load_idx);
2126 else
2127 load = target_load(i, load_idx);
2128
2129 avg_load += load;
2130 }
2131
2132 /* Adjust by relative CPU power of the group */
5517d86b
ED
2133 avg_load = sg_div_cpu_power(group,
2134 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2135
2136 if (local_group) {
2137 this_load = avg_load;
2138 this = group;
2139 } else if (avg_load < min_load) {
2140 min_load = avg_load;
2141 idlest = group;
2142 }
3a5c359a 2143 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2144
2145 if (!idlest || 100*this_load < imbalance*min_load)
2146 return NULL;
2147 return idlest;
2148}
2149
2150/*
0feaece9 2151 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2152 */
95cdf3b7 2153static int
758b2cdc 2154find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2155{
2156 unsigned long load, min_load = ULONG_MAX;
2157 int idlest = -1;
2158 int i;
2159
da5a5522 2160 /* Traverse only the allowed CPUs */
758b2cdc 2161 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2162 load = weighted_cpuload(i);
147cbb4b
NP
2163
2164 if (load < min_load || (load == min_load && i == this_cpu)) {
2165 min_load = load;
2166 idlest = i;
2167 }
2168 }
2169
2170 return idlest;
2171}
2172
476d139c
NP
2173/*
2174 * sched_balance_self: balance the current task (running on cpu) in domains
2175 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2176 * SD_BALANCE_EXEC.
2177 *
2178 * Balance, ie. select the least loaded group.
2179 *
2180 * Returns the target CPU number, or the same CPU if no balancing is needed.
2181 *
2182 * preempt must be disabled.
2183 */
2184static int sched_balance_self(int cpu, int flag)
2185{
2186 struct task_struct *t = current;
2187 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2188
c96d145e 2189 for_each_domain(cpu, tmp) {
9761eea8
IM
2190 /*
2191 * If power savings logic is enabled for a domain, stop there.
2192 */
5c45bf27
SS
2193 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2194 break;
476d139c
NP
2195 if (tmp->flags & flag)
2196 sd = tmp;
c96d145e 2197 }
476d139c 2198
039a1c41
PZ
2199 if (sd)
2200 update_shares(sd);
2201
476d139c 2202 while (sd) {
476d139c 2203 struct sched_group *group;
1a848870
SS
2204 int new_cpu, weight;
2205
2206 if (!(sd->flags & flag)) {
2207 sd = sd->child;
2208 continue;
2209 }
476d139c 2210
476d139c 2211 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2212 if (!group) {
2213 sd = sd->child;
2214 continue;
2215 }
476d139c 2216
758b2cdc 2217 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2218 if (new_cpu == -1 || new_cpu == cpu) {
2219 /* Now try balancing at a lower domain level of cpu */
2220 sd = sd->child;
2221 continue;
2222 }
476d139c 2223
1a848870 2224 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2225 cpu = new_cpu;
758b2cdc 2226 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2227 sd = NULL;
476d139c 2228 for_each_domain(cpu, tmp) {
758b2cdc 2229 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2230 break;
2231 if (tmp->flags & flag)
2232 sd = tmp;
2233 }
2234 /* while loop will break here if sd == NULL */
2235 }
2236
2237 return cpu;
2238}
2239
2240#endif /* CONFIG_SMP */
1da177e4 2241
1da177e4
LT
2242/***
2243 * try_to_wake_up - wake up a thread
2244 * @p: the to-be-woken-up thread
2245 * @state: the mask of task states that can be woken
2246 * @sync: do a synchronous wakeup?
2247 *
2248 * Put it on the run-queue if it's not already there. The "current"
2249 * thread is always on the run-queue (except when the actual
2250 * re-schedule is in progress), and as such you're allowed to do
2251 * the simpler "current->state = TASK_RUNNING" to mark yourself
2252 * runnable without the overhead of this.
2253 *
2254 * returns failure only if the task is already active.
2255 */
36c8b586 2256static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2257{
cc367732 2258 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2259 unsigned long flags;
2260 long old_state;
70b97a7f 2261 struct rq *rq;
1da177e4 2262
b85d0667
IM
2263 if (!sched_feat(SYNC_WAKEUPS))
2264 sync = 0;
2265
2398f2c6
PZ
2266#ifdef CONFIG_SMP
2267 if (sched_feat(LB_WAKEUP_UPDATE)) {
2268 struct sched_domain *sd;
2269
2270 this_cpu = raw_smp_processor_id();
2271 cpu = task_cpu(p);
2272
2273 for_each_domain(this_cpu, sd) {
758b2cdc 2274 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2275 update_shares(sd);
2276 break;
2277 }
2278 }
2279 }
2280#endif
2281
04e2f174 2282 smp_wmb();
1da177e4 2283 rq = task_rq_lock(p, &flags);
03e89e45 2284 update_rq_clock(rq);
1da177e4
LT
2285 old_state = p->state;
2286 if (!(old_state & state))
2287 goto out;
2288
dd41f596 2289 if (p->se.on_rq)
1da177e4
LT
2290 goto out_running;
2291
2292 cpu = task_cpu(p);
cc367732 2293 orig_cpu = cpu;
1da177e4
LT
2294 this_cpu = smp_processor_id();
2295
2296#ifdef CONFIG_SMP
2297 if (unlikely(task_running(rq, p)))
2298 goto out_activate;
2299
5d2f5a61
DA
2300 cpu = p->sched_class->select_task_rq(p, sync);
2301 if (cpu != orig_cpu) {
2302 set_task_cpu(p, cpu);
1da177e4
LT
2303 task_rq_unlock(rq, &flags);
2304 /* might preempt at this point */
2305 rq = task_rq_lock(p, &flags);
2306 old_state = p->state;
2307 if (!(old_state & state))
2308 goto out;
dd41f596 2309 if (p->se.on_rq)
1da177e4
LT
2310 goto out_running;
2311
2312 this_cpu = smp_processor_id();
2313 cpu = task_cpu(p);
2314 }
2315
e7693a36
GH
2316#ifdef CONFIG_SCHEDSTATS
2317 schedstat_inc(rq, ttwu_count);
2318 if (cpu == this_cpu)
2319 schedstat_inc(rq, ttwu_local);
2320 else {
2321 struct sched_domain *sd;
2322 for_each_domain(this_cpu, sd) {
758b2cdc 2323 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2324 schedstat_inc(sd, ttwu_wake_remote);
2325 break;
2326 }
2327 }
2328 }
6d6bc0ad 2329#endif /* CONFIG_SCHEDSTATS */
e7693a36 2330
1da177e4
LT
2331out_activate:
2332#endif /* CONFIG_SMP */
cc367732
IM
2333 schedstat_inc(p, se.nr_wakeups);
2334 if (sync)
2335 schedstat_inc(p, se.nr_wakeups_sync);
2336 if (orig_cpu != cpu)
2337 schedstat_inc(p, se.nr_wakeups_migrate);
2338 if (cpu == this_cpu)
2339 schedstat_inc(p, se.nr_wakeups_local);
2340 else
2341 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2342 activate_task(rq, p, 1);
1da177e4
LT
2343 success = 1;
2344
2345out_running:
468a15bb 2346 trace_sched_wakeup(rq, p, success);
15afe09b 2347 check_preempt_curr(rq, p, sync);
4ae7d5ce 2348
1da177e4 2349 p->state = TASK_RUNNING;
9a897c5a
SR
2350#ifdef CONFIG_SMP
2351 if (p->sched_class->task_wake_up)
2352 p->sched_class->task_wake_up(rq, p);
2353#endif
1da177e4 2354out:
2087a1ad
GH
2355 current->se.last_wakeup = current->se.sum_exec_runtime;
2356
1da177e4
LT
2357 task_rq_unlock(rq, &flags);
2358
2359 return success;
2360}
2361
7ad5b3a5 2362int wake_up_process(struct task_struct *p)
1da177e4 2363{
d9514f6c 2364 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2365}
1da177e4
LT
2366EXPORT_SYMBOL(wake_up_process);
2367
7ad5b3a5 2368int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2369{
2370 return try_to_wake_up(p, state, 0);
2371}
2372
1da177e4
LT
2373/*
2374 * Perform scheduler related setup for a newly forked process p.
2375 * p is forked by current.
dd41f596
IM
2376 *
2377 * __sched_fork() is basic setup used by init_idle() too:
2378 */
2379static void __sched_fork(struct task_struct *p)
2380{
dd41f596
IM
2381 p->se.exec_start = 0;
2382 p->se.sum_exec_runtime = 0;
f6cf891c 2383 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2384 p->se.last_wakeup = 0;
2385 p->se.avg_overlap = 0;
6cfb0d5d
IM
2386
2387#ifdef CONFIG_SCHEDSTATS
2388 p->se.wait_start = 0;
dd41f596
IM
2389 p->se.sum_sleep_runtime = 0;
2390 p->se.sleep_start = 0;
dd41f596
IM
2391 p->se.block_start = 0;
2392 p->se.sleep_max = 0;
2393 p->se.block_max = 0;
2394 p->se.exec_max = 0;
eba1ed4b 2395 p->se.slice_max = 0;
dd41f596 2396 p->se.wait_max = 0;
6cfb0d5d 2397#endif
476d139c 2398
fa717060 2399 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2400 p->se.on_rq = 0;
4a55bd5e 2401 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2402
e107be36
AK
2403#ifdef CONFIG_PREEMPT_NOTIFIERS
2404 INIT_HLIST_HEAD(&p->preempt_notifiers);
2405#endif
2406
1da177e4
LT
2407 /*
2408 * We mark the process as running here, but have not actually
2409 * inserted it onto the runqueue yet. This guarantees that
2410 * nobody will actually run it, and a signal or other external
2411 * event cannot wake it up and insert it on the runqueue either.
2412 */
2413 p->state = TASK_RUNNING;
dd41f596
IM
2414}
2415
2416/*
2417 * fork()/clone()-time setup:
2418 */
2419void sched_fork(struct task_struct *p, int clone_flags)
2420{
2421 int cpu = get_cpu();
2422
2423 __sched_fork(p);
2424
2425#ifdef CONFIG_SMP
2426 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2427#endif
02e4bac2 2428 set_task_cpu(p, cpu);
b29739f9
IM
2429
2430 /*
2431 * Make sure we do not leak PI boosting priority to the child:
2432 */
2433 p->prio = current->normal_prio;
2ddbf952
HS
2434 if (!rt_prio(p->prio))
2435 p->sched_class = &fair_sched_class;
b29739f9 2436
52f17b6c 2437#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2438 if (likely(sched_info_on()))
52f17b6c 2439 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2440#endif
d6077cb8 2441#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2442 p->oncpu = 0;
2443#endif
1da177e4 2444#ifdef CONFIG_PREEMPT
4866cde0 2445 /* Want to start with kernel preemption disabled. */
a1261f54 2446 task_thread_info(p)->preempt_count = 1;
1da177e4 2447#endif
476d139c 2448 put_cpu();
1da177e4
LT
2449}
2450
2451/*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
7ad5b3a5 2458void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2459{
2460 unsigned long flags;
dd41f596 2461 struct rq *rq;
1da177e4
LT
2462
2463 rq = task_rq_lock(p, &flags);
147cbb4b 2464 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2465 update_rq_clock(rq);
1da177e4
LT
2466
2467 p->prio = effective_prio(p);
2468
b9dca1e0 2469 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2470 activate_task(rq, p, 0);
1da177e4 2471 } else {
1da177e4 2472 /*
dd41f596
IM
2473 * Let the scheduling class do new task startup
2474 * management (if any):
1da177e4 2475 */
ee0827d8 2476 p->sched_class->task_new(rq, p);
c09595f6 2477 inc_nr_running(rq);
1da177e4 2478 }
c71dd42d 2479 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2480 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2481#ifdef CONFIG_SMP
2482 if (p->sched_class->task_wake_up)
2483 p->sched_class->task_wake_up(rq, p);
2484#endif
dd41f596 2485 task_rq_unlock(rq, &flags);
1da177e4
LT
2486}
2487
e107be36
AK
2488#ifdef CONFIG_PREEMPT_NOTIFIERS
2489
2490/**
421cee29
RD
2491 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2492 * @notifier: notifier struct to register
e107be36
AK
2493 */
2494void preempt_notifier_register(struct preempt_notifier *notifier)
2495{
2496 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2497}
2498EXPORT_SYMBOL_GPL(preempt_notifier_register);
2499
2500/**
2501 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2502 * @notifier: notifier struct to unregister
e107be36
AK
2503 *
2504 * This is safe to call from within a preemption notifier.
2505 */
2506void preempt_notifier_unregister(struct preempt_notifier *notifier)
2507{
2508 hlist_del(&notifier->link);
2509}
2510EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2511
2512static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513{
2514 struct preempt_notifier *notifier;
2515 struct hlist_node *node;
2516
2517 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2518 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2519}
2520
2521static void
2522fire_sched_out_preempt_notifiers(struct task_struct *curr,
2523 struct task_struct *next)
2524{
2525 struct preempt_notifier *notifier;
2526 struct hlist_node *node;
2527
2528 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2529 notifier->ops->sched_out(notifier, next);
2530}
2531
6d6bc0ad 2532#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2533
2534static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2535{
2536}
2537
2538static void
2539fire_sched_out_preempt_notifiers(struct task_struct *curr,
2540 struct task_struct *next)
2541{
2542}
2543
6d6bc0ad 2544#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2545
4866cde0
NP
2546/**
2547 * prepare_task_switch - prepare to switch tasks
2548 * @rq: the runqueue preparing to switch
421cee29 2549 * @prev: the current task that is being switched out
4866cde0
NP
2550 * @next: the task we are going to switch to.
2551 *
2552 * This is called with the rq lock held and interrupts off. It must
2553 * be paired with a subsequent finish_task_switch after the context
2554 * switch.
2555 *
2556 * prepare_task_switch sets up locking and calls architecture specific
2557 * hooks.
2558 */
e107be36
AK
2559static inline void
2560prepare_task_switch(struct rq *rq, struct task_struct *prev,
2561 struct task_struct *next)
4866cde0 2562{
e107be36 2563 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2564 prepare_lock_switch(rq, next);
2565 prepare_arch_switch(next);
2566}
2567
1da177e4
LT
2568/**
2569 * finish_task_switch - clean up after a task-switch
344babaa 2570 * @rq: runqueue associated with task-switch
1da177e4
LT
2571 * @prev: the thread we just switched away from.
2572 *
4866cde0
NP
2573 * finish_task_switch must be called after the context switch, paired
2574 * with a prepare_task_switch call before the context switch.
2575 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2576 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2577 *
2578 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2579 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2580 * with the lock held can cause deadlocks; see schedule() for
2581 * details.)
2582 */
a9957449 2583static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2584 __releases(rq->lock)
2585{
1da177e4 2586 struct mm_struct *mm = rq->prev_mm;
55a101f8 2587 long prev_state;
1da177e4
LT
2588
2589 rq->prev_mm = NULL;
2590
2591 /*
2592 * A task struct has one reference for the use as "current".
c394cc9f 2593 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2594 * schedule one last time. The schedule call will never return, and
2595 * the scheduled task must drop that reference.
c394cc9f 2596 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2597 * still held, otherwise prev could be scheduled on another cpu, die
2598 * there before we look at prev->state, and then the reference would
2599 * be dropped twice.
2600 * Manfred Spraul <manfred@colorfullife.com>
2601 */
55a101f8 2602 prev_state = prev->state;
4866cde0
NP
2603 finish_arch_switch(prev);
2604 finish_lock_switch(rq, prev);
9a897c5a
SR
2605#ifdef CONFIG_SMP
2606 if (current->sched_class->post_schedule)
2607 current->sched_class->post_schedule(rq);
2608#endif
e8fa1362 2609
e107be36 2610 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2611 if (mm)
2612 mmdrop(mm);
c394cc9f 2613 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2614 /*
2615 * Remove function-return probe instances associated with this
2616 * task and put them back on the free list.
9761eea8 2617 */
c6fd91f0 2618 kprobe_flush_task(prev);
1da177e4 2619 put_task_struct(prev);
c6fd91f0 2620 }
1da177e4
LT
2621}
2622
2623/**
2624 * schedule_tail - first thing a freshly forked thread must call.
2625 * @prev: the thread we just switched away from.
2626 */
36c8b586 2627asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2628 __releases(rq->lock)
2629{
70b97a7f
IM
2630 struct rq *rq = this_rq();
2631
4866cde0
NP
2632 finish_task_switch(rq, prev);
2633#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2634 /* In this case, finish_task_switch does not reenable preemption */
2635 preempt_enable();
2636#endif
1da177e4 2637 if (current->set_child_tid)
b488893a 2638 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2639}
2640
2641/*
2642 * context_switch - switch to the new MM and the new
2643 * thread's register state.
2644 */
dd41f596 2645static inline void
70b97a7f 2646context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2647 struct task_struct *next)
1da177e4 2648{
dd41f596 2649 struct mm_struct *mm, *oldmm;
1da177e4 2650
e107be36 2651 prepare_task_switch(rq, prev, next);
0a16b607 2652 trace_sched_switch(rq, prev, next);
dd41f596
IM
2653 mm = next->mm;
2654 oldmm = prev->active_mm;
9226d125
ZA
2655 /*
2656 * For paravirt, this is coupled with an exit in switch_to to
2657 * combine the page table reload and the switch backend into
2658 * one hypercall.
2659 */
2660 arch_enter_lazy_cpu_mode();
2661
dd41f596 2662 if (unlikely(!mm)) {
1da177e4
LT
2663 next->active_mm = oldmm;
2664 atomic_inc(&oldmm->mm_count);
2665 enter_lazy_tlb(oldmm, next);
2666 } else
2667 switch_mm(oldmm, mm, next);
2668
dd41f596 2669 if (unlikely(!prev->mm)) {
1da177e4 2670 prev->active_mm = NULL;
1da177e4
LT
2671 rq->prev_mm = oldmm;
2672 }
3a5f5e48
IM
2673 /*
2674 * Since the runqueue lock will be released by the next
2675 * task (which is an invalid locking op but in the case
2676 * of the scheduler it's an obvious special-case), so we
2677 * do an early lockdep release here:
2678 */
2679#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2680 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2681#endif
1da177e4
LT
2682
2683 /* Here we just switch the register state and the stack. */
2684 switch_to(prev, next, prev);
2685
dd41f596
IM
2686 barrier();
2687 /*
2688 * this_rq must be evaluated again because prev may have moved
2689 * CPUs since it called schedule(), thus the 'rq' on its stack
2690 * frame will be invalid.
2691 */
2692 finish_task_switch(this_rq(), prev);
1da177e4
LT
2693}
2694
2695/*
2696 * nr_running, nr_uninterruptible and nr_context_switches:
2697 *
2698 * externally visible scheduler statistics: current number of runnable
2699 * threads, current number of uninterruptible-sleeping threads, total
2700 * number of context switches performed since bootup.
2701 */
2702unsigned long nr_running(void)
2703{
2704 unsigned long i, sum = 0;
2705
2706 for_each_online_cpu(i)
2707 sum += cpu_rq(i)->nr_running;
2708
2709 return sum;
2710}
2711
2712unsigned long nr_uninterruptible(void)
2713{
2714 unsigned long i, sum = 0;
2715
0a945022 2716 for_each_possible_cpu(i)
1da177e4
LT
2717 sum += cpu_rq(i)->nr_uninterruptible;
2718
2719 /*
2720 * Since we read the counters lockless, it might be slightly
2721 * inaccurate. Do not allow it to go below zero though:
2722 */
2723 if (unlikely((long)sum < 0))
2724 sum = 0;
2725
2726 return sum;
2727}
2728
2729unsigned long long nr_context_switches(void)
2730{
cc94abfc
SR
2731 int i;
2732 unsigned long long sum = 0;
1da177e4 2733
0a945022 2734 for_each_possible_cpu(i)
1da177e4
LT
2735 sum += cpu_rq(i)->nr_switches;
2736
2737 return sum;
2738}
2739
2740unsigned long nr_iowait(void)
2741{
2742 unsigned long i, sum = 0;
2743
0a945022 2744 for_each_possible_cpu(i)
1da177e4
LT
2745 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2746
2747 return sum;
2748}
2749
db1b1fef
JS
2750unsigned long nr_active(void)
2751{
2752 unsigned long i, running = 0, uninterruptible = 0;
2753
2754 for_each_online_cpu(i) {
2755 running += cpu_rq(i)->nr_running;
2756 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2757 }
2758
2759 if (unlikely((long)uninterruptible < 0))
2760 uninterruptible = 0;
2761
2762 return running + uninterruptible;
2763}
2764
48f24c4d 2765/*
dd41f596
IM
2766 * Update rq->cpu_load[] statistics. This function is usually called every
2767 * scheduler tick (TICK_NSEC).
48f24c4d 2768 */
dd41f596 2769static void update_cpu_load(struct rq *this_rq)
48f24c4d 2770{
495eca49 2771 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2772 int i, scale;
2773
2774 this_rq->nr_load_updates++;
dd41f596
IM
2775
2776 /* Update our load: */
2777 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2778 unsigned long old_load, new_load;
2779
2780 /* scale is effectively 1 << i now, and >> i divides by scale */
2781
2782 old_load = this_rq->cpu_load[i];
2783 new_load = this_load;
a25707f3
IM
2784 /*
2785 * Round up the averaging division if load is increasing. This
2786 * prevents us from getting stuck on 9 if the load is 10, for
2787 * example.
2788 */
2789 if (new_load > old_load)
2790 new_load += scale-1;
dd41f596
IM
2791 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2792 }
48f24c4d
IM
2793}
2794
dd41f596
IM
2795#ifdef CONFIG_SMP
2796
1da177e4
LT
2797/*
2798 * double_rq_lock - safely lock two runqueues
2799 *
2800 * Note this does not disable interrupts like task_rq_lock,
2801 * you need to do so manually before calling.
2802 */
70b97a7f 2803static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2804 __acquires(rq1->lock)
2805 __acquires(rq2->lock)
2806{
054b9108 2807 BUG_ON(!irqs_disabled());
1da177e4
LT
2808 if (rq1 == rq2) {
2809 spin_lock(&rq1->lock);
2810 __acquire(rq2->lock); /* Fake it out ;) */
2811 } else {
c96d145e 2812 if (rq1 < rq2) {
1da177e4 2813 spin_lock(&rq1->lock);
5e710e37 2814 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2815 } else {
2816 spin_lock(&rq2->lock);
5e710e37 2817 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2818 }
2819 }
6e82a3be
IM
2820 update_rq_clock(rq1);
2821 update_rq_clock(rq2);
1da177e4
LT
2822}
2823
2824/*
2825 * double_rq_unlock - safely unlock two runqueues
2826 *
2827 * Note this does not restore interrupts like task_rq_unlock,
2828 * you need to do so manually after calling.
2829 */
70b97a7f 2830static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2831 __releases(rq1->lock)
2832 __releases(rq2->lock)
2833{
2834 spin_unlock(&rq1->lock);
2835 if (rq1 != rq2)
2836 spin_unlock(&rq2->lock);
2837 else
2838 __release(rq2->lock);
2839}
2840
1da177e4
LT
2841/*
2842 * If dest_cpu is allowed for this process, migrate the task to it.
2843 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2844 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2845 * the cpu_allowed mask is restored.
2846 */
36c8b586 2847static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2848{
70b97a7f 2849 struct migration_req req;
1da177e4 2850 unsigned long flags;
70b97a7f 2851 struct rq *rq;
1da177e4
LT
2852
2853 rq = task_rq_lock(p, &flags);
96f874e2 2854 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2855 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2856 goto out;
2857
2858 /* force the process onto the specified CPU */
2859 if (migrate_task(p, dest_cpu, &req)) {
2860 /* Need to wait for migration thread (might exit: take ref). */
2861 struct task_struct *mt = rq->migration_thread;
36c8b586 2862
1da177e4
LT
2863 get_task_struct(mt);
2864 task_rq_unlock(rq, &flags);
2865 wake_up_process(mt);
2866 put_task_struct(mt);
2867 wait_for_completion(&req.done);
36c8b586 2868
1da177e4
LT
2869 return;
2870 }
2871out:
2872 task_rq_unlock(rq, &flags);
2873}
2874
2875/*
476d139c
NP
2876 * sched_exec - execve() is a valuable balancing opportunity, because at
2877 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2878 */
2879void sched_exec(void)
2880{
1da177e4 2881 int new_cpu, this_cpu = get_cpu();
476d139c 2882 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2883 put_cpu();
476d139c
NP
2884 if (new_cpu != this_cpu)
2885 sched_migrate_task(current, new_cpu);
1da177e4
LT
2886}
2887
2888/*
2889 * pull_task - move a task from a remote runqueue to the local runqueue.
2890 * Both runqueues must be locked.
2891 */
dd41f596
IM
2892static void pull_task(struct rq *src_rq, struct task_struct *p,
2893 struct rq *this_rq, int this_cpu)
1da177e4 2894{
2e1cb74a 2895 deactivate_task(src_rq, p, 0);
1da177e4 2896 set_task_cpu(p, this_cpu);
dd41f596 2897 activate_task(this_rq, p, 0);
1da177e4
LT
2898 /*
2899 * Note that idle threads have a prio of MAX_PRIO, for this test
2900 * to be always true for them.
2901 */
15afe09b 2902 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2903}
2904
2905/*
2906 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2907 */
858119e1 2908static
70b97a7f 2909int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2910 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2911 int *all_pinned)
1da177e4
LT
2912{
2913 /*
2914 * We do not migrate tasks that are:
2915 * 1) running (obviously), or
2916 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2917 * 3) are cache-hot on their current CPU.
2918 */
96f874e2 2919 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2920 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2921 return 0;
cc367732 2922 }
81026794
NP
2923 *all_pinned = 0;
2924
cc367732
IM
2925 if (task_running(rq, p)) {
2926 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2927 return 0;
cc367732 2928 }
1da177e4 2929
da84d961
IM
2930 /*
2931 * Aggressive migration if:
2932 * 1) task is cache cold, or
2933 * 2) too many balance attempts have failed.
2934 */
2935
6bc1665b
IM
2936 if (!task_hot(p, rq->clock, sd) ||
2937 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2938#ifdef CONFIG_SCHEDSTATS
cc367732 2939 if (task_hot(p, rq->clock, sd)) {
da84d961 2940 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2941 schedstat_inc(p, se.nr_forced_migrations);
2942 }
da84d961
IM
2943#endif
2944 return 1;
2945 }
2946
cc367732
IM
2947 if (task_hot(p, rq->clock, sd)) {
2948 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2949 return 0;
cc367732 2950 }
1da177e4
LT
2951 return 1;
2952}
2953
e1d1484f
PW
2954static unsigned long
2955balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2956 unsigned long max_load_move, struct sched_domain *sd,
2957 enum cpu_idle_type idle, int *all_pinned,
2958 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2959{
051c6764 2960 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2961 struct task_struct *p;
2962 long rem_load_move = max_load_move;
1da177e4 2963
e1d1484f 2964 if (max_load_move == 0)
1da177e4
LT
2965 goto out;
2966
81026794
NP
2967 pinned = 1;
2968
1da177e4 2969 /*
dd41f596 2970 * Start the load-balancing iterator:
1da177e4 2971 */
dd41f596
IM
2972 p = iterator->start(iterator->arg);
2973next:
b82d9fdd 2974 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2975 goto out;
051c6764
PZ
2976
2977 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2978 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2979 p = iterator->next(iterator->arg);
2980 goto next;
1da177e4
LT
2981 }
2982
dd41f596 2983 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2984 pulled++;
dd41f596 2985 rem_load_move -= p->se.load.weight;
1da177e4 2986
2dd73a4f 2987 /*
b82d9fdd 2988 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2989 */
e1d1484f 2990 if (rem_load_move > 0) {
a4ac01c3
PW
2991 if (p->prio < *this_best_prio)
2992 *this_best_prio = p->prio;
dd41f596
IM
2993 p = iterator->next(iterator->arg);
2994 goto next;
1da177e4
LT
2995 }
2996out:
2997 /*
e1d1484f 2998 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2999 * so we can safely collect pull_task() stats here rather than
3000 * inside pull_task().
3001 */
3002 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3003
3004 if (all_pinned)
3005 *all_pinned = pinned;
e1d1484f
PW
3006
3007 return max_load_move - rem_load_move;
1da177e4
LT
3008}
3009
dd41f596 3010/*
43010659
PW
3011 * move_tasks tries to move up to max_load_move weighted load from busiest to
3012 * this_rq, as part of a balancing operation within domain "sd".
3013 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3014 *
3015 * Called with both runqueues locked.
3016 */
3017static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3018 unsigned long max_load_move,
dd41f596
IM
3019 struct sched_domain *sd, enum cpu_idle_type idle,
3020 int *all_pinned)
3021{
5522d5d5 3022 const struct sched_class *class = sched_class_highest;
43010659 3023 unsigned long total_load_moved = 0;
a4ac01c3 3024 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3025
3026 do {
43010659
PW
3027 total_load_moved +=
3028 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3029 max_load_move - total_load_moved,
a4ac01c3 3030 sd, idle, all_pinned, &this_best_prio);
dd41f596 3031 class = class->next;
c4acb2c0
GH
3032
3033 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3034 break;
3035
43010659 3036 } while (class && max_load_move > total_load_moved);
dd41f596 3037
43010659
PW
3038 return total_load_moved > 0;
3039}
3040
e1d1484f
PW
3041static int
3042iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3043 struct sched_domain *sd, enum cpu_idle_type idle,
3044 struct rq_iterator *iterator)
3045{
3046 struct task_struct *p = iterator->start(iterator->arg);
3047 int pinned = 0;
3048
3049 while (p) {
3050 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3051 pull_task(busiest, p, this_rq, this_cpu);
3052 /*
3053 * Right now, this is only the second place pull_task()
3054 * is called, so we can safely collect pull_task()
3055 * stats here rather than inside pull_task().
3056 */
3057 schedstat_inc(sd, lb_gained[idle]);
3058
3059 return 1;
3060 }
3061 p = iterator->next(iterator->arg);
3062 }
3063
3064 return 0;
3065}
3066
43010659
PW
3067/*
3068 * move_one_task tries to move exactly one task from busiest to this_rq, as
3069 * part of active balancing operations within "domain".
3070 * Returns 1 if successful and 0 otherwise.
3071 *
3072 * Called with both runqueues locked.
3073 */
3074static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3075 struct sched_domain *sd, enum cpu_idle_type idle)
3076{
5522d5d5 3077 const struct sched_class *class;
43010659
PW
3078
3079 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3080 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3081 return 1;
3082
3083 return 0;
dd41f596
IM
3084}
3085
1da177e4
LT
3086/*
3087 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3088 * domain. It calculates and returns the amount of weighted load which
3089 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3090 */
3091static struct sched_group *
3092find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3093 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3094 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3095{
3096 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3097 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3098 unsigned long max_pull;
2dd73a4f
PW
3099 unsigned long busiest_load_per_task, busiest_nr_running;
3100 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3101 int load_idx, group_imb = 0;
5c45bf27
SS
3102#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3103 int power_savings_balance = 1;
3104 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3105 unsigned long min_nr_running = ULONG_MAX;
3106 struct sched_group *group_min = NULL, *group_leader = NULL;
3107#endif
1da177e4
LT
3108
3109 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3110 busiest_load_per_task = busiest_nr_running = 0;
3111 this_load_per_task = this_nr_running = 0;
408ed066 3112
d15bcfdb 3113 if (idle == CPU_NOT_IDLE)
7897986b 3114 load_idx = sd->busy_idx;
d15bcfdb 3115 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3116 load_idx = sd->newidle_idx;
3117 else
3118 load_idx = sd->idle_idx;
1da177e4
LT
3119
3120 do {
908a7c1b 3121 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3122 int local_group;
3123 int i;
908a7c1b 3124 int __group_imb = 0;
783609c6 3125 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3126 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3127 unsigned long sum_avg_load_per_task;
3128 unsigned long avg_load_per_task;
1da177e4 3129
758b2cdc
RR
3130 local_group = cpumask_test_cpu(this_cpu,
3131 sched_group_cpus(group));
1da177e4 3132
783609c6 3133 if (local_group)
758b2cdc 3134 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3135
1da177e4 3136 /* Tally up the load of all CPUs in the group */
2dd73a4f 3137 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3138 sum_avg_load_per_task = avg_load_per_task = 0;
3139
908a7c1b
KC
3140 max_cpu_load = 0;
3141 min_cpu_load = ~0UL;
1da177e4 3142
758b2cdc
RR
3143 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3144 struct rq *rq = cpu_rq(i);
2dd73a4f 3145
9439aab8 3146 if (*sd_idle && rq->nr_running)
5969fe06
NP
3147 *sd_idle = 0;
3148
1da177e4 3149 /* Bias balancing toward cpus of our domain */
783609c6
SS
3150 if (local_group) {
3151 if (idle_cpu(i) && !first_idle_cpu) {
3152 first_idle_cpu = 1;
3153 balance_cpu = i;
3154 }
3155
a2000572 3156 load = target_load(i, load_idx);
908a7c1b 3157 } else {
a2000572 3158 load = source_load(i, load_idx);
908a7c1b
KC
3159 if (load > max_cpu_load)
3160 max_cpu_load = load;
3161 if (min_cpu_load > load)
3162 min_cpu_load = load;
3163 }
1da177e4
LT
3164
3165 avg_load += load;
2dd73a4f 3166 sum_nr_running += rq->nr_running;
dd41f596 3167 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3168
3169 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3170 }
3171
783609c6
SS
3172 /*
3173 * First idle cpu or the first cpu(busiest) in this sched group
3174 * is eligible for doing load balancing at this and above
9439aab8
SS
3175 * domains. In the newly idle case, we will allow all the cpu's
3176 * to do the newly idle load balance.
783609c6 3177 */
9439aab8
SS
3178 if (idle != CPU_NEWLY_IDLE && local_group &&
3179 balance_cpu != this_cpu && balance) {
783609c6
SS
3180 *balance = 0;
3181 goto ret;
3182 }
3183
1da177e4 3184 total_load += avg_load;
5517d86b 3185 total_pwr += group->__cpu_power;
1da177e4
LT
3186
3187 /* Adjust by relative CPU power of the group */
5517d86b
ED
3188 avg_load = sg_div_cpu_power(group,
3189 avg_load * SCHED_LOAD_SCALE);
1da177e4 3190
408ed066
PZ
3191
3192 /*
3193 * Consider the group unbalanced when the imbalance is larger
3194 * than the average weight of two tasks.
3195 *
3196 * APZ: with cgroup the avg task weight can vary wildly and
3197 * might not be a suitable number - should we keep a
3198 * normalized nr_running number somewhere that negates
3199 * the hierarchy?
3200 */
3201 avg_load_per_task = sg_div_cpu_power(group,
3202 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3203
3204 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3205 __group_imb = 1;
3206
5517d86b 3207 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3208
1da177e4
LT
3209 if (local_group) {
3210 this_load = avg_load;
3211 this = group;
2dd73a4f
PW
3212 this_nr_running = sum_nr_running;
3213 this_load_per_task = sum_weighted_load;
3214 } else if (avg_load > max_load &&
908a7c1b 3215 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3216 max_load = avg_load;
3217 busiest = group;
2dd73a4f
PW
3218 busiest_nr_running = sum_nr_running;
3219 busiest_load_per_task = sum_weighted_load;
908a7c1b 3220 group_imb = __group_imb;
1da177e4 3221 }
5c45bf27
SS
3222
3223#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3224 /*
3225 * Busy processors will not participate in power savings
3226 * balance.
3227 */
dd41f596
IM
3228 if (idle == CPU_NOT_IDLE ||
3229 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3230 goto group_next;
5c45bf27
SS
3231
3232 /*
3233 * If the local group is idle or completely loaded
3234 * no need to do power savings balance at this domain
3235 */
3236 if (local_group && (this_nr_running >= group_capacity ||
3237 !this_nr_running))
3238 power_savings_balance = 0;
3239
dd41f596 3240 /*
5c45bf27
SS
3241 * If a group is already running at full capacity or idle,
3242 * don't include that group in power savings calculations
dd41f596
IM
3243 */
3244 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3245 || !sum_nr_running)
dd41f596 3246 goto group_next;
5c45bf27 3247
dd41f596 3248 /*
5c45bf27 3249 * Calculate the group which has the least non-idle load.
dd41f596
IM
3250 * This is the group from where we need to pick up the load
3251 * for saving power
3252 */
3253 if ((sum_nr_running < min_nr_running) ||
3254 (sum_nr_running == min_nr_running &&
d5679bd1 3255 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3256 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3257 group_min = group;
3258 min_nr_running = sum_nr_running;
5c45bf27
SS
3259 min_load_per_task = sum_weighted_load /
3260 sum_nr_running;
dd41f596 3261 }
5c45bf27 3262
dd41f596 3263 /*
5c45bf27 3264 * Calculate the group which is almost near its
dd41f596
IM
3265 * capacity but still has some space to pick up some load
3266 * from other group and save more power
3267 */
3268 if (sum_nr_running <= group_capacity - 1) {
3269 if (sum_nr_running > leader_nr_running ||
3270 (sum_nr_running == leader_nr_running &&
d5679bd1 3271 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3272 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3273 group_leader = group;
3274 leader_nr_running = sum_nr_running;
3275 }
48f24c4d 3276 }
5c45bf27
SS
3277group_next:
3278#endif
1da177e4
LT
3279 group = group->next;
3280 } while (group != sd->groups);
3281
2dd73a4f 3282 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3283 goto out_balanced;
3284
3285 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3286
3287 if (this_load >= avg_load ||
3288 100*max_load <= sd->imbalance_pct*this_load)
3289 goto out_balanced;
3290
2dd73a4f 3291 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3292 if (group_imb)
3293 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3294
1da177e4
LT
3295 /*
3296 * We're trying to get all the cpus to the average_load, so we don't
3297 * want to push ourselves above the average load, nor do we wish to
3298 * reduce the max loaded cpu below the average load, as either of these
3299 * actions would just result in more rebalancing later, and ping-pong
3300 * tasks around. Thus we look for the minimum possible imbalance.
3301 * Negative imbalances (*we* are more loaded than anyone else) will
3302 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3303 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3304 * appear as very large values with unsigned longs.
3305 */
2dd73a4f
PW
3306 if (max_load <= busiest_load_per_task)
3307 goto out_balanced;
3308
3309 /*
3310 * In the presence of smp nice balancing, certain scenarios can have
3311 * max load less than avg load(as we skip the groups at or below
3312 * its cpu_power, while calculating max_load..)
3313 */
3314 if (max_load < avg_load) {
3315 *imbalance = 0;
3316 goto small_imbalance;
3317 }
0c117f1b
SS
3318
3319 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3320 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3321
1da177e4 3322 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3323 *imbalance = min(max_pull * busiest->__cpu_power,
3324 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3325 / SCHED_LOAD_SCALE;
3326
2dd73a4f
PW
3327 /*
3328 * if *imbalance is less than the average load per runnable task
3329 * there is no gaurantee that any tasks will be moved so we'll have
3330 * a think about bumping its value to force at least one task to be
3331 * moved
3332 */
7fd0d2dd 3333 if (*imbalance < busiest_load_per_task) {
48f24c4d 3334 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3335 unsigned int imbn;
3336
3337small_imbalance:
3338 pwr_move = pwr_now = 0;
3339 imbn = 2;
3340 if (this_nr_running) {
3341 this_load_per_task /= this_nr_running;
3342 if (busiest_load_per_task > this_load_per_task)
3343 imbn = 1;
3344 } else
408ed066 3345 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3346
01c8c57d 3347 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3348 busiest_load_per_task * imbn) {
2dd73a4f 3349 *imbalance = busiest_load_per_task;
1da177e4
LT
3350 return busiest;
3351 }
3352
3353 /*
3354 * OK, we don't have enough imbalance to justify moving tasks,
3355 * however we may be able to increase total CPU power used by
3356 * moving them.
3357 */
3358
5517d86b
ED
3359 pwr_now += busiest->__cpu_power *
3360 min(busiest_load_per_task, max_load);
3361 pwr_now += this->__cpu_power *
3362 min(this_load_per_task, this_load);
1da177e4
LT
3363 pwr_now /= SCHED_LOAD_SCALE;
3364
3365 /* Amount of load we'd subtract */
5517d86b
ED
3366 tmp = sg_div_cpu_power(busiest,
3367 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3368 if (max_load > tmp)
5517d86b 3369 pwr_move += busiest->__cpu_power *
2dd73a4f 3370 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3371
3372 /* Amount of load we'd add */
5517d86b 3373 if (max_load * busiest->__cpu_power <
33859f7f 3374 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3375 tmp = sg_div_cpu_power(this,
3376 max_load * busiest->__cpu_power);
1da177e4 3377 else
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 busiest_load_per_task * SCHED_LOAD_SCALE);
3380 pwr_move += this->__cpu_power *
3381 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3382 pwr_move /= SCHED_LOAD_SCALE;
3383
3384 /* Move if we gain throughput */
7fd0d2dd
SS
3385 if (pwr_move > pwr_now)
3386 *imbalance = busiest_load_per_task;
1da177e4
LT
3387 }
3388
1da177e4
LT
3389 return busiest;
3390
3391out_balanced:
5c45bf27 3392#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3393 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3394 goto ret;
1da177e4 3395
5c45bf27
SS
3396 if (this == group_leader && group_leader != group_min) {
3397 *imbalance = min_load_per_task;
7a09b1a2
VS
3398 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3399 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3400 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3401 }
5c45bf27
SS
3402 return group_min;
3403 }
5c45bf27 3404#endif
783609c6 3405ret:
1da177e4
LT
3406 *imbalance = 0;
3407 return NULL;
3408}
3409
3410/*
3411 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3412 */
70b97a7f 3413static struct rq *
d15bcfdb 3414find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3415 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3416{
70b97a7f 3417 struct rq *busiest = NULL, *rq;
2dd73a4f 3418 unsigned long max_load = 0;
1da177e4
LT
3419 int i;
3420
758b2cdc 3421 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3422 unsigned long wl;
0a2966b4 3423
96f874e2 3424 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3425 continue;
3426
48f24c4d 3427 rq = cpu_rq(i);
dd41f596 3428 wl = weighted_cpuload(i);
2dd73a4f 3429
dd41f596 3430 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3431 continue;
1da177e4 3432
dd41f596
IM
3433 if (wl > max_load) {
3434 max_load = wl;
48f24c4d 3435 busiest = rq;
1da177e4
LT
3436 }
3437 }
3438
3439 return busiest;
3440}
3441
77391d71
NP
3442/*
3443 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3444 * so long as it is large enough.
3445 */
3446#define MAX_PINNED_INTERVAL 512
3447
1da177e4
LT
3448/*
3449 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3450 * tasks if there is an imbalance.
1da177e4 3451 */
70b97a7f 3452static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3453 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3454 int *balance, struct cpumask *cpus)
1da177e4 3455{
43010659 3456 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3457 struct sched_group *group;
1da177e4 3458 unsigned long imbalance;
70b97a7f 3459 struct rq *busiest;
fe2eea3f 3460 unsigned long flags;
5969fe06 3461
96f874e2 3462 cpumask_setall(cpus);
7c16ec58 3463
89c4710e
SS
3464 /*
3465 * When power savings policy is enabled for the parent domain, idle
3466 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3467 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3468 * portraying it as CPU_NOT_IDLE.
89c4710e 3469 */
d15bcfdb 3470 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3471 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3472 sd_idle = 1;
1da177e4 3473
2d72376b 3474 schedstat_inc(sd, lb_count[idle]);
1da177e4 3475
0a2966b4 3476redo:
c8cba857 3477 update_shares(sd);
0a2966b4 3478 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3479 cpus, balance);
783609c6 3480
06066714 3481 if (*balance == 0)
783609c6 3482 goto out_balanced;
783609c6 3483
1da177e4
LT
3484 if (!group) {
3485 schedstat_inc(sd, lb_nobusyg[idle]);
3486 goto out_balanced;
3487 }
3488
7c16ec58 3489 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3490 if (!busiest) {
3491 schedstat_inc(sd, lb_nobusyq[idle]);
3492 goto out_balanced;
3493 }
3494
db935dbd 3495 BUG_ON(busiest == this_rq);
1da177e4
LT
3496
3497 schedstat_add(sd, lb_imbalance[idle], imbalance);
3498
43010659 3499 ld_moved = 0;
1da177e4
LT
3500 if (busiest->nr_running > 1) {
3501 /*
3502 * Attempt to move tasks. If find_busiest_group has found
3503 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3504 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3505 * correctly treated as an imbalance.
3506 */
fe2eea3f 3507 local_irq_save(flags);
e17224bf 3508 double_rq_lock(this_rq, busiest);
43010659 3509 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3510 imbalance, sd, idle, &all_pinned);
e17224bf 3511 double_rq_unlock(this_rq, busiest);
fe2eea3f 3512 local_irq_restore(flags);
81026794 3513
46cb4b7c
SS
3514 /*
3515 * some other cpu did the load balance for us.
3516 */
43010659 3517 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3518 resched_cpu(this_cpu);
3519
81026794 3520 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3521 if (unlikely(all_pinned)) {
96f874e2
RR
3522 cpumask_clear_cpu(cpu_of(busiest), cpus);
3523 if (!cpumask_empty(cpus))
0a2966b4 3524 goto redo;
81026794 3525 goto out_balanced;
0a2966b4 3526 }
1da177e4 3527 }
81026794 3528
43010659 3529 if (!ld_moved) {
1da177e4
LT
3530 schedstat_inc(sd, lb_failed[idle]);
3531 sd->nr_balance_failed++;
3532
3533 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3534
fe2eea3f 3535 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3536
3537 /* don't kick the migration_thread, if the curr
3538 * task on busiest cpu can't be moved to this_cpu
3539 */
96f874e2
RR
3540 if (!cpumask_test_cpu(this_cpu,
3541 &busiest->curr->cpus_allowed)) {
fe2eea3f 3542 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3543 all_pinned = 1;
3544 goto out_one_pinned;
3545 }
3546
1da177e4
LT
3547 if (!busiest->active_balance) {
3548 busiest->active_balance = 1;
3549 busiest->push_cpu = this_cpu;
81026794 3550 active_balance = 1;
1da177e4 3551 }
fe2eea3f 3552 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3553 if (active_balance)
1da177e4
LT
3554 wake_up_process(busiest->migration_thread);
3555
3556 /*
3557 * We've kicked active balancing, reset the failure
3558 * counter.
3559 */
39507451 3560 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3561 }
81026794 3562 } else
1da177e4
LT
3563 sd->nr_balance_failed = 0;
3564
81026794 3565 if (likely(!active_balance)) {
1da177e4
LT
3566 /* We were unbalanced, so reset the balancing interval */
3567 sd->balance_interval = sd->min_interval;
81026794
NP
3568 } else {
3569 /*
3570 * If we've begun active balancing, start to back off. This
3571 * case may not be covered by the all_pinned logic if there
3572 * is only 1 task on the busy runqueue (because we don't call
3573 * move_tasks).
3574 */
3575 if (sd->balance_interval < sd->max_interval)
3576 sd->balance_interval *= 2;
1da177e4
LT
3577 }
3578
43010659 3579 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3580 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3581 ld_moved = -1;
3582
3583 goto out;
1da177e4
LT
3584
3585out_balanced:
1da177e4
LT
3586 schedstat_inc(sd, lb_balanced[idle]);
3587
16cfb1c0 3588 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3589
3590out_one_pinned:
1da177e4 3591 /* tune up the balancing interval */
77391d71
NP
3592 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3593 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3594 sd->balance_interval *= 2;
3595
48f24c4d 3596 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3597 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3598 ld_moved = -1;
3599 else
3600 ld_moved = 0;
3601out:
c8cba857
PZ
3602 if (ld_moved)
3603 update_shares(sd);
c09595f6 3604 return ld_moved;
1da177e4
LT
3605}
3606
3607/*
3608 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3609 * tasks if there is an imbalance.
3610 *
d15bcfdb 3611 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3612 * this_rq is locked.
3613 */
48f24c4d 3614static int
7c16ec58 3615load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3616 struct cpumask *cpus)
1da177e4
LT
3617{
3618 struct sched_group *group;
70b97a7f 3619 struct rq *busiest = NULL;
1da177e4 3620 unsigned long imbalance;
43010659 3621 int ld_moved = 0;
5969fe06 3622 int sd_idle = 0;
969bb4e4 3623 int all_pinned = 0;
7c16ec58 3624
96f874e2 3625 cpumask_setall(cpus);
5969fe06 3626
89c4710e
SS
3627 /*
3628 * When power savings policy is enabled for the parent domain, idle
3629 * sibling can pick up load irrespective of busy siblings. In this case,
3630 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3631 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3632 */
3633 if (sd->flags & SD_SHARE_CPUPOWER &&
3634 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3635 sd_idle = 1;
1da177e4 3636
2d72376b 3637 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3638redo:
3e5459b4 3639 update_shares_locked(this_rq, sd);
d15bcfdb 3640 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3641 &sd_idle, cpus, NULL);
1da177e4 3642 if (!group) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
7c16ec58 3647 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3648 if (!busiest) {
d15bcfdb 3649 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3650 goto out_balanced;
1da177e4
LT
3651 }
3652
db935dbd
NP
3653 BUG_ON(busiest == this_rq);
3654
d15bcfdb 3655 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3656
43010659 3657 ld_moved = 0;
d6d5cfaf
NP
3658 if (busiest->nr_running > 1) {
3659 /* Attempt to move tasks */
3660 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3661 /* this_rq->clock is already updated */
3662 update_rq_clock(busiest);
43010659 3663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3664 imbalance, sd, CPU_NEWLY_IDLE,
3665 &all_pinned);
1b12bbc7 3666 double_unlock_balance(this_rq, busiest);
0a2966b4 3667
969bb4e4 3668 if (unlikely(all_pinned)) {
96f874e2
RR
3669 cpumask_clear_cpu(cpu_of(busiest), cpus);
3670 if (!cpumask_empty(cpus))
0a2966b4
CL
3671 goto redo;
3672 }
d6d5cfaf
NP
3673 }
3674
43010659 3675 if (!ld_moved) {
36dffab6 3676 int active_balance = 0;
ad273b32 3677
d15bcfdb 3678 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3679 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3680 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3681 return -1;
ad273b32
VS
3682
3683 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3684 return -1;
3685
3686 if (sd->nr_balance_failed++ < 2)
3687 return -1;
3688
3689 /*
3690 * The only task running in a non-idle cpu can be moved to this
3691 * cpu in an attempt to completely freeup the other CPU
3692 * package. The same method used to move task in load_balance()
3693 * have been extended for load_balance_newidle() to speedup
3694 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3695 *
3696 * The package power saving logic comes from
3697 * find_busiest_group(). If there are no imbalance, then
3698 * f_b_g() will return NULL. However when sched_mc={1,2} then
3699 * f_b_g() will select a group from which a running task may be
3700 * pulled to this cpu in order to make the other package idle.
3701 * If there is no opportunity to make a package idle and if
3702 * there are no imbalance, then f_b_g() will return NULL and no
3703 * action will be taken in load_balance_newidle().
3704 *
3705 * Under normal task pull operation due to imbalance, there
3706 * will be more than one task in the source run queue and
3707 * move_tasks() will succeed. ld_moved will be true and this
3708 * active balance code will not be triggered.
3709 */
3710
3711 /* Lock busiest in correct order while this_rq is held */
3712 double_lock_balance(this_rq, busiest);
3713
3714 /*
3715 * don't kick the migration_thread, if the curr
3716 * task on busiest cpu can't be moved to this_cpu
3717 */
6ca09dfc 3718 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3719 double_unlock_balance(this_rq, busiest);
3720 all_pinned = 1;
3721 return ld_moved;
3722 }
3723
3724 if (!busiest->active_balance) {
3725 busiest->active_balance = 1;
3726 busiest->push_cpu = this_cpu;
3727 active_balance = 1;
3728 }
3729
3730 double_unlock_balance(this_rq, busiest);
3731 if (active_balance)
3732 wake_up_process(busiest->migration_thread);
3733
5969fe06 3734 } else
16cfb1c0 3735 sd->nr_balance_failed = 0;
1da177e4 3736
3e5459b4 3737 update_shares_locked(this_rq, sd);
43010659 3738 return ld_moved;
16cfb1c0
NP
3739
3740out_balanced:
d15bcfdb 3741 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3742 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3743 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3744 return -1;
16cfb1c0 3745 sd->nr_balance_failed = 0;
48f24c4d 3746
16cfb1c0 3747 return 0;
1da177e4
LT
3748}
3749
3750/*
3751 * idle_balance is called by schedule() if this_cpu is about to become
3752 * idle. Attempts to pull tasks from other CPUs.
3753 */
70b97a7f 3754static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3755{
3756 struct sched_domain *sd;
efbe027e 3757 int pulled_task = 0;
dd41f596 3758 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3759 cpumask_var_t tmpmask;
3760
3761 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3762 return;
1da177e4
LT
3763
3764 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3765 unsigned long interval;
3766
3767 if (!(sd->flags & SD_LOAD_BALANCE))
3768 continue;
3769
3770 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3771 /* If we've pulled tasks over stop searching: */
7c16ec58 3772 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3773 sd, tmpmask);
92c4ca5c
CL
3774
3775 interval = msecs_to_jiffies(sd->balance_interval);
3776 if (time_after(next_balance, sd->last_balance + interval))
3777 next_balance = sd->last_balance + interval;
3778 if (pulled_task)
3779 break;
1da177e4 3780 }
dd41f596 3781 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3782 /*
3783 * We are going idle. next_balance may be set based on
3784 * a busy processor. So reset next_balance.
3785 */
3786 this_rq->next_balance = next_balance;
dd41f596 3787 }
4d2732c6 3788 free_cpumask_var(tmpmask);
1da177e4
LT
3789}
3790
3791/*
3792 * active_load_balance is run by migration threads. It pushes running tasks
3793 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3794 * running on each physical CPU where possible, and avoids physical /
3795 * logical imbalances.
3796 *
3797 * Called with busiest_rq locked.
3798 */
70b97a7f 3799static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3800{
39507451 3801 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3802 struct sched_domain *sd;
3803 struct rq *target_rq;
39507451 3804
48f24c4d 3805 /* Is there any task to move? */
39507451 3806 if (busiest_rq->nr_running <= 1)
39507451
NP
3807 return;
3808
3809 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3810
3811 /*
39507451 3812 * This condition is "impossible", if it occurs
41a2d6cf 3813 * we need to fix it. Originally reported by
39507451 3814 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3815 */
39507451 3816 BUG_ON(busiest_rq == target_rq);
1da177e4 3817
39507451
NP
3818 /* move a task from busiest_rq to target_rq */
3819 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3820 update_rq_clock(busiest_rq);
3821 update_rq_clock(target_rq);
39507451
NP
3822
3823 /* Search for an sd spanning us and the target CPU. */
c96d145e 3824 for_each_domain(target_cpu, sd) {
39507451 3825 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3826 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3827 break;
c96d145e 3828 }
39507451 3829
48f24c4d 3830 if (likely(sd)) {
2d72376b 3831 schedstat_inc(sd, alb_count);
39507451 3832
43010659
PW
3833 if (move_one_task(target_rq, target_cpu, busiest_rq,
3834 sd, CPU_IDLE))
48f24c4d
IM
3835 schedstat_inc(sd, alb_pushed);
3836 else
3837 schedstat_inc(sd, alb_failed);
3838 }
1b12bbc7 3839 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3840}
3841
46cb4b7c
SS
3842#ifdef CONFIG_NO_HZ
3843static struct {
3844 atomic_t load_balancer;
7d1e6a9b 3845 cpumask_var_t cpu_mask;
46cb4b7c
SS
3846} nohz ____cacheline_aligned = {
3847 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3848};
3849
7835b98b 3850/*
46cb4b7c
SS
3851 * This routine will try to nominate the ilb (idle load balancing)
3852 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3853 * load balancing on behalf of all those cpus. If all the cpus in the system
3854 * go into this tickless mode, then there will be no ilb owner (as there is
3855 * no need for one) and all the cpus will sleep till the next wakeup event
3856 * arrives...
3857 *
3858 * For the ilb owner, tick is not stopped. And this tick will be used
3859 * for idle load balancing. ilb owner will still be part of
3860 * nohz.cpu_mask..
7835b98b 3861 *
46cb4b7c
SS
3862 * While stopping the tick, this cpu will become the ilb owner if there
3863 * is no other owner. And will be the owner till that cpu becomes busy
3864 * or if all cpus in the system stop their ticks at which point
3865 * there is no need for ilb owner.
3866 *
3867 * When the ilb owner becomes busy, it nominates another owner, during the
3868 * next busy scheduler_tick()
3869 */
3870int select_nohz_load_balancer(int stop_tick)
3871{
3872 int cpu = smp_processor_id();
3873
3874 if (stop_tick) {
7d1e6a9b 3875 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3876 cpu_rq(cpu)->in_nohz_recently = 1;
3877
3878 /*
3879 * If we are going offline and still the leader, give up!
3880 */
e761b772 3881 if (!cpu_active(cpu) &&
46cb4b7c
SS
3882 atomic_read(&nohz.load_balancer) == cpu) {
3883 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3884 BUG();
3885 return 0;
3886 }
3887
3888 /* time for ilb owner also to sleep */
7d1e6a9b 3889 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3890 if (atomic_read(&nohz.load_balancer) == cpu)
3891 atomic_set(&nohz.load_balancer, -1);
3892 return 0;
3893 }
3894
3895 if (atomic_read(&nohz.load_balancer) == -1) {
3896 /* make me the ilb owner */
3897 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3898 return 1;
3899 } else if (atomic_read(&nohz.load_balancer) == cpu)
3900 return 1;
3901 } else {
7d1e6a9b 3902 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3903 return 0;
3904
7d1e6a9b 3905 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3906
3907 if (atomic_read(&nohz.load_balancer) == cpu)
3908 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3909 BUG();
3910 }
3911 return 0;
3912}
3913#endif
3914
3915static DEFINE_SPINLOCK(balancing);
3916
3917/*
7835b98b
CL
3918 * It checks each scheduling domain to see if it is due to be balanced,
3919 * and initiates a balancing operation if so.
3920 *
3921 * Balancing parameters are set up in arch_init_sched_domains.
3922 */
a9957449 3923static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3924{
46cb4b7c
SS
3925 int balance = 1;
3926 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3927 unsigned long interval;
3928 struct sched_domain *sd;
46cb4b7c 3929 /* Earliest time when we have to do rebalance again */
c9819f45 3930 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3931 int update_next_balance = 0;
d07355f5 3932 int need_serialize;
a0e90245
RR
3933 cpumask_var_t tmp;
3934
3935 /* Fails alloc? Rebalancing probably not a priority right now. */
3936 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3937 return;
1da177e4 3938
46cb4b7c 3939 for_each_domain(cpu, sd) {
1da177e4
LT
3940 if (!(sd->flags & SD_LOAD_BALANCE))
3941 continue;
3942
3943 interval = sd->balance_interval;
d15bcfdb 3944 if (idle != CPU_IDLE)
1da177e4
LT
3945 interval *= sd->busy_factor;
3946
3947 /* scale ms to jiffies */
3948 interval = msecs_to_jiffies(interval);
3949 if (unlikely(!interval))
3950 interval = 1;
dd41f596
IM
3951 if (interval > HZ*NR_CPUS/10)
3952 interval = HZ*NR_CPUS/10;
3953
d07355f5 3954 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3955
d07355f5 3956 if (need_serialize) {
08c183f3
CL
3957 if (!spin_trylock(&balancing))
3958 goto out;
3959 }
3960
c9819f45 3961 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3962 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3963 /*
3964 * We've pulled tasks over so either we're no
5969fe06
NP
3965 * longer idle, or one of our SMT siblings is
3966 * not idle.
3967 */
d15bcfdb 3968 idle = CPU_NOT_IDLE;
1da177e4 3969 }
1bd77f2d 3970 sd->last_balance = jiffies;
1da177e4 3971 }
d07355f5 3972 if (need_serialize)
08c183f3
CL
3973 spin_unlock(&balancing);
3974out:
f549da84 3975 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3976 next_balance = sd->last_balance + interval;
f549da84
SS
3977 update_next_balance = 1;
3978 }
783609c6
SS
3979
3980 /*
3981 * Stop the load balance at this level. There is another
3982 * CPU in our sched group which is doing load balancing more
3983 * actively.
3984 */
3985 if (!balance)
3986 break;
1da177e4 3987 }
f549da84
SS
3988
3989 /*
3990 * next_balance will be updated only when there is a need.
3991 * When the cpu is attached to null domain for ex, it will not be
3992 * updated.
3993 */
3994 if (likely(update_next_balance))
3995 rq->next_balance = next_balance;
a0e90245
RR
3996
3997 free_cpumask_var(tmp);
46cb4b7c
SS
3998}
3999
4000/*
4001 * run_rebalance_domains is triggered when needed from the scheduler tick.
4002 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4003 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4004 */
4005static void run_rebalance_domains(struct softirq_action *h)
4006{
dd41f596
IM
4007 int this_cpu = smp_processor_id();
4008 struct rq *this_rq = cpu_rq(this_cpu);
4009 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4010 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4011
dd41f596 4012 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4013
4014#ifdef CONFIG_NO_HZ
4015 /*
4016 * If this cpu is the owner for idle load balancing, then do the
4017 * balancing on behalf of the other idle cpus whose ticks are
4018 * stopped.
4019 */
dd41f596
IM
4020 if (this_rq->idle_at_tick &&
4021 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4022 struct rq *rq;
4023 int balance_cpu;
4024
7d1e6a9b
RR
4025 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4026 if (balance_cpu == this_cpu)
4027 continue;
4028
46cb4b7c
SS
4029 /*
4030 * If this cpu gets work to do, stop the load balancing
4031 * work being done for other cpus. Next load
4032 * balancing owner will pick it up.
4033 */
4034 if (need_resched())
4035 break;
4036
de0cf899 4037 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4038
4039 rq = cpu_rq(balance_cpu);
dd41f596
IM
4040 if (time_after(this_rq->next_balance, rq->next_balance))
4041 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4042 }
4043 }
4044#endif
4045}
4046
4047/*
4048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4049 *
4050 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4051 * idle load balancing owner or decide to stop the periodic load balancing,
4052 * if the whole system is idle.
4053 */
dd41f596 4054static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4055{
46cb4b7c
SS
4056#ifdef CONFIG_NO_HZ
4057 /*
4058 * If we were in the nohz mode recently and busy at the current
4059 * scheduler tick, then check if we need to nominate new idle
4060 * load balancer.
4061 */
4062 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4063 rq->in_nohz_recently = 0;
4064
4065 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4066 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4067 atomic_set(&nohz.load_balancer, -1);
4068 }
4069
4070 if (atomic_read(&nohz.load_balancer) == -1) {
4071 /*
4072 * simple selection for now: Nominate the
4073 * first cpu in the nohz list to be the next
4074 * ilb owner.
4075 *
4076 * TBD: Traverse the sched domains and nominate
4077 * the nearest cpu in the nohz.cpu_mask.
4078 */
7d1e6a9b 4079 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4080
434d53b0 4081 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4082 resched_cpu(ilb);
4083 }
4084 }
4085
4086 /*
4087 * If this cpu is idle and doing idle load balancing for all the
4088 * cpus with ticks stopped, is it time for that to stop?
4089 */
4090 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4091 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4092 resched_cpu(cpu);
4093 return;
4094 }
4095
4096 /*
4097 * If this cpu is idle and the idle load balancing is done by
4098 * someone else, then no need raise the SCHED_SOFTIRQ
4099 */
4100 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4101 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4102 return;
4103#endif
4104 if (time_after_eq(jiffies, rq->next_balance))
4105 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4106}
dd41f596
IM
4107
4108#else /* CONFIG_SMP */
4109
1da177e4
LT
4110/*
4111 * on UP we do not need to balance between CPUs:
4112 */
70b97a7f 4113static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4114{
4115}
dd41f596 4116
1da177e4
LT
4117#endif
4118
1da177e4
LT
4119DEFINE_PER_CPU(struct kernel_stat, kstat);
4120
4121EXPORT_PER_CPU_SYMBOL(kstat);
4122
4123/*
f06febc9
FM
4124 * Return any ns on the sched_clock that have not yet been banked in
4125 * @p in case that task is currently running.
1da177e4 4126 */
bb34d92f 4127unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4128{
1da177e4 4129 unsigned long flags;
41b86e9c 4130 struct rq *rq;
bb34d92f 4131 u64 ns = 0;
48f24c4d 4132
41b86e9c 4133 rq = task_rq_lock(p, &flags);
1508487e 4134
051a1d1a 4135 if (task_current(rq, p)) {
f06febc9
FM
4136 u64 delta_exec;
4137
a8e504d2
IM
4138 update_rq_clock(rq);
4139 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4140 if ((s64)delta_exec > 0)
bb34d92f 4141 ns = delta_exec;
41b86e9c 4142 }
48f24c4d 4143
41b86e9c 4144 task_rq_unlock(rq, &flags);
48f24c4d 4145
1da177e4
LT
4146 return ns;
4147}
4148
1da177e4
LT
4149/*
4150 * Account user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
1da177e4 4152 * @cputime: the cpu time spent in user space since the last update
457533a7 4153 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4154 */
457533a7
MS
4155void account_user_time(struct task_struct *p, cputime_t cputime,
4156 cputime_t cputime_scaled)
1da177e4
LT
4157{
4158 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4159 cputime64_t tmp;
4160
457533a7 4161 /* Add user time to process. */
1da177e4 4162 p->utime = cputime_add(p->utime, cputime);
457533a7 4163 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4164 account_group_user_time(p, cputime);
1da177e4
LT
4165
4166 /* Add user time to cpustat. */
4167 tmp = cputime_to_cputime64(cputime);
4168 if (TASK_NICE(p) > 0)
4169 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4170 else
4171 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4172 /* Account for user time used */
4173 acct_update_integrals(p);
1da177e4
LT
4174}
4175
94886b84
LV
4176/*
4177 * Account guest cpu time to a process.
4178 * @p: the process that the cpu time gets accounted to
4179 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4180 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4181 */
457533a7
MS
4182static void account_guest_time(struct task_struct *p, cputime_t cputime,
4183 cputime_t cputime_scaled)
94886b84
LV
4184{
4185 cputime64_t tmp;
4186 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4187
4188 tmp = cputime_to_cputime64(cputime);
4189
457533a7 4190 /* Add guest time to process. */
94886b84 4191 p->utime = cputime_add(p->utime, cputime);
457533a7 4192 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4193 account_group_user_time(p, cputime);
94886b84
LV
4194 p->gtime = cputime_add(p->gtime, cputime);
4195
457533a7 4196 /* Add guest time to cpustat. */
94886b84
LV
4197 cpustat->user = cputime64_add(cpustat->user, tmp);
4198 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4199}
4200
1da177e4
LT
4201/*
4202 * Account system cpu time to a process.
4203 * @p: the process that the cpu time gets accounted to
4204 * @hardirq_offset: the offset to subtract from hardirq_count()
4205 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4206 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4207 */
4208void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4209 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4210{
4211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4212 cputime64_t tmp;
4213
983ed7a6 4214 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4215 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4216 return;
4217 }
94886b84 4218
457533a7 4219 /* Add system time to process. */
1da177e4 4220 p->stime = cputime_add(p->stime, cputime);
457533a7 4221 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4222 account_group_system_time(p, cputime);
1da177e4
LT
4223
4224 /* Add system time to cpustat. */
4225 tmp = cputime_to_cputime64(cputime);
4226 if (hardirq_count() - hardirq_offset)
4227 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4228 else if (softirq_count())
4229 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4230 else
79741dd3
MS
4231 cpustat->system = cputime64_add(cpustat->system, tmp);
4232
1da177e4
LT
4233 /* Account for system time used */
4234 acct_update_integrals(p);
1da177e4
LT
4235}
4236
c66f08be 4237/*
1da177e4 4238 * Account for involuntary wait time.
1da177e4 4239 * @steal: the cpu time spent in involuntary wait
c66f08be 4240 */
79741dd3 4241void account_steal_time(cputime_t cputime)
c66f08be 4242{
79741dd3
MS
4243 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4244 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4245
4246 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4247}
4248
1da177e4 4249/*
79741dd3
MS
4250 * Account for idle time.
4251 * @cputime: the cpu time spent in idle wait
1da177e4 4252 */
79741dd3 4253void account_idle_time(cputime_t cputime)
1da177e4
LT
4254{
4255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4256 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4257 struct rq *rq = this_rq();
1da177e4 4258
79741dd3
MS
4259 if (atomic_read(&rq->nr_iowait) > 0)
4260 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4261 else
4262 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4263}
4264
79741dd3
MS
4265#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4266
4267/*
4268 * Account a single tick of cpu time.
4269 * @p: the process that the cpu time gets accounted to
4270 * @user_tick: indicates if the tick is a user or a system tick
4271 */
4272void account_process_tick(struct task_struct *p, int user_tick)
4273{
4274 cputime_t one_jiffy = jiffies_to_cputime(1);
4275 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4276 struct rq *rq = this_rq();
4277
4278 if (user_tick)
4279 account_user_time(p, one_jiffy, one_jiffy_scaled);
4280 else if (p != rq->idle)
4281 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4282 one_jiffy_scaled);
4283 else
4284 account_idle_time(one_jiffy);
4285}
4286
4287/*
4288 * Account multiple ticks of steal time.
4289 * @p: the process from which the cpu time has been stolen
4290 * @ticks: number of stolen ticks
4291 */
4292void account_steal_ticks(unsigned long ticks)
4293{
4294 account_steal_time(jiffies_to_cputime(ticks));
4295}
4296
4297/*
4298 * Account multiple ticks of idle time.
4299 * @ticks: number of stolen ticks
4300 */
4301void account_idle_ticks(unsigned long ticks)
4302{
4303 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4304}
4305
79741dd3
MS
4306#endif
4307
49048622
BS
4308/*
4309 * Use precise platform statistics if available:
4310 */
4311#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4312cputime_t task_utime(struct task_struct *p)
4313{
4314 return p->utime;
4315}
4316
4317cputime_t task_stime(struct task_struct *p)
4318{
4319 return p->stime;
4320}
4321#else
4322cputime_t task_utime(struct task_struct *p)
4323{
4324 clock_t utime = cputime_to_clock_t(p->utime),
4325 total = utime + cputime_to_clock_t(p->stime);
4326 u64 temp;
4327
4328 /*
4329 * Use CFS's precise accounting:
4330 */
4331 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4332
4333 if (total) {
4334 temp *= utime;
4335 do_div(temp, total);
4336 }
4337 utime = (clock_t)temp;
4338
4339 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4340 return p->prev_utime;
4341}
4342
4343cputime_t task_stime(struct task_struct *p)
4344{
4345 clock_t stime;
4346
4347 /*
4348 * Use CFS's precise accounting. (we subtract utime from
4349 * the total, to make sure the total observed by userspace
4350 * grows monotonically - apps rely on that):
4351 */
4352 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4353 cputime_to_clock_t(task_utime(p));
4354
4355 if (stime >= 0)
4356 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4357
4358 return p->prev_stime;
4359}
4360#endif
4361
4362inline cputime_t task_gtime(struct task_struct *p)
4363{
4364 return p->gtime;
4365}
4366
7835b98b
CL
4367/*
4368 * This function gets called by the timer code, with HZ frequency.
4369 * We call it with interrupts disabled.
4370 *
4371 * It also gets called by the fork code, when changing the parent's
4372 * timeslices.
4373 */
4374void scheduler_tick(void)
4375{
7835b98b
CL
4376 int cpu = smp_processor_id();
4377 struct rq *rq = cpu_rq(cpu);
dd41f596 4378 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4379
4380 sched_clock_tick();
dd41f596
IM
4381
4382 spin_lock(&rq->lock);
3e51f33f 4383 update_rq_clock(rq);
f1a438d8 4384 update_cpu_load(rq);
fa85ae24 4385 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4386 spin_unlock(&rq->lock);
7835b98b 4387
e418e1c2 4388#ifdef CONFIG_SMP
dd41f596
IM
4389 rq->idle_at_tick = idle_cpu(cpu);
4390 trigger_load_balance(rq, cpu);
e418e1c2 4391#endif
1da177e4
LT
4392}
4393
6cd8a4bb
SR
4394#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4395 defined(CONFIG_PREEMPT_TRACER))
4396
4397static inline unsigned long get_parent_ip(unsigned long addr)
4398{
4399 if (in_lock_functions(addr)) {
4400 addr = CALLER_ADDR2;
4401 if (in_lock_functions(addr))
4402 addr = CALLER_ADDR3;
4403 }
4404 return addr;
4405}
1da177e4 4406
43627582 4407void __kprobes add_preempt_count(int val)
1da177e4 4408{
6cd8a4bb 4409#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4410 /*
4411 * Underflow?
4412 */
9a11b49a
IM
4413 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4414 return;
6cd8a4bb 4415#endif
1da177e4 4416 preempt_count() += val;
6cd8a4bb 4417#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4418 /*
4419 * Spinlock count overflowing soon?
4420 */
33859f7f
MOS
4421 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4422 PREEMPT_MASK - 10);
6cd8a4bb
SR
4423#endif
4424 if (preempt_count() == val)
4425 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4426}
4427EXPORT_SYMBOL(add_preempt_count);
4428
43627582 4429void __kprobes sub_preempt_count(int val)
1da177e4 4430{
6cd8a4bb 4431#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4432 /*
4433 * Underflow?
4434 */
7317d7b8 4435 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4436 return;
1da177e4
LT
4437 /*
4438 * Is the spinlock portion underflowing?
4439 */
9a11b49a
IM
4440 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4441 !(preempt_count() & PREEMPT_MASK)))
4442 return;
6cd8a4bb 4443#endif
9a11b49a 4444
6cd8a4bb
SR
4445 if (preempt_count() == val)
4446 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4447 preempt_count() -= val;
4448}
4449EXPORT_SYMBOL(sub_preempt_count);
4450
4451#endif
4452
4453/*
dd41f596 4454 * Print scheduling while atomic bug:
1da177e4 4455 */
dd41f596 4456static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4457{
838225b4
SS
4458 struct pt_regs *regs = get_irq_regs();
4459
4460 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4461 prev->comm, prev->pid, preempt_count());
4462
dd41f596 4463 debug_show_held_locks(prev);
e21f5b15 4464 print_modules();
dd41f596
IM
4465 if (irqs_disabled())
4466 print_irqtrace_events(prev);
838225b4
SS
4467
4468 if (regs)
4469 show_regs(regs);
4470 else
4471 dump_stack();
dd41f596 4472}
1da177e4 4473
dd41f596
IM
4474/*
4475 * Various schedule()-time debugging checks and statistics:
4476 */
4477static inline void schedule_debug(struct task_struct *prev)
4478{
1da177e4 4479 /*
41a2d6cf 4480 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4481 * schedule() atomically, we ignore that path for now.
4482 * Otherwise, whine if we are scheduling when we should not be.
4483 */
3f33a7ce 4484 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4485 __schedule_bug(prev);
4486
1da177e4
LT
4487 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4488
2d72376b 4489 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4490#ifdef CONFIG_SCHEDSTATS
4491 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4492 schedstat_inc(this_rq(), bkl_count);
4493 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4494 }
4495#endif
dd41f596
IM
4496}
4497
4498/*
4499 * Pick up the highest-prio task:
4500 */
4501static inline struct task_struct *
ff95f3df 4502pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4503{
5522d5d5 4504 const struct sched_class *class;
dd41f596 4505 struct task_struct *p;
1da177e4
LT
4506
4507 /*
dd41f596
IM
4508 * Optimization: we know that if all tasks are in
4509 * the fair class we can call that function directly:
1da177e4 4510 */
dd41f596 4511 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4512 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4513 if (likely(p))
4514 return p;
1da177e4
LT
4515 }
4516
dd41f596
IM
4517 class = sched_class_highest;
4518 for ( ; ; ) {
fb8d4724 4519 p = class->pick_next_task(rq);
dd41f596
IM
4520 if (p)
4521 return p;
4522 /*
4523 * Will never be NULL as the idle class always
4524 * returns a non-NULL p:
4525 */
4526 class = class->next;
4527 }
4528}
1da177e4 4529
dd41f596
IM
4530/*
4531 * schedule() is the main scheduler function.
4532 */
4533asmlinkage void __sched schedule(void)
4534{
4535 struct task_struct *prev, *next;
67ca7bde 4536 unsigned long *switch_count;
dd41f596 4537 struct rq *rq;
31656519 4538 int cpu;
dd41f596
IM
4539
4540need_resched:
4541 preempt_disable();
4542 cpu = smp_processor_id();
4543 rq = cpu_rq(cpu);
4544 rcu_qsctr_inc(cpu);
4545 prev = rq->curr;
4546 switch_count = &prev->nivcsw;
4547
4548 release_kernel_lock(prev);
4549need_resched_nonpreemptible:
4550
4551 schedule_debug(prev);
1da177e4 4552
31656519 4553 if (sched_feat(HRTICK))
f333fdc9 4554 hrtick_clear(rq);
8f4d37ec 4555
8cd162ce 4556 spin_lock_irq(&rq->lock);
3e51f33f 4557 update_rq_clock(rq);
1e819950 4558 clear_tsk_need_resched(prev);
1da177e4 4559
1da177e4 4560 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4561 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4562 prev->state = TASK_RUNNING;
16882c1e 4563 else
2e1cb74a 4564 deactivate_task(rq, prev, 1);
dd41f596 4565 switch_count = &prev->nvcsw;
1da177e4
LT
4566 }
4567
9a897c5a
SR
4568#ifdef CONFIG_SMP
4569 if (prev->sched_class->pre_schedule)
4570 prev->sched_class->pre_schedule(rq, prev);
4571#endif
f65eda4f 4572
dd41f596 4573 if (unlikely(!rq->nr_running))
1da177e4 4574 idle_balance(cpu, rq);
1da177e4 4575
31ee529c 4576 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4577 next = pick_next_task(rq, prev);
1da177e4 4578
1da177e4 4579 if (likely(prev != next)) {
673a90a1
DS
4580 sched_info_switch(prev, next);
4581
1da177e4
LT
4582 rq->nr_switches++;
4583 rq->curr = next;
4584 ++*switch_count;
4585
dd41f596 4586 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4587 /*
4588 * the context switch might have flipped the stack from under
4589 * us, hence refresh the local variables.
4590 */
4591 cpu = smp_processor_id();
4592 rq = cpu_rq(cpu);
1da177e4
LT
4593 } else
4594 spin_unlock_irq(&rq->lock);
4595
8f4d37ec 4596 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4597 goto need_resched_nonpreemptible;
8f4d37ec 4598
1da177e4
LT
4599 preempt_enable_no_resched();
4600 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4601 goto need_resched;
4602}
1da177e4
LT
4603EXPORT_SYMBOL(schedule);
4604
4605#ifdef CONFIG_PREEMPT
4606/*
2ed6e34f 4607 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4608 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4609 * occur there and call schedule directly.
4610 */
4611asmlinkage void __sched preempt_schedule(void)
4612{
4613 struct thread_info *ti = current_thread_info();
6478d880 4614
1da177e4
LT
4615 /*
4616 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4617 * we do not want to preempt the current task. Just return..
1da177e4 4618 */
beed33a8 4619 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4620 return;
4621
3a5c359a
AK
4622 do {
4623 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4624 schedule();
3a5c359a 4625 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4626
3a5c359a
AK
4627 /*
4628 * Check again in case we missed a preemption opportunity
4629 * between schedule and now.
4630 */
4631 barrier();
4632 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4633}
1da177e4
LT
4634EXPORT_SYMBOL(preempt_schedule);
4635
4636/*
2ed6e34f 4637 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4638 * off of irq context.
4639 * Note, that this is called and return with irqs disabled. This will
4640 * protect us against recursive calling from irq.
4641 */
4642asmlinkage void __sched preempt_schedule_irq(void)
4643{
4644 struct thread_info *ti = current_thread_info();
6478d880 4645
2ed6e34f 4646 /* Catch callers which need to be fixed */
1da177e4
LT
4647 BUG_ON(ti->preempt_count || !irqs_disabled());
4648
3a5c359a
AK
4649 do {
4650 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4651 local_irq_enable();
4652 schedule();
4653 local_irq_disable();
3a5c359a 4654 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4655
3a5c359a
AK
4656 /*
4657 * Check again in case we missed a preemption opportunity
4658 * between schedule and now.
4659 */
4660 barrier();
4661 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4662}
4663
4664#endif /* CONFIG_PREEMPT */
4665
95cdf3b7
IM
4666int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4667 void *key)
1da177e4 4668{
48f24c4d 4669 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(default_wake_function);
4672
4673/*
41a2d6cf
IM
4674 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4675 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4676 * number) then we wake all the non-exclusive tasks and one exclusive task.
4677 *
4678 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4679 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4680 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4681 */
4682static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4683 int nr_exclusive, int sync, void *key)
4684{
2e45874c 4685 wait_queue_t *curr, *next;
1da177e4 4686
2e45874c 4687 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4688 unsigned flags = curr->flags;
4689
1da177e4 4690 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4691 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4692 break;
4693 }
4694}
4695
4696/**
4697 * __wake_up - wake up threads blocked on a waitqueue.
4698 * @q: the waitqueue
4699 * @mode: which threads
4700 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4701 * @key: is directly passed to the wakeup function
1da177e4 4702 */
7ad5b3a5 4703void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4704 int nr_exclusive, void *key)
1da177e4
LT
4705{
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&q->lock, flags);
4709 __wake_up_common(q, mode, nr_exclusive, 0, key);
4710 spin_unlock_irqrestore(&q->lock, flags);
4711}
1da177e4
LT
4712EXPORT_SYMBOL(__wake_up);
4713
4714/*
4715 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4716 */
7ad5b3a5 4717void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4718{
4719 __wake_up_common(q, mode, 1, 0, NULL);
4720}
4721
4722/**
67be2dd1 4723 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4724 * @q: the waitqueue
4725 * @mode: which threads
4726 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4727 *
4728 * The sync wakeup differs that the waker knows that it will schedule
4729 * away soon, so while the target thread will be woken up, it will not
4730 * be migrated to another CPU - ie. the two threads are 'synchronized'
4731 * with each other. This can prevent needless bouncing between CPUs.
4732 *
4733 * On UP it can prevent extra preemption.
4734 */
7ad5b3a5 4735void
95cdf3b7 4736__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4737{
4738 unsigned long flags;
4739 int sync = 1;
4740
4741 if (unlikely(!q))
4742 return;
4743
4744 if (unlikely(!nr_exclusive))
4745 sync = 0;
4746
4747 spin_lock_irqsave(&q->lock, flags);
4748 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4749 spin_unlock_irqrestore(&q->lock, flags);
4750}
4751EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4752
65eb3dc6
KD
4753/**
4754 * complete: - signals a single thread waiting on this completion
4755 * @x: holds the state of this particular completion
4756 *
4757 * This will wake up a single thread waiting on this completion. Threads will be
4758 * awakened in the same order in which they were queued.
4759 *
4760 * See also complete_all(), wait_for_completion() and related routines.
4761 */
b15136e9 4762void complete(struct completion *x)
1da177e4
LT
4763{
4764 unsigned long flags;
4765
4766 spin_lock_irqsave(&x->wait.lock, flags);
4767 x->done++;
d9514f6c 4768 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4769 spin_unlock_irqrestore(&x->wait.lock, flags);
4770}
4771EXPORT_SYMBOL(complete);
4772
65eb3dc6
KD
4773/**
4774 * complete_all: - signals all threads waiting on this completion
4775 * @x: holds the state of this particular completion
4776 *
4777 * This will wake up all threads waiting on this particular completion event.
4778 */
b15136e9 4779void complete_all(struct completion *x)
1da177e4
LT
4780{
4781 unsigned long flags;
4782
4783 spin_lock_irqsave(&x->wait.lock, flags);
4784 x->done += UINT_MAX/2;
d9514f6c 4785 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4786 spin_unlock_irqrestore(&x->wait.lock, flags);
4787}
4788EXPORT_SYMBOL(complete_all);
4789
8cbbe86d
AK
4790static inline long __sched
4791do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4792{
1da177e4
LT
4793 if (!x->done) {
4794 DECLARE_WAITQUEUE(wait, current);
4795
4796 wait.flags |= WQ_FLAG_EXCLUSIVE;
4797 __add_wait_queue_tail(&x->wait, &wait);
4798 do {
94d3d824 4799 if (signal_pending_state(state, current)) {
ea71a546
ON
4800 timeout = -ERESTARTSYS;
4801 break;
8cbbe86d
AK
4802 }
4803 __set_current_state(state);
1da177e4
LT
4804 spin_unlock_irq(&x->wait.lock);
4805 timeout = schedule_timeout(timeout);
4806 spin_lock_irq(&x->wait.lock);
ea71a546 4807 } while (!x->done && timeout);
1da177e4 4808 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4809 if (!x->done)
4810 return timeout;
1da177e4
LT
4811 }
4812 x->done--;
ea71a546 4813 return timeout ?: 1;
1da177e4 4814}
1da177e4 4815
8cbbe86d
AK
4816static long __sched
4817wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4818{
1da177e4
LT
4819 might_sleep();
4820
4821 spin_lock_irq(&x->wait.lock);
8cbbe86d 4822 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4823 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4824 return timeout;
4825}
1da177e4 4826
65eb3dc6
KD
4827/**
4828 * wait_for_completion: - waits for completion of a task
4829 * @x: holds the state of this particular completion
4830 *
4831 * This waits to be signaled for completion of a specific task. It is NOT
4832 * interruptible and there is no timeout.
4833 *
4834 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4835 * and interrupt capability. Also see complete().
4836 */
b15136e9 4837void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4838{
4839 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4840}
8cbbe86d 4841EXPORT_SYMBOL(wait_for_completion);
1da177e4 4842
65eb3dc6
KD
4843/**
4844 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4845 * @x: holds the state of this particular completion
4846 * @timeout: timeout value in jiffies
4847 *
4848 * This waits for either a completion of a specific task to be signaled or for a
4849 * specified timeout to expire. The timeout is in jiffies. It is not
4850 * interruptible.
4851 */
b15136e9 4852unsigned long __sched
8cbbe86d 4853wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4854{
8cbbe86d 4855 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4856}
8cbbe86d 4857EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4858
65eb3dc6
KD
4859/**
4860 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4861 * @x: holds the state of this particular completion
4862 *
4863 * This waits for completion of a specific task to be signaled. It is
4864 * interruptible.
4865 */
8cbbe86d 4866int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4867{
51e97990
AK
4868 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4869 if (t == -ERESTARTSYS)
4870 return t;
4871 return 0;
0fec171c 4872}
8cbbe86d 4873EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4874
65eb3dc6
KD
4875/**
4876 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4877 * @x: holds the state of this particular completion
4878 * @timeout: timeout value in jiffies
4879 *
4880 * This waits for either a completion of a specific task to be signaled or for a
4881 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4882 */
b15136e9 4883unsigned long __sched
8cbbe86d
AK
4884wait_for_completion_interruptible_timeout(struct completion *x,
4885 unsigned long timeout)
0fec171c 4886{
8cbbe86d 4887 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4888}
8cbbe86d 4889EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4890
65eb3dc6
KD
4891/**
4892 * wait_for_completion_killable: - waits for completion of a task (killable)
4893 * @x: holds the state of this particular completion
4894 *
4895 * This waits to be signaled for completion of a specific task. It can be
4896 * interrupted by a kill signal.
4897 */
009e577e
MW
4898int __sched wait_for_completion_killable(struct completion *x)
4899{
4900 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4901 if (t == -ERESTARTSYS)
4902 return t;
4903 return 0;
4904}
4905EXPORT_SYMBOL(wait_for_completion_killable);
4906
be4de352
DC
4907/**
4908 * try_wait_for_completion - try to decrement a completion without blocking
4909 * @x: completion structure
4910 *
4911 * Returns: 0 if a decrement cannot be done without blocking
4912 * 1 if a decrement succeeded.
4913 *
4914 * If a completion is being used as a counting completion,
4915 * attempt to decrement the counter without blocking. This
4916 * enables us to avoid waiting if the resource the completion
4917 * is protecting is not available.
4918 */
4919bool try_wait_for_completion(struct completion *x)
4920{
4921 int ret = 1;
4922
4923 spin_lock_irq(&x->wait.lock);
4924 if (!x->done)
4925 ret = 0;
4926 else
4927 x->done--;
4928 spin_unlock_irq(&x->wait.lock);
4929 return ret;
4930}
4931EXPORT_SYMBOL(try_wait_for_completion);
4932
4933/**
4934 * completion_done - Test to see if a completion has any waiters
4935 * @x: completion structure
4936 *
4937 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4938 * 1 if there are no waiters.
4939 *
4940 */
4941bool completion_done(struct completion *x)
4942{
4943 int ret = 1;
4944
4945 spin_lock_irq(&x->wait.lock);
4946 if (!x->done)
4947 ret = 0;
4948 spin_unlock_irq(&x->wait.lock);
4949 return ret;
4950}
4951EXPORT_SYMBOL(completion_done);
4952
8cbbe86d
AK
4953static long __sched
4954sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4955{
0fec171c
IM
4956 unsigned long flags;
4957 wait_queue_t wait;
4958
4959 init_waitqueue_entry(&wait, current);
1da177e4 4960
8cbbe86d 4961 __set_current_state(state);
1da177e4 4962
8cbbe86d
AK
4963 spin_lock_irqsave(&q->lock, flags);
4964 __add_wait_queue(q, &wait);
4965 spin_unlock(&q->lock);
4966 timeout = schedule_timeout(timeout);
4967 spin_lock_irq(&q->lock);
4968 __remove_wait_queue(q, &wait);
4969 spin_unlock_irqrestore(&q->lock, flags);
4970
4971 return timeout;
4972}
4973
4974void __sched interruptible_sleep_on(wait_queue_head_t *q)
4975{
4976 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4977}
1da177e4
LT
4978EXPORT_SYMBOL(interruptible_sleep_on);
4979
0fec171c 4980long __sched
95cdf3b7 4981interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4982{
8cbbe86d 4983 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4984}
1da177e4
LT
4985EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4986
0fec171c 4987void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4988{
8cbbe86d 4989 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4990}
1da177e4
LT
4991EXPORT_SYMBOL(sleep_on);
4992
0fec171c 4993long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4994{
8cbbe86d 4995 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4996}
1da177e4
LT
4997EXPORT_SYMBOL(sleep_on_timeout);
4998
b29739f9
IM
4999#ifdef CONFIG_RT_MUTEXES
5000
5001/*
5002 * rt_mutex_setprio - set the current priority of a task
5003 * @p: task
5004 * @prio: prio value (kernel-internal form)
5005 *
5006 * This function changes the 'effective' priority of a task. It does
5007 * not touch ->normal_prio like __setscheduler().
5008 *
5009 * Used by the rt_mutex code to implement priority inheritance logic.
5010 */
36c8b586 5011void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5012{
5013 unsigned long flags;
83b699ed 5014 int oldprio, on_rq, running;
70b97a7f 5015 struct rq *rq;
cb469845 5016 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5017
5018 BUG_ON(prio < 0 || prio > MAX_PRIO);
5019
5020 rq = task_rq_lock(p, &flags);
a8e504d2 5021 update_rq_clock(rq);
b29739f9 5022
d5f9f942 5023 oldprio = p->prio;
dd41f596 5024 on_rq = p->se.on_rq;
051a1d1a 5025 running = task_current(rq, p);
0e1f3483 5026 if (on_rq)
69be72c1 5027 dequeue_task(rq, p, 0);
0e1f3483
HS
5028 if (running)
5029 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5030
5031 if (rt_prio(prio))
5032 p->sched_class = &rt_sched_class;
5033 else
5034 p->sched_class = &fair_sched_class;
5035
b29739f9
IM
5036 p->prio = prio;
5037
0e1f3483
HS
5038 if (running)
5039 p->sched_class->set_curr_task(rq);
dd41f596 5040 if (on_rq) {
8159f87e 5041 enqueue_task(rq, p, 0);
cb469845
SR
5042
5043 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5044 }
5045 task_rq_unlock(rq, &flags);
5046}
5047
5048#endif
5049
36c8b586 5050void set_user_nice(struct task_struct *p, long nice)
1da177e4 5051{
dd41f596 5052 int old_prio, delta, on_rq;
1da177e4 5053 unsigned long flags;
70b97a7f 5054 struct rq *rq;
1da177e4
LT
5055
5056 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5057 return;
5058 /*
5059 * We have to be careful, if called from sys_setpriority(),
5060 * the task might be in the middle of scheduling on another CPU.
5061 */
5062 rq = task_rq_lock(p, &flags);
a8e504d2 5063 update_rq_clock(rq);
1da177e4
LT
5064 /*
5065 * The RT priorities are set via sched_setscheduler(), but we still
5066 * allow the 'normal' nice value to be set - but as expected
5067 * it wont have any effect on scheduling until the task is
dd41f596 5068 * SCHED_FIFO/SCHED_RR:
1da177e4 5069 */
e05606d3 5070 if (task_has_rt_policy(p)) {
1da177e4
LT
5071 p->static_prio = NICE_TO_PRIO(nice);
5072 goto out_unlock;
5073 }
dd41f596 5074 on_rq = p->se.on_rq;
c09595f6 5075 if (on_rq)
69be72c1 5076 dequeue_task(rq, p, 0);
1da177e4 5077
1da177e4 5078 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5079 set_load_weight(p);
b29739f9
IM
5080 old_prio = p->prio;
5081 p->prio = effective_prio(p);
5082 delta = p->prio - old_prio;
1da177e4 5083
dd41f596 5084 if (on_rq) {
8159f87e 5085 enqueue_task(rq, p, 0);
1da177e4 5086 /*
d5f9f942
AM
5087 * If the task increased its priority or is running and
5088 * lowered its priority, then reschedule its CPU:
1da177e4 5089 */
d5f9f942 5090 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5091 resched_task(rq->curr);
5092 }
5093out_unlock:
5094 task_rq_unlock(rq, &flags);
5095}
1da177e4
LT
5096EXPORT_SYMBOL(set_user_nice);
5097
e43379f1
MM
5098/*
5099 * can_nice - check if a task can reduce its nice value
5100 * @p: task
5101 * @nice: nice value
5102 */
36c8b586 5103int can_nice(const struct task_struct *p, const int nice)
e43379f1 5104{
024f4747
MM
5105 /* convert nice value [19,-20] to rlimit style value [1,40] */
5106 int nice_rlim = 20 - nice;
48f24c4d 5107
e43379f1
MM
5108 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5109 capable(CAP_SYS_NICE));
5110}
5111
1da177e4
LT
5112#ifdef __ARCH_WANT_SYS_NICE
5113
5114/*
5115 * sys_nice - change the priority of the current process.
5116 * @increment: priority increment
5117 *
5118 * sys_setpriority is a more generic, but much slower function that
5119 * does similar things.
5120 */
5121asmlinkage long sys_nice(int increment)
5122{
48f24c4d 5123 long nice, retval;
1da177e4
LT
5124
5125 /*
5126 * Setpriority might change our priority at the same moment.
5127 * We don't have to worry. Conceptually one call occurs first
5128 * and we have a single winner.
5129 */
e43379f1
MM
5130 if (increment < -40)
5131 increment = -40;
1da177e4
LT
5132 if (increment > 40)
5133 increment = 40;
5134
5135 nice = PRIO_TO_NICE(current->static_prio) + increment;
5136 if (nice < -20)
5137 nice = -20;
5138 if (nice > 19)
5139 nice = 19;
5140
e43379f1
MM
5141 if (increment < 0 && !can_nice(current, nice))
5142 return -EPERM;
5143
1da177e4
LT
5144 retval = security_task_setnice(current, nice);
5145 if (retval)
5146 return retval;
5147
5148 set_user_nice(current, nice);
5149 return 0;
5150}
5151
5152#endif
5153
5154/**
5155 * task_prio - return the priority value of a given task.
5156 * @p: the task in question.
5157 *
5158 * This is the priority value as seen by users in /proc.
5159 * RT tasks are offset by -200. Normal tasks are centered
5160 * around 0, value goes from -16 to +15.
5161 */
36c8b586 5162int task_prio(const struct task_struct *p)
1da177e4
LT
5163{
5164 return p->prio - MAX_RT_PRIO;
5165}
5166
5167/**
5168 * task_nice - return the nice value of a given task.
5169 * @p: the task in question.
5170 */
36c8b586 5171int task_nice(const struct task_struct *p)
1da177e4
LT
5172{
5173 return TASK_NICE(p);
5174}
150d8bed 5175EXPORT_SYMBOL(task_nice);
1da177e4
LT
5176
5177/**
5178 * idle_cpu - is a given cpu idle currently?
5179 * @cpu: the processor in question.
5180 */
5181int idle_cpu(int cpu)
5182{
5183 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5184}
5185
1da177e4
LT
5186/**
5187 * idle_task - return the idle task for a given cpu.
5188 * @cpu: the processor in question.
5189 */
36c8b586 5190struct task_struct *idle_task(int cpu)
1da177e4
LT
5191{
5192 return cpu_rq(cpu)->idle;
5193}
5194
5195/**
5196 * find_process_by_pid - find a process with a matching PID value.
5197 * @pid: the pid in question.
5198 */
a9957449 5199static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5200{
228ebcbe 5201 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5202}
5203
5204/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5205static void
5206__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5207{
dd41f596 5208 BUG_ON(p->se.on_rq);
48f24c4d 5209
1da177e4 5210 p->policy = policy;
dd41f596
IM
5211 switch (p->policy) {
5212 case SCHED_NORMAL:
5213 case SCHED_BATCH:
5214 case SCHED_IDLE:
5215 p->sched_class = &fair_sched_class;
5216 break;
5217 case SCHED_FIFO:
5218 case SCHED_RR:
5219 p->sched_class = &rt_sched_class;
5220 break;
5221 }
5222
1da177e4 5223 p->rt_priority = prio;
b29739f9
IM
5224 p->normal_prio = normal_prio(p);
5225 /* we are holding p->pi_lock already */
5226 p->prio = rt_mutex_getprio(p);
2dd73a4f 5227 set_load_weight(p);
1da177e4
LT
5228}
5229
c69e8d9c
DH
5230/*
5231 * check the target process has a UID that matches the current process's
5232 */
5233static bool check_same_owner(struct task_struct *p)
5234{
5235 const struct cred *cred = current_cred(), *pcred;
5236 bool match;
5237
5238 rcu_read_lock();
5239 pcred = __task_cred(p);
5240 match = (cred->euid == pcred->euid ||
5241 cred->euid == pcred->uid);
5242 rcu_read_unlock();
5243 return match;
5244}
5245
961ccddd
RR
5246static int __sched_setscheduler(struct task_struct *p, int policy,
5247 struct sched_param *param, bool user)
1da177e4 5248{
83b699ed 5249 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5250 unsigned long flags;
cb469845 5251 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5252 struct rq *rq;
1da177e4 5253
66e5393a
SR
5254 /* may grab non-irq protected spin_locks */
5255 BUG_ON(in_interrupt());
1da177e4
LT
5256recheck:
5257 /* double check policy once rq lock held */
5258 if (policy < 0)
5259 policy = oldpolicy = p->policy;
5260 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5261 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5262 policy != SCHED_IDLE)
b0a9499c 5263 return -EINVAL;
1da177e4
LT
5264 /*
5265 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5266 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5267 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5268 */
5269 if (param->sched_priority < 0 ||
95cdf3b7 5270 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5271 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5272 return -EINVAL;
e05606d3 5273 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5274 return -EINVAL;
5275
37e4ab3f
OC
5276 /*
5277 * Allow unprivileged RT tasks to decrease priority:
5278 */
961ccddd 5279 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5280 if (rt_policy(policy)) {
8dc3e909 5281 unsigned long rlim_rtprio;
8dc3e909
ON
5282
5283 if (!lock_task_sighand(p, &flags))
5284 return -ESRCH;
5285 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5286 unlock_task_sighand(p, &flags);
5287
5288 /* can't set/change the rt policy */
5289 if (policy != p->policy && !rlim_rtprio)
5290 return -EPERM;
5291
5292 /* can't increase priority */
5293 if (param->sched_priority > p->rt_priority &&
5294 param->sched_priority > rlim_rtprio)
5295 return -EPERM;
5296 }
dd41f596
IM
5297 /*
5298 * Like positive nice levels, dont allow tasks to
5299 * move out of SCHED_IDLE either:
5300 */
5301 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5302 return -EPERM;
5fe1d75f 5303
37e4ab3f 5304 /* can't change other user's priorities */
c69e8d9c 5305 if (!check_same_owner(p))
37e4ab3f
OC
5306 return -EPERM;
5307 }
1da177e4 5308
725aad24 5309 if (user) {
b68aa230 5310#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5311 /*
5312 * Do not allow realtime tasks into groups that have no runtime
5313 * assigned.
5314 */
9a7e0b18
PZ
5315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5316 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5317 return -EPERM;
b68aa230
PZ
5318#endif
5319
725aad24
JF
5320 retval = security_task_setscheduler(p, policy, param);
5321 if (retval)
5322 return retval;
5323 }
5324
b29739f9
IM
5325 /*
5326 * make sure no PI-waiters arrive (or leave) while we are
5327 * changing the priority of the task:
5328 */
5329 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5330 /*
5331 * To be able to change p->policy safely, the apropriate
5332 * runqueue lock must be held.
5333 */
b29739f9 5334 rq = __task_rq_lock(p);
1da177e4
LT
5335 /* recheck policy now with rq lock held */
5336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5337 policy = oldpolicy = -1;
b29739f9
IM
5338 __task_rq_unlock(rq);
5339 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5340 goto recheck;
5341 }
2daa3577 5342 update_rq_clock(rq);
dd41f596 5343 on_rq = p->se.on_rq;
051a1d1a 5344 running = task_current(rq, p);
0e1f3483 5345 if (on_rq)
2e1cb74a 5346 deactivate_task(rq, p, 0);
0e1f3483
HS
5347 if (running)
5348 p->sched_class->put_prev_task(rq, p);
f6b53205 5349
1da177e4 5350 oldprio = p->prio;
dd41f596 5351 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5352
0e1f3483
HS
5353 if (running)
5354 p->sched_class->set_curr_task(rq);
dd41f596
IM
5355 if (on_rq) {
5356 activate_task(rq, p, 0);
cb469845
SR
5357
5358 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5359 }
b29739f9
IM
5360 __task_rq_unlock(rq);
5361 spin_unlock_irqrestore(&p->pi_lock, flags);
5362
95e02ca9
TG
5363 rt_mutex_adjust_pi(p);
5364
1da177e4
LT
5365 return 0;
5366}
961ccddd
RR
5367
5368/**
5369 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5370 * @p: the task in question.
5371 * @policy: new policy.
5372 * @param: structure containing the new RT priority.
5373 *
5374 * NOTE that the task may be already dead.
5375 */
5376int sched_setscheduler(struct task_struct *p, int policy,
5377 struct sched_param *param)
5378{
5379 return __sched_setscheduler(p, policy, param, true);
5380}
1da177e4
LT
5381EXPORT_SYMBOL_GPL(sched_setscheduler);
5382
961ccddd
RR
5383/**
5384 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5385 * @p: the task in question.
5386 * @policy: new policy.
5387 * @param: structure containing the new RT priority.
5388 *
5389 * Just like sched_setscheduler, only don't bother checking if the
5390 * current context has permission. For example, this is needed in
5391 * stop_machine(): we create temporary high priority worker threads,
5392 * but our caller might not have that capability.
5393 */
5394int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5395 struct sched_param *param)
5396{
5397 return __sched_setscheduler(p, policy, param, false);
5398}
5399
95cdf3b7
IM
5400static int
5401do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5402{
1da177e4
LT
5403 struct sched_param lparam;
5404 struct task_struct *p;
36c8b586 5405 int retval;
1da177e4
LT
5406
5407 if (!param || pid < 0)
5408 return -EINVAL;
5409 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5410 return -EFAULT;
5fe1d75f
ON
5411
5412 rcu_read_lock();
5413 retval = -ESRCH;
1da177e4 5414 p = find_process_by_pid(pid);
5fe1d75f
ON
5415 if (p != NULL)
5416 retval = sched_setscheduler(p, policy, &lparam);
5417 rcu_read_unlock();
36c8b586 5418
1da177e4
LT
5419 return retval;
5420}
5421
5422/**
5423 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5424 * @pid: the pid in question.
5425 * @policy: new policy.
5426 * @param: structure containing the new RT priority.
5427 */
41a2d6cf
IM
5428asmlinkage long
5429sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5430{
c21761f1
JB
5431 /* negative values for policy are not valid */
5432 if (policy < 0)
5433 return -EINVAL;
5434
1da177e4
LT
5435 return do_sched_setscheduler(pid, policy, param);
5436}
5437
5438/**
5439 * sys_sched_setparam - set/change the RT priority of a thread
5440 * @pid: the pid in question.
5441 * @param: structure containing the new RT priority.
5442 */
5443asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5444{
5445 return do_sched_setscheduler(pid, -1, param);
5446}
5447
5448/**
5449 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5450 * @pid: the pid in question.
5451 */
5452asmlinkage long sys_sched_getscheduler(pid_t pid)
5453{
36c8b586 5454 struct task_struct *p;
3a5c359a 5455 int retval;
1da177e4
LT
5456
5457 if (pid < 0)
3a5c359a 5458 return -EINVAL;
1da177e4
LT
5459
5460 retval = -ESRCH;
5461 read_lock(&tasklist_lock);
5462 p = find_process_by_pid(pid);
5463 if (p) {
5464 retval = security_task_getscheduler(p);
5465 if (!retval)
5466 retval = p->policy;
5467 }
5468 read_unlock(&tasklist_lock);
1da177e4
LT
5469 return retval;
5470}
5471
5472/**
5473 * sys_sched_getscheduler - get the RT priority of a thread
5474 * @pid: the pid in question.
5475 * @param: structure containing the RT priority.
5476 */
5477asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5478{
5479 struct sched_param lp;
36c8b586 5480 struct task_struct *p;
3a5c359a 5481 int retval;
1da177e4
LT
5482
5483 if (!param || pid < 0)
3a5c359a 5484 return -EINVAL;
1da177e4
LT
5485
5486 read_lock(&tasklist_lock);
5487 p = find_process_by_pid(pid);
5488 retval = -ESRCH;
5489 if (!p)
5490 goto out_unlock;
5491
5492 retval = security_task_getscheduler(p);
5493 if (retval)
5494 goto out_unlock;
5495
5496 lp.sched_priority = p->rt_priority;
5497 read_unlock(&tasklist_lock);
5498
5499 /*
5500 * This one might sleep, we cannot do it with a spinlock held ...
5501 */
5502 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5503
1da177e4
LT
5504 return retval;
5505
5506out_unlock:
5507 read_unlock(&tasklist_lock);
5508 return retval;
5509}
5510
96f874e2 5511long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5512{
5a16f3d3 5513 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5514 struct task_struct *p;
5515 int retval;
1da177e4 5516
95402b38 5517 get_online_cpus();
1da177e4
LT
5518 read_lock(&tasklist_lock);
5519
5520 p = find_process_by_pid(pid);
5521 if (!p) {
5522 read_unlock(&tasklist_lock);
95402b38 5523 put_online_cpus();
1da177e4
LT
5524 return -ESRCH;
5525 }
5526
5527 /*
5528 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5529 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5530 * usage count and then drop tasklist_lock.
5531 */
5532 get_task_struct(p);
5533 read_unlock(&tasklist_lock);
5534
5a16f3d3
RR
5535 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5536 retval = -ENOMEM;
5537 goto out_put_task;
5538 }
5539 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5540 retval = -ENOMEM;
5541 goto out_free_cpus_allowed;
5542 }
1da177e4 5543 retval = -EPERM;
c69e8d9c 5544 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5545 goto out_unlock;
5546
e7834f8f
DQ
5547 retval = security_task_setscheduler(p, 0, NULL);
5548 if (retval)
5549 goto out_unlock;
5550
5a16f3d3
RR
5551 cpuset_cpus_allowed(p, cpus_allowed);
5552 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5553 again:
5a16f3d3 5554 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5555
8707d8b8 5556 if (!retval) {
5a16f3d3
RR
5557 cpuset_cpus_allowed(p, cpus_allowed);
5558 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5559 /*
5560 * We must have raced with a concurrent cpuset
5561 * update. Just reset the cpus_allowed to the
5562 * cpuset's cpus_allowed
5563 */
5a16f3d3 5564 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5565 goto again;
5566 }
5567 }
1da177e4 5568out_unlock:
5a16f3d3
RR
5569 free_cpumask_var(new_mask);
5570out_free_cpus_allowed:
5571 free_cpumask_var(cpus_allowed);
5572out_put_task:
1da177e4 5573 put_task_struct(p);
95402b38 5574 put_online_cpus();
1da177e4
LT
5575 return retval;
5576}
5577
5578static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5579 struct cpumask *new_mask)
1da177e4 5580{
96f874e2
RR
5581 if (len < cpumask_size())
5582 cpumask_clear(new_mask);
5583 else if (len > cpumask_size())
5584 len = cpumask_size();
5585
1da177e4
LT
5586 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5587}
5588
5589/**
5590 * sys_sched_setaffinity - set the cpu affinity of a process
5591 * @pid: pid of the process
5592 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5593 * @user_mask_ptr: user-space pointer to the new cpu mask
5594 */
5595asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5596 unsigned long __user *user_mask_ptr)
5597{
5a16f3d3 5598 cpumask_var_t new_mask;
1da177e4
LT
5599 int retval;
5600
5a16f3d3
RR
5601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5602 return -ENOMEM;
1da177e4 5603
5a16f3d3
RR
5604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5605 if (retval == 0)
5606 retval = sched_setaffinity(pid, new_mask);
5607 free_cpumask_var(new_mask);
5608 return retval;
1da177e4
LT
5609}
5610
96f874e2 5611long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5612{
36c8b586 5613 struct task_struct *p;
1da177e4 5614 int retval;
1da177e4 5615
95402b38 5616 get_online_cpus();
1da177e4
LT
5617 read_lock(&tasklist_lock);
5618
5619 retval = -ESRCH;
5620 p = find_process_by_pid(pid);
5621 if (!p)
5622 goto out_unlock;
5623
e7834f8f
DQ
5624 retval = security_task_getscheduler(p);
5625 if (retval)
5626 goto out_unlock;
5627
96f874e2 5628 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5629
5630out_unlock:
5631 read_unlock(&tasklist_lock);
95402b38 5632 put_online_cpus();
1da177e4 5633
9531b62f 5634 return retval;
1da177e4
LT
5635}
5636
5637/**
5638 * sys_sched_getaffinity - get the cpu affinity of a process
5639 * @pid: pid of the process
5640 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5641 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5642 */
5643asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5644 unsigned long __user *user_mask_ptr)
5645{
5646 int ret;
f17c8607 5647 cpumask_var_t mask;
1da177e4 5648
f17c8607 5649 if (len < cpumask_size())
1da177e4
LT
5650 return -EINVAL;
5651
f17c8607
RR
5652 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5653 return -ENOMEM;
1da177e4 5654
f17c8607
RR
5655 ret = sched_getaffinity(pid, mask);
5656 if (ret == 0) {
5657 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5658 ret = -EFAULT;
5659 else
5660 ret = cpumask_size();
5661 }
5662 free_cpumask_var(mask);
1da177e4 5663
f17c8607 5664 return ret;
1da177e4
LT
5665}
5666
5667/**
5668 * sys_sched_yield - yield the current processor to other threads.
5669 *
dd41f596
IM
5670 * This function yields the current CPU to other tasks. If there are no
5671 * other threads running on this CPU then this function will return.
1da177e4
LT
5672 */
5673asmlinkage long sys_sched_yield(void)
5674{
70b97a7f 5675 struct rq *rq = this_rq_lock();
1da177e4 5676
2d72376b 5677 schedstat_inc(rq, yld_count);
4530d7ab 5678 current->sched_class->yield_task(rq);
1da177e4
LT
5679
5680 /*
5681 * Since we are going to call schedule() anyway, there's
5682 * no need to preempt or enable interrupts:
5683 */
5684 __release(rq->lock);
8a25d5de 5685 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5686 _raw_spin_unlock(&rq->lock);
5687 preempt_enable_no_resched();
5688
5689 schedule();
5690
5691 return 0;
5692}
5693
e7b38404 5694static void __cond_resched(void)
1da177e4 5695{
8e0a43d8
IM
5696#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5697 __might_sleep(__FILE__, __LINE__);
5698#endif
5bbcfd90
IM
5699 /*
5700 * The BKS might be reacquired before we have dropped
5701 * PREEMPT_ACTIVE, which could trigger a second
5702 * cond_resched() call.
5703 */
1da177e4
LT
5704 do {
5705 add_preempt_count(PREEMPT_ACTIVE);
5706 schedule();
5707 sub_preempt_count(PREEMPT_ACTIVE);
5708 } while (need_resched());
5709}
5710
02b67cc3 5711int __sched _cond_resched(void)
1da177e4 5712{
9414232f
IM
5713 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5714 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5715 __cond_resched();
5716 return 1;
5717 }
5718 return 0;
5719}
02b67cc3 5720EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5721
5722/*
5723 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5724 * call schedule, and on return reacquire the lock.
5725 *
41a2d6cf 5726 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5727 * operations here to prevent schedule() from being called twice (once via
5728 * spin_unlock(), once by hand).
5729 */
95cdf3b7 5730int cond_resched_lock(spinlock_t *lock)
1da177e4 5731{
95c354fe 5732 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5733 int ret = 0;
5734
95c354fe 5735 if (spin_needbreak(lock) || resched) {
1da177e4 5736 spin_unlock(lock);
95c354fe
NP
5737 if (resched && need_resched())
5738 __cond_resched();
5739 else
5740 cpu_relax();
6df3cecb 5741 ret = 1;
1da177e4 5742 spin_lock(lock);
1da177e4 5743 }
6df3cecb 5744 return ret;
1da177e4 5745}
1da177e4
LT
5746EXPORT_SYMBOL(cond_resched_lock);
5747
5748int __sched cond_resched_softirq(void)
5749{
5750 BUG_ON(!in_softirq());
5751
9414232f 5752 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5753 local_bh_enable();
1da177e4
LT
5754 __cond_resched();
5755 local_bh_disable();
5756 return 1;
5757 }
5758 return 0;
5759}
1da177e4
LT
5760EXPORT_SYMBOL(cond_resched_softirq);
5761
1da177e4
LT
5762/**
5763 * yield - yield the current processor to other threads.
5764 *
72fd4a35 5765 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5766 * thread runnable and calls sys_sched_yield().
5767 */
5768void __sched yield(void)
5769{
5770 set_current_state(TASK_RUNNING);
5771 sys_sched_yield();
5772}
1da177e4
LT
5773EXPORT_SYMBOL(yield);
5774
5775/*
41a2d6cf 5776 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5777 * that process accounting knows that this is a task in IO wait state.
5778 *
5779 * But don't do that if it is a deliberate, throttling IO wait (this task
5780 * has set its backing_dev_info: the queue against which it should throttle)
5781 */
5782void __sched io_schedule(void)
5783{
70b97a7f 5784 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5785
0ff92245 5786 delayacct_blkio_start();
1da177e4
LT
5787 atomic_inc(&rq->nr_iowait);
5788 schedule();
5789 atomic_dec(&rq->nr_iowait);
0ff92245 5790 delayacct_blkio_end();
1da177e4 5791}
1da177e4
LT
5792EXPORT_SYMBOL(io_schedule);
5793
5794long __sched io_schedule_timeout(long timeout)
5795{
70b97a7f 5796 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5797 long ret;
5798
0ff92245 5799 delayacct_blkio_start();
1da177e4
LT
5800 atomic_inc(&rq->nr_iowait);
5801 ret = schedule_timeout(timeout);
5802 atomic_dec(&rq->nr_iowait);
0ff92245 5803 delayacct_blkio_end();
1da177e4
LT
5804 return ret;
5805}
5806
5807/**
5808 * sys_sched_get_priority_max - return maximum RT priority.
5809 * @policy: scheduling class.
5810 *
5811 * this syscall returns the maximum rt_priority that can be used
5812 * by a given scheduling class.
5813 */
5814asmlinkage long sys_sched_get_priority_max(int policy)
5815{
5816 int ret = -EINVAL;
5817
5818 switch (policy) {
5819 case SCHED_FIFO:
5820 case SCHED_RR:
5821 ret = MAX_USER_RT_PRIO-1;
5822 break;
5823 case SCHED_NORMAL:
b0a9499c 5824 case SCHED_BATCH:
dd41f596 5825 case SCHED_IDLE:
1da177e4
LT
5826 ret = 0;
5827 break;
5828 }
5829 return ret;
5830}
5831
5832/**
5833 * sys_sched_get_priority_min - return minimum RT priority.
5834 * @policy: scheduling class.
5835 *
5836 * this syscall returns the minimum rt_priority that can be used
5837 * by a given scheduling class.
5838 */
5839asmlinkage long sys_sched_get_priority_min(int policy)
5840{
5841 int ret = -EINVAL;
5842
5843 switch (policy) {
5844 case SCHED_FIFO:
5845 case SCHED_RR:
5846 ret = 1;
5847 break;
5848 case SCHED_NORMAL:
b0a9499c 5849 case SCHED_BATCH:
dd41f596 5850 case SCHED_IDLE:
1da177e4
LT
5851 ret = 0;
5852 }
5853 return ret;
5854}
5855
5856/**
5857 * sys_sched_rr_get_interval - return the default timeslice of a process.
5858 * @pid: pid of the process.
5859 * @interval: userspace pointer to the timeslice value.
5860 *
5861 * this syscall writes the default timeslice value of a given process
5862 * into the user-space timespec buffer. A value of '0' means infinity.
5863 */
5864asmlinkage
5865long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5866{
36c8b586 5867 struct task_struct *p;
a4ec24b4 5868 unsigned int time_slice;
3a5c359a 5869 int retval;
1da177e4 5870 struct timespec t;
1da177e4
LT
5871
5872 if (pid < 0)
3a5c359a 5873 return -EINVAL;
1da177e4
LT
5874
5875 retval = -ESRCH;
5876 read_lock(&tasklist_lock);
5877 p = find_process_by_pid(pid);
5878 if (!p)
5879 goto out_unlock;
5880
5881 retval = security_task_getscheduler(p);
5882 if (retval)
5883 goto out_unlock;
5884
77034937
IM
5885 /*
5886 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5887 * tasks that are on an otherwise idle runqueue:
5888 */
5889 time_slice = 0;
5890 if (p->policy == SCHED_RR) {
a4ec24b4 5891 time_slice = DEF_TIMESLICE;
1868f958 5892 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5893 struct sched_entity *se = &p->se;
5894 unsigned long flags;
5895 struct rq *rq;
5896
5897 rq = task_rq_lock(p, &flags);
77034937
IM
5898 if (rq->cfs.load.weight)
5899 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5900 task_rq_unlock(rq, &flags);
5901 }
1da177e4 5902 read_unlock(&tasklist_lock);
a4ec24b4 5903 jiffies_to_timespec(time_slice, &t);
1da177e4 5904 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5905 return retval;
3a5c359a 5906
1da177e4
LT
5907out_unlock:
5908 read_unlock(&tasklist_lock);
5909 return retval;
5910}
5911
7c731e0a 5912static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5913
82a1fcb9 5914void sched_show_task(struct task_struct *p)
1da177e4 5915{
1da177e4 5916 unsigned long free = 0;
36c8b586 5917 unsigned state;
1da177e4 5918
1da177e4 5919 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5920 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5921 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5922#if BITS_PER_LONG == 32
1da177e4 5923 if (state == TASK_RUNNING)
cc4ea795 5924 printk(KERN_CONT " running ");
1da177e4 5925 else
cc4ea795 5926 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5927#else
5928 if (state == TASK_RUNNING)
cc4ea795 5929 printk(KERN_CONT " running task ");
1da177e4 5930 else
cc4ea795 5931 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5932#endif
5933#ifdef CONFIG_DEBUG_STACK_USAGE
5934 {
10ebffde 5935 unsigned long *n = end_of_stack(p);
1da177e4
LT
5936 while (!*n)
5937 n++;
10ebffde 5938 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5939 }
5940#endif
ba25f9dc 5941 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5942 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5943
5fb5e6de 5944 show_stack(p, NULL);
1da177e4
LT
5945}
5946
e59e2ae2 5947void show_state_filter(unsigned long state_filter)
1da177e4 5948{
36c8b586 5949 struct task_struct *g, *p;
1da177e4 5950
4bd77321
IM
5951#if BITS_PER_LONG == 32
5952 printk(KERN_INFO
5953 " task PC stack pid father\n");
1da177e4 5954#else
4bd77321
IM
5955 printk(KERN_INFO
5956 " task PC stack pid father\n");
1da177e4
LT
5957#endif
5958 read_lock(&tasklist_lock);
5959 do_each_thread(g, p) {
5960 /*
5961 * reset the NMI-timeout, listing all files on a slow
5962 * console might take alot of time:
5963 */
5964 touch_nmi_watchdog();
39bc89fd 5965 if (!state_filter || (p->state & state_filter))
82a1fcb9 5966 sched_show_task(p);
1da177e4
LT
5967 } while_each_thread(g, p);
5968
04c9167f
JF
5969 touch_all_softlockup_watchdogs();
5970
dd41f596
IM
5971#ifdef CONFIG_SCHED_DEBUG
5972 sysrq_sched_debug_show();
5973#endif
1da177e4 5974 read_unlock(&tasklist_lock);
e59e2ae2
IM
5975 /*
5976 * Only show locks if all tasks are dumped:
5977 */
5978 if (state_filter == -1)
5979 debug_show_all_locks();
1da177e4
LT
5980}
5981
1df21055
IM
5982void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5983{
dd41f596 5984 idle->sched_class = &idle_sched_class;
1df21055
IM
5985}
5986
f340c0d1
IM
5987/**
5988 * init_idle - set up an idle thread for a given CPU
5989 * @idle: task in question
5990 * @cpu: cpu the idle task belongs to
5991 *
5992 * NOTE: this function does not set the idle thread's NEED_RESCHED
5993 * flag, to make booting more robust.
5994 */
5c1e1767 5995void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5996{
70b97a7f 5997 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5998 unsigned long flags;
5999
5cbd54ef
IM
6000 spin_lock_irqsave(&rq->lock, flags);
6001
dd41f596
IM
6002 __sched_fork(idle);
6003 idle->se.exec_start = sched_clock();
6004
b29739f9 6005 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6006 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6007 __set_task_cpu(idle, cpu);
1da177e4 6008
1da177e4 6009 rq->curr = rq->idle = idle;
4866cde0
NP
6010#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6011 idle->oncpu = 1;
6012#endif
1da177e4
LT
6013 spin_unlock_irqrestore(&rq->lock, flags);
6014
6015 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6016#if defined(CONFIG_PREEMPT)
6017 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6018#else
a1261f54 6019 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6020#endif
dd41f596
IM
6021 /*
6022 * The idle tasks have their own, simple scheduling class:
6023 */
6024 idle->sched_class = &idle_sched_class;
fb52607a 6025 ftrace_graph_init_task(idle);
1da177e4
LT
6026}
6027
6028/*
6029 * In a system that switches off the HZ timer nohz_cpu_mask
6030 * indicates which cpus entered this state. This is used
6031 * in the rcu update to wait only for active cpus. For system
6032 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6033 * always be CPU_BITS_NONE.
1da177e4 6034 */
6a7b3dc3 6035cpumask_var_t nohz_cpu_mask;
1da177e4 6036
19978ca6
IM
6037/*
6038 * Increase the granularity value when there are more CPUs,
6039 * because with more CPUs the 'effective latency' as visible
6040 * to users decreases. But the relationship is not linear,
6041 * so pick a second-best guess by going with the log2 of the
6042 * number of CPUs.
6043 *
6044 * This idea comes from the SD scheduler of Con Kolivas:
6045 */
6046static inline void sched_init_granularity(void)
6047{
6048 unsigned int factor = 1 + ilog2(num_online_cpus());
6049 const unsigned long limit = 200000000;
6050
6051 sysctl_sched_min_granularity *= factor;
6052 if (sysctl_sched_min_granularity > limit)
6053 sysctl_sched_min_granularity = limit;
6054
6055 sysctl_sched_latency *= factor;
6056 if (sysctl_sched_latency > limit)
6057 sysctl_sched_latency = limit;
6058
6059 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6060
6061 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6062}
6063
1da177e4
LT
6064#ifdef CONFIG_SMP
6065/*
6066 * This is how migration works:
6067 *
70b97a7f 6068 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6069 * runqueue and wake up that CPU's migration thread.
6070 * 2) we down() the locked semaphore => thread blocks.
6071 * 3) migration thread wakes up (implicitly it forces the migrated
6072 * thread off the CPU)
6073 * 4) it gets the migration request and checks whether the migrated
6074 * task is still in the wrong runqueue.
6075 * 5) if it's in the wrong runqueue then the migration thread removes
6076 * it and puts it into the right queue.
6077 * 6) migration thread up()s the semaphore.
6078 * 7) we wake up and the migration is done.
6079 */
6080
6081/*
6082 * Change a given task's CPU affinity. Migrate the thread to a
6083 * proper CPU and schedule it away if the CPU it's executing on
6084 * is removed from the allowed bitmask.
6085 *
6086 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6087 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6088 * call is not atomic; no spinlocks may be held.
6089 */
96f874e2 6090int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6091{
70b97a7f 6092 struct migration_req req;
1da177e4 6093 unsigned long flags;
70b97a7f 6094 struct rq *rq;
48f24c4d 6095 int ret = 0;
1da177e4
LT
6096
6097 rq = task_rq_lock(p, &flags);
96f874e2 6098 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6099 ret = -EINVAL;
6100 goto out;
6101 }
6102
9985b0ba 6103 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6104 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6105 ret = -EINVAL;
6106 goto out;
6107 }
6108
73fe6aae 6109 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6110 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6111 else {
96f874e2
RR
6112 cpumask_copy(&p->cpus_allowed, new_mask);
6113 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6114 }
6115
1da177e4 6116 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6117 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6118 goto out;
6119
1e5ce4f4 6120 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6121 /* Need help from migration thread: drop lock and wait. */
6122 task_rq_unlock(rq, &flags);
6123 wake_up_process(rq->migration_thread);
6124 wait_for_completion(&req.done);
6125 tlb_migrate_finish(p->mm);
6126 return 0;
6127 }
6128out:
6129 task_rq_unlock(rq, &flags);
48f24c4d 6130
1da177e4
LT
6131 return ret;
6132}
cd8ba7cd 6133EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6134
6135/*
41a2d6cf 6136 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6137 * this because either it can't run here any more (set_cpus_allowed()
6138 * away from this CPU, or CPU going down), or because we're
6139 * attempting to rebalance this task on exec (sched_exec).
6140 *
6141 * So we race with normal scheduler movements, but that's OK, as long
6142 * as the task is no longer on this CPU.
efc30814
KK
6143 *
6144 * Returns non-zero if task was successfully migrated.
1da177e4 6145 */
efc30814 6146static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6147{
70b97a7f 6148 struct rq *rq_dest, *rq_src;
dd41f596 6149 int ret = 0, on_rq;
1da177e4 6150
e761b772 6151 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6152 return ret;
1da177e4
LT
6153
6154 rq_src = cpu_rq(src_cpu);
6155 rq_dest = cpu_rq(dest_cpu);
6156
6157 double_rq_lock(rq_src, rq_dest);
6158 /* Already moved. */
6159 if (task_cpu(p) != src_cpu)
b1e38734 6160 goto done;
1da177e4 6161 /* Affinity changed (again). */
96f874e2 6162 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6163 goto fail;
1da177e4 6164
dd41f596 6165 on_rq = p->se.on_rq;
6e82a3be 6166 if (on_rq)
2e1cb74a 6167 deactivate_task(rq_src, p, 0);
6e82a3be 6168
1da177e4 6169 set_task_cpu(p, dest_cpu);
dd41f596
IM
6170 if (on_rq) {
6171 activate_task(rq_dest, p, 0);
15afe09b 6172 check_preempt_curr(rq_dest, p, 0);
1da177e4 6173 }
b1e38734 6174done:
efc30814 6175 ret = 1;
b1e38734 6176fail:
1da177e4 6177 double_rq_unlock(rq_src, rq_dest);
efc30814 6178 return ret;
1da177e4
LT
6179}
6180
6181/*
6182 * migration_thread - this is a highprio system thread that performs
6183 * thread migration by bumping thread off CPU then 'pushing' onto
6184 * another runqueue.
6185 */
95cdf3b7 6186static int migration_thread(void *data)
1da177e4 6187{
1da177e4 6188 int cpu = (long)data;
70b97a7f 6189 struct rq *rq;
1da177e4
LT
6190
6191 rq = cpu_rq(cpu);
6192 BUG_ON(rq->migration_thread != current);
6193
6194 set_current_state(TASK_INTERRUPTIBLE);
6195 while (!kthread_should_stop()) {
70b97a7f 6196 struct migration_req *req;
1da177e4 6197 struct list_head *head;
1da177e4 6198
1da177e4
LT
6199 spin_lock_irq(&rq->lock);
6200
6201 if (cpu_is_offline(cpu)) {
6202 spin_unlock_irq(&rq->lock);
6203 goto wait_to_die;
6204 }
6205
6206 if (rq->active_balance) {
6207 active_load_balance(rq, cpu);
6208 rq->active_balance = 0;
6209 }
6210
6211 head = &rq->migration_queue;
6212
6213 if (list_empty(head)) {
6214 spin_unlock_irq(&rq->lock);
6215 schedule();
6216 set_current_state(TASK_INTERRUPTIBLE);
6217 continue;
6218 }
70b97a7f 6219 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6220 list_del_init(head->next);
6221
674311d5
NP
6222 spin_unlock(&rq->lock);
6223 __migrate_task(req->task, cpu, req->dest_cpu);
6224 local_irq_enable();
1da177e4
LT
6225
6226 complete(&req->done);
6227 }
6228 __set_current_state(TASK_RUNNING);
6229 return 0;
6230
6231wait_to_die:
6232 /* Wait for kthread_stop */
6233 set_current_state(TASK_INTERRUPTIBLE);
6234 while (!kthread_should_stop()) {
6235 schedule();
6236 set_current_state(TASK_INTERRUPTIBLE);
6237 }
6238 __set_current_state(TASK_RUNNING);
6239 return 0;
6240}
6241
6242#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6243
6244static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6245{
6246 int ret;
6247
6248 local_irq_disable();
6249 ret = __migrate_task(p, src_cpu, dest_cpu);
6250 local_irq_enable();
6251 return ret;
6252}
6253
054b9108 6254/*
3a4fa0a2 6255 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6256 */
48f24c4d 6257static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6258{
70b97a7f 6259 int dest_cpu;
6ca09dfc 6260 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6261
6262again:
6263 /* Look for allowed, online CPU in same node. */
6264 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6265 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6266 goto move;
6267
6268 /* Any allowed, online CPU? */
6269 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6270 if (dest_cpu < nr_cpu_ids)
6271 goto move;
6272
6273 /* No more Mr. Nice Guy. */
6274 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6275 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6276 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6277
e76bd8d9
RR
6278 /*
6279 * Don't tell them about moving exiting tasks or
6280 * kernel threads (both mm NULL), since they never
6281 * leave kernel.
6282 */
6283 if (p->mm && printk_ratelimit()) {
6284 printk(KERN_INFO "process %d (%s) no "
6285 "longer affine to cpu%d\n",
6286 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6287 }
e76bd8d9
RR
6288 }
6289
6290move:
6291 /* It can have affinity changed while we were choosing. */
6292 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6293 goto again;
1da177e4
LT
6294}
6295
6296/*
6297 * While a dead CPU has no uninterruptible tasks queued at this point,
6298 * it might still have a nonzero ->nr_uninterruptible counter, because
6299 * for performance reasons the counter is not stricly tracking tasks to
6300 * their home CPUs. So we just add the counter to another CPU's counter,
6301 * to keep the global sum constant after CPU-down:
6302 */
70b97a7f 6303static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6304{
1e5ce4f4 6305 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6306 unsigned long flags;
6307
6308 local_irq_save(flags);
6309 double_rq_lock(rq_src, rq_dest);
6310 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6311 rq_src->nr_uninterruptible = 0;
6312 double_rq_unlock(rq_src, rq_dest);
6313 local_irq_restore(flags);
6314}
6315
6316/* Run through task list and migrate tasks from the dead cpu. */
6317static void migrate_live_tasks(int src_cpu)
6318{
48f24c4d 6319 struct task_struct *p, *t;
1da177e4 6320
f7b4cddc 6321 read_lock(&tasklist_lock);
1da177e4 6322
48f24c4d
IM
6323 do_each_thread(t, p) {
6324 if (p == current)
1da177e4
LT
6325 continue;
6326
48f24c4d
IM
6327 if (task_cpu(p) == src_cpu)
6328 move_task_off_dead_cpu(src_cpu, p);
6329 } while_each_thread(t, p);
1da177e4 6330
f7b4cddc 6331 read_unlock(&tasklist_lock);
1da177e4
LT
6332}
6333
dd41f596
IM
6334/*
6335 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6336 * It does so by boosting its priority to highest possible.
6337 * Used by CPU offline code.
1da177e4
LT
6338 */
6339void sched_idle_next(void)
6340{
48f24c4d 6341 int this_cpu = smp_processor_id();
70b97a7f 6342 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6343 struct task_struct *p = rq->idle;
6344 unsigned long flags;
6345
6346 /* cpu has to be offline */
48f24c4d 6347 BUG_ON(cpu_online(this_cpu));
1da177e4 6348
48f24c4d
IM
6349 /*
6350 * Strictly not necessary since rest of the CPUs are stopped by now
6351 * and interrupts disabled on the current cpu.
1da177e4
LT
6352 */
6353 spin_lock_irqsave(&rq->lock, flags);
6354
dd41f596 6355 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6356
94bc9a7b
DA
6357 update_rq_clock(rq);
6358 activate_task(rq, p, 0);
1da177e4
LT
6359
6360 spin_unlock_irqrestore(&rq->lock, flags);
6361}
6362
48f24c4d
IM
6363/*
6364 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6365 * offline.
6366 */
6367void idle_task_exit(void)
6368{
6369 struct mm_struct *mm = current->active_mm;
6370
6371 BUG_ON(cpu_online(smp_processor_id()));
6372
6373 if (mm != &init_mm)
6374 switch_mm(mm, &init_mm, current);
6375 mmdrop(mm);
6376}
6377
054b9108 6378/* called under rq->lock with disabled interrupts */
36c8b586 6379static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6380{
70b97a7f 6381 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6382
6383 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6384 BUG_ON(!p->exit_state);
1da177e4
LT
6385
6386 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6387 BUG_ON(p->state == TASK_DEAD);
1da177e4 6388
48f24c4d 6389 get_task_struct(p);
1da177e4
LT
6390
6391 /*
6392 * Drop lock around migration; if someone else moves it,
41a2d6cf 6393 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6394 * fine.
6395 */
f7b4cddc 6396 spin_unlock_irq(&rq->lock);
48f24c4d 6397 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6398 spin_lock_irq(&rq->lock);
1da177e4 6399
48f24c4d 6400 put_task_struct(p);
1da177e4
LT
6401}
6402
6403/* release_task() removes task from tasklist, so we won't find dead tasks. */
6404static void migrate_dead_tasks(unsigned int dead_cpu)
6405{
70b97a7f 6406 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6407 struct task_struct *next;
48f24c4d 6408
dd41f596
IM
6409 for ( ; ; ) {
6410 if (!rq->nr_running)
6411 break;
a8e504d2 6412 update_rq_clock(rq);
ff95f3df 6413 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6414 if (!next)
6415 break;
79c53799 6416 next->sched_class->put_prev_task(rq, next);
dd41f596 6417 migrate_dead(dead_cpu, next);
e692ab53 6418
1da177e4
LT
6419 }
6420}
6421#endif /* CONFIG_HOTPLUG_CPU */
6422
e692ab53
NP
6423#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6424
6425static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6426 {
6427 .procname = "sched_domain",
c57baf1e 6428 .mode = 0555,
e0361851 6429 },
38605cae 6430 {0, },
e692ab53
NP
6431};
6432
6433static struct ctl_table sd_ctl_root[] = {
e0361851 6434 {
c57baf1e 6435 .ctl_name = CTL_KERN,
e0361851 6436 .procname = "kernel",
c57baf1e 6437 .mode = 0555,
e0361851
AD
6438 .child = sd_ctl_dir,
6439 },
38605cae 6440 {0, },
e692ab53
NP
6441};
6442
6443static struct ctl_table *sd_alloc_ctl_entry(int n)
6444{
6445 struct ctl_table *entry =
5cf9f062 6446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6447
e692ab53
NP
6448 return entry;
6449}
6450
6382bc90
MM
6451static void sd_free_ctl_entry(struct ctl_table **tablep)
6452{
cd790076 6453 struct ctl_table *entry;
6382bc90 6454
cd790076
MM
6455 /*
6456 * In the intermediate directories, both the child directory and
6457 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6458 * will always be set. In the lowest directory the names are
cd790076
MM
6459 * static strings and all have proc handlers.
6460 */
6461 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6462 if (entry->child)
6463 sd_free_ctl_entry(&entry->child);
cd790076
MM
6464 if (entry->proc_handler == NULL)
6465 kfree(entry->procname);
6466 }
6382bc90
MM
6467
6468 kfree(*tablep);
6469 *tablep = NULL;
6470}
6471
e692ab53 6472static void
e0361851 6473set_table_entry(struct ctl_table *entry,
e692ab53
NP
6474 const char *procname, void *data, int maxlen,
6475 mode_t mode, proc_handler *proc_handler)
6476{
e692ab53
NP
6477 entry->procname = procname;
6478 entry->data = data;
6479 entry->maxlen = maxlen;
6480 entry->mode = mode;
6481 entry->proc_handler = proc_handler;
6482}
6483
6484static struct ctl_table *
6485sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486{
a5d8c348 6487 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6488
ad1cdc1d
MM
6489 if (table == NULL)
6490 return NULL;
6491
e0361851 6492 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6493 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6494 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6495 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6496 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6497 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6498 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6499 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6500 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6501 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6502 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6503 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6504 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6506 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6510 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6511 &sd->cache_nice_tries,
6512 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6513 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6514 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6515 set_table_entry(&table[11], "name", sd->name,
6516 CORENAME_MAX_SIZE, 0444, proc_dostring);
6517 /* &table[12] is terminator */
e692ab53
NP
6518
6519 return table;
6520}
6521
9a4e7159 6522static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6523{
6524 struct ctl_table *entry, *table;
6525 struct sched_domain *sd;
6526 int domain_num = 0, i;
6527 char buf[32];
6528
6529 for_each_domain(cpu, sd)
6530 domain_num++;
6531 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6532 if (table == NULL)
6533 return NULL;
e692ab53
NP
6534
6535 i = 0;
6536 for_each_domain(cpu, sd) {
6537 snprintf(buf, 32, "domain%d", i);
e692ab53 6538 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6539 entry->mode = 0555;
e692ab53
NP
6540 entry->child = sd_alloc_ctl_domain_table(sd);
6541 entry++;
6542 i++;
6543 }
6544 return table;
6545}
6546
6547static struct ctl_table_header *sd_sysctl_header;
6382bc90 6548static void register_sched_domain_sysctl(void)
e692ab53
NP
6549{
6550 int i, cpu_num = num_online_cpus();
6551 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6552 char buf[32];
6553
7378547f
MM
6554 WARN_ON(sd_ctl_dir[0].child);
6555 sd_ctl_dir[0].child = entry;
6556
ad1cdc1d
MM
6557 if (entry == NULL)
6558 return;
6559
97b6ea7b 6560 for_each_online_cpu(i) {
e692ab53 6561 snprintf(buf, 32, "cpu%d", i);
e692ab53 6562 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6563 entry->mode = 0555;
e692ab53 6564 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6565 entry++;
e692ab53 6566 }
7378547f
MM
6567
6568 WARN_ON(sd_sysctl_header);
e692ab53
NP
6569 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6570}
6382bc90 6571
7378547f 6572/* may be called multiple times per register */
6382bc90
MM
6573static void unregister_sched_domain_sysctl(void)
6574{
7378547f
MM
6575 if (sd_sysctl_header)
6576 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6577 sd_sysctl_header = NULL;
7378547f
MM
6578 if (sd_ctl_dir[0].child)
6579 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6580}
e692ab53 6581#else
6382bc90
MM
6582static void register_sched_domain_sysctl(void)
6583{
6584}
6585static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6586{
6587}
6588#endif
6589
1f11eb6a
GH
6590static void set_rq_online(struct rq *rq)
6591{
6592 if (!rq->online) {
6593 const struct sched_class *class;
6594
c6c4927b 6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6596 rq->online = 1;
6597
6598 for_each_class(class) {
6599 if (class->rq_online)
6600 class->rq_online(rq);
6601 }
6602 }
6603}
6604
6605static void set_rq_offline(struct rq *rq)
6606{
6607 if (rq->online) {
6608 const struct sched_class *class;
6609
6610 for_each_class(class) {
6611 if (class->rq_offline)
6612 class->rq_offline(rq);
6613 }
6614
c6c4927b 6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6616 rq->online = 0;
6617 }
6618}
6619
1da177e4
LT
6620/*
6621 * migration_call - callback that gets triggered when a CPU is added.
6622 * Here we can start up the necessary migration thread for the new CPU.
6623 */
48f24c4d
IM
6624static int __cpuinit
6625migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6626{
1da177e4 6627 struct task_struct *p;
48f24c4d 6628 int cpu = (long)hcpu;
1da177e4 6629 unsigned long flags;
70b97a7f 6630 struct rq *rq;
1da177e4
LT
6631
6632 switch (action) {
5be9361c 6633
1da177e4 6634 case CPU_UP_PREPARE:
8bb78442 6635 case CPU_UP_PREPARE_FROZEN:
dd41f596 6636 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6637 if (IS_ERR(p))
6638 return NOTIFY_BAD;
1da177e4
LT
6639 kthread_bind(p, cpu);
6640 /* Must be high prio: stop_machine expects to yield to it. */
6641 rq = task_rq_lock(p, &flags);
dd41f596 6642 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6643 task_rq_unlock(rq, &flags);
6644 cpu_rq(cpu)->migration_thread = p;
6645 break;
48f24c4d 6646
1da177e4 6647 case CPU_ONLINE:
8bb78442 6648 case CPU_ONLINE_FROZEN:
3a4fa0a2 6649 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6650 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6651
6652 /* Update our root-domain */
6653 rq = cpu_rq(cpu);
6654 spin_lock_irqsave(&rq->lock, flags);
6655 if (rq->rd) {
c6c4927b 6656 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6657
6658 set_rq_online(rq);
1f94ef59
GH
6659 }
6660 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6661 break;
48f24c4d 6662
1da177e4
LT
6663#ifdef CONFIG_HOTPLUG_CPU
6664 case CPU_UP_CANCELED:
8bb78442 6665 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6666 if (!cpu_rq(cpu)->migration_thread)
6667 break;
41a2d6cf 6668 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6669 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6670 cpumask_any(cpu_online_mask));
1da177e4
LT
6671 kthread_stop(cpu_rq(cpu)->migration_thread);
6672 cpu_rq(cpu)->migration_thread = NULL;
6673 break;
48f24c4d 6674
1da177e4 6675 case CPU_DEAD:
8bb78442 6676 case CPU_DEAD_FROZEN:
470fd646 6677 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6678 migrate_live_tasks(cpu);
6679 rq = cpu_rq(cpu);
6680 kthread_stop(rq->migration_thread);
6681 rq->migration_thread = NULL;
6682 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6683 spin_lock_irq(&rq->lock);
a8e504d2 6684 update_rq_clock(rq);
2e1cb74a 6685 deactivate_task(rq, rq->idle, 0);
1da177e4 6686 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6687 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6688 rq->idle->sched_class = &idle_sched_class;
1da177e4 6689 migrate_dead_tasks(cpu);
d2da272a 6690 spin_unlock_irq(&rq->lock);
470fd646 6691 cpuset_unlock();
1da177e4
LT
6692 migrate_nr_uninterruptible(rq);
6693 BUG_ON(rq->nr_running != 0);
6694
41a2d6cf
IM
6695 /*
6696 * No need to migrate the tasks: it was best-effort if
6697 * they didn't take sched_hotcpu_mutex. Just wake up
6698 * the requestors.
6699 */
1da177e4
LT
6700 spin_lock_irq(&rq->lock);
6701 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6702 struct migration_req *req;
6703
1da177e4 6704 req = list_entry(rq->migration_queue.next,
70b97a7f 6705 struct migration_req, list);
1da177e4 6706 list_del_init(&req->list);
9a2bd244 6707 spin_unlock_irq(&rq->lock);
1da177e4 6708 complete(&req->done);
9a2bd244 6709 spin_lock_irq(&rq->lock);
1da177e4
LT
6710 }
6711 spin_unlock_irq(&rq->lock);
6712 break;
57d885fe 6713
08f503b0
GH
6714 case CPU_DYING:
6715 case CPU_DYING_FROZEN:
57d885fe
GH
6716 /* Update our root-domain */
6717 rq = cpu_rq(cpu);
6718 spin_lock_irqsave(&rq->lock, flags);
6719 if (rq->rd) {
c6c4927b 6720 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6721 set_rq_offline(rq);
57d885fe
GH
6722 }
6723 spin_unlock_irqrestore(&rq->lock, flags);
6724 break;
1da177e4
LT
6725#endif
6726 }
6727 return NOTIFY_OK;
6728}
6729
6730/* Register at highest priority so that task migration (migrate_all_tasks)
6731 * happens before everything else.
6732 */
26c2143b 6733static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6734 .notifier_call = migration_call,
6735 .priority = 10
6736};
6737
7babe8db 6738static int __init migration_init(void)
1da177e4
LT
6739{
6740 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6741 int err;
48f24c4d
IM
6742
6743 /* Start one for the boot CPU: */
07dccf33
AM
6744 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6745 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6746 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6747 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6748
6749 return err;
1da177e4 6750}
7babe8db 6751early_initcall(migration_init);
1da177e4
LT
6752#endif
6753
6754#ifdef CONFIG_SMP
476f3534 6755
3e9830dc 6756#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6757
7c16ec58 6758static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6759 struct cpumask *groupmask)
1da177e4 6760{
4dcf6aff 6761 struct sched_group *group = sd->groups;
434d53b0 6762 char str[256];
1da177e4 6763
968ea6d8 6764 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6765 cpumask_clear(groupmask);
4dcf6aff
IM
6766
6767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6768
6769 if (!(sd->flags & SD_LOAD_BALANCE)) {
6770 printk("does not load-balance\n");
6771 if (sd->parent)
6772 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6773 " has parent");
6774 return -1;
41c7ce9a
NP
6775 }
6776
eefd796a 6777 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6778
758b2cdc 6779 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6780 printk(KERN_ERR "ERROR: domain->span does not contain "
6781 "CPU%d\n", cpu);
6782 }
758b2cdc 6783 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6784 printk(KERN_ERR "ERROR: domain->groups does not contain"
6785 " CPU%d\n", cpu);
6786 }
1da177e4 6787
4dcf6aff 6788 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6789 do {
4dcf6aff
IM
6790 if (!group) {
6791 printk("\n");
6792 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6793 break;
6794 }
6795
4dcf6aff
IM
6796 if (!group->__cpu_power) {
6797 printk(KERN_CONT "\n");
6798 printk(KERN_ERR "ERROR: domain->cpu_power not "
6799 "set\n");
6800 break;
6801 }
1da177e4 6802
758b2cdc 6803 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6804 printk(KERN_CONT "\n");
6805 printk(KERN_ERR "ERROR: empty group\n");
6806 break;
6807 }
1da177e4 6808
758b2cdc 6809 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6810 printk(KERN_CONT "\n");
6811 printk(KERN_ERR "ERROR: repeated CPUs\n");
6812 break;
6813 }
1da177e4 6814
758b2cdc 6815 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6816
968ea6d8 6817 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6818 printk(KERN_CONT " %s", str);
1da177e4 6819
4dcf6aff
IM
6820 group = group->next;
6821 } while (group != sd->groups);
6822 printk(KERN_CONT "\n");
1da177e4 6823
758b2cdc 6824 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6825 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6826
758b2cdc
RR
6827 if (sd->parent &&
6828 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6829 printk(KERN_ERR "ERROR: parent span is not a superset "
6830 "of domain->span\n");
6831 return 0;
6832}
1da177e4 6833
4dcf6aff
IM
6834static void sched_domain_debug(struct sched_domain *sd, int cpu)
6835{
d5dd3db1 6836 cpumask_var_t groupmask;
4dcf6aff 6837 int level = 0;
1da177e4 6838
4dcf6aff
IM
6839 if (!sd) {
6840 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6841 return;
6842 }
1da177e4 6843
4dcf6aff
IM
6844 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6845
d5dd3db1 6846 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6847 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6848 return;
6849 }
6850
4dcf6aff 6851 for (;;) {
7c16ec58 6852 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6853 break;
1da177e4
LT
6854 level++;
6855 sd = sd->parent;
33859f7f 6856 if (!sd)
4dcf6aff
IM
6857 break;
6858 }
d5dd3db1 6859 free_cpumask_var(groupmask);
1da177e4 6860}
6d6bc0ad 6861#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6862# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6863#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6864
1a20ff27 6865static int sd_degenerate(struct sched_domain *sd)
245af2c7 6866{
758b2cdc 6867 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6868 return 1;
6869
6870 /* Following flags need at least 2 groups */
6871 if (sd->flags & (SD_LOAD_BALANCE |
6872 SD_BALANCE_NEWIDLE |
6873 SD_BALANCE_FORK |
89c4710e
SS
6874 SD_BALANCE_EXEC |
6875 SD_SHARE_CPUPOWER |
6876 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6877 if (sd->groups != sd->groups->next)
6878 return 0;
6879 }
6880
6881 /* Following flags don't use groups */
6882 if (sd->flags & (SD_WAKE_IDLE |
6883 SD_WAKE_AFFINE |
6884 SD_WAKE_BALANCE))
6885 return 0;
6886
6887 return 1;
6888}
6889
48f24c4d
IM
6890static int
6891sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6892{
6893 unsigned long cflags = sd->flags, pflags = parent->flags;
6894
6895 if (sd_degenerate(parent))
6896 return 1;
6897
758b2cdc 6898 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6899 return 0;
6900
6901 /* Does parent contain flags not in child? */
6902 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6903 if (cflags & SD_WAKE_AFFINE)
6904 pflags &= ~SD_WAKE_BALANCE;
6905 /* Flags needing groups don't count if only 1 group in parent */
6906 if (parent->groups == parent->groups->next) {
6907 pflags &= ~(SD_LOAD_BALANCE |
6908 SD_BALANCE_NEWIDLE |
6909 SD_BALANCE_FORK |
89c4710e
SS
6910 SD_BALANCE_EXEC |
6911 SD_SHARE_CPUPOWER |
6912 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6913 if (nr_node_ids == 1)
6914 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6915 }
6916 if (~cflags & pflags)
6917 return 0;
6918
6919 return 1;
6920}
6921
c6c4927b
RR
6922static void free_rootdomain(struct root_domain *rd)
6923{
68e74568
RR
6924 cpupri_cleanup(&rd->cpupri);
6925
c6c4927b
RR
6926 free_cpumask_var(rd->rto_mask);
6927 free_cpumask_var(rd->online);
6928 free_cpumask_var(rd->span);
6929 kfree(rd);
6930}
6931
57d885fe
GH
6932static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6933{
6934 unsigned long flags;
57d885fe
GH
6935
6936 spin_lock_irqsave(&rq->lock, flags);
6937
6938 if (rq->rd) {
6939 struct root_domain *old_rd = rq->rd;
6940
c6c4927b 6941 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6942 set_rq_offline(rq);
57d885fe 6943
c6c4927b 6944 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6945
57d885fe 6946 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 6947 free_rootdomain(old_rd);
57d885fe
GH
6948 }
6949
6950 atomic_inc(&rd->refcount);
6951 rq->rd = rd;
6952
c6c4927b
RR
6953 cpumask_set_cpu(rq->cpu, rd->span);
6954 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6955 set_rq_online(rq);
57d885fe
GH
6956
6957 spin_unlock_irqrestore(&rq->lock, flags);
6958}
6959
c6c4927b 6960static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6961{
6962 memset(rd, 0, sizeof(*rd));
6963
c6c4927b
RR
6964 if (bootmem) {
6965 alloc_bootmem_cpumask_var(&def_root_domain.span);
6966 alloc_bootmem_cpumask_var(&def_root_domain.online);
6967 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6968 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6969 return 0;
6970 }
6971
6972 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6973 goto free_rd;
6974 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6975 goto free_span;
6976 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6977 goto free_online;
6e0534f2 6978
68e74568
RR
6979 if (cpupri_init(&rd->cpupri, false) != 0)
6980 goto free_rto_mask;
c6c4927b 6981 return 0;
6e0534f2 6982
68e74568
RR
6983free_rto_mask:
6984 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6985free_online:
6986 free_cpumask_var(rd->online);
6987free_span:
6988 free_cpumask_var(rd->span);
6989free_rd:
6990 kfree(rd);
6991 return -ENOMEM;
57d885fe
GH
6992}
6993
6994static void init_defrootdomain(void)
6995{
c6c4927b
RR
6996 init_rootdomain(&def_root_domain, true);
6997
57d885fe
GH
6998 atomic_set(&def_root_domain.refcount, 1);
6999}
7000
dc938520 7001static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7002{
7003 struct root_domain *rd;
7004
7005 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7006 if (!rd)
7007 return NULL;
7008
c6c4927b
RR
7009 if (init_rootdomain(rd, false) != 0) {
7010 kfree(rd);
7011 return NULL;
7012 }
57d885fe
GH
7013
7014 return rd;
7015}
7016
1da177e4 7017/*
0eab9146 7018 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7019 * hold the hotplug lock.
7020 */
0eab9146
IM
7021static void
7022cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7023{
70b97a7f 7024 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7025 struct sched_domain *tmp;
7026
7027 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7028 for (tmp = sd; tmp; ) {
245af2c7
SS
7029 struct sched_domain *parent = tmp->parent;
7030 if (!parent)
7031 break;
f29c9b1c 7032
1a848870 7033 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7034 tmp->parent = parent->parent;
1a848870
SS
7035 if (parent->parent)
7036 parent->parent->child = tmp;
f29c9b1c
LZ
7037 } else
7038 tmp = tmp->parent;
245af2c7
SS
7039 }
7040
1a848870 7041 if (sd && sd_degenerate(sd)) {
245af2c7 7042 sd = sd->parent;
1a848870
SS
7043 if (sd)
7044 sd->child = NULL;
7045 }
1da177e4
LT
7046
7047 sched_domain_debug(sd, cpu);
7048
57d885fe 7049 rq_attach_root(rq, rd);
674311d5 7050 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7051}
7052
7053/* cpus with isolated domains */
dcc30a35 7054static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7055
7056/* Setup the mask of cpus configured for isolated domains */
7057static int __init isolated_cpu_setup(char *str)
7058{
968ea6d8 7059 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7060 return 1;
7061}
7062
8927f494 7063__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7064
7065/*
6711cab4
SS
7066 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7067 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7068 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7069 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7070 *
7071 * init_sched_build_groups will build a circular linked list of the groups
7072 * covered by the given span, and will set each group's ->cpumask correctly,
7073 * and ->cpu_power to 0.
7074 */
a616058b 7075static void
96f874e2
RR
7076init_sched_build_groups(const struct cpumask *span,
7077 const struct cpumask *cpu_map,
7078 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7079 struct sched_group **sg,
96f874e2
RR
7080 struct cpumask *tmpmask),
7081 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7082{
7083 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7084 int i;
7085
96f874e2 7086 cpumask_clear(covered);
7c16ec58 7087
abcd083a 7088 for_each_cpu(i, span) {
6711cab4 7089 struct sched_group *sg;
7c16ec58 7090 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7091 int j;
7092
758b2cdc 7093 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7094 continue;
7095
758b2cdc 7096 cpumask_clear(sched_group_cpus(sg));
5517d86b 7097 sg->__cpu_power = 0;
1da177e4 7098
abcd083a 7099 for_each_cpu(j, span) {
7c16ec58 7100 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7101 continue;
7102
96f874e2 7103 cpumask_set_cpu(j, covered);
758b2cdc 7104 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7105 }
7106 if (!first)
7107 first = sg;
7108 if (last)
7109 last->next = sg;
7110 last = sg;
7111 }
7112 last->next = first;
7113}
7114
9c1cfda2 7115#define SD_NODES_PER_DOMAIN 16
1da177e4 7116
9c1cfda2 7117#ifdef CONFIG_NUMA
198e2f18 7118
9c1cfda2
JH
7119/**
7120 * find_next_best_node - find the next node to include in a sched_domain
7121 * @node: node whose sched_domain we're building
7122 * @used_nodes: nodes already in the sched_domain
7123 *
41a2d6cf 7124 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7125 * finds the closest node not already in the @used_nodes map.
7126 *
7127 * Should use nodemask_t.
7128 */
c5f59f08 7129static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7130{
7131 int i, n, val, min_val, best_node = 0;
7132
7133 min_val = INT_MAX;
7134
076ac2af 7135 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7136 /* Start at @node */
076ac2af 7137 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7138
7139 if (!nr_cpus_node(n))
7140 continue;
7141
7142 /* Skip already used nodes */
c5f59f08 7143 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7144 continue;
7145
7146 /* Simple min distance search */
7147 val = node_distance(node, n);
7148
7149 if (val < min_val) {
7150 min_val = val;
7151 best_node = n;
7152 }
7153 }
7154
c5f59f08 7155 node_set(best_node, *used_nodes);
9c1cfda2
JH
7156 return best_node;
7157}
7158
7159/**
7160 * sched_domain_node_span - get a cpumask for a node's sched_domain
7161 * @node: node whose cpumask we're constructing
73486722 7162 * @span: resulting cpumask
9c1cfda2 7163 *
41a2d6cf 7164 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7165 * should be one that prevents unnecessary balancing, but also spreads tasks
7166 * out optimally.
7167 */
96f874e2 7168static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7169{
c5f59f08 7170 nodemask_t used_nodes;
48f24c4d 7171 int i;
9c1cfda2 7172
6ca09dfc 7173 cpumask_clear(span);
c5f59f08 7174 nodes_clear(used_nodes);
9c1cfda2 7175
6ca09dfc 7176 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7177 node_set(node, used_nodes);
9c1cfda2
JH
7178
7179 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7180 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7181
6ca09dfc 7182 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7183 }
9c1cfda2 7184}
6d6bc0ad 7185#endif /* CONFIG_NUMA */
9c1cfda2 7186
5c45bf27 7187int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7188
6c99e9ad
RR
7189/*
7190 * The cpus mask in sched_group and sched_domain hangs off the end.
7191 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7192 * for nr_cpu_ids < CONFIG_NR_CPUS.
7193 */
7194struct static_sched_group {
7195 struct sched_group sg;
7196 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7197};
7198
7199struct static_sched_domain {
7200 struct sched_domain sd;
7201 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7202};
7203
9c1cfda2 7204/*
48f24c4d 7205 * SMT sched-domains:
9c1cfda2 7206 */
1da177e4 7207#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7208static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7209static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7210
41a2d6cf 7211static int
96f874e2
RR
7212cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7213 struct sched_group **sg, struct cpumask *unused)
1da177e4 7214{
6711cab4 7215 if (sg)
6c99e9ad 7216 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7217 return cpu;
7218}
6d6bc0ad 7219#endif /* CONFIG_SCHED_SMT */
1da177e4 7220
48f24c4d
IM
7221/*
7222 * multi-core sched-domains:
7223 */
1e9f28fa 7224#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7225static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7226static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7227#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7228
7229#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7230static int
96f874e2
RR
7231cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7232 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7233{
6711cab4 7234 int group;
7c16ec58 7235
96f874e2
RR
7236 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7237 group = cpumask_first(mask);
6711cab4 7238 if (sg)
6c99e9ad 7239 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7240 return group;
1e9f28fa
SS
7241}
7242#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7243static int
96f874e2
RR
7244cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7245 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7246{
6711cab4 7247 if (sg)
6c99e9ad 7248 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7249 return cpu;
7250}
7251#endif
7252
6c99e9ad
RR
7253static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7254static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7255
41a2d6cf 7256static int
96f874e2
RR
7257cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7258 struct sched_group **sg, struct cpumask *mask)
1da177e4 7259{
6711cab4 7260 int group;
48f24c4d 7261#ifdef CONFIG_SCHED_MC
6ca09dfc 7262 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7263 group = cpumask_first(mask);
1e9f28fa 7264#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7265 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7266 group = cpumask_first(mask);
1da177e4 7267#else
6711cab4 7268 group = cpu;
1da177e4 7269#endif
6711cab4 7270 if (sg)
6c99e9ad 7271 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7272 return group;
1da177e4
LT
7273}
7274
7275#ifdef CONFIG_NUMA
1da177e4 7276/*
9c1cfda2
JH
7277 * The init_sched_build_groups can't handle what we want to do with node
7278 * groups, so roll our own. Now each node has its own list of groups which
7279 * gets dynamically allocated.
1da177e4 7280 */
9c1cfda2 7281static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7282static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7283
9c1cfda2 7284static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6c99e9ad 7285static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7286
96f874e2
RR
7287static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7288 struct sched_group **sg,
7289 struct cpumask *nodemask)
9c1cfda2 7290{
6711cab4
SS
7291 int group;
7292
6ca09dfc 7293 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7294 group = cpumask_first(nodemask);
6711cab4
SS
7295
7296 if (sg)
6c99e9ad 7297 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7298 return group;
1da177e4 7299}
6711cab4 7300
08069033
SS
7301static void init_numa_sched_groups_power(struct sched_group *group_head)
7302{
7303 struct sched_group *sg = group_head;
7304 int j;
7305
7306 if (!sg)
7307 return;
3a5c359a 7308 do {
758b2cdc 7309 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7310 struct sched_domain *sd;
08069033 7311
6c99e9ad 7312 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7313 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7314 /*
7315 * Only add "power" once for each
7316 * physical package.
7317 */
7318 continue;
7319 }
08069033 7320
3a5c359a
AK
7321 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7322 }
7323 sg = sg->next;
7324 } while (sg != group_head);
08069033 7325}
6d6bc0ad 7326#endif /* CONFIG_NUMA */
1da177e4 7327
a616058b 7328#ifdef CONFIG_NUMA
51888ca2 7329/* Free memory allocated for various sched_group structures */
96f874e2
RR
7330static void free_sched_groups(const struct cpumask *cpu_map,
7331 struct cpumask *nodemask)
51888ca2 7332{
a616058b 7333 int cpu, i;
51888ca2 7334
abcd083a 7335 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7336 struct sched_group **sched_group_nodes
7337 = sched_group_nodes_bycpu[cpu];
7338
51888ca2
SV
7339 if (!sched_group_nodes)
7340 continue;
7341
076ac2af 7342 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7343 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7344
6ca09dfc 7345 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7346 if (cpumask_empty(nodemask))
51888ca2
SV
7347 continue;
7348
7349 if (sg == NULL)
7350 continue;
7351 sg = sg->next;
7352next_sg:
7353 oldsg = sg;
7354 sg = sg->next;
7355 kfree(oldsg);
7356 if (oldsg != sched_group_nodes[i])
7357 goto next_sg;
7358 }
7359 kfree(sched_group_nodes);
7360 sched_group_nodes_bycpu[cpu] = NULL;
7361 }
51888ca2 7362}
6d6bc0ad 7363#else /* !CONFIG_NUMA */
96f874e2
RR
7364static void free_sched_groups(const struct cpumask *cpu_map,
7365 struct cpumask *nodemask)
a616058b
SS
7366{
7367}
6d6bc0ad 7368#endif /* CONFIG_NUMA */
51888ca2 7369
89c4710e
SS
7370/*
7371 * Initialize sched groups cpu_power.
7372 *
7373 * cpu_power indicates the capacity of sched group, which is used while
7374 * distributing the load between different sched groups in a sched domain.
7375 * Typically cpu_power for all the groups in a sched domain will be same unless
7376 * there are asymmetries in the topology. If there are asymmetries, group
7377 * having more cpu_power will pickup more load compared to the group having
7378 * less cpu_power.
7379 *
7380 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7381 * the maximum number of tasks a group can handle in the presence of other idle
7382 * or lightly loaded groups in the same sched domain.
7383 */
7384static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7385{
7386 struct sched_domain *child;
7387 struct sched_group *group;
7388
7389 WARN_ON(!sd || !sd->groups);
7390
758b2cdc 7391 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7392 return;
7393
7394 child = sd->child;
7395
5517d86b
ED
7396 sd->groups->__cpu_power = 0;
7397
89c4710e
SS
7398 /*
7399 * For perf policy, if the groups in child domain share resources
7400 * (for example cores sharing some portions of the cache hierarchy
7401 * or SMT), then set this domain groups cpu_power such that each group
7402 * can handle only one task, when there are other idle groups in the
7403 * same sched domain.
7404 */
7405 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7406 (child->flags &
7407 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7408 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7409 return;
7410 }
7411
89c4710e
SS
7412 /*
7413 * add cpu_power of each child group to this groups cpu_power
7414 */
7415 group = child->groups;
7416 do {
5517d86b 7417 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7418 group = group->next;
7419 } while (group != child->groups);
7420}
7421
7c16ec58
MT
7422/*
7423 * Initializers for schedule domains
7424 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7425 */
7426
a5d8c348
IM
7427#ifdef CONFIG_SCHED_DEBUG
7428# define SD_INIT_NAME(sd, type) sd->name = #type
7429#else
7430# define SD_INIT_NAME(sd, type) do { } while (0)
7431#endif
7432
7c16ec58 7433#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7434
7c16ec58
MT
7435#define SD_INIT_FUNC(type) \
7436static noinline void sd_init_##type(struct sched_domain *sd) \
7437{ \
7438 memset(sd, 0, sizeof(*sd)); \
7439 *sd = SD_##type##_INIT; \
1d3504fc 7440 sd->level = SD_LV_##type; \
a5d8c348 7441 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7442}
7443
7444SD_INIT_FUNC(CPU)
7445#ifdef CONFIG_NUMA
7446 SD_INIT_FUNC(ALLNODES)
7447 SD_INIT_FUNC(NODE)
7448#endif
7449#ifdef CONFIG_SCHED_SMT
7450 SD_INIT_FUNC(SIBLING)
7451#endif
7452#ifdef CONFIG_SCHED_MC
7453 SD_INIT_FUNC(MC)
7454#endif
7455
1d3504fc
HS
7456static int default_relax_domain_level = -1;
7457
7458static int __init setup_relax_domain_level(char *str)
7459{
30e0e178
LZ
7460 unsigned long val;
7461
7462 val = simple_strtoul(str, NULL, 0);
7463 if (val < SD_LV_MAX)
7464 default_relax_domain_level = val;
7465
1d3504fc
HS
7466 return 1;
7467}
7468__setup("relax_domain_level=", setup_relax_domain_level);
7469
7470static void set_domain_attribute(struct sched_domain *sd,
7471 struct sched_domain_attr *attr)
7472{
7473 int request;
7474
7475 if (!attr || attr->relax_domain_level < 0) {
7476 if (default_relax_domain_level < 0)
7477 return;
7478 else
7479 request = default_relax_domain_level;
7480 } else
7481 request = attr->relax_domain_level;
7482 if (request < sd->level) {
7483 /* turn off idle balance on this domain */
7484 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7485 } else {
7486 /* turn on idle balance on this domain */
7487 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7488 }
7489}
7490
1da177e4 7491/*
1a20ff27
DG
7492 * Build sched domains for a given set of cpus and attach the sched domains
7493 * to the individual cpus
1da177e4 7494 */
96f874e2 7495static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7496 struct sched_domain_attr *attr)
1da177e4 7497{
3404c8d9 7498 int i, err = -ENOMEM;
57d885fe 7499 struct root_domain *rd;
3404c8d9
RR
7500 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7501 tmpmask;
d1b55138 7502#ifdef CONFIG_NUMA
3404c8d9 7503 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7504 struct sched_group **sched_group_nodes = NULL;
6711cab4 7505 int sd_allnodes = 0;
d1b55138 7506
3404c8d9
RR
7507 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7508 goto out;
7509 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7510 goto free_domainspan;
7511 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7512 goto free_covered;
7513#endif
7514
7515 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7516 goto free_notcovered;
7517 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7518 goto free_nodemask;
7519 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7520 goto free_this_sibling_map;
7521 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7522 goto free_this_core_map;
7523 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7524 goto free_send_covered;
7525
7526#ifdef CONFIG_NUMA
d1b55138
JH
7527 /*
7528 * Allocate the per-node list of sched groups
7529 */
076ac2af 7530 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7531 GFP_KERNEL);
d1b55138
JH
7532 if (!sched_group_nodes) {
7533 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7534 goto free_tmpmask;
d1b55138 7535 }
d1b55138 7536#endif
1da177e4 7537
dc938520 7538 rd = alloc_rootdomain();
57d885fe
GH
7539 if (!rd) {
7540 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7541 goto free_sched_groups;
57d885fe
GH
7542 }
7543
7c16ec58 7544#ifdef CONFIG_NUMA
96f874e2 7545 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7546#endif
7547
1da177e4 7548 /*
1a20ff27 7549 * Set up domains for cpus specified by the cpu_map.
1da177e4 7550 */
abcd083a 7551 for_each_cpu(i, cpu_map) {
1da177e4 7552 struct sched_domain *sd = NULL, *p;
1da177e4 7553
6ca09dfc 7554 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7555
7556#ifdef CONFIG_NUMA
96f874e2
RR
7557 if (cpumask_weight(cpu_map) >
7558 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
9c1cfda2 7559 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7560 SD_INIT(sd, ALLNODES);
1d3504fc 7561 set_domain_attribute(sd, attr);
758b2cdc 7562 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7563 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7564 p = sd;
6711cab4 7565 sd_allnodes = 1;
9c1cfda2
JH
7566 } else
7567 p = NULL;
7568
1da177e4 7569 sd = &per_cpu(node_domains, i);
7c16ec58 7570 SD_INIT(sd, NODE);
1d3504fc 7571 set_domain_attribute(sd, attr);
758b2cdc 7572 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7573 sd->parent = p;
1a848870
SS
7574 if (p)
7575 p->child = sd;
758b2cdc
RR
7576 cpumask_and(sched_domain_span(sd),
7577 sched_domain_span(sd), cpu_map);
1da177e4
LT
7578#endif
7579
7580 p = sd;
6c99e9ad 7581 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7582 SD_INIT(sd, CPU);
1d3504fc 7583 set_domain_attribute(sd, attr);
758b2cdc 7584 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7585 sd->parent = p;
1a848870
SS
7586 if (p)
7587 p->child = sd;
7c16ec58 7588 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7589
1e9f28fa
SS
7590#ifdef CONFIG_SCHED_MC
7591 p = sd;
6c99e9ad 7592 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7593 SD_INIT(sd, MC);
1d3504fc 7594 set_domain_attribute(sd, attr);
6ca09dfc
MT
7595 cpumask_and(sched_domain_span(sd), cpu_map,
7596 cpu_coregroup_mask(i));
1e9f28fa 7597 sd->parent = p;
1a848870 7598 p->child = sd;
7c16ec58 7599 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7600#endif
7601
1da177e4
LT
7602#ifdef CONFIG_SCHED_SMT
7603 p = sd;
6c99e9ad 7604 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7605 SD_INIT(sd, SIBLING);
1d3504fc 7606 set_domain_attribute(sd, attr);
758b2cdc
RR
7607 cpumask_and(sched_domain_span(sd),
7608 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7609 sd->parent = p;
1a848870 7610 p->child = sd;
7c16ec58 7611 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7612#endif
7613 }
7614
7615#ifdef CONFIG_SCHED_SMT
7616 /* Set up CPU (sibling) groups */
abcd083a 7617 for_each_cpu(i, cpu_map) {
96f874e2
RR
7618 cpumask_and(this_sibling_map,
7619 &per_cpu(cpu_sibling_map, i), cpu_map);
7620 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7621 continue;
7622
dd41f596 7623 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7624 &cpu_to_cpu_group,
7625 send_covered, tmpmask);
1da177e4
LT
7626 }
7627#endif
7628
1e9f28fa
SS
7629#ifdef CONFIG_SCHED_MC
7630 /* Set up multi-core groups */
abcd083a 7631 for_each_cpu(i, cpu_map) {
6ca09dfc 7632 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7633 if (i != cpumask_first(this_core_map))
1e9f28fa 7634 continue;
7c16ec58 7635
dd41f596 7636 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7637 &cpu_to_core_group,
7638 send_covered, tmpmask);
1e9f28fa
SS
7639 }
7640#endif
7641
1da177e4 7642 /* Set up physical groups */
076ac2af 7643 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7644 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7645 if (cpumask_empty(nodemask))
1da177e4
LT
7646 continue;
7647
7c16ec58
MT
7648 init_sched_build_groups(nodemask, cpu_map,
7649 &cpu_to_phys_group,
7650 send_covered, tmpmask);
1da177e4
LT
7651 }
7652
7653#ifdef CONFIG_NUMA
7654 /* Set up node groups */
7c16ec58 7655 if (sd_allnodes) {
7c16ec58
MT
7656 init_sched_build_groups(cpu_map, cpu_map,
7657 &cpu_to_allnodes_group,
7658 send_covered, tmpmask);
7659 }
9c1cfda2 7660
076ac2af 7661 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7662 /* Set up node groups */
7663 struct sched_group *sg, *prev;
9c1cfda2
JH
7664 int j;
7665
96f874e2 7666 cpumask_clear(covered);
6ca09dfc 7667 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7668 if (cpumask_empty(nodemask)) {
d1b55138 7669 sched_group_nodes[i] = NULL;
9c1cfda2 7670 continue;
d1b55138 7671 }
9c1cfda2 7672
4bdbaad3 7673 sched_domain_node_span(i, domainspan);
96f874e2 7674 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7675
6c99e9ad
RR
7676 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7677 GFP_KERNEL, i);
51888ca2
SV
7678 if (!sg) {
7679 printk(KERN_WARNING "Can not alloc domain group for "
7680 "node %d\n", i);
7681 goto error;
7682 }
9c1cfda2 7683 sched_group_nodes[i] = sg;
abcd083a 7684 for_each_cpu(j, nodemask) {
9c1cfda2 7685 struct sched_domain *sd;
9761eea8 7686
9c1cfda2
JH
7687 sd = &per_cpu(node_domains, j);
7688 sd->groups = sg;
9c1cfda2 7689 }
5517d86b 7690 sg->__cpu_power = 0;
758b2cdc 7691 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7692 sg->next = sg;
96f874e2 7693 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7694 prev = sg;
7695
076ac2af 7696 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7697 int n = (i + j) % nr_node_ids;
9c1cfda2 7698
96f874e2
RR
7699 cpumask_complement(notcovered, covered);
7700 cpumask_and(tmpmask, notcovered, cpu_map);
7701 cpumask_and(tmpmask, tmpmask, domainspan);
7702 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7703 break;
7704
6ca09dfc 7705 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7706 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7707 continue;
7708
6c99e9ad
RR
7709 sg = kmalloc_node(sizeof(struct sched_group) +
7710 cpumask_size(),
15f0b676 7711 GFP_KERNEL, i);
9c1cfda2
JH
7712 if (!sg) {
7713 printk(KERN_WARNING
7714 "Can not alloc domain group for node %d\n", j);
51888ca2 7715 goto error;
9c1cfda2 7716 }
5517d86b 7717 sg->__cpu_power = 0;
758b2cdc 7718 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7719 sg->next = prev->next;
96f874e2 7720 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7721 prev->next = sg;
7722 prev = sg;
7723 }
9c1cfda2 7724 }
1da177e4
LT
7725#endif
7726
7727 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7728#ifdef CONFIG_SCHED_SMT
abcd083a 7729 for_each_cpu(i, cpu_map) {
6c99e9ad 7730 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7731
89c4710e 7732 init_sched_groups_power(i, sd);
5c45bf27 7733 }
1da177e4 7734#endif
1e9f28fa 7735#ifdef CONFIG_SCHED_MC
abcd083a 7736 for_each_cpu(i, cpu_map) {
6c99e9ad 7737 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7738
89c4710e 7739 init_sched_groups_power(i, sd);
5c45bf27
SS
7740 }
7741#endif
1e9f28fa 7742
abcd083a 7743 for_each_cpu(i, cpu_map) {
6c99e9ad 7744 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7745
89c4710e 7746 init_sched_groups_power(i, sd);
1da177e4
LT
7747 }
7748
9c1cfda2 7749#ifdef CONFIG_NUMA
076ac2af 7750 for (i = 0; i < nr_node_ids; i++)
08069033 7751 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7752
6711cab4
SS
7753 if (sd_allnodes) {
7754 struct sched_group *sg;
f712c0c7 7755
96f874e2 7756 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7757 tmpmask);
f712c0c7
SS
7758 init_numa_sched_groups_power(sg);
7759 }
9c1cfda2
JH
7760#endif
7761
1da177e4 7762 /* Attach the domains */
abcd083a 7763 for_each_cpu(i, cpu_map) {
1da177e4
LT
7764 struct sched_domain *sd;
7765#ifdef CONFIG_SCHED_SMT
6c99e9ad 7766 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7767#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7768 sd = &per_cpu(core_domains, i).sd;
1da177e4 7769#else
6c99e9ad 7770 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7771#endif
57d885fe 7772 cpu_attach_domain(sd, rd, i);
1da177e4 7773 }
51888ca2 7774
3404c8d9
RR
7775 err = 0;
7776
7777free_tmpmask:
7778 free_cpumask_var(tmpmask);
7779free_send_covered:
7780 free_cpumask_var(send_covered);
7781free_this_core_map:
7782 free_cpumask_var(this_core_map);
7783free_this_sibling_map:
7784 free_cpumask_var(this_sibling_map);
7785free_nodemask:
7786 free_cpumask_var(nodemask);
7787free_notcovered:
7788#ifdef CONFIG_NUMA
7789 free_cpumask_var(notcovered);
7790free_covered:
7791 free_cpumask_var(covered);
7792free_domainspan:
7793 free_cpumask_var(domainspan);
7794out:
7795#endif
7796 return err;
7797
7798free_sched_groups:
7799#ifdef CONFIG_NUMA
7800 kfree(sched_group_nodes);
7801#endif
7802 goto free_tmpmask;
51888ca2 7803
a616058b 7804#ifdef CONFIG_NUMA
51888ca2 7805error:
7c16ec58 7806 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7807 free_rootdomain(rd);
3404c8d9 7808 goto free_tmpmask;
a616058b 7809#endif
1da177e4 7810}
029190c5 7811
96f874e2 7812static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7813{
7814 return __build_sched_domains(cpu_map, NULL);
7815}
7816
96f874e2 7817static struct cpumask *doms_cur; /* current sched domains */
029190c5 7818static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7819static struct sched_domain_attr *dattr_cur;
7820 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7821
7822/*
7823 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7824 * cpumask) fails, then fallback to a single sched domain,
7825 * as determined by the single cpumask fallback_doms.
029190c5 7826 */
4212823f 7827static cpumask_var_t fallback_doms;
029190c5 7828
ee79d1bd
HC
7829/*
7830 * arch_update_cpu_topology lets virtualized architectures update the
7831 * cpu core maps. It is supposed to return 1 if the topology changed
7832 * or 0 if it stayed the same.
7833 */
7834int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7835{
ee79d1bd 7836 return 0;
22e52b07
HC
7837}
7838
1a20ff27 7839/*
41a2d6cf 7840 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7841 * For now this just excludes isolated cpus, but could be used to
7842 * exclude other special cases in the future.
1a20ff27 7843 */
96f874e2 7844static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7845{
7378547f
MM
7846 int err;
7847
22e52b07 7848 arch_update_cpu_topology();
029190c5 7849 ndoms_cur = 1;
96f874e2 7850 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7851 if (!doms_cur)
4212823f 7852 doms_cur = fallback_doms;
dcc30a35 7853 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7854 dattr_cur = NULL;
7378547f 7855 err = build_sched_domains(doms_cur);
6382bc90 7856 register_sched_domain_sysctl();
7378547f
MM
7857
7858 return err;
1a20ff27
DG
7859}
7860
96f874e2
RR
7861static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7862 struct cpumask *tmpmask)
1da177e4 7863{
7c16ec58 7864 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7865}
1da177e4 7866
1a20ff27
DG
7867/*
7868 * Detach sched domains from a group of cpus specified in cpu_map
7869 * These cpus will now be attached to the NULL domain
7870 */
96f874e2 7871static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7872{
96f874e2
RR
7873 /* Save because hotplug lock held. */
7874 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7875 int i;
7876
abcd083a 7877 for_each_cpu(i, cpu_map)
57d885fe 7878 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7879 synchronize_sched();
96f874e2 7880 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7881}
7882
1d3504fc
HS
7883/* handle null as "default" */
7884static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7885 struct sched_domain_attr *new, int idx_new)
7886{
7887 struct sched_domain_attr tmp;
7888
7889 /* fast path */
7890 if (!new && !cur)
7891 return 1;
7892
7893 tmp = SD_ATTR_INIT;
7894 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7895 new ? (new + idx_new) : &tmp,
7896 sizeof(struct sched_domain_attr));
7897}
7898
029190c5
PJ
7899/*
7900 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7901 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7902 * doms_new[] to the current sched domain partitioning, doms_cur[].
7903 * It destroys each deleted domain and builds each new domain.
7904 *
96f874e2 7905 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7906 * The masks don't intersect (don't overlap.) We should setup one
7907 * sched domain for each mask. CPUs not in any of the cpumasks will
7908 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7909 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7910 * it as it is.
7911 *
41a2d6cf
IM
7912 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7913 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7914 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7915 * ndoms_new == 1, and partition_sched_domains() will fallback to
7916 * the single partition 'fallback_doms', it also forces the domains
7917 * to be rebuilt.
029190c5 7918 *
96f874e2 7919 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7920 * ndoms_new == 0 is a special case for destroying existing domains,
7921 * and it will not create the default domain.
dfb512ec 7922 *
029190c5
PJ
7923 * Call with hotplug lock held
7924 */
96f874e2
RR
7925/* FIXME: Change to struct cpumask *doms_new[] */
7926void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7927 struct sched_domain_attr *dattr_new)
029190c5 7928{
dfb512ec 7929 int i, j, n;
d65bd5ec 7930 int new_topology;
029190c5 7931
712555ee 7932 mutex_lock(&sched_domains_mutex);
a1835615 7933
7378547f
MM
7934 /* always unregister in case we don't destroy any domains */
7935 unregister_sched_domain_sysctl();
7936
d65bd5ec
HC
7937 /* Let architecture update cpu core mappings. */
7938 new_topology = arch_update_cpu_topology();
7939
dfb512ec 7940 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7941
7942 /* Destroy deleted domains */
7943 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7944 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7945 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7946 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7947 goto match1;
7948 }
7949 /* no match - a current sched domain not in new doms_new[] */
7950 detach_destroy_domains(doms_cur + i);
7951match1:
7952 ;
7953 }
7954
e761b772
MK
7955 if (doms_new == NULL) {
7956 ndoms_cur = 0;
4212823f 7957 doms_new = fallback_doms;
dcc30a35 7958 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7959 WARN_ON_ONCE(dattr_new);
e761b772
MK
7960 }
7961
029190c5
PJ
7962 /* Build new domains */
7963 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7964 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7965 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7966 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7967 goto match2;
7968 }
7969 /* no match - add a new doms_new */
1d3504fc
HS
7970 __build_sched_domains(doms_new + i,
7971 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7972match2:
7973 ;
7974 }
7975
7976 /* Remember the new sched domains */
4212823f 7977 if (doms_cur != fallback_doms)
029190c5 7978 kfree(doms_cur);
1d3504fc 7979 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7980 doms_cur = doms_new;
1d3504fc 7981 dattr_cur = dattr_new;
029190c5 7982 ndoms_cur = ndoms_new;
7378547f
MM
7983
7984 register_sched_domain_sysctl();
a1835615 7985
712555ee 7986 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7987}
7988
5c45bf27 7989#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7990int arch_reinit_sched_domains(void)
5c45bf27 7991{
95402b38 7992 get_online_cpus();
dfb512ec
MK
7993
7994 /* Destroy domains first to force the rebuild */
7995 partition_sched_domains(0, NULL, NULL);
7996
e761b772 7997 rebuild_sched_domains();
95402b38 7998 put_online_cpus();
dfb512ec 7999
e761b772 8000 return 0;
5c45bf27
SS
8001}
8002
8003static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8004{
8005 int ret;
afb8a9b7 8006 unsigned int level = 0;
5c45bf27 8007
afb8a9b7
GS
8008 if (sscanf(buf, "%u", &level) != 1)
8009 return -EINVAL;
8010
8011 /*
8012 * level is always be positive so don't check for
8013 * level < POWERSAVINGS_BALANCE_NONE which is 0
8014 * What happens on 0 or 1 byte write,
8015 * need to check for count as well?
8016 */
8017
8018 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8019 return -EINVAL;
8020
8021 if (smt)
afb8a9b7 8022 sched_smt_power_savings = level;
5c45bf27 8023 else
afb8a9b7 8024 sched_mc_power_savings = level;
5c45bf27
SS
8025
8026 ret = arch_reinit_sched_domains();
8027
8028 return ret ? ret : count;
8029}
8030
5c45bf27 8031#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8032static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8033 char *page)
5c45bf27
SS
8034{
8035 return sprintf(page, "%u\n", sched_mc_power_savings);
8036}
f718cd4a 8037static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8038 const char *buf, size_t count)
5c45bf27
SS
8039{
8040 return sched_power_savings_store(buf, count, 0);
8041}
f718cd4a
AK
8042static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8043 sched_mc_power_savings_show,
8044 sched_mc_power_savings_store);
5c45bf27
SS
8045#endif
8046
8047#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8048static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8049 char *page)
5c45bf27
SS
8050{
8051 return sprintf(page, "%u\n", sched_smt_power_savings);
8052}
f718cd4a 8053static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8054 const char *buf, size_t count)
5c45bf27
SS
8055{
8056 return sched_power_savings_store(buf, count, 1);
8057}
f718cd4a
AK
8058static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8059 sched_smt_power_savings_show,
6707de00
AB
8060 sched_smt_power_savings_store);
8061#endif
8062
8063int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8064{
8065 int err = 0;
8066
8067#ifdef CONFIG_SCHED_SMT
8068 if (smt_capable())
8069 err = sysfs_create_file(&cls->kset.kobj,
8070 &attr_sched_smt_power_savings.attr);
8071#endif
8072#ifdef CONFIG_SCHED_MC
8073 if (!err && mc_capable())
8074 err = sysfs_create_file(&cls->kset.kobj,
8075 &attr_sched_mc_power_savings.attr);
8076#endif
8077 return err;
8078}
6d6bc0ad 8079#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8080
e761b772 8081#ifndef CONFIG_CPUSETS
1da177e4 8082/*
e761b772
MK
8083 * Add online and remove offline CPUs from the scheduler domains.
8084 * When cpusets are enabled they take over this function.
1da177e4
LT
8085 */
8086static int update_sched_domains(struct notifier_block *nfb,
8087 unsigned long action, void *hcpu)
e761b772
MK
8088{
8089 switch (action) {
8090 case CPU_ONLINE:
8091 case CPU_ONLINE_FROZEN:
8092 case CPU_DEAD:
8093 case CPU_DEAD_FROZEN:
dfb512ec 8094 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8095 return NOTIFY_OK;
8096
8097 default:
8098 return NOTIFY_DONE;
8099 }
8100}
8101#endif
8102
8103static int update_runtime(struct notifier_block *nfb,
8104 unsigned long action, void *hcpu)
1da177e4 8105{
7def2be1
PZ
8106 int cpu = (int)(long)hcpu;
8107
1da177e4 8108 switch (action) {
1da177e4 8109 case CPU_DOWN_PREPARE:
8bb78442 8110 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8111 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8112 return NOTIFY_OK;
8113
1da177e4 8114 case CPU_DOWN_FAILED:
8bb78442 8115 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8116 case CPU_ONLINE:
8bb78442 8117 case CPU_ONLINE_FROZEN:
7def2be1 8118 enable_runtime(cpu_rq(cpu));
e761b772
MK
8119 return NOTIFY_OK;
8120
1da177e4
LT
8121 default:
8122 return NOTIFY_DONE;
8123 }
1da177e4 8124}
1da177e4
LT
8125
8126void __init sched_init_smp(void)
8127{
dcc30a35
RR
8128 cpumask_var_t non_isolated_cpus;
8129
8130 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8131
434d53b0
MT
8132#if defined(CONFIG_NUMA)
8133 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8134 GFP_KERNEL);
8135 BUG_ON(sched_group_nodes_bycpu == NULL);
8136#endif
95402b38 8137 get_online_cpus();
712555ee 8138 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8139 arch_init_sched_domains(cpu_online_mask);
8140 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8141 if (cpumask_empty(non_isolated_cpus))
8142 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8143 mutex_unlock(&sched_domains_mutex);
95402b38 8144 put_online_cpus();
e761b772
MK
8145
8146#ifndef CONFIG_CPUSETS
1da177e4
LT
8147 /* XXX: Theoretical race here - CPU may be hotplugged now */
8148 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8149#endif
8150
8151 /* RT runtime code needs to handle some hotplug events */
8152 hotcpu_notifier(update_runtime, 0);
8153
b328ca18 8154 init_hrtick();
5c1e1767
NP
8155
8156 /* Move init over to a non-isolated CPU */
dcc30a35 8157 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8158 BUG();
19978ca6 8159 sched_init_granularity();
dcc30a35 8160 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8161
8162 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8163 init_sched_rt_class();
1da177e4
LT
8164}
8165#else
8166void __init sched_init_smp(void)
8167{
19978ca6 8168 sched_init_granularity();
1da177e4
LT
8169}
8170#endif /* CONFIG_SMP */
8171
8172int in_sched_functions(unsigned long addr)
8173{
1da177e4
LT
8174 return in_lock_functions(addr) ||
8175 (addr >= (unsigned long)__sched_text_start
8176 && addr < (unsigned long)__sched_text_end);
8177}
8178
a9957449 8179static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8180{
8181 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8182 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8183#ifdef CONFIG_FAIR_GROUP_SCHED
8184 cfs_rq->rq = rq;
8185#endif
67e9fb2a 8186 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8187}
8188
fa85ae24
PZ
8189static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8190{
8191 struct rt_prio_array *array;
8192 int i;
8193
8194 array = &rt_rq->active;
8195 for (i = 0; i < MAX_RT_PRIO; i++) {
8196 INIT_LIST_HEAD(array->queue + i);
8197 __clear_bit(i, array->bitmap);
8198 }
8199 /* delimiter for bitsearch: */
8200 __set_bit(MAX_RT_PRIO, array->bitmap);
8201
052f1dc7 8202#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8203 rt_rq->highest_prio = MAX_RT_PRIO;
8204#endif
fa85ae24
PZ
8205#ifdef CONFIG_SMP
8206 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8207 rt_rq->overloaded = 0;
8208#endif
8209
8210 rt_rq->rt_time = 0;
8211 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8212 rt_rq->rt_runtime = 0;
8213 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8214
052f1dc7 8215#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8216 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8217 rt_rq->rq = rq;
8218#endif
fa85ae24
PZ
8219}
8220
6f505b16 8221#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8222static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8223 struct sched_entity *se, int cpu, int add,
8224 struct sched_entity *parent)
6f505b16 8225{
ec7dc8ac 8226 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8227 tg->cfs_rq[cpu] = cfs_rq;
8228 init_cfs_rq(cfs_rq, rq);
8229 cfs_rq->tg = tg;
8230 if (add)
8231 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8232
8233 tg->se[cpu] = se;
354d60c2
DG
8234 /* se could be NULL for init_task_group */
8235 if (!se)
8236 return;
8237
ec7dc8ac
DG
8238 if (!parent)
8239 se->cfs_rq = &rq->cfs;
8240 else
8241 se->cfs_rq = parent->my_q;
8242
6f505b16
PZ
8243 se->my_q = cfs_rq;
8244 se->load.weight = tg->shares;
e05510d0 8245 se->load.inv_weight = 0;
ec7dc8ac 8246 se->parent = parent;
6f505b16 8247}
052f1dc7 8248#endif
6f505b16 8249
052f1dc7 8250#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8251static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8252 struct sched_rt_entity *rt_se, int cpu, int add,
8253 struct sched_rt_entity *parent)
6f505b16 8254{
ec7dc8ac
DG
8255 struct rq *rq = cpu_rq(cpu);
8256
6f505b16
PZ
8257 tg->rt_rq[cpu] = rt_rq;
8258 init_rt_rq(rt_rq, rq);
8259 rt_rq->tg = tg;
8260 rt_rq->rt_se = rt_se;
ac086bc2 8261 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8262 if (add)
8263 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8264
8265 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8266 if (!rt_se)
8267 return;
8268
ec7dc8ac
DG
8269 if (!parent)
8270 rt_se->rt_rq = &rq->rt;
8271 else
8272 rt_se->rt_rq = parent->my_q;
8273
6f505b16 8274 rt_se->my_q = rt_rq;
ec7dc8ac 8275 rt_se->parent = parent;
6f505b16
PZ
8276 INIT_LIST_HEAD(&rt_se->run_list);
8277}
8278#endif
8279
1da177e4
LT
8280void __init sched_init(void)
8281{
dd41f596 8282 int i, j;
434d53b0
MT
8283 unsigned long alloc_size = 0, ptr;
8284
8285#ifdef CONFIG_FAIR_GROUP_SCHED
8286 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8287#endif
8288#ifdef CONFIG_RT_GROUP_SCHED
8289 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8290#endif
8291#ifdef CONFIG_USER_SCHED
8292 alloc_size *= 2;
434d53b0
MT
8293#endif
8294 /*
8295 * As sched_init() is called before page_alloc is setup,
8296 * we use alloc_bootmem().
8297 */
8298 if (alloc_size) {
5a9d3225 8299 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8300
8301#ifdef CONFIG_FAIR_GROUP_SCHED
8302 init_task_group.se = (struct sched_entity **)ptr;
8303 ptr += nr_cpu_ids * sizeof(void **);
8304
8305 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8306 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8307
8308#ifdef CONFIG_USER_SCHED
8309 root_task_group.se = (struct sched_entity **)ptr;
8310 ptr += nr_cpu_ids * sizeof(void **);
8311
8312 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8313 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8314#endif /* CONFIG_USER_SCHED */
8315#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8316#ifdef CONFIG_RT_GROUP_SCHED
8317 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8318 ptr += nr_cpu_ids * sizeof(void **);
8319
8320 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8321 ptr += nr_cpu_ids * sizeof(void **);
8322
8323#ifdef CONFIG_USER_SCHED
8324 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8325 ptr += nr_cpu_ids * sizeof(void **);
8326
8327 root_task_group.rt_rq = (struct rt_rq **)ptr;
8328 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8329#endif /* CONFIG_USER_SCHED */
8330#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8331 }
dd41f596 8332
57d885fe
GH
8333#ifdef CONFIG_SMP
8334 init_defrootdomain();
8335#endif
8336
d0b27fa7
PZ
8337 init_rt_bandwidth(&def_rt_bandwidth,
8338 global_rt_period(), global_rt_runtime());
8339
8340#ifdef CONFIG_RT_GROUP_SCHED
8341 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8342 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8343#ifdef CONFIG_USER_SCHED
8344 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8345 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8346#endif /* CONFIG_USER_SCHED */
8347#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8348
052f1dc7 8349#ifdef CONFIG_GROUP_SCHED
6f505b16 8350 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8351 INIT_LIST_HEAD(&init_task_group.children);
8352
8353#ifdef CONFIG_USER_SCHED
8354 INIT_LIST_HEAD(&root_task_group.children);
8355 init_task_group.parent = &root_task_group;
8356 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8357#endif /* CONFIG_USER_SCHED */
8358#endif /* CONFIG_GROUP_SCHED */
6f505b16 8359
0a945022 8360 for_each_possible_cpu(i) {
70b97a7f 8361 struct rq *rq;
1da177e4
LT
8362
8363 rq = cpu_rq(i);
8364 spin_lock_init(&rq->lock);
7897986b 8365 rq->nr_running = 0;
dd41f596 8366 init_cfs_rq(&rq->cfs, rq);
6f505b16 8367 init_rt_rq(&rq->rt, rq);
dd41f596 8368#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8369 init_task_group.shares = init_task_group_load;
6f505b16 8370 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8371#ifdef CONFIG_CGROUP_SCHED
8372 /*
8373 * How much cpu bandwidth does init_task_group get?
8374 *
8375 * In case of task-groups formed thr' the cgroup filesystem, it
8376 * gets 100% of the cpu resources in the system. This overall
8377 * system cpu resource is divided among the tasks of
8378 * init_task_group and its child task-groups in a fair manner,
8379 * based on each entity's (task or task-group's) weight
8380 * (se->load.weight).
8381 *
8382 * In other words, if init_task_group has 10 tasks of weight
8383 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8384 * then A0's share of the cpu resource is:
8385 *
8386 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8387 *
8388 * We achieve this by letting init_task_group's tasks sit
8389 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8390 */
ec7dc8ac 8391 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8392#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8393 root_task_group.shares = NICE_0_LOAD;
8394 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8395 /*
8396 * In case of task-groups formed thr' the user id of tasks,
8397 * init_task_group represents tasks belonging to root user.
8398 * Hence it forms a sibling of all subsequent groups formed.
8399 * In this case, init_task_group gets only a fraction of overall
8400 * system cpu resource, based on the weight assigned to root
8401 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8402 * by letting tasks of init_task_group sit in a separate cfs_rq
8403 * (init_cfs_rq) and having one entity represent this group of
8404 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8405 */
ec7dc8ac 8406 init_tg_cfs_entry(&init_task_group,
6f505b16 8407 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8408 &per_cpu(init_sched_entity, i), i, 1,
8409 root_task_group.se[i]);
6f505b16 8410
052f1dc7 8411#endif
354d60c2
DG
8412#endif /* CONFIG_FAIR_GROUP_SCHED */
8413
8414 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8415#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8416 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8417#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8418 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8419#elif defined CONFIG_USER_SCHED
eff766a6 8420 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8421 init_tg_rt_entry(&init_task_group,
6f505b16 8422 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8423 &per_cpu(init_sched_rt_entity, i), i, 1,
8424 root_task_group.rt_se[i]);
354d60c2 8425#endif
dd41f596 8426#endif
1da177e4 8427
dd41f596
IM
8428 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8429 rq->cpu_load[j] = 0;
1da177e4 8430#ifdef CONFIG_SMP
41c7ce9a 8431 rq->sd = NULL;
57d885fe 8432 rq->rd = NULL;
1da177e4 8433 rq->active_balance = 0;
dd41f596 8434 rq->next_balance = jiffies;
1da177e4 8435 rq->push_cpu = 0;
0a2966b4 8436 rq->cpu = i;
1f11eb6a 8437 rq->online = 0;
1da177e4
LT
8438 rq->migration_thread = NULL;
8439 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8440 rq_attach_root(rq, &def_root_domain);
1da177e4 8441#endif
8f4d37ec 8442 init_rq_hrtick(rq);
1da177e4 8443 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8444 }
8445
2dd73a4f 8446 set_load_weight(&init_task);
b50f60ce 8447
e107be36
AK
8448#ifdef CONFIG_PREEMPT_NOTIFIERS
8449 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8450#endif
8451
c9819f45 8452#ifdef CONFIG_SMP
962cf36c 8453 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8454#endif
8455
b50f60ce
HC
8456#ifdef CONFIG_RT_MUTEXES
8457 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8458#endif
8459
1da177e4
LT
8460 /*
8461 * The boot idle thread does lazy MMU switching as well:
8462 */
8463 atomic_inc(&init_mm.mm_count);
8464 enter_lazy_tlb(&init_mm, current);
8465
8466 /*
8467 * Make us the idle thread. Technically, schedule() should not be
8468 * called from this thread, however somewhere below it might be,
8469 * but because we are the idle thread, we just pick up running again
8470 * when this runqueue becomes "idle".
8471 */
8472 init_idle(current, smp_processor_id());
dd41f596
IM
8473 /*
8474 * During early bootup we pretend to be a normal task:
8475 */
8476 current->sched_class = &fair_sched_class;
6892b75e 8477
6a7b3dc3
RR
8478 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8479 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8480#ifdef CONFIG_SMP
7d1e6a9b
RR
8481#ifdef CONFIG_NO_HZ
8482 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8483#endif
dcc30a35 8484 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8485#endif /* SMP */
6a7b3dc3 8486
6892b75e 8487 scheduler_running = 1;
1da177e4
LT
8488}
8489
8490#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8491void __might_sleep(char *file, int line)
8492{
48f24c4d 8493#ifdef in_atomic
1da177e4
LT
8494 static unsigned long prev_jiffy; /* ratelimiting */
8495
aef745fc
IM
8496 if ((!in_atomic() && !irqs_disabled()) ||
8497 system_state != SYSTEM_RUNNING || oops_in_progress)
8498 return;
8499 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8500 return;
8501 prev_jiffy = jiffies;
8502
8503 printk(KERN_ERR
8504 "BUG: sleeping function called from invalid context at %s:%d\n",
8505 file, line);
8506 printk(KERN_ERR
8507 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8508 in_atomic(), irqs_disabled(),
8509 current->pid, current->comm);
8510
8511 debug_show_held_locks(current);
8512 if (irqs_disabled())
8513 print_irqtrace_events(current);
8514 dump_stack();
1da177e4
LT
8515#endif
8516}
8517EXPORT_SYMBOL(__might_sleep);
8518#endif
8519
8520#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8521static void normalize_task(struct rq *rq, struct task_struct *p)
8522{
8523 int on_rq;
3e51f33f 8524
3a5e4dc1
AK
8525 update_rq_clock(rq);
8526 on_rq = p->se.on_rq;
8527 if (on_rq)
8528 deactivate_task(rq, p, 0);
8529 __setscheduler(rq, p, SCHED_NORMAL, 0);
8530 if (on_rq) {
8531 activate_task(rq, p, 0);
8532 resched_task(rq->curr);
8533 }
8534}
8535
1da177e4
LT
8536void normalize_rt_tasks(void)
8537{
a0f98a1c 8538 struct task_struct *g, *p;
1da177e4 8539 unsigned long flags;
70b97a7f 8540 struct rq *rq;
1da177e4 8541
4cf5d77a 8542 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8543 do_each_thread(g, p) {
178be793
IM
8544 /*
8545 * Only normalize user tasks:
8546 */
8547 if (!p->mm)
8548 continue;
8549
6cfb0d5d 8550 p->se.exec_start = 0;
6cfb0d5d 8551#ifdef CONFIG_SCHEDSTATS
dd41f596 8552 p->se.wait_start = 0;
dd41f596 8553 p->se.sleep_start = 0;
dd41f596 8554 p->se.block_start = 0;
6cfb0d5d 8555#endif
dd41f596
IM
8556
8557 if (!rt_task(p)) {
8558 /*
8559 * Renice negative nice level userspace
8560 * tasks back to 0:
8561 */
8562 if (TASK_NICE(p) < 0 && p->mm)
8563 set_user_nice(p, 0);
1da177e4 8564 continue;
dd41f596 8565 }
1da177e4 8566
4cf5d77a 8567 spin_lock(&p->pi_lock);
b29739f9 8568 rq = __task_rq_lock(p);
1da177e4 8569
178be793 8570 normalize_task(rq, p);
3a5e4dc1 8571
b29739f9 8572 __task_rq_unlock(rq);
4cf5d77a 8573 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8574 } while_each_thread(g, p);
8575
4cf5d77a 8576 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8577}
8578
8579#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8580
8581#ifdef CONFIG_IA64
8582/*
8583 * These functions are only useful for the IA64 MCA handling.
8584 *
8585 * They can only be called when the whole system has been
8586 * stopped - every CPU needs to be quiescent, and no scheduling
8587 * activity can take place. Using them for anything else would
8588 * be a serious bug, and as a result, they aren't even visible
8589 * under any other configuration.
8590 */
8591
8592/**
8593 * curr_task - return the current task for a given cpu.
8594 * @cpu: the processor in question.
8595 *
8596 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8597 */
36c8b586 8598struct task_struct *curr_task(int cpu)
1df5c10a
LT
8599{
8600 return cpu_curr(cpu);
8601}
8602
8603/**
8604 * set_curr_task - set the current task for a given cpu.
8605 * @cpu: the processor in question.
8606 * @p: the task pointer to set.
8607 *
8608 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8609 * are serviced on a separate stack. It allows the architecture to switch the
8610 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8611 * must be called with all CPU's synchronized, and interrupts disabled, the
8612 * and caller must save the original value of the current task (see
8613 * curr_task() above) and restore that value before reenabling interrupts and
8614 * re-starting the system.
8615 *
8616 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8617 */
36c8b586 8618void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8619{
8620 cpu_curr(cpu) = p;
8621}
8622
8623#endif
29f59db3 8624
bccbe08a
PZ
8625#ifdef CONFIG_FAIR_GROUP_SCHED
8626static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8627{
8628 int i;
8629
8630 for_each_possible_cpu(i) {
8631 if (tg->cfs_rq)
8632 kfree(tg->cfs_rq[i]);
8633 if (tg->se)
8634 kfree(tg->se[i]);
6f505b16
PZ
8635 }
8636
8637 kfree(tg->cfs_rq);
8638 kfree(tg->se);
6f505b16
PZ
8639}
8640
ec7dc8ac
DG
8641static
8642int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8643{
29f59db3 8644 struct cfs_rq *cfs_rq;
eab17229 8645 struct sched_entity *se;
9b5b7751 8646 struct rq *rq;
29f59db3
SV
8647 int i;
8648
434d53b0 8649 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8650 if (!tg->cfs_rq)
8651 goto err;
434d53b0 8652 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8653 if (!tg->se)
8654 goto err;
052f1dc7
PZ
8655
8656 tg->shares = NICE_0_LOAD;
29f59db3
SV
8657
8658 for_each_possible_cpu(i) {
9b5b7751 8659 rq = cpu_rq(i);
29f59db3 8660
eab17229
LZ
8661 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8662 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8663 if (!cfs_rq)
8664 goto err;
8665
eab17229
LZ
8666 se = kzalloc_node(sizeof(struct sched_entity),
8667 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8668 if (!se)
8669 goto err;
8670
eab17229 8671 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8672 }
8673
8674 return 1;
8675
8676 err:
8677 return 0;
8678}
8679
8680static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8681{
8682 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8683 &cpu_rq(cpu)->leaf_cfs_rq_list);
8684}
8685
8686static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8687{
8688 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8689}
6d6bc0ad 8690#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8691static inline void free_fair_sched_group(struct task_group *tg)
8692{
8693}
8694
ec7dc8ac
DG
8695static inline
8696int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8697{
8698 return 1;
8699}
8700
8701static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8702{
8703}
8704
8705static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8706{
8707}
6d6bc0ad 8708#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8709
8710#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8711static void free_rt_sched_group(struct task_group *tg)
8712{
8713 int i;
8714
d0b27fa7
PZ
8715 destroy_rt_bandwidth(&tg->rt_bandwidth);
8716
bccbe08a
PZ
8717 for_each_possible_cpu(i) {
8718 if (tg->rt_rq)
8719 kfree(tg->rt_rq[i]);
8720 if (tg->rt_se)
8721 kfree(tg->rt_se[i]);
8722 }
8723
8724 kfree(tg->rt_rq);
8725 kfree(tg->rt_se);
8726}
8727
ec7dc8ac
DG
8728static
8729int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8730{
8731 struct rt_rq *rt_rq;
eab17229 8732 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8733 struct rq *rq;
8734 int i;
8735
434d53b0 8736 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8737 if (!tg->rt_rq)
8738 goto err;
434d53b0 8739 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8740 if (!tg->rt_se)
8741 goto err;
8742
d0b27fa7
PZ
8743 init_rt_bandwidth(&tg->rt_bandwidth,
8744 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8745
8746 for_each_possible_cpu(i) {
8747 rq = cpu_rq(i);
8748
eab17229
LZ
8749 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8750 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8751 if (!rt_rq)
8752 goto err;
29f59db3 8753
eab17229
LZ
8754 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8755 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8756 if (!rt_se)
8757 goto err;
29f59db3 8758
eab17229 8759 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8760 }
8761
bccbe08a
PZ
8762 return 1;
8763
8764 err:
8765 return 0;
8766}
8767
8768static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8769{
8770 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8771 &cpu_rq(cpu)->leaf_rt_rq_list);
8772}
8773
8774static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8775{
8776 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8777}
6d6bc0ad 8778#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8779static inline void free_rt_sched_group(struct task_group *tg)
8780{
8781}
8782
ec7dc8ac
DG
8783static inline
8784int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8785{
8786 return 1;
8787}
8788
8789static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8790{
8791}
8792
8793static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8794{
8795}
6d6bc0ad 8796#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8797
d0b27fa7 8798#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8799static void free_sched_group(struct task_group *tg)
8800{
8801 free_fair_sched_group(tg);
8802 free_rt_sched_group(tg);
8803 kfree(tg);
8804}
8805
8806/* allocate runqueue etc for a new task group */
ec7dc8ac 8807struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8808{
8809 struct task_group *tg;
8810 unsigned long flags;
8811 int i;
8812
8813 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8814 if (!tg)
8815 return ERR_PTR(-ENOMEM);
8816
ec7dc8ac 8817 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8818 goto err;
8819
ec7dc8ac 8820 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8821 goto err;
8822
8ed36996 8823 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8824 for_each_possible_cpu(i) {
bccbe08a
PZ
8825 register_fair_sched_group(tg, i);
8826 register_rt_sched_group(tg, i);
9b5b7751 8827 }
6f505b16 8828 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8829
8830 WARN_ON(!parent); /* root should already exist */
8831
8832 tg->parent = parent;
f473aa5e 8833 INIT_LIST_HEAD(&tg->children);
09f2724a 8834 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8835 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8836
9b5b7751 8837 return tg;
29f59db3
SV
8838
8839err:
6f505b16 8840 free_sched_group(tg);
29f59db3
SV
8841 return ERR_PTR(-ENOMEM);
8842}
8843
9b5b7751 8844/* rcu callback to free various structures associated with a task group */
6f505b16 8845static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8846{
29f59db3 8847 /* now it should be safe to free those cfs_rqs */
6f505b16 8848 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8849}
8850
9b5b7751 8851/* Destroy runqueue etc associated with a task group */
4cf86d77 8852void sched_destroy_group(struct task_group *tg)
29f59db3 8853{
8ed36996 8854 unsigned long flags;
9b5b7751 8855 int i;
29f59db3 8856
8ed36996 8857 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8858 for_each_possible_cpu(i) {
bccbe08a
PZ
8859 unregister_fair_sched_group(tg, i);
8860 unregister_rt_sched_group(tg, i);
9b5b7751 8861 }
6f505b16 8862 list_del_rcu(&tg->list);
f473aa5e 8863 list_del_rcu(&tg->siblings);
8ed36996 8864 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8865
9b5b7751 8866 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8867 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8868}
8869
9b5b7751 8870/* change task's runqueue when it moves between groups.
3a252015
IM
8871 * The caller of this function should have put the task in its new group
8872 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8873 * reflect its new group.
9b5b7751
SV
8874 */
8875void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8876{
8877 int on_rq, running;
8878 unsigned long flags;
8879 struct rq *rq;
8880
8881 rq = task_rq_lock(tsk, &flags);
8882
29f59db3
SV
8883 update_rq_clock(rq);
8884
051a1d1a 8885 running = task_current(rq, tsk);
29f59db3
SV
8886 on_rq = tsk->se.on_rq;
8887
0e1f3483 8888 if (on_rq)
29f59db3 8889 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8890 if (unlikely(running))
8891 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8892
6f505b16 8893 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8894
810b3817
PZ
8895#ifdef CONFIG_FAIR_GROUP_SCHED
8896 if (tsk->sched_class->moved_group)
8897 tsk->sched_class->moved_group(tsk);
8898#endif
8899
0e1f3483
HS
8900 if (unlikely(running))
8901 tsk->sched_class->set_curr_task(rq);
8902 if (on_rq)
7074badb 8903 enqueue_task(rq, tsk, 0);
29f59db3 8904
29f59db3
SV
8905 task_rq_unlock(rq, &flags);
8906}
6d6bc0ad 8907#endif /* CONFIG_GROUP_SCHED */
29f59db3 8908
052f1dc7 8909#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8910static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8911{
8912 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8913 int on_rq;
8914
29f59db3 8915 on_rq = se->on_rq;
62fb1851 8916 if (on_rq)
29f59db3
SV
8917 dequeue_entity(cfs_rq, se, 0);
8918
8919 se->load.weight = shares;
e05510d0 8920 se->load.inv_weight = 0;
29f59db3 8921
62fb1851 8922 if (on_rq)
29f59db3 8923 enqueue_entity(cfs_rq, se, 0);
c09595f6 8924}
62fb1851 8925
c09595f6
PZ
8926static void set_se_shares(struct sched_entity *se, unsigned long shares)
8927{
8928 struct cfs_rq *cfs_rq = se->cfs_rq;
8929 struct rq *rq = cfs_rq->rq;
8930 unsigned long flags;
8931
8932 spin_lock_irqsave(&rq->lock, flags);
8933 __set_se_shares(se, shares);
8934 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8935}
8936
8ed36996
PZ
8937static DEFINE_MUTEX(shares_mutex);
8938
4cf86d77 8939int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8940{
8941 int i;
8ed36996 8942 unsigned long flags;
c61935fd 8943
ec7dc8ac
DG
8944 /*
8945 * We can't change the weight of the root cgroup.
8946 */
8947 if (!tg->se[0])
8948 return -EINVAL;
8949
18d95a28
PZ
8950 if (shares < MIN_SHARES)
8951 shares = MIN_SHARES;
cb4ad1ff
MX
8952 else if (shares > MAX_SHARES)
8953 shares = MAX_SHARES;
62fb1851 8954
8ed36996 8955 mutex_lock(&shares_mutex);
9b5b7751 8956 if (tg->shares == shares)
5cb350ba 8957 goto done;
29f59db3 8958
8ed36996 8959 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8960 for_each_possible_cpu(i)
8961 unregister_fair_sched_group(tg, i);
f473aa5e 8962 list_del_rcu(&tg->siblings);
8ed36996 8963 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8964
8965 /* wait for any ongoing reference to this group to finish */
8966 synchronize_sched();
8967
8968 /*
8969 * Now we are free to modify the group's share on each cpu
8970 * w/o tripping rebalance_share or load_balance_fair.
8971 */
9b5b7751 8972 tg->shares = shares;
c09595f6
PZ
8973 for_each_possible_cpu(i) {
8974 /*
8975 * force a rebalance
8976 */
8977 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8978 set_se_shares(tg->se[i], shares);
c09595f6 8979 }
29f59db3 8980
6b2d7700
SV
8981 /*
8982 * Enable load balance activity on this group, by inserting it back on
8983 * each cpu's rq->leaf_cfs_rq_list.
8984 */
8ed36996 8985 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8986 for_each_possible_cpu(i)
8987 register_fair_sched_group(tg, i);
f473aa5e 8988 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8989 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8990done:
8ed36996 8991 mutex_unlock(&shares_mutex);
9b5b7751 8992 return 0;
29f59db3
SV
8993}
8994
5cb350ba
DG
8995unsigned long sched_group_shares(struct task_group *tg)
8996{
8997 return tg->shares;
8998}
052f1dc7 8999#endif
5cb350ba 9000
052f1dc7 9001#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9002/*
9f0c1e56 9003 * Ensure that the real time constraints are schedulable.
6f505b16 9004 */
9f0c1e56
PZ
9005static DEFINE_MUTEX(rt_constraints_mutex);
9006
9007static unsigned long to_ratio(u64 period, u64 runtime)
9008{
9009 if (runtime == RUNTIME_INF)
9a7e0b18 9010 return 1ULL << 20;
9f0c1e56 9011
9a7e0b18 9012 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9013}
9014
9a7e0b18
PZ
9015/* Must be called with tasklist_lock held */
9016static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9017{
9a7e0b18 9018 struct task_struct *g, *p;
b40b2e8e 9019
9a7e0b18
PZ
9020 do_each_thread(g, p) {
9021 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9022 return 1;
9023 } while_each_thread(g, p);
b40b2e8e 9024
9a7e0b18
PZ
9025 return 0;
9026}
b40b2e8e 9027
9a7e0b18
PZ
9028struct rt_schedulable_data {
9029 struct task_group *tg;
9030 u64 rt_period;
9031 u64 rt_runtime;
9032};
b40b2e8e 9033
9a7e0b18
PZ
9034static int tg_schedulable(struct task_group *tg, void *data)
9035{
9036 struct rt_schedulable_data *d = data;
9037 struct task_group *child;
9038 unsigned long total, sum = 0;
9039 u64 period, runtime;
b40b2e8e 9040
9a7e0b18
PZ
9041 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9042 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9043
9a7e0b18
PZ
9044 if (tg == d->tg) {
9045 period = d->rt_period;
9046 runtime = d->rt_runtime;
b40b2e8e 9047 }
b40b2e8e 9048
4653f803
PZ
9049 /*
9050 * Cannot have more runtime than the period.
9051 */
9052 if (runtime > period && runtime != RUNTIME_INF)
9053 return -EINVAL;
6f505b16 9054
4653f803
PZ
9055 /*
9056 * Ensure we don't starve existing RT tasks.
9057 */
9a7e0b18
PZ
9058 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9059 return -EBUSY;
6f505b16 9060
9a7e0b18 9061 total = to_ratio(period, runtime);
6f505b16 9062
4653f803
PZ
9063 /*
9064 * Nobody can have more than the global setting allows.
9065 */
9066 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9067 return -EINVAL;
6f505b16 9068
4653f803
PZ
9069 /*
9070 * The sum of our children's runtime should not exceed our own.
9071 */
9a7e0b18
PZ
9072 list_for_each_entry_rcu(child, &tg->children, siblings) {
9073 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9074 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9075
9a7e0b18
PZ
9076 if (child == d->tg) {
9077 period = d->rt_period;
9078 runtime = d->rt_runtime;
9079 }
6f505b16 9080
9a7e0b18 9081 sum += to_ratio(period, runtime);
9f0c1e56 9082 }
6f505b16 9083
9a7e0b18
PZ
9084 if (sum > total)
9085 return -EINVAL;
9086
9087 return 0;
6f505b16
PZ
9088}
9089
9a7e0b18 9090static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9091{
9a7e0b18
PZ
9092 struct rt_schedulable_data data = {
9093 .tg = tg,
9094 .rt_period = period,
9095 .rt_runtime = runtime,
9096 };
9097
9098 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9099}
9100
d0b27fa7
PZ
9101static int tg_set_bandwidth(struct task_group *tg,
9102 u64 rt_period, u64 rt_runtime)
6f505b16 9103{
ac086bc2 9104 int i, err = 0;
9f0c1e56 9105
9f0c1e56 9106 mutex_lock(&rt_constraints_mutex);
521f1a24 9107 read_lock(&tasklist_lock);
9a7e0b18
PZ
9108 err = __rt_schedulable(tg, rt_period, rt_runtime);
9109 if (err)
9f0c1e56 9110 goto unlock;
ac086bc2
PZ
9111
9112 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9113 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9114 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9115
9116 for_each_possible_cpu(i) {
9117 struct rt_rq *rt_rq = tg->rt_rq[i];
9118
9119 spin_lock(&rt_rq->rt_runtime_lock);
9120 rt_rq->rt_runtime = rt_runtime;
9121 spin_unlock(&rt_rq->rt_runtime_lock);
9122 }
9123 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9124 unlock:
521f1a24 9125 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9126 mutex_unlock(&rt_constraints_mutex);
9127
9128 return err;
6f505b16
PZ
9129}
9130
d0b27fa7
PZ
9131int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9132{
9133 u64 rt_runtime, rt_period;
9134
9135 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9136 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9137 if (rt_runtime_us < 0)
9138 rt_runtime = RUNTIME_INF;
9139
9140 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9141}
9142
9f0c1e56
PZ
9143long sched_group_rt_runtime(struct task_group *tg)
9144{
9145 u64 rt_runtime_us;
9146
d0b27fa7 9147 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9148 return -1;
9149
d0b27fa7 9150 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9151 do_div(rt_runtime_us, NSEC_PER_USEC);
9152 return rt_runtime_us;
9153}
d0b27fa7
PZ
9154
9155int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9156{
9157 u64 rt_runtime, rt_period;
9158
9159 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9160 rt_runtime = tg->rt_bandwidth.rt_runtime;
9161
619b0488
R
9162 if (rt_period == 0)
9163 return -EINVAL;
9164
d0b27fa7
PZ
9165 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9166}
9167
9168long sched_group_rt_period(struct task_group *tg)
9169{
9170 u64 rt_period_us;
9171
9172 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9173 do_div(rt_period_us, NSEC_PER_USEC);
9174 return rt_period_us;
9175}
9176
9177static int sched_rt_global_constraints(void)
9178{
4653f803 9179 u64 runtime, period;
d0b27fa7
PZ
9180 int ret = 0;
9181
ec5d4989
HS
9182 if (sysctl_sched_rt_period <= 0)
9183 return -EINVAL;
9184
4653f803
PZ
9185 runtime = global_rt_runtime();
9186 period = global_rt_period();
9187
9188 /*
9189 * Sanity check on the sysctl variables.
9190 */
9191 if (runtime > period && runtime != RUNTIME_INF)
9192 return -EINVAL;
10b612f4 9193
d0b27fa7 9194 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9195 read_lock(&tasklist_lock);
4653f803 9196 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9197 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9198 mutex_unlock(&rt_constraints_mutex);
9199
9200 return ret;
9201}
6d6bc0ad 9202#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9203static int sched_rt_global_constraints(void)
9204{
ac086bc2
PZ
9205 unsigned long flags;
9206 int i;
9207
ec5d4989
HS
9208 if (sysctl_sched_rt_period <= 0)
9209 return -EINVAL;
9210
ac086bc2
PZ
9211 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9212 for_each_possible_cpu(i) {
9213 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9214
9215 spin_lock(&rt_rq->rt_runtime_lock);
9216 rt_rq->rt_runtime = global_rt_runtime();
9217 spin_unlock(&rt_rq->rt_runtime_lock);
9218 }
9219 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9220
d0b27fa7
PZ
9221 return 0;
9222}
6d6bc0ad 9223#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9224
9225int sched_rt_handler(struct ctl_table *table, int write,
9226 struct file *filp, void __user *buffer, size_t *lenp,
9227 loff_t *ppos)
9228{
9229 int ret;
9230 int old_period, old_runtime;
9231 static DEFINE_MUTEX(mutex);
9232
9233 mutex_lock(&mutex);
9234 old_period = sysctl_sched_rt_period;
9235 old_runtime = sysctl_sched_rt_runtime;
9236
9237 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9238
9239 if (!ret && write) {
9240 ret = sched_rt_global_constraints();
9241 if (ret) {
9242 sysctl_sched_rt_period = old_period;
9243 sysctl_sched_rt_runtime = old_runtime;
9244 } else {
9245 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9246 def_rt_bandwidth.rt_period =
9247 ns_to_ktime(global_rt_period());
9248 }
9249 }
9250 mutex_unlock(&mutex);
9251
9252 return ret;
9253}
68318b8e 9254
052f1dc7 9255#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9256
9257/* return corresponding task_group object of a cgroup */
2b01dfe3 9258static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9259{
2b01dfe3
PM
9260 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9261 struct task_group, css);
68318b8e
SV
9262}
9263
9264static struct cgroup_subsys_state *
2b01dfe3 9265cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9266{
ec7dc8ac 9267 struct task_group *tg, *parent;
68318b8e 9268
2b01dfe3 9269 if (!cgrp->parent) {
68318b8e 9270 /* This is early initialization for the top cgroup */
68318b8e
SV
9271 return &init_task_group.css;
9272 }
9273
ec7dc8ac
DG
9274 parent = cgroup_tg(cgrp->parent);
9275 tg = sched_create_group(parent);
68318b8e
SV
9276 if (IS_ERR(tg))
9277 return ERR_PTR(-ENOMEM);
9278
68318b8e
SV
9279 return &tg->css;
9280}
9281
41a2d6cf
IM
9282static void
9283cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9284{
2b01dfe3 9285 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9286
9287 sched_destroy_group(tg);
9288}
9289
41a2d6cf
IM
9290static int
9291cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9292 struct task_struct *tsk)
68318b8e 9293{
b68aa230
PZ
9294#ifdef CONFIG_RT_GROUP_SCHED
9295 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9296 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9297 return -EINVAL;
9298#else
68318b8e
SV
9299 /* We don't support RT-tasks being in separate groups */
9300 if (tsk->sched_class != &fair_sched_class)
9301 return -EINVAL;
b68aa230 9302#endif
68318b8e
SV
9303
9304 return 0;
9305}
9306
9307static void
2b01dfe3 9308cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9309 struct cgroup *old_cont, struct task_struct *tsk)
9310{
9311 sched_move_task(tsk);
9312}
9313
052f1dc7 9314#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9315static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9316 u64 shareval)
68318b8e 9317{
2b01dfe3 9318 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9319}
9320
f4c753b7 9321static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9322{
2b01dfe3 9323 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9324
9325 return (u64) tg->shares;
9326}
6d6bc0ad 9327#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9328
052f1dc7 9329#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9330static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9331 s64 val)
6f505b16 9332{
06ecb27c 9333 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9334}
9335
06ecb27c 9336static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9337{
06ecb27c 9338 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9339}
d0b27fa7
PZ
9340
9341static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9342 u64 rt_period_us)
9343{
9344 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9345}
9346
9347static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9348{
9349 return sched_group_rt_period(cgroup_tg(cgrp));
9350}
6d6bc0ad 9351#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9352
fe5c7cc2 9353static struct cftype cpu_files[] = {
052f1dc7 9354#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9355 {
9356 .name = "shares",
f4c753b7
PM
9357 .read_u64 = cpu_shares_read_u64,
9358 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9359 },
052f1dc7
PZ
9360#endif
9361#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9362 {
9f0c1e56 9363 .name = "rt_runtime_us",
06ecb27c
PM
9364 .read_s64 = cpu_rt_runtime_read,
9365 .write_s64 = cpu_rt_runtime_write,
6f505b16 9366 },
d0b27fa7
PZ
9367 {
9368 .name = "rt_period_us",
f4c753b7
PM
9369 .read_u64 = cpu_rt_period_read_uint,
9370 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9371 },
052f1dc7 9372#endif
68318b8e
SV
9373};
9374
9375static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9376{
fe5c7cc2 9377 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9378}
9379
9380struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9381 .name = "cpu",
9382 .create = cpu_cgroup_create,
9383 .destroy = cpu_cgroup_destroy,
9384 .can_attach = cpu_cgroup_can_attach,
9385 .attach = cpu_cgroup_attach,
9386 .populate = cpu_cgroup_populate,
9387 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9388 .early_init = 1,
9389};
9390
052f1dc7 9391#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9392
9393#ifdef CONFIG_CGROUP_CPUACCT
9394
9395/*
9396 * CPU accounting code for task groups.
9397 *
9398 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9399 * (balbir@in.ibm.com).
9400 */
9401
934352f2 9402/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9403struct cpuacct {
9404 struct cgroup_subsys_state css;
9405 /* cpuusage holds pointer to a u64-type object on every cpu */
9406 u64 *cpuusage;
934352f2 9407 struct cpuacct *parent;
d842de87
SV
9408};
9409
9410struct cgroup_subsys cpuacct_subsys;
9411
9412/* return cpu accounting group corresponding to this container */
32cd756a 9413static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9414{
32cd756a 9415 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9416 struct cpuacct, css);
9417}
9418
9419/* return cpu accounting group to which this task belongs */
9420static inline struct cpuacct *task_ca(struct task_struct *tsk)
9421{
9422 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9423 struct cpuacct, css);
9424}
9425
9426/* create a new cpu accounting group */
9427static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9428 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9429{
9430 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9431
9432 if (!ca)
9433 return ERR_PTR(-ENOMEM);
9434
9435 ca->cpuusage = alloc_percpu(u64);
9436 if (!ca->cpuusage) {
9437 kfree(ca);
9438 return ERR_PTR(-ENOMEM);
9439 }
9440
934352f2
BR
9441 if (cgrp->parent)
9442 ca->parent = cgroup_ca(cgrp->parent);
9443
d842de87
SV
9444 return &ca->css;
9445}
9446
9447/* destroy an existing cpu accounting group */
41a2d6cf 9448static void
32cd756a 9449cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9450{
32cd756a 9451 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9452
9453 free_percpu(ca->cpuusage);
9454 kfree(ca);
9455}
9456
720f5498
KC
9457static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9458{
9459 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9460 u64 data;
9461
9462#ifndef CONFIG_64BIT
9463 /*
9464 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9465 */
9466 spin_lock_irq(&cpu_rq(cpu)->lock);
9467 data = *cpuusage;
9468 spin_unlock_irq(&cpu_rq(cpu)->lock);
9469#else
9470 data = *cpuusage;
9471#endif
9472
9473 return data;
9474}
9475
9476static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9477{
9478 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9479
9480#ifndef CONFIG_64BIT
9481 /*
9482 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9483 */
9484 spin_lock_irq(&cpu_rq(cpu)->lock);
9485 *cpuusage = val;
9486 spin_unlock_irq(&cpu_rq(cpu)->lock);
9487#else
9488 *cpuusage = val;
9489#endif
9490}
9491
d842de87 9492/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9493static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9494{
32cd756a 9495 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9496 u64 totalcpuusage = 0;
9497 int i;
9498
720f5498
KC
9499 for_each_present_cpu(i)
9500 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9501
9502 return totalcpuusage;
9503}
9504
0297b803
DG
9505static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9506 u64 reset)
9507{
9508 struct cpuacct *ca = cgroup_ca(cgrp);
9509 int err = 0;
9510 int i;
9511
9512 if (reset) {
9513 err = -EINVAL;
9514 goto out;
9515 }
9516
720f5498
KC
9517 for_each_present_cpu(i)
9518 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9519
0297b803
DG
9520out:
9521 return err;
9522}
9523
e9515c3c
KC
9524static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9525 struct seq_file *m)
9526{
9527 struct cpuacct *ca = cgroup_ca(cgroup);
9528 u64 percpu;
9529 int i;
9530
9531 for_each_present_cpu(i) {
9532 percpu = cpuacct_cpuusage_read(ca, i);
9533 seq_printf(m, "%llu ", (unsigned long long) percpu);
9534 }
9535 seq_printf(m, "\n");
9536 return 0;
9537}
9538
d842de87
SV
9539static struct cftype files[] = {
9540 {
9541 .name = "usage",
f4c753b7
PM
9542 .read_u64 = cpuusage_read,
9543 .write_u64 = cpuusage_write,
d842de87 9544 },
e9515c3c
KC
9545 {
9546 .name = "usage_percpu",
9547 .read_seq_string = cpuacct_percpu_seq_read,
9548 },
9549
d842de87
SV
9550};
9551
32cd756a 9552static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9553{
32cd756a 9554 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9555}
9556
9557/*
9558 * charge this task's execution time to its accounting group.
9559 *
9560 * called with rq->lock held.
9561 */
9562static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9563{
9564 struct cpuacct *ca;
934352f2 9565 int cpu;
d842de87
SV
9566
9567 if (!cpuacct_subsys.active)
9568 return;
9569
934352f2 9570 cpu = task_cpu(tsk);
d842de87 9571 ca = task_ca(tsk);
d842de87 9572
934352f2
BR
9573 for (; ca; ca = ca->parent) {
9574 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9575 *cpuusage += cputime;
9576 }
9577}
9578
9579struct cgroup_subsys cpuacct_subsys = {
9580 .name = "cpuacct",
9581 .create = cpuacct_create,
9582 .destroy = cpuacct_destroy,
9583 .populate = cpuacct_populate,
9584 .subsys_id = cpuacct_subsys_id,
9585};
9586#endif /* CONFIG_CGROUP_CPUACCT */