sched: remove do_div() from __sched_slice()
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
1da177e4 68
5517d86b 69#include <asm/tlb.h>
838225b4 70#include <asm/irq_regs.h>
1da177e4 71
b035b6de
AD
72/*
73 * Scheduler clock - returns current time in nanosec units.
74 * This is default implementation.
75 * Architectures and sub-architectures can override this.
76 */
77unsigned long long __attribute__((weak)) sched_clock(void)
78{
d6322faf 79 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
80}
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
6b2d7700
SV
172
173 /*
174 * shares assigned to a task group governs how much of cpu bandwidth
175 * is allocated to the group. The more shares a group has, the more is
176 * the cpu bandwidth allocated to it.
177 *
178 * For ex, lets say that there are three task groups, A, B and C which
179 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
180 * cpu bandwidth allocated by the scheduler to task groups A, B and C
181 * should be:
182 *
183 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
184 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
185 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
186 *
187 * The weight assigned to a task group's schedulable entities on every
188 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
189 * group's shares. For ex: lets say that task group A has been
190 * assigned shares of 1000 and there are two CPUs in a system. Then,
191 *
192 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
193 *
194 * Note: It's not necessary that each of a task's group schedulable
195 * entity have the same weight on all CPUs. If the group
196 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
197 * better distribution of weight could be:
198 *
199 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
200 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
201 *
202 * rebalance_shares() is responsible for distributing the shares of a
203 * task groups like this among the group's schedulable entities across
204 * cpus.
205 *
206 */
29f59db3 207 unsigned long shares;
6b2d7700 208
ae8393e5 209 struct rcu_head rcu;
29f59db3
SV
210};
211
212/* Default task group's sched entity on each cpu */
213static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
214/* Default task group's cfs_rq on each cpu */
215static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
216
9b5b7751
SV
217static struct sched_entity *init_sched_entity_p[NR_CPUS];
218static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3 219
ec2c507f
SV
220/* task_group_mutex serializes add/remove of task groups and also changes to
221 * a task group's cpu shares.
222 */
223static DEFINE_MUTEX(task_group_mutex);
224
a1835615
SV
225/* doms_cur_mutex serializes access to doms_cur[] array */
226static DEFINE_MUTEX(doms_cur_mutex);
227
6b2d7700
SV
228#ifdef CONFIG_SMP
229/* kernel thread that runs rebalance_shares() periodically */
230static struct task_struct *lb_monitor_task;
231static int load_balance_monitor(void *unused);
232#endif
233
234static void set_se_shares(struct sched_entity *se, unsigned long shares);
235
29f59db3 236/* Default task group.
3a252015 237 * Every task in system belong to this group at bootup.
29f59db3 238 */
4cf86d77 239struct task_group init_task_group = {
0eab9146 240 .se = init_sched_entity_p,
3a252015
IM
241 .cfs_rq = init_cfs_rq_p,
242};
9b5b7751 243
24e377a8 244#ifdef CONFIG_FAIR_USER_SCHED
0eab9146 245# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
24e377a8 246#else
93f992cc 247# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
24e377a8
SV
248#endif
249
0eab9146 250#define MIN_GROUP_SHARES 2
6b2d7700 251
93f992cc 252static int init_task_group_load = INIT_TASK_GROUP_LOAD;
29f59db3
SV
253
254/* return group to which a task belongs */
4cf86d77 255static inline struct task_group *task_group(struct task_struct *p)
29f59db3 256{
4cf86d77 257 struct task_group *tg;
9b5b7751 258
24e377a8
SV
259#ifdef CONFIG_FAIR_USER_SCHED
260 tg = p->user->tg;
68318b8e
SV
261#elif defined(CONFIG_FAIR_CGROUP_SCHED)
262 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
263 struct task_group, css);
24e377a8 264#else
41a2d6cf 265 tg = &init_task_group;
24e377a8 266#endif
9b5b7751 267 return tg;
29f59db3
SV
268}
269
270/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
ce96b5ac 271static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
29f59db3 272{
ce96b5ac
DA
273 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
274 p->se.parent = task_group(p)->se[cpu];
29f59db3
SV
275}
276
ec2c507f
SV
277static inline void lock_task_group_list(void)
278{
279 mutex_lock(&task_group_mutex);
280}
281
282static inline void unlock_task_group_list(void)
283{
284 mutex_unlock(&task_group_mutex);
285}
286
a1835615
SV
287static inline void lock_doms_cur(void)
288{
289 mutex_lock(&doms_cur_mutex);
290}
291
292static inline void unlock_doms_cur(void)
293{
294 mutex_unlock(&doms_cur_mutex);
295}
296
29f59db3
SV
297#else
298
ce96b5ac 299static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
ec2c507f
SV
300static inline void lock_task_group_list(void) { }
301static inline void unlock_task_group_list(void) { }
a1835615
SV
302static inline void lock_doms_cur(void) { }
303static inline void unlock_doms_cur(void) { }
29f59db3
SV
304
305#endif /* CONFIG_FAIR_GROUP_SCHED */
306
6aa645ea
IM
307/* CFS-related fields in a runqueue */
308struct cfs_rq {
309 struct load_weight load;
310 unsigned long nr_running;
311
6aa645ea 312 u64 exec_clock;
e9acbff6 313 u64 min_vruntime;
6aa645ea
IM
314
315 struct rb_root tasks_timeline;
316 struct rb_node *rb_leftmost;
317 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
318 /* 'curr' points to currently running entity on this cfs_rq.
319 * It is set to NULL otherwise (i.e when none are currently running).
320 */
321 struct sched_entity *curr;
ddc97297
PZ
322
323 unsigned long nr_spread_over;
324
62160e3f 325#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
326 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
327
41a2d6cf
IM
328 /*
329 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
330 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
331 * (like users, containers etc.)
332 *
333 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
334 * list is used during load balance.
335 */
41a2d6cf
IM
336 struct list_head leaf_cfs_rq_list;
337 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
338#endif
339};
1da177e4 340
6aa645ea
IM
341/* Real-Time classes' related field in a runqueue: */
342struct rt_rq {
343 struct rt_prio_array active;
344 int rt_load_balance_idx;
345 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
63489e45 346 unsigned long rt_nr_running;
73fe6aae 347 unsigned long rt_nr_migratory;
764a9d6f
SR
348 /* highest queued rt task prio */
349 int highest_prio;
a22d7fc1 350 int overloaded;
6aa645ea
IM
351};
352
57d885fe
GH
353#ifdef CONFIG_SMP
354
355/*
356 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
357 * variables. Each exclusive cpuset essentially defines an island domain by
358 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
359 * exclusive cpuset is created, we also create and attach a new root-domain
360 * object.
361 *
362 * By default the system creates a single root-domain with all cpus as
363 * members (mimicking the global state we have today).
364 */
365struct root_domain {
366 atomic_t refcount;
367 cpumask_t span;
368 cpumask_t online;
637f5085 369
0eab9146 370 /*
637f5085
GH
371 * The "RT overload" flag: it gets set if a CPU has more than
372 * one runnable RT task.
373 */
374 cpumask_t rto_mask;
0eab9146 375 atomic_t rto_count;
57d885fe
GH
376};
377
378static struct root_domain def_root_domain;
379
380#endif
381
1da177e4
LT
382/*
383 * This is the main, per-CPU runqueue data structure.
384 *
385 * Locking rule: those places that want to lock multiple runqueues
386 * (such as the load balancing or the thread migration code), lock
387 * acquire operations must be ordered by ascending &runqueue.
388 */
70b97a7f 389struct rq {
d8016491
IM
390 /* runqueue lock: */
391 spinlock_t lock;
1da177e4
LT
392
393 /*
394 * nr_running and cpu_load should be in the same cacheline because
395 * remote CPUs use both these fields when doing load calculation.
396 */
397 unsigned long nr_running;
6aa645ea
IM
398 #define CPU_LOAD_IDX_MAX 5
399 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 400 unsigned char idle_at_tick;
46cb4b7c
SS
401#ifdef CONFIG_NO_HZ
402 unsigned char in_nohz_recently;
403#endif
d8016491
IM
404 /* capture load from *all* tasks on this cpu: */
405 struct load_weight load;
6aa645ea
IM
406 unsigned long nr_load_updates;
407 u64 nr_switches;
408
409 struct cfs_rq cfs;
410#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
411 /* list of leaf cfs_rq on this cpu: */
412 struct list_head leaf_cfs_rq_list;
1da177e4 413#endif
41a2d6cf 414 struct rt_rq rt;
1da177e4
LT
415
416 /*
417 * This is part of a global counter where only the total sum
418 * over all CPUs matters. A task can increase this counter on
419 * one CPU and if it got migrated afterwards it may decrease
420 * it on another CPU. Always updated under the runqueue lock:
421 */
422 unsigned long nr_uninterruptible;
423
36c8b586 424 struct task_struct *curr, *idle;
c9819f45 425 unsigned long next_balance;
1da177e4 426 struct mm_struct *prev_mm;
6aa645ea 427
6aa645ea
IM
428 u64 clock, prev_clock_raw;
429 s64 clock_max_delta;
430
431 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
432 u64 idle_clock;
433 unsigned int clock_deep_idle_events;
529c7726 434 u64 tick_timestamp;
6aa645ea 435
1da177e4
LT
436 atomic_t nr_iowait;
437
438#ifdef CONFIG_SMP
0eab9146 439 struct root_domain *rd;
1da177e4
LT
440 struct sched_domain *sd;
441
442 /* For active balancing */
443 int active_balance;
444 int push_cpu;
d8016491
IM
445 /* cpu of this runqueue: */
446 int cpu;
1da177e4 447
36c8b586 448 struct task_struct *migration_thread;
1da177e4
LT
449 struct list_head migration_queue;
450#endif
451
452#ifdef CONFIG_SCHEDSTATS
453 /* latency stats */
454 struct sched_info rq_sched_info;
455
456 /* sys_sched_yield() stats */
480b9434
KC
457 unsigned int yld_exp_empty;
458 unsigned int yld_act_empty;
459 unsigned int yld_both_empty;
460 unsigned int yld_count;
1da177e4
LT
461
462 /* schedule() stats */
480b9434
KC
463 unsigned int sched_switch;
464 unsigned int sched_count;
465 unsigned int sched_goidle;
1da177e4
LT
466
467 /* try_to_wake_up() stats */
480b9434
KC
468 unsigned int ttwu_count;
469 unsigned int ttwu_local;
b8efb561
IM
470
471 /* BKL stats */
480b9434 472 unsigned int bkl_count;
1da177e4 473#endif
fcb99371 474 struct lock_class_key rq_lock_key;
1da177e4
LT
475};
476
f34e3b61 477static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 478
dd41f596
IM
479static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
480{
481 rq->curr->sched_class->check_preempt_curr(rq, p);
482}
483
0a2966b4
CL
484static inline int cpu_of(struct rq *rq)
485{
486#ifdef CONFIG_SMP
487 return rq->cpu;
488#else
489 return 0;
490#endif
491}
492
20d315d4 493/*
b04a0f4c
IM
494 * Update the per-runqueue clock, as finegrained as the platform can give
495 * us, but without assuming monotonicity, etc.:
20d315d4 496 */
b04a0f4c 497static void __update_rq_clock(struct rq *rq)
20d315d4
IM
498{
499 u64 prev_raw = rq->prev_clock_raw;
500 u64 now = sched_clock();
501 s64 delta = now - prev_raw;
502 u64 clock = rq->clock;
503
b04a0f4c
IM
504#ifdef CONFIG_SCHED_DEBUG
505 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
506#endif
20d315d4
IM
507 /*
508 * Protect against sched_clock() occasionally going backwards:
509 */
510 if (unlikely(delta < 0)) {
511 clock++;
512 rq->clock_warps++;
513 } else {
514 /*
515 * Catch too large forward jumps too:
516 */
529c7726
IM
517 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
518 if (clock < rq->tick_timestamp + TICK_NSEC)
519 clock = rq->tick_timestamp + TICK_NSEC;
520 else
521 clock++;
20d315d4
IM
522 rq->clock_overflows++;
523 } else {
524 if (unlikely(delta > rq->clock_max_delta))
525 rq->clock_max_delta = delta;
526 clock += delta;
527 }
528 }
529
530 rq->prev_clock_raw = now;
531 rq->clock = clock;
b04a0f4c 532}
20d315d4 533
b04a0f4c
IM
534static void update_rq_clock(struct rq *rq)
535{
536 if (likely(smp_processor_id() == cpu_of(rq)))
537 __update_rq_clock(rq);
20d315d4
IM
538}
539
674311d5
NP
540/*
541 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 542 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
543 *
544 * The domain tree of any CPU may only be accessed from within
545 * preempt-disabled sections.
546 */
48f24c4d
IM
547#define for_each_domain(cpu, __sd) \
548 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
549
550#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
551#define this_rq() (&__get_cpu_var(runqueues))
552#define task_rq(p) cpu_rq(task_cpu(p))
553#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
554
bf5c91ba
IM
555/*
556 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
557 */
558#ifdef CONFIG_SCHED_DEBUG
559# define const_debug __read_mostly
560#else
561# define const_debug static const
562#endif
563
564/*
565 * Debugging: various feature bits
566 */
567enum {
bbdba7c0 568 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
9612633a
IM
569 SCHED_FEAT_WAKEUP_PREEMPT = 2,
570 SCHED_FEAT_START_DEBIT = 4,
41a2d6cf
IM
571 SCHED_FEAT_TREE_AVG = 8,
572 SCHED_FEAT_APPROX_AVG = 16,
bf5c91ba
IM
573};
574
575const_debug unsigned int sysctl_sched_features =
8401f775 576 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
9612633a 577 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
8401f775
IM
578 SCHED_FEAT_START_DEBIT * 1 |
579 SCHED_FEAT_TREE_AVG * 0 |
9612633a 580 SCHED_FEAT_APPROX_AVG * 0;
bf5c91ba
IM
581
582#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
583
b82d9fdd
PZ
584/*
585 * Number of tasks to iterate in a single balance run.
586 * Limited because this is done with IRQs disabled.
587 */
588const_debug unsigned int sysctl_sched_nr_migrate = 32;
589
e436d800
IM
590/*
591 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
592 * clock constructed from sched_clock():
593 */
594unsigned long long cpu_clock(int cpu)
595{
e436d800
IM
596 unsigned long long now;
597 unsigned long flags;
b04a0f4c 598 struct rq *rq;
e436d800 599
2cd4d0ea 600 local_irq_save(flags);
b04a0f4c 601 rq = cpu_rq(cpu);
8ced5f69
IM
602 /*
603 * Only call sched_clock() if the scheduler has already been
604 * initialized (some code might call cpu_clock() very early):
605 */
606 if (rq->idle)
607 update_rq_clock(rq);
b04a0f4c 608 now = rq->clock;
2cd4d0ea 609 local_irq_restore(flags);
e436d800
IM
610
611 return now;
612}
a58f6f25 613EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 614
1da177e4 615#ifndef prepare_arch_switch
4866cde0
NP
616# define prepare_arch_switch(next) do { } while (0)
617#endif
618#ifndef finish_arch_switch
619# define finish_arch_switch(prev) do { } while (0)
620#endif
621
051a1d1a
DA
622static inline int task_current(struct rq *rq, struct task_struct *p)
623{
624 return rq->curr == p;
625}
626
4866cde0 627#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 628static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 629{
051a1d1a 630 return task_current(rq, p);
4866cde0
NP
631}
632
70b97a7f 633static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
634{
635}
636
70b97a7f 637static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 638{
da04c035
IM
639#ifdef CONFIG_DEBUG_SPINLOCK
640 /* this is a valid case when another task releases the spinlock */
641 rq->lock.owner = current;
642#endif
8a25d5de
IM
643 /*
644 * If we are tracking spinlock dependencies then we have to
645 * fix up the runqueue lock - which gets 'carried over' from
646 * prev into current:
647 */
648 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
649
4866cde0
NP
650 spin_unlock_irq(&rq->lock);
651}
652
653#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 654static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
655{
656#ifdef CONFIG_SMP
657 return p->oncpu;
658#else
051a1d1a 659 return task_current(rq, p);
4866cde0
NP
660#endif
661}
662
70b97a7f 663static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
664{
665#ifdef CONFIG_SMP
666 /*
667 * We can optimise this out completely for !SMP, because the
668 * SMP rebalancing from interrupt is the only thing that cares
669 * here.
670 */
671 next->oncpu = 1;
672#endif
673#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
674 spin_unlock_irq(&rq->lock);
675#else
676 spin_unlock(&rq->lock);
677#endif
678}
679
70b97a7f 680static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
681{
682#ifdef CONFIG_SMP
683 /*
684 * After ->oncpu is cleared, the task can be moved to a different CPU.
685 * We must ensure this doesn't happen until the switch is completely
686 * finished.
687 */
688 smp_wmb();
689 prev->oncpu = 0;
690#endif
691#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
692 local_irq_enable();
1da177e4 693#endif
4866cde0
NP
694}
695#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 696
b29739f9
IM
697/*
698 * __task_rq_lock - lock the runqueue a given task resides on.
699 * Must be called interrupts disabled.
700 */
70b97a7f 701static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
702 __acquires(rq->lock)
703{
3a5c359a
AK
704 for (;;) {
705 struct rq *rq = task_rq(p);
706 spin_lock(&rq->lock);
707 if (likely(rq == task_rq(p)))
708 return rq;
b29739f9 709 spin_unlock(&rq->lock);
b29739f9 710 }
b29739f9
IM
711}
712
1da177e4
LT
713/*
714 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 715 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
716 * explicitly disabling preemption.
717 */
70b97a7f 718static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
719 __acquires(rq->lock)
720{
70b97a7f 721 struct rq *rq;
1da177e4 722
3a5c359a
AK
723 for (;;) {
724 local_irq_save(*flags);
725 rq = task_rq(p);
726 spin_lock(&rq->lock);
727 if (likely(rq == task_rq(p)))
728 return rq;
1da177e4 729 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 730 }
1da177e4
LT
731}
732
a9957449 733static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
734 __releases(rq->lock)
735{
736 spin_unlock(&rq->lock);
737}
738
70b97a7f 739static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
740 __releases(rq->lock)
741{
742 spin_unlock_irqrestore(&rq->lock, *flags);
743}
744
1da177e4 745/*
cc2a73b5 746 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 747 */
a9957449 748static struct rq *this_rq_lock(void)
1da177e4
LT
749 __acquires(rq->lock)
750{
70b97a7f 751 struct rq *rq;
1da177e4
LT
752
753 local_irq_disable();
754 rq = this_rq();
755 spin_lock(&rq->lock);
756
757 return rq;
758}
759
1b9f19c2 760/*
2aa44d05 761 * We are going deep-idle (irqs are disabled):
1b9f19c2 762 */
2aa44d05 763void sched_clock_idle_sleep_event(void)
1b9f19c2 764{
2aa44d05
IM
765 struct rq *rq = cpu_rq(smp_processor_id());
766
767 spin_lock(&rq->lock);
768 __update_rq_clock(rq);
769 spin_unlock(&rq->lock);
770 rq->clock_deep_idle_events++;
771}
772EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
773
774/*
775 * We just idled delta nanoseconds (called with irqs disabled):
776 */
777void sched_clock_idle_wakeup_event(u64 delta_ns)
778{
779 struct rq *rq = cpu_rq(smp_processor_id());
780 u64 now = sched_clock();
1b9f19c2 781
2bacec8c 782 touch_softlockup_watchdog();
2aa44d05
IM
783 rq->idle_clock += delta_ns;
784 /*
785 * Override the previous timestamp and ignore all
786 * sched_clock() deltas that occured while we idled,
787 * and use the PM-provided delta_ns to advance the
788 * rq clock:
789 */
790 spin_lock(&rq->lock);
791 rq->prev_clock_raw = now;
792 rq->clock += delta_ns;
793 spin_unlock(&rq->lock);
1b9f19c2 794}
2aa44d05 795EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 796
c24d20db
IM
797/*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804#ifdef CONFIG_SMP
805
806#ifndef tsk_is_polling
807#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
808#endif
809
810static void resched_task(struct task_struct *p)
811{
812 int cpu;
813
814 assert_spin_locked(&task_rq(p)->lock);
815
816 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
817 return;
818
819 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
820
821 cpu = task_cpu(p);
822 if (cpu == smp_processor_id())
823 return;
824
825 /* NEED_RESCHED must be visible before we test polling */
826 smp_mb();
827 if (!tsk_is_polling(p))
828 smp_send_reschedule(cpu);
829}
830
831static void resched_cpu(int cpu)
832{
833 struct rq *rq = cpu_rq(cpu);
834 unsigned long flags;
835
836 if (!spin_trylock_irqsave(&rq->lock, flags))
837 return;
838 resched_task(cpu_curr(cpu));
839 spin_unlock_irqrestore(&rq->lock, flags);
840}
841#else
842static inline void resched_task(struct task_struct *p)
843{
844 assert_spin_locked(&task_rq(p)->lock);
845 set_tsk_need_resched(p);
846}
847#endif
848
45bf76df
IM
849#if BITS_PER_LONG == 32
850# define WMULT_CONST (~0UL)
851#else
852# define WMULT_CONST (1UL << 32)
853#endif
854
855#define WMULT_SHIFT 32
856
194081eb
IM
857/*
858 * Shift right and round:
859 */
cf2ab469 860#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 861
cb1c4fc9 862static unsigned long
45bf76df
IM
863calc_delta_mine(unsigned long delta_exec, unsigned long weight,
864 struct load_weight *lw)
865{
866 u64 tmp;
867
868 if (unlikely(!lw->inv_weight))
194081eb 869 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
870
871 tmp = (u64)delta_exec * weight;
872 /*
873 * Check whether we'd overflow the 64-bit multiplication:
874 */
194081eb 875 if (unlikely(tmp > WMULT_CONST))
cf2ab469 876 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
877 WMULT_SHIFT/2);
878 else
cf2ab469 879 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 880
ecf691da 881 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
882}
883
884static inline unsigned long
885calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
886{
887 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
888}
889
1091985b 890static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
891{
892 lw->weight += inc;
45bf76df
IM
893}
894
1091985b 895static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
896{
897 lw->weight -= dec;
45bf76df
IM
898}
899
2dd73a4f
PW
900/*
901 * To aid in avoiding the subversion of "niceness" due to uneven distribution
902 * of tasks with abnormal "nice" values across CPUs the contribution that
903 * each task makes to its run queue's load is weighted according to its
41a2d6cf 904 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
905 * scaled version of the new time slice allocation that they receive on time
906 * slice expiry etc.
907 */
908
dd41f596
IM
909#define WEIGHT_IDLEPRIO 2
910#define WMULT_IDLEPRIO (1 << 31)
911
912/*
913 * Nice levels are multiplicative, with a gentle 10% change for every
914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
916 * that remained on nice 0.
917 *
918 * The "10% effect" is relative and cumulative: from _any_ nice level,
919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
921 * If a task goes up by ~10% and another task goes down by ~10% then
922 * the relative distance between them is ~25%.)
dd41f596
IM
923 */
924static const int prio_to_weight[40] = {
254753dc
IM
925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
929 /* 0 */ 1024, 820, 655, 526, 423,
930 /* 5 */ 335, 272, 215, 172, 137,
931 /* 10 */ 110, 87, 70, 56, 45,
932 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
933};
934
5714d2de
IM
935/*
936 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
937 *
938 * In cases where the weight does not change often, we can use the
939 * precalculated inverse to speed up arithmetics by turning divisions
940 * into multiplications:
941 */
dd41f596 942static const u32 prio_to_wmult[40] = {
254753dc
IM
943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 951};
2dd73a4f 952
dd41f596
IM
953static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
954
955/*
956 * runqueue iterator, to support SMP load-balancing between different
957 * scheduling classes, without having to expose their internal data
958 * structures to the load-balancing proper:
959 */
960struct rq_iterator {
961 void *arg;
962 struct task_struct *(*start)(void *);
963 struct task_struct *(*next)(void *);
964};
965
e1d1484f
PW
966#ifdef CONFIG_SMP
967static unsigned long
968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
969 unsigned long max_load_move, struct sched_domain *sd,
970 enum cpu_idle_type idle, int *all_pinned,
971 int *this_best_prio, struct rq_iterator *iterator);
972
973static int
974iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
975 struct sched_domain *sd, enum cpu_idle_type idle,
976 struct rq_iterator *iterator);
e1d1484f 977#endif
dd41f596 978
d842de87
SV
979#ifdef CONFIG_CGROUP_CPUACCT
980static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
981#else
982static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
983#endif
984
58e2d4ca
SV
985static inline void inc_cpu_load(struct rq *rq, unsigned long load)
986{
987 update_load_add(&rq->load, load);
988}
989
990static inline void dec_cpu_load(struct rq *rq, unsigned long load)
991{
992 update_load_sub(&rq->load, load);
993}
994
e7693a36
GH
995#ifdef CONFIG_SMP
996static unsigned long source_load(int cpu, int type);
997static unsigned long target_load(int cpu, int type);
998static unsigned long cpu_avg_load_per_task(int cpu);
999static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1000#endif /* CONFIG_SMP */
1001
dd41f596 1002#include "sched_stats.h"
dd41f596 1003#include "sched_idletask.c"
5522d5d5
IM
1004#include "sched_fair.c"
1005#include "sched_rt.c"
dd41f596
IM
1006#ifdef CONFIG_SCHED_DEBUG
1007# include "sched_debug.c"
1008#endif
1009
1010#define sched_class_highest (&rt_sched_class)
1011
e5fa2237 1012static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1013{
1014 rq->nr_running++;
9c217245
IM
1015}
1016
db53181e 1017static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
1018{
1019 rq->nr_running--;
9c217245
IM
1020}
1021
45bf76df
IM
1022static void set_load_weight(struct task_struct *p)
1023{
1024 if (task_has_rt_policy(p)) {
dd41f596
IM
1025 p->se.load.weight = prio_to_weight[0] * 2;
1026 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1027 return;
1028 }
45bf76df 1029
dd41f596
IM
1030 /*
1031 * SCHED_IDLE tasks get minimal weight:
1032 */
1033 if (p->policy == SCHED_IDLE) {
1034 p->se.load.weight = WEIGHT_IDLEPRIO;
1035 p->se.load.inv_weight = WMULT_IDLEPRIO;
1036 return;
1037 }
71f8bd46 1038
dd41f596
IM
1039 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1040 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1041}
1042
8159f87e 1043static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1044{
dd41f596 1045 sched_info_queued(p);
fd390f6a 1046 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1047 p->se.on_rq = 1;
71f8bd46
IM
1048}
1049
69be72c1 1050static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1051{
f02231e5 1052 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1053 p->se.on_rq = 0;
71f8bd46
IM
1054}
1055
14531189 1056/*
dd41f596 1057 * __normal_prio - return the priority that is based on the static prio
14531189 1058 */
14531189
IM
1059static inline int __normal_prio(struct task_struct *p)
1060{
dd41f596 1061 return p->static_prio;
14531189
IM
1062}
1063
b29739f9
IM
1064/*
1065 * Calculate the expected normal priority: i.e. priority
1066 * without taking RT-inheritance into account. Might be
1067 * boosted by interactivity modifiers. Changes upon fork,
1068 * setprio syscalls, and whenever the interactivity
1069 * estimator recalculates.
1070 */
36c8b586 1071static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1072{
1073 int prio;
1074
e05606d3 1075 if (task_has_rt_policy(p))
b29739f9
IM
1076 prio = MAX_RT_PRIO-1 - p->rt_priority;
1077 else
1078 prio = __normal_prio(p);
1079 return prio;
1080}
1081
1082/*
1083 * Calculate the current priority, i.e. the priority
1084 * taken into account by the scheduler. This value might
1085 * be boosted by RT tasks, or might be boosted by
1086 * interactivity modifiers. Will be RT if the task got
1087 * RT-boosted. If not then it returns p->normal_prio.
1088 */
36c8b586 1089static int effective_prio(struct task_struct *p)
b29739f9
IM
1090{
1091 p->normal_prio = normal_prio(p);
1092 /*
1093 * If we are RT tasks or we were boosted to RT priority,
1094 * keep the priority unchanged. Otherwise, update priority
1095 * to the normal priority:
1096 */
1097 if (!rt_prio(p->prio))
1098 return p->normal_prio;
1099 return p->prio;
1100}
1101
1da177e4 1102/*
dd41f596 1103 * activate_task - move a task to the runqueue.
1da177e4 1104 */
dd41f596 1105static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1106{
dd41f596
IM
1107 if (p->state == TASK_UNINTERRUPTIBLE)
1108 rq->nr_uninterruptible--;
1da177e4 1109
8159f87e 1110 enqueue_task(rq, p, wakeup);
e5fa2237 1111 inc_nr_running(p, rq);
1da177e4
LT
1112}
1113
1da177e4
LT
1114/*
1115 * deactivate_task - remove a task from the runqueue.
1116 */
2e1cb74a 1117static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1118{
dd41f596
IM
1119 if (p->state == TASK_UNINTERRUPTIBLE)
1120 rq->nr_uninterruptible++;
1121
69be72c1 1122 dequeue_task(rq, p, sleep);
db53181e 1123 dec_nr_running(p, rq);
1da177e4
LT
1124}
1125
1da177e4
LT
1126/**
1127 * task_curr - is this task currently executing on a CPU?
1128 * @p: the task in question.
1129 */
36c8b586 1130inline int task_curr(const struct task_struct *p)
1da177e4
LT
1131{
1132 return cpu_curr(task_cpu(p)) == p;
1133}
1134
2dd73a4f
PW
1135/* Used instead of source_load when we know the type == 0 */
1136unsigned long weighted_cpuload(const int cpu)
1137{
495eca49 1138 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1139}
1140
1141static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1142{
ce96b5ac 1143 set_task_cfs_rq(p, cpu);
dd41f596 1144#ifdef CONFIG_SMP
ce96b5ac
DA
1145 /*
1146 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1147 * successfuly executed on another CPU. We must ensure that updates of
1148 * per-task data have been completed by this moment.
1149 */
1150 smp_wmb();
dd41f596 1151 task_thread_info(p)->cpu = cpu;
dd41f596 1152#endif
2dd73a4f
PW
1153}
1154
1da177e4 1155#ifdef CONFIG_SMP
c65cc870 1156
cc367732
IM
1157/*
1158 * Is this task likely cache-hot:
1159 */
e7693a36 1160static int
cc367732
IM
1161task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1162{
1163 s64 delta;
1164
1165 if (p->sched_class != &fair_sched_class)
1166 return 0;
1167
6bc1665b
IM
1168 if (sysctl_sched_migration_cost == -1)
1169 return 1;
1170 if (sysctl_sched_migration_cost == 0)
1171 return 0;
1172
cc367732
IM
1173 delta = now - p->se.exec_start;
1174
1175 return delta < (s64)sysctl_sched_migration_cost;
1176}
1177
1178
dd41f596 1179void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1180{
dd41f596
IM
1181 int old_cpu = task_cpu(p);
1182 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1183 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1184 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1185 u64 clock_offset;
dd41f596
IM
1186
1187 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1188
1189#ifdef CONFIG_SCHEDSTATS
1190 if (p->se.wait_start)
1191 p->se.wait_start -= clock_offset;
dd41f596
IM
1192 if (p->se.sleep_start)
1193 p->se.sleep_start -= clock_offset;
1194 if (p->se.block_start)
1195 p->se.block_start -= clock_offset;
cc367732
IM
1196 if (old_cpu != new_cpu) {
1197 schedstat_inc(p, se.nr_migrations);
1198 if (task_hot(p, old_rq->clock, NULL))
1199 schedstat_inc(p, se.nr_forced2_migrations);
1200 }
6cfb0d5d 1201#endif
2830cf8c
SV
1202 p->se.vruntime -= old_cfsrq->min_vruntime -
1203 new_cfsrq->min_vruntime;
dd41f596
IM
1204
1205 __set_task_cpu(p, new_cpu);
c65cc870
IM
1206}
1207
70b97a7f 1208struct migration_req {
1da177e4 1209 struct list_head list;
1da177e4 1210
36c8b586 1211 struct task_struct *task;
1da177e4
LT
1212 int dest_cpu;
1213
1da177e4 1214 struct completion done;
70b97a7f 1215};
1da177e4
LT
1216
1217/*
1218 * The task's runqueue lock must be held.
1219 * Returns true if you have to wait for migration thread.
1220 */
36c8b586 1221static int
70b97a7f 1222migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1223{
70b97a7f 1224 struct rq *rq = task_rq(p);
1da177e4
LT
1225
1226 /*
1227 * If the task is not on a runqueue (and not running), then
1228 * it is sufficient to simply update the task's cpu field.
1229 */
dd41f596 1230 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1231 set_task_cpu(p, dest_cpu);
1232 return 0;
1233 }
1234
1235 init_completion(&req->done);
1da177e4
LT
1236 req->task = p;
1237 req->dest_cpu = dest_cpu;
1238 list_add(&req->list, &rq->migration_queue);
48f24c4d 1239
1da177e4
LT
1240 return 1;
1241}
1242
1243/*
1244 * wait_task_inactive - wait for a thread to unschedule.
1245 *
1246 * The caller must ensure that the task *will* unschedule sometime soon,
1247 * else this function might spin for a *long* time. This function can't
1248 * be called with interrupts off, or it may introduce deadlock with
1249 * smp_call_function() if an IPI is sent by the same process we are
1250 * waiting to become inactive.
1251 */
36c8b586 1252void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1253{
1254 unsigned long flags;
dd41f596 1255 int running, on_rq;
70b97a7f 1256 struct rq *rq;
1da177e4 1257
3a5c359a
AK
1258 for (;;) {
1259 /*
1260 * We do the initial early heuristics without holding
1261 * any task-queue locks at all. We'll only try to get
1262 * the runqueue lock when things look like they will
1263 * work out!
1264 */
1265 rq = task_rq(p);
fa490cfd 1266
3a5c359a
AK
1267 /*
1268 * If the task is actively running on another CPU
1269 * still, just relax and busy-wait without holding
1270 * any locks.
1271 *
1272 * NOTE! Since we don't hold any locks, it's not
1273 * even sure that "rq" stays as the right runqueue!
1274 * But we don't care, since "task_running()" will
1275 * return false if the runqueue has changed and p
1276 * is actually now running somewhere else!
1277 */
1278 while (task_running(rq, p))
1279 cpu_relax();
fa490cfd 1280
3a5c359a
AK
1281 /*
1282 * Ok, time to look more closely! We need the rq
1283 * lock now, to be *sure*. If we're wrong, we'll
1284 * just go back and repeat.
1285 */
1286 rq = task_rq_lock(p, &flags);
1287 running = task_running(rq, p);
1288 on_rq = p->se.on_rq;
1289 task_rq_unlock(rq, &flags);
fa490cfd 1290
3a5c359a
AK
1291 /*
1292 * Was it really running after all now that we
1293 * checked with the proper locks actually held?
1294 *
1295 * Oops. Go back and try again..
1296 */
1297 if (unlikely(running)) {
1298 cpu_relax();
1299 continue;
1300 }
fa490cfd 1301
3a5c359a
AK
1302 /*
1303 * It's not enough that it's not actively running,
1304 * it must be off the runqueue _entirely_, and not
1305 * preempted!
1306 *
1307 * So if it wa still runnable (but just not actively
1308 * running right now), it's preempted, and we should
1309 * yield - it could be a while.
1310 */
1311 if (unlikely(on_rq)) {
1312 schedule_timeout_uninterruptible(1);
1313 continue;
1314 }
fa490cfd 1315
3a5c359a
AK
1316 /*
1317 * Ahh, all good. It wasn't running, and it wasn't
1318 * runnable, which means that it will never become
1319 * running in the future either. We're all done!
1320 */
1321 break;
1322 }
1da177e4
LT
1323}
1324
1325/***
1326 * kick_process - kick a running thread to enter/exit the kernel
1327 * @p: the to-be-kicked thread
1328 *
1329 * Cause a process which is running on another CPU to enter
1330 * kernel-mode, without any delay. (to get signals handled.)
1331 *
1332 * NOTE: this function doesnt have to take the runqueue lock,
1333 * because all it wants to ensure is that the remote task enters
1334 * the kernel. If the IPI races and the task has been migrated
1335 * to another CPU then no harm is done and the purpose has been
1336 * achieved as well.
1337 */
36c8b586 1338void kick_process(struct task_struct *p)
1da177e4
LT
1339{
1340 int cpu;
1341
1342 preempt_disable();
1343 cpu = task_cpu(p);
1344 if ((cpu != smp_processor_id()) && task_curr(p))
1345 smp_send_reschedule(cpu);
1346 preempt_enable();
1347}
1348
1349/*
2dd73a4f
PW
1350 * Return a low guess at the load of a migration-source cpu weighted
1351 * according to the scheduling class and "nice" value.
1da177e4
LT
1352 *
1353 * We want to under-estimate the load of migration sources, to
1354 * balance conservatively.
1355 */
a9957449 1356static unsigned long source_load(int cpu, int type)
1da177e4 1357{
70b97a7f 1358 struct rq *rq = cpu_rq(cpu);
dd41f596 1359 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1360
3b0bd9bc 1361 if (type == 0)
dd41f596 1362 return total;
b910472d 1363
dd41f596 1364 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1365}
1366
1367/*
2dd73a4f
PW
1368 * Return a high guess at the load of a migration-target cpu weighted
1369 * according to the scheduling class and "nice" value.
1da177e4 1370 */
a9957449 1371static unsigned long target_load(int cpu, int type)
1da177e4 1372{
70b97a7f 1373 struct rq *rq = cpu_rq(cpu);
dd41f596 1374 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1375
7897986b 1376 if (type == 0)
dd41f596 1377 return total;
3b0bd9bc 1378
dd41f596 1379 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1380}
1381
1382/*
1383 * Return the average load per task on the cpu's run queue
1384 */
e7693a36 1385static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 1386{
70b97a7f 1387 struct rq *rq = cpu_rq(cpu);
dd41f596 1388 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1389 unsigned long n = rq->nr_running;
1390
dd41f596 1391 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1392}
1393
147cbb4b
NP
1394/*
1395 * find_idlest_group finds and returns the least busy CPU group within the
1396 * domain.
1397 */
1398static struct sched_group *
1399find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1400{
1401 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1402 unsigned long min_load = ULONG_MAX, this_load = 0;
1403 int load_idx = sd->forkexec_idx;
1404 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1405
1406 do {
1407 unsigned long load, avg_load;
1408 int local_group;
1409 int i;
1410
da5a5522
BD
1411 /* Skip over this group if it has no CPUs allowed */
1412 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1413 continue;
da5a5522 1414
147cbb4b 1415 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1416
1417 /* Tally up the load of all CPUs in the group */
1418 avg_load = 0;
1419
1420 for_each_cpu_mask(i, group->cpumask) {
1421 /* Bias balancing toward cpus of our domain */
1422 if (local_group)
1423 load = source_load(i, load_idx);
1424 else
1425 load = target_load(i, load_idx);
1426
1427 avg_load += load;
1428 }
1429
1430 /* Adjust by relative CPU power of the group */
5517d86b
ED
1431 avg_load = sg_div_cpu_power(group,
1432 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1433
1434 if (local_group) {
1435 this_load = avg_load;
1436 this = group;
1437 } else if (avg_load < min_load) {
1438 min_load = avg_load;
1439 idlest = group;
1440 }
3a5c359a 1441 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1442
1443 if (!idlest || 100*this_load < imbalance*min_load)
1444 return NULL;
1445 return idlest;
1446}
1447
1448/*
0feaece9 1449 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1450 */
95cdf3b7
IM
1451static int
1452find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1453{
da5a5522 1454 cpumask_t tmp;
147cbb4b
NP
1455 unsigned long load, min_load = ULONG_MAX;
1456 int idlest = -1;
1457 int i;
1458
da5a5522
BD
1459 /* Traverse only the allowed CPUs */
1460 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1461
1462 for_each_cpu_mask(i, tmp) {
2dd73a4f 1463 load = weighted_cpuload(i);
147cbb4b
NP
1464
1465 if (load < min_load || (load == min_load && i == this_cpu)) {
1466 min_load = load;
1467 idlest = i;
1468 }
1469 }
1470
1471 return idlest;
1472}
1473
476d139c
NP
1474/*
1475 * sched_balance_self: balance the current task (running on cpu) in domains
1476 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1477 * SD_BALANCE_EXEC.
1478 *
1479 * Balance, ie. select the least loaded group.
1480 *
1481 * Returns the target CPU number, or the same CPU if no balancing is needed.
1482 *
1483 * preempt must be disabled.
1484 */
1485static int sched_balance_self(int cpu, int flag)
1486{
1487 struct task_struct *t = current;
1488 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1489
c96d145e 1490 for_each_domain(cpu, tmp) {
9761eea8
IM
1491 /*
1492 * If power savings logic is enabled for a domain, stop there.
1493 */
5c45bf27
SS
1494 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1495 break;
476d139c
NP
1496 if (tmp->flags & flag)
1497 sd = tmp;
c96d145e 1498 }
476d139c
NP
1499
1500 while (sd) {
1501 cpumask_t span;
1502 struct sched_group *group;
1a848870
SS
1503 int new_cpu, weight;
1504
1505 if (!(sd->flags & flag)) {
1506 sd = sd->child;
1507 continue;
1508 }
476d139c
NP
1509
1510 span = sd->span;
1511 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1512 if (!group) {
1513 sd = sd->child;
1514 continue;
1515 }
476d139c 1516
da5a5522 1517 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1518 if (new_cpu == -1 || new_cpu == cpu) {
1519 /* Now try balancing at a lower domain level of cpu */
1520 sd = sd->child;
1521 continue;
1522 }
476d139c 1523
1a848870 1524 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1525 cpu = new_cpu;
476d139c
NP
1526 sd = NULL;
1527 weight = cpus_weight(span);
1528 for_each_domain(cpu, tmp) {
1529 if (weight <= cpus_weight(tmp->span))
1530 break;
1531 if (tmp->flags & flag)
1532 sd = tmp;
1533 }
1534 /* while loop will break here if sd == NULL */
1535 }
1536
1537 return cpu;
1538}
1539
1540#endif /* CONFIG_SMP */
1da177e4 1541
1da177e4
LT
1542/***
1543 * try_to_wake_up - wake up a thread
1544 * @p: the to-be-woken-up thread
1545 * @state: the mask of task states that can be woken
1546 * @sync: do a synchronous wakeup?
1547 *
1548 * Put it on the run-queue if it's not already there. The "current"
1549 * thread is always on the run-queue (except when the actual
1550 * re-schedule is in progress), and as such you're allowed to do
1551 * the simpler "current->state = TASK_RUNNING" to mark yourself
1552 * runnable without the overhead of this.
1553 *
1554 * returns failure only if the task is already active.
1555 */
36c8b586 1556static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1557{
cc367732 1558 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1559 unsigned long flags;
1560 long old_state;
70b97a7f 1561 struct rq *rq;
1da177e4
LT
1562
1563 rq = task_rq_lock(p, &flags);
1564 old_state = p->state;
1565 if (!(old_state & state))
1566 goto out;
1567
dd41f596 1568 if (p->se.on_rq)
1da177e4
LT
1569 goto out_running;
1570
1571 cpu = task_cpu(p);
cc367732 1572 orig_cpu = cpu;
1da177e4
LT
1573 this_cpu = smp_processor_id();
1574
1575#ifdef CONFIG_SMP
1576 if (unlikely(task_running(rq, p)))
1577 goto out_activate;
1578
5d2f5a61
DA
1579 cpu = p->sched_class->select_task_rq(p, sync);
1580 if (cpu != orig_cpu) {
1581 set_task_cpu(p, cpu);
1da177e4
LT
1582 task_rq_unlock(rq, &flags);
1583 /* might preempt at this point */
1584 rq = task_rq_lock(p, &flags);
1585 old_state = p->state;
1586 if (!(old_state & state))
1587 goto out;
dd41f596 1588 if (p->se.on_rq)
1da177e4
LT
1589 goto out_running;
1590
1591 this_cpu = smp_processor_id();
1592 cpu = task_cpu(p);
1593 }
1594
e7693a36
GH
1595#ifdef CONFIG_SCHEDSTATS
1596 schedstat_inc(rq, ttwu_count);
1597 if (cpu == this_cpu)
1598 schedstat_inc(rq, ttwu_local);
1599 else {
1600 struct sched_domain *sd;
1601 for_each_domain(this_cpu, sd) {
1602 if (cpu_isset(cpu, sd->span)) {
1603 schedstat_inc(sd, ttwu_wake_remote);
1604 break;
1605 }
1606 }
1607 }
e7693a36
GH
1608#endif
1609
1da177e4
LT
1610out_activate:
1611#endif /* CONFIG_SMP */
cc367732
IM
1612 schedstat_inc(p, se.nr_wakeups);
1613 if (sync)
1614 schedstat_inc(p, se.nr_wakeups_sync);
1615 if (orig_cpu != cpu)
1616 schedstat_inc(p, se.nr_wakeups_migrate);
1617 if (cpu == this_cpu)
1618 schedstat_inc(p, se.nr_wakeups_local);
1619 else
1620 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1621 update_rq_clock(rq);
dd41f596 1622 activate_task(rq, p, 1);
9c63d9c0 1623 check_preempt_curr(rq, p);
1da177e4
LT
1624 success = 1;
1625
1626out_running:
1627 p->state = TASK_RUNNING;
4642dafd 1628 wakeup_balance_rt(rq, p);
1da177e4
LT
1629out:
1630 task_rq_unlock(rq, &flags);
1631
1632 return success;
1633}
1634
36c8b586 1635int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1636{
1637 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1638 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1639}
1da177e4
LT
1640EXPORT_SYMBOL(wake_up_process);
1641
36c8b586 1642int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1643{
1644 return try_to_wake_up(p, state, 0);
1645}
1646
1da177e4
LT
1647/*
1648 * Perform scheduler related setup for a newly forked process p.
1649 * p is forked by current.
dd41f596
IM
1650 *
1651 * __sched_fork() is basic setup used by init_idle() too:
1652 */
1653static void __sched_fork(struct task_struct *p)
1654{
dd41f596
IM
1655 p->se.exec_start = 0;
1656 p->se.sum_exec_runtime = 0;
f6cf891c 1657 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1658
1659#ifdef CONFIG_SCHEDSTATS
1660 p->se.wait_start = 0;
dd41f596
IM
1661 p->se.sum_sleep_runtime = 0;
1662 p->se.sleep_start = 0;
dd41f596
IM
1663 p->se.block_start = 0;
1664 p->se.sleep_max = 0;
1665 p->se.block_max = 0;
1666 p->se.exec_max = 0;
eba1ed4b 1667 p->se.slice_max = 0;
dd41f596 1668 p->se.wait_max = 0;
6cfb0d5d 1669#endif
476d139c 1670
dd41f596
IM
1671 INIT_LIST_HEAD(&p->run_list);
1672 p->se.on_rq = 0;
476d139c 1673
e107be36
AK
1674#ifdef CONFIG_PREEMPT_NOTIFIERS
1675 INIT_HLIST_HEAD(&p->preempt_notifiers);
1676#endif
1677
1da177e4
LT
1678 /*
1679 * We mark the process as running here, but have not actually
1680 * inserted it onto the runqueue yet. This guarantees that
1681 * nobody will actually run it, and a signal or other external
1682 * event cannot wake it up and insert it on the runqueue either.
1683 */
1684 p->state = TASK_RUNNING;
dd41f596
IM
1685}
1686
1687/*
1688 * fork()/clone()-time setup:
1689 */
1690void sched_fork(struct task_struct *p, int clone_flags)
1691{
1692 int cpu = get_cpu();
1693
1694 __sched_fork(p);
1695
1696#ifdef CONFIG_SMP
1697 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1698#endif
02e4bac2 1699 set_task_cpu(p, cpu);
b29739f9
IM
1700
1701 /*
1702 * Make sure we do not leak PI boosting priority to the child:
1703 */
1704 p->prio = current->normal_prio;
2ddbf952
HS
1705 if (!rt_prio(p->prio))
1706 p->sched_class = &fair_sched_class;
b29739f9 1707
52f17b6c 1708#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1709 if (likely(sched_info_on()))
52f17b6c 1710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1711#endif
d6077cb8 1712#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1713 p->oncpu = 0;
1714#endif
1da177e4 1715#ifdef CONFIG_PREEMPT
4866cde0 1716 /* Want to start with kernel preemption disabled. */
a1261f54 1717 task_thread_info(p)->preempt_count = 1;
1da177e4 1718#endif
476d139c 1719 put_cpu();
1da177e4
LT
1720}
1721
1722/*
1723 * wake_up_new_task - wake up a newly created task for the first time.
1724 *
1725 * This function will do some initial scheduler statistics housekeeping
1726 * that must be done for every newly created context, then puts the task
1727 * on the runqueue and wakes it.
1728 */
36c8b586 1729void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1730{
1731 unsigned long flags;
dd41f596 1732 struct rq *rq;
1da177e4
LT
1733
1734 rq = task_rq_lock(p, &flags);
147cbb4b 1735 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1736 update_rq_clock(rq);
1da177e4
LT
1737
1738 p->prio = effective_prio(p);
1739
b9dca1e0 1740 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1741 activate_task(rq, p, 0);
1da177e4 1742 } else {
1da177e4 1743 /*
dd41f596
IM
1744 * Let the scheduling class do new task startup
1745 * management (if any):
1da177e4 1746 */
ee0827d8 1747 p->sched_class->task_new(rq, p);
e5fa2237 1748 inc_nr_running(p, rq);
1da177e4 1749 }
dd41f596 1750 check_preempt_curr(rq, p);
0d1311a5 1751 wakeup_balance_rt(rq, p);
dd41f596 1752 task_rq_unlock(rq, &flags);
1da177e4
LT
1753}
1754
e107be36
AK
1755#ifdef CONFIG_PREEMPT_NOTIFIERS
1756
1757/**
421cee29
RD
1758 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1759 * @notifier: notifier struct to register
e107be36
AK
1760 */
1761void preempt_notifier_register(struct preempt_notifier *notifier)
1762{
1763 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1764}
1765EXPORT_SYMBOL_GPL(preempt_notifier_register);
1766
1767/**
1768 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1769 * @notifier: notifier struct to unregister
e107be36
AK
1770 *
1771 * This is safe to call from within a preemption notifier.
1772 */
1773void preempt_notifier_unregister(struct preempt_notifier *notifier)
1774{
1775 hlist_del(&notifier->link);
1776}
1777EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1778
1779static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1780{
1781 struct preempt_notifier *notifier;
1782 struct hlist_node *node;
1783
1784 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1785 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1786}
1787
1788static void
1789fire_sched_out_preempt_notifiers(struct task_struct *curr,
1790 struct task_struct *next)
1791{
1792 struct preempt_notifier *notifier;
1793 struct hlist_node *node;
1794
1795 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1796 notifier->ops->sched_out(notifier, next);
1797}
1798
1799#else
1800
1801static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1802{
1803}
1804
1805static void
1806fire_sched_out_preempt_notifiers(struct task_struct *curr,
1807 struct task_struct *next)
1808{
1809}
1810
1811#endif
1812
4866cde0
NP
1813/**
1814 * prepare_task_switch - prepare to switch tasks
1815 * @rq: the runqueue preparing to switch
421cee29 1816 * @prev: the current task that is being switched out
4866cde0
NP
1817 * @next: the task we are going to switch to.
1818 *
1819 * This is called with the rq lock held and interrupts off. It must
1820 * be paired with a subsequent finish_task_switch after the context
1821 * switch.
1822 *
1823 * prepare_task_switch sets up locking and calls architecture specific
1824 * hooks.
1825 */
e107be36
AK
1826static inline void
1827prepare_task_switch(struct rq *rq, struct task_struct *prev,
1828 struct task_struct *next)
4866cde0 1829{
e107be36 1830 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1831 prepare_lock_switch(rq, next);
1832 prepare_arch_switch(next);
1833}
1834
1da177e4
LT
1835/**
1836 * finish_task_switch - clean up after a task-switch
344babaa 1837 * @rq: runqueue associated with task-switch
1da177e4
LT
1838 * @prev: the thread we just switched away from.
1839 *
4866cde0
NP
1840 * finish_task_switch must be called after the context switch, paired
1841 * with a prepare_task_switch call before the context switch.
1842 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1843 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1844 *
1845 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1846 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1847 * with the lock held can cause deadlocks; see schedule() for
1848 * details.)
1849 */
a9957449 1850static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1851 __releases(rq->lock)
1852{
1da177e4 1853 struct mm_struct *mm = rq->prev_mm;
55a101f8 1854 long prev_state;
1da177e4
LT
1855
1856 rq->prev_mm = NULL;
1857
1858 /*
1859 * A task struct has one reference for the use as "current".
c394cc9f 1860 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1861 * schedule one last time. The schedule call will never return, and
1862 * the scheduled task must drop that reference.
c394cc9f 1863 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1864 * still held, otherwise prev could be scheduled on another cpu, die
1865 * there before we look at prev->state, and then the reference would
1866 * be dropped twice.
1867 * Manfred Spraul <manfred@colorfullife.com>
1868 */
55a101f8 1869 prev_state = prev->state;
4866cde0
NP
1870 finish_arch_switch(prev);
1871 finish_lock_switch(rq, prev);
e8fa1362
SR
1872 schedule_tail_balance_rt(rq);
1873
e107be36 1874 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1875 if (mm)
1876 mmdrop(mm);
c394cc9f 1877 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1878 /*
1879 * Remove function-return probe instances associated with this
1880 * task and put them back on the free list.
9761eea8 1881 */
c6fd91f0 1882 kprobe_flush_task(prev);
1da177e4 1883 put_task_struct(prev);
c6fd91f0 1884 }
1da177e4
LT
1885}
1886
1887/**
1888 * schedule_tail - first thing a freshly forked thread must call.
1889 * @prev: the thread we just switched away from.
1890 */
36c8b586 1891asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1892 __releases(rq->lock)
1893{
70b97a7f
IM
1894 struct rq *rq = this_rq();
1895
4866cde0
NP
1896 finish_task_switch(rq, prev);
1897#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1898 /* In this case, finish_task_switch does not reenable preemption */
1899 preempt_enable();
1900#endif
1da177e4 1901 if (current->set_child_tid)
b488893a 1902 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1903}
1904
1905/*
1906 * context_switch - switch to the new MM and the new
1907 * thread's register state.
1908 */
dd41f596 1909static inline void
70b97a7f 1910context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1911 struct task_struct *next)
1da177e4 1912{
dd41f596 1913 struct mm_struct *mm, *oldmm;
1da177e4 1914
e107be36 1915 prepare_task_switch(rq, prev, next);
dd41f596
IM
1916 mm = next->mm;
1917 oldmm = prev->active_mm;
9226d125
ZA
1918 /*
1919 * For paravirt, this is coupled with an exit in switch_to to
1920 * combine the page table reload and the switch backend into
1921 * one hypercall.
1922 */
1923 arch_enter_lazy_cpu_mode();
1924
dd41f596 1925 if (unlikely(!mm)) {
1da177e4
LT
1926 next->active_mm = oldmm;
1927 atomic_inc(&oldmm->mm_count);
1928 enter_lazy_tlb(oldmm, next);
1929 } else
1930 switch_mm(oldmm, mm, next);
1931
dd41f596 1932 if (unlikely(!prev->mm)) {
1da177e4 1933 prev->active_mm = NULL;
1da177e4
LT
1934 rq->prev_mm = oldmm;
1935 }
3a5f5e48
IM
1936 /*
1937 * Since the runqueue lock will be released by the next
1938 * task (which is an invalid locking op but in the case
1939 * of the scheduler it's an obvious special-case), so we
1940 * do an early lockdep release here:
1941 */
1942#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1943 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1944#endif
1da177e4
LT
1945
1946 /* Here we just switch the register state and the stack. */
1947 switch_to(prev, next, prev);
1948
dd41f596
IM
1949 barrier();
1950 /*
1951 * this_rq must be evaluated again because prev may have moved
1952 * CPUs since it called schedule(), thus the 'rq' on its stack
1953 * frame will be invalid.
1954 */
1955 finish_task_switch(this_rq(), prev);
1da177e4
LT
1956}
1957
1958/*
1959 * nr_running, nr_uninterruptible and nr_context_switches:
1960 *
1961 * externally visible scheduler statistics: current number of runnable
1962 * threads, current number of uninterruptible-sleeping threads, total
1963 * number of context switches performed since bootup.
1964 */
1965unsigned long nr_running(void)
1966{
1967 unsigned long i, sum = 0;
1968
1969 for_each_online_cpu(i)
1970 sum += cpu_rq(i)->nr_running;
1971
1972 return sum;
1973}
1974
1975unsigned long nr_uninterruptible(void)
1976{
1977 unsigned long i, sum = 0;
1978
0a945022 1979 for_each_possible_cpu(i)
1da177e4
LT
1980 sum += cpu_rq(i)->nr_uninterruptible;
1981
1982 /*
1983 * Since we read the counters lockless, it might be slightly
1984 * inaccurate. Do not allow it to go below zero though:
1985 */
1986 if (unlikely((long)sum < 0))
1987 sum = 0;
1988
1989 return sum;
1990}
1991
1992unsigned long long nr_context_switches(void)
1993{
cc94abfc
SR
1994 int i;
1995 unsigned long long sum = 0;
1da177e4 1996
0a945022 1997 for_each_possible_cpu(i)
1da177e4
LT
1998 sum += cpu_rq(i)->nr_switches;
1999
2000 return sum;
2001}
2002
2003unsigned long nr_iowait(void)
2004{
2005 unsigned long i, sum = 0;
2006
0a945022 2007 for_each_possible_cpu(i)
1da177e4
LT
2008 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2009
2010 return sum;
2011}
2012
db1b1fef
JS
2013unsigned long nr_active(void)
2014{
2015 unsigned long i, running = 0, uninterruptible = 0;
2016
2017 for_each_online_cpu(i) {
2018 running += cpu_rq(i)->nr_running;
2019 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2020 }
2021
2022 if (unlikely((long)uninterruptible < 0))
2023 uninterruptible = 0;
2024
2025 return running + uninterruptible;
2026}
2027
48f24c4d 2028/*
dd41f596
IM
2029 * Update rq->cpu_load[] statistics. This function is usually called every
2030 * scheduler tick (TICK_NSEC).
48f24c4d 2031 */
dd41f596 2032static void update_cpu_load(struct rq *this_rq)
48f24c4d 2033{
495eca49 2034 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2035 int i, scale;
2036
2037 this_rq->nr_load_updates++;
dd41f596
IM
2038
2039 /* Update our load: */
2040 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2041 unsigned long old_load, new_load;
2042
2043 /* scale is effectively 1 << i now, and >> i divides by scale */
2044
2045 old_load = this_rq->cpu_load[i];
2046 new_load = this_load;
a25707f3
IM
2047 /*
2048 * Round up the averaging division if load is increasing. This
2049 * prevents us from getting stuck on 9 if the load is 10, for
2050 * example.
2051 */
2052 if (new_load > old_load)
2053 new_load += scale-1;
dd41f596
IM
2054 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2055 }
48f24c4d
IM
2056}
2057
dd41f596
IM
2058#ifdef CONFIG_SMP
2059
1da177e4
LT
2060/*
2061 * double_rq_lock - safely lock two runqueues
2062 *
2063 * Note this does not disable interrupts like task_rq_lock,
2064 * you need to do so manually before calling.
2065 */
70b97a7f 2066static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2067 __acquires(rq1->lock)
2068 __acquires(rq2->lock)
2069{
054b9108 2070 BUG_ON(!irqs_disabled());
1da177e4
LT
2071 if (rq1 == rq2) {
2072 spin_lock(&rq1->lock);
2073 __acquire(rq2->lock); /* Fake it out ;) */
2074 } else {
c96d145e 2075 if (rq1 < rq2) {
1da177e4
LT
2076 spin_lock(&rq1->lock);
2077 spin_lock(&rq2->lock);
2078 } else {
2079 spin_lock(&rq2->lock);
2080 spin_lock(&rq1->lock);
2081 }
2082 }
6e82a3be
IM
2083 update_rq_clock(rq1);
2084 update_rq_clock(rq2);
1da177e4
LT
2085}
2086
2087/*
2088 * double_rq_unlock - safely unlock two runqueues
2089 *
2090 * Note this does not restore interrupts like task_rq_unlock,
2091 * you need to do so manually after calling.
2092 */
70b97a7f 2093static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2094 __releases(rq1->lock)
2095 __releases(rq2->lock)
2096{
2097 spin_unlock(&rq1->lock);
2098 if (rq1 != rq2)
2099 spin_unlock(&rq2->lock);
2100 else
2101 __release(rq2->lock);
2102}
2103
2104/*
2105 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2106 */
e8fa1362 2107static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2108 __releases(this_rq->lock)
2109 __acquires(busiest->lock)
2110 __acquires(this_rq->lock)
2111{
e8fa1362
SR
2112 int ret = 0;
2113
054b9108
KK
2114 if (unlikely(!irqs_disabled())) {
2115 /* printk() doesn't work good under rq->lock */
2116 spin_unlock(&this_rq->lock);
2117 BUG_ON(1);
2118 }
1da177e4 2119 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2120 if (busiest < this_rq) {
1da177e4
LT
2121 spin_unlock(&this_rq->lock);
2122 spin_lock(&busiest->lock);
2123 spin_lock(&this_rq->lock);
e8fa1362 2124 ret = 1;
1da177e4
LT
2125 } else
2126 spin_lock(&busiest->lock);
2127 }
e8fa1362 2128 return ret;
1da177e4
LT
2129}
2130
1da177e4
LT
2131/*
2132 * If dest_cpu is allowed for this process, migrate the task to it.
2133 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2134 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2135 * the cpu_allowed mask is restored.
2136 */
36c8b586 2137static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2138{
70b97a7f 2139 struct migration_req req;
1da177e4 2140 unsigned long flags;
70b97a7f 2141 struct rq *rq;
1da177e4
LT
2142
2143 rq = task_rq_lock(p, &flags);
2144 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2145 || unlikely(cpu_is_offline(dest_cpu)))
2146 goto out;
2147
2148 /* force the process onto the specified CPU */
2149 if (migrate_task(p, dest_cpu, &req)) {
2150 /* Need to wait for migration thread (might exit: take ref). */
2151 struct task_struct *mt = rq->migration_thread;
36c8b586 2152
1da177e4
LT
2153 get_task_struct(mt);
2154 task_rq_unlock(rq, &flags);
2155 wake_up_process(mt);
2156 put_task_struct(mt);
2157 wait_for_completion(&req.done);
36c8b586 2158
1da177e4
LT
2159 return;
2160 }
2161out:
2162 task_rq_unlock(rq, &flags);
2163}
2164
2165/*
476d139c
NP
2166 * sched_exec - execve() is a valuable balancing opportunity, because at
2167 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2168 */
2169void sched_exec(void)
2170{
1da177e4 2171 int new_cpu, this_cpu = get_cpu();
476d139c 2172 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2173 put_cpu();
476d139c
NP
2174 if (new_cpu != this_cpu)
2175 sched_migrate_task(current, new_cpu);
1da177e4
LT
2176}
2177
2178/*
2179 * pull_task - move a task from a remote runqueue to the local runqueue.
2180 * Both runqueues must be locked.
2181 */
dd41f596
IM
2182static void pull_task(struct rq *src_rq, struct task_struct *p,
2183 struct rq *this_rq, int this_cpu)
1da177e4 2184{
2e1cb74a 2185 deactivate_task(src_rq, p, 0);
1da177e4 2186 set_task_cpu(p, this_cpu);
dd41f596 2187 activate_task(this_rq, p, 0);
1da177e4
LT
2188 /*
2189 * Note that idle threads have a prio of MAX_PRIO, for this test
2190 * to be always true for them.
2191 */
dd41f596 2192 check_preempt_curr(this_rq, p);
1da177e4
LT
2193}
2194
2195/*
2196 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2197 */
858119e1 2198static
70b97a7f 2199int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2200 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2201 int *all_pinned)
1da177e4
LT
2202{
2203 /*
2204 * We do not migrate tasks that are:
2205 * 1) running (obviously), or
2206 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2207 * 3) are cache-hot on their current CPU.
2208 */
cc367732
IM
2209 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2210 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2211 return 0;
cc367732 2212 }
81026794
NP
2213 *all_pinned = 0;
2214
cc367732
IM
2215 if (task_running(rq, p)) {
2216 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2217 return 0;
cc367732 2218 }
1da177e4 2219
da84d961
IM
2220 /*
2221 * Aggressive migration if:
2222 * 1) task is cache cold, or
2223 * 2) too many balance attempts have failed.
2224 */
2225
6bc1665b
IM
2226 if (!task_hot(p, rq->clock, sd) ||
2227 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2228#ifdef CONFIG_SCHEDSTATS
cc367732 2229 if (task_hot(p, rq->clock, sd)) {
da84d961 2230 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2231 schedstat_inc(p, se.nr_forced_migrations);
2232 }
da84d961
IM
2233#endif
2234 return 1;
2235 }
2236
cc367732
IM
2237 if (task_hot(p, rq->clock, sd)) {
2238 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2239 return 0;
cc367732 2240 }
1da177e4
LT
2241 return 1;
2242}
2243
e1d1484f
PW
2244static unsigned long
2245balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2246 unsigned long max_load_move, struct sched_domain *sd,
2247 enum cpu_idle_type idle, int *all_pinned,
2248 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2249{
b82d9fdd 2250 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2251 struct task_struct *p;
2252 long rem_load_move = max_load_move;
1da177e4 2253
e1d1484f 2254 if (max_load_move == 0)
1da177e4
LT
2255 goto out;
2256
81026794
NP
2257 pinned = 1;
2258
1da177e4 2259 /*
dd41f596 2260 * Start the load-balancing iterator:
1da177e4 2261 */
dd41f596
IM
2262 p = iterator->start(iterator->arg);
2263next:
b82d9fdd 2264 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2265 goto out;
50ddd969 2266 /*
b82d9fdd 2267 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2268 * skip a task if it will be the highest priority task (i.e. smallest
2269 * prio value) on its new queue regardless of its load weight
2270 */
dd41f596
IM
2271 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2272 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2273 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2274 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2275 p = iterator->next(iterator->arg);
2276 goto next;
1da177e4
LT
2277 }
2278
dd41f596 2279 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2280 pulled++;
dd41f596 2281 rem_load_move -= p->se.load.weight;
1da177e4 2282
2dd73a4f 2283 /*
b82d9fdd 2284 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2285 */
e1d1484f 2286 if (rem_load_move > 0) {
a4ac01c3
PW
2287 if (p->prio < *this_best_prio)
2288 *this_best_prio = p->prio;
dd41f596
IM
2289 p = iterator->next(iterator->arg);
2290 goto next;
1da177e4
LT
2291 }
2292out:
2293 /*
e1d1484f 2294 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2295 * so we can safely collect pull_task() stats here rather than
2296 * inside pull_task().
2297 */
2298 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2299
2300 if (all_pinned)
2301 *all_pinned = pinned;
e1d1484f
PW
2302
2303 return max_load_move - rem_load_move;
1da177e4
LT
2304}
2305
dd41f596 2306/*
43010659
PW
2307 * move_tasks tries to move up to max_load_move weighted load from busiest to
2308 * this_rq, as part of a balancing operation within domain "sd".
2309 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2310 *
2311 * Called with both runqueues locked.
2312 */
2313static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2314 unsigned long max_load_move,
dd41f596
IM
2315 struct sched_domain *sd, enum cpu_idle_type idle,
2316 int *all_pinned)
2317{
5522d5d5 2318 const struct sched_class *class = sched_class_highest;
43010659 2319 unsigned long total_load_moved = 0;
a4ac01c3 2320 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2321
2322 do {
43010659
PW
2323 total_load_moved +=
2324 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2325 max_load_move - total_load_moved,
a4ac01c3 2326 sd, idle, all_pinned, &this_best_prio);
dd41f596 2327 class = class->next;
43010659 2328 } while (class && max_load_move > total_load_moved);
dd41f596 2329
43010659
PW
2330 return total_load_moved > 0;
2331}
2332
e1d1484f
PW
2333static int
2334iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2335 struct sched_domain *sd, enum cpu_idle_type idle,
2336 struct rq_iterator *iterator)
2337{
2338 struct task_struct *p = iterator->start(iterator->arg);
2339 int pinned = 0;
2340
2341 while (p) {
2342 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2343 pull_task(busiest, p, this_rq, this_cpu);
2344 /*
2345 * Right now, this is only the second place pull_task()
2346 * is called, so we can safely collect pull_task()
2347 * stats here rather than inside pull_task().
2348 */
2349 schedstat_inc(sd, lb_gained[idle]);
2350
2351 return 1;
2352 }
2353 p = iterator->next(iterator->arg);
2354 }
2355
2356 return 0;
2357}
2358
43010659
PW
2359/*
2360 * move_one_task tries to move exactly one task from busiest to this_rq, as
2361 * part of active balancing operations within "domain".
2362 * Returns 1 if successful and 0 otherwise.
2363 *
2364 * Called with both runqueues locked.
2365 */
2366static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2367 struct sched_domain *sd, enum cpu_idle_type idle)
2368{
5522d5d5 2369 const struct sched_class *class;
43010659
PW
2370
2371 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2372 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2373 return 1;
2374
2375 return 0;
dd41f596
IM
2376}
2377
1da177e4
LT
2378/*
2379 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2380 * domain. It calculates and returns the amount of weighted load which
2381 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2382 */
2383static struct sched_group *
2384find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2385 unsigned long *imbalance, enum cpu_idle_type idle,
2386 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2387{
2388 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2389 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2390 unsigned long max_pull;
2dd73a4f
PW
2391 unsigned long busiest_load_per_task, busiest_nr_running;
2392 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2393 int load_idx, group_imb = 0;
5c45bf27
SS
2394#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2395 int power_savings_balance = 1;
2396 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2397 unsigned long min_nr_running = ULONG_MAX;
2398 struct sched_group *group_min = NULL, *group_leader = NULL;
2399#endif
1da177e4
LT
2400
2401 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2402 busiest_load_per_task = busiest_nr_running = 0;
2403 this_load_per_task = this_nr_running = 0;
d15bcfdb 2404 if (idle == CPU_NOT_IDLE)
7897986b 2405 load_idx = sd->busy_idx;
d15bcfdb 2406 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2407 load_idx = sd->newidle_idx;
2408 else
2409 load_idx = sd->idle_idx;
1da177e4
LT
2410
2411 do {
908a7c1b 2412 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2413 int local_group;
2414 int i;
908a7c1b 2415 int __group_imb = 0;
783609c6 2416 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2417 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2418
2419 local_group = cpu_isset(this_cpu, group->cpumask);
2420
783609c6
SS
2421 if (local_group)
2422 balance_cpu = first_cpu(group->cpumask);
2423
1da177e4 2424 /* Tally up the load of all CPUs in the group */
2dd73a4f 2425 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2426 max_cpu_load = 0;
2427 min_cpu_load = ~0UL;
1da177e4
LT
2428
2429 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2430 struct rq *rq;
2431
2432 if (!cpu_isset(i, *cpus))
2433 continue;
2434
2435 rq = cpu_rq(i);
2dd73a4f 2436
9439aab8 2437 if (*sd_idle && rq->nr_running)
5969fe06
NP
2438 *sd_idle = 0;
2439
1da177e4 2440 /* Bias balancing toward cpus of our domain */
783609c6
SS
2441 if (local_group) {
2442 if (idle_cpu(i) && !first_idle_cpu) {
2443 first_idle_cpu = 1;
2444 balance_cpu = i;
2445 }
2446
a2000572 2447 load = target_load(i, load_idx);
908a7c1b 2448 } else {
a2000572 2449 load = source_load(i, load_idx);
908a7c1b
KC
2450 if (load > max_cpu_load)
2451 max_cpu_load = load;
2452 if (min_cpu_load > load)
2453 min_cpu_load = load;
2454 }
1da177e4
LT
2455
2456 avg_load += load;
2dd73a4f 2457 sum_nr_running += rq->nr_running;
dd41f596 2458 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2459 }
2460
783609c6
SS
2461 /*
2462 * First idle cpu or the first cpu(busiest) in this sched group
2463 * is eligible for doing load balancing at this and above
9439aab8
SS
2464 * domains. In the newly idle case, we will allow all the cpu's
2465 * to do the newly idle load balance.
783609c6 2466 */
9439aab8
SS
2467 if (idle != CPU_NEWLY_IDLE && local_group &&
2468 balance_cpu != this_cpu && balance) {
783609c6
SS
2469 *balance = 0;
2470 goto ret;
2471 }
2472
1da177e4 2473 total_load += avg_load;
5517d86b 2474 total_pwr += group->__cpu_power;
1da177e4
LT
2475
2476 /* Adjust by relative CPU power of the group */
5517d86b
ED
2477 avg_load = sg_div_cpu_power(group,
2478 avg_load * SCHED_LOAD_SCALE);
1da177e4 2479
908a7c1b
KC
2480 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2481 __group_imb = 1;
2482
5517d86b 2483 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2484
1da177e4
LT
2485 if (local_group) {
2486 this_load = avg_load;
2487 this = group;
2dd73a4f
PW
2488 this_nr_running = sum_nr_running;
2489 this_load_per_task = sum_weighted_load;
2490 } else if (avg_load > max_load &&
908a7c1b 2491 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2492 max_load = avg_load;
2493 busiest = group;
2dd73a4f
PW
2494 busiest_nr_running = sum_nr_running;
2495 busiest_load_per_task = sum_weighted_load;
908a7c1b 2496 group_imb = __group_imb;
1da177e4 2497 }
5c45bf27
SS
2498
2499#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2500 /*
2501 * Busy processors will not participate in power savings
2502 * balance.
2503 */
dd41f596
IM
2504 if (idle == CPU_NOT_IDLE ||
2505 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2506 goto group_next;
5c45bf27
SS
2507
2508 /*
2509 * If the local group is idle or completely loaded
2510 * no need to do power savings balance at this domain
2511 */
2512 if (local_group && (this_nr_running >= group_capacity ||
2513 !this_nr_running))
2514 power_savings_balance = 0;
2515
dd41f596 2516 /*
5c45bf27
SS
2517 * If a group is already running at full capacity or idle,
2518 * don't include that group in power savings calculations
dd41f596
IM
2519 */
2520 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2521 || !sum_nr_running)
dd41f596 2522 goto group_next;
5c45bf27 2523
dd41f596 2524 /*
5c45bf27 2525 * Calculate the group which has the least non-idle load.
dd41f596
IM
2526 * This is the group from where we need to pick up the load
2527 * for saving power
2528 */
2529 if ((sum_nr_running < min_nr_running) ||
2530 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2531 first_cpu(group->cpumask) <
2532 first_cpu(group_min->cpumask))) {
dd41f596
IM
2533 group_min = group;
2534 min_nr_running = sum_nr_running;
5c45bf27
SS
2535 min_load_per_task = sum_weighted_load /
2536 sum_nr_running;
dd41f596 2537 }
5c45bf27 2538
dd41f596 2539 /*
5c45bf27 2540 * Calculate the group which is almost near its
dd41f596
IM
2541 * capacity but still has some space to pick up some load
2542 * from other group and save more power
2543 */
2544 if (sum_nr_running <= group_capacity - 1) {
2545 if (sum_nr_running > leader_nr_running ||
2546 (sum_nr_running == leader_nr_running &&
2547 first_cpu(group->cpumask) >
2548 first_cpu(group_leader->cpumask))) {
2549 group_leader = group;
2550 leader_nr_running = sum_nr_running;
2551 }
48f24c4d 2552 }
5c45bf27
SS
2553group_next:
2554#endif
1da177e4
LT
2555 group = group->next;
2556 } while (group != sd->groups);
2557
2dd73a4f 2558 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2559 goto out_balanced;
2560
2561 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2562
2563 if (this_load >= avg_load ||
2564 100*max_load <= sd->imbalance_pct*this_load)
2565 goto out_balanced;
2566
2dd73a4f 2567 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2568 if (group_imb)
2569 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2570
1da177e4
LT
2571 /*
2572 * We're trying to get all the cpus to the average_load, so we don't
2573 * want to push ourselves above the average load, nor do we wish to
2574 * reduce the max loaded cpu below the average load, as either of these
2575 * actions would just result in more rebalancing later, and ping-pong
2576 * tasks around. Thus we look for the minimum possible imbalance.
2577 * Negative imbalances (*we* are more loaded than anyone else) will
2578 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 2579 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
2580 * appear as very large values with unsigned longs.
2581 */
2dd73a4f
PW
2582 if (max_load <= busiest_load_per_task)
2583 goto out_balanced;
2584
2585 /*
2586 * In the presence of smp nice balancing, certain scenarios can have
2587 * max load less than avg load(as we skip the groups at or below
2588 * its cpu_power, while calculating max_load..)
2589 */
2590 if (max_load < avg_load) {
2591 *imbalance = 0;
2592 goto small_imbalance;
2593 }
0c117f1b
SS
2594
2595 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2596 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2597
1da177e4 2598 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2599 *imbalance = min(max_pull * busiest->__cpu_power,
2600 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2601 / SCHED_LOAD_SCALE;
2602
2dd73a4f
PW
2603 /*
2604 * if *imbalance is less than the average load per runnable task
2605 * there is no gaurantee that any tasks will be moved so we'll have
2606 * a think about bumping its value to force at least one task to be
2607 * moved
2608 */
7fd0d2dd 2609 if (*imbalance < busiest_load_per_task) {
48f24c4d 2610 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2611 unsigned int imbn;
2612
2613small_imbalance:
2614 pwr_move = pwr_now = 0;
2615 imbn = 2;
2616 if (this_nr_running) {
2617 this_load_per_task /= this_nr_running;
2618 if (busiest_load_per_task > this_load_per_task)
2619 imbn = 1;
2620 } else
2621 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2622
dd41f596
IM
2623 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2624 busiest_load_per_task * imbn) {
2dd73a4f 2625 *imbalance = busiest_load_per_task;
1da177e4
LT
2626 return busiest;
2627 }
2628
2629 /*
2630 * OK, we don't have enough imbalance to justify moving tasks,
2631 * however we may be able to increase total CPU power used by
2632 * moving them.
2633 */
2634
5517d86b
ED
2635 pwr_now += busiest->__cpu_power *
2636 min(busiest_load_per_task, max_load);
2637 pwr_now += this->__cpu_power *
2638 min(this_load_per_task, this_load);
1da177e4
LT
2639 pwr_now /= SCHED_LOAD_SCALE;
2640
2641 /* Amount of load we'd subtract */
5517d86b
ED
2642 tmp = sg_div_cpu_power(busiest,
2643 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2644 if (max_load > tmp)
5517d86b 2645 pwr_move += busiest->__cpu_power *
2dd73a4f 2646 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2647
2648 /* Amount of load we'd add */
5517d86b 2649 if (max_load * busiest->__cpu_power <
33859f7f 2650 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2651 tmp = sg_div_cpu_power(this,
2652 max_load * busiest->__cpu_power);
1da177e4 2653 else
5517d86b
ED
2654 tmp = sg_div_cpu_power(this,
2655 busiest_load_per_task * SCHED_LOAD_SCALE);
2656 pwr_move += this->__cpu_power *
2657 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2658 pwr_move /= SCHED_LOAD_SCALE;
2659
2660 /* Move if we gain throughput */
7fd0d2dd
SS
2661 if (pwr_move > pwr_now)
2662 *imbalance = busiest_load_per_task;
1da177e4
LT
2663 }
2664
1da177e4
LT
2665 return busiest;
2666
2667out_balanced:
5c45bf27 2668#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2669 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2670 goto ret;
1da177e4 2671
5c45bf27
SS
2672 if (this == group_leader && group_leader != group_min) {
2673 *imbalance = min_load_per_task;
2674 return group_min;
2675 }
5c45bf27 2676#endif
783609c6 2677ret:
1da177e4
LT
2678 *imbalance = 0;
2679 return NULL;
2680}
2681
2682/*
2683 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2684 */
70b97a7f 2685static struct rq *
d15bcfdb 2686find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2687 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2688{
70b97a7f 2689 struct rq *busiest = NULL, *rq;
2dd73a4f 2690 unsigned long max_load = 0;
1da177e4
LT
2691 int i;
2692
2693 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2694 unsigned long wl;
0a2966b4
CL
2695
2696 if (!cpu_isset(i, *cpus))
2697 continue;
2698
48f24c4d 2699 rq = cpu_rq(i);
dd41f596 2700 wl = weighted_cpuload(i);
2dd73a4f 2701
dd41f596 2702 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2703 continue;
1da177e4 2704
dd41f596
IM
2705 if (wl > max_load) {
2706 max_load = wl;
48f24c4d 2707 busiest = rq;
1da177e4
LT
2708 }
2709 }
2710
2711 return busiest;
2712}
2713
77391d71
NP
2714/*
2715 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2716 * so long as it is large enough.
2717 */
2718#define MAX_PINNED_INTERVAL 512
2719
1da177e4
LT
2720/*
2721 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2722 * tasks if there is an imbalance.
1da177e4 2723 */
70b97a7f 2724static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2725 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2726 int *balance)
1da177e4 2727{
43010659 2728 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2729 struct sched_group *group;
1da177e4 2730 unsigned long imbalance;
70b97a7f 2731 struct rq *busiest;
0a2966b4 2732 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2733 unsigned long flags;
5969fe06 2734
89c4710e
SS
2735 /*
2736 * When power savings policy is enabled for the parent domain, idle
2737 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2738 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2739 * portraying it as CPU_NOT_IDLE.
89c4710e 2740 */
d15bcfdb 2741 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2743 sd_idle = 1;
1da177e4 2744
2d72376b 2745 schedstat_inc(sd, lb_count[idle]);
1da177e4 2746
0a2966b4
CL
2747redo:
2748 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2749 &cpus, balance);
2750
06066714 2751 if (*balance == 0)
783609c6 2752 goto out_balanced;
783609c6 2753
1da177e4
LT
2754 if (!group) {
2755 schedstat_inc(sd, lb_nobusyg[idle]);
2756 goto out_balanced;
2757 }
2758
0a2966b4 2759 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2760 if (!busiest) {
2761 schedstat_inc(sd, lb_nobusyq[idle]);
2762 goto out_balanced;
2763 }
2764
db935dbd 2765 BUG_ON(busiest == this_rq);
1da177e4
LT
2766
2767 schedstat_add(sd, lb_imbalance[idle], imbalance);
2768
43010659 2769 ld_moved = 0;
1da177e4
LT
2770 if (busiest->nr_running > 1) {
2771 /*
2772 * Attempt to move tasks. If find_busiest_group has found
2773 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2774 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2775 * correctly treated as an imbalance.
2776 */
fe2eea3f 2777 local_irq_save(flags);
e17224bf 2778 double_rq_lock(this_rq, busiest);
43010659 2779 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2780 imbalance, sd, idle, &all_pinned);
e17224bf 2781 double_rq_unlock(this_rq, busiest);
fe2eea3f 2782 local_irq_restore(flags);
81026794 2783
46cb4b7c
SS
2784 /*
2785 * some other cpu did the load balance for us.
2786 */
43010659 2787 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2788 resched_cpu(this_cpu);
2789
81026794 2790 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2791 if (unlikely(all_pinned)) {
2792 cpu_clear(cpu_of(busiest), cpus);
2793 if (!cpus_empty(cpus))
2794 goto redo;
81026794 2795 goto out_balanced;
0a2966b4 2796 }
1da177e4 2797 }
81026794 2798
43010659 2799 if (!ld_moved) {
1da177e4
LT
2800 schedstat_inc(sd, lb_failed[idle]);
2801 sd->nr_balance_failed++;
2802
2803 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2804
fe2eea3f 2805 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2806
2807 /* don't kick the migration_thread, if the curr
2808 * task on busiest cpu can't be moved to this_cpu
2809 */
2810 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2811 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2812 all_pinned = 1;
2813 goto out_one_pinned;
2814 }
2815
1da177e4
LT
2816 if (!busiest->active_balance) {
2817 busiest->active_balance = 1;
2818 busiest->push_cpu = this_cpu;
81026794 2819 active_balance = 1;
1da177e4 2820 }
fe2eea3f 2821 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2822 if (active_balance)
1da177e4
LT
2823 wake_up_process(busiest->migration_thread);
2824
2825 /*
2826 * We've kicked active balancing, reset the failure
2827 * counter.
2828 */
39507451 2829 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2830 }
81026794 2831 } else
1da177e4
LT
2832 sd->nr_balance_failed = 0;
2833
81026794 2834 if (likely(!active_balance)) {
1da177e4
LT
2835 /* We were unbalanced, so reset the balancing interval */
2836 sd->balance_interval = sd->min_interval;
81026794
NP
2837 } else {
2838 /*
2839 * If we've begun active balancing, start to back off. This
2840 * case may not be covered by the all_pinned logic if there
2841 * is only 1 task on the busy runqueue (because we don't call
2842 * move_tasks).
2843 */
2844 if (sd->balance_interval < sd->max_interval)
2845 sd->balance_interval *= 2;
1da177e4
LT
2846 }
2847
43010659 2848 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2849 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2850 return -1;
43010659 2851 return ld_moved;
1da177e4
LT
2852
2853out_balanced:
1da177e4
LT
2854 schedstat_inc(sd, lb_balanced[idle]);
2855
16cfb1c0 2856 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2857
2858out_one_pinned:
1da177e4 2859 /* tune up the balancing interval */
77391d71
NP
2860 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2861 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2862 sd->balance_interval *= 2;
2863
48f24c4d 2864 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2865 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2866 return -1;
1da177e4
LT
2867 return 0;
2868}
2869
2870/*
2871 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2872 * tasks if there is an imbalance.
2873 *
d15bcfdb 2874 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2875 * this_rq is locked.
2876 */
48f24c4d 2877static int
70b97a7f 2878load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2879{
2880 struct sched_group *group;
70b97a7f 2881 struct rq *busiest = NULL;
1da177e4 2882 unsigned long imbalance;
43010659 2883 int ld_moved = 0;
5969fe06 2884 int sd_idle = 0;
969bb4e4 2885 int all_pinned = 0;
0a2966b4 2886 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2887
89c4710e
SS
2888 /*
2889 * When power savings policy is enabled for the parent domain, idle
2890 * sibling can pick up load irrespective of busy siblings. In this case,
2891 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2892 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2893 */
2894 if (sd->flags & SD_SHARE_CPUPOWER &&
2895 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2896 sd_idle = 1;
1da177e4 2897
2d72376b 2898 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2899redo:
d15bcfdb 2900 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2901 &sd_idle, &cpus, NULL);
1da177e4 2902 if (!group) {
d15bcfdb 2903 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2904 goto out_balanced;
1da177e4
LT
2905 }
2906
d15bcfdb 2907 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2908 &cpus);
db935dbd 2909 if (!busiest) {
d15bcfdb 2910 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2911 goto out_balanced;
1da177e4
LT
2912 }
2913
db935dbd
NP
2914 BUG_ON(busiest == this_rq);
2915
d15bcfdb 2916 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2917
43010659 2918 ld_moved = 0;
d6d5cfaf
NP
2919 if (busiest->nr_running > 1) {
2920 /* Attempt to move tasks */
2921 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2922 /* this_rq->clock is already updated */
2923 update_rq_clock(busiest);
43010659 2924 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2925 imbalance, sd, CPU_NEWLY_IDLE,
2926 &all_pinned);
d6d5cfaf 2927 spin_unlock(&busiest->lock);
0a2966b4 2928
969bb4e4 2929 if (unlikely(all_pinned)) {
0a2966b4
CL
2930 cpu_clear(cpu_of(busiest), cpus);
2931 if (!cpus_empty(cpus))
2932 goto redo;
2933 }
d6d5cfaf
NP
2934 }
2935
43010659 2936 if (!ld_moved) {
d15bcfdb 2937 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2938 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2939 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2940 return -1;
2941 } else
16cfb1c0 2942 sd->nr_balance_failed = 0;
1da177e4 2943
43010659 2944 return ld_moved;
16cfb1c0
NP
2945
2946out_balanced:
d15bcfdb 2947 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2948 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2949 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2950 return -1;
16cfb1c0 2951 sd->nr_balance_failed = 0;
48f24c4d 2952
16cfb1c0 2953 return 0;
1da177e4
LT
2954}
2955
2956/*
2957 * idle_balance is called by schedule() if this_cpu is about to become
2958 * idle. Attempts to pull tasks from other CPUs.
2959 */
70b97a7f 2960static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2961{
2962 struct sched_domain *sd;
dd41f596
IM
2963 int pulled_task = -1;
2964 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2965
2966 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2967 unsigned long interval;
2968
2969 if (!(sd->flags & SD_LOAD_BALANCE))
2970 continue;
2971
2972 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2973 /* If we've pulled tasks over stop searching: */
1bd77f2d 2974 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2975 this_rq, sd);
2976
2977 interval = msecs_to_jiffies(sd->balance_interval);
2978 if (time_after(next_balance, sd->last_balance + interval))
2979 next_balance = sd->last_balance + interval;
2980 if (pulled_task)
2981 break;
1da177e4 2982 }
dd41f596 2983 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2984 /*
2985 * We are going idle. next_balance may be set based on
2986 * a busy processor. So reset next_balance.
2987 */
2988 this_rq->next_balance = next_balance;
dd41f596 2989 }
1da177e4
LT
2990}
2991
2992/*
2993 * active_load_balance is run by migration threads. It pushes running tasks
2994 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2995 * running on each physical CPU where possible, and avoids physical /
2996 * logical imbalances.
2997 *
2998 * Called with busiest_rq locked.
2999 */
70b97a7f 3000static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3001{
39507451 3002 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3003 struct sched_domain *sd;
3004 struct rq *target_rq;
39507451 3005
48f24c4d 3006 /* Is there any task to move? */
39507451 3007 if (busiest_rq->nr_running <= 1)
39507451
NP
3008 return;
3009
3010 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3011
3012 /*
39507451 3013 * This condition is "impossible", if it occurs
41a2d6cf 3014 * we need to fix it. Originally reported by
39507451 3015 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3016 */
39507451 3017 BUG_ON(busiest_rq == target_rq);
1da177e4 3018
39507451
NP
3019 /* move a task from busiest_rq to target_rq */
3020 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3021 update_rq_clock(busiest_rq);
3022 update_rq_clock(target_rq);
39507451
NP
3023
3024 /* Search for an sd spanning us and the target CPU. */
c96d145e 3025 for_each_domain(target_cpu, sd) {
39507451 3026 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3027 cpu_isset(busiest_cpu, sd->span))
39507451 3028 break;
c96d145e 3029 }
39507451 3030
48f24c4d 3031 if (likely(sd)) {
2d72376b 3032 schedstat_inc(sd, alb_count);
39507451 3033
43010659
PW
3034 if (move_one_task(target_rq, target_cpu, busiest_rq,
3035 sd, CPU_IDLE))
48f24c4d
IM
3036 schedstat_inc(sd, alb_pushed);
3037 else
3038 schedstat_inc(sd, alb_failed);
3039 }
39507451 3040 spin_unlock(&target_rq->lock);
1da177e4
LT
3041}
3042
46cb4b7c
SS
3043#ifdef CONFIG_NO_HZ
3044static struct {
3045 atomic_t load_balancer;
41a2d6cf 3046 cpumask_t cpu_mask;
46cb4b7c
SS
3047} nohz ____cacheline_aligned = {
3048 .load_balancer = ATOMIC_INIT(-1),
3049 .cpu_mask = CPU_MASK_NONE,
3050};
3051
7835b98b 3052/*
46cb4b7c
SS
3053 * This routine will try to nominate the ilb (idle load balancing)
3054 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3055 * load balancing on behalf of all those cpus. If all the cpus in the system
3056 * go into this tickless mode, then there will be no ilb owner (as there is
3057 * no need for one) and all the cpus will sleep till the next wakeup event
3058 * arrives...
3059 *
3060 * For the ilb owner, tick is not stopped. And this tick will be used
3061 * for idle load balancing. ilb owner will still be part of
3062 * nohz.cpu_mask..
7835b98b 3063 *
46cb4b7c
SS
3064 * While stopping the tick, this cpu will become the ilb owner if there
3065 * is no other owner. And will be the owner till that cpu becomes busy
3066 * or if all cpus in the system stop their ticks at which point
3067 * there is no need for ilb owner.
3068 *
3069 * When the ilb owner becomes busy, it nominates another owner, during the
3070 * next busy scheduler_tick()
3071 */
3072int select_nohz_load_balancer(int stop_tick)
3073{
3074 int cpu = smp_processor_id();
3075
3076 if (stop_tick) {
3077 cpu_set(cpu, nohz.cpu_mask);
3078 cpu_rq(cpu)->in_nohz_recently = 1;
3079
3080 /*
3081 * If we are going offline and still the leader, give up!
3082 */
3083 if (cpu_is_offline(cpu) &&
3084 atomic_read(&nohz.load_balancer) == cpu) {
3085 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3086 BUG();
3087 return 0;
3088 }
3089
3090 /* time for ilb owner also to sleep */
3091 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3092 if (atomic_read(&nohz.load_balancer) == cpu)
3093 atomic_set(&nohz.load_balancer, -1);
3094 return 0;
3095 }
3096
3097 if (atomic_read(&nohz.load_balancer) == -1) {
3098 /* make me the ilb owner */
3099 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3100 return 1;
3101 } else if (atomic_read(&nohz.load_balancer) == cpu)
3102 return 1;
3103 } else {
3104 if (!cpu_isset(cpu, nohz.cpu_mask))
3105 return 0;
3106
3107 cpu_clear(cpu, nohz.cpu_mask);
3108
3109 if (atomic_read(&nohz.load_balancer) == cpu)
3110 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3111 BUG();
3112 }
3113 return 0;
3114}
3115#endif
3116
3117static DEFINE_SPINLOCK(balancing);
3118
3119/*
7835b98b
CL
3120 * It checks each scheduling domain to see if it is due to be balanced,
3121 * and initiates a balancing operation if so.
3122 *
3123 * Balancing parameters are set up in arch_init_sched_domains.
3124 */
a9957449 3125static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3126{
46cb4b7c
SS
3127 int balance = 1;
3128 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3129 unsigned long interval;
3130 struct sched_domain *sd;
46cb4b7c 3131 /* Earliest time when we have to do rebalance again */
c9819f45 3132 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3133 int update_next_balance = 0;
1da177e4 3134
46cb4b7c 3135 for_each_domain(cpu, sd) {
1da177e4
LT
3136 if (!(sd->flags & SD_LOAD_BALANCE))
3137 continue;
3138
3139 interval = sd->balance_interval;
d15bcfdb 3140 if (idle != CPU_IDLE)
1da177e4
LT
3141 interval *= sd->busy_factor;
3142
3143 /* scale ms to jiffies */
3144 interval = msecs_to_jiffies(interval);
3145 if (unlikely(!interval))
3146 interval = 1;
dd41f596
IM
3147 if (interval > HZ*NR_CPUS/10)
3148 interval = HZ*NR_CPUS/10;
3149
1da177e4 3150
08c183f3
CL
3151 if (sd->flags & SD_SERIALIZE) {
3152 if (!spin_trylock(&balancing))
3153 goto out;
3154 }
3155
c9819f45 3156 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3157 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3158 /*
3159 * We've pulled tasks over so either we're no
5969fe06
NP
3160 * longer idle, or one of our SMT siblings is
3161 * not idle.
3162 */
d15bcfdb 3163 idle = CPU_NOT_IDLE;
1da177e4 3164 }
1bd77f2d 3165 sd->last_balance = jiffies;
1da177e4 3166 }
08c183f3
CL
3167 if (sd->flags & SD_SERIALIZE)
3168 spin_unlock(&balancing);
3169out:
f549da84 3170 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3171 next_balance = sd->last_balance + interval;
f549da84
SS
3172 update_next_balance = 1;
3173 }
783609c6
SS
3174
3175 /*
3176 * Stop the load balance at this level. There is another
3177 * CPU in our sched group which is doing load balancing more
3178 * actively.
3179 */
3180 if (!balance)
3181 break;
1da177e4 3182 }
f549da84
SS
3183
3184 /*
3185 * next_balance will be updated only when there is a need.
3186 * When the cpu is attached to null domain for ex, it will not be
3187 * updated.
3188 */
3189 if (likely(update_next_balance))
3190 rq->next_balance = next_balance;
46cb4b7c
SS
3191}
3192
3193/*
3194 * run_rebalance_domains is triggered when needed from the scheduler tick.
3195 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3196 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3197 */
3198static void run_rebalance_domains(struct softirq_action *h)
3199{
dd41f596
IM
3200 int this_cpu = smp_processor_id();
3201 struct rq *this_rq = cpu_rq(this_cpu);
3202 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3203 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3204
dd41f596 3205 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3206
3207#ifdef CONFIG_NO_HZ
3208 /*
3209 * If this cpu is the owner for idle load balancing, then do the
3210 * balancing on behalf of the other idle cpus whose ticks are
3211 * stopped.
3212 */
dd41f596
IM
3213 if (this_rq->idle_at_tick &&
3214 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3215 cpumask_t cpus = nohz.cpu_mask;
3216 struct rq *rq;
3217 int balance_cpu;
3218
dd41f596 3219 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3220 for_each_cpu_mask(balance_cpu, cpus) {
3221 /*
3222 * If this cpu gets work to do, stop the load balancing
3223 * work being done for other cpus. Next load
3224 * balancing owner will pick it up.
3225 */
3226 if (need_resched())
3227 break;
3228
de0cf899 3229 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3230
3231 rq = cpu_rq(balance_cpu);
dd41f596
IM
3232 if (time_after(this_rq->next_balance, rq->next_balance))
3233 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3234 }
3235 }
3236#endif
3237}
3238
3239/*
3240 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3241 *
3242 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3243 * idle load balancing owner or decide to stop the periodic load balancing,
3244 * if the whole system is idle.
3245 */
dd41f596 3246static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3247{
46cb4b7c
SS
3248#ifdef CONFIG_NO_HZ
3249 /*
3250 * If we were in the nohz mode recently and busy at the current
3251 * scheduler tick, then check if we need to nominate new idle
3252 * load balancer.
3253 */
3254 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3255 rq->in_nohz_recently = 0;
3256
3257 if (atomic_read(&nohz.load_balancer) == cpu) {
3258 cpu_clear(cpu, nohz.cpu_mask);
3259 atomic_set(&nohz.load_balancer, -1);
3260 }
3261
3262 if (atomic_read(&nohz.load_balancer) == -1) {
3263 /*
3264 * simple selection for now: Nominate the
3265 * first cpu in the nohz list to be the next
3266 * ilb owner.
3267 *
3268 * TBD: Traverse the sched domains and nominate
3269 * the nearest cpu in the nohz.cpu_mask.
3270 */
3271 int ilb = first_cpu(nohz.cpu_mask);
3272
3273 if (ilb != NR_CPUS)
3274 resched_cpu(ilb);
3275 }
3276 }
3277
3278 /*
3279 * If this cpu is idle and doing idle load balancing for all the
3280 * cpus with ticks stopped, is it time for that to stop?
3281 */
3282 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3283 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3284 resched_cpu(cpu);
3285 return;
3286 }
3287
3288 /*
3289 * If this cpu is idle and the idle load balancing is done by
3290 * someone else, then no need raise the SCHED_SOFTIRQ
3291 */
3292 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3293 cpu_isset(cpu, nohz.cpu_mask))
3294 return;
3295#endif
3296 if (time_after_eq(jiffies, rq->next_balance))
3297 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3298}
dd41f596
IM
3299
3300#else /* CONFIG_SMP */
3301
1da177e4
LT
3302/*
3303 * on UP we do not need to balance between CPUs:
3304 */
70b97a7f 3305static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3306{
3307}
dd41f596 3308
1da177e4
LT
3309#endif
3310
1da177e4
LT
3311DEFINE_PER_CPU(struct kernel_stat, kstat);
3312
3313EXPORT_PER_CPU_SYMBOL(kstat);
3314
3315/*
41b86e9c
IM
3316 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3317 * that have not yet been banked in case the task is currently running.
1da177e4 3318 */
41b86e9c 3319unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3320{
1da177e4 3321 unsigned long flags;
41b86e9c
IM
3322 u64 ns, delta_exec;
3323 struct rq *rq;
48f24c4d 3324
41b86e9c
IM
3325 rq = task_rq_lock(p, &flags);
3326 ns = p->se.sum_exec_runtime;
051a1d1a 3327 if (task_current(rq, p)) {
a8e504d2
IM
3328 update_rq_clock(rq);
3329 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3330 if ((s64)delta_exec > 0)
3331 ns += delta_exec;
3332 }
3333 task_rq_unlock(rq, &flags);
48f24c4d 3334
1da177e4
LT
3335 return ns;
3336}
3337
1da177e4
LT
3338/*
3339 * Account user cpu time to a process.
3340 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3341 * @cputime: the cpu time spent in user space since the last update
3342 */
3343void account_user_time(struct task_struct *p, cputime_t cputime)
3344{
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346 cputime64_t tmp;
3347
3348 p->utime = cputime_add(p->utime, cputime);
3349
3350 /* Add user time to cpustat. */
3351 tmp = cputime_to_cputime64(cputime);
3352 if (TASK_NICE(p) > 0)
3353 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3354 else
3355 cpustat->user = cputime64_add(cpustat->user, tmp);
3356}
3357
94886b84
LV
3358/*
3359 * Account guest cpu time to a process.
3360 * @p: the process that the cpu time gets accounted to
3361 * @cputime: the cpu time spent in virtual machine since the last update
3362 */
f7402e03 3363static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3364{
3365 cputime64_t tmp;
3366 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3367
3368 tmp = cputime_to_cputime64(cputime);
3369
3370 p->utime = cputime_add(p->utime, cputime);
3371 p->gtime = cputime_add(p->gtime, cputime);
3372
3373 cpustat->user = cputime64_add(cpustat->user, tmp);
3374 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3375}
3376
c66f08be
MN
3377/*
3378 * Account scaled user cpu time to a process.
3379 * @p: the process that the cpu time gets accounted to
3380 * @cputime: the cpu time spent in user space since the last update
3381 */
3382void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3383{
3384 p->utimescaled = cputime_add(p->utimescaled, cputime);
3385}
3386
1da177e4
LT
3387/*
3388 * Account system cpu time to a process.
3389 * @p: the process that the cpu time gets accounted to
3390 * @hardirq_offset: the offset to subtract from hardirq_count()
3391 * @cputime: the cpu time spent in kernel space since the last update
3392 */
3393void account_system_time(struct task_struct *p, int hardirq_offset,
3394 cputime_t cputime)
3395{
3396 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3397 struct rq *rq = this_rq();
1da177e4
LT
3398 cputime64_t tmp;
3399
9778385d
CB
3400 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3401 return account_guest_time(p, cputime);
94886b84 3402
1da177e4
LT
3403 p->stime = cputime_add(p->stime, cputime);
3404
3405 /* Add system time to cpustat. */
3406 tmp = cputime_to_cputime64(cputime);
3407 if (hardirq_count() - hardirq_offset)
3408 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3409 else if (softirq_count())
3410 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 3411 else if (p != rq->idle)
1da177e4 3412 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 3413 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3414 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3415 else
3416 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3417 /* Account for system time used */
3418 acct_update_integrals(p);
1da177e4
LT
3419}
3420
c66f08be
MN
3421/*
3422 * Account scaled system cpu time to a process.
3423 * @p: the process that the cpu time gets accounted to
3424 * @hardirq_offset: the offset to subtract from hardirq_count()
3425 * @cputime: the cpu time spent in kernel space since the last update
3426 */
3427void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3428{
3429 p->stimescaled = cputime_add(p->stimescaled, cputime);
3430}
3431
1da177e4
LT
3432/*
3433 * Account for involuntary wait time.
3434 * @p: the process from which the cpu time has been stolen
3435 * @steal: the cpu time spent in involuntary wait
3436 */
3437void account_steal_time(struct task_struct *p, cputime_t steal)
3438{
3439 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3440 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3441 struct rq *rq = this_rq();
1da177e4
LT
3442
3443 if (p == rq->idle) {
3444 p->stime = cputime_add(p->stime, steal);
3445 if (atomic_read(&rq->nr_iowait) > 0)
3446 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3447 else
3448 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 3449 } else
1da177e4
LT
3450 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3451}
3452
7835b98b
CL
3453/*
3454 * This function gets called by the timer code, with HZ frequency.
3455 * We call it with interrupts disabled.
3456 *
3457 * It also gets called by the fork code, when changing the parent's
3458 * timeslices.
3459 */
3460void scheduler_tick(void)
3461{
7835b98b
CL
3462 int cpu = smp_processor_id();
3463 struct rq *rq = cpu_rq(cpu);
dd41f596 3464 struct task_struct *curr = rq->curr;
529c7726 3465 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3466
3467 spin_lock(&rq->lock);
546fe3c9 3468 __update_rq_clock(rq);
529c7726
IM
3469 /*
3470 * Let rq->clock advance by at least TICK_NSEC:
3471 */
3472 if (unlikely(rq->clock < next_tick))
3473 rq->clock = next_tick;
3474 rq->tick_timestamp = rq->clock;
f1a438d8 3475 update_cpu_load(rq);
dd41f596
IM
3476 if (curr != rq->idle) /* FIXME: needed? */
3477 curr->sched_class->task_tick(rq, curr);
dd41f596 3478 spin_unlock(&rq->lock);
7835b98b 3479
e418e1c2 3480#ifdef CONFIG_SMP
dd41f596
IM
3481 rq->idle_at_tick = idle_cpu(cpu);
3482 trigger_load_balance(rq, cpu);
e418e1c2 3483#endif
1da177e4
LT
3484}
3485
1da177e4
LT
3486#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3487
3488void fastcall add_preempt_count(int val)
3489{
3490 /*
3491 * Underflow?
3492 */
9a11b49a
IM
3493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3494 return;
1da177e4
LT
3495 preempt_count() += val;
3496 /*
3497 * Spinlock count overflowing soon?
3498 */
33859f7f
MOS
3499 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3500 PREEMPT_MASK - 10);
1da177e4
LT
3501}
3502EXPORT_SYMBOL(add_preempt_count);
3503
3504void fastcall sub_preempt_count(int val)
3505{
3506 /*
3507 * Underflow?
3508 */
9a11b49a
IM
3509 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3510 return;
1da177e4
LT
3511 /*
3512 * Is the spinlock portion underflowing?
3513 */
9a11b49a
IM
3514 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3515 !(preempt_count() & PREEMPT_MASK)))
3516 return;
3517
1da177e4
LT
3518 preempt_count() -= val;
3519}
3520EXPORT_SYMBOL(sub_preempt_count);
3521
3522#endif
3523
3524/*
dd41f596 3525 * Print scheduling while atomic bug:
1da177e4 3526 */
dd41f596 3527static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3528{
838225b4
SS
3529 struct pt_regs *regs = get_irq_regs();
3530
3531 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3532 prev->comm, prev->pid, preempt_count());
3533
dd41f596
IM
3534 debug_show_held_locks(prev);
3535 if (irqs_disabled())
3536 print_irqtrace_events(prev);
838225b4
SS
3537
3538 if (regs)
3539 show_regs(regs);
3540 else
3541 dump_stack();
dd41f596 3542}
1da177e4 3543
dd41f596
IM
3544/*
3545 * Various schedule()-time debugging checks and statistics:
3546 */
3547static inline void schedule_debug(struct task_struct *prev)
3548{
1da177e4 3549 /*
41a2d6cf 3550 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3551 * schedule() atomically, we ignore that path for now.
3552 * Otherwise, whine if we are scheduling when we should not be.
3553 */
dd41f596
IM
3554 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3555 __schedule_bug(prev);
3556
1da177e4
LT
3557 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3558
2d72376b 3559 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3560#ifdef CONFIG_SCHEDSTATS
3561 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3562 schedstat_inc(this_rq(), bkl_count);
3563 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3564 }
3565#endif
dd41f596
IM
3566}
3567
3568/*
3569 * Pick up the highest-prio task:
3570 */
3571static inline struct task_struct *
ff95f3df 3572pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3573{
5522d5d5 3574 const struct sched_class *class;
dd41f596 3575 struct task_struct *p;
1da177e4
LT
3576
3577 /*
dd41f596
IM
3578 * Optimization: we know that if all tasks are in
3579 * the fair class we can call that function directly:
1da177e4 3580 */
dd41f596 3581 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3582 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3583 if (likely(p))
3584 return p;
1da177e4
LT
3585 }
3586
dd41f596
IM
3587 class = sched_class_highest;
3588 for ( ; ; ) {
fb8d4724 3589 p = class->pick_next_task(rq);
dd41f596
IM
3590 if (p)
3591 return p;
3592 /*
3593 * Will never be NULL as the idle class always
3594 * returns a non-NULL p:
3595 */
3596 class = class->next;
3597 }
3598}
1da177e4 3599
dd41f596
IM
3600/*
3601 * schedule() is the main scheduler function.
3602 */
3603asmlinkage void __sched schedule(void)
3604{
3605 struct task_struct *prev, *next;
3606 long *switch_count;
3607 struct rq *rq;
dd41f596
IM
3608 int cpu;
3609
3610need_resched:
3611 preempt_disable();
3612 cpu = smp_processor_id();
3613 rq = cpu_rq(cpu);
3614 rcu_qsctr_inc(cpu);
3615 prev = rq->curr;
3616 switch_count = &prev->nivcsw;
3617
3618 release_kernel_lock(prev);
3619need_resched_nonpreemptible:
3620
3621 schedule_debug(prev);
1da177e4 3622
1e819950
IM
3623 /*
3624 * Do the rq-clock update outside the rq lock:
3625 */
3626 local_irq_disable();
c1b3da3e 3627 __update_rq_clock(rq);
1e819950
IM
3628 spin_lock(&rq->lock);
3629 clear_tsk_need_resched(prev);
1da177e4 3630
1da177e4 3631 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3632 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3633 unlikely(signal_pending(prev)))) {
1da177e4 3634 prev->state = TASK_RUNNING;
dd41f596 3635 } else {
2e1cb74a 3636 deactivate_task(rq, prev, 1);
1da177e4 3637 }
dd41f596 3638 switch_count = &prev->nvcsw;
1da177e4
LT
3639 }
3640
f65eda4f
SR
3641 schedule_balance_rt(rq, prev);
3642
dd41f596 3643 if (unlikely(!rq->nr_running))
1da177e4 3644 idle_balance(cpu, rq);
1da177e4 3645
31ee529c 3646 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3647 next = pick_next_task(rq, prev);
1da177e4
LT
3648
3649 sched_info_switch(prev, next);
dd41f596 3650
1da177e4 3651 if (likely(prev != next)) {
1da177e4
LT
3652 rq->nr_switches++;
3653 rq->curr = next;
3654 ++*switch_count;
3655
dd41f596 3656 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3657 } else
3658 spin_unlock_irq(&rq->lock);
3659
dd41f596
IM
3660 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3661 cpu = smp_processor_id();
3662 rq = cpu_rq(cpu);
1da177e4 3663 goto need_resched_nonpreemptible;
dd41f596 3664 }
1da177e4
LT
3665 preempt_enable_no_resched();
3666 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3667 goto need_resched;
3668}
1da177e4
LT
3669EXPORT_SYMBOL(schedule);
3670
3671#ifdef CONFIG_PREEMPT
3672/*
2ed6e34f 3673 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3674 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3675 * occur there and call schedule directly.
3676 */
3677asmlinkage void __sched preempt_schedule(void)
3678{
3679 struct thread_info *ti = current_thread_info();
3680#ifdef CONFIG_PREEMPT_BKL
3681 struct task_struct *task = current;
3682 int saved_lock_depth;
3683#endif
3684 /*
3685 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3686 * we do not want to preempt the current task. Just return..
1da177e4 3687 */
beed33a8 3688 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3689 return;
3690
3a5c359a
AK
3691 do {
3692 add_preempt_count(PREEMPT_ACTIVE);
3693
3694 /*
3695 * We keep the big kernel semaphore locked, but we
3696 * clear ->lock_depth so that schedule() doesnt
3697 * auto-release the semaphore:
3698 */
1da177e4 3699#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3700 saved_lock_depth = task->lock_depth;
3701 task->lock_depth = -1;
1da177e4 3702#endif
3a5c359a 3703 schedule();
1da177e4 3704#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3705 task->lock_depth = saved_lock_depth;
1da177e4 3706#endif
3a5c359a 3707 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3708
3a5c359a
AK
3709 /*
3710 * Check again in case we missed a preemption opportunity
3711 * between schedule and now.
3712 */
3713 barrier();
3714 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3715}
1da177e4
LT
3716EXPORT_SYMBOL(preempt_schedule);
3717
3718/*
2ed6e34f 3719 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3720 * off of irq context.
3721 * Note, that this is called and return with irqs disabled. This will
3722 * protect us against recursive calling from irq.
3723 */
3724asmlinkage void __sched preempt_schedule_irq(void)
3725{
3726 struct thread_info *ti = current_thread_info();
3727#ifdef CONFIG_PREEMPT_BKL
3728 struct task_struct *task = current;
3729 int saved_lock_depth;
3730#endif
2ed6e34f 3731 /* Catch callers which need to be fixed */
1da177e4
LT
3732 BUG_ON(ti->preempt_count || !irqs_disabled());
3733
3a5c359a
AK
3734 do {
3735 add_preempt_count(PREEMPT_ACTIVE);
3736
3737 /*
3738 * We keep the big kernel semaphore locked, but we
3739 * clear ->lock_depth so that schedule() doesnt
3740 * auto-release the semaphore:
3741 */
1da177e4 3742#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3743 saved_lock_depth = task->lock_depth;
3744 task->lock_depth = -1;
1da177e4 3745#endif
3a5c359a
AK
3746 local_irq_enable();
3747 schedule();
3748 local_irq_disable();
1da177e4 3749#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3750 task->lock_depth = saved_lock_depth;
1da177e4 3751#endif
3a5c359a 3752 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3753
3a5c359a
AK
3754 /*
3755 * Check again in case we missed a preemption opportunity
3756 * between schedule and now.
3757 */
3758 barrier();
3759 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3760}
3761
3762#endif /* CONFIG_PREEMPT */
3763
95cdf3b7
IM
3764int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3765 void *key)
1da177e4 3766{
48f24c4d 3767 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3768}
1da177e4
LT
3769EXPORT_SYMBOL(default_wake_function);
3770
3771/*
41a2d6cf
IM
3772 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3773 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3774 * number) then we wake all the non-exclusive tasks and one exclusive task.
3775 *
3776 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3777 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3778 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3779 */
3780static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3781 int nr_exclusive, int sync, void *key)
3782{
2e45874c 3783 wait_queue_t *curr, *next;
1da177e4 3784
2e45874c 3785 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3786 unsigned flags = curr->flags;
3787
1da177e4 3788 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3789 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3790 break;
3791 }
3792}
3793
3794/**
3795 * __wake_up - wake up threads blocked on a waitqueue.
3796 * @q: the waitqueue
3797 * @mode: which threads
3798 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3799 * @key: is directly passed to the wakeup function
1da177e4
LT
3800 */
3801void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3802 int nr_exclusive, void *key)
1da177e4
LT
3803{
3804 unsigned long flags;
3805
3806 spin_lock_irqsave(&q->lock, flags);
3807 __wake_up_common(q, mode, nr_exclusive, 0, key);
3808 spin_unlock_irqrestore(&q->lock, flags);
3809}
1da177e4
LT
3810EXPORT_SYMBOL(__wake_up);
3811
3812/*
3813 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3814 */
3815void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3816{
3817 __wake_up_common(q, mode, 1, 0, NULL);
3818}
3819
3820/**
67be2dd1 3821 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3822 * @q: the waitqueue
3823 * @mode: which threads
3824 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3825 *
3826 * The sync wakeup differs that the waker knows that it will schedule
3827 * away soon, so while the target thread will be woken up, it will not
3828 * be migrated to another CPU - ie. the two threads are 'synchronized'
3829 * with each other. This can prevent needless bouncing between CPUs.
3830 *
3831 * On UP it can prevent extra preemption.
3832 */
95cdf3b7
IM
3833void fastcall
3834__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3835{
3836 unsigned long flags;
3837 int sync = 1;
3838
3839 if (unlikely(!q))
3840 return;
3841
3842 if (unlikely(!nr_exclusive))
3843 sync = 0;
3844
3845 spin_lock_irqsave(&q->lock, flags);
3846 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3847 spin_unlock_irqrestore(&q->lock, flags);
3848}
3849EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3850
b15136e9 3851void complete(struct completion *x)
1da177e4
LT
3852{
3853 unsigned long flags;
3854
3855 spin_lock_irqsave(&x->wait.lock, flags);
3856 x->done++;
3857 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3858 1, 0, NULL);
3859 spin_unlock_irqrestore(&x->wait.lock, flags);
3860}
3861EXPORT_SYMBOL(complete);
3862
b15136e9 3863void complete_all(struct completion *x)
1da177e4
LT
3864{
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&x->wait.lock, flags);
3868 x->done += UINT_MAX/2;
3869 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3870 0, 0, NULL);
3871 spin_unlock_irqrestore(&x->wait.lock, flags);
3872}
3873EXPORT_SYMBOL(complete_all);
3874
8cbbe86d
AK
3875static inline long __sched
3876do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3877{
1da177e4
LT
3878 if (!x->done) {
3879 DECLARE_WAITQUEUE(wait, current);
3880
3881 wait.flags |= WQ_FLAG_EXCLUSIVE;
3882 __add_wait_queue_tail(&x->wait, &wait);
3883 do {
8cbbe86d
AK
3884 if (state == TASK_INTERRUPTIBLE &&
3885 signal_pending(current)) {
3886 __remove_wait_queue(&x->wait, &wait);
3887 return -ERESTARTSYS;
3888 }
3889 __set_current_state(state);
1da177e4
LT
3890 spin_unlock_irq(&x->wait.lock);
3891 timeout = schedule_timeout(timeout);
3892 spin_lock_irq(&x->wait.lock);
3893 if (!timeout) {
3894 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3895 return timeout;
1da177e4
LT
3896 }
3897 } while (!x->done);
3898 __remove_wait_queue(&x->wait, &wait);
3899 }
3900 x->done--;
1da177e4
LT
3901 return timeout;
3902}
1da177e4 3903
8cbbe86d
AK
3904static long __sched
3905wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3906{
1da177e4
LT
3907 might_sleep();
3908
3909 spin_lock_irq(&x->wait.lock);
8cbbe86d 3910 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3911 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3912 return timeout;
3913}
1da177e4 3914
b15136e9 3915void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3916{
3917 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3918}
8cbbe86d 3919EXPORT_SYMBOL(wait_for_completion);
1da177e4 3920
b15136e9 3921unsigned long __sched
8cbbe86d 3922wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3923{
8cbbe86d 3924 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3925}
8cbbe86d 3926EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3927
8cbbe86d 3928int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3929{
51e97990
AK
3930 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3931 if (t == -ERESTARTSYS)
3932 return t;
3933 return 0;
0fec171c 3934}
8cbbe86d 3935EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3936
b15136e9 3937unsigned long __sched
8cbbe86d
AK
3938wait_for_completion_interruptible_timeout(struct completion *x,
3939 unsigned long timeout)
0fec171c 3940{
8cbbe86d 3941 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3942}
8cbbe86d 3943EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3944
8cbbe86d
AK
3945static long __sched
3946sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3947{
0fec171c
IM
3948 unsigned long flags;
3949 wait_queue_t wait;
3950
3951 init_waitqueue_entry(&wait, current);
1da177e4 3952
8cbbe86d 3953 __set_current_state(state);
1da177e4 3954
8cbbe86d
AK
3955 spin_lock_irqsave(&q->lock, flags);
3956 __add_wait_queue(q, &wait);
3957 spin_unlock(&q->lock);
3958 timeout = schedule_timeout(timeout);
3959 spin_lock_irq(&q->lock);
3960 __remove_wait_queue(q, &wait);
3961 spin_unlock_irqrestore(&q->lock, flags);
3962
3963 return timeout;
3964}
3965
3966void __sched interruptible_sleep_on(wait_queue_head_t *q)
3967{
3968 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3969}
1da177e4
LT
3970EXPORT_SYMBOL(interruptible_sleep_on);
3971
0fec171c 3972long __sched
95cdf3b7 3973interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3974{
8cbbe86d 3975 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3976}
1da177e4
LT
3977EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3978
0fec171c 3979void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3980{
8cbbe86d 3981 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3982}
1da177e4
LT
3983EXPORT_SYMBOL(sleep_on);
3984
0fec171c 3985long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3986{
8cbbe86d 3987 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3988}
1da177e4
LT
3989EXPORT_SYMBOL(sleep_on_timeout);
3990
b29739f9
IM
3991#ifdef CONFIG_RT_MUTEXES
3992
3993/*
3994 * rt_mutex_setprio - set the current priority of a task
3995 * @p: task
3996 * @prio: prio value (kernel-internal form)
3997 *
3998 * This function changes the 'effective' priority of a task. It does
3999 * not touch ->normal_prio like __setscheduler().
4000 *
4001 * Used by the rt_mutex code to implement priority inheritance logic.
4002 */
36c8b586 4003void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4004{
4005 unsigned long flags;
83b699ed 4006 int oldprio, on_rq, running;
70b97a7f 4007 struct rq *rq;
b29739f9
IM
4008
4009 BUG_ON(prio < 0 || prio > MAX_PRIO);
4010
4011 rq = task_rq_lock(p, &flags);
a8e504d2 4012 update_rq_clock(rq);
b29739f9 4013
d5f9f942 4014 oldprio = p->prio;
dd41f596 4015 on_rq = p->se.on_rq;
051a1d1a 4016 running = task_current(rq, p);
83b699ed 4017 if (on_rq) {
69be72c1 4018 dequeue_task(rq, p, 0);
83b699ed
SV
4019 if (running)
4020 p->sched_class->put_prev_task(rq, p);
4021 }
dd41f596
IM
4022
4023 if (rt_prio(prio))
4024 p->sched_class = &rt_sched_class;
4025 else
4026 p->sched_class = &fair_sched_class;
4027
b29739f9
IM
4028 p->prio = prio;
4029
dd41f596 4030 if (on_rq) {
83b699ed
SV
4031 if (running)
4032 p->sched_class->set_curr_task(rq);
8159f87e 4033 enqueue_task(rq, p, 0);
b29739f9
IM
4034 /*
4035 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4036 * our priority decreased, or if we are not currently running on
4037 * this runqueue and our priority is higher than the current's
b29739f9 4038 */
83b699ed 4039 if (running) {
d5f9f942
AM
4040 if (p->prio > oldprio)
4041 resched_task(rq->curr);
dd41f596
IM
4042 } else {
4043 check_preempt_curr(rq, p);
4044 }
b29739f9
IM
4045 }
4046 task_rq_unlock(rq, &flags);
4047}
4048
4049#endif
4050
36c8b586 4051void set_user_nice(struct task_struct *p, long nice)
1da177e4 4052{
dd41f596 4053 int old_prio, delta, on_rq;
1da177e4 4054 unsigned long flags;
70b97a7f 4055 struct rq *rq;
1da177e4
LT
4056
4057 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4058 return;
4059 /*
4060 * We have to be careful, if called from sys_setpriority(),
4061 * the task might be in the middle of scheduling on another CPU.
4062 */
4063 rq = task_rq_lock(p, &flags);
a8e504d2 4064 update_rq_clock(rq);
1da177e4
LT
4065 /*
4066 * The RT priorities are set via sched_setscheduler(), but we still
4067 * allow the 'normal' nice value to be set - but as expected
4068 * it wont have any effect on scheduling until the task is
dd41f596 4069 * SCHED_FIFO/SCHED_RR:
1da177e4 4070 */
e05606d3 4071 if (task_has_rt_policy(p)) {
1da177e4
LT
4072 p->static_prio = NICE_TO_PRIO(nice);
4073 goto out_unlock;
4074 }
dd41f596 4075 on_rq = p->se.on_rq;
58e2d4ca 4076 if (on_rq)
69be72c1 4077 dequeue_task(rq, p, 0);
1da177e4 4078
1da177e4 4079 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4080 set_load_weight(p);
b29739f9
IM
4081 old_prio = p->prio;
4082 p->prio = effective_prio(p);
4083 delta = p->prio - old_prio;
1da177e4 4084
dd41f596 4085 if (on_rq) {
8159f87e 4086 enqueue_task(rq, p, 0);
1da177e4 4087 /*
d5f9f942
AM
4088 * If the task increased its priority or is running and
4089 * lowered its priority, then reschedule its CPU:
1da177e4 4090 */
d5f9f942 4091 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4092 resched_task(rq->curr);
4093 }
4094out_unlock:
4095 task_rq_unlock(rq, &flags);
4096}
1da177e4
LT
4097EXPORT_SYMBOL(set_user_nice);
4098
e43379f1
MM
4099/*
4100 * can_nice - check if a task can reduce its nice value
4101 * @p: task
4102 * @nice: nice value
4103 */
36c8b586 4104int can_nice(const struct task_struct *p, const int nice)
e43379f1 4105{
024f4747
MM
4106 /* convert nice value [19,-20] to rlimit style value [1,40] */
4107 int nice_rlim = 20 - nice;
48f24c4d 4108
e43379f1
MM
4109 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4110 capable(CAP_SYS_NICE));
4111}
4112
1da177e4
LT
4113#ifdef __ARCH_WANT_SYS_NICE
4114
4115/*
4116 * sys_nice - change the priority of the current process.
4117 * @increment: priority increment
4118 *
4119 * sys_setpriority is a more generic, but much slower function that
4120 * does similar things.
4121 */
4122asmlinkage long sys_nice(int increment)
4123{
48f24c4d 4124 long nice, retval;
1da177e4
LT
4125
4126 /*
4127 * Setpriority might change our priority at the same moment.
4128 * We don't have to worry. Conceptually one call occurs first
4129 * and we have a single winner.
4130 */
e43379f1
MM
4131 if (increment < -40)
4132 increment = -40;
1da177e4
LT
4133 if (increment > 40)
4134 increment = 40;
4135
4136 nice = PRIO_TO_NICE(current->static_prio) + increment;
4137 if (nice < -20)
4138 nice = -20;
4139 if (nice > 19)
4140 nice = 19;
4141
e43379f1
MM
4142 if (increment < 0 && !can_nice(current, nice))
4143 return -EPERM;
4144
1da177e4
LT
4145 retval = security_task_setnice(current, nice);
4146 if (retval)
4147 return retval;
4148
4149 set_user_nice(current, nice);
4150 return 0;
4151}
4152
4153#endif
4154
4155/**
4156 * task_prio - return the priority value of a given task.
4157 * @p: the task in question.
4158 *
4159 * This is the priority value as seen by users in /proc.
4160 * RT tasks are offset by -200. Normal tasks are centered
4161 * around 0, value goes from -16 to +15.
4162 */
36c8b586 4163int task_prio(const struct task_struct *p)
1da177e4
LT
4164{
4165 return p->prio - MAX_RT_PRIO;
4166}
4167
4168/**
4169 * task_nice - return the nice value of a given task.
4170 * @p: the task in question.
4171 */
36c8b586 4172int task_nice(const struct task_struct *p)
1da177e4
LT
4173{
4174 return TASK_NICE(p);
4175}
1da177e4 4176EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4177
4178/**
4179 * idle_cpu - is a given cpu idle currently?
4180 * @cpu: the processor in question.
4181 */
4182int idle_cpu(int cpu)
4183{
4184 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4185}
4186
1da177e4
LT
4187/**
4188 * idle_task - return the idle task for a given cpu.
4189 * @cpu: the processor in question.
4190 */
36c8b586 4191struct task_struct *idle_task(int cpu)
1da177e4
LT
4192{
4193 return cpu_rq(cpu)->idle;
4194}
4195
4196/**
4197 * find_process_by_pid - find a process with a matching PID value.
4198 * @pid: the pid in question.
4199 */
a9957449 4200static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4201{
228ebcbe 4202 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4203}
4204
4205/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4206static void
4207__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4208{
dd41f596 4209 BUG_ON(p->se.on_rq);
48f24c4d 4210
1da177e4 4211 p->policy = policy;
dd41f596
IM
4212 switch (p->policy) {
4213 case SCHED_NORMAL:
4214 case SCHED_BATCH:
4215 case SCHED_IDLE:
4216 p->sched_class = &fair_sched_class;
4217 break;
4218 case SCHED_FIFO:
4219 case SCHED_RR:
4220 p->sched_class = &rt_sched_class;
4221 break;
4222 }
4223
1da177e4 4224 p->rt_priority = prio;
b29739f9
IM
4225 p->normal_prio = normal_prio(p);
4226 /* we are holding p->pi_lock already */
4227 p->prio = rt_mutex_getprio(p);
2dd73a4f 4228 set_load_weight(p);
1da177e4
LT
4229}
4230
4231/**
72fd4a35 4232 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4233 * @p: the task in question.
4234 * @policy: new policy.
4235 * @param: structure containing the new RT priority.
5fe1d75f 4236 *
72fd4a35 4237 * NOTE that the task may be already dead.
1da177e4 4238 */
95cdf3b7
IM
4239int sched_setscheduler(struct task_struct *p, int policy,
4240 struct sched_param *param)
1da177e4 4241{
83b699ed 4242 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4243 unsigned long flags;
70b97a7f 4244 struct rq *rq;
1da177e4 4245
66e5393a
SR
4246 /* may grab non-irq protected spin_locks */
4247 BUG_ON(in_interrupt());
1da177e4
LT
4248recheck:
4249 /* double check policy once rq lock held */
4250 if (policy < 0)
4251 policy = oldpolicy = p->policy;
4252 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4253 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4254 policy != SCHED_IDLE)
b0a9499c 4255 return -EINVAL;
1da177e4
LT
4256 /*
4257 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4258 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4259 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4260 */
4261 if (param->sched_priority < 0 ||
95cdf3b7 4262 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4263 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4264 return -EINVAL;
e05606d3 4265 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4266 return -EINVAL;
4267
37e4ab3f
OC
4268 /*
4269 * Allow unprivileged RT tasks to decrease priority:
4270 */
4271 if (!capable(CAP_SYS_NICE)) {
e05606d3 4272 if (rt_policy(policy)) {
8dc3e909 4273 unsigned long rlim_rtprio;
8dc3e909
ON
4274
4275 if (!lock_task_sighand(p, &flags))
4276 return -ESRCH;
4277 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4278 unlock_task_sighand(p, &flags);
4279
4280 /* can't set/change the rt policy */
4281 if (policy != p->policy && !rlim_rtprio)
4282 return -EPERM;
4283
4284 /* can't increase priority */
4285 if (param->sched_priority > p->rt_priority &&
4286 param->sched_priority > rlim_rtprio)
4287 return -EPERM;
4288 }
dd41f596
IM
4289 /*
4290 * Like positive nice levels, dont allow tasks to
4291 * move out of SCHED_IDLE either:
4292 */
4293 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4294 return -EPERM;
5fe1d75f 4295
37e4ab3f
OC
4296 /* can't change other user's priorities */
4297 if ((current->euid != p->euid) &&
4298 (current->euid != p->uid))
4299 return -EPERM;
4300 }
1da177e4
LT
4301
4302 retval = security_task_setscheduler(p, policy, param);
4303 if (retval)
4304 return retval;
b29739f9
IM
4305 /*
4306 * make sure no PI-waiters arrive (or leave) while we are
4307 * changing the priority of the task:
4308 */
4309 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4310 /*
4311 * To be able to change p->policy safely, the apropriate
4312 * runqueue lock must be held.
4313 */
b29739f9 4314 rq = __task_rq_lock(p);
1da177e4
LT
4315 /* recheck policy now with rq lock held */
4316 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4317 policy = oldpolicy = -1;
b29739f9
IM
4318 __task_rq_unlock(rq);
4319 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4320 goto recheck;
4321 }
2daa3577 4322 update_rq_clock(rq);
dd41f596 4323 on_rq = p->se.on_rq;
051a1d1a 4324 running = task_current(rq, p);
83b699ed 4325 if (on_rq) {
2e1cb74a 4326 deactivate_task(rq, p, 0);
83b699ed
SV
4327 if (running)
4328 p->sched_class->put_prev_task(rq, p);
4329 }
f6b53205 4330
1da177e4 4331 oldprio = p->prio;
dd41f596 4332 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4333
dd41f596 4334 if (on_rq) {
83b699ed
SV
4335 if (running)
4336 p->sched_class->set_curr_task(rq);
dd41f596 4337 activate_task(rq, p, 0);
1da177e4
LT
4338 /*
4339 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4340 * our priority decreased, or if we are not currently running on
4341 * this runqueue and our priority is higher than the current's
1da177e4 4342 */
83b699ed 4343 if (running) {
d5f9f942
AM
4344 if (p->prio > oldprio)
4345 resched_task(rq->curr);
dd41f596
IM
4346 } else {
4347 check_preempt_curr(rq, p);
4348 }
1da177e4 4349 }
b29739f9
IM
4350 __task_rq_unlock(rq);
4351 spin_unlock_irqrestore(&p->pi_lock, flags);
4352
95e02ca9
TG
4353 rt_mutex_adjust_pi(p);
4354
1da177e4
LT
4355 return 0;
4356}
4357EXPORT_SYMBOL_GPL(sched_setscheduler);
4358
95cdf3b7
IM
4359static int
4360do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4361{
1da177e4
LT
4362 struct sched_param lparam;
4363 struct task_struct *p;
36c8b586 4364 int retval;
1da177e4
LT
4365
4366 if (!param || pid < 0)
4367 return -EINVAL;
4368 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4369 return -EFAULT;
5fe1d75f
ON
4370
4371 rcu_read_lock();
4372 retval = -ESRCH;
1da177e4 4373 p = find_process_by_pid(pid);
5fe1d75f
ON
4374 if (p != NULL)
4375 retval = sched_setscheduler(p, policy, &lparam);
4376 rcu_read_unlock();
36c8b586 4377
1da177e4
LT
4378 return retval;
4379}
4380
4381/**
4382 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4383 * @pid: the pid in question.
4384 * @policy: new policy.
4385 * @param: structure containing the new RT priority.
4386 */
41a2d6cf
IM
4387asmlinkage long
4388sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4389{
c21761f1
JB
4390 /* negative values for policy are not valid */
4391 if (policy < 0)
4392 return -EINVAL;
4393
1da177e4
LT
4394 return do_sched_setscheduler(pid, policy, param);
4395}
4396
4397/**
4398 * sys_sched_setparam - set/change the RT priority of a thread
4399 * @pid: the pid in question.
4400 * @param: structure containing the new RT priority.
4401 */
4402asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4403{
4404 return do_sched_setscheduler(pid, -1, param);
4405}
4406
4407/**
4408 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4409 * @pid: the pid in question.
4410 */
4411asmlinkage long sys_sched_getscheduler(pid_t pid)
4412{
36c8b586 4413 struct task_struct *p;
3a5c359a 4414 int retval;
1da177e4
LT
4415
4416 if (pid < 0)
3a5c359a 4417 return -EINVAL;
1da177e4
LT
4418
4419 retval = -ESRCH;
4420 read_lock(&tasklist_lock);
4421 p = find_process_by_pid(pid);
4422 if (p) {
4423 retval = security_task_getscheduler(p);
4424 if (!retval)
4425 retval = p->policy;
4426 }
4427 read_unlock(&tasklist_lock);
1da177e4
LT
4428 return retval;
4429}
4430
4431/**
4432 * sys_sched_getscheduler - get the RT priority of a thread
4433 * @pid: the pid in question.
4434 * @param: structure containing the RT priority.
4435 */
4436asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4437{
4438 struct sched_param lp;
36c8b586 4439 struct task_struct *p;
3a5c359a 4440 int retval;
1da177e4
LT
4441
4442 if (!param || pid < 0)
3a5c359a 4443 return -EINVAL;
1da177e4
LT
4444
4445 read_lock(&tasklist_lock);
4446 p = find_process_by_pid(pid);
4447 retval = -ESRCH;
4448 if (!p)
4449 goto out_unlock;
4450
4451 retval = security_task_getscheduler(p);
4452 if (retval)
4453 goto out_unlock;
4454
4455 lp.sched_priority = p->rt_priority;
4456 read_unlock(&tasklist_lock);
4457
4458 /*
4459 * This one might sleep, we cannot do it with a spinlock held ...
4460 */
4461 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4462
1da177e4
LT
4463 return retval;
4464
4465out_unlock:
4466 read_unlock(&tasklist_lock);
4467 return retval;
4468}
4469
4470long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4471{
1da177e4 4472 cpumask_t cpus_allowed;
36c8b586
IM
4473 struct task_struct *p;
4474 int retval;
1da177e4 4475
95402b38 4476 get_online_cpus();
1da177e4
LT
4477 read_lock(&tasklist_lock);
4478
4479 p = find_process_by_pid(pid);
4480 if (!p) {
4481 read_unlock(&tasklist_lock);
95402b38 4482 put_online_cpus();
1da177e4
LT
4483 return -ESRCH;
4484 }
4485
4486 /*
4487 * It is not safe to call set_cpus_allowed with the
41a2d6cf 4488 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
4489 * usage count and then drop tasklist_lock.
4490 */
4491 get_task_struct(p);
4492 read_unlock(&tasklist_lock);
4493
4494 retval = -EPERM;
4495 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4496 !capable(CAP_SYS_NICE))
4497 goto out_unlock;
4498
e7834f8f
DQ
4499 retval = security_task_setscheduler(p, 0, NULL);
4500 if (retval)
4501 goto out_unlock;
4502
1da177e4
LT
4503 cpus_allowed = cpuset_cpus_allowed(p);
4504 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4505 again:
1da177e4
LT
4506 retval = set_cpus_allowed(p, new_mask);
4507
8707d8b8
PM
4508 if (!retval) {
4509 cpus_allowed = cpuset_cpus_allowed(p);
4510 if (!cpus_subset(new_mask, cpus_allowed)) {
4511 /*
4512 * We must have raced with a concurrent cpuset
4513 * update. Just reset the cpus_allowed to the
4514 * cpuset's cpus_allowed
4515 */
4516 new_mask = cpus_allowed;
4517 goto again;
4518 }
4519 }
1da177e4
LT
4520out_unlock:
4521 put_task_struct(p);
95402b38 4522 put_online_cpus();
1da177e4
LT
4523 return retval;
4524}
4525
4526static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4527 cpumask_t *new_mask)
4528{
4529 if (len < sizeof(cpumask_t)) {
4530 memset(new_mask, 0, sizeof(cpumask_t));
4531 } else if (len > sizeof(cpumask_t)) {
4532 len = sizeof(cpumask_t);
4533 }
4534 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4535}
4536
4537/**
4538 * sys_sched_setaffinity - set the cpu affinity of a process
4539 * @pid: pid of the process
4540 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4541 * @user_mask_ptr: user-space pointer to the new cpu mask
4542 */
4543asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4544 unsigned long __user *user_mask_ptr)
4545{
4546 cpumask_t new_mask;
4547 int retval;
4548
4549 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4550 if (retval)
4551 return retval;
4552
4553 return sched_setaffinity(pid, new_mask);
4554}
4555
4556/*
4557 * Represents all cpu's present in the system
4558 * In systems capable of hotplug, this map could dynamically grow
4559 * as new cpu's are detected in the system via any platform specific
4560 * method, such as ACPI for e.g.
4561 */
4562
4cef0c61 4563cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4564EXPORT_SYMBOL(cpu_present_map);
4565
4566#ifndef CONFIG_SMP
4cef0c61 4567cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4568EXPORT_SYMBOL(cpu_online_map);
4569
4cef0c61 4570cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4571EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4572#endif
4573
4574long sched_getaffinity(pid_t pid, cpumask_t *mask)
4575{
36c8b586 4576 struct task_struct *p;
1da177e4 4577 int retval;
1da177e4 4578
95402b38 4579 get_online_cpus();
1da177e4
LT
4580 read_lock(&tasklist_lock);
4581
4582 retval = -ESRCH;
4583 p = find_process_by_pid(pid);
4584 if (!p)
4585 goto out_unlock;
4586
e7834f8f
DQ
4587 retval = security_task_getscheduler(p);
4588 if (retval)
4589 goto out_unlock;
4590
2f7016d9 4591 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4592
4593out_unlock:
4594 read_unlock(&tasklist_lock);
95402b38 4595 put_online_cpus();
1da177e4 4596
9531b62f 4597 return retval;
1da177e4
LT
4598}
4599
4600/**
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4605 */
4606asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4607 unsigned long __user *user_mask_ptr)
4608{
4609 int ret;
4610 cpumask_t mask;
4611
4612 if (len < sizeof(cpumask_t))
4613 return -EINVAL;
4614
4615 ret = sched_getaffinity(pid, &mask);
4616 if (ret < 0)
4617 return ret;
4618
4619 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4620 return -EFAULT;
4621
4622 return sizeof(cpumask_t);
4623}
4624
4625/**
4626 * sys_sched_yield - yield the current processor to other threads.
4627 *
dd41f596
IM
4628 * This function yields the current CPU to other tasks. If there are no
4629 * other threads running on this CPU then this function will return.
1da177e4
LT
4630 */
4631asmlinkage long sys_sched_yield(void)
4632{
70b97a7f 4633 struct rq *rq = this_rq_lock();
1da177e4 4634
2d72376b 4635 schedstat_inc(rq, yld_count);
4530d7ab 4636 current->sched_class->yield_task(rq);
1da177e4
LT
4637
4638 /*
4639 * Since we are going to call schedule() anyway, there's
4640 * no need to preempt or enable interrupts:
4641 */
4642 __release(rq->lock);
8a25d5de 4643 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4644 _raw_spin_unlock(&rq->lock);
4645 preempt_enable_no_resched();
4646
4647 schedule();
4648
4649 return 0;
4650}
4651
e7b38404 4652static void __cond_resched(void)
1da177e4 4653{
8e0a43d8
IM
4654#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4655 __might_sleep(__FILE__, __LINE__);
4656#endif
5bbcfd90
IM
4657 /*
4658 * The BKS might be reacquired before we have dropped
4659 * PREEMPT_ACTIVE, which could trigger a second
4660 * cond_resched() call.
4661 */
1da177e4
LT
4662 do {
4663 add_preempt_count(PREEMPT_ACTIVE);
4664 schedule();
4665 sub_preempt_count(PREEMPT_ACTIVE);
4666 } while (need_resched());
4667}
4668
4669int __sched cond_resched(void)
4670{
9414232f
IM
4671 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4672 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4673 __cond_resched();
4674 return 1;
4675 }
4676 return 0;
4677}
1da177e4
LT
4678EXPORT_SYMBOL(cond_resched);
4679
4680/*
4681 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4682 * call schedule, and on return reacquire the lock.
4683 *
41a2d6cf 4684 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4685 * operations here to prevent schedule() from being called twice (once via
4686 * spin_unlock(), once by hand).
4687 */
95cdf3b7 4688int cond_resched_lock(spinlock_t *lock)
1da177e4 4689{
6df3cecb
JK
4690 int ret = 0;
4691
1da177e4
LT
4692 if (need_lockbreak(lock)) {
4693 spin_unlock(lock);
4694 cpu_relax();
6df3cecb 4695 ret = 1;
1da177e4
LT
4696 spin_lock(lock);
4697 }
9414232f 4698 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4699 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4700 _raw_spin_unlock(lock);
4701 preempt_enable_no_resched();
4702 __cond_resched();
6df3cecb 4703 ret = 1;
1da177e4 4704 spin_lock(lock);
1da177e4 4705 }
6df3cecb 4706 return ret;
1da177e4 4707}
1da177e4
LT
4708EXPORT_SYMBOL(cond_resched_lock);
4709
4710int __sched cond_resched_softirq(void)
4711{
4712 BUG_ON(!in_softirq());
4713
9414232f 4714 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4715 local_bh_enable();
1da177e4
LT
4716 __cond_resched();
4717 local_bh_disable();
4718 return 1;
4719 }
4720 return 0;
4721}
1da177e4
LT
4722EXPORT_SYMBOL(cond_resched_softirq);
4723
1da177e4
LT
4724/**
4725 * yield - yield the current processor to other threads.
4726 *
72fd4a35 4727 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4728 * thread runnable and calls sys_sched_yield().
4729 */
4730void __sched yield(void)
4731{
4732 set_current_state(TASK_RUNNING);
4733 sys_sched_yield();
4734}
1da177e4
LT
4735EXPORT_SYMBOL(yield);
4736
4737/*
41a2d6cf 4738 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
4739 * that process accounting knows that this is a task in IO wait state.
4740 *
4741 * But don't do that if it is a deliberate, throttling IO wait (this task
4742 * has set its backing_dev_info: the queue against which it should throttle)
4743 */
4744void __sched io_schedule(void)
4745{
70b97a7f 4746 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4747
0ff92245 4748 delayacct_blkio_start();
1da177e4
LT
4749 atomic_inc(&rq->nr_iowait);
4750 schedule();
4751 atomic_dec(&rq->nr_iowait);
0ff92245 4752 delayacct_blkio_end();
1da177e4 4753}
1da177e4
LT
4754EXPORT_SYMBOL(io_schedule);
4755
4756long __sched io_schedule_timeout(long timeout)
4757{
70b97a7f 4758 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4759 long ret;
4760
0ff92245 4761 delayacct_blkio_start();
1da177e4
LT
4762 atomic_inc(&rq->nr_iowait);
4763 ret = schedule_timeout(timeout);
4764 atomic_dec(&rq->nr_iowait);
0ff92245 4765 delayacct_blkio_end();
1da177e4
LT
4766 return ret;
4767}
4768
4769/**
4770 * sys_sched_get_priority_max - return maximum RT priority.
4771 * @policy: scheduling class.
4772 *
4773 * this syscall returns the maximum rt_priority that can be used
4774 * by a given scheduling class.
4775 */
4776asmlinkage long sys_sched_get_priority_max(int policy)
4777{
4778 int ret = -EINVAL;
4779
4780 switch (policy) {
4781 case SCHED_FIFO:
4782 case SCHED_RR:
4783 ret = MAX_USER_RT_PRIO-1;
4784 break;
4785 case SCHED_NORMAL:
b0a9499c 4786 case SCHED_BATCH:
dd41f596 4787 case SCHED_IDLE:
1da177e4
LT
4788 ret = 0;
4789 break;
4790 }
4791 return ret;
4792}
4793
4794/**
4795 * sys_sched_get_priority_min - return minimum RT priority.
4796 * @policy: scheduling class.
4797 *
4798 * this syscall returns the minimum rt_priority that can be used
4799 * by a given scheduling class.
4800 */
4801asmlinkage long sys_sched_get_priority_min(int policy)
4802{
4803 int ret = -EINVAL;
4804
4805 switch (policy) {
4806 case SCHED_FIFO:
4807 case SCHED_RR:
4808 ret = 1;
4809 break;
4810 case SCHED_NORMAL:
b0a9499c 4811 case SCHED_BATCH:
dd41f596 4812 case SCHED_IDLE:
1da177e4
LT
4813 ret = 0;
4814 }
4815 return ret;
4816}
4817
4818/**
4819 * sys_sched_rr_get_interval - return the default timeslice of a process.
4820 * @pid: pid of the process.
4821 * @interval: userspace pointer to the timeslice value.
4822 *
4823 * this syscall writes the default timeslice value of a given process
4824 * into the user-space timespec buffer. A value of '0' means infinity.
4825 */
4826asmlinkage
4827long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4828{
36c8b586 4829 struct task_struct *p;
a4ec24b4 4830 unsigned int time_slice;
3a5c359a 4831 int retval;
1da177e4 4832 struct timespec t;
1da177e4
LT
4833
4834 if (pid < 0)
3a5c359a 4835 return -EINVAL;
1da177e4
LT
4836
4837 retval = -ESRCH;
4838 read_lock(&tasklist_lock);
4839 p = find_process_by_pid(pid);
4840 if (!p)
4841 goto out_unlock;
4842
4843 retval = security_task_getscheduler(p);
4844 if (retval)
4845 goto out_unlock;
4846
77034937
IM
4847 /*
4848 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4849 * tasks that are on an otherwise idle runqueue:
4850 */
4851 time_slice = 0;
4852 if (p->policy == SCHED_RR) {
a4ec24b4 4853 time_slice = DEF_TIMESLICE;
77034937 4854 } else {
a4ec24b4
DA
4855 struct sched_entity *se = &p->se;
4856 unsigned long flags;
4857 struct rq *rq;
4858
4859 rq = task_rq_lock(p, &flags);
77034937
IM
4860 if (rq->cfs.load.weight)
4861 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
4862 task_rq_unlock(rq, &flags);
4863 }
1da177e4 4864 read_unlock(&tasklist_lock);
a4ec24b4 4865 jiffies_to_timespec(time_slice, &t);
1da177e4 4866 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4867 return retval;
3a5c359a 4868
1da177e4
LT
4869out_unlock:
4870 read_unlock(&tasklist_lock);
4871 return retval;
4872}
4873
2ed6e34f 4874static const char stat_nam[] = "RSDTtZX";
36c8b586 4875
82a1fcb9 4876void sched_show_task(struct task_struct *p)
1da177e4 4877{
1da177e4 4878 unsigned long free = 0;
36c8b586 4879 unsigned state;
1da177e4 4880
1da177e4 4881 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4882 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4883 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4884#if BITS_PER_LONG == 32
1da177e4 4885 if (state == TASK_RUNNING)
cc4ea795 4886 printk(KERN_CONT " running ");
1da177e4 4887 else
cc4ea795 4888 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4889#else
4890 if (state == TASK_RUNNING)
cc4ea795 4891 printk(KERN_CONT " running task ");
1da177e4 4892 else
cc4ea795 4893 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4894#endif
4895#ifdef CONFIG_DEBUG_STACK_USAGE
4896 {
10ebffde 4897 unsigned long *n = end_of_stack(p);
1da177e4
LT
4898 while (!*n)
4899 n++;
10ebffde 4900 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4901 }
4902#endif
ba25f9dc 4903 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 4904 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4
LT
4905
4906 if (state != TASK_RUNNING)
4907 show_stack(p, NULL);
4908}
4909
e59e2ae2 4910void show_state_filter(unsigned long state_filter)
1da177e4 4911{
36c8b586 4912 struct task_struct *g, *p;
1da177e4 4913
4bd77321
IM
4914#if BITS_PER_LONG == 32
4915 printk(KERN_INFO
4916 " task PC stack pid father\n");
1da177e4 4917#else
4bd77321
IM
4918 printk(KERN_INFO
4919 " task PC stack pid father\n");
1da177e4
LT
4920#endif
4921 read_lock(&tasklist_lock);
4922 do_each_thread(g, p) {
4923 /*
4924 * reset the NMI-timeout, listing all files on a slow
4925 * console might take alot of time:
4926 */
4927 touch_nmi_watchdog();
39bc89fd 4928 if (!state_filter || (p->state & state_filter))
82a1fcb9 4929 sched_show_task(p);
1da177e4
LT
4930 } while_each_thread(g, p);
4931
04c9167f
JF
4932 touch_all_softlockup_watchdogs();
4933
dd41f596
IM
4934#ifdef CONFIG_SCHED_DEBUG
4935 sysrq_sched_debug_show();
4936#endif
1da177e4 4937 read_unlock(&tasklist_lock);
e59e2ae2
IM
4938 /*
4939 * Only show locks if all tasks are dumped:
4940 */
4941 if (state_filter == -1)
4942 debug_show_all_locks();
1da177e4
LT
4943}
4944
1df21055
IM
4945void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4946{
dd41f596 4947 idle->sched_class = &idle_sched_class;
1df21055
IM
4948}
4949
f340c0d1
IM
4950/**
4951 * init_idle - set up an idle thread for a given CPU
4952 * @idle: task in question
4953 * @cpu: cpu the idle task belongs to
4954 *
4955 * NOTE: this function does not set the idle thread's NEED_RESCHED
4956 * flag, to make booting more robust.
4957 */
5c1e1767 4958void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4959{
70b97a7f 4960 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4961 unsigned long flags;
4962
dd41f596
IM
4963 __sched_fork(idle);
4964 idle->se.exec_start = sched_clock();
4965
b29739f9 4966 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4967 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4968 __set_task_cpu(idle, cpu);
1da177e4
LT
4969
4970 spin_lock_irqsave(&rq->lock, flags);
4971 rq->curr = rq->idle = idle;
4866cde0
NP
4972#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4973 idle->oncpu = 1;
4974#endif
1da177e4
LT
4975 spin_unlock_irqrestore(&rq->lock, flags);
4976
4977 /* Set the preempt count _outside_ the spinlocks! */
4978#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4979 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4980#else
a1261f54 4981 task_thread_info(idle)->preempt_count = 0;
1da177e4 4982#endif
dd41f596
IM
4983 /*
4984 * The idle tasks have their own, simple scheduling class:
4985 */
4986 idle->sched_class = &idle_sched_class;
1da177e4
LT
4987}
4988
4989/*
4990 * In a system that switches off the HZ timer nohz_cpu_mask
4991 * indicates which cpus entered this state. This is used
4992 * in the rcu update to wait only for active cpus. For system
4993 * which do not switch off the HZ timer nohz_cpu_mask should
4994 * always be CPU_MASK_NONE.
4995 */
4996cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4997
19978ca6
IM
4998/*
4999 * Increase the granularity value when there are more CPUs,
5000 * because with more CPUs the 'effective latency' as visible
5001 * to users decreases. But the relationship is not linear,
5002 * so pick a second-best guess by going with the log2 of the
5003 * number of CPUs.
5004 *
5005 * This idea comes from the SD scheduler of Con Kolivas:
5006 */
5007static inline void sched_init_granularity(void)
5008{
5009 unsigned int factor = 1 + ilog2(num_online_cpus());
5010 const unsigned long limit = 200000000;
5011
5012 sysctl_sched_min_granularity *= factor;
5013 if (sysctl_sched_min_granularity > limit)
5014 sysctl_sched_min_granularity = limit;
5015
5016 sysctl_sched_latency *= factor;
5017 if (sysctl_sched_latency > limit)
5018 sysctl_sched_latency = limit;
5019
5020 sysctl_sched_wakeup_granularity *= factor;
5021 sysctl_sched_batch_wakeup_granularity *= factor;
5022}
5023
1da177e4
LT
5024#ifdef CONFIG_SMP
5025/*
5026 * This is how migration works:
5027 *
70b97a7f 5028 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5029 * runqueue and wake up that CPU's migration thread.
5030 * 2) we down() the locked semaphore => thread blocks.
5031 * 3) migration thread wakes up (implicitly it forces the migrated
5032 * thread off the CPU)
5033 * 4) it gets the migration request and checks whether the migrated
5034 * task is still in the wrong runqueue.
5035 * 5) if it's in the wrong runqueue then the migration thread removes
5036 * it and puts it into the right queue.
5037 * 6) migration thread up()s the semaphore.
5038 * 7) we wake up and the migration is done.
5039 */
5040
5041/*
5042 * Change a given task's CPU affinity. Migrate the thread to a
5043 * proper CPU and schedule it away if the CPU it's executing on
5044 * is removed from the allowed bitmask.
5045 *
5046 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5047 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5048 * call is not atomic; no spinlocks may be held.
5049 */
36c8b586 5050int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5051{
70b97a7f 5052 struct migration_req req;
1da177e4 5053 unsigned long flags;
70b97a7f 5054 struct rq *rq;
48f24c4d 5055 int ret = 0;
1da177e4
LT
5056
5057 rq = task_rq_lock(p, &flags);
5058 if (!cpus_intersects(new_mask, cpu_online_map)) {
5059 ret = -EINVAL;
5060 goto out;
5061 }
5062
73fe6aae
GH
5063 if (p->sched_class->set_cpus_allowed)
5064 p->sched_class->set_cpus_allowed(p, &new_mask);
5065 else {
0eab9146 5066 p->cpus_allowed = new_mask;
73fe6aae
GH
5067 p->nr_cpus_allowed = cpus_weight(new_mask);
5068 }
5069
1da177e4
LT
5070 /* Can the task run on the task's current CPU? If so, we're done */
5071 if (cpu_isset(task_cpu(p), new_mask))
5072 goto out;
5073
5074 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5075 /* Need help from migration thread: drop lock and wait. */
5076 task_rq_unlock(rq, &flags);
5077 wake_up_process(rq->migration_thread);
5078 wait_for_completion(&req.done);
5079 tlb_migrate_finish(p->mm);
5080 return 0;
5081 }
5082out:
5083 task_rq_unlock(rq, &flags);
48f24c4d 5084
1da177e4
LT
5085 return ret;
5086}
1da177e4
LT
5087EXPORT_SYMBOL_GPL(set_cpus_allowed);
5088
5089/*
41a2d6cf 5090 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5091 * this because either it can't run here any more (set_cpus_allowed()
5092 * away from this CPU, or CPU going down), or because we're
5093 * attempting to rebalance this task on exec (sched_exec).
5094 *
5095 * So we race with normal scheduler movements, but that's OK, as long
5096 * as the task is no longer on this CPU.
efc30814
KK
5097 *
5098 * Returns non-zero if task was successfully migrated.
1da177e4 5099 */
efc30814 5100static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5101{
70b97a7f 5102 struct rq *rq_dest, *rq_src;
dd41f596 5103 int ret = 0, on_rq;
1da177e4
LT
5104
5105 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5106 return ret;
1da177e4
LT
5107
5108 rq_src = cpu_rq(src_cpu);
5109 rq_dest = cpu_rq(dest_cpu);
5110
5111 double_rq_lock(rq_src, rq_dest);
5112 /* Already moved. */
5113 if (task_cpu(p) != src_cpu)
5114 goto out;
5115 /* Affinity changed (again). */
5116 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5117 goto out;
5118
dd41f596 5119 on_rq = p->se.on_rq;
6e82a3be 5120 if (on_rq)
2e1cb74a 5121 deactivate_task(rq_src, p, 0);
6e82a3be 5122
1da177e4 5123 set_task_cpu(p, dest_cpu);
dd41f596
IM
5124 if (on_rq) {
5125 activate_task(rq_dest, p, 0);
5126 check_preempt_curr(rq_dest, p);
1da177e4 5127 }
efc30814 5128 ret = 1;
1da177e4
LT
5129out:
5130 double_rq_unlock(rq_src, rq_dest);
efc30814 5131 return ret;
1da177e4
LT
5132}
5133
5134/*
5135 * migration_thread - this is a highprio system thread that performs
5136 * thread migration by bumping thread off CPU then 'pushing' onto
5137 * another runqueue.
5138 */
95cdf3b7 5139static int migration_thread(void *data)
1da177e4 5140{
1da177e4 5141 int cpu = (long)data;
70b97a7f 5142 struct rq *rq;
1da177e4
LT
5143
5144 rq = cpu_rq(cpu);
5145 BUG_ON(rq->migration_thread != current);
5146
5147 set_current_state(TASK_INTERRUPTIBLE);
5148 while (!kthread_should_stop()) {
70b97a7f 5149 struct migration_req *req;
1da177e4 5150 struct list_head *head;
1da177e4 5151
1da177e4
LT
5152 spin_lock_irq(&rq->lock);
5153
5154 if (cpu_is_offline(cpu)) {
5155 spin_unlock_irq(&rq->lock);
5156 goto wait_to_die;
5157 }
5158
5159 if (rq->active_balance) {
5160 active_load_balance(rq, cpu);
5161 rq->active_balance = 0;
5162 }
5163
5164 head = &rq->migration_queue;
5165
5166 if (list_empty(head)) {
5167 spin_unlock_irq(&rq->lock);
5168 schedule();
5169 set_current_state(TASK_INTERRUPTIBLE);
5170 continue;
5171 }
70b97a7f 5172 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5173 list_del_init(head->next);
5174
674311d5
NP
5175 spin_unlock(&rq->lock);
5176 __migrate_task(req->task, cpu, req->dest_cpu);
5177 local_irq_enable();
1da177e4
LT
5178
5179 complete(&req->done);
5180 }
5181 __set_current_state(TASK_RUNNING);
5182 return 0;
5183
5184wait_to_die:
5185 /* Wait for kthread_stop */
5186 set_current_state(TASK_INTERRUPTIBLE);
5187 while (!kthread_should_stop()) {
5188 schedule();
5189 set_current_state(TASK_INTERRUPTIBLE);
5190 }
5191 __set_current_state(TASK_RUNNING);
5192 return 0;
5193}
5194
5195#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5196
5197static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5198{
5199 int ret;
5200
5201 local_irq_disable();
5202 ret = __migrate_task(p, src_cpu, dest_cpu);
5203 local_irq_enable();
5204 return ret;
5205}
5206
054b9108 5207/*
3a4fa0a2 5208 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5209 * NOTE: interrupts should be disabled by the caller
5210 */
48f24c4d 5211static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5212{
efc30814 5213 unsigned long flags;
1da177e4 5214 cpumask_t mask;
70b97a7f
IM
5215 struct rq *rq;
5216 int dest_cpu;
1da177e4 5217
3a5c359a
AK
5218 do {
5219 /* On same node? */
5220 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5221 cpus_and(mask, mask, p->cpus_allowed);
5222 dest_cpu = any_online_cpu(mask);
5223
5224 /* On any allowed CPU? */
5225 if (dest_cpu == NR_CPUS)
5226 dest_cpu = any_online_cpu(p->cpus_allowed);
5227
5228 /* No more Mr. Nice Guy. */
5229 if (dest_cpu == NR_CPUS) {
470fd646
CW
5230 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5231 /*
5232 * Try to stay on the same cpuset, where the
5233 * current cpuset may be a subset of all cpus.
5234 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5235 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5236 * called within calls to cpuset_lock/cpuset_unlock.
5237 */
3a5c359a 5238 rq = task_rq_lock(p, &flags);
470fd646 5239 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5240 dest_cpu = any_online_cpu(p->cpus_allowed);
5241 task_rq_unlock(rq, &flags);
1da177e4 5242
3a5c359a
AK
5243 /*
5244 * Don't tell them about moving exiting tasks or
5245 * kernel threads (both mm NULL), since they never
5246 * leave kernel.
5247 */
41a2d6cf 5248 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5249 printk(KERN_INFO "process %d (%s) no "
5250 "longer affine to cpu%d\n",
41a2d6cf
IM
5251 task_pid_nr(p), p->comm, dead_cpu);
5252 }
3a5c359a 5253 }
f7b4cddc 5254 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5255}
5256
5257/*
5258 * While a dead CPU has no uninterruptible tasks queued at this point,
5259 * it might still have a nonzero ->nr_uninterruptible counter, because
5260 * for performance reasons the counter is not stricly tracking tasks to
5261 * their home CPUs. So we just add the counter to another CPU's counter,
5262 * to keep the global sum constant after CPU-down:
5263 */
70b97a7f 5264static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5265{
70b97a7f 5266 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5267 unsigned long flags;
5268
5269 local_irq_save(flags);
5270 double_rq_lock(rq_src, rq_dest);
5271 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5272 rq_src->nr_uninterruptible = 0;
5273 double_rq_unlock(rq_src, rq_dest);
5274 local_irq_restore(flags);
5275}
5276
5277/* Run through task list and migrate tasks from the dead cpu. */
5278static void migrate_live_tasks(int src_cpu)
5279{
48f24c4d 5280 struct task_struct *p, *t;
1da177e4 5281
f7b4cddc 5282 read_lock(&tasklist_lock);
1da177e4 5283
48f24c4d
IM
5284 do_each_thread(t, p) {
5285 if (p == current)
1da177e4
LT
5286 continue;
5287
48f24c4d
IM
5288 if (task_cpu(p) == src_cpu)
5289 move_task_off_dead_cpu(src_cpu, p);
5290 } while_each_thread(t, p);
1da177e4 5291
f7b4cddc 5292 read_unlock(&tasklist_lock);
1da177e4
LT
5293}
5294
dd41f596
IM
5295/*
5296 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5297 * It does so by boosting its priority to highest possible.
5298 * Used by CPU offline code.
1da177e4
LT
5299 */
5300void sched_idle_next(void)
5301{
48f24c4d 5302 int this_cpu = smp_processor_id();
70b97a7f 5303 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5304 struct task_struct *p = rq->idle;
5305 unsigned long flags;
5306
5307 /* cpu has to be offline */
48f24c4d 5308 BUG_ON(cpu_online(this_cpu));
1da177e4 5309
48f24c4d
IM
5310 /*
5311 * Strictly not necessary since rest of the CPUs are stopped by now
5312 * and interrupts disabled on the current cpu.
1da177e4
LT
5313 */
5314 spin_lock_irqsave(&rq->lock, flags);
5315
dd41f596 5316 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5317
94bc9a7b
DA
5318 update_rq_clock(rq);
5319 activate_task(rq, p, 0);
1da177e4
LT
5320
5321 spin_unlock_irqrestore(&rq->lock, flags);
5322}
5323
48f24c4d
IM
5324/*
5325 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5326 * offline.
5327 */
5328void idle_task_exit(void)
5329{
5330 struct mm_struct *mm = current->active_mm;
5331
5332 BUG_ON(cpu_online(smp_processor_id()));
5333
5334 if (mm != &init_mm)
5335 switch_mm(mm, &init_mm, current);
5336 mmdrop(mm);
5337}
5338
054b9108 5339/* called under rq->lock with disabled interrupts */
36c8b586 5340static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5341{
70b97a7f 5342 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5343
5344 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5345 BUG_ON(!p->exit_state);
1da177e4
LT
5346
5347 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5348 BUG_ON(p->state == TASK_DEAD);
1da177e4 5349
48f24c4d 5350 get_task_struct(p);
1da177e4
LT
5351
5352 /*
5353 * Drop lock around migration; if someone else moves it,
41a2d6cf 5354 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5355 * fine.
5356 */
f7b4cddc 5357 spin_unlock_irq(&rq->lock);
48f24c4d 5358 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5359 spin_lock_irq(&rq->lock);
1da177e4 5360
48f24c4d 5361 put_task_struct(p);
1da177e4
LT
5362}
5363
5364/* release_task() removes task from tasklist, so we won't find dead tasks. */
5365static void migrate_dead_tasks(unsigned int dead_cpu)
5366{
70b97a7f 5367 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5368 struct task_struct *next;
48f24c4d 5369
dd41f596
IM
5370 for ( ; ; ) {
5371 if (!rq->nr_running)
5372 break;
a8e504d2 5373 update_rq_clock(rq);
ff95f3df 5374 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5375 if (!next)
5376 break;
5377 migrate_dead(dead_cpu, next);
e692ab53 5378
1da177e4
LT
5379 }
5380}
5381#endif /* CONFIG_HOTPLUG_CPU */
5382
e692ab53
NP
5383#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5384
5385static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5386 {
5387 .procname = "sched_domain",
c57baf1e 5388 .mode = 0555,
e0361851 5389 },
38605cae 5390 {0, },
e692ab53
NP
5391};
5392
5393static struct ctl_table sd_ctl_root[] = {
e0361851 5394 {
c57baf1e 5395 .ctl_name = CTL_KERN,
e0361851 5396 .procname = "kernel",
c57baf1e 5397 .mode = 0555,
e0361851
AD
5398 .child = sd_ctl_dir,
5399 },
38605cae 5400 {0, },
e692ab53
NP
5401};
5402
5403static struct ctl_table *sd_alloc_ctl_entry(int n)
5404{
5405 struct ctl_table *entry =
5cf9f062 5406 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5407
e692ab53
NP
5408 return entry;
5409}
5410
6382bc90
MM
5411static void sd_free_ctl_entry(struct ctl_table **tablep)
5412{
cd790076 5413 struct ctl_table *entry;
6382bc90 5414
cd790076
MM
5415 /*
5416 * In the intermediate directories, both the child directory and
5417 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5418 * will always be set. In the lowest directory the names are
cd790076
MM
5419 * static strings and all have proc handlers.
5420 */
5421 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5422 if (entry->child)
5423 sd_free_ctl_entry(&entry->child);
cd790076
MM
5424 if (entry->proc_handler == NULL)
5425 kfree(entry->procname);
5426 }
6382bc90
MM
5427
5428 kfree(*tablep);
5429 *tablep = NULL;
5430}
5431
e692ab53 5432static void
e0361851 5433set_table_entry(struct ctl_table *entry,
e692ab53
NP
5434 const char *procname, void *data, int maxlen,
5435 mode_t mode, proc_handler *proc_handler)
5436{
e692ab53
NP
5437 entry->procname = procname;
5438 entry->data = data;
5439 entry->maxlen = maxlen;
5440 entry->mode = mode;
5441 entry->proc_handler = proc_handler;
5442}
5443
5444static struct ctl_table *
5445sd_alloc_ctl_domain_table(struct sched_domain *sd)
5446{
ace8b3d6 5447 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5448
ad1cdc1d
MM
5449 if (table == NULL)
5450 return NULL;
5451
e0361851 5452 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5453 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5454 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5455 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5456 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5457 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5458 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5460 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5462 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5464 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5465 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5466 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5467 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5468 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5469 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5470 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5471 &sd->cache_nice_tries,
5472 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5473 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5474 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5475 /* &table[11] is terminator */
e692ab53
NP
5476
5477 return table;
5478}
5479
9a4e7159 5480static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5481{
5482 struct ctl_table *entry, *table;
5483 struct sched_domain *sd;
5484 int domain_num = 0, i;
5485 char buf[32];
5486
5487 for_each_domain(cpu, sd)
5488 domain_num++;
5489 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5490 if (table == NULL)
5491 return NULL;
e692ab53
NP
5492
5493 i = 0;
5494 for_each_domain(cpu, sd) {
5495 snprintf(buf, 32, "domain%d", i);
e692ab53 5496 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5497 entry->mode = 0555;
e692ab53
NP
5498 entry->child = sd_alloc_ctl_domain_table(sd);
5499 entry++;
5500 i++;
5501 }
5502 return table;
5503}
5504
5505static struct ctl_table_header *sd_sysctl_header;
6382bc90 5506static void register_sched_domain_sysctl(void)
e692ab53
NP
5507{
5508 int i, cpu_num = num_online_cpus();
5509 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5510 char buf[32];
5511
7378547f
MM
5512 WARN_ON(sd_ctl_dir[0].child);
5513 sd_ctl_dir[0].child = entry;
5514
ad1cdc1d
MM
5515 if (entry == NULL)
5516 return;
5517
97b6ea7b 5518 for_each_online_cpu(i) {
e692ab53 5519 snprintf(buf, 32, "cpu%d", i);
e692ab53 5520 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5521 entry->mode = 0555;
e692ab53 5522 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5523 entry++;
e692ab53 5524 }
7378547f
MM
5525
5526 WARN_ON(sd_sysctl_header);
e692ab53
NP
5527 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5528}
6382bc90 5529
7378547f 5530/* may be called multiple times per register */
6382bc90
MM
5531static void unregister_sched_domain_sysctl(void)
5532{
7378547f
MM
5533 if (sd_sysctl_header)
5534 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5535 sd_sysctl_header = NULL;
7378547f
MM
5536 if (sd_ctl_dir[0].child)
5537 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5538}
e692ab53 5539#else
6382bc90
MM
5540static void register_sched_domain_sysctl(void)
5541{
5542}
5543static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5544{
5545}
5546#endif
5547
1da177e4
LT
5548/*
5549 * migration_call - callback that gets triggered when a CPU is added.
5550 * Here we can start up the necessary migration thread for the new CPU.
5551 */
48f24c4d
IM
5552static int __cpuinit
5553migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5554{
1da177e4 5555 struct task_struct *p;
48f24c4d 5556 int cpu = (long)hcpu;
1da177e4 5557 unsigned long flags;
70b97a7f 5558 struct rq *rq;
1da177e4
LT
5559
5560 switch (action) {
5be9361c 5561
1da177e4 5562 case CPU_UP_PREPARE:
8bb78442 5563 case CPU_UP_PREPARE_FROZEN:
dd41f596 5564 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5565 if (IS_ERR(p))
5566 return NOTIFY_BAD;
1da177e4
LT
5567 kthread_bind(p, cpu);
5568 /* Must be high prio: stop_machine expects to yield to it. */
5569 rq = task_rq_lock(p, &flags);
dd41f596 5570 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5571 task_rq_unlock(rq, &flags);
5572 cpu_rq(cpu)->migration_thread = p;
5573 break;
48f24c4d 5574
1da177e4 5575 case CPU_ONLINE:
8bb78442 5576 case CPU_ONLINE_FROZEN:
3a4fa0a2 5577 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5578 wake_up_process(cpu_rq(cpu)->migration_thread);
57d885fe
GH
5579
5580 /* Update our root-domain */
5581 rq = cpu_rq(cpu);
5582 spin_lock_irqsave(&rq->lock, flags);
5583 if (rq->rd) {
5584 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5585 cpu_set(cpu, rq->rd->online);
5586 }
5587 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5588 break;
48f24c4d 5589
1da177e4
LT
5590#ifdef CONFIG_HOTPLUG_CPU
5591 case CPU_UP_CANCELED:
8bb78442 5592 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5593 if (!cpu_rq(cpu)->migration_thread)
5594 break;
41a2d6cf 5595 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5596 kthread_bind(cpu_rq(cpu)->migration_thread,
5597 any_online_cpu(cpu_online_map));
1da177e4
LT
5598 kthread_stop(cpu_rq(cpu)->migration_thread);
5599 cpu_rq(cpu)->migration_thread = NULL;
5600 break;
48f24c4d 5601
1da177e4 5602 case CPU_DEAD:
8bb78442 5603 case CPU_DEAD_FROZEN:
470fd646 5604 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5605 migrate_live_tasks(cpu);
5606 rq = cpu_rq(cpu);
5607 kthread_stop(rq->migration_thread);
5608 rq->migration_thread = NULL;
5609 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5610 spin_lock_irq(&rq->lock);
a8e504d2 5611 update_rq_clock(rq);
2e1cb74a 5612 deactivate_task(rq, rq->idle, 0);
1da177e4 5613 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5614 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5615 rq->idle->sched_class = &idle_sched_class;
1da177e4 5616 migrate_dead_tasks(cpu);
d2da272a 5617 spin_unlock_irq(&rq->lock);
470fd646 5618 cpuset_unlock();
1da177e4
LT
5619 migrate_nr_uninterruptible(rq);
5620 BUG_ON(rq->nr_running != 0);
5621
41a2d6cf
IM
5622 /*
5623 * No need to migrate the tasks: it was best-effort if
5624 * they didn't take sched_hotcpu_mutex. Just wake up
5625 * the requestors.
5626 */
1da177e4
LT
5627 spin_lock_irq(&rq->lock);
5628 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5629 struct migration_req *req;
5630
1da177e4 5631 req = list_entry(rq->migration_queue.next,
70b97a7f 5632 struct migration_req, list);
1da177e4
LT
5633 list_del_init(&req->list);
5634 complete(&req->done);
5635 }
5636 spin_unlock_irq(&rq->lock);
5637 break;
57d885fe
GH
5638
5639 case CPU_DOWN_PREPARE:
5640 /* Update our root-domain */
5641 rq = cpu_rq(cpu);
5642 spin_lock_irqsave(&rq->lock, flags);
5643 if (rq->rd) {
5644 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5645 cpu_clear(cpu, rq->rd->online);
5646 }
5647 spin_unlock_irqrestore(&rq->lock, flags);
5648 break;
1da177e4
LT
5649#endif
5650 }
5651 return NOTIFY_OK;
5652}
5653
5654/* Register at highest priority so that task migration (migrate_all_tasks)
5655 * happens before everything else.
5656 */
26c2143b 5657static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5658 .notifier_call = migration_call,
5659 .priority = 10
5660};
5661
e6fe6649 5662void __init migration_init(void)
1da177e4
LT
5663{
5664 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5665 int err;
48f24c4d
IM
5666
5667 /* Start one for the boot CPU: */
07dccf33
AM
5668 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5669 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5670 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5671 register_cpu_notifier(&migration_notifier);
1da177e4
LT
5672}
5673#endif
5674
5675#ifdef CONFIG_SMP
476f3534
CL
5676
5677/* Number of possible processor ids */
5678int nr_cpu_ids __read_mostly = NR_CPUS;
5679EXPORT_SYMBOL(nr_cpu_ids);
5680
3e9830dc 5681#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5682
5683static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5684{
4dcf6aff
IM
5685 struct sched_group *group = sd->groups;
5686 cpumask_t groupmask;
5687 char str[NR_CPUS];
1da177e4 5688
4dcf6aff
IM
5689 cpumask_scnprintf(str, NR_CPUS, sd->span);
5690 cpus_clear(groupmask);
5691
5692 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5693
5694 if (!(sd->flags & SD_LOAD_BALANCE)) {
5695 printk("does not load-balance\n");
5696 if (sd->parent)
5697 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5698 " has parent");
5699 return -1;
41c7ce9a
NP
5700 }
5701
4dcf6aff
IM
5702 printk(KERN_CONT "span %s\n", str);
5703
5704 if (!cpu_isset(cpu, sd->span)) {
5705 printk(KERN_ERR "ERROR: domain->span does not contain "
5706 "CPU%d\n", cpu);
5707 }
5708 if (!cpu_isset(cpu, group->cpumask)) {
5709 printk(KERN_ERR "ERROR: domain->groups does not contain"
5710 " CPU%d\n", cpu);
5711 }
1da177e4 5712
4dcf6aff 5713 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5714 do {
4dcf6aff
IM
5715 if (!group) {
5716 printk("\n");
5717 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5718 break;
5719 }
5720
4dcf6aff
IM
5721 if (!group->__cpu_power) {
5722 printk(KERN_CONT "\n");
5723 printk(KERN_ERR "ERROR: domain->cpu_power not "
5724 "set\n");
5725 break;
5726 }
1da177e4 5727
4dcf6aff
IM
5728 if (!cpus_weight(group->cpumask)) {
5729 printk(KERN_CONT "\n");
5730 printk(KERN_ERR "ERROR: empty group\n");
5731 break;
5732 }
1da177e4 5733
4dcf6aff
IM
5734 if (cpus_intersects(groupmask, group->cpumask)) {
5735 printk(KERN_CONT "\n");
5736 printk(KERN_ERR "ERROR: repeated CPUs\n");
5737 break;
5738 }
1da177e4 5739
4dcf6aff 5740 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5741
4dcf6aff
IM
5742 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5743 printk(KERN_CONT " %s", str);
1da177e4 5744
4dcf6aff
IM
5745 group = group->next;
5746 } while (group != sd->groups);
5747 printk(KERN_CONT "\n");
1da177e4 5748
4dcf6aff
IM
5749 if (!cpus_equal(sd->span, groupmask))
5750 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5751
4dcf6aff
IM
5752 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5753 printk(KERN_ERR "ERROR: parent span is not a superset "
5754 "of domain->span\n");
5755 return 0;
5756}
1da177e4 5757
4dcf6aff
IM
5758static void sched_domain_debug(struct sched_domain *sd, int cpu)
5759{
5760 int level = 0;
1da177e4 5761
4dcf6aff
IM
5762 if (!sd) {
5763 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5764 return;
5765 }
1da177e4 5766
4dcf6aff
IM
5767 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5768
5769 for (;;) {
5770 if (sched_domain_debug_one(sd, cpu, level))
5771 break;
1da177e4
LT
5772 level++;
5773 sd = sd->parent;
33859f7f 5774 if (!sd)
4dcf6aff
IM
5775 break;
5776 }
1da177e4
LT
5777}
5778#else
48f24c4d 5779# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5780#endif
5781
1a20ff27 5782static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5783{
5784 if (cpus_weight(sd->span) == 1)
5785 return 1;
5786
5787 /* Following flags need at least 2 groups */
5788 if (sd->flags & (SD_LOAD_BALANCE |
5789 SD_BALANCE_NEWIDLE |
5790 SD_BALANCE_FORK |
89c4710e
SS
5791 SD_BALANCE_EXEC |
5792 SD_SHARE_CPUPOWER |
5793 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5794 if (sd->groups != sd->groups->next)
5795 return 0;
5796 }
5797
5798 /* Following flags don't use groups */
5799 if (sd->flags & (SD_WAKE_IDLE |
5800 SD_WAKE_AFFINE |
5801 SD_WAKE_BALANCE))
5802 return 0;
5803
5804 return 1;
5805}
5806
48f24c4d
IM
5807static int
5808sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5809{
5810 unsigned long cflags = sd->flags, pflags = parent->flags;
5811
5812 if (sd_degenerate(parent))
5813 return 1;
5814
5815 if (!cpus_equal(sd->span, parent->span))
5816 return 0;
5817
5818 /* Does parent contain flags not in child? */
5819 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5820 if (cflags & SD_WAKE_AFFINE)
5821 pflags &= ~SD_WAKE_BALANCE;
5822 /* Flags needing groups don't count if only 1 group in parent */
5823 if (parent->groups == parent->groups->next) {
5824 pflags &= ~(SD_LOAD_BALANCE |
5825 SD_BALANCE_NEWIDLE |
5826 SD_BALANCE_FORK |
89c4710e
SS
5827 SD_BALANCE_EXEC |
5828 SD_SHARE_CPUPOWER |
5829 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5830 }
5831 if (~cflags & pflags)
5832 return 0;
5833
5834 return 1;
5835}
5836
57d885fe
GH
5837static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5838{
5839 unsigned long flags;
5840 const struct sched_class *class;
5841
5842 spin_lock_irqsave(&rq->lock, flags);
5843
5844 if (rq->rd) {
5845 struct root_domain *old_rd = rq->rd;
5846
0eab9146 5847 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5848 if (class->leave_domain)
5849 class->leave_domain(rq);
0eab9146 5850 }
57d885fe
GH
5851
5852 if (atomic_dec_and_test(&old_rd->refcount))
5853 kfree(old_rd);
5854 }
5855
5856 atomic_inc(&rd->refcount);
5857 rq->rd = rd;
5858
0eab9146 5859 for (class = sched_class_highest; class; class = class->next) {
57d885fe
GH
5860 if (class->join_domain)
5861 class->join_domain(rq);
0eab9146 5862 }
57d885fe
GH
5863
5864 spin_unlock_irqrestore(&rq->lock, flags);
5865}
5866
5867static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
5868{
5869 memset(rd, 0, sizeof(*rd));
5870
5871 rd->span = *map;
5872 cpus_and(rd->online, rd->span, cpu_online_map);
5873}
5874
5875static void init_defrootdomain(void)
5876{
5877 cpumask_t cpus = CPU_MASK_ALL;
5878
5879 init_rootdomain(&def_root_domain, &cpus);
5880 atomic_set(&def_root_domain.refcount, 1);
5881}
5882
5883static struct root_domain *alloc_rootdomain(const cpumask_t *map)
5884{
5885 struct root_domain *rd;
5886
5887 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5888 if (!rd)
5889 return NULL;
5890
5891 init_rootdomain(rd, map);
5892
5893 return rd;
5894}
5895
1da177e4 5896/*
0eab9146 5897 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5898 * hold the hotplug lock.
5899 */
0eab9146
IM
5900static void
5901cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5902{
70b97a7f 5903 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5904 struct sched_domain *tmp;
5905
5906 /* Remove the sched domains which do not contribute to scheduling. */
5907 for (tmp = sd; tmp; tmp = tmp->parent) {
5908 struct sched_domain *parent = tmp->parent;
5909 if (!parent)
5910 break;
1a848870 5911 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5912 tmp->parent = parent->parent;
1a848870
SS
5913 if (parent->parent)
5914 parent->parent->child = tmp;
5915 }
245af2c7
SS
5916 }
5917
1a848870 5918 if (sd && sd_degenerate(sd)) {
245af2c7 5919 sd = sd->parent;
1a848870
SS
5920 if (sd)
5921 sd->child = NULL;
5922 }
1da177e4
LT
5923
5924 sched_domain_debug(sd, cpu);
5925
57d885fe 5926 rq_attach_root(rq, rd);
674311d5 5927 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5928}
5929
5930/* cpus with isolated domains */
67af63a6 5931static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5932
5933/* Setup the mask of cpus configured for isolated domains */
5934static int __init isolated_cpu_setup(char *str)
5935{
5936 int ints[NR_CPUS], i;
5937
5938 str = get_options(str, ARRAY_SIZE(ints), ints);
5939 cpus_clear(cpu_isolated_map);
5940 for (i = 1; i <= ints[0]; i++)
5941 if (ints[i] < NR_CPUS)
5942 cpu_set(ints[i], cpu_isolated_map);
5943 return 1;
5944}
5945
8927f494 5946__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5947
5948/*
6711cab4
SS
5949 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5950 * to a function which identifies what group(along with sched group) a CPU
5951 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5952 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5953 *
5954 * init_sched_build_groups will build a circular linked list of the groups
5955 * covered by the given span, and will set each group's ->cpumask correctly,
5956 * and ->cpu_power to 0.
5957 */
a616058b 5958static void
6711cab4
SS
5959init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5960 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5961 struct sched_group **sg))
1da177e4
LT
5962{
5963 struct sched_group *first = NULL, *last = NULL;
5964 cpumask_t covered = CPU_MASK_NONE;
5965 int i;
5966
5967 for_each_cpu_mask(i, span) {
6711cab4
SS
5968 struct sched_group *sg;
5969 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5970 int j;
5971
5972 if (cpu_isset(i, covered))
5973 continue;
5974
5975 sg->cpumask = CPU_MASK_NONE;
5517d86b 5976 sg->__cpu_power = 0;
1da177e4
LT
5977
5978 for_each_cpu_mask(j, span) {
6711cab4 5979 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5980 continue;
5981
5982 cpu_set(j, covered);
5983 cpu_set(j, sg->cpumask);
5984 }
5985 if (!first)
5986 first = sg;
5987 if (last)
5988 last->next = sg;
5989 last = sg;
5990 }
5991 last->next = first;
5992}
5993
9c1cfda2 5994#define SD_NODES_PER_DOMAIN 16
1da177e4 5995
9c1cfda2 5996#ifdef CONFIG_NUMA
198e2f18 5997
9c1cfda2
JH
5998/**
5999 * find_next_best_node - find the next node to include in a sched_domain
6000 * @node: node whose sched_domain we're building
6001 * @used_nodes: nodes already in the sched_domain
6002 *
41a2d6cf 6003 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6004 * finds the closest node not already in the @used_nodes map.
6005 *
6006 * Should use nodemask_t.
6007 */
6008static int find_next_best_node(int node, unsigned long *used_nodes)
6009{
6010 int i, n, val, min_val, best_node = 0;
6011
6012 min_val = INT_MAX;
6013
6014 for (i = 0; i < MAX_NUMNODES; i++) {
6015 /* Start at @node */
6016 n = (node + i) % MAX_NUMNODES;
6017
6018 if (!nr_cpus_node(n))
6019 continue;
6020
6021 /* Skip already used nodes */
6022 if (test_bit(n, used_nodes))
6023 continue;
6024
6025 /* Simple min distance search */
6026 val = node_distance(node, n);
6027
6028 if (val < min_val) {
6029 min_val = val;
6030 best_node = n;
6031 }
6032 }
6033
6034 set_bit(best_node, used_nodes);
6035 return best_node;
6036}
6037
6038/**
6039 * sched_domain_node_span - get a cpumask for a node's sched_domain
6040 * @node: node whose cpumask we're constructing
6041 * @size: number of nodes to include in this span
6042 *
41a2d6cf 6043 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6044 * should be one that prevents unnecessary balancing, but also spreads tasks
6045 * out optimally.
6046 */
6047static cpumask_t sched_domain_node_span(int node)
6048{
9c1cfda2 6049 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6050 cpumask_t span, nodemask;
6051 int i;
9c1cfda2
JH
6052
6053 cpus_clear(span);
6054 bitmap_zero(used_nodes, MAX_NUMNODES);
6055
6056 nodemask = node_to_cpumask(node);
6057 cpus_or(span, span, nodemask);
6058 set_bit(node, used_nodes);
6059
6060 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6061 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6062
9c1cfda2
JH
6063 nodemask = node_to_cpumask(next_node);
6064 cpus_or(span, span, nodemask);
6065 }
6066
6067 return span;
6068}
6069#endif
6070
5c45bf27 6071int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6072
9c1cfda2 6073/*
48f24c4d 6074 * SMT sched-domains:
9c1cfda2 6075 */
1da177e4
LT
6076#ifdef CONFIG_SCHED_SMT
6077static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6078static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6079
41a2d6cf
IM
6080static int
6081cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6082{
6711cab4
SS
6083 if (sg)
6084 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6085 return cpu;
6086}
6087#endif
6088
48f24c4d
IM
6089/*
6090 * multi-core sched-domains:
6091 */
1e9f28fa
SS
6092#ifdef CONFIG_SCHED_MC
6093static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6094static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6095#endif
6096
6097#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf
IM
6098static int
6099cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6100{
6711cab4 6101 int group;
d5a7430d 6102 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6103 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6104 group = first_cpu(mask);
6105 if (sg)
6106 *sg = &per_cpu(sched_group_core, group);
6107 return group;
1e9f28fa
SS
6108}
6109#elif defined(CONFIG_SCHED_MC)
41a2d6cf
IM
6110static int
6111cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1e9f28fa 6112{
6711cab4
SS
6113 if (sg)
6114 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6115 return cpu;
6116}
6117#endif
6118
1da177e4 6119static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6120static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6121
41a2d6cf
IM
6122static int
6123cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
1da177e4 6124{
6711cab4 6125 int group;
48f24c4d 6126#ifdef CONFIG_SCHED_MC
1e9f28fa 6127 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6128 cpus_and(mask, mask, *cpu_map);
6711cab4 6129 group = first_cpu(mask);
1e9f28fa 6130#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6131 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6132 cpus_and(mask, mask, *cpu_map);
6711cab4 6133 group = first_cpu(mask);
1da177e4 6134#else
6711cab4 6135 group = cpu;
1da177e4 6136#endif
6711cab4
SS
6137 if (sg)
6138 *sg = &per_cpu(sched_group_phys, group);
6139 return group;
1da177e4
LT
6140}
6141
6142#ifdef CONFIG_NUMA
1da177e4 6143/*
9c1cfda2
JH
6144 * The init_sched_build_groups can't handle what we want to do with node
6145 * groups, so roll our own. Now each node has its own list of groups which
6146 * gets dynamically allocated.
1da177e4 6147 */
9c1cfda2 6148static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6149static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6150
9c1cfda2 6151static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6152static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6153
6711cab4
SS
6154static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6155 struct sched_group **sg)
9c1cfda2 6156{
6711cab4
SS
6157 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6158 int group;
6159
6160 cpus_and(nodemask, nodemask, *cpu_map);
6161 group = first_cpu(nodemask);
6162
6163 if (sg)
6164 *sg = &per_cpu(sched_group_allnodes, group);
6165 return group;
1da177e4 6166}
6711cab4 6167
08069033
SS
6168static void init_numa_sched_groups_power(struct sched_group *group_head)
6169{
6170 struct sched_group *sg = group_head;
6171 int j;
6172
6173 if (!sg)
6174 return;
3a5c359a
AK
6175 do {
6176 for_each_cpu_mask(j, sg->cpumask) {
6177 struct sched_domain *sd;
08069033 6178
3a5c359a
AK
6179 sd = &per_cpu(phys_domains, j);
6180 if (j != first_cpu(sd->groups->cpumask)) {
6181 /*
6182 * Only add "power" once for each
6183 * physical package.
6184 */
6185 continue;
6186 }
08069033 6187
3a5c359a
AK
6188 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6189 }
6190 sg = sg->next;
6191 } while (sg != group_head);
08069033 6192}
1da177e4
LT
6193#endif
6194
a616058b 6195#ifdef CONFIG_NUMA
51888ca2
SV
6196/* Free memory allocated for various sched_group structures */
6197static void free_sched_groups(const cpumask_t *cpu_map)
6198{
a616058b 6199 int cpu, i;
51888ca2
SV
6200
6201 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6202 struct sched_group **sched_group_nodes
6203 = sched_group_nodes_bycpu[cpu];
6204
51888ca2
SV
6205 if (!sched_group_nodes)
6206 continue;
6207
6208 for (i = 0; i < MAX_NUMNODES; i++) {
6209 cpumask_t nodemask = node_to_cpumask(i);
6210 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6211
6212 cpus_and(nodemask, nodemask, *cpu_map);
6213 if (cpus_empty(nodemask))
6214 continue;
6215
6216 if (sg == NULL)
6217 continue;
6218 sg = sg->next;
6219next_sg:
6220 oldsg = sg;
6221 sg = sg->next;
6222 kfree(oldsg);
6223 if (oldsg != sched_group_nodes[i])
6224 goto next_sg;
6225 }
6226 kfree(sched_group_nodes);
6227 sched_group_nodes_bycpu[cpu] = NULL;
6228 }
51888ca2 6229}
a616058b
SS
6230#else
6231static void free_sched_groups(const cpumask_t *cpu_map)
6232{
6233}
6234#endif
51888ca2 6235
89c4710e
SS
6236/*
6237 * Initialize sched groups cpu_power.
6238 *
6239 * cpu_power indicates the capacity of sched group, which is used while
6240 * distributing the load between different sched groups in a sched domain.
6241 * Typically cpu_power for all the groups in a sched domain will be same unless
6242 * there are asymmetries in the topology. If there are asymmetries, group
6243 * having more cpu_power will pickup more load compared to the group having
6244 * less cpu_power.
6245 *
6246 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6247 * the maximum number of tasks a group can handle in the presence of other idle
6248 * or lightly loaded groups in the same sched domain.
6249 */
6250static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6251{
6252 struct sched_domain *child;
6253 struct sched_group *group;
6254
6255 WARN_ON(!sd || !sd->groups);
6256
6257 if (cpu != first_cpu(sd->groups->cpumask))
6258 return;
6259
6260 child = sd->child;
6261
5517d86b
ED
6262 sd->groups->__cpu_power = 0;
6263
89c4710e
SS
6264 /*
6265 * For perf policy, if the groups in child domain share resources
6266 * (for example cores sharing some portions of the cache hierarchy
6267 * or SMT), then set this domain groups cpu_power such that each group
6268 * can handle only one task, when there are other idle groups in the
6269 * same sched domain.
6270 */
6271 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6272 (child->flags &
6273 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6274 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6275 return;
6276 }
6277
89c4710e
SS
6278 /*
6279 * add cpu_power of each child group to this groups cpu_power
6280 */
6281 group = child->groups;
6282 do {
5517d86b 6283 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6284 group = group->next;
6285 } while (group != child->groups);
6286}
6287
1da177e4 6288/*
1a20ff27
DG
6289 * Build sched domains for a given set of cpus and attach the sched domains
6290 * to the individual cpus
1da177e4 6291 */
51888ca2 6292static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6293{
6294 int i;
57d885fe 6295 struct root_domain *rd;
d1b55138
JH
6296#ifdef CONFIG_NUMA
6297 struct sched_group **sched_group_nodes = NULL;
6711cab4 6298 int sd_allnodes = 0;
d1b55138
JH
6299
6300 /*
6301 * Allocate the per-node list of sched groups
6302 */
5cf9f062 6303 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 6304 GFP_KERNEL);
d1b55138
JH
6305 if (!sched_group_nodes) {
6306 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6307 return -ENOMEM;
d1b55138
JH
6308 }
6309 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6310#endif
1da177e4 6311
57d885fe
GH
6312 rd = alloc_rootdomain(cpu_map);
6313 if (!rd) {
6314 printk(KERN_WARNING "Cannot alloc root domain\n");
6315 return -ENOMEM;
6316 }
6317
1da177e4 6318 /*
1a20ff27 6319 * Set up domains for cpus specified by the cpu_map.
1da177e4 6320 */
1a20ff27 6321 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6322 struct sched_domain *sd = NULL, *p;
6323 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6324
1a20ff27 6325 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6326
6327#ifdef CONFIG_NUMA
dd41f596
IM
6328 if (cpus_weight(*cpu_map) >
6329 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6330 sd = &per_cpu(allnodes_domains, i);
6331 *sd = SD_ALLNODES_INIT;
6332 sd->span = *cpu_map;
6711cab4 6333 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6334 p = sd;
6711cab4 6335 sd_allnodes = 1;
9c1cfda2
JH
6336 } else
6337 p = NULL;
6338
1da177e4 6339 sd = &per_cpu(node_domains, i);
1da177e4 6340 *sd = SD_NODE_INIT;
9c1cfda2
JH
6341 sd->span = sched_domain_node_span(cpu_to_node(i));
6342 sd->parent = p;
1a848870
SS
6343 if (p)
6344 p->child = sd;
9c1cfda2 6345 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6346#endif
6347
6348 p = sd;
6349 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6350 *sd = SD_CPU_INIT;
6351 sd->span = nodemask;
6352 sd->parent = p;
1a848870
SS
6353 if (p)
6354 p->child = sd;
6711cab4 6355 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6356
1e9f28fa
SS
6357#ifdef CONFIG_SCHED_MC
6358 p = sd;
6359 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6360 *sd = SD_MC_INIT;
6361 sd->span = cpu_coregroup_map(i);
6362 cpus_and(sd->span, sd->span, *cpu_map);
6363 sd->parent = p;
1a848870 6364 p->child = sd;
6711cab4 6365 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6366#endif
6367
1da177e4
LT
6368#ifdef CONFIG_SCHED_SMT
6369 p = sd;
6370 sd = &per_cpu(cpu_domains, i);
1da177e4 6371 *sd = SD_SIBLING_INIT;
d5a7430d 6372 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6373 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6374 sd->parent = p;
1a848870 6375 p->child = sd;
6711cab4 6376 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6377#endif
6378 }
6379
6380#ifdef CONFIG_SCHED_SMT
6381 /* Set up CPU (sibling) groups */
9c1cfda2 6382 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6383 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6384 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6385 if (i != first_cpu(this_sibling_map))
6386 continue;
6387
dd41f596
IM
6388 init_sched_build_groups(this_sibling_map, cpu_map,
6389 &cpu_to_cpu_group);
1da177e4
LT
6390 }
6391#endif
6392
1e9f28fa
SS
6393#ifdef CONFIG_SCHED_MC
6394 /* Set up multi-core groups */
6395 for_each_cpu_mask(i, *cpu_map) {
6396 cpumask_t this_core_map = cpu_coregroup_map(i);
6397 cpus_and(this_core_map, this_core_map, *cpu_map);
6398 if (i != first_cpu(this_core_map))
6399 continue;
dd41f596
IM
6400 init_sched_build_groups(this_core_map, cpu_map,
6401 &cpu_to_core_group);
1e9f28fa
SS
6402 }
6403#endif
6404
1da177e4
LT
6405 /* Set up physical groups */
6406 for (i = 0; i < MAX_NUMNODES; i++) {
6407 cpumask_t nodemask = node_to_cpumask(i);
6408
1a20ff27 6409 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6410 if (cpus_empty(nodemask))
6411 continue;
6412
6711cab4 6413 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6414 }
6415
6416#ifdef CONFIG_NUMA
6417 /* Set up node groups */
6711cab4 6418 if (sd_allnodes)
dd41f596
IM
6419 init_sched_build_groups(*cpu_map, cpu_map,
6420 &cpu_to_allnodes_group);
9c1cfda2
JH
6421
6422 for (i = 0; i < MAX_NUMNODES; i++) {
6423 /* Set up node groups */
6424 struct sched_group *sg, *prev;
6425 cpumask_t nodemask = node_to_cpumask(i);
6426 cpumask_t domainspan;
6427 cpumask_t covered = CPU_MASK_NONE;
6428 int j;
6429
6430 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6431 if (cpus_empty(nodemask)) {
6432 sched_group_nodes[i] = NULL;
9c1cfda2 6433 continue;
d1b55138 6434 }
9c1cfda2
JH
6435
6436 domainspan = sched_domain_node_span(i);
6437 cpus_and(domainspan, domainspan, *cpu_map);
6438
15f0b676 6439 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6440 if (!sg) {
6441 printk(KERN_WARNING "Can not alloc domain group for "
6442 "node %d\n", i);
6443 goto error;
6444 }
9c1cfda2
JH
6445 sched_group_nodes[i] = sg;
6446 for_each_cpu_mask(j, nodemask) {
6447 struct sched_domain *sd;
9761eea8 6448
9c1cfda2
JH
6449 sd = &per_cpu(node_domains, j);
6450 sd->groups = sg;
9c1cfda2 6451 }
5517d86b 6452 sg->__cpu_power = 0;
9c1cfda2 6453 sg->cpumask = nodemask;
51888ca2 6454 sg->next = sg;
9c1cfda2
JH
6455 cpus_or(covered, covered, nodemask);
6456 prev = sg;
6457
6458 for (j = 0; j < MAX_NUMNODES; j++) {
6459 cpumask_t tmp, notcovered;
6460 int n = (i + j) % MAX_NUMNODES;
6461
6462 cpus_complement(notcovered, covered);
6463 cpus_and(tmp, notcovered, *cpu_map);
6464 cpus_and(tmp, tmp, domainspan);
6465 if (cpus_empty(tmp))
6466 break;
6467
6468 nodemask = node_to_cpumask(n);
6469 cpus_and(tmp, tmp, nodemask);
6470 if (cpus_empty(tmp))
6471 continue;
6472
15f0b676
SV
6473 sg = kmalloc_node(sizeof(struct sched_group),
6474 GFP_KERNEL, i);
9c1cfda2
JH
6475 if (!sg) {
6476 printk(KERN_WARNING
6477 "Can not alloc domain group for node %d\n", j);
51888ca2 6478 goto error;
9c1cfda2 6479 }
5517d86b 6480 sg->__cpu_power = 0;
9c1cfda2 6481 sg->cpumask = tmp;
51888ca2 6482 sg->next = prev->next;
9c1cfda2
JH
6483 cpus_or(covered, covered, tmp);
6484 prev->next = sg;
6485 prev = sg;
6486 }
9c1cfda2 6487 }
1da177e4
LT
6488#endif
6489
6490 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6491#ifdef CONFIG_SCHED_SMT
1a20ff27 6492 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6493 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6494
89c4710e 6495 init_sched_groups_power(i, sd);
5c45bf27 6496 }
1da177e4 6497#endif
1e9f28fa 6498#ifdef CONFIG_SCHED_MC
5c45bf27 6499 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6500 struct sched_domain *sd = &per_cpu(core_domains, i);
6501
89c4710e 6502 init_sched_groups_power(i, sd);
5c45bf27
SS
6503 }
6504#endif
1e9f28fa 6505
5c45bf27 6506 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6507 struct sched_domain *sd = &per_cpu(phys_domains, i);
6508
89c4710e 6509 init_sched_groups_power(i, sd);
1da177e4
LT
6510 }
6511
9c1cfda2 6512#ifdef CONFIG_NUMA
08069033
SS
6513 for (i = 0; i < MAX_NUMNODES; i++)
6514 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6515
6711cab4
SS
6516 if (sd_allnodes) {
6517 struct sched_group *sg;
f712c0c7 6518
6711cab4 6519 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6520 init_numa_sched_groups_power(sg);
6521 }
9c1cfda2
JH
6522#endif
6523
1da177e4 6524 /* Attach the domains */
1a20ff27 6525 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6526 struct sched_domain *sd;
6527#ifdef CONFIG_SCHED_SMT
6528 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6529#elif defined(CONFIG_SCHED_MC)
6530 sd = &per_cpu(core_domains, i);
1da177e4
LT
6531#else
6532 sd = &per_cpu(phys_domains, i);
6533#endif
57d885fe 6534 cpu_attach_domain(sd, rd, i);
1da177e4 6535 }
51888ca2
SV
6536
6537 return 0;
6538
a616058b 6539#ifdef CONFIG_NUMA
51888ca2
SV
6540error:
6541 free_sched_groups(cpu_map);
6542 return -ENOMEM;
a616058b 6543#endif
1da177e4 6544}
029190c5
PJ
6545
6546static cpumask_t *doms_cur; /* current sched domains */
6547static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6548
6549/*
6550 * Special case: If a kmalloc of a doms_cur partition (array of
6551 * cpumask_t) fails, then fallback to a single sched domain,
6552 * as determined by the single cpumask_t fallback_doms.
6553 */
6554static cpumask_t fallback_doms;
6555
1a20ff27 6556/*
41a2d6cf 6557 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6558 * For now this just excludes isolated cpus, but could be used to
6559 * exclude other special cases in the future.
1a20ff27 6560 */
51888ca2 6561static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6562{
7378547f
MM
6563 int err;
6564
029190c5
PJ
6565 ndoms_cur = 1;
6566 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6567 if (!doms_cur)
6568 doms_cur = &fallback_doms;
6569 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6570 err = build_sched_domains(doms_cur);
6382bc90 6571 register_sched_domain_sysctl();
7378547f
MM
6572
6573 return err;
1a20ff27
DG
6574}
6575
6576static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6577{
51888ca2 6578 free_sched_groups(cpu_map);
9c1cfda2 6579}
1da177e4 6580
1a20ff27
DG
6581/*
6582 * Detach sched domains from a group of cpus specified in cpu_map
6583 * These cpus will now be attached to the NULL domain
6584 */
858119e1 6585static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6586{
6587 int i;
6588
6382bc90
MM
6589 unregister_sched_domain_sysctl();
6590
1a20ff27 6591 for_each_cpu_mask(i, *cpu_map)
57d885fe 6592 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27
DG
6593 synchronize_sched();
6594 arch_destroy_sched_domains(cpu_map);
6595}
6596
029190c5
PJ
6597/*
6598 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6599 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6600 * doms_new[] to the current sched domain partitioning, doms_cur[].
6601 * It destroys each deleted domain and builds each new domain.
6602 *
6603 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
6604 * The masks don't intersect (don't overlap.) We should setup one
6605 * sched domain for each mask. CPUs not in any of the cpumasks will
6606 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6607 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6608 * it as it is.
6609 *
41a2d6cf
IM
6610 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6611 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
6612 * failed the kmalloc call, then it can pass in doms_new == NULL,
6613 * and partition_sched_domains() will fallback to the single partition
6614 * 'fallback_doms'.
6615 *
6616 * Call with hotplug lock held
6617 */
6618void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6619{
6620 int i, j;
6621
a1835615
SV
6622 lock_doms_cur();
6623
7378547f
MM
6624 /* always unregister in case we don't destroy any domains */
6625 unregister_sched_domain_sysctl();
6626
029190c5
PJ
6627 if (doms_new == NULL) {
6628 ndoms_new = 1;
6629 doms_new = &fallback_doms;
6630 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6631 }
6632
6633 /* Destroy deleted domains */
6634 for (i = 0; i < ndoms_cur; i++) {
6635 for (j = 0; j < ndoms_new; j++) {
6636 if (cpus_equal(doms_cur[i], doms_new[j]))
6637 goto match1;
6638 }
6639 /* no match - a current sched domain not in new doms_new[] */
6640 detach_destroy_domains(doms_cur + i);
6641match1:
6642 ;
6643 }
6644
6645 /* Build new domains */
6646 for (i = 0; i < ndoms_new; i++) {
6647 for (j = 0; j < ndoms_cur; j++) {
6648 if (cpus_equal(doms_new[i], doms_cur[j]))
6649 goto match2;
6650 }
6651 /* no match - add a new doms_new */
6652 build_sched_domains(doms_new + i);
6653match2:
6654 ;
6655 }
6656
6657 /* Remember the new sched domains */
6658 if (doms_cur != &fallback_doms)
6659 kfree(doms_cur);
6660 doms_cur = doms_new;
6661 ndoms_cur = ndoms_new;
7378547f
MM
6662
6663 register_sched_domain_sysctl();
a1835615
SV
6664
6665 unlock_doms_cur();
029190c5
PJ
6666}
6667
5c45bf27 6668#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6669static int arch_reinit_sched_domains(void)
5c45bf27
SS
6670{
6671 int err;
6672
95402b38 6673 get_online_cpus();
5c45bf27
SS
6674 detach_destroy_domains(&cpu_online_map);
6675 err = arch_init_sched_domains(&cpu_online_map);
95402b38 6676 put_online_cpus();
5c45bf27
SS
6677
6678 return err;
6679}
6680
6681static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6682{
6683 int ret;
6684
6685 if (buf[0] != '0' && buf[0] != '1')
6686 return -EINVAL;
6687
6688 if (smt)
6689 sched_smt_power_savings = (buf[0] == '1');
6690 else
6691 sched_mc_power_savings = (buf[0] == '1');
6692
6693 ret = arch_reinit_sched_domains();
6694
6695 return ret ? ret : count;
6696}
6697
5c45bf27
SS
6698#ifdef CONFIG_SCHED_MC
6699static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6700{
6701 return sprintf(page, "%u\n", sched_mc_power_savings);
6702}
48f24c4d
IM
6703static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6704 const char *buf, size_t count)
5c45bf27
SS
6705{
6706 return sched_power_savings_store(buf, count, 0);
6707}
6707de00
AB
6708static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6709 sched_mc_power_savings_store);
5c45bf27
SS
6710#endif
6711
6712#ifdef CONFIG_SCHED_SMT
6713static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6714{
6715 return sprintf(page, "%u\n", sched_smt_power_savings);
6716}
48f24c4d
IM
6717static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6718 const char *buf, size_t count)
5c45bf27
SS
6719{
6720 return sched_power_savings_store(buf, count, 1);
6721}
6707de00
AB
6722static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6723 sched_smt_power_savings_store);
6724#endif
6725
6726int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6727{
6728 int err = 0;
6729
6730#ifdef CONFIG_SCHED_SMT
6731 if (smt_capable())
6732 err = sysfs_create_file(&cls->kset.kobj,
6733 &attr_sched_smt_power_savings.attr);
6734#endif
6735#ifdef CONFIG_SCHED_MC
6736 if (!err && mc_capable())
6737 err = sysfs_create_file(&cls->kset.kobj,
6738 &attr_sched_mc_power_savings.attr);
6739#endif
6740 return err;
6741}
5c45bf27
SS
6742#endif
6743
1da177e4 6744/*
41a2d6cf 6745 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 6746 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6747 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6748 * which will prevent rebalancing while the sched domains are recalculated.
6749 */
6750static int update_sched_domains(struct notifier_block *nfb,
6751 unsigned long action, void *hcpu)
6752{
1da177e4
LT
6753 switch (action) {
6754 case CPU_UP_PREPARE:
8bb78442 6755 case CPU_UP_PREPARE_FROZEN:
1da177e4 6756 case CPU_DOWN_PREPARE:
8bb78442 6757 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6758 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6759 return NOTIFY_OK;
6760
6761 case CPU_UP_CANCELED:
8bb78442 6762 case CPU_UP_CANCELED_FROZEN:
1da177e4 6763 case CPU_DOWN_FAILED:
8bb78442 6764 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6765 case CPU_ONLINE:
8bb78442 6766 case CPU_ONLINE_FROZEN:
1da177e4 6767 case CPU_DEAD:
8bb78442 6768 case CPU_DEAD_FROZEN:
1da177e4
LT
6769 /*
6770 * Fall through and re-initialise the domains.
6771 */
6772 break;
6773 default:
6774 return NOTIFY_DONE;
6775 }
6776
6777 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6778 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6779
6780 return NOTIFY_OK;
6781}
1da177e4
LT
6782
6783void __init sched_init_smp(void)
6784{
5c1e1767
NP
6785 cpumask_t non_isolated_cpus;
6786
95402b38 6787 get_online_cpus();
1a20ff27 6788 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6789 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6790 if (cpus_empty(non_isolated_cpus))
6791 cpu_set(smp_processor_id(), non_isolated_cpus);
95402b38 6792 put_online_cpus();
1da177e4
LT
6793 /* XXX: Theoretical race here - CPU may be hotplugged now */
6794 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6795
6796 /* Move init over to a non-isolated CPU */
6797 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6798 BUG();
19978ca6 6799 sched_init_granularity();
6b2d7700
SV
6800
6801#ifdef CONFIG_FAIR_GROUP_SCHED
6802 if (nr_cpu_ids == 1)
6803 return;
6804
6805 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6806 "group_balance");
6807 if (!IS_ERR(lb_monitor_task)) {
6808 lb_monitor_task->flags |= PF_NOFREEZE;
6809 wake_up_process(lb_monitor_task);
6810 } else {
6811 printk(KERN_ERR "Could not create load balance monitor thread"
6812 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6813 }
6814#endif
1da177e4
LT
6815}
6816#else
6817void __init sched_init_smp(void)
6818{
19978ca6 6819 sched_init_granularity();
1da177e4
LT
6820}
6821#endif /* CONFIG_SMP */
6822
6823int in_sched_functions(unsigned long addr)
6824{
1da177e4
LT
6825 return in_lock_functions(addr) ||
6826 (addr >= (unsigned long)__sched_text_start
6827 && addr < (unsigned long)__sched_text_end);
6828}
6829
a9957449 6830static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6831{
6832 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6833#ifdef CONFIG_FAIR_GROUP_SCHED
6834 cfs_rq->rq = rq;
6835#endif
67e9fb2a 6836 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6837}
6838
1da177e4
LT
6839void __init sched_init(void)
6840{
476f3534 6841 int highest_cpu = 0;
dd41f596
IM
6842 int i, j;
6843
57d885fe
GH
6844#ifdef CONFIG_SMP
6845 init_defrootdomain();
6846#endif
6847
0a945022 6848 for_each_possible_cpu(i) {
dd41f596 6849 struct rt_prio_array *array;
70b97a7f 6850 struct rq *rq;
1da177e4
LT
6851
6852 rq = cpu_rq(i);
6853 spin_lock_init(&rq->lock);
fcb99371 6854 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6855 rq->nr_running = 0;
dd41f596
IM
6856 rq->clock = 1;
6857 init_cfs_rq(&rq->cfs, rq);
6858#ifdef CONFIG_FAIR_GROUP_SCHED
6859 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6860 {
6861 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6862 struct sched_entity *se =
6863 &per_cpu(init_sched_entity, i);
6864
6865 init_cfs_rq_p[i] = cfs_rq;
6866 init_cfs_rq(cfs_rq, rq);
4cf86d77 6867 cfs_rq->tg = &init_task_group;
3a252015 6868 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6869 &rq->leaf_cfs_rq_list);
6870
3a252015
IM
6871 init_sched_entity_p[i] = se;
6872 se->cfs_rq = &rq->cfs;
6873 se->my_q = cfs_rq;
4cf86d77 6874 se->load.weight = init_task_group_load;
9b5b7751 6875 se->load.inv_weight =
4cf86d77 6876 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6877 se->parent = NULL;
6878 }
4cf86d77 6879 init_task_group.shares = init_task_group_load;
dd41f596 6880#endif
1da177e4 6881
dd41f596
IM
6882 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6883 rq->cpu_load[j] = 0;
1da177e4 6884#ifdef CONFIG_SMP
41c7ce9a 6885 rq->sd = NULL;
57d885fe
GH
6886 rq->rd = NULL;
6887 rq_attach_root(rq, &def_root_domain);
1da177e4 6888 rq->active_balance = 0;
dd41f596 6889 rq->next_balance = jiffies;
1da177e4 6890 rq->push_cpu = 0;
0a2966b4 6891 rq->cpu = i;
1da177e4
LT
6892 rq->migration_thread = NULL;
6893 INIT_LIST_HEAD(&rq->migration_queue);
764a9d6f 6894 rq->rt.highest_prio = MAX_RT_PRIO;
a22d7fc1 6895 rq->rt.overloaded = 0;
1da177e4
LT
6896#endif
6897 atomic_set(&rq->nr_iowait, 0);
6898
dd41f596
IM
6899 array = &rq->rt.active;
6900 for (j = 0; j < MAX_RT_PRIO; j++) {
6901 INIT_LIST_HEAD(array->queue + j);
6902 __clear_bit(j, array->bitmap);
1da177e4 6903 }
476f3534 6904 highest_cpu = i;
dd41f596
IM
6905 /* delimiter for bitsearch: */
6906 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6907 }
6908
2dd73a4f 6909 set_load_weight(&init_task);
b50f60ce 6910
e107be36
AK
6911#ifdef CONFIG_PREEMPT_NOTIFIERS
6912 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6913#endif
6914
c9819f45 6915#ifdef CONFIG_SMP
476f3534 6916 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6917 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6918#endif
6919
b50f60ce
HC
6920#ifdef CONFIG_RT_MUTEXES
6921 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6922#endif
6923
1da177e4
LT
6924 /*
6925 * The boot idle thread does lazy MMU switching as well:
6926 */
6927 atomic_inc(&init_mm.mm_count);
6928 enter_lazy_tlb(&init_mm, current);
6929
6930 /*
6931 * Make us the idle thread. Technically, schedule() should not be
6932 * called from this thread, however somewhere below it might be,
6933 * but because we are the idle thread, we just pick up running again
6934 * when this runqueue becomes "idle".
6935 */
6936 init_idle(current, smp_processor_id());
dd41f596
IM
6937 /*
6938 * During early bootup we pretend to be a normal task:
6939 */
6940 current->sched_class = &fair_sched_class;
1da177e4
LT
6941}
6942
6943#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6944void __might_sleep(char *file, int line)
6945{
48f24c4d 6946#ifdef in_atomic
1da177e4
LT
6947 static unsigned long prev_jiffy; /* ratelimiting */
6948
6949 if ((in_atomic() || irqs_disabled()) &&
6950 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6951 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6952 return;
6953 prev_jiffy = jiffies;
91368d73 6954 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6955 " context at %s:%d\n", file, line);
6956 printk("in_atomic():%d, irqs_disabled():%d\n",
6957 in_atomic(), irqs_disabled());
a4c410f0 6958 debug_show_held_locks(current);
3117df04
IM
6959 if (irqs_disabled())
6960 print_irqtrace_events(current);
1da177e4
LT
6961 dump_stack();
6962 }
6963#endif
6964}
6965EXPORT_SYMBOL(__might_sleep);
6966#endif
6967
6968#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6969static void normalize_task(struct rq *rq, struct task_struct *p)
6970{
6971 int on_rq;
6972 update_rq_clock(rq);
6973 on_rq = p->se.on_rq;
6974 if (on_rq)
6975 deactivate_task(rq, p, 0);
6976 __setscheduler(rq, p, SCHED_NORMAL, 0);
6977 if (on_rq) {
6978 activate_task(rq, p, 0);
6979 resched_task(rq->curr);
6980 }
6981}
6982
1da177e4
LT
6983void normalize_rt_tasks(void)
6984{
a0f98a1c 6985 struct task_struct *g, *p;
1da177e4 6986 unsigned long flags;
70b97a7f 6987 struct rq *rq;
1da177e4
LT
6988
6989 read_lock_irq(&tasklist_lock);
a0f98a1c 6990 do_each_thread(g, p) {
178be793
IM
6991 /*
6992 * Only normalize user tasks:
6993 */
6994 if (!p->mm)
6995 continue;
6996
6cfb0d5d 6997 p->se.exec_start = 0;
6cfb0d5d 6998#ifdef CONFIG_SCHEDSTATS
dd41f596 6999 p->se.wait_start = 0;
dd41f596 7000 p->se.sleep_start = 0;
dd41f596 7001 p->se.block_start = 0;
6cfb0d5d 7002#endif
dd41f596
IM
7003 task_rq(p)->clock = 0;
7004
7005 if (!rt_task(p)) {
7006 /*
7007 * Renice negative nice level userspace
7008 * tasks back to 0:
7009 */
7010 if (TASK_NICE(p) < 0 && p->mm)
7011 set_user_nice(p, 0);
1da177e4 7012 continue;
dd41f596 7013 }
1da177e4 7014
b29739f9
IM
7015 spin_lock_irqsave(&p->pi_lock, flags);
7016 rq = __task_rq_lock(p);
1da177e4 7017
178be793 7018 normalize_task(rq, p);
3a5e4dc1 7019
b29739f9
IM
7020 __task_rq_unlock(rq);
7021 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
7022 } while_each_thread(g, p);
7023
1da177e4
LT
7024 read_unlock_irq(&tasklist_lock);
7025}
7026
7027#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7028
7029#ifdef CONFIG_IA64
7030/*
7031 * These functions are only useful for the IA64 MCA handling.
7032 *
7033 * They can only be called when the whole system has been
7034 * stopped - every CPU needs to be quiescent, and no scheduling
7035 * activity can take place. Using them for anything else would
7036 * be a serious bug, and as a result, they aren't even visible
7037 * under any other configuration.
7038 */
7039
7040/**
7041 * curr_task - return the current task for a given cpu.
7042 * @cpu: the processor in question.
7043 *
7044 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7045 */
36c8b586 7046struct task_struct *curr_task(int cpu)
1df5c10a
LT
7047{
7048 return cpu_curr(cpu);
7049}
7050
7051/**
7052 * set_curr_task - set the current task for a given cpu.
7053 * @cpu: the processor in question.
7054 * @p: the task pointer to set.
7055 *
7056 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7057 * are serviced on a separate stack. It allows the architecture to switch the
7058 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7059 * must be called with all CPU's synchronized, and interrupts disabled, the
7060 * and caller must save the original value of the current task (see
7061 * curr_task() above) and restore that value before reenabling interrupts and
7062 * re-starting the system.
7063 *
7064 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7065 */
36c8b586 7066void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7067{
7068 cpu_curr(cpu) = p;
7069}
7070
7071#endif
29f59db3
SV
7072
7073#ifdef CONFIG_FAIR_GROUP_SCHED
7074
6b2d7700
SV
7075#ifdef CONFIG_SMP
7076/*
7077 * distribute shares of all task groups among their schedulable entities,
7078 * to reflect load distrbution across cpus.
7079 */
7080static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7081{
7082 struct cfs_rq *cfs_rq;
7083 struct rq *rq = cpu_rq(this_cpu);
7084 cpumask_t sdspan = sd->span;
7085 int balanced = 1;
7086
7087 /* Walk thr' all the task groups that we have */
7088 for_each_leaf_cfs_rq(rq, cfs_rq) {
7089 int i;
7090 unsigned long total_load = 0, total_shares;
7091 struct task_group *tg = cfs_rq->tg;
7092
7093 /* Gather total task load of this group across cpus */
7094 for_each_cpu_mask(i, sdspan)
7095 total_load += tg->cfs_rq[i]->load.weight;
7096
0eab9146 7097 /* Nothing to do if this group has no load */
6b2d7700
SV
7098 if (!total_load)
7099 continue;
7100
7101 /*
7102 * tg->shares represents the number of cpu shares the task group
7103 * is eligible to hold on a single cpu. On N cpus, it is
7104 * eligible to hold (N * tg->shares) number of cpu shares.
7105 */
7106 total_shares = tg->shares * cpus_weight(sdspan);
7107
7108 /*
7109 * redistribute total_shares across cpus as per the task load
7110 * distribution.
7111 */
7112 for_each_cpu_mask(i, sdspan) {
7113 unsigned long local_load, local_shares;
7114
7115 local_load = tg->cfs_rq[i]->load.weight;
7116 local_shares = (local_load * total_shares) / total_load;
7117 if (!local_shares)
7118 local_shares = MIN_GROUP_SHARES;
7119 if (local_shares == tg->se[i]->load.weight)
7120 continue;
7121
7122 spin_lock_irq(&cpu_rq(i)->lock);
7123 set_se_shares(tg->se[i], local_shares);
7124 spin_unlock_irq(&cpu_rq(i)->lock);
7125 balanced = 0;
7126 }
7127 }
7128
7129 return balanced;
7130}
7131
7132/*
7133 * How frequently should we rebalance_shares() across cpus?
7134 *
7135 * The more frequently we rebalance shares, the more accurate is the fairness
7136 * of cpu bandwidth distribution between task groups. However higher frequency
7137 * also implies increased scheduling overhead.
7138 *
7139 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7140 * consecutive calls to rebalance_shares() in the same sched domain.
7141 *
7142 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7143 * consecutive calls to rebalance_shares() in the same sched domain.
7144 *
7145 * These settings allows for the appropriate tradeoff between accuracy of
7146 * fairness and the associated overhead.
7147 *
7148 */
7149
7150/* default: 8ms, units: milliseconds */
7151const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7152
7153/* default: 128ms, units: milliseconds */
7154const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7155
7156/* kernel thread that runs rebalance_shares() periodically */
7157static int load_balance_monitor(void *unused)
7158{
7159 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7160 struct sched_param schedparm;
7161 int ret;
7162
7163 /*
7164 * We don't want this thread's execution to be limited by the shares
7165 * assigned to default group (init_task_group). Hence make it run
7166 * as a SCHED_RR RT task at the lowest priority.
7167 */
7168 schedparm.sched_priority = 1;
7169 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7170 if (ret)
7171 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7172 " monitor thread (error = %d) \n", ret);
7173
7174 while (!kthread_should_stop()) {
7175 int i, cpu, balanced = 1;
7176
7177 /* Prevent cpus going down or coming up */
86ef5c9a 7178 get_online_cpus();
6b2d7700
SV
7179 /* lockout changes to doms_cur[] array */
7180 lock_doms_cur();
7181 /*
7182 * Enter a rcu read-side critical section to safely walk rq->sd
7183 * chain on various cpus and to walk task group list
7184 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7185 */
7186 rcu_read_lock();
7187
7188 for (i = 0; i < ndoms_cur; i++) {
7189 cpumask_t cpumap = doms_cur[i];
7190 struct sched_domain *sd = NULL, *sd_prev = NULL;
7191
7192 cpu = first_cpu(cpumap);
7193
7194 /* Find the highest domain at which to balance shares */
7195 for_each_domain(cpu, sd) {
7196 if (!(sd->flags & SD_LOAD_BALANCE))
7197 continue;
7198 sd_prev = sd;
7199 }
7200
7201 sd = sd_prev;
7202 /* sd == NULL? No load balance reqd in this domain */
7203 if (!sd)
7204 continue;
7205
7206 balanced &= rebalance_shares(sd, cpu);
7207 }
7208
7209 rcu_read_unlock();
7210
7211 unlock_doms_cur();
86ef5c9a 7212 put_online_cpus();
6b2d7700
SV
7213
7214 if (!balanced)
7215 timeout = sysctl_sched_min_bal_int_shares;
7216 else if (timeout < sysctl_sched_max_bal_int_shares)
7217 timeout *= 2;
7218
7219 msleep_interruptible(timeout);
7220 }
7221
7222 return 0;
7223}
7224#endif /* CONFIG_SMP */
7225
29f59db3 7226/* allocate runqueue etc for a new task group */
4cf86d77 7227struct task_group *sched_create_group(void)
29f59db3 7228{
4cf86d77 7229 struct task_group *tg;
29f59db3
SV
7230 struct cfs_rq *cfs_rq;
7231 struct sched_entity *se;
9b5b7751 7232 struct rq *rq;
29f59db3
SV
7233 int i;
7234
29f59db3
SV
7235 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7236 if (!tg)
7237 return ERR_PTR(-ENOMEM);
7238
9b5b7751 7239 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7240 if (!tg->cfs_rq)
7241 goto err;
9b5b7751 7242 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
7243 if (!tg->se)
7244 goto err;
7245
7246 for_each_possible_cpu(i) {
9b5b7751 7247 rq = cpu_rq(i);
29f59db3
SV
7248
7249 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7250 cpu_to_node(i));
7251 if (!cfs_rq)
7252 goto err;
7253
7254 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7255 cpu_to_node(i));
7256 if (!se)
7257 goto err;
7258
7259 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7260 memset(se, 0, sizeof(struct sched_entity));
7261
7262 tg->cfs_rq[i] = cfs_rq;
7263 init_cfs_rq(cfs_rq, rq);
7264 cfs_rq->tg = tg;
29f59db3
SV
7265
7266 tg->se[i] = se;
7267 se->cfs_rq = &rq->cfs;
7268 se->my_q = cfs_rq;
7269 se->load.weight = NICE_0_LOAD;
7270 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7271 se->parent = NULL;
7272 }
7273
ec2c507f
SV
7274 tg->shares = NICE_0_LOAD;
7275
7276 lock_task_group_list();
9b5b7751
SV
7277 for_each_possible_cpu(i) {
7278 rq = cpu_rq(i);
7279 cfs_rq = tg->cfs_rq[i];
7280 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7281 }
ec2c507f 7282 unlock_task_group_list();
29f59db3 7283
9b5b7751 7284 return tg;
29f59db3
SV
7285
7286err:
7287 for_each_possible_cpu(i) {
a65914b3 7288 if (tg->cfs_rq)
29f59db3 7289 kfree(tg->cfs_rq[i]);
a65914b3 7290 if (tg->se)
29f59db3
SV
7291 kfree(tg->se[i]);
7292 }
a65914b3
IM
7293 kfree(tg->cfs_rq);
7294 kfree(tg->se);
7295 kfree(tg);
29f59db3
SV
7296
7297 return ERR_PTR(-ENOMEM);
7298}
7299
9b5b7751
SV
7300/* rcu callback to free various structures associated with a task group */
7301static void free_sched_group(struct rcu_head *rhp)
29f59db3 7302{
ae8393e5
SV
7303 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7304 struct cfs_rq *cfs_rq;
29f59db3
SV
7305 struct sched_entity *se;
7306 int i;
7307
29f59db3
SV
7308 /* now it should be safe to free those cfs_rqs */
7309 for_each_possible_cpu(i) {
7310 cfs_rq = tg->cfs_rq[i];
7311 kfree(cfs_rq);
7312
7313 se = tg->se[i];
7314 kfree(se);
7315 }
7316
7317 kfree(tg->cfs_rq);
7318 kfree(tg->se);
7319 kfree(tg);
7320}
7321
9b5b7751 7322/* Destroy runqueue etc associated with a task group */
4cf86d77 7323void sched_destroy_group(struct task_group *tg)
29f59db3 7324{
7bae49d4 7325 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7326 int i;
29f59db3 7327
ec2c507f 7328 lock_task_group_list();
9b5b7751
SV
7329 for_each_possible_cpu(i) {
7330 cfs_rq = tg->cfs_rq[i];
7331 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7332 }
ec2c507f 7333 unlock_task_group_list();
9b5b7751 7334
7bae49d4 7335 BUG_ON(!cfs_rq);
9b5b7751
SV
7336
7337 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7338 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7339}
7340
9b5b7751 7341/* change task's runqueue when it moves between groups.
3a252015
IM
7342 * The caller of this function should have put the task in its new group
7343 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7344 * reflect its new group.
9b5b7751
SV
7345 */
7346void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7347{
7348 int on_rq, running;
7349 unsigned long flags;
7350 struct rq *rq;
7351
7352 rq = task_rq_lock(tsk, &flags);
7353
dae51f56 7354 if (tsk->sched_class != &fair_sched_class) {
ce96b5ac 7355 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7356 goto done;
dae51f56 7357 }
29f59db3
SV
7358
7359 update_rq_clock(rq);
7360
051a1d1a 7361 running = task_current(rq, tsk);
29f59db3
SV
7362 on_rq = tsk->se.on_rq;
7363
83b699ed 7364 if (on_rq) {
29f59db3 7365 dequeue_task(rq, tsk, 0);
83b699ed
SV
7366 if (unlikely(running))
7367 tsk->sched_class->put_prev_task(rq, tsk);
7368 }
29f59db3 7369
ce96b5ac 7370 set_task_cfs_rq(tsk, task_cpu(tsk));
29f59db3 7371
83b699ed
SV
7372 if (on_rq) {
7373 if (unlikely(running))
7374 tsk->sched_class->set_curr_task(rq);
7074badb 7375 enqueue_task(rq, tsk, 0);
83b699ed 7376 }
29f59db3
SV
7377
7378done:
7379 task_rq_unlock(rq, &flags);
7380}
7381
6b2d7700 7382/* rq->lock to be locked by caller */
29f59db3
SV
7383static void set_se_shares(struct sched_entity *se, unsigned long shares)
7384{
7385 struct cfs_rq *cfs_rq = se->cfs_rq;
7386 struct rq *rq = cfs_rq->rq;
7387 int on_rq;
7388
6b2d7700
SV
7389 if (!shares)
7390 shares = MIN_GROUP_SHARES;
29f59db3
SV
7391
7392 on_rq = se->on_rq;
6b2d7700 7393 if (on_rq) {
29f59db3 7394 dequeue_entity(cfs_rq, se, 0);
6b2d7700
SV
7395 dec_cpu_load(rq, se->load.weight);
7396 }
29f59db3
SV
7397
7398 se->load.weight = shares;
7399 se->load.inv_weight = div64_64((1ULL<<32), shares);
7400
6b2d7700 7401 if (on_rq) {
29f59db3 7402 enqueue_entity(cfs_rq, se, 0);
6b2d7700
SV
7403 inc_cpu_load(rq, se->load.weight);
7404 }
29f59db3
SV
7405}
7406
4cf86d77 7407int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7408{
7409 int i;
6b2d7700
SV
7410 struct cfs_rq *cfs_rq;
7411 struct rq *rq;
c61935fd 7412
ec2c507f 7413 lock_task_group_list();
9b5b7751 7414 if (tg->shares == shares)
5cb350ba 7415 goto done;
29f59db3 7416
6b2d7700
SV
7417 if (shares < MIN_GROUP_SHARES)
7418 shares = MIN_GROUP_SHARES;
7419
7420 /*
7421 * Prevent any load balance activity (rebalance_shares,
7422 * load_balance_fair) from referring to this group first,
7423 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7424 */
7425 for_each_possible_cpu(i) {
7426 cfs_rq = tg->cfs_rq[i];
7427 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7428 }
7429
7430 /* wait for any ongoing reference to this group to finish */
7431 synchronize_sched();
7432
7433 /*
7434 * Now we are free to modify the group's share on each cpu
7435 * w/o tripping rebalance_share or load_balance_fair.
7436 */
9b5b7751 7437 tg->shares = shares;
6b2d7700
SV
7438 for_each_possible_cpu(i) {
7439 spin_lock_irq(&cpu_rq(i)->lock);
9b5b7751 7440 set_se_shares(tg->se[i], shares);
6b2d7700
SV
7441 spin_unlock_irq(&cpu_rq(i)->lock);
7442 }
29f59db3 7443
6b2d7700
SV
7444 /*
7445 * Enable load balance activity on this group, by inserting it back on
7446 * each cpu's rq->leaf_cfs_rq_list.
7447 */
7448 for_each_possible_cpu(i) {
7449 rq = cpu_rq(i);
7450 cfs_rq = tg->cfs_rq[i];
7451 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7452 }
5cb350ba 7453done:
ec2c507f 7454 unlock_task_group_list();
9b5b7751 7455 return 0;
29f59db3
SV
7456}
7457
5cb350ba
DG
7458unsigned long sched_group_shares(struct task_group *tg)
7459{
7460 return tg->shares;
7461}
7462
3a252015 7463#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7464
7465#ifdef CONFIG_FAIR_CGROUP_SCHED
7466
7467/* return corresponding task_group object of a cgroup */
2b01dfe3 7468static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7469{
2b01dfe3
PM
7470 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7471 struct task_group, css);
68318b8e
SV
7472}
7473
7474static struct cgroup_subsys_state *
2b01dfe3 7475cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7476{
7477 struct task_group *tg;
7478
2b01dfe3 7479 if (!cgrp->parent) {
68318b8e 7480 /* This is early initialization for the top cgroup */
2b01dfe3 7481 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7482 return &init_task_group.css;
7483 }
7484
7485 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7486 if (cgrp->parent->parent)
68318b8e
SV
7487 return ERR_PTR(-EINVAL);
7488
7489 tg = sched_create_group();
7490 if (IS_ERR(tg))
7491 return ERR_PTR(-ENOMEM);
7492
7493 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7494 tg->css.cgroup = cgrp;
68318b8e
SV
7495
7496 return &tg->css;
7497}
7498
41a2d6cf
IM
7499static void
7500cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 7501{
2b01dfe3 7502 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7503
7504 sched_destroy_group(tg);
7505}
7506
41a2d6cf
IM
7507static int
7508cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7509 struct task_struct *tsk)
68318b8e
SV
7510{
7511 /* We don't support RT-tasks being in separate groups */
7512 if (tsk->sched_class != &fair_sched_class)
7513 return -EINVAL;
7514
7515 return 0;
7516}
7517
7518static void
2b01dfe3 7519cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7520 struct cgroup *old_cont, struct task_struct *tsk)
7521{
7522 sched_move_task(tsk);
7523}
7524
2b01dfe3
PM
7525static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7526 u64 shareval)
68318b8e 7527{
2b01dfe3 7528 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7529}
7530
2b01dfe3 7531static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7532{
2b01dfe3 7533 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7534
7535 return (u64) tg->shares;
7536}
7537
fe5c7cc2
PM
7538static struct cftype cpu_files[] = {
7539 {
7540 .name = "shares",
7541 .read_uint = cpu_shares_read_uint,
7542 .write_uint = cpu_shares_write_uint,
7543 },
68318b8e
SV
7544};
7545
7546static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7547{
fe5c7cc2 7548 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7549}
7550
7551struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7552 .name = "cpu",
7553 .create = cpu_cgroup_create,
7554 .destroy = cpu_cgroup_destroy,
7555 .can_attach = cpu_cgroup_can_attach,
7556 .attach = cpu_cgroup_attach,
7557 .populate = cpu_cgroup_populate,
7558 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7559 .early_init = 1,
7560};
7561
7562#endif /* CONFIG_FAIR_CGROUP_SCHED */
d842de87
SV
7563
7564#ifdef CONFIG_CGROUP_CPUACCT
7565
7566/*
7567 * CPU accounting code for task groups.
7568 *
7569 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7570 * (balbir@in.ibm.com).
7571 */
7572
7573/* track cpu usage of a group of tasks */
7574struct cpuacct {
7575 struct cgroup_subsys_state css;
7576 /* cpuusage holds pointer to a u64-type object on every cpu */
7577 u64 *cpuusage;
7578};
7579
7580struct cgroup_subsys cpuacct_subsys;
7581
7582/* return cpu accounting group corresponding to this container */
7583static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7584{
7585 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7586 struct cpuacct, css);
7587}
7588
7589/* return cpu accounting group to which this task belongs */
7590static inline struct cpuacct *task_ca(struct task_struct *tsk)
7591{
7592 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7593 struct cpuacct, css);
7594}
7595
7596/* create a new cpu accounting group */
7597static struct cgroup_subsys_state *cpuacct_create(
7598 struct cgroup_subsys *ss, struct cgroup *cont)
7599{
7600 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7601
7602 if (!ca)
7603 return ERR_PTR(-ENOMEM);
7604
7605 ca->cpuusage = alloc_percpu(u64);
7606 if (!ca->cpuusage) {
7607 kfree(ca);
7608 return ERR_PTR(-ENOMEM);
7609 }
7610
7611 return &ca->css;
7612}
7613
7614/* destroy an existing cpu accounting group */
41a2d6cf
IM
7615static void
7616cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
d842de87
SV
7617{
7618 struct cpuacct *ca = cgroup_ca(cont);
7619
7620 free_percpu(ca->cpuusage);
7621 kfree(ca);
7622}
7623
7624/* return total cpu usage (in nanoseconds) of a group */
7625static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7626{
7627 struct cpuacct *ca = cgroup_ca(cont);
7628 u64 totalcpuusage = 0;
7629 int i;
7630
7631 for_each_possible_cpu(i) {
7632 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7633
7634 /*
7635 * Take rq->lock to make 64-bit addition safe on 32-bit
7636 * platforms.
7637 */
7638 spin_lock_irq(&cpu_rq(i)->lock);
7639 totalcpuusage += *cpuusage;
7640 spin_unlock_irq(&cpu_rq(i)->lock);
7641 }
7642
7643 return totalcpuusage;
7644}
7645
7646static struct cftype files[] = {
7647 {
7648 .name = "usage",
7649 .read_uint = cpuusage_read,
7650 },
7651};
7652
7653static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7654{
7655 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7656}
7657
7658/*
7659 * charge this task's execution time to its accounting group.
7660 *
7661 * called with rq->lock held.
7662 */
7663static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7664{
7665 struct cpuacct *ca;
7666
7667 if (!cpuacct_subsys.active)
7668 return;
7669
7670 ca = task_ca(tsk);
7671 if (ca) {
7672 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7673
7674 *cpuusage += cputime;
7675 }
7676}
7677
7678struct cgroup_subsys cpuacct_subsys = {
7679 .name = "cpuacct",
7680 .create = cpuacct_create,
7681 .destroy = cpuacct_destroy,
7682 .populate = cpuacct_populate,
7683 .subsys_id = cpuacct_subsys_id,
7684};
7685#endif /* CONFIG_CGROUP_CPUACCT */