[PATCH] sched: consolidate sbe sbf
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
30#include <linux/completion.h>
31#include <linux/kernel_stat.h>
32#include <linux/security.h>
33#include <linux/notifier.h>
34#include <linux/profile.h>
35#include <linux/suspend.h>
36#include <linux/blkdev.h>
37#include <linux/delay.h>
38#include <linux/smp.h>
39#include <linux/threads.h>
40#include <linux/timer.h>
41#include <linux/rcupdate.h>
42#include <linux/cpu.h>
43#include <linux/cpuset.h>
44#include <linux/percpu.h>
45#include <linux/kthread.h>
46#include <linux/seq_file.h>
47#include <linux/syscalls.h>
48#include <linux/times.h>
49#include <linux/acct.h>
50#include <asm/tlb.h>
51
52#include <asm/unistd.h>
53
54/*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63/*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72/*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78/*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86#define DEF_TIMESLICE (100 * HZ / 1000)
87#define ON_RUNQUEUE_WEIGHT 30
88#define CHILD_PENALTY 95
89#define PARENT_PENALTY 100
90#define EXIT_WEIGHT 3
91#define PRIO_BONUS_RATIO 25
92#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93#define INTERACTIVE_DELTA 2
94#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95#define STARVATION_LIMIT (MAX_SLEEP_AVG)
96#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98/*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126#define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130#define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132#ifdef CONFIG_SMP
133#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136#else
137#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139#endif
140
141#define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144#define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147#define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150#define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154#define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157/*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166#define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
48c08d3f 169static unsigned int task_timeslice(task_t *p)
1da177e4
LT
170{
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175}
176#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179/*
180 * These are the runqueue data structures:
181 */
182
183#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185typedef struct runqueue runqueue_t;
186
187struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191};
192
193/*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208#ifdef CONFIG_SMP
7897986b 209 unsigned long cpu_load[3];
1da177e4
LT
210#endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229#ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238#endif
239
240#ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258#endif
259};
260
261static DEFINE_PER_CPU(struct runqueue, runqueues);
262
674311d5
NP
263/*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See update_sched_domains: synchronize_kernel for details.
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
1da177e4 270#define for_each_domain(cpu, domain) \
674311d5 271for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
272
273#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274#define this_rq() (&__get_cpu_var(runqueues))
275#define task_rq(p) cpu_rq(task_cpu(p))
276#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
1da177e4 278#ifndef prepare_arch_switch
4866cde0
NP
279# define prepare_arch_switch(next) do { } while (0)
280#endif
281#ifndef finish_arch_switch
282# define finish_arch_switch(prev) do { } while (0)
283#endif
284
285#ifndef __ARCH_WANT_UNLOCKED_CTXSW
286static inline int task_running(runqueue_t *rq, task_t *p)
287{
288 return rq->curr == p;
289}
290
291static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292{
293}
294
295static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296{
297 spin_unlock_irq(&rq->lock);
298}
299
300#else /* __ARCH_WANT_UNLOCKED_CTXSW */
301static inline int task_running(runqueue_t *rq, task_t *p)
302{
303#ifdef CONFIG_SMP
304 return p->oncpu;
305#else
306 return rq->curr == p;
307#endif
308}
309
310static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311{
312#ifdef CONFIG_SMP
313 /*
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
317 */
318 next->oncpu = 1;
319#endif
320#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322#else
323 spin_unlock(&rq->lock);
324#endif
325}
326
327static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328{
329#ifdef CONFIG_SMP
330 /*
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
334 */
335 smp_wmb();
336 prev->oncpu = 0;
337#endif
338#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
1da177e4 340#endif
4866cde0
NP
341}
342#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
343
344/*
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
348 */
349static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
351{
352 struct runqueue *rq;
353
354repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
361 }
362 return rq;
363}
364
365static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
367{
368 spin_unlock_irqrestore(&rq->lock, *flags);
369}
370
371#ifdef CONFIG_SCHEDSTATS
372/*
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
375 */
68767a0a 376#define SCHEDSTAT_VERSION 12
1da177e4
LT
377
378static int show_schedstat(struct seq_file *seq, void *v)
379{
380 int cpu;
381
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386#ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389#endif
390
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401 seq_printf(seq, "\n");
402
403#ifdef CONFIG_SMP
404 /* domain-specific stats */
674311d5 405 preempt_disable();
1da177e4
LT
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
409
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
423 }
68767a0a 424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429 }
674311d5 430 preempt_enable();
1da177e4
LT
431#endif
432 }
433 return 0;
434}
435
436static int schedstat_open(struct inode *inode, struct file *file)
437{
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
442
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
453}
454
455struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460};
461
462# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464#else /* !CONFIG_SCHEDSTATS */
465# define schedstat_inc(rq, field) do { } while (0)
466# define schedstat_add(rq, field, amt) do { } while (0)
467#endif
468
469/*
470 * rq_lock - lock a given runqueue and disable interrupts.
471 */
472static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
474{
475 runqueue_t *rq;
476
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
480
481 return rq;
482}
483
1da177e4
LT
484#ifdef CONFIG_SCHEDSTATS
485/*
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
493 *
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
499 */
500static inline void sched_info_dequeued(task_t *t)
501{
502 t->sched_info.last_queued = 0;
503}
504
505/*
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
509 */
510static inline void sched_info_arrive(task_t *t)
511{
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
514
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
521
522 if (!rq)
523 return;
524
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
527}
528
529/*
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
539 *
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
543 */
544static inline void sched_info_queued(task_t *t)
545{
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
548}
549
550/*
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
553 */
554static inline void sched_info_depart(task_t *t)
555{
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559 t->sched_info.cpu_time += diff;
560
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
563}
564
565/*
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
569 */
570static inline void sched_info_switch(task_t *prev, task_t *next)
571{
572 struct runqueue *rq = task_rq(prev);
573
574 /*
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
578 */
579 if (prev != rq->idle)
580 sched_info_depart(prev);
581
582 if (next != rq->idle)
583 sched_info_arrive(next);
584}
585#else
586#define sched_info_queued(t) do { } while (0)
587#define sched_info_switch(t, next) do { } while (0)
588#endif /* CONFIG_SCHEDSTATS */
589
590/*
591 * Adding/removing a task to/from a priority array:
592 */
593static void dequeue_task(struct task_struct *p, prio_array_t *array)
594{
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
599}
600
601static void enqueue_task(struct task_struct *p, prio_array_t *array)
602{
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
608}
609
610/*
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
613 */
614static void requeue_task(struct task_struct *p, prio_array_t *array)
615{
616 list_move_tail(&p->run_list, array->queue + p->prio);
617}
618
619static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620{
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
625}
626
627/*
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
630 *
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
633 *
634 * We use 25% of the full 0...39 priority range so that:
635 *
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638 *
639 * Both properties are important to certain workloads.
640 */
641static int effective_prio(task_t *p)
642{
643 int bonus, prio;
644
645 if (rt_task(p))
646 return p->prio;
647
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
656}
657
658/*
659 * __activate_task - move a task to the runqueue.
660 */
661static inline void __activate_task(task_t *p, runqueue_t *rq)
662{
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
665}
666
667/*
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
669 */
670static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
674}
675
676static void recalc_task_prio(task_t *p, unsigned long long now)
677{
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
681
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
686
687 if (likely(sleep_time > 0)) {
688 /*
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
693 */
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
699 /*
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
702 */
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705 /*
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
709 */
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
717 }
718 }
719
720 /*
721 * This code gives a bonus to interactive tasks.
722 *
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
727 */
728 p->sleep_avg += sleep_time;
729
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
732 }
733 }
734
735 p->prio = effective_prio(p);
736}
737
738/*
739 * activate_task - move a task to the runqueue and do priority recalculation
740 *
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
743 */
744static void activate_task(task_t *p, runqueue_t *rq, int local)
745{
746 unsigned long long now;
747
748 now = sched_clock();
749#ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
755 }
756#endif
757
758 recalc_task_prio(p, now);
759
760 /*
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
763 */
764 if (!p->activated) {
765 /*
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
771 */
772 if (in_interrupt())
773 p->activated = 2;
774 else {
775 /*
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
778 */
779 p->activated = 1;
780 }
781 }
782 p->timestamp = now;
783
784 __activate_task(p, rq);
785}
786
787/*
788 * deactivate_task - remove a task from the runqueue.
789 */
790static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791{
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
795}
796
797/*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804#ifdef CONFIG_SMP
805static void resched_task(task_t *p)
806{
807 int need_resched, nrpolling;
808
809 assert_spin_locked(&task_rq(p)->lock);
810
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
818}
819#else
820static inline void resched_task(task_t *p)
821{
822 set_tsk_need_resched(p);
823}
824#endif
825
826/**
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
829 */
830inline int task_curr(const task_t *p)
831{
832 return cpu_curr(task_cpu(p)) == p;
833}
834
835#ifdef CONFIG_SMP
1da177e4
LT
836typedef struct {
837 struct list_head list;
1da177e4 838
1da177e4
LT
839 task_t *task;
840 int dest_cpu;
841
1da177e4
LT
842 struct completion done;
843} migration_req_t;
844
845/*
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
848 */
849static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850{
851 runqueue_t *rq = task_rq(p);
852
853 /*
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
856 */
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
860 }
861
862 init_completion(&req->done);
1da177e4
LT
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
867}
868
869/*
870 * wait_task_inactive - wait for a thread to unschedule.
871 *
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
877 */
878void wait_task_inactive(task_t * p)
879{
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
883
884repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
895 }
896 task_rq_unlock(rq, &flags);
897}
898
899/***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
902 *
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
905 *
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
911 */
912void kick_process(task_t *p)
913{
914 int cpu;
915
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
921}
922
923/*
924 * Return a low guess at the load of a migration-source cpu.
925 *
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
928 */
7897986b 929static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
930{
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
933 if (type == 0)
934 return load_now;
1da177e4 935
7897986b 936 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
937}
938
939/*
940 * Return a high guess at the load of a migration-target cpu
941 */
7897986b 942static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
943{
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
946 if (type == 0)
947 return load_now;
1da177e4 948
7897986b 949 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
950}
951
147cbb4b
NP
952/*
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
955 */
956static struct sched_group *
957find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958{
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
968
969 local_group = cpu_isset(this_cpu, group->cpumask);
970 /* XXX: put a cpus allowed check */
971
972 /* Tally up the load of all CPUs in the group */
973 avg_load = 0;
974
975 for_each_cpu_mask(i, group->cpumask) {
976 /* Bias balancing toward cpus of our domain */
977 if (local_group)
978 load = source_load(i, load_idx);
979 else
980 load = target_load(i, load_idx);
981
982 avg_load += load;
983 }
984
985 /* Adjust by relative CPU power of the group */
986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
987
988 if (local_group) {
989 this_load = avg_load;
990 this = group;
991 } else if (avg_load < min_load) {
992 min_load = avg_load;
993 idlest = group;
994 }
995 group = group->next;
996 } while (group != sd->groups);
997
998 if (!idlest || 100*this_load < imbalance*min_load)
999 return NULL;
1000 return idlest;
1001}
1002
1003/*
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1005 */
1006static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1007{
1008 unsigned long load, min_load = ULONG_MAX;
1009 int idlest = -1;
1010 int i;
1011
1012 for_each_cpu_mask(i, group->cpumask) {
1013 load = source_load(i, 0);
1014
1015 if (load < min_load || (load == min_load && i == this_cpu)) {
1016 min_load = load;
1017 idlest = i;
1018 }
1019 }
1020
1021 return idlest;
1022}
1023
476d139c
NP
1024/*
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1027 * SD_BALANCE_EXEC.
1028 *
1029 * Balance, ie. select the least loaded group.
1030 *
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1032 *
1033 * preempt must be disabled.
1034 */
1035static int sched_balance_self(int cpu, int flag)
1036{
1037 struct task_struct *t = current;
1038 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1039
476d139c
NP
1040 for_each_domain(cpu, tmp)
1041 if (tmp->flags & flag)
1042 sd = tmp;
1043
1044 while (sd) {
1045 cpumask_t span;
1046 struct sched_group *group;
1047 int new_cpu;
1048 int weight;
1049
1050 span = sd->span;
1051 group = find_idlest_group(sd, t, cpu);
1052 if (!group)
1053 goto nextlevel;
1054
1055 new_cpu = find_idlest_cpu(group, cpu);
1056 if (new_cpu == -1 || new_cpu == cpu)
1057 goto nextlevel;
1058
1059 /* Now try balancing at a lower domain level */
1060 cpu = new_cpu;
1061nextlevel:
1062 sd = NULL;
1063 weight = cpus_weight(span);
1064 for_each_domain(cpu, tmp) {
1065 if (weight <= cpus_weight(tmp->span))
1066 break;
1067 if (tmp->flags & flag)
1068 sd = tmp;
1069 }
1070 /* while loop will break here if sd == NULL */
1071 }
1072
1073 return cpu;
1074}
1075
1076#endif /* CONFIG_SMP */
1da177e4
LT
1077
1078/*
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1083 *
1084 * Returns the CPU we should wake onto.
1085 */
1086#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087static int wake_idle(int cpu, task_t *p)
1088{
1089 cpumask_t tmp;
1090 struct sched_domain *sd;
1091 int i;
1092
1093 if (idle_cpu(cpu))
1094 return cpu;
1095
1096 for_each_domain(cpu, sd) {
1097 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1098 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1099 for_each_cpu_mask(i, tmp) {
1100 if (idle_cpu(i))
1101 return i;
1102 }
1103 }
e0f364f4
NP
1104 else
1105 break;
1da177e4
LT
1106 }
1107 return cpu;
1108}
1109#else
1110static inline int wake_idle(int cpu, task_t *p)
1111{
1112 return cpu;
1113}
1114#endif
1115
1116/***
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1121 *
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1127 *
1128 * returns failure only if the task is already active.
1129 */
1130static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1131{
1132 int cpu, this_cpu, success = 0;
1133 unsigned long flags;
1134 long old_state;
1135 runqueue_t *rq;
1136#ifdef CONFIG_SMP
1137 unsigned long load, this_load;
7897986b 1138 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1139 int new_cpu;
1140#endif
1141
1142 rq = task_rq_lock(p, &flags);
1143 old_state = p->state;
1144 if (!(old_state & state))
1145 goto out;
1146
1147 if (p->array)
1148 goto out_running;
1149
1150 cpu = task_cpu(p);
1151 this_cpu = smp_processor_id();
1152
1153#ifdef CONFIG_SMP
1154 if (unlikely(task_running(rq, p)))
1155 goto out_activate;
1156
7897986b
NP
1157 new_cpu = cpu;
1158
1da177e4
LT
1159 schedstat_inc(rq, ttwu_cnt);
1160 if (cpu == this_cpu) {
1161 schedstat_inc(rq, ttwu_local);
7897986b
NP
1162 goto out_set_cpu;
1163 }
1164
1165 for_each_domain(this_cpu, sd) {
1166 if (cpu_isset(cpu, sd->span)) {
1167 schedstat_inc(sd, ttwu_wake_remote);
1168 this_sd = sd;
1169 break;
1da177e4
LT
1170 }
1171 }
1da177e4 1172
7897986b 1173 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1174 goto out_set_cpu;
1175
1da177e4 1176 /*
7897986b 1177 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1178 */
7897986b
NP
1179 if (this_sd) {
1180 int idx = this_sd->wake_idx;
1181 unsigned int imbalance;
1da177e4 1182
a3f21bce
NP
1183 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1184
7897986b
NP
1185 load = source_load(cpu, idx);
1186 this_load = target_load(this_cpu, idx);
1da177e4 1187
7897986b
NP
1188 new_cpu = this_cpu; /* Wake to this CPU if we can */
1189
a3f21bce
NP
1190 if (this_sd->flags & SD_WAKE_AFFINE) {
1191 unsigned long tl = this_load;
1da177e4 1192 /*
a3f21bce
NP
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1da177e4 1196 */
a3f21bce
NP
1197 if (sync)
1198 tl -= SCHED_LOAD_SCALE;
1199
1200 if ((tl <= load &&
1201 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1203 /*
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1207 */
1208 schedstat_inc(this_sd, ttwu_move_affine);
1209 goto out_set_cpu;
1210 }
1211 }
1212
1213 /*
1214 * Start passive balancing when half the imbalance_pct
1215 * limit is reached.
1216 */
1217 if (this_sd->flags & SD_WAKE_BALANCE) {
1218 if (imbalance*this_load <= 100*load) {
1219 schedstat_inc(this_sd, ttwu_move_balance);
1220 goto out_set_cpu;
1221 }
1da177e4
LT
1222 }
1223 }
1224
1225 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1226out_set_cpu:
1227 new_cpu = wake_idle(new_cpu, p);
1228 if (new_cpu != cpu) {
1229 set_task_cpu(p, new_cpu);
1230 task_rq_unlock(rq, &flags);
1231 /* might preempt at this point */
1232 rq = task_rq_lock(p, &flags);
1233 old_state = p->state;
1234 if (!(old_state & state))
1235 goto out;
1236 if (p->array)
1237 goto out_running;
1238
1239 this_cpu = smp_processor_id();
1240 cpu = task_cpu(p);
1241 }
1242
1243out_activate:
1244#endif /* CONFIG_SMP */
1245 if (old_state == TASK_UNINTERRUPTIBLE) {
1246 rq->nr_uninterruptible--;
1247 /*
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1250 */
1251 p->activated = -1;
1252 }
1253
1254 /*
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1261 */
1262 activate_task(p, rq, cpu == this_cpu);
1263 if (!sync || cpu != this_cpu) {
1264 if (TASK_PREEMPTS_CURR(p, rq))
1265 resched_task(rq->curr);
1266 }
1267 success = 1;
1268
1269out_running:
1270 p->state = TASK_RUNNING;
1271out:
1272 task_rq_unlock(rq, &flags);
1273
1274 return success;
1275}
1276
1277int fastcall wake_up_process(task_t * p)
1278{
1279 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1281}
1282
1283EXPORT_SYMBOL(wake_up_process);
1284
1285int fastcall wake_up_state(task_t *p, unsigned int state)
1286{
1287 return try_to_wake_up(p, state, 0);
1288}
1289
1da177e4
LT
1290/*
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1293 */
476d139c 1294void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1295{
476d139c
NP
1296 int cpu = get_cpu();
1297
1298#ifdef CONFIG_SMP
1299 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1300#endif
1301 set_task_cpu(p, cpu);
1302
1da177e4
LT
1303 /*
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1308 */
1309 p->state = TASK_RUNNING;
1310 INIT_LIST_HEAD(&p->run_list);
1311 p->array = NULL;
1da177e4
LT
1312#ifdef CONFIG_SCHEDSTATS
1313 memset(&p->sched_info, 0, sizeof(p->sched_info));
1314#endif
4866cde0
NP
1315#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1316 p->oncpu = 0;
1317#endif
1da177e4 1318#ifdef CONFIG_PREEMPT
4866cde0 1319 /* Want to start with kernel preemption disabled. */
1da177e4
LT
1320 p->thread_info->preempt_count = 1;
1321#endif
1322 /*
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1326 */
1327 local_irq_disable();
1328 p->time_slice = (current->time_slice + 1) >> 1;
1329 /*
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1332 */
1333 p->first_time_slice = 1;
1334 current->time_slice >>= 1;
1335 p->timestamp = sched_clock();
1336 if (unlikely(!current->time_slice)) {
1337 /*
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1341 */
1342 current->time_slice = 1;
1da177e4 1343 scheduler_tick();
476d139c
NP
1344 }
1345 local_irq_enable();
1346 put_cpu();
1da177e4
LT
1347}
1348
1349/*
1350 * wake_up_new_task - wake up a newly created task for the first time.
1351 *
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1355 */
1356void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1357{
1358 unsigned long flags;
1359 int this_cpu, cpu;
1360 runqueue_t *rq, *this_rq;
1361
1362 rq = task_rq_lock(p, &flags);
147cbb4b 1363 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1364 this_cpu = smp_processor_id();
147cbb4b 1365 cpu = task_cpu(p);
1da177e4 1366
1da177e4
LT
1367 /*
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1372 */
1373 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1375
1376 p->prio = effective_prio(p);
1377
1378 if (likely(cpu == this_cpu)) {
1379 if (!(clone_flags & CLONE_VM)) {
1380 /*
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1384 */
1385 if (unlikely(!current->array))
1386 __activate_task(p, rq);
1387 else {
1388 p->prio = current->prio;
1389 list_add_tail(&p->run_list, &current->run_list);
1390 p->array = current->array;
1391 p->array->nr_active++;
1392 rq->nr_running++;
1393 }
1394 set_need_resched();
1395 } else
1396 /* Run child last */
1397 __activate_task(p, rq);
1398 /*
1399 * We skip the following code due to cpu == this_cpu
1400 *
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1403 */
1404 this_rq = rq;
1405 } else {
1406 this_rq = cpu_rq(this_cpu);
1407
1408 /*
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1411 */
1412 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413 + rq->timestamp_last_tick;
1414 __activate_task(p, rq);
1415 if (TASK_PREEMPTS_CURR(p, rq))
1416 resched_task(rq->curr);
1417
1418 /*
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1421 */
1422 task_rq_unlock(rq, &flags);
1423 this_rq = task_rq_lock(current, &flags);
1424 }
1425 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427 task_rq_unlock(this_rq, &flags);
1428}
1429
1430/*
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1434 *
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1438 */
1439void fastcall sched_exit(task_t * p)
1440{
1441 unsigned long flags;
1442 runqueue_t *rq;
1443
1444 /*
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1447 */
1448 rq = task_rq_lock(p->parent, &flags);
1449 if (p->first_time_slice) {
1450 p->parent->time_slice += p->time_slice;
1451 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452 p->parent->time_slice = task_timeslice(p);
1453 }
1454 if (p->sleep_avg < p->parent->sleep_avg)
1455 p->parent->sleep_avg = p->parent->sleep_avg /
1456 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1457 (EXIT_WEIGHT + 1);
1458 task_rq_unlock(rq, &flags);
1459}
1460
4866cde0
NP
1461/**
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1465 *
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1468 * switch.
1469 *
1470 * prepare_task_switch sets up locking and calls architecture specific
1471 * hooks.
1472 */
1473static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1474{
1475 prepare_lock_switch(rq, next);
1476 prepare_arch_switch(next);
1477}
1478
1da177e4
LT
1479/**
1480 * finish_task_switch - clean up after a task-switch
1481 * @prev: the thread we just switched away from.
1482 *
4866cde0
NP
1483 * finish_task_switch must be called after the context switch, paired
1484 * with a prepare_task_switch call before the context switch.
1485 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1486 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1487 *
1488 * Note that we may have delayed dropping an mm in context_switch(). If
1489 * so, we finish that here outside of the runqueue lock. (Doing it
1490 * with the lock held can cause deadlocks; see schedule() for
1491 * details.)
1492 */
4866cde0 1493static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1494 __releases(rq->lock)
1495{
1da177e4
LT
1496 struct mm_struct *mm = rq->prev_mm;
1497 unsigned long prev_task_flags;
1498
1499 rq->prev_mm = NULL;
1500
1501 /*
1502 * A task struct has one reference for the use as "current".
1503 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1504 * calls schedule one last time. The schedule call will never return,
1505 * and the scheduled task must drop that reference.
1506 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1507 * still held, otherwise prev could be scheduled on another cpu, die
1508 * there before we look at prev->state, and then the reference would
1509 * be dropped twice.
1510 * Manfred Spraul <manfred@colorfullife.com>
1511 */
1512 prev_task_flags = prev->flags;
4866cde0
NP
1513 finish_arch_switch(prev);
1514 finish_lock_switch(rq, prev);
1da177e4
LT
1515 if (mm)
1516 mmdrop(mm);
1517 if (unlikely(prev_task_flags & PF_DEAD))
1518 put_task_struct(prev);
1519}
1520
1521/**
1522 * schedule_tail - first thing a freshly forked thread must call.
1523 * @prev: the thread we just switched away from.
1524 */
1525asmlinkage void schedule_tail(task_t *prev)
1526 __releases(rq->lock)
1527{
4866cde0
NP
1528 runqueue_t *rq = this_rq();
1529 finish_task_switch(rq, prev);
1530#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1531 /* In this case, finish_task_switch does not reenable preemption */
1532 preempt_enable();
1533#endif
1da177e4
LT
1534 if (current->set_child_tid)
1535 put_user(current->pid, current->set_child_tid);
1536}
1537
1538/*
1539 * context_switch - switch to the new MM and the new
1540 * thread's register state.
1541 */
1542static inline
1543task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1544{
1545 struct mm_struct *mm = next->mm;
1546 struct mm_struct *oldmm = prev->active_mm;
1547
1548 if (unlikely(!mm)) {
1549 next->active_mm = oldmm;
1550 atomic_inc(&oldmm->mm_count);
1551 enter_lazy_tlb(oldmm, next);
1552 } else
1553 switch_mm(oldmm, mm, next);
1554
1555 if (unlikely(!prev->mm)) {
1556 prev->active_mm = NULL;
1557 WARN_ON(rq->prev_mm);
1558 rq->prev_mm = oldmm;
1559 }
1560
1561 /* Here we just switch the register state and the stack. */
1562 switch_to(prev, next, prev);
1563
1564 return prev;
1565}
1566
1567/*
1568 * nr_running, nr_uninterruptible and nr_context_switches:
1569 *
1570 * externally visible scheduler statistics: current number of runnable
1571 * threads, current number of uninterruptible-sleeping threads, total
1572 * number of context switches performed since bootup.
1573 */
1574unsigned long nr_running(void)
1575{
1576 unsigned long i, sum = 0;
1577
1578 for_each_online_cpu(i)
1579 sum += cpu_rq(i)->nr_running;
1580
1581 return sum;
1582}
1583
1584unsigned long nr_uninterruptible(void)
1585{
1586 unsigned long i, sum = 0;
1587
1588 for_each_cpu(i)
1589 sum += cpu_rq(i)->nr_uninterruptible;
1590
1591 /*
1592 * Since we read the counters lockless, it might be slightly
1593 * inaccurate. Do not allow it to go below zero though:
1594 */
1595 if (unlikely((long)sum < 0))
1596 sum = 0;
1597
1598 return sum;
1599}
1600
1601unsigned long long nr_context_switches(void)
1602{
1603 unsigned long long i, sum = 0;
1604
1605 for_each_cpu(i)
1606 sum += cpu_rq(i)->nr_switches;
1607
1608 return sum;
1609}
1610
1611unsigned long nr_iowait(void)
1612{
1613 unsigned long i, sum = 0;
1614
1615 for_each_cpu(i)
1616 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1617
1618 return sum;
1619}
1620
1621#ifdef CONFIG_SMP
1622
1623/*
1624 * double_rq_lock - safely lock two runqueues
1625 *
1626 * Note this does not disable interrupts like task_rq_lock,
1627 * you need to do so manually before calling.
1628 */
1629static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1630 __acquires(rq1->lock)
1631 __acquires(rq2->lock)
1632{
1633 if (rq1 == rq2) {
1634 spin_lock(&rq1->lock);
1635 __acquire(rq2->lock); /* Fake it out ;) */
1636 } else {
1637 if (rq1 < rq2) {
1638 spin_lock(&rq1->lock);
1639 spin_lock(&rq2->lock);
1640 } else {
1641 spin_lock(&rq2->lock);
1642 spin_lock(&rq1->lock);
1643 }
1644 }
1645}
1646
1647/*
1648 * double_rq_unlock - safely unlock two runqueues
1649 *
1650 * Note this does not restore interrupts like task_rq_unlock,
1651 * you need to do so manually after calling.
1652 */
1653static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1654 __releases(rq1->lock)
1655 __releases(rq2->lock)
1656{
1657 spin_unlock(&rq1->lock);
1658 if (rq1 != rq2)
1659 spin_unlock(&rq2->lock);
1660 else
1661 __release(rq2->lock);
1662}
1663
1664/*
1665 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1666 */
1667static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1668 __releases(this_rq->lock)
1669 __acquires(busiest->lock)
1670 __acquires(this_rq->lock)
1671{
1672 if (unlikely(!spin_trylock(&busiest->lock))) {
1673 if (busiest < this_rq) {
1674 spin_unlock(&this_rq->lock);
1675 spin_lock(&busiest->lock);
1676 spin_lock(&this_rq->lock);
1677 } else
1678 spin_lock(&busiest->lock);
1679 }
1680}
1681
1da177e4
LT
1682/*
1683 * If dest_cpu is allowed for this process, migrate the task to it.
1684 * This is accomplished by forcing the cpu_allowed mask to only
1685 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1686 * the cpu_allowed mask is restored.
1687 */
1688static void sched_migrate_task(task_t *p, int dest_cpu)
1689{
1690 migration_req_t req;
1691 runqueue_t *rq;
1692 unsigned long flags;
1693
1694 rq = task_rq_lock(p, &flags);
1695 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1696 || unlikely(cpu_is_offline(dest_cpu)))
1697 goto out;
1698
1699 /* force the process onto the specified CPU */
1700 if (migrate_task(p, dest_cpu, &req)) {
1701 /* Need to wait for migration thread (might exit: take ref). */
1702 struct task_struct *mt = rq->migration_thread;
1703 get_task_struct(mt);
1704 task_rq_unlock(rq, &flags);
1705 wake_up_process(mt);
1706 put_task_struct(mt);
1707 wait_for_completion(&req.done);
1708 return;
1709 }
1710out:
1711 task_rq_unlock(rq, &flags);
1712}
1713
1714/*
476d139c
NP
1715 * sched_exec - execve() is a valuable balancing opportunity, because at
1716 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1717 */
1718void sched_exec(void)
1719{
1da177e4 1720 int new_cpu, this_cpu = get_cpu();
476d139c 1721 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1722 put_cpu();
476d139c
NP
1723 if (new_cpu != this_cpu)
1724 sched_migrate_task(current, new_cpu);
1da177e4
LT
1725}
1726
1727/*
1728 * pull_task - move a task from a remote runqueue to the local runqueue.
1729 * Both runqueues must be locked.
1730 */
1731static inline
1732void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1733 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1734{
1735 dequeue_task(p, src_array);
1736 src_rq->nr_running--;
1737 set_task_cpu(p, this_cpu);
1738 this_rq->nr_running++;
1739 enqueue_task(p, this_array);
1740 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1741 + this_rq->timestamp_last_tick;
1742 /*
1743 * Note that idle threads have a prio of MAX_PRIO, for this test
1744 * to be always true for them.
1745 */
1746 if (TASK_PREEMPTS_CURR(p, this_rq))
1747 resched_task(this_rq->curr);
1748}
1749
1750/*
1751 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1752 */
1753static inline
1754int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
81026794 1755 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1da177e4
LT
1756{
1757 /*
1758 * We do not migrate tasks that are:
1759 * 1) running (obviously), or
1760 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1761 * 3) are cache-hot on their current CPU.
1762 */
1da177e4
LT
1763 if (!cpu_isset(this_cpu, p->cpus_allowed))
1764 return 0;
81026794
NP
1765 *all_pinned = 0;
1766
1767 if (task_running(rq, p))
1768 return 0;
1da177e4
LT
1769
1770 /*
1771 * Aggressive migration if:
cafb20c1 1772 * 1) task is cache cold, or
1da177e4
LT
1773 * 2) too many balance attempts have failed.
1774 */
1775
cafb20c1 1776 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1777 return 1;
1778
1779 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1780 return 0;
1da177e4
LT
1781 return 1;
1782}
1783
1784/*
1785 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1786 * as part of a balancing operation within "domain". Returns the number of
1787 * tasks moved.
1788 *
1789 * Called with both runqueues locked.
1790 */
1791static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1792 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1793 enum idle_type idle, int *all_pinned)
1da177e4
LT
1794{
1795 prio_array_t *array, *dst_array;
1796 struct list_head *head, *curr;
81026794 1797 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1798 task_t *tmp;
1799
81026794 1800 if (max_nr_move == 0)
1da177e4
LT
1801 goto out;
1802
81026794
NP
1803 pinned = 1;
1804
1da177e4
LT
1805 /*
1806 * We first consider expired tasks. Those will likely not be
1807 * executed in the near future, and they are most likely to
1808 * be cache-cold, thus switching CPUs has the least effect
1809 * on them.
1810 */
1811 if (busiest->expired->nr_active) {
1812 array = busiest->expired;
1813 dst_array = this_rq->expired;
1814 } else {
1815 array = busiest->active;
1816 dst_array = this_rq->active;
1817 }
1818
1819new_array:
1820 /* Start searching at priority 0: */
1821 idx = 0;
1822skip_bitmap:
1823 if (!idx)
1824 idx = sched_find_first_bit(array->bitmap);
1825 else
1826 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1827 if (idx >= MAX_PRIO) {
1828 if (array == busiest->expired && busiest->active->nr_active) {
1829 array = busiest->active;
1830 dst_array = this_rq->active;
1831 goto new_array;
1832 }
1833 goto out;
1834 }
1835
1836 head = array->queue + idx;
1837 curr = head->prev;
1838skip_queue:
1839 tmp = list_entry(curr, task_t, run_list);
1840
1841 curr = curr->prev;
1842
81026794 1843 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1844 if (curr != head)
1845 goto skip_queue;
1846 idx++;
1847 goto skip_bitmap;
1848 }
1849
1850#ifdef CONFIG_SCHEDSTATS
1851 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1852 schedstat_inc(sd, lb_hot_gained[idle]);
1853#endif
1854
1855 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1856 pulled++;
1857
1858 /* We only want to steal up to the prescribed number of tasks. */
1859 if (pulled < max_nr_move) {
1860 if (curr != head)
1861 goto skip_queue;
1862 idx++;
1863 goto skip_bitmap;
1864 }
1865out:
1866 /*
1867 * Right now, this is the only place pull_task() is called,
1868 * so we can safely collect pull_task() stats here rather than
1869 * inside pull_task().
1870 */
1871 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1872
1873 if (all_pinned)
1874 *all_pinned = pinned;
1da177e4
LT
1875 return pulled;
1876}
1877
1878/*
1879 * find_busiest_group finds and returns the busiest CPU group within the
1880 * domain. It calculates and returns the number of tasks which should be
1881 * moved to restore balance via the imbalance parameter.
1882 */
1883static struct sched_group *
1884find_busiest_group(struct sched_domain *sd, int this_cpu,
1885 unsigned long *imbalance, enum idle_type idle)
1886{
1887 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1888 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
7897986b 1889 int load_idx;
1da177e4
LT
1890
1891 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1892 if (idle == NOT_IDLE)
1893 load_idx = sd->busy_idx;
1894 else if (idle == NEWLY_IDLE)
1895 load_idx = sd->newidle_idx;
1896 else
1897 load_idx = sd->idle_idx;
1da177e4
LT
1898
1899 do {
1900 unsigned long load;
1901 int local_group;
1902 int i;
1903
1904 local_group = cpu_isset(this_cpu, group->cpumask);
1905
1906 /* Tally up the load of all CPUs in the group */
1907 avg_load = 0;
1908
1909 for_each_cpu_mask(i, group->cpumask) {
1910 /* Bias balancing toward cpus of our domain */
1911 if (local_group)
7897986b 1912 load = target_load(i, load_idx);
1da177e4 1913 else
7897986b 1914 load = source_load(i, load_idx);
1da177e4
LT
1915
1916 avg_load += load;
1917 }
1918
1919 total_load += avg_load;
1920 total_pwr += group->cpu_power;
1921
1922 /* Adjust by relative CPU power of the group */
1923 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1924
1925 if (local_group) {
1926 this_load = avg_load;
1927 this = group;
1da177e4
LT
1928 } else if (avg_load > max_load) {
1929 max_load = avg_load;
1930 busiest = group;
1931 }
1da177e4
LT
1932 group = group->next;
1933 } while (group != sd->groups);
1934
1935 if (!busiest || this_load >= max_load)
1936 goto out_balanced;
1937
1938 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1939
1940 if (this_load >= avg_load ||
1941 100*max_load <= sd->imbalance_pct*this_load)
1942 goto out_balanced;
1943
1944 /*
1945 * We're trying to get all the cpus to the average_load, so we don't
1946 * want to push ourselves above the average load, nor do we wish to
1947 * reduce the max loaded cpu below the average load, as either of these
1948 * actions would just result in more rebalancing later, and ping-pong
1949 * tasks around. Thus we look for the minimum possible imbalance.
1950 * Negative imbalances (*we* are more loaded than anyone else) will
1951 * be counted as no imbalance for these purposes -- we can't fix that
1952 * by pulling tasks to us. Be careful of negative numbers as they'll
1953 * appear as very large values with unsigned longs.
1954 */
1955 /* How much load to actually move to equalise the imbalance */
1956 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1957 (avg_load - this_load) * this->cpu_power)
1958 / SCHED_LOAD_SCALE;
1959
1960 if (*imbalance < SCHED_LOAD_SCALE) {
1961 unsigned long pwr_now = 0, pwr_move = 0;
1962 unsigned long tmp;
1963
1964 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1965 *imbalance = 1;
1966 return busiest;
1967 }
1968
1969 /*
1970 * OK, we don't have enough imbalance to justify moving tasks,
1971 * however we may be able to increase total CPU power used by
1972 * moving them.
1973 */
1974
1975 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1976 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1977 pwr_now /= SCHED_LOAD_SCALE;
1978
1979 /* Amount of load we'd subtract */
1980 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1981 if (max_load > tmp)
1982 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1983 max_load - tmp);
1984
1985 /* Amount of load we'd add */
1986 if (max_load*busiest->cpu_power <
1987 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1988 tmp = max_load*busiest->cpu_power/this->cpu_power;
1989 else
1990 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1991 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1992 pwr_move /= SCHED_LOAD_SCALE;
1993
1994 /* Move if we gain throughput */
1995 if (pwr_move <= pwr_now)
1996 goto out_balanced;
1997
1998 *imbalance = 1;
1999 return busiest;
2000 }
2001
2002 /* Get rid of the scaling factor, rounding down as we divide */
2003 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2004 return busiest;
2005
2006out_balanced:
1da177e4
LT
2007
2008 *imbalance = 0;
2009 return NULL;
2010}
2011
2012/*
2013 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2014 */
2015static runqueue_t *find_busiest_queue(struct sched_group *group)
2016{
2017 unsigned long load, max_load = 0;
2018 runqueue_t *busiest = NULL;
2019 int i;
2020
2021 for_each_cpu_mask(i, group->cpumask) {
7897986b 2022 load = source_load(i, 0);
1da177e4
LT
2023
2024 if (load > max_load) {
2025 max_load = load;
2026 busiest = cpu_rq(i);
2027 }
2028 }
2029
2030 return busiest;
2031}
2032
2033/*
2034 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2035 * tasks if there is an imbalance.
2036 *
2037 * Called with this_rq unlocked.
2038 */
2039static int load_balance(int this_cpu, runqueue_t *this_rq,
2040 struct sched_domain *sd, enum idle_type idle)
2041{
2042 struct sched_group *group;
2043 runqueue_t *busiest;
2044 unsigned long imbalance;
81026794
NP
2045 int nr_moved, all_pinned;
2046 int active_balance = 0;
1da177e4
LT
2047
2048 spin_lock(&this_rq->lock);
2049 schedstat_inc(sd, lb_cnt[idle]);
2050
2051 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2052 if (!group) {
2053 schedstat_inc(sd, lb_nobusyg[idle]);
2054 goto out_balanced;
2055 }
2056
2057 busiest = find_busiest_queue(group);
2058 if (!busiest) {
2059 schedstat_inc(sd, lb_nobusyq[idle]);
2060 goto out_balanced;
2061 }
2062
db935dbd 2063 BUG_ON(busiest == this_rq);
1da177e4
LT
2064
2065 schedstat_add(sd, lb_imbalance[idle], imbalance);
2066
2067 nr_moved = 0;
2068 if (busiest->nr_running > 1) {
2069 /*
2070 * Attempt to move tasks. If find_busiest_group has found
2071 * an imbalance but busiest->nr_running <= 1, the group is
2072 * still unbalanced. nr_moved simply stays zero, so it is
2073 * correctly treated as an imbalance.
2074 */
2075 double_lock_balance(this_rq, busiest);
2076 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794
NP
2077 imbalance, sd, idle,
2078 &all_pinned);
1da177e4 2079 spin_unlock(&busiest->lock);
81026794
NP
2080
2081 /* All tasks on this runqueue were pinned by CPU affinity */
2082 if (unlikely(all_pinned))
2083 goto out_balanced;
1da177e4 2084 }
81026794 2085
1da177e4
LT
2086 spin_unlock(&this_rq->lock);
2087
2088 if (!nr_moved) {
2089 schedstat_inc(sd, lb_failed[idle]);
2090 sd->nr_balance_failed++;
2091
2092 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2093
2094 spin_lock(&busiest->lock);
2095 if (!busiest->active_balance) {
2096 busiest->active_balance = 1;
2097 busiest->push_cpu = this_cpu;
81026794 2098 active_balance = 1;
1da177e4
LT
2099 }
2100 spin_unlock(&busiest->lock);
81026794 2101 if (active_balance)
1da177e4
LT
2102 wake_up_process(busiest->migration_thread);
2103
2104 /*
2105 * We've kicked active balancing, reset the failure
2106 * counter.
2107 */
39507451 2108 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2109 }
81026794 2110 } else
1da177e4
LT
2111 sd->nr_balance_failed = 0;
2112
81026794 2113 if (likely(!active_balance)) {
1da177e4
LT
2114 /* We were unbalanced, so reset the balancing interval */
2115 sd->balance_interval = sd->min_interval;
81026794
NP
2116 } else {
2117 /*
2118 * If we've begun active balancing, start to back off. This
2119 * case may not be covered by the all_pinned logic if there
2120 * is only 1 task on the busy runqueue (because we don't call
2121 * move_tasks).
2122 */
2123 if (sd->balance_interval < sd->max_interval)
2124 sd->balance_interval *= 2;
1da177e4
LT
2125 }
2126
2127 return nr_moved;
2128
2129out_balanced:
2130 spin_unlock(&this_rq->lock);
2131
2132 schedstat_inc(sd, lb_balanced[idle]);
2133
16cfb1c0 2134 sd->nr_balance_failed = 0;
1da177e4
LT
2135 /* tune up the balancing interval */
2136 if (sd->balance_interval < sd->max_interval)
2137 sd->balance_interval *= 2;
2138
2139 return 0;
2140}
2141
2142/*
2143 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2144 * tasks if there is an imbalance.
2145 *
2146 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2147 * this_rq is locked.
2148 */
2149static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2150 struct sched_domain *sd)
2151{
2152 struct sched_group *group;
2153 runqueue_t *busiest = NULL;
2154 unsigned long imbalance;
2155 int nr_moved = 0;
2156
2157 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2158 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2159 if (!group) {
1da177e4 2160 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2161 goto out_balanced;
1da177e4
LT
2162 }
2163
2164 busiest = find_busiest_queue(group);
db935dbd 2165 if (!busiest) {
1da177e4 2166 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2167 goto out_balanced;
1da177e4
LT
2168 }
2169
db935dbd
NP
2170 BUG_ON(busiest == this_rq);
2171
1da177e4
LT
2172 /* Attempt to move tasks */
2173 double_lock_balance(this_rq, busiest);
2174
2175 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2176 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2177 imbalance, sd, NEWLY_IDLE, NULL);
1da177e4
LT
2178 if (!nr_moved)
2179 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
16cfb1c0
NP
2180 else
2181 sd->nr_balance_failed = 0;
1da177e4
LT
2182
2183 spin_unlock(&busiest->lock);
1da177e4 2184 return nr_moved;
16cfb1c0
NP
2185
2186out_balanced:
2187 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2188 sd->nr_balance_failed = 0;
2189 return 0;
1da177e4
LT
2190}
2191
2192/*
2193 * idle_balance is called by schedule() if this_cpu is about to become
2194 * idle. Attempts to pull tasks from other CPUs.
2195 */
2196static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2197{
2198 struct sched_domain *sd;
2199
2200 for_each_domain(this_cpu, sd) {
2201 if (sd->flags & SD_BALANCE_NEWIDLE) {
2202 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2203 /* We've pulled tasks over so stop searching */
2204 break;
2205 }
2206 }
2207 }
2208}
2209
2210/*
2211 * active_load_balance is run by migration threads. It pushes running tasks
2212 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2213 * running on each physical CPU where possible, and avoids physical /
2214 * logical imbalances.
2215 *
2216 * Called with busiest_rq locked.
2217 */
2218static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2219{
2220 struct sched_domain *sd;
1da177e4 2221 runqueue_t *target_rq;
39507451
NP
2222 int target_cpu = busiest_rq->push_cpu;
2223
2224 if (busiest_rq->nr_running <= 1)
2225 /* no task to move */
2226 return;
2227
2228 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2229
2230 /*
39507451
NP
2231 * This condition is "impossible", if it occurs
2232 * we need to fix it. Originally reported by
2233 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2234 */
39507451 2235 BUG_ON(busiest_rq == target_rq);
1da177e4 2236
39507451
NP
2237 /* move a task from busiest_rq to target_rq */
2238 double_lock_balance(busiest_rq, target_rq);
2239
2240 /* Search for an sd spanning us and the target CPU. */
2241 for_each_domain(target_cpu, sd)
2242 if ((sd->flags & SD_LOAD_BALANCE) &&
2243 cpu_isset(busiest_cpu, sd->span))
2244 break;
2245
2246 if (unlikely(sd == NULL))
2247 goto out;
2248
2249 schedstat_inc(sd, alb_cnt);
2250
2251 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2252 schedstat_inc(sd, alb_pushed);
2253 else
2254 schedstat_inc(sd, alb_failed);
2255out:
2256 spin_unlock(&target_rq->lock);
1da177e4
LT
2257}
2258
2259/*
2260 * rebalance_tick will get called every timer tick, on every CPU.
2261 *
2262 * It checks each scheduling domain to see if it is due to be balanced,
2263 * and initiates a balancing operation if so.
2264 *
2265 * Balancing parameters are set up in arch_init_sched_domains.
2266 */
2267
2268/* Don't have all balancing operations going off at once */
2269#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2270
2271static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2272 enum idle_type idle)
2273{
2274 unsigned long old_load, this_load;
2275 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2276 struct sched_domain *sd;
7897986b 2277 int i;
1da177e4 2278
1da177e4 2279 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2280 /* Update our load */
2281 for (i = 0; i < 3; i++) {
2282 unsigned long new_load = this_load;
2283 int scale = 1 << i;
2284 old_load = this_rq->cpu_load[i];
2285 /*
2286 * Round up the averaging division if load is increasing. This
2287 * prevents us from getting stuck on 9 if the load is 10, for
2288 * example.
2289 */
2290 if (new_load > old_load)
2291 new_load += scale-1;
2292 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2293 }
1da177e4
LT
2294
2295 for_each_domain(this_cpu, sd) {
2296 unsigned long interval;
2297
2298 if (!(sd->flags & SD_LOAD_BALANCE))
2299 continue;
2300
2301 interval = sd->balance_interval;
2302 if (idle != SCHED_IDLE)
2303 interval *= sd->busy_factor;
2304
2305 /* scale ms to jiffies */
2306 interval = msecs_to_jiffies(interval);
2307 if (unlikely(!interval))
2308 interval = 1;
2309
2310 if (j - sd->last_balance >= interval) {
2311 if (load_balance(this_cpu, this_rq, sd, idle)) {
2312 /* We've pulled tasks over so no longer idle */
2313 idle = NOT_IDLE;
2314 }
2315 sd->last_balance += interval;
2316 }
2317 }
2318}
2319#else
2320/*
2321 * on UP we do not need to balance between CPUs:
2322 */
2323static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2324{
2325}
2326static inline void idle_balance(int cpu, runqueue_t *rq)
2327{
2328}
2329#endif
2330
2331static inline int wake_priority_sleeper(runqueue_t *rq)
2332{
2333 int ret = 0;
2334#ifdef CONFIG_SCHED_SMT
2335 spin_lock(&rq->lock);
2336 /*
2337 * If an SMT sibling task has been put to sleep for priority
2338 * reasons reschedule the idle task to see if it can now run.
2339 */
2340 if (rq->nr_running) {
2341 resched_task(rq->idle);
2342 ret = 1;
2343 }
2344 spin_unlock(&rq->lock);
2345#endif
2346 return ret;
2347}
2348
2349DEFINE_PER_CPU(struct kernel_stat, kstat);
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
2352
2353/*
2354 * This is called on clock ticks and on context switches.
2355 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2356 */
2357static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2358 unsigned long long now)
2359{
2360 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2361 p->sched_time += now - last;
2362}
2363
2364/*
2365 * Return current->sched_time plus any more ns on the sched_clock
2366 * that have not yet been banked.
2367 */
2368unsigned long long current_sched_time(const task_t *tsk)
2369{
2370 unsigned long long ns;
2371 unsigned long flags;
2372 local_irq_save(flags);
2373 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2374 ns = tsk->sched_time + (sched_clock() - ns);
2375 local_irq_restore(flags);
2376 return ns;
2377}
2378
2379/*
2380 * We place interactive tasks back into the active array, if possible.
2381 *
2382 * To guarantee that this does not starve expired tasks we ignore the
2383 * interactivity of a task if the first expired task had to wait more
2384 * than a 'reasonable' amount of time. This deadline timeout is
2385 * load-dependent, as the frequency of array switched decreases with
2386 * increasing number of running tasks. We also ignore the interactivity
2387 * if a better static_prio task has expired:
2388 */
2389#define EXPIRED_STARVING(rq) \
2390 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2391 (jiffies - (rq)->expired_timestamp >= \
2392 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2393 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2394
2395/*
2396 * Account user cpu time to a process.
2397 * @p: the process that the cpu time gets accounted to
2398 * @hardirq_offset: the offset to subtract from hardirq_count()
2399 * @cputime: the cpu time spent in user space since the last update
2400 */
2401void account_user_time(struct task_struct *p, cputime_t cputime)
2402{
2403 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2404 cputime64_t tmp;
2405
2406 p->utime = cputime_add(p->utime, cputime);
2407
2408 /* Add user time to cpustat. */
2409 tmp = cputime_to_cputime64(cputime);
2410 if (TASK_NICE(p) > 0)
2411 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2412 else
2413 cpustat->user = cputime64_add(cpustat->user, tmp);
2414}
2415
2416/*
2417 * Account system cpu time to a process.
2418 * @p: the process that the cpu time gets accounted to
2419 * @hardirq_offset: the offset to subtract from hardirq_count()
2420 * @cputime: the cpu time spent in kernel space since the last update
2421 */
2422void account_system_time(struct task_struct *p, int hardirq_offset,
2423 cputime_t cputime)
2424{
2425 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2426 runqueue_t *rq = this_rq();
2427 cputime64_t tmp;
2428
2429 p->stime = cputime_add(p->stime, cputime);
2430
2431 /* Add system time to cpustat. */
2432 tmp = cputime_to_cputime64(cputime);
2433 if (hardirq_count() - hardirq_offset)
2434 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2435 else if (softirq_count())
2436 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2437 else if (p != rq->idle)
2438 cpustat->system = cputime64_add(cpustat->system, tmp);
2439 else if (atomic_read(&rq->nr_iowait) > 0)
2440 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2441 else
2442 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2443 /* Account for system time used */
2444 acct_update_integrals(p);
2445 /* Update rss highwater mark */
2446 update_mem_hiwater(p);
2447}
2448
2449/*
2450 * Account for involuntary wait time.
2451 * @p: the process from which the cpu time has been stolen
2452 * @steal: the cpu time spent in involuntary wait
2453 */
2454void account_steal_time(struct task_struct *p, cputime_t steal)
2455{
2456 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2457 cputime64_t tmp = cputime_to_cputime64(steal);
2458 runqueue_t *rq = this_rq();
2459
2460 if (p == rq->idle) {
2461 p->stime = cputime_add(p->stime, steal);
2462 if (atomic_read(&rq->nr_iowait) > 0)
2463 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2464 else
2465 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2466 } else
2467 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2468}
2469
2470/*
2471 * This function gets called by the timer code, with HZ frequency.
2472 * We call it with interrupts disabled.
2473 *
2474 * It also gets called by the fork code, when changing the parent's
2475 * timeslices.
2476 */
2477void scheduler_tick(void)
2478{
2479 int cpu = smp_processor_id();
2480 runqueue_t *rq = this_rq();
2481 task_t *p = current;
2482 unsigned long long now = sched_clock();
2483
2484 update_cpu_clock(p, rq, now);
2485
2486 rq->timestamp_last_tick = now;
2487
2488 if (p == rq->idle) {
2489 if (wake_priority_sleeper(rq))
2490 goto out;
2491 rebalance_tick(cpu, rq, SCHED_IDLE);
2492 return;
2493 }
2494
2495 /* Task might have expired already, but not scheduled off yet */
2496 if (p->array != rq->active) {
2497 set_tsk_need_resched(p);
2498 goto out;
2499 }
2500 spin_lock(&rq->lock);
2501 /*
2502 * The task was running during this tick - update the
2503 * time slice counter. Note: we do not update a thread's
2504 * priority until it either goes to sleep or uses up its
2505 * timeslice. This makes it possible for interactive tasks
2506 * to use up their timeslices at their highest priority levels.
2507 */
2508 if (rt_task(p)) {
2509 /*
2510 * RR tasks need a special form of timeslice management.
2511 * FIFO tasks have no timeslices.
2512 */
2513 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2514 p->time_slice = task_timeslice(p);
2515 p->first_time_slice = 0;
2516 set_tsk_need_resched(p);
2517
2518 /* put it at the end of the queue: */
2519 requeue_task(p, rq->active);
2520 }
2521 goto out_unlock;
2522 }
2523 if (!--p->time_slice) {
2524 dequeue_task(p, rq->active);
2525 set_tsk_need_resched(p);
2526 p->prio = effective_prio(p);
2527 p->time_slice = task_timeslice(p);
2528 p->first_time_slice = 0;
2529
2530 if (!rq->expired_timestamp)
2531 rq->expired_timestamp = jiffies;
2532 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2533 enqueue_task(p, rq->expired);
2534 if (p->static_prio < rq->best_expired_prio)
2535 rq->best_expired_prio = p->static_prio;
2536 } else
2537 enqueue_task(p, rq->active);
2538 } else {
2539 /*
2540 * Prevent a too long timeslice allowing a task to monopolize
2541 * the CPU. We do this by splitting up the timeslice into
2542 * smaller pieces.
2543 *
2544 * Note: this does not mean the task's timeslices expire or
2545 * get lost in any way, they just might be preempted by
2546 * another task of equal priority. (one with higher
2547 * priority would have preempted this task already.) We
2548 * requeue this task to the end of the list on this priority
2549 * level, which is in essence a round-robin of tasks with
2550 * equal priority.
2551 *
2552 * This only applies to tasks in the interactive
2553 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2554 */
2555 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2556 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2557 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2558 (p->array == rq->active)) {
2559
2560 requeue_task(p, rq->active);
2561 set_tsk_need_resched(p);
2562 }
2563 }
2564out_unlock:
2565 spin_unlock(&rq->lock);
2566out:
2567 rebalance_tick(cpu, rq, NOT_IDLE);
2568}
2569
2570#ifdef CONFIG_SCHED_SMT
2571static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2572{
41c7ce9a 2573 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2574 cpumask_t sibling_map;
2575 int i;
2576
41c7ce9a
NP
2577 for_each_domain(this_cpu, tmp)
2578 if (tmp->flags & SD_SHARE_CPUPOWER)
2579 sd = tmp;
2580
2581 if (!sd)
1da177e4
LT
2582 return;
2583
2584 /*
2585 * Unlock the current runqueue because we have to lock in
2586 * CPU order to avoid deadlocks. Caller knows that we might
2587 * unlock. We keep IRQs disabled.
2588 */
2589 spin_unlock(&this_rq->lock);
2590
2591 sibling_map = sd->span;
2592
2593 for_each_cpu_mask(i, sibling_map)
2594 spin_lock(&cpu_rq(i)->lock);
2595 /*
2596 * We clear this CPU from the mask. This both simplifies the
2597 * inner loop and keps this_rq locked when we exit:
2598 */
2599 cpu_clear(this_cpu, sibling_map);
2600
2601 for_each_cpu_mask(i, sibling_map) {
2602 runqueue_t *smt_rq = cpu_rq(i);
2603
2604 /*
2605 * If an SMT sibling task is sleeping due to priority
2606 * reasons wake it up now.
2607 */
2608 if (smt_rq->curr == smt_rq->idle && smt_rq->nr_running)
2609 resched_task(smt_rq->idle);
2610 }
2611
2612 for_each_cpu_mask(i, sibling_map)
2613 spin_unlock(&cpu_rq(i)->lock);
2614 /*
2615 * We exit with this_cpu's rq still held and IRQs
2616 * still disabled:
2617 */
2618}
2619
2620static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2621{
41c7ce9a 2622 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2623 cpumask_t sibling_map;
2624 prio_array_t *array;
2625 int ret = 0, i;
2626 task_t *p;
2627
41c7ce9a
NP
2628 for_each_domain(this_cpu, tmp)
2629 if (tmp->flags & SD_SHARE_CPUPOWER)
2630 sd = tmp;
2631
2632 if (!sd)
1da177e4
LT
2633 return 0;
2634
2635 /*
2636 * The same locking rules and details apply as for
2637 * wake_sleeping_dependent():
2638 */
2639 spin_unlock(&this_rq->lock);
2640 sibling_map = sd->span;
2641 for_each_cpu_mask(i, sibling_map)
2642 spin_lock(&cpu_rq(i)->lock);
2643 cpu_clear(this_cpu, sibling_map);
2644
2645 /*
2646 * Establish next task to be run - it might have gone away because
2647 * we released the runqueue lock above:
2648 */
2649 if (!this_rq->nr_running)
2650 goto out_unlock;
2651 array = this_rq->active;
2652 if (!array->nr_active)
2653 array = this_rq->expired;
2654 BUG_ON(!array->nr_active);
2655
2656 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2657 task_t, run_list);
2658
2659 for_each_cpu_mask(i, sibling_map) {
2660 runqueue_t *smt_rq = cpu_rq(i);
2661 task_t *smt_curr = smt_rq->curr;
2662
2663 /*
2664 * If a user task with lower static priority than the
2665 * running task on the SMT sibling is trying to schedule,
2666 * delay it till there is proportionately less timeslice
2667 * left of the sibling task to prevent a lower priority
2668 * task from using an unfair proportion of the
2669 * physical cpu's resources. -ck
2670 */
2671 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) / 100) >
2672 task_timeslice(p) || rt_task(smt_curr)) &&
2673 p->mm && smt_curr->mm && !rt_task(p))
2674 ret = 1;
2675
2676 /*
2677 * Reschedule a lower priority task on the SMT sibling,
2678 * or wake it up if it has been put to sleep for priority
2679 * reasons.
2680 */
2681 if ((((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2682 task_timeslice(smt_curr) || rt_task(p)) &&
2683 smt_curr->mm && p->mm && !rt_task(smt_curr)) ||
2684 (smt_curr == smt_rq->idle && smt_rq->nr_running))
2685 resched_task(smt_curr);
2686 }
2687out_unlock:
2688 for_each_cpu_mask(i, sibling_map)
2689 spin_unlock(&cpu_rq(i)->lock);
2690 return ret;
2691}
2692#else
2693static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2694{
2695}
2696
2697static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2698{
2699 return 0;
2700}
2701#endif
2702
2703#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2704
2705void fastcall add_preempt_count(int val)
2706{
2707 /*
2708 * Underflow?
2709 */
be5b4fbd 2710 BUG_ON((preempt_count() < 0));
1da177e4
LT
2711 preempt_count() += val;
2712 /*
2713 * Spinlock count overflowing soon?
2714 */
2715 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2716}
2717EXPORT_SYMBOL(add_preempt_count);
2718
2719void fastcall sub_preempt_count(int val)
2720{
2721 /*
2722 * Underflow?
2723 */
2724 BUG_ON(val > preempt_count());
2725 /*
2726 * Is the spinlock portion underflowing?
2727 */
2728 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2729 preempt_count() -= val;
2730}
2731EXPORT_SYMBOL(sub_preempt_count);
2732
2733#endif
2734
2735/*
2736 * schedule() is the main scheduler function.
2737 */
2738asmlinkage void __sched schedule(void)
2739{
2740 long *switch_count;
2741 task_t *prev, *next;
2742 runqueue_t *rq;
2743 prio_array_t *array;
2744 struct list_head *queue;
2745 unsigned long long now;
2746 unsigned long run_time;
2747 int cpu, idx;
2748
2749 /*
2750 * Test if we are atomic. Since do_exit() needs to call into
2751 * schedule() atomically, we ignore that path for now.
2752 * Otherwise, whine if we are scheduling when we should not be.
2753 */
2754 if (likely(!current->exit_state)) {
2755 if (unlikely(in_atomic())) {
2756 printk(KERN_ERR "scheduling while atomic: "
2757 "%s/0x%08x/%d\n",
2758 current->comm, preempt_count(), current->pid);
2759 dump_stack();
2760 }
2761 }
2762 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2763
2764need_resched:
2765 preempt_disable();
2766 prev = current;
2767 release_kernel_lock(prev);
2768need_resched_nonpreemptible:
2769 rq = this_rq();
2770
2771 /*
2772 * The idle thread is not allowed to schedule!
2773 * Remove this check after it has been exercised a bit.
2774 */
2775 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2776 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2777 dump_stack();
2778 }
2779
2780 schedstat_inc(rq, sched_cnt);
2781 now = sched_clock();
238628ed 2782 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2783 run_time = now - prev->timestamp;
238628ed 2784 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2785 run_time = 0;
2786 } else
2787 run_time = NS_MAX_SLEEP_AVG;
2788
2789 /*
2790 * Tasks charged proportionately less run_time at high sleep_avg to
2791 * delay them losing their interactive status
2792 */
2793 run_time /= (CURRENT_BONUS(prev) ? : 1);
2794
2795 spin_lock_irq(&rq->lock);
2796
2797 if (unlikely(prev->flags & PF_DEAD))
2798 prev->state = EXIT_DEAD;
2799
2800 switch_count = &prev->nivcsw;
2801 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2802 switch_count = &prev->nvcsw;
2803 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2804 unlikely(signal_pending(prev))))
2805 prev->state = TASK_RUNNING;
2806 else {
2807 if (prev->state == TASK_UNINTERRUPTIBLE)
2808 rq->nr_uninterruptible++;
2809 deactivate_task(prev, rq);
2810 }
2811 }
2812
2813 cpu = smp_processor_id();
2814 if (unlikely(!rq->nr_running)) {
2815go_idle:
2816 idle_balance(cpu, rq);
2817 if (!rq->nr_running) {
2818 next = rq->idle;
2819 rq->expired_timestamp = 0;
2820 wake_sleeping_dependent(cpu, rq);
2821 /*
2822 * wake_sleeping_dependent() might have released
2823 * the runqueue, so break out if we got new
2824 * tasks meanwhile:
2825 */
2826 if (!rq->nr_running)
2827 goto switch_tasks;
2828 }
2829 } else {
2830 if (dependent_sleeper(cpu, rq)) {
2831 next = rq->idle;
2832 goto switch_tasks;
2833 }
2834 /*
2835 * dependent_sleeper() releases and reacquires the runqueue
2836 * lock, hence go into the idle loop if the rq went
2837 * empty meanwhile:
2838 */
2839 if (unlikely(!rq->nr_running))
2840 goto go_idle;
2841 }
2842
2843 array = rq->active;
2844 if (unlikely(!array->nr_active)) {
2845 /*
2846 * Switch the active and expired arrays.
2847 */
2848 schedstat_inc(rq, sched_switch);
2849 rq->active = rq->expired;
2850 rq->expired = array;
2851 array = rq->active;
2852 rq->expired_timestamp = 0;
2853 rq->best_expired_prio = MAX_PRIO;
2854 }
2855
2856 idx = sched_find_first_bit(array->bitmap);
2857 queue = array->queue + idx;
2858 next = list_entry(queue->next, task_t, run_list);
2859
2860 if (!rt_task(next) && next->activated > 0) {
2861 unsigned long long delta = now - next->timestamp;
238628ed 2862 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
2863 delta = 0;
2864
2865 if (next->activated == 1)
2866 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2867
2868 array = next->array;
2869 dequeue_task(next, array);
2870 recalc_task_prio(next, next->timestamp + delta);
2871 enqueue_task(next, array);
2872 }
2873 next->activated = 0;
2874switch_tasks:
2875 if (next == rq->idle)
2876 schedstat_inc(rq, sched_goidle);
2877 prefetch(next);
2878 clear_tsk_need_resched(prev);
2879 rcu_qsctr_inc(task_cpu(prev));
2880
2881 update_cpu_clock(prev, rq, now);
2882
2883 prev->sleep_avg -= run_time;
2884 if ((long)prev->sleep_avg <= 0)
2885 prev->sleep_avg = 0;
2886 prev->timestamp = prev->last_ran = now;
2887
2888 sched_info_switch(prev, next);
2889 if (likely(prev != next)) {
2890 next->timestamp = now;
2891 rq->nr_switches++;
2892 rq->curr = next;
2893 ++*switch_count;
2894
4866cde0 2895 prepare_task_switch(rq, next);
1da177e4
LT
2896 prev = context_switch(rq, prev, next);
2897 barrier();
4866cde0
NP
2898 /*
2899 * this_rq must be evaluated again because prev may have moved
2900 * CPUs since it called schedule(), thus the 'rq' on its stack
2901 * frame will be invalid.
2902 */
2903 finish_task_switch(this_rq(), prev);
1da177e4
LT
2904 } else
2905 spin_unlock_irq(&rq->lock);
2906
2907 prev = current;
2908 if (unlikely(reacquire_kernel_lock(prev) < 0))
2909 goto need_resched_nonpreemptible;
2910 preempt_enable_no_resched();
2911 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2912 goto need_resched;
2913}
2914
2915EXPORT_SYMBOL(schedule);
2916
2917#ifdef CONFIG_PREEMPT
2918/*
2919 * this is is the entry point to schedule() from in-kernel preemption
2920 * off of preempt_enable. Kernel preemptions off return from interrupt
2921 * occur there and call schedule directly.
2922 */
2923asmlinkage void __sched preempt_schedule(void)
2924{
2925 struct thread_info *ti = current_thread_info();
2926#ifdef CONFIG_PREEMPT_BKL
2927 struct task_struct *task = current;
2928 int saved_lock_depth;
2929#endif
2930 /*
2931 * If there is a non-zero preempt_count or interrupts are disabled,
2932 * we do not want to preempt the current task. Just return..
2933 */
2934 if (unlikely(ti->preempt_count || irqs_disabled()))
2935 return;
2936
2937need_resched:
2938 add_preempt_count(PREEMPT_ACTIVE);
2939 /*
2940 * We keep the big kernel semaphore locked, but we
2941 * clear ->lock_depth so that schedule() doesnt
2942 * auto-release the semaphore:
2943 */
2944#ifdef CONFIG_PREEMPT_BKL
2945 saved_lock_depth = task->lock_depth;
2946 task->lock_depth = -1;
2947#endif
2948 schedule();
2949#ifdef CONFIG_PREEMPT_BKL
2950 task->lock_depth = saved_lock_depth;
2951#endif
2952 sub_preempt_count(PREEMPT_ACTIVE);
2953
2954 /* we could miss a preemption opportunity between schedule and now */
2955 barrier();
2956 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2957 goto need_resched;
2958}
2959
2960EXPORT_SYMBOL(preempt_schedule);
2961
2962/*
2963 * this is is the entry point to schedule() from kernel preemption
2964 * off of irq context.
2965 * Note, that this is called and return with irqs disabled. This will
2966 * protect us against recursive calling from irq.
2967 */
2968asmlinkage void __sched preempt_schedule_irq(void)
2969{
2970 struct thread_info *ti = current_thread_info();
2971#ifdef CONFIG_PREEMPT_BKL
2972 struct task_struct *task = current;
2973 int saved_lock_depth;
2974#endif
2975 /* Catch callers which need to be fixed*/
2976 BUG_ON(ti->preempt_count || !irqs_disabled());
2977
2978need_resched:
2979 add_preempt_count(PREEMPT_ACTIVE);
2980 /*
2981 * We keep the big kernel semaphore locked, but we
2982 * clear ->lock_depth so that schedule() doesnt
2983 * auto-release the semaphore:
2984 */
2985#ifdef CONFIG_PREEMPT_BKL
2986 saved_lock_depth = task->lock_depth;
2987 task->lock_depth = -1;
2988#endif
2989 local_irq_enable();
2990 schedule();
2991 local_irq_disable();
2992#ifdef CONFIG_PREEMPT_BKL
2993 task->lock_depth = saved_lock_depth;
2994#endif
2995 sub_preempt_count(PREEMPT_ACTIVE);
2996
2997 /* we could miss a preemption opportunity between schedule and now */
2998 barrier();
2999 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3000 goto need_resched;
3001}
3002
3003#endif /* CONFIG_PREEMPT */
3004
3005int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3006{
c43dc2fd 3007 task_t *p = curr->private;
1da177e4
LT
3008 return try_to_wake_up(p, mode, sync);
3009}
3010
3011EXPORT_SYMBOL(default_wake_function);
3012
3013/*
3014 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3015 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3016 * number) then we wake all the non-exclusive tasks and one exclusive task.
3017 *
3018 * There are circumstances in which we can try to wake a task which has already
3019 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3020 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3021 */
3022static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3023 int nr_exclusive, int sync, void *key)
3024{
3025 struct list_head *tmp, *next;
3026
3027 list_for_each_safe(tmp, next, &q->task_list) {
3028 wait_queue_t *curr;
3029 unsigned flags;
3030 curr = list_entry(tmp, wait_queue_t, task_list);
3031 flags = curr->flags;
3032 if (curr->func(curr, mode, sync, key) &&
3033 (flags & WQ_FLAG_EXCLUSIVE) &&
3034 !--nr_exclusive)
3035 break;
3036 }
3037}
3038
3039/**
3040 * __wake_up - wake up threads blocked on a waitqueue.
3041 * @q: the waitqueue
3042 * @mode: which threads
3043 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3044 * @key: is directly passed to the wakeup function
1da177e4
LT
3045 */
3046void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3047 int nr_exclusive, void *key)
3048{
3049 unsigned long flags;
3050
3051 spin_lock_irqsave(&q->lock, flags);
3052 __wake_up_common(q, mode, nr_exclusive, 0, key);
3053 spin_unlock_irqrestore(&q->lock, flags);
3054}
3055
3056EXPORT_SYMBOL(__wake_up);
3057
3058/*
3059 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3060 */
3061void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3062{
3063 __wake_up_common(q, mode, 1, 0, NULL);
3064}
3065
3066/**
67be2dd1 3067 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3068 * @q: the waitqueue
3069 * @mode: which threads
3070 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3071 *
3072 * The sync wakeup differs that the waker knows that it will schedule
3073 * away soon, so while the target thread will be woken up, it will not
3074 * be migrated to another CPU - ie. the two threads are 'synchronized'
3075 * with each other. This can prevent needless bouncing between CPUs.
3076 *
3077 * On UP it can prevent extra preemption.
3078 */
3079void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3080{
3081 unsigned long flags;
3082 int sync = 1;
3083
3084 if (unlikely(!q))
3085 return;
3086
3087 if (unlikely(!nr_exclusive))
3088 sync = 0;
3089
3090 spin_lock_irqsave(&q->lock, flags);
3091 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3092 spin_unlock_irqrestore(&q->lock, flags);
3093}
3094EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3095
3096void fastcall complete(struct completion *x)
3097{
3098 unsigned long flags;
3099
3100 spin_lock_irqsave(&x->wait.lock, flags);
3101 x->done++;
3102 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3103 1, 0, NULL);
3104 spin_unlock_irqrestore(&x->wait.lock, flags);
3105}
3106EXPORT_SYMBOL(complete);
3107
3108void fastcall complete_all(struct completion *x)
3109{
3110 unsigned long flags;
3111
3112 spin_lock_irqsave(&x->wait.lock, flags);
3113 x->done += UINT_MAX/2;
3114 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3115 0, 0, NULL);
3116 spin_unlock_irqrestore(&x->wait.lock, flags);
3117}
3118EXPORT_SYMBOL(complete_all);
3119
3120void fastcall __sched wait_for_completion(struct completion *x)
3121{
3122 might_sleep();
3123 spin_lock_irq(&x->wait.lock);
3124 if (!x->done) {
3125 DECLARE_WAITQUEUE(wait, current);
3126
3127 wait.flags |= WQ_FLAG_EXCLUSIVE;
3128 __add_wait_queue_tail(&x->wait, &wait);
3129 do {
3130 __set_current_state(TASK_UNINTERRUPTIBLE);
3131 spin_unlock_irq(&x->wait.lock);
3132 schedule();
3133 spin_lock_irq(&x->wait.lock);
3134 } while (!x->done);
3135 __remove_wait_queue(&x->wait, &wait);
3136 }
3137 x->done--;
3138 spin_unlock_irq(&x->wait.lock);
3139}
3140EXPORT_SYMBOL(wait_for_completion);
3141
3142unsigned long fastcall __sched
3143wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3144{
3145 might_sleep();
3146
3147 spin_lock_irq(&x->wait.lock);
3148 if (!x->done) {
3149 DECLARE_WAITQUEUE(wait, current);
3150
3151 wait.flags |= WQ_FLAG_EXCLUSIVE;
3152 __add_wait_queue_tail(&x->wait, &wait);
3153 do {
3154 __set_current_state(TASK_UNINTERRUPTIBLE);
3155 spin_unlock_irq(&x->wait.lock);
3156 timeout = schedule_timeout(timeout);
3157 spin_lock_irq(&x->wait.lock);
3158 if (!timeout) {
3159 __remove_wait_queue(&x->wait, &wait);
3160 goto out;
3161 }
3162 } while (!x->done);
3163 __remove_wait_queue(&x->wait, &wait);
3164 }
3165 x->done--;
3166out:
3167 spin_unlock_irq(&x->wait.lock);
3168 return timeout;
3169}
3170EXPORT_SYMBOL(wait_for_completion_timeout);
3171
3172int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3173{
3174 int ret = 0;
3175
3176 might_sleep();
3177
3178 spin_lock_irq(&x->wait.lock);
3179 if (!x->done) {
3180 DECLARE_WAITQUEUE(wait, current);
3181
3182 wait.flags |= WQ_FLAG_EXCLUSIVE;
3183 __add_wait_queue_tail(&x->wait, &wait);
3184 do {
3185 if (signal_pending(current)) {
3186 ret = -ERESTARTSYS;
3187 __remove_wait_queue(&x->wait, &wait);
3188 goto out;
3189 }
3190 __set_current_state(TASK_INTERRUPTIBLE);
3191 spin_unlock_irq(&x->wait.lock);
3192 schedule();
3193 spin_lock_irq(&x->wait.lock);
3194 } while (!x->done);
3195 __remove_wait_queue(&x->wait, &wait);
3196 }
3197 x->done--;
3198out:
3199 spin_unlock_irq(&x->wait.lock);
3200
3201 return ret;
3202}
3203EXPORT_SYMBOL(wait_for_completion_interruptible);
3204
3205unsigned long fastcall __sched
3206wait_for_completion_interruptible_timeout(struct completion *x,
3207 unsigned long timeout)
3208{
3209 might_sleep();
3210
3211 spin_lock_irq(&x->wait.lock);
3212 if (!x->done) {
3213 DECLARE_WAITQUEUE(wait, current);
3214
3215 wait.flags |= WQ_FLAG_EXCLUSIVE;
3216 __add_wait_queue_tail(&x->wait, &wait);
3217 do {
3218 if (signal_pending(current)) {
3219 timeout = -ERESTARTSYS;
3220 __remove_wait_queue(&x->wait, &wait);
3221 goto out;
3222 }
3223 __set_current_state(TASK_INTERRUPTIBLE);
3224 spin_unlock_irq(&x->wait.lock);
3225 timeout = schedule_timeout(timeout);
3226 spin_lock_irq(&x->wait.lock);
3227 if (!timeout) {
3228 __remove_wait_queue(&x->wait, &wait);
3229 goto out;
3230 }
3231 } while (!x->done);
3232 __remove_wait_queue(&x->wait, &wait);
3233 }
3234 x->done--;
3235out:
3236 spin_unlock_irq(&x->wait.lock);
3237 return timeout;
3238}
3239EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3240
3241
3242#define SLEEP_ON_VAR \
3243 unsigned long flags; \
3244 wait_queue_t wait; \
3245 init_waitqueue_entry(&wait, current);
3246
3247#define SLEEP_ON_HEAD \
3248 spin_lock_irqsave(&q->lock,flags); \
3249 __add_wait_queue(q, &wait); \
3250 spin_unlock(&q->lock);
3251
3252#define SLEEP_ON_TAIL \
3253 spin_lock_irq(&q->lock); \
3254 __remove_wait_queue(q, &wait); \
3255 spin_unlock_irqrestore(&q->lock, flags);
3256
3257void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3258{
3259 SLEEP_ON_VAR
3260
3261 current->state = TASK_INTERRUPTIBLE;
3262
3263 SLEEP_ON_HEAD
3264 schedule();
3265 SLEEP_ON_TAIL
3266}
3267
3268EXPORT_SYMBOL(interruptible_sleep_on);
3269
3270long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3271{
3272 SLEEP_ON_VAR
3273
3274 current->state = TASK_INTERRUPTIBLE;
3275
3276 SLEEP_ON_HEAD
3277 timeout = schedule_timeout(timeout);
3278 SLEEP_ON_TAIL
3279
3280 return timeout;
3281}
3282
3283EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3284
3285void fastcall __sched sleep_on(wait_queue_head_t *q)
3286{
3287 SLEEP_ON_VAR
3288
3289 current->state = TASK_UNINTERRUPTIBLE;
3290
3291 SLEEP_ON_HEAD
3292 schedule();
3293 SLEEP_ON_TAIL
3294}
3295
3296EXPORT_SYMBOL(sleep_on);
3297
3298long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3299{
3300 SLEEP_ON_VAR
3301
3302 current->state = TASK_UNINTERRUPTIBLE;
3303
3304 SLEEP_ON_HEAD
3305 timeout = schedule_timeout(timeout);
3306 SLEEP_ON_TAIL
3307
3308 return timeout;
3309}
3310
3311EXPORT_SYMBOL(sleep_on_timeout);
3312
3313void set_user_nice(task_t *p, long nice)
3314{
3315 unsigned long flags;
3316 prio_array_t *array;
3317 runqueue_t *rq;
3318 int old_prio, new_prio, delta;
3319
3320 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3321 return;
3322 /*
3323 * We have to be careful, if called from sys_setpriority(),
3324 * the task might be in the middle of scheduling on another CPU.
3325 */
3326 rq = task_rq_lock(p, &flags);
3327 /*
3328 * The RT priorities are set via sched_setscheduler(), but we still
3329 * allow the 'normal' nice value to be set - but as expected
3330 * it wont have any effect on scheduling until the task is
3331 * not SCHED_NORMAL:
3332 */
3333 if (rt_task(p)) {
3334 p->static_prio = NICE_TO_PRIO(nice);
3335 goto out_unlock;
3336 }
3337 array = p->array;
3338 if (array)
3339 dequeue_task(p, array);
3340
3341 old_prio = p->prio;
3342 new_prio = NICE_TO_PRIO(nice);
3343 delta = new_prio - old_prio;
3344 p->static_prio = NICE_TO_PRIO(nice);
3345 p->prio += delta;
3346
3347 if (array) {
3348 enqueue_task(p, array);
3349 /*
3350 * If the task increased its priority or is running and
3351 * lowered its priority, then reschedule its CPU:
3352 */
3353 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3354 resched_task(rq->curr);
3355 }
3356out_unlock:
3357 task_rq_unlock(rq, &flags);
3358}
3359
3360EXPORT_SYMBOL(set_user_nice);
3361
e43379f1
MM
3362/*
3363 * can_nice - check if a task can reduce its nice value
3364 * @p: task
3365 * @nice: nice value
3366 */
3367int can_nice(const task_t *p, const int nice)
3368{
3369 /* convert nice value [19,-20] to rlimit style value [0,39] */
3370 int nice_rlim = 19 - nice;
3371 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3372 capable(CAP_SYS_NICE));
3373}
3374
1da177e4
LT
3375#ifdef __ARCH_WANT_SYS_NICE
3376
3377/*
3378 * sys_nice - change the priority of the current process.
3379 * @increment: priority increment
3380 *
3381 * sys_setpriority is a more generic, but much slower function that
3382 * does similar things.
3383 */
3384asmlinkage long sys_nice(int increment)
3385{
3386 int retval;
3387 long nice;
3388
3389 /*
3390 * Setpriority might change our priority at the same moment.
3391 * We don't have to worry. Conceptually one call occurs first
3392 * and we have a single winner.
3393 */
e43379f1
MM
3394 if (increment < -40)
3395 increment = -40;
1da177e4
LT
3396 if (increment > 40)
3397 increment = 40;
3398
3399 nice = PRIO_TO_NICE(current->static_prio) + increment;
3400 if (nice < -20)
3401 nice = -20;
3402 if (nice > 19)
3403 nice = 19;
3404
e43379f1
MM
3405 if (increment < 0 && !can_nice(current, nice))
3406 return -EPERM;
3407
1da177e4
LT
3408 retval = security_task_setnice(current, nice);
3409 if (retval)
3410 return retval;
3411
3412 set_user_nice(current, nice);
3413 return 0;
3414}
3415
3416#endif
3417
3418/**
3419 * task_prio - return the priority value of a given task.
3420 * @p: the task in question.
3421 *
3422 * This is the priority value as seen by users in /proc.
3423 * RT tasks are offset by -200. Normal tasks are centered
3424 * around 0, value goes from -16 to +15.
3425 */
3426int task_prio(const task_t *p)
3427{
3428 return p->prio - MAX_RT_PRIO;
3429}
3430
3431/**
3432 * task_nice - return the nice value of a given task.
3433 * @p: the task in question.
3434 */
3435int task_nice(const task_t *p)
3436{
3437 return TASK_NICE(p);
3438}
3439
3440/*
3441 * The only users of task_nice are binfmt_elf and binfmt_elf32.
3442 * binfmt_elf is no longer modular, but binfmt_elf32 still is.
3443 * Therefore, task_nice is needed if there is a compat_mode.
3444 */
3445#ifdef CONFIG_COMPAT
3446EXPORT_SYMBOL_GPL(task_nice);
3447#endif
3448
3449/**
3450 * idle_cpu - is a given cpu idle currently?
3451 * @cpu: the processor in question.
3452 */
3453int idle_cpu(int cpu)
3454{
3455 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3456}
3457
3458EXPORT_SYMBOL_GPL(idle_cpu);
3459
3460/**
3461 * idle_task - return the idle task for a given cpu.
3462 * @cpu: the processor in question.
3463 */
3464task_t *idle_task(int cpu)
3465{
3466 return cpu_rq(cpu)->idle;
3467}
3468
3469/**
3470 * find_process_by_pid - find a process with a matching PID value.
3471 * @pid: the pid in question.
3472 */
3473static inline task_t *find_process_by_pid(pid_t pid)
3474{
3475 return pid ? find_task_by_pid(pid) : current;
3476}
3477
3478/* Actually do priority change: must hold rq lock. */
3479static void __setscheduler(struct task_struct *p, int policy, int prio)
3480{
3481 BUG_ON(p->array);
3482 p->policy = policy;
3483 p->rt_priority = prio;
3484 if (policy != SCHED_NORMAL)
3485 p->prio = MAX_USER_RT_PRIO-1 - p->rt_priority;
3486 else
3487 p->prio = p->static_prio;
3488}
3489
3490/**
3491 * sched_setscheduler - change the scheduling policy and/or RT priority of
3492 * a thread.
3493 * @p: the task in question.
3494 * @policy: new policy.
3495 * @param: structure containing the new RT priority.
3496 */
3497int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3498{
3499 int retval;
3500 int oldprio, oldpolicy = -1;
3501 prio_array_t *array;
3502 unsigned long flags;
3503 runqueue_t *rq;
3504
3505recheck:
3506 /* double check policy once rq lock held */
3507 if (policy < 0)
3508 policy = oldpolicy = p->policy;
3509 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3510 policy != SCHED_NORMAL)
3511 return -EINVAL;
3512 /*
3513 * Valid priorities for SCHED_FIFO and SCHED_RR are
3514 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3515 */
3516 if (param->sched_priority < 0 ||
3517 param->sched_priority > MAX_USER_RT_PRIO-1)
3518 return -EINVAL;
3519 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3520 return -EINVAL;
3521
3522 if ((policy == SCHED_FIFO || policy == SCHED_RR) &&
e43379f1 3523 param->sched_priority > p->signal->rlim[RLIMIT_RTPRIO].rlim_cur &&
1da177e4
LT
3524 !capable(CAP_SYS_NICE))
3525 return -EPERM;
3526 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3527 !capable(CAP_SYS_NICE))
3528 return -EPERM;
3529
3530 retval = security_task_setscheduler(p, policy, param);
3531 if (retval)
3532 return retval;
3533 /*
3534 * To be able to change p->policy safely, the apropriate
3535 * runqueue lock must be held.
3536 */
3537 rq = task_rq_lock(p, &flags);
3538 /* recheck policy now with rq lock held */
3539 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3540 policy = oldpolicy = -1;
3541 task_rq_unlock(rq, &flags);
3542 goto recheck;
3543 }
3544 array = p->array;
3545 if (array)
3546 deactivate_task(p, rq);
3547 oldprio = p->prio;
3548 __setscheduler(p, policy, param->sched_priority);
3549 if (array) {
3550 __activate_task(p, rq);
3551 /*
3552 * Reschedule if we are currently running on this runqueue and
3553 * our priority decreased, or if we are not currently running on
3554 * this runqueue and our priority is higher than the current's
3555 */
3556 if (task_running(rq, p)) {
3557 if (p->prio > oldprio)
3558 resched_task(rq->curr);
3559 } else if (TASK_PREEMPTS_CURR(p, rq))
3560 resched_task(rq->curr);
3561 }
3562 task_rq_unlock(rq, &flags);
3563 return 0;
3564}
3565EXPORT_SYMBOL_GPL(sched_setscheduler);
3566
3567static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3568{
3569 int retval;
3570 struct sched_param lparam;
3571 struct task_struct *p;
3572
3573 if (!param || pid < 0)
3574 return -EINVAL;
3575 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3576 return -EFAULT;
3577 read_lock_irq(&tasklist_lock);
3578 p = find_process_by_pid(pid);
3579 if (!p) {
3580 read_unlock_irq(&tasklist_lock);
3581 return -ESRCH;
3582 }
3583 retval = sched_setscheduler(p, policy, &lparam);
3584 read_unlock_irq(&tasklist_lock);
3585 return retval;
3586}
3587
3588/**
3589 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3590 * @pid: the pid in question.
3591 * @policy: new policy.
3592 * @param: structure containing the new RT priority.
3593 */
3594asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3595 struct sched_param __user *param)
3596{
3597 return do_sched_setscheduler(pid, policy, param);
3598}
3599
3600/**
3601 * sys_sched_setparam - set/change the RT priority of a thread
3602 * @pid: the pid in question.
3603 * @param: structure containing the new RT priority.
3604 */
3605asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3606{
3607 return do_sched_setscheduler(pid, -1, param);
3608}
3609
3610/**
3611 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3612 * @pid: the pid in question.
3613 */
3614asmlinkage long sys_sched_getscheduler(pid_t pid)
3615{
3616 int retval = -EINVAL;
3617 task_t *p;
3618
3619 if (pid < 0)
3620 goto out_nounlock;
3621
3622 retval = -ESRCH;
3623 read_lock(&tasklist_lock);
3624 p = find_process_by_pid(pid);
3625 if (p) {
3626 retval = security_task_getscheduler(p);
3627 if (!retval)
3628 retval = p->policy;
3629 }
3630 read_unlock(&tasklist_lock);
3631
3632out_nounlock:
3633 return retval;
3634}
3635
3636/**
3637 * sys_sched_getscheduler - get the RT priority of a thread
3638 * @pid: the pid in question.
3639 * @param: structure containing the RT priority.
3640 */
3641asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3642{
3643 struct sched_param lp;
3644 int retval = -EINVAL;
3645 task_t *p;
3646
3647 if (!param || pid < 0)
3648 goto out_nounlock;
3649
3650 read_lock(&tasklist_lock);
3651 p = find_process_by_pid(pid);
3652 retval = -ESRCH;
3653 if (!p)
3654 goto out_unlock;
3655
3656 retval = security_task_getscheduler(p);
3657 if (retval)
3658 goto out_unlock;
3659
3660 lp.sched_priority = p->rt_priority;
3661 read_unlock(&tasklist_lock);
3662
3663 /*
3664 * This one might sleep, we cannot do it with a spinlock held ...
3665 */
3666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3667
3668out_nounlock:
3669 return retval;
3670
3671out_unlock:
3672 read_unlock(&tasklist_lock);
3673 return retval;
3674}
3675
3676long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3677{
3678 task_t *p;
3679 int retval;
3680 cpumask_t cpus_allowed;
3681
3682 lock_cpu_hotplug();
3683 read_lock(&tasklist_lock);
3684
3685 p = find_process_by_pid(pid);
3686 if (!p) {
3687 read_unlock(&tasklist_lock);
3688 unlock_cpu_hotplug();
3689 return -ESRCH;
3690 }
3691
3692 /*
3693 * It is not safe to call set_cpus_allowed with the
3694 * tasklist_lock held. We will bump the task_struct's
3695 * usage count and then drop tasklist_lock.
3696 */
3697 get_task_struct(p);
3698 read_unlock(&tasklist_lock);
3699
3700 retval = -EPERM;
3701 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3702 !capable(CAP_SYS_NICE))
3703 goto out_unlock;
3704
3705 cpus_allowed = cpuset_cpus_allowed(p);
3706 cpus_and(new_mask, new_mask, cpus_allowed);
3707 retval = set_cpus_allowed(p, new_mask);
3708
3709out_unlock:
3710 put_task_struct(p);
3711 unlock_cpu_hotplug();
3712 return retval;
3713}
3714
3715static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3716 cpumask_t *new_mask)
3717{
3718 if (len < sizeof(cpumask_t)) {
3719 memset(new_mask, 0, sizeof(cpumask_t));
3720 } else if (len > sizeof(cpumask_t)) {
3721 len = sizeof(cpumask_t);
3722 }
3723 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3724}
3725
3726/**
3727 * sys_sched_setaffinity - set the cpu affinity of a process
3728 * @pid: pid of the process
3729 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3730 * @user_mask_ptr: user-space pointer to the new cpu mask
3731 */
3732asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3733 unsigned long __user *user_mask_ptr)
3734{
3735 cpumask_t new_mask;
3736 int retval;
3737
3738 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3739 if (retval)
3740 return retval;
3741
3742 return sched_setaffinity(pid, new_mask);
3743}
3744
3745/*
3746 * Represents all cpu's present in the system
3747 * In systems capable of hotplug, this map could dynamically grow
3748 * as new cpu's are detected in the system via any platform specific
3749 * method, such as ACPI for e.g.
3750 */
3751
3752cpumask_t cpu_present_map;
3753EXPORT_SYMBOL(cpu_present_map);
3754
3755#ifndef CONFIG_SMP
3756cpumask_t cpu_online_map = CPU_MASK_ALL;
3757cpumask_t cpu_possible_map = CPU_MASK_ALL;
3758#endif
3759
3760long sched_getaffinity(pid_t pid, cpumask_t *mask)
3761{
3762 int retval;
3763 task_t *p;
3764
3765 lock_cpu_hotplug();
3766 read_lock(&tasklist_lock);
3767
3768 retval = -ESRCH;
3769 p = find_process_by_pid(pid);
3770 if (!p)
3771 goto out_unlock;
3772
3773 retval = 0;
3774 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3775
3776out_unlock:
3777 read_unlock(&tasklist_lock);
3778 unlock_cpu_hotplug();
3779 if (retval)
3780 return retval;
3781
3782 return 0;
3783}
3784
3785/**
3786 * sys_sched_getaffinity - get the cpu affinity of a process
3787 * @pid: pid of the process
3788 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3789 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3790 */
3791asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3792 unsigned long __user *user_mask_ptr)
3793{
3794 int ret;
3795 cpumask_t mask;
3796
3797 if (len < sizeof(cpumask_t))
3798 return -EINVAL;
3799
3800 ret = sched_getaffinity(pid, &mask);
3801 if (ret < 0)
3802 return ret;
3803
3804 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3805 return -EFAULT;
3806
3807 return sizeof(cpumask_t);
3808}
3809
3810/**
3811 * sys_sched_yield - yield the current processor to other threads.
3812 *
3813 * this function yields the current CPU by moving the calling thread
3814 * to the expired array. If there are no other threads running on this
3815 * CPU then this function will return.
3816 */
3817asmlinkage long sys_sched_yield(void)
3818{
3819 runqueue_t *rq = this_rq_lock();
3820 prio_array_t *array = current->array;
3821 prio_array_t *target = rq->expired;
3822
3823 schedstat_inc(rq, yld_cnt);
3824 /*
3825 * We implement yielding by moving the task into the expired
3826 * queue.
3827 *
3828 * (special rule: RT tasks will just roundrobin in the active
3829 * array.)
3830 */
3831 if (rt_task(current))
3832 target = rq->active;
3833
3834 if (current->array->nr_active == 1) {
3835 schedstat_inc(rq, yld_act_empty);
3836 if (!rq->expired->nr_active)
3837 schedstat_inc(rq, yld_both_empty);
3838 } else if (!rq->expired->nr_active)
3839 schedstat_inc(rq, yld_exp_empty);
3840
3841 if (array != target) {
3842 dequeue_task(current, array);
3843 enqueue_task(current, target);
3844 } else
3845 /*
3846 * requeue_task is cheaper so perform that if possible.
3847 */
3848 requeue_task(current, array);
3849
3850 /*
3851 * Since we are going to call schedule() anyway, there's
3852 * no need to preempt or enable interrupts:
3853 */
3854 __release(rq->lock);
3855 _raw_spin_unlock(&rq->lock);
3856 preempt_enable_no_resched();
3857
3858 schedule();
3859
3860 return 0;
3861}
3862
3863static inline void __cond_resched(void)
3864{
3865 do {
3866 add_preempt_count(PREEMPT_ACTIVE);
3867 schedule();
3868 sub_preempt_count(PREEMPT_ACTIVE);
3869 } while (need_resched());
3870}
3871
3872int __sched cond_resched(void)
3873{
3874 if (need_resched()) {
3875 __cond_resched();
3876 return 1;
3877 }
3878 return 0;
3879}
3880
3881EXPORT_SYMBOL(cond_resched);
3882
3883/*
3884 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3885 * call schedule, and on return reacquire the lock.
3886 *
3887 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3888 * operations here to prevent schedule() from being called twice (once via
3889 * spin_unlock(), once by hand).
3890 */
3891int cond_resched_lock(spinlock_t * lock)
3892{
6df3cecb
JK
3893 int ret = 0;
3894
1da177e4
LT
3895 if (need_lockbreak(lock)) {
3896 spin_unlock(lock);
3897 cpu_relax();
6df3cecb 3898 ret = 1;
1da177e4
LT
3899 spin_lock(lock);
3900 }
3901 if (need_resched()) {
3902 _raw_spin_unlock(lock);
3903 preempt_enable_no_resched();
3904 __cond_resched();
6df3cecb 3905 ret = 1;
1da177e4 3906 spin_lock(lock);
1da177e4 3907 }
6df3cecb 3908 return ret;
1da177e4
LT
3909}
3910
3911EXPORT_SYMBOL(cond_resched_lock);
3912
3913int __sched cond_resched_softirq(void)
3914{
3915 BUG_ON(!in_softirq());
3916
3917 if (need_resched()) {
3918 __local_bh_enable();
3919 __cond_resched();
3920 local_bh_disable();
3921 return 1;
3922 }
3923 return 0;
3924}
3925
3926EXPORT_SYMBOL(cond_resched_softirq);
3927
3928
3929/**
3930 * yield - yield the current processor to other threads.
3931 *
3932 * this is a shortcut for kernel-space yielding - it marks the
3933 * thread runnable and calls sys_sched_yield().
3934 */
3935void __sched yield(void)
3936{
3937 set_current_state(TASK_RUNNING);
3938 sys_sched_yield();
3939}
3940
3941EXPORT_SYMBOL(yield);
3942
3943/*
3944 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3945 * that process accounting knows that this is a task in IO wait state.
3946 *
3947 * But don't do that if it is a deliberate, throttling IO wait (this task
3948 * has set its backing_dev_info: the queue against which it should throttle)
3949 */
3950void __sched io_schedule(void)
3951{
39c715b7 3952 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3953
3954 atomic_inc(&rq->nr_iowait);
3955 schedule();
3956 atomic_dec(&rq->nr_iowait);
3957}
3958
3959EXPORT_SYMBOL(io_schedule);
3960
3961long __sched io_schedule_timeout(long timeout)
3962{
39c715b7 3963 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
3964 long ret;
3965
3966 atomic_inc(&rq->nr_iowait);
3967 ret = schedule_timeout(timeout);
3968 atomic_dec(&rq->nr_iowait);
3969 return ret;
3970}
3971
3972/**
3973 * sys_sched_get_priority_max - return maximum RT priority.
3974 * @policy: scheduling class.
3975 *
3976 * this syscall returns the maximum rt_priority that can be used
3977 * by a given scheduling class.
3978 */
3979asmlinkage long sys_sched_get_priority_max(int policy)
3980{
3981 int ret = -EINVAL;
3982
3983 switch (policy) {
3984 case SCHED_FIFO:
3985 case SCHED_RR:
3986 ret = MAX_USER_RT_PRIO-1;
3987 break;
3988 case SCHED_NORMAL:
3989 ret = 0;
3990 break;
3991 }
3992 return ret;
3993}
3994
3995/**
3996 * sys_sched_get_priority_min - return minimum RT priority.
3997 * @policy: scheduling class.
3998 *
3999 * this syscall returns the minimum rt_priority that can be used
4000 * by a given scheduling class.
4001 */
4002asmlinkage long sys_sched_get_priority_min(int policy)
4003{
4004 int ret = -EINVAL;
4005
4006 switch (policy) {
4007 case SCHED_FIFO:
4008 case SCHED_RR:
4009 ret = 1;
4010 break;
4011 case SCHED_NORMAL:
4012 ret = 0;
4013 }
4014 return ret;
4015}
4016
4017/**
4018 * sys_sched_rr_get_interval - return the default timeslice of a process.
4019 * @pid: pid of the process.
4020 * @interval: userspace pointer to the timeslice value.
4021 *
4022 * this syscall writes the default timeslice value of a given process
4023 * into the user-space timespec buffer. A value of '0' means infinity.
4024 */
4025asmlinkage
4026long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4027{
4028 int retval = -EINVAL;
4029 struct timespec t;
4030 task_t *p;
4031
4032 if (pid < 0)
4033 goto out_nounlock;
4034
4035 retval = -ESRCH;
4036 read_lock(&tasklist_lock);
4037 p = find_process_by_pid(pid);
4038 if (!p)
4039 goto out_unlock;
4040
4041 retval = security_task_getscheduler(p);
4042 if (retval)
4043 goto out_unlock;
4044
4045 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4046 0 : task_timeslice(p), &t);
4047 read_unlock(&tasklist_lock);
4048 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4049out_nounlock:
4050 return retval;
4051out_unlock:
4052 read_unlock(&tasklist_lock);
4053 return retval;
4054}
4055
4056static inline struct task_struct *eldest_child(struct task_struct *p)
4057{
4058 if (list_empty(&p->children)) return NULL;
4059 return list_entry(p->children.next,struct task_struct,sibling);
4060}
4061
4062static inline struct task_struct *older_sibling(struct task_struct *p)
4063{
4064 if (p->sibling.prev==&p->parent->children) return NULL;
4065 return list_entry(p->sibling.prev,struct task_struct,sibling);
4066}
4067
4068static inline struct task_struct *younger_sibling(struct task_struct *p)
4069{
4070 if (p->sibling.next==&p->parent->children) return NULL;
4071 return list_entry(p->sibling.next,struct task_struct,sibling);
4072}
4073
4074static void show_task(task_t * p)
4075{
4076 task_t *relative;
4077 unsigned state;
4078 unsigned long free = 0;
4079 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4080
4081 printk("%-13.13s ", p->comm);
4082 state = p->state ? __ffs(p->state) + 1 : 0;
4083 if (state < ARRAY_SIZE(stat_nam))
4084 printk(stat_nam[state]);
4085 else
4086 printk("?");
4087#if (BITS_PER_LONG == 32)
4088 if (state == TASK_RUNNING)
4089 printk(" running ");
4090 else
4091 printk(" %08lX ", thread_saved_pc(p));
4092#else
4093 if (state == TASK_RUNNING)
4094 printk(" running task ");
4095 else
4096 printk(" %016lx ", thread_saved_pc(p));
4097#endif
4098#ifdef CONFIG_DEBUG_STACK_USAGE
4099 {
4100 unsigned long * n = (unsigned long *) (p->thread_info+1);
4101 while (!*n)
4102 n++;
4103 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4104 }
4105#endif
4106 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4107 if ((relative = eldest_child(p)))
4108 printk("%5d ", relative->pid);
4109 else
4110 printk(" ");
4111 if ((relative = younger_sibling(p)))
4112 printk("%7d", relative->pid);
4113 else
4114 printk(" ");
4115 if ((relative = older_sibling(p)))
4116 printk(" %5d", relative->pid);
4117 else
4118 printk(" ");
4119 if (!p->mm)
4120 printk(" (L-TLB)\n");
4121 else
4122 printk(" (NOTLB)\n");
4123
4124 if (state != TASK_RUNNING)
4125 show_stack(p, NULL);
4126}
4127
4128void show_state(void)
4129{
4130 task_t *g, *p;
4131
4132#if (BITS_PER_LONG == 32)
4133 printk("\n"
4134 " sibling\n");
4135 printk(" task PC pid father child younger older\n");
4136#else
4137 printk("\n"
4138 " sibling\n");
4139 printk(" task PC pid father child younger older\n");
4140#endif
4141 read_lock(&tasklist_lock);
4142 do_each_thread(g, p) {
4143 /*
4144 * reset the NMI-timeout, listing all files on a slow
4145 * console might take alot of time:
4146 */
4147 touch_nmi_watchdog();
4148 show_task(p);
4149 } while_each_thread(g, p);
4150
4151 read_unlock(&tasklist_lock);
4152}
4153
4154void __devinit init_idle(task_t *idle, int cpu)
4155{
4156 runqueue_t *rq = cpu_rq(cpu);
4157 unsigned long flags;
4158
4159 idle->sleep_avg = 0;
4160 idle->array = NULL;
4161 idle->prio = MAX_PRIO;
4162 idle->state = TASK_RUNNING;
4163 idle->cpus_allowed = cpumask_of_cpu(cpu);
4164 set_task_cpu(idle, cpu);
4165
4166 spin_lock_irqsave(&rq->lock, flags);
4167 rq->curr = rq->idle = idle;
4866cde0
NP
4168#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4169 idle->oncpu = 1;
4170#endif
1da177e4
LT
4171 set_tsk_need_resched(idle);
4172 spin_unlock_irqrestore(&rq->lock, flags);
4173
4174 /* Set the preempt count _outside_ the spinlocks! */
4175#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4176 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4177#else
4178 idle->thread_info->preempt_count = 0;
4179#endif
4180}
4181
4182/*
4183 * In a system that switches off the HZ timer nohz_cpu_mask
4184 * indicates which cpus entered this state. This is used
4185 * in the rcu update to wait only for active cpus. For system
4186 * which do not switch off the HZ timer nohz_cpu_mask should
4187 * always be CPU_MASK_NONE.
4188 */
4189cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4190
4191#ifdef CONFIG_SMP
4192/*
4193 * This is how migration works:
4194 *
4195 * 1) we queue a migration_req_t structure in the source CPU's
4196 * runqueue and wake up that CPU's migration thread.
4197 * 2) we down() the locked semaphore => thread blocks.
4198 * 3) migration thread wakes up (implicitly it forces the migrated
4199 * thread off the CPU)
4200 * 4) it gets the migration request and checks whether the migrated
4201 * task is still in the wrong runqueue.
4202 * 5) if it's in the wrong runqueue then the migration thread removes
4203 * it and puts it into the right queue.
4204 * 6) migration thread up()s the semaphore.
4205 * 7) we wake up and the migration is done.
4206 */
4207
4208/*
4209 * Change a given task's CPU affinity. Migrate the thread to a
4210 * proper CPU and schedule it away if the CPU it's executing on
4211 * is removed from the allowed bitmask.
4212 *
4213 * NOTE: the caller must have a valid reference to the task, the
4214 * task must not exit() & deallocate itself prematurely. The
4215 * call is not atomic; no spinlocks may be held.
4216 */
4217int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4218{
4219 unsigned long flags;
4220 int ret = 0;
4221 migration_req_t req;
4222 runqueue_t *rq;
4223
4224 rq = task_rq_lock(p, &flags);
4225 if (!cpus_intersects(new_mask, cpu_online_map)) {
4226 ret = -EINVAL;
4227 goto out;
4228 }
4229
4230 p->cpus_allowed = new_mask;
4231 /* Can the task run on the task's current CPU? If so, we're done */
4232 if (cpu_isset(task_cpu(p), new_mask))
4233 goto out;
4234
4235 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4236 /* Need help from migration thread: drop lock and wait. */
4237 task_rq_unlock(rq, &flags);
4238 wake_up_process(rq->migration_thread);
4239 wait_for_completion(&req.done);
4240 tlb_migrate_finish(p->mm);
4241 return 0;
4242 }
4243out:
4244 task_rq_unlock(rq, &flags);
4245 return ret;
4246}
4247
4248EXPORT_SYMBOL_GPL(set_cpus_allowed);
4249
4250/*
4251 * Move (not current) task off this cpu, onto dest cpu. We're doing
4252 * this because either it can't run here any more (set_cpus_allowed()
4253 * away from this CPU, or CPU going down), or because we're
4254 * attempting to rebalance this task on exec (sched_exec).
4255 *
4256 * So we race with normal scheduler movements, but that's OK, as long
4257 * as the task is no longer on this CPU.
4258 */
4259static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4260{
4261 runqueue_t *rq_dest, *rq_src;
4262
4263 if (unlikely(cpu_is_offline(dest_cpu)))
4264 return;
4265
4266 rq_src = cpu_rq(src_cpu);
4267 rq_dest = cpu_rq(dest_cpu);
4268
4269 double_rq_lock(rq_src, rq_dest);
4270 /* Already moved. */
4271 if (task_cpu(p) != src_cpu)
4272 goto out;
4273 /* Affinity changed (again). */
4274 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4275 goto out;
4276
4277 set_task_cpu(p, dest_cpu);
4278 if (p->array) {
4279 /*
4280 * Sync timestamp with rq_dest's before activating.
4281 * The same thing could be achieved by doing this step
4282 * afterwards, and pretending it was a local activate.
4283 * This way is cleaner and logically correct.
4284 */
4285 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4286 + rq_dest->timestamp_last_tick;
4287 deactivate_task(p, rq_src);
4288 activate_task(p, rq_dest, 0);
4289 if (TASK_PREEMPTS_CURR(p, rq_dest))
4290 resched_task(rq_dest->curr);
4291 }
4292
4293out:
4294 double_rq_unlock(rq_src, rq_dest);
4295}
4296
4297/*
4298 * migration_thread - this is a highprio system thread that performs
4299 * thread migration by bumping thread off CPU then 'pushing' onto
4300 * another runqueue.
4301 */
4302static int migration_thread(void * data)
4303{
4304 runqueue_t *rq;
4305 int cpu = (long)data;
4306
4307 rq = cpu_rq(cpu);
4308 BUG_ON(rq->migration_thread != current);
4309
4310 set_current_state(TASK_INTERRUPTIBLE);
4311 while (!kthread_should_stop()) {
4312 struct list_head *head;
4313 migration_req_t *req;
4314
4315 if (current->flags & PF_FREEZE)
4316 refrigerator(PF_FREEZE);
4317
4318 spin_lock_irq(&rq->lock);
4319
4320 if (cpu_is_offline(cpu)) {
4321 spin_unlock_irq(&rq->lock);
4322 goto wait_to_die;
4323 }
4324
4325 if (rq->active_balance) {
4326 active_load_balance(rq, cpu);
4327 rq->active_balance = 0;
4328 }
4329
4330 head = &rq->migration_queue;
4331
4332 if (list_empty(head)) {
4333 spin_unlock_irq(&rq->lock);
4334 schedule();
4335 set_current_state(TASK_INTERRUPTIBLE);
4336 continue;
4337 }
4338 req = list_entry(head->next, migration_req_t, list);
4339 list_del_init(head->next);
4340
674311d5
NP
4341 spin_unlock(&rq->lock);
4342 __migrate_task(req->task, cpu, req->dest_cpu);
4343 local_irq_enable();
1da177e4
LT
4344
4345 complete(&req->done);
4346 }
4347 __set_current_state(TASK_RUNNING);
4348 return 0;
4349
4350wait_to_die:
4351 /* Wait for kthread_stop */
4352 set_current_state(TASK_INTERRUPTIBLE);
4353 while (!kthread_should_stop()) {
4354 schedule();
4355 set_current_state(TASK_INTERRUPTIBLE);
4356 }
4357 __set_current_state(TASK_RUNNING);
4358 return 0;
4359}
4360
4361#ifdef CONFIG_HOTPLUG_CPU
4362/* Figure out where task on dead CPU should go, use force if neccessary. */
4363static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4364{
4365 int dest_cpu;
4366 cpumask_t mask;
4367
4368 /* On same node? */
4369 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4370 cpus_and(mask, mask, tsk->cpus_allowed);
4371 dest_cpu = any_online_cpu(mask);
4372
4373 /* On any allowed CPU? */
4374 if (dest_cpu == NR_CPUS)
4375 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4376
4377 /* No more Mr. Nice Guy. */
4378 if (dest_cpu == NR_CPUS) {
b39c4fab 4379 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4380 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4381
4382 /*
4383 * Don't tell them about moving exiting tasks or
4384 * kernel threads (both mm NULL), since they never
4385 * leave kernel.
4386 */
4387 if (tsk->mm && printk_ratelimit())
4388 printk(KERN_INFO "process %d (%s) no "
4389 "longer affine to cpu%d\n",
4390 tsk->pid, tsk->comm, dead_cpu);
4391 }
4392 __migrate_task(tsk, dead_cpu, dest_cpu);
4393}
4394
4395/*
4396 * While a dead CPU has no uninterruptible tasks queued at this point,
4397 * it might still have a nonzero ->nr_uninterruptible counter, because
4398 * for performance reasons the counter is not stricly tracking tasks to
4399 * their home CPUs. So we just add the counter to another CPU's counter,
4400 * to keep the global sum constant after CPU-down:
4401 */
4402static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4403{
4404 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4405 unsigned long flags;
4406
4407 local_irq_save(flags);
4408 double_rq_lock(rq_src, rq_dest);
4409 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4410 rq_src->nr_uninterruptible = 0;
4411 double_rq_unlock(rq_src, rq_dest);
4412 local_irq_restore(flags);
4413}
4414
4415/* Run through task list and migrate tasks from the dead cpu. */
4416static void migrate_live_tasks(int src_cpu)
4417{
4418 struct task_struct *tsk, *t;
4419
4420 write_lock_irq(&tasklist_lock);
4421
4422 do_each_thread(t, tsk) {
4423 if (tsk == current)
4424 continue;
4425
4426 if (task_cpu(tsk) == src_cpu)
4427 move_task_off_dead_cpu(src_cpu, tsk);
4428 } while_each_thread(t, tsk);
4429
4430 write_unlock_irq(&tasklist_lock);
4431}
4432
4433/* Schedules idle task to be the next runnable task on current CPU.
4434 * It does so by boosting its priority to highest possible and adding it to
4435 * the _front_ of runqueue. Used by CPU offline code.
4436 */
4437void sched_idle_next(void)
4438{
4439 int cpu = smp_processor_id();
4440 runqueue_t *rq = this_rq();
4441 struct task_struct *p = rq->idle;
4442 unsigned long flags;
4443
4444 /* cpu has to be offline */
4445 BUG_ON(cpu_online(cpu));
4446
4447 /* Strictly not necessary since rest of the CPUs are stopped by now
4448 * and interrupts disabled on current cpu.
4449 */
4450 spin_lock_irqsave(&rq->lock, flags);
4451
4452 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4453 /* Add idle task to _front_ of it's priority queue */
4454 __activate_idle_task(p, rq);
4455
4456 spin_unlock_irqrestore(&rq->lock, flags);
4457}
4458
4459/* Ensures that the idle task is using init_mm right before its cpu goes
4460 * offline.
4461 */
4462void idle_task_exit(void)
4463{
4464 struct mm_struct *mm = current->active_mm;
4465
4466 BUG_ON(cpu_online(smp_processor_id()));
4467
4468 if (mm != &init_mm)
4469 switch_mm(mm, &init_mm, current);
4470 mmdrop(mm);
4471}
4472
4473static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4474{
4475 struct runqueue *rq = cpu_rq(dead_cpu);
4476
4477 /* Must be exiting, otherwise would be on tasklist. */
4478 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4479
4480 /* Cannot have done final schedule yet: would have vanished. */
4481 BUG_ON(tsk->flags & PF_DEAD);
4482
4483 get_task_struct(tsk);
4484
4485 /*
4486 * Drop lock around migration; if someone else moves it,
4487 * that's OK. No task can be added to this CPU, so iteration is
4488 * fine.
4489 */
4490 spin_unlock_irq(&rq->lock);
4491 move_task_off_dead_cpu(dead_cpu, tsk);
4492 spin_lock_irq(&rq->lock);
4493
4494 put_task_struct(tsk);
4495}
4496
4497/* release_task() removes task from tasklist, so we won't find dead tasks. */
4498static void migrate_dead_tasks(unsigned int dead_cpu)
4499{
4500 unsigned arr, i;
4501 struct runqueue *rq = cpu_rq(dead_cpu);
4502
4503 for (arr = 0; arr < 2; arr++) {
4504 for (i = 0; i < MAX_PRIO; i++) {
4505 struct list_head *list = &rq->arrays[arr].queue[i];
4506 while (!list_empty(list))
4507 migrate_dead(dead_cpu,
4508 list_entry(list->next, task_t,
4509 run_list));
4510 }
4511 }
4512}
4513#endif /* CONFIG_HOTPLUG_CPU */
4514
4515/*
4516 * migration_call - callback that gets triggered when a CPU is added.
4517 * Here we can start up the necessary migration thread for the new CPU.
4518 */
4519static int migration_call(struct notifier_block *nfb, unsigned long action,
4520 void *hcpu)
4521{
4522 int cpu = (long)hcpu;
4523 struct task_struct *p;
4524 struct runqueue *rq;
4525 unsigned long flags;
4526
4527 switch (action) {
4528 case CPU_UP_PREPARE:
4529 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4530 if (IS_ERR(p))
4531 return NOTIFY_BAD;
4532 p->flags |= PF_NOFREEZE;
4533 kthread_bind(p, cpu);
4534 /* Must be high prio: stop_machine expects to yield to it. */
4535 rq = task_rq_lock(p, &flags);
4536 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4537 task_rq_unlock(rq, &flags);
4538 cpu_rq(cpu)->migration_thread = p;
4539 break;
4540 case CPU_ONLINE:
4541 /* Strictly unneccessary, as first user will wake it. */
4542 wake_up_process(cpu_rq(cpu)->migration_thread);
4543 break;
4544#ifdef CONFIG_HOTPLUG_CPU
4545 case CPU_UP_CANCELED:
4546 /* Unbind it from offline cpu so it can run. Fall thru. */
4547 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4548 kthread_stop(cpu_rq(cpu)->migration_thread);
4549 cpu_rq(cpu)->migration_thread = NULL;
4550 break;
4551 case CPU_DEAD:
4552 migrate_live_tasks(cpu);
4553 rq = cpu_rq(cpu);
4554 kthread_stop(rq->migration_thread);
4555 rq->migration_thread = NULL;
4556 /* Idle task back to normal (off runqueue, low prio) */
4557 rq = task_rq_lock(rq->idle, &flags);
4558 deactivate_task(rq->idle, rq);
4559 rq->idle->static_prio = MAX_PRIO;
4560 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4561 migrate_dead_tasks(cpu);
4562 task_rq_unlock(rq, &flags);
4563 migrate_nr_uninterruptible(rq);
4564 BUG_ON(rq->nr_running != 0);
4565
4566 /* No need to migrate the tasks: it was best-effort if
4567 * they didn't do lock_cpu_hotplug(). Just wake up
4568 * the requestors. */
4569 spin_lock_irq(&rq->lock);
4570 while (!list_empty(&rq->migration_queue)) {
4571 migration_req_t *req;
4572 req = list_entry(rq->migration_queue.next,
4573 migration_req_t, list);
1da177e4
LT
4574 list_del_init(&req->list);
4575 complete(&req->done);
4576 }
4577 spin_unlock_irq(&rq->lock);
4578 break;
4579#endif
4580 }
4581 return NOTIFY_OK;
4582}
4583
4584/* Register at highest priority so that task migration (migrate_all_tasks)
4585 * happens before everything else.
4586 */
4587static struct notifier_block __devinitdata migration_notifier = {
4588 .notifier_call = migration_call,
4589 .priority = 10
4590};
4591
4592int __init migration_init(void)
4593{
4594 void *cpu = (void *)(long)smp_processor_id();
4595 /* Start one for boot CPU. */
4596 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4597 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4598 register_cpu_notifier(&migration_notifier);
4599 return 0;
4600}
4601#endif
4602
4603#ifdef CONFIG_SMP
4604#define SCHED_DOMAIN_DEBUG
4605#ifdef SCHED_DOMAIN_DEBUG
4606static void sched_domain_debug(struct sched_domain *sd, int cpu)
4607{
4608 int level = 0;
4609
41c7ce9a
NP
4610 if (!sd) {
4611 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4612 return;
4613 }
4614
1da177e4
LT
4615 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4616
4617 do {
4618 int i;
4619 char str[NR_CPUS];
4620 struct sched_group *group = sd->groups;
4621 cpumask_t groupmask;
4622
4623 cpumask_scnprintf(str, NR_CPUS, sd->span);
4624 cpus_clear(groupmask);
4625
4626 printk(KERN_DEBUG);
4627 for (i = 0; i < level + 1; i++)
4628 printk(" ");
4629 printk("domain %d: ", level);
4630
4631 if (!(sd->flags & SD_LOAD_BALANCE)) {
4632 printk("does not load-balance\n");
4633 if (sd->parent)
4634 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4635 break;
4636 }
4637
4638 printk("span %s\n", str);
4639
4640 if (!cpu_isset(cpu, sd->span))
4641 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4642 if (!cpu_isset(cpu, group->cpumask))
4643 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4644
4645 printk(KERN_DEBUG);
4646 for (i = 0; i < level + 2; i++)
4647 printk(" ");
4648 printk("groups:");
4649 do {
4650 if (!group) {
4651 printk("\n");
4652 printk(KERN_ERR "ERROR: group is NULL\n");
4653 break;
4654 }
4655
4656 if (!group->cpu_power) {
4657 printk("\n");
4658 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4659 }
4660
4661 if (!cpus_weight(group->cpumask)) {
4662 printk("\n");
4663 printk(KERN_ERR "ERROR: empty group\n");
4664 }
4665
4666 if (cpus_intersects(groupmask, group->cpumask)) {
4667 printk("\n");
4668 printk(KERN_ERR "ERROR: repeated CPUs\n");
4669 }
4670
4671 cpus_or(groupmask, groupmask, group->cpumask);
4672
4673 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4674 printk(" %s", str);
4675
4676 group = group->next;
4677 } while (group != sd->groups);
4678 printk("\n");
4679
4680 if (!cpus_equal(sd->span, groupmask))
4681 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4682
4683 level++;
4684 sd = sd->parent;
4685
4686 if (sd) {
4687 if (!cpus_subset(groupmask, sd->span))
4688 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4689 }
4690
4691 } while (sd);
4692}
4693#else
4694#define sched_domain_debug(sd, cpu) {}
4695#endif
4696
245af2c7
SS
4697static int __devinit sd_degenerate(struct sched_domain *sd)
4698{
4699 if (cpus_weight(sd->span) == 1)
4700 return 1;
4701
4702 /* Following flags need at least 2 groups */
4703 if (sd->flags & (SD_LOAD_BALANCE |
4704 SD_BALANCE_NEWIDLE |
4705 SD_BALANCE_FORK |
4706 SD_BALANCE_EXEC)) {
4707 if (sd->groups != sd->groups->next)
4708 return 0;
4709 }
4710
4711 /* Following flags don't use groups */
4712 if (sd->flags & (SD_WAKE_IDLE |
4713 SD_WAKE_AFFINE |
4714 SD_WAKE_BALANCE))
4715 return 0;
4716
4717 return 1;
4718}
4719
4720static int __devinit sd_parent_degenerate(struct sched_domain *sd,
4721 struct sched_domain *parent)
4722{
4723 unsigned long cflags = sd->flags, pflags = parent->flags;
4724
4725 if (sd_degenerate(parent))
4726 return 1;
4727
4728 if (!cpus_equal(sd->span, parent->span))
4729 return 0;
4730
4731 /* Does parent contain flags not in child? */
4732 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4733 if (cflags & SD_WAKE_AFFINE)
4734 pflags &= ~SD_WAKE_BALANCE;
4735 /* Flags needing groups don't count if only 1 group in parent */
4736 if (parent->groups == parent->groups->next) {
4737 pflags &= ~(SD_LOAD_BALANCE |
4738 SD_BALANCE_NEWIDLE |
4739 SD_BALANCE_FORK |
4740 SD_BALANCE_EXEC);
4741 }
4742 if (~cflags & pflags)
4743 return 0;
4744
4745 return 1;
4746}
4747
1da177e4
LT
4748/*
4749 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4750 * hold the hotplug lock.
4751 */
4752void __devinit cpu_attach_domain(struct sched_domain *sd, int cpu)
4753{
1da177e4 4754 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4755 struct sched_domain *tmp;
4756
4757 /* Remove the sched domains which do not contribute to scheduling. */
4758 for (tmp = sd; tmp; tmp = tmp->parent) {
4759 struct sched_domain *parent = tmp->parent;
4760 if (!parent)
4761 break;
4762 if (sd_parent_degenerate(tmp, parent))
4763 tmp->parent = parent->parent;
4764 }
4765
4766 if (sd && sd_degenerate(sd))
4767 sd = sd->parent;
1da177e4
LT
4768
4769 sched_domain_debug(sd, cpu);
4770
674311d5 4771 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4772}
4773
4774/* cpus with isolated domains */
4775cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4776
4777/* Setup the mask of cpus configured for isolated domains */
4778static int __init isolated_cpu_setup(char *str)
4779{
4780 int ints[NR_CPUS], i;
4781
4782 str = get_options(str, ARRAY_SIZE(ints), ints);
4783 cpus_clear(cpu_isolated_map);
4784 for (i = 1; i <= ints[0]; i++)
4785 if (ints[i] < NR_CPUS)
4786 cpu_set(ints[i], cpu_isolated_map);
4787 return 1;
4788}
4789
4790__setup ("isolcpus=", isolated_cpu_setup);
4791
4792/*
4793 * init_sched_build_groups takes an array of groups, the cpumask we wish
4794 * to span, and a pointer to a function which identifies what group a CPU
4795 * belongs to. The return value of group_fn must be a valid index into the
4796 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4797 * keep track of groups covered with a cpumask_t).
4798 *
4799 * init_sched_build_groups will build a circular linked list of the groups
4800 * covered by the given span, and will set each group's ->cpumask correctly,
4801 * and ->cpu_power to 0.
4802 */
4803void __devinit init_sched_build_groups(struct sched_group groups[],
4804 cpumask_t span, int (*group_fn)(int cpu))
4805{
4806 struct sched_group *first = NULL, *last = NULL;
4807 cpumask_t covered = CPU_MASK_NONE;
4808 int i;
4809
4810 for_each_cpu_mask(i, span) {
4811 int group = group_fn(i);
4812 struct sched_group *sg = &groups[group];
4813 int j;
4814
4815 if (cpu_isset(i, covered))
4816 continue;
4817
4818 sg->cpumask = CPU_MASK_NONE;
4819 sg->cpu_power = 0;
4820
4821 for_each_cpu_mask(j, span) {
4822 if (group_fn(j) != group)
4823 continue;
4824
4825 cpu_set(j, covered);
4826 cpu_set(j, sg->cpumask);
4827 }
4828 if (!first)
4829 first = sg;
4830 if (last)
4831 last->next = sg;
4832 last = sg;
4833 }
4834 last->next = first;
4835}
4836
4837
4838#ifdef ARCH_HAS_SCHED_DOMAIN
4839extern void __devinit arch_init_sched_domains(void);
4840extern void __devinit arch_destroy_sched_domains(void);
4841#else
4842#ifdef CONFIG_SCHED_SMT
4843static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4844static struct sched_group sched_group_cpus[NR_CPUS];
4845static int __devinit cpu_to_cpu_group(int cpu)
4846{
4847 return cpu;
4848}
4849#endif
4850
4851static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4852static struct sched_group sched_group_phys[NR_CPUS];
4853static int __devinit cpu_to_phys_group(int cpu)
4854{
4855#ifdef CONFIG_SCHED_SMT
4856 return first_cpu(cpu_sibling_map[cpu]);
4857#else
4858 return cpu;
4859#endif
4860}
4861
4862#ifdef CONFIG_NUMA
4863
4864static DEFINE_PER_CPU(struct sched_domain, node_domains);
4865static struct sched_group sched_group_nodes[MAX_NUMNODES];
4866static int __devinit cpu_to_node_group(int cpu)
4867{
4868 return cpu_to_node(cpu);
4869}
4870#endif
4871
4872#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4873/*
4874 * The domains setup code relies on siblings not spanning
4875 * multiple nodes. Make sure the architecture has a proper
4876 * siblings map:
4877 */
4878static void check_sibling_maps(void)
4879{
4880 int i, j;
4881
4882 for_each_online_cpu(i) {
4883 for_each_cpu_mask(j, cpu_sibling_map[i]) {
4884 if (cpu_to_node(i) != cpu_to_node(j)) {
4885 printk(KERN_INFO "warning: CPU %d siblings map "
4886 "to different node - isolating "
4887 "them.\n", i);
4888 cpu_sibling_map[i] = cpumask_of_cpu(i);
4889 break;
4890 }
4891 }
4892 }
4893}
4894#endif
4895
4896/*
4897 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
4898 */
4899static void __devinit arch_init_sched_domains(void)
4900{
4901 int i;
4902 cpumask_t cpu_default_map;
4903
4904#if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4905 check_sibling_maps();
4906#endif
4907 /*
4908 * Setup mask for cpus without special case scheduling requirements.
4909 * For now this just excludes isolated cpus, but could be used to
4910 * exclude other special cases in the future.
4911 */
4912 cpus_complement(cpu_default_map, cpu_isolated_map);
4913 cpus_and(cpu_default_map, cpu_default_map, cpu_online_map);
4914
4915 /*
41c7ce9a 4916 * Set up domains. Isolated domains just stay on the NULL domain.
1da177e4
LT
4917 */
4918 for_each_cpu_mask(i, cpu_default_map) {
4919 int group;
4920 struct sched_domain *sd = NULL, *p;
4921 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
4922
4923 cpus_and(nodemask, nodemask, cpu_default_map);
4924
4925#ifdef CONFIG_NUMA
4926 sd = &per_cpu(node_domains, i);
4927 group = cpu_to_node_group(i);
4928 *sd = SD_NODE_INIT;
4929 sd->span = cpu_default_map;
4930 sd->groups = &sched_group_nodes[group];
4931#endif
4932
4933 p = sd;
4934 sd = &per_cpu(phys_domains, i);
4935 group = cpu_to_phys_group(i);
4936 *sd = SD_CPU_INIT;
4937 sd->span = nodemask;
4938 sd->parent = p;
4939 sd->groups = &sched_group_phys[group];
4940
4941#ifdef CONFIG_SCHED_SMT
4942 p = sd;
4943 sd = &per_cpu(cpu_domains, i);
4944 group = cpu_to_cpu_group(i);
4945 *sd = SD_SIBLING_INIT;
4946 sd->span = cpu_sibling_map[i];
4947 cpus_and(sd->span, sd->span, cpu_default_map);
4948 sd->parent = p;
4949 sd->groups = &sched_group_cpus[group];
4950#endif
4951 }
4952
4953#ifdef CONFIG_SCHED_SMT
4954 /* Set up CPU (sibling) groups */
4955 for_each_online_cpu(i) {
4956 cpumask_t this_sibling_map = cpu_sibling_map[i];
4957 cpus_and(this_sibling_map, this_sibling_map, cpu_default_map);
4958 if (i != first_cpu(this_sibling_map))
4959 continue;
4960
4961 init_sched_build_groups(sched_group_cpus, this_sibling_map,
4962 &cpu_to_cpu_group);
4963 }
4964#endif
4965
4966 /* Set up physical groups */
4967 for (i = 0; i < MAX_NUMNODES; i++) {
4968 cpumask_t nodemask = node_to_cpumask(i);
4969
4970 cpus_and(nodemask, nodemask, cpu_default_map);
4971 if (cpus_empty(nodemask))
4972 continue;
4973
4974 init_sched_build_groups(sched_group_phys, nodemask,
4975 &cpu_to_phys_group);
4976 }
4977
4978#ifdef CONFIG_NUMA
4979 /* Set up node groups */
4980 init_sched_build_groups(sched_group_nodes, cpu_default_map,
4981 &cpu_to_node_group);
4982#endif
4983
4984 /* Calculate CPU power for physical packages and nodes */
4985 for_each_cpu_mask(i, cpu_default_map) {
4986 int power;
4987 struct sched_domain *sd;
4988#ifdef CONFIG_SCHED_SMT
4989 sd = &per_cpu(cpu_domains, i);
4990 power = SCHED_LOAD_SCALE;
4991 sd->groups->cpu_power = power;
4992#endif
4993
4994 sd = &per_cpu(phys_domains, i);
4995 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
4996 (cpus_weight(sd->groups->cpumask)-1) / 10;
4997 sd->groups->cpu_power = power;
4998
4999#ifdef CONFIG_NUMA
5000 if (i == first_cpu(sd->groups->cpumask)) {
5001 /* Only add "power" once for each physical package. */
5002 sd = &per_cpu(node_domains, i);
5003 sd->groups->cpu_power += power;
5004 }
5005#endif
5006 }
5007
5008 /* Attach the domains */
5009 for_each_online_cpu(i) {
5010 struct sched_domain *sd;
5011#ifdef CONFIG_SCHED_SMT
5012 sd = &per_cpu(cpu_domains, i);
5013#else
5014 sd = &per_cpu(phys_domains, i);
5015#endif
5016 cpu_attach_domain(sd, i);
5017 }
5018}
5019
5020#ifdef CONFIG_HOTPLUG_CPU
5021static void __devinit arch_destroy_sched_domains(void)
5022{
5023 /* Do nothing: everything is statically allocated. */
5024}
5025#endif
5026
5027#endif /* ARCH_HAS_SCHED_DOMAIN */
5028
1da177e4
LT
5029#ifdef CONFIG_HOTPLUG_CPU
5030/*
5031 * Force a reinitialization of the sched domains hierarchy. The domains
5032 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 5033 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
5034 * which will prevent rebalancing while the sched domains are recalculated.
5035 */
5036static int update_sched_domains(struct notifier_block *nfb,
5037 unsigned long action, void *hcpu)
5038{
5039 int i;
5040
5041 switch (action) {
5042 case CPU_UP_PREPARE:
5043 case CPU_DOWN_PREPARE:
5044 for_each_online_cpu(i)
41c7ce9a 5045 cpu_attach_domain(NULL, i);
674311d5 5046 synchronize_kernel();
1da177e4
LT
5047 arch_destroy_sched_domains();
5048 return NOTIFY_OK;
5049
5050 case CPU_UP_CANCELED:
5051 case CPU_DOWN_FAILED:
5052 case CPU_ONLINE:
5053 case CPU_DEAD:
5054 /*
5055 * Fall through and re-initialise the domains.
5056 */
5057 break;
5058 default:
5059 return NOTIFY_DONE;
5060 }
5061
5062 /* The hotplug lock is already held by cpu_up/cpu_down */
5063 arch_init_sched_domains();
5064
5065 return NOTIFY_OK;
5066}
5067#endif
5068
5069void __init sched_init_smp(void)
5070{
5071 lock_cpu_hotplug();
5072 arch_init_sched_domains();
5073 unlock_cpu_hotplug();
5074 /* XXX: Theoretical race here - CPU may be hotplugged now */
5075 hotcpu_notifier(update_sched_domains, 0);
5076}
5077#else
5078void __init sched_init_smp(void)
5079{
5080}
5081#endif /* CONFIG_SMP */
5082
5083int in_sched_functions(unsigned long addr)
5084{
5085 /* Linker adds these: start and end of __sched functions */
5086 extern char __sched_text_start[], __sched_text_end[];
5087 return in_lock_functions(addr) ||
5088 (addr >= (unsigned long)__sched_text_start
5089 && addr < (unsigned long)__sched_text_end);
5090}
5091
5092void __init sched_init(void)
5093{
5094 runqueue_t *rq;
5095 int i, j, k;
5096
5097 for (i = 0; i < NR_CPUS; i++) {
5098 prio_array_t *array;
5099
5100 rq = cpu_rq(i);
5101 spin_lock_init(&rq->lock);
7897986b 5102 rq->nr_running = 0;
1da177e4
LT
5103 rq->active = rq->arrays;
5104 rq->expired = rq->arrays + 1;
5105 rq->best_expired_prio = MAX_PRIO;
5106
5107#ifdef CONFIG_SMP
41c7ce9a 5108 rq->sd = NULL;
7897986b
NP
5109 for (j = 1; j < 3; j++)
5110 rq->cpu_load[j] = 0;
1da177e4
LT
5111 rq->active_balance = 0;
5112 rq->push_cpu = 0;
5113 rq->migration_thread = NULL;
5114 INIT_LIST_HEAD(&rq->migration_queue);
5115#endif
5116 atomic_set(&rq->nr_iowait, 0);
5117
5118 for (j = 0; j < 2; j++) {
5119 array = rq->arrays + j;
5120 for (k = 0; k < MAX_PRIO; k++) {
5121 INIT_LIST_HEAD(array->queue + k);
5122 __clear_bit(k, array->bitmap);
5123 }
5124 // delimiter for bitsearch
5125 __set_bit(MAX_PRIO, array->bitmap);
5126 }
5127 }
5128
5129 /*
5130 * The boot idle thread does lazy MMU switching as well:
5131 */
5132 atomic_inc(&init_mm.mm_count);
5133 enter_lazy_tlb(&init_mm, current);
5134
5135 /*
5136 * Make us the idle thread. Technically, schedule() should not be
5137 * called from this thread, however somewhere below it might be,
5138 * but because we are the idle thread, we just pick up running again
5139 * when this runqueue becomes "idle".
5140 */
5141 init_idle(current, smp_processor_id());
5142}
5143
5144#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5145void __might_sleep(char *file, int line)
5146{
5147#if defined(in_atomic)
5148 static unsigned long prev_jiffy; /* ratelimiting */
5149
5150 if ((in_atomic() || irqs_disabled()) &&
5151 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5152 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5153 return;
5154 prev_jiffy = jiffies;
5155 printk(KERN_ERR "Debug: sleeping function called from invalid"
5156 " context at %s:%d\n", file, line);
5157 printk("in_atomic():%d, irqs_disabled():%d\n",
5158 in_atomic(), irqs_disabled());
5159 dump_stack();
5160 }
5161#endif
5162}
5163EXPORT_SYMBOL(__might_sleep);
5164#endif
5165
5166#ifdef CONFIG_MAGIC_SYSRQ
5167void normalize_rt_tasks(void)
5168{
5169 struct task_struct *p;
5170 prio_array_t *array;
5171 unsigned long flags;
5172 runqueue_t *rq;
5173
5174 read_lock_irq(&tasklist_lock);
5175 for_each_process (p) {
5176 if (!rt_task(p))
5177 continue;
5178
5179 rq = task_rq_lock(p, &flags);
5180
5181 array = p->array;
5182 if (array)
5183 deactivate_task(p, task_rq(p));
5184 __setscheduler(p, SCHED_NORMAL, 0);
5185 if (array) {
5186 __activate_task(p, task_rq(p));
5187 resched_task(rq->curr);
5188 }
5189
5190 task_rq_unlock(rq, &flags);
5191 }
5192 read_unlock_irq(&tasklist_lock);
5193}
5194
5195#endif /* CONFIG_MAGIC_SYSRQ */