[PATCH] fix scaled & unscaled cputime accounting
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
212}
213
c8bfff6d
KH
214static inline int rt_bandwidth_enabled(void)
215{
216 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
217}
218
219static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220{
221 ktime_t now;
222
0b148fa0 223 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
224 return;
225
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 return;
228
229 spin_lock(&rt_b->rt_runtime_lock);
230 for (;;) {
231 if (hrtimer_active(&rt_b->rt_period_timer))
232 break;
233
234 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
235 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
236 hrtimer_start_expires(&rt_b->rt_period_timer,
237 HRTIMER_MODE_ABS);
d0b27fa7
PZ
238 }
239 spin_unlock(&rt_b->rt_runtime_lock);
240}
241
242#ifdef CONFIG_RT_GROUP_SCHED
243static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
244{
245 hrtimer_cancel(&rt_b->rt_period_timer);
246}
247#endif
248
712555ee
HC
249/*
250 * sched_domains_mutex serializes calls to arch_init_sched_domains,
251 * detach_destroy_domains and partition_sched_domains.
252 */
253static DEFINE_MUTEX(sched_domains_mutex);
254
052f1dc7 255#ifdef CONFIG_GROUP_SCHED
29f59db3 256
68318b8e
SV
257#include <linux/cgroup.h>
258
29f59db3
SV
259struct cfs_rq;
260
6f505b16
PZ
261static LIST_HEAD(task_groups);
262
29f59db3 263/* task group related information */
4cf86d77 264struct task_group {
052f1dc7 265#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
266 struct cgroup_subsys_state css;
267#endif
052f1dc7 268
6c415b92
AB
269#ifdef CONFIG_USER_SCHED
270 uid_t uid;
271#endif
272
052f1dc7 273#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
274 /* schedulable entities of this group on each cpu */
275 struct sched_entity **se;
276 /* runqueue "owned" by this group on each cpu */
277 struct cfs_rq **cfs_rq;
278 unsigned long shares;
052f1dc7
PZ
279#endif
280
281#ifdef CONFIG_RT_GROUP_SCHED
282 struct sched_rt_entity **rt_se;
283 struct rt_rq **rt_rq;
284
d0b27fa7 285 struct rt_bandwidth rt_bandwidth;
052f1dc7 286#endif
6b2d7700 287
ae8393e5 288 struct rcu_head rcu;
6f505b16 289 struct list_head list;
f473aa5e
PZ
290
291 struct task_group *parent;
292 struct list_head siblings;
293 struct list_head children;
29f59db3
SV
294};
295
354d60c2 296#ifdef CONFIG_USER_SCHED
eff766a6 297
6c415b92
AB
298/* Helper function to pass uid information to create_sched_user() */
299void set_tg_uid(struct user_struct *user)
300{
301 user->tg->uid = user->uid;
302}
303
eff766a6
PZ
304/*
305 * Root task group.
306 * Every UID task group (including init_task_group aka UID-0) will
307 * be a child to this group.
308 */
309struct task_group root_task_group;
310
052f1dc7 311#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
312/* Default task group's sched entity on each cpu */
313static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
314/* Default task group's cfs_rq on each cpu */
315static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 316#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
317
318#ifdef CONFIG_RT_GROUP_SCHED
319static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
320static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 321#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 322#else /* !CONFIG_USER_SCHED */
eff766a6 323#define root_task_group init_task_group
9a7e0b18 324#endif /* CONFIG_USER_SCHED */
6f505b16 325
8ed36996 326/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
327 * a task group's cpu shares.
328 */
8ed36996 329static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 330
052f1dc7 331#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
332#ifdef CONFIG_USER_SCHED
333# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 334#else /* !CONFIG_USER_SCHED */
052f1dc7 335# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 336#endif /* CONFIG_USER_SCHED */
052f1dc7 337
cb4ad1ff 338/*
2e084786
LJ
339 * A weight of 0 or 1 can cause arithmetics problems.
340 * A weight of a cfs_rq is the sum of weights of which entities
341 * are queued on this cfs_rq, so a weight of a entity should not be
342 * too large, so as the shares value of a task group.
cb4ad1ff
MX
343 * (The default weight is 1024 - so there's no practical
344 * limitation from this.)
345 */
18d95a28 346#define MIN_SHARES 2
2e084786 347#define MAX_SHARES (1UL << 18)
18d95a28 348
052f1dc7
PZ
349static int init_task_group_load = INIT_TASK_GROUP_LOAD;
350#endif
351
29f59db3 352/* Default task group.
3a252015 353 * Every task in system belong to this group at bootup.
29f59db3 354 */
434d53b0 355struct task_group init_task_group;
29f59db3
SV
356
357/* return group to which a task belongs */
4cf86d77 358static inline struct task_group *task_group(struct task_struct *p)
29f59db3 359{
4cf86d77 360 struct task_group *tg;
9b5b7751 361
052f1dc7 362#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
363 rcu_read_lock();
364 tg = __task_cred(p)->user->tg;
365 rcu_read_unlock();
052f1dc7 366#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
367 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
368 struct task_group, css);
24e377a8 369#else
41a2d6cf 370 tg = &init_task_group;
24e377a8 371#endif
9b5b7751 372 return tg;
29f59db3
SV
373}
374
375/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 376static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 377{
052f1dc7 378#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
379 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
380 p->se.parent = task_group(p)->se[cpu];
052f1dc7 381#endif
6f505b16 382
052f1dc7 383#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
384 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
385 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 386#endif
29f59db3
SV
387}
388
389#else
390
6f505b16 391static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
392static inline struct task_group *task_group(struct task_struct *p)
393{
394 return NULL;
395}
29f59db3 396
052f1dc7 397#endif /* CONFIG_GROUP_SCHED */
29f59db3 398
6aa645ea
IM
399/* CFS-related fields in a runqueue */
400struct cfs_rq {
401 struct load_weight load;
402 unsigned long nr_running;
403
6aa645ea 404 u64 exec_clock;
e9acbff6 405 u64 min_vruntime;
6aa645ea
IM
406
407 struct rb_root tasks_timeline;
408 struct rb_node *rb_leftmost;
4a55bd5e
PZ
409
410 struct list_head tasks;
411 struct list_head *balance_iterator;
412
413 /*
414 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
415 * It is set to NULL otherwise (i.e when none are currently running).
416 */
4793241b 417 struct sched_entity *curr, *next, *last;
ddc97297 418
5ac5c4d6 419 unsigned int nr_spread_over;
ddc97297 420
62160e3f 421#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
422 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
423
41a2d6cf
IM
424 /*
425 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
426 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
427 * (like users, containers etc.)
428 *
429 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
430 * list is used during load balance.
431 */
41a2d6cf
IM
432 struct list_head leaf_cfs_rq_list;
433 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
434
435#ifdef CONFIG_SMP
c09595f6 436 /*
c8cba857 437 * the part of load.weight contributed by tasks
c09595f6 438 */
c8cba857 439 unsigned long task_weight;
c09595f6 440
c8cba857
PZ
441 /*
442 * h_load = weight * f(tg)
443 *
444 * Where f(tg) is the recursive weight fraction assigned to
445 * this group.
446 */
447 unsigned long h_load;
c09595f6 448
c8cba857
PZ
449 /*
450 * this cpu's part of tg->shares
451 */
452 unsigned long shares;
f1d239f7
PZ
453
454 /*
455 * load.weight at the time we set shares
456 */
457 unsigned long rq_weight;
c09595f6 458#endif
6aa645ea
IM
459#endif
460};
1da177e4 461
6aa645ea
IM
462/* Real-Time classes' related field in a runqueue: */
463struct rt_rq {
464 struct rt_prio_array active;
63489e45 465 unsigned long rt_nr_running;
052f1dc7 466#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
467 int highest_prio; /* highest queued rt task prio */
468#endif
fa85ae24 469#ifdef CONFIG_SMP
73fe6aae 470 unsigned long rt_nr_migratory;
a22d7fc1 471 int overloaded;
fa85ae24 472#endif
6f505b16 473 int rt_throttled;
fa85ae24 474 u64 rt_time;
ac086bc2 475 u64 rt_runtime;
ea736ed5 476 /* Nests inside the rq lock: */
ac086bc2 477 spinlock_t rt_runtime_lock;
6f505b16 478
052f1dc7 479#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
480 unsigned long rt_nr_boosted;
481
6f505b16
PZ
482 struct rq *rq;
483 struct list_head leaf_rt_rq_list;
484 struct task_group *tg;
485 struct sched_rt_entity *rt_se;
486#endif
6aa645ea
IM
487};
488
57d885fe
GH
489#ifdef CONFIG_SMP
490
491/*
492 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
493 * variables. Each exclusive cpuset essentially defines an island domain by
494 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
495 * exclusive cpuset is created, we also create and attach a new root-domain
496 * object.
497 *
57d885fe
GH
498 */
499struct root_domain {
500 atomic_t refcount;
501 cpumask_t span;
502 cpumask_t online;
637f5085 503
0eab9146 504 /*
637f5085
GH
505 * The "RT overload" flag: it gets set if a CPU has more than
506 * one runnable RT task.
507 */
508 cpumask_t rto_mask;
0eab9146 509 atomic_t rto_count;
6e0534f2
GH
510#ifdef CONFIG_SMP
511 struct cpupri cpupri;
512#endif
57d885fe
GH
513};
514
dc938520
GH
515/*
516 * By default the system creates a single root-domain with all cpus as
517 * members (mimicking the global state we have today).
518 */
57d885fe
GH
519static struct root_domain def_root_domain;
520
521#endif
522
1da177e4
LT
523/*
524 * This is the main, per-CPU runqueue data structure.
525 *
526 * Locking rule: those places that want to lock multiple runqueues
527 * (such as the load balancing or the thread migration code), lock
528 * acquire operations must be ordered by ascending &runqueue.
529 */
70b97a7f 530struct rq {
d8016491
IM
531 /* runqueue lock: */
532 spinlock_t lock;
1da177e4
LT
533
534 /*
535 * nr_running and cpu_load should be in the same cacheline because
536 * remote CPUs use both these fields when doing load calculation.
537 */
538 unsigned long nr_running;
6aa645ea
IM
539 #define CPU_LOAD_IDX_MAX 5
540 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 541 unsigned char idle_at_tick;
46cb4b7c 542#ifdef CONFIG_NO_HZ
15934a37 543 unsigned long last_tick_seen;
46cb4b7c
SS
544 unsigned char in_nohz_recently;
545#endif
d8016491
IM
546 /* capture load from *all* tasks on this cpu: */
547 struct load_weight load;
6aa645ea
IM
548 unsigned long nr_load_updates;
549 u64 nr_switches;
550
551 struct cfs_rq cfs;
6f505b16 552 struct rt_rq rt;
6f505b16 553
6aa645ea 554#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
555 /* list of leaf cfs_rq on this cpu: */
556 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
557#endif
558#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 559 struct list_head leaf_rt_rq_list;
1da177e4 560#endif
1da177e4
LT
561
562 /*
563 * This is part of a global counter where only the total sum
564 * over all CPUs matters. A task can increase this counter on
565 * one CPU and if it got migrated afterwards it may decrease
566 * it on another CPU. Always updated under the runqueue lock:
567 */
568 unsigned long nr_uninterruptible;
569
36c8b586 570 struct task_struct *curr, *idle;
c9819f45 571 unsigned long next_balance;
1da177e4 572 struct mm_struct *prev_mm;
6aa645ea 573
3e51f33f 574 u64 clock;
6aa645ea 575
1da177e4
LT
576 atomic_t nr_iowait;
577
578#ifdef CONFIG_SMP
0eab9146 579 struct root_domain *rd;
1da177e4
LT
580 struct sched_domain *sd;
581
582 /* For active balancing */
583 int active_balance;
584 int push_cpu;
d8016491
IM
585 /* cpu of this runqueue: */
586 int cpu;
1f11eb6a 587 int online;
1da177e4 588
a8a51d5e 589 unsigned long avg_load_per_task;
1da177e4 590
36c8b586 591 struct task_struct *migration_thread;
1da177e4
LT
592 struct list_head migration_queue;
593#endif
594
8f4d37ec 595#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
596#ifdef CONFIG_SMP
597 int hrtick_csd_pending;
598 struct call_single_data hrtick_csd;
599#endif
8f4d37ec
PZ
600 struct hrtimer hrtick_timer;
601#endif
602
1da177e4
LT
603#ifdef CONFIG_SCHEDSTATS
604 /* latency stats */
605 struct sched_info rq_sched_info;
9c2c4802
KC
606 unsigned long long rq_cpu_time;
607 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
608
609 /* sys_sched_yield() stats */
480b9434
KC
610 unsigned int yld_exp_empty;
611 unsigned int yld_act_empty;
612 unsigned int yld_both_empty;
613 unsigned int yld_count;
1da177e4
LT
614
615 /* schedule() stats */
480b9434
KC
616 unsigned int sched_switch;
617 unsigned int sched_count;
618 unsigned int sched_goidle;
1da177e4
LT
619
620 /* try_to_wake_up() stats */
480b9434
KC
621 unsigned int ttwu_count;
622 unsigned int ttwu_local;
b8efb561
IM
623
624 /* BKL stats */
480b9434 625 unsigned int bkl_count;
1da177e4
LT
626#endif
627};
628
f34e3b61 629static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 630
15afe09b 631static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 632{
15afe09b 633 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
634}
635
0a2966b4
CL
636static inline int cpu_of(struct rq *rq)
637{
638#ifdef CONFIG_SMP
639 return rq->cpu;
640#else
641 return 0;
642#endif
643}
644
674311d5
NP
645/*
646 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 647 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
648 *
649 * The domain tree of any CPU may only be accessed from within
650 * preempt-disabled sections.
651 */
48f24c4d
IM
652#define for_each_domain(cpu, __sd) \
653 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
654
655#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
656#define this_rq() (&__get_cpu_var(runqueues))
657#define task_rq(p) cpu_rq(task_cpu(p))
658#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
659
3e51f33f
PZ
660static inline void update_rq_clock(struct rq *rq)
661{
662 rq->clock = sched_clock_cpu(cpu_of(rq));
663}
664
bf5c91ba
IM
665/*
666 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
667 */
668#ifdef CONFIG_SCHED_DEBUG
669# define const_debug __read_mostly
670#else
671# define const_debug static const
672#endif
673
017730c1
IM
674/**
675 * runqueue_is_locked
676 *
677 * Returns true if the current cpu runqueue is locked.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
680 */
681int runqueue_is_locked(void)
682{
683 int cpu = get_cpu();
684 struct rq *rq = cpu_rq(cpu);
685 int ret;
686
687 ret = spin_is_locked(&rq->lock);
688 put_cpu();
689 return ret;
690}
691
bf5c91ba
IM
692/*
693 * Debugging: various feature bits
694 */
f00b45c1
PZ
695
696#define SCHED_FEAT(name, enabled) \
697 __SCHED_FEAT_##name ,
698
bf5c91ba 699enum {
f00b45c1 700#include "sched_features.h"
bf5c91ba
IM
701};
702
f00b45c1
PZ
703#undef SCHED_FEAT
704
705#define SCHED_FEAT(name, enabled) \
706 (1UL << __SCHED_FEAT_##name) * enabled |
707
bf5c91ba 708const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
709#include "sched_features.h"
710 0;
711
712#undef SCHED_FEAT
713
714#ifdef CONFIG_SCHED_DEBUG
715#define SCHED_FEAT(name, enabled) \
716 #name ,
717
983ed7a6 718static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
719#include "sched_features.h"
720 NULL
721};
722
723#undef SCHED_FEAT
724
34f3a814 725static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 726{
f00b45c1
PZ
727 int i;
728
729 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
730 if (!(sysctl_sched_features & (1UL << i)))
731 seq_puts(m, "NO_");
732 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 733 }
34f3a814 734 seq_puts(m, "\n");
f00b45c1 735
34f3a814 736 return 0;
f00b45c1
PZ
737}
738
739static ssize_t
740sched_feat_write(struct file *filp, const char __user *ubuf,
741 size_t cnt, loff_t *ppos)
742{
743 char buf[64];
744 char *cmp = buf;
745 int neg = 0;
746 int i;
747
748 if (cnt > 63)
749 cnt = 63;
750
751 if (copy_from_user(&buf, ubuf, cnt))
752 return -EFAULT;
753
754 buf[cnt] = 0;
755
c24b7c52 756 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
757 neg = 1;
758 cmp += 3;
759 }
760
761 for (i = 0; sched_feat_names[i]; i++) {
762 int len = strlen(sched_feat_names[i]);
763
764 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
765 if (neg)
766 sysctl_sched_features &= ~(1UL << i);
767 else
768 sysctl_sched_features |= (1UL << i);
769 break;
770 }
771 }
772
773 if (!sched_feat_names[i])
774 return -EINVAL;
775
776 filp->f_pos += cnt;
777
778 return cnt;
779}
780
34f3a814
LZ
781static int sched_feat_open(struct inode *inode, struct file *filp)
782{
783 return single_open(filp, sched_feat_show, NULL);
784}
785
f00b45c1 786static struct file_operations sched_feat_fops = {
34f3a814
LZ
787 .open = sched_feat_open,
788 .write = sched_feat_write,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
f00b45c1
PZ
792};
793
794static __init int sched_init_debug(void)
795{
f00b45c1
PZ
796 debugfs_create_file("sched_features", 0644, NULL, NULL,
797 &sched_feat_fops);
798
799 return 0;
800}
801late_initcall(sched_init_debug);
802
803#endif
804
805#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 806
b82d9fdd
PZ
807/*
808 * Number of tasks to iterate in a single balance run.
809 * Limited because this is done with IRQs disabled.
810 */
811const_debug unsigned int sysctl_sched_nr_migrate = 32;
812
2398f2c6
PZ
813/*
814 * ratelimit for updating the group shares.
55cd5340 815 * default: 0.25ms
2398f2c6 816 */
55cd5340 817unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 818
ffda12a1
PZ
819/*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824unsigned int sysctl_sched_shares_thresh = 4;
825
fa85ae24 826/*
9f0c1e56 827 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
828 * default: 1s
829 */
9f0c1e56 830unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 831
6892b75e
IM
832static __read_mostly int scheduler_running;
833
9f0c1e56
PZ
834/*
835 * part of the period that we allow rt tasks to run in us.
836 * default: 0.95s
837 */
838int sysctl_sched_rt_runtime = 950000;
fa85ae24 839
d0b27fa7
PZ
840static inline u64 global_rt_period(void)
841{
842 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
843}
844
845static inline u64 global_rt_runtime(void)
846{
e26873bb 847 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
848 return RUNTIME_INF;
849
850 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
851}
fa85ae24 852
1da177e4 853#ifndef prepare_arch_switch
4866cde0
NP
854# define prepare_arch_switch(next) do { } while (0)
855#endif
856#ifndef finish_arch_switch
857# define finish_arch_switch(prev) do { } while (0)
858#endif
859
051a1d1a
DA
860static inline int task_current(struct rq *rq, struct task_struct *p)
861{
862 return rq->curr == p;
863}
864
4866cde0 865#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 866static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 867{
051a1d1a 868 return task_current(rq, p);
4866cde0
NP
869}
870
70b97a7f 871static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
872{
873}
874
70b97a7f 875static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 876{
da04c035
IM
877#ifdef CONFIG_DEBUG_SPINLOCK
878 /* this is a valid case when another task releases the spinlock */
879 rq->lock.owner = current;
880#endif
8a25d5de
IM
881 /*
882 * If we are tracking spinlock dependencies then we have to
883 * fix up the runqueue lock - which gets 'carried over' from
884 * prev into current:
885 */
886 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
887
4866cde0
NP
888 spin_unlock_irq(&rq->lock);
889}
890
891#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 892static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
893{
894#ifdef CONFIG_SMP
895 return p->oncpu;
896#else
051a1d1a 897 return task_current(rq, p);
4866cde0
NP
898#endif
899}
900
70b97a7f 901static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
902{
903#ifdef CONFIG_SMP
904 /*
905 * We can optimise this out completely for !SMP, because the
906 * SMP rebalancing from interrupt is the only thing that cares
907 * here.
908 */
909 next->oncpu = 1;
910#endif
911#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 spin_unlock_irq(&rq->lock);
913#else
914 spin_unlock(&rq->lock);
915#endif
916}
917
70b97a7f 918static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
919{
920#ifdef CONFIG_SMP
921 /*
922 * After ->oncpu is cleared, the task can be moved to a different CPU.
923 * We must ensure this doesn't happen until the switch is completely
924 * finished.
925 */
926 smp_wmb();
927 prev->oncpu = 0;
928#endif
929#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
930 local_irq_enable();
1da177e4 931#endif
4866cde0
NP
932}
933#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 934
b29739f9
IM
935/*
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
938 */
70b97a7f 939static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
940 __acquires(rq->lock)
941{
3a5c359a
AK
942 for (;;) {
943 struct rq *rq = task_rq(p);
944 spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
b29739f9 947 spin_unlock(&rq->lock);
b29739f9 948 }
b29739f9
IM
949}
950
1da177e4
LT
951/*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 953 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
954 * explicitly disabling preemption.
955 */
70b97a7f 956static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
957 __acquires(rq->lock)
958{
70b97a7f 959 struct rq *rq;
1da177e4 960
3a5c359a
AK
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
1da177e4 967 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 spin_unlock_wait(&rq->lock);
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
982 spin_unlock(&rq->lock);
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
988 spin_unlock_irqrestore(&rq->lock, *flags);
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
1001 spin_lock(&rq->lock);
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec
PZ
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 spin_unlock(&rq->lock);
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
31656519
PZ
1064 spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
1121 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1122}
b328ca18 1123
006c75f1 1124static inline void init_hrtick(void)
8f4d37ec 1125{
8f4d37ec 1126}
31656519 1127#endif /* CONFIG_SMP */
8f4d37ec 1128
31656519 1129static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1130{
31656519
PZ
1131#ifdef CONFIG_SMP
1132 rq->hrtick_csd_pending = 0;
8f4d37ec 1133
31656519
PZ
1134 rq->hrtick_csd.flags = 0;
1135 rq->hrtick_csd.func = __hrtick_start;
1136 rq->hrtick_csd.info = rq;
1137#endif
8f4d37ec 1138
31656519
PZ
1139 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1140 rq->hrtick_timer.function = hrtick;
8f4d37ec 1141}
006c75f1 1142#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1143static inline void hrtick_clear(struct rq *rq)
1144{
1145}
1146
8f4d37ec
PZ
1147static inline void init_rq_hrtick(struct rq *rq)
1148{
1149}
1150
b328ca18
PZ
1151static inline void init_hrtick(void)
1152{
1153}
006c75f1 1154#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1155
c24d20db
IM
1156/*
1157 * resched_task - mark a task 'to be rescheduled now'.
1158 *
1159 * On UP this means the setting of the need_resched flag, on SMP it
1160 * might also involve a cross-CPU call to trigger the scheduler on
1161 * the target CPU.
1162 */
1163#ifdef CONFIG_SMP
1164
1165#ifndef tsk_is_polling
1166#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1167#endif
1168
31656519 1169static void resched_task(struct task_struct *p)
c24d20db
IM
1170{
1171 int cpu;
1172
1173 assert_spin_locked(&task_rq(p)->lock);
1174
31656519 1175 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1176 return;
1177
31656519 1178 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1179
1180 cpu = task_cpu(p);
1181 if (cpu == smp_processor_id())
1182 return;
1183
1184 /* NEED_RESCHED must be visible before we test polling */
1185 smp_mb();
1186 if (!tsk_is_polling(p))
1187 smp_send_reschedule(cpu);
1188}
1189
1190static void resched_cpu(int cpu)
1191{
1192 struct rq *rq = cpu_rq(cpu);
1193 unsigned long flags;
1194
1195 if (!spin_trylock_irqsave(&rq->lock, flags))
1196 return;
1197 resched_task(cpu_curr(cpu));
1198 spin_unlock_irqrestore(&rq->lock, flags);
1199}
06d8308c
TG
1200
1201#ifdef CONFIG_NO_HZ
1202/*
1203 * When add_timer_on() enqueues a timer into the timer wheel of an
1204 * idle CPU then this timer might expire before the next timer event
1205 * which is scheduled to wake up that CPU. In case of a completely
1206 * idle system the next event might even be infinite time into the
1207 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1208 * leaves the inner idle loop so the newly added timer is taken into
1209 * account when the CPU goes back to idle and evaluates the timer
1210 * wheel for the next timer event.
1211 */
1212void wake_up_idle_cpu(int cpu)
1213{
1214 struct rq *rq = cpu_rq(cpu);
1215
1216 if (cpu == smp_processor_id())
1217 return;
1218
1219 /*
1220 * This is safe, as this function is called with the timer
1221 * wheel base lock of (cpu) held. When the CPU is on the way
1222 * to idle and has not yet set rq->curr to idle then it will
1223 * be serialized on the timer wheel base lock and take the new
1224 * timer into account automatically.
1225 */
1226 if (rq->curr != rq->idle)
1227 return;
1228
1229 /*
1230 * We can set TIF_RESCHED on the idle task of the other CPU
1231 * lockless. The worst case is that the other CPU runs the
1232 * idle task through an additional NOOP schedule()
1233 */
1234 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1235
1236 /* NEED_RESCHED must be visible before we test polling */
1237 smp_mb();
1238 if (!tsk_is_polling(rq->idle))
1239 smp_send_reschedule(cpu);
1240}
6d6bc0ad 1241#endif /* CONFIG_NO_HZ */
06d8308c 1242
6d6bc0ad 1243#else /* !CONFIG_SMP */
31656519 1244static void resched_task(struct task_struct *p)
c24d20db
IM
1245{
1246 assert_spin_locked(&task_rq(p)->lock);
31656519 1247 set_tsk_need_resched(p);
c24d20db 1248}
6d6bc0ad 1249#endif /* CONFIG_SMP */
c24d20db 1250
45bf76df
IM
1251#if BITS_PER_LONG == 32
1252# define WMULT_CONST (~0UL)
1253#else
1254# define WMULT_CONST (1UL << 32)
1255#endif
1256
1257#define WMULT_SHIFT 32
1258
194081eb
IM
1259/*
1260 * Shift right and round:
1261 */
cf2ab469 1262#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1263
a7be37ac
PZ
1264/*
1265 * delta *= weight / lw
1266 */
cb1c4fc9 1267static unsigned long
45bf76df
IM
1268calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1269 struct load_weight *lw)
1270{
1271 u64 tmp;
1272
7a232e03
LJ
1273 if (!lw->inv_weight) {
1274 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1275 lw->inv_weight = 1;
1276 else
1277 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1278 / (lw->weight+1);
1279 }
45bf76df
IM
1280
1281 tmp = (u64)delta_exec * weight;
1282 /*
1283 * Check whether we'd overflow the 64-bit multiplication:
1284 */
194081eb 1285 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1286 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1287 WMULT_SHIFT/2);
1288 else
cf2ab469 1289 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1290
ecf691da 1291 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1292}
1293
1091985b 1294static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1295{
1296 lw->weight += inc;
e89996ae 1297 lw->inv_weight = 0;
45bf76df
IM
1298}
1299
1091985b 1300static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1301{
1302 lw->weight -= dec;
e89996ae 1303 lw->inv_weight = 0;
45bf76df
IM
1304}
1305
2dd73a4f
PW
1306/*
1307 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1308 * of tasks with abnormal "nice" values across CPUs the contribution that
1309 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1310 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1311 * scaled version of the new time slice allocation that they receive on time
1312 * slice expiry etc.
1313 */
1314
dd41f596
IM
1315#define WEIGHT_IDLEPRIO 2
1316#define WMULT_IDLEPRIO (1 << 31)
1317
1318/*
1319 * Nice levels are multiplicative, with a gentle 10% change for every
1320 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1321 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1322 * that remained on nice 0.
1323 *
1324 * The "10% effect" is relative and cumulative: from _any_ nice level,
1325 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1326 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1327 * If a task goes up by ~10% and another task goes down by ~10% then
1328 * the relative distance between them is ~25%.)
dd41f596
IM
1329 */
1330static const int prio_to_weight[40] = {
254753dc
IM
1331 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1332 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1333 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1334 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1335 /* 0 */ 1024, 820, 655, 526, 423,
1336 /* 5 */ 335, 272, 215, 172, 137,
1337 /* 10 */ 110, 87, 70, 56, 45,
1338 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1339};
1340
5714d2de
IM
1341/*
1342 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1343 *
1344 * In cases where the weight does not change often, we can use the
1345 * precalculated inverse to speed up arithmetics by turning divisions
1346 * into multiplications:
1347 */
dd41f596 1348static const u32 prio_to_wmult[40] = {
254753dc
IM
1349 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1350 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1351 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1352 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1353 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1354 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1355 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1356 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1357};
2dd73a4f 1358
dd41f596
IM
1359static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1360
1361/*
1362 * runqueue iterator, to support SMP load-balancing between different
1363 * scheduling classes, without having to expose their internal data
1364 * structures to the load-balancing proper:
1365 */
1366struct rq_iterator {
1367 void *arg;
1368 struct task_struct *(*start)(void *);
1369 struct task_struct *(*next)(void *);
1370};
1371
e1d1484f
PW
1372#ifdef CONFIG_SMP
1373static unsigned long
1374balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1375 unsigned long max_load_move, struct sched_domain *sd,
1376 enum cpu_idle_type idle, int *all_pinned,
1377 int *this_best_prio, struct rq_iterator *iterator);
1378
1379static int
1380iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1381 struct sched_domain *sd, enum cpu_idle_type idle,
1382 struct rq_iterator *iterator);
e1d1484f 1383#endif
dd41f596 1384
d842de87
SV
1385#ifdef CONFIG_CGROUP_CPUACCT
1386static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1387#else
1388static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1389#endif
1390
18d95a28
PZ
1391static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1392{
1393 update_load_add(&rq->load, load);
1394}
1395
1396static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1397{
1398 update_load_sub(&rq->load, load);
1399}
1400
7940ca36 1401#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1402typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1403
1404/*
1405 * Iterate the full tree, calling @down when first entering a node and @up when
1406 * leaving it for the final time.
1407 */
eb755805 1408static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1409{
1410 struct task_group *parent, *child;
eb755805 1411 int ret;
c09595f6
PZ
1412
1413 rcu_read_lock();
1414 parent = &root_task_group;
1415down:
eb755805
PZ
1416 ret = (*down)(parent, data);
1417 if (ret)
1418 goto out_unlock;
c09595f6
PZ
1419 list_for_each_entry_rcu(child, &parent->children, siblings) {
1420 parent = child;
1421 goto down;
1422
1423up:
1424 continue;
1425 }
eb755805
PZ
1426 ret = (*up)(parent, data);
1427 if (ret)
1428 goto out_unlock;
c09595f6
PZ
1429
1430 child = parent;
1431 parent = parent->parent;
1432 if (parent)
1433 goto up;
eb755805 1434out_unlock:
c09595f6 1435 rcu_read_unlock();
eb755805
PZ
1436
1437 return ret;
c09595f6
PZ
1438}
1439
eb755805
PZ
1440static int tg_nop(struct task_group *tg, void *data)
1441{
1442 return 0;
c09595f6 1443}
eb755805
PZ
1444#endif
1445
1446#ifdef CONFIG_SMP
1447static unsigned long source_load(int cpu, int type);
1448static unsigned long target_load(int cpu, int type);
1449static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1450
1451static unsigned long cpu_avg_load_per_task(int cpu)
1452{
1453 struct rq *rq = cpu_rq(cpu);
af6d596f 1454 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1455
4cd42620
SR
1456 if (nr_running)
1457 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1458 else
1459 rq->avg_load_per_task = 0;
eb755805
PZ
1460
1461 return rq->avg_load_per_task;
1462}
1463
1464#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1465
c09595f6
PZ
1466static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1467
1468/*
1469 * Calculate and set the cpu's group shares.
1470 */
1471static void
ffda12a1
PZ
1472update_group_shares_cpu(struct task_group *tg, int cpu,
1473 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1474{
c09595f6
PZ
1475 unsigned long shares;
1476 unsigned long rq_weight;
1477
c8cba857 1478 if (!tg->se[cpu])
c09595f6
PZ
1479 return;
1480
ec4e0e2f 1481 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1482
c09595f6
PZ
1483 /*
1484 * \Sum shares * rq_weight
1485 * shares = -----------------------
1486 * \Sum rq_weight
1487 *
1488 */
ec4e0e2f 1489 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1490 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1491
ffda12a1
PZ
1492 if (abs(shares - tg->se[cpu]->load.weight) >
1493 sysctl_sched_shares_thresh) {
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long flags;
c09595f6 1496
ffda12a1 1497 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1498 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1499
ffda12a1
PZ
1500 __set_se_shares(tg->se[cpu], shares);
1501 spin_unlock_irqrestore(&rq->lock, flags);
1502 }
18d95a28 1503}
c09595f6
PZ
1504
1505/*
c8cba857
PZ
1506 * Re-compute the task group their per cpu shares over the given domain.
1507 * This needs to be done in a bottom-up fashion because the rq weight of a
1508 * parent group depends on the shares of its child groups.
c09595f6 1509 */
eb755805 1510static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1511{
ec4e0e2f 1512 unsigned long weight, rq_weight = 0;
c8cba857 1513 unsigned long shares = 0;
eb755805 1514 struct sched_domain *sd = data;
c8cba857 1515 int i;
c09595f6 1516
c8cba857 1517 for_each_cpu_mask(i, sd->span) {
ec4e0e2f
KC
1518 /*
1519 * If there are currently no tasks on the cpu pretend there
1520 * is one of average load so that when a new task gets to
1521 * run here it will not get delayed by group starvation.
1522 */
1523 weight = tg->cfs_rq[i]->load.weight;
1524 if (!weight)
1525 weight = NICE_0_LOAD;
1526
1527 tg->cfs_rq[i]->rq_weight = weight;
1528 rq_weight += weight;
c8cba857 1529 shares += tg->cfs_rq[i]->shares;
c09595f6 1530 }
c09595f6 1531
c8cba857
PZ
1532 if ((!shares && rq_weight) || shares > tg->shares)
1533 shares = tg->shares;
1534
1535 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1536 shares = tg->shares;
c09595f6 1537
ffda12a1
PZ
1538 for_each_cpu_mask(i, sd->span)
1539 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1540
1541 return 0;
c09595f6
PZ
1542}
1543
1544/*
c8cba857
PZ
1545 * Compute the cpu's hierarchical load factor for each task group.
1546 * This needs to be done in a top-down fashion because the load of a child
1547 * group is a fraction of its parents load.
c09595f6 1548 */
eb755805 1549static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1550{
c8cba857 1551 unsigned long load;
eb755805 1552 long cpu = (long)data;
c09595f6 1553
c8cba857
PZ
1554 if (!tg->parent) {
1555 load = cpu_rq(cpu)->load.weight;
1556 } else {
1557 load = tg->parent->cfs_rq[cpu]->h_load;
1558 load *= tg->cfs_rq[cpu]->shares;
1559 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1560 }
c09595f6 1561
c8cba857 1562 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1563
eb755805 1564 return 0;
c09595f6
PZ
1565}
1566
c8cba857 1567static void update_shares(struct sched_domain *sd)
4d8d595d 1568{
2398f2c6
PZ
1569 u64 now = cpu_clock(raw_smp_processor_id());
1570 s64 elapsed = now - sd->last_update;
1571
1572 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1573 sd->last_update = now;
eb755805 1574 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1575 }
4d8d595d
PZ
1576}
1577
3e5459b4
PZ
1578static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1579{
1580 spin_unlock(&rq->lock);
1581 update_shares(sd);
1582 spin_lock(&rq->lock);
1583}
1584
eb755805 1585static void update_h_load(long cpu)
c09595f6 1586{
eb755805 1587 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1588}
1589
c09595f6
PZ
1590#else
1591
c8cba857 1592static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1593{
1594}
1595
3e5459b4
PZ
1596static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1597{
1598}
1599
18d95a28
PZ
1600#endif
1601
70574a99
AD
1602/*
1603 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1604 */
1605static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1606 __releases(this_rq->lock)
1607 __acquires(busiest->lock)
1608 __acquires(this_rq->lock)
1609{
1610 int ret = 0;
1611
1612 if (unlikely(!irqs_disabled())) {
1613 /* printk() doesn't work good under rq->lock */
1614 spin_unlock(&this_rq->lock);
1615 BUG_ON(1);
1616 }
1617 if (unlikely(!spin_trylock(&busiest->lock))) {
1618 if (busiest < this_rq) {
1619 spin_unlock(&this_rq->lock);
1620 spin_lock(&busiest->lock);
1621 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1622 ret = 1;
1623 } else
1624 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1625 }
1626 return ret;
1627}
1628
1629static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1630 __releases(busiest->lock)
1631{
1632 spin_unlock(&busiest->lock);
1633 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1634}
18d95a28
PZ
1635#endif
1636
30432094 1637#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1638static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1639{
30432094 1640#ifdef CONFIG_SMP
34e83e85
IM
1641 cfs_rq->shares = shares;
1642#endif
1643}
30432094 1644#endif
e7693a36 1645
dd41f596 1646#include "sched_stats.h"
dd41f596 1647#include "sched_idletask.c"
5522d5d5
IM
1648#include "sched_fair.c"
1649#include "sched_rt.c"
dd41f596
IM
1650#ifdef CONFIG_SCHED_DEBUG
1651# include "sched_debug.c"
1652#endif
1653
1654#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1655#define for_each_class(class) \
1656 for (class = sched_class_highest; class; class = class->next)
dd41f596 1657
c09595f6 1658static void inc_nr_running(struct rq *rq)
9c217245
IM
1659{
1660 rq->nr_running++;
9c217245
IM
1661}
1662
c09595f6 1663static void dec_nr_running(struct rq *rq)
9c217245
IM
1664{
1665 rq->nr_running--;
9c217245
IM
1666}
1667
45bf76df
IM
1668static void set_load_weight(struct task_struct *p)
1669{
1670 if (task_has_rt_policy(p)) {
dd41f596
IM
1671 p->se.load.weight = prio_to_weight[0] * 2;
1672 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1673 return;
1674 }
45bf76df 1675
dd41f596
IM
1676 /*
1677 * SCHED_IDLE tasks get minimal weight:
1678 */
1679 if (p->policy == SCHED_IDLE) {
1680 p->se.load.weight = WEIGHT_IDLEPRIO;
1681 p->se.load.inv_weight = WMULT_IDLEPRIO;
1682 return;
1683 }
71f8bd46 1684
dd41f596
IM
1685 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1686 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1687}
1688
2087a1ad
GH
1689static void update_avg(u64 *avg, u64 sample)
1690{
1691 s64 diff = sample - *avg;
1692 *avg += diff >> 3;
1693}
1694
8159f87e 1695static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1696{
dd41f596 1697 sched_info_queued(p);
fd390f6a 1698 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1699 p->se.on_rq = 1;
71f8bd46
IM
1700}
1701
69be72c1 1702static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1703{
2087a1ad
GH
1704 if (sleep && p->se.last_wakeup) {
1705 update_avg(&p->se.avg_overlap,
1706 p->se.sum_exec_runtime - p->se.last_wakeup);
1707 p->se.last_wakeup = 0;
1708 }
1709
46ac22ba 1710 sched_info_dequeued(p);
f02231e5 1711 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1712 p->se.on_rq = 0;
71f8bd46
IM
1713}
1714
14531189 1715/*
dd41f596 1716 * __normal_prio - return the priority that is based on the static prio
14531189 1717 */
14531189
IM
1718static inline int __normal_prio(struct task_struct *p)
1719{
dd41f596 1720 return p->static_prio;
14531189
IM
1721}
1722
b29739f9
IM
1723/*
1724 * Calculate the expected normal priority: i.e. priority
1725 * without taking RT-inheritance into account. Might be
1726 * boosted by interactivity modifiers. Changes upon fork,
1727 * setprio syscalls, and whenever the interactivity
1728 * estimator recalculates.
1729 */
36c8b586 1730static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1731{
1732 int prio;
1733
e05606d3 1734 if (task_has_rt_policy(p))
b29739f9
IM
1735 prio = MAX_RT_PRIO-1 - p->rt_priority;
1736 else
1737 prio = __normal_prio(p);
1738 return prio;
1739}
1740
1741/*
1742 * Calculate the current priority, i.e. the priority
1743 * taken into account by the scheduler. This value might
1744 * be boosted by RT tasks, or might be boosted by
1745 * interactivity modifiers. Will be RT if the task got
1746 * RT-boosted. If not then it returns p->normal_prio.
1747 */
36c8b586 1748static int effective_prio(struct task_struct *p)
b29739f9
IM
1749{
1750 p->normal_prio = normal_prio(p);
1751 /*
1752 * If we are RT tasks or we were boosted to RT priority,
1753 * keep the priority unchanged. Otherwise, update priority
1754 * to the normal priority:
1755 */
1756 if (!rt_prio(p->prio))
1757 return p->normal_prio;
1758 return p->prio;
1759}
1760
1da177e4 1761/*
dd41f596 1762 * activate_task - move a task to the runqueue.
1da177e4 1763 */
dd41f596 1764static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1765{
d9514f6c 1766 if (task_contributes_to_load(p))
dd41f596 1767 rq->nr_uninterruptible--;
1da177e4 1768
8159f87e 1769 enqueue_task(rq, p, wakeup);
c09595f6 1770 inc_nr_running(rq);
1da177e4
LT
1771}
1772
1da177e4
LT
1773/*
1774 * deactivate_task - remove a task from the runqueue.
1775 */
2e1cb74a 1776static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1777{
d9514f6c 1778 if (task_contributes_to_load(p))
dd41f596
IM
1779 rq->nr_uninterruptible++;
1780
69be72c1 1781 dequeue_task(rq, p, sleep);
c09595f6 1782 dec_nr_running(rq);
1da177e4
LT
1783}
1784
1da177e4
LT
1785/**
1786 * task_curr - is this task currently executing on a CPU?
1787 * @p: the task in question.
1788 */
36c8b586 1789inline int task_curr(const struct task_struct *p)
1da177e4
LT
1790{
1791 return cpu_curr(task_cpu(p)) == p;
1792}
1793
dd41f596
IM
1794static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1795{
6f505b16 1796 set_task_rq(p, cpu);
dd41f596 1797#ifdef CONFIG_SMP
ce96b5ac
DA
1798 /*
1799 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1800 * successfuly executed on another CPU. We must ensure that updates of
1801 * per-task data have been completed by this moment.
1802 */
1803 smp_wmb();
dd41f596 1804 task_thread_info(p)->cpu = cpu;
dd41f596 1805#endif
2dd73a4f
PW
1806}
1807
cb469845
SR
1808static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1809 const struct sched_class *prev_class,
1810 int oldprio, int running)
1811{
1812 if (prev_class != p->sched_class) {
1813 if (prev_class->switched_from)
1814 prev_class->switched_from(rq, p, running);
1815 p->sched_class->switched_to(rq, p, running);
1816 } else
1817 p->sched_class->prio_changed(rq, p, oldprio, running);
1818}
1819
1da177e4 1820#ifdef CONFIG_SMP
c65cc870 1821
e958b360
TG
1822/* Used instead of source_load when we know the type == 0 */
1823static unsigned long weighted_cpuload(const int cpu)
1824{
1825 return cpu_rq(cpu)->load.weight;
1826}
1827
cc367732
IM
1828/*
1829 * Is this task likely cache-hot:
1830 */
e7693a36 1831static int
cc367732
IM
1832task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1833{
1834 s64 delta;
1835
f540a608
IM
1836 /*
1837 * Buddy candidates are cache hot:
1838 */
4793241b
PZ
1839 if (sched_feat(CACHE_HOT_BUDDY) &&
1840 (&p->se == cfs_rq_of(&p->se)->next ||
1841 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1842 return 1;
1843
cc367732
IM
1844 if (p->sched_class != &fair_sched_class)
1845 return 0;
1846
6bc1665b
IM
1847 if (sysctl_sched_migration_cost == -1)
1848 return 1;
1849 if (sysctl_sched_migration_cost == 0)
1850 return 0;
1851
cc367732
IM
1852 delta = now - p->se.exec_start;
1853
1854 return delta < (s64)sysctl_sched_migration_cost;
1855}
1856
1857
dd41f596 1858void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1859{
dd41f596
IM
1860 int old_cpu = task_cpu(p);
1861 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1862 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1863 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1864 u64 clock_offset;
dd41f596
IM
1865
1866 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1867
cbc34ed1
PZ
1868 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1869
6cfb0d5d
IM
1870#ifdef CONFIG_SCHEDSTATS
1871 if (p->se.wait_start)
1872 p->se.wait_start -= clock_offset;
dd41f596
IM
1873 if (p->se.sleep_start)
1874 p->se.sleep_start -= clock_offset;
1875 if (p->se.block_start)
1876 p->se.block_start -= clock_offset;
cc367732
IM
1877 if (old_cpu != new_cpu) {
1878 schedstat_inc(p, se.nr_migrations);
1879 if (task_hot(p, old_rq->clock, NULL))
1880 schedstat_inc(p, se.nr_forced2_migrations);
1881 }
6cfb0d5d 1882#endif
2830cf8c
SV
1883 p->se.vruntime -= old_cfsrq->min_vruntime -
1884 new_cfsrq->min_vruntime;
dd41f596
IM
1885
1886 __set_task_cpu(p, new_cpu);
c65cc870
IM
1887}
1888
70b97a7f 1889struct migration_req {
1da177e4 1890 struct list_head list;
1da177e4 1891
36c8b586 1892 struct task_struct *task;
1da177e4
LT
1893 int dest_cpu;
1894
1da177e4 1895 struct completion done;
70b97a7f 1896};
1da177e4
LT
1897
1898/*
1899 * The task's runqueue lock must be held.
1900 * Returns true if you have to wait for migration thread.
1901 */
36c8b586 1902static int
70b97a7f 1903migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1904{
70b97a7f 1905 struct rq *rq = task_rq(p);
1da177e4
LT
1906
1907 /*
1908 * If the task is not on a runqueue (and not running), then
1909 * it is sufficient to simply update the task's cpu field.
1910 */
dd41f596 1911 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1912 set_task_cpu(p, dest_cpu);
1913 return 0;
1914 }
1915
1916 init_completion(&req->done);
1da177e4
LT
1917 req->task = p;
1918 req->dest_cpu = dest_cpu;
1919 list_add(&req->list, &rq->migration_queue);
48f24c4d 1920
1da177e4
LT
1921 return 1;
1922}
1923
1924/*
1925 * wait_task_inactive - wait for a thread to unschedule.
1926 *
85ba2d86
RM
1927 * If @match_state is nonzero, it's the @p->state value just checked and
1928 * not expected to change. If it changes, i.e. @p might have woken up,
1929 * then return zero. When we succeed in waiting for @p to be off its CPU,
1930 * we return a positive number (its total switch count). If a second call
1931 * a short while later returns the same number, the caller can be sure that
1932 * @p has remained unscheduled the whole time.
1933 *
1da177e4
LT
1934 * The caller must ensure that the task *will* unschedule sometime soon,
1935 * else this function might spin for a *long* time. This function can't
1936 * be called with interrupts off, or it may introduce deadlock with
1937 * smp_call_function() if an IPI is sent by the same process we are
1938 * waiting to become inactive.
1939 */
85ba2d86 1940unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1941{
1942 unsigned long flags;
dd41f596 1943 int running, on_rq;
85ba2d86 1944 unsigned long ncsw;
70b97a7f 1945 struct rq *rq;
1da177e4 1946
3a5c359a
AK
1947 for (;;) {
1948 /*
1949 * We do the initial early heuristics without holding
1950 * any task-queue locks at all. We'll only try to get
1951 * the runqueue lock when things look like they will
1952 * work out!
1953 */
1954 rq = task_rq(p);
fa490cfd 1955
3a5c359a
AK
1956 /*
1957 * If the task is actively running on another CPU
1958 * still, just relax and busy-wait without holding
1959 * any locks.
1960 *
1961 * NOTE! Since we don't hold any locks, it's not
1962 * even sure that "rq" stays as the right runqueue!
1963 * But we don't care, since "task_running()" will
1964 * return false if the runqueue has changed and p
1965 * is actually now running somewhere else!
1966 */
85ba2d86
RM
1967 while (task_running(rq, p)) {
1968 if (match_state && unlikely(p->state != match_state))
1969 return 0;
3a5c359a 1970 cpu_relax();
85ba2d86 1971 }
fa490cfd 1972
3a5c359a
AK
1973 /*
1974 * Ok, time to look more closely! We need the rq
1975 * lock now, to be *sure*. If we're wrong, we'll
1976 * just go back and repeat.
1977 */
1978 rq = task_rq_lock(p, &flags);
0a16b607 1979 trace_sched_wait_task(rq, p);
3a5c359a
AK
1980 running = task_running(rq, p);
1981 on_rq = p->se.on_rq;
85ba2d86 1982 ncsw = 0;
f31e11d8 1983 if (!match_state || p->state == match_state)
93dcf55f 1984 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1985 task_rq_unlock(rq, &flags);
fa490cfd 1986
85ba2d86
RM
1987 /*
1988 * If it changed from the expected state, bail out now.
1989 */
1990 if (unlikely(!ncsw))
1991 break;
1992
3a5c359a
AK
1993 /*
1994 * Was it really running after all now that we
1995 * checked with the proper locks actually held?
1996 *
1997 * Oops. Go back and try again..
1998 */
1999 if (unlikely(running)) {
2000 cpu_relax();
2001 continue;
2002 }
fa490cfd 2003
3a5c359a
AK
2004 /*
2005 * It's not enough that it's not actively running,
2006 * it must be off the runqueue _entirely_, and not
2007 * preempted!
2008 *
2009 * So if it wa still runnable (but just not actively
2010 * running right now), it's preempted, and we should
2011 * yield - it could be a while.
2012 */
2013 if (unlikely(on_rq)) {
2014 schedule_timeout_uninterruptible(1);
2015 continue;
2016 }
fa490cfd 2017
3a5c359a
AK
2018 /*
2019 * Ahh, all good. It wasn't running, and it wasn't
2020 * runnable, which means that it will never become
2021 * running in the future either. We're all done!
2022 */
2023 break;
2024 }
85ba2d86
RM
2025
2026 return ncsw;
1da177e4
LT
2027}
2028
2029/***
2030 * kick_process - kick a running thread to enter/exit the kernel
2031 * @p: the to-be-kicked thread
2032 *
2033 * Cause a process which is running on another CPU to enter
2034 * kernel-mode, without any delay. (to get signals handled.)
2035 *
2036 * NOTE: this function doesnt have to take the runqueue lock,
2037 * because all it wants to ensure is that the remote task enters
2038 * the kernel. If the IPI races and the task has been migrated
2039 * to another CPU then no harm is done and the purpose has been
2040 * achieved as well.
2041 */
36c8b586 2042void kick_process(struct task_struct *p)
1da177e4
LT
2043{
2044 int cpu;
2045
2046 preempt_disable();
2047 cpu = task_cpu(p);
2048 if ((cpu != smp_processor_id()) && task_curr(p))
2049 smp_send_reschedule(cpu);
2050 preempt_enable();
2051}
2052
2053/*
2dd73a4f
PW
2054 * Return a low guess at the load of a migration-source cpu weighted
2055 * according to the scheduling class and "nice" value.
1da177e4
LT
2056 *
2057 * We want to under-estimate the load of migration sources, to
2058 * balance conservatively.
2059 */
a9957449 2060static unsigned long source_load(int cpu, int type)
1da177e4 2061{
70b97a7f 2062 struct rq *rq = cpu_rq(cpu);
dd41f596 2063 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2064
93b75217 2065 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2066 return total;
b910472d 2067
dd41f596 2068 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2069}
2070
2071/*
2dd73a4f
PW
2072 * Return a high guess at the load of a migration-target cpu weighted
2073 * according to the scheduling class and "nice" value.
1da177e4 2074 */
a9957449 2075static unsigned long target_load(int cpu, int type)
1da177e4 2076{
70b97a7f 2077 struct rq *rq = cpu_rq(cpu);
dd41f596 2078 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2079
93b75217 2080 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2081 return total;
3b0bd9bc 2082
dd41f596 2083 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2084}
2085
147cbb4b
NP
2086/*
2087 * find_idlest_group finds and returns the least busy CPU group within the
2088 * domain.
2089 */
2090static struct sched_group *
2091find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2092{
2093 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2094 unsigned long min_load = ULONG_MAX, this_load = 0;
2095 int load_idx = sd->forkexec_idx;
2096 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2097
2098 do {
2099 unsigned long load, avg_load;
2100 int local_group;
2101 int i;
2102
da5a5522
BD
2103 /* Skip over this group if it has no CPUs allowed */
2104 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2105 continue;
da5a5522 2106
147cbb4b 2107 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2108
2109 /* Tally up the load of all CPUs in the group */
2110 avg_load = 0;
2111
363ab6f1 2112 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2113 /* Bias balancing toward cpus of our domain */
2114 if (local_group)
2115 load = source_load(i, load_idx);
2116 else
2117 load = target_load(i, load_idx);
2118
2119 avg_load += load;
2120 }
2121
2122 /* Adjust by relative CPU power of the group */
5517d86b
ED
2123 avg_load = sg_div_cpu_power(group,
2124 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2125
2126 if (local_group) {
2127 this_load = avg_load;
2128 this = group;
2129 } else if (avg_load < min_load) {
2130 min_load = avg_load;
2131 idlest = group;
2132 }
3a5c359a 2133 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2134
2135 if (!idlest || 100*this_load < imbalance*min_load)
2136 return NULL;
2137 return idlest;
2138}
2139
2140/*
0feaece9 2141 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2142 */
95cdf3b7 2143static int
7c16ec58
MT
2144find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2145 cpumask_t *tmp)
147cbb4b
NP
2146{
2147 unsigned long load, min_load = ULONG_MAX;
2148 int idlest = -1;
2149 int i;
2150
da5a5522 2151 /* Traverse only the allowed CPUs */
7c16ec58 2152 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2153
363ab6f1 2154 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2155 load = weighted_cpuload(i);
147cbb4b
NP
2156
2157 if (load < min_load || (load == min_load && i == this_cpu)) {
2158 min_load = load;
2159 idlest = i;
2160 }
2161 }
2162
2163 return idlest;
2164}
2165
476d139c
NP
2166/*
2167 * sched_balance_self: balance the current task (running on cpu) in domains
2168 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2169 * SD_BALANCE_EXEC.
2170 *
2171 * Balance, ie. select the least loaded group.
2172 *
2173 * Returns the target CPU number, or the same CPU if no balancing is needed.
2174 *
2175 * preempt must be disabled.
2176 */
2177static int sched_balance_self(int cpu, int flag)
2178{
2179 struct task_struct *t = current;
2180 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2181
c96d145e 2182 for_each_domain(cpu, tmp) {
9761eea8
IM
2183 /*
2184 * If power savings logic is enabled for a domain, stop there.
2185 */
5c45bf27
SS
2186 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2187 break;
476d139c
NP
2188 if (tmp->flags & flag)
2189 sd = tmp;
c96d145e 2190 }
476d139c 2191
039a1c41
PZ
2192 if (sd)
2193 update_shares(sd);
2194
476d139c 2195 while (sd) {
7c16ec58 2196 cpumask_t span, tmpmask;
476d139c 2197 struct sched_group *group;
1a848870
SS
2198 int new_cpu, weight;
2199
2200 if (!(sd->flags & flag)) {
2201 sd = sd->child;
2202 continue;
2203 }
476d139c
NP
2204
2205 span = sd->span;
2206 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2207 if (!group) {
2208 sd = sd->child;
2209 continue;
2210 }
476d139c 2211
7c16ec58 2212 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2213 if (new_cpu == -1 || new_cpu == cpu) {
2214 /* Now try balancing at a lower domain level of cpu */
2215 sd = sd->child;
2216 continue;
2217 }
476d139c 2218
1a848870 2219 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2220 cpu = new_cpu;
476d139c
NP
2221 sd = NULL;
2222 weight = cpus_weight(span);
2223 for_each_domain(cpu, tmp) {
2224 if (weight <= cpus_weight(tmp->span))
2225 break;
2226 if (tmp->flags & flag)
2227 sd = tmp;
2228 }
2229 /* while loop will break here if sd == NULL */
2230 }
2231
2232 return cpu;
2233}
2234
2235#endif /* CONFIG_SMP */
1da177e4 2236
1da177e4
LT
2237/***
2238 * try_to_wake_up - wake up a thread
2239 * @p: the to-be-woken-up thread
2240 * @state: the mask of task states that can be woken
2241 * @sync: do a synchronous wakeup?
2242 *
2243 * Put it on the run-queue if it's not already there. The "current"
2244 * thread is always on the run-queue (except when the actual
2245 * re-schedule is in progress), and as such you're allowed to do
2246 * the simpler "current->state = TASK_RUNNING" to mark yourself
2247 * runnable without the overhead of this.
2248 *
2249 * returns failure only if the task is already active.
2250 */
36c8b586 2251static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2252{
cc367732 2253 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2254 unsigned long flags;
2255 long old_state;
70b97a7f 2256 struct rq *rq;
1da177e4 2257
b85d0667
IM
2258 if (!sched_feat(SYNC_WAKEUPS))
2259 sync = 0;
2260
2398f2c6
PZ
2261#ifdef CONFIG_SMP
2262 if (sched_feat(LB_WAKEUP_UPDATE)) {
2263 struct sched_domain *sd;
2264
2265 this_cpu = raw_smp_processor_id();
2266 cpu = task_cpu(p);
2267
2268 for_each_domain(this_cpu, sd) {
2269 if (cpu_isset(cpu, sd->span)) {
2270 update_shares(sd);
2271 break;
2272 }
2273 }
2274 }
2275#endif
2276
04e2f174 2277 smp_wmb();
1da177e4 2278 rq = task_rq_lock(p, &flags);
03e89e45 2279 update_rq_clock(rq);
1da177e4
LT
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283
dd41f596 2284 if (p->se.on_rq)
1da177e4
LT
2285 goto out_running;
2286
2287 cpu = task_cpu(p);
cc367732 2288 orig_cpu = cpu;
1da177e4
LT
2289 this_cpu = smp_processor_id();
2290
2291#ifdef CONFIG_SMP
2292 if (unlikely(task_running(rq, p)))
2293 goto out_activate;
2294
5d2f5a61
DA
2295 cpu = p->sched_class->select_task_rq(p, sync);
2296 if (cpu != orig_cpu) {
2297 set_task_cpu(p, cpu);
1da177e4
LT
2298 task_rq_unlock(rq, &flags);
2299 /* might preempt at this point */
2300 rq = task_rq_lock(p, &flags);
2301 old_state = p->state;
2302 if (!(old_state & state))
2303 goto out;
dd41f596 2304 if (p->se.on_rq)
1da177e4
LT
2305 goto out_running;
2306
2307 this_cpu = smp_processor_id();
2308 cpu = task_cpu(p);
2309 }
2310
e7693a36
GH
2311#ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq, ttwu_count);
2313 if (cpu == this_cpu)
2314 schedstat_inc(rq, ttwu_local);
2315 else {
2316 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) {
2318 if (cpu_isset(cpu, sd->span)) {
2319 schedstat_inc(sd, ttwu_wake_remote);
2320 break;
2321 }
2322 }
2323 }
6d6bc0ad 2324#endif /* CONFIG_SCHEDSTATS */
e7693a36 2325
1da177e4
LT
2326out_activate:
2327#endif /* CONFIG_SMP */
cc367732
IM
2328 schedstat_inc(p, se.nr_wakeups);
2329 if (sync)
2330 schedstat_inc(p, se.nr_wakeups_sync);
2331 if (orig_cpu != cpu)
2332 schedstat_inc(p, se.nr_wakeups_migrate);
2333 if (cpu == this_cpu)
2334 schedstat_inc(p, se.nr_wakeups_local);
2335 else
2336 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2337 activate_task(rq, p, 1);
1da177e4
LT
2338 success = 1;
2339
2340out_running:
468a15bb 2341 trace_sched_wakeup(rq, p, success);
15afe09b 2342 check_preempt_curr(rq, p, sync);
4ae7d5ce 2343
1da177e4 2344 p->state = TASK_RUNNING;
9a897c5a
SR
2345#ifdef CONFIG_SMP
2346 if (p->sched_class->task_wake_up)
2347 p->sched_class->task_wake_up(rq, p);
2348#endif
1da177e4 2349out:
2087a1ad
GH
2350 current->se.last_wakeup = current->se.sum_exec_runtime;
2351
1da177e4
LT
2352 task_rq_unlock(rq, &flags);
2353
2354 return success;
2355}
2356
7ad5b3a5 2357int wake_up_process(struct task_struct *p)
1da177e4 2358{
d9514f6c 2359 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2360}
1da177e4
LT
2361EXPORT_SYMBOL(wake_up_process);
2362
7ad5b3a5 2363int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2364{
2365 return try_to_wake_up(p, state, 0);
2366}
2367
1da177e4
LT
2368/*
2369 * Perform scheduler related setup for a newly forked process p.
2370 * p is forked by current.
dd41f596
IM
2371 *
2372 * __sched_fork() is basic setup used by init_idle() too:
2373 */
2374static void __sched_fork(struct task_struct *p)
2375{
dd41f596
IM
2376 p->se.exec_start = 0;
2377 p->se.sum_exec_runtime = 0;
f6cf891c 2378 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2379 p->se.last_wakeup = 0;
2380 p->se.avg_overlap = 0;
6cfb0d5d
IM
2381
2382#ifdef CONFIG_SCHEDSTATS
2383 p->se.wait_start = 0;
dd41f596
IM
2384 p->se.sum_sleep_runtime = 0;
2385 p->se.sleep_start = 0;
dd41f596
IM
2386 p->se.block_start = 0;
2387 p->se.sleep_max = 0;
2388 p->se.block_max = 0;
2389 p->se.exec_max = 0;
eba1ed4b 2390 p->se.slice_max = 0;
dd41f596 2391 p->se.wait_max = 0;
6cfb0d5d 2392#endif
476d139c 2393
fa717060 2394 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2395 p->se.on_rq = 0;
4a55bd5e 2396 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2397
e107be36
AK
2398#ifdef CONFIG_PREEMPT_NOTIFIERS
2399 INIT_HLIST_HEAD(&p->preempt_notifiers);
2400#endif
2401
1da177e4
LT
2402 /*
2403 * We mark the process as running here, but have not actually
2404 * inserted it onto the runqueue yet. This guarantees that
2405 * nobody will actually run it, and a signal or other external
2406 * event cannot wake it up and insert it on the runqueue either.
2407 */
2408 p->state = TASK_RUNNING;
dd41f596
IM
2409}
2410
2411/*
2412 * fork()/clone()-time setup:
2413 */
2414void sched_fork(struct task_struct *p, int clone_flags)
2415{
2416 int cpu = get_cpu();
2417
2418 __sched_fork(p);
2419
2420#ifdef CONFIG_SMP
2421 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2422#endif
02e4bac2 2423 set_task_cpu(p, cpu);
b29739f9
IM
2424
2425 /*
2426 * Make sure we do not leak PI boosting priority to the child:
2427 */
2428 p->prio = current->normal_prio;
2ddbf952
HS
2429 if (!rt_prio(p->prio))
2430 p->sched_class = &fair_sched_class;
b29739f9 2431
52f17b6c 2432#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2433 if (likely(sched_info_on()))
52f17b6c 2434 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2435#endif
d6077cb8 2436#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2437 p->oncpu = 0;
2438#endif
1da177e4 2439#ifdef CONFIG_PREEMPT
4866cde0 2440 /* Want to start with kernel preemption disabled. */
a1261f54 2441 task_thread_info(p)->preempt_count = 1;
1da177e4 2442#endif
476d139c 2443 put_cpu();
1da177e4
LT
2444}
2445
2446/*
2447 * wake_up_new_task - wake up a newly created task for the first time.
2448 *
2449 * This function will do some initial scheduler statistics housekeeping
2450 * that must be done for every newly created context, then puts the task
2451 * on the runqueue and wakes it.
2452 */
7ad5b3a5 2453void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2454{
2455 unsigned long flags;
dd41f596 2456 struct rq *rq;
1da177e4
LT
2457
2458 rq = task_rq_lock(p, &flags);
147cbb4b 2459 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2460 update_rq_clock(rq);
1da177e4
LT
2461
2462 p->prio = effective_prio(p);
2463
b9dca1e0 2464 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2465 activate_task(rq, p, 0);
1da177e4 2466 } else {
1da177e4 2467 /*
dd41f596
IM
2468 * Let the scheduling class do new task startup
2469 * management (if any):
1da177e4 2470 */
ee0827d8 2471 p->sched_class->task_new(rq, p);
c09595f6 2472 inc_nr_running(rq);
1da177e4 2473 }
c71dd42d 2474 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2475 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2476#ifdef CONFIG_SMP
2477 if (p->sched_class->task_wake_up)
2478 p->sched_class->task_wake_up(rq, p);
2479#endif
dd41f596 2480 task_rq_unlock(rq, &flags);
1da177e4
LT
2481}
2482
e107be36
AK
2483#ifdef CONFIG_PREEMPT_NOTIFIERS
2484
2485/**
421cee29
RD
2486 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2487 * @notifier: notifier struct to register
e107be36
AK
2488 */
2489void preempt_notifier_register(struct preempt_notifier *notifier)
2490{
2491 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2492}
2493EXPORT_SYMBOL_GPL(preempt_notifier_register);
2494
2495/**
2496 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2497 * @notifier: notifier struct to unregister
e107be36
AK
2498 *
2499 * This is safe to call from within a preemption notifier.
2500 */
2501void preempt_notifier_unregister(struct preempt_notifier *notifier)
2502{
2503 hlist_del(&notifier->link);
2504}
2505EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2506
2507static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2508{
2509 struct preempt_notifier *notifier;
2510 struct hlist_node *node;
2511
2512 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2513 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2514}
2515
2516static void
2517fire_sched_out_preempt_notifiers(struct task_struct *curr,
2518 struct task_struct *next)
2519{
2520 struct preempt_notifier *notifier;
2521 struct hlist_node *node;
2522
2523 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2524 notifier->ops->sched_out(notifier, next);
2525}
2526
6d6bc0ad 2527#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2528
2529static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2530{
2531}
2532
2533static void
2534fire_sched_out_preempt_notifiers(struct task_struct *curr,
2535 struct task_struct *next)
2536{
2537}
2538
6d6bc0ad 2539#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2540
4866cde0
NP
2541/**
2542 * prepare_task_switch - prepare to switch tasks
2543 * @rq: the runqueue preparing to switch
421cee29 2544 * @prev: the current task that is being switched out
4866cde0
NP
2545 * @next: the task we are going to switch to.
2546 *
2547 * This is called with the rq lock held and interrupts off. It must
2548 * be paired with a subsequent finish_task_switch after the context
2549 * switch.
2550 *
2551 * prepare_task_switch sets up locking and calls architecture specific
2552 * hooks.
2553 */
e107be36
AK
2554static inline void
2555prepare_task_switch(struct rq *rq, struct task_struct *prev,
2556 struct task_struct *next)
4866cde0 2557{
e107be36 2558 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2559 prepare_lock_switch(rq, next);
2560 prepare_arch_switch(next);
2561}
2562
1da177e4
LT
2563/**
2564 * finish_task_switch - clean up after a task-switch
344babaa 2565 * @rq: runqueue associated with task-switch
1da177e4
LT
2566 * @prev: the thread we just switched away from.
2567 *
4866cde0
NP
2568 * finish_task_switch must be called after the context switch, paired
2569 * with a prepare_task_switch call before the context switch.
2570 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2571 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2572 *
2573 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2574 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2575 * with the lock held can cause deadlocks; see schedule() for
2576 * details.)
2577 */
a9957449 2578static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2579 __releases(rq->lock)
2580{
1da177e4 2581 struct mm_struct *mm = rq->prev_mm;
55a101f8 2582 long prev_state;
1da177e4
LT
2583
2584 rq->prev_mm = NULL;
2585
2586 /*
2587 * A task struct has one reference for the use as "current".
c394cc9f 2588 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2589 * schedule one last time. The schedule call will never return, and
2590 * the scheduled task must drop that reference.
c394cc9f 2591 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2592 * still held, otherwise prev could be scheduled on another cpu, die
2593 * there before we look at prev->state, and then the reference would
2594 * be dropped twice.
2595 * Manfred Spraul <manfred@colorfullife.com>
2596 */
55a101f8 2597 prev_state = prev->state;
4866cde0
NP
2598 finish_arch_switch(prev);
2599 finish_lock_switch(rq, prev);
9a897c5a
SR
2600#ifdef CONFIG_SMP
2601 if (current->sched_class->post_schedule)
2602 current->sched_class->post_schedule(rq);
2603#endif
e8fa1362 2604
e107be36 2605 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2606 if (mm)
2607 mmdrop(mm);
c394cc9f 2608 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2609 /*
2610 * Remove function-return probe instances associated with this
2611 * task and put them back on the free list.
9761eea8 2612 */
c6fd91f0 2613 kprobe_flush_task(prev);
1da177e4 2614 put_task_struct(prev);
c6fd91f0 2615 }
1da177e4
LT
2616}
2617
2618/**
2619 * schedule_tail - first thing a freshly forked thread must call.
2620 * @prev: the thread we just switched away from.
2621 */
36c8b586 2622asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2623 __releases(rq->lock)
2624{
70b97a7f
IM
2625 struct rq *rq = this_rq();
2626
4866cde0
NP
2627 finish_task_switch(rq, prev);
2628#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2629 /* In this case, finish_task_switch does not reenable preemption */
2630 preempt_enable();
2631#endif
1da177e4 2632 if (current->set_child_tid)
b488893a 2633 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2634}
2635
2636/*
2637 * context_switch - switch to the new MM and the new
2638 * thread's register state.
2639 */
dd41f596 2640static inline void
70b97a7f 2641context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2642 struct task_struct *next)
1da177e4 2643{
dd41f596 2644 struct mm_struct *mm, *oldmm;
1da177e4 2645
e107be36 2646 prepare_task_switch(rq, prev, next);
0a16b607 2647 trace_sched_switch(rq, prev, next);
dd41f596
IM
2648 mm = next->mm;
2649 oldmm = prev->active_mm;
9226d125
ZA
2650 /*
2651 * For paravirt, this is coupled with an exit in switch_to to
2652 * combine the page table reload and the switch backend into
2653 * one hypercall.
2654 */
2655 arch_enter_lazy_cpu_mode();
2656
dd41f596 2657 if (unlikely(!mm)) {
1da177e4
LT
2658 next->active_mm = oldmm;
2659 atomic_inc(&oldmm->mm_count);
2660 enter_lazy_tlb(oldmm, next);
2661 } else
2662 switch_mm(oldmm, mm, next);
2663
dd41f596 2664 if (unlikely(!prev->mm)) {
1da177e4 2665 prev->active_mm = NULL;
1da177e4
LT
2666 rq->prev_mm = oldmm;
2667 }
3a5f5e48
IM
2668 /*
2669 * Since the runqueue lock will be released by the next
2670 * task (which is an invalid locking op but in the case
2671 * of the scheduler it's an obvious special-case), so we
2672 * do an early lockdep release here:
2673 */
2674#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2675 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2676#endif
1da177e4
LT
2677
2678 /* Here we just switch the register state and the stack. */
2679 switch_to(prev, next, prev);
2680
dd41f596
IM
2681 barrier();
2682 /*
2683 * this_rq must be evaluated again because prev may have moved
2684 * CPUs since it called schedule(), thus the 'rq' on its stack
2685 * frame will be invalid.
2686 */
2687 finish_task_switch(this_rq(), prev);
1da177e4
LT
2688}
2689
2690/*
2691 * nr_running, nr_uninterruptible and nr_context_switches:
2692 *
2693 * externally visible scheduler statistics: current number of runnable
2694 * threads, current number of uninterruptible-sleeping threads, total
2695 * number of context switches performed since bootup.
2696 */
2697unsigned long nr_running(void)
2698{
2699 unsigned long i, sum = 0;
2700
2701 for_each_online_cpu(i)
2702 sum += cpu_rq(i)->nr_running;
2703
2704 return sum;
2705}
2706
2707unsigned long nr_uninterruptible(void)
2708{
2709 unsigned long i, sum = 0;
2710
0a945022 2711 for_each_possible_cpu(i)
1da177e4
LT
2712 sum += cpu_rq(i)->nr_uninterruptible;
2713
2714 /*
2715 * Since we read the counters lockless, it might be slightly
2716 * inaccurate. Do not allow it to go below zero though:
2717 */
2718 if (unlikely((long)sum < 0))
2719 sum = 0;
2720
2721 return sum;
2722}
2723
2724unsigned long long nr_context_switches(void)
2725{
cc94abfc
SR
2726 int i;
2727 unsigned long long sum = 0;
1da177e4 2728
0a945022 2729 for_each_possible_cpu(i)
1da177e4
LT
2730 sum += cpu_rq(i)->nr_switches;
2731
2732 return sum;
2733}
2734
2735unsigned long nr_iowait(void)
2736{
2737 unsigned long i, sum = 0;
2738
0a945022 2739 for_each_possible_cpu(i)
1da177e4
LT
2740 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2741
2742 return sum;
2743}
2744
db1b1fef
JS
2745unsigned long nr_active(void)
2746{
2747 unsigned long i, running = 0, uninterruptible = 0;
2748
2749 for_each_online_cpu(i) {
2750 running += cpu_rq(i)->nr_running;
2751 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2752 }
2753
2754 if (unlikely((long)uninterruptible < 0))
2755 uninterruptible = 0;
2756
2757 return running + uninterruptible;
2758}
2759
48f24c4d 2760/*
dd41f596
IM
2761 * Update rq->cpu_load[] statistics. This function is usually called every
2762 * scheduler tick (TICK_NSEC).
48f24c4d 2763 */
dd41f596 2764static void update_cpu_load(struct rq *this_rq)
48f24c4d 2765{
495eca49 2766 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2767 int i, scale;
2768
2769 this_rq->nr_load_updates++;
dd41f596
IM
2770
2771 /* Update our load: */
2772 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2773 unsigned long old_load, new_load;
2774
2775 /* scale is effectively 1 << i now, and >> i divides by scale */
2776
2777 old_load = this_rq->cpu_load[i];
2778 new_load = this_load;
a25707f3
IM
2779 /*
2780 * Round up the averaging division if load is increasing. This
2781 * prevents us from getting stuck on 9 if the load is 10, for
2782 * example.
2783 */
2784 if (new_load > old_load)
2785 new_load += scale-1;
dd41f596
IM
2786 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2787 }
48f24c4d
IM
2788}
2789
dd41f596
IM
2790#ifdef CONFIG_SMP
2791
1da177e4
LT
2792/*
2793 * double_rq_lock - safely lock two runqueues
2794 *
2795 * Note this does not disable interrupts like task_rq_lock,
2796 * you need to do so manually before calling.
2797 */
70b97a7f 2798static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2799 __acquires(rq1->lock)
2800 __acquires(rq2->lock)
2801{
054b9108 2802 BUG_ON(!irqs_disabled());
1da177e4
LT
2803 if (rq1 == rq2) {
2804 spin_lock(&rq1->lock);
2805 __acquire(rq2->lock); /* Fake it out ;) */
2806 } else {
c96d145e 2807 if (rq1 < rq2) {
1da177e4 2808 spin_lock(&rq1->lock);
5e710e37 2809 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2810 } else {
2811 spin_lock(&rq2->lock);
5e710e37 2812 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2813 }
2814 }
6e82a3be
IM
2815 update_rq_clock(rq1);
2816 update_rq_clock(rq2);
1da177e4
LT
2817}
2818
2819/*
2820 * double_rq_unlock - safely unlock two runqueues
2821 *
2822 * Note this does not restore interrupts like task_rq_unlock,
2823 * you need to do so manually after calling.
2824 */
70b97a7f 2825static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2826 __releases(rq1->lock)
2827 __releases(rq2->lock)
2828{
2829 spin_unlock(&rq1->lock);
2830 if (rq1 != rq2)
2831 spin_unlock(&rq2->lock);
2832 else
2833 __release(rq2->lock);
2834}
2835
1da177e4
LT
2836/*
2837 * If dest_cpu is allowed for this process, migrate the task to it.
2838 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2839 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2840 * the cpu_allowed mask is restored.
2841 */
36c8b586 2842static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2843{
70b97a7f 2844 struct migration_req req;
1da177e4 2845 unsigned long flags;
70b97a7f 2846 struct rq *rq;
1da177e4
LT
2847
2848 rq = task_rq_lock(p, &flags);
2849 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2850 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2851 goto out;
2852
2853 /* force the process onto the specified CPU */
2854 if (migrate_task(p, dest_cpu, &req)) {
2855 /* Need to wait for migration thread (might exit: take ref). */
2856 struct task_struct *mt = rq->migration_thread;
36c8b586 2857
1da177e4
LT
2858 get_task_struct(mt);
2859 task_rq_unlock(rq, &flags);
2860 wake_up_process(mt);
2861 put_task_struct(mt);
2862 wait_for_completion(&req.done);
36c8b586 2863
1da177e4
LT
2864 return;
2865 }
2866out:
2867 task_rq_unlock(rq, &flags);
2868}
2869
2870/*
476d139c
NP
2871 * sched_exec - execve() is a valuable balancing opportunity, because at
2872 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2873 */
2874void sched_exec(void)
2875{
1da177e4 2876 int new_cpu, this_cpu = get_cpu();
476d139c 2877 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2878 put_cpu();
476d139c
NP
2879 if (new_cpu != this_cpu)
2880 sched_migrate_task(current, new_cpu);
1da177e4
LT
2881}
2882
2883/*
2884 * pull_task - move a task from a remote runqueue to the local runqueue.
2885 * Both runqueues must be locked.
2886 */
dd41f596
IM
2887static void pull_task(struct rq *src_rq, struct task_struct *p,
2888 struct rq *this_rq, int this_cpu)
1da177e4 2889{
2e1cb74a 2890 deactivate_task(src_rq, p, 0);
1da177e4 2891 set_task_cpu(p, this_cpu);
dd41f596 2892 activate_task(this_rq, p, 0);
1da177e4
LT
2893 /*
2894 * Note that idle threads have a prio of MAX_PRIO, for this test
2895 * to be always true for them.
2896 */
15afe09b 2897 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2898}
2899
2900/*
2901 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2902 */
858119e1 2903static
70b97a7f 2904int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2905 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2906 int *all_pinned)
1da177e4
LT
2907{
2908 /*
2909 * We do not migrate tasks that are:
2910 * 1) running (obviously), or
2911 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2912 * 3) are cache-hot on their current CPU.
2913 */
cc367732
IM
2914 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2915 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2916 return 0;
cc367732 2917 }
81026794
NP
2918 *all_pinned = 0;
2919
cc367732
IM
2920 if (task_running(rq, p)) {
2921 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2922 return 0;
cc367732 2923 }
1da177e4 2924
da84d961
IM
2925 /*
2926 * Aggressive migration if:
2927 * 1) task is cache cold, or
2928 * 2) too many balance attempts have failed.
2929 */
2930
6bc1665b
IM
2931 if (!task_hot(p, rq->clock, sd) ||
2932 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2933#ifdef CONFIG_SCHEDSTATS
cc367732 2934 if (task_hot(p, rq->clock, sd)) {
da84d961 2935 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2936 schedstat_inc(p, se.nr_forced_migrations);
2937 }
da84d961
IM
2938#endif
2939 return 1;
2940 }
2941
cc367732
IM
2942 if (task_hot(p, rq->clock, sd)) {
2943 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2944 return 0;
cc367732 2945 }
1da177e4
LT
2946 return 1;
2947}
2948
e1d1484f
PW
2949static unsigned long
2950balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2951 unsigned long max_load_move, struct sched_domain *sd,
2952 enum cpu_idle_type idle, int *all_pinned,
2953 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2954{
051c6764 2955 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2956 struct task_struct *p;
2957 long rem_load_move = max_load_move;
1da177e4 2958
e1d1484f 2959 if (max_load_move == 0)
1da177e4
LT
2960 goto out;
2961
81026794
NP
2962 pinned = 1;
2963
1da177e4 2964 /*
dd41f596 2965 * Start the load-balancing iterator:
1da177e4 2966 */
dd41f596
IM
2967 p = iterator->start(iterator->arg);
2968next:
b82d9fdd 2969 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2970 goto out;
051c6764
PZ
2971
2972 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2973 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2974 p = iterator->next(iterator->arg);
2975 goto next;
1da177e4
LT
2976 }
2977
dd41f596 2978 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2979 pulled++;
dd41f596 2980 rem_load_move -= p->se.load.weight;
1da177e4 2981
2dd73a4f 2982 /*
b82d9fdd 2983 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2984 */
e1d1484f 2985 if (rem_load_move > 0) {
a4ac01c3
PW
2986 if (p->prio < *this_best_prio)
2987 *this_best_prio = p->prio;
dd41f596
IM
2988 p = iterator->next(iterator->arg);
2989 goto next;
1da177e4
LT
2990 }
2991out:
2992 /*
e1d1484f 2993 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2994 * so we can safely collect pull_task() stats here rather than
2995 * inside pull_task().
2996 */
2997 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2998
2999 if (all_pinned)
3000 *all_pinned = pinned;
e1d1484f
PW
3001
3002 return max_load_move - rem_load_move;
1da177e4
LT
3003}
3004
dd41f596 3005/*
43010659
PW
3006 * move_tasks tries to move up to max_load_move weighted load from busiest to
3007 * this_rq, as part of a balancing operation within domain "sd".
3008 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3009 *
3010 * Called with both runqueues locked.
3011 */
3012static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3013 unsigned long max_load_move,
dd41f596
IM
3014 struct sched_domain *sd, enum cpu_idle_type idle,
3015 int *all_pinned)
3016{
5522d5d5 3017 const struct sched_class *class = sched_class_highest;
43010659 3018 unsigned long total_load_moved = 0;
a4ac01c3 3019 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3020
3021 do {
43010659
PW
3022 total_load_moved +=
3023 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3024 max_load_move - total_load_moved,
a4ac01c3 3025 sd, idle, all_pinned, &this_best_prio);
dd41f596 3026 class = class->next;
c4acb2c0
GH
3027
3028 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3029 break;
3030
43010659 3031 } while (class && max_load_move > total_load_moved);
dd41f596 3032
43010659
PW
3033 return total_load_moved > 0;
3034}
3035
e1d1484f
PW
3036static int
3037iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3038 struct sched_domain *sd, enum cpu_idle_type idle,
3039 struct rq_iterator *iterator)
3040{
3041 struct task_struct *p = iterator->start(iterator->arg);
3042 int pinned = 0;
3043
3044 while (p) {
3045 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3046 pull_task(busiest, p, this_rq, this_cpu);
3047 /*
3048 * Right now, this is only the second place pull_task()
3049 * is called, so we can safely collect pull_task()
3050 * stats here rather than inside pull_task().
3051 */
3052 schedstat_inc(sd, lb_gained[idle]);
3053
3054 return 1;
3055 }
3056 p = iterator->next(iterator->arg);
3057 }
3058
3059 return 0;
3060}
3061
43010659
PW
3062/*
3063 * move_one_task tries to move exactly one task from busiest to this_rq, as
3064 * part of active balancing operations within "domain".
3065 * Returns 1 if successful and 0 otherwise.
3066 *
3067 * Called with both runqueues locked.
3068 */
3069static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3070 struct sched_domain *sd, enum cpu_idle_type idle)
3071{
5522d5d5 3072 const struct sched_class *class;
43010659
PW
3073
3074 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3075 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3076 return 1;
3077
3078 return 0;
dd41f596
IM
3079}
3080
1da177e4
LT
3081/*
3082 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3083 * domain. It calculates and returns the amount of weighted load which
3084 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3085 */
3086static struct sched_group *
3087find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3088 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3089 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3090{
3091 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3092 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3093 unsigned long max_pull;
2dd73a4f
PW
3094 unsigned long busiest_load_per_task, busiest_nr_running;
3095 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3096 int load_idx, group_imb = 0;
5c45bf27
SS
3097#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 int power_savings_balance = 1;
3099 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3100 unsigned long min_nr_running = ULONG_MAX;
3101 struct sched_group *group_min = NULL, *group_leader = NULL;
3102#endif
1da177e4
LT
3103
3104 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3105 busiest_load_per_task = busiest_nr_running = 0;
3106 this_load_per_task = this_nr_running = 0;
408ed066 3107
d15bcfdb 3108 if (idle == CPU_NOT_IDLE)
7897986b 3109 load_idx = sd->busy_idx;
d15bcfdb 3110 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3111 load_idx = sd->newidle_idx;
3112 else
3113 load_idx = sd->idle_idx;
1da177e4
LT
3114
3115 do {
908a7c1b 3116 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3117 int local_group;
3118 int i;
908a7c1b 3119 int __group_imb = 0;
783609c6 3120 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3121 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3122 unsigned long sum_avg_load_per_task;
3123 unsigned long avg_load_per_task;
1da177e4
LT
3124
3125 local_group = cpu_isset(this_cpu, group->cpumask);
3126
783609c6
SS
3127 if (local_group)
3128 balance_cpu = first_cpu(group->cpumask);
3129
1da177e4 3130 /* Tally up the load of all CPUs in the group */
2dd73a4f 3131 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3132 sum_avg_load_per_task = avg_load_per_task = 0;
3133
908a7c1b
KC
3134 max_cpu_load = 0;
3135 min_cpu_load = ~0UL;
1da177e4 3136
363ab6f1 3137 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3138 struct rq *rq;
3139
3140 if (!cpu_isset(i, *cpus))
3141 continue;
3142
3143 rq = cpu_rq(i);
2dd73a4f 3144
9439aab8 3145 if (*sd_idle && rq->nr_running)
5969fe06
NP
3146 *sd_idle = 0;
3147
1da177e4 3148 /* Bias balancing toward cpus of our domain */
783609c6
SS
3149 if (local_group) {
3150 if (idle_cpu(i) && !first_idle_cpu) {
3151 first_idle_cpu = 1;
3152 balance_cpu = i;
3153 }
3154
a2000572 3155 load = target_load(i, load_idx);
908a7c1b 3156 } else {
a2000572 3157 load = source_load(i, load_idx);
908a7c1b
KC
3158 if (load > max_cpu_load)
3159 max_cpu_load = load;
3160 if (min_cpu_load > load)
3161 min_cpu_load = load;
3162 }
1da177e4
LT
3163
3164 avg_load += load;
2dd73a4f 3165 sum_nr_running += rq->nr_running;
dd41f596 3166 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3167
3168 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3169 }
3170
783609c6
SS
3171 /*
3172 * First idle cpu or the first cpu(busiest) in this sched group
3173 * is eligible for doing load balancing at this and above
9439aab8
SS
3174 * domains. In the newly idle case, we will allow all the cpu's
3175 * to do the newly idle load balance.
783609c6 3176 */
9439aab8
SS
3177 if (idle != CPU_NEWLY_IDLE && local_group &&
3178 balance_cpu != this_cpu && balance) {
783609c6
SS
3179 *balance = 0;
3180 goto ret;
3181 }
3182
1da177e4 3183 total_load += avg_load;
5517d86b 3184 total_pwr += group->__cpu_power;
1da177e4
LT
3185
3186 /* Adjust by relative CPU power of the group */
5517d86b
ED
3187 avg_load = sg_div_cpu_power(group,
3188 avg_load * SCHED_LOAD_SCALE);
1da177e4 3189
408ed066
PZ
3190
3191 /*
3192 * Consider the group unbalanced when the imbalance is larger
3193 * than the average weight of two tasks.
3194 *
3195 * APZ: with cgroup the avg task weight can vary wildly and
3196 * might not be a suitable number - should we keep a
3197 * normalized nr_running number somewhere that negates
3198 * the hierarchy?
3199 */
3200 avg_load_per_task = sg_div_cpu_power(group,
3201 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3202
3203 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3204 __group_imb = 1;
3205
5517d86b 3206 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3207
1da177e4
LT
3208 if (local_group) {
3209 this_load = avg_load;
3210 this = group;
2dd73a4f
PW
3211 this_nr_running = sum_nr_running;
3212 this_load_per_task = sum_weighted_load;
3213 } else if (avg_load > max_load &&
908a7c1b 3214 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3215 max_load = avg_load;
3216 busiest = group;
2dd73a4f
PW
3217 busiest_nr_running = sum_nr_running;
3218 busiest_load_per_task = sum_weighted_load;
908a7c1b 3219 group_imb = __group_imb;
1da177e4 3220 }
5c45bf27
SS
3221
3222#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3223 /*
3224 * Busy processors will not participate in power savings
3225 * balance.
3226 */
dd41f596
IM
3227 if (idle == CPU_NOT_IDLE ||
3228 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3229 goto group_next;
5c45bf27
SS
3230
3231 /*
3232 * If the local group is idle or completely loaded
3233 * no need to do power savings balance at this domain
3234 */
3235 if (local_group && (this_nr_running >= group_capacity ||
3236 !this_nr_running))
3237 power_savings_balance = 0;
3238
dd41f596 3239 /*
5c45bf27
SS
3240 * If a group is already running at full capacity or idle,
3241 * don't include that group in power savings calculations
dd41f596
IM
3242 */
3243 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3244 || !sum_nr_running)
dd41f596 3245 goto group_next;
5c45bf27 3246
dd41f596 3247 /*
5c45bf27 3248 * Calculate the group which has the least non-idle load.
dd41f596
IM
3249 * This is the group from where we need to pick up the load
3250 * for saving power
3251 */
3252 if ((sum_nr_running < min_nr_running) ||
3253 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3254 first_cpu(group->cpumask) <
3255 first_cpu(group_min->cpumask))) {
dd41f596
IM
3256 group_min = group;
3257 min_nr_running = sum_nr_running;
5c45bf27
SS
3258 min_load_per_task = sum_weighted_load /
3259 sum_nr_running;
dd41f596 3260 }
5c45bf27 3261
dd41f596 3262 /*
5c45bf27 3263 * Calculate the group which is almost near its
dd41f596
IM
3264 * capacity but still has some space to pick up some load
3265 * from other group and save more power
3266 */
3267 if (sum_nr_running <= group_capacity - 1) {
3268 if (sum_nr_running > leader_nr_running ||
3269 (sum_nr_running == leader_nr_running &&
3270 first_cpu(group->cpumask) >
3271 first_cpu(group_leader->cpumask))) {
3272 group_leader = group;
3273 leader_nr_running = sum_nr_running;
3274 }
48f24c4d 3275 }
5c45bf27
SS
3276group_next:
3277#endif
1da177e4
LT
3278 group = group->next;
3279 } while (group != sd->groups);
3280
2dd73a4f 3281 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3282 goto out_balanced;
3283
3284 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3285
3286 if (this_load >= avg_load ||
3287 100*max_load <= sd->imbalance_pct*this_load)
3288 goto out_balanced;
3289
2dd73a4f 3290 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3291 if (group_imb)
3292 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3293
1da177e4
LT
3294 /*
3295 * We're trying to get all the cpus to the average_load, so we don't
3296 * want to push ourselves above the average load, nor do we wish to
3297 * reduce the max loaded cpu below the average load, as either of these
3298 * actions would just result in more rebalancing later, and ping-pong
3299 * tasks around. Thus we look for the minimum possible imbalance.
3300 * Negative imbalances (*we* are more loaded than anyone else) will
3301 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3302 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3303 * appear as very large values with unsigned longs.
3304 */
2dd73a4f
PW
3305 if (max_load <= busiest_load_per_task)
3306 goto out_balanced;
3307
3308 /*
3309 * In the presence of smp nice balancing, certain scenarios can have
3310 * max load less than avg load(as we skip the groups at or below
3311 * its cpu_power, while calculating max_load..)
3312 */
3313 if (max_load < avg_load) {
3314 *imbalance = 0;
3315 goto small_imbalance;
3316 }
0c117f1b
SS
3317
3318 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3319 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3320
1da177e4 3321 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3322 *imbalance = min(max_pull * busiest->__cpu_power,
3323 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3324 / SCHED_LOAD_SCALE;
3325
2dd73a4f
PW
3326 /*
3327 * if *imbalance is less than the average load per runnable task
3328 * there is no gaurantee that any tasks will be moved so we'll have
3329 * a think about bumping its value to force at least one task to be
3330 * moved
3331 */
7fd0d2dd 3332 if (*imbalance < busiest_load_per_task) {
48f24c4d 3333 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3334 unsigned int imbn;
3335
3336small_imbalance:
3337 pwr_move = pwr_now = 0;
3338 imbn = 2;
3339 if (this_nr_running) {
3340 this_load_per_task /= this_nr_running;
3341 if (busiest_load_per_task > this_load_per_task)
3342 imbn = 1;
3343 } else
408ed066 3344 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3345
01c8c57d 3346 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3347 busiest_load_per_task * imbn) {
2dd73a4f 3348 *imbalance = busiest_load_per_task;
1da177e4
LT
3349 return busiest;
3350 }
3351
3352 /*
3353 * OK, we don't have enough imbalance to justify moving tasks,
3354 * however we may be able to increase total CPU power used by
3355 * moving them.
3356 */
3357
5517d86b
ED
3358 pwr_now += busiest->__cpu_power *
3359 min(busiest_load_per_task, max_load);
3360 pwr_now += this->__cpu_power *
3361 min(this_load_per_task, this_load);
1da177e4
LT
3362 pwr_now /= SCHED_LOAD_SCALE;
3363
3364 /* Amount of load we'd subtract */
5517d86b
ED
3365 tmp = sg_div_cpu_power(busiest,
3366 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3367 if (max_load > tmp)
5517d86b 3368 pwr_move += busiest->__cpu_power *
2dd73a4f 3369 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3370
3371 /* Amount of load we'd add */
5517d86b 3372 if (max_load * busiest->__cpu_power <
33859f7f 3373 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3374 tmp = sg_div_cpu_power(this,
3375 max_load * busiest->__cpu_power);
1da177e4 3376 else
5517d86b
ED
3377 tmp = sg_div_cpu_power(this,
3378 busiest_load_per_task * SCHED_LOAD_SCALE);
3379 pwr_move += this->__cpu_power *
3380 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3381 pwr_move /= SCHED_LOAD_SCALE;
3382
3383 /* Move if we gain throughput */
7fd0d2dd
SS
3384 if (pwr_move > pwr_now)
3385 *imbalance = busiest_load_per_task;
1da177e4
LT
3386 }
3387
1da177e4
LT
3388 return busiest;
3389
3390out_balanced:
5c45bf27 3391#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3392 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3393 goto ret;
1da177e4 3394
5c45bf27
SS
3395 if (this == group_leader && group_leader != group_min) {
3396 *imbalance = min_load_per_task;
3397 return group_min;
3398 }
5c45bf27 3399#endif
783609c6 3400ret:
1da177e4
LT
3401 *imbalance = 0;
3402 return NULL;
3403}
3404
3405/*
3406 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3407 */
70b97a7f 3408static struct rq *
d15bcfdb 3409find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3410 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3411{
70b97a7f 3412 struct rq *busiest = NULL, *rq;
2dd73a4f 3413 unsigned long max_load = 0;
1da177e4
LT
3414 int i;
3415
363ab6f1 3416 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3417 unsigned long wl;
0a2966b4
CL
3418
3419 if (!cpu_isset(i, *cpus))
3420 continue;
3421
48f24c4d 3422 rq = cpu_rq(i);
dd41f596 3423 wl = weighted_cpuload(i);
2dd73a4f 3424
dd41f596 3425 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3426 continue;
1da177e4 3427
dd41f596
IM
3428 if (wl > max_load) {
3429 max_load = wl;
48f24c4d 3430 busiest = rq;
1da177e4
LT
3431 }
3432 }
3433
3434 return busiest;
3435}
3436
77391d71
NP
3437/*
3438 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3439 * so long as it is large enough.
3440 */
3441#define MAX_PINNED_INTERVAL 512
3442
1da177e4
LT
3443/*
3444 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3445 * tasks if there is an imbalance.
1da177e4 3446 */
70b97a7f 3447static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3448 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3449 int *balance, cpumask_t *cpus)
1da177e4 3450{
43010659 3451 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3452 struct sched_group *group;
1da177e4 3453 unsigned long imbalance;
70b97a7f 3454 struct rq *busiest;
fe2eea3f 3455 unsigned long flags;
5969fe06 3456
7c16ec58
MT
3457 cpus_setall(*cpus);
3458
89c4710e
SS
3459 /*
3460 * When power savings policy is enabled for the parent domain, idle
3461 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3462 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3463 * portraying it as CPU_NOT_IDLE.
89c4710e 3464 */
d15bcfdb 3465 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3466 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3467 sd_idle = 1;
1da177e4 3468
2d72376b 3469 schedstat_inc(sd, lb_count[idle]);
1da177e4 3470
0a2966b4 3471redo:
c8cba857 3472 update_shares(sd);
0a2966b4 3473 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3474 cpus, balance);
783609c6 3475
06066714 3476 if (*balance == 0)
783609c6 3477 goto out_balanced;
783609c6 3478
1da177e4
LT
3479 if (!group) {
3480 schedstat_inc(sd, lb_nobusyg[idle]);
3481 goto out_balanced;
3482 }
3483
7c16ec58 3484 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3485 if (!busiest) {
3486 schedstat_inc(sd, lb_nobusyq[idle]);
3487 goto out_balanced;
3488 }
3489
db935dbd 3490 BUG_ON(busiest == this_rq);
1da177e4
LT
3491
3492 schedstat_add(sd, lb_imbalance[idle], imbalance);
3493
43010659 3494 ld_moved = 0;
1da177e4
LT
3495 if (busiest->nr_running > 1) {
3496 /*
3497 * Attempt to move tasks. If find_busiest_group has found
3498 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3499 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3500 * correctly treated as an imbalance.
3501 */
fe2eea3f 3502 local_irq_save(flags);
e17224bf 3503 double_rq_lock(this_rq, busiest);
43010659 3504 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3505 imbalance, sd, idle, &all_pinned);
e17224bf 3506 double_rq_unlock(this_rq, busiest);
fe2eea3f 3507 local_irq_restore(flags);
81026794 3508
46cb4b7c
SS
3509 /*
3510 * some other cpu did the load balance for us.
3511 */
43010659 3512 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3513 resched_cpu(this_cpu);
3514
81026794 3515 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3516 if (unlikely(all_pinned)) {
7c16ec58
MT
3517 cpu_clear(cpu_of(busiest), *cpus);
3518 if (!cpus_empty(*cpus))
0a2966b4 3519 goto redo;
81026794 3520 goto out_balanced;
0a2966b4 3521 }
1da177e4 3522 }
81026794 3523
43010659 3524 if (!ld_moved) {
1da177e4
LT
3525 schedstat_inc(sd, lb_failed[idle]);
3526 sd->nr_balance_failed++;
3527
3528 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3529
fe2eea3f 3530 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3531
3532 /* don't kick the migration_thread, if the curr
3533 * task on busiest cpu can't be moved to this_cpu
3534 */
3535 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3536 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3537 all_pinned = 1;
3538 goto out_one_pinned;
3539 }
3540
1da177e4
LT
3541 if (!busiest->active_balance) {
3542 busiest->active_balance = 1;
3543 busiest->push_cpu = this_cpu;
81026794 3544 active_balance = 1;
1da177e4 3545 }
fe2eea3f 3546 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3547 if (active_balance)
1da177e4
LT
3548 wake_up_process(busiest->migration_thread);
3549
3550 /*
3551 * We've kicked active balancing, reset the failure
3552 * counter.
3553 */
39507451 3554 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3555 }
81026794 3556 } else
1da177e4
LT
3557 sd->nr_balance_failed = 0;
3558
81026794 3559 if (likely(!active_balance)) {
1da177e4
LT
3560 /* We were unbalanced, so reset the balancing interval */
3561 sd->balance_interval = sd->min_interval;
81026794
NP
3562 } else {
3563 /*
3564 * If we've begun active balancing, start to back off. This
3565 * case may not be covered by the all_pinned logic if there
3566 * is only 1 task on the busy runqueue (because we don't call
3567 * move_tasks).
3568 */
3569 if (sd->balance_interval < sd->max_interval)
3570 sd->balance_interval *= 2;
1da177e4
LT
3571 }
3572
43010659 3573 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3574 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3575 ld_moved = -1;
3576
3577 goto out;
1da177e4
LT
3578
3579out_balanced:
1da177e4
LT
3580 schedstat_inc(sd, lb_balanced[idle]);
3581
16cfb1c0 3582 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3583
3584out_one_pinned:
1da177e4 3585 /* tune up the balancing interval */
77391d71
NP
3586 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3587 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3588 sd->balance_interval *= 2;
3589
48f24c4d 3590 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3591 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3592 ld_moved = -1;
3593 else
3594 ld_moved = 0;
3595out:
c8cba857
PZ
3596 if (ld_moved)
3597 update_shares(sd);
c09595f6 3598 return ld_moved;
1da177e4
LT
3599}
3600
3601/*
3602 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3603 * tasks if there is an imbalance.
3604 *
d15bcfdb 3605 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3606 * this_rq is locked.
3607 */
48f24c4d 3608static int
7c16ec58
MT
3609load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3610 cpumask_t *cpus)
1da177e4
LT
3611{
3612 struct sched_group *group;
70b97a7f 3613 struct rq *busiest = NULL;
1da177e4 3614 unsigned long imbalance;
43010659 3615 int ld_moved = 0;
5969fe06 3616 int sd_idle = 0;
969bb4e4 3617 int all_pinned = 0;
7c16ec58
MT
3618
3619 cpus_setall(*cpus);
5969fe06 3620
89c4710e
SS
3621 /*
3622 * When power savings policy is enabled for the parent domain, idle
3623 * sibling can pick up load irrespective of busy siblings. In this case,
3624 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3625 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3626 */
3627 if (sd->flags & SD_SHARE_CPUPOWER &&
3628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3629 sd_idle = 1;
1da177e4 3630
2d72376b 3631 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3632redo:
3e5459b4 3633 update_shares_locked(this_rq, sd);
d15bcfdb 3634 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3635 &sd_idle, cpus, NULL);
1da177e4 3636 if (!group) {
d15bcfdb 3637 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3638 goto out_balanced;
1da177e4
LT
3639 }
3640
7c16ec58 3641 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3642 if (!busiest) {
d15bcfdb 3643 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3644 goto out_balanced;
1da177e4
LT
3645 }
3646
db935dbd
NP
3647 BUG_ON(busiest == this_rq);
3648
d15bcfdb 3649 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3650
43010659 3651 ld_moved = 0;
d6d5cfaf
NP
3652 if (busiest->nr_running > 1) {
3653 /* Attempt to move tasks */
3654 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3655 /* this_rq->clock is already updated */
3656 update_rq_clock(busiest);
43010659 3657 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3658 imbalance, sd, CPU_NEWLY_IDLE,
3659 &all_pinned);
1b12bbc7 3660 double_unlock_balance(this_rq, busiest);
0a2966b4 3661
969bb4e4 3662 if (unlikely(all_pinned)) {
7c16ec58
MT
3663 cpu_clear(cpu_of(busiest), *cpus);
3664 if (!cpus_empty(*cpus))
0a2966b4
CL
3665 goto redo;
3666 }
d6d5cfaf
NP
3667 }
3668
43010659 3669 if (!ld_moved) {
d15bcfdb 3670 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3671 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3672 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3673 return -1;
3674 } else
16cfb1c0 3675 sd->nr_balance_failed = 0;
1da177e4 3676
3e5459b4 3677 update_shares_locked(this_rq, sd);
43010659 3678 return ld_moved;
16cfb1c0
NP
3679
3680out_balanced:
d15bcfdb 3681 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3682 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3683 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3684 return -1;
16cfb1c0 3685 sd->nr_balance_failed = 0;
48f24c4d 3686
16cfb1c0 3687 return 0;
1da177e4
LT
3688}
3689
3690/*
3691 * idle_balance is called by schedule() if this_cpu is about to become
3692 * idle. Attempts to pull tasks from other CPUs.
3693 */
70b97a7f 3694static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3695{
3696 struct sched_domain *sd;
efbe027e 3697 int pulled_task = 0;
dd41f596 3698 unsigned long next_balance = jiffies + HZ;
7c16ec58 3699 cpumask_t tmpmask;
1da177e4
LT
3700
3701 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3702 unsigned long interval;
3703
3704 if (!(sd->flags & SD_LOAD_BALANCE))
3705 continue;
3706
3707 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3708 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3709 pulled_task = load_balance_newidle(this_cpu, this_rq,
3710 sd, &tmpmask);
92c4ca5c
CL
3711
3712 interval = msecs_to_jiffies(sd->balance_interval);
3713 if (time_after(next_balance, sd->last_balance + interval))
3714 next_balance = sd->last_balance + interval;
3715 if (pulled_task)
3716 break;
1da177e4 3717 }
dd41f596 3718 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3719 /*
3720 * We are going idle. next_balance may be set based on
3721 * a busy processor. So reset next_balance.
3722 */
3723 this_rq->next_balance = next_balance;
dd41f596 3724 }
1da177e4
LT
3725}
3726
3727/*
3728 * active_load_balance is run by migration threads. It pushes running tasks
3729 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3730 * running on each physical CPU where possible, and avoids physical /
3731 * logical imbalances.
3732 *
3733 * Called with busiest_rq locked.
3734 */
70b97a7f 3735static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3736{
39507451 3737 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3738 struct sched_domain *sd;
3739 struct rq *target_rq;
39507451 3740
48f24c4d 3741 /* Is there any task to move? */
39507451 3742 if (busiest_rq->nr_running <= 1)
39507451
NP
3743 return;
3744
3745 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3746
3747 /*
39507451 3748 * This condition is "impossible", if it occurs
41a2d6cf 3749 * we need to fix it. Originally reported by
39507451 3750 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3751 */
39507451 3752 BUG_ON(busiest_rq == target_rq);
1da177e4 3753
39507451
NP
3754 /* move a task from busiest_rq to target_rq */
3755 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3756 update_rq_clock(busiest_rq);
3757 update_rq_clock(target_rq);
39507451
NP
3758
3759 /* Search for an sd spanning us and the target CPU. */
c96d145e 3760 for_each_domain(target_cpu, sd) {
39507451 3761 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3762 cpu_isset(busiest_cpu, sd->span))
39507451 3763 break;
c96d145e 3764 }
39507451 3765
48f24c4d 3766 if (likely(sd)) {
2d72376b 3767 schedstat_inc(sd, alb_count);
39507451 3768
43010659
PW
3769 if (move_one_task(target_rq, target_cpu, busiest_rq,
3770 sd, CPU_IDLE))
48f24c4d
IM
3771 schedstat_inc(sd, alb_pushed);
3772 else
3773 schedstat_inc(sd, alb_failed);
3774 }
1b12bbc7 3775 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3776}
3777
46cb4b7c
SS
3778#ifdef CONFIG_NO_HZ
3779static struct {
3780 atomic_t load_balancer;
41a2d6cf 3781 cpumask_t cpu_mask;
46cb4b7c
SS
3782} nohz ____cacheline_aligned = {
3783 .load_balancer = ATOMIC_INIT(-1),
3784 .cpu_mask = CPU_MASK_NONE,
3785};
3786
7835b98b 3787/*
46cb4b7c
SS
3788 * This routine will try to nominate the ilb (idle load balancing)
3789 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3790 * load balancing on behalf of all those cpus. If all the cpus in the system
3791 * go into this tickless mode, then there will be no ilb owner (as there is
3792 * no need for one) and all the cpus will sleep till the next wakeup event
3793 * arrives...
3794 *
3795 * For the ilb owner, tick is not stopped. And this tick will be used
3796 * for idle load balancing. ilb owner will still be part of
3797 * nohz.cpu_mask..
7835b98b 3798 *
46cb4b7c
SS
3799 * While stopping the tick, this cpu will become the ilb owner if there
3800 * is no other owner. And will be the owner till that cpu becomes busy
3801 * or if all cpus in the system stop their ticks at which point
3802 * there is no need for ilb owner.
3803 *
3804 * When the ilb owner becomes busy, it nominates another owner, during the
3805 * next busy scheduler_tick()
3806 */
3807int select_nohz_load_balancer(int stop_tick)
3808{
3809 int cpu = smp_processor_id();
3810
3811 if (stop_tick) {
3812 cpu_set(cpu, nohz.cpu_mask);
3813 cpu_rq(cpu)->in_nohz_recently = 1;
3814
3815 /*
3816 * If we are going offline and still the leader, give up!
3817 */
e761b772 3818 if (!cpu_active(cpu) &&
46cb4b7c
SS
3819 atomic_read(&nohz.load_balancer) == cpu) {
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3821 BUG();
3822 return 0;
3823 }
3824
3825 /* time for ilb owner also to sleep */
3826 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3827 if (atomic_read(&nohz.load_balancer) == cpu)
3828 atomic_set(&nohz.load_balancer, -1);
3829 return 0;
3830 }
3831
3832 if (atomic_read(&nohz.load_balancer) == -1) {
3833 /* make me the ilb owner */
3834 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3835 return 1;
3836 } else if (atomic_read(&nohz.load_balancer) == cpu)
3837 return 1;
3838 } else {
3839 if (!cpu_isset(cpu, nohz.cpu_mask))
3840 return 0;
3841
3842 cpu_clear(cpu, nohz.cpu_mask);
3843
3844 if (atomic_read(&nohz.load_balancer) == cpu)
3845 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3846 BUG();
3847 }
3848 return 0;
3849}
3850#endif
3851
3852static DEFINE_SPINLOCK(balancing);
3853
3854/*
7835b98b
CL
3855 * It checks each scheduling domain to see if it is due to be balanced,
3856 * and initiates a balancing operation if so.
3857 *
3858 * Balancing parameters are set up in arch_init_sched_domains.
3859 */
a9957449 3860static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3861{
46cb4b7c
SS
3862 int balance = 1;
3863 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3864 unsigned long interval;
3865 struct sched_domain *sd;
46cb4b7c 3866 /* Earliest time when we have to do rebalance again */
c9819f45 3867 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3868 int update_next_balance = 0;
d07355f5 3869 int need_serialize;
7c16ec58 3870 cpumask_t tmp;
1da177e4 3871
46cb4b7c 3872 for_each_domain(cpu, sd) {
1da177e4
LT
3873 if (!(sd->flags & SD_LOAD_BALANCE))
3874 continue;
3875
3876 interval = sd->balance_interval;
d15bcfdb 3877 if (idle != CPU_IDLE)
1da177e4
LT
3878 interval *= sd->busy_factor;
3879
3880 /* scale ms to jiffies */
3881 interval = msecs_to_jiffies(interval);
3882 if (unlikely(!interval))
3883 interval = 1;
dd41f596
IM
3884 if (interval > HZ*NR_CPUS/10)
3885 interval = HZ*NR_CPUS/10;
3886
d07355f5 3887 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3888
d07355f5 3889 if (need_serialize) {
08c183f3
CL
3890 if (!spin_trylock(&balancing))
3891 goto out;
3892 }
3893
c9819f45 3894 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3895 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3896 /*
3897 * We've pulled tasks over so either we're no
5969fe06
NP
3898 * longer idle, or one of our SMT siblings is
3899 * not idle.
3900 */
d15bcfdb 3901 idle = CPU_NOT_IDLE;
1da177e4 3902 }
1bd77f2d 3903 sd->last_balance = jiffies;
1da177e4 3904 }
d07355f5 3905 if (need_serialize)
08c183f3
CL
3906 spin_unlock(&balancing);
3907out:
f549da84 3908 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3909 next_balance = sd->last_balance + interval;
f549da84
SS
3910 update_next_balance = 1;
3911 }
783609c6
SS
3912
3913 /*
3914 * Stop the load balance at this level. There is another
3915 * CPU in our sched group which is doing load balancing more
3916 * actively.
3917 */
3918 if (!balance)
3919 break;
1da177e4 3920 }
f549da84
SS
3921
3922 /*
3923 * next_balance will be updated only when there is a need.
3924 * When the cpu is attached to null domain for ex, it will not be
3925 * updated.
3926 */
3927 if (likely(update_next_balance))
3928 rq->next_balance = next_balance;
46cb4b7c
SS
3929}
3930
3931/*
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3934 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3935 */
3936static void run_rebalance_domains(struct softirq_action *h)
3937{
dd41f596
IM
3938 int this_cpu = smp_processor_id();
3939 struct rq *this_rq = cpu_rq(this_cpu);
3940 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3941 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3942
dd41f596 3943 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3944
3945#ifdef CONFIG_NO_HZ
3946 /*
3947 * If this cpu is the owner for idle load balancing, then do the
3948 * balancing on behalf of the other idle cpus whose ticks are
3949 * stopped.
3950 */
dd41f596
IM
3951 if (this_rq->idle_at_tick &&
3952 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3953 cpumask_t cpus = nohz.cpu_mask;
3954 struct rq *rq;
3955 int balance_cpu;
3956
dd41f596 3957 cpu_clear(this_cpu, cpus);
363ab6f1 3958 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3959 /*
3960 * If this cpu gets work to do, stop the load balancing
3961 * work being done for other cpus. Next load
3962 * balancing owner will pick it up.
3963 */
3964 if (need_resched())
3965 break;
3966
de0cf899 3967 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3968
3969 rq = cpu_rq(balance_cpu);
dd41f596
IM
3970 if (time_after(this_rq->next_balance, rq->next_balance))
3971 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3972 }
3973 }
3974#endif
3975}
3976
3977/*
3978 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3979 *
3980 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3981 * idle load balancing owner or decide to stop the periodic load balancing,
3982 * if the whole system is idle.
3983 */
dd41f596 3984static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3985{
46cb4b7c
SS
3986#ifdef CONFIG_NO_HZ
3987 /*
3988 * If we were in the nohz mode recently and busy at the current
3989 * scheduler tick, then check if we need to nominate new idle
3990 * load balancer.
3991 */
3992 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3993 rq->in_nohz_recently = 0;
3994
3995 if (atomic_read(&nohz.load_balancer) == cpu) {
3996 cpu_clear(cpu, nohz.cpu_mask);
3997 atomic_set(&nohz.load_balancer, -1);
3998 }
3999
4000 if (atomic_read(&nohz.load_balancer) == -1) {
4001 /*
4002 * simple selection for now: Nominate the
4003 * first cpu in the nohz list to be the next
4004 * ilb owner.
4005 *
4006 * TBD: Traverse the sched domains and nominate
4007 * the nearest cpu in the nohz.cpu_mask.
4008 */
4009 int ilb = first_cpu(nohz.cpu_mask);
4010
434d53b0 4011 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4012 resched_cpu(ilb);
4013 }
4014 }
4015
4016 /*
4017 * If this cpu is idle and doing idle load balancing for all the
4018 * cpus with ticks stopped, is it time for that to stop?
4019 */
4020 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4021 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4022 resched_cpu(cpu);
4023 return;
4024 }
4025
4026 /*
4027 * If this cpu is idle and the idle load balancing is done by
4028 * someone else, then no need raise the SCHED_SOFTIRQ
4029 */
4030 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4031 cpu_isset(cpu, nohz.cpu_mask))
4032 return;
4033#endif
4034 if (time_after_eq(jiffies, rq->next_balance))
4035 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4036}
dd41f596
IM
4037
4038#else /* CONFIG_SMP */
4039
1da177e4
LT
4040/*
4041 * on UP we do not need to balance between CPUs:
4042 */
70b97a7f 4043static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4044{
4045}
dd41f596 4046
1da177e4
LT
4047#endif
4048
1da177e4
LT
4049DEFINE_PER_CPU(struct kernel_stat, kstat);
4050
4051EXPORT_PER_CPU_SYMBOL(kstat);
4052
4053/*
f06febc9
FM
4054 * Return any ns on the sched_clock that have not yet been banked in
4055 * @p in case that task is currently running.
1da177e4 4056 */
bb34d92f 4057unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4058{
1da177e4 4059 unsigned long flags;
41b86e9c 4060 struct rq *rq;
bb34d92f 4061 u64 ns = 0;
48f24c4d 4062
41b86e9c 4063 rq = task_rq_lock(p, &flags);
1508487e 4064
051a1d1a 4065 if (task_current(rq, p)) {
f06febc9
FM
4066 u64 delta_exec;
4067
a8e504d2
IM
4068 update_rq_clock(rq);
4069 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4070 if ((s64)delta_exec > 0)
bb34d92f 4071 ns = delta_exec;
41b86e9c 4072 }
48f24c4d 4073
41b86e9c 4074 task_rq_unlock(rq, &flags);
48f24c4d 4075
1da177e4
LT
4076 return ns;
4077}
4078
1da177e4
LT
4079/*
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
1da177e4 4082 * @cputime: the cpu time spent in user space since the last update
457533a7 4083 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4084 */
457533a7
MS
4085void account_user_time(struct task_struct *p, cputime_t cputime,
4086 cputime_t cputime_scaled)
1da177e4
LT
4087{
4088 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4089 cputime64_t tmp;
4090
457533a7 4091 /* Add user time to process. */
1da177e4 4092 p->utime = cputime_add(p->utime, cputime);
457533a7 4093 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4094 account_group_user_time(p, cputime);
1da177e4
LT
4095
4096 /* Add user time to cpustat. */
4097 tmp = cputime_to_cputime64(cputime);
4098 if (TASK_NICE(p) > 0)
4099 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4100 else
4101 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4102 /* Account for user time used */
4103 acct_update_integrals(p);
1da177e4
LT
4104}
4105
94886b84
LV
4106/*
4107 * Account guest cpu time to a process.
4108 * @p: the process that the cpu time gets accounted to
4109 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4110 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4111 */
457533a7
MS
4112static void account_guest_time(struct task_struct *p, cputime_t cputime,
4113 cputime_t cputime_scaled)
94886b84
LV
4114{
4115 cputime64_t tmp;
4116 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4117
4118 tmp = cputime_to_cputime64(cputime);
4119
457533a7 4120 /* Add guest time to process. */
94886b84 4121 p->utime = cputime_add(p->utime, cputime);
457533a7 4122 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4123 account_group_user_time(p, cputime);
94886b84
LV
4124 p->gtime = cputime_add(p->gtime, cputime);
4125
457533a7 4126 /* Add guest time to cpustat. */
94886b84
LV
4127 cpustat->user = cputime64_add(cpustat->user, tmp);
4128 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4129}
4130
1da177e4
LT
4131/*
4132 * Account system cpu time to a process.
4133 * @p: the process that the cpu time gets accounted to
4134 * @hardirq_offset: the offset to subtract from hardirq_count()
4135 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4136 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4137 */
4138void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4139 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4140{
4141 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4142 struct rq *rq = this_rq();
1da177e4
LT
4143 cputime64_t tmp;
4144
983ed7a6 4145 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4146 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4147 return;
4148 }
94886b84 4149
457533a7 4150 /* Add system time to process. */
1da177e4 4151 p->stime = cputime_add(p->stime, cputime);
457533a7 4152 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4153 account_group_system_time(p, cputime);
1da177e4
LT
4154
4155 /* Add system time to cpustat. */
4156 tmp = cputime_to_cputime64(cputime);
4157 if (hardirq_count() - hardirq_offset)
4158 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4159 else if (softirq_count())
4160 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4161 else if (p != rq->idle)
1da177e4 4162 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4163 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4164 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4165 else
4166 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4167 /* Account for system time used */
4168 acct_update_integrals(p);
1da177e4
LT
4169}
4170
4171/*
4172 * Account for involuntary wait time.
4173 * @p: the process from which the cpu time has been stolen
4174 * @steal: the cpu time spent in involuntary wait
4175 */
4176void account_steal_time(struct task_struct *p, cputime_t steal)
4177{
4178 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4179 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4180 struct rq *rq = this_rq();
1da177e4
LT
4181
4182 if (p == rq->idle) {
4183 p->stime = cputime_add(p->stime, steal);
4184 if (atomic_read(&rq->nr_iowait) > 0)
4185 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4186 else
4187 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4188 } else
1da177e4
LT
4189 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4190}
4191
49048622
BS
4192/*
4193 * Use precise platform statistics if available:
4194 */
4195#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4196cputime_t task_utime(struct task_struct *p)
4197{
4198 return p->utime;
4199}
4200
4201cputime_t task_stime(struct task_struct *p)
4202{
4203 return p->stime;
4204}
4205#else
4206cputime_t task_utime(struct task_struct *p)
4207{
4208 clock_t utime = cputime_to_clock_t(p->utime),
4209 total = utime + cputime_to_clock_t(p->stime);
4210 u64 temp;
4211
4212 /*
4213 * Use CFS's precise accounting:
4214 */
4215 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4216
4217 if (total) {
4218 temp *= utime;
4219 do_div(temp, total);
4220 }
4221 utime = (clock_t)temp;
4222
4223 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4224 return p->prev_utime;
4225}
4226
4227cputime_t task_stime(struct task_struct *p)
4228{
4229 clock_t stime;
4230
4231 /*
4232 * Use CFS's precise accounting. (we subtract utime from
4233 * the total, to make sure the total observed by userspace
4234 * grows monotonically - apps rely on that):
4235 */
4236 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4237 cputime_to_clock_t(task_utime(p));
4238
4239 if (stime >= 0)
4240 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4241
4242 return p->prev_stime;
4243}
4244#endif
4245
4246inline cputime_t task_gtime(struct task_struct *p)
4247{
4248 return p->gtime;
4249}
4250
7835b98b
CL
4251/*
4252 * This function gets called by the timer code, with HZ frequency.
4253 * We call it with interrupts disabled.
4254 *
4255 * It also gets called by the fork code, when changing the parent's
4256 * timeslices.
4257 */
4258void scheduler_tick(void)
4259{
7835b98b
CL
4260 int cpu = smp_processor_id();
4261 struct rq *rq = cpu_rq(cpu);
dd41f596 4262 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4263
4264 sched_clock_tick();
dd41f596
IM
4265
4266 spin_lock(&rq->lock);
3e51f33f 4267 update_rq_clock(rq);
f1a438d8 4268 update_cpu_load(rq);
fa85ae24 4269 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4270 spin_unlock(&rq->lock);
7835b98b 4271
e418e1c2 4272#ifdef CONFIG_SMP
dd41f596
IM
4273 rq->idle_at_tick = idle_cpu(cpu);
4274 trigger_load_balance(rq, cpu);
e418e1c2 4275#endif
1da177e4
LT
4276}
4277
6cd8a4bb
SR
4278#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4279 defined(CONFIG_PREEMPT_TRACER))
4280
4281static inline unsigned long get_parent_ip(unsigned long addr)
4282{
4283 if (in_lock_functions(addr)) {
4284 addr = CALLER_ADDR2;
4285 if (in_lock_functions(addr))
4286 addr = CALLER_ADDR3;
4287 }
4288 return addr;
4289}
1da177e4 4290
43627582 4291void __kprobes add_preempt_count(int val)
1da177e4 4292{
6cd8a4bb 4293#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4294 /*
4295 * Underflow?
4296 */
9a11b49a
IM
4297 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4298 return;
6cd8a4bb 4299#endif
1da177e4 4300 preempt_count() += val;
6cd8a4bb 4301#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4302 /*
4303 * Spinlock count overflowing soon?
4304 */
33859f7f
MOS
4305 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4306 PREEMPT_MASK - 10);
6cd8a4bb
SR
4307#endif
4308 if (preempt_count() == val)
4309 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4310}
4311EXPORT_SYMBOL(add_preempt_count);
4312
43627582 4313void __kprobes sub_preempt_count(int val)
1da177e4 4314{
6cd8a4bb 4315#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4316 /*
4317 * Underflow?
4318 */
7317d7b8 4319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
9a11b49a 4320 return;
1da177e4
LT
4321 /*
4322 * Is the spinlock portion underflowing?
4323 */
9a11b49a
IM
4324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4325 !(preempt_count() & PREEMPT_MASK)))
4326 return;
6cd8a4bb 4327#endif
9a11b49a 4328
6cd8a4bb
SR
4329 if (preempt_count() == val)
4330 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4331 preempt_count() -= val;
4332}
4333EXPORT_SYMBOL(sub_preempt_count);
4334
4335#endif
4336
4337/*
dd41f596 4338 * Print scheduling while atomic bug:
1da177e4 4339 */
dd41f596 4340static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4341{
838225b4
SS
4342 struct pt_regs *regs = get_irq_regs();
4343
4344 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4345 prev->comm, prev->pid, preempt_count());
4346
dd41f596 4347 debug_show_held_locks(prev);
e21f5b15 4348 print_modules();
dd41f596
IM
4349 if (irqs_disabled())
4350 print_irqtrace_events(prev);
838225b4
SS
4351
4352 if (regs)
4353 show_regs(regs);
4354 else
4355 dump_stack();
dd41f596 4356}
1da177e4 4357
dd41f596
IM
4358/*
4359 * Various schedule()-time debugging checks and statistics:
4360 */
4361static inline void schedule_debug(struct task_struct *prev)
4362{
1da177e4 4363 /*
41a2d6cf 4364 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4365 * schedule() atomically, we ignore that path for now.
4366 * Otherwise, whine if we are scheduling when we should not be.
4367 */
3f33a7ce 4368 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4369 __schedule_bug(prev);
4370
1da177e4
LT
4371 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4372
2d72376b 4373 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4374#ifdef CONFIG_SCHEDSTATS
4375 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4376 schedstat_inc(this_rq(), bkl_count);
4377 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4378 }
4379#endif
dd41f596
IM
4380}
4381
4382/*
4383 * Pick up the highest-prio task:
4384 */
4385static inline struct task_struct *
ff95f3df 4386pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4387{
5522d5d5 4388 const struct sched_class *class;
dd41f596 4389 struct task_struct *p;
1da177e4
LT
4390
4391 /*
dd41f596
IM
4392 * Optimization: we know that if all tasks are in
4393 * the fair class we can call that function directly:
1da177e4 4394 */
dd41f596 4395 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4396 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4397 if (likely(p))
4398 return p;
1da177e4
LT
4399 }
4400
dd41f596
IM
4401 class = sched_class_highest;
4402 for ( ; ; ) {
fb8d4724 4403 p = class->pick_next_task(rq);
dd41f596
IM
4404 if (p)
4405 return p;
4406 /*
4407 * Will never be NULL as the idle class always
4408 * returns a non-NULL p:
4409 */
4410 class = class->next;
4411 }
4412}
1da177e4 4413
dd41f596
IM
4414/*
4415 * schedule() is the main scheduler function.
4416 */
4417asmlinkage void __sched schedule(void)
4418{
4419 struct task_struct *prev, *next;
67ca7bde 4420 unsigned long *switch_count;
dd41f596 4421 struct rq *rq;
31656519 4422 int cpu;
dd41f596
IM
4423
4424need_resched:
4425 preempt_disable();
4426 cpu = smp_processor_id();
4427 rq = cpu_rq(cpu);
4428 rcu_qsctr_inc(cpu);
4429 prev = rq->curr;
4430 switch_count = &prev->nivcsw;
4431
4432 release_kernel_lock(prev);
4433need_resched_nonpreemptible:
4434
4435 schedule_debug(prev);
1da177e4 4436
31656519 4437 if (sched_feat(HRTICK))
f333fdc9 4438 hrtick_clear(rq);
8f4d37ec 4439
8cd162ce 4440 spin_lock_irq(&rq->lock);
3e51f33f 4441 update_rq_clock(rq);
1e819950 4442 clear_tsk_need_resched(prev);
1da177e4 4443
1da177e4 4444 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4445 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4446 prev->state = TASK_RUNNING;
16882c1e 4447 else
2e1cb74a 4448 deactivate_task(rq, prev, 1);
dd41f596 4449 switch_count = &prev->nvcsw;
1da177e4
LT
4450 }
4451
9a897c5a
SR
4452#ifdef CONFIG_SMP
4453 if (prev->sched_class->pre_schedule)
4454 prev->sched_class->pre_schedule(rq, prev);
4455#endif
f65eda4f 4456
dd41f596 4457 if (unlikely(!rq->nr_running))
1da177e4 4458 idle_balance(cpu, rq);
1da177e4 4459
31ee529c 4460 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4461 next = pick_next_task(rq, prev);
1da177e4 4462
1da177e4 4463 if (likely(prev != next)) {
673a90a1
DS
4464 sched_info_switch(prev, next);
4465
1da177e4
LT
4466 rq->nr_switches++;
4467 rq->curr = next;
4468 ++*switch_count;
4469
dd41f596 4470 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4471 /*
4472 * the context switch might have flipped the stack from under
4473 * us, hence refresh the local variables.
4474 */
4475 cpu = smp_processor_id();
4476 rq = cpu_rq(cpu);
1da177e4
LT
4477 } else
4478 spin_unlock_irq(&rq->lock);
4479
8f4d37ec 4480 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4481 goto need_resched_nonpreemptible;
8f4d37ec 4482
1da177e4
LT
4483 preempt_enable_no_resched();
4484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4485 goto need_resched;
4486}
1da177e4
LT
4487EXPORT_SYMBOL(schedule);
4488
4489#ifdef CONFIG_PREEMPT
4490/*
2ed6e34f 4491 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4492 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4493 * occur there and call schedule directly.
4494 */
4495asmlinkage void __sched preempt_schedule(void)
4496{
4497 struct thread_info *ti = current_thread_info();
6478d880 4498
1da177e4
LT
4499 /*
4500 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4501 * we do not want to preempt the current task. Just return..
1da177e4 4502 */
beed33a8 4503 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4504 return;
4505
3a5c359a
AK
4506 do {
4507 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4508 schedule();
3a5c359a 4509 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4510
3a5c359a
AK
4511 /*
4512 * Check again in case we missed a preemption opportunity
4513 * between schedule and now.
4514 */
4515 barrier();
4516 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4517}
1da177e4
LT
4518EXPORT_SYMBOL(preempt_schedule);
4519
4520/*
2ed6e34f 4521 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4522 * off of irq context.
4523 * Note, that this is called and return with irqs disabled. This will
4524 * protect us against recursive calling from irq.
4525 */
4526asmlinkage void __sched preempt_schedule_irq(void)
4527{
4528 struct thread_info *ti = current_thread_info();
6478d880 4529
2ed6e34f 4530 /* Catch callers which need to be fixed */
1da177e4
LT
4531 BUG_ON(ti->preempt_count || !irqs_disabled());
4532
3a5c359a
AK
4533 do {
4534 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4535 local_irq_enable();
4536 schedule();
4537 local_irq_disable();
3a5c359a 4538 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4539
3a5c359a
AK
4540 /*
4541 * Check again in case we missed a preemption opportunity
4542 * between schedule and now.
4543 */
4544 barrier();
4545 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4546}
4547
4548#endif /* CONFIG_PREEMPT */
4549
95cdf3b7
IM
4550int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4551 void *key)
1da177e4 4552{
48f24c4d 4553 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4554}
1da177e4
LT
4555EXPORT_SYMBOL(default_wake_function);
4556
4557/*
41a2d6cf
IM
4558 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4559 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4560 * number) then we wake all the non-exclusive tasks and one exclusive task.
4561 *
4562 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4563 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4564 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4565 */
4566static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4567 int nr_exclusive, int sync, void *key)
4568{
2e45874c 4569 wait_queue_t *curr, *next;
1da177e4 4570
2e45874c 4571 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4572 unsigned flags = curr->flags;
4573
1da177e4 4574 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4575 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4576 break;
4577 }
4578}
4579
4580/**
4581 * __wake_up - wake up threads blocked on a waitqueue.
4582 * @q: the waitqueue
4583 * @mode: which threads
4584 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4585 * @key: is directly passed to the wakeup function
1da177e4 4586 */
7ad5b3a5 4587void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4588 int nr_exclusive, void *key)
1da177e4
LT
4589{
4590 unsigned long flags;
4591
4592 spin_lock_irqsave(&q->lock, flags);
4593 __wake_up_common(q, mode, nr_exclusive, 0, key);
4594 spin_unlock_irqrestore(&q->lock, flags);
4595}
1da177e4
LT
4596EXPORT_SYMBOL(__wake_up);
4597
4598/*
4599 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4600 */
7ad5b3a5 4601void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4602{
4603 __wake_up_common(q, mode, 1, 0, NULL);
4604}
4605
4606/**
67be2dd1 4607 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4608 * @q: the waitqueue
4609 * @mode: which threads
4610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4611 *
4612 * The sync wakeup differs that the waker knows that it will schedule
4613 * away soon, so while the target thread will be woken up, it will not
4614 * be migrated to another CPU - ie. the two threads are 'synchronized'
4615 * with each other. This can prevent needless bouncing between CPUs.
4616 *
4617 * On UP it can prevent extra preemption.
4618 */
7ad5b3a5 4619void
95cdf3b7 4620__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4621{
4622 unsigned long flags;
4623 int sync = 1;
4624
4625 if (unlikely(!q))
4626 return;
4627
4628 if (unlikely(!nr_exclusive))
4629 sync = 0;
4630
4631 spin_lock_irqsave(&q->lock, flags);
4632 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4633 spin_unlock_irqrestore(&q->lock, flags);
4634}
4635EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4636
65eb3dc6
KD
4637/**
4638 * complete: - signals a single thread waiting on this completion
4639 * @x: holds the state of this particular completion
4640 *
4641 * This will wake up a single thread waiting on this completion. Threads will be
4642 * awakened in the same order in which they were queued.
4643 *
4644 * See also complete_all(), wait_for_completion() and related routines.
4645 */
b15136e9 4646void complete(struct completion *x)
1da177e4
LT
4647{
4648 unsigned long flags;
4649
4650 spin_lock_irqsave(&x->wait.lock, flags);
4651 x->done++;
d9514f6c 4652 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4653 spin_unlock_irqrestore(&x->wait.lock, flags);
4654}
4655EXPORT_SYMBOL(complete);
4656
65eb3dc6
KD
4657/**
4658 * complete_all: - signals all threads waiting on this completion
4659 * @x: holds the state of this particular completion
4660 *
4661 * This will wake up all threads waiting on this particular completion event.
4662 */
b15136e9 4663void complete_all(struct completion *x)
1da177e4
LT
4664{
4665 unsigned long flags;
4666
4667 spin_lock_irqsave(&x->wait.lock, flags);
4668 x->done += UINT_MAX/2;
d9514f6c 4669 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4670 spin_unlock_irqrestore(&x->wait.lock, flags);
4671}
4672EXPORT_SYMBOL(complete_all);
4673
8cbbe86d
AK
4674static inline long __sched
4675do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4676{
1da177e4
LT
4677 if (!x->done) {
4678 DECLARE_WAITQUEUE(wait, current);
4679
4680 wait.flags |= WQ_FLAG_EXCLUSIVE;
4681 __add_wait_queue_tail(&x->wait, &wait);
4682 do {
94d3d824 4683 if (signal_pending_state(state, current)) {
ea71a546
ON
4684 timeout = -ERESTARTSYS;
4685 break;
8cbbe86d
AK
4686 }
4687 __set_current_state(state);
1da177e4
LT
4688 spin_unlock_irq(&x->wait.lock);
4689 timeout = schedule_timeout(timeout);
4690 spin_lock_irq(&x->wait.lock);
ea71a546 4691 } while (!x->done && timeout);
1da177e4 4692 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4693 if (!x->done)
4694 return timeout;
1da177e4
LT
4695 }
4696 x->done--;
ea71a546 4697 return timeout ?: 1;
1da177e4 4698}
1da177e4 4699
8cbbe86d
AK
4700static long __sched
4701wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4702{
1da177e4
LT
4703 might_sleep();
4704
4705 spin_lock_irq(&x->wait.lock);
8cbbe86d 4706 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4707 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4708 return timeout;
4709}
1da177e4 4710
65eb3dc6
KD
4711/**
4712 * wait_for_completion: - waits for completion of a task
4713 * @x: holds the state of this particular completion
4714 *
4715 * This waits to be signaled for completion of a specific task. It is NOT
4716 * interruptible and there is no timeout.
4717 *
4718 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4719 * and interrupt capability. Also see complete().
4720 */
b15136e9 4721void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4722{
4723 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4724}
8cbbe86d 4725EXPORT_SYMBOL(wait_for_completion);
1da177e4 4726
65eb3dc6
KD
4727/**
4728 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4729 * @x: holds the state of this particular completion
4730 * @timeout: timeout value in jiffies
4731 *
4732 * This waits for either a completion of a specific task to be signaled or for a
4733 * specified timeout to expire. The timeout is in jiffies. It is not
4734 * interruptible.
4735 */
b15136e9 4736unsigned long __sched
8cbbe86d 4737wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4738{
8cbbe86d 4739 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4740}
8cbbe86d 4741EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4742
65eb3dc6
KD
4743/**
4744 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4745 * @x: holds the state of this particular completion
4746 *
4747 * This waits for completion of a specific task to be signaled. It is
4748 * interruptible.
4749 */
8cbbe86d 4750int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4751{
51e97990
AK
4752 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4753 if (t == -ERESTARTSYS)
4754 return t;
4755 return 0;
0fec171c 4756}
8cbbe86d 4757EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4758
65eb3dc6
KD
4759/**
4760 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4761 * @x: holds the state of this particular completion
4762 * @timeout: timeout value in jiffies
4763 *
4764 * This waits for either a completion of a specific task to be signaled or for a
4765 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4766 */
b15136e9 4767unsigned long __sched
8cbbe86d
AK
4768wait_for_completion_interruptible_timeout(struct completion *x,
4769 unsigned long timeout)
0fec171c 4770{
8cbbe86d 4771 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4772}
8cbbe86d 4773EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4774
65eb3dc6
KD
4775/**
4776 * wait_for_completion_killable: - waits for completion of a task (killable)
4777 * @x: holds the state of this particular completion
4778 *
4779 * This waits to be signaled for completion of a specific task. It can be
4780 * interrupted by a kill signal.
4781 */
009e577e
MW
4782int __sched wait_for_completion_killable(struct completion *x)
4783{
4784 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4785 if (t == -ERESTARTSYS)
4786 return t;
4787 return 0;
4788}
4789EXPORT_SYMBOL(wait_for_completion_killable);
4790
be4de352
DC
4791/**
4792 * try_wait_for_completion - try to decrement a completion without blocking
4793 * @x: completion structure
4794 *
4795 * Returns: 0 if a decrement cannot be done without blocking
4796 * 1 if a decrement succeeded.
4797 *
4798 * If a completion is being used as a counting completion,
4799 * attempt to decrement the counter without blocking. This
4800 * enables us to avoid waiting if the resource the completion
4801 * is protecting is not available.
4802 */
4803bool try_wait_for_completion(struct completion *x)
4804{
4805 int ret = 1;
4806
4807 spin_lock_irq(&x->wait.lock);
4808 if (!x->done)
4809 ret = 0;
4810 else
4811 x->done--;
4812 spin_unlock_irq(&x->wait.lock);
4813 return ret;
4814}
4815EXPORT_SYMBOL(try_wait_for_completion);
4816
4817/**
4818 * completion_done - Test to see if a completion has any waiters
4819 * @x: completion structure
4820 *
4821 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4822 * 1 if there are no waiters.
4823 *
4824 */
4825bool completion_done(struct completion *x)
4826{
4827 int ret = 1;
4828
4829 spin_lock_irq(&x->wait.lock);
4830 if (!x->done)
4831 ret = 0;
4832 spin_unlock_irq(&x->wait.lock);
4833 return ret;
4834}
4835EXPORT_SYMBOL(completion_done);
4836
8cbbe86d
AK
4837static long __sched
4838sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4839{
0fec171c
IM
4840 unsigned long flags;
4841 wait_queue_t wait;
4842
4843 init_waitqueue_entry(&wait, current);
1da177e4 4844
8cbbe86d 4845 __set_current_state(state);
1da177e4 4846
8cbbe86d
AK
4847 spin_lock_irqsave(&q->lock, flags);
4848 __add_wait_queue(q, &wait);
4849 spin_unlock(&q->lock);
4850 timeout = schedule_timeout(timeout);
4851 spin_lock_irq(&q->lock);
4852 __remove_wait_queue(q, &wait);
4853 spin_unlock_irqrestore(&q->lock, flags);
4854
4855 return timeout;
4856}
4857
4858void __sched interruptible_sleep_on(wait_queue_head_t *q)
4859{
4860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4861}
1da177e4
LT
4862EXPORT_SYMBOL(interruptible_sleep_on);
4863
0fec171c 4864long __sched
95cdf3b7 4865interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4866{
8cbbe86d 4867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4868}
1da177e4
LT
4869EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4870
0fec171c 4871void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4872{
8cbbe86d 4873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4874}
1da177e4
LT
4875EXPORT_SYMBOL(sleep_on);
4876
0fec171c 4877long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4878{
8cbbe86d 4879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4880}
1da177e4
LT
4881EXPORT_SYMBOL(sleep_on_timeout);
4882
b29739f9
IM
4883#ifdef CONFIG_RT_MUTEXES
4884
4885/*
4886 * rt_mutex_setprio - set the current priority of a task
4887 * @p: task
4888 * @prio: prio value (kernel-internal form)
4889 *
4890 * This function changes the 'effective' priority of a task. It does
4891 * not touch ->normal_prio like __setscheduler().
4892 *
4893 * Used by the rt_mutex code to implement priority inheritance logic.
4894 */
36c8b586 4895void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4896{
4897 unsigned long flags;
83b699ed 4898 int oldprio, on_rq, running;
70b97a7f 4899 struct rq *rq;
cb469845 4900 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4901
4902 BUG_ON(prio < 0 || prio > MAX_PRIO);
4903
4904 rq = task_rq_lock(p, &flags);
a8e504d2 4905 update_rq_clock(rq);
b29739f9 4906
d5f9f942 4907 oldprio = p->prio;
dd41f596 4908 on_rq = p->se.on_rq;
051a1d1a 4909 running = task_current(rq, p);
0e1f3483 4910 if (on_rq)
69be72c1 4911 dequeue_task(rq, p, 0);
0e1f3483
HS
4912 if (running)
4913 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4914
4915 if (rt_prio(prio))
4916 p->sched_class = &rt_sched_class;
4917 else
4918 p->sched_class = &fair_sched_class;
4919
b29739f9
IM
4920 p->prio = prio;
4921
0e1f3483
HS
4922 if (running)
4923 p->sched_class->set_curr_task(rq);
dd41f596 4924 if (on_rq) {
8159f87e 4925 enqueue_task(rq, p, 0);
cb469845
SR
4926
4927 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4928 }
4929 task_rq_unlock(rq, &flags);
4930}
4931
4932#endif
4933
36c8b586 4934void set_user_nice(struct task_struct *p, long nice)
1da177e4 4935{
dd41f596 4936 int old_prio, delta, on_rq;
1da177e4 4937 unsigned long flags;
70b97a7f 4938 struct rq *rq;
1da177e4
LT
4939
4940 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4941 return;
4942 /*
4943 * We have to be careful, if called from sys_setpriority(),
4944 * the task might be in the middle of scheduling on another CPU.
4945 */
4946 rq = task_rq_lock(p, &flags);
a8e504d2 4947 update_rq_clock(rq);
1da177e4
LT
4948 /*
4949 * The RT priorities are set via sched_setscheduler(), but we still
4950 * allow the 'normal' nice value to be set - but as expected
4951 * it wont have any effect on scheduling until the task is
dd41f596 4952 * SCHED_FIFO/SCHED_RR:
1da177e4 4953 */
e05606d3 4954 if (task_has_rt_policy(p)) {
1da177e4
LT
4955 p->static_prio = NICE_TO_PRIO(nice);
4956 goto out_unlock;
4957 }
dd41f596 4958 on_rq = p->se.on_rq;
c09595f6 4959 if (on_rq)
69be72c1 4960 dequeue_task(rq, p, 0);
1da177e4 4961
1da177e4 4962 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4963 set_load_weight(p);
b29739f9
IM
4964 old_prio = p->prio;
4965 p->prio = effective_prio(p);
4966 delta = p->prio - old_prio;
1da177e4 4967
dd41f596 4968 if (on_rq) {
8159f87e 4969 enqueue_task(rq, p, 0);
1da177e4 4970 /*
d5f9f942
AM
4971 * If the task increased its priority or is running and
4972 * lowered its priority, then reschedule its CPU:
1da177e4 4973 */
d5f9f942 4974 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4975 resched_task(rq->curr);
4976 }
4977out_unlock:
4978 task_rq_unlock(rq, &flags);
4979}
1da177e4
LT
4980EXPORT_SYMBOL(set_user_nice);
4981
e43379f1
MM
4982/*
4983 * can_nice - check if a task can reduce its nice value
4984 * @p: task
4985 * @nice: nice value
4986 */
36c8b586 4987int can_nice(const struct task_struct *p, const int nice)
e43379f1 4988{
024f4747
MM
4989 /* convert nice value [19,-20] to rlimit style value [1,40] */
4990 int nice_rlim = 20 - nice;
48f24c4d 4991
e43379f1
MM
4992 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4993 capable(CAP_SYS_NICE));
4994}
4995
1da177e4
LT
4996#ifdef __ARCH_WANT_SYS_NICE
4997
4998/*
4999 * sys_nice - change the priority of the current process.
5000 * @increment: priority increment
5001 *
5002 * sys_setpriority is a more generic, but much slower function that
5003 * does similar things.
5004 */
5005asmlinkage long sys_nice(int increment)
5006{
48f24c4d 5007 long nice, retval;
1da177e4
LT
5008
5009 /*
5010 * Setpriority might change our priority at the same moment.
5011 * We don't have to worry. Conceptually one call occurs first
5012 * and we have a single winner.
5013 */
e43379f1
MM
5014 if (increment < -40)
5015 increment = -40;
1da177e4
LT
5016 if (increment > 40)
5017 increment = 40;
5018
5019 nice = PRIO_TO_NICE(current->static_prio) + increment;
5020 if (nice < -20)
5021 nice = -20;
5022 if (nice > 19)
5023 nice = 19;
5024
e43379f1
MM
5025 if (increment < 0 && !can_nice(current, nice))
5026 return -EPERM;
5027
1da177e4
LT
5028 retval = security_task_setnice(current, nice);
5029 if (retval)
5030 return retval;
5031
5032 set_user_nice(current, nice);
5033 return 0;
5034}
5035
5036#endif
5037
5038/**
5039 * task_prio - return the priority value of a given task.
5040 * @p: the task in question.
5041 *
5042 * This is the priority value as seen by users in /proc.
5043 * RT tasks are offset by -200. Normal tasks are centered
5044 * around 0, value goes from -16 to +15.
5045 */
36c8b586 5046int task_prio(const struct task_struct *p)
1da177e4
LT
5047{
5048 return p->prio - MAX_RT_PRIO;
5049}
5050
5051/**
5052 * task_nice - return the nice value of a given task.
5053 * @p: the task in question.
5054 */
36c8b586 5055int task_nice(const struct task_struct *p)
1da177e4
LT
5056{
5057 return TASK_NICE(p);
5058}
150d8bed 5059EXPORT_SYMBOL(task_nice);
1da177e4
LT
5060
5061/**
5062 * idle_cpu - is a given cpu idle currently?
5063 * @cpu: the processor in question.
5064 */
5065int idle_cpu(int cpu)
5066{
5067 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5068}
5069
1da177e4
LT
5070/**
5071 * idle_task - return the idle task for a given cpu.
5072 * @cpu: the processor in question.
5073 */
36c8b586 5074struct task_struct *idle_task(int cpu)
1da177e4
LT
5075{
5076 return cpu_rq(cpu)->idle;
5077}
5078
5079/**
5080 * find_process_by_pid - find a process with a matching PID value.
5081 * @pid: the pid in question.
5082 */
a9957449 5083static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5084{
228ebcbe 5085 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5086}
5087
5088/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5089static void
5090__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5091{
dd41f596 5092 BUG_ON(p->se.on_rq);
48f24c4d 5093
1da177e4 5094 p->policy = policy;
dd41f596
IM
5095 switch (p->policy) {
5096 case SCHED_NORMAL:
5097 case SCHED_BATCH:
5098 case SCHED_IDLE:
5099 p->sched_class = &fair_sched_class;
5100 break;
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 p->sched_class = &rt_sched_class;
5104 break;
5105 }
5106
1da177e4 5107 p->rt_priority = prio;
b29739f9
IM
5108 p->normal_prio = normal_prio(p);
5109 /* we are holding p->pi_lock already */
5110 p->prio = rt_mutex_getprio(p);
2dd73a4f 5111 set_load_weight(p);
1da177e4
LT
5112}
5113
c69e8d9c
DH
5114/*
5115 * check the target process has a UID that matches the current process's
5116 */
5117static bool check_same_owner(struct task_struct *p)
5118{
5119 const struct cred *cred = current_cred(), *pcred;
5120 bool match;
5121
5122 rcu_read_lock();
5123 pcred = __task_cred(p);
5124 match = (cred->euid == pcred->euid ||
5125 cred->euid == pcred->uid);
5126 rcu_read_unlock();
5127 return match;
5128}
5129
961ccddd
RR
5130static int __sched_setscheduler(struct task_struct *p, int policy,
5131 struct sched_param *param, bool user)
1da177e4 5132{
83b699ed 5133 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5134 unsigned long flags;
cb469845 5135 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5136 struct rq *rq;
1da177e4 5137
66e5393a
SR
5138 /* may grab non-irq protected spin_locks */
5139 BUG_ON(in_interrupt());
1da177e4
LT
5140recheck:
5141 /* double check policy once rq lock held */
5142 if (policy < 0)
5143 policy = oldpolicy = p->policy;
5144 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5145 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5146 policy != SCHED_IDLE)
b0a9499c 5147 return -EINVAL;
1da177e4
LT
5148 /*
5149 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5150 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5151 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5152 */
5153 if (param->sched_priority < 0 ||
95cdf3b7 5154 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5155 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5156 return -EINVAL;
e05606d3 5157 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5158 return -EINVAL;
5159
37e4ab3f
OC
5160 /*
5161 * Allow unprivileged RT tasks to decrease priority:
5162 */
961ccddd 5163 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5164 if (rt_policy(policy)) {
8dc3e909 5165 unsigned long rlim_rtprio;
8dc3e909
ON
5166
5167 if (!lock_task_sighand(p, &flags))
5168 return -ESRCH;
5169 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5170 unlock_task_sighand(p, &flags);
5171
5172 /* can't set/change the rt policy */
5173 if (policy != p->policy && !rlim_rtprio)
5174 return -EPERM;
5175
5176 /* can't increase priority */
5177 if (param->sched_priority > p->rt_priority &&
5178 param->sched_priority > rlim_rtprio)
5179 return -EPERM;
5180 }
dd41f596
IM
5181 /*
5182 * Like positive nice levels, dont allow tasks to
5183 * move out of SCHED_IDLE either:
5184 */
5185 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5186 return -EPERM;
5fe1d75f 5187
37e4ab3f 5188 /* can't change other user's priorities */
c69e8d9c 5189 if (!check_same_owner(p))
37e4ab3f
OC
5190 return -EPERM;
5191 }
1da177e4 5192
725aad24 5193 if (user) {
b68aa230 5194#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5195 /*
5196 * Do not allow realtime tasks into groups that have no runtime
5197 * assigned.
5198 */
9a7e0b18
PZ
5199 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5200 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5201 return -EPERM;
b68aa230
PZ
5202#endif
5203
725aad24
JF
5204 retval = security_task_setscheduler(p, policy, param);
5205 if (retval)
5206 return retval;
5207 }
5208
b29739f9
IM
5209 /*
5210 * make sure no PI-waiters arrive (or leave) while we are
5211 * changing the priority of the task:
5212 */
5213 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5214 /*
5215 * To be able to change p->policy safely, the apropriate
5216 * runqueue lock must be held.
5217 */
b29739f9 5218 rq = __task_rq_lock(p);
1da177e4
LT
5219 /* recheck policy now with rq lock held */
5220 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5221 policy = oldpolicy = -1;
b29739f9
IM
5222 __task_rq_unlock(rq);
5223 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5224 goto recheck;
5225 }
2daa3577 5226 update_rq_clock(rq);
dd41f596 5227 on_rq = p->se.on_rq;
051a1d1a 5228 running = task_current(rq, p);
0e1f3483 5229 if (on_rq)
2e1cb74a 5230 deactivate_task(rq, p, 0);
0e1f3483
HS
5231 if (running)
5232 p->sched_class->put_prev_task(rq, p);
f6b53205 5233
1da177e4 5234 oldprio = p->prio;
dd41f596 5235 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5236
0e1f3483
HS
5237 if (running)
5238 p->sched_class->set_curr_task(rq);
dd41f596
IM
5239 if (on_rq) {
5240 activate_task(rq, p, 0);
cb469845
SR
5241
5242 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5243 }
b29739f9
IM
5244 __task_rq_unlock(rq);
5245 spin_unlock_irqrestore(&p->pi_lock, flags);
5246
95e02ca9
TG
5247 rt_mutex_adjust_pi(p);
5248
1da177e4
LT
5249 return 0;
5250}
961ccddd
RR
5251
5252/**
5253 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5254 * @p: the task in question.
5255 * @policy: new policy.
5256 * @param: structure containing the new RT priority.
5257 *
5258 * NOTE that the task may be already dead.
5259 */
5260int sched_setscheduler(struct task_struct *p, int policy,
5261 struct sched_param *param)
5262{
5263 return __sched_setscheduler(p, policy, param, true);
5264}
1da177e4
LT
5265EXPORT_SYMBOL_GPL(sched_setscheduler);
5266
961ccddd
RR
5267/**
5268 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5269 * @p: the task in question.
5270 * @policy: new policy.
5271 * @param: structure containing the new RT priority.
5272 *
5273 * Just like sched_setscheduler, only don't bother checking if the
5274 * current context has permission. For example, this is needed in
5275 * stop_machine(): we create temporary high priority worker threads,
5276 * but our caller might not have that capability.
5277 */
5278int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5279 struct sched_param *param)
5280{
5281 return __sched_setscheduler(p, policy, param, false);
5282}
5283
95cdf3b7
IM
5284static int
5285do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5286{
1da177e4
LT
5287 struct sched_param lparam;
5288 struct task_struct *p;
36c8b586 5289 int retval;
1da177e4
LT
5290
5291 if (!param || pid < 0)
5292 return -EINVAL;
5293 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5294 return -EFAULT;
5fe1d75f
ON
5295
5296 rcu_read_lock();
5297 retval = -ESRCH;
1da177e4 5298 p = find_process_by_pid(pid);
5fe1d75f
ON
5299 if (p != NULL)
5300 retval = sched_setscheduler(p, policy, &lparam);
5301 rcu_read_unlock();
36c8b586 5302
1da177e4
LT
5303 return retval;
5304}
5305
5306/**
5307 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5308 * @pid: the pid in question.
5309 * @policy: new policy.
5310 * @param: structure containing the new RT priority.
5311 */
41a2d6cf
IM
5312asmlinkage long
5313sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5314{
c21761f1
JB
5315 /* negative values for policy are not valid */
5316 if (policy < 0)
5317 return -EINVAL;
5318
1da177e4
LT
5319 return do_sched_setscheduler(pid, policy, param);
5320}
5321
5322/**
5323 * sys_sched_setparam - set/change the RT priority of a thread
5324 * @pid: the pid in question.
5325 * @param: structure containing the new RT priority.
5326 */
5327asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5328{
5329 return do_sched_setscheduler(pid, -1, param);
5330}
5331
5332/**
5333 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5334 * @pid: the pid in question.
5335 */
5336asmlinkage long sys_sched_getscheduler(pid_t pid)
5337{
36c8b586 5338 struct task_struct *p;
3a5c359a 5339 int retval;
1da177e4
LT
5340
5341 if (pid < 0)
3a5c359a 5342 return -EINVAL;
1da177e4
LT
5343
5344 retval = -ESRCH;
5345 read_lock(&tasklist_lock);
5346 p = find_process_by_pid(pid);
5347 if (p) {
5348 retval = security_task_getscheduler(p);
5349 if (!retval)
5350 retval = p->policy;
5351 }
5352 read_unlock(&tasklist_lock);
1da177e4
LT
5353 return retval;
5354}
5355
5356/**
5357 * sys_sched_getscheduler - get the RT priority of a thread
5358 * @pid: the pid in question.
5359 * @param: structure containing the RT priority.
5360 */
5361asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5362{
5363 struct sched_param lp;
36c8b586 5364 struct task_struct *p;
3a5c359a 5365 int retval;
1da177e4
LT
5366
5367 if (!param || pid < 0)
3a5c359a 5368 return -EINVAL;
1da177e4
LT
5369
5370 read_lock(&tasklist_lock);
5371 p = find_process_by_pid(pid);
5372 retval = -ESRCH;
5373 if (!p)
5374 goto out_unlock;
5375
5376 retval = security_task_getscheduler(p);
5377 if (retval)
5378 goto out_unlock;
5379
5380 lp.sched_priority = p->rt_priority;
5381 read_unlock(&tasklist_lock);
5382
5383 /*
5384 * This one might sleep, we cannot do it with a spinlock held ...
5385 */
5386 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5387
1da177e4
LT
5388 return retval;
5389
5390out_unlock:
5391 read_unlock(&tasklist_lock);
5392 return retval;
5393}
5394
b53e921b 5395long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5396{
1da177e4 5397 cpumask_t cpus_allowed;
b53e921b 5398 cpumask_t new_mask = *in_mask;
36c8b586
IM
5399 struct task_struct *p;
5400 int retval;
1da177e4 5401
95402b38 5402 get_online_cpus();
1da177e4
LT
5403 read_lock(&tasklist_lock);
5404
5405 p = find_process_by_pid(pid);
5406 if (!p) {
5407 read_unlock(&tasklist_lock);
95402b38 5408 put_online_cpus();
1da177e4
LT
5409 return -ESRCH;
5410 }
5411
5412 /*
5413 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5414 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5415 * usage count and then drop tasklist_lock.
5416 */
5417 get_task_struct(p);
5418 read_unlock(&tasklist_lock);
5419
5420 retval = -EPERM;
c69e8d9c 5421 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5422 goto out_unlock;
5423
e7834f8f
DQ
5424 retval = security_task_setscheduler(p, 0, NULL);
5425 if (retval)
5426 goto out_unlock;
5427
f9a86fcb 5428 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5429 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5430 again:
7c16ec58 5431 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5432
8707d8b8 5433 if (!retval) {
f9a86fcb 5434 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5435 if (!cpus_subset(new_mask, cpus_allowed)) {
5436 /*
5437 * We must have raced with a concurrent cpuset
5438 * update. Just reset the cpus_allowed to the
5439 * cpuset's cpus_allowed
5440 */
5441 new_mask = cpus_allowed;
5442 goto again;
5443 }
5444 }
1da177e4
LT
5445out_unlock:
5446 put_task_struct(p);
95402b38 5447 put_online_cpus();
1da177e4
LT
5448 return retval;
5449}
5450
5451static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5452 cpumask_t *new_mask)
5453{
5454 if (len < sizeof(cpumask_t)) {
5455 memset(new_mask, 0, sizeof(cpumask_t));
5456 } else if (len > sizeof(cpumask_t)) {
5457 len = sizeof(cpumask_t);
5458 }
5459 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5460}
5461
5462/**
5463 * sys_sched_setaffinity - set the cpu affinity of a process
5464 * @pid: pid of the process
5465 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5466 * @user_mask_ptr: user-space pointer to the new cpu mask
5467 */
5468asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5469 unsigned long __user *user_mask_ptr)
5470{
5471 cpumask_t new_mask;
5472 int retval;
5473
5474 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5475 if (retval)
5476 return retval;
5477
b53e921b 5478 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5479}
5480
1da177e4
LT
5481long sched_getaffinity(pid_t pid, cpumask_t *mask)
5482{
36c8b586 5483 struct task_struct *p;
1da177e4 5484 int retval;
1da177e4 5485
95402b38 5486 get_online_cpus();
1da177e4
LT
5487 read_lock(&tasklist_lock);
5488
5489 retval = -ESRCH;
5490 p = find_process_by_pid(pid);
5491 if (!p)
5492 goto out_unlock;
5493
e7834f8f
DQ
5494 retval = security_task_getscheduler(p);
5495 if (retval)
5496 goto out_unlock;
5497
2f7016d9 5498 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5499
5500out_unlock:
5501 read_unlock(&tasklist_lock);
95402b38 5502 put_online_cpus();
1da177e4 5503
9531b62f 5504 return retval;
1da177e4
LT
5505}
5506
5507/**
5508 * sys_sched_getaffinity - get the cpu affinity of a process
5509 * @pid: pid of the process
5510 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5511 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5512 */
5513asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5514 unsigned long __user *user_mask_ptr)
5515{
5516 int ret;
5517 cpumask_t mask;
5518
5519 if (len < sizeof(cpumask_t))
5520 return -EINVAL;
5521
5522 ret = sched_getaffinity(pid, &mask);
5523 if (ret < 0)
5524 return ret;
5525
5526 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5527 return -EFAULT;
5528
5529 return sizeof(cpumask_t);
5530}
5531
5532/**
5533 * sys_sched_yield - yield the current processor to other threads.
5534 *
dd41f596
IM
5535 * This function yields the current CPU to other tasks. If there are no
5536 * other threads running on this CPU then this function will return.
1da177e4
LT
5537 */
5538asmlinkage long sys_sched_yield(void)
5539{
70b97a7f 5540 struct rq *rq = this_rq_lock();
1da177e4 5541
2d72376b 5542 schedstat_inc(rq, yld_count);
4530d7ab 5543 current->sched_class->yield_task(rq);
1da177e4
LT
5544
5545 /*
5546 * Since we are going to call schedule() anyway, there's
5547 * no need to preempt or enable interrupts:
5548 */
5549 __release(rq->lock);
8a25d5de 5550 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5551 _raw_spin_unlock(&rq->lock);
5552 preempt_enable_no_resched();
5553
5554 schedule();
5555
5556 return 0;
5557}
5558
e7b38404 5559static void __cond_resched(void)
1da177e4 5560{
8e0a43d8
IM
5561#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5562 __might_sleep(__FILE__, __LINE__);
5563#endif
5bbcfd90
IM
5564 /*
5565 * The BKS might be reacquired before we have dropped
5566 * PREEMPT_ACTIVE, which could trigger a second
5567 * cond_resched() call.
5568 */
1da177e4
LT
5569 do {
5570 add_preempt_count(PREEMPT_ACTIVE);
5571 schedule();
5572 sub_preempt_count(PREEMPT_ACTIVE);
5573 } while (need_resched());
5574}
5575
02b67cc3 5576int __sched _cond_resched(void)
1da177e4 5577{
9414232f
IM
5578 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5579 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5580 __cond_resched();
5581 return 1;
5582 }
5583 return 0;
5584}
02b67cc3 5585EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5586
5587/*
5588 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5589 * call schedule, and on return reacquire the lock.
5590 *
41a2d6cf 5591 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5592 * operations here to prevent schedule() from being called twice (once via
5593 * spin_unlock(), once by hand).
5594 */
95cdf3b7 5595int cond_resched_lock(spinlock_t *lock)
1da177e4 5596{
95c354fe 5597 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5598 int ret = 0;
5599
95c354fe 5600 if (spin_needbreak(lock) || resched) {
1da177e4 5601 spin_unlock(lock);
95c354fe
NP
5602 if (resched && need_resched())
5603 __cond_resched();
5604 else
5605 cpu_relax();
6df3cecb 5606 ret = 1;
1da177e4 5607 spin_lock(lock);
1da177e4 5608 }
6df3cecb 5609 return ret;
1da177e4 5610}
1da177e4
LT
5611EXPORT_SYMBOL(cond_resched_lock);
5612
5613int __sched cond_resched_softirq(void)
5614{
5615 BUG_ON(!in_softirq());
5616
9414232f 5617 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5618 local_bh_enable();
1da177e4
LT
5619 __cond_resched();
5620 local_bh_disable();
5621 return 1;
5622 }
5623 return 0;
5624}
1da177e4
LT
5625EXPORT_SYMBOL(cond_resched_softirq);
5626
1da177e4
LT
5627/**
5628 * yield - yield the current processor to other threads.
5629 *
72fd4a35 5630 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5631 * thread runnable and calls sys_sched_yield().
5632 */
5633void __sched yield(void)
5634{
5635 set_current_state(TASK_RUNNING);
5636 sys_sched_yield();
5637}
1da177e4
LT
5638EXPORT_SYMBOL(yield);
5639
5640/*
41a2d6cf 5641 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5642 * that process accounting knows that this is a task in IO wait state.
5643 *
5644 * But don't do that if it is a deliberate, throttling IO wait (this task
5645 * has set its backing_dev_info: the queue against which it should throttle)
5646 */
5647void __sched io_schedule(void)
5648{
70b97a7f 5649 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5650
0ff92245 5651 delayacct_blkio_start();
1da177e4
LT
5652 atomic_inc(&rq->nr_iowait);
5653 schedule();
5654 atomic_dec(&rq->nr_iowait);
0ff92245 5655 delayacct_blkio_end();
1da177e4 5656}
1da177e4
LT
5657EXPORT_SYMBOL(io_schedule);
5658
5659long __sched io_schedule_timeout(long timeout)
5660{
70b97a7f 5661 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5662 long ret;
5663
0ff92245 5664 delayacct_blkio_start();
1da177e4
LT
5665 atomic_inc(&rq->nr_iowait);
5666 ret = schedule_timeout(timeout);
5667 atomic_dec(&rq->nr_iowait);
0ff92245 5668 delayacct_blkio_end();
1da177e4
LT
5669 return ret;
5670}
5671
5672/**
5673 * sys_sched_get_priority_max - return maximum RT priority.
5674 * @policy: scheduling class.
5675 *
5676 * this syscall returns the maximum rt_priority that can be used
5677 * by a given scheduling class.
5678 */
5679asmlinkage long sys_sched_get_priority_max(int policy)
5680{
5681 int ret = -EINVAL;
5682
5683 switch (policy) {
5684 case SCHED_FIFO:
5685 case SCHED_RR:
5686 ret = MAX_USER_RT_PRIO-1;
5687 break;
5688 case SCHED_NORMAL:
b0a9499c 5689 case SCHED_BATCH:
dd41f596 5690 case SCHED_IDLE:
1da177e4
LT
5691 ret = 0;
5692 break;
5693 }
5694 return ret;
5695}
5696
5697/**
5698 * sys_sched_get_priority_min - return minimum RT priority.
5699 * @policy: scheduling class.
5700 *
5701 * this syscall returns the minimum rt_priority that can be used
5702 * by a given scheduling class.
5703 */
5704asmlinkage long sys_sched_get_priority_min(int policy)
5705{
5706 int ret = -EINVAL;
5707
5708 switch (policy) {
5709 case SCHED_FIFO:
5710 case SCHED_RR:
5711 ret = 1;
5712 break;
5713 case SCHED_NORMAL:
b0a9499c 5714 case SCHED_BATCH:
dd41f596 5715 case SCHED_IDLE:
1da177e4
LT
5716 ret = 0;
5717 }
5718 return ret;
5719}
5720
5721/**
5722 * sys_sched_rr_get_interval - return the default timeslice of a process.
5723 * @pid: pid of the process.
5724 * @interval: userspace pointer to the timeslice value.
5725 *
5726 * this syscall writes the default timeslice value of a given process
5727 * into the user-space timespec buffer. A value of '0' means infinity.
5728 */
5729asmlinkage
5730long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5731{
36c8b586 5732 struct task_struct *p;
a4ec24b4 5733 unsigned int time_slice;
3a5c359a 5734 int retval;
1da177e4 5735 struct timespec t;
1da177e4
LT
5736
5737 if (pid < 0)
3a5c359a 5738 return -EINVAL;
1da177e4
LT
5739
5740 retval = -ESRCH;
5741 read_lock(&tasklist_lock);
5742 p = find_process_by_pid(pid);
5743 if (!p)
5744 goto out_unlock;
5745
5746 retval = security_task_getscheduler(p);
5747 if (retval)
5748 goto out_unlock;
5749
77034937
IM
5750 /*
5751 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5752 * tasks that are on an otherwise idle runqueue:
5753 */
5754 time_slice = 0;
5755 if (p->policy == SCHED_RR) {
a4ec24b4 5756 time_slice = DEF_TIMESLICE;
1868f958 5757 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5758 struct sched_entity *se = &p->se;
5759 unsigned long flags;
5760 struct rq *rq;
5761
5762 rq = task_rq_lock(p, &flags);
77034937
IM
5763 if (rq->cfs.load.weight)
5764 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5765 task_rq_unlock(rq, &flags);
5766 }
1da177e4 5767 read_unlock(&tasklist_lock);
a4ec24b4 5768 jiffies_to_timespec(time_slice, &t);
1da177e4 5769 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5770 return retval;
3a5c359a 5771
1da177e4
LT
5772out_unlock:
5773 read_unlock(&tasklist_lock);
5774 return retval;
5775}
5776
7c731e0a 5777static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5778
82a1fcb9 5779void sched_show_task(struct task_struct *p)
1da177e4 5780{
1da177e4 5781 unsigned long free = 0;
36c8b586 5782 unsigned state;
1da177e4 5783
1da177e4 5784 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5785 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5786 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5787#if BITS_PER_LONG == 32
1da177e4 5788 if (state == TASK_RUNNING)
cc4ea795 5789 printk(KERN_CONT " running ");
1da177e4 5790 else
cc4ea795 5791 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5792#else
5793 if (state == TASK_RUNNING)
cc4ea795 5794 printk(KERN_CONT " running task ");
1da177e4 5795 else
cc4ea795 5796 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5797#endif
5798#ifdef CONFIG_DEBUG_STACK_USAGE
5799 {
10ebffde 5800 unsigned long *n = end_of_stack(p);
1da177e4
LT
5801 while (!*n)
5802 n++;
10ebffde 5803 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5804 }
5805#endif
ba25f9dc 5806 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5807 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5808
5fb5e6de 5809 show_stack(p, NULL);
1da177e4
LT
5810}
5811
e59e2ae2 5812void show_state_filter(unsigned long state_filter)
1da177e4 5813{
36c8b586 5814 struct task_struct *g, *p;
1da177e4 5815
4bd77321
IM
5816#if BITS_PER_LONG == 32
5817 printk(KERN_INFO
5818 " task PC stack pid father\n");
1da177e4 5819#else
4bd77321
IM
5820 printk(KERN_INFO
5821 " task PC stack pid father\n");
1da177e4
LT
5822#endif
5823 read_lock(&tasklist_lock);
5824 do_each_thread(g, p) {
5825 /*
5826 * reset the NMI-timeout, listing all files on a slow
5827 * console might take alot of time:
5828 */
5829 touch_nmi_watchdog();
39bc89fd 5830 if (!state_filter || (p->state & state_filter))
82a1fcb9 5831 sched_show_task(p);
1da177e4
LT
5832 } while_each_thread(g, p);
5833
04c9167f
JF
5834 touch_all_softlockup_watchdogs();
5835
dd41f596
IM
5836#ifdef CONFIG_SCHED_DEBUG
5837 sysrq_sched_debug_show();
5838#endif
1da177e4 5839 read_unlock(&tasklist_lock);
e59e2ae2
IM
5840 /*
5841 * Only show locks if all tasks are dumped:
5842 */
5843 if (state_filter == -1)
5844 debug_show_all_locks();
1da177e4
LT
5845}
5846
1df21055
IM
5847void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5848{
dd41f596 5849 idle->sched_class = &idle_sched_class;
1df21055
IM
5850}
5851
f340c0d1
IM
5852/**
5853 * init_idle - set up an idle thread for a given CPU
5854 * @idle: task in question
5855 * @cpu: cpu the idle task belongs to
5856 *
5857 * NOTE: this function does not set the idle thread's NEED_RESCHED
5858 * flag, to make booting more robust.
5859 */
5c1e1767 5860void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5861{
70b97a7f 5862 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5863 unsigned long flags;
5864
5cbd54ef
IM
5865 spin_lock_irqsave(&rq->lock, flags);
5866
dd41f596
IM
5867 __sched_fork(idle);
5868 idle->se.exec_start = sched_clock();
5869
b29739f9 5870 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5871 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5872 __set_task_cpu(idle, cpu);
1da177e4 5873
1da177e4 5874 rq->curr = rq->idle = idle;
4866cde0
NP
5875#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5876 idle->oncpu = 1;
5877#endif
1da177e4
LT
5878 spin_unlock_irqrestore(&rq->lock, flags);
5879
5880 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5881#if defined(CONFIG_PREEMPT)
5882 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5883#else
a1261f54 5884 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5885#endif
dd41f596
IM
5886 /*
5887 * The idle tasks have their own, simple scheduling class:
5888 */
5889 idle->sched_class = &idle_sched_class;
fb52607a 5890 ftrace_graph_init_task(idle);
1da177e4
LT
5891}
5892
5893/*
5894 * In a system that switches off the HZ timer nohz_cpu_mask
5895 * indicates which cpus entered this state. This is used
5896 * in the rcu update to wait only for active cpus. For system
5897 * which do not switch off the HZ timer nohz_cpu_mask should
5898 * always be CPU_MASK_NONE.
5899 */
5900cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5901
19978ca6
IM
5902/*
5903 * Increase the granularity value when there are more CPUs,
5904 * because with more CPUs the 'effective latency' as visible
5905 * to users decreases. But the relationship is not linear,
5906 * so pick a second-best guess by going with the log2 of the
5907 * number of CPUs.
5908 *
5909 * This idea comes from the SD scheduler of Con Kolivas:
5910 */
5911static inline void sched_init_granularity(void)
5912{
5913 unsigned int factor = 1 + ilog2(num_online_cpus());
5914 const unsigned long limit = 200000000;
5915
5916 sysctl_sched_min_granularity *= factor;
5917 if (sysctl_sched_min_granularity > limit)
5918 sysctl_sched_min_granularity = limit;
5919
5920 sysctl_sched_latency *= factor;
5921 if (sysctl_sched_latency > limit)
5922 sysctl_sched_latency = limit;
5923
5924 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5925
5926 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5927}
5928
1da177e4
LT
5929#ifdef CONFIG_SMP
5930/*
5931 * This is how migration works:
5932 *
70b97a7f 5933 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5934 * runqueue and wake up that CPU's migration thread.
5935 * 2) we down() the locked semaphore => thread blocks.
5936 * 3) migration thread wakes up (implicitly it forces the migrated
5937 * thread off the CPU)
5938 * 4) it gets the migration request and checks whether the migrated
5939 * task is still in the wrong runqueue.
5940 * 5) if it's in the wrong runqueue then the migration thread removes
5941 * it and puts it into the right queue.
5942 * 6) migration thread up()s the semaphore.
5943 * 7) we wake up and the migration is done.
5944 */
5945
5946/*
5947 * Change a given task's CPU affinity. Migrate the thread to a
5948 * proper CPU and schedule it away if the CPU it's executing on
5949 * is removed from the allowed bitmask.
5950 *
5951 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5952 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5953 * call is not atomic; no spinlocks may be held.
5954 */
cd8ba7cd 5955int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5956{
70b97a7f 5957 struct migration_req req;
1da177e4 5958 unsigned long flags;
70b97a7f 5959 struct rq *rq;
48f24c4d 5960 int ret = 0;
1da177e4
LT
5961
5962 rq = task_rq_lock(p, &flags);
cd8ba7cd 5963 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5964 ret = -EINVAL;
5965 goto out;
5966 }
5967
9985b0ba
DR
5968 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5969 !cpus_equal(p->cpus_allowed, *new_mask))) {
5970 ret = -EINVAL;
5971 goto out;
5972 }
5973
73fe6aae 5974 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5975 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5976 else {
cd8ba7cd
MT
5977 p->cpus_allowed = *new_mask;
5978 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5979 }
5980
1da177e4 5981 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5982 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5983 goto out;
5984
cd8ba7cd 5985 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5986 /* Need help from migration thread: drop lock and wait. */
5987 task_rq_unlock(rq, &flags);
5988 wake_up_process(rq->migration_thread);
5989 wait_for_completion(&req.done);
5990 tlb_migrate_finish(p->mm);
5991 return 0;
5992 }
5993out:
5994 task_rq_unlock(rq, &flags);
48f24c4d 5995
1da177e4
LT
5996 return ret;
5997}
cd8ba7cd 5998EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5999
6000/*
41a2d6cf 6001 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6002 * this because either it can't run here any more (set_cpus_allowed()
6003 * away from this CPU, or CPU going down), or because we're
6004 * attempting to rebalance this task on exec (sched_exec).
6005 *
6006 * So we race with normal scheduler movements, but that's OK, as long
6007 * as the task is no longer on this CPU.
efc30814
KK
6008 *
6009 * Returns non-zero if task was successfully migrated.
1da177e4 6010 */
efc30814 6011static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6012{
70b97a7f 6013 struct rq *rq_dest, *rq_src;
dd41f596 6014 int ret = 0, on_rq;
1da177e4 6015
e761b772 6016 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6017 return ret;
1da177e4
LT
6018
6019 rq_src = cpu_rq(src_cpu);
6020 rq_dest = cpu_rq(dest_cpu);
6021
6022 double_rq_lock(rq_src, rq_dest);
6023 /* Already moved. */
6024 if (task_cpu(p) != src_cpu)
b1e38734 6025 goto done;
1da177e4
LT
6026 /* Affinity changed (again). */
6027 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6028 goto fail;
1da177e4 6029
dd41f596 6030 on_rq = p->se.on_rq;
6e82a3be 6031 if (on_rq)
2e1cb74a 6032 deactivate_task(rq_src, p, 0);
6e82a3be 6033
1da177e4 6034 set_task_cpu(p, dest_cpu);
dd41f596
IM
6035 if (on_rq) {
6036 activate_task(rq_dest, p, 0);
15afe09b 6037 check_preempt_curr(rq_dest, p, 0);
1da177e4 6038 }
b1e38734 6039done:
efc30814 6040 ret = 1;
b1e38734 6041fail:
1da177e4 6042 double_rq_unlock(rq_src, rq_dest);
efc30814 6043 return ret;
1da177e4
LT
6044}
6045
6046/*
6047 * migration_thread - this is a highprio system thread that performs
6048 * thread migration by bumping thread off CPU then 'pushing' onto
6049 * another runqueue.
6050 */
95cdf3b7 6051static int migration_thread(void *data)
1da177e4 6052{
1da177e4 6053 int cpu = (long)data;
70b97a7f 6054 struct rq *rq;
1da177e4
LT
6055
6056 rq = cpu_rq(cpu);
6057 BUG_ON(rq->migration_thread != current);
6058
6059 set_current_state(TASK_INTERRUPTIBLE);
6060 while (!kthread_should_stop()) {
70b97a7f 6061 struct migration_req *req;
1da177e4 6062 struct list_head *head;
1da177e4 6063
1da177e4
LT
6064 spin_lock_irq(&rq->lock);
6065
6066 if (cpu_is_offline(cpu)) {
6067 spin_unlock_irq(&rq->lock);
6068 goto wait_to_die;
6069 }
6070
6071 if (rq->active_balance) {
6072 active_load_balance(rq, cpu);
6073 rq->active_balance = 0;
6074 }
6075
6076 head = &rq->migration_queue;
6077
6078 if (list_empty(head)) {
6079 spin_unlock_irq(&rq->lock);
6080 schedule();
6081 set_current_state(TASK_INTERRUPTIBLE);
6082 continue;
6083 }
70b97a7f 6084 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6085 list_del_init(head->next);
6086
674311d5
NP
6087 spin_unlock(&rq->lock);
6088 __migrate_task(req->task, cpu, req->dest_cpu);
6089 local_irq_enable();
1da177e4
LT
6090
6091 complete(&req->done);
6092 }
6093 __set_current_state(TASK_RUNNING);
6094 return 0;
6095
6096wait_to_die:
6097 /* Wait for kthread_stop */
6098 set_current_state(TASK_INTERRUPTIBLE);
6099 while (!kthread_should_stop()) {
6100 schedule();
6101 set_current_state(TASK_INTERRUPTIBLE);
6102 }
6103 __set_current_state(TASK_RUNNING);
6104 return 0;
6105}
6106
6107#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6108
6109static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6110{
6111 int ret;
6112
6113 local_irq_disable();
6114 ret = __migrate_task(p, src_cpu, dest_cpu);
6115 local_irq_enable();
6116 return ret;
6117}
6118
054b9108 6119/*
3a4fa0a2 6120 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6121 */
48f24c4d 6122static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6123{
efc30814 6124 unsigned long flags;
1da177e4 6125 cpumask_t mask;
70b97a7f
IM
6126 struct rq *rq;
6127 int dest_cpu;
1da177e4 6128
3a5c359a
AK
6129 do {
6130 /* On same node? */
6131 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6132 cpus_and(mask, mask, p->cpus_allowed);
6133 dest_cpu = any_online_cpu(mask);
6134
6135 /* On any allowed CPU? */
434d53b0 6136 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6137 dest_cpu = any_online_cpu(p->cpus_allowed);
6138
6139 /* No more Mr. Nice Guy. */
434d53b0 6140 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6141 cpumask_t cpus_allowed;
6142
6143 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6144 /*
6145 * Try to stay on the same cpuset, where the
6146 * current cpuset may be a subset of all cpus.
6147 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6148 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6149 * called within calls to cpuset_lock/cpuset_unlock.
6150 */
3a5c359a 6151 rq = task_rq_lock(p, &flags);
470fd646 6152 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6153 dest_cpu = any_online_cpu(p->cpus_allowed);
6154 task_rq_unlock(rq, &flags);
1da177e4 6155
3a5c359a
AK
6156 /*
6157 * Don't tell them about moving exiting tasks or
6158 * kernel threads (both mm NULL), since they never
6159 * leave kernel.
6160 */
41a2d6cf 6161 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6162 printk(KERN_INFO "process %d (%s) no "
6163 "longer affine to cpu%d\n",
41a2d6cf
IM
6164 task_pid_nr(p), p->comm, dead_cpu);
6165 }
3a5c359a 6166 }
f7b4cddc 6167 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6168}
6169
6170/*
6171 * While a dead CPU has no uninterruptible tasks queued at this point,
6172 * it might still have a nonzero ->nr_uninterruptible counter, because
6173 * for performance reasons the counter is not stricly tracking tasks to
6174 * their home CPUs. So we just add the counter to another CPU's counter,
6175 * to keep the global sum constant after CPU-down:
6176 */
70b97a7f 6177static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6178{
7c16ec58 6179 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6180 unsigned long flags;
6181
6182 local_irq_save(flags);
6183 double_rq_lock(rq_src, rq_dest);
6184 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6185 rq_src->nr_uninterruptible = 0;
6186 double_rq_unlock(rq_src, rq_dest);
6187 local_irq_restore(flags);
6188}
6189
6190/* Run through task list and migrate tasks from the dead cpu. */
6191static void migrate_live_tasks(int src_cpu)
6192{
48f24c4d 6193 struct task_struct *p, *t;
1da177e4 6194
f7b4cddc 6195 read_lock(&tasklist_lock);
1da177e4 6196
48f24c4d
IM
6197 do_each_thread(t, p) {
6198 if (p == current)
1da177e4
LT
6199 continue;
6200
48f24c4d
IM
6201 if (task_cpu(p) == src_cpu)
6202 move_task_off_dead_cpu(src_cpu, p);
6203 } while_each_thread(t, p);
1da177e4 6204
f7b4cddc 6205 read_unlock(&tasklist_lock);
1da177e4
LT
6206}
6207
dd41f596
IM
6208/*
6209 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6210 * It does so by boosting its priority to highest possible.
6211 * Used by CPU offline code.
1da177e4
LT
6212 */
6213void sched_idle_next(void)
6214{
48f24c4d 6215 int this_cpu = smp_processor_id();
70b97a7f 6216 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6217 struct task_struct *p = rq->idle;
6218 unsigned long flags;
6219
6220 /* cpu has to be offline */
48f24c4d 6221 BUG_ON(cpu_online(this_cpu));
1da177e4 6222
48f24c4d
IM
6223 /*
6224 * Strictly not necessary since rest of the CPUs are stopped by now
6225 * and interrupts disabled on the current cpu.
1da177e4
LT
6226 */
6227 spin_lock_irqsave(&rq->lock, flags);
6228
dd41f596 6229 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6230
94bc9a7b
DA
6231 update_rq_clock(rq);
6232 activate_task(rq, p, 0);
1da177e4
LT
6233
6234 spin_unlock_irqrestore(&rq->lock, flags);
6235}
6236
48f24c4d
IM
6237/*
6238 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6239 * offline.
6240 */
6241void idle_task_exit(void)
6242{
6243 struct mm_struct *mm = current->active_mm;
6244
6245 BUG_ON(cpu_online(smp_processor_id()));
6246
6247 if (mm != &init_mm)
6248 switch_mm(mm, &init_mm, current);
6249 mmdrop(mm);
6250}
6251
054b9108 6252/* called under rq->lock with disabled interrupts */
36c8b586 6253static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6254{
70b97a7f 6255 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6256
6257 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6258 BUG_ON(!p->exit_state);
1da177e4
LT
6259
6260 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6261 BUG_ON(p->state == TASK_DEAD);
1da177e4 6262
48f24c4d 6263 get_task_struct(p);
1da177e4
LT
6264
6265 /*
6266 * Drop lock around migration; if someone else moves it,
41a2d6cf 6267 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6268 * fine.
6269 */
f7b4cddc 6270 spin_unlock_irq(&rq->lock);
48f24c4d 6271 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6272 spin_lock_irq(&rq->lock);
1da177e4 6273
48f24c4d 6274 put_task_struct(p);
1da177e4
LT
6275}
6276
6277/* release_task() removes task from tasklist, so we won't find dead tasks. */
6278static void migrate_dead_tasks(unsigned int dead_cpu)
6279{
70b97a7f 6280 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6281 struct task_struct *next;
48f24c4d 6282
dd41f596
IM
6283 for ( ; ; ) {
6284 if (!rq->nr_running)
6285 break;
a8e504d2 6286 update_rq_clock(rq);
ff95f3df 6287 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6288 if (!next)
6289 break;
79c53799 6290 next->sched_class->put_prev_task(rq, next);
dd41f596 6291 migrate_dead(dead_cpu, next);
e692ab53 6292
1da177e4
LT
6293 }
6294}
6295#endif /* CONFIG_HOTPLUG_CPU */
6296
e692ab53
NP
6297#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6298
6299static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6300 {
6301 .procname = "sched_domain",
c57baf1e 6302 .mode = 0555,
e0361851 6303 },
38605cae 6304 {0, },
e692ab53
NP
6305};
6306
6307static struct ctl_table sd_ctl_root[] = {
e0361851 6308 {
c57baf1e 6309 .ctl_name = CTL_KERN,
e0361851 6310 .procname = "kernel",
c57baf1e 6311 .mode = 0555,
e0361851
AD
6312 .child = sd_ctl_dir,
6313 },
38605cae 6314 {0, },
e692ab53
NP
6315};
6316
6317static struct ctl_table *sd_alloc_ctl_entry(int n)
6318{
6319 struct ctl_table *entry =
5cf9f062 6320 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6321
e692ab53
NP
6322 return entry;
6323}
6324
6382bc90
MM
6325static void sd_free_ctl_entry(struct ctl_table **tablep)
6326{
cd790076 6327 struct ctl_table *entry;
6382bc90 6328
cd790076
MM
6329 /*
6330 * In the intermediate directories, both the child directory and
6331 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6332 * will always be set. In the lowest directory the names are
cd790076
MM
6333 * static strings and all have proc handlers.
6334 */
6335 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6336 if (entry->child)
6337 sd_free_ctl_entry(&entry->child);
cd790076
MM
6338 if (entry->proc_handler == NULL)
6339 kfree(entry->procname);
6340 }
6382bc90
MM
6341
6342 kfree(*tablep);
6343 *tablep = NULL;
6344}
6345
e692ab53 6346static void
e0361851 6347set_table_entry(struct ctl_table *entry,
e692ab53
NP
6348 const char *procname, void *data, int maxlen,
6349 mode_t mode, proc_handler *proc_handler)
6350{
e692ab53
NP
6351 entry->procname = procname;
6352 entry->data = data;
6353 entry->maxlen = maxlen;
6354 entry->mode = mode;
6355 entry->proc_handler = proc_handler;
6356}
6357
6358static struct ctl_table *
6359sd_alloc_ctl_domain_table(struct sched_domain *sd)
6360{
a5d8c348 6361 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6362
ad1cdc1d
MM
6363 if (table == NULL)
6364 return NULL;
6365
e0361851 6366 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6367 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6368 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6369 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6370 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6371 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6372 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6373 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6374 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6375 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6376 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6377 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6378 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6379 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6380 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6381 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6382 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6383 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6384 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6385 &sd->cache_nice_tries,
6386 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6387 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6388 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6389 set_table_entry(&table[11], "name", sd->name,
6390 CORENAME_MAX_SIZE, 0444, proc_dostring);
6391 /* &table[12] is terminator */
e692ab53
NP
6392
6393 return table;
6394}
6395
9a4e7159 6396static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6397{
6398 struct ctl_table *entry, *table;
6399 struct sched_domain *sd;
6400 int domain_num = 0, i;
6401 char buf[32];
6402
6403 for_each_domain(cpu, sd)
6404 domain_num++;
6405 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6406 if (table == NULL)
6407 return NULL;
e692ab53
NP
6408
6409 i = 0;
6410 for_each_domain(cpu, sd) {
6411 snprintf(buf, 32, "domain%d", i);
e692ab53 6412 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6413 entry->mode = 0555;
e692ab53
NP
6414 entry->child = sd_alloc_ctl_domain_table(sd);
6415 entry++;
6416 i++;
6417 }
6418 return table;
6419}
6420
6421static struct ctl_table_header *sd_sysctl_header;
6382bc90 6422static void register_sched_domain_sysctl(void)
e692ab53
NP
6423{
6424 int i, cpu_num = num_online_cpus();
6425 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6426 char buf[32];
6427
7378547f
MM
6428 WARN_ON(sd_ctl_dir[0].child);
6429 sd_ctl_dir[0].child = entry;
6430
ad1cdc1d
MM
6431 if (entry == NULL)
6432 return;
6433
97b6ea7b 6434 for_each_online_cpu(i) {
e692ab53 6435 snprintf(buf, 32, "cpu%d", i);
e692ab53 6436 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6437 entry->mode = 0555;
e692ab53 6438 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6439 entry++;
e692ab53 6440 }
7378547f
MM
6441
6442 WARN_ON(sd_sysctl_header);
e692ab53
NP
6443 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6444}
6382bc90 6445
7378547f 6446/* may be called multiple times per register */
6382bc90
MM
6447static void unregister_sched_domain_sysctl(void)
6448{
7378547f
MM
6449 if (sd_sysctl_header)
6450 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6451 sd_sysctl_header = NULL;
7378547f
MM
6452 if (sd_ctl_dir[0].child)
6453 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6454}
e692ab53 6455#else
6382bc90
MM
6456static void register_sched_domain_sysctl(void)
6457{
6458}
6459static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6460{
6461}
6462#endif
6463
1f11eb6a
GH
6464static void set_rq_online(struct rq *rq)
6465{
6466 if (!rq->online) {
6467 const struct sched_class *class;
6468
6469 cpu_set(rq->cpu, rq->rd->online);
6470 rq->online = 1;
6471
6472 for_each_class(class) {
6473 if (class->rq_online)
6474 class->rq_online(rq);
6475 }
6476 }
6477}
6478
6479static void set_rq_offline(struct rq *rq)
6480{
6481 if (rq->online) {
6482 const struct sched_class *class;
6483
6484 for_each_class(class) {
6485 if (class->rq_offline)
6486 class->rq_offline(rq);
6487 }
6488
6489 cpu_clear(rq->cpu, rq->rd->online);
6490 rq->online = 0;
6491 }
6492}
6493
1da177e4
LT
6494/*
6495 * migration_call - callback that gets triggered when a CPU is added.
6496 * Here we can start up the necessary migration thread for the new CPU.
6497 */
48f24c4d
IM
6498static int __cpuinit
6499migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6500{
1da177e4 6501 struct task_struct *p;
48f24c4d 6502 int cpu = (long)hcpu;
1da177e4 6503 unsigned long flags;
70b97a7f 6504 struct rq *rq;
1da177e4
LT
6505
6506 switch (action) {
5be9361c 6507
1da177e4 6508 case CPU_UP_PREPARE:
8bb78442 6509 case CPU_UP_PREPARE_FROZEN:
dd41f596 6510 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6511 if (IS_ERR(p))
6512 return NOTIFY_BAD;
1da177e4
LT
6513 kthread_bind(p, cpu);
6514 /* Must be high prio: stop_machine expects to yield to it. */
6515 rq = task_rq_lock(p, &flags);
dd41f596 6516 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6517 task_rq_unlock(rq, &flags);
6518 cpu_rq(cpu)->migration_thread = p;
6519 break;
48f24c4d 6520
1da177e4 6521 case CPU_ONLINE:
8bb78442 6522 case CPU_ONLINE_FROZEN:
3a4fa0a2 6523 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6524 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6525
6526 /* Update our root-domain */
6527 rq = cpu_rq(cpu);
6528 spin_lock_irqsave(&rq->lock, flags);
6529 if (rq->rd) {
6530 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6531
6532 set_rq_online(rq);
1f94ef59
GH
6533 }
6534 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6535 break;
48f24c4d 6536
1da177e4
LT
6537#ifdef CONFIG_HOTPLUG_CPU
6538 case CPU_UP_CANCELED:
8bb78442 6539 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6540 if (!cpu_rq(cpu)->migration_thread)
6541 break;
41a2d6cf 6542 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6543 kthread_bind(cpu_rq(cpu)->migration_thread,
6544 any_online_cpu(cpu_online_map));
1da177e4
LT
6545 kthread_stop(cpu_rq(cpu)->migration_thread);
6546 cpu_rq(cpu)->migration_thread = NULL;
6547 break;
48f24c4d 6548
1da177e4 6549 case CPU_DEAD:
8bb78442 6550 case CPU_DEAD_FROZEN:
470fd646 6551 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6552 migrate_live_tasks(cpu);
6553 rq = cpu_rq(cpu);
6554 kthread_stop(rq->migration_thread);
6555 rq->migration_thread = NULL;
6556 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6557 spin_lock_irq(&rq->lock);
a8e504d2 6558 update_rq_clock(rq);
2e1cb74a 6559 deactivate_task(rq, rq->idle, 0);
1da177e4 6560 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6561 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6562 rq->idle->sched_class = &idle_sched_class;
1da177e4 6563 migrate_dead_tasks(cpu);
d2da272a 6564 spin_unlock_irq(&rq->lock);
470fd646 6565 cpuset_unlock();
1da177e4
LT
6566 migrate_nr_uninterruptible(rq);
6567 BUG_ON(rq->nr_running != 0);
6568
41a2d6cf
IM
6569 /*
6570 * No need to migrate the tasks: it was best-effort if
6571 * they didn't take sched_hotcpu_mutex. Just wake up
6572 * the requestors.
6573 */
1da177e4
LT
6574 spin_lock_irq(&rq->lock);
6575 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6576 struct migration_req *req;
6577
1da177e4 6578 req = list_entry(rq->migration_queue.next,
70b97a7f 6579 struct migration_req, list);
1da177e4 6580 list_del_init(&req->list);
9a2bd244 6581 spin_unlock_irq(&rq->lock);
1da177e4 6582 complete(&req->done);
9a2bd244 6583 spin_lock_irq(&rq->lock);
1da177e4
LT
6584 }
6585 spin_unlock_irq(&rq->lock);
6586 break;
57d885fe 6587
08f503b0
GH
6588 case CPU_DYING:
6589 case CPU_DYING_FROZEN:
57d885fe
GH
6590 /* Update our root-domain */
6591 rq = cpu_rq(cpu);
6592 spin_lock_irqsave(&rq->lock, flags);
6593 if (rq->rd) {
6594 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6595 set_rq_offline(rq);
57d885fe
GH
6596 }
6597 spin_unlock_irqrestore(&rq->lock, flags);
6598 break;
1da177e4
LT
6599#endif
6600 }
6601 return NOTIFY_OK;
6602}
6603
6604/* Register at highest priority so that task migration (migrate_all_tasks)
6605 * happens before everything else.
6606 */
26c2143b 6607static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6608 .notifier_call = migration_call,
6609 .priority = 10
6610};
6611
7babe8db 6612static int __init migration_init(void)
1da177e4
LT
6613{
6614 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6615 int err;
48f24c4d
IM
6616
6617 /* Start one for the boot CPU: */
07dccf33
AM
6618 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6619 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6620 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6621 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6622
6623 return err;
1da177e4 6624}
7babe8db 6625early_initcall(migration_init);
1da177e4
LT
6626#endif
6627
6628#ifdef CONFIG_SMP
476f3534 6629
3e9830dc 6630#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6631
7c16ec58
MT
6632static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6633 cpumask_t *groupmask)
1da177e4 6634{
4dcf6aff 6635 struct sched_group *group = sd->groups;
434d53b0 6636 char str[256];
1da177e4 6637
434d53b0 6638 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6639 cpus_clear(*groupmask);
4dcf6aff
IM
6640
6641 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6642
6643 if (!(sd->flags & SD_LOAD_BALANCE)) {
6644 printk("does not load-balance\n");
6645 if (sd->parent)
6646 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6647 " has parent");
6648 return -1;
41c7ce9a
NP
6649 }
6650
eefd796a 6651 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff
IM
6652
6653 if (!cpu_isset(cpu, sd->span)) {
6654 printk(KERN_ERR "ERROR: domain->span does not contain "
6655 "CPU%d\n", cpu);
6656 }
6657 if (!cpu_isset(cpu, group->cpumask)) {
6658 printk(KERN_ERR "ERROR: domain->groups does not contain"
6659 " CPU%d\n", cpu);
6660 }
1da177e4 6661
4dcf6aff 6662 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6663 do {
4dcf6aff
IM
6664 if (!group) {
6665 printk("\n");
6666 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6667 break;
6668 }
6669
4dcf6aff
IM
6670 if (!group->__cpu_power) {
6671 printk(KERN_CONT "\n");
6672 printk(KERN_ERR "ERROR: domain->cpu_power not "
6673 "set\n");
6674 break;
6675 }
1da177e4 6676
4dcf6aff
IM
6677 if (!cpus_weight(group->cpumask)) {
6678 printk(KERN_CONT "\n");
6679 printk(KERN_ERR "ERROR: empty group\n");
6680 break;
6681 }
1da177e4 6682
7c16ec58 6683 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6684 printk(KERN_CONT "\n");
6685 printk(KERN_ERR "ERROR: repeated CPUs\n");
6686 break;
6687 }
1da177e4 6688
7c16ec58 6689 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6690
434d53b0 6691 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6692 printk(KERN_CONT " %s", str);
1da177e4 6693
4dcf6aff
IM
6694 group = group->next;
6695 } while (group != sd->groups);
6696 printk(KERN_CONT "\n");
1da177e4 6697
7c16ec58 6698 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6699 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6700
7c16ec58 6701 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6702 printk(KERN_ERR "ERROR: parent span is not a superset "
6703 "of domain->span\n");
6704 return 0;
6705}
1da177e4 6706
4dcf6aff
IM
6707static void sched_domain_debug(struct sched_domain *sd, int cpu)
6708{
7c16ec58 6709 cpumask_t *groupmask;
4dcf6aff 6710 int level = 0;
1da177e4 6711
4dcf6aff
IM
6712 if (!sd) {
6713 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6714 return;
6715 }
1da177e4 6716
4dcf6aff
IM
6717 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6718
7c16ec58
MT
6719 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6720 if (!groupmask) {
6721 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6722 return;
6723 }
6724
4dcf6aff 6725 for (;;) {
7c16ec58 6726 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6727 break;
1da177e4
LT
6728 level++;
6729 sd = sd->parent;
33859f7f 6730 if (!sd)
4dcf6aff
IM
6731 break;
6732 }
7c16ec58 6733 kfree(groupmask);
1da177e4 6734}
6d6bc0ad 6735#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6736# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6737#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6738
1a20ff27 6739static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6740{
6741 if (cpus_weight(sd->span) == 1)
6742 return 1;
6743
6744 /* Following flags need at least 2 groups */
6745 if (sd->flags & (SD_LOAD_BALANCE |
6746 SD_BALANCE_NEWIDLE |
6747 SD_BALANCE_FORK |
89c4710e
SS
6748 SD_BALANCE_EXEC |
6749 SD_SHARE_CPUPOWER |
6750 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6751 if (sd->groups != sd->groups->next)
6752 return 0;
6753 }
6754
6755 /* Following flags don't use groups */
6756 if (sd->flags & (SD_WAKE_IDLE |
6757 SD_WAKE_AFFINE |
6758 SD_WAKE_BALANCE))
6759 return 0;
6760
6761 return 1;
6762}
6763
48f24c4d
IM
6764static int
6765sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6766{
6767 unsigned long cflags = sd->flags, pflags = parent->flags;
6768
6769 if (sd_degenerate(parent))
6770 return 1;
6771
6772 if (!cpus_equal(sd->span, parent->span))
6773 return 0;
6774
6775 /* Does parent contain flags not in child? */
6776 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6777 if (cflags & SD_WAKE_AFFINE)
6778 pflags &= ~SD_WAKE_BALANCE;
6779 /* Flags needing groups don't count if only 1 group in parent */
6780 if (parent->groups == parent->groups->next) {
6781 pflags &= ~(SD_LOAD_BALANCE |
6782 SD_BALANCE_NEWIDLE |
6783 SD_BALANCE_FORK |
89c4710e
SS
6784 SD_BALANCE_EXEC |
6785 SD_SHARE_CPUPOWER |
6786 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6787 if (nr_node_ids == 1)
6788 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6789 }
6790 if (~cflags & pflags)
6791 return 0;
6792
6793 return 1;
6794}
6795
57d885fe
GH
6796static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6797{
6798 unsigned long flags;
57d885fe
GH
6799
6800 spin_lock_irqsave(&rq->lock, flags);
6801
6802 if (rq->rd) {
6803 struct root_domain *old_rd = rq->rd;
6804
1f11eb6a
GH
6805 if (cpu_isset(rq->cpu, old_rd->online))
6806 set_rq_offline(rq);
57d885fe 6807
dc938520 6808 cpu_clear(rq->cpu, old_rd->span);
dc938520 6809
57d885fe
GH
6810 if (atomic_dec_and_test(&old_rd->refcount))
6811 kfree(old_rd);
6812 }
6813
6814 atomic_inc(&rd->refcount);
6815 rq->rd = rd;
6816
dc938520 6817 cpu_set(rq->cpu, rd->span);
1f94ef59 6818 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6819 set_rq_online(rq);
57d885fe
GH
6820
6821 spin_unlock_irqrestore(&rq->lock, flags);
6822}
6823
dc938520 6824static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6825{
6826 memset(rd, 0, sizeof(*rd));
6827
dc938520
GH
6828 cpus_clear(rd->span);
6829 cpus_clear(rd->online);
6e0534f2
GH
6830
6831 cpupri_init(&rd->cpupri);
57d885fe
GH
6832}
6833
6834static void init_defrootdomain(void)
6835{
dc938520 6836 init_rootdomain(&def_root_domain);
57d885fe
GH
6837 atomic_set(&def_root_domain.refcount, 1);
6838}
6839
dc938520 6840static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6841{
6842 struct root_domain *rd;
6843
6844 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6845 if (!rd)
6846 return NULL;
6847
dc938520 6848 init_rootdomain(rd);
57d885fe
GH
6849
6850 return rd;
6851}
6852
1da177e4 6853/*
0eab9146 6854 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6855 * hold the hotplug lock.
6856 */
0eab9146
IM
6857static void
6858cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6859{
70b97a7f 6860 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6861 struct sched_domain *tmp;
6862
6863 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6864 for (tmp = sd; tmp; ) {
245af2c7
SS
6865 struct sched_domain *parent = tmp->parent;
6866 if (!parent)
6867 break;
f29c9b1c 6868
1a848870 6869 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6870 tmp->parent = parent->parent;
1a848870
SS
6871 if (parent->parent)
6872 parent->parent->child = tmp;
f29c9b1c
LZ
6873 } else
6874 tmp = tmp->parent;
245af2c7
SS
6875 }
6876
1a848870 6877 if (sd && sd_degenerate(sd)) {
245af2c7 6878 sd = sd->parent;
1a848870
SS
6879 if (sd)
6880 sd->child = NULL;
6881 }
1da177e4
LT
6882
6883 sched_domain_debug(sd, cpu);
6884
57d885fe 6885 rq_attach_root(rq, rd);
674311d5 6886 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6887}
6888
6889/* cpus with isolated domains */
67af63a6 6890static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6891
6892/* Setup the mask of cpus configured for isolated domains */
6893static int __init isolated_cpu_setup(char *str)
6894{
13b40c1e
MT
6895 static int __initdata ints[NR_CPUS];
6896 int i;
1da177e4
LT
6897
6898 str = get_options(str, ARRAY_SIZE(ints), ints);
6899 cpus_clear(cpu_isolated_map);
6900 for (i = 1; i <= ints[0]; i++)
6901 if (ints[i] < NR_CPUS)
6902 cpu_set(ints[i], cpu_isolated_map);
6903 return 1;
6904}
6905
8927f494 6906__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6907
6908/*
6711cab4
SS
6909 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6910 * to a function which identifies what group(along with sched group) a CPU
6911 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6912 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6913 *
6914 * init_sched_build_groups will build a circular linked list of the groups
6915 * covered by the given span, and will set each group's ->cpumask correctly,
6916 * and ->cpu_power to 0.
6917 */
a616058b 6918static void
7c16ec58 6919init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6920 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6921 struct sched_group **sg,
6922 cpumask_t *tmpmask),
6923 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6924{
6925 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6926 int i;
6927
7c16ec58
MT
6928 cpus_clear(*covered);
6929
363ab6f1 6930 for_each_cpu_mask_nr(i, *span) {
6711cab4 6931 struct sched_group *sg;
7c16ec58 6932 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6933 int j;
6934
7c16ec58 6935 if (cpu_isset(i, *covered))
1da177e4
LT
6936 continue;
6937
7c16ec58 6938 cpus_clear(sg->cpumask);
5517d86b 6939 sg->__cpu_power = 0;
1da177e4 6940
363ab6f1 6941 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6942 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6943 continue;
6944
7c16ec58 6945 cpu_set(j, *covered);
1da177e4
LT
6946 cpu_set(j, sg->cpumask);
6947 }
6948 if (!first)
6949 first = sg;
6950 if (last)
6951 last->next = sg;
6952 last = sg;
6953 }
6954 last->next = first;
6955}
6956
9c1cfda2 6957#define SD_NODES_PER_DOMAIN 16
1da177e4 6958
9c1cfda2 6959#ifdef CONFIG_NUMA
198e2f18 6960
9c1cfda2
JH
6961/**
6962 * find_next_best_node - find the next node to include in a sched_domain
6963 * @node: node whose sched_domain we're building
6964 * @used_nodes: nodes already in the sched_domain
6965 *
41a2d6cf 6966 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6967 * finds the closest node not already in the @used_nodes map.
6968 *
6969 * Should use nodemask_t.
6970 */
c5f59f08 6971static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6972{
6973 int i, n, val, min_val, best_node = 0;
6974
6975 min_val = INT_MAX;
6976
076ac2af 6977 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6978 /* Start at @node */
076ac2af 6979 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6980
6981 if (!nr_cpus_node(n))
6982 continue;
6983
6984 /* Skip already used nodes */
c5f59f08 6985 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6986 continue;
6987
6988 /* Simple min distance search */
6989 val = node_distance(node, n);
6990
6991 if (val < min_val) {
6992 min_val = val;
6993 best_node = n;
6994 }
6995 }
6996
c5f59f08 6997 node_set(best_node, *used_nodes);
9c1cfda2
JH
6998 return best_node;
6999}
7000
7001/**
7002 * sched_domain_node_span - get a cpumask for a node's sched_domain
7003 * @node: node whose cpumask we're constructing
73486722 7004 * @span: resulting cpumask
9c1cfda2 7005 *
41a2d6cf 7006 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7007 * should be one that prevents unnecessary balancing, but also spreads tasks
7008 * out optimally.
7009 */
4bdbaad3 7010static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7011{
c5f59f08 7012 nodemask_t used_nodes;
c5f59f08 7013 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7014 int i;
9c1cfda2 7015
4bdbaad3 7016 cpus_clear(*span);
c5f59f08 7017 nodes_clear(used_nodes);
9c1cfda2 7018
4bdbaad3 7019 cpus_or(*span, *span, *nodemask);
c5f59f08 7020 node_set(node, used_nodes);
9c1cfda2
JH
7021
7022 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7023 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7024
c5f59f08 7025 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7026 cpus_or(*span, *span, *nodemask);
9c1cfda2 7027 }
9c1cfda2 7028}
6d6bc0ad 7029#endif /* CONFIG_NUMA */
9c1cfda2 7030
5c45bf27 7031int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7032
9c1cfda2 7033/*
48f24c4d 7034 * SMT sched-domains:
9c1cfda2 7035 */
1da177e4
LT
7036#ifdef CONFIG_SCHED_SMT
7037static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7038static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7039
41a2d6cf 7040static int
7c16ec58
MT
7041cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7042 cpumask_t *unused)
1da177e4 7043{
6711cab4
SS
7044 if (sg)
7045 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7046 return cpu;
7047}
6d6bc0ad 7048#endif /* CONFIG_SCHED_SMT */
1da177e4 7049
48f24c4d
IM
7050/*
7051 * multi-core sched-domains:
7052 */
1e9f28fa
SS
7053#ifdef CONFIG_SCHED_MC
7054static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7055static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7056#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7057
7058#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7059static int
7c16ec58
MT
7060cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7061 cpumask_t *mask)
1e9f28fa 7062{
6711cab4 7063 int group;
7c16ec58
MT
7064
7065 *mask = per_cpu(cpu_sibling_map, cpu);
7066 cpus_and(*mask, *mask, *cpu_map);
7067 group = first_cpu(*mask);
6711cab4
SS
7068 if (sg)
7069 *sg = &per_cpu(sched_group_core, group);
7070 return group;
1e9f28fa
SS
7071}
7072#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7073static int
7c16ec58
MT
7074cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7075 cpumask_t *unused)
1e9f28fa 7076{
6711cab4
SS
7077 if (sg)
7078 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7079 return cpu;
7080}
7081#endif
7082
1da177e4 7083static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7084static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7085
41a2d6cf 7086static int
7c16ec58
MT
7087cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7088 cpumask_t *mask)
1da177e4 7089{
6711cab4 7090 int group;
48f24c4d 7091#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7092 *mask = cpu_coregroup_map(cpu);
7093 cpus_and(*mask, *mask, *cpu_map);
7094 group = first_cpu(*mask);
1e9f28fa 7095#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7096 *mask = per_cpu(cpu_sibling_map, cpu);
7097 cpus_and(*mask, *mask, *cpu_map);
7098 group = first_cpu(*mask);
1da177e4 7099#else
6711cab4 7100 group = cpu;
1da177e4 7101#endif
6711cab4
SS
7102 if (sg)
7103 *sg = &per_cpu(sched_group_phys, group);
7104 return group;
1da177e4
LT
7105}
7106
7107#ifdef CONFIG_NUMA
1da177e4 7108/*
9c1cfda2
JH
7109 * The init_sched_build_groups can't handle what we want to do with node
7110 * groups, so roll our own. Now each node has its own list of groups which
7111 * gets dynamically allocated.
1da177e4 7112 */
9c1cfda2 7113static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7114static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7115
9c1cfda2 7116static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7117static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7118
6711cab4 7119static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7120 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7121{
6711cab4
SS
7122 int group;
7123
7c16ec58
MT
7124 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7125 cpus_and(*nodemask, *nodemask, *cpu_map);
7126 group = first_cpu(*nodemask);
6711cab4
SS
7127
7128 if (sg)
7129 *sg = &per_cpu(sched_group_allnodes, group);
7130 return group;
1da177e4 7131}
6711cab4 7132
08069033
SS
7133static void init_numa_sched_groups_power(struct sched_group *group_head)
7134{
7135 struct sched_group *sg = group_head;
7136 int j;
7137
7138 if (!sg)
7139 return;
3a5c359a 7140 do {
363ab6f1 7141 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7142 struct sched_domain *sd;
08069033 7143
3a5c359a
AK
7144 sd = &per_cpu(phys_domains, j);
7145 if (j != first_cpu(sd->groups->cpumask)) {
7146 /*
7147 * Only add "power" once for each
7148 * physical package.
7149 */
7150 continue;
7151 }
08069033 7152
3a5c359a
AK
7153 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7154 }
7155 sg = sg->next;
7156 } while (sg != group_head);
08069033 7157}
6d6bc0ad 7158#endif /* CONFIG_NUMA */
1da177e4 7159
a616058b 7160#ifdef CONFIG_NUMA
51888ca2 7161/* Free memory allocated for various sched_group structures */
7c16ec58 7162static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7163{
a616058b 7164 int cpu, i;
51888ca2 7165
363ab6f1 7166 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7167 struct sched_group **sched_group_nodes
7168 = sched_group_nodes_bycpu[cpu];
7169
51888ca2
SV
7170 if (!sched_group_nodes)
7171 continue;
7172
076ac2af 7173 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7174 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7175
7c16ec58
MT
7176 *nodemask = node_to_cpumask(i);
7177 cpus_and(*nodemask, *nodemask, *cpu_map);
7178 if (cpus_empty(*nodemask))
51888ca2
SV
7179 continue;
7180
7181 if (sg == NULL)
7182 continue;
7183 sg = sg->next;
7184next_sg:
7185 oldsg = sg;
7186 sg = sg->next;
7187 kfree(oldsg);
7188 if (oldsg != sched_group_nodes[i])
7189 goto next_sg;
7190 }
7191 kfree(sched_group_nodes);
7192 sched_group_nodes_bycpu[cpu] = NULL;
7193 }
51888ca2 7194}
6d6bc0ad 7195#else /* !CONFIG_NUMA */
7c16ec58 7196static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7197{
7198}
6d6bc0ad 7199#endif /* CONFIG_NUMA */
51888ca2 7200
89c4710e
SS
7201/*
7202 * Initialize sched groups cpu_power.
7203 *
7204 * cpu_power indicates the capacity of sched group, which is used while
7205 * distributing the load between different sched groups in a sched domain.
7206 * Typically cpu_power for all the groups in a sched domain will be same unless
7207 * there are asymmetries in the topology. If there are asymmetries, group
7208 * having more cpu_power will pickup more load compared to the group having
7209 * less cpu_power.
7210 *
7211 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7212 * the maximum number of tasks a group can handle in the presence of other idle
7213 * or lightly loaded groups in the same sched domain.
7214 */
7215static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7216{
7217 struct sched_domain *child;
7218 struct sched_group *group;
7219
7220 WARN_ON(!sd || !sd->groups);
7221
7222 if (cpu != first_cpu(sd->groups->cpumask))
7223 return;
7224
7225 child = sd->child;
7226
5517d86b
ED
7227 sd->groups->__cpu_power = 0;
7228
89c4710e
SS
7229 /*
7230 * For perf policy, if the groups in child domain share resources
7231 * (for example cores sharing some portions of the cache hierarchy
7232 * or SMT), then set this domain groups cpu_power such that each group
7233 * can handle only one task, when there are other idle groups in the
7234 * same sched domain.
7235 */
7236 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7237 (child->flags &
7238 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7239 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7240 return;
7241 }
7242
89c4710e
SS
7243 /*
7244 * add cpu_power of each child group to this groups cpu_power
7245 */
7246 group = child->groups;
7247 do {
5517d86b 7248 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7249 group = group->next;
7250 } while (group != child->groups);
7251}
7252
7c16ec58
MT
7253/*
7254 * Initializers for schedule domains
7255 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7256 */
7257
a5d8c348
IM
7258#ifdef CONFIG_SCHED_DEBUG
7259# define SD_INIT_NAME(sd, type) sd->name = #type
7260#else
7261# define SD_INIT_NAME(sd, type) do { } while (0)
7262#endif
7263
7c16ec58 7264#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7265
7c16ec58
MT
7266#define SD_INIT_FUNC(type) \
7267static noinline void sd_init_##type(struct sched_domain *sd) \
7268{ \
7269 memset(sd, 0, sizeof(*sd)); \
7270 *sd = SD_##type##_INIT; \
1d3504fc 7271 sd->level = SD_LV_##type; \
a5d8c348 7272 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7273}
7274
7275SD_INIT_FUNC(CPU)
7276#ifdef CONFIG_NUMA
7277 SD_INIT_FUNC(ALLNODES)
7278 SD_INIT_FUNC(NODE)
7279#endif
7280#ifdef CONFIG_SCHED_SMT
7281 SD_INIT_FUNC(SIBLING)
7282#endif
7283#ifdef CONFIG_SCHED_MC
7284 SD_INIT_FUNC(MC)
7285#endif
7286
7287/*
7288 * To minimize stack usage kmalloc room for cpumasks and share the
7289 * space as the usage in build_sched_domains() dictates. Used only
7290 * if the amount of space is significant.
7291 */
7292struct allmasks {
7293 cpumask_t tmpmask; /* make this one first */
7294 union {
7295 cpumask_t nodemask;
7296 cpumask_t this_sibling_map;
7297 cpumask_t this_core_map;
7298 };
7299 cpumask_t send_covered;
7300
7301#ifdef CONFIG_NUMA
7302 cpumask_t domainspan;
7303 cpumask_t covered;
7304 cpumask_t notcovered;
7305#endif
7306};
7307
7308#if NR_CPUS > 128
6d21cd62
LZ
7309#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7310static inline void sched_cpumask_alloc(struct allmasks **masks)
7311{
7312 *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
7313}
7314static inline void sched_cpumask_free(struct allmasks *masks)
7315{
7316 kfree(masks);
7317}
7c16ec58 7318#else
6d21cd62
LZ
7319#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7320static inline void sched_cpumask_alloc(struct allmasks **masks)
7321{ }
7322static inline void sched_cpumask_free(struct allmasks *masks)
7323{ }
7c16ec58
MT
7324#endif
7325
7326#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7327 ((unsigned long)(a) + offsetof(struct allmasks, v))
7328
1d3504fc
HS
7329static int default_relax_domain_level = -1;
7330
7331static int __init setup_relax_domain_level(char *str)
7332{
30e0e178
LZ
7333 unsigned long val;
7334
7335 val = simple_strtoul(str, NULL, 0);
7336 if (val < SD_LV_MAX)
7337 default_relax_domain_level = val;
7338
1d3504fc
HS
7339 return 1;
7340}
7341__setup("relax_domain_level=", setup_relax_domain_level);
7342
7343static void set_domain_attribute(struct sched_domain *sd,
7344 struct sched_domain_attr *attr)
7345{
7346 int request;
7347
7348 if (!attr || attr->relax_domain_level < 0) {
7349 if (default_relax_domain_level < 0)
7350 return;
7351 else
7352 request = default_relax_domain_level;
7353 } else
7354 request = attr->relax_domain_level;
7355 if (request < sd->level) {
7356 /* turn off idle balance on this domain */
7357 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7358 } else {
7359 /* turn on idle balance on this domain */
7360 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7361 }
7362}
7363
1da177e4 7364/*
1a20ff27
DG
7365 * Build sched domains for a given set of cpus and attach the sched domains
7366 * to the individual cpus
1da177e4 7367 */
1d3504fc
HS
7368static int __build_sched_domains(const cpumask_t *cpu_map,
7369 struct sched_domain_attr *attr)
1da177e4
LT
7370{
7371 int i;
57d885fe 7372 struct root_domain *rd;
7c16ec58
MT
7373 SCHED_CPUMASK_DECLARE(allmasks);
7374 cpumask_t *tmpmask;
d1b55138
JH
7375#ifdef CONFIG_NUMA
7376 struct sched_group **sched_group_nodes = NULL;
6711cab4 7377 int sd_allnodes = 0;
d1b55138
JH
7378
7379 /*
7380 * Allocate the per-node list of sched groups
7381 */
076ac2af 7382 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7383 GFP_KERNEL);
d1b55138
JH
7384 if (!sched_group_nodes) {
7385 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7386 return -ENOMEM;
d1b55138 7387 }
d1b55138 7388#endif
1da177e4 7389
dc938520 7390 rd = alloc_rootdomain();
57d885fe
GH
7391 if (!rd) {
7392 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7393#ifdef CONFIG_NUMA
7394 kfree(sched_group_nodes);
7395#endif
57d885fe
GH
7396 return -ENOMEM;
7397 }
7398
7c16ec58 7399 /* get space for all scratch cpumask variables */
6d21cd62 7400 sched_cpumask_alloc(&allmasks);
7c16ec58
MT
7401 if (!allmasks) {
7402 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7403 kfree(rd);
7404#ifdef CONFIG_NUMA
7405 kfree(sched_group_nodes);
7406#endif
7407 return -ENOMEM;
7408 }
6d21cd62 7409
7c16ec58
MT
7410 tmpmask = (cpumask_t *)allmasks;
7411
7412
7413#ifdef CONFIG_NUMA
7414 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7415#endif
7416
1da177e4 7417 /*
1a20ff27 7418 * Set up domains for cpus specified by the cpu_map.
1da177e4 7419 */
363ab6f1 7420 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7421 struct sched_domain *sd = NULL, *p;
7c16ec58 7422 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7423
7c16ec58
MT
7424 *nodemask = node_to_cpumask(cpu_to_node(i));
7425 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7426
7427#ifdef CONFIG_NUMA
dd41f596 7428 if (cpus_weight(*cpu_map) >
7c16ec58 7429 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7430 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7431 SD_INIT(sd, ALLNODES);
1d3504fc 7432 set_domain_attribute(sd, attr);
9c1cfda2 7433 sd->span = *cpu_map;
7c16ec58 7434 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7435 p = sd;
6711cab4 7436 sd_allnodes = 1;
9c1cfda2
JH
7437 } else
7438 p = NULL;
7439
1da177e4 7440 sd = &per_cpu(node_domains, i);
7c16ec58 7441 SD_INIT(sd, NODE);
1d3504fc 7442 set_domain_attribute(sd, attr);
4bdbaad3 7443 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7444 sd->parent = p;
1a848870
SS
7445 if (p)
7446 p->child = sd;
9c1cfda2 7447 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7448#endif
7449
7450 p = sd;
7451 sd = &per_cpu(phys_domains, i);
7c16ec58 7452 SD_INIT(sd, CPU);
1d3504fc 7453 set_domain_attribute(sd, attr);
7c16ec58 7454 sd->span = *nodemask;
1da177e4 7455 sd->parent = p;
1a848870
SS
7456 if (p)
7457 p->child = sd;
7c16ec58 7458 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7459
1e9f28fa
SS
7460#ifdef CONFIG_SCHED_MC
7461 p = sd;
7462 sd = &per_cpu(core_domains, i);
7c16ec58 7463 SD_INIT(sd, MC);
1d3504fc 7464 set_domain_attribute(sd, attr);
1e9f28fa
SS
7465 sd->span = cpu_coregroup_map(i);
7466 cpus_and(sd->span, sd->span, *cpu_map);
7467 sd->parent = p;
1a848870 7468 p->child = sd;
7c16ec58 7469 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7470#endif
7471
1da177e4
LT
7472#ifdef CONFIG_SCHED_SMT
7473 p = sd;
7474 sd = &per_cpu(cpu_domains, i);
7c16ec58 7475 SD_INIT(sd, SIBLING);
1d3504fc 7476 set_domain_attribute(sd, attr);
d5a7430d 7477 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7478 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7479 sd->parent = p;
1a848870 7480 p->child = sd;
7c16ec58 7481 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7482#endif
7483 }
7484
7485#ifdef CONFIG_SCHED_SMT
7486 /* Set up CPU (sibling) groups */
363ab6f1 7487 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7488 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7489 SCHED_CPUMASK_VAR(send_covered, allmasks);
7490
7491 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7492 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7493 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7494 continue;
7495
dd41f596 7496 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7497 &cpu_to_cpu_group,
7498 send_covered, tmpmask);
1da177e4
LT
7499 }
7500#endif
7501
1e9f28fa
SS
7502#ifdef CONFIG_SCHED_MC
7503 /* Set up multi-core groups */
363ab6f1 7504 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7505 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7506 SCHED_CPUMASK_VAR(send_covered, allmasks);
7507
7508 *this_core_map = cpu_coregroup_map(i);
7509 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7510 if (i != first_cpu(*this_core_map))
1e9f28fa 7511 continue;
7c16ec58 7512
dd41f596 7513 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7514 &cpu_to_core_group,
7515 send_covered, tmpmask);
1e9f28fa
SS
7516 }
7517#endif
7518
1da177e4 7519 /* Set up physical groups */
076ac2af 7520 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7521 SCHED_CPUMASK_VAR(nodemask, allmasks);
7522 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7523
7c16ec58
MT
7524 *nodemask = node_to_cpumask(i);
7525 cpus_and(*nodemask, *nodemask, *cpu_map);
7526 if (cpus_empty(*nodemask))
1da177e4
LT
7527 continue;
7528
7c16ec58
MT
7529 init_sched_build_groups(nodemask, cpu_map,
7530 &cpu_to_phys_group,
7531 send_covered, tmpmask);
1da177e4
LT
7532 }
7533
7534#ifdef CONFIG_NUMA
7535 /* Set up node groups */
7c16ec58
MT
7536 if (sd_allnodes) {
7537 SCHED_CPUMASK_VAR(send_covered, allmasks);
7538
7539 init_sched_build_groups(cpu_map, cpu_map,
7540 &cpu_to_allnodes_group,
7541 send_covered, tmpmask);
7542 }
9c1cfda2 7543
076ac2af 7544 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7545 /* Set up node groups */
7546 struct sched_group *sg, *prev;
7c16ec58
MT
7547 SCHED_CPUMASK_VAR(nodemask, allmasks);
7548 SCHED_CPUMASK_VAR(domainspan, allmasks);
7549 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7550 int j;
7551
7c16ec58
MT
7552 *nodemask = node_to_cpumask(i);
7553 cpus_clear(*covered);
7554
7555 cpus_and(*nodemask, *nodemask, *cpu_map);
7556 if (cpus_empty(*nodemask)) {
d1b55138 7557 sched_group_nodes[i] = NULL;
9c1cfda2 7558 continue;
d1b55138 7559 }
9c1cfda2 7560
4bdbaad3 7561 sched_domain_node_span(i, domainspan);
7c16ec58 7562 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7563
15f0b676 7564 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7565 if (!sg) {
7566 printk(KERN_WARNING "Can not alloc domain group for "
7567 "node %d\n", i);
7568 goto error;
7569 }
9c1cfda2 7570 sched_group_nodes[i] = sg;
363ab6f1 7571 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7572 struct sched_domain *sd;
9761eea8 7573
9c1cfda2
JH
7574 sd = &per_cpu(node_domains, j);
7575 sd->groups = sg;
9c1cfda2 7576 }
5517d86b 7577 sg->__cpu_power = 0;
7c16ec58 7578 sg->cpumask = *nodemask;
51888ca2 7579 sg->next = sg;
7c16ec58 7580 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7581 prev = sg;
7582
076ac2af 7583 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7584 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7585 int n = (i + j) % nr_node_ids;
c5f59f08 7586 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7587
7c16ec58
MT
7588 cpus_complement(*notcovered, *covered);
7589 cpus_and(*tmpmask, *notcovered, *cpu_map);
7590 cpus_and(*tmpmask, *tmpmask, *domainspan);
7591 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7592 break;
7593
7c16ec58
MT
7594 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7595 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7596 continue;
7597
15f0b676
SV
7598 sg = kmalloc_node(sizeof(struct sched_group),
7599 GFP_KERNEL, i);
9c1cfda2
JH
7600 if (!sg) {
7601 printk(KERN_WARNING
7602 "Can not alloc domain group for node %d\n", j);
51888ca2 7603 goto error;
9c1cfda2 7604 }
5517d86b 7605 sg->__cpu_power = 0;
7c16ec58 7606 sg->cpumask = *tmpmask;
51888ca2 7607 sg->next = prev->next;
7c16ec58 7608 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7609 prev->next = sg;
7610 prev = sg;
7611 }
9c1cfda2 7612 }
1da177e4
LT
7613#endif
7614
7615 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7616#ifdef CONFIG_SCHED_SMT
363ab6f1 7617 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7618 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7619
89c4710e 7620 init_sched_groups_power(i, sd);
5c45bf27 7621 }
1da177e4 7622#endif
1e9f28fa 7623#ifdef CONFIG_SCHED_MC
363ab6f1 7624 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7625 struct sched_domain *sd = &per_cpu(core_domains, i);
7626
89c4710e 7627 init_sched_groups_power(i, sd);
5c45bf27
SS
7628 }
7629#endif
1e9f28fa 7630
363ab6f1 7631 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7632 struct sched_domain *sd = &per_cpu(phys_domains, i);
7633
89c4710e 7634 init_sched_groups_power(i, sd);
1da177e4
LT
7635 }
7636
9c1cfda2 7637#ifdef CONFIG_NUMA
076ac2af 7638 for (i = 0; i < nr_node_ids; i++)
08069033 7639 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7640
6711cab4
SS
7641 if (sd_allnodes) {
7642 struct sched_group *sg;
f712c0c7 7643
7c16ec58
MT
7644 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7645 tmpmask);
f712c0c7
SS
7646 init_numa_sched_groups_power(sg);
7647 }
9c1cfda2
JH
7648#endif
7649
1da177e4 7650 /* Attach the domains */
363ab6f1 7651 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7652 struct sched_domain *sd;
7653#ifdef CONFIG_SCHED_SMT
7654 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7655#elif defined(CONFIG_SCHED_MC)
7656 sd = &per_cpu(core_domains, i);
1da177e4
LT
7657#else
7658 sd = &per_cpu(phys_domains, i);
7659#endif
57d885fe 7660 cpu_attach_domain(sd, rd, i);
1da177e4 7661 }
51888ca2 7662
6d21cd62 7663 sched_cpumask_free(allmasks);
51888ca2
SV
7664 return 0;
7665
a616058b 7666#ifdef CONFIG_NUMA
51888ca2 7667error:
7c16ec58 7668 free_sched_groups(cpu_map, tmpmask);
6d21cd62 7669 sched_cpumask_free(allmasks);
ca3273f9 7670 kfree(rd);
51888ca2 7671 return -ENOMEM;
a616058b 7672#endif
1da177e4 7673}
029190c5 7674
1d3504fc
HS
7675static int build_sched_domains(const cpumask_t *cpu_map)
7676{
7677 return __build_sched_domains(cpu_map, NULL);
7678}
7679
029190c5
PJ
7680static cpumask_t *doms_cur; /* current sched domains */
7681static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7682static struct sched_domain_attr *dattr_cur;
7683 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7684
7685/*
7686 * Special case: If a kmalloc of a doms_cur partition (array of
7687 * cpumask_t) fails, then fallback to a single sched domain,
7688 * as determined by the single cpumask_t fallback_doms.
7689 */
7690static cpumask_t fallback_doms;
7691
ee79d1bd
HC
7692/*
7693 * arch_update_cpu_topology lets virtualized architectures update the
7694 * cpu core maps. It is supposed to return 1 if the topology changed
7695 * or 0 if it stayed the same.
7696 */
7697int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7698{
ee79d1bd 7699 return 0;
22e52b07
HC
7700}
7701
1a20ff27 7702/*
41a2d6cf 7703 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7704 * For now this just excludes isolated cpus, but could be used to
7705 * exclude other special cases in the future.
1a20ff27 7706 */
51888ca2 7707static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7708{
7378547f
MM
7709 int err;
7710
22e52b07 7711 arch_update_cpu_topology();
029190c5
PJ
7712 ndoms_cur = 1;
7713 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7714 if (!doms_cur)
7715 doms_cur = &fallback_doms;
7716 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7717 dattr_cur = NULL;
7378547f 7718 err = build_sched_domains(doms_cur);
6382bc90 7719 register_sched_domain_sysctl();
7378547f
MM
7720
7721 return err;
1a20ff27
DG
7722}
7723
7c16ec58
MT
7724static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7725 cpumask_t *tmpmask)
1da177e4 7726{
7c16ec58 7727 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7728}
1da177e4 7729
1a20ff27
DG
7730/*
7731 * Detach sched domains from a group of cpus specified in cpu_map
7732 * These cpus will now be attached to the NULL domain
7733 */
858119e1 7734static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7735{
7c16ec58 7736 cpumask_t tmpmask;
1a20ff27
DG
7737 int i;
7738
363ab6f1 7739 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7740 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7741 synchronize_sched();
7c16ec58 7742 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7743}
7744
1d3504fc
HS
7745/* handle null as "default" */
7746static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7747 struct sched_domain_attr *new, int idx_new)
7748{
7749 struct sched_domain_attr tmp;
7750
7751 /* fast path */
7752 if (!new && !cur)
7753 return 1;
7754
7755 tmp = SD_ATTR_INIT;
7756 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7757 new ? (new + idx_new) : &tmp,
7758 sizeof(struct sched_domain_attr));
7759}
7760
029190c5
PJ
7761/*
7762 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7763 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7764 * doms_new[] to the current sched domain partitioning, doms_cur[].
7765 * It destroys each deleted domain and builds each new domain.
7766 *
7767 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7768 * The masks don't intersect (don't overlap.) We should setup one
7769 * sched domain for each mask. CPUs not in any of the cpumasks will
7770 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7771 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7772 * it as it is.
7773 *
41a2d6cf
IM
7774 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7775 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7776 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7777 * ndoms_new == 1, and partition_sched_domains() will fallback to
7778 * the single partition 'fallback_doms', it also forces the domains
7779 * to be rebuilt.
029190c5 7780 *
700018e0
LZ
7781 * If doms_new == NULL it will be replaced with cpu_online_map.
7782 * ndoms_new == 0 is a special case for destroying existing domains,
7783 * and it will not create the default domain.
dfb512ec 7784 *
029190c5
PJ
7785 * Call with hotplug lock held
7786 */
1d3504fc
HS
7787void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7788 struct sched_domain_attr *dattr_new)
029190c5 7789{
dfb512ec 7790 int i, j, n;
d65bd5ec 7791 int new_topology;
029190c5 7792
712555ee 7793 mutex_lock(&sched_domains_mutex);
a1835615 7794
7378547f
MM
7795 /* always unregister in case we don't destroy any domains */
7796 unregister_sched_domain_sysctl();
7797
d65bd5ec
HC
7798 /* Let architecture update cpu core mappings. */
7799 new_topology = arch_update_cpu_topology();
7800
dfb512ec 7801 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7802
7803 /* Destroy deleted domains */
7804 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7805 for (j = 0; j < n && !new_topology; j++) {
1d3504fc
HS
7806 if (cpus_equal(doms_cur[i], doms_new[j])
7807 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7808 goto match1;
7809 }
7810 /* no match - a current sched domain not in new doms_new[] */
7811 detach_destroy_domains(doms_cur + i);
7812match1:
7813 ;
7814 }
7815
e761b772
MK
7816 if (doms_new == NULL) {
7817 ndoms_cur = 0;
e761b772
MK
7818 doms_new = &fallback_doms;
7819 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
faa2f98f 7820 WARN_ON_ONCE(dattr_new);
e761b772
MK
7821 }
7822
029190c5
PJ
7823 /* Build new domains */
7824 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7825 for (j = 0; j < ndoms_cur && !new_topology; j++) {
1d3504fc
HS
7826 if (cpus_equal(doms_new[i], doms_cur[j])
7827 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7828 goto match2;
7829 }
7830 /* no match - add a new doms_new */
1d3504fc
HS
7831 __build_sched_domains(doms_new + i,
7832 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7833match2:
7834 ;
7835 }
7836
7837 /* Remember the new sched domains */
7838 if (doms_cur != &fallback_doms)
7839 kfree(doms_cur);
1d3504fc 7840 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7841 doms_cur = doms_new;
1d3504fc 7842 dattr_cur = dattr_new;
029190c5 7843 ndoms_cur = ndoms_new;
7378547f
MM
7844
7845 register_sched_domain_sysctl();
a1835615 7846
712555ee 7847 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7848}
7849
5c45bf27 7850#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7851int arch_reinit_sched_domains(void)
5c45bf27 7852{
95402b38 7853 get_online_cpus();
dfb512ec
MK
7854
7855 /* Destroy domains first to force the rebuild */
7856 partition_sched_domains(0, NULL, NULL);
7857
e761b772 7858 rebuild_sched_domains();
95402b38 7859 put_online_cpus();
dfb512ec 7860
e761b772 7861 return 0;
5c45bf27
SS
7862}
7863
7864static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7865{
7866 int ret;
7867
7868 if (buf[0] != '0' && buf[0] != '1')
7869 return -EINVAL;
7870
7871 if (smt)
7872 sched_smt_power_savings = (buf[0] == '1');
7873 else
7874 sched_mc_power_savings = (buf[0] == '1');
7875
7876 ret = arch_reinit_sched_domains();
7877
7878 return ret ? ret : count;
7879}
7880
5c45bf27 7881#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7882static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7883 char *page)
5c45bf27
SS
7884{
7885 return sprintf(page, "%u\n", sched_mc_power_savings);
7886}
f718cd4a 7887static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7888 const char *buf, size_t count)
5c45bf27
SS
7889{
7890 return sched_power_savings_store(buf, count, 0);
7891}
f718cd4a
AK
7892static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7893 sched_mc_power_savings_show,
7894 sched_mc_power_savings_store);
5c45bf27
SS
7895#endif
7896
7897#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7898static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7899 char *page)
5c45bf27
SS
7900{
7901 return sprintf(page, "%u\n", sched_smt_power_savings);
7902}
f718cd4a 7903static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7904 const char *buf, size_t count)
5c45bf27
SS
7905{
7906 return sched_power_savings_store(buf, count, 1);
7907}
f718cd4a
AK
7908static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7909 sched_smt_power_savings_show,
6707de00
AB
7910 sched_smt_power_savings_store);
7911#endif
7912
7913int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7914{
7915 int err = 0;
7916
7917#ifdef CONFIG_SCHED_SMT
7918 if (smt_capable())
7919 err = sysfs_create_file(&cls->kset.kobj,
7920 &attr_sched_smt_power_savings.attr);
7921#endif
7922#ifdef CONFIG_SCHED_MC
7923 if (!err && mc_capable())
7924 err = sysfs_create_file(&cls->kset.kobj,
7925 &attr_sched_mc_power_savings.attr);
7926#endif
7927 return err;
7928}
6d6bc0ad 7929#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7930
e761b772 7931#ifndef CONFIG_CPUSETS
1da177e4 7932/*
e761b772
MK
7933 * Add online and remove offline CPUs from the scheduler domains.
7934 * When cpusets are enabled they take over this function.
1da177e4
LT
7935 */
7936static int update_sched_domains(struct notifier_block *nfb,
7937 unsigned long action, void *hcpu)
e761b772
MK
7938{
7939 switch (action) {
7940 case CPU_ONLINE:
7941 case CPU_ONLINE_FROZEN:
7942 case CPU_DEAD:
7943 case CPU_DEAD_FROZEN:
dfb512ec 7944 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7945 return NOTIFY_OK;
7946
7947 default:
7948 return NOTIFY_DONE;
7949 }
7950}
7951#endif
7952
7953static int update_runtime(struct notifier_block *nfb,
7954 unsigned long action, void *hcpu)
1da177e4 7955{
7def2be1
PZ
7956 int cpu = (int)(long)hcpu;
7957
1da177e4 7958 switch (action) {
1da177e4 7959 case CPU_DOWN_PREPARE:
8bb78442 7960 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7961 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7962 return NOTIFY_OK;
7963
1da177e4 7964 case CPU_DOWN_FAILED:
8bb78442 7965 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7966 case CPU_ONLINE:
8bb78442 7967 case CPU_ONLINE_FROZEN:
7def2be1 7968 enable_runtime(cpu_rq(cpu));
e761b772
MK
7969 return NOTIFY_OK;
7970
1da177e4
LT
7971 default:
7972 return NOTIFY_DONE;
7973 }
1da177e4 7974}
1da177e4
LT
7975
7976void __init sched_init_smp(void)
7977{
5c1e1767
NP
7978 cpumask_t non_isolated_cpus;
7979
434d53b0
MT
7980#if defined(CONFIG_NUMA)
7981 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7982 GFP_KERNEL);
7983 BUG_ON(sched_group_nodes_bycpu == NULL);
7984#endif
95402b38 7985 get_online_cpus();
712555ee 7986 mutex_lock(&sched_domains_mutex);
1a20ff27 7987 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7988 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7989 if (cpus_empty(non_isolated_cpus))
7990 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7991 mutex_unlock(&sched_domains_mutex);
95402b38 7992 put_online_cpus();
e761b772
MK
7993
7994#ifndef CONFIG_CPUSETS
1da177e4
LT
7995 /* XXX: Theoretical race here - CPU may be hotplugged now */
7996 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7997#endif
7998
7999 /* RT runtime code needs to handle some hotplug events */
8000 hotcpu_notifier(update_runtime, 0);
8001
b328ca18 8002 init_hrtick();
5c1e1767
NP
8003
8004 /* Move init over to a non-isolated CPU */
7c16ec58 8005 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8006 BUG();
19978ca6 8007 sched_init_granularity();
1da177e4
LT
8008}
8009#else
8010void __init sched_init_smp(void)
8011{
19978ca6 8012 sched_init_granularity();
1da177e4
LT
8013}
8014#endif /* CONFIG_SMP */
8015
8016int in_sched_functions(unsigned long addr)
8017{
1da177e4
LT
8018 return in_lock_functions(addr) ||
8019 (addr >= (unsigned long)__sched_text_start
8020 && addr < (unsigned long)__sched_text_end);
8021}
8022
a9957449 8023static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8024{
8025 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8026 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8027#ifdef CONFIG_FAIR_GROUP_SCHED
8028 cfs_rq->rq = rq;
8029#endif
67e9fb2a 8030 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8031}
8032
fa85ae24
PZ
8033static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8034{
8035 struct rt_prio_array *array;
8036 int i;
8037
8038 array = &rt_rq->active;
8039 for (i = 0; i < MAX_RT_PRIO; i++) {
8040 INIT_LIST_HEAD(array->queue + i);
8041 __clear_bit(i, array->bitmap);
8042 }
8043 /* delimiter for bitsearch: */
8044 __set_bit(MAX_RT_PRIO, array->bitmap);
8045
052f1dc7 8046#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8047 rt_rq->highest_prio = MAX_RT_PRIO;
8048#endif
fa85ae24
PZ
8049#ifdef CONFIG_SMP
8050 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8051 rt_rq->overloaded = 0;
8052#endif
8053
8054 rt_rq->rt_time = 0;
8055 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8056 rt_rq->rt_runtime = 0;
8057 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8058
052f1dc7 8059#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8060 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8061 rt_rq->rq = rq;
8062#endif
fa85ae24
PZ
8063}
8064
6f505b16 8065#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8066static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8067 struct sched_entity *se, int cpu, int add,
8068 struct sched_entity *parent)
6f505b16 8069{
ec7dc8ac 8070 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8071 tg->cfs_rq[cpu] = cfs_rq;
8072 init_cfs_rq(cfs_rq, rq);
8073 cfs_rq->tg = tg;
8074 if (add)
8075 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8076
8077 tg->se[cpu] = se;
354d60c2
DG
8078 /* se could be NULL for init_task_group */
8079 if (!se)
8080 return;
8081
ec7dc8ac
DG
8082 if (!parent)
8083 se->cfs_rq = &rq->cfs;
8084 else
8085 se->cfs_rq = parent->my_q;
8086
6f505b16
PZ
8087 se->my_q = cfs_rq;
8088 se->load.weight = tg->shares;
e05510d0 8089 se->load.inv_weight = 0;
ec7dc8ac 8090 se->parent = parent;
6f505b16 8091}
052f1dc7 8092#endif
6f505b16 8093
052f1dc7 8094#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8095static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8096 struct sched_rt_entity *rt_se, int cpu, int add,
8097 struct sched_rt_entity *parent)
6f505b16 8098{
ec7dc8ac
DG
8099 struct rq *rq = cpu_rq(cpu);
8100
6f505b16
PZ
8101 tg->rt_rq[cpu] = rt_rq;
8102 init_rt_rq(rt_rq, rq);
8103 rt_rq->tg = tg;
8104 rt_rq->rt_se = rt_se;
ac086bc2 8105 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8106 if (add)
8107 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8108
8109 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8110 if (!rt_se)
8111 return;
8112
ec7dc8ac
DG
8113 if (!parent)
8114 rt_se->rt_rq = &rq->rt;
8115 else
8116 rt_se->rt_rq = parent->my_q;
8117
6f505b16 8118 rt_se->my_q = rt_rq;
ec7dc8ac 8119 rt_se->parent = parent;
6f505b16
PZ
8120 INIT_LIST_HEAD(&rt_se->run_list);
8121}
8122#endif
8123
1da177e4
LT
8124void __init sched_init(void)
8125{
dd41f596 8126 int i, j;
434d53b0
MT
8127 unsigned long alloc_size = 0, ptr;
8128
8129#ifdef CONFIG_FAIR_GROUP_SCHED
8130 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8131#endif
8132#ifdef CONFIG_RT_GROUP_SCHED
8133 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8134#endif
8135#ifdef CONFIG_USER_SCHED
8136 alloc_size *= 2;
434d53b0
MT
8137#endif
8138 /*
8139 * As sched_init() is called before page_alloc is setup,
8140 * we use alloc_bootmem().
8141 */
8142 if (alloc_size) {
5a9d3225 8143 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8144
8145#ifdef CONFIG_FAIR_GROUP_SCHED
8146 init_task_group.se = (struct sched_entity **)ptr;
8147 ptr += nr_cpu_ids * sizeof(void **);
8148
8149 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8150 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8151
8152#ifdef CONFIG_USER_SCHED
8153 root_task_group.se = (struct sched_entity **)ptr;
8154 ptr += nr_cpu_ids * sizeof(void **);
8155
8156 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8157 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8158#endif /* CONFIG_USER_SCHED */
8159#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8160#ifdef CONFIG_RT_GROUP_SCHED
8161 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8162 ptr += nr_cpu_ids * sizeof(void **);
8163
8164 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8165 ptr += nr_cpu_ids * sizeof(void **);
8166
8167#ifdef CONFIG_USER_SCHED
8168 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8169 ptr += nr_cpu_ids * sizeof(void **);
8170
8171 root_task_group.rt_rq = (struct rt_rq **)ptr;
8172 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8173#endif /* CONFIG_USER_SCHED */
8174#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8175 }
dd41f596 8176
57d885fe
GH
8177#ifdef CONFIG_SMP
8178 init_defrootdomain();
8179#endif
8180
d0b27fa7
PZ
8181 init_rt_bandwidth(&def_rt_bandwidth,
8182 global_rt_period(), global_rt_runtime());
8183
8184#ifdef CONFIG_RT_GROUP_SCHED
8185 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8186 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8187#ifdef CONFIG_USER_SCHED
8188 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8189 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8190#endif /* CONFIG_USER_SCHED */
8191#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8192
052f1dc7 8193#ifdef CONFIG_GROUP_SCHED
6f505b16 8194 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8195 INIT_LIST_HEAD(&init_task_group.children);
8196
8197#ifdef CONFIG_USER_SCHED
8198 INIT_LIST_HEAD(&root_task_group.children);
8199 init_task_group.parent = &root_task_group;
8200 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8201#endif /* CONFIG_USER_SCHED */
8202#endif /* CONFIG_GROUP_SCHED */
6f505b16 8203
0a945022 8204 for_each_possible_cpu(i) {
70b97a7f 8205 struct rq *rq;
1da177e4
LT
8206
8207 rq = cpu_rq(i);
8208 spin_lock_init(&rq->lock);
7897986b 8209 rq->nr_running = 0;
dd41f596 8210 init_cfs_rq(&rq->cfs, rq);
6f505b16 8211 init_rt_rq(&rq->rt, rq);
dd41f596 8212#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8213 init_task_group.shares = init_task_group_load;
6f505b16 8214 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8215#ifdef CONFIG_CGROUP_SCHED
8216 /*
8217 * How much cpu bandwidth does init_task_group get?
8218 *
8219 * In case of task-groups formed thr' the cgroup filesystem, it
8220 * gets 100% of the cpu resources in the system. This overall
8221 * system cpu resource is divided among the tasks of
8222 * init_task_group and its child task-groups in a fair manner,
8223 * based on each entity's (task or task-group's) weight
8224 * (se->load.weight).
8225 *
8226 * In other words, if init_task_group has 10 tasks of weight
8227 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8228 * then A0's share of the cpu resource is:
8229 *
8230 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8231 *
8232 * We achieve this by letting init_task_group's tasks sit
8233 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8234 */
ec7dc8ac 8235 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8236#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8237 root_task_group.shares = NICE_0_LOAD;
8238 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8239 /*
8240 * In case of task-groups formed thr' the user id of tasks,
8241 * init_task_group represents tasks belonging to root user.
8242 * Hence it forms a sibling of all subsequent groups formed.
8243 * In this case, init_task_group gets only a fraction of overall
8244 * system cpu resource, based on the weight assigned to root
8245 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8246 * by letting tasks of init_task_group sit in a separate cfs_rq
8247 * (init_cfs_rq) and having one entity represent this group of
8248 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8249 */
ec7dc8ac 8250 init_tg_cfs_entry(&init_task_group,
6f505b16 8251 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8252 &per_cpu(init_sched_entity, i), i, 1,
8253 root_task_group.se[i]);
6f505b16 8254
052f1dc7 8255#endif
354d60c2
DG
8256#endif /* CONFIG_FAIR_GROUP_SCHED */
8257
8258 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8259#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8260 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8261#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8262 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8263#elif defined CONFIG_USER_SCHED
eff766a6 8264 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8265 init_tg_rt_entry(&init_task_group,
6f505b16 8266 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8267 &per_cpu(init_sched_rt_entity, i), i, 1,
8268 root_task_group.rt_se[i]);
354d60c2 8269#endif
dd41f596 8270#endif
1da177e4 8271
dd41f596
IM
8272 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8273 rq->cpu_load[j] = 0;
1da177e4 8274#ifdef CONFIG_SMP
41c7ce9a 8275 rq->sd = NULL;
57d885fe 8276 rq->rd = NULL;
1da177e4 8277 rq->active_balance = 0;
dd41f596 8278 rq->next_balance = jiffies;
1da177e4 8279 rq->push_cpu = 0;
0a2966b4 8280 rq->cpu = i;
1f11eb6a 8281 rq->online = 0;
1da177e4
LT
8282 rq->migration_thread = NULL;
8283 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8284 rq_attach_root(rq, &def_root_domain);
1da177e4 8285#endif
8f4d37ec 8286 init_rq_hrtick(rq);
1da177e4 8287 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8288 }
8289
2dd73a4f 8290 set_load_weight(&init_task);
b50f60ce 8291
e107be36
AK
8292#ifdef CONFIG_PREEMPT_NOTIFIERS
8293 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8294#endif
8295
c9819f45 8296#ifdef CONFIG_SMP
962cf36c 8297 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8298#endif
8299
b50f60ce
HC
8300#ifdef CONFIG_RT_MUTEXES
8301 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8302#endif
8303
1da177e4
LT
8304 /*
8305 * The boot idle thread does lazy MMU switching as well:
8306 */
8307 atomic_inc(&init_mm.mm_count);
8308 enter_lazy_tlb(&init_mm, current);
8309
8310 /*
8311 * Make us the idle thread. Technically, schedule() should not be
8312 * called from this thread, however somewhere below it might be,
8313 * but because we are the idle thread, we just pick up running again
8314 * when this runqueue becomes "idle".
8315 */
8316 init_idle(current, smp_processor_id());
dd41f596
IM
8317 /*
8318 * During early bootup we pretend to be a normal task:
8319 */
8320 current->sched_class = &fair_sched_class;
6892b75e
IM
8321
8322 scheduler_running = 1;
1da177e4
LT
8323}
8324
8325#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8326void __might_sleep(char *file, int line)
8327{
48f24c4d 8328#ifdef in_atomic
1da177e4
LT
8329 static unsigned long prev_jiffy; /* ratelimiting */
8330
aef745fc
IM
8331 if ((!in_atomic() && !irqs_disabled()) ||
8332 system_state != SYSTEM_RUNNING || oops_in_progress)
8333 return;
8334 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8335 return;
8336 prev_jiffy = jiffies;
8337
8338 printk(KERN_ERR
8339 "BUG: sleeping function called from invalid context at %s:%d\n",
8340 file, line);
8341 printk(KERN_ERR
8342 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8343 in_atomic(), irqs_disabled(),
8344 current->pid, current->comm);
8345
8346 debug_show_held_locks(current);
8347 if (irqs_disabled())
8348 print_irqtrace_events(current);
8349 dump_stack();
1da177e4
LT
8350#endif
8351}
8352EXPORT_SYMBOL(__might_sleep);
8353#endif
8354
8355#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8356static void normalize_task(struct rq *rq, struct task_struct *p)
8357{
8358 int on_rq;
3e51f33f 8359
3a5e4dc1
AK
8360 update_rq_clock(rq);
8361 on_rq = p->se.on_rq;
8362 if (on_rq)
8363 deactivate_task(rq, p, 0);
8364 __setscheduler(rq, p, SCHED_NORMAL, 0);
8365 if (on_rq) {
8366 activate_task(rq, p, 0);
8367 resched_task(rq->curr);
8368 }
8369}
8370
1da177e4
LT
8371void normalize_rt_tasks(void)
8372{
a0f98a1c 8373 struct task_struct *g, *p;
1da177e4 8374 unsigned long flags;
70b97a7f 8375 struct rq *rq;
1da177e4 8376
4cf5d77a 8377 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8378 do_each_thread(g, p) {
178be793
IM
8379 /*
8380 * Only normalize user tasks:
8381 */
8382 if (!p->mm)
8383 continue;
8384
6cfb0d5d 8385 p->se.exec_start = 0;
6cfb0d5d 8386#ifdef CONFIG_SCHEDSTATS
dd41f596 8387 p->se.wait_start = 0;
dd41f596 8388 p->se.sleep_start = 0;
dd41f596 8389 p->se.block_start = 0;
6cfb0d5d 8390#endif
dd41f596
IM
8391
8392 if (!rt_task(p)) {
8393 /*
8394 * Renice negative nice level userspace
8395 * tasks back to 0:
8396 */
8397 if (TASK_NICE(p) < 0 && p->mm)
8398 set_user_nice(p, 0);
1da177e4 8399 continue;
dd41f596 8400 }
1da177e4 8401
4cf5d77a 8402 spin_lock(&p->pi_lock);
b29739f9 8403 rq = __task_rq_lock(p);
1da177e4 8404
178be793 8405 normalize_task(rq, p);
3a5e4dc1 8406
b29739f9 8407 __task_rq_unlock(rq);
4cf5d77a 8408 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8409 } while_each_thread(g, p);
8410
4cf5d77a 8411 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8412}
8413
8414#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8415
8416#ifdef CONFIG_IA64
8417/*
8418 * These functions are only useful for the IA64 MCA handling.
8419 *
8420 * They can only be called when the whole system has been
8421 * stopped - every CPU needs to be quiescent, and no scheduling
8422 * activity can take place. Using them for anything else would
8423 * be a serious bug, and as a result, they aren't even visible
8424 * under any other configuration.
8425 */
8426
8427/**
8428 * curr_task - return the current task for a given cpu.
8429 * @cpu: the processor in question.
8430 *
8431 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8432 */
36c8b586 8433struct task_struct *curr_task(int cpu)
1df5c10a
LT
8434{
8435 return cpu_curr(cpu);
8436}
8437
8438/**
8439 * set_curr_task - set the current task for a given cpu.
8440 * @cpu: the processor in question.
8441 * @p: the task pointer to set.
8442 *
8443 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8444 * are serviced on a separate stack. It allows the architecture to switch the
8445 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8446 * must be called with all CPU's synchronized, and interrupts disabled, the
8447 * and caller must save the original value of the current task (see
8448 * curr_task() above) and restore that value before reenabling interrupts and
8449 * re-starting the system.
8450 *
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8452 */
36c8b586 8453void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8454{
8455 cpu_curr(cpu) = p;
8456}
8457
8458#endif
29f59db3 8459
bccbe08a
PZ
8460#ifdef CONFIG_FAIR_GROUP_SCHED
8461static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8462{
8463 int i;
8464
8465 for_each_possible_cpu(i) {
8466 if (tg->cfs_rq)
8467 kfree(tg->cfs_rq[i]);
8468 if (tg->se)
8469 kfree(tg->se[i]);
6f505b16
PZ
8470 }
8471
8472 kfree(tg->cfs_rq);
8473 kfree(tg->se);
6f505b16
PZ
8474}
8475
ec7dc8ac
DG
8476static
8477int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8478{
29f59db3 8479 struct cfs_rq *cfs_rq;
eab17229 8480 struct sched_entity *se;
9b5b7751 8481 struct rq *rq;
29f59db3
SV
8482 int i;
8483
434d53b0 8484 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8485 if (!tg->cfs_rq)
8486 goto err;
434d53b0 8487 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8488 if (!tg->se)
8489 goto err;
052f1dc7
PZ
8490
8491 tg->shares = NICE_0_LOAD;
29f59db3
SV
8492
8493 for_each_possible_cpu(i) {
9b5b7751 8494 rq = cpu_rq(i);
29f59db3 8495
eab17229
LZ
8496 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8497 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8498 if (!cfs_rq)
8499 goto err;
8500
eab17229
LZ
8501 se = kzalloc_node(sizeof(struct sched_entity),
8502 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8503 if (!se)
8504 goto err;
8505
eab17229 8506 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8507 }
8508
8509 return 1;
8510
8511 err:
8512 return 0;
8513}
8514
8515static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8516{
8517 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8518 &cpu_rq(cpu)->leaf_cfs_rq_list);
8519}
8520
8521static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8522{
8523 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8524}
6d6bc0ad 8525#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8526static inline void free_fair_sched_group(struct task_group *tg)
8527{
8528}
8529
ec7dc8ac
DG
8530static inline
8531int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8532{
8533 return 1;
8534}
8535
8536static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8537{
8538}
8539
8540static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8541{
8542}
6d6bc0ad 8543#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8544
8545#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8546static void free_rt_sched_group(struct task_group *tg)
8547{
8548 int i;
8549
d0b27fa7
PZ
8550 destroy_rt_bandwidth(&tg->rt_bandwidth);
8551
bccbe08a
PZ
8552 for_each_possible_cpu(i) {
8553 if (tg->rt_rq)
8554 kfree(tg->rt_rq[i]);
8555 if (tg->rt_se)
8556 kfree(tg->rt_se[i]);
8557 }
8558
8559 kfree(tg->rt_rq);
8560 kfree(tg->rt_se);
8561}
8562
ec7dc8ac
DG
8563static
8564int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8565{
8566 struct rt_rq *rt_rq;
eab17229 8567 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8568 struct rq *rq;
8569 int i;
8570
434d53b0 8571 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8572 if (!tg->rt_rq)
8573 goto err;
434d53b0 8574 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8575 if (!tg->rt_se)
8576 goto err;
8577
d0b27fa7
PZ
8578 init_rt_bandwidth(&tg->rt_bandwidth,
8579 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8580
8581 for_each_possible_cpu(i) {
8582 rq = cpu_rq(i);
8583
eab17229
LZ
8584 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8585 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8586 if (!rt_rq)
8587 goto err;
29f59db3 8588
eab17229
LZ
8589 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8590 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8591 if (!rt_se)
8592 goto err;
29f59db3 8593
eab17229 8594 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8595 }
8596
bccbe08a
PZ
8597 return 1;
8598
8599 err:
8600 return 0;
8601}
8602
8603static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8604{
8605 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8606 &cpu_rq(cpu)->leaf_rt_rq_list);
8607}
8608
8609static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8610{
8611 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8612}
6d6bc0ad 8613#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8614static inline void free_rt_sched_group(struct task_group *tg)
8615{
8616}
8617
ec7dc8ac
DG
8618static inline
8619int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8620{
8621 return 1;
8622}
8623
8624static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8625{
8626}
8627
8628static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8629{
8630}
6d6bc0ad 8631#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8632
d0b27fa7 8633#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8634static void free_sched_group(struct task_group *tg)
8635{
8636 free_fair_sched_group(tg);
8637 free_rt_sched_group(tg);
8638 kfree(tg);
8639}
8640
8641/* allocate runqueue etc for a new task group */
ec7dc8ac 8642struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8643{
8644 struct task_group *tg;
8645 unsigned long flags;
8646 int i;
8647
8648 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8649 if (!tg)
8650 return ERR_PTR(-ENOMEM);
8651
ec7dc8ac 8652 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8653 goto err;
8654
ec7dc8ac 8655 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8656 goto err;
8657
8ed36996 8658 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8659 for_each_possible_cpu(i) {
bccbe08a
PZ
8660 register_fair_sched_group(tg, i);
8661 register_rt_sched_group(tg, i);
9b5b7751 8662 }
6f505b16 8663 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8664
8665 WARN_ON(!parent); /* root should already exist */
8666
8667 tg->parent = parent;
f473aa5e 8668 INIT_LIST_HEAD(&tg->children);
09f2724a 8669 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8670 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8671
9b5b7751 8672 return tg;
29f59db3
SV
8673
8674err:
6f505b16 8675 free_sched_group(tg);
29f59db3
SV
8676 return ERR_PTR(-ENOMEM);
8677}
8678
9b5b7751 8679/* rcu callback to free various structures associated with a task group */
6f505b16 8680static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8681{
29f59db3 8682 /* now it should be safe to free those cfs_rqs */
6f505b16 8683 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8684}
8685
9b5b7751 8686/* Destroy runqueue etc associated with a task group */
4cf86d77 8687void sched_destroy_group(struct task_group *tg)
29f59db3 8688{
8ed36996 8689 unsigned long flags;
9b5b7751 8690 int i;
29f59db3 8691
8ed36996 8692 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8693 for_each_possible_cpu(i) {
bccbe08a
PZ
8694 unregister_fair_sched_group(tg, i);
8695 unregister_rt_sched_group(tg, i);
9b5b7751 8696 }
6f505b16 8697 list_del_rcu(&tg->list);
f473aa5e 8698 list_del_rcu(&tg->siblings);
8ed36996 8699 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8700
9b5b7751 8701 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8702 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8703}
8704
9b5b7751 8705/* change task's runqueue when it moves between groups.
3a252015
IM
8706 * The caller of this function should have put the task in its new group
8707 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8708 * reflect its new group.
9b5b7751
SV
8709 */
8710void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8711{
8712 int on_rq, running;
8713 unsigned long flags;
8714 struct rq *rq;
8715
8716 rq = task_rq_lock(tsk, &flags);
8717
29f59db3
SV
8718 update_rq_clock(rq);
8719
051a1d1a 8720 running = task_current(rq, tsk);
29f59db3
SV
8721 on_rq = tsk->se.on_rq;
8722
0e1f3483 8723 if (on_rq)
29f59db3 8724 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8725 if (unlikely(running))
8726 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8727
6f505b16 8728 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8729
810b3817
PZ
8730#ifdef CONFIG_FAIR_GROUP_SCHED
8731 if (tsk->sched_class->moved_group)
8732 tsk->sched_class->moved_group(tsk);
8733#endif
8734
0e1f3483
HS
8735 if (unlikely(running))
8736 tsk->sched_class->set_curr_task(rq);
8737 if (on_rq)
7074badb 8738 enqueue_task(rq, tsk, 0);
29f59db3 8739
29f59db3
SV
8740 task_rq_unlock(rq, &flags);
8741}
6d6bc0ad 8742#endif /* CONFIG_GROUP_SCHED */
29f59db3 8743
052f1dc7 8744#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8745static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8746{
8747 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8748 int on_rq;
8749
29f59db3 8750 on_rq = se->on_rq;
62fb1851 8751 if (on_rq)
29f59db3
SV
8752 dequeue_entity(cfs_rq, se, 0);
8753
8754 se->load.weight = shares;
e05510d0 8755 se->load.inv_weight = 0;
29f59db3 8756
62fb1851 8757 if (on_rq)
29f59db3 8758 enqueue_entity(cfs_rq, se, 0);
c09595f6 8759}
62fb1851 8760
c09595f6
PZ
8761static void set_se_shares(struct sched_entity *se, unsigned long shares)
8762{
8763 struct cfs_rq *cfs_rq = se->cfs_rq;
8764 struct rq *rq = cfs_rq->rq;
8765 unsigned long flags;
8766
8767 spin_lock_irqsave(&rq->lock, flags);
8768 __set_se_shares(se, shares);
8769 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8770}
8771
8ed36996
PZ
8772static DEFINE_MUTEX(shares_mutex);
8773
4cf86d77 8774int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8775{
8776 int i;
8ed36996 8777 unsigned long flags;
c61935fd 8778
ec7dc8ac
DG
8779 /*
8780 * We can't change the weight of the root cgroup.
8781 */
8782 if (!tg->se[0])
8783 return -EINVAL;
8784
18d95a28
PZ
8785 if (shares < MIN_SHARES)
8786 shares = MIN_SHARES;
cb4ad1ff
MX
8787 else if (shares > MAX_SHARES)
8788 shares = MAX_SHARES;
62fb1851 8789
8ed36996 8790 mutex_lock(&shares_mutex);
9b5b7751 8791 if (tg->shares == shares)
5cb350ba 8792 goto done;
29f59db3 8793
8ed36996 8794 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8795 for_each_possible_cpu(i)
8796 unregister_fair_sched_group(tg, i);
f473aa5e 8797 list_del_rcu(&tg->siblings);
8ed36996 8798 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8799
8800 /* wait for any ongoing reference to this group to finish */
8801 synchronize_sched();
8802
8803 /*
8804 * Now we are free to modify the group's share on each cpu
8805 * w/o tripping rebalance_share or load_balance_fair.
8806 */
9b5b7751 8807 tg->shares = shares;
c09595f6
PZ
8808 for_each_possible_cpu(i) {
8809 /*
8810 * force a rebalance
8811 */
8812 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8813 set_se_shares(tg->se[i], shares);
c09595f6 8814 }
29f59db3 8815
6b2d7700
SV
8816 /*
8817 * Enable load balance activity on this group, by inserting it back on
8818 * each cpu's rq->leaf_cfs_rq_list.
8819 */
8ed36996 8820 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8821 for_each_possible_cpu(i)
8822 register_fair_sched_group(tg, i);
f473aa5e 8823 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8824 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8825done:
8ed36996 8826 mutex_unlock(&shares_mutex);
9b5b7751 8827 return 0;
29f59db3
SV
8828}
8829
5cb350ba
DG
8830unsigned long sched_group_shares(struct task_group *tg)
8831{
8832 return tg->shares;
8833}
052f1dc7 8834#endif
5cb350ba 8835
052f1dc7 8836#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8837/*
9f0c1e56 8838 * Ensure that the real time constraints are schedulable.
6f505b16 8839 */
9f0c1e56
PZ
8840static DEFINE_MUTEX(rt_constraints_mutex);
8841
8842static unsigned long to_ratio(u64 period, u64 runtime)
8843{
8844 if (runtime == RUNTIME_INF)
9a7e0b18 8845 return 1ULL << 20;
9f0c1e56 8846
9a7e0b18 8847 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8848}
8849
9a7e0b18
PZ
8850/* Must be called with tasklist_lock held */
8851static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8852{
9a7e0b18 8853 struct task_struct *g, *p;
b40b2e8e 8854
9a7e0b18
PZ
8855 do_each_thread(g, p) {
8856 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8857 return 1;
8858 } while_each_thread(g, p);
b40b2e8e 8859
9a7e0b18
PZ
8860 return 0;
8861}
b40b2e8e 8862
9a7e0b18
PZ
8863struct rt_schedulable_data {
8864 struct task_group *tg;
8865 u64 rt_period;
8866 u64 rt_runtime;
8867};
b40b2e8e 8868
9a7e0b18
PZ
8869static int tg_schedulable(struct task_group *tg, void *data)
8870{
8871 struct rt_schedulable_data *d = data;
8872 struct task_group *child;
8873 unsigned long total, sum = 0;
8874 u64 period, runtime;
b40b2e8e 8875
9a7e0b18
PZ
8876 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8877 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8878
9a7e0b18
PZ
8879 if (tg == d->tg) {
8880 period = d->rt_period;
8881 runtime = d->rt_runtime;
b40b2e8e 8882 }
b40b2e8e 8883
4653f803
PZ
8884 /*
8885 * Cannot have more runtime than the period.
8886 */
8887 if (runtime > period && runtime != RUNTIME_INF)
8888 return -EINVAL;
6f505b16 8889
4653f803
PZ
8890 /*
8891 * Ensure we don't starve existing RT tasks.
8892 */
9a7e0b18
PZ
8893 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8894 return -EBUSY;
6f505b16 8895
9a7e0b18 8896 total = to_ratio(period, runtime);
6f505b16 8897
4653f803
PZ
8898 /*
8899 * Nobody can have more than the global setting allows.
8900 */
8901 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8902 return -EINVAL;
6f505b16 8903
4653f803
PZ
8904 /*
8905 * The sum of our children's runtime should not exceed our own.
8906 */
9a7e0b18
PZ
8907 list_for_each_entry_rcu(child, &tg->children, siblings) {
8908 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8909 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8910
9a7e0b18
PZ
8911 if (child == d->tg) {
8912 period = d->rt_period;
8913 runtime = d->rt_runtime;
8914 }
6f505b16 8915
9a7e0b18 8916 sum += to_ratio(period, runtime);
9f0c1e56 8917 }
6f505b16 8918
9a7e0b18
PZ
8919 if (sum > total)
8920 return -EINVAL;
8921
8922 return 0;
6f505b16
PZ
8923}
8924
9a7e0b18 8925static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8926{
9a7e0b18
PZ
8927 struct rt_schedulable_data data = {
8928 .tg = tg,
8929 .rt_period = period,
8930 .rt_runtime = runtime,
8931 };
8932
8933 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8934}
8935
d0b27fa7
PZ
8936static int tg_set_bandwidth(struct task_group *tg,
8937 u64 rt_period, u64 rt_runtime)
6f505b16 8938{
ac086bc2 8939 int i, err = 0;
9f0c1e56 8940
9f0c1e56 8941 mutex_lock(&rt_constraints_mutex);
521f1a24 8942 read_lock(&tasklist_lock);
9a7e0b18
PZ
8943 err = __rt_schedulable(tg, rt_period, rt_runtime);
8944 if (err)
9f0c1e56 8945 goto unlock;
ac086bc2
PZ
8946
8947 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8948 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8949 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8950
8951 for_each_possible_cpu(i) {
8952 struct rt_rq *rt_rq = tg->rt_rq[i];
8953
8954 spin_lock(&rt_rq->rt_runtime_lock);
8955 rt_rq->rt_runtime = rt_runtime;
8956 spin_unlock(&rt_rq->rt_runtime_lock);
8957 }
8958 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8959 unlock:
521f1a24 8960 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8961 mutex_unlock(&rt_constraints_mutex);
8962
8963 return err;
6f505b16
PZ
8964}
8965
d0b27fa7
PZ
8966int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8967{
8968 u64 rt_runtime, rt_period;
8969
8970 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8971 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8972 if (rt_runtime_us < 0)
8973 rt_runtime = RUNTIME_INF;
8974
8975 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8976}
8977
9f0c1e56
PZ
8978long sched_group_rt_runtime(struct task_group *tg)
8979{
8980 u64 rt_runtime_us;
8981
d0b27fa7 8982 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8983 return -1;
8984
d0b27fa7 8985 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8986 do_div(rt_runtime_us, NSEC_PER_USEC);
8987 return rt_runtime_us;
8988}
d0b27fa7
PZ
8989
8990int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8991{
8992 u64 rt_runtime, rt_period;
8993
8994 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8995 rt_runtime = tg->rt_bandwidth.rt_runtime;
8996
619b0488
R
8997 if (rt_period == 0)
8998 return -EINVAL;
8999
d0b27fa7
PZ
9000 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9001}
9002
9003long sched_group_rt_period(struct task_group *tg)
9004{
9005 u64 rt_period_us;
9006
9007 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9008 do_div(rt_period_us, NSEC_PER_USEC);
9009 return rt_period_us;
9010}
9011
9012static int sched_rt_global_constraints(void)
9013{
4653f803 9014 u64 runtime, period;
d0b27fa7
PZ
9015 int ret = 0;
9016
ec5d4989
HS
9017 if (sysctl_sched_rt_period <= 0)
9018 return -EINVAL;
9019
4653f803
PZ
9020 runtime = global_rt_runtime();
9021 period = global_rt_period();
9022
9023 /*
9024 * Sanity check on the sysctl variables.
9025 */
9026 if (runtime > period && runtime != RUNTIME_INF)
9027 return -EINVAL;
10b612f4 9028
d0b27fa7 9029 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9030 read_lock(&tasklist_lock);
4653f803 9031 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9032 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9033 mutex_unlock(&rt_constraints_mutex);
9034
9035 return ret;
9036}
6d6bc0ad 9037#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9038static int sched_rt_global_constraints(void)
9039{
ac086bc2
PZ
9040 unsigned long flags;
9041 int i;
9042
ec5d4989
HS
9043 if (sysctl_sched_rt_period <= 0)
9044 return -EINVAL;
9045
ac086bc2
PZ
9046 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9047 for_each_possible_cpu(i) {
9048 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9049
9050 spin_lock(&rt_rq->rt_runtime_lock);
9051 rt_rq->rt_runtime = global_rt_runtime();
9052 spin_unlock(&rt_rq->rt_runtime_lock);
9053 }
9054 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9055
d0b27fa7
PZ
9056 return 0;
9057}
6d6bc0ad 9058#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9059
9060int sched_rt_handler(struct ctl_table *table, int write,
9061 struct file *filp, void __user *buffer, size_t *lenp,
9062 loff_t *ppos)
9063{
9064 int ret;
9065 int old_period, old_runtime;
9066 static DEFINE_MUTEX(mutex);
9067
9068 mutex_lock(&mutex);
9069 old_period = sysctl_sched_rt_period;
9070 old_runtime = sysctl_sched_rt_runtime;
9071
9072 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9073
9074 if (!ret && write) {
9075 ret = sched_rt_global_constraints();
9076 if (ret) {
9077 sysctl_sched_rt_period = old_period;
9078 sysctl_sched_rt_runtime = old_runtime;
9079 } else {
9080 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9081 def_rt_bandwidth.rt_period =
9082 ns_to_ktime(global_rt_period());
9083 }
9084 }
9085 mutex_unlock(&mutex);
9086
9087 return ret;
9088}
68318b8e 9089
052f1dc7 9090#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9091
9092/* return corresponding task_group object of a cgroup */
2b01dfe3 9093static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9094{
2b01dfe3
PM
9095 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9096 struct task_group, css);
68318b8e
SV
9097}
9098
9099static struct cgroup_subsys_state *
2b01dfe3 9100cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9101{
ec7dc8ac 9102 struct task_group *tg, *parent;
68318b8e 9103
2b01dfe3 9104 if (!cgrp->parent) {
68318b8e 9105 /* This is early initialization for the top cgroup */
68318b8e
SV
9106 return &init_task_group.css;
9107 }
9108
ec7dc8ac
DG
9109 parent = cgroup_tg(cgrp->parent);
9110 tg = sched_create_group(parent);
68318b8e
SV
9111 if (IS_ERR(tg))
9112 return ERR_PTR(-ENOMEM);
9113
68318b8e
SV
9114 return &tg->css;
9115}
9116
41a2d6cf
IM
9117static void
9118cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9119{
2b01dfe3 9120 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9121
9122 sched_destroy_group(tg);
9123}
9124
41a2d6cf
IM
9125static int
9126cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9127 struct task_struct *tsk)
68318b8e 9128{
b68aa230
PZ
9129#ifdef CONFIG_RT_GROUP_SCHED
9130 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9131 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9132 return -EINVAL;
9133#else
68318b8e
SV
9134 /* We don't support RT-tasks being in separate groups */
9135 if (tsk->sched_class != &fair_sched_class)
9136 return -EINVAL;
b68aa230 9137#endif
68318b8e
SV
9138
9139 return 0;
9140}
9141
9142static void
2b01dfe3 9143cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9144 struct cgroup *old_cont, struct task_struct *tsk)
9145{
9146 sched_move_task(tsk);
9147}
9148
052f1dc7 9149#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9150static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9151 u64 shareval)
68318b8e 9152{
2b01dfe3 9153 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9154}
9155
f4c753b7 9156static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9157{
2b01dfe3 9158 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9159
9160 return (u64) tg->shares;
9161}
6d6bc0ad 9162#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9163
052f1dc7 9164#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9165static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9166 s64 val)
6f505b16 9167{
06ecb27c 9168 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9169}
9170
06ecb27c 9171static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9172{
06ecb27c 9173 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9174}
d0b27fa7
PZ
9175
9176static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9177 u64 rt_period_us)
9178{
9179 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9180}
9181
9182static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9183{
9184 return sched_group_rt_period(cgroup_tg(cgrp));
9185}
6d6bc0ad 9186#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9187
fe5c7cc2 9188static struct cftype cpu_files[] = {
052f1dc7 9189#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9190 {
9191 .name = "shares",
f4c753b7
PM
9192 .read_u64 = cpu_shares_read_u64,
9193 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9194 },
052f1dc7
PZ
9195#endif
9196#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9197 {
9f0c1e56 9198 .name = "rt_runtime_us",
06ecb27c
PM
9199 .read_s64 = cpu_rt_runtime_read,
9200 .write_s64 = cpu_rt_runtime_write,
6f505b16 9201 },
d0b27fa7
PZ
9202 {
9203 .name = "rt_period_us",
f4c753b7
PM
9204 .read_u64 = cpu_rt_period_read_uint,
9205 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9206 },
052f1dc7 9207#endif
68318b8e
SV
9208};
9209
9210static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9211{
fe5c7cc2 9212 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9213}
9214
9215struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9216 .name = "cpu",
9217 .create = cpu_cgroup_create,
9218 .destroy = cpu_cgroup_destroy,
9219 .can_attach = cpu_cgroup_can_attach,
9220 .attach = cpu_cgroup_attach,
9221 .populate = cpu_cgroup_populate,
9222 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9223 .early_init = 1,
9224};
9225
052f1dc7 9226#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9227
9228#ifdef CONFIG_CGROUP_CPUACCT
9229
9230/*
9231 * CPU accounting code for task groups.
9232 *
9233 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9234 * (balbir@in.ibm.com).
9235 */
9236
934352f2 9237/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9238struct cpuacct {
9239 struct cgroup_subsys_state css;
9240 /* cpuusage holds pointer to a u64-type object on every cpu */
9241 u64 *cpuusage;
934352f2 9242 struct cpuacct *parent;
d842de87
SV
9243};
9244
9245struct cgroup_subsys cpuacct_subsys;
9246
9247/* return cpu accounting group corresponding to this container */
32cd756a 9248static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9249{
32cd756a 9250 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9251 struct cpuacct, css);
9252}
9253
9254/* return cpu accounting group to which this task belongs */
9255static inline struct cpuacct *task_ca(struct task_struct *tsk)
9256{
9257 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9258 struct cpuacct, css);
9259}
9260
9261/* create a new cpu accounting group */
9262static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9263 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9264{
9265 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9266
9267 if (!ca)
9268 return ERR_PTR(-ENOMEM);
9269
9270 ca->cpuusage = alloc_percpu(u64);
9271 if (!ca->cpuusage) {
9272 kfree(ca);
9273 return ERR_PTR(-ENOMEM);
9274 }
9275
934352f2
BR
9276 if (cgrp->parent)
9277 ca->parent = cgroup_ca(cgrp->parent);
9278
d842de87
SV
9279 return &ca->css;
9280}
9281
9282/* destroy an existing cpu accounting group */
41a2d6cf 9283static void
32cd756a 9284cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9285{
32cd756a 9286 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9287
9288 free_percpu(ca->cpuusage);
9289 kfree(ca);
9290}
9291
720f5498
KC
9292static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9293{
9294 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9295 u64 data;
9296
9297#ifndef CONFIG_64BIT
9298 /*
9299 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9300 */
9301 spin_lock_irq(&cpu_rq(cpu)->lock);
9302 data = *cpuusage;
9303 spin_unlock_irq(&cpu_rq(cpu)->lock);
9304#else
9305 data = *cpuusage;
9306#endif
9307
9308 return data;
9309}
9310
9311static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9312{
9313 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9314
9315#ifndef CONFIG_64BIT
9316 /*
9317 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9318 */
9319 spin_lock_irq(&cpu_rq(cpu)->lock);
9320 *cpuusage = val;
9321 spin_unlock_irq(&cpu_rq(cpu)->lock);
9322#else
9323 *cpuusage = val;
9324#endif
9325}
9326
d842de87 9327/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9328static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9329{
32cd756a 9330 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9331 u64 totalcpuusage = 0;
9332 int i;
9333
720f5498
KC
9334 for_each_present_cpu(i)
9335 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9336
9337 return totalcpuusage;
9338}
9339
0297b803
DG
9340static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9341 u64 reset)
9342{
9343 struct cpuacct *ca = cgroup_ca(cgrp);
9344 int err = 0;
9345 int i;
9346
9347 if (reset) {
9348 err = -EINVAL;
9349 goto out;
9350 }
9351
720f5498
KC
9352 for_each_present_cpu(i)
9353 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9354
0297b803
DG
9355out:
9356 return err;
9357}
9358
e9515c3c
KC
9359static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9360 struct seq_file *m)
9361{
9362 struct cpuacct *ca = cgroup_ca(cgroup);
9363 u64 percpu;
9364 int i;
9365
9366 for_each_present_cpu(i) {
9367 percpu = cpuacct_cpuusage_read(ca, i);
9368 seq_printf(m, "%llu ", (unsigned long long) percpu);
9369 }
9370 seq_printf(m, "\n");
9371 return 0;
9372}
9373
d842de87
SV
9374static struct cftype files[] = {
9375 {
9376 .name = "usage",
f4c753b7
PM
9377 .read_u64 = cpuusage_read,
9378 .write_u64 = cpuusage_write,
d842de87 9379 },
e9515c3c
KC
9380 {
9381 .name = "usage_percpu",
9382 .read_seq_string = cpuacct_percpu_seq_read,
9383 },
9384
d842de87
SV
9385};
9386
32cd756a 9387static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9388{
32cd756a 9389 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9390}
9391
9392/*
9393 * charge this task's execution time to its accounting group.
9394 *
9395 * called with rq->lock held.
9396 */
9397static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9398{
9399 struct cpuacct *ca;
934352f2 9400 int cpu;
d842de87
SV
9401
9402 if (!cpuacct_subsys.active)
9403 return;
9404
934352f2 9405 cpu = task_cpu(tsk);
d842de87 9406 ca = task_ca(tsk);
d842de87 9407
934352f2
BR
9408 for (; ca; ca = ca->parent) {
9409 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9410 *cpuusage += cputime;
9411 }
9412}
9413
9414struct cgroup_subsys cpuacct_subsys = {
9415 .name = "cpuacct",
9416 .create = cpuacct_create,
9417 .destroy = cpuacct_destroy,
9418 .populate = cpuacct_populate,
9419 .subsys_id = cpuacct_subsys_id,
9420};
9421#endif /* CONFIG_CGROUP_CPUACCT */