sched: Enhance the pre/post scheduling logic
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4 618 /* For active balancing */
3f029d3c 619 int post_schedule;
1da177e4
LT
620 int active_balance;
621 int push_cpu;
d8016491
IM
622 /* cpu of this runqueue: */
623 int cpu;
1f11eb6a 624 int online;
1da177e4 625
a8a51d5e 626 unsigned long avg_load_per_task;
1da177e4 627
36c8b586 628 struct task_struct *migration_thread;
1da177e4
LT
629 struct list_head migration_queue;
630#endif
631
dce48a84
TG
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
8f4d37ec 636#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
8f4d37ec
PZ
641 struct hrtimer hrtick_timer;
642#endif
643
1da177e4
LT
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
9c2c4802
KC
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
649
650 /* sys_sched_yield() stats */
480b9434 651 unsigned int yld_count;
1da177e4
LT
652
653 /* schedule() stats */
480b9434
KC
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
1da177e4
LT
657
658 /* try_to_wake_up() stats */
480b9434
KC
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
b8efb561
IM
661
662 /* BKL stats */
480b9434 663 unsigned int bkl_count;
1da177e4
LT
664#endif
665};
666
f34e3b61 667static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 668
15afe09b 669static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 670{
15afe09b 671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
672}
673
0a2966b4
CL
674static inline int cpu_of(struct rq *rq)
675{
676#ifdef CONFIG_SMP
677 return rq->cpu;
678#else
679 return 0;
680#endif
681}
682
674311d5
NP
683/*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 685 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
48f24c4d
IM
690#define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
692
693#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694#define this_rq() (&__get_cpu_var(runqueues))
695#define task_rq(p) cpu_rq(task_cpu(p))
696#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 697#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 698
aa9c4c0f 699inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9 1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1161 HRTIMER_MODE_REL_PINNED, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
c09595f6
PZ
1518static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520/*
1521 * Calculate and set the cpu's group shares.
1522 */
1523static void
ffda12a1
PZ
1524update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1526{
c09595f6 1527 unsigned long rq_weight;
a5004278
PZ
1528 unsigned long shares;
1529 int boost = 0;
c09595f6 1530
c8cba857 1531 if (!tg->se[cpu])
c09595f6
PZ
1532 return;
1533
ec4e0e2f 1534 rq_weight = tg->cfs_rq[cpu]->rq_weight;
a5004278
PZ
1535 if (!rq_weight) {
1536 boost = 1;
1537 rq_weight = NICE_0_LOAD;
1538 }
c8cba857 1539
c09595f6
PZ
1540 /*
1541 * \Sum shares * rq_weight
1542 * shares = -----------------------
1543 * \Sum rq_weight
1544 *
1545 */
ec4e0e2f 1546 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1547 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1548
ffda12a1
PZ
1549 if (abs(shares - tg->se[cpu]->load.weight) >
1550 sysctl_sched_shares_thresh) {
1551 struct rq *rq = cpu_rq(cpu);
1552 unsigned long flags;
c09595f6 1553
ffda12a1 1554 spin_lock_irqsave(&rq->lock, flags);
a5004278 1555 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1556 __set_se_shares(tg->se[cpu], shares);
1557 spin_unlock_irqrestore(&rq->lock, flags);
1558 }
18d95a28 1559}
c09595f6
PZ
1560
1561/*
c8cba857
PZ
1562 * Re-compute the task group their per cpu shares over the given domain.
1563 * This needs to be done in a bottom-up fashion because the rq weight of a
1564 * parent group depends on the shares of its child groups.
c09595f6 1565 */
eb755805 1566static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1567{
a5004278 1568 unsigned long weight, rq_weight = 0, eff_weight = 0;
c8cba857 1569 unsigned long shares = 0;
eb755805 1570 struct sched_domain *sd = data;
c8cba857 1571 int i;
c09595f6 1572
758b2cdc 1573 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1574 /*
1575 * If there are currently no tasks on the cpu pretend there
1576 * is one of average load so that when a new task gets to
1577 * run here it will not get delayed by group starvation.
1578 */
1579 weight = tg->cfs_rq[i]->load.weight;
a5004278
PZ
1580 tg->cfs_rq[i]->rq_weight = weight;
1581 rq_weight += weight;
1582
ec4e0e2f
KC
1583 if (!weight)
1584 weight = NICE_0_LOAD;
1585
a5004278 1586 eff_weight += weight;
c8cba857 1587 shares += tg->cfs_rq[i]->shares;
c09595f6 1588 }
c09595f6 1589
c8cba857
PZ
1590 if ((!shares && rq_weight) || shares > tg->shares)
1591 shares = tg->shares;
1592
1593 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1594 shares = tg->shares;
c09595f6 1595
a5004278
PZ
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 unsigned long sd_rq_weight = rq_weight;
1598
1599 if (!tg->cfs_rq[i]->rq_weight)
1600 sd_rq_weight = eff_weight;
1601
1602 update_group_shares_cpu(tg, i, shares, sd_rq_weight);
1603 }
eb755805
PZ
1604
1605 return 0;
c09595f6
PZ
1606}
1607
1608/*
c8cba857
PZ
1609 * Compute the cpu's hierarchical load factor for each task group.
1610 * This needs to be done in a top-down fashion because the load of a child
1611 * group is a fraction of its parents load.
c09595f6 1612 */
eb755805 1613static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1614{
c8cba857 1615 unsigned long load;
eb755805 1616 long cpu = (long)data;
c09595f6 1617
c8cba857
PZ
1618 if (!tg->parent) {
1619 load = cpu_rq(cpu)->load.weight;
1620 } else {
1621 load = tg->parent->cfs_rq[cpu]->h_load;
1622 load *= tg->cfs_rq[cpu]->shares;
1623 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1624 }
c09595f6 1625
c8cba857 1626 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1627
eb755805 1628 return 0;
c09595f6
PZ
1629}
1630
c8cba857 1631static void update_shares(struct sched_domain *sd)
4d8d595d 1632{
e7097159
PZ
1633 s64 elapsed;
1634 u64 now;
1635
1636 if (root_task_group_empty())
1637 return;
1638
1639 now = cpu_clock(raw_smp_processor_id());
1640 elapsed = now - sd->last_update;
2398f2c6
PZ
1641
1642 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1643 sd->last_update = now;
eb755805 1644 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1645 }
4d8d595d
PZ
1646}
1647
3e5459b4
PZ
1648static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649{
e7097159
PZ
1650 if (root_task_group_empty())
1651 return;
1652
3e5459b4
PZ
1653 spin_unlock(&rq->lock);
1654 update_shares(sd);
1655 spin_lock(&rq->lock);
1656}
1657
eb755805 1658static void update_h_load(long cpu)
c09595f6 1659{
e7097159
PZ
1660 if (root_task_group_empty())
1661 return;
1662
eb755805 1663 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1664}
1665
c09595f6
PZ
1666#else
1667
c8cba857 1668static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1669{
1670}
1671
3e5459b4
PZ
1672static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1673{
1674}
1675
18d95a28
PZ
1676#endif
1677
8f45e2b5
GH
1678#ifdef CONFIG_PREEMPT
1679
70574a99 1680/*
8f45e2b5
GH
1681 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1682 * way at the expense of forcing extra atomic operations in all
1683 * invocations. This assures that the double_lock is acquired using the
1684 * same underlying policy as the spinlock_t on this architecture, which
1685 * reduces latency compared to the unfair variant below. However, it
1686 * also adds more overhead and therefore may reduce throughput.
70574a99 1687 */
8f45e2b5
GH
1688static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1689 __releases(this_rq->lock)
1690 __acquires(busiest->lock)
1691 __acquires(this_rq->lock)
1692{
1693 spin_unlock(&this_rq->lock);
1694 double_rq_lock(this_rq, busiest);
1695
1696 return 1;
1697}
1698
1699#else
1700/*
1701 * Unfair double_lock_balance: Optimizes throughput at the expense of
1702 * latency by eliminating extra atomic operations when the locks are
1703 * already in proper order on entry. This favors lower cpu-ids and will
1704 * grant the double lock to lower cpus over higher ids under contention,
1705 * regardless of entry order into the function.
1706 */
1707static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1708 __releases(this_rq->lock)
1709 __acquires(busiest->lock)
1710 __acquires(this_rq->lock)
1711{
1712 int ret = 0;
1713
70574a99
AD
1714 if (unlikely(!spin_trylock(&busiest->lock))) {
1715 if (busiest < this_rq) {
1716 spin_unlock(&this_rq->lock);
1717 spin_lock(&busiest->lock);
1718 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1722 }
1723 return ret;
1724}
1725
8f45e2b5
GH
1726#endif /* CONFIG_PREEMPT */
1727
1728/*
1729 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1730 */
1731static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1732{
1733 if (unlikely(!irqs_disabled())) {
1734 /* printk() doesn't work good under rq->lock */
1735 spin_unlock(&this_rq->lock);
1736 BUG_ON(1);
1737 }
1738
1739 return _double_lock_balance(this_rq, busiest);
1740}
1741
70574a99
AD
1742static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1743 __releases(busiest->lock)
1744{
1745 spin_unlock(&busiest->lock);
1746 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1747}
18d95a28
PZ
1748#endif
1749
30432094 1750#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1751static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1752{
30432094 1753#ifdef CONFIG_SMP
34e83e85
IM
1754 cfs_rq->shares = shares;
1755#endif
1756}
30432094 1757#endif
e7693a36 1758
dce48a84
TG
1759static void calc_load_account_active(struct rq *this_rq);
1760
dd41f596 1761#include "sched_stats.h"
dd41f596 1762#include "sched_idletask.c"
5522d5d5
IM
1763#include "sched_fair.c"
1764#include "sched_rt.c"
dd41f596
IM
1765#ifdef CONFIG_SCHED_DEBUG
1766# include "sched_debug.c"
1767#endif
1768
1769#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1770#define for_each_class(class) \
1771 for (class = sched_class_highest; class; class = class->next)
dd41f596 1772
c09595f6 1773static void inc_nr_running(struct rq *rq)
9c217245
IM
1774{
1775 rq->nr_running++;
9c217245
IM
1776}
1777
c09595f6 1778static void dec_nr_running(struct rq *rq)
9c217245
IM
1779{
1780 rq->nr_running--;
9c217245
IM
1781}
1782
45bf76df
IM
1783static void set_load_weight(struct task_struct *p)
1784{
1785 if (task_has_rt_policy(p)) {
dd41f596
IM
1786 p->se.load.weight = prio_to_weight[0] * 2;
1787 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1788 return;
1789 }
45bf76df 1790
dd41f596
IM
1791 /*
1792 * SCHED_IDLE tasks get minimal weight:
1793 */
1794 if (p->policy == SCHED_IDLE) {
1795 p->se.load.weight = WEIGHT_IDLEPRIO;
1796 p->se.load.inv_weight = WMULT_IDLEPRIO;
1797 return;
1798 }
71f8bd46 1799
dd41f596
IM
1800 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1801 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1802}
1803
2087a1ad
GH
1804static void update_avg(u64 *avg, u64 sample)
1805{
1806 s64 diff = sample - *avg;
1807 *avg += diff >> 3;
1808}
1809
8159f87e 1810static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1811{
831451ac
PZ
1812 if (wakeup)
1813 p->se.start_runtime = p->se.sum_exec_runtime;
1814
dd41f596 1815 sched_info_queued(p);
fd390f6a 1816 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1817 p->se.on_rq = 1;
71f8bd46
IM
1818}
1819
69be72c1 1820static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1821{
831451ac
PZ
1822 if (sleep) {
1823 if (p->se.last_wakeup) {
1824 update_avg(&p->se.avg_overlap,
1825 p->se.sum_exec_runtime - p->se.last_wakeup);
1826 p->se.last_wakeup = 0;
1827 } else {
1828 update_avg(&p->se.avg_wakeup,
1829 sysctl_sched_wakeup_granularity);
1830 }
2087a1ad
GH
1831 }
1832
46ac22ba 1833 sched_info_dequeued(p);
f02231e5 1834 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1835 p->se.on_rq = 0;
71f8bd46
IM
1836}
1837
14531189 1838/*
dd41f596 1839 * __normal_prio - return the priority that is based on the static prio
14531189 1840 */
14531189
IM
1841static inline int __normal_prio(struct task_struct *p)
1842{
dd41f596 1843 return p->static_prio;
14531189
IM
1844}
1845
b29739f9
IM
1846/*
1847 * Calculate the expected normal priority: i.e. priority
1848 * without taking RT-inheritance into account. Might be
1849 * boosted by interactivity modifiers. Changes upon fork,
1850 * setprio syscalls, and whenever the interactivity
1851 * estimator recalculates.
1852 */
36c8b586 1853static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1854{
1855 int prio;
1856
e05606d3 1857 if (task_has_rt_policy(p))
b29739f9
IM
1858 prio = MAX_RT_PRIO-1 - p->rt_priority;
1859 else
1860 prio = __normal_prio(p);
1861 return prio;
1862}
1863
1864/*
1865 * Calculate the current priority, i.e. the priority
1866 * taken into account by the scheduler. This value might
1867 * be boosted by RT tasks, or might be boosted by
1868 * interactivity modifiers. Will be RT if the task got
1869 * RT-boosted. If not then it returns p->normal_prio.
1870 */
36c8b586 1871static int effective_prio(struct task_struct *p)
b29739f9
IM
1872{
1873 p->normal_prio = normal_prio(p);
1874 /*
1875 * If we are RT tasks or we were boosted to RT priority,
1876 * keep the priority unchanged. Otherwise, update priority
1877 * to the normal priority:
1878 */
1879 if (!rt_prio(p->prio))
1880 return p->normal_prio;
1881 return p->prio;
1882}
1883
1da177e4 1884/*
dd41f596 1885 * activate_task - move a task to the runqueue.
1da177e4 1886 */
dd41f596 1887static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1888{
d9514f6c 1889 if (task_contributes_to_load(p))
dd41f596 1890 rq->nr_uninterruptible--;
1da177e4 1891
8159f87e 1892 enqueue_task(rq, p, wakeup);
c09595f6 1893 inc_nr_running(rq);
1da177e4
LT
1894}
1895
1da177e4
LT
1896/*
1897 * deactivate_task - remove a task from the runqueue.
1898 */
2e1cb74a 1899static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1900{
d9514f6c 1901 if (task_contributes_to_load(p))
dd41f596
IM
1902 rq->nr_uninterruptible++;
1903
69be72c1 1904 dequeue_task(rq, p, sleep);
c09595f6 1905 dec_nr_running(rq);
1da177e4
LT
1906}
1907
1da177e4
LT
1908/**
1909 * task_curr - is this task currently executing on a CPU?
1910 * @p: the task in question.
1911 */
36c8b586 1912inline int task_curr(const struct task_struct *p)
1da177e4
LT
1913{
1914 return cpu_curr(task_cpu(p)) == p;
1915}
1916
dd41f596
IM
1917static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1918{
6f505b16 1919 set_task_rq(p, cpu);
dd41f596 1920#ifdef CONFIG_SMP
ce96b5ac
DA
1921 /*
1922 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1923 * successfuly executed on another CPU. We must ensure that updates of
1924 * per-task data have been completed by this moment.
1925 */
1926 smp_wmb();
dd41f596 1927 task_thread_info(p)->cpu = cpu;
dd41f596 1928#endif
2dd73a4f
PW
1929}
1930
cb469845
SR
1931static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1932 const struct sched_class *prev_class,
1933 int oldprio, int running)
1934{
1935 if (prev_class != p->sched_class) {
1936 if (prev_class->switched_from)
1937 prev_class->switched_from(rq, p, running);
1938 p->sched_class->switched_to(rq, p, running);
1939 } else
1940 p->sched_class->prio_changed(rq, p, oldprio, running);
1941}
1942
1da177e4 1943#ifdef CONFIG_SMP
c65cc870 1944
e958b360
TG
1945/* Used instead of source_load when we know the type == 0 */
1946static unsigned long weighted_cpuload(const int cpu)
1947{
1948 return cpu_rq(cpu)->load.weight;
1949}
1950
cc367732
IM
1951/*
1952 * Is this task likely cache-hot:
1953 */
e7693a36 1954static int
cc367732
IM
1955task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1956{
1957 s64 delta;
1958
f540a608
IM
1959 /*
1960 * Buddy candidates are cache hot:
1961 */
4793241b
PZ
1962 if (sched_feat(CACHE_HOT_BUDDY) &&
1963 (&p->se == cfs_rq_of(&p->se)->next ||
1964 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1965 return 1;
1966
cc367732
IM
1967 if (p->sched_class != &fair_sched_class)
1968 return 0;
1969
6bc1665b
IM
1970 if (sysctl_sched_migration_cost == -1)
1971 return 1;
1972 if (sysctl_sched_migration_cost == 0)
1973 return 0;
1974
cc367732
IM
1975 delta = now - p->se.exec_start;
1976
1977 return delta < (s64)sysctl_sched_migration_cost;
1978}
1979
1980
dd41f596 1981void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1982{
dd41f596
IM
1983 int old_cpu = task_cpu(p);
1984 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1985 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1986 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1987 u64 clock_offset;
dd41f596
IM
1988
1989 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1990
de1d7286 1991 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1992
6cfb0d5d
IM
1993#ifdef CONFIG_SCHEDSTATS
1994 if (p->se.wait_start)
1995 p->se.wait_start -= clock_offset;
dd41f596
IM
1996 if (p->se.sleep_start)
1997 p->se.sleep_start -= clock_offset;
1998 if (p->se.block_start)
1999 p->se.block_start -= clock_offset;
6c594c21 2000#endif
cc367732 2001 if (old_cpu != new_cpu) {
6c594c21 2002 p->se.nr_migrations++;
23a185ca 2003 new_rq->nr_migrations_in++;
6c594c21 2004#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2005 if (task_hot(p, old_rq->clock, NULL))
2006 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2007#endif
e5289d4a
PZ
2008 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2009 1, 1, NULL, 0);
6c594c21 2010 }
2830cf8c
SV
2011 p->se.vruntime -= old_cfsrq->min_vruntime -
2012 new_cfsrq->min_vruntime;
dd41f596
IM
2013
2014 __set_task_cpu(p, new_cpu);
c65cc870
IM
2015}
2016
70b97a7f 2017struct migration_req {
1da177e4 2018 struct list_head list;
1da177e4 2019
36c8b586 2020 struct task_struct *task;
1da177e4
LT
2021 int dest_cpu;
2022
1da177e4 2023 struct completion done;
70b97a7f 2024};
1da177e4
LT
2025
2026/*
2027 * The task's runqueue lock must be held.
2028 * Returns true if you have to wait for migration thread.
2029 */
36c8b586 2030static int
70b97a7f 2031migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2032{
70b97a7f 2033 struct rq *rq = task_rq(p);
1da177e4
LT
2034
2035 /*
2036 * If the task is not on a runqueue (and not running), then
2037 * it is sufficient to simply update the task's cpu field.
2038 */
dd41f596 2039 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2040 set_task_cpu(p, dest_cpu);
2041 return 0;
2042 }
2043
2044 init_completion(&req->done);
1da177e4
LT
2045 req->task = p;
2046 req->dest_cpu = dest_cpu;
2047 list_add(&req->list, &rq->migration_queue);
48f24c4d 2048
1da177e4
LT
2049 return 1;
2050}
2051
a26b89f0
MM
2052/*
2053 * wait_task_context_switch - wait for a thread to complete at least one
2054 * context switch.
2055 *
2056 * @p must not be current.
2057 */
2058void wait_task_context_switch(struct task_struct *p)
2059{
2060 unsigned long nvcsw, nivcsw, flags;
2061 int running;
2062 struct rq *rq;
2063
2064 nvcsw = p->nvcsw;
2065 nivcsw = p->nivcsw;
2066 for (;;) {
2067 /*
2068 * The runqueue is assigned before the actual context
2069 * switch. We need to take the runqueue lock.
2070 *
2071 * We could check initially without the lock but it is
2072 * very likely that we need to take the lock in every
2073 * iteration.
2074 */
2075 rq = task_rq_lock(p, &flags);
2076 running = task_running(rq, p);
2077 task_rq_unlock(rq, &flags);
2078
2079 if (likely(!running))
2080 break;
2081 /*
2082 * The switch count is incremented before the actual
2083 * context switch. We thus wait for two switches to be
2084 * sure at least one completed.
2085 */
2086 if ((p->nvcsw - nvcsw) > 1)
2087 break;
2088 if ((p->nivcsw - nivcsw) > 1)
2089 break;
2090
2091 cpu_relax();
2092 }
2093}
2094
1da177e4
LT
2095/*
2096 * wait_task_inactive - wait for a thread to unschedule.
2097 *
85ba2d86
RM
2098 * If @match_state is nonzero, it's the @p->state value just checked and
2099 * not expected to change. If it changes, i.e. @p might have woken up,
2100 * then return zero. When we succeed in waiting for @p to be off its CPU,
2101 * we return a positive number (its total switch count). If a second call
2102 * a short while later returns the same number, the caller can be sure that
2103 * @p has remained unscheduled the whole time.
2104 *
1da177e4
LT
2105 * The caller must ensure that the task *will* unschedule sometime soon,
2106 * else this function might spin for a *long* time. This function can't
2107 * be called with interrupts off, or it may introduce deadlock with
2108 * smp_call_function() if an IPI is sent by the same process we are
2109 * waiting to become inactive.
2110 */
85ba2d86 2111unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2112{
2113 unsigned long flags;
dd41f596 2114 int running, on_rq;
85ba2d86 2115 unsigned long ncsw;
70b97a7f 2116 struct rq *rq;
1da177e4 2117
3a5c359a
AK
2118 for (;;) {
2119 /*
2120 * We do the initial early heuristics without holding
2121 * any task-queue locks at all. We'll only try to get
2122 * the runqueue lock when things look like they will
2123 * work out!
2124 */
2125 rq = task_rq(p);
fa490cfd 2126
3a5c359a
AK
2127 /*
2128 * If the task is actively running on another CPU
2129 * still, just relax and busy-wait without holding
2130 * any locks.
2131 *
2132 * NOTE! Since we don't hold any locks, it's not
2133 * even sure that "rq" stays as the right runqueue!
2134 * But we don't care, since "task_running()" will
2135 * return false if the runqueue has changed and p
2136 * is actually now running somewhere else!
2137 */
85ba2d86
RM
2138 while (task_running(rq, p)) {
2139 if (match_state && unlikely(p->state != match_state))
2140 return 0;
3a5c359a 2141 cpu_relax();
85ba2d86 2142 }
fa490cfd 2143
3a5c359a
AK
2144 /*
2145 * Ok, time to look more closely! We need the rq
2146 * lock now, to be *sure*. If we're wrong, we'll
2147 * just go back and repeat.
2148 */
2149 rq = task_rq_lock(p, &flags);
0a16b607 2150 trace_sched_wait_task(rq, p);
3a5c359a
AK
2151 running = task_running(rq, p);
2152 on_rq = p->se.on_rq;
85ba2d86 2153 ncsw = 0;
f31e11d8 2154 if (!match_state || p->state == match_state)
93dcf55f 2155 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2156 task_rq_unlock(rq, &flags);
fa490cfd 2157
85ba2d86
RM
2158 /*
2159 * If it changed from the expected state, bail out now.
2160 */
2161 if (unlikely(!ncsw))
2162 break;
2163
3a5c359a
AK
2164 /*
2165 * Was it really running after all now that we
2166 * checked with the proper locks actually held?
2167 *
2168 * Oops. Go back and try again..
2169 */
2170 if (unlikely(running)) {
2171 cpu_relax();
2172 continue;
2173 }
fa490cfd 2174
3a5c359a
AK
2175 /*
2176 * It's not enough that it's not actively running,
2177 * it must be off the runqueue _entirely_, and not
2178 * preempted!
2179 *
80dd99b3 2180 * So if it was still runnable (but just not actively
3a5c359a
AK
2181 * running right now), it's preempted, and we should
2182 * yield - it could be a while.
2183 */
2184 if (unlikely(on_rq)) {
2185 schedule_timeout_uninterruptible(1);
2186 continue;
2187 }
fa490cfd 2188
3a5c359a
AK
2189 /*
2190 * Ahh, all good. It wasn't running, and it wasn't
2191 * runnable, which means that it will never become
2192 * running in the future either. We're all done!
2193 */
2194 break;
2195 }
85ba2d86
RM
2196
2197 return ncsw;
1da177e4
LT
2198}
2199
2200/***
2201 * kick_process - kick a running thread to enter/exit the kernel
2202 * @p: the to-be-kicked thread
2203 *
2204 * Cause a process which is running on another CPU to enter
2205 * kernel-mode, without any delay. (to get signals handled.)
2206 *
2207 * NOTE: this function doesnt have to take the runqueue lock,
2208 * because all it wants to ensure is that the remote task enters
2209 * the kernel. If the IPI races and the task has been migrated
2210 * to another CPU then no harm is done and the purpose has been
2211 * achieved as well.
2212 */
36c8b586 2213void kick_process(struct task_struct *p)
1da177e4
LT
2214{
2215 int cpu;
2216
2217 preempt_disable();
2218 cpu = task_cpu(p);
2219 if ((cpu != smp_processor_id()) && task_curr(p))
2220 smp_send_reschedule(cpu);
2221 preempt_enable();
2222}
b43e3521 2223EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2224
2225/*
2dd73a4f
PW
2226 * Return a low guess at the load of a migration-source cpu weighted
2227 * according to the scheduling class and "nice" value.
1da177e4
LT
2228 *
2229 * We want to under-estimate the load of migration sources, to
2230 * balance conservatively.
2231 */
a9957449 2232static unsigned long source_load(int cpu, int type)
1da177e4 2233{
70b97a7f 2234 struct rq *rq = cpu_rq(cpu);
dd41f596 2235 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2236
93b75217 2237 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2238 return total;
b910472d 2239
dd41f596 2240 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2241}
2242
2243/*
2dd73a4f
PW
2244 * Return a high guess at the load of a migration-target cpu weighted
2245 * according to the scheduling class and "nice" value.
1da177e4 2246 */
a9957449 2247static unsigned long target_load(int cpu, int type)
1da177e4 2248{
70b97a7f 2249 struct rq *rq = cpu_rq(cpu);
dd41f596 2250 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2251
93b75217 2252 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2253 return total;
3b0bd9bc 2254
dd41f596 2255 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2256}
2257
147cbb4b
NP
2258/*
2259 * find_idlest_group finds and returns the least busy CPU group within the
2260 * domain.
2261 */
2262static struct sched_group *
2263find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2264{
2265 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2266 unsigned long min_load = ULONG_MAX, this_load = 0;
2267 int load_idx = sd->forkexec_idx;
2268 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2269
2270 do {
2271 unsigned long load, avg_load;
2272 int local_group;
2273 int i;
2274
da5a5522 2275 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2276 if (!cpumask_intersects(sched_group_cpus(group),
2277 &p->cpus_allowed))
3a5c359a 2278 continue;
da5a5522 2279
758b2cdc
RR
2280 local_group = cpumask_test_cpu(this_cpu,
2281 sched_group_cpus(group));
147cbb4b
NP
2282
2283 /* Tally up the load of all CPUs in the group */
2284 avg_load = 0;
2285
758b2cdc 2286 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2287 /* Bias balancing toward cpus of our domain */
2288 if (local_group)
2289 load = source_load(i, load_idx);
2290 else
2291 load = target_load(i, load_idx);
2292
2293 avg_load += load;
2294 }
2295
2296 /* Adjust by relative CPU power of the group */
5517d86b
ED
2297 avg_load = sg_div_cpu_power(group,
2298 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2299
2300 if (local_group) {
2301 this_load = avg_load;
2302 this = group;
2303 } else if (avg_load < min_load) {
2304 min_load = avg_load;
2305 idlest = group;
2306 }
3a5c359a 2307 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2308
2309 if (!idlest || 100*this_load < imbalance*min_load)
2310 return NULL;
2311 return idlest;
2312}
2313
2314/*
0feaece9 2315 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2316 */
95cdf3b7 2317static int
758b2cdc 2318find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2319{
2320 unsigned long load, min_load = ULONG_MAX;
2321 int idlest = -1;
2322 int i;
2323
da5a5522 2324 /* Traverse only the allowed CPUs */
758b2cdc 2325 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2326 load = weighted_cpuload(i);
147cbb4b
NP
2327
2328 if (load < min_load || (load == min_load && i == this_cpu)) {
2329 min_load = load;
2330 idlest = i;
2331 }
2332 }
2333
2334 return idlest;
2335}
2336
476d139c
NP
2337/*
2338 * sched_balance_self: balance the current task (running on cpu) in domains
2339 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2340 * SD_BALANCE_EXEC.
2341 *
2342 * Balance, ie. select the least loaded group.
2343 *
2344 * Returns the target CPU number, or the same CPU if no balancing is needed.
2345 *
2346 * preempt must be disabled.
2347 */
2348static int sched_balance_self(int cpu, int flag)
2349{
2350 struct task_struct *t = current;
2351 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2352
c96d145e 2353 for_each_domain(cpu, tmp) {
9761eea8
IM
2354 /*
2355 * If power savings logic is enabled for a domain, stop there.
2356 */
5c45bf27
SS
2357 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2358 break;
476d139c
NP
2359 if (tmp->flags & flag)
2360 sd = tmp;
c96d145e 2361 }
476d139c 2362
039a1c41
PZ
2363 if (sd)
2364 update_shares(sd);
2365
476d139c 2366 while (sd) {
476d139c 2367 struct sched_group *group;
1a848870
SS
2368 int new_cpu, weight;
2369
2370 if (!(sd->flags & flag)) {
2371 sd = sd->child;
2372 continue;
2373 }
476d139c 2374
476d139c 2375 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2376 if (!group) {
2377 sd = sd->child;
2378 continue;
2379 }
476d139c 2380
758b2cdc 2381 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2382 if (new_cpu == -1 || new_cpu == cpu) {
2383 /* Now try balancing at a lower domain level of cpu */
2384 sd = sd->child;
2385 continue;
2386 }
476d139c 2387
1a848870 2388 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2389 cpu = new_cpu;
758b2cdc 2390 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2391 sd = NULL;
476d139c 2392 for_each_domain(cpu, tmp) {
758b2cdc 2393 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2394 break;
2395 if (tmp->flags & flag)
2396 sd = tmp;
2397 }
2398 /* while loop will break here if sd == NULL */
2399 }
2400
2401 return cpu;
2402}
2403
2404#endif /* CONFIG_SMP */
1da177e4 2405
0793a61d
TG
2406/**
2407 * task_oncpu_function_call - call a function on the cpu on which a task runs
2408 * @p: the task to evaluate
2409 * @func: the function to be called
2410 * @info: the function call argument
2411 *
2412 * Calls the function @func when the task is currently running. This might
2413 * be on the current CPU, which just calls the function directly
2414 */
2415void task_oncpu_function_call(struct task_struct *p,
2416 void (*func) (void *info), void *info)
2417{
2418 int cpu;
2419
2420 preempt_disable();
2421 cpu = task_cpu(p);
2422 if (task_curr(p))
2423 smp_call_function_single(cpu, func, info, 1);
2424 preempt_enable();
2425}
2426
1da177e4
LT
2427/***
2428 * try_to_wake_up - wake up a thread
2429 * @p: the to-be-woken-up thread
2430 * @state: the mask of task states that can be woken
2431 * @sync: do a synchronous wakeup?
2432 *
2433 * Put it on the run-queue if it's not already there. The "current"
2434 * thread is always on the run-queue (except when the actual
2435 * re-schedule is in progress), and as such you're allowed to do
2436 * the simpler "current->state = TASK_RUNNING" to mark yourself
2437 * runnable without the overhead of this.
2438 *
2439 * returns failure only if the task is already active.
2440 */
36c8b586 2441static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2442{
cc367732 2443 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2444 unsigned long flags;
2445 long old_state;
70b97a7f 2446 struct rq *rq;
1da177e4 2447
b85d0667
IM
2448 if (!sched_feat(SYNC_WAKEUPS))
2449 sync = 0;
2450
2398f2c6 2451#ifdef CONFIG_SMP
57310a98 2452 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2453 struct sched_domain *sd;
2454
2455 this_cpu = raw_smp_processor_id();
2456 cpu = task_cpu(p);
2457
2458 for_each_domain(this_cpu, sd) {
758b2cdc 2459 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2460 update_shares(sd);
2461 break;
2462 }
2463 }
2464 }
2465#endif
2466
04e2f174 2467 smp_wmb();
1da177e4 2468 rq = task_rq_lock(p, &flags);
03e89e45 2469 update_rq_clock(rq);
1da177e4
LT
2470 old_state = p->state;
2471 if (!(old_state & state))
2472 goto out;
2473
dd41f596 2474 if (p->se.on_rq)
1da177e4
LT
2475 goto out_running;
2476
2477 cpu = task_cpu(p);
cc367732 2478 orig_cpu = cpu;
1da177e4
LT
2479 this_cpu = smp_processor_id();
2480
2481#ifdef CONFIG_SMP
2482 if (unlikely(task_running(rq, p)))
2483 goto out_activate;
2484
5d2f5a61
DA
2485 cpu = p->sched_class->select_task_rq(p, sync);
2486 if (cpu != orig_cpu) {
2487 set_task_cpu(p, cpu);
1da177e4
LT
2488 task_rq_unlock(rq, &flags);
2489 /* might preempt at this point */
2490 rq = task_rq_lock(p, &flags);
2491 old_state = p->state;
2492 if (!(old_state & state))
2493 goto out;
dd41f596 2494 if (p->se.on_rq)
1da177e4
LT
2495 goto out_running;
2496
2497 this_cpu = smp_processor_id();
2498 cpu = task_cpu(p);
2499 }
2500
e7693a36
GH
2501#ifdef CONFIG_SCHEDSTATS
2502 schedstat_inc(rq, ttwu_count);
2503 if (cpu == this_cpu)
2504 schedstat_inc(rq, ttwu_local);
2505 else {
2506 struct sched_domain *sd;
2507 for_each_domain(this_cpu, sd) {
758b2cdc 2508 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2509 schedstat_inc(sd, ttwu_wake_remote);
2510 break;
2511 }
2512 }
2513 }
6d6bc0ad 2514#endif /* CONFIG_SCHEDSTATS */
e7693a36 2515
1da177e4
LT
2516out_activate:
2517#endif /* CONFIG_SMP */
cc367732
IM
2518 schedstat_inc(p, se.nr_wakeups);
2519 if (sync)
2520 schedstat_inc(p, se.nr_wakeups_sync);
2521 if (orig_cpu != cpu)
2522 schedstat_inc(p, se.nr_wakeups_migrate);
2523 if (cpu == this_cpu)
2524 schedstat_inc(p, se.nr_wakeups_local);
2525 else
2526 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2527 activate_task(rq, p, 1);
1da177e4
LT
2528 success = 1;
2529
831451ac
PZ
2530 /*
2531 * Only attribute actual wakeups done by this task.
2532 */
2533 if (!in_interrupt()) {
2534 struct sched_entity *se = &current->se;
2535 u64 sample = se->sum_exec_runtime;
2536
2537 if (se->last_wakeup)
2538 sample -= se->last_wakeup;
2539 else
2540 sample -= se->start_runtime;
2541 update_avg(&se->avg_wakeup, sample);
2542
2543 se->last_wakeup = se->sum_exec_runtime;
2544 }
2545
1da177e4 2546out_running:
468a15bb 2547 trace_sched_wakeup(rq, p, success);
15afe09b 2548 check_preempt_curr(rq, p, sync);
4ae7d5ce 2549
1da177e4 2550 p->state = TASK_RUNNING;
9a897c5a
SR
2551#ifdef CONFIG_SMP
2552 if (p->sched_class->task_wake_up)
2553 p->sched_class->task_wake_up(rq, p);
2554#endif
1da177e4
LT
2555out:
2556 task_rq_unlock(rq, &flags);
2557
2558 return success;
2559}
2560
50fa610a
DH
2561/**
2562 * wake_up_process - Wake up a specific process
2563 * @p: The process to be woken up.
2564 *
2565 * Attempt to wake up the nominated process and move it to the set of runnable
2566 * processes. Returns 1 if the process was woken up, 0 if it was already
2567 * running.
2568 *
2569 * It may be assumed that this function implies a write memory barrier before
2570 * changing the task state if and only if any tasks are woken up.
2571 */
7ad5b3a5 2572int wake_up_process(struct task_struct *p)
1da177e4 2573{
d9514f6c 2574 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2575}
1da177e4
LT
2576EXPORT_SYMBOL(wake_up_process);
2577
7ad5b3a5 2578int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2579{
2580 return try_to_wake_up(p, state, 0);
2581}
2582
1da177e4
LT
2583/*
2584 * Perform scheduler related setup for a newly forked process p.
2585 * p is forked by current.
dd41f596
IM
2586 *
2587 * __sched_fork() is basic setup used by init_idle() too:
2588 */
2589static void __sched_fork(struct task_struct *p)
2590{
dd41f596
IM
2591 p->se.exec_start = 0;
2592 p->se.sum_exec_runtime = 0;
f6cf891c 2593 p->se.prev_sum_exec_runtime = 0;
6c594c21 2594 p->se.nr_migrations = 0;
4ae7d5ce
IM
2595 p->se.last_wakeup = 0;
2596 p->se.avg_overlap = 0;
831451ac
PZ
2597 p->se.start_runtime = 0;
2598 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2599
2600#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2601 p->se.wait_start = 0;
2602 p->se.wait_max = 0;
2603 p->se.wait_count = 0;
2604 p->se.wait_sum = 0;
2605
2606 p->se.sleep_start = 0;
2607 p->se.sleep_max = 0;
2608 p->se.sum_sleep_runtime = 0;
2609
2610 p->se.block_start = 0;
2611 p->se.block_max = 0;
2612 p->se.exec_max = 0;
2613 p->se.slice_max = 0;
2614
2615 p->se.nr_migrations_cold = 0;
2616 p->se.nr_failed_migrations_affine = 0;
2617 p->se.nr_failed_migrations_running = 0;
2618 p->se.nr_failed_migrations_hot = 0;
2619 p->se.nr_forced_migrations = 0;
2620 p->se.nr_forced2_migrations = 0;
2621
2622 p->se.nr_wakeups = 0;
2623 p->se.nr_wakeups_sync = 0;
2624 p->se.nr_wakeups_migrate = 0;
2625 p->se.nr_wakeups_local = 0;
2626 p->se.nr_wakeups_remote = 0;
2627 p->se.nr_wakeups_affine = 0;
2628 p->se.nr_wakeups_affine_attempts = 0;
2629 p->se.nr_wakeups_passive = 0;
2630 p->se.nr_wakeups_idle = 0;
2631
6cfb0d5d 2632#endif
476d139c 2633
fa717060 2634 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2635 p->se.on_rq = 0;
4a55bd5e 2636 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2637
e107be36
AK
2638#ifdef CONFIG_PREEMPT_NOTIFIERS
2639 INIT_HLIST_HEAD(&p->preempt_notifiers);
2640#endif
2641
1da177e4
LT
2642 /*
2643 * We mark the process as running here, but have not actually
2644 * inserted it onto the runqueue yet. This guarantees that
2645 * nobody will actually run it, and a signal or other external
2646 * event cannot wake it up and insert it on the runqueue either.
2647 */
2648 p->state = TASK_RUNNING;
dd41f596
IM
2649}
2650
2651/*
2652 * fork()/clone()-time setup:
2653 */
2654void sched_fork(struct task_struct *p, int clone_flags)
2655{
2656 int cpu = get_cpu();
2657
2658 __sched_fork(p);
2659
2660#ifdef CONFIG_SMP
2661 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2662#endif
02e4bac2 2663 set_task_cpu(p, cpu);
b29739f9
IM
2664
2665 /*
b9dc29e7 2666 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2667 */
b9dc29e7 2668 p->prio = current->normal_prio;
ca94c442 2669
b9dc29e7
MG
2670 /*
2671 * Revert to default priority/policy on fork if requested.
2672 */
2673 if (unlikely(p->sched_reset_on_fork)) {
2674 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2675 p->policy = SCHED_NORMAL;
2676
2677 if (p->normal_prio < DEFAULT_PRIO)
2678 p->prio = DEFAULT_PRIO;
2679
6c697bdf
MG
2680 if (PRIO_TO_NICE(p->static_prio) < 0) {
2681 p->static_prio = NICE_TO_PRIO(0);
2682 set_load_weight(p);
2683 }
2684
b9dc29e7
MG
2685 /*
2686 * We don't need the reset flag anymore after the fork. It has
2687 * fulfilled its duty:
2688 */
2689 p->sched_reset_on_fork = 0;
2690 }
ca94c442 2691
2ddbf952
HS
2692 if (!rt_prio(p->prio))
2693 p->sched_class = &fair_sched_class;
b29739f9 2694
52f17b6c 2695#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2696 if (likely(sched_info_on()))
52f17b6c 2697 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2698#endif
d6077cb8 2699#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2700 p->oncpu = 0;
2701#endif
1da177e4 2702#ifdef CONFIG_PREEMPT
4866cde0 2703 /* Want to start with kernel preemption disabled. */
a1261f54 2704 task_thread_info(p)->preempt_count = 1;
1da177e4 2705#endif
917b627d
GH
2706 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2707
476d139c 2708 put_cpu();
1da177e4
LT
2709}
2710
2711/*
2712 * wake_up_new_task - wake up a newly created task for the first time.
2713 *
2714 * This function will do some initial scheduler statistics housekeeping
2715 * that must be done for every newly created context, then puts the task
2716 * on the runqueue and wakes it.
2717 */
7ad5b3a5 2718void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2719{
2720 unsigned long flags;
dd41f596 2721 struct rq *rq;
1da177e4
LT
2722
2723 rq = task_rq_lock(p, &flags);
147cbb4b 2724 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2725 update_rq_clock(rq);
1da177e4
LT
2726
2727 p->prio = effective_prio(p);
2728
b9dca1e0 2729 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2730 activate_task(rq, p, 0);
1da177e4 2731 } else {
1da177e4 2732 /*
dd41f596
IM
2733 * Let the scheduling class do new task startup
2734 * management (if any):
1da177e4 2735 */
ee0827d8 2736 p->sched_class->task_new(rq, p);
c09595f6 2737 inc_nr_running(rq);
1da177e4 2738 }
c71dd42d 2739 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2740 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2741#ifdef CONFIG_SMP
2742 if (p->sched_class->task_wake_up)
2743 p->sched_class->task_wake_up(rq, p);
2744#endif
dd41f596 2745 task_rq_unlock(rq, &flags);
1da177e4
LT
2746}
2747
e107be36
AK
2748#ifdef CONFIG_PREEMPT_NOTIFIERS
2749
2750/**
80dd99b3 2751 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2752 * @notifier: notifier struct to register
e107be36
AK
2753 */
2754void preempt_notifier_register(struct preempt_notifier *notifier)
2755{
2756 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2757}
2758EXPORT_SYMBOL_GPL(preempt_notifier_register);
2759
2760/**
2761 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2762 * @notifier: notifier struct to unregister
e107be36
AK
2763 *
2764 * This is safe to call from within a preemption notifier.
2765 */
2766void preempt_notifier_unregister(struct preempt_notifier *notifier)
2767{
2768 hlist_del(&notifier->link);
2769}
2770EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2771
2772static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2773{
2774 struct preempt_notifier *notifier;
2775 struct hlist_node *node;
2776
2777 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2778 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2779}
2780
2781static void
2782fire_sched_out_preempt_notifiers(struct task_struct *curr,
2783 struct task_struct *next)
2784{
2785 struct preempt_notifier *notifier;
2786 struct hlist_node *node;
2787
2788 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2789 notifier->ops->sched_out(notifier, next);
2790}
2791
6d6bc0ad 2792#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2793
2794static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2795{
2796}
2797
2798static void
2799fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2801{
2802}
2803
6d6bc0ad 2804#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2805
4866cde0
NP
2806/**
2807 * prepare_task_switch - prepare to switch tasks
2808 * @rq: the runqueue preparing to switch
421cee29 2809 * @prev: the current task that is being switched out
4866cde0
NP
2810 * @next: the task we are going to switch to.
2811 *
2812 * This is called with the rq lock held and interrupts off. It must
2813 * be paired with a subsequent finish_task_switch after the context
2814 * switch.
2815 *
2816 * prepare_task_switch sets up locking and calls architecture specific
2817 * hooks.
2818 */
e107be36
AK
2819static inline void
2820prepare_task_switch(struct rq *rq, struct task_struct *prev,
2821 struct task_struct *next)
4866cde0 2822{
e107be36 2823 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2824 prepare_lock_switch(rq, next);
2825 prepare_arch_switch(next);
2826}
2827
1da177e4
LT
2828/**
2829 * finish_task_switch - clean up after a task-switch
344babaa 2830 * @rq: runqueue associated with task-switch
1da177e4
LT
2831 * @prev: the thread we just switched away from.
2832 *
4866cde0
NP
2833 * finish_task_switch must be called after the context switch, paired
2834 * with a prepare_task_switch call before the context switch.
2835 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2836 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2837 *
2838 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2839 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2840 * with the lock held can cause deadlocks; see schedule() for
2841 * details.)
2842 */
3f029d3c 2843static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2844 __releases(rq->lock)
2845{
1da177e4 2846 struct mm_struct *mm = rq->prev_mm;
55a101f8 2847 long prev_state;
1da177e4
LT
2848
2849 rq->prev_mm = NULL;
2850
2851 /*
2852 * A task struct has one reference for the use as "current".
c394cc9f 2853 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2854 * schedule one last time. The schedule call will never return, and
2855 * the scheduled task must drop that reference.
c394cc9f 2856 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2857 * still held, otherwise prev could be scheduled on another cpu, die
2858 * there before we look at prev->state, and then the reference would
2859 * be dropped twice.
2860 * Manfred Spraul <manfred@colorfullife.com>
2861 */
55a101f8 2862 prev_state = prev->state;
4866cde0 2863 finish_arch_switch(prev);
0793a61d 2864 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2865 finish_lock_switch(rq, prev);
e8fa1362 2866
e107be36 2867 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2868 if (mm)
2869 mmdrop(mm);
c394cc9f 2870 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2871 /*
2872 * Remove function-return probe instances associated with this
2873 * task and put them back on the free list.
9761eea8 2874 */
c6fd91f0 2875 kprobe_flush_task(prev);
1da177e4 2876 put_task_struct(prev);
c6fd91f0 2877 }
3f029d3c
GH
2878}
2879
2880#ifdef CONFIG_SMP
2881
2882/* assumes rq->lock is held */
2883static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2884{
2885 if (prev->sched_class->pre_schedule)
2886 prev->sched_class->pre_schedule(rq, prev);
2887}
2888
2889/* rq->lock is NOT held, but preemption is disabled */
2890static inline void post_schedule(struct rq *rq)
2891{
2892 if (rq->post_schedule) {
2893 unsigned long flags;
2894
2895 spin_lock_irqsave(&rq->lock, flags);
2896 if (rq->curr->sched_class->post_schedule)
2897 rq->curr->sched_class->post_schedule(rq);
2898 spin_unlock_irqrestore(&rq->lock, flags);
2899
2900 rq->post_schedule = 0;
2901 }
2902}
2903
2904#else
da19ab51 2905
3f029d3c
GH
2906static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2907{
2908}
2909
2910static inline void post_schedule(struct rq *rq)
2911{
1da177e4
LT
2912}
2913
3f029d3c
GH
2914#endif
2915
1da177e4
LT
2916/**
2917 * schedule_tail - first thing a freshly forked thread must call.
2918 * @prev: the thread we just switched away from.
2919 */
36c8b586 2920asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2921 __releases(rq->lock)
2922{
70b97a7f 2923 struct rq *rq = this_rq();
da19ab51 2924
3f029d3c 2925 finish_task_switch(rq, prev);
da19ab51 2926
3f029d3c
GH
2927 /*
2928 * FIXME: do we need to worry about rq being invalidated by the
2929 * task_switch?
2930 */
2931 post_schedule(rq);
70b97a7f 2932
4866cde0
NP
2933#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2934 /* In this case, finish_task_switch does not reenable preemption */
2935 preempt_enable();
2936#endif
1da177e4 2937 if (current->set_child_tid)
b488893a 2938 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2939}
2940
2941/*
2942 * context_switch - switch to the new MM and the new
2943 * thread's register state.
2944 */
3f029d3c 2945static inline void
70b97a7f 2946context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2947 struct task_struct *next)
1da177e4 2948{
dd41f596 2949 struct mm_struct *mm, *oldmm;
1da177e4 2950
e107be36 2951 prepare_task_switch(rq, prev, next);
0a16b607 2952 trace_sched_switch(rq, prev, next);
dd41f596
IM
2953 mm = next->mm;
2954 oldmm = prev->active_mm;
9226d125
ZA
2955 /*
2956 * For paravirt, this is coupled with an exit in switch_to to
2957 * combine the page table reload and the switch backend into
2958 * one hypercall.
2959 */
224101ed 2960 arch_start_context_switch(prev);
9226d125 2961
dd41f596 2962 if (unlikely(!mm)) {
1da177e4
LT
2963 next->active_mm = oldmm;
2964 atomic_inc(&oldmm->mm_count);
2965 enter_lazy_tlb(oldmm, next);
2966 } else
2967 switch_mm(oldmm, mm, next);
2968
dd41f596 2969 if (unlikely(!prev->mm)) {
1da177e4 2970 prev->active_mm = NULL;
1da177e4
LT
2971 rq->prev_mm = oldmm;
2972 }
3a5f5e48
IM
2973 /*
2974 * Since the runqueue lock will be released by the next
2975 * task (which is an invalid locking op but in the case
2976 * of the scheduler it's an obvious special-case), so we
2977 * do an early lockdep release here:
2978 */
2979#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2980 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2981#endif
1da177e4
LT
2982
2983 /* Here we just switch the register state and the stack. */
2984 switch_to(prev, next, prev);
2985
dd41f596
IM
2986 barrier();
2987 /*
2988 * this_rq must be evaluated again because prev may have moved
2989 * CPUs since it called schedule(), thus the 'rq' on its stack
2990 * frame will be invalid.
2991 */
3f029d3c 2992 finish_task_switch(this_rq(), prev);
1da177e4
LT
2993}
2994
2995/*
2996 * nr_running, nr_uninterruptible and nr_context_switches:
2997 *
2998 * externally visible scheduler statistics: current number of runnable
2999 * threads, current number of uninterruptible-sleeping threads, total
3000 * number of context switches performed since bootup.
3001 */
3002unsigned long nr_running(void)
3003{
3004 unsigned long i, sum = 0;
3005
3006 for_each_online_cpu(i)
3007 sum += cpu_rq(i)->nr_running;
3008
3009 return sum;
3010}
3011
3012unsigned long nr_uninterruptible(void)
3013{
3014 unsigned long i, sum = 0;
3015
0a945022 3016 for_each_possible_cpu(i)
1da177e4
LT
3017 sum += cpu_rq(i)->nr_uninterruptible;
3018
3019 /*
3020 * Since we read the counters lockless, it might be slightly
3021 * inaccurate. Do not allow it to go below zero though:
3022 */
3023 if (unlikely((long)sum < 0))
3024 sum = 0;
3025
3026 return sum;
3027}
3028
3029unsigned long long nr_context_switches(void)
3030{
cc94abfc
SR
3031 int i;
3032 unsigned long long sum = 0;
1da177e4 3033
0a945022 3034 for_each_possible_cpu(i)
1da177e4
LT
3035 sum += cpu_rq(i)->nr_switches;
3036
3037 return sum;
3038}
3039
3040unsigned long nr_iowait(void)
3041{
3042 unsigned long i, sum = 0;
3043
0a945022 3044 for_each_possible_cpu(i)
1da177e4
LT
3045 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3046
3047 return sum;
3048}
3049
dce48a84
TG
3050/* Variables and functions for calc_load */
3051static atomic_long_t calc_load_tasks;
3052static unsigned long calc_load_update;
3053unsigned long avenrun[3];
3054EXPORT_SYMBOL(avenrun);
3055
2d02494f
TG
3056/**
3057 * get_avenrun - get the load average array
3058 * @loads: pointer to dest load array
3059 * @offset: offset to add
3060 * @shift: shift count to shift the result left
3061 *
3062 * These values are estimates at best, so no need for locking.
3063 */
3064void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3065{
3066 loads[0] = (avenrun[0] + offset) << shift;
3067 loads[1] = (avenrun[1] + offset) << shift;
3068 loads[2] = (avenrun[2] + offset) << shift;
3069}
3070
dce48a84
TG
3071static unsigned long
3072calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3073{
dce48a84
TG
3074 load *= exp;
3075 load += active * (FIXED_1 - exp);
3076 return load >> FSHIFT;
3077}
db1b1fef 3078
dce48a84
TG
3079/*
3080 * calc_load - update the avenrun load estimates 10 ticks after the
3081 * CPUs have updated calc_load_tasks.
3082 */
3083void calc_global_load(void)
3084{
3085 unsigned long upd = calc_load_update + 10;
3086 long active;
3087
3088 if (time_before(jiffies, upd))
3089 return;
db1b1fef 3090
dce48a84
TG
3091 active = atomic_long_read(&calc_load_tasks);
3092 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3093
dce48a84
TG
3094 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3095 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3096 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3097
3098 calc_load_update += LOAD_FREQ;
3099}
3100
3101/*
3102 * Either called from update_cpu_load() or from a cpu going idle
3103 */
3104static void calc_load_account_active(struct rq *this_rq)
3105{
3106 long nr_active, delta;
3107
3108 nr_active = this_rq->nr_running;
3109 nr_active += (long) this_rq->nr_uninterruptible;
3110
3111 if (nr_active != this_rq->calc_load_active) {
3112 delta = nr_active - this_rq->calc_load_active;
3113 this_rq->calc_load_active = nr_active;
3114 atomic_long_add(delta, &calc_load_tasks);
3115 }
db1b1fef
JS
3116}
3117
23a185ca
PM
3118/*
3119 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3120 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3121 */
23a185ca
PM
3122u64 cpu_nr_migrations(int cpu)
3123{
3124 return cpu_rq(cpu)->nr_migrations_in;
3125}
3126
48f24c4d 3127/*
dd41f596
IM
3128 * Update rq->cpu_load[] statistics. This function is usually called every
3129 * scheduler tick (TICK_NSEC).
48f24c4d 3130 */
dd41f596 3131static void update_cpu_load(struct rq *this_rq)
48f24c4d 3132{
495eca49 3133 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3134 int i, scale;
3135
3136 this_rq->nr_load_updates++;
dd41f596
IM
3137
3138 /* Update our load: */
3139 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3140 unsigned long old_load, new_load;
3141
3142 /* scale is effectively 1 << i now, and >> i divides by scale */
3143
3144 old_load = this_rq->cpu_load[i];
3145 new_load = this_load;
a25707f3
IM
3146 /*
3147 * Round up the averaging division if load is increasing. This
3148 * prevents us from getting stuck on 9 if the load is 10, for
3149 * example.
3150 */
3151 if (new_load > old_load)
3152 new_load += scale-1;
dd41f596
IM
3153 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3154 }
dce48a84
TG
3155
3156 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3157 this_rq->calc_load_update += LOAD_FREQ;
3158 calc_load_account_active(this_rq);
3159 }
48f24c4d
IM
3160}
3161
dd41f596
IM
3162#ifdef CONFIG_SMP
3163
1da177e4
LT
3164/*
3165 * double_rq_lock - safely lock two runqueues
3166 *
3167 * Note this does not disable interrupts like task_rq_lock,
3168 * you need to do so manually before calling.
3169 */
70b97a7f 3170static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3171 __acquires(rq1->lock)
3172 __acquires(rq2->lock)
3173{
054b9108 3174 BUG_ON(!irqs_disabled());
1da177e4
LT
3175 if (rq1 == rq2) {
3176 spin_lock(&rq1->lock);
3177 __acquire(rq2->lock); /* Fake it out ;) */
3178 } else {
c96d145e 3179 if (rq1 < rq2) {
1da177e4 3180 spin_lock(&rq1->lock);
5e710e37 3181 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3182 } else {
3183 spin_lock(&rq2->lock);
5e710e37 3184 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3185 }
3186 }
6e82a3be
IM
3187 update_rq_clock(rq1);
3188 update_rq_clock(rq2);
1da177e4
LT
3189}
3190
3191/*
3192 * double_rq_unlock - safely unlock two runqueues
3193 *
3194 * Note this does not restore interrupts like task_rq_unlock,
3195 * you need to do so manually after calling.
3196 */
70b97a7f 3197static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3198 __releases(rq1->lock)
3199 __releases(rq2->lock)
3200{
3201 spin_unlock(&rq1->lock);
3202 if (rq1 != rq2)
3203 spin_unlock(&rq2->lock);
3204 else
3205 __release(rq2->lock);
3206}
3207
1da177e4
LT
3208/*
3209 * If dest_cpu is allowed for this process, migrate the task to it.
3210 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3211 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3212 * the cpu_allowed mask is restored.
3213 */
36c8b586 3214static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3215{
70b97a7f 3216 struct migration_req req;
1da177e4 3217 unsigned long flags;
70b97a7f 3218 struct rq *rq;
1da177e4
LT
3219
3220 rq = task_rq_lock(p, &flags);
96f874e2 3221 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3222 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3223 goto out;
3224
3225 /* force the process onto the specified CPU */
3226 if (migrate_task(p, dest_cpu, &req)) {
3227 /* Need to wait for migration thread (might exit: take ref). */
3228 struct task_struct *mt = rq->migration_thread;
36c8b586 3229
1da177e4
LT
3230 get_task_struct(mt);
3231 task_rq_unlock(rq, &flags);
3232 wake_up_process(mt);
3233 put_task_struct(mt);
3234 wait_for_completion(&req.done);
36c8b586 3235
1da177e4
LT
3236 return;
3237 }
3238out:
3239 task_rq_unlock(rq, &flags);
3240}
3241
3242/*
476d139c
NP
3243 * sched_exec - execve() is a valuable balancing opportunity, because at
3244 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3245 */
3246void sched_exec(void)
3247{
1da177e4 3248 int new_cpu, this_cpu = get_cpu();
476d139c 3249 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3250 put_cpu();
476d139c
NP
3251 if (new_cpu != this_cpu)
3252 sched_migrate_task(current, new_cpu);
1da177e4
LT
3253}
3254
3255/*
3256 * pull_task - move a task from a remote runqueue to the local runqueue.
3257 * Both runqueues must be locked.
3258 */
dd41f596
IM
3259static void pull_task(struct rq *src_rq, struct task_struct *p,
3260 struct rq *this_rq, int this_cpu)
1da177e4 3261{
2e1cb74a 3262 deactivate_task(src_rq, p, 0);
1da177e4 3263 set_task_cpu(p, this_cpu);
dd41f596 3264 activate_task(this_rq, p, 0);
1da177e4
LT
3265 /*
3266 * Note that idle threads have a prio of MAX_PRIO, for this test
3267 * to be always true for them.
3268 */
15afe09b 3269 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3270}
3271
3272/*
3273 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3274 */
858119e1 3275static
70b97a7f 3276int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3277 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3278 int *all_pinned)
1da177e4 3279{
708dc512 3280 int tsk_cache_hot = 0;
1da177e4
LT
3281 /*
3282 * We do not migrate tasks that are:
3283 * 1) running (obviously), or
3284 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3285 * 3) are cache-hot on their current CPU.
3286 */
96f874e2 3287 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3288 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3289 return 0;
cc367732 3290 }
81026794
NP
3291 *all_pinned = 0;
3292
cc367732
IM
3293 if (task_running(rq, p)) {
3294 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3295 return 0;
cc367732 3296 }
1da177e4 3297
da84d961
IM
3298 /*
3299 * Aggressive migration if:
3300 * 1) task is cache cold, or
3301 * 2) too many balance attempts have failed.
3302 */
3303
708dc512
LH
3304 tsk_cache_hot = task_hot(p, rq->clock, sd);
3305 if (!tsk_cache_hot ||
3306 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3307#ifdef CONFIG_SCHEDSTATS
708dc512 3308 if (tsk_cache_hot) {
da84d961 3309 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3310 schedstat_inc(p, se.nr_forced_migrations);
3311 }
da84d961
IM
3312#endif
3313 return 1;
3314 }
3315
708dc512 3316 if (tsk_cache_hot) {
cc367732 3317 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3318 return 0;
cc367732 3319 }
1da177e4
LT
3320 return 1;
3321}
3322
e1d1484f
PW
3323static unsigned long
3324balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3325 unsigned long max_load_move, struct sched_domain *sd,
3326 enum cpu_idle_type idle, int *all_pinned,
3327 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3328{
051c6764 3329 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3330 struct task_struct *p;
3331 long rem_load_move = max_load_move;
1da177e4 3332
e1d1484f 3333 if (max_load_move == 0)
1da177e4
LT
3334 goto out;
3335
81026794
NP
3336 pinned = 1;
3337
1da177e4 3338 /*
dd41f596 3339 * Start the load-balancing iterator:
1da177e4 3340 */
dd41f596
IM
3341 p = iterator->start(iterator->arg);
3342next:
b82d9fdd 3343 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3344 goto out;
051c6764
PZ
3345
3346 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3347 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3348 p = iterator->next(iterator->arg);
3349 goto next;
1da177e4
LT
3350 }
3351
dd41f596 3352 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3353 pulled++;
dd41f596 3354 rem_load_move -= p->se.load.weight;
1da177e4 3355
7e96fa58
GH
3356#ifdef CONFIG_PREEMPT
3357 /*
3358 * NEWIDLE balancing is a source of latency, so preemptible kernels
3359 * will stop after the first task is pulled to minimize the critical
3360 * section.
3361 */
3362 if (idle == CPU_NEWLY_IDLE)
3363 goto out;
3364#endif
3365
2dd73a4f 3366 /*
b82d9fdd 3367 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3368 */
e1d1484f 3369 if (rem_load_move > 0) {
a4ac01c3
PW
3370 if (p->prio < *this_best_prio)
3371 *this_best_prio = p->prio;
dd41f596
IM
3372 p = iterator->next(iterator->arg);
3373 goto next;
1da177e4
LT
3374 }
3375out:
3376 /*
e1d1484f 3377 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3378 * so we can safely collect pull_task() stats here rather than
3379 * inside pull_task().
3380 */
3381 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3382
3383 if (all_pinned)
3384 *all_pinned = pinned;
e1d1484f
PW
3385
3386 return max_load_move - rem_load_move;
1da177e4
LT
3387}
3388
dd41f596 3389/*
43010659
PW
3390 * move_tasks tries to move up to max_load_move weighted load from busiest to
3391 * this_rq, as part of a balancing operation within domain "sd".
3392 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3393 *
3394 * Called with both runqueues locked.
3395 */
3396static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3397 unsigned long max_load_move,
dd41f596
IM
3398 struct sched_domain *sd, enum cpu_idle_type idle,
3399 int *all_pinned)
3400{
5522d5d5 3401 const struct sched_class *class = sched_class_highest;
43010659 3402 unsigned long total_load_moved = 0;
a4ac01c3 3403 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3404
3405 do {
43010659
PW
3406 total_load_moved +=
3407 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3408 max_load_move - total_load_moved,
a4ac01c3 3409 sd, idle, all_pinned, &this_best_prio);
dd41f596 3410 class = class->next;
c4acb2c0 3411
7e96fa58
GH
3412#ifdef CONFIG_PREEMPT
3413 /*
3414 * NEWIDLE balancing is a source of latency, so preemptible
3415 * kernels will stop after the first task is pulled to minimize
3416 * the critical section.
3417 */
c4acb2c0
GH
3418 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3419 break;
7e96fa58 3420#endif
43010659 3421 } while (class && max_load_move > total_load_moved);
dd41f596 3422
43010659
PW
3423 return total_load_moved > 0;
3424}
3425
e1d1484f
PW
3426static int
3427iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3428 struct sched_domain *sd, enum cpu_idle_type idle,
3429 struct rq_iterator *iterator)
3430{
3431 struct task_struct *p = iterator->start(iterator->arg);
3432 int pinned = 0;
3433
3434 while (p) {
3435 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3436 pull_task(busiest, p, this_rq, this_cpu);
3437 /*
3438 * Right now, this is only the second place pull_task()
3439 * is called, so we can safely collect pull_task()
3440 * stats here rather than inside pull_task().
3441 */
3442 schedstat_inc(sd, lb_gained[idle]);
3443
3444 return 1;
3445 }
3446 p = iterator->next(iterator->arg);
3447 }
3448
3449 return 0;
3450}
3451
43010659
PW
3452/*
3453 * move_one_task tries to move exactly one task from busiest to this_rq, as
3454 * part of active balancing operations within "domain".
3455 * Returns 1 if successful and 0 otherwise.
3456 *
3457 * Called with both runqueues locked.
3458 */
3459static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3460 struct sched_domain *sd, enum cpu_idle_type idle)
3461{
5522d5d5 3462 const struct sched_class *class;
43010659
PW
3463
3464 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3465 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3466 return 1;
3467
3468 return 0;
dd41f596 3469}
67bb6c03 3470/********** Helpers for find_busiest_group ************************/
1da177e4 3471/*
222d656d
GS
3472 * sd_lb_stats - Structure to store the statistics of a sched_domain
3473 * during load balancing.
1da177e4 3474 */
222d656d
GS
3475struct sd_lb_stats {
3476 struct sched_group *busiest; /* Busiest group in this sd */
3477 struct sched_group *this; /* Local group in this sd */
3478 unsigned long total_load; /* Total load of all groups in sd */
3479 unsigned long total_pwr; /* Total power of all groups in sd */
3480 unsigned long avg_load; /* Average load across all groups in sd */
3481
3482 /** Statistics of this group */
3483 unsigned long this_load;
3484 unsigned long this_load_per_task;
3485 unsigned long this_nr_running;
3486
3487 /* Statistics of the busiest group */
3488 unsigned long max_load;
3489 unsigned long busiest_load_per_task;
3490 unsigned long busiest_nr_running;
3491
3492 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3493#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3494 int power_savings_balance; /* Is powersave balance needed for this sd */
3495 struct sched_group *group_min; /* Least loaded group in sd */
3496 struct sched_group *group_leader; /* Group which relieves group_min */
3497 unsigned long min_load_per_task; /* load_per_task in group_min */
3498 unsigned long leader_nr_running; /* Nr running of group_leader */
3499 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3500#endif
222d656d 3501};
1da177e4 3502
d5ac537e 3503/*
381be78f
GS
3504 * sg_lb_stats - stats of a sched_group required for load_balancing
3505 */
3506struct sg_lb_stats {
3507 unsigned long avg_load; /*Avg load across the CPUs of the group */
3508 unsigned long group_load; /* Total load over the CPUs of the group */
3509 unsigned long sum_nr_running; /* Nr tasks running in the group */
3510 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3511 unsigned long group_capacity;
3512 int group_imb; /* Is there an imbalance in the group ? */
3513};
408ed066 3514
67bb6c03
GS
3515/**
3516 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3517 * @group: The group whose first cpu is to be returned.
3518 */
3519static inline unsigned int group_first_cpu(struct sched_group *group)
3520{
3521 return cpumask_first(sched_group_cpus(group));
3522}
3523
3524/**
3525 * get_sd_load_idx - Obtain the load index for a given sched domain.
3526 * @sd: The sched_domain whose load_idx is to be obtained.
3527 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3528 */
3529static inline int get_sd_load_idx(struct sched_domain *sd,
3530 enum cpu_idle_type idle)
3531{
3532 int load_idx;
3533
3534 switch (idle) {
3535 case CPU_NOT_IDLE:
7897986b 3536 load_idx = sd->busy_idx;
67bb6c03
GS
3537 break;
3538
3539 case CPU_NEWLY_IDLE:
7897986b 3540 load_idx = sd->newidle_idx;
67bb6c03
GS
3541 break;
3542 default:
7897986b 3543 load_idx = sd->idle_idx;
67bb6c03
GS
3544 break;
3545 }
1da177e4 3546
67bb6c03
GS
3547 return load_idx;
3548}
1da177e4 3549
1da177e4 3550
c071df18
GS
3551#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3552/**
3553 * init_sd_power_savings_stats - Initialize power savings statistics for
3554 * the given sched_domain, during load balancing.
3555 *
3556 * @sd: Sched domain whose power-savings statistics are to be initialized.
3557 * @sds: Variable containing the statistics for sd.
3558 * @idle: Idle status of the CPU at which we're performing load-balancing.
3559 */
3560static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3561 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3562{
3563 /*
3564 * Busy processors will not participate in power savings
3565 * balance.
3566 */
3567 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3568 sds->power_savings_balance = 0;
3569 else {
3570 sds->power_savings_balance = 1;
3571 sds->min_nr_running = ULONG_MAX;
3572 sds->leader_nr_running = 0;
3573 }
3574}
783609c6 3575
c071df18
GS
3576/**
3577 * update_sd_power_savings_stats - Update the power saving stats for a
3578 * sched_domain while performing load balancing.
3579 *
3580 * @group: sched_group belonging to the sched_domain under consideration.
3581 * @sds: Variable containing the statistics of the sched_domain
3582 * @local_group: Does group contain the CPU for which we're performing
3583 * load balancing ?
3584 * @sgs: Variable containing the statistics of the group.
3585 */
3586static inline void update_sd_power_savings_stats(struct sched_group *group,
3587 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3588{
408ed066 3589
c071df18
GS
3590 if (!sds->power_savings_balance)
3591 return;
1da177e4 3592
c071df18
GS
3593 /*
3594 * If the local group is idle or completely loaded
3595 * no need to do power savings balance at this domain
3596 */
3597 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3598 !sds->this_nr_running))
3599 sds->power_savings_balance = 0;
2dd73a4f 3600
c071df18
GS
3601 /*
3602 * If a group is already running at full capacity or idle,
3603 * don't include that group in power savings calculations
3604 */
3605 if (!sds->power_savings_balance ||
3606 sgs->sum_nr_running >= sgs->group_capacity ||
3607 !sgs->sum_nr_running)
3608 return;
5969fe06 3609
c071df18
GS
3610 /*
3611 * Calculate the group which has the least non-idle load.
3612 * This is the group from where we need to pick up the load
3613 * for saving power
3614 */
3615 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3616 (sgs->sum_nr_running == sds->min_nr_running &&
3617 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3618 sds->group_min = group;
3619 sds->min_nr_running = sgs->sum_nr_running;
3620 sds->min_load_per_task = sgs->sum_weighted_load /
3621 sgs->sum_nr_running;
3622 }
783609c6 3623
c071df18
GS
3624 /*
3625 * Calculate the group which is almost near its
3626 * capacity but still has some space to pick up some load
3627 * from other group and save more power
3628 */
3629 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3630 return;
1da177e4 3631
c071df18
GS
3632 if (sgs->sum_nr_running > sds->leader_nr_running ||
3633 (sgs->sum_nr_running == sds->leader_nr_running &&
3634 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3635 sds->group_leader = group;
3636 sds->leader_nr_running = sgs->sum_nr_running;
3637 }
3638}
408ed066 3639
c071df18 3640/**
d5ac537e 3641 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3642 * @sds: Variable containing the statistics of the sched_domain
3643 * under consideration.
3644 * @this_cpu: Cpu at which we're currently performing load-balancing.
3645 * @imbalance: Variable to store the imbalance.
3646 *
d5ac537e
RD
3647 * Description:
3648 * Check if we have potential to perform some power-savings balance.
3649 * If yes, set the busiest group to be the least loaded group in the
3650 * sched_domain, so that it's CPUs can be put to idle.
3651 *
c071df18
GS
3652 * Returns 1 if there is potential to perform power-savings balance.
3653 * Else returns 0.
3654 */
3655static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3656 int this_cpu, unsigned long *imbalance)
3657{
3658 if (!sds->power_savings_balance)
3659 return 0;
1da177e4 3660
c071df18
GS
3661 if (sds->this != sds->group_leader ||
3662 sds->group_leader == sds->group_min)
3663 return 0;
783609c6 3664
c071df18
GS
3665 *imbalance = sds->min_load_per_task;
3666 sds->busiest = sds->group_min;
1da177e4 3667
c071df18
GS
3668 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3669 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3670 group_first_cpu(sds->group_leader);
3671 }
3672
3673 return 1;
1da177e4 3674
c071df18
GS
3675}
3676#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3677static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3678 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3679{
3680 return;
3681}
408ed066 3682
c071df18
GS
3683static inline void update_sd_power_savings_stats(struct sched_group *group,
3684 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3685{
3686 return;
3687}
3688
3689static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3690 int this_cpu, unsigned long *imbalance)
3691{
3692 return 0;
3693}
3694#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3695
3696
1f8c553d
GS
3697/**
3698 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3699 * @group: sched_group whose statistics are to be updated.
3700 * @this_cpu: Cpu for which load balance is currently performed.
3701 * @idle: Idle status of this_cpu
3702 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3703 * @sd_idle: Idle status of the sched_domain containing group.
3704 * @local_group: Does group contain this_cpu.
3705 * @cpus: Set of cpus considered for load balancing.
3706 * @balance: Should we balance.
3707 * @sgs: variable to hold the statistics for this group.
3708 */
3709static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3710 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3711 int local_group, const struct cpumask *cpus,
3712 int *balance, struct sg_lb_stats *sgs)
3713{
3714 unsigned long load, max_cpu_load, min_cpu_load;
3715 int i;
3716 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3717 unsigned long sum_avg_load_per_task;
3718 unsigned long avg_load_per_task;
3719
3720 if (local_group)
3721 balance_cpu = group_first_cpu(group);
3722
3723 /* Tally up the load of all CPUs in the group */
3724 sum_avg_load_per_task = avg_load_per_task = 0;
3725 max_cpu_load = 0;
3726 min_cpu_load = ~0UL;
408ed066 3727
1f8c553d
GS
3728 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3729 struct rq *rq = cpu_rq(i);
908a7c1b 3730
1f8c553d
GS
3731 if (*sd_idle && rq->nr_running)
3732 *sd_idle = 0;
5c45bf27 3733
1f8c553d 3734 /* Bias balancing toward cpus of our domain */
1da177e4 3735 if (local_group) {
1f8c553d
GS
3736 if (idle_cpu(i) && !first_idle_cpu) {
3737 first_idle_cpu = 1;
3738 balance_cpu = i;
3739 }
3740
3741 load = target_load(i, load_idx);
3742 } else {
3743 load = source_load(i, load_idx);
3744 if (load > max_cpu_load)
3745 max_cpu_load = load;
3746 if (min_cpu_load > load)
3747 min_cpu_load = load;
1da177e4 3748 }
5c45bf27 3749
1f8c553d
GS
3750 sgs->group_load += load;
3751 sgs->sum_nr_running += rq->nr_running;
3752 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3753
1f8c553d
GS
3754 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3755 }
5c45bf27 3756
1f8c553d
GS
3757 /*
3758 * First idle cpu or the first cpu(busiest) in this sched group
3759 * is eligible for doing load balancing at this and above
3760 * domains. In the newly idle case, we will allow all the cpu's
3761 * to do the newly idle load balance.
3762 */
3763 if (idle != CPU_NEWLY_IDLE && local_group &&
3764 balance_cpu != this_cpu && balance) {
3765 *balance = 0;
3766 return;
3767 }
5c45bf27 3768
1f8c553d
GS
3769 /* Adjust by relative CPU power of the group */
3770 sgs->avg_load = sg_div_cpu_power(group,
3771 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3772
1f8c553d
GS
3773
3774 /*
3775 * Consider the group unbalanced when the imbalance is larger
3776 * than the average weight of two tasks.
3777 *
3778 * APZ: with cgroup the avg task weight can vary wildly and
3779 * might not be a suitable number - should we keep a
3780 * normalized nr_running number somewhere that negates
3781 * the hierarchy?
3782 */
3783 avg_load_per_task = sg_div_cpu_power(group,
3784 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3785
3786 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3787 sgs->group_imb = 1;
3788
3789 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3790
3791}
dd41f596 3792
37abe198
GS
3793/**
3794 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3795 * @sd: sched_domain whose statistics are to be updated.
3796 * @this_cpu: Cpu for which load balance is currently performed.
3797 * @idle: Idle status of this_cpu
3798 * @sd_idle: Idle status of the sched_domain containing group.
3799 * @cpus: Set of cpus considered for load balancing.
3800 * @balance: Should we balance.
3801 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3802 */
37abe198
GS
3803static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3804 enum cpu_idle_type idle, int *sd_idle,
3805 const struct cpumask *cpus, int *balance,
3806 struct sd_lb_stats *sds)
1da177e4 3807{
222d656d 3808 struct sched_group *group = sd->groups;
37abe198 3809 struct sg_lb_stats sgs;
222d656d
GS
3810 int load_idx;
3811
c071df18 3812 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3813 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3814
3815 do {
1da177e4 3816 int local_group;
1da177e4 3817
758b2cdc
RR
3818 local_group = cpumask_test_cpu(this_cpu,
3819 sched_group_cpus(group));
381be78f 3820 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3821 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3822 local_group, cpus, balance, &sgs);
1da177e4 3823
37abe198
GS
3824 if (local_group && balance && !(*balance))
3825 return;
783609c6 3826
37abe198
GS
3827 sds->total_load += sgs.group_load;
3828 sds->total_pwr += group->__cpu_power;
1da177e4 3829
1da177e4 3830 if (local_group) {
37abe198
GS
3831 sds->this_load = sgs.avg_load;
3832 sds->this = group;
3833 sds->this_nr_running = sgs.sum_nr_running;
3834 sds->this_load_per_task = sgs.sum_weighted_load;
3835 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3836 (sgs.sum_nr_running > sgs.group_capacity ||
3837 sgs.group_imb)) {
37abe198
GS
3838 sds->max_load = sgs.avg_load;
3839 sds->busiest = group;
3840 sds->busiest_nr_running = sgs.sum_nr_running;
3841 sds->busiest_load_per_task = sgs.sum_weighted_load;
3842 sds->group_imb = sgs.group_imb;
48f24c4d 3843 }
5c45bf27 3844
c071df18 3845 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3846 group = group->next;
3847 } while (group != sd->groups);
3848
37abe198 3849}
1da177e4 3850
2e6f44ae
GS
3851/**
3852 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3853 * amongst the groups of a sched_domain, during
3854 * load balancing.
2e6f44ae
GS
3855 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3856 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3857 * @imbalance: Variable to store the imbalance.
3858 */
3859static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3860 int this_cpu, unsigned long *imbalance)
3861{
3862 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3863 unsigned int imbn = 2;
3864
3865 if (sds->this_nr_running) {
3866 sds->this_load_per_task /= sds->this_nr_running;
3867 if (sds->busiest_load_per_task >
3868 sds->this_load_per_task)
3869 imbn = 1;
3870 } else
3871 sds->this_load_per_task =
3872 cpu_avg_load_per_task(this_cpu);
1da177e4 3873
2e6f44ae
GS
3874 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3875 sds->busiest_load_per_task * imbn) {
3876 *imbalance = sds->busiest_load_per_task;
3877 return;
3878 }
908a7c1b 3879
1da177e4 3880 /*
2e6f44ae
GS
3881 * OK, we don't have enough imbalance to justify moving tasks,
3882 * however we may be able to increase total CPU power used by
3883 * moving them.
1da177e4 3884 */
2dd73a4f 3885
2e6f44ae
GS
3886 pwr_now += sds->busiest->__cpu_power *
3887 min(sds->busiest_load_per_task, sds->max_load);
3888 pwr_now += sds->this->__cpu_power *
3889 min(sds->this_load_per_task, sds->this_load);
3890 pwr_now /= SCHED_LOAD_SCALE;
3891
3892 /* Amount of load we'd subtract */
3893 tmp = sg_div_cpu_power(sds->busiest,
3894 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3895 if (sds->max_load > tmp)
3896 pwr_move += sds->busiest->__cpu_power *
3897 min(sds->busiest_load_per_task, sds->max_load - tmp);
3898
3899 /* Amount of load we'd add */
3900 if (sds->max_load * sds->busiest->__cpu_power <
3901 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3902 tmp = sg_div_cpu_power(sds->this,
3903 sds->max_load * sds->busiest->__cpu_power);
3904 else
3905 tmp = sg_div_cpu_power(sds->this,
3906 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3907 pwr_move += sds->this->__cpu_power *
3908 min(sds->this_load_per_task, sds->this_load + tmp);
3909 pwr_move /= SCHED_LOAD_SCALE;
3910
3911 /* Move if we gain throughput */
3912 if (pwr_move > pwr_now)
3913 *imbalance = sds->busiest_load_per_task;
3914}
dbc523a3
GS
3915
3916/**
3917 * calculate_imbalance - Calculate the amount of imbalance present within the
3918 * groups of a given sched_domain during load balance.
3919 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3920 * @this_cpu: Cpu for which currently load balance is being performed.
3921 * @imbalance: The variable to store the imbalance.
3922 */
3923static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3924 unsigned long *imbalance)
3925{
3926 unsigned long max_pull;
2dd73a4f
PW
3927 /*
3928 * In the presence of smp nice balancing, certain scenarios can have
3929 * max load less than avg load(as we skip the groups at or below
3930 * its cpu_power, while calculating max_load..)
3931 */
dbc523a3 3932 if (sds->max_load < sds->avg_load) {
2dd73a4f 3933 *imbalance = 0;
dbc523a3 3934 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3935 }
0c117f1b
SS
3936
3937 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3938 max_pull = min(sds->max_load - sds->avg_load,
3939 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3940
1da177e4 3941 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3942 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3943 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3944 / SCHED_LOAD_SCALE;
3945
2dd73a4f
PW
3946 /*
3947 * if *imbalance is less than the average load per runnable task
3948 * there is no gaurantee that any tasks will be moved so we'll have
3949 * a think about bumping its value to force at least one task to be
3950 * moved
3951 */
dbc523a3
GS
3952 if (*imbalance < sds->busiest_load_per_task)
3953 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3954
dbc523a3 3955}
37abe198 3956/******* find_busiest_group() helpers end here *********************/
1da177e4 3957
b7bb4c9b
GS
3958/**
3959 * find_busiest_group - Returns the busiest group within the sched_domain
3960 * if there is an imbalance. If there isn't an imbalance, and
3961 * the user has opted for power-savings, it returns a group whose
3962 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3963 * such a group exists.
3964 *
3965 * Also calculates the amount of weighted load which should be moved
3966 * to restore balance.
3967 *
3968 * @sd: The sched_domain whose busiest group is to be returned.
3969 * @this_cpu: The cpu for which load balancing is currently being performed.
3970 * @imbalance: Variable which stores amount of weighted load which should
3971 * be moved to restore balance/put a group to idle.
3972 * @idle: The idle status of this_cpu.
3973 * @sd_idle: The idleness of sd
3974 * @cpus: The set of CPUs under consideration for load-balancing.
3975 * @balance: Pointer to a variable indicating if this_cpu
3976 * is the appropriate cpu to perform load balancing at this_level.
3977 *
3978 * Returns: - the busiest group if imbalance exists.
3979 * - If no imbalance and user has opted for power-savings balance,
3980 * return the least loaded group whose CPUs can be
3981 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3982 */
3983static struct sched_group *
3984find_busiest_group(struct sched_domain *sd, int this_cpu,
3985 unsigned long *imbalance, enum cpu_idle_type idle,
3986 int *sd_idle, const struct cpumask *cpus, int *balance)
3987{
3988 struct sd_lb_stats sds;
1da177e4 3989
37abe198 3990 memset(&sds, 0, sizeof(sds));
1da177e4 3991
37abe198
GS
3992 /*
3993 * Compute the various statistics relavent for load balancing at
3994 * this level.
3995 */
3996 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3997 balance, &sds);
3998
b7bb4c9b
GS
3999 /* Cases where imbalance does not exist from POV of this_cpu */
4000 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4001 * at this level.
4002 * 2) There is no busy sibling group to pull from.
4003 * 3) This group is the busiest group.
4004 * 4) This group is more busy than the avg busieness at this
4005 * sched_domain.
4006 * 5) The imbalance is within the specified limit.
4007 * 6) Any rebalance would lead to ping-pong
4008 */
37abe198
GS
4009 if (balance && !(*balance))
4010 goto ret;
1da177e4 4011
b7bb4c9b
GS
4012 if (!sds.busiest || sds.busiest_nr_running == 0)
4013 goto out_balanced;
1da177e4 4014
b7bb4c9b 4015 if (sds.this_load >= sds.max_load)
1da177e4 4016 goto out_balanced;
1da177e4 4017
222d656d 4018 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4019
b7bb4c9b
GS
4020 if (sds.this_load >= sds.avg_load)
4021 goto out_balanced;
4022
4023 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4024 goto out_balanced;
4025
222d656d
GS
4026 sds.busiest_load_per_task /= sds.busiest_nr_running;
4027 if (sds.group_imb)
4028 sds.busiest_load_per_task =
4029 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4030
1da177e4
LT
4031 /*
4032 * We're trying to get all the cpus to the average_load, so we don't
4033 * want to push ourselves above the average load, nor do we wish to
4034 * reduce the max loaded cpu below the average load, as either of these
4035 * actions would just result in more rebalancing later, and ping-pong
4036 * tasks around. Thus we look for the minimum possible imbalance.
4037 * Negative imbalances (*we* are more loaded than anyone else) will
4038 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4039 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4040 * appear as very large values with unsigned longs.
4041 */
222d656d 4042 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4043 goto out_balanced;
4044
dbc523a3
GS
4045 /* Looks like there is an imbalance. Compute it */
4046 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4047 return sds.busiest;
1da177e4
LT
4048
4049out_balanced:
c071df18
GS
4050 /*
4051 * There is no obvious imbalance. But check if we can do some balancing
4052 * to save power.
4053 */
4054 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4055 return sds.busiest;
783609c6 4056ret:
1da177e4
LT
4057 *imbalance = 0;
4058 return NULL;
4059}
4060
4061/*
4062 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 */
70b97a7f 4064static struct rq *
d15bcfdb 4065find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4066 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4067{
70b97a7f 4068 struct rq *busiest = NULL, *rq;
2dd73a4f 4069 unsigned long max_load = 0;
1da177e4
LT
4070 int i;
4071
758b2cdc 4072 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4073 unsigned long wl;
0a2966b4 4074
96f874e2 4075 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4076 continue;
4077
48f24c4d 4078 rq = cpu_rq(i);
dd41f596 4079 wl = weighted_cpuload(i);
2dd73a4f 4080
dd41f596 4081 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4082 continue;
1da177e4 4083
dd41f596
IM
4084 if (wl > max_load) {
4085 max_load = wl;
48f24c4d 4086 busiest = rq;
1da177e4
LT
4087 }
4088 }
4089
4090 return busiest;
4091}
4092
77391d71
NP
4093/*
4094 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4095 * so long as it is large enough.
4096 */
4097#define MAX_PINNED_INTERVAL 512
4098
df7c8e84
RR
4099/* Working cpumask for load_balance and load_balance_newidle. */
4100static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4101
1da177e4
LT
4102/*
4103 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4104 * tasks if there is an imbalance.
1da177e4 4105 */
70b97a7f 4106static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4107 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4108 int *balance)
1da177e4 4109{
43010659 4110 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4111 struct sched_group *group;
1da177e4 4112 unsigned long imbalance;
70b97a7f 4113 struct rq *busiest;
fe2eea3f 4114 unsigned long flags;
df7c8e84 4115 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4116
96f874e2 4117 cpumask_setall(cpus);
7c16ec58 4118
89c4710e
SS
4119 /*
4120 * When power savings policy is enabled for the parent domain, idle
4121 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4122 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4123 * portraying it as CPU_NOT_IDLE.
89c4710e 4124 */
d15bcfdb 4125 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4126 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4127 sd_idle = 1;
1da177e4 4128
2d72376b 4129 schedstat_inc(sd, lb_count[idle]);
1da177e4 4130
0a2966b4 4131redo:
c8cba857 4132 update_shares(sd);
0a2966b4 4133 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4134 cpus, balance);
783609c6 4135
06066714 4136 if (*balance == 0)
783609c6 4137 goto out_balanced;
783609c6 4138
1da177e4
LT
4139 if (!group) {
4140 schedstat_inc(sd, lb_nobusyg[idle]);
4141 goto out_balanced;
4142 }
4143
7c16ec58 4144 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4145 if (!busiest) {
4146 schedstat_inc(sd, lb_nobusyq[idle]);
4147 goto out_balanced;
4148 }
4149
db935dbd 4150 BUG_ON(busiest == this_rq);
1da177e4
LT
4151
4152 schedstat_add(sd, lb_imbalance[idle], imbalance);
4153
43010659 4154 ld_moved = 0;
1da177e4
LT
4155 if (busiest->nr_running > 1) {
4156 /*
4157 * Attempt to move tasks. If find_busiest_group has found
4158 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4159 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4160 * correctly treated as an imbalance.
4161 */
fe2eea3f 4162 local_irq_save(flags);
e17224bf 4163 double_rq_lock(this_rq, busiest);
43010659 4164 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4165 imbalance, sd, idle, &all_pinned);
e17224bf 4166 double_rq_unlock(this_rq, busiest);
fe2eea3f 4167 local_irq_restore(flags);
81026794 4168
46cb4b7c
SS
4169 /*
4170 * some other cpu did the load balance for us.
4171 */
43010659 4172 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4173 resched_cpu(this_cpu);
4174
81026794 4175 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4176 if (unlikely(all_pinned)) {
96f874e2
RR
4177 cpumask_clear_cpu(cpu_of(busiest), cpus);
4178 if (!cpumask_empty(cpus))
0a2966b4 4179 goto redo;
81026794 4180 goto out_balanced;
0a2966b4 4181 }
1da177e4 4182 }
81026794 4183
43010659 4184 if (!ld_moved) {
1da177e4
LT
4185 schedstat_inc(sd, lb_failed[idle]);
4186 sd->nr_balance_failed++;
4187
4188 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4189
fe2eea3f 4190 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4191
4192 /* don't kick the migration_thread, if the curr
4193 * task on busiest cpu can't be moved to this_cpu
4194 */
96f874e2
RR
4195 if (!cpumask_test_cpu(this_cpu,
4196 &busiest->curr->cpus_allowed)) {
fe2eea3f 4197 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4198 all_pinned = 1;
4199 goto out_one_pinned;
4200 }
4201
1da177e4
LT
4202 if (!busiest->active_balance) {
4203 busiest->active_balance = 1;
4204 busiest->push_cpu = this_cpu;
81026794 4205 active_balance = 1;
1da177e4 4206 }
fe2eea3f 4207 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4208 if (active_balance)
1da177e4
LT
4209 wake_up_process(busiest->migration_thread);
4210
4211 /*
4212 * We've kicked active balancing, reset the failure
4213 * counter.
4214 */
39507451 4215 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4216 }
81026794 4217 } else
1da177e4
LT
4218 sd->nr_balance_failed = 0;
4219
81026794 4220 if (likely(!active_balance)) {
1da177e4
LT
4221 /* We were unbalanced, so reset the balancing interval */
4222 sd->balance_interval = sd->min_interval;
81026794
NP
4223 } else {
4224 /*
4225 * If we've begun active balancing, start to back off. This
4226 * case may not be covered by the all_pinned logic if there
4227 * is only 1 task on the busy runqueue (because we don't call
4228 * move_tasks).
4229 */
4230 if (sd->balance_interval < sd->max_interval)
4231 sd->balance_interval *= 2;
1da177e4
LT
4232 }
4233
43010659 4234 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4235 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4236 ld_moved = -1;
4237
4238 goto out;
1da177e4
LT
4239
4240out_balanced:
1da177e4
LT
4241 schedstat_inc(sd, lb_balanced[idle]);
4242
16cfb1c0 4243 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4244
4245out_one_pinned:
1da177e4 4246 /* tune up the balancing interval */
77391d71
NP
4247 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4248 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4249 sd->balance_interval *= 2;
4250
48f24c4d 4251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4253 ld_moved = -1;
4254 else
4255 ld_moved = 0;
4256out:
c8cba857
PZ
4257 if (ld_moved)
4258 update_shares(sd);
c09595f6 4259 return ld_moved;
1da177e4
LT
4260}
4261
4262/*
4263 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4264 * tasks if there is an imbalance.
4265 *
d15bcfdb 4266 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4267 * this_rq is locked.
4268 */
48f24c4d 4269static int
df7c8e84 4270load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4271{
4272 struct sched_group *group;
70b97a7f 4273 struct rq *busiest = NULL;
1da177e4 4274 unsigned long imbalance;
43010659 4275 int ld_moved = 0;
5969fe06 4276 int sd_idle = 0;
969bb4e4 4277 int all_pinned = 0;
df7c8e84 4278 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4279
96f874e2 4280 cpumask_setall(cpus);
5969fe06 4281
89c4710e
SS
4282 /*
4283 * When power savings policy is enabled for the parent domain, idle
4284 * sibling can pick up load irrespective of busy siblings. In this case,
4285 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4286 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4287 */
4288 if (sd->flags & SD_SHARE_CPUPOWER &&
4289 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4290 sd_idle = 1;
1da177e4 4291
2d72376b 4292 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4293redo:
3e5459b4 4294 update_shares_locked(this_rq, sd);
d15bcfdb 4295 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4296 &sd_idle, cpus, NULL);
1da177e4 4297 if (!group) {
d15bcfdb 4298 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4299 goto out_balanced;
1da177e4
LT
4300 }
4301
7c16ec58 4302 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4303 if (!busiest) {
d15bcfdb 4304 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4305 goto out_balanced;
1da177e4
LT
4306 }
4307
db935dbd
NP
4308 BUG_ON(busiest == this_rq);
4309
d15bcfdb 4310 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4311
43010659 4312 ld_moved = 0;
d6d5cfaf
NP
4313 if (busiest->nr_running > 1) {
4314 /* Attempt to move tasks */
4315 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4316 /* this_rq->clock is already updated */
4317 update_rq_clock(busiest);
43010659 4318 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4319 imbalance, sd, CPU_NEWLY_IDLE,
4320 &all_pinned);
1b12bbc7 4321 double_unlock_balance(this_rq, busiest);
0a2966b4 4322
969bb4e4 4323 if (unlikely(all_pinned)) {
96f874e2
RR
4324 cpumask_clear_cpu(cpu_of(busiest), cpus);
4325 if (!cpumask_empty(cpus))
0a2966b4
CL
4326 goto redo;
4327 }
d6d5cfaf
NP
4328 }
4329
43010659 4330 if (!ld_moved) {
36dffab6 4331 int active_balance = 0;
ad273b32 4332
d15bcfdb 4333 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4334 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4335 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4336 return -1;
ad273b32
VS
4337
4338 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4339 return -1;
4340
4341 if (sd->nr_balance_failed++ < 2)
4342 return -1;
4343
4344 /*
4345 * The only task running in a non-idle cpu can be moved to this
4346 * cpu in an attempt to completely freeup the other CPU
4347 * package. The same method used to move task in load_balance()
4348 * have been extended for load_balance_newidle() to speedup
4349 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4350 *
4351 * The package power saving logic comes from
4352 * find_busiest_group(). If there are no imbalance, then
4353 * f_b_g() will return NULL. However when sched_mc={1,2} then
4354 * f_b_g() will select a group from which a running task may be
4355 * pulled to this cpu in order to make the other package idle.
4356 * If there is no opportunity to make a package idle and if
4357 * there are no imbalance, then f_b_g() will return NULL and no
4358 * action will be taken in load_balance_newidle().
4359 *
4360 * Under normal task pull operation due to imbalance, there
4361 * will be more than one task in the source run queue and
4362 * move_tasks() will succeed. ld_moved will be true and this
4363 * active balance code will not be triggered.
4364 */
4365
4366 /* Lock busiest in correct order while this_rq is held */
4367 double_lock_balance(this_rq, busiest);
4368
4369 /*
4370 * don't kick the migration_thread, if the curr
4371 * task on busiest cpu can't be moved to this_cpu
4372 */
6ca09dfc 4373 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4374 double_unlock_balance(this_rq, busiest);
4375 all_pinned = 1;
4376 return ld_moved;
4377 }
4378
4379 if (!busiest->active_balance) {
4380 busiest->active_balance = 1;
4381 busiest->push_cpu = this_cpu;
4382 active_balance = 1;
4383 }
4384
4385 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4386 /*
4387 * Should not call ttwu while holding a rq->lock
4388 */
4389 spin_unlock(&this_rq->lock);
ad273b32
VS
4390 if (active_balance)
4391 wake_up_process(busiest->migration_thread);
da8d5089 4392 spin_lock(&this_rq->lock);
ad273b32 4393
5969fe06 4394 } else
16cfb1c0 4395 sd->nr_balance_failed = 0;
1da177e4 4396
3e5459b4 4397 update_shares_locked(this_rq, sd);
43010659 4398 return ld_moved;
16cfb1c0
NP
4399
4400out_balanced:
d15bcfdb 4401 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4402 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4403 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4404 return -1;
16cfb1c0 4405 sd->nr_balance_failed = 0;
48f24c4d 4406
16cfb1c0 4407 return 0;
1da177e4
LT
4408}
4409
4410/*
4411 * idle_balance is called by schedule() if this_cpu is about to become
4412 * idle. Attempts to pull tasks from other CPUs.
4413 */
70b97a7f 4414static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4415{
4416 struct sched_domain *sd;
efbe027e 4417 int pulled_task = 0;
dd41f596 4418 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4419
4420 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4421 unsigned long interval;
4422
4423 if (!(sd->flags & SD_LOAD_BALANCE))
4424 continue;
4425
4426 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4427 /* If we've pulled tasks over stop searching: */
7c16ec58 4428 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4429 sd);
92c4ca5c
CL
4430
4431 interval = msecs_to_jiffies(sd->balance_interval);
4432 if (time_after(next_balance, sd->last_balance + interval))
4433 next_balance = sd->last_balance + interval;
4434 if (pulled_task)
4435 break;
1da177e4 4436 }
dd41f596 4437 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4438 /*
4439 * We are going idle. next_balance may be set based on
4440 * a busy processor. So reset next_balance.
4441 */
4442 this_rq->next_balance = next_balance;
dd41f596 4443 }
1da177e4
LT
4444}
4445
4446/*
4447 * active_load_balance is run by migration threads. It pushes running tasks
4448 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4449 * running on each physical CPU where possible, and avoids physical /
4450 * logical imbalances.
4451 *
4452 * Called with busiest_rq locked.
4453 */
70b97a7f 4454static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4455{
39507451 4456 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4457 struct sched_domain *sd;
4458 struct rq *target_rq;
39507451 4459
48f24c4d 4460 /* Is there any task to move? */
39507451 4461 if (busiest_rq->nr_running <= 1)
39507451
NP
4462 return;
4463
4464 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4465
4466 /*
39507451 4467 * This condition is "impossible", if it occurs
41a2d6cf 4468 * we need to fix it. Originally reported by
39507451 4469 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4470 */
39507451 4471 BUG_ON(busiest_rq == target_rq);
1da177e4 4472
39507451
NP
4473 /* move a task from busiest_rq to target_rq */
4474 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4475 update_rq_clock(busiest_rq);
4476 update_rq_clock(target_rq);
39507451
NP
4477
4478 /* Search for an sd spanning us and the target CPU. */
c96d145e 4479 for_each_domain(target_cpu, sd) {
39507451 4480 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4481 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4482 break;
c96d145e 4483 }
39507451 4484
48f24c4d 4485 if (likely(sd)) {
2d72376b 4486 schedstat_inc(sd, alb_count);
39507451 4487
43010659
PW
4488 if (move_one_task(target_rq, target_cpu, busiest_rq,
4489 sd, CPU_IDLE))
48f24c4d
IM
4490 schedstat_inc(sd, alb_pushed);
4491 else
4492 schedstat_inc(sd, alb_failed);
4493 }
1b12bbc7 4494 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4495}
4496
46cb4b7c
SS
4497#ifdef CONFIG_NO_HZ
4498static struct {
4499 atomic_t load_balancer;
7d1e6a9b 4500 cpumask_var_t cpu_mask;
f711f609 4501 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4502} nohz ____cacheline_aligned = {
4503 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4504};
4505
eea08f32
AB
4506int get_nohz_load_balancer(void)
4507{
4508 return atomic_read(&nohz.load_balancer);
4509}
4510
f711f609
GS
4511#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4512/**
4513 * lowest_flag_domain - Return lowest sched_domain containing flag.
4514 * @cpu: The cpu whose lowest level of sched domain is to
4515 * be returned.
4516 * @flag: The flag to check for the lowest sched_domain
4517 * for the given cpu.
4518 *
4519 * Returns the lowest sched_domain of a cpu which contains the given flag.
4520 */
4521static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4522{
4523 struct sched_domain *sd;
4524
4525 for_each_domain(cpu, sd)
4526 if (sd && (sd->flags & flag))
4527 break;
4528
4529 return sd;
4530}
4531
4532/**
4533 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4534 * @cpu: The cpu whose domains we're iterating over.
4535 * @sd: variable holding the value of the power_savings_sd
4536 * for cpu.
4537 * @flag: The flag to filter the sched_domains to be iterated.
4538 *
4539 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4540 * set, starting from the lowest sched_domain to the highest.
4541 */
4542#define for_each_flag_domain(cpu, sd, flag) \
4543 for (sd = lowest_flag_domain(cpu, flag); \
4544 (sd && (sd->flags & flag)); sd = sd->parent)
4545
4546/**
4547 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4548 * @ilb_group: group to be checked for semi-idleness
4549 *
4550 * Returns: 1 if the group is semi-idle. 0 otherwise.
4551 *
4552 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4553 * and atleast one non-idle CPU. This helper function checks if the given
4554 * sched_group is semi-idle or not.
4555 */
4556static inline int is_semi_idle_group(struct sched_group *ilb_group)
4557{
4558 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4559 sched_group_cpus(ilb_group));
4560
4561 /*
4562 * A sched_group is semi-idle when it has atleast one busy cpu
4563 * and atleast one idle cpu.
4564 */
4565 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4566 return 0;
4567
4568 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4569 return 0;
4570
4571 return 1;
4572}
4573/**
4574 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4575 * @cpu: The cpu which is nominating a new idle_load_balancer.
4576 *
4577 * Returns: Returns the id of the idle load balancer if it exists,
4578 * Else, returns >= nr_cpu_ids.
4579 *
4580 * This algorithm picks the idle load balancer such that it belongs to a
4581 * semi-idle powersavings sched_domain. The idea is to try and avoid
4582 * completely idle packages/cores just for the purpose of idle load balancing
4583 * when there are other idle cpu's which are better suited for that job.
4584 */
4585static int find_new_ilb(int cpu)
4586{
4587 struct sched_domain *sd;
4588 struct sched_group *ilb_group;
4589
4590 /*
4591 * Have idle load balancer selection from semi-idle packages only
4592 * when power-aware load balancing is enabled
4593 */
4594 if (!(sched_smt_power_savings || sched_mc_power_savings))
4595 goto out_done;
4596
4597 /*
4598 * Optimize for the case when we have no idle CPUs or only one
4599 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4600 */
4601 if (cpumask_weight(nohz.cpu_mask) < 2)
4602 goto out_done;
4603
4604 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4605 ilb_group = sd->groups;
4606
4607 do {
4608 if (is_semi_idle_group(ilb_group))
4609 return cpumask_first(nohz.ilb_grp_nohz_mask);
4610
4611 ilb_group = ilb_group->next;
4612
4613 } while (ilb_group != sd->groups);
4614 }
4615
4616out_done:
4617 return cpumask_first(nohz.cpu_mask);
4618}
4619#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4620static inline int find_new_ilb(int call_cpu)
4621{
6e29ec57 4622 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4623}
4624#endif
4625
7835b98b 4626/*
46cb4b7c
SS
4627 * This routine will try to nominate the ilb (idle load balancing)
4628 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4629 * load balancing on behalf of all those cpus. If all the cpus in the system
4630 * go into this tickless mode, then there will be no ilb owner (as there is
4631 * no need for one) and all the cpus will sleep till the next wakeup event
4632 * arrives...
4633 *
4634 * For the ilb owner, tick is not stopped. And this tick will be used
4635 * for idle load balancing. ilb owner will still be part of
4636 * nohz.cpu_mask..
7835b98b 4637 *
46cb4b7c
SS
4638 * While stopping the tick, this cpu will become the ilb owner if there
4639 * is no other owner. And will be the owner till that cpu becomes busy
4640 * or if all cpus in the system stop their ticks at which point
4641 * there is no need for ilb owner.
4642 *
4643 * When the ilb owner becomes busy, it nominates another owner, during the
4644 * next busy scheduler_tick()
4645 */
4646int select_nohz_load_balancer(int stop_tick)
4647{
4648 int cpu = smp_processor_id();
4649
4650 if (stop_tick) {
46cb4b7c
SS
4651 cpu_rq(cpu)->in_nohz_recently = 1;
4652
483b4ee6
SS
4653 if (!cpu_active(cpu)) {
4654 if (atomic_read(&nohz.load_balancer) != cpu)
4655 return 0;
4656
4657 /*
4658 * If we are going offline and still the leader,
4659 * give up!
4660 */
46cb4b7c
SS
4661 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4662 BUG();
483b4ee6 4663
46cb4b7c
SS
4664 return 0;
4665 }
4666
483b4ee6
SS
4667 cpumask_set_cpu(cpu, nohz.cpu_mask);
4668
46cb4b7c 4669 /* time for ilb owner also to sleep */
7d1e6a9b 4670 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4671 if (atomic_read(&nohz.load_balancer) == cpu)
4672 atomic_set(&nohz.load_balancer, -1);
4673 return 0;
4674 }
4675
4676 if (atomic_read(&nohz.load_balancer) == -1) {
4677 /* make me the ilb owner */
4678 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4679 return 1;
e790fb0b
GS
4680 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4681 int new_ilb;
4682
4683 if (!(sched_smt_power_savings ||
4684 sched_mc_power_savings))
4685 return 1;
4686 /*
4687 * Check to see if there is a more power-efficient
4688 * ilb.
4689 */
4690 new_ilb = find_new_ilb(cpu);
4691 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4692 atomic_set(&nohz.load_balancer, -1);
4693 resched_cpu(new_ilb);
4694 return 0;
4695 }
46cb4b7c 4696 return 1;
e790fb0b 4697 }
46cb4b7c 4698 } else {
7d1e6a9b 4699 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4700 return 0;
4701
7d1e6a9b 4702 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4703
4704 if (atomic_read(&nohz.load_balancer) == cpu)
4705 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4706 BUG();
4707 }
4708 return 0;
4709}
4710#endif
4711
4712static DEFINE_SPINLOCK(balancing);
4713
4714/*
7835b98b
CL
4715 * It checks each scheduling domain to see if it is due to be balanced,
4716 * and initiates a balancing operation if so.
4717 *
4718 * Balancing parameters are set up in arch_init_sched_domains.
4719 */
a9957449 4720static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4721{
46cb4b7c
SS
4722 int balance = 1;
4723 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4724 unsigned long interval;
4725 struct sched_domain *sd;
46cb4b7c 4726 /* Earliest time when we have to do rebalance again */
c9819f45 4727 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4728 int update_next_balance = 0;
d07355f5 4729 int need_serialize;
1da177e4 4730
46cb4b7c 4731 for_each_domain(cpu, sd) {
1da177e4
LT
4732 if (!(sd->flags & SD_LOAD_BALANCE))
4733 continue;
4734
4735 interval = sd->balance_interval;
d15bcfdb 4736 if (idle != CPU_IDLE)
1da177e4
LT
4737 interval *= sd->busy_factor;
4738
4739 /* scale ms to jiffies */
4740 interval = msecs_to_jiffies(interval);
4741 if (unlikely(!interval))
4742 interval = 1;
dd41f596
IM
4743 if (interval > HZ*NR_CPUS/10)
4744 interval = HZ*NR_CPUS/10;
4745
d07355f5 4746 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4747
d07355f5 4748 if (need_serialize) {
08c183f3
CL
4749 if (!spin_trylock(&balancing))
4750 goto out;
4751 }
4752
c9819f45 4753 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4754 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4755 /*
4756 * We've pulled tasks over so either we're no
5969fe06
NP
4757 * longer idle, or one of our SMT siblings is
4758 * not idle.
4759 */
d15bcfdb 4760 idle = CPU_NOT_IDLE;
1da177e4 4761 }
1bd77f2d 4762 sd->last_balance = jiffies;
1da177e4 4763 }
d07355f5 4764 if (need_serialize)
08c183f3
CL
4765 spin_unlock(&balancing);
4766out:
f549da84 4767 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4768 next_balance = sd->last_balance + interval;
f549da84
SS
4769 update_next_balance = 1;
4770 }
783609c6
SS
4771
4772 /*
4773 * Stop the load balance at this level. There is another
4774 * CPU in our sched group which is doing load balancing more
4775 * actively.
4776 */
4777 if (!balance)
4778 break;
1da177e4 4779 }
f549da84
SS
4780
4781 /*
4782 * next_balance will be updated only when there is a need.
4783 * When the cpu is attached to null domain for ex, it will not be
4784 * updated.
4785 */
4786 if (likely(update_next_balance))
4787 rq->next_balance = next_balance;
46cb4b7c
SS
4788}
4789
4790/*
4791 * run_rebalance_domains is triggered when needed from the scheduler tick.
4792 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4793 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4794 */
4795static void run_rebalance_domains(struct softirq_action *h)
4796{
dd41f596
IM
4797 int this_cpu = smp_processor_id();
4798 struct rq *this_rq = cpu_rq(this_cpu);
4799 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4800 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4801
dd41f596 4802 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4803
4804#ifdef CONFIG_NO_HZ
4805 /*
4806 * If this cpu is the owner for idle load balancing, then do the
4807 * balancing on behalf of the other idle cpus whose ticks are
4808 * stopped.
4809 */
dd41f596
IM
4810 if (this_rq->idle_at_tick &&
4811 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4812 struct rq *rq;
4813 int balance_cpu;
4814
7d1e6a9b
RR
4815 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4816 if (balance_cpu == this_cpu)
4817 continue;
4818
46cb4b7c
SS
4819 /*
4820 * If this cpu gets work to do, stop the load balancing
4821 * work being done for other cpus. Next load
4822 * balancing owner will pick it up.
4823 */
4824 if (need_resched())
4825 break;
4826
de0cf899 4827 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4828
4829 rq = cpu_rq(balance_cpu);
dd41f596
IM
4830 if (time_after(this_rq->next_balance, rq->next_balance))
4831 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4832 }
4833 }
4834#endif
4835}
4836
8a0be9ef
FW
4837static inline int on_null_domain(int cpu)
4838{
4839 return !rcu_dereference(cpu_rq(cpu)->sd);
4840}
4841
46cb4b7c
SS
4842/*
4843 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4844 *
4845 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4846 * idle load balancing owner or decide to stop the periodic load balancing,
4847 * if the whole system is idle.
4848 */
dd41f596 4849static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4850{
46cb4b7c
SS
4851#ifdef CONFIG_NO_HZ
4852 /*
4853 * If we were in the nohz mode recently and busy at the current
4854 * scheduler tick, then check if we need to nominate new idle
4855 * load balancer.
4856 */
4857 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4858 rq->in_nohz_recently = 0;
4859
4860 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4861 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4862 atomic_set(&nohz.load_balancer, -1);
4863 }
4864
4865 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4866 int ilb = find_new_ilb(cpu);
46cb4b7c 4867
434d53b0 4868 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4869 resched_cpu(ilb);
4870 }
4871 }
4872
4873 /*
4874 * If this cpu is idle and doing idle load balancing for all the
4875 * cpus with ticks stopped, is it time for that to stop?
4876 */
4877 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4878 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4879 resched_cpu(cpu);
4880 return;
4881 }
4882
4883 /*
4884 * If this cpu is idle and the idle load balancing is done by
4885 * someone else, then no need raise the SCHED_SOFTIRQ
4886 */
4887 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4888 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4889 return;
4890#endif
8a0be9ef
FW
4891 /* Don't need to rebalance while attached to NULL domain */
4892 if (time_after_eq(jiffies, rq->next_balance) &&
4893 likely(!on_null_domain(cpu)))
46cb4b7c 4894 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4895}
dd41f596
IM
4896
4897#else /* CONFIG_SMP */
4898
1da177e4
LT
4899/*
4900 * on UP we do not need to balance between CPUs:
4901 */
70b97a7f 4902static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4903{
4904}
dd41f596 4905
1da177e4
LT
4906#endif
4907
1da177e4
LT
4908DEFINE_PER_CPU(struct kernel_stat, kstat);
4909
4910EXPORT_PER_CPU_SYMBOL(kstat);
4911
4912/*
c5f8d995 4913 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4914 * @p in case that task is currently running.
c5f8d995
HS
4915 *
4916 * Called with task_rq_lock() held on @rq.
1da177e4 4917 */
c5f8d995
HS
4918static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4919{
4920 u64 ns = 0;
4921
4922 if (task_current(rq, p)) {
4923 update_rq_clock(rq);
4924 ns = rq->clock - p->se.exec_start;
4925 if ((s64)ns < 0)
4926 ns = 0;
4927 }
4928
4929 return ns;
4930}
4931
bb34d92f 4932unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4933{
1da177e4 4934 unsigned long flags;
41b86e9c 4935 struct rq *rq;
bb34d92f 4936 u64 ns = 0;
48f24c4d 4937
41b86e9c 4938 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4939 ns = do_task_delta_exec(p, rq);
4940 task_rq_unlock(rq, &flags);
1508487e 4941
c5f8d995
HS
4942 return ns;
4943}
f06febc9 4944
c5f8d995
HS
4945/*
4946 * Return accounted runtime for the task.
4947 * In case the task is currently running, return the runtime plus current's
4948 * pending runtime that have not been accounted yet.
4949 */
4950unsigned long long task_sched_runtime(struct task_struct *p)
4951{
4952 unsigned long flags;
4953 struct rq *rq;
4954 u64 ns = 0;
4955
4956 rq = task_rq_lock(p, &flags);
4957 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4958 task_rq_unlock(rq, &flags);
4959
4960 return ns;
4961}
48f24c4d 4962
c5f8d995
HS
4963/*
4964 * Return sum_exec_runtime for the thread group.
4965 * In case the task is currently running, return the sum plus current's
4966 * pending runtime that have not been accounted yet.
4967 *
4968 * Note that the thread group might have other running tasks as well,
4969 * so the return value not includes other pending runtime that other
4970 * running tasks might have.
4971 */
4972unsigned long long thread_group_sched_runtime(struct task_struct *p)
4973{
4974 struct task_cputime totals;
4975 unsigned long flags;
4976 struct rq *rq;
4977 u64 ns;
4978
4979 rq = task_rq_lock(p, &flags);
4980 thread_group_cputime(p, &totals);
4981 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4982 task_rq_unlock(rq, &flags);
48f24c4d 4983
1da177e4
LT
4984 return ns;
4985}
4986
1da177e4
LT
4987/*
4988 * Account user cpu time to a process.
4989 * @p: the process that the cpu time gets accounted to
1da177e4 4990 * @cputime: the cpu time spent in user space since the last update
457533a7 4991 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4992 */
457533a7
MS
4993void account_user_time(struct task_struct *p, cputime_t cputime,
4994 cputime_t cputime_scaled)
1da177e4
LT
4995{
4996 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4997 cputime64_t tmp;
4998
457533a7 4999 /* Add user time to process. */
1da177e4 5000 p->utime = cputime_add(p->utime, cputime);
457533a7 5001 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5002 account_group_user_time(p, cputime);
1da177e4
LT
5003
5004 /* Add user time to cpustat. */
5005 tmp = cputime_to_cputime64(cputime);
5006 if (TASK_NICE(p) > 0)
5007 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5008 else
5009 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5010
5011 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5012 /* Account for user time used */
5013 acct_update_integrals(p);
1da177e4
LT
5014}
5015
94886b84
LV
5016/*
5017 * Account guest cpu time to a process.
5018 * @p: the process that the cpu time gets accounted to
5019 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5020 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5021 */
457533a7
MS
5022static void account_guest_time(struct task_struct *p, cputime_t cputime,
5023 cputime_t cputime_scaled)
94886b84
LV
5024{
5025 cputime64_t tmp;
5026 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5027
5028 tmp = cputime_to_cputime64(cputime);
5029
457533a7 5030 /* Add guest time to process. */
94886b84 5031 p->utime = cputime_add(p->utime, cputime);
457533a7 5032 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5033 account_group_user_time(p, cputime);
94886b84
LV
5034 p->gtime = cputime_add(p->gtime, cputime);
5035
457533a7 5036 /* Add guest time to cpustat. */
94886b84
LV
5037 cpustat->user = cputime64_add(cpustat->user, tmp);
5038 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5039}
5040
1da177e4
LT
5041/*
5042 * Account system cpu time to a process.
5043 * @p: the process that the cpu time gets accounted to
5044 * @hardirq_offset: the offset to subtract from hardirq_count()
5045 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5046 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5047 */
5048void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5049 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5050{
5051 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5052 cputime64_t tmp;
5053
983ed7a6 5054 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5055 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5056 return;
5057 }
94886b84 5058
457533a7 5059 /* Add system time to process. */
1da177e4 5060 p->stime = cputime_add(p->stime, cputime);
457533a7 5061 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5062 account_group_system_time(p, cputime);
1da177e4
LT
5063
5064 /* Add system time to cpustat. */
5065 tmp = cputime_to_cputime64(cputime);
5066 if (hardirq_count() - hardirq_offset)
5067 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5068 else if (softirq_count())
5069 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5070 else
79741dd3
MS
5071 cpustat->system = cputime64_add(cpustat->system, tmp);
5072
ef12fefa
BR
5073 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5074
1da177e4
LT
5075 /* Account for system time used */
5076 acct_update_integrals(p);
1da177e4
LT
5077}
5078
c66f08be 5079/*
1da177e4 5080 * Account for involuntary wait time.
1da177e4 5081 * @steal: the cpu time spent in involuntary wait
c66f08be 5082 */
79741dd3 5083void account_steal_time(cputime_t cputime)
c66f08be 5084{
79741dd3
MS
5085 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5086 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5087
5088 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5089}
5090
1da177e4 5091/*
79741dd3
MS
5092 * Account for idle time.
5093 * @cputime: the cpu time spent in idle wait
1da177e4 5094 */
79741dd3 5095void account_idle_time(cputime_t cputime)
1da177e4
LT
5096{
5097 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5098 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5099 struct rq *rq = this_rq();
1da177e4 5100
79741dd3
MS
5101 if (atomic_read(&rq->nr_iowait) > 0)
5102 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5103 else
5104 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5105}
5106
79741dd3
MS
5107#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5108
5109/*
5110 * Account a single tick of cpu time.
5111 * @p: the process that the cpu time gets accounted to
5112 * @user_tick: indicates if the tick is a user or a system tick
5113 */
5114void account_process_tick(struct task_struct *p, int user_tick)
5115{
5116 cputime_t one_jiffy = jiffies_to_cputime(1);
5117 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5118 struct rq *rq = this_rq();
5119
5120 if (user_tick)
5121 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5122 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5123 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5124 one_jiffy_scaled);
5125 else
5126 account_idle_time(one_jiffy);
5127}
5128
5129/*
5130 * Account multiple ticks of steal time.
5131 * @p: the process from which the cpu time has been stolen
5132 * @ticks: number of stolen ticks
5133 */
5134void account_steal_ticks(unsigned long ticks)
5135{
5136 account_steal_time(jiffies_to_cputime(ticks));
5137}
5138
5139/*
5140 * Account multiple ticks of idle time.
5141 * @ticks: number of stolen ticks
5142 */
5143void account_idle_ticks(unsigned long ticks)
5144{
5145 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5146}
5147
79741dd3
MS
5148#endif
5149
49048622
BS
5150/*
5151 * Use precise platform statistics if available:
5152 */
5153#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5154cputime_t task_utime(struct task_struct *p)
5155{
5156 return p->utime;
5157}
5158
5159cputime_t task_stime(struct task_struct *p)
5160{
5161 return p->stime;
5162}
5163#else
5164cputime_t task_utime(struct task_struct *p)
5165{
5166 clock_t utime = cputime_to_clock_t(p->utime),
5167 total = utime + cputime_to_clock_t(p->stime);
5168 u64 temp;
5169
5170 /*
5171 * Use CFS's precise accounting:
5172 */
5173 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5174
5175 if (total) {
5176 temp *= utime;
5177 do_div(temp, total);
5178 }
5179 utime = (clock_t)temp;
5180
5181 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5182 return p->prev_utime;
5183}
5184
5185cputime_t task_stime(struct task_struct *p)
5186{
5187 clock_t stime;
5188
5189 /*
5190 * Use CFS's precise accounting. (we subtract utime from
5191 * the total, to make sure the total observed by userspace
5192 * grows monotonically - apps rely on that):
5193 */
5194 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5195 cputime_to_clock_t(task_utime(p));
5196
5197 if (stime >= 0)
5198 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5199
5200 return p->prev_stime;
5201}
5202#endif
5203
5204inline cputime_t task_gtime(struct task_struct *p)
5205{
5206 return p->gtime;
5207}
5208
7835b98b
CL
5209/*
5210 * This function gets called by the timer code, with HZ frequency.
5211 * We call it with interrupts disabled.
5212 *
5213 * It also gets called by the fork code, when changing the parent's
5214 * timeslices.
5215 */
5216void scheduler_tick(void)
5217{
7835b98b
CL
5218 int cpu = smp_processor_id();
5219 struct rq *rq = cpu_rq(cpu);
dd41f596 5220 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5221
5222 sched_clock_tick();
dd41f596
IM
5223
5224 spin_lock(&rq->lock);
3e51f33f 5225 update_rq_clock(rq);
f1a438d8 5226 update_cpu_load(rq);
fa85ae24 5227 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5228 spin_unlock(&rq->lock);
7835b98b 5229
e220d2dc
PZ
5230 perf_counter_task_tick(curr, cpu);
5231
e418e1c2 5232#ifdef CONFIG_SMP
dd41f596
IM
5233 rq->idle_at_tick = idle_cpu(cpu);
5234 trigger_load_balance(rq, cpu);
e418e1c2 5235#endif
1da177e4
LT
5236}
5237
132380a0 5238notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5239{
5240 if (in_lock_functions(addr)) {
5241 addr = CALLER_ADDR2;
5242 if (in_lock_functions(addr))
5243 addr = CALLER_ADDR3;
5244 }
5245 return addr;
5246}
1da177e4 5247
7e49fcce
SR
5248#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5249 defined(CONFIG_PREEMPT_TRACER))
5250
43627582 5251void __kprobes add_preempt_count(int val)
1da177e4 5252{
6cd8a4bb 5253#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5254 /*
5255 * Underflow?
5256 */
9a11b49a
IM
5257 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5258 return;
6cd8a4bb 5259#endif
1da177e4 5260 preempt_count() += val;
6cd8a4bb 5261#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5262 /*
5263 * Spinlock count overflowing soon?
5264 */
33859f7f
MOS
5265 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5266 PREEMPT_MASK - 10);
6cd8a4bb
SR
5267#endif
5268 if (preempt_count() == val)
5269 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5270}
5271EXPORT_SYMBOL(add_preempt_count);
5272
43627582 5273void __kprobes sub_preempt_count(int val)
1da177e4 5274{
6cd8a4bb 5275#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5276 /*
5277 * Underflow?
5278 */
01e3eb82 5279 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5280 return;
1da177e4
LT
5281 /*
5282 * Is the spinlock portion underflowing?
5283 */
9a11b49a
IM
5284 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5285 !(preempt_count() & PREEMPT_MASK)))
5286 return;
6cd8a4bb 5287#endif
9a11b49a 5288
6cd8a4bb
SR
5289 if (preempt_count() == val)
5290 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5291 preempt_count() -= val;
5292}
5293EXPORT_SYMBOL(sub_preempt_count);
5294
5295#endif
5296
5297/*
dd41f596 5298 * Print scheduling while atomic bug:
1da177e4 5299 */
dd41f596 5300static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5301{
838225b4
SS
5302 struct pt_regs *regs = get_irq_regs();
5303
5304 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5305 prev->comm, prev->pid, preempt_count());
5306
dd41f596 5307 debug_show_held_locks(prev);
e21f5b15 5308 print_modules();
dd41f596
IM
5309 if (irqs_disabled())
5310 print_irqtrace_events(prev);
838225b4
SS
5311
5312 if (regs)
5313 show_regs(regs);
5314 else
5315 dump_stack();
dd41f596 5316}
1da177e4 5317
dd41f596
IM
5318/*
5319 * Various schedule()-time debugging checks and statistics:
5320 */
5321static inline void schedule_debug(struct task_struct *prev)
5322{
1da177e4 5323 /*
41a2d6cf 5324 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5325 * schedule() atomically, we ignore that path for now.
5326 * Otherwise, whine if we are scheduling when we should not be.
5327 */
3f33a7ce 5328 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5329 __schedule_bug(prev);
5330
1da177e4
LT
5331 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5332
2d72376b 5333 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5334#ifdef CONFIG_SCHEDSTATS
5335 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5336 schedstat_inc(this_rq(), bkl_count);
5337 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5338 }
5339#endif
dd41f596
IM
5340}
5341
df1c99d4
MG
5342static void put_prev_task(struct rq *rq, struct task_struct *prev)
5343{
5344 if (prev->state == TASK_RUNNING) {
5345 u64 runtime = prev->se.sum_exec_runtime;
5346
5347 runtime -= prev->se.prev_sum_exec_runtime;
5348 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5349
5350 /*
5351 * In order to avoid avg_overlap growing stale when we are
5352 * indeed overlapping and hence not getting put to sleep, grow
5353 * the avg_overlap on preemption.
5354 *
5355 * We use the average preemption runtime because that
5356 * correlates to the amount of cache footprint a task can
5357 * build up.
5358 */
5359 update_avg(&prev->se.avg_overlap, runtime);
5360 }
5361 prev->sched_class->put_prev_task(rq, prev);
5362}
5363
dd41f596
IM
5364/*
5365 * Pick up the highest-prio task:
5366 */
5367static inline struct task_struct *
b67802ea 5368pick_next_task(struct rq *rq)
dd41f596 5369{
5522d5d5 5370 const struct sched_class *class;
dd41f596 5371 struct task_struct *p;
1da177e4
LT
5372
5373 /*
dd41f596
IM
5374 * Optimization: we know that if all tasks are in
5375 * the fair class we can call that function directly:
1da177e4 5376 */
dd41f596 5377 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5378 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5379 if (likely(p))
5380 return p;
1da177e4
LT
5381 }
5382
dd41f596
IM
5383 class = sched_class_highest;
5384 for ( ; ; ) {
fb8d4724 5385 p = class->pick_next_task(rq);
dd41f596
IM
5386 if (p)
5387 return p;
5388 /*
5389 * Will never be NULL as the idle class always
5390 * returns a non-NULL p:
5391 */
5392 class = class->next;
5393 }
5394}
1da177e4 5395
dd41f596
IM
5396/*
5397 * schedule() is the main scheduler function.
5398 */
ff743345 5399asmlinkage void __sched schedule(void)
dd41f596
IM
5400{
5401 struct task_struct *prev, *next;
67ca7bde 5402 unsigned long *switch_count;
dd41f596 5403 struct rq *rq;
31656519 5404 int cpu;
dd41f596 5405
ff743345
PZ
5406need_resched:
5407 preempt_disable();
dd41f596
IM
5408 cpu = smp_processor_id();
5409 rq = cpu_rq(cpu);
5410 rcu_qsctr_inc(cpu);
5411 prev = rq->curr;
5412 switch_count = &prev->nivcsw;
5413
5414 release_kernel_lock(prev);
5415need_resched_nonpreemptible:
5416
5417 schedule_debug(prev);
1da177e4 5418
31656519 5419 if (sched_feat(HRTICK))
f333fdc9 5420 hrtick_clear(rq);
8f4d37ec 5421
8cd162ce 5422 spin_lock_irq(&rq->lock);
3e51f33f 5423 update_rq_clock(rq);
1e819950 5424 clear_tsk_need_resched(prev);
1da177e4 5425
1da177e4 5426 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5427 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5428 prev->state = TASK_RUNNING;
16882c1e 5429 else
2e1cb74a 5430 deactivate_task(rq, prev, 1);
dd41f596 5431 switch_count = &prev->nvcsw;
1da177e4
LT
5432 }
5433
3f029d3c 5434 pre_schedule(rq, prev);
f65eda4f 5435
dd41f596 5436 if (unlikely(!rq->nr_running))
1da177e4 5437 idle_balance(cpu, rq);
1da177e4 5438
df1c99d4 5439 put_prev_task(rq, prev);
b67802ea 5440 next = pick_next_task(rq);
1da177e4 5441
1da177e4 5442 if (likely(prev != next)) {
673a90a1 5443 sched_info_switch(prev, next);
564c2b21 5444 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5445
1da177e4
LT
5446 rq->nr_switches++;
5447 rq->curr = next;
5448 ++*switch_count;
5449
3f029d3c 5450 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5451 /*
5452 * the context switch might have flipped the stack from under
5453 * us, hence refresh the local variables.
5454 */
5455 cpu = smp_processor_id();
5456 rq = cpu_rq(cpu);
3f029d3c 5457 } else
1da177e4 5458 spin_unlock_irq(&rq->lock);
da19ab51 5459
3f029d3c 5460 post_schedule(rq);
1da177e4 5461
8f4d37ec 5462 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5463 goto need_resched_nonpreemptible;
8f4d37ec 5464
1da177e4 5465 preempt_enable_no_resched();
ff743345 5466 if (need_resched())
1da177e4
LT
5467 goto need_resched;
5468}
1da177e4
LT
5469EXPORT_SYMBOL(schedule);
5470
0d66bf6d
PZ
5471#ifdef CONFIG_SMP
5472/*
5473 * Look out! "owner" is an entirely speculative pointer
5474 * access and not reliable.
5475 */
5476int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5477{
5478 unsigned int cpu;
5479 struct rq *rq;
5480
5481 if (!sched_feat(OWNER_SPIN))
5482 return 0;
5483
5484#ifdef CONFIG_DEBUG_PAGEALLOC
5485 /*
5486 * Need to access the cpu field knowing that
5487 * DEBUG_PAGEALLOC could have unmapped it if
5488 * the mutex owner just released it and exited.
5489 */
5490 if (probe_kernel_address(&owner->cpu, cpu))
5491 goto out;
5492#else
5493 cpu = owner->cpu;
5494#endif
5495
5496 /*
5497 * Even if the access succeeded (likely case),
5498 * the cpu field may no longer be valid.
5499 */
5500 if (cpu >= nr_cpumask_bits)
5501 goto out;
5502
5503 /*
5504 * We need to validate that we can do a
5505 * get_cpu() and that we have the percpu area.
5506 */
5507 if (!cpu_online(cpu))
5508 goto out;
5509
5510 rq = cpu_rq(cpu);
5511
5512 for (;;) {
5513 /*
5514 * Owner changed, break to re-assess state.
5515 */
5516 if (lock->owner != owner)
5517 break;
5518
5519 /*
5520 * Is that owner really running on that cpu?
5521 */
5522 if (task_thread_info(rq->curr) != owner || need_resched())
5523 return 0;
5524
5525 cpu_relax();
5526 }
5527out:
5528 return 1;
5529}
5530#endif
5531
1da177e4
LT
5532#ifdef CONFIG_PREEMPT
5533/*
2ed6e34f 5534 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5535 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5536 * occur there and call schedule directly.
5537 */
5538asmlinkage void __sched preempt_schedule(void)
5539{
5540 struct thread_info *ti = current_thread_info();
6478d880 5541
1da177e4
LT
5542 /*
5543 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5544 * we do not want to preempt the current task. Just return..
1da177e4 5545 */
beed33a8 5546 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5547 return;
5548
3a5c359a
AK
5549 do {
5550 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5551 schedule();
3a5c359a 5552 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5553
3a5c359a
AK
5554 /*
5555 * Check again in case we missed a preemption opportunity
5556 * between schedule and now.
5557 */
5558 barrier();
5ed0cec0 5559 } while (need_resched());
1da177e4 5560}
1da177e4
LT
5561EXPORT_SYMBOL(preempt_schedule);
5562
5563/*
2ed6e34f 5564 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5565 * off of irq context.
5566 * Note, that this is called and return with irqs disabled. This will
5567 * protect us against recursive calling from irq.
5568 */
5569asmlinkage void __sched preempt_schedule_irq(void)
5570{
5571 struct thread_info *ti = current_thread_info();
6478d880 5572
2ed6e34f 5573 /* Catch callers which need to be fixed */
1da177e4
LT
5574 BUG_ON(ti->preempt_count || !irqs_disabled());
5575
3a5c359a
AK
5576 do {
5577 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5578 local_irq_enable();
5579 schedule();
5580 local_irq_disable();
3a5c359a 5581 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5582
3a5c359a
AK
5583 /*
5584 * Check again in case we missed a preemption opportunity
5585 * between schedule and now.
5586 */
5587 barrier();
5ed0cec0 5588 } while (need_resched());
1da177e4
LT
5589}
5590
5591#endif /* CONFIG_PREEMPT */
5592
95cdf3b7
IM
5593int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5594 void *key)
1da177e4 5595{
48f24c4d 5596 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5597}
1da177e4
LT
5598EXPORT_SYMBOL(default_wake_function);
5599
5600/*
41a2d6cf
IM
5601 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5602 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5603 * number) then we wake all the non-exclusive tasks and one exclusive task.
5604 *
5605 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5606 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5607 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5608 */
78ddb08f 5609static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5610 int nr_exclusive, int sync, void *key)
1da177e4 5611{
2e45874c 5612 wait_queue_t *curr, *next;
1da177e4 5613
2e45874c 5614 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5615 unsigned flags = curr->flags;
5616
1da177e4 5617 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5618 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5619 break;
5620 }
5621}
5622
5623/**
5624 * __wake_up - wake up threads blocked on a waitqueue.
5625 * @q: the waitqueue
5626 * @mode: which threads
5627 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5628 * @key: is directly passed to the wakeup function
50fa610a
DH
5629 *
5630 * It may be assumed that this function implies a write memory barrier before
5631 * changing the task state if and only if any tasks are woken up.
1da177e4 5632 */
7ad5b3a5 5633void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5634 int nr_exclusive, void *key)
1da177e4
LT
5635{
5636 unsigned long flags;
5637
5638 spin_lock_irqsave(&q->lock, flags);
5639 __wake_up_common(q, mode, nr_exclusive, 0, key);
5640 spin_unlock_irqrestore(&q->lock, flags);
5641}
1da177e4
LT
5642EXPORT_SYMBOL(__wake_up);
5643
5644/*
5645 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5646 */
7ad5b3a5 5647void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5648{
5649 __wake_up_common(q, mode, 1, 0, NULL);
5650}
5651
4ede816a
DL
5652void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5653{
5654 __wake_up_common(q, mode, 1, 0, key);
5655}
5656
1da177e4 5657/**
4ede816a 5658 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5659 * @q: the waitqueue
5660 * @mode: which threads
5661 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5662 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5663 *
5664 * The sync wakeup differs that the waker knows that it will schedule
5665 * away soon, so while the target thread will be woken up, it will not
5666 * be migrated to another CPU - ie. the two threads are 'synchronized'
5667 * with each other. This can prevent needless bouncing between CPUs.
5668 *
5669 * On UP it can prevent extra preemption.
50fa610a
DH
5670 *
5671 * It may be assumed that this function implies a write memory barrier before
5672 * changing the task state if and only if any tasks are woken up.
1da177e4 5673 */
4ede816a
DL
5674void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5675 int nr_exclusive, void *key)
1da177e4
LT
5676{
5677 unsigned long flags;
5678 int sync = 1;
5679
5680 if (unlikely(!q))
5681 return;
5682
5683 if (unlikely(!nr_exclusive))
5684 sync = 0;
5685
5686 spin_lock_irqsave(&q->lock, flags);
4ede816a 5687 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5688 spin_unlock_irqrestore(&q->lock, flags);
5689}
4ede816a
DL
5690EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5691
5692/*
5693 * __wake_up_sync - see __wake_up_sync_key()
5694 */
5695void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5696{
5697 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5698}
1da177e4
LT
5699EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5700
65eb3dc6
KD
5701/**
5702 * complete: - signals a single thread waiting on this completion
5703 * @x: holds the state of this particular completion
5704 *
5705 * This will wake up a single thread waiting on this completion. Threads will be
5706 * awakened in the same order in which they were queued.
5707 *
5708 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5709 *
5710 * It may be assumed that this function implies a write memory barrier before
5711 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5712 */
b15136e9 5713void complete(struct completion *x)
1da177e4
LT
5714{
5715 unsigned long flags;
5716
5717 spin_lock_irqsave(&x->wait.lock, flags);
5718 x->done++;
d9514f6c 5719 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5720 spin_unlock_irqrestore(&x->wait.lock, flags);
5721}
5722EXPORT_SYMBOL(complete);
5723
65eb3dc6
KD
5724/**
5725 * complete_all: - signals all threads waiting on this completion
5726 * @x: holds the state of this particular completion
5727 *
5728 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5729 *
5730 * It may be assumed that this function implies a write memory barrier before
5731 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5732 */
b15136e9 5733void complete_all(struct completion *x)
1da177e4
LT
5734{
5735 unsigned long flags;
5736
5737 spin_lock_irqsave(&x->wait.lock, flags);
5738 x->done += UINT_MAX/2;
d9514f6c 5739 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5740 spin_unlock_irqrestore(&x->wait.lock, flags);
5741}
5742EXPORT_SYMBOL(complete_all);
5743
8cbbe86d
AK
5744static inline long __sched
5745do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5746{
1da177e4
LT
5747 if (!x->done) {
5748 DECLARE_WAITQUEUE(wait, current);
5749
5750 wait.flags |= WQ_FLAG_EXCLUSIVE;
5751 __add_wait_queue_tail(&x->wait, &wait);
5752 do {
94d3d824 5753 if (signal_pending_state(state, current)) {
ea71a546
ON
5754 timeout = -ERESTARTSYS;
5755 break;
8cbbe86d
AK
5756 }
5757 __set_current_state(state);
1da177e4
LT
5758 spin_unlock_irq(&x->wait.lock);
5759 timeout = schedule_timeout(timeout);
5760 spin_lock_irq(&x->wait.lock);
ea71a546 5761 } while (!x->done && timeout);
1da177e4 5762 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5763 if (!x->done)
5764 return timeout;
1da177e4
LT
5765 }
5766 x->done--;
ea71a546 5767 return timeout ?: 1;
1da177e4 5768}
1da177e4 5769
8cbbe86d
AK
5770static long __sched
5771wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5772{
1da177e4
LT
5773 might_sleep();
5774
5775 spin_lock_irq(&x->wait.lock);
8cbbe86d 5776 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5777 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5778 return timeout;
5779}
1da177e4 5780
65eb3dc6
KD
5781/**
5782 * wait_for_completion: - waits for completion of a task
5783 * @x: holds the state of this particular completion
5784 *
5785 * This waits to be signaled for completion of a specific task. It is NOT
5786 * interruptible and there is no timeout.
5787 *
5788 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5789 * and interrupt capability. Also see complete().
5790 */
b15136e9 5791void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5792{
5793 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5794}
8cbbe86d 5795EXPORT_SYMBOL(wait_for_completion);
1da177e4 5796
65eb3dc6
KD
5797/**
5798 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5799 * @x: holds the state of this particular completion
5800 * @timeout: timeout value in jiffies
5801 *
5802 * This waits for either a completion of a specific task to be signaled or for a
5803 * specified timeout to expire. The timeout is in jiffies. It is not
5804 * interruptible.
5805 */
b15136e9 5806unsigned long __sched
8cbbe86d 5807wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5808{
8cbbe86d 5809 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5810}
8cbbe86d 5811EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5812
65eb3dc6
KD
5813/**
5814 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5815 * @x: holds the state of this particular completion
5816 *
5817 * This waits for completion of a specific task to be signaled. It is
5818 * interruptible.
5819 */
8cbbe86d 5820int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5821{
51e97990
AK
5822 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5823 if (t == -ERESTARTSYS)
5824 return t;
5825 return 0;
0fec171c 5826}
8cbbe86d 5827EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5828
65eb3dc6
KD
5829/**
5830 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5831 * @x: holds the state of this particular completion
5832 * @timeout: timeout value in jiffies
5833 *
5834 * This waits for either a completion of a specific task to be signaled or for a
5835 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5836 */
b15136e9 5837unsigned long __sched
8cbbe86d
AK
5838wait_for_completion_interruptible_timeout(struct completion *x,
5839 unsigned long timeout)
0fec171c 5840{
8cbbe86d 5841 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5842}
8cbbe86d 5843EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5844
65eb3dc6
KD
5845/**
5846 * wait_for_completion_killable: - waits for completion of a task (killable)
5847 * @x: holds the state of this particular completion
5848 *
5849 * This waits to be signaled for completion of a specific task. It can be
5850 * interrupted by a kill signal.
5851 */
009e577e
MW
5852int __sched wait_for_completion_killable(struct completion *x)
5853{
5854 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5855 if (t == -ERESTARTSYS)
5856 return t;
5857 return 0;
5858}
5859EXPORT_SYMBOL(wait_for_completion_killable);
5860
be4de352
DC
5861/**
5862 * try_wait_for_completion - try to decrement a completion without blocking
5863 * @x: completion structure
5864 *
5865 * Returns: 0 if a decrement cannot be done without blocking
5866 * 1 if a decrement succeeded.
5867 *
5868 * If a completion is being used as a counting completion,
5869 * attempt to decrement the counter without blocking. This
5870 * enables us to avoid waiting if the resource the completion
5871 * is protecting is not available.
5872 */
5873bool try_wait_for_completion(struct completion *x)
5874{
5875 int ret = 1;
5876
5877 spin_lock_irq(&x->wait.lock);
5878 if (!x->done)
5879 ret = 0;
5880 else
5881 x->done--;
5882 spin_unlock_irq(&x->wait.lock);
5883 return ret;
5884}
5885EXPORT_SYMBOL(try_wait_for_completion);
5886
5887/**
5888 * completion_done - Test to see if a completion has any waiters
5889 * @x: completion structure
5890 *
5891 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5892 * 1 if there are no waiters.
5893 *
5894 */
5895bool completion_done(struct completion *x)
5896{
5897 int ret = 1;
5898
5899 spin_lock_irq(&x->wait.lock);
5900 if (!x->done)
5901 ret = 0;
5902 spin_unlock_irq(&x->wait.lock);
5903 return ret;
5904}
5905EXPORT_SYMBOL(completion_done);
5906
8cbbe86d
AK
5907static long __sched
5908sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5909{
0fec171c
IM
5910 unsigned long flags;
5911 wait_queue_t wait;
5912
5913 init_waitqueue_entry(&wait, current);
1da177e4 5914
8cbbe86d 5915 __set_current_state(state);
1da177e4 5916
8cbbe86d
AK
5917 spin_lock_irqsave(&q->lock, flags);
5918 __add_wait_queue(q, &wait);
5919 spin_unlock(&q->lock);
5920 timeout = schedule_timeout(timeout);
5921 spin_lock_irq(&q->lock);
5922 __remove_wait_queue(q, &wait);
5923 spin_unlock_irqrestore(&q->lock, flags);
5924
5925 return timeout;
5926}
5927
5928void __sched interruptible_sleep_on(wait_queue_head_t *q)
5929{
5930 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5931}
1da177e4
LT
5932EXPORT_SYMBOL(interruptible_sleep_on);
5933
0fec171c 5934long __sched
95cdf3b7 5935interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5936{
8cbbe86d 5937 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5938}
1da177e4
LT
5939EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5940
0fec171c 5941void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5942{
8cbbe86d 5943 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5944}
1da177e4
LT
5945EXPORT_SYMBOL(sleep_on);
5946
0fec171c 5947long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5948{
8cbbe86d 5949 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5950}
1da177e4
LT
5951EXPORT_SYMBOL(sleep_on_timeout);
5952
b29739f9
IM
5953#ifdef CONFIG_RT_MUTEXES
5954
5955/*
5956 * rt_mutex_setprio - set the current priority of a task
5957 * @p: task
5958 * @prio: prio value (kernel-internal form)
5959 *
5960 * This function changes the 'effective' priority of a task. It does
5961 * not touch ->normal_prio like __setscheduler().
5962 *
5963 * Used by the rt_mutex code to implement priority inheritance logic.
5964 */
36c8b586 5965void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5966{
5967 unsigned long flags;
83b699ed 5968 int oldprio, on_rq, running;
70b97a7f 5969 struct rq *rq;
cb469845 5970 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5971
5972 BUG_ON(prio < 0 || prio > MAX_PRIO);
5973
5974 rq = task_rq_lock(p, &flags);
a8e504d2 5975 update_rq_clock(rq);
b29739f9 5976
d5f9f942 5977 oldprio = p->prio;
dd41f596 5978 on_rq = p->se.on_rq;
051a1d1a 5979 running = task_current(rq, p);
0e1f3483 5980 if (on_rq)
69be72c1 5981 dequeue_task(rq, p, 0);
0e1f3483
HS
5982 if (running)
5983 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5984
5985 if (rt_prio(prio))
5986 p->sched_class = &rt_sched_class;
5987 else
5988 p->sched_class = &fair_sched_class;
5989
b29739f9
IM
5990 p->prio = prio;
5991
0e1f3483
HS
5992 if (running)
5993 p->sched_class->set_curr_task(rq);
dd41f596 5994 if (on_rq) {
8159f87e 5995 enqueue_task(rq, p, 0);
cb469845
SR
5996
5997 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5998 }
5999 task_rq_unlock(rq, &flags);
6000}
6001
6002#endif
6003
36c8b586 6004void set_user_nice(struct task_struct *p, long nice)
1da177e4 6005{
dd41f596 6006 int old_prio, delta, on_rq;
1da177e4 6007 unsigned long flags;
70b97a7f 6008 struct rq *rq;
1da177e4
LT
6009
6010 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6011 return;
6012 /*
6013 * We have to be careful, if called from sys_setpriority(),
6014 * the task might be in the middle of scheduling on another CPU.
6015 */
6016 rq = task_rq_lock(p, &flags);
a8e504d2 6017 update_rq_clock(rq);
1da177e4
LT
6018 /*
6019 * The RT priorities are set via sched_setscheduler(), but we still
6020 * allow the 'normal' nice value to be set - but as expected
6021 * it wont have any effect on scheduling until the task is
dd41f596 6022 * SCHED_FIFO/SCHED_RR:
1da177e4 6023 */
e05606d3 6024 if (task_has_rt_policy(p)) {
1da177e4
LT
6025 p->static_prio = NICE_TO_PRIO(nice);
6026 goto out_unlock;
6027 }
dd41f596 6028 on_rq = p->se.on_rq;
c09595f6 6029 if (on_rq)
69be72c1 6030 dequeue_task(rq, p, 0);
1da177e4 6031
1da177e4 6032 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6033 set_load_weight(p);
b29739f9
IM
6034 old_prio = p->prio;
6035 p->prio = effective_prio(p);
6036 delta = p->prio - old_prio;
1da177e4 6037
dd41f596 6038 if (on_rq) {
8159f87e 6039 enqueue_task(rq, p, 0);
1da177e4 6040 /*
d5f9f942
AM
6041 * If the task increased its priority or is running and
6042 * lowered its priority, then reschedule its CPU:
1da177e4 6043 */
d5f9f942 6044 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6045 resched_task(rq->curr);
6046 }
6047out_unlock:
6048 task_rq_unlock(rq, &flags);
6049}
1da177e4
LT
6050EXPORT_SYMBOL(set_user_nice);
6051
e43379f1
MM
6052/*
6053 * can_nice - check if a task can reduce its nice value
6054 * @p: task
6055 * @nice: nice value
6056 */
36c8b586 6057int can_nice(const struct task_struct *p, const int nice)
e43379f1 6058{
024f4747
MM
6059 /* convert nice value [19,-20] to rlimit style value [1,40] */
6060 int nice_rlim = 20 - nice;
48f24c4d 6061
e43379f1
MM
6062 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6063 capable(CAP_SYS_NICE));
6064}
6065
1da177e4
LT
6066#ifdef __ARCH_WANT_SYS_NICE
6067
6068/*
6069 * sys_nice - change the priority of the current process.
6070 * @increment: priority increment
6071 *
6072 * sys_setpriority is a more generic, but much slower function that
6073 * does similar things.
6074 */
5add95d4 6075SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6076{
48f24c4d 6077 long nice, retval;
1da177e4
LT
6078
6079 /*
6080 * Setpriority might change our priority at the same moment.
6081 * We don't have to worry. Conceptually one call occurs first
6082 * and we have a single winner.
6083 */
e43379f1
MM
6084 if (increment < -40)
6085 increment = -40;
1da177e4
LT
6086 if (increment > 40)
6087 increment = 40;
6088
2b8f836f 6089 nice = TASK_NICE(current) + increment;
1da177e4
LT
6090 if (nice < -20)
6091 nice = -20;
6092 if (nice > 19)
6093 nice = 19;
6094
e43379f1
MM
6095 if (increment < 0 && !can_nice(current, nice))
6096 return -EPERM;
6097
1da177e4
LT
6098 retval = security_task_setnice(current, nice);
6099 if (retval)
6100 return retval;
6101
6102 set_user_nice(current, nice);
6103 return 0;
6104}
6105
6106#endif
6107
6108/**
6109 * task_prio - return the priority value of a given task.
6110 * @p: the task in question.
6111 *
6112 * This is the priority value as seen by users in /proc.
6113 * RT tasks are offset by -200. Normal tasks are centered
6114 * around 0, value goes from -16 to +15.
6115 */
36c8b586 6116int task_prio(const struct task_struct *p)
1da177e4
LT
6117{
6118 return p->prio - MAX_RT_PRIO;
6119}
6120
6121/**
6122 * task_nice - return the nice value of a given task.
6123 * @p: the task in question.
6124 */
36c8b586 6125int task_nice(const struct task_struct *p)
1da177e4
LT
6126{
6127 return TASK_NICE(p);
6128}
150d8bed 6129EXPORT_SYMBOL(task_nice);
1da177e4
LT
6130
6131/**
6132 * idle_cpu - is a given cpu idle currently?
6133 * @cpu: the processor in question.
6134 */
6135int idle_cpu(int cpu)
6136{
6137 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6138}
6139
1da177e4
LT
6140/**
6141 * idle_task - return the idle task for a given cpu.
6142 * @cpu: the processor in question.
6143 */
36c8b586 6144struct task_struct *idle_task(int cpu)
1da177e4
LT
6145{
6146 return cpu_rq(cpu)->idle;
6147}
6148
6149/**
6150 * find_process_by_pid - find a process with a matching PID value.
6151 * @pid: the pid in question.
6152 */
a9957449 6153static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6154{
228ebcbe 6155 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6156}
6157
6158/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6159static void
6160__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6161{
dd41f596 6162 BUG_ON(p->se.on_rq);
48f24c4d 6163
1da177e4 6164 p->policy = policy;
dd41f596
IM
6165 switch (p->policy) {
6166 case SCHED_NORMAL:
6167 case SCHED_BATCH:
6168 case SCHED_IDLE:
6169 p->sched_class = &fair_sched_class;
6170 break;
6171 case SCHED_FIFO:
6172 case SCHED_RR:
6173 p->sched_class = &rt_sched_class;
6174 break;
6175 }
6176
1da177e4 6177 p->rt_priority = prio;
b29739f9
IM
6178 p->normal_prio = normal_prio(p);
6179 /* we are holding p->pi_lock already */
6180 p->prio = rt_mutex_getprio(p);
2dd73a4f 6181 set_load_weight(p);
1da177e4
LT
6182}
6183
c69e8d9c
DH
6184/*
6185 * check the target process has a UID that matches the current process's
6186 */
6187static bool check_same_owner(struct task_struct *p)
6188{
6189 const struct cred *cred = current_cred(), *pcred;
6190 bool match;
6191
6192 rcu_read_lock();
6193 pcred = __task_cred(p);
6194 match = (cred->euid == pcred->euid ||
6195 cred->euid == pcred->uid);
6196 rcu_read_unlock();
6197 return match;
6198}
6199
961ccddd
RR
6200static int __sched_setscheduler(struct task_struct *p, int policy,
6201 struct sched_param *param, bool user)
1da177e4 6202{
83b699ed 6203 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6204 unsigned long flags;
cb469845 6205 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6206 struct rq *rq;
ca94c442 6207 int reset_on_fork;
1da177e4 6208
66e5393a
SR
6209 /* may grab non-irq protected spin_locks */
6210 BUG_ON(in_interrupt());
1da177e4
LT
6211recheck:
6212 /* double check policy once rq lock held */
ca94c442
LP
6213 if (policy < 0) {
6214 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6215 policy = oldpolicy = p->policy;
ca94c442
LP
6216 } else {
6217 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6218 policy &= ~SCHED_RESET_ON_FORK;
6219
6220 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6221 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6222 policy != SCHED_IDLE)
6223 return -EINVAL;
6224 }
6225
1da177e4
LT
6226 /*
6227 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6228 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6229 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6230 */
6231 if (param->sched_priority < 0 ||
95cdf3b7 6232 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6233 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6234 return -EINVAL;
e05606d3 6235 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6236 return -EINVAL;
6237
37e4ab3f
OC
6238 /*
6239 * Allow unprivileged RT tasks to decrease priority:
6240 */
961ccddd 6241 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6242 if (rt_policy(policy)) {
8dc3e909 6243 unsigned long rlim_rtprio;
8dc3e909
ON
6244
6245 if (!lock_task_sighand(p, &flags))
6246 return -ESRCH;
6247 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6248 unlock_task_sighand(p, &flags);
6249
6250 /* can't set/change the rt policy */
6251 if (policy != p->policy && !rlim_rtprio)
6252 return -EPERM;
6253
6254 /* can't increase priority */
6255 if (param->sched_priority > p->rt_priority &&
6256 param->sched_priority > rlim_rtprio)
6257 return -EPERM;
6258 }
dd41f596
IM
6259 /*
6260 * Like positive nice levels, dont allow tasks to
6261 * move out of SCHED_IDLE either:
6262 */
6263 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6264 return -EPERM;
5fe1d75f 6265
37e4ab3f 6266 /* can't change other user's priorities */
c69e8d9c 6267 if (!check_same_owner(p))
37e4ab3f 6268 return -EPERM;
ca94c442
LP
6269
6270 /* Normal users shall not reset the sched_reset_on_fork flag */
6271 if (p->sched_reset_on_fork && !reset_on_fork)
6272 return -EPERM;
37e4ab3f 6273 }
1da177e4 6274
725aad24 6275 if (user) {
b68aa230 6276#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6277 /*
6278 * Do not allow realtime tasks into groups that have no runtime
6279 * assigned.
6280 */
9a7e0b18
PZ
6281 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6282 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6283 return -EPERM;
b68aa230
PZ
6284#endif
6285
725aad24
JF
6286 retval = security_task_setscheduler(p, policy, param);
6287 if (retval)
6288 return retval;
6289 }
6290
b29739f9
IM
6291 /*
6292 * make sure no PI-waiters arrive (or leave) while we are
6293 * changing the priority of the task:
6294 */
6295 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6296 /*
6297 * To be able to change p->policy safely, the apropriate
6298 * runqueue lock must be held.
6299 */
b29739f9 6300 rq = __task_rq_lock(p);
1da177e4
LT
6301 /* recheck policy now with rq lock held */
6302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6303 policy = oldpolicy = -1;
b29739f9
IM
6304 __task_rq_unlock(rq);
6305 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6306 goto recheck;
6307 }
2daa3577 6308 update_rq_clock(rq);
dd41f596 6309 on_rq = p->se.on_rq;
051a1d1a 6310 running = task_current(rq, p);
0e1f3483 6311 if (on_rq)
2e1cb74a 6312 deactivate_task(rq, p, 0);
0e1f3483
HS
6313 if (running)
6314 p->sched_class->put_prev_task(rq, p);
f6b53205 6315
ca94c442
LP
6316 p->sched_reset_on_fork = reset_on_fork;
6317
1da177e4 6318 oldprio = p->prio;
dd41f596 6319 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6320
0e1f3483
HS
6321 if (running)
6322 p->sched_class->set_curr_task(rq);
dd41f596
IM
6323 if (on_rq) {
6324 activate_task(rq, p, 0);
cb469845
SR
6325
6326 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6327 }
b29739f9
IM
6328 __task_rq_unlock(rq);
6329 spin_unlock_irqrestore(&p->pi_lock, flags);
6330
95e02ca9
TG
6331 rt_mutex_adjust_pi(p);
6332
1da177e4
LT
6333 return 0;
6334}
961ccddd
RR
6335
6336/**
6337 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6338 * @p: the task in question.
6339 * @policy: new policy.
6340 * @param: structure containing the new RT priority.
6341 *
6342 * NOTE that the task may be already dead.
6343 */
6344int sched_setscheduler(struct task_struct *p, int policy,
6345 struct sched_param *param)
6346{
6347 return __sched_setscheduler(p, policy, param, true);
6348}
1da177e4
LT
6349EXPORT_SYMBOL_GPL(sched_setscheduler);
6350
961ccddd
RR
6351/**
6352 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6353 * @p: the task in question.
6354 * @policy: new policy.
6355 * @param: structure containing the new RT priority.
6356 *
6357 * Just like sched_setscheduler, only don't bother checking if the
6358 * current context has permission. For example, this is needed in
6359 * stop_machine(): we create temporary high priority worker threads,
6360 * but our caller might not have that capability.
6361 */
6362int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6363 struct sched_param *param)
6364{
6365 return __sched_setscheduler(p, policy, param, false);
6366}
6367
95cdf3b7
IM
6368static int
6369do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6370{
1da177e4
LT
6371 struct sched_param lparam;
6372 struct task_struct *p;
36c8b586 6373 int retval;
1da177e4
LT
6374
6375 if (!param || pid < 0)
6376 return -EINVAL;
6377 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6378 return -EFAULT;
5fe1d75f
ON
6379
6380 rcu_read_lock();
6381 retval = -ESRCH;
1da177e4 6382 p = find_process_by_pid(pid);
5fe1d75f
ON
6383 if (p != NULL)
6384 retval = sched_setscheduler(p, policy, &lparam);
6385 rcu_read_unlock();
36c8b586 6386
1da177e4
LT
6387 return retval;
6388}
6389
6390/**
6391 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6392 * @pid: the pid in question.
6393 * @policy: new policy.
6394 * @param: structure containing the new RT priority.
6395 */
5add95d4
HC
6396SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6397 struct sched_param __user *, param)
1da177e4 6398{
c21761f1
JB
6399 /* negative values for policy are not valid */
6400 if (policy < 0)
6401 return -EINVAL;
6402
1da177e4
LT
6403 return do_sched_setscheduler(pid, policy, param);
6404}
6405
6406/**
6407 * sys_sched_setparam - set/change the RT priority of a thread
6408 * @pid: the pid in question.
6409 * @param: structure containing the new RT priority.
6410 */
5add95d4 6411SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6412{
6413 return do_sched_setscheduler(pid, -1, param);
6414}
6415
6416/**
6417 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6418 * @pid: the pid in question.
6419 */
5add95d4 6420SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6421{
36c8b586 6422 struct task_struct *p;
3a5c359a 6423 int retval;
1da177e4
LT
6424
6425 if (pid < 0)
3a5c359a 6426 return -EINVAL;
1da177e4
LT
6427
6428 retval = -ESRCH;
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 if (p) {
6432 retval = security_task_getscheduler(p);
6433 if (!retval)
ca94c442
LP
6434 retval = p->policy
6435 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6436 }
6437 read_unlock(&tasklist_lock);
1da177e4
LT
6438 return retval;
6439}
6440
6441/**
ca94c442 6442 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6443 * @pid: the pid in question.
6444 * @param: structure containing the RT priority.
6445 */
5add95d4 6446SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6447{
6448 struct sched_param lp;
36c8b586 6449 struct task_struct *p;
3a5c359a 6450 int retval;
1da177e4
LT
6451
6452 if (!param || pid < 0)
3a5c359a 6453 return -EINVAL;
1da177e4
LT
6454
6455 read_lock(&tasklist_lock);
6456 p = find_process_by_pid(pid);
6457 retval = -ESRCH;
6458 if (!p)
6459 goto out_unlock;
6460
6461 retval = security_task_getscheduler(p);
6462 if (retval)
6463 goto out_unlock;
6464
6465 lp.sched_priority = p->rt_priority;
6466 read_unlock(&tasklist_lock);
6467
6468 /*
6469 * This one might sleep, we cannot do it with a spinlock held ...
6470 */
6471 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6472
1da177e4
LT
6473 return retval;
6474
6475out_unlock:
6476 read_unlock(&tasklist_lock);
6477 return retval;
6478}
6479
96f874e2 6480long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6481{
5a16f3d3 6482 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6483 struct task_struct *p;
6484 int retval;
1da177e4 6485
95402b38 6486 get_online_cpus();
1da177e4
LT
6487 read_lock(&tasklist_lock);
6488
6489 p = find_process_by_pid(pid);
6490 if (!p) {
6491 read_unlock(&tasklist_lock);
95402b38 6492 put_online_cpus();
1da177e4
LT
6493 return -ESRCH;
6494 }
6495
6496 /*
6497 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6498 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6499 * usage count and then drop tasklist_lock.
6500 */
6501 get_task_struct(p);
6502 read_unlock(&tasklist_lock);
6503
5a16f3d3
RR
6504 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6505 retval = -ENOMEM;
6506 goto out_put_task;
6507 }
6508 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6509 retval = -ENOMEM;
6510 goto out_free_cpus_allowed;
6511 }
1da177e4 6512 retval = -EPERM;
c69e8d9c 6513 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6514 goto out_unlock;
6515
e7834f8f
DQ
6516 retval = security_task_setscheduler(p, 0, NULL);
6517 if (retval)
6518 goto out_unlock;
6519
5a16f3d3
RR
6520 cpuset_cpus_allowed(p, cpus_allowed);
6521 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6522 again:
5a16f3d3 6523 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6524
8707d8b8 6525 if (!retval) {
5a16f3d3
RR
6526 cpuset_cpus_allowed(p, cpus_allowed);
6527 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6528 /*
6529 * We must have raced with a concurrent cpuset
6530 * update. Just reset the cpus_allowed to the
6531 * cpuset's cpus_allowed
6532 */
5a16f3d3 6533 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6534 goto again;
6535 }
6536 }
1da177e4 6537out_unlock:
5a16f3d3
RR
6538 free_cpumask_var(new_mask);
6539out_free_cpus_allowed:
6540 free_cpumask_var(cpus_allowed);
6541out_put_task:
1da177e4 6542 put_task_struct(p);
95402b38 6543 put_online_cpus();
1da177e4
LT
6544 return retval;
6545}
6546
6547static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6548 struct cpumask *new_mask)
1da177e4 6549{
96f874e2
RR
6550 if (len < cpumask_size())
6551 cpumask_clear(new_mask);
6552 else if (len > cpumask_size())
6553 len = cpumask_size();
6554
1da177e4
LT
6555 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6556}
6557
6558/**
6559 * sys_sched_setaffinity - set the cpu affinity of a process
6560 * @pid: pid of the process
6561 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6562 * @user_mask_ptr: user-space pointer to the new cpu mask
6563 */
5add95d4
HC
6564SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6565 unsigned long __user *, user_mask_ptr)
1da177e4 6566{
5a16f3d3 6567 cpumask_var_t new_mask;
1da177e4
LT
6568 int retval;
6569
5a16f3d3
RR
6570 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6571 return -ENOMEM;
1da177e4 6572
5a16f3d3
RR
6573 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6574 if (retval == 0)
6575 retval = sched_setaffinity(pid, new_mask);
6576 free_cpumask_var(new_mask);
6577 return retval;
1da177e4
LT
6578}
6579
96f874e2 6580long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6581{
36c8b586 6582 struct task_struct *p;
1da177e4 6583 int retval;
1da177e4 6584
95402b38 6585 get_online_cpus();
1da177e4
LT
6586 read_lock(&tasklist_lock);
6587
6588 retval = -ESRCH;
6589 p = find_process_by_pid(pid);
6590 if (!p)
6591 goto out_unlock;
6592
e7834f8f
DQ
6593 retval = security_task_getscheduler(p);
6594 if (retval)
6595 goto out_unlock;
6596
96f874e2 6597 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6598
6599out_unlock:
6600 read_unlock(&tasklist_lock);
95402b38 6601 put_online_cpus();
1da177e4 6602
9531b62f 6603 return retval;
1da177e4
LT
6604}
6605
6606/**
6607 * sys_sched_getaffinity - get the cpu affinity of a process
6608 * @pid: pid of the process
6609 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6610 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6611 */
5add95d4
HC
6612SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6613 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6614{
6615 int ret;
f17c8607 6616 cpumask_var_t mask;
1da177e4 6617
f17c8607 6618 if (len < cpumask_size())
1da177e4
LT
6619 return -EINVAL;
6620
f17c8607
RR
6621 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6622 return -ENOMEM;
1da177e4 6623
f17c8607
RR
6624 ret = sched_getaffinity(pid, mask);
6625 if (ret == 0) {
6626 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6627 ret = -EFAULT;
6628 else
6629 ret = cpumask_size();
6630 }
6631 free_cpumask_var(mask);
1da177e4 6632
f17c8607 6633 return ret;
1da177e4
LT
6634}
6635
6636/**
6637 * sys_sched_yield - yield the current processor to other threads.
6638 *
dd41f596
IM
6639 * This function yields the current CPU to other tasks. If there are no
6640 * other threads running on this CPU then this function will return.
1da177e4 6641 */
5add95d4 6642SYSCALL_DEFINE0(sched_yield)
1da177e4 6643{
70b97a7f 6644 struct rq *rq = this_rq_lock();
1da177e4 6645
2d72376b 6646 schedstat_inc(rq, yld_count);
4530d7ab 6647 current->sched_class->yield_task(rq);
1da177e4
LT
6648
6649 /*
6650 * Since we are going to call schedule() anyway, there's
6651 * no need to preempt or enable interrupts:
6652 */
6653 __release(rq->lock);
8a25d5de 6654 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6655 _raw_spin_unlock(&rq->lock);
6656 preempt_enable_no_resched();
6657
6658 schedule();
6659
6660 return 0;
6661}
6662
d86ee480
PZ
6663static inline int should_resched(void)
6664{
6665 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6666}
6667
e7b38404 6668static void __cond_resched(void)
1da177e4 6669{
e7aaaa69
FW
6670 add_preempt_count(PREEMPT_ACTIVE);
6671 schedule();
6672 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6673}
6674
02b67cc3 6675int __sched _cond_resched(void)
1da177e4 6676{
d86ee480 6677 if (should_resched()) {
1da177e4
LT
6678 __cond_resched();
6679 return 1;
6680 }
6681 return 0;
6682}
02b67cc3 6683EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6684
6685/*
613afbf8 6686 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6687 * call schedule, and on return reacquire the lock.
6688 *
41a2d6cf 6689 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6690 * operations here to prevent schedule() from being called twice (once via
6691 * spin_unlock(), once by hand).
6692 */
613afbf8 6693int __cond_resched_lock(spinlock_t *lock)
1da177e4 6694{
d86ee480 6695 int resched = should_resched();
6df3cecb
JK
6696 int ret = 0;
6697
95c354fe 6698 if (spin_needbreak(lock) || resched) {
1da177e4 6699 spin_unlock(lock);
d86ee480 6700 if (resched)
95c354fe
NP
6701 __cond_resched();
6702 else
6703 cpu_relax();
6df3cecb 6704 ret = 1;
1da177e4 6705 spin_lock(lock);
1da177e4 6706 }
6df3cecb 6707 return ret;
1da177e4 6708}
613afbf8 6709EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6710
613afbf8 6711int __sched __cond_resched_softirq(void)
1da177e4
LT
6712{
6713 BUG_ON(!in_softirq());
6714
d86ee480 6715 if (should_resched()) {
98d82567 6716 local_bh_enable();
1da177e4
LT
6717 __cond_resched();
6718 local_bh_disable();
6719 return 1;
6720 }
6721 return 0;
6722}
613afbf8 6723EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6724
1da177e4
LT
6725/**
6726 * yield - yield the current processor to other threads.
6727 *
72fd4a35 6728 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6729 * thread runnable and calls sys_sched_yield().
6730 */
6731void __sched yield(void)
6732{
6733 set_current_state(TASK_RUNNING);
6734 sys_sched_yield();
6735}
1da177e4
LT
6736EXPORT_SYMBOL(yield);
6737
6738/*
41a2d6cf 6739 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6740 * that process accounting knows that this is a task in IO wait state.
6741 *
6742 * But don't do that if it is a deliberate, throttling IO wait (this task
6743 * has set its backing_dev_info: the queue against which it should throttle)
6744 */
6745void __sched io_schedule(void)
6746{
54d35f29 6747 struct rq *rq = raw_rq();
1da177e4 6748
0ff92245 6749 delayacct_blkio_start();
1da177e4
LT
6750 atomic_inc(&rq->nr_iowait);
6751 schedule();
6752 atomic_dec(&rq->nr_iowait);
0ff92245 6753 delayacct_blkio_end();
1da177e4 6754}
1da177e4
LT
6755EXPORT_SYMBOL(io_schedule);
6756
6757long __sched io_schedule_timeout(long timeout)
6758{
54d35f29 6759 struct rq *rq = raw_rq();
1da177e4
LT
6760 long ret;
6761
0ff92245 6762 delayacct_blkio_start();
1da177e4
LT
6763 atomic_inc(&rq->nr_iowait);
6764 ret = schedule_timeout(timeout);
6765 atomic_dec(&rq->nr_iowait);
0ff92245 6766 delayacct_blkio_end();
1da177e4
LT
6767 return ret;
6768}
6769
6770/**
6771 * sys_sched_get_priority_max - return maximum RT priority.
6772 * @policy: scheduling class.
6773 *
6774 * this syscall returns the maximum rt_priority that can be used
6775 * by a given scheduling class.
6776 */
5add95d4 6777SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6778{
6779 int ret = -EINVAL;
6780
6781 switch (policy) {
6782 case SCHED_FIFO:
6783 case SCHED_RR:
6784 ret = MAX_USER_RT_PRIO-1;
6785 break;
6786 case SCHED_NORMAL:
b0a9499c 6787 case SCHED_BATCH:
dd41f596 6788 case SCHED_IDLE:
1da177e4
LT
6789 ret = 0;
6790 break;
6791 }
6792 return ret;
6793}
6794
6795/**
6796 * sys_sched_get_priority_min - return minimum RT priority.
6797 * @policy: scheduling class.
6798 *
6799 * this syscall returns the minimum rt_priority that can be used
6800 * by a given scheduling class.
6801 */
5add95d4 6802SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6803{
6804 int ret = -EINVAL;
6805
6806 switch (policy) {
6807 case SCHED_FIFO:
6808 case SCHED_RR:
6809 ret = 1;
6810 break;
6811 case SCHED_NORMAL:
b0a9499c 6812 case SCHED_BATCH:
dd41f596 6813 case SCHED_IDLE:
1da177e4
LT
6814 ret = 0;
6815 }
6816 return ret;
6817}
6818
6819/**
6820 * sys_sched_rr_get_interval - return the default timeslice of a process.
6821 * @pid: pid of the process.
6822 * @interval: userspace pointer to the timeslice value.
6823 *
6824 * this syscall writes the default timeslice value of a given process
6825 * into the user-space timespec buffer. A value of '0' means infinity.
6826 */
17da2bd9 6827SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6828 struct timespec __user *, interval)
1da177e4 6829{
36c8b586 6830 struct task_struct *p;
a4ec24b4 6831 unsigned int time_slice;
3a5c359a 6832 int retval;
1da177e4 6833 struct timespec t;
1da177e4
LT
6834
6835 if (pid < 0)
3a5c359a 6836 return -EINVAL;
1da177e4
LT
6837
6838 retval = -ESRCH;
6839 read_lock(&tasklist_lock);
6840 p = find_process_by_pid(pid);
6841 if (!p)
6842 goto out_unlock;
6843
6844 retval = security_task_getscheduler(p);
6845 if (retval)
6846 goto out_unlock;
6847
77034937
IM
6848 /*
6849 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6850 * tasks that are on an otherwise idle runqueue:
6851 */
6852 time_slice = 0;
6853 if (p->policy == SCHED_RR) {
a4ec24b4 6854 time_slice = DEF_TIMESLICE;
1868f958 6855 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6856 struct sched_entity *se = &p->se;
6857 unsigned long flags;
6858 struct rq *rq;
6859
6860 rq = task_rq_lock(p, &flags);
77034937
IM
6861 if (rq->cfs.load.weight)
6862 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6863 task_rq_unlock(rq, &flags);
6864 }
1da177e4 6865 read_unlock(&tasklist_lock);
a4ec24b4 6866 jiffies_to_timespec(time_slice, &t);
1da177e4 6867 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6868 return retval;
3a5c359a 6869
1da177e4
LT
6870out_unlock:
6871 read_unlock(&tasklist_lock);
6872 return retval;
6873}
6874
7c731e0a 6875static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6876
82a1fcb9 6877void sched_show_task(struct task_struct *p)
1da177e4 6878{
1da177e4 6879 unsigned long free = 0;
36c8b586 6880 unsigned state;
1da177e4 6881
1da177e4 6882 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6883 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6884 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6885#if BITS_PER_LONG == 32
1da177e4 6886 if (state == TASK_RUNNING)
cc4ea795 6887 printk(KERN_CONT " running ");
1da177e4 6888 else
cc4ea795 6889 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6890#else
6891 if (state == TASK_RUNNING)
cc4ea795 6892 printk(KERN_CONT " running task ");
1da177e4 6893 else
cc4ea795 6894 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6895#endif
6896#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6897 free = stack_not_used(p);
1da177e4 6898#endif
aa47b7e0
DR
6899 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6900 task_pid_nr(p), task_pid_nr(p->real_parent),
6901 (unsigned long)task_thread_info(p)->flags);
1da177e4 6902
5fb5e6de 6903 show_stack(p, NULL);
1da177e4
LT
6904}
6905
e59e2ae2 6906void show_state_filter(unsigned long state_filter)
1da177e4 6907{
36c8b586 6908 struct task_struct *g, *p;
1da177e4 6909
4bd77321
IM
6910#if BITS_PER_LONG == 32
6911 printk(KERN_INFO
6912 " task PC stack pid father\n");
1da177e4 6913#else
4bd77321
IM
6914 printk(KERN_INFO
6915 " task PC stack pid father\n");
1da177e4
LT
6916#endif
6917 read_lock(&tasklist_lock);
6918 do_each_thread(g, p) {
6919 /*
6920 * reset the NMI-timeout, listing all files on a slow
6921 * console might take alot of time:
6922 */
6923 touch_nmi_watchdog();
39bc89fd 6924 if (!state_filter || (p->state & state_filter))
82a1fcb9 6925 sched_show_task(p);
1da177e4
LT
6926 } while_each_thread(g, p);
6927
04c9167f
JF
6928 touch_all_softlockup_watchdogs();
6929
dd41f596
IM
6930#ifdef CONFIG_SCHED_DEBUG
6931 sysrq_sched_debug_show();
6932#endif
1da177e4 6933 read_unlock(&tasklist_lock);
e59e2ae2
IM
6934 /*
6935 * Only show locks if all tasks are dumped:
6936 */
6937 if (state_filter == -1)
6938 debug_show_all_locks();
1da177e4
LT
6939}
6940
1df21055
IM
6941void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6942{
dd41f596 6943 idle->sched_class = &idle_sched_class;
1df21055
IM
6944}
6945
f340c0d1
IM
6946/**
6947 * init_idle - set up an idle thread for a given CPU
6948 * @idle: task in question
6949 * @cpu: cpu the idle task belongs to
6950 *
6951 * NOTE: this function does not set the idle thread's NEED_RESCHED
6952 * flag, to make booting more robust.
6953 */
5c1e1767 6954void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6955{
70b97a7f 6956 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6957 unsigned long flags;
6958
5cbd54ef
IM
6959 spin_lock_irqsave(&rq->lock, flags);
6960
dd41f596
IM
6961 __sched_fork(idle);
6962 idle->se.exec_start = sched_clock();
6963
b29739f9 6964 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6965 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6966 __set_task_cpu(idle, cpu);
1da177e4 6967
1da177e4 6968 rq->curr = rq->idle = idle;
4866cde0
NP
6969#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6970 idle->oncpu = 1;
6971#endif
1da177e4
LT
6972 spin_unlock_irqrestore(&rq->lock, flags);
6973
6974 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6975#if defined(CONFIG_PREEMPT)
6976 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6977#else
a1261f54 6978 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6979#endif
dd41f596
IM
6980 /*
6981 * The idle tasks have their own, simple scheduling class:
6982 */
6983 idle->sched_class = &idle_sched_class;
fb52607a 6984 ftrace_graph_init_task(idle);
1da177e4
LT
6985}
6986
6987/*
6988 * In a system that switches off the HZ timer nohz_cpu_mask
6989 * indicates which cpus entered this state. This is used
6990 * in the rcu update to wait only for active cpus. For system
6991 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6992 * always be CPU_BITS_NONE.
1da177e4 6993 */
6a7b3dc3 6994cpumask_var_t nohz_cpu_mask;
1da177e4 6995
19978ca6
IM
6996/*
6997 * Increase the granularity value when there are more CPUs,
6998 * because with more CPUs the 'effective latency' as visible
6999 * to users decreases. But the relationship is not linear,
7000 * so pick a second-best guess by going with the log2 of the
7001 * number of CPUs.
7002 *
7003 * This idea comes from the SD scheduler of Con Kolivas:
7004 */
7005static inline void sched_init_granularity(void)
7006{
7007 unsigned int factor = 1 + ilog2(num_online_cpus());
7008 const unsigned long limit = 200000000;
7009
7010 sysctl_sched_min_granularity *= factor;
7011 if (sysctl_sched_min_granularity > limit)
7012 sysctl_sched_min_granularity = limit;
7013
7014 sysctl_sched_latency *= factor;
7015 if (sysctl_sched_latency > limit)
7016 sysctl_sched_latency = limit;
7017
7018 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7019
7020 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7021}
7022
1da177e4
LT
7023#ifdef CONFIG_SMP
7024/*
7025 * This is how migration works:
7026 *
70b97a7f 7027 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7028 * runqueue and wake up that CPU's migration thread.
7029 * 2) we down() the locked semaphore => thread blocks.
7030 * 3) migration thread wakes up (implicitly it forces the migrated
7031 * thread off the CPU)
7032 * 4) it gets the migration request and checks whether the migrated
7033 * task is still in the wrong runqueue.
7034 * 5) if it's in the wrong runqueue then the migration thread removes
7035 * it and puts it into the right queue.
7036 * 6) migration thread up()s the semaphore.
7037 * 7) we wake up and the migration is done.
7038 */
7039
7040/*
7041 * Change a given task's CPU affinity. Migrate the thread to a
7042 * proper CPU and schedule it away if the CPU it's executing on
7043 * is removed from the allowed bitmask.
7044 *
7045 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7046 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7047 * call is not atomic; no spinlocks may be held.
7048 */
96f874e2 7049int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7050{
70b97a7f 7051 struct migration_req req;
1da177e4 7052 unsigned long flags;
70b97a7f 7053 struct rq *rq;
48f24c4d 7054 int ret = 0;
1da177e4
LT
7055
7056 rq = task_rq_lock(p, &flags);
96f874e2 7057 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7058 ret = -EINVAL;
7059 goto out;
7060 }
7061
9985b0ba 7062 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7063 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7064 ret = -EINVAL;
7065 goto out;
7066 }
7067
73fe6aae 7068 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7069 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7070 else {
96f874e2
RR
7071 cpumask_copy(&p->cpus_allowed, new_mask);
7072 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7073 }
7074
1da177e4 7075 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7076 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7077 goto out;
7078
1e5ce4f4 7079 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
7080 /* Need help from migration thread: drop lock and wait. */
7081 task_rq_unlock(rq, &flags);
7082 wake_up_process(rq->migration_thread);
7083 wait_for_completion(&req.done);
7084 tlb_migrate_finish(p->mm);
7085 return 0;
7086 }
7087out:
7088 task_rq_unlock(rq, &flags);
48f24c4d 7089
1da177e4
LT
7090 return ret;
7091}
cd8ba7cd 7092EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7093
7094/*
41a2d6cf 7095 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7096 * this because either it can't run here any more (set_cpus_allowed()
7097 * away from this CPU, or CPU going down), or because we're
7098 * attempting to rebalance this task on exec (sched_exec).
7099 *
7100 * So we race with normal scheduler movements, but that's OK, as long
7101 * as the task is no longer on this CPU.
efc30814
KK
7102 *
7103 * Returns non-zero if task was successfully migrated.
1da177e4 7104 */
efc30814 7105static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7106{
70b97a7f 7107 struct rq *rq_dest, *rq_src;
dd41f596 7108 int ret = 0, on_rq;
1da177e4 7109
e761b772 7110 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7111 return ret;
1da177e4
LT
7112
7113 rq_src = cpu_rq(src_cpu);
7114 rq_dest = cpu_rq(dest_cpu);
7115
7116 double_rq_lock(rq_src, rq_dest);
7117 /* Already moved. */
7118 if (task_cpu(p) != src_cpu)
b1e38734 7119 goto done;
1da177e4 7120 /* Affinity changed (again). */
96f874e2 7121 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7122 goto fail;
1da177e4 7123
dd41f596 7124 on_rq = p->se.on_rq;
6e82a3be 7125 if (on_rq)
2e1cb74a 7126 deactivate_task(rq_src, p, 0);
6e82a3be 7127
1da177e4 7128 set_task_cpu(p, dest_cpu);
dd41f596
IM
7129 if (on_rq) {
7130 activate_task(rq_dest, p, 0);
15afe09b 7131 check_preempt_curr(rq_dest, p, 0);
1da177e4 7132 }
b1e38734 7133done:
efc30814 7134 ret = 1;
b1e38734 7135fail:
1da177e4 7136 double_rq_unlock(rq_src, rq_dest);
efc30814 7137 return ret;
1da177e4
LT
7138}
7139
7140/*
7141 * migration_thread - this is a highprio system thread that performs
7142 * thread migration by bumping thread off CPU then 'pushing' onto
7143 * another runqueue.
7144 */
95cdf3b7 7145static int migration_thread(void *data)
1da177e4 7146{
1da177e4 7147 int cpu = (long)data;
70b97a7f 7148 struct rq *rq;
1da177e4
LT
7149
7150 rq = cpu_rq(cpu);
7151 BUG_ON(rq->migration_thread != current);
7152
7153 set_current_state(TASK_INTERRUPTIBLE);
7154 while (!kthread_should_stop()) {
70b97a7f 7155 struct migration_req *req;
1da177e4 7156 struct list_head *head;
1da177e4 7157
1da177e4
LT
7158 spin_lock_irq(&rq->lock);
7159
7160 if (cpu_is_offline(cpu)) {
7161 spin_unlock_irq(&rq->lock);
371cbb38 7162 break;
1da177e4
LT
7163 }
7164
7165 if (rq->active_balance) {
7166 active_load_balance(rq, cpu);
7167 rq->active_balance = 0;
7168 }
7169
7170 head = &rq->migration_queue;
7171
7172 if (list_empty(head)) {
7173 spin_unlock_irq(&rq->lock);
7174 schedule();
7175 set_current_state(TASK_INTERRUPTIBLE);
7176 continue;
7177 }
70b97a7f 7178 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7179 list_del_init(head->next);
7180
674311d5
NP
7181 spin_unlock(&rq->lock);
7182 __migrate_task(req->task, cpu, req->dest_cpu);
7183 local_irq_enable();
1da177e4
LT
7184
7185 complete(&req->done);
7186 }
7187 __set_current_state(TASK_RUNNING);
1da177e4 7188
1da177e4
LT
7189 return 0;
7190}
7191
7192#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7193
7194static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7195{
7196 int ret;
7197
7198 local_irq_disable();
7199 ret = __migrate_task(p, src_cpu, dest_cpu);
7200 local_irq_enable();
7201 return ret;
7202}
7203
054b9108 7204/*
3a4fa0a2 7205 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7206 */
48f24c4d 7207static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7208{
70b97a7f 7209 int dest_cpu;
6ca09dfc 7210 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7211
7212again:
7213 /* Look for allowed, online CPU in same node. */
7214 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7215 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7216 goto move;
7217
7218 /* Any allowed, online CPU? */
7219 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7220 if (dest_cpu < nr_cpu_ids)
7221 goto move;
7222
7223 /* No more Mr. Nice Guy. */
7224 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7225 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7226 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7227
e76bd8d9
RR
7228 /*
7229 * Don't tell them about moving exiting tasks or
7230 * kernel threads (both mm NULL), since they never
7231 * leave kernel.
7232 */
7233 if (p->mm && printk_ratelimit()) {
7234 printk(KERN_INFO "process %d (%s) no "
7235 "longer affine to cpu%d\n",
7236 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7237 }
e76bd8d9
RR
7238 }
7239
7240move:
7241 /* It can have affinity changed while we were choosing. */
7242 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7243 goto again;
1da177e4
LT
7244}
7245
7246/*
7247 * While a dead CPU has no uninterruptible tasks queued at this point,
7248 * it might still have a nonzero ->nr_uninterruptible counter, because
7249 * for performance reasons the counter is not stricly tracking tasks to
7250 * their home CPUs. So we just add the counter to another CPU's counter,
7251 * to keep the global sum constant after CPU-down:
7252 */
70b97a7f 7253static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7254{
1e5ce4f4 7255 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7256 unsigned long flags;
7257
7258 local_irq_save(flags);
7259 double_rq_lock(rq_src, rq_dest);
7260 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7261 rq_src->nr_uninterruptible = 0;
7262 double_rq_unlock(rq_src, rq_dest);
7263 local_irq_restore(flags);
7264}
7265
7266/* Run through task list and migrate tasks from the dead cpu. */
7267static void migrate_live_tasks(int src_cpu)
7268{
48f24c4d 7269 struct task_struct *p, *t;
1da177e4 7270
f7b4cddc 7271 read_lock(&tasklist_lock);
1da177e4 7272
48f24c4d
IM
7273 do_each_thread(t, p) {
7274 if (p == current)
1da177e4
LT
7275 continue;
7276
48f24c4d
IM
7277 if (task_cpu(p) == src_cpu)
7278 move_task_off_dead_cpu(src_cpu, p);
7279 } while_each_thread(t, p);
1da177e4 7280
f7b4cddc 7281 read_unlock(&tasklist_lock);
1da177e4
LT
7282}
7283
dd41f596
IM
7284/*
7285 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7286 * It does so by boosting its priority to highest possible.
7287 * Used by CPU offline code.
1da177e4
LT
7288 */
7289void sched_idle_next(void)
7290{
48f24c4d 7291 int this_cpu = smp_processor_id();
70b97a7f 7292 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7293 struct task_struct *p = rq->idle;
7294 unsigned long flags;
7295
7296 /* cpu has to be offline */
48f24c4d 7297 BUG_ON(cpu_online(this_cpu));
1da177e4 7298
48f24c4d
IM
7299 /*
7300 * Strictly not necessary since rest of the CPUs are stopped by now
7301 * and interrupts disabled on the current cpu.
1da177e4
LT
7302 */
7303 spin_lock_irqsave(&rq->lock, flags);
7304
dd41f596 7305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7306
94bc9a7b
DA
7307 update_rq_clock(rq);
7308 activate_task(rq, p, 0);
1da177e4
LT
7309
7310 spin_unlock_irqrestore(&rq->lock, flags);
7311}
7312
48f24c4d
IM
7313/*
7314 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7315 * offline.
7316 */
7317void idle_task_exit(void)
7318{
7319 struct mm_struct *mm = current->active_mm;
7320
7321 BUG_ON(cpu_online(smp_processor_id()));
7322
7323 if (mm != &init_mm)
7324 switch_mm(mm, &init_mm, current);
7325 mmdrop(mm);
7326}
7327
054b9108 7328/* called under rq->lock with disabled interrupts */
36c8b586 7329static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7330{
70b97a7f 7331 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7332
7333 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7334 BUG_ON(!p->exit_state);
1da177e4
LT
7335
7336 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7337 BUG_ON(p->state == TASK_DEAD);
1da177e4 7338
48f24c4d 7339 get_task_struct(p);
1da177e4
LT
7340
7341 /*
7342 * Drop lock around migration; if someone else moves it,
41a2d6cf 7343 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7344 * fine.
7345 */
f7b4cddc 7346 spin_unlock_irq(&rq->lock);
48f24c4d 7347 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7348 spin_lock_irq(&rq->lock);
1da177e4 7349
48f24c4d 7350 put_task_struct(p);
1da177e4
LT
7351}
7352
7353/* release_task() removes task from tasklist, so we won't find dead tasks. */
7354static void migrate_dead_tasks(unsigned int dead_cpu)
7355{
70b97a7f 7356 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7357 struct task_struct *next;
48f24c4d 7358
dd41f596
IM
7359 for ( ; ; ) {
7360 if (!rq->nr_running)
7361 break;
a8e504d2 7362 update_rq_clock(rq);
b67802ea 7363 next = pick_next_task(rq);
dd41f596
IM
7364 if (!next)
7365 break;
79c53799 7366 next->sched_class->put_prev_task(rq, next);
dd41f596 7367 migrate_dead(dead_cpu, next);
e692ab53 7368
1da177e4
LT
7369 }
7370}
dce48a84
TG
7371
7372/*
7373 * remove the tasks which were accounted by rq from calc_load_tasks.
7374 */
7375static void calc_global_load_remove(struct rq *rq)
7376{
7377 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7378 rq->calc_load_active = 0;
dce48a84 7379}
1da177e4
LT
7380#endif /* CONFIG_HOTPLUG_CPU */
7381
e692ab53
NP
7382#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7383
7384static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7385 {
7386 .procname = "sched_domain",
c57baf1e 7387 .mode = 0555,
e0361851 7388 },
38605cae 7389 {0, },
e692ab53
NP
7390};
7391
7392static struct ctl_table sd_ctl_root[] = {
e0361851 7393 {
c57baf1e 7394 .ctl_name = CTL_KERN,
e0361851 7395 .procname = "kernel",
c57baf1e 7396 .mode = 0555,
e0361851
AD
7397 .child = sd_ctl_dir,
7398 },
38605cae 7399 {0, },
e692ab53
NP
7400};
7401
7402static struct ctl_table *sd_alloc_ctl_entry(int n)
7403{
7404 struct ctl_table *entry =
5cf9f062 7405 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7406
e692ab53
NP
7407 return entry;
7408}
7409
6382bc90
MM
7410static void sd_free_ctl_entry(struct ctl_table **tablep)
7411{
cd790076 7412 struct ctl_table *entry;
6382bc90 7413
cd790076
MM
7414 /*
7415 * In the intermediate directories, both the child directory and
7416 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7417 * will always be set. In the lowest directory the names are
cd790076
MM
7418 * static strings and all have proc handlers.
7419 */
7420 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7421 if (entry->child)
7422 sd_free_ctl_entry(&entry->child);
cd790076
MM
7423 if (entry->proc_handler == NULL)
7424 kfree(entry->procname);
7425 }
6382bc90
MM
7426
7427 kfree(*tablep);
7428 *tablep = NULL;
7429}
7430
e692ab53 7431static void
e0361851 7432set_table_entry(struct ctl_table *entry,
e692ab53
NP
7433 const char *procname, void *data, int maxlen,
7434 mode_t mode, proc_handler *proc_handler)
7435{
e692ab53
NP
7436 entry->procname = procname;
7437 entry->data = data;
7438 entry->maxlen = maxlen;
7439 entry->mode = mode;
7440 entry->proc_handler = proc_handler;
7441}
7442
7443static struct ctl_table *
7444sd_alloc_ctl_domain_table(struct sched_domain *sd)
7445{
a5d8c348 7446 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7447
ad1cdc1d
MM
7448 if (table == NULL)
7449 return NULL;
7450
e0361851 7451 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7452 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7453 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7454 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7455 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7456 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7457 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7458 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7459 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7460 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7461 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7462 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7463 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7464 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7465 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7466 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7467 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7468 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7469 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7470 &sd->cache_nice_tries,
7471 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7472 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7473 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7474 set_table_entry(&table[11], "name", sd->name,
7475 CORENAME_MAX_SIZE, 0444, proc_dostring);
7476 /* &table[12] is terminator */
e692ab53
NP
7477
7478 return table;
7479}
7480
9a4e7159 7481static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7482{
7483 struct ctl_table *entry, *table;
7484 struct sched_domain *sd;
7485 int domain_num = 0, i;
7486 char buf[32];
7487
7488 for_each_domain(cpu, sd)
7489 domain_num++;
7490 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7491 if (table == NULL)
7492 return NULL;
e692ab53
NP
7493
7494 i = 0;
7495 for_each_domain(cpu, sd) {
7496 snprintf(buf, 32, "domain%d", i);
e692ab53 7497 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7498 entry->mode = 0555;
e692ab53
NP
7499 entry->child = sd_alloc_ctl_domain_table(sd);
7500 entry++;
7501 i++;
7502 }
7503 return table;
7504}
7505
7506static struct ctl_table_header *sd_sysctl_header;
6382bc90 7507static void register_sched_domain_sysctl(void)
e692ab53
NP
7508{
7509 int i, cpu_num = num_online_cpus();
7510 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7511 char buf[32];
7512
7378547f
MM
7513 WARN_ON(sd_ctl_dir[0].child);
7514 sd_ctl_dir[0].child = entry;
7515
ad1cdc1d
MM
7516 if (entry == NULL)
7517 return;
7518
97b6ea7b 7519 for_each_online_cpu(i) {
e692ab53 7520 snprintf(buf, 32, "cpu%d", i);
e692ab53 7521 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7522 entry->mode = 0555;
e692ab53 7523 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7524 entry++;
e692ab53 7525 }
7378547f
MM
7526
7527 WARN_ON(sd_sysctl_header);
e692ab53
NP
7528 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7529}
6382bc90 7530
7378547f 7531/* may be called multiple times per register */
6382bc90
MM
7532static void unregister_sched_domain_sysctl(void)
7533{
7378547f
MM
7534 if (sd_sysctl_header)
7535 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7536 sd_sysctl_header = NULL;
7378547f
MM
7537 if (sd_ctl_dir[0].child)
7538 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7539}
e692ab53 7540#else
6382bc90
MM
7541static void register_sched_domain_sysctl(void)
7542{
7543}
7544static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7545{
7546}
7547#endif
7548
1f11eb6a
GH
7549static void set_rq_online(struct rq *rq)
7550{
7551 if (!rq->online) {
7552 const struct sched_class *class;
7553
c6c4927b 7554 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7555 rq->online = 1;
7556
7557 for_each_class(class) {
7558 if (class->rq_online)
7559 class->rq_online(rq);
7560 }
7561 }
7562}
7563
7564static void set_rq_offline(struct rq *rq)
7565{
7566 if (rq->online) {
7567 const struct sched_class *class;
7568
7569 for_each_class(class) {
7570 if (class->rq_offline)
7571 class->rq_offline(rq);
7572 }
7573
c6c4927b 7574 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7575 rq->online = 0;
7576 }
7577}
7578
1da177e4
LT
7579/*
7580 * migration_call - callback that gets triggered when a CPU is added.
7581 * Here we can start up the necessary migration thread for the new CPU.
7582 */
48f24c4d
IM
7583static int __cpuinit
7584migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7585{
1da177e4 7586 struct task_struct *p;
48f24c4d 7587 int cpu = (long)hcpu;
1da177e4 7588 unsigned long flags;
70b97a7f 7589 struct rq *rq;
1da177e4
LT
7590
7591 switch (action) {
5be9361c 7592
1da177e4 7593 case CPU_UP_PREPARE:
8bb78442 7594 case CPU_UP_PREPARE_FROZEN:
dd41f596 7595 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7596 if (IS_ERR(p))
7597 return NOTIFY_BAD;
1da177e4
LT
7598 kthread_bind(p, cpu);
7599 /* Must be high prio: stop_machine expects to yield to it. */
7600 rq = task_rq_lock(p, &flags);
dd41f596 7601 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7602 task_rq_unlock(rq, &flags);
371cbb38 7603 get_task_struct(p);
1da177e4 7604 cpu_rq(cpu)->migration_thread = p;
a468d389 7605 rq->calc_load_update = calc_load_update;
1da177e4 7606 break;
48f24c4d 7607
1da177e4 7608 case CPU_ONLINE:
8bb78442 7609 case CPU_ONLINE_FROZEN:
3a4fa0a2 7610 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7611 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7612
7613 /* Update our root-domain */
7614 rq = cpu_rq(cpu);
7615 spin_lock_irqsave(&rq->lock, flags);
7616 if (rq->rd) {
c6c4927b 7617 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7618
7619 set_rq_online(rq);
1f94ef59
GH
7620 }
7621 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7622 break;
48f24c4d 7623
1da177e4
LT
7624#ifdef CONFIG_HOTPLUG_CPU
7625 case CPU_UP_CANCELED:
8bb78442 7626 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7627 if (!cpu_rq(cpu)->migration_thread)
7628 break;
41a2d6cf 7629 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7630 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7631 cpumask_any(cpu_online_mask));
1da177e4 7632 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7633 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7634 cpu_rq(cpu)->migration_thread = NULL;
7635 break;
48f24c4d 7636
1da177e4 7637 case CPU_DEAD:
8bb78442 7638 case CPU_DEAD_FROZEN:
470fd646 7639 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7640 migrate_live_tasks(cpu);
7641 rq = cpu_rq(cpu);
7642 kthread_stop(rq->migration_thread);
371cbb38 7643 put_task_struct(rq->migration_thread);
1da177e4
LT
7644 rq->migration_thread = NULL;
7645 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7646 spin_lock_irq(&rq->lock);
a8e504d2 7647 update_rq_clock(rq);
2e1cb74a 7648 deactivate_task(rq, rq->idle, 0);
1da177e4 7649 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7650 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7651 rq->idle->sched_class = &idle_sched_class;
1da177e4 7652 migrate_dead_tasks(cpu);
d2da272a 7653 spin_unlock_irq(&rq->lock);
470fd646 7654 cpuset_unlock();
1da177e4
LT
7655 migrate_nr_uninterruptible(rq);
7656 BUG_ON(rq->nr_running != 0);
dce48a84 7657 calc_global_load_remove(rq);
41a2d6cf
IM
7658 /*
7659 * No need to migrate the tasks: it was best-effort if
7660 * they didn't take sched_hotcpu_mutex. Just wake up
7661 * the requestors.
7662 */
1da177e4
LT
7663 spin_lock_irq(&rq->lock);
7664 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7665 struct migration_req *req;
7666
1da177e4 7667 req = list_entry(rq->migration_queue.next,
70b97a7f 7668 struct migration_req, list);
1da177e4 7669 list_del_init(&req->list);
9a2bd244 7670 spin_unlock_irq(&rq->lock);
1da177e4 7671 complete(&req->done);
9a2bd244 7672 spin_lock_irq(&rq->lock);
1da177e4
LT
7673 }
7674 spin_unlock_irq(&rq->lock);
7675 break;
57d885fe 7676
08f503b0
GH
7677 case CPU_DYING:
7678 case CPU_DYING_FROZEN:
57d885fe
GH
7679 /* Update our root-domain */
7680 rq = cpu_rq(cpu);
7681 spin_lock_irqsave(&rq->lock, flags);
7682 if (rq->rd) {
c6c4927b 7683 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7684 set_rq_offline(rq);
57d885fe
GH
7685 }
7686 spin_unlock_irqrestore(&rq->lock, flags);
7687 break;
1da177e4
LT
7688#endif
7689 }
7690 return NOTIFY_OK;
7691}
7692
f38b0820
PM
7693/*
7694 * Register at high priority so that task migration (migrate_all_tasks)
7695 * happens before everything else. This has to be lower priority than
7696 * the notifier in the perf_counter subsystem, though.
1da177e4 7697 */
26c2143b 7698static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7699 .notifier_call = migration_call,
7700 .priority = 10
7701};
7702
7babe8db 7703static int __init migration_init(void)
1da177e4
LT
7704{
7705 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7706 int err;
48f24c4d
IM
7707
7708 /* Start one for the boot CPU: */
07dccf33
AM
7709 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7710 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7711 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7712 register_cpu_notifier(&migration_notifier);
7babe8db 7713
a004cd42 7714 return 0;
1da177e4 7715}
7babe8db 7716early_initcall(migration_init);
1da177e4
LT
7717#endif
7718
7719#ifdef CONFIG_SMP
476f3534 7720
3e9830dc 7721#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7722
7c16ec58 7723static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7724 struct cpumask *groupmask)
1da177e4 7725{
4dcf6aff 7726 struct sched_group *group = sd->groups;
434d53b0 7727 char str[256];
1da177e4 7728
968ea6d8 7729 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7730 cpumask_clear(groupmask);
4dcf6aff
IM
7731
7732 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7733
7734 if (!(sd->flags & SD_LOAD_BALANCE)) {
7735 printk("does not load-balance\n");
7736 if (sd->parent)
7737 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7738 " has parent");
7739 return -1;
41c7ce9a
NP
7740 }
7741
eefd796a 7742 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7743
758b2cdc 7744 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7745 printk(KERN_ERR "ERROR: domain->span does not contain "
7746 "CPU%d\n", cpu);
7747 }
758b2cdc 7748 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7749 printk(KERN_ERR "ERROR: domain->groups does not contain"
7750 " CPU%d\n", cpu);
7751 }
1da177e4 7752
4dcf6aff 7753 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7754 do {
4dcf6aff
IM
7755 if (!group) {
7756 printk("\n");
7757 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7758 break;
7759 }
7760
4dcf6aff
IM
7761 if (!group->__cpu_power) {
7762 printk(KERN_CONT "\n");
7763 printk(KERN_ERR "ERROR: domain->cpu_power not "
7764 "set\n");
7765 break;
7766 }
1da177e4 7767
758b2cdc 7768 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7769 printk(KERN_CONT "\n");
7770 printk(KERN_ERR "ERROR: empty group\n");
7771 break;
7772 }
1da177e4 7773
758b2cdc 7774 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7775 printk(KERN_CONT "\n");
7776 printk(KERN_ERR "ERROR: repeated CPUs\n");
7777 break;
7778 }
1da177e4 7779
758b2cdc 7780 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7781
968ea6d8 7782 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7783
7784 printk(KERN_CONT " %s", str);
7785 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7786 printk(KERN_CONT " (__cpu_power = %d)",
7787 group->__cpu_power);
7788 }
1da177e4 7789
4dcf6aff
IM
7790 group = group->next;
7791 } while (group != sd->groups);
7792 printk(KERN_CONT "\n");
1da177e4 7793
758b2cdc 7794 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7795 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7796
758b2cdc
RR
7797 if (sd->parent &&
7798 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7799 printk(KERN_ERR "ERROR: parent span is not a superset "
7800 "of domain->span\n");
7801 return 0;
7802}
1da177e4 7803
4dcf6aff
IM
7804static void sched_domain_debug(struct sched_domain *sd, int cpu)
7805{
d5dd3db1 7806 cpumask_var_t groupmask;
4dcf6aff 7807 int level = 0;
1da177e4 7808
4dcf6aff
IM
7809 if (!sd) {
7810 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7811 return;
7812 }
1da177e4 7813
4dcf6aff
IM
7814 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7815
d5dd3db1 7816 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7817 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7818 return;
7819 }
7820
4dcf6aff 7821 for (;;) {
7c16ec58 7822 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7823 break;
1da177e4
LT
7824 level++;
7825 sd = sd->parent;
33859f7f 7826 if (!sd)
4dcf6aff
IM
7827 break;
7828 }
d5dd3db1 7829 free_cpumask_var(groupmask);
1da177e4 7830}
6d6bc0ad 7831#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7832# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7833#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7834
1a20ff27 7835static int sd_degenerate(struct sched_domain *sd)
245af2c7 7836{
758b2cdc 7837 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7838 return 1;
7839
7840 /* Following flags need at least 2 groups */
7841 if (sd->flags & (SD_LOAD_BALANCE |
7842 SD_BALANCE_NEWIDLE |
7843 SD_BALANCE_FORK |
89c4710e
SS
7844 SD_BALANCE_EXEC |
7845 SD_SHARE_CPUPOWER |
7846 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7847 if (sd->groups != sd->groups->next)
7848 return 0;
7849 }
7850
7851 /* Following flags don't use groups */
7852 if (sd->flags & (SD_WAKE_IDLE |
7853 SD_WAKE_AFFINE |
7854 SD_WAKE_BALANCE))
7855 return 0;
7856
7857 return 1;
7858}
7859
48f24c4d
IM
7860static int
7861sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7862{
7863 unsigned long cflags = sd->flags, pflags = parent->flags;
7864
7865 if (sd_degenerate(parent))
7866 return 1;
7867
758b2cdc 7868 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7869 return 0;
7870
7871 /* Does parent contain flags not in child? */
7872 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7873 if (cflags & SD_WAKE_AFFINE)
7874 pflags &= ~SD_WAKE_BALANCE;
7875 /* Flags needing groups don't count if only 1 group in parent */
7876 if (parent->groups == parent->groups->next) {
7877 pflags &= ~(SD_LOAD_BALANCE |
7878 SD_BALANCE_NEWIDLE |
7879 SD_BALANCE_FORK |
89c4710e
SS
7880 SD_BALANCE_EXEC |
7881 SD_SHARE_CPUPOWER |
7882 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7883 if (nr_node_ids == 1)
7884 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7885 }
7886 if (~cflags & pflags)
7887 return 0;
7888
7889 return 1;
7890}
7891
c6c4927b
RR
7892static void free_rootdomain(struct root_domain *rd)
7893{
68e74568
RR
7894 cpupri_cleanup(&rd->cpupri);
7895
c6c4927b
RR
7896 free_cpumask_var(rd->rto_mask);
7897 free_cpumask_var(rd->online);
7898 free_cpumask_var(rd->span);
7899 kfree(rd);
7900}
7901
57d885fe
GH
7902static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7903{
a0490fa3 7904 struct root_domain *old_rd = NULL;
57d885fe 7905 unsigned long flags;
57d885fe
GH
7906
7907 spin_lock_irqsave(&rq->lock, flags);
7908
7909 if (rq->rd) {
a0490fa3 7910 old_rd = rq->rd;
57d885fe 7911
c6c4927b 7912 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7913 set_rq_offline(rq);
57d885fe 7914
c6c4927b 7915 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7916
a0490fa3
IM
7917 /*
7918 * If we dont want to free the old_rt yet then
7919 * set old_rd to NULL to skip the freeing later
7920 * in this function:
7921 */
7922 if (!atomic_dec_and_test(&old_rd->refcount))
7923 old_rd = NULL;
57d885fe
GH
7924 }
7925
7926 atomic_inc(&rd->refcount);
7927 rq->rd = rd;
7928
c6c4927b
RR
7929 cpumask_set_cpu(rq->cpu, rd->span);
7930 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7931 set_rq_online(rq);
57d885fe
GH
7932
7933 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7934
7935 if (old_rd)
7936 free_rootdomain(old_rd);
57d885fe
GH
7937}
7938
fd5e1b5d 7939static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7940{
36b7b6d4
PE
7941 gfp_t gfp = GFP_KERNEL;
7942
57d885fe
GH
7943 memset(rd, 0, sizeof(*rd));
7944
36b7b6d4
PE
7945 if (bootmem)
7946 gfp = GFP_NOWAIT;
c6c4927b 7947
36b7b6d4 7948 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7949 goto out;
36b7b6d4 7950 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7951 goto free_span;
36b7b6d4 7952 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7953 goto free_online;
6e0534f2 7954
0fb53029 7955 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7956 goto free_rto_mask;
c6c4927b 7957 return 0;
6e0534f2 7958
68e74568
RR
7959free_rto_mask:
7960 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7961free_online:
7962 free_cpumask_var(rd->online);
7963free_span:
7964 free_cpumask_var(rd->span);
0c910d28 7965out:
c6c4927b 7966 return -ENOMEM;
57d885fe
GH
7967}
7968
7969static void init_defrootdomain(void)
7970{
c6c4927b
RR
7971 init_rootdomain(&def_root_domain, true);
7972
57d885fe
GH
7973 atomic_set(&def_root_domain.refcount, 1);
7974}
7975
dc938520 7976static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7977{
7978 struct root_domain *rd;
7979
7980 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7981 if (!rd)
7982 return NULL;
7983
c6c4927b
RR
7984 if (init_rootdomain(rd, false) != 0) {
7985 kfree(rd);
7986 return NULL;
7987 }
57d885fe
GH
7988
7989 return rd;
7990}
7991
1da177e4 7992/*
0eab9146 7993 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7994 * hold the hotplug lock.
7995 */
0eab9146
IM
7996static void
7997cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7998{
70b97a7f 7999 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8000 struct sched_domain *tmp;
8001
8002 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8003 for (tmp = sd; tmp; ) {
245af2c7
SS
8004 struct sched_domain *parent = tmp->parent;
8005 if (!parent)
8006 break;
f29c9b1c 8007
1a848870 8008 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8009 tmp->parent = parent->parent;
1a848870
SS
8010 if (parent->parent)
8011 parent->parent->child = tmp;
f29c9b1c
LZ
8012 } else
8013 tmp = tmp->parent;
245af2c7
SS
8014 }
8015
1a848870 8016 if (sd && sd_degenerate(sd)) {
245af2c7 8017 sd = sd->parent;
1a848870
SS
8018 if (sd)
8019 sd->child = NULL;
8020 }
1da177e4
LT
8021
8022 sched_domain_debug(sd, cpu);
8023
57d885fe 8024 rq_attach_root(rq, rd);
674311d5 8025 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8026}
8027
8028/* cpus with isolated domains */
dcc30a35 8029static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8030
8031/* Setup the mask of cpus configured for isolated domains */
8032static int __init isolated_cpu_setup(char *str)
8033{
968ea6d8 8034 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8035 return 1;
8036}
8037
8927f494 8038__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8039
8040/*
6711cab4
SS
8041 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8042 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8043 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8044 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8045 *
8046 * init_sched_build_groups will build a circular linked list of the groups
8047 * covered by the given span, and will set each group's ->cpumask correctly,
8048 * and ->cpu_power to 0.
8049 */
a616058b 8050static void
96f874e2
RR
8051init_sched_build_groups(const struct cpumask *span,
8052 const struct cpumask *cpu_map,
8053 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8054 struct sched_group **sg,
96f874e2
RR
8055 struct cpumask *tmpmask),
8056 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8057{
8058 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8059 int i;
8060
96f874e2 8061 cpumask_clear(covered);
7c16ec58 8062
abcd083a 8063 for_each_cpu(i, span) {
6711cab4 8064 struct sched_group *sg;
7c16ec58 8065 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8066 int j;
8067
758b2cdc 8068 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8069 continue;
8070
758b2cdc 8071 cpumask_clear(sched_group_cpus(sg));
5517d86b 8072 sg->__cpu_power = 0;
1da177e4 8073
abcd083a 8074 for_each_cpu(j, span) {
7c16ec58 8075 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8076 continue;
8077
96f874e2 8078 cpumask_set_cpu(j, covered);
758b2cdc 8079 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8080 }
8081 if (!first)
8082 first = sg;
8083 if (last)
8084 last->next = sg;
8085 last = sg;
8086 }
8087 last->next = first;
8088}
8089
9c1cfda2 8090#define SD_NODES_PER_DOMAIN 16
1da177e4 8091
9c1cfda2 8092#ifdef CONFIG_NUMA
198e2f18 8093
9c1cfda2
JH
8094/**
8095 * find_next_best_node - find the next node to include in a sched_domain
8096 * @node: node whose sched_domain we're building
8097 * @used_nodes: nodes already in the sched_domain
8098 *
41a2d6cf 8099 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8100 * finds the closest node not already in the @used_nodes map.
8101 *
8102 * Should use nodemask_t.
8103 */
c5f59f08 8104static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8105{
8106 int i, n, val, min_val, best_node = 0;
8107
8108 min_val = INT_MAX;
8109
076ac2af 8110 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8111 /* Start at @node */
076ac2af 8112 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8113
8114 if (!nr_cpus_node(n))
8115 continue;
8116
8117 /* Skip already used nodes */
c5f59f08 8118 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8119 continue;
8120
8121 /* Simple min distance search */
8122 val = node_distance(node, n);
8123
8124 if (val < min_val) {
8125 min_val = val;
8126 best_node = n;
8127 }
8128 }
8129
c5f59f08 8130 node_set(best_node, *used_nodes);
9c1cfda2
JH
8131 return best_node;
8132}
8133
8134/**
8135 * sched_domain_node_span - get a cpumask for a node's sched_domain
8136 * @node: node whose cpumask we're constructing
73486722 8137 * @span: resulting cpumask
9c1cfda2 8138 *
41a2d6cf 8139 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8140 * should be one that prevents unnecessary balancing, but also spreads tasks
8141 * out optimally.
8142 */
96f874e2 8143static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8144{
c5f59f08 8145 nodemask_t used_nodes;
48f24c4d 8146 int i;
9c1cfda2 8147
6ca09dfc 8148 cpumask_clear(span);
c5f59f08 8149 nodes_clear(used_nodes);
9c1cfda2 8150
6ca09dfc 8151 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8152 node_set(node, used_nodes);
9c1cfda2
JH
8153
8154 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8155 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8156
6ca09dfc 8157 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8158 }
9c1cfda2 8159}
6d6bc0ad 8160#endif /* CONFIG_NUMA */
9c1cfda2 8161
5c45bf27 8162int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8163
6c99e9ad
RR
8164/*
8165 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8166 *
8167 * ( See the the comments in include/linux/sched.h:struct sched_group
8168 * and struct sched_domain. )
6c99e9ad
RR
8169 */
8170struct static_sched_group {
8171 struct sched_group sg;
8172 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8173};
8174
8175struct static_sched_domain {
8176 struct sched_domain sd;
8177 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8178};
8179
9c1cfda2 8180/*
48f24c4d 8181 * SMT sched-domains:
9c1cfda2 8182 */
1da177e4 8183#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8184static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8185static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8186
41a2d6cf 8187static int
96f874e2
RR
8188cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8189 struct sched_group **sg, struct cpumask *unused)
1da177e4 8190{
6711cab4 8191 if (sg)
6c99e9ad 8192 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8193 return cpu;
8194}
6d6bc0ad 8195#endif /* CONFIG_SCHED_SMT */
1da177e4 8196
48f24c4d
IM
8197/*
8198 * multi-core sched-domains:
8199 */
1e9f28fa 8200#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8201static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8202static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8203#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8204
8205#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8206static int
96f874e2
RR
8207cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8208 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8209{
6711cab4 8210 int group;
7c16ec58 8211
c69fc56d 8212 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8213 group = cpumask_first(mask);
6711cab4 8214 if (sg)
6c99e9ad 8215 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8216 return group;
1e9f28fa
SS
8217}
8218#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8219static int
96f874e2
RR
8220cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8221 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8222{
6711cab4 8223 if (sg)
6c99e9ad 8224 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8225 return cpu;
8226}
8227#endif
8228
6c99e9ad
RR
8229static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8230static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8231
41a2d6cf 8232static int
96f874e2
RR
8233cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8234 struct sched_group **sg, struct cpumask *mask)
1da177e4 8235{
6711cab4 8236 int group;
48f24c4d 8237#ifdef CONFIG_SCHED_MC
6ca09dfc 8238 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8239 group = cpumask_first(mask);
1e9f28fa 8240#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8241 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8242 group = cpumask_first(mask);
1da177e4 8243#else
6711cab4 8244 group = cpu;
1da177e4 8245#endif
6711cab4 8246 if (sg)
6c99e9ad 8247 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8248 return group;
1da177e4
LT
8249}
8250
8251#ifdef CONFIG_NUMA
1da177e4 8252/*
9c1cfda2
JH
8253 * The init_sched_build_groups can't handle what we want to do with node
8254 * groups, so roll our own. Now each node has its own list of groups which
8255 * gets dynamically allocated.
1da177e4 8256 */
62ea9ceb 8257static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8258static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8259
62ea9ceb 8260static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8261static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8262
96f874e2
RR
8263static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8264 struct sched_group **sg,
8265 struct cpumask *nodemask)
9c1cfda2 8266{
6711cab4
SS
8267 int group;
8268
6ca09dfc 8269 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8270 group = cpumask_first(nodemask);
6711cab4
SS
8271
8272 if (sg)
6c99e9ad 8273 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8274 return group;
1da177e4 8275}
6711cab4 8276
08069033
SS
8277static void init_numa_sched_groups_power(struct sched_group *group_head)
8278{
8279 struct sched_group *sg = group_head;
8280 int j;
8281
8282 if (!sg)
8283 return;
3a5c359a 8284 do {
758b2cdc 8285 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8286 struct sched_domain *sd;
08069033 8287
6c99e9ad 8288 sd = &per_cpu(phys_domains, j).sd;
13318a71 8289 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8290 /*
8291 * Only add "power" once for each
8292 * physical package.
8293 */
8294 continue;
8295 }
08069033 8296
3a5c359a
AK
8297 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8298 }
8299 sg = sg->next;
8300 } while (sg != group_head);
08069033 8301}
6d6bc0ad 8302#endif /* CONFIG_NUMA */
1da177e4 8303
a616058b 8304#ifdef CONFIG_NUMA
51888ca2 8305/* Free memory allocated for various sched_group structures */
96f874e2
RR
8306static void free_sched_groups(const struct cpumask *cpu_map,
8307 struct cpumask *nodemask)
51888ca2 8308{
a616058b 8309 int cpu, i;
51888ca2 8310
abcd083a 8311 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8312 struct sched_group **sched_group_nodes
8313 = sched_group_nodes_bycpu[cpu];
8314
51888ca2
SV
8315 if (!sched_group_nodes)
8316 continue;
8317
076ac2af 8318 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8319 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8320
6ca09dfc 8321 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8322 if (cpumask_empty(nodemask))
51888ca2
SV
8323 continue;
8324
8325 if (sg == NULL)
8326 continue;
8327 sg = sg->next;
8328next_sg:
8329 oldsg = sg;
8330 sg = sg->next;
8331 kfree(oldsg);
8332 if (oldsg != sched_group_nodes[i])
8333 goto next_sg;
8334 }
8335 kfree(sched_group_nodes);
8336 sched_group_nodes_bycpu[cpu] = NULL;
8337 }
51888ca2 8338}
6d6bc0ad 8339#else /* !CONFIG_NUMA */
96f874e2
RR
8340static void free_sched_groups(const struct cpumask *cpu_map,
8341 struct cpumask *nodemask)
a616058b
SS
8342{
8343}
6d6bc0ad 8344#endif /* CONFIG_NUMA */
51888ca2 8345
89c4710e
SS
8346/*
8347 * Initialize sched groups cpu_power.
8348 *
8349 * cpu_power indicates the capacity of sched group, which is used while
8350 * distributing the load between different sched groups in a sched domain.
8351 * Typically cpu_power for all the groups in a sched domain will be same unless
8352 * there are asymmetries in the topology. If there are asymmetries, group
8353 * having more cpu_power will pickup more load compared to the group having
8354 * less cpu_power.
8355 *
8356 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8357 * the maximum number of tasks a group can handle in the presence of other idle
8358 * or lightly loaded groups in the same sched domain.
8359 */
8360static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8361{
8362 struct sched_domain *child;
8363 struct sched_group *group;
8364
8365 WARN_ON(!sd || !sd->groups);
8366
13318a71 8367 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8368 return;
8369
8370 child = sd->child;
8371
5517d86b
ED
8372 sd->groups->__cpu_power = 0;
8373
89c4710e
SS
8374 /*
8375 * For perf policy, if the groups in child domain share resources
8376 * (for example cores sharing some portions of the cache hierarchy
8377 * or SMT), then set this domain groups cpu_power such that each group
8378 * can handle only one task, when there are other idle groups in the
8379 * same sched domain.
8380 */
8381 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8382 (child->flags &
8383 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8384 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8385 return;
8386 }
8387
89c4710e
SS
8388 /*
8389 * add cpu_power of each child group to this groups cpu_power
8390 */
8391 group = child->groups;
8392 do {
5517d86b 8393 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8394 group = group->next;
8395 } while (group != child->groups);
8396}
8397
7c16ec58
MT
8398/*
8399 * Initializers for schedule domains
8400 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8401 */
8402
a5d8c348
IM
8403#ifdef CONFIG_SCHED_DEBUG
8404# define SD_INIT_NAME(sd, type) sd->name = #type
8405#else
8406# define SD_INIT_NAME(sd, type) do { } while (0)
8407#endif
8408
7c16ec58 8409#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8410
7c16ec58
MT
8411#define SD_INIT_FUNC(type) \
8412static noinline void sd_init_##type(struct sched_domain *sd) \
8413{ \
8414 memset(sd, 0, sizeof(*sd)); \
8415 *sd = SD_##type##_INIT; \
1d3504fc 8416 sd->level = SD_LV_##type; \
a5d8c348 8417 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8418}
8419
8420SD_INIT_FUNC(CPU)
8421#ifdef CONFIG_NUMA
8422 SD_INIT_FUNC(ALLNODES)
8423 SD_INIT_FUNC(NODE)
8424#endif
8425#ifdef CONFIG_SCHED_SMT
8426 SD_INIT_FUNC(SIBLING)
8427#endif
8428#ifdef CONFIG_SCHED_MC
8429 SD_INIT_FUNC(MC)
8430#endif
8431
1d3504fc
HS
8432static int default_relax_domain_level = -1;
8433
8434static int __init setup_relax_domain_level(char *str)
8435{
30e0e178
LZ
8436 unsigned long val;
8437
8438 val = simple_strtoul(str, NULL, 0);
8439 if (val < SD_LV_MAX)
8440 default_relax_domain_level = val;
8441
1d3504fc
HS
8442 return 1;
8443}
8444__setup("relax_domain_level=", setup_relax_domain_level);
8445
8446static void set_domain_attribute(struct sched_domain *sd,
8447 struct sched_domain_attr *attr)
8448{
8449 int request;
8450
8451 if (!attr || attr->relax_domain_level < 0) {
8452 if (default_relax_domain_level < 0)
8453 return;
8454 else
8455 request = default_relax_domain_level;
8456 } else
8457 request = attr->relax_domain_level;
8458 if (request < sd->level) {
8459 /* turn off idle balance on this domain */
8460 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8461 } else {
8462 /* turn on idle balance on this domain */
8463 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8464 }
8465}
8466
1da177e4 8467/*
1a20ff27
DG
8468 * Build sched domains for a given set of cpus and attach the sched domains
8469 * to the individual cpus
1da177e4 8470 */
96f874e2 8471static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8472 struct sched_domain_attr *attr)
1da177e4 8473{
3404c8d9 8474 int i, err = -ENOMEM;
57d885fe 8475 struct root_domain *rd;
3404c8d9
RR
8476 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8477 tmpmask;
d1b55138 8478#ifdef CONFIG_NUMA
3404c8d9 8479 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8480 struct sched_group **sched_group_nodes = NULL;
6711cab4 8481 int sd_allnodes = 0;
d1b55138 8482
3404c8d9
RR
8483 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8484 goto out;
8485 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8486 goto free_domainspan;
8487 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8488 goto free_covered;
8489#endif
8490
8491 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8492 goto free_notcovered;
8493 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8494 goto free_nodemask;
8495 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8496 goto free_this_sibling_map;
8497 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8498 goto free_this_core_map;
8499 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8500 goto free_send_covered;
8501
8502#ifdef CONFIG_NUMA
d1b55138
JH
8503 /*
8504 * Allocate the per-node list of sched groups
8505 */
076ac2af 8506 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8507 GFP_KERNEL);
d1b55138
JH
8508 if (!sched_group_nodes) {
8509 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8510 goto free_tmpmask;
d1b55138 8511 }
d1b55138 8512#endif
1da177e4 8513
dc938520 8514 rd = alloc_rootdomain();
57d885fe
GH
8515 if (!rd) {
8516 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8517 goto free_sched_groups;
57d885fe
GH
8518 }
8519
7c16ec58 8520#ifdef CONFIG_NUMA
96f874e2 8521 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8522#endif
8523
1da177e4 8524 /*
1a20ff27 8525 * Set up domains for cpus specified by the cpu_map.
1da177e4 8526 */
abcd083a 8527 for_each_cpu(i, cpu_map) {
1da177e4 8528 struct sched_domain *sd = NULL, *p;
1da177e4 8529
6ca09dfc 8530 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8531
8532#ifdef CONFIG_NUMA
96f874e2
RR
8533 if (cpumask_weight(cpu_map) >
8534 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8535 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8536 SD_INIT(sd, ALLNODES);
1d3504fc 8537 set_domain_attribute(sd, attr);
758b2cdc 8538 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8539 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8540 p = sd;
6711cab4 8541 sd_allnodes = 1;
9c1cfda2
JH
8542 } else
8543 p = NULL;
8544
62ea9ceb 8545 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8546 SD_INIT(sd, NODE);
1d3504fc 8547 set_domain_attribute(sd, attr);
758b2cdc 8548 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8549 sd->parent = p;
1a848870
SS
8550 if (p)
8551 p->child = sd;
758b2cdc
RR
8552 cpumask_and(sched_domain_span(sd),
8553 sched_domain_span(sd), cpu_map);
1da177e4
LT
8554#endif
8555
8556 p = sd;
6c99e9ad 8557 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8558 SD_INIT(sd, CPU);
1d3504fc 8559 set_domain_attribute(sd, attr);
758b2cdc 8560 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8561 sd->parent = p;
1a848870
SS
8562 if (p)
8563 p->child = sd;
7c16ec58 8564 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8565
1e9f28fa
SS
8566#ifdef CONFIG_SCHED_MC
8567 p = sd;
6c99e9ad 8568 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8569 SD_INIT(sd, MC);
1d3504fc 8570 set_domain_attribute(sd, attr);
6ca09dfc
MT
8571 cpumask_and(sched_domain_span(sd), cpu_map,
8572 cpu_coregroup_mask(i));
1e9f28fa 8573 sd->parent = p;
1a848870 8574 p->child = sd;
7c16ec58 8575 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8576#endif
8577
1da177e4
LT
8578#ifdef CONFIG_SCHED_SMT
8579 p = sd;
6c99e9ad 8580 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8581 SD_INIT(sd, SIBLING);
1d3504fc 8582 set_domain_attribute(sd, attr);
758b2cdc 8583 cpumask_and(sched_domain_span(sd),
c69fc56d 8584 topology_thread_cpumask(i), cpu_map);
1da177e4 8585 sd->parent = p;
1a848870 8586 p->child = sd;
7c16ec58 8587 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8588#endif
8589 }
8590
8591#ifdef CONFIG_SCHED_SMT
8592 /* Set up CPU (sibling) groups */
abcd083a 8593 for_each_cpu(i, cpu_map) {
96f874e2 8594 cpumask_and(this_sibling_map,
c69fc56d 8595 topology_thread_cpumask(i), cpu_map);
96f874e2 8596 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8597 continue;
8598
dd41f596 8599 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8600 &cpu_to_cpu_group,
8601 send_covered, tmpmask);
1da177e4
LT
8602 }
8603#endif
8604
1e9f28fa
SS
8605#ifdef CONFIG_SCHED_MC
8606 /* Set up multi-core groups */
abcd083a 8607 for_each_cpu(i, cpu_map) {
6ca09dfc 8608 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8609 if (i != cpumask_first(this_core_map))
1e9f28fa 8610 continue;
7c16ec58 8611
dd41f596 8612 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8613 &cpu_to_core_group,
8614 send_covered, tmpmask);
1e9f28fa
SS
8615 }
8616#endif
8617
1da177e4 8618 /* Set up physical groups */
076ac2af 8619 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8620 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8621 if (cpumask_empty(nodemask))
1da177e4
LT
8622 continue;
8623
7c16ec58
MT
8624 init_sched_build_groups(nodemask, cpu_map,
8625 &cpu_to_phys_group,
8626 send_covered, tmpmask);
1da177e4
LT
8627 }
8628
8629#ifdef CONFIG_NUMA
8630 /* Set up node groups */
7c16ec58 8631 if (sd_allnodes) {
7c16ec58
MT
8632 init_sched_build_groups(cpu_map, cpu_map,
8633 &cpu_to_allnodes_group,
8634 send_covered, tmpmask);
8635 }
9c1cfda2 8636
076ac2af 8637 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8638 /* Set up node groups */
8639 struct sched_group *sg, *prev;
9c1cfda2
JH
8640 int j;
8641
96f874e2 8642 cpumask_clear(covered);
6ca09dfc 8643 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8644 if (cpumask_empty(nodemask)) {
d1b55138 8645 sched_group_nodes[i] = NULL;
9c1cfda2 8646 continue;
d1b55138 8647 }
9c1cfda2 8648
4bdbaad3 8649 sched_domain_node_span(i, domainspan);
96f874e2 8650 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8651
6c99e9ad
RR
8652 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8653 GFP_KERNEL, i);
51888ca2
SV
8654 if (!sg) {
8655 printk(KERN_WARNING "Can not alloc domain group for "
8656 "node %d\n", i);
8657 goto error;
8658 }
9c1cfda2 8659 sched_group_nodes[i] = sg;
abcd083a 8660 for_each_cpu(j, nodemask) {
9c1cfda2 8661 struct sched_domain *sd;
9761eea8 8662
62ea9ceb 8663 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8664 sd->groups = sg;
9c1cfda2 8665 }
5517d86b 8666 sg->__cpu_power = 0;
758b2cdc 8667 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8668 sg->next = sg;
96f874e2 8669 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8670 prev = sg;
8671
076ac2af 8672 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8673 int n = (i + j) % nr_node_ids;
9c1cfda2 8674
96f874e2
RR
8675 cpumask_complement(notcovered, covered);
8676 cpumask_and(tmpmask, notcovered, cpu_map);
8677 cpumask_and(tmpmask, tmpmask, domainspan);
8678 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8679 break;
8680
6ca09dfc 8681 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8682 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8683 continue;
8684
6c99e9ad
RR
8685 sg = kmalloc_node(sizeof(struct sched_group) +
8686 cpumask_size(),
15f0b676 8687 GFP_KERNEL, i);
9c1cfda2
JH
8688 if (!sg) {
8689 printk(KERN_WARNING
8690 "Can not alloc domain group for node %d\n", j);
51888ca2 8691 goto error;
9c1cfda2 8692 }
5517d86b 8693 sg->__cpu_power = 0;
758b2cdc 8694 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8695 sg->next = prev->next;
96f874e2 8696 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8697 prev->next = sg;
8698 prev = sg;
8699 }
9c1cfda2 8700 }
1da177e4
LT
8701#endif
8702
8703 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8704#ifdef CONFIG_SCHED_SMT
abcd083a 8705 for_each_cpu(i, cpu_map) {
6c99e9ad 8706 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8707
89c4710e 8708 init_sched_groups_power(i, sd);
5c45bf27 8709 }
1da177e4 8710#endif
1e9f28fa 8711#ifdef CONFIG_SCHED_MC
abcd083a 8712 for_each_cpu(i, cpu_map) {
6c99e9ad 8713 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8714
89c4710e 8715 init_sched_groups_power(i, sd);
5c45bf27
SS
8716 }
8717#endif
1e9f28fa 8718
abcd083a 8719 for_each_cpu(i, cpu_map) {
6c99e9ad 8720 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8721
89c4710e 8722 init_sched_groups_power(i, sd);
1da177e4
LT
8723 }
8724
9c1cfda2 8725#ifdef CONFIG_NUMA
076ac2af 8726 for (i = 0; i < nr_node_ids; i++)
08069033 8727 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8728
6711cab4
SS
8729 if (sd_allnodes) {
8730 struct sched_group *sg;
f712c0c7 8731
96f874e2 8732 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8733 tmpmask);
f712c0c7
SS
8734 init_numa_sched_groups_power(sg);
8735 }
9c1cfda2
JH
8736#endif
8737
1da177e4 8738 /* Attach the domains */
abcd083a 8739 for_each_cpu(i, cpu_map) {
1da177e4
LT
8740 struct sched_domain *sd;
8741#ifdef CONFIG_SCHED_SMT
6c99e9ad 8742 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8743#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8744 sd = &per_cpu(core_domains, i).sd;
1da177e4 8745#else
6c99e9ad 8746 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8747#endif
57d885fe 8748 cpu_attach_domain(sd, rd, i);
1da177e4 8749 }
51888ca2 8750
3404c8d9
RR
8751 err = 0;
8752
8753free_tmpmask:
8754 free_cpumask_var(tmpmask);
8755free_send_covered:
8756 free_cpumask_var(send_covered);
8757free_this_core_map:
8758 free_cpumask_var(this_core_map);
8759free_this_sibling_map:
8760 free_cpumask_var(this_sibling_map);
8761free_nodemask:
8762 free_cpumask_var(nodemask);
8763free_notcovered:
8764#ifdef CONFIG_NUMA
8765 free_cpumask_var(notcovered);
8766free_covered:
8767 free_cpumask_var(covered);
8768free_domainspan:
8769 free_cpumask_var(domainspan);
8770out:
8771#endif
8772 return err;
8773
8774free_sched_groups:
8775#ifdef CONFIG_NUMA
8776 kfree(sched_group_nodes);
8777#endif
8778 goto free_tmpmask;
51888ca2 8779
a616058b 8780#ifdef CONFIG_NUMA
51888ca2 8781error:
7c16ec58 8782 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8783 free_rootdomain(rd);
3404c8d9 8784 goto free_tmpmask;
a616058b 8785#endif
1da177e4 8786}
029190c5 8787
96f874e2 8788static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8789{
8790 return __build_sched_domains(cpu_map, NULL);
8791}
8792
96f874e2 8793static struct cpumask *doms_cur; /* current sched domains */
029190c5 8794static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8795static struct sched_domain_attr *dattr_cur;
8796 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8797
8798/*
8799 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8800 * cpumask) fails, then fallback to a single sched domain,
8801 * as determined by the single cpumask fallback_doms.
029190c5 8802 */
4212823f 8803static cpumask_var_t fallback_doms;
029190c5 8804
ee79d1bd
HC
8805/*
8806 * arch_update_cpu_topology lets virtualized architectures update the
8807 * cpu core maps. It is supposed to return 1 if the topology changed
8808 * or 0 if it stayed the same.
8809 */
8810int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8811{
ee79d1bd 8812 return 0;
22e52b07
HC
8813}
8814
1a20ff27 8815/*
41a2d6cf 8816 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8817 * For now this just excludes isolated cpus, but could be used to
8818 * exclude other special cases in the future.
1a20ff27 8819 */
96f874e2 8820static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8821{
7378547f
MM
8822 int err;
8823
22e52b07 8824 arch_update_cpu_topology();
029190c5 8825 ndoms_cur = 1;
96f874e2 8826 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8827 if (!doms_cur)
4212823f 8828 doms_cur = fallback_doms;
dcc30a35 8829 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8830 dattr_cur = NULL;
7378547f 8831 err = build_sched_domains(doms_cur);
6382bc90 8832 register_sched_domain_sysctl();
7378547f
MM
8833
8834 return err;
1a20ff27
DG
8835}
8836
96f874e2
RR
8837static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8838 struct cpumask *tmpmask)
1da177e4 8839{
7c16ec58 8840 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8841}
1da177e4 8842
1a20ff27
DG
8843/*
8844 * Detach sched domains from a group of cpus specified in cpu_map
8845 * These cpus will now be attached to the NULL domain
8846 */
96f874e2 8847static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8848{
96f874e2
RR
8849 /* Save because hotplug lock held. */
8850 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8851 int i;
8852
abcd083a 8853 for_each_cpu(i, cpu_map)
57d885fe 8854 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8855 synchronize_sched();
96f874e2 8856 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8857}
8858
1d3504fc
HS
8859/* handle null as "default" */
8860static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8861 struct sched_domain_attr *new, int idx_new)
8862{
8863 struct sched_domain_attr tmp;
8864
8865 /* fast path */
8866 if (!new && !cur)
8867 return 1;
8868
8869 tmp = SD_ATTR_INIT;
8870 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8871 new ? (new + idx_new) : &tmp,
8872 sizeof(struct sched_domain_attr));
8873}
8874
029190c5
PJ
8875/*
8876 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8877 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8878 * doms_new[] to the current sched domain partitioning, doms_cur[].
8879 * It destroys each deleted domain and builds each new domain.
8880 *
96f874e2 8881 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8882 * The masks don't intersect (don't overlap.) We should setup one
8883 * sched domain for each mask. CPUs not in any of the cpumasks will
8884 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8885 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8886 * it as it is.
8887 *
41a2d6cf
IM
8888 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8889 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8890 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8891 * ndoms_new == 1, and partition_sched_domains() will fallback to
8892 * the single partition 'fallback_doms', it also forces the domains
8893 * to be rebuilt.
029190c5 8894 *
96f874e2 8895 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8896 * ndoms_new == 0 is a special case for destroying existing domains,
8897 * and it will not create the default domain.
dfb512ec 8898 *
029190c5
PJ
8899 * Call with hotplug lock held
8900 */
96f874e2
RR
8901/* FIXME: Change to struct cpumask *doms_new[] */
8902void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8903 struct sched_domain_attr *dattr_new)
029190c5 8904{
dfb512ec 8905 int i, j, n;
d65bd5ec 8906 int new_topology;
029190c5 8907
712555ee 8908 mutex_lock(&sched_domains_mutex);
a1835615 8909
7378547f
MM
8910 /* always unregister in case we don't destroy any domains */
8911 unregister_sched_domain_sysctl();
8912
d65bd5ec
HC
8913 /* Let architecture update cpu core mappings. */
8914 new_topology = arch_update_cpu_topology();
8915
dfb512ec 8916 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8917
8918 /* Destroy deleted domains */
8919 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8920 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8921 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8922 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8923 goto match1;
8924 }
8925 /* no match - a current sched domain not in new doms_new[] */
8926 detach_destroy_domains(doms_cur + i);
8927match1:
8928 ;
8929 }
8930
e761b772
MK
8931 if (doms_new == NULL) {
8932 ndoms_cur = 0;
4212823f 8933 doms_new = fallback_doms;
dcc30a35 8934 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8935 WARN_ON_ONCE(dattr_new);
e761b772
MK
8936 }
8937
029190c5
PJ
8938 /* Build new domains */
8939 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8940 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8941 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8942 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8943 goto match2;
8944 }
8945 /* no match - add a new doms_new */
1d3504fc
HS
8946 __build_sched_domains(doms_new + i,
8947 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8948match2:
8949 ;
8950 }
8951
8952 /* Remember the new sched domains */
4212823f 8953 if (doms_cur != fallback_doms)
029190c5 8954 kfree(doms_cur);
1d3504fc 8955 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8956 doms_cur = doms_new;
1d3504fc 8957 dattr_cur = dattr_new;
029190c5 8958 ndoms_cur = ndoms_new;
7378547f
MM
8959
8960 register_sched_domain_sysctl();
a1835615 8961
712555ee 8962 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8963}
8964
5c45bf27 8965#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8966static void arch_reinit_sched_domains(void)
5c45bf27 8967{
95402b38 8968 get_online_cpus();
dfb512ec
MK
8969
8970 /* Destroy domains first to force the rebuild */
8971 partition_sched_domains(0, NULL, NULL);
8972
e761b772 8973 rebuild_sched_domains();
95402b38 8974 put_online_cpus();
5c45bf27
SS
8975}
8976
8977static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8978{
afb8a9b7 8979 unsigned int level = 0;
5c45bf27 8980
afb8a9b7
GS
8981 if (sscanf(buf, "%u", &level) != 1)
8982 return -EINVAL;
8983
8984 /*
8985 * level is always be positive so don't check for
8986 * level < POWERSAVINGS_BALANCE_NONE which is 0
8987 * What happens on 0 or 1 byte write,
8988 * need to check for count as well?
8989 */
8990
8991 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8992 return -EINVAL;
8993
8994 if (smt)
afb8a9b7 8995 sched_smt_power_savings = level;
5c45bf27 8996 else
afb8a9b7 8997 sched_mc_power_savings = level;
5c45bf27 8998
c70f22d2 8999 arch_reinit_sched_domains();
5c45bf27 9000
c70f22d2 9001 return count;
5c45bf27
SS
9002}
9003
5c45bf27 9004#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9005static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9006 char *page)
5c45bf27
SS
9007{
9008 return sprintf(page, "%u\n", sched_mc_power_savings);
9009}
f718cd4a 9010static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9011 const char *buf, size_t count)
5c45bf27
SS
9012{
9013 return sched_power_savings_store(buf, count, 0);
9014}
f718cd4a
AK
9015static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9016 sched_mc_power_savings_show,
9017 sched_mc_power_savings_store);
5c45bf27
SS
9018#endif
9019
9020#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9021static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9022 char *page)
5c45bf27
SS
9023{
9024 return sprintf(page, "%u\n", sched_smt_power_savings);
9025}
f718cd4a 9026static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9027 const char *buf, size_t count)
5c45bf27
SS
9028{
9029 return sched_power_savings_store(buf, count, 1);
9030}
f718cd4a
AK
9031static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9032 sched_smt_power_savings_show,
6707de00
AB
9033 sched_smt_power_savings_store);
9034#endif
9035
39aac648 9036int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9037{
9038 int err = 0;
9039
9040#ifdef CONFIG_SCHED_SMT
9041 if (smt_capable())
9042 err = sysfs_create_file(&cls->kset.kobj,
9043 &attr_sched_smt_power_savings.attr);
9044#endif
9045#ifdef CONFIG_SCHED_MC
9046 if (!err && mc_capable())
9047 err = sysfs_create_file(&cls->kset.kobj,
9048 &attr_sched_mc_power_savings.attr);
9049#endif
9050 return err;
9051}
6d6bc0ad 9052#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9053
e761b772 9054#ifndef CONFIG_CPUSETS
1da177e4 9055/*
e761b772
MK
9056 * Add online and remove offline CPUs from the scheduler domains.
9057 * When cpusets are enabled they take over this function.
1da177e4
LT
9058 */
9059static int update_sched_domains(struct notifier_block *nfb,
9060 unsigned long action, void *hcpu)
e761b772
MK
9061{
9062 switch (action) {
9063 case CPU_ONLINE:
9064 case CPU_ONLINE_FROZEN:
9065 case CPU_DEAD:
9066 case CPU_DEAD_FROZEN:
dfb512ec 9067 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9068 return NOTIFY_OK;
9069
9070 default:
9071 return NOTIFY_DONE;
9072 }
9073}
9074#endif
9075
9076static int update_runtime(struct notifier_block *nfb,
9077 unsigned long action, void *hcpu)
1da177e4 9078{
7def2be1
PZ
9079 int cpu = (int)(long)hcpu;
9080
1da177e4 9081 switch (action) {
1da177e4 9082 case CPU_DOWN_PREPARE:
8bb78442 9083 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9084 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9085 return NOTIFY_OK;
9086
1da177e4 9087 case CPU_DOWN_FAILED:
8bb78442 9088 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9089 case CPU_ONLINE:
8bb78442 9090 case CPU_ONLINE_FROZEN:
7def2be1 9091 enable_runtime(cpu_rq(cpu));
e761b772
MK
9092 return NOTIFY_OK;
9093
1da177e4
LT
9094 default:
9095 return NOTIFY_DONE;
9096 }
1da177e4 9097}
1da177e4
LT
9098
9099void __init sched_init_smp(void)
9100{
dcc30a35
RR
9101 cpumask_var_t non_isolated_cpus;
9102
9103 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9104
434d53b0
MT
9105#if defined(CONFIG_NUMA)
9106 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9107 GFP_KERNEL);
9108 BUG_ON(sched_group_nodes_bycpu == NULL);
9109#endif
95402b38 9110 get_online_cpus();
712555ee 9111 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9112 arch_init_sched_domains(cpu_online_mask);
9113 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9114 if (cpumask_empty(non_isolated_cpus))
9115 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9116 mutex_unlock(&sched_domains_mutex);
95402b38 9117 put_online_cpus();
e761b772
MK
9118
9119#ifndef CONFIG_CPUSETS
1da177e4
LT
9120 /* XXX: Theoretical race here - CPU may be hotplugged now */
9121 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9122#endif
9123
9124 /* RT runtime code needs to handle some hotplug events */
9125 hotcpu_notifier(update_runtime, 0);
9126
b328ca18 9127 init_hrtick();
5c1e1767
NP
9128
9129 /* Move init over to a non-isolated CPU */
dcc30a35 9130 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9131 BUG();
19978ca6 9132 sched_init_granularity();
dcc30a35 9133 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9134
9135 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9136 init_sched_rt_class();
1da177e4
LT
9137}
9138#else
9139void __init sched_init_smp(void)
9140{
19978ca6 9141 sched_init_granularity();
1da177e4
LT
9142}
9143#endif /* CONFIG_SMP */
9144
cd1bb94b
AB
9145const_debug unsigned int sysctl_timer_migration = 1;
9146
1da177e4
LT
9147int in_sched_functions(unsigned long addr)
9148{
1da177e4
LT
9149 return in_lock_functions(addr) ||
9150 (addr >= (unsigned long)__sched_text_start
9151 && addr < (unsigned long)__sched_text_end);
9152}
9153
a9957449 9154static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9155{
9156 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9157 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9158#ifdef CONFIG_FAIR_GROUP_SCHED
9159 cfs_rq->rq = rq;
9160#endif
67e9fb2a 9161 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9162}
9163
fa85ae24
PZ
9164static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9165{
9166 struct rt_prio_array *array;
9167 int i;
9168
9169 array = &rt_rq->active;
9170 for (i = 0; i < MAX_RT_PRIO; i++) {
9171 INIT_LIST_HEAD(array->queue + i);
9172 __clear_bit(i, array->bitmap);
9173 }
9174 /* delimiter for bitsearch: */
9175 __set_bit(MAX_RT_PRIO, array->bitmap);
9176
052f1dc7 9177#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9178 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9179#ifdef CONFIG_SMP
e864c499 9180 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9181#endif
48d5e258 9182#endif
fa85ae24
PZ
9183#ifdef CONFIG_SMP
9184 rt_rq->rt_nr_migratory = 0;
fa85ae24 9185 rt_rq->overloaded = 0;
c20b08e3 9186 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9187#endif
9188
9189 rt_rq->rt_time = 0;
9190 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9191 rt_rq->rt_runtime = 0;
9192 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9193
052f1dc7 9194#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9195 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9196 rt_rq->rq = rq;
9197#endif
fa85ae24
PZ
9198}
9199
6f505b16 9200#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9201static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9202 struct sched_entity *se, int cpu, int add,
9203 struct sched_entity *parent)
6f505b16 9204{
ec7dc8ac 9205 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9206 tg->cfs_rq[cpu] = cfs_rq;
9207 init_cfs_rq(cfs_rq, rq);
9208 cfs_rq->tg = tg;
9209 if (add)
9210 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9211
9212 tg->se[cpu] = se;
354d60c2
DG
9213 /* se could be NULL for init_task_group */
9214 if (!se)
9215 return;
9216
ec7dc8ac
DG
9217 if (!parent)
9218 se->cfs_rq = &rq->cfs;
9219 else
9220 se->cfs_rq = parent->my_q;
9221
6f505b16
PZ
9222 se->my_q = cfs_rq;
9223 se->load.weight = tg->shares;
e05510d0 9224 se->load.inv_weight = 0;
ec7dc8ac 9225 se->parent = parent;
6f505b16 9226}
052f1dc7 9227#endif
6f505b16 9228
052f1dc7 9229#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9230static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9231 struct sched_rt_entity *rt_se, int cpu, int add,
9232 struct sched_rt_entity *parent)
6f505b16 9233{
ec7dc8ac
DG
9234 struct rq *rq = cpu_rq(cpu);
9235
6f505b16
PZ
9236 tg->rt_rq[cpu] = rt_rq;
9237 init_rt_rq(rt_rq, rq);
9238 rt_rq->tg = tg;
9239 rt_rq->rt_se = rt_se;
ac086bc2 9240 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9241 if (add)
9242 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9243
9244 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9245 if (!rt_se)
9246 return;
9247
ec7dc8ac
DG
9248 if (!parent)
9249 rt_se->rt_rq = &rq->rt;
9250 else
9251 rt_se->rt_rq = parent->my_q;
9252
6f505b16 9253 rt_se->my_q = rt_rq;
ec7dc8ac 9254 rt_se->parent = parent;
6f505b16
PZ
9255 INIT_LIST_HEAD(&rt_se->run_list);
9256}
9257#endif
9258
1da177e4
LT
9259void __init sched_init(void)
9260{
dd41f596 9261 int i, j;
434d53b0
MT
9262 unsigned long alloc_size = 0, ptr;
9263
9264#ifdef CONFIG_FAIR_GROUP_SCHED
9265 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9266#endif
9267#ifdef CONFIG_RT_GROUP_SCHED
9268 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9269#endif
9270#ifdef CONFIG_USER_SCHED
9271 alloc_size *= 2;
df7c8e84
RR
9272#endif
9273#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9274 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9275#endif
9276 /*
9277 * As sched_init() is called before page_alloc is setup,
9278 * we use alloc_bootmem().
9279 */
9280 if (alloc_size) {
36b7b6d4 9281 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9282
9283#ifdef CONFIG_FAIR_GROUP_SCHED
9284 init_task_group.se = (struct sched_entity **)ptr;
9285 ptr += nr_cpu_ids * sizeof(void **);
9286
9287 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9288 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9289
9290#ifdef CONFIG_USER_SCHED
9291 root_task_group.se = (struct sched_entity **)ptr;
9292 ptr += nr_cpu_ids * sizeof(void **);
9293
9294 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9295 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9296#endif /* CONFIG_USER_SCHED */
9297#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9298#ifdef CONFIG_RT_GROUP_SCHED
9299 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9300 ptr += nr_cpu_ids * sizeof(void **);
9301
9302 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9303 ptr += nr_cpu_ids * sizeof(void **);
9304
9305#ifdef CONFIG_USER_SCHED
9306 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9307 ptr += nr_cpu_ids * sizeof(void **);
9308
9309 root_task_group.rt_rq = (struct rt_rq **)ptr;
9310 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9311#endif /* CONFIG_USER_SCHED */
9312#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9313#ifdef CONFIG_CPUMASK_OFFSTACK
9314 for_each_possible_cpu(i) {
9315 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9316 ptr += cpumask_size();
9317 }
9318#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9319 }
dd41f596 9320
57d885fe
GH
9321#ifdef CONFIG_SMP
9322 init_defrootdomain();
9323#endif
9324
d0b27fa7
PZ
9325 init_rt_bandwidth(&def_rt_bandwidth,
9326 global_rt_period(), global_rt_runtime());
9327
9328#ifdef CONFIG_RT_GROUP_SCHED
9329 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9330 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9331#ifdef CONFIG_USER_SCHED
9332 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9333 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9334#endif /* CONFIG_USER_SCHED */
9335#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9336
052f1dc7 9337#ifdef CONFIG_GROUP_SCHED
6f505b16 9338 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9339 INIT_LIST_HEAD(&init_task_group.children);
9340
9341#ifdef CONFIG_USER_SCHED
9342 INIT_LIST_HEAD(&root_task_group.children);
9343 init_task_group.parent = &root_task_group;
9344 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9345#endif /* CONFIG_USER_SCHED */
9346#endif /* CONFIG_GROUP_SCHED */
6f505b16 9347
0a945022 9348 for_each_possible_cpu(i) {
70b97a7f 9349 struct rq *rq;
1da177e4
LT
9350
9351 rq = cpu_rq(i);
9352 spin_lock_init(&rq->lock);
7897986b 9353 rq->nr_running = 0;
dce48a84
TG
9354 rq->calc_load_active = 0;
9355 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9356 init_cfs_rq(&rq->cfs, rq);
6f505b16 9357 init_rt_rq(&rq->rt, rq);
dd41f596 9358#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9359 init_task_group.shares = init_task_group_load;
6f505b16 9360 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9361#ifdef CONFIG_CGROUP_SCHED
9362 /*
9363 * How much cpu bandwidth does init_task_group get?
9364 *
9365 * In case of task-groups formed thr' the cgroup filesystem, it
9366 * gets 100% of the cpu resources in the system. This overall
9367 * system cpu resource is divided among the tasks of
9368 * init_task_group and its child task-groups in a fair manner,
9369 * based on each entity's (task or task-group's) weight
9370 * (se->load.weight).
9371 *
9372 * In other words, if init_task_group has 10 tasks of weight
9373 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9374 * then A0's share of the cpu resource is:
9375 *
0d905bca 9376 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9377 *
9378 * We achieve this by letting init_task_group's tasks sit
9379 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9380 */
ec7dc8ac 9381 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9382#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9383 root_task_group.shares = NICE_0_LOAD;
9384 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9385 /*
9386 * In case of task-groups formed thr' the user id of tasks,
9387 * init_task_group represents tasks belonging to root user.
9388 * Hence it forms a sibling of all subsequent groups formed.
9389 * In this case, init_task_group gets only a fraction of overall
9390 * system cpu resource, based on the weight assigned to root
9391 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9392 * by letting tasks of init_task_group sit in a separate cfs_rq
9393 * (init_cfs_rq) and having one entity represent this group of
9394 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9395 */
ec7dc8ac 9396 init_tg_cfs_entry(&init_task_group,
6f505b16 9397 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9398 &per_cpu(init_sched_entity, i), i, 1,
9399 root_task_group.se[i]);
6f505b16 9400
052f1dc7 9401#endif
354d60c2
DG
9402#endif /* CONFIG_FAIR_GROUP_SCHED */
9403
9404 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9405#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9406 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9407#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9408 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9409#elif defined CONFIG_USER_SCHED
eff766a6 9410 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9411 init_tg_rt_entry(&init_task_group,
6f505b16 9412 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9413 &per_cpu(init_sched_rt_entity, i), i, 1,
9414 root_task_group.rt_se[i]);
354d60c2 9415#endif
dd41f596 9416#endif
1da177e4 9417
dd41f596
IM
9418 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9419 rq->cpu_load[j] = 0;
1da177e4 9420#ifdef CONFIG_SMP
41c7ce9a 9421 rq->sd = NULL;
57d885fe 9422 rq->rd = NULL;
3f029d3c 9423 rq->post_schedule = 0;
1da177e4 9424 rq->active_balance = 0;
dd41f596 9425 rq->next_balance = jiffies;
1da177e4 9426 rq->push_cpu = 0;
0a2966b4 9427 rq->cpu = i;
1f11eb6a 9428 rq->online = 0;
1da177e4
LT
9429 rq->migration_thread = NULL;
9430 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9431 rq_attach_root(rq, &def_root_domain);
1da177e4 9432#endif
8f4d37ec 9433 init_rq_hrtick(rq);
1da177e4 9434 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9435 }
9436
2dd73a4f 9437 set_load_weight(&init_task);
b50f60ce 9438
e107be36
AK
9439#ifdef CONFIG_PREEMPT_NOTIFIERS
9440 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9441#endif
9442
c9819f45 9443#ifdef CONFIG_SMP
962cf36c 9444 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9445#endif
9446
b50f60ce
HC
9447#ifdef CONFIG_RT_MUTEXES
9448 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9449#endif
9450
1da177e4
LT
9451 /*
9452 * The boot idle thread does lazy MMU switching as well:
9453 */
9454 atomic_inc(&init_mm.mm_count);
9455 enter_lazy_tlb(&init_mm, current);
9456
9457 /*
9458 * Make us the idle thread. Technically, schedule() should not be
9459 * called from this thread, however somewhere below it might be,
9460 * but because we are the idle thread, we just pick up running again
9461 * when this runqueue becomes "idle".
9462 */
9463 init_idle(current, smp_processor_id());
dce48a84
TG
9464
9465 calc_load_update = jiffies + LOAD_FREQ;
9466
dd41f596
IM
9467 /*
9468 * During early bootup we pretend to be a normal task:
9469 */
9470 current->sched_class = &fair_sched_class;
6892b75e 9471
6a7b3dc3 9472 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9473 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9474#ifdef CONFIG_SMP
7d1e6a9b 9475#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9476 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9477 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9478#endif
4bdddf8f 9479 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9480#endif /* SMP */
6a7b3dc3 9481
0d905bca
IM
9482 perf_counter_init();
9483
6892b75e 9484 scheduler_running = 1;
1da177e4
LT
9485}
9486
9487#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9488static inline int preempt_count_equals(int preempt_offset)
9489{
9490 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9491
9492 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9493}
9494
9495void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9496{
48f24c4d 9497#ifdef in_atomic
1da177e4
LT
9498 static unsigned long prev_jiffy; /* ratelimiting */
9499
e4aafea2
FW
9500 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9501 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9502 return;
9503 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9504 return;
9505 prev_jiffy = jiffies;
9506
9507 printk(KERN_ERR
9508 "BUG: sleeping function called from invalid context at %s:%d\n",
9509 file, line);
9510 printk(KERN_ERR
9511 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9512 in_atomic(), irqs_disabled(),
9513 current->pid, current->comm);
9514
9515 debug_show_held_locks(current);
9516 if (irqs_disabled())
9517 print_irqtrace_events(current);
9518 dump_stack();
1da177e4
LT
9519#endif
9520}
9521EXPORT_SYMBOL(__might_sleep);
9522#endif
9523
9524#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9525static void normalize_task(struct rq *rq, struct task_struct *p)
9526{
9527 int on_rq;
3e51f33f 9528
3a5e4dc1
AK
9529 update_rq_clock(rq);
9530 on_rq = p->se.on_rq;
9531 if (on_rq)
9532 deactivate_task(rq, p, 0);
9533 __setscheduler(rq, p, SCHED_NORMAL, 0);
9534 if (on_rq) {
9535 activate_task(rq, p, 0);
9536 resched_task(rq->curr);
9537 }
9538}
9539
1da177e4
LT
9540void normalize_rt_tasks(void)
9541{
a0f98a1c 9542 struct task_struct *g, *p;
1da177e4 9543 unsigned long flags;
70b97a7f 9544 struct rq *rq;
1da177e4 9545
4cf5d77a 9546 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9547 do_each_thread(g, p) {
178be793
IM
9548 /*
9549 * Only normalize user tasks:
9550 */
9551 if (!p->mm)
9552 continue;
9553
6cfb0d5d 9554 p->se.exec_start = 0;
6cfb0d5d 9555#ifdef CONFIG_SCHEDSTATS
dd41f596 9556 p->se.wait_start = 0;
dd41f596 9557 p->se.sleep_start = 0;
dd41f596 9558 p->se.block_start = 0;
6cfb0d5d 9559#endif
dd41f596
IM
9560
9561 if (!rt_task(p)) {
9562 /*
9563 * Renice negative nice level userspace
9564 * tasks back to 0:
9565 */
9566 if (TASK_NICE(p) < 0 && p->mm)
9567 set_user_nice(p, 0);
1da177e4 9568 continue;
dd41f596 9569 }
1da177e4 9570
4cf5d77a 9571 spin_lock(&p->pi_lock);
b29739f9 9572 rq = __task_rq_lock(p);
1da177e4 9573
178be793 9574 normalize_task(rq, p);
3a5e4dc1 9575
b29739f9 9576 __task_rq_unlock(rq);
4cf5d77a 9577 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9578 } while_each_thread(g, p);
9579
4cf5d77a 9580 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9581}
9582
9583#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9584
9585#ifdef CONFIG_IA64
9586/*
9587 * These functions are only useful for the IA64 MCA handling.
9588 *
9589 * They can only be called when the whole system has been
9590 * stopped - every CPU needs to be quiescent, and no scheduling
9591 * activity can take place. Using them for anything else would
9592 * be a serious bug, and as a result, they aren't even visible
9593 * under any other configuration.
9594 */
9595
9596/**
9597 * curr_task - return the current task for a given cpu.
9598 * @cpu: the processor in question.
9599 *
9600 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9601 */
36c8b586 9602struct task_struct *curr_task(int cpu)
1df5c10a
LT
9603{
9604 return cpu_curr(cpu);
9605}
9606
9607/**
9608 * set_curr_task - set the current task for a given cpu.
9609 * @cpu: the processor in question.
9610 * @p: the task pointer to set.
9611 *
9612 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9613 * are serviced on a separate stack. It allows the architecture to switch the
9614 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9615 * must be called with all CPU's synchronized, and interrupts disabled, the
9616 * and caller must save the original value of the current task (see
9617 * curr_task() above) and restore that value before reenabling interrupts and
9618 * re-starting the system.
9619 *
9620 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9621 */
36c8b586 9622void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9623{
9624 cpu_curr(cpu) = p;
9625}
9626
9627#endif
29f59db3 9628
bccbe08a
PZ
9629#ifdef CONFIG_FAIR_GROUP_SCHED
9630static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9631{
9632 int i;
9633
9634 for_each_possible_cpu(i) {
9635 if (tg->cfs_rq)
9636 kfree(tg->cfs_rq[i]);
9637 if (tg->se)
9638 kfree(tg->se[i]);
6f505b16
PZ
9639 }
9640
9641 kfree(tg->cfs_rq);
9642 kfree(tg->se);
6f505b16
PZ
9643}
9644
ec7dc8ac
DG
9645static
9646int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9647{
29f59db3 9648 struct cfs_rq *cfs_rq;
eab17229 9649 struct sched_entity *se;
9b5b7751 9650 struct rq *rq;
29f59db3
SV
9651 int i;
9652
434d53b0 9653 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9654 if (!tg->cfs_rq)
9655 goto err;
434d53b0 9656 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9657 if (!tg->se)
9658 goto err;
052f1dc7
PZ
9659
9660 tg->shares = NICE_0_LOAD;
29f59db3
SV
9661
9662 for_each_possible_cpu(i) {
9b5b7751 9663 rq = cpu_rq(i);
29f59db3 9664
eab17229
LZ
9665 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9666 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9667 if (!cfs_rq)
9668 goto err;
9669
eab17229
LZ
9670 se = kzalloc_node(sizeof(struct sched_entity),
9671 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9672 if (!se)
9673 goto err;
9674
eab17229 9675 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9676 }
9677
9678 return 1;
9679
9680 err:
9681 return 0;
9682}
9683
9684static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9685{
9686 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9687 &cpu_rq(cpu)->leaf_cfs_rq_list);
9688}
9689
9690static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9691{
9692 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9693}
6d6bc0ad 9694#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9695static inline void free_fair_sched_group(struct task_group *tg)
9696{
9697}
9698
ec7dc8ac
DG
9699static inline
9700int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9701{
9702 return 1;
9703}
9704
9705static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9706{
9707}
9708
9709static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9710{
9711}
6d6bc0ad 9712#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9713
9714#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9715static void free_rt_sched_group(struct task_group *tg)
9716{
9717 int i;
9718
d0b27fa7
PZ
9719 destroy_rt_bandwidth(&tg->rt_bandwidth);
9720
bccbe08a
PZ
9721 for_each_possible_cpu(i) {
9722 if (tg->rt_rq)
9723 kfree(tg->rt_rq[i]);
9724 if (tg->rt_se)
9725 kfree(tg->rt_se[i]);
9726 }
9727
9728 kfree(tg->rt_rq);
9729 kfree(tg->rt_se);
9730}
9731
ec7dc8ac
DG
9732static
9733int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9734{
9735 struct rt_rq *rt_rq;
eab17229 9736 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9737 struct rq *rq;
9738 int i;
9739
434d53b0 9740 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9741 if (!tg->rt_rq)
9742 goto err;
434d53b0 9743 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9744 if (!tg->rt_se)
9745 goto err;
9746
d0b27fa7
PZ
9747 init_rt_bandwidth(&tg->rt_bandwidth,
9748 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9749
9750 for_each_possible_cpu(i) {
9751 rq = cpu_rq(i);
9752
eab17229
LZ
9753 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9754 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9755 if (!rt_rq)
9756 goto err;
29f59db3 9757
eab17229
LZ
9758 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9759 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9760 if (!rt_se)
9761 goto err;
29f59db3 9762
eab17229 9763 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9764 }
9765
bccbe08a
PZ
9766 return 1;
9767
9768 err:
9769 return 0;
9770}
9771
9772static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9773{
9774 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9775 &cpu_rq(cpu)->leaf_rt_rq_list);
9776}
9777
9778static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9779{
9780 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9781}
6d6bc0ad 9782#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9783static inline void free_rt_sched_group(struct task_group *tg)
9784{
9785}
9786
ec7dc8ac
DG
9787static inline
9788int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9789{
9790 return 1;
9791}
9792
9793static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9794{
9795}
9796
9797static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9798{
9799}
6d6bc0ad 9800#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9801
d0b27fa7 9802#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9803static void free_sched_group(struct task_group *tg)
9804{
9805 free_fair_sched_group(tg);
9806 free_rt_sched_group(tg);
9807 kfree(tg);
9808}
9809
9810/* allocate runqueue etc for a new task group */
ec7dc8ac 9811struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9812{
9813 struct task_group *tg;
9814 unsigned long flags;
9815 int i;
9816
9817 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9818 if (!tg)
9819 return ERR_PTR(-ENOMEM);
9820
ec7dc8ac 9821 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9822 goto err;
9823
ec7dc8ac 9824 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9825 goto err;
9826
8ed36996 9827 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9828 for_each_possible_cpu(i) {
bccbe08a
PZ
9829 register_fair_sched_group(tg, i);
9830 register_rt_sched_group(tg, i);
9b5b7751 9831 }
6f505b16 9832 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9833
9834 WARN_ON(!parent); /* root should already exist */
9835
9836 tg->parent = parent;
f473aa5e 9837 INIT_LIST_HEAD(&tg->children);
09f2724a 9838 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9839 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9840
9b5b7751 9841 return tg;
29f59db3
SV
9842
9843err:
6f505b16 9844 free_sched_group(tg);
29f59db3
SV
9845 return ERR_PTR(-ENOMEM);
9846}
9847
9b5b7751 9848/* rcu callback to free various structures associated with a task group */
6f505b16 9849static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9850{
29f59db3 9851 /* now it should be safe to free those cfs_rqs */
6f505b16 9852 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9853}
9854
9b5b7751 9855/* Destroy runqueue etc associated with a task group */
4cf86d77 9856void sched_destroy_group(struct task_group *tg)
29f59db3 9857{
8ed36996 9858 unsigned long flags;
9b5b7751 9859 int i;
29f59db3 9860
8ed36996 9861 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9862 for_each_possible_cpu(i) {
bccbe08a
PZ
9863 unregister_fair_sched_group(tg, i);
9864 unregister_rt_sched_group(tg, i);
9b5b7751 9865 }
6f505b16 9866 list_del_rcu(&tg->list);
f473aa5e 9867 list_del_rcu(&tg->siblings);
8ed36996 9868 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9869
9b5b7751 9870 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9871 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9872}
9873
9b5b7751 9874/* change task's runqueue when it moves between groups.
3a252015
IM
9875 * The caller of this function should have put the task in its new group
9876 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9877 * reflect its new group.
9b5b7751
SV
9878 */
9879void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9880{
9881 int on_rq, running;
9882 unsigned long flags;
9883 struct rq *rq;
9884
9885 rq = task_rq_lock(tsk, &flags);
9886
29f59db3
SV
9887 update_rq_clock(rq);
9888
051a1d1a 9889 running = task_current(rq, tsk);
29f59db3
SV
9890 on_rq = tsk->se.on_rq;
9891
0e1f3483 9892 if (on_rq)
29f59db3 9893 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9894 if (unlikely(running))
9895 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9896
6f505b16 9897 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9898
810b3817
PZ
9899#ifdef CONFIG_FAIR_GROUP_SCHED
9900 if (tsk->sched_class->moved_group)
9901 tsk->sched_class->moved_group(tsk);
9902#endif
9903
0e1f3483
HS
9904 if (unlikely(running))
9905 tsk->sched_class->set_curr_task(rq);
9906 if (on_rq)
7074badb 9907 enqueue_task(rq, tsk, 0);
29f59db3 9908
29f59db3
SV
9909 task_rq_unlock(rq, &flags);
9910}
6d6bc0ad 9911#endif /* CONFIG_GROUP_SCHED */
29f59db3 9912
052f1dc7 9913#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9914static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9915{
9916 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9917 int on_rq;
9918
29f59db3 9919 on_rq = se->on_rq;
62fb1851 9920 if (on_rq)
29f59db3
SV
9921 dequeue_entity(cfs_rq, se, 0);
9922
9923 se->load.weight = shares;
e05510d0 9924 se->load.inv_weight = 0;
29f59db3 9925
62fb1851 9926 if (on_rq)
29f59db3 9927 enqueue_entity(cfs_rq, se, 0);
c09595f6 9928}
62fb1851 9929
c09595f6
PZ
9930static void set_se_shares(struct sched_entity *se, unsigned long shares)
9931{
9932 struct cfs_rq *cfs_rq = se->cfs_rq;
9933 struct rq *rq = cfs_rq->rq;
9934 unsigned long flags;
9935
9936 spin_lock_irqsave(&rq->lock, flags);
9937 __set_se_shares(se, shares);
9938 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9939}
9940
8ed36996
PZ
9941static DEFINE_MUTEX(shares_mutex);
9942
4cf86d77 9943int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9944{
9945 int i;
8ed36996 9946 unsigned long flags;
c61935fd 9947
ec7dc8ac
DG
9948 /*
9949 * We can't change the weight of the root cgroup.
9950 */
9951 if (!tg->se[0])
9952 return -EINVAL;
9953
18d95a28
PZ
9954 if (shares < MIN_SHARES)
9955 shares = MIN_SHARES;
cb4ad1ff
MX
9956 else if (shares > MAX_SHARES)
9957 shares = MAX_SHARES;
62fb1851 9958
8ed36996 9959 mutex_lock(&shares_mutex);
9b5b7751 9960 if (tg->shares == shares)
5cb350ba 9961 goto done;
29f59db3 9962
8ed36996 9963 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9964 for_each_possible_cpu(i)
9965 unregister_fair_sched_group(tg, i);
f473aa5e 9966 list_del_rcu(&tg->siblings);
8ed36996 9967 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9968
9969 /* wait for any ongoing reference to this group to finish */
9970 synchronize_sched();
9971
9972 /*
9973 * Now we are free to modify the group's share on each cpu
9974 * w/o tripping rebalance_share or load_balance_fair.
9975 */
9b5b7751 9976 tg->shares = shares;
c09595f6
PZ
9977 for_each_possible_cpu(i) {
9978 /*
9979 * force a rebalance
9980 */
9981 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9982 set_se_shares(tg->se[i], shares);
c09595f6 9983 }
29f59db3 9984
6b2d7700
SV
9985 /*
9986 * Enable load balance activity on this group, by inserting it back on
9987 * each cpu's rq->leaf_cfs_rq_list.
9988 */
8ed36996 9989 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9990 for_each_possible_cpu(i)
9991 register_fair_sched_group(tg, i);
f473aa5e 9992 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9993 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9994done:
8ed36996 9995 mutex_unlock(&shares_mutex);
9b5b7751 9996 return 0;
29f59db3
SV
9997}
9998
5cb350ba
DG
9999unsigned long sched_group_shares(struct task_group *tg)
10000{
10001 return tg->shares;
10002}
052f1dc7 10003#endif
5cb350ba 10004
052f1dc7 10005#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10006/*
9f0c1e56 10007 * Ensure that the real time constraints are schedulable.
6f505b16 10008 */
9f0c1e56
PZ
10009static DEFINE_MUTEX(rt_constraints_mutex);
10010
10011static unsigned long to_ratio(u64 period, u64 runtime)
10012{
10013 if (runtime == RUNTIME_INF)
9a7e0b18 10014 return 1ULL << 20;
9f0c1e56 10015
9a7e0b18 10016 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10017}
10018
9a7e0b18
PZ
10019/* Must be called with tasklist_lock held */
10020static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10021{
9a7e0b18 10022 struct task_struct *g, *p;
b40b2e8e 10023
9a7e0b18
PZ
10024 do_each_thread(g, p) {
10025 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10026 return 1;
10027 } while_each_thread(g, p);
b40b2e8e 10028
9a7e0b18
PZ
10029 return 0;
10030}
b40b2e8e 10031
9a7e0b18
PZ
10032struct rt_schedulable_data {
10033 struct task_group *tg;
10034 u64 rt_period;
10035 u64 rt_runtime;
10036};
b40b2e8e 10037
9a7e0b18
PZ
10038static int tg_schedulable(struct task_group *tg, void *data)
10039{
10040 struct rt_schedulable_data *d = data;
10041 struct task_group *child;
10042 unsigned long total, sum = 0;
10043 u64 period, runtime;
b40b2e8e 10044
9a7e0b18
PZ
10045 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10046 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10047
9a7e0b18
PZ
10048 if (tg == d->tg) {
10049 period = d->rt_period;
10050 runtime = d->rt_runtime;
b40b2e8e 10051 }
b40b2e8e 10052
98a4826b
PZ
10053#ifdef CONFIG_USER_SCHED
10054 if (tg == &root_task_group) {
10055 period = global_rt_period();
10056 runtime = global_rt_runtime();
10057 }
10058#endif
10059
4653f803
PZ
10060 /*
10061 * Cannot have more runtime than the period.
10062 */
10063 if (runtime > period && runtime != RUNTIME_INF)
10064 return -EINVAL;
6f505b16 10065
4653f803
PZ
10066 /*
10067 * Ensure we don't starve existing RT tasks.
10068 */
9a7e0b18
PZ
10069 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10070 return -EBUSY;
6f505b16 10071
9a7e0b18 10072 total = to_ratio(period, runtime);
6f505b16 10073
4653f803
PZ
10074 /*
10075 * Nobody can have more than the global setting allows.
10076 */
10077 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10078 return -EINVAL;
6f505b16 10079
4653f803
PZ
10080 /*
10081 * The sum of our children's runtime should not exceed our own.
10082 */
9a7e0b18
PZ
10083 list_for_each_entry_rcu(child, &tg->children, siblings) {
10084 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10085 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10086
9a7e0b18
PZ
10087 if (child == d->tg) {
10088 period = d->rt_period;
10089 runtime = d->rt_runtime;
10090 }
6f505b16 10091
9a7e0b18 10092 sum += to_ratio(period, runtime);
9f0c1e56 10093 }
6f505b16 10094
9a7e0b18
PZ
10095 if (sum > total)
10096 return -EINVAL;
10097
10098 return 0;
6f505b16
PZ
10099}
10100
9a7e0b18 10101static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10102{
9a7e0b18
PZ
10103 struct rt_schedulable_data data = {
10104 .tg = tg,
10105 .rt_period = period,
10106 .rt_runtime = runtime,
10107 };
10108
10109 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10110}
10111
d0b27fa7
PZ
10112static int tg_set_bandwidth(struct task_group *tg,
10113 u64 rt_period, u64 rt_runtime)
6f505b16 10114{
ac086bc2 10115 int i, err = 0;
9f0c1e56 10116
9f0c1e56 10117 mutex_lock(&rt_constraints_mutex);
521f1a24 10118 read_lock(&tasklist_lock);
9a7e0b18
PZ
10119 err = __rt_schedulable(tg, rt_period, rt_runtime);
10120 if (err)
9f0c1e56 10121 goto unlock;
ac086bc2
PZ
10122
10123 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10124 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10125 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10126
10127 for_each_possible_cpu(i) {
10128 struct rt_rq *rt_rq = tg->rt_rq[i];
10129
10130 spin_lock(&rt_rq->rt_runtime_lock);
10131 rt_rq->rt_runtime = rt_runtime;
10132 spin_unlock(&rt_rq->rt_runtime_lock);
10133 }
10134 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10135 unlock:
521f1a24 10136 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10137 mutex_unlock(&rt_constraints_mutex);
10138
10139 return err;
6f505b16
PZ
10140}
10141
d0b27fa7
PZ
10142int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10143{
10144 u64 rt_runtime, rt_period;
10145
10146 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10147 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10148 if (rt_runtime_us < 0)
10149 rt_runtime = RUNTIME_INF;
10150
10151 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10152}
10153
9f0c1e56
PZ
10154long sched_group_rt_runtime(struct task_group *tg)
10155{
10156 u64 rt_runtime_us;
10157
d0b27fa7 10158 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10159 return -1;
10160
d0b27fa7 10161 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10162 do_div(rt_runtime_us, NSEC_PER_USEC);
10163 return rt_runtime_us;
10164}
d0b27fa7
PZ
10165
10166int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10167{
10168 u64 rt_runtime, rt_period;
10169
10170 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10171 rt_runtime = tg->rt_bandwidth.rt_runtime;
10172
619b0488
R
10173 if (rt_period == 0)
10174 return -EINVAL;
10175
d0b27fa7
PZ
10176 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10177}
10178
10179long sched_group_rt_period(struct task_group *tg)
10180{
10181 u64 rt_period_us;
10182
10183 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10184 do_div(rt_period_us, NSEC_PER_USEC);
10185 return rt_period_us;
10186}
10187
10188static int sched_rt_global_constraints(void)
10189{
4653f803 10190 u64 runtime, period;
d0b27fa7
PZ
10191 int ret = 0;
10192
ec5d4989
HS
10193 if (sysctl_sched_rt_period <= 0)
10194 return -EINVAL;
10195
4653f803
PZ
10196 runtime = global_rt_runtime();
10197 period = global_rt_period();
10198
10199 /*
10200 * Sanity check on the sysctl variables.
10201 */
10202 if (runtime > period && runtime != RUNTIME_INF)
10203 return -EINVAL;
10b612f4 10204
d0b27fa7 10205 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10206 read_lock(&tasklist_lock);
4653f803 10207 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10208 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10209 mutex_unlock(&rt_constraints_mutex);
10210
10211 return ret;
10212}
54e99124
DG
10213
10214int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10215{
10216 /* Don't accept realtime tasks when there is no way for them to run */
10217 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10218 return 0;
10219
10220 return 1;
10221}
10222
6d6bc0ad 10223#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10224static int sched_rt_global_constraints(void)
10225{
ac086bc2
PZ
10226 unsigned long flags;
10227 int i;
10228
ec5d4989
HS
10229 if (sysctl_sched_rt_period <= 0)
10230 return -EINVAL;
10231
60aa605d
PZ
10232 /*
10233 * There's always some RT tasks in the root group
10234 * -- migration, kstopmachine etc..
10235 */
10236 if (sysctl_sched_rt_runtime == 0)
10237 return -EBUSY;
10238
ac086bc2
PZ
10239 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10240 for_each_possible_cpu(i) {
10241 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10242
10243 spin_lock(&rt_rq->rt_runtime_lock);
10244 rt_rq->rt_runtime = global_rt_runtime();
10245 spin_unlock(&rt_rq->rt_runtime_lock);
10246 }
10247 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10248
d0b27fa7
PZ
10249 return 0;
10250}
6d6bc0ad 10251#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10252
10253int sched_rt_handler(struct ctl_table *table, int write,
10254 struct file *filp, void __user *buffer, size_t *lenp,
10255 loff_t *ppos)
10256{
10257 int ret;
10258 int old_period, old_runtime;
10259 static DEFINE_MUTEX(mutex);
10260
10261 mutex_lock(&mutex);
10262 old_period = sysctl_sched_rt_period;
10263 old_runtime = sysctl_sched_rt_runtime;
10264
10265 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10266
10267 if (!ret && write) {
10268 ret = sched_rt_global_constraints();
10269 if (ret) {
10270 sysctl_sched_rt_period = old_period;
10271 sysctl_sched_rt_runtime = old_runtime;
10272 } else {
10273 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10274 def_rt_bandwidth.rt_period =
10275 ns_to_ktime(global_rt_period());
10276 }
10277 }
10278 mutex_unlock(&mutex);
10279
10280 return ret;
10281}
68318b8e 10282
052f1dc7 10283#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10284
10285/* return corresponding task_group object of a cgroup */
2b01dfe3 10286static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10287{
2b01dfe3
PM
10288 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10289 struct task_group, css);
68318b8e
SV
10290}
10291
10292static struct cgroup_subsys_state *
2b01dfe3 10293cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10294{
ec7dc8ac 10295 struct task_group *tg, *parent;
68318b8e 10296
2b01dfe3 10297 if (!cgrp->parent) {
68318b8e 10298 /* This is early initialization for the top cgroup */
68318b8e
SV
10299 return &init_task_group.css;
10300 }
10301
ec7dc8ac
DG
10302 parent = cgroup_tg(cgrp->parent);
10303 tg = sched_create_group(parent);
68318b8e
SV
10304 if (IS_ERR(tg))
10305 return ERR_PTR(-ENOMEM);
10306
68318b8e
SV
10307 return &tg->css;
10308}
10309
41a2d6cf
IM
10310static void
10311cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10312{
2b01dfe3 10313 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10314
10315 sched_destroy_group(tg);
10316}
10317
41a2d6cf
IM
10318static int
10319cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10320 struct task_struct *tsk)
68318b8e 10321{
b68aa230 10322#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10323 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10324 return -EINVAL;
10325#else
68318b8e
SV
10326 /* We don't support RT-tasks being in separate groups */
10327 if (tsk->sched_class != &fair_sched_class)
10328 return -EINVAL;
b68aa230 10329#endif
68318b8e
SV
10330
10331 return 0;
10332}
10333
10334static void
2b01dfe3 10335cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10336 struct cgroup *old_cont, struct task_struct *tsk)
10337{
10338 sched_move_task(tsk);
10339}
10340
052f1dc7 10341#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10342static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10343 u64 shareval)
68318b8e 10344{
2b01dfe3 10345 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10346}
10347
f4c753b7 10348static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10349{
2b01dfe3 10350 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10351
10352 return (u64) tg->shares;
10353}
6d6bc0ad 10354#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10355
052f1dc7 10356#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10357static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10358 s64 val)
6f505b16 10359{
06ecb27c 10360 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10361}
10362
06ecb27c 10363static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10364{
06ecb27c 10365 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10366}
d0b27fa7
PZ
10367
10368static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10369 u64 rt_period_us)
10370{
10371 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10372}
10373
10374static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10375{
10376 return sched_group_rt_period(cgroup_tg(cgrp));
10377}
6d6bc0ad 10378#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10379
fe5c7cc2 10380static struct cftype cpu_files[] = {
052f1dc7 10381#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10382 {
10383 .name = "shares",
f4c753b7
PM
10384 .read_u64 = cpu_shares_read_u64,
10385 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10386 },
052f1dc7
PZ
10387#endif
10388#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10389 {
9f0c1e56 10390 .name = "rt_runtime_us",
06ecb27c
PM
10391 .read_s64 = cpu_rt_runtime_read,
10392 .write_s64 = cpu_rt_runtime_write,
6f505b16 10393 },
d0b27fa7
PZ
10394 {
10395 .name = "rt_period_us",
f4c753b7
PM
10396 .read_u64 = cpu_rt_period_read_uint,
10397 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10398 },
052f1dc7 10399#endif
68318b8e
SV
10400};
10401
10402static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10403{
fe5c7cc2 10404 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10405}
10406
10407struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10408 .name = "cpu",
10409 .create = cpu_cgroup_create,
10410 .destroy = cpu_cgroup_destroy,
10411 .can_attach = cpu_cgroup_can_attach,
10412 .attach = cpu_cgroup_attach,
10413 .populate = cpu_cgroup_populate,
10414 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10415 .early_init = 1,
10416};
10417
052f1dc7 10418#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10419
10420#ifdef CONFIG_CGROUP_CPUACCT
10421
10422/*
10423 * CPU accounting code for task groups.
10424 *
10425 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10426 * (balbir@in.ibm.com).
10427 */
10428
934352f2 10429/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10430struct cpuacct {
10431 struct cgroup_subsys_state css;
10432 /* cpuusage holds pointer to a u64-type object on every cpu */
10433 u64 *cpuusage;
ef12fefa 10434 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10435 struct cpuacct *parent;
d842de87
SV
10436};
10437
10438struct cgroup_subsys cpuacct_subsys;
10439
10440/* return cpu accounting group corresponding to this container */
32cd756a 10441static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10442{
32cd756a 10443 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10444 struct cpuacct, css);
10445}
10446
10447/* return cpu accounting group to which this task belongs */
10448static inline struct cpuacct *task_ca(struct task_struct *tsk)
10449{
10450 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10451 struct cpuacct, css);
10452}
10453
10454/* create a new cpu accounting group */
10455static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10456 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10457{
10458 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10459 int i;
d842de87
SV
10460
10461 if (!ca)
ef12fefa 10462 goto out;
d842de87
SV
10463
10464 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10465 if (!ca->cpuusage)
10466 goto out_free_ca;
10467
10468 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10469 if (percpu_counter_init(&ca->cpustat[i], 0))
10470 goto out_free_counters;
d842de87 10471
934352f2
BR
10472 if (cgrp->parent)
10473 ca->parent = cgroup_ca(cgrp->parent);
10474
d842de87 10475 return &ca->css;
ef12fefa
BR
10476
10477out_free_counters:
10478 while (--i >= 0)
10479 percpu_counter_destroy(&ca->cpustat[i]);
10480 free_percpu(ca->cpuusage);
10481out_free_ca:
10482 kfree(ca);
10483out:
10484 return ERR_PTR(-ENOMEM);
d842de87
SV
10485}
10486
10487/* destroy an existing cpu accounting group */
41a2d6cf 10488static void
32cd756a 10489cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10490{
32cd756a 10491 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10492 int i;
d842de87 10493
ef12fefa
BR
10494 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10495 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10496 free_percpu(ca->cpuusage);
10497 kfree(ca);
10498}
10499
720f5498
KC
10500static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10501{
b36128c8 10502 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10503 u64 data;
10504
10505#ifndef CONFIG_64BIT
10506 /*
10507 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10508 */
10509 spin_lock_irq(&cpu_rq(cpu)->lock);
10510 data = *cpuusage;
10511 spin_unlock_irq(&cpu_rq(cpu)->lock);
10512#else
10513 data = *cpuusage;
10514#endif
10515
10516 return data;
10517}
10518
10519static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10520{
b36128c8 10521 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10522
10523#ifndef CONFIG_64BIT
10524 /*
10525 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10526 */
10527 spin_lock_irq(&cpu_rq(cpu)->lock);
10528 *cpuusage = val;
10529 spin_unlock_irq(&cpu_rq(cpu)->lock);
10530#else
10531 *cpuusage = val;
10532#endif
10533}
10534
d842de87 10535/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10536static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10537{
32cd756a 10538 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10539 u64 totalcpuusage = 0;
10540 int i;
10541
720f5498
KC
10542 for_each_present_cpu(i)
10543 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10544
10545 return totalcpuusage;
10546}
10547
0297b803
DG
10548static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10549 u64 reset)
10550{
10551 struct cpuacct *ca = cgroup_ca(cgrp);
10552 int err = 0;
10553 int i;
10554
10555 if (reset) {
10556 err = -EINVAL;
10557 goto out;
10558 }
10559
720f5498
KC
10560 for_each_present_cpu(i)
10561 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10562
0297b803
DG
10563out:
10564 return err;
10565}
10566
e9515c3c
KC
10567static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10568 struct seq_file *m)
10569{
10570 struct cpuacct *ca = cgroup_ca(cgroup);
10571 u64 percpu;
10572 int i;
10573
10574 for_each_present_cpu(i) {
10575 percpu = cpuacct_cpuusage_read(ca, i);
10576 seq_printf(m, "%llu ", (unsigned long long) percpu);
10577 }
10578 seq_printf(m, "\n");
10579 return 0;
10580}
10581
ef12fefa
BR
10582static const char *cpuacct_stat_desc[] = {
10583 [CPUACCT_STAT_USER] = "user",
10584 [CPUACCT_STAT_SYSTEM] = "system",
10585};
10586
10587static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10588 struct cgroup_map_cb *cb)
10589{
10590 struct cpuacct *ca = cgroup_ca(cgrp);
10591 int i;
10592
10593 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10594 s64 val = percpu_counter_read(&ca->cpustat[i]);
10595 val = cputime64_to_clock_t(val);
10596 cb->fill(cb, cpuacct_stat_desc[i], val);
10597 }
10598 return 0;
10599}
10600
d842de87
SV
10601static struct cftype files[] = {
10602 {
10603 .name = "usage",
f4c753b7
PM
10604 .read_u64 = cpuusage_read,
10605 .write_u64 = cpuusage_write,
d842de87 10606 },
e9515c3c
KC
10607 {
10608 .name = "usage_percpu",
10609 .read_seq_string = cpuacct_percpu_seq_read,
10610 },
ef12fefa
BR
10611 {
10612 .name = "stat",
10613 .read_map = cpuacct_stats_show,
10614 },
d842de87
SV
10615};
10616
32cd756a 10617static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10618{
32cd756a 10619 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10620}
10621
10622/*
10623 * charge this task's execution time to its accounting group.
10624 *
10625 * called with rq->lock held.
10626 */
10627static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10628{
10629 struct cpuacct *ca;
934352f2 10630 int cpu;
d842de87 10631
c40c6f85 10632 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10633 return;
10634
934352f2 10635 cpu = task_cpu(tsk);
a18b83b7
BR
10636
10637 rcu_read_lock();
10638
d842de87 10639 ca = task_ca(tsk);
d842de87 10640
934352f2 10641 for (; ca; ca = ca->parent) {
b36128c8 10642 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10643 *cpuusage += cputime;
10644 }
a18b83b7
BR
10645
10646 rcu_read_unlock();
d842de87
SV
10647}
10648
ef12fefa
BR
10649/*
10650 * Charge the system/user time to the task's accounting group.
10651 */
10652static void cpuacct_update_stats(struct task_struct *tsk,
10653 enum cpuacct_stat_index idx, cputime_t val)
10654{
10655 struct cpuacct *ca;
10656
10657 if (unlikely(!cpuacct_subsys.active))
10658 return;
10659
10660 rcu_read_lock();
10661 ca = task_ca(tsk);
10662
10663 do {
10664 percpu_counter_add(&ca->cpustat[idx], val);
10665 ca = ca->parent;
10666 } while (ca);
10667 rcu_read_unlock();
10668}
10669
d842de87
SV
10670struct cgroup_subsys cpuacct_subsys = {
10671 .name = "cpuacct",
10672 .create = cpuacct_create,
10673 .destroy = cpuacct_destroy,
10674 .populate = cpuacct_populate,
10675 .subsys_id = cpuacct_subsys_id,
10676};
10677#endif /* CONFIG_CGROUP_CPUACCT */