sched: fix copy_namespace() <-> sched_fork() dependency in do_fork
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
62d0df64 55#include <linux/cpu_acct.h>
1da177e4
LT
56#include <linux/kthread.h>
57#include <linux/seq_file.h>
e692ab53 58#include <linux/sysctl.h>
1da177e4
LT
59#include <linux/syscalls.h>
60#include <linux/times.h>
8f0ab514 61#include <linux/tsacct_kern.h>
c6fd91f0 62#include <linux/kprobes.h>
0ff92245 63#include <linux/delayacct.h>
5517d86b 64#include <linux/reciprocal_div.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
1da177e4 67
5517d86b 68#include <asm/tlb.h>
838225b4 69#include <asm/irq_regs.h>
1da177e4 70
b035b6de
AD
71/*
72 * Scheduler clock - returns current time in nanosec units.
73 * This is default implementation.
74 * Architectures and sub-architectures can override this.
75 */
76unsigned long long __attribute__((weak)) sched_clock(void)
77{
d6322faf 78 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
b035b6de
AD
79}
80
1da177e4
LT
81/*
82 * Convert user-nice values [ -20 ... 0 ... 19 ]
83 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
84 * and back.
85 */
86#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
87#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
88#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
89
90/*
91 * 'User priority' is the nice value converted to something we
92 * can work with better when scaling various scheduler parameters,
93 * it's a [ 0 ... 39 ] range.
94 */
95#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
96#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
97#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
98
99/*
100 * Some helpers for converting nanosecond timing to jiffy resolution
101 */
d6322faf
ED
102#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103#define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
5517d86b
ED
116#ifdef CONFIG_SMP
117/*
118 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
119 * Since cpu_power is a 'constant', we can use a reciprocal divide.
120 */
121static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
122{
123 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124}
125
126/*
127 * Each time a sched group cpu_power is changed,
128 * we must compute its reciprocal value
129 */
130static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
131{
132 sg->__cpu_power += val;
133 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
134}
135#endif
136
e05606d3
IM
137static inline int rt_policy(int policy)
138{
139 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
140 return 1;
141 return 0;
142}
143
144static inline int task_has_rt_policy(struct task_struct *p)
145{
146 return rt_policy(p->policy);
147}
148
1da177e4 149/*
6aa645ea 150 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 151 */
6aa645ea
IM
152struct rt_prio_array {
153 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
154 struct list_head queue[MAX_RT_PRIO];
155};
156
29f59db3
SV
157#ifdef CONFIG_FAIR_GROUP_SCHED
158
68318b8e
SV
159#include <linux/cgroup.h>
160
29f59db3
SV
161struct cfs_rq;
162
163/* task group related information */
4cf86d77 164struct task_group {
68318b8e
SV
165#ifdef CONFIG_FAIR_CGROUP_SCHED
166 struct cgroup_subsys_state css;
167#endif
29f59db3
SV
168 /* schedulable entities of this group on each cpu */
169 struct sched_entity **se;
170 /* runqueue "owned" by this group on each cpu */
171 struct cfs_rq **cfs_rq;
172 unsigned long shares;
5cb350ba
DG
173 /* spinlock to serialize modification to shares */
174 spinlock_t lock;
ae8393e5 175 struct rcu_head rcu;
29f59db3
SV
176};
177
178/* Default task group's sched entity on each cpu */
179static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
180/* Default task group's cfs_rq on each cpu */
181static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
182
9b5b7751
SV
183static struct sched_entity *init_sched_entity_p[NR_CPUS];
184static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
185
186/* Default task group.
3a252015 187 * Every task in system belong to this group at bootup.
29f59db3 188 */
4cf86d77 189struct task_group init_task_group = {
3a252015
IM
190 .se = init_sched_entity_p,
191 .cfs_rq = init_cfs_rq_p,
192};
9b5b7751 193
24e377a8 194#ifdef CONFIG_FAIR_USER_SCHED
3a252015 195# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 196#else
3a252015 197# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
198#endif
199
4cf86d77 200static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
201
202/* return group to which a task belongs */
4cf86d77 203static inline struct task_group *task_group(struct task_struct *p)
29f59db3 204{
4cf86d77 205 struct task_group *tg;
9b5b7751 206
24e377a8
SV
207#ifdef CONFIG_FAIR_USER_SCHED
208 tg = p->user->tg;
68318b8e
SV
209#elif defined(CONFIG_FAIR_CGROUP_SCHED)
210 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
211 struct task_group, css);
24e377a8 212#else
4cf86d77 213 tg = &init_task_group;
24e377a8 214#endif
9b5b7751
SV
215
216 return tg;
29f59db3
SV
217}
218
219/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
220static inline void set_task_cfs_rq(struct task_struct *p)
221{
4cf86d77
IM
222 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
223 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
224}
225
226#else
227
228static inline void set_task_cfs_rq(struct task_struct *p) { }
229
230#endif /* CONFIG_FAIR_GROUP_SCHED */
231
6aa645ea
IM
232/* CFS-related fields in a runqueue */
233struct cfs_rq {
234 struct load_weight load;
235 unsigned long nr_running;
236
6aa645ea 237 u64 exec_clock;
e9acbff6 238 u64 min_vruntime;
6aa645ea
IM
239
240 struct rb_root tasks_timeline;
241 struct rb_node *rb_leftmost;
242 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
243 /* 'curr' points to currently running entity on this cfs_rq.
244 * It is set to NULL otherwise (i.e when none are currently running).
245 */
246 struct sched_entity *curr;
ddc97297
PZ
247
248 unsigned long nr_spread_over;
249
62160e3f 250#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
251 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
252
253 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
254 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
255 * (like users, containers etc.)
256 *
257 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
258 * list is used during load balance.
259 */
260 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 261 struct task_group *tg; /* group that "owns" this runqueue */
6aa645ea
IM
262#endif
263};
1da177e4 264
6aa645ea
IM
265/* Real-Time classes' related field in a runqueue: */
266struct rt_rq {
267 struct rt_prio_array active;
268 int rt_load_balance_idx;
269 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
270};
271
1da177e4
LT
272/*
273 * This is the main, per-CPU runqueue data structure.
274 *
275 * Locking rule: those places that want to lock multiple runqueues
276 * (such as the load balancing or the thread migration code), lock
277 * acquire operations must be ordered by ascending &runqueue.
278 */
70b97a7f 279struct rq {
d8016491
IM
280 /* runqueue lock: */
281 spinlock_t lock;
1da177e4
LT
282
283 /*
284 * nr_running and cpu_load should be in the same cacheline because
285 * remote CPUs use both these fields when doing load calculation.
286 */
287 unsigned long nr_running;
6aa645ea
IM
288 #define CPU_LOAD_IDX_MAX 5
289 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 290 unsigned char idle_at_tick;
46cb4b7c
SS
291#ifdef CONFIG_NO_HZ
292 unsigned char in_nohz_recently;
293#endif
d8016491
IM
294 /* capture load from *all* tasks on this cpu: */
295 struct load_weight load;
6aa645ea
IM
296 unsigned long nr_load_updates;
297 u64 nr_switches;
298
299 struct cfs_rq cfs;
300#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
301 /* list of leaf cfs_rq on this cpu: */
302 struct list_head leaf_cfs_rq_list;
1da177e4 303#endif
6aa645ea 304 struct rt_rq rt;
1da177e4
LT
305
306 /*
307 * This is part of a global counter where only the total sum
308 * over all CPUs matters. A task can increase this counter on
309 * one CPU and if it got migrated afterwards it may decrease
310 * it on another CPU. Always updated under the runqueue lock:
311 */
312 unsigned long nr_uninterruptible;
313
36c8b586 314 struct task_struct *curr, *idle;
c9819f45 315 unsigned long next_balance;
1da177e4 316 struct mm_struct *prev_mm;
6aa645ea 317
6aa645ea
IM
318 u64 clock, prev_clock_raw;
319 s64 clock_max_delta;
320
321 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
322 u64 idle_clock;
323 unsigned int clock_deep_idle_events;
529c7726 324 u64 tick_timestamp;
6aa645ea 325
1da177e4
LT
326 atomic_t nr_iowait;
327
328#ifdef CONFIG_SMP
329 struct sched_domain *sd;
330
331 /* For active balancing */
332 int active_balance;
333 int push_cpu;
d8016491
IM
334 /* cpu of this runqueue: */
335 int cpu;
1da177e4 336
36c8b586 337 struct task_struct *migration_thread;
1da177e4
LT
338 struct list_head migration_queue;
339#endif
340
341#ifdef CONFIG_SCHEDSTATS
342 /* latency stats */
343 struct sched_info rq_sched_info;
344
345 /* sys_sched_yield() stats */
480b9434
KC
346 unsigned int yld_exp_empty;
347 unsigned int yld_act_empty;
348 unsigned int yld_both_empty;
349 unsigned int yld_count;
1da177e4
LT
350
351 /* schedule() stats */
480b9434
KC
352 unsigned int sched_switch;
353 unsigned int sched_count;
354 unsigned int sched_goidle;
1da177e4
LT
355
356 /* try_to_wake_up() stats */
480b9434
KC
357 unsigned int ttwu_count;
358 unsigned int ttwu_local;
b8efb561
IM
359
360 /* BKL stats */
480b9434 361 unsigned int bkl_count;
1da177e4 362#endif
fcb99371 363 struct lock_class_key rq_lock_key;
1da177e4
LT
364};
365
f34e3b61 366static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 367static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 368
dd41f596
IM
369static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
370{
371 rq->curr->sched_class->check_preempt_curr(rq, p);
372}
373
0a2966b4
CL
374static inline int cpu_of(struct rq *rq)
375{
376#ifdef CONFIG_SMP
377 return rq->cpu;
378#else
379 return 0;
380#endif
381}
382
20d315d4 383/*
b04a0f4c
IM
384 * Update the per-runqueue clock, as finegrained as the platform can give
385 * us, but without assuming monotonicity, etc.:
20d315d4 386 */
b04a0f4c 387static void __update_rq_clock(struct rq *rq)
20d315d4
IM
388{
389 u64 prev_raw = rq->prev_clock_raw;
390 u64 now = sched_clock();
391 s64 delta = now - prev_raw;
392 u64 clock = rq->clock;
393
b04a0f4c
IM
394#ifdef CONFIG_SCHED_DEBUG
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396#endif
20d315d4
IM
397 /*
398 * Protect against sched_clock() occasionally going backwards:
399 */
400 if (unlikely(delta < 0)) {
401 clock++;
402 rq->clock_warps++;
403 } else {
404 /*
405 * Catch too large forward jumps too:
406 */
529c7726
IM
407 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
408 if (clock < rq->tick_timestamp + TICK_NSEC)
409 clock = rq->tick_timestamp + TICK_NSEC;
410 else
411 clock++;
20d315d4
IM
412 rq->clock_overflows++;
413 } else {
414 if (unlikely(delta > rq->clock_max_delta))
415 rq->clock_max_delta = delta;
416 clock += delta;
417 }
418 }
419
420 rq->prev_clock_raw = now;
421 rq->clock = clock;
b04a0f4c 422}
20d315d4 423
b04a0f4c
IM
424static void update_rq_clock(struct rq *rq)
425{
426 if (likely(smp_processor_id() == cpu_of(rq)))
427 __update_rq_clock(rq);
20d315d4
IM
428}
429
674311d5
NP
430/*
431 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 432 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
433 *
434 * The domain tree of any CPU may only be accessed from within
435 * preempt-disabled sections.
436 */
48f24c4d
IM
437#define for_each_domain(cpu, __sd) \
438 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
439
440#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
441#define this_rq() (&__get_cpu_var(runqueues))
442#define task_rq(p) cpu_rq(task_cpu(p))
443#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
444
bf5c91ba
IM
445/*
446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
447 */
448#ifdef CONFIG_SCHED_DEBUG
449# define const_debug __read_mostly
450#else
451# define const_debug static const
452#endif
453
454/*
455 * Debugging: various feature bits
456 */
457enum {
bbdba7c0
IM
458 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
459 SCHED_FEAT_START_DEBIT = 2,
06877c33 460 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 461 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 462 SCHED_FEAT_WAKEUP_PREEMPT = 16,
bf5c91ba
IM
463};
464
465const_debug unsigned int sysctl_sched_features =
8401f775
IM
466 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0 |
3e3e13f3 470 SCHED_FEAT_WAKEUP_PREEMPT * 1;
bf5c91ba
IM
471
472#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
473
e436d800
IM
474/*
475 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
476 * clock constructed from sched_clock():
477 */
478unsigned long long cpu_clock(int cpu)
479{
e436d800
IM
480 unsigned long long now;
481 unsigned long flags;
b04a0f4c 482 struct rq *rq;
e436d800 483
2cd4d0ea 484 local_irq_save(flags);
b04a0f4c
IM
485 rq = cpu_rq(cpu);
486 update_rq_clock(rq);
487 now = rq->clock;
2cd4d0ea 488 local_irq_restore(flags);
e436d800
IM
489
490 return now;
491}
a58f6f25 492EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 493
1da177e4 494#ifndef prepare_arch_switch
4866cde0
NP
495# define prepare_arch_switch(next) do { } while (0)
496#endif
497#ifndef finish_arch_switch
498# define finish_arch_switch(prev) do { } while (0)
499#endif
500
501#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 502static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
503{
504 return rq->curr == p;
505}
506
70b97a7f 507static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
508{
509}
510
70b97a7f 511static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 512{
da04c035
IM
513#ifdef CONFIG_DEBUG_SPINLOCK
514 /* this is a valid case when another task releases the spinlock */
515 rq->lock.owner = current;
516#endif
8a25d5de
IM
517 /*
518 * If we are tracking spinlock dependencies then we have to
519 * fix up the runqueue lock - which gets 'carried over' from
520 * prev into current:
521 */
522 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
523
4866cde0
NP
524 spin_unlock_irq(&rq->lock);
525}
526
527#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 528static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
529{
530#ifdef CONFIG_SMP
531 return p->oncpu;
532#else
533 return rq->curr == p;
534#endif
535}
536
70b97a7f 537static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
538{
539#ifdef CONFIG_SMP
540 /*
541 * We can optimise this out completely for !SMP, because the
542 * SMP rebalancing from interrupt is the only thing that cares
543 * here.
544 */
545 next->oncpu = 1;
546#endif
547#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
548 spin_unlock_irq(&rq->lock);
549#else
550 spin_unlock(&rq->lock);
551#endif
552}
553
70b97a7f 554static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
555{
556#ifdef CONFIG_SMP
557 /*
558 * After ->oncpu is cleared, the task can be moved to a different CPU.
559 * We must ensure this doesn't happen until the switch is completely
560 * finished.
561 */
562 smp_wmb();
563 prev->oncpu = 0;
564#endif
565#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
566 local_irq_enable();
1da177e4 567#endif
4866cde0
NP
568}
569#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 570
b29739f9
IM
571/*
572 * __task_rq_lock - lock the runqueue a given task resides on.
573 * Must be called interrupts disabled.
574 */
70b97a7f 575static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
576 __acquires(rq->lock)
577{
3a5c359a
AK
578 for (;;) {
579 struct rq *rq = task_rq(p);
580 spin_lock(&rq->lock);
581 if (likely(rq == task_rq(p)))
582 return rq;
b29739f9 583 spin_unlock(&rq->lock);
b29739f9 584 }
b29739f9
IM
585}
586
1da177e4
LT
587/*
588 * task_rq_lock - lock the runqueue a given task resides on and disable
589 * interrupts. Note the ordering: we can safely lookup the task_rq without
590 * explicitly disabling preemption.
591 */
70b97a7f 592static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
593 __acquires(rq->lock)
594{
70b97a7f 595 struct rq *rq;
1da177e4 596
3a5c359a
AK
597 for (;;) {
598 local_irq_save(*flags);
599 rq = task_rq(p);
600 spin_lock(&rq->lock);
601 if (likely(rq == task_rq(p)))
602 return rq;
1da177e4 603 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 604 }
1da177e4
LT
605}
606
a9957449 607static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
608 __releases(rq->lock)
609{
610 spin_unlock(&rq->lock);
611}
612
70b97a7f 613static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
614 __releases(rq->lock)
615{
616 spin_unlock_irqrestore(&rq->lock, *flags);
617}
618
1da177e4 619/*
cc2a73b5 620 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 621 */
a9957449 622static struct rq *this_rq_lock(void)
1da177e4
LT
623 __acquires(rq->lock)
624{
70b97a7f 625 struct rq *rq;
1da177e4
LT
626
627 local_irq_disable();
628 rq = this_rq();
629 spin_lock(&rq->lock);
630
631 return rq;
632}
633
1b9f19c2 634/*
2aa44d05 635 * We are going deep-idle (irqs are disabled):
1b9f19c2 636 */
2aa44d05 637void sched_clock_idle_sleep_event(void)
1b9f19c2 638{
2aa44d05
IM
639 struct rq *rq = cpu_rq(smp_processor_id());
640
641 spin_lock(&rq->lock);
642 __update_rq_clock(rq);
643 spin_unlock(&rq->lock);
644 rq->clock_deep_idle_events++;
645}
646EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
647
648/*
649 * We just idled delta nanoseconds (called with irqs disabled):
650 */
651void sched_clock_idle_wakeup_event(u64 delta_ns)
652{
653 struct rq *rq = cpu_rq(smp_processor_id());
654 u64 now = sched_clock();
1b9f19c2 655
2aa44d05
IM
656 rq->idle_clock += delta_ns;
657 /*
658 * Override the previous timestamp and ignore all
659 * sched_clock() deltas that occured while we idled,
660 * and use the PM-provided delta_ns to advance the
661 * rq clock:
662 */
663 spin_lock(&rq->lock);
664 rq->prev_clock_raw = now;
665 rq->clock += delta_ns;
666 spin_unlock(&rq->lock);
1b9f19c2 667}
2aa44d05 668EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 669
c24d20db
IM
670/*
671 * resched_task - mark a task 'to be rescheduled now'.
672 *
673 * On UP this means the setting of the need_resched flag, on SMP it
674 * might also involve a cross-CPU call to trigger the scheduler on
675 * the target CPU.
676 */
677#ifdef CONFIG_SMP
678
679#ifndef tsk_is_polling
680#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
681#endif
682
683static void resched_task(struct task_struct *p)
684{
685 int cpu;
686
687 assert_spin_locked(&task_rq(p)->lock);
688
689 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
690 return;
691
692 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
693
694 cpu = task_cpu(p);
695 if (cpu == smp_processor_id())
696 return;
697
698 /* NEED_RESCHED must be visible before we test polling */
699 smp_mb();
700 if (!tsk_is_polling(p))
701 smp_send_reschedule(cpu);
702}
703
704static void resched_cpu(int cpu)
705{
706 struct rq *rq = cpu_rq(cpu);
707 unsigned long flags;
708
709 if (!spin_trylock_irqsave(&rq->lock, flags))
710 return;
711 resched_task(cpu_curr(cpu));
712 spin_unlock_irqrestore(&rq->lock, flags);
713}
714#else
715static inline void resched_task(struct task_struct *p)
716{
717 assert_spin_locked(&task_rq(p)->lock);
718 set_tsk_need_resched(p);
719}
720#endif
721
45bf76df
IM
722#if BITS_PER_LONG == 32
723# define WMULT_CONST (~0UL)
724#else
725# define WMULT_CONST (1UL << 32)
726#endif
727
728#define WMULT_SHIFT 32
729
194081eb
IM
730/*
731 * Shift right and round:
732 */
cf2ab469 733#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 734
cb1c4fc9 735static unsigned long
45bf76df
IM
736calc_delta_mine(unsigned long delta_exec, unsigned long weight,
737 struct load_weight *lw)
738{
739 u64 tmp;
740
741 if (unlikely(!lw->inv_weight))
194081eb 742 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
743
744 tmp = (u64)delta_exec * weight;
745 /*
746 * Check whether we'd overflow the 64-bit multiplication:
747 */
194081eb 748 if (unlikely(tmp > WMULT_CONST))
cf2ab469 749 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
750 WMULT_SHIFT/2);
751 else
cf2ab469 752 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 753
ecf691da 754 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
755}
756
757static inline unsigned long
758calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
759{
760 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
761}
762
1091985b 763static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
764{
765 lw->weight += inc;
45bf76df
IM
766}
767
1091985b 768static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
769{
770 lw->weight -= dec;
45bf76df
IM
771}
772
2dd73a4f
PW
773/*
774 * To aid in avoiding the subversion of "niceness" due to uneven distribution
775 * of tasks with abnormal "nice" values across CPUs the contribution that
776 * each task makes to its run queue's load is weighted according to its
777 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
778 * scaled version of the new time slice allocation that they receive on time
779 * slice expiry etc.
780 */
781
dd41f596
IM
782#define WEIGHT_IDLEPRIO 2
783#define WMULT_IDLEPRIO (1 << 31)
784
785/*
786 * Nice levels are multiplicative, with a gentle 10% change for every
787 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
788 * nice 1, it will get ~10% less CPU time than another CPU-bound task
789 * that remained on nice 0.
790 *
791 * The "10% effect" is relative and cumulative: from _any_ nice level,
792 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
793 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
794 * If a task goes up by ~10% and another task goes down by ~10% then
795 * the relative distance between them is ~25%.)
dd41f596
IM
796 */
797static const int prio_to_weight[40] = {
254753dc
IM
798 /* -20 */ 88761, 71755, 56483, 46273, 36291,
799 /* -15 */ 29154, 23254, 18705, 14949, 11916,
800 /* -10 */ 9548, 7620, 6100, 4904, 3906,
801 /* -5 */ 3121, 2501, 1991, 1586, 1277,
802 /* 0 */ 1024, 820, 655, 526, 423,
803 /* 5 */ 335, 272, 215, 172, 137,
804 /* 10 */ 110, 87, 70, 56, 45,
805 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
806};
807
5714d2de
IM
808/*
809 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
810 *
811 * In cases where the weight does not change often, we can use the
812 * precalculated inverse to speed up arithmetics by turning divisions
813 * into multiplications:
814 */
dd41f596 815static const u32 prio_to_wmult[40] = {
254753dc
IM
816 /* -20 */ 48388, 59856, 76040, 92818, 118348,
817 /* -15 */ 147320, 184698, 229616, 287308, 360437,
818 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
819 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
820 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
821 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
822 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
823 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 824};
2dd73a4f 825
dd41f596
IM
826static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
827
828/*
829 * runqueue iterator, to support SMP load-balancing between different
830 * scheduling classes, without having to expose their internal data
831 * structures to the load-balancing proper:
832 */
833struct rq_iterator {
834 void *arg;
835 struct task_struct *(*start)(void *);
836 struct task_struct *(*next)(void *);
837};
838
e1d1484f
PW
839#ifdef CONFIG_SMP
840static unsigned long
841balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
842 unsigned long max_load_move, struct sched_domain *sd,
843 enum cpu_idle_type idle, int *all_pinned,
844 int *this_best_prio, struct rq_iterator *iterator);
845
846static int
847iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
848 struct sched_domain *sd, enum cpu_idle_type idle,
849 struct rq_iterator *iterator);
e1d1484f 850#endif
dd41f596
IM
851
852#include "sched_stats.h"
dd41f596 853#include "sched_idletask.c"
5522d5d5
IM
854#include "sched_fair.c"
855#include "sched_rt.c"
dd41f596
IM
856#ifdef CONFIG_SCHED_DEBUG
857# include "sched_debug.c"
858#endif
859
860#define sched_class_highest (&rt_sched_class)
861
9c217245
IM
862/*
863 * Update delta_exec, delta_fair fields for rq.
864 *
865 * delta_fair clock advances at a rate inversely proportional to
495eca49 866 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
867 * delta_exec advances at the same rate as wall-clock (provided
868 * cpu is not idle).
869 *
870 * delta_exec / delta_fair is a measure of the (smoothened) load on this
871 * runqueue over any given interval. This (smoothened) load is used
872 * during load balance.
873 *
495eca49 874 * This function is called /before/ updating rq->load
9c217245
IM
875 * and when switching tasks.
876 */
29b4b623 877static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 878{
495eca49 879 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
880}
881
79b5dddf 882static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 883{
495eca49 884 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
885}
886
e5fa2237 887static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
888{
889 rq->nr_running++;
29b4b623 890 inc_load(rq, p);
9c217245
IM
891}
892
db53181e 893static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
894{
895 rq->nr_running--;
79b5dddf 896 dec_load(rq, p);
9c217245
IM
897}
898
45bf76df
IM
899static void set_load_weight(struct task_struct *p)
900{
901 if (task_has_rt_policy(p)) {
dd41f596
IM
902 p->se.load.weight = prio_to_weight[0] * 2;
903 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
904 return;
905 }
45bf76df 906
dd41f596
IM
907 /*
908 * SCHED_IDLE tasks get minimal weight:
909 */
910 if (p->policy == SCHED_IDLE) {
911 p->se.load.weight = WEIGHT_IDLEPRIO;
912 p->se.load.inv_weight = WMULT_IDLEPRIO;
913 return;
914 }
71f8bd46 915
dd41f596
IM
916 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
917 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
918}
919
8159f87e 920static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 921{
dd41f596 922 sched_info_queued(p);
fd390f6a 923 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 924 p->se.on_rq = 1;
71f8bd46
IM
925}
926
69be72c1 927static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 928{
f02231e5 929 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 930 p->se.on_rq = 0;
71f8bd46
IM
931}
932
14531189 933/*
dd41f596 934 * __normal_prio - return the priority that is based on the static prio
14531189 935 */
14531189
IM
936static inline int __normal_prio(struct task_struct *p)
937{
dd41f596 938 return p->static_prio;
14531189
IM
939}
940
b29739f9
IM
941/*
942 * Calculate the expected normal priority: i.e. priority
943 * without taking RT-inheritance into account. Might be
944 * boosted by interactivity modifiers. Changes upon fork,
945 * setprio syscalls, and whenever the interactivity
946 * estimator recalculates.
947 */
36c8b586 948static inline int normal_prio(struct task_struct *p)
b29739f9
IM
949{
950 int prio;
951
e05606d3 952 if (task_has_rt_policy(p))
b29739f9
IM
953 prio = MAX_RT_PRIO-1 - p->rt_priority;
954 else
955 prio = __normal_prio(p);
956 return prio;
957}
958
959/*
960 * Calculate the current priority, i.e. the priority
961 * taken into account by the scheduler. This value might
962 * be boosted by RT tasks, or might be boosted by
963 * interactivity modifiers. Will be RT if the task got
964 * RT-boosted. If not then it returns p->normal_prio.
965 */
36c8b586 966static int effective_prio(struct task_struct *p)
b29739f9
IM
967{
968 p->normal_prio = normal_prio(p);
969 /*
970 * If we are RT tasks or we were boosted to RT priority,
971 * keep the priority unchanged. Otherwise, update priority
972 * to the normal priority:
973 */
974 if (!rt_prio(p->prio))
975 return p->normal_prio;
976 return p->prio;
977}
978
1da177e4 979/*
dd41f596 980 * activate_task - move a task to the runqueue.
1da177e4 981 */
dd41f596 982static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 983{
dd41f596
IM
984 if (p->state == TASK_UNINTERRUPTIBLE)
985 rq->nr_uninterruptible--;
1da177e4 986
8159f87e 987 enqueue_task(rq, p, wakeup);
e5fa2237 988 inc_nr_running(p, rq);
1da177e4
LT
989}
990
1da177e4
LT
991/*
992 * deactivate_task - remove a task from the runqueue.
993 */
2e1cb74a 994static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 995{
dd41f596
IM
996 if (p->state == TASK_UNINTERRUPTIBLE)
997 rq->nr_uninterruptible++;
998
69be72c1 999 dequeue_task(rq, p, sleep);
db53181e 1000 dec_nr_running(p, rq);
1da177e4
LT
1001}
1002
1da177e4
LT
1003/**
1004 * task_curr - is this task currently executing on a CPU?
1005 * @p: the task in question.
1006 */
36c8b586 1007inline int task_curr(const struct task_struct *p)
1da177e4
LT
1008{
1009 return cpu_curr(task_cpu(p)) == p;
1010}
1011
2dd73a4f
PW
1012/* Used instead of source_load when we know the type == 0 */
1013unsigned long weighted_cpuload(const int cpu)
1014{
495eca49 1015 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1016}
1017
1018static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1019{
1020#ifdef CONFIG_SMP
1021 task_thread_info(p)->cpu = cpu;
dd41f596 1022#endif
29f59db3 1023 set_task_cfs_rq(p);
2dd73a4f
PW
1024}
1025
1da177e4 1026#ifdef CONFIG_SMP
c65cc870 1027
cc367732
IM
1028/*
1029 * Is this task likely cache-hot:
1030 */
1031static inline int
1032task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1033{
1034 s64 delta;
1035
1036 if (p->sched_class != &fair_sched_class)
1037 return 0;
1038
6bc1665b
IM
1039 if (sysctl_sched_migration_cost == -1)
1040 return 1;
1041 if (sysctl_sched_migration_cost == 0)
1042 return 0;
1043
cc367732
IM
1044 delta = now - p->se.exec_start;
1045
1046 return delta < (s64)sysctl_sched_migration_cost;
1047}
1048
1049
dd41f596 1050void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1051{
dd41f596
IM
1052 int old_cpu = task_cpu(p);
1053 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1054 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1055 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1056 u64 clock_offset;
dd41f596
IM
1057
1058 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1059
1060#ifdef CONFIG_SCHEDSTATS
1061 if (p->se.wait_start)
1062 p->se.wait_start -= clock_offset;
dd41f596
IM
1063 if (p->se.sleep_start)
1064 p->se.sleep_start -= clock_offset;
1065 if (p->se.block_start)
1066 p->se.block_start -= clock_offset;
cc367732
IM
1067 if (old_cpu != new_cpu) {
1068 schedstat_inc(p, se.nr_migrations);
1069 if (task_hot(p, old_rq->clock, NULL))
1070 schedstat_inc(p, se.nr_forced2_migrations);
1071 }
6cfb0d5d 1072#endif
2830cf8c
SV
1073 p->se.vruntime -= old_cfsrq->min_vruntime -
1074 new_cfsrq->min_vruntime;
dd41f596
IM
1075
1076 __set_task_cpu(p, new_cpu);
c65cc870
IM
1077}
1078
70b97a7f 1079struct migration_req {
1da177e4 1080 struct list_head list;
1da177e4 1081
36c8b586 1082 struct task_struct *task;
1da177e4
LT
1083 int dest_cpu;
1084
1da177e4 1085 struct completion done;
70b97a7f 1086};
1da177e4
LT
1087
1088/*
1089 * The task's runqueue lock must be held.
1090 * Returns true if you have to wait for migration thread.
1091 */
36c8b586 1092static int
70b97a7f 1093migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1094{
70b97a7f 1095 struct rq *rq = task_rq(p);
1da177e4
LT
1096
1097 /*
1098 * If the task is not on a runqueue (and not running), then
1099 * it is sufficient to simply update the task's cpu field.
1100 */
dd41f596 1101 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1102 set_task_cpu(p, dest_cpu);
1103 return 0;
1104 }
1105
1106 init_completion(&req->done);
1da177e4
LT
1107 req->task = p;
1108 req->dest_cpu = dest_cpu;
1109 list_add(&req->list, &rq->migration_queue);
48f24c4d 1110
1da177e4
LT
1111 return 1;
1112}
1113
1114/*
1115 * wait_task_inactive - wait for a thread to unschedule.
1116 *
1117 * The caller must ensure that the task *will* unschedule sometime soon,
1118 * else this function might spin for a *long* time. This function can't
1119 * be called with interrupts off, or it may introduce deadlock with
1120 * smp_call_function() if an IPI is sent by the same process we are
1121 * waiting to become inactive.
1122 */
36c8b586 1123void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1124{
1125 unsigned long flags;
dd41f596 1126 int running, on_rq;
70b97a7f 1127 struct rq *rq;
1da177e4 1128
3a5c359a
AK
1129 for (;;) {
1130 /*
1131 * We do the initial early heuristics without holding
1132 * any task-queue locks at all. We'll only try to get
1133 * the runqueue lock when things look like they will
1134 * work out!
1135 */
1136 rq = task_rq(p);
fa490cfd 1137
3a5c359a
AK
1138 /*
1139 * If the task is actively running on another CPU
1140 * still, just relax and busy-wait without holding
1141 * any locks.
1142 *
1143 * NOTE! Since we don't hold any locks, it's not
1144 * even sure that "rq" stays as the right runqueue!
1145 * But we don't care, since "task_running()" will
1146 * return false if the runqueue has changed and p
1147 * is actually now running somewhere else!
1148 */
1149 while (task_running(rq, p))
1150 cpu_relax();
fa490cfd 1151
3a5c359a
AK
1152 /*
1153 * Ok, time to look more closely! We need the rq
1154 * lock now, to be *sure*. If we're wrong, we'll
1155 * just go back and repeat.
1156 */
1157 rq = task_rq_lock(p, &flags);
1158 running = task_running(rq, p);
1159 on_rq = p->se.on_rq;
1160 task_rq_unlock(rq, &flags);
fa490cfd 1161
3a5c359a
AK
1162 /*
1163 * Was it really running after all now that we
1164 * checked with the proper locks actually held?
1165 *
1166 * Oops. Go back and try again..
1167 */
1168 if (unlikely(running)) {
1169 cpu_relax();
1170 continue;
1171 }
fa490cfd 1172
3a5c359a
AK
1173 /*
1174 * It's not enough that it's not actively running,
1175 * it must be off the runqueue _entirely_, and not
1176 * preempted!
1177 *
1178 * So if it wa still runnable (but just not actively
1179 * running right now), it's preempted, and we should
1180 * yield - it could be a while.
1181 */
1182 if (unlikely(on_rq)) {
1183 schedule_timeout_uninterruptible(1);
1184 continue;
1185 }
fa490cfd 1186
3a5c359a
AK
1187 /*
1188 * Ahh, all good. It wasn't running, and it wasn't
1189 * runnable, which means that it will never become
1190 * running in the future either. We're all done!
1191 */
1192 break;
1193 }
1da177e4
LT
1194}
1195
1196/***
1197 * kick_process - kick a running thread to enter/exit the kernel
1198 * @p: the to-be-kicked thread
1199 *
1200 * Cause a process which is running on another CPU to enter
1201 * kernel-mode, without any delay. (to get signals handled.)
1202 *
1203 * NOTE: this function doesnt have to take the runqueue lock,
1204 * because all it wants to ensure is that the remote task enters
1205 * the kernel. If the IPI races and the task has been migrated
1206 * to another CPU then no harm is done and the purpose has been
1207 * achieved as well.
1208 */
36c8b586 1209void kick_process(struct task_struct *p)
1da177e4
LT
1210{
1211 int cpu;
1212
1213 preempt_disable();
1214 cpu = task_cpu(p);
1215 if ((cpu != smp_processor_id()) && task_curr(p))
1216 smp_send_reschedule(cpu);
1217 preempt_enable();
1218}
1219
1220/*
2dd73a4f
PW
1221 * Return a low guess at the load of a migration-source cpu weighted
1222 * according to the scheduling class and "nice" value.
1da177e4
LT
1223 *
1224 * We want to under-estimate the load of migration sources, to
1225 * balance conservatively.
1226 */
a9957449 1227static unsigned long source_load(int cpu, int type)
1da177e4 1228{
70b97a7f 1229 struct rq *rq = cpu_rq(cpu);
dd41f596 1230 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1231
3b0bd9bc 1232 if (type == 0)
dd41f596 1233 return total;
b910472d 1234
dd41f596 1235 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1236}
1237
1238/*
2dd73a4f
PW
1239 * Return a high guess at the load of a migration-target cpu weighted
1240 * according to the scheduling class and "nice" value.
1da177e4 1241 */
a9957449 1242static unsigned long target_load(int cpu, int type)
1da177e4 1243{
70b97a7f 1244 struct rq *rq = cpu_rq(cpu);
dd41f596 1245 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1246
7897986b 1247 if (type == 0)
dd41f596 1248 return total;
3b0bd9bc 1249
dd41f596 1250 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1251}
1252
1253/*
1254 * Return the average load per task on the cpu's run queue
1255 */
1256static inline unsigned long cpu_avg_load_per_task(int cpu)
1257{
70b97a7f 1258 struct rq *rq = cpu_rq(cpu);
dd41f596 1259 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1260 unsigned long n = rq->nr_running;
1261
dd41f596 1262 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1263}
1264
147cbb4b
NP
1265/*
1266 * find_idlest_group finds and returns the least busy CPU group within the
1267 * domain.
1268 */
1269static struct sched_group *
1270find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1271{
1272 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1273 unsigned long min_load = ULONG_MAX, this_load = 0;
1274 int load_idx = sd->forkexec_idx;
1275 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1276
1277 do {
1278 unsigned long load, avg_load;
1279 int local_group;
1280 int i;
1281
da5a5522
BD
1282 /* Skip over this group if it has no CPUs allowed */
1283 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1284 continue;
da5a5522 1285
147cbb4b 1286 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1287
1288 /* Tally up the load of all CPUs in the group */
1289 avg_load = 0;
1290
1291 for_each_cpu_mask(i, group->cpumask) {
1292 /* Bias balancing toward cpus of our domain */
1293 if (local_group)
1294 load = source_load(i, load_idx);
1295 else
1296 load = target_load(i, load_idx);
1297
1298 avg_load += load;
1299 }
1300
1301 /* Adjust by relative CPU power of the group */
5517d86b
ED
1302 avg_load = sg_div_cpu_power(group,
1303 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1304
1305 if (local_group) {
1306 this_load = avg_load;
1307 this = group;
1308 } else if (avg_load < min_load) {
1309 min_load = avg_load;
1310 idlest = group;
1311 }
3a5c359a 1312 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1313
1314 if (!idlest || 100*this_load < imbalance*min_load)
1315 return NULL;
1316 return idlest;
1317}
1318
1319/*
0feaece9 1320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1321 */
95cdf3b7
IM
1322static int
1323find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1324{
da5a5522 1325 cpumask_t tmp;
147cbb4b
NP
1326 unsigned long load, min_load = ULONG_MAX;
1327 int idlest = -1;
1328 int i;
1329
da5a5522
BD
1330 /* Traverse only the allowed CPUs */
1331 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1332
1333 for_each_cpu_mask(i, tmp) {
2dd73a4f 1334 load = weighted_cpuload(i);
147cbb4b
NP
1335
1336 if (load < min_load || (load == min_load && i == this_cpu)) {
1337 min_load = load;
1338 idlest = i;
1339 }
1340 }
1341
1342 return idlest;
1343}
1344
476d139c
NP
1345/*
1346 * sched_balance_self: balance the current task (running on cpu) in domains
1347 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1348 * SD_BALANCE_EXEC.
1349 *
1350 * Balance, ie. select the least loaded group.
1351 *
1352 * Returns the target CPU number, or the same CPU if no balancing is needed.
1353 *
1354 * preempt must be disabled.
1355 */
1356static int sched_balance_self(int cpu, int flag)
1357{
1358 struct task_struct *t = current;
1359 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1360
c96d145e 1361 for_each_domain(cpu, tmp) {
9761eea8
IM
1362 /*
1363 * If power savings logic is enabled for a domain, stop there.
1364 */
5c45bf27
SS
1365 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1366 break;
476d139c
NP
1367 if (tmp->flags & flag)
1368 sd = tmp;
c96d145e 1369 }
476d139c
NP
1370
1371 while (sd) {
1372 cpumask_t span;
1373 struct sched_group *group;
1a848870
SS
1374 int new_cpu, weight;
1375
1376 if (!(sd->flags & flag)) {
1377 sd = sd->child;
1378 continue;
1379 }
476d139c
NP
1380
1381 span = sd->span;
1382 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1383 if (!group) {
1384 sd = sd->child;
1385 continue;
1386 }
476d139c 1387
da5a5522 1388 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1389 if (new_cpu == -1 || new_cpu == cpu) {
1390 /* Now try balancing at a lower domain level of cpu */
1391 sd = sd->child;
1392 continue;
1393 }
476d139c 1394
1a848870 1395 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1396 cpu = new_cpu;
476d139c
NP
1397 sd = NULL;
1398 weight = cpus_weight(span);
1399 for_each_domain(cpu, tmp) {
1400 if (weight <= cpus_weight(tmp->span))
1401 break;
1402 if (tmp->flags & flag)
1403 sd = tmp;
1404 }
1405 /* while loop will break here if sd == NULL */
1406 }
1407
1408 return cpu;
1409}
1410
1411#endif /* CONFIG_SMP */
1da177e4
LT
1412
1413/*
1414 * wake_idle() will wake a task on an idle cpu if task->cpu is
1415 * not idle and an idle cpu is available. The span of cpus to
1416 * search starts with cpus closest then further out as needed,
1417 * so we always favor a closer, idle cpu.
1418 *
1419 * Returns the CPU we should wake onto.
1420 */
1421#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1422static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1423{
1424 cpumask_t tmp;
1425 struct sched_domain *sd;
1426 int i;
1427
4953198b
SS
1428 /*
1429 * If it is idle, then it is the best cpu to run this task.
1430 *
1431 * This cpu is also the best, if it has more than one task already.
1432 * Siblings must be also busy(in most cases) as they didn't already
1433 * pickup the extra load from this cpu and hence we need not check
1434 * sibling runqueue info. This will avoid the checks and cache miss
1435 * penalities associated with that.
1436 */
1437 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1438 return cpu;
1439
1440 for_each_domain(cpu, sd) {
1441 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1442 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1443 for_each_cpu_mask(i, tmp) {
cc367732
IM
1444 if (idle_cpu(i)) {
1445 if (i != task_cpu(p)) {
1446 schedstat_inc(p,
1447 se.nr_wakeups_idle);
1448 }
1da177e4 1449 return i;
cc367732 1450 }
1da177e4 1451 }
9761eea8 1452 } else {
e0f364f4 1453 break;
9761eea8 1454 }
1da177e4
LT
1455 }
1456 return cpu;
1457}
1458#else
36c8b586 1459static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1460{
1461 return cpu;
1462}
1463#endif
1464
1465/***
1466 * try_to_wake_up - wake up a thread
1467 * @p: the to-be-woken-up thread
1468 * @state: the mask of task states that can be woken
1469 * @sync: do a synchronous wakeup?
1470 *
1471 * Put it on the run-queue if it's not already there. The "current"
1472 * thread is always on the run-queue (except when the actual
1473 * re-schedule is in progress), and as such you're allowed to do
1474 * the simpler "current->state = TASK_RUNNING" to mark yourself
1475 * runnable without the overhead of this.
1476 *
1477 * returns failure only if the task is already active.
1478 */
36c8b586 1479static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1480{
cc367732 1481 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1482 unsigned long flags;
1483 long old_state;
70b97a7f 1484 struct rq *rq;
1da177e4 1485#ifdef CONFIG_SMP
7897986b 1486 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1487 unsigned long load, this_load;
1da177e4
LT
1488 int new_cpu;
1489#endif
1490
1491 rq = task_rq_lock(p, &flags);
1492 old_state = p->state;
1493 if (!(old_state & state))
1494 goto out;
1495
dd41f596 1496 if (p->se.on_rq)
1da177e4
LT
1497 goto out_running;
1498
1499 cpu = task_cpu(p);
cc367732 1500 orig_cpu = cpu;
1da177e4
LT
1501 this_cpu = smp_processor_id();
1502
1503#ifdef CONFIG_SMP
1504 if (unlikely(task_running(rq, p)))
1505 goto out_activate;
1506
7897986b
NP
1507 new_cpu = cpu;
1508
2d72376b 1509 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1510 if (cpu == this_cpu) {
1511 schedstat_inc(rq, ttwu_local);
7897986b
NP
1512 goto out_set_cpu;
1513 }
1514
1515 for_each_domain(this_cpu, sd) {
1516 if (cpu_isset(cpu, sd->span)) {
1517 schedstat_inc(sd, ttwu_wake_remote);
1518 this_sd = sd;
1519 break;
1da177e4
LT
1520 }
1521 }
1da177e4 1522
7897986b 1523 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1524 goto out_set_cpu;
1525
1da177e4 1526 /*
7897986b 1527 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1528 */
7897986b
NP
1529 if (this_sd) {
1530 int idx = this_sd->wake_idx;
1531 unsigned int imbalance;
1da177e4 1532
a3f21bce
NP
1533 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1534
7897986b
NP
1535 load = source_load(cpu, idx);
1536 this_load = target_load(this_cpu, idx);
1da177e4 1537
7897986b
NP
1538 new_cpu = this_cpu; /* Wake to this CPU if we can */
1539
a3f21bce
NP
1540 if (this_sd->flags & SD_WAKE_AFFINE) {
1541 unsigned long tl = this_load;
33859f7f
MOS
1542 unsigned long tl_per_task;
1543
71e20f18
IM
1544 /*
1545 * Attract cache-cold tasks on sync wakeups:
1546 */
1547 if (sync && !task_hot(p, rq->clock, this_sd))
1548 goto out_set_cpu;
1549
cc367732 1550 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1551 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1552
1da177e4 1553 /*
a3f21bce
NP
1554 * If sync wakeup then subtract the (maximum possible)
1555 * effect of the currently running task from the load
1556 * of the current CPU:
1da177e4 1557 */
a3f21bce 1558 if (sync)
dd41f596 1559 tl -= current->se.load.weight;
a3f21bce
NP
1560
1561 if ((tl <= load &&
2dd73a4f 1562 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1563 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1564 /*
1565 * This domain has SD_WAKE_AFFINE and
1566 * p is cache cold in this domain, and
1567 * there is no bad imbalance.
1568 */
1569 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1570 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1571 goto out_set_cpu;
1572 }
1573 }
1574
1575 /*
1576 * Start passive balancing when half the imbalance_pct
1577 * limit is reached.
1578 */
1579 if (this_sd->flags & SD_WAKE_BALANCE) {
1580 if (imbalance*this_load <= 100*load) {
1581 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1582 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1583 goto out_set_cpu;
1584 }
1da177e4
LT
1585 }
1586 }
1587
1588 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1589out_set_cpu:
1590 new_cpu = wake_idle(new_cpu, p);
1591 if (new_cpu != cpu) {
1592 set_task_cpu(p, new_cpu);
1593 task_rq_unlock(rq, &flags);
1594 /* might preempt at this point */
1595 rq = task_rq_lock(p, &flags);
1596 old_state = p->state;
1597 if (!(old_state & state))
1598 goto out;
dd41f596 1599 if (p->se.on_rq)
1da177e4
LT
1600 goto out_running;
1601
1602 this_cpu = smp_processor_id();
1603 cpu = task_cpu(p);
1604 }
1605
1606out_activate:
1607#endif /* CONFIG_SMP */
cc367732
IM
1608 schedstat_inc(p, se.nr_wakeups);
1609 if (sync)
1610 schedstat_inc(p, se.nr_wakeups_sync);
1611 if (orig_cpu != cpu)
1612 schedstat_inc(p, se.nr_wakeups_migrate);
1613 if (cpu == this_cpu)
1614 schedstat_inc(p, se.nr_wakeups_local);
1615 else
1616 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1617 update_rq_clock(rq);
dd41f596 1618 activate_task(rq, p, 1);
9c63d9c0 1619 check_preempt_curr(rq, p);
1da177e4
LT
1620 success = 1;
1621
1622out_running:
1623 p->state = TASK_RUNNING;
1624out:
1625 task_rq_unlock(rq, &flags);
1626
1627 return success;
1628}
1629
36c8b586 1630int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1631{
1632 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1633 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1634}
1da177e4
LT
1635EXPORT_SYMBOL(wake_up_process);
1636
36c8b586 1637int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1638{
1639 return try_to_wake_up(p, state, 0);
1640}
1641
1da177e4
LT
1642/*
1643 * Perform scheduler related setup for a newly forked process p.
1644 * p is forked by current.
dd41f596
IM
1645 *
1646 * __sched_fork() is basic setup used by init_idle() too:
1647 */
1648static void __sched_fork(struct task_struct *p)
1649{
dd41f596
IM
1650 p->se.exec_start = 0;
1651 p->se.sum_exec_runtime = 0;
f6cf891c 1652 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1653
1654#ifdef CONFIG_SCHEDSTATS
1655 p->se.wait_start = 0;
dd41f596
IM
1656 p->se.sum_sleep_runtime = 0;
1657 p->se.sleep_start = 0;
dd41f596
IM
1658 p->se.block_start = 0;
1659 p->se.sleep_max = 0;
1660 p->se.block_max = 0;
1661 p->se.exec_max = 0;
eba1ed4b 1662 p->se.slice_max = 0;
dd41f596 1663 p->se.wait_max = 0;
6cfb0d5d 1664#endif
476d139c 1665
dd41f596
IM
1666 INIT_LIST_HEAD(&p->run_list);
1667 p->se.on_rq = 0;
476d139c 1668
e107be36
AK
1669#ifdef CONFIG_PREEMPT_NOTIFIERS
1670 INIT_HLIST_HEAD(&p->preempt_notifiers);
1671#endif
1672
1da177e4
LT
1673 /*
1674 * We mark the process as running here, but have not actually
1675 * inserted it onto the runqueue yet. This guarantees that
1676 * nobody will actually run it, and a signal or other external
1677 * event cannot wake it up and insert it on the runqueue either.
1678 */
1679 p->state = TASK_RUNNING;
dd41f596
IM
1680}
1681
1682/*
1683 * fork()/clone()-time setup:
1684 */
1685void sched_fork(struct task_struct *p, int clone_flags)
1686{
1687 int cpu = get_cpu();
1688
1689 __sched_fork(p);
1690
1691#ifdef CONFIG_SMP
1692 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1693#endif
02e4bac2 1694 set_task_cpu(p, cpu);
b29739f9
IM
1695
1696 /*
1697 * Make sure we do not leak PI boosting priority to the child:
1698 */
1699 p->prio = current->normal_prio;
2ddbf952
HS
1700 if (!rt_prio(p->prio))
1701 p->sched_class = &fair_sched_class;
b29739f9 1702
52f17b6c 1703#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1704 if (likely(sched_info_on()))
52f17b6c 1705 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1706#endif
d6077cb8 1707#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1708 p->oncpu = 0;
1709#endif
1da177e4 1710#ifdef CONFIG_PREEMPT
4866cde0 1711 /* Want to start with kernel preemption disabled. */
a1261f54 1712 task_thread_info(p)->preempt_count = 1;
1da177e4 1713#endif
476d139c 1714 put_cpu();
1da177e4
LT
1715}
1716
1717/*
1718 * wake_up_new_task - wake up a newly created task for the first time.
1719 *
1720 * This function will do some initial scheduler statistics housekeeping
1721 * that must be done for every newly created context, then puts the task
1722 * on the runqueue and wakes it.
1723 */
36c8b586 1724void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1725{
1726 unsigned long flags;
dd41f596 1727 struct rq *rq;
1da177e4
LT
1728
1729 rq = task_rq_lock(p, &flags);
147cbb4b 1730 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1731 update_rq_clock(rq);
1da177e4
LT
1732
1733 p->prio = effective_prio(p);
1734
b9dca1e0 1735 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1736 activate_task(rq, p, 0);
1da177e4 1737 } else {
1da177e4 1738 /*
dd41f596
IM
1739 * Let the scheduling class do new task startup
1740 * management (if any):
1da177e4 1741 */
ee0827d8 1742 p->sched_class->task_new(rq, p);
e5fa2237 1743 inc_nr_running(p, rq);
1da177e4 1744 }
dd41f596
IM
1745 check_preempt_curr(rq, p);
1746 task_rq_unlock(rq, &flags);
1da177e4
LT
1747}
1748
e107be36
AK
1749#ifdef CONFIG_PREEMPT_NOTIFIERS
1750
1751/**
421cee29
RD
1752 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1753 * @notifier: notifier struct to register
e107be36
AK
1754 */
1755void preempt_notifier_register(struct preempt_notifier *notifier)
1756{
1757 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1758}
1759EXPORT_SYMBOL_GPL(preempt_notifier_register);
1760
1761/**
1762 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1763 * @notifier: notifier struct to unregister
e107be36
AK
1764 *
1765 * This is safe to call from within a preemption notifier.
1766 */
1767void preempt_notifier_unregister(struct preempt_notifier *notifier)
1768{
1769 hlist_del(&notifier->link);
1770}
1771EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1772
1773static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1774{
1775 struct preempt_notifier *notifier;
1776 struct hlist_node *node;
1777
1778 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1779 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1780}
1781
1782static void
1783fire_sched_out_preempt_notifiers(struct task_struct *curr,
1784 struct task_struct *next)
1785{
1786 struct preempt_notifier *notifier;
1787 struct hlist_node *node;
1788
1789 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1790 notifier->ops->sched_out(notifier, next);
1791}
1792
1793#else
1794
1795static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796{
1797}
1798
1799static void
1800fire_sched_out_preempt_notifiers(struct task_struct *curr,
1801 struct task_struct *next)
1802{
1803}
1804
1805#endif
1806
4866cde0
NP
1807/**
1808 * prepare_task_switch - prepare to switch tasks
1809 * @rq: the runqueue preparing to switch
421cee29 1810 * @prev: the current task that is being switched out
4866cde0
NP
1811 * @next: the task we are going to switch to.
1812 *
1813 * This is called with the rq lock held and interrupts off. It must
1814 * be paired with a subsequent finish_task_switch after the context
1815 * switch.
1816 *
1817 * prepare_task_switch sets up locking and calls architecture specific
1818 * hooks.
1819 */
e107be36
AK
1820static inline void
1821prepare_task_switch(struct rq *rq, struct task_struct *prev,
1822 struct task_struct *next)
4866cde0 1823{
e107be36 1824 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1825 prepare_lock_switch(rq, next);
1826 prepare_arch_switch(next);
1827}
1828
1da177e4
LT
1829/**
1830 * finish_task_switch - clean up after a task-switch
344babaa 1831 * @rq: runqueue associated with task-switch
1da177e4
LT
1832 * @prev: the thread we just switched away from.
1833 *
4866cde0
NP
1834 * finish_task_switch must be called after the context switch, paired
1835 * with a prepare_task_switch call before the context switch.
1836 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1837 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1838 *
1839 * Note that we may have delayed dropping an mm in context_switch(). If
1840 * so, we finish that here outside of the runqueue lock. (Doing it
1841 * with the lock held can cause deadlocks; see schedule() for
1842 * details.)
1843 */
a9957449 1844static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1845 __releases(rq->lock)
1846{
1da177e4 1847 struct mm_struct *mm = rq->prev_mm;
55a101f8 1848 long prev_state;
1da177e4
LT
1849
1850 rq->prev_mm = NULL;
1851
1852 /*
1853 * A task struct has one reference for the use as "current".
c394cc9f 1854 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1855 * schedule one last time. The schedule call will never return, and
1856 * the scheduled task must drop that reference.
c394cc9f 1857 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1858 * still held, otherwise prev could be scheduled on another cpu, die
1859 * there before we look at prev->state, and then the reference would
1860 * be dropped twice.
1861 * Manfred Spraul <manfred@colorfullife.com>
1862 */
55a101f8 1863 prev_state = prev->state;
4866cde0
NP
1864 finish_arch_switch(prev);
1865 finish_lock_switch(rq, prev);
e107be36 1866 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1867 if (mm)
1868 mmdrop(mm);
c394cc9f 1869 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1870 /*
1871 * Remove function-return probe instances associated with this
1872 * task and put them back on the free list.
9761eea8 1873 */
c6fd91f0 1874 kprobe_flush_task(prev);
1da177e4 1875 put_task_struct(prev);
c6fd91f0 1876 }
1da177e4
LT
1877}
1878
1879/**
1880 * schedule_tail - first thing a freshly forked thread must call.
1881 * @prev: the thread we just switched away from.
1882 */
36c8b586 1883asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1884 __releases(rq->lock)
1885{
70b97a7f
IM
1886 struct rq *rq = this_rq();
1887
4866cde0
NP
1888 finish_task_switch(rq, prev);
1889#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1890 /* In this case, finish_task_switch does not reenable preemption */
1891 preempt_enable();
1892#endif
1da177e4 1893 if (current->set_child_tid)
b488893a 1894 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1895}
1896
1897/*
1898 * context_switch - switch to the new MM and the new
1899 * thread's register state.
1900 */
dd41f596 1901static inline void
70b97a7f 1902context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1903 struct task_struct *next)
1da177e4 1904{
dd41f596 1905 struct mm_struct *mm, *oldmm;
1da177e4 1906
e107be36 1907 prepare_task_switch(rq, prev, next);
dd41f596
IM
1908 mm = next->mm;
1909 oldmm = prev->active_mm;
9226d125
ZA
1910 /*
1911 * For paravirt, this is coupled with an exit in switch_to to
1912 * combine the page table reload and the switch backend into
1913 * one hypercall.
1914 */
1915 arch_enter_lazy_cpu_mode();
1916
dd41f596 1917 if (unlikely(!mm)) {
1da177e4
LT
1918 next->active_mm = oldmm;
1919 atomic_inc(&oldmm->mm_count);
1920 enter_lazy_tlb(oldmm, next);
1921 } else
1922 switch_mm(oldmm, mm, next);
1923
dd41f596 1924 if (unlikely(!prev->mm)) {
1da177e4 1925 prev->active_mm = NULL;
1da177e4
LT
1926 rq->prev_mm = oldmm;
1927 }
3a5f5e48
IM
1928 /*
1929 * Since the runqueue lock will be released by the next
1930 * task (which is an invalid locking op but in the case
1931 * of the scheduler it's an obvious special-case), so we
1932 * do an early lockdep release here:
1933 */
1934#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1935 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1936#endif
1da177e4
LT
1937
1938 /* Here we just switch the register state and the stack. */
1939 switch_to(prev, next, prev);
1940
dd41f596
IM
1941 barrier();
1942 /*
1943 * this_rq must be evaluated again because prev may have moved
1944 * CPUs since it called schedule(), thus the 'rq' on its stack
1945 * frame will be invalid.
1946 */
1947 finish_task_switch(this_rq(), prev);
1da177e4
LT
1948}
1949
1950/*
1951 * nr_running, nr_uninterruptible and nr_context_switches:
1952 *
1953 * externally visible scheduler statistics: current number of runnable
1954 * threads, current number of uninterruptible-sleeping threads, total
1955 * number of context switches performed since bootup.
1956 */
1957unsigned long nr_running(void)
1958{
1959 unsigned long i, sum = 0;
1960
1961 for_each_online_cpu(i)
1962 sum += cpu_rq(i)->nr_running;
1963
1964 return sum;
1965}
1966
1967unsigned long nr_uninterruptible(void)
1968{
1969 unsigned long i, sum = 0;
1970
0a945022 1971 for_each_possible_cpu(i)
1da177e4
LT
1972 sum += cpu_rq(i)->nr_uninterruptible;
1973
1974 /*
1975 * Since we read the counters lockless, it might be slightly
1976 * inaccurate. Do not allow it to go below zero though:
1977 */
1978 if (unlikely((long)sum < 0))
1979 sum = 0;
1980
1981 return sum;
1982}
1983
1984unsigned long long nr_context_switches(void)
1985{
cc94abfc
SR
1986 int i;
1987 unsigned long long sum = 0;
1da177e4 1988
0a945022 1989 for_each_possible_cpu(i)
1da177e4
LT
1990 sum += cpu_rq(i)->nr_switches;
1991
1992 return sum;
1993}
1994
1995unsigned long nr_iowait(void)
1996{
1997 unsigned long i, sum = 0;
1998
0a945022 1999 for_each_possible_cpu(i)
1da177e4
LT
2000 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2001
2002 return sum;
2003}
2004
db1b1fef
JS
2005unsigned long nr_active(void)
2006{
2007 unsigned long i, running = 0, uninterruptible = 0;
2008
2009 for_each_online_cpu(i) {
2010 running += cpu_rq(i)->nr_running;
2011 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2012 }
2013
2014 if (unlikely((long)uninterruptible < 0))
2015 uninterruptible = 0;
2016
2017 return running + uninterruptible;
2018}
2019
48f24c4d 2020/*
dd41f596
IM
2021 * Update rq->cpu_load[] statistics. This function is usually called every
2022 * scheduler tick (TICK_NSEC).
48f24c4d 2023 */
dd41f596 2024static void update_cpu_load(struct rq *this_rq)
48f24c4d 2025{
495eca49 2026 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2027 int i, scale;
2028
2029 this_rq->nr_load_updates++;
dd41f596
IM
2030
2031 /* Update our load: */
2032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2033 unsigned long old_load, new_load;
2034
2035 /* scale is effectively 1 << i now, and >> i divides by scale */
2036
2037 old_load = this_rq->cpu_load[i];
2038 new_load = this_load;
a25707f3
IM
2039 /*
2040 * Round up the averaging division if load is increasing. This
2041 * prevents us from getting stuck on 9 if the load is 10, for
2042 * example.
2043 */
2044 if (new_load > old_load)
2045 new_load += scale-1;
dd41f596
IM
2046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2047 }
48f24c4d
IM
2048}
2049
dd41f596
IM
2050#ifdef CONFIG_SMP
2051
1da177e4
LT
2052/*
2053 * double_rq_lock - safely lock two runqueues
2054 *
2055 * Note this does not disable interrupts like task_rq_lock,
2056 * you need to do so manually before calling.
2057 */
70b97a7f 2058static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2059 __acquires(rq1->lock)
2060 __acquires(rq2->lock)
2061{
054b9108 2062 BUG_ON(!irqs_disabled());
1da177e4
LT
2063 if (rq1 == rq2) {
2064 spin_lock(&rq1->lock);
2065 __acquire(rq2->lock); /* Fake it out ;) */
2066 } else {
c96d145e 2067 if (rq1 < rq2) {
1da177e4
LT
2068 spin_lock(&rq1->lock);
2069 spin_lock(&rq2->lock);
2070 } else {
2071 spin_lock(&rq2->lock);
2072 spin_lock(&rq1->lock);
2073 }
2074 }
6e82a3be
IM
2075 update_rq_clock(rq1);
2076 update_rq_clock(rq2);
1da177e4
LT
2077}
2078
2079/*
2080 * double_rq_unlock - safely unlock two runqueues
2081 *
2082 * Note this does not restore interrupts like task_rq_unlock,
2083 * you need to do so manually after calling.
2084 */
70b97a7f 2085static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2086 __releases(rq1->lock)
2087 __releases(rq2->lock)
2088{
2089 spin_unlock(&rq1->lock);
2090 if (rq1 != rq2)
2091 spin_unlock(&rq2->lock);
2092 else
2093 __release(rq2->lock);
2094}
2095
2096/*
2097 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2098 */
70b97a7f 2099static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2100 __releases(this_rq->lock)
2101 __acquires(busiest->lock)
2102 __acquires(this_rq->lock)
2103{
054b9108
KK
2104 if (unlikely(!irqs_disabled())) {
2105 /* printk() doesn't work good under rq->lock */
2106 spin_unlock(&this_rq->lock);
2107 BUG_ON(1);
2108 }
1da177e4 2109 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2110 if (busiest < this_rq) {
1da177e4
LT
2111 spin_unlock(&this_rq->lock);
2112 spin_lock(&busiest->lock);
2113 spin_lock(&this_rq->lock);
2114 } else
2115 spin_lock(&busiest->lock);
2116 }
2117}
2118
1da177e4
LT
2119/*
2120 * If dest_cpu is allowed for this process, migrate the task to it.
2121 * This is accomplished by forcing the cpu_allowed mask to only
2122 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2123 * the cpu_allowed mask is restored.
2124 */
36c8b586 2125static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2126{
70b97a7f 2127 struct migration_req req;
1da177e4 2128 unsigned long flags;
70b97a7f 2129 struct rq *rq;
1da177e4
LT
2130
2131 rq = task_rq_lock(p, &flags);
2132 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2133 || unlikely(cpu_is_offline(dest_cpu)))
2134 goto out;
2135
2136 /* force the process onto the specified CPU */
2137 if (migrate_task(p, dest_cpu, &req)) {
2138 /* Need to wait for migration thread (might exit: take ref). */
2139 struct task_struct *mt = rq->migration_thread;
36c8b586 2140
1da177e4
LT
2141 get_task_struct(mt);
2142 task_rq_unlock(rq, &flags);
2143 wake_up_process(mt);
2144 put_task_struct(mt);
2145 wait_for_completion(&req.done);
36c8b586 2146
1da177e4
LT
2147 return;
2148 }
2149out:
2150 task_rq_unlock(rq, &flags);
2151}
2152
2153/*
476d139c
NP
2154 * sched_exec - execve() is a valuable balancing opportunity, because at
2155 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2156 */
2157void sched_exec(void)
2158{
1da177e4 2159 int new_cpu, this_cpu = get_cpu();
476d139c 2160 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2161 put_cpu();
476d139c
NP
2162 if (new_cpu != this_cpu)
2163 sched_migrate_task(current, new_cpu);
1da177e4
LT
2164}
2165
2166/*
2167 * pull_task - move a task from a remote runqueue to the local runqueue.
2168 * Both runqueues must be locked.
2169 */
dd41f596
IM
2170static void pull_task(struct rq *src_rq, struct task_struct *p,
2171 struct rq *this_rq, int this_cpu)
1da177e4 2172{
2e1cb74a 2173 deactivate_task(src_rq, p, 0);
1da177e4 2174 set_task_cpu(p, this_cpu);
dd41f596 2175 activate_task(this_rq, p, 0);
1da177e4
LT
2176 /*
2177 * Note that idle threads have a prio of MAX_PRIO, for this test
2178 * to be always true for them.
2179 */
dd41f596 2180 check_preempt_curr(this_rq, p);
1da177e4
LT
2181}
2182
2183/*
2184 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2185 */
858119e1 2186static
70b97a7f 2187int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2188 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2189 int *all_pinned)
1da177e4
LT
2190{
2191 /*
2192 * We do not migrate tasks that are:
2193 * 1) running (obviously), or
2194 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2195 * 3) are cache-hot on their current CPU.
2196 */
cc367732
IM
2197 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2198 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2199 return 0;
cc367732 2200 }
81026794
NP
2201 *all_pinned = 0;
2202
cc367732
IM
2203 if (task_running(rq, p)) {
2204 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2205 return 0;
cc367732 2206 }
1da177e4 2207
da84d961
IM
2208 /*
2209 * Aggressive migration if:
2210 * 1) task is cache cold, or
2211 * 2) too many balance attempts have failed.
2212 */
2213
6bc1665b
IM
2214 if (!task_hot(p, rq->clock, sd) ||
2215 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2216#ifdef CONFIG_SCHEDSTATS
cc367732 2217 if (task_hot(p, rq->clock, sd)) {
da84d961 2218 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2219 schedstat_inc(p, se.nr_forced_migrations);
2220 }
da84d961
IM
2221#endif
2222 return 1;
2223 }
2224
cc367732
IM
2225 if (task_hot(p, rq->clock, sd)) {
2226 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2227 return 0;
cc367732 2228 }
1da177e4
LT
2229 return 1;
2230}
2231
e1d1484f
PW
2232static unsigned long
2233balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2234 unsigned long max_load_move, struct sched_domain *sd,
2235 enum cpu_idle_type idle, int *all_pinned,
2236 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2237{
dd41f596
IM
2238 int pulled = 0, pinned = 0, skip_for_load;
2239 struct task_struct *p;
2240 long rem_load_move = max_load_move;
1da177e4 2241
e1d1484f 2242 if (max_load_move == 0)
1da177e4
LT
2243 goto out;
2244
81026794
NP
2245 pinned = 1;
2246
1da177e4 2247 /*
dd41f596 2248 * Start the load-balancing iterator:
1da177e4 2249 */
dd41f596
IM
2250 p = iterator->start(iterator->arg);
2251next:
2252 if (!p)
1da177e4 2253 goto out;
50ddd969
PW
2254 /*
2255 * To help distribute high priority tasks accross CPUs we don't
2256 * skip a task if it will be the highest priority task (i.e. smallest
2257 * prio value) on its new queue regardless of its load weight
2258 */
dd41f596
IM
2259 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2260 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2261 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2262 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2263 p = iterator->next(iterator->arg);
2264 goto next;
1da177e4
LT
2265 }
2266
dd41f596 2267 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2268 pulled++;
dd41f596 2269 rem_load_move -= p->se.load.weight;
1da177e4 2270
2dd73a4f
PW
2271 /*
2272 * We only want to steal up to the prescribed number of tasks
2273 * and the prescribed amount of weighted load.
2274 */
e1d1484f 2275 if (rem_load_move > 0) {
a4ac01c3
PW
2276 if (p->prio < *this_best_prio)
2277 *this_best_prio = p->prio;
dd41f596
IM
2278 p = iterator->next(iterator->arg);
2279 goto next;
1da177e4
LT
2280 }
2281out:
2282 /*
e1d1484f 2283 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2284 * so we can safely collect pull_task() stats here rather than
2285 * inside pull_task().
2286 */
2287 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2288
2289 if (all_pinned)
2290 *all_pinned = pinned;
e1d1484f
PW
2291
2292 return max_load_move - rem_load_move;
1da177e4
LT
2293}
2294
dd41f596 2295/*
43010659
PW
2296 * move_tasks tries to move up to max_load_move weighted load from busiest to
2297 * this_rq, as part of a balancing operation within domain "sd".
2298 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2299 *
2300 * Called with both runqueues locked.
2301 */
2302static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2303 unsigned long max_load_move,
dd41f596
IM
2304 struct sched_domain *sd, enum cpu_idle_type idle,
2305 int *all_pinned)
2306{
5522d5d5 2307 const struct sched_class *class = sched_class_highest;
43010659 2308 unsigned long total_load_moved = 0;
a4ac01c3 2309 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2310
2311 do {
43010659
PW
2312 total_load_moved +=
2313 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2314 max_load_move - total_load_moved,
a4ac01c3 2315 sd, idle, all_pinned, &this_best_prio);
dd41f596 2316 class = class->next;
43010659 2317 } while (class && max_load_move > total_load_moved);
dd41f596 2318
43010659
PW
2319 return total_load_moved > 0;
2320}
2321
e1d1484f
PW
2322static int
2323iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2324 struct sched_domain *sd, enum cpu_idle_type idle,
2325 struct rq_iterator *iterator)
2326{
2327 struct task_struct *p = iterator->start(iterator->arg);
2328 int pinned = 0;
2329
2330 while (p) {
2331 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2332 pull_task(busiest, p, this_rq, this_cpu);
2333 /*
2334 * Right now, this is only the second place pull_task()
2335 * is called, so we can safely collect pull_task()
2336 * stats here rather than inside pull_task().
2337 */
2338 schedstat_inc(sd, lb_gained[idle]);
2339
2340 return 1;
2341 }
2342 p = iterator->next(iterator->arg);
2343 }
2344
2345 return 0;
2346}
2347
43010659
PW
2348/*
2349 * move_one_task tries to move exactly one task from busiest to this_rq, as
2350 * part of active balancing operations within "domain".
2351 * Returns 1 if successful and 0 otherwise.
2352 *
2353 * Called with both runqueues locked.
2354 */
2355static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2356 struct sched_domain *sd, enum cpu_idle_type idle)
2357{
5522d5d5 2358 const struct sched_class *class;
43010659
PW
2359
2360 for (class = sched_class_highest; class; class = class->next)
e1d1484f 2361 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
2362 return 1;
2363
2364 return 0;
dd41f596
IM
2365}
2366
1da177e4
LT
2367/*
2368 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2369 * domain. It calculates and returns the amount of weighted load which
2370 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2371 */
2372static struct sched_group *
2373find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2374 unsigned long *imbalance, enum cpu_idle_type idle,
2375 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2376{
2377 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2378 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2379 unsigned long max_pull;
2dd73a4f
PW
2380 unsigned long busiest_load_per_task, busiest_nr_running;
2381 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2382 int load_idx, group_imb = 0;
5c45bf27
SS
2383#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2384 int power_savings_balance = 1;
2385 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2386 unsigned long min_nr_running = ULONG_MAX;
2387 struct sched_group *group_min = NULL, *group_leader = NULL;
2388#endif
1da177e4
LT
2389
2390 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2391 busiest_load_per_task = busiest_nr_running = 0;
2392 this_load_per_task = this_nr_running = 0;
d15bcfdb 2393 if (idle == CPU_NOT_IDLE)
7897986b 2394 load_idx = sd->busy_idx;
d15bcfdb 2395 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2396 load_idx = sd->newidle_idx;
2397 else
2398 load_idx = sd->idle_idx;
1da177e4
LT
2399
2400 do {
908a7c1b 2401 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2402 int local_group;
2403 int i;
908a7c1b 2404 int __group_imb = 0;
783609c6 2405 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2406 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2407
2408 local_group = cpu_isset(this_cpu, group->cpumask);
2409
783609c6
SS
2410 if (local_group)
2411 balance_cpu = first_cpu(group->cpumask);
2412
1da177e4 2413 /* Tally up the load of all CPUs in the group */
2dd73a4f 2414 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2415 max_cpu_load = 0;
2416 min_cpu_load = ~0UL;
1da177e4
LT
2417
2418 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2419 struct rq *rq;
2420
2421 if (!cpu_isset(i, *cpus))
2422 continue;
2423
2424 rq = cpu_rq(i);
2dd73a4f 2425
9439aab8 2426 if (*sd_idle && rq->nr_running)
5969fe06
NP
2427 *sd_idle = 0;
2428
1da177e4 2429 /* Bias balancing toward cpus of our domain */
783609c6
SS
2430 if (local_group) {
2431 if (idle_cpu(i) && !first_idle_cpu) {
2432 first_idle_cpu = 1;
2433 balance_cpu = i;
2434 }
2435
a2000572 2436 load = target_load(i, load_idx);
908a7c1b 2437 } else {
a2000572 2438 load = source_load(i, load_idx);
908a7c1b
KC
2439 if (load > max_cpu_load)
2440 max_cpu_load = load;
2441 if (min_cpu_load > load)
2442 min_cpu_load = load;
2443 }
1da177e4
LT
2444
2445 avg_load += load;
2dd73a4f 2446 sum_nr_running += rq->nr_running;
dd41f596 2447 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2448 }
2449
783609c6
SS
2450 /*
2451 * First idle cpu or the first cpu(busiest) in this sched group
2452 * is eligible for doing load balancing at this and above
9439aab8
SS
2453 * domains. In the newly idle case, we will allow all the cpu's
2454 * to do the newly idle load balance.
783609c6 2455 */
9439aab8
SS
2456 if (idle != CPU_NEWLY_IDLE && local_group &&
2457 balance_cpu != this_cpu && balance) {
783609c6
SS
2458 *balance = 0;
2459 goto ret;
2460 }
2461
1da177e4 2462 total_load += avg_load;
5517d86b 2463 total_pwr += group->__cpu_power;
1da177e4
LT
2464
2465 /* Adjust by relative CPU power of the group */
5517d86b
ED
2466 avg_load = sg_div_cpu_power(group,
2467 avg_load * SCHED_LOAD_SCALE);
1da177e4 2468
908a7c1b
KC
2469 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2470 __group_imb = 1;
2471
5517d86b 2472 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2473
1da177e4
LT
2474 if (local_group) {
2475 this_load = avg_load;
2476 this = group;
2dd73a4f
PW
2477 this_nr_running = sum_nr_running;
2478 this_load_per_task = sum_weighted_load;
2479 } else if (avg_load > max_load &&
908a7c1b 2480 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2481 max_load = avg_load;
2482 busiest = group;
2dd73a4f
PW
2483 busiest_nr_running = sum_nr_running;
2484 busiest_load_per_task = sum_weighted_load;
908a7c1b 2485 group_imb = __group_imb;
1da177e4 2486 }
5c45bf27
SS
2487
2488#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2489 /*
2490 * Busy processors will not participate in power savings
2491 * balance.
2492 */
dd41f596
IM
2493 if (idle == CPU_NOT_IDLE ||
2494 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2495 goto group_next;
5c45bf27
SS
2496
2497 /*
2498 * If the local group is idle or completely loaded
2499 * no need to do power savings balance at this domain
2500 */
2501 if (local_group && (this_nr_running >= group_capacity ||
2502 !this_nr_running))
2503 power_savings_balance = 0;
2504
dd41f596 2505 /*
5c45bf27
SS
2506 * If a group is already running at full capacity or idle,
2507 * don't include that group in power savings calculations
dd41f596
IM
2508 */
2509 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2510 || !sum_nr_running)
dd41f596 2511 goto group_next;
5c45bf27 2512
dd41f596 2513 /*
5c45bf27 2514 * Calculate the group which has the least non-idle load.
dd41f596
IM
2515 * This is the group from where we need to pick up the load
2516 * for saving power
2517 */
2518 if ((sum_nr_running < min_nr_running) ||
2519 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2520 first_cpu(group->cpumask) <
2521 first_cpu(group_min->cpumask))) {
dd41f596
IM
2522 group_min = group;
2523 min_nr_running = sum_nr_running;
5c45bf27
SS
2524 min_load_per_task = sum_weighted_load /
2525 sum_nr_running;
dd41f596 2526 }
5c45bf27 2527
dd41f596 2528 /*
5c45bf27 2529 * Calculate the group which is almost near its
dd41f596
IM
2530 * capacity but still has some space to pick up some load
2531 * from other group and save more power
2532 */
2533 if (sum_nr_running <= group_capacity - 1) {
2534 if (sum_nr_running > leader_nr_running ||
2535 (sum_nr_running == leader_nr_running &&
2536 first_cpu(group->cpumask) >
2537 first_cpu(group_leader->cpumask))) {
2538 group_leader = group;
2539 leader_nr_running = sum_nr_running;
2540 }
48f24c4d 2541 }
5c45bf27
SS
2542group_next:
2543#endif
1da177e4
LT
2544 group = group->next;
2545 } while (group != sd->groups);
2546
2dd73a4f 2547 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2548 goto out_balanced;
2549
2550 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2551
2552 if (this_load >= avg_load ||
2553 100*max_load <= sd->imbalance_pct*this_load)
2554 goto out_balanced;
2555
2dd73a4f 2556 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2557 if (group_imb)
2558 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2559
1da177e4
LT
2560 /*
2561 * We're trying to get all the cpus to the average_load, so we don't
2562 * want to push ourselves above the average load, nor do we wish to
2563 * reduce the max loaded cpu below the average load, as either of these
2564 * actions would just result in more rebalancing later, and ping-pong
2565 * tasks around. Thus we look for the minimum possible imbalance.
2566 * Negative imbalances (*we* are more loaded than anyone else) will
2567 * be counted as no imbalance for these purposes -- we can't fix that
2568 * by pulling tasks to us. Be careful of negative numbers as they'll
2569 * appear as very large values with unsigned longs.
2570 */
2dd73a4f
PW
2571 if (max_load <= busiest_load_per_task)
2572 goto out_balanced;
2573
2574 /*
2575 * In the presence of smp nice balancing, certain scenarios can have
2576 * max load less than avg load(as we skip the groups at or below
2577 * its cpu_power, while calculating max_load..)
2578 */
2579 if (max_load < avg_load) {
2580 *imbalance = 0;
2581 goto small_imbalance;
2582 }
0c117f1b
SS
2583
2584 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2585 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2586
1da177e4 2587 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2588 *imbalance = min(max_pull * busiest->__cpu_power,
2589 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2590 / SCHED_LOAD_SCALE;
2591
2dd73a4f
PW
2592 /*
2593 * if *imbalance is less than the average load per runnable task
2594 * there is no gaurantee that any tasks will be moved so we'll have
2595 * a think about bumping its value to force at least one task to be
2596 * moved
2597 */
7fd0d2dd 2598 if (*imbalance < busiest_load_per_task) {
48f24c4d 2599 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2600 unsigned int imbn;
2601
2602small_imbalance:
2603 pwr_move = pwr_now = 0;
2604 imbn = 2;
2605 if (this_nr_running) {
2606 this_load_per_task /= this_nr_running;
2607 if (busiest_load_per_task > this_load_per_task)
2608 imbn = 1;
2609 } else
2610 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2611
dd41f596
IM
2612 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2613 busiest_load_per_task * imbn) {
2dd73a4f 2614 *imbalance = busiest_load_per_task;
1da177e4
LT
2615 return busiest;
2616 }
2617
2618 /*
2619 * OK, we don't have enough imbalance to justify moving tasks,
2620 * however we may be able to increase total CPU power used by
2621 * moving them.
2622 */
2623
5517d86b
ED
2624 pwr_now += busiest->__cpu_power *
2625 min(busiest_load_per_task, max_load);
2626 pwr_now += this->__cpu_power *
2627 min(this_load_per_task, this_load);
1da177e4
LT
2628 pwr_now /= SCHED_LOAD_SCALE;
2629
2630 /* Amount of load we'd subtract */
5517d86b
ED
2631 tmp = sg_div_cpu_power(busiest,
2632 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2633 if (max_load > tmp)
5517d86b 2634 pwr_move += busiest->__cpu_power *
2dd73a4f 2635 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2636
2637 /* Amount of load we'd add */
5517d86b 2638 if (max_load * busiest->__cpu_power <
33859f7f 2639 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2640 tmp = sg_div_cpu_power(this,
2641 max_load * busiest->__cpu_power);
1da177e4 2642 else
5517d86b
ED
2643 tmp = sg_div_cpu_power(this,
2644 busiest_load_per_task * SCHED_LOAD_SCALE);
2645 pwr_move += this->__cpu_power *
2646 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2647 pwr_move /= SCHED_LOAD_SCALE;
2648
2649 /* Move if we gain throughput */
7fd0d2dd
SS
2650 if (pwr_move > pwr_now)
2651 *imbalance = busiest_load_per_task;
1da177e4
LT
2652 }
2653
1da177e4
LT
2654 return busiest;
2655
2656out_balanced:
5c45bf27 2657#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2658 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2659 goto ret;
1da177e4 2660
5c45bf27
SS
2661 if (this == group_leader && group_leader != group_min) {
2662 *imbalance = min_load_per_task;
2663 return group_min;
2664 }
5c45bf27 2665#endif
783609c6 2666ret:
1da177e4
LT
2667 *imbalance = 0;
2668 return NULL;
2669}
2670
2671/*
2672 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2673 */
70b97a7f 2674static struct rq *
d15bcfdb 2675find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2676 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2677{
70b97a7f 2678 struct rq *busiest = NULL, *rq;
2dd73a4f 2679 unsigned long max_load = 0;
1da177e4
LT
2680 int i;
2681
2682 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2683 unsigned long wl;
0a2966b4
CL
2684
2685 if (!cpu_isset(i, *cpus))
2686 continue;
2687
48f24c4d 2688 rq = cpu_rq(i);
dd41f596 2689 wl = weighted_cpuload(i);
2dd73a4f 2690
dd41f596 2691 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2692 continue;
1da177e4 2693
dd41f596
IM
2694 if (wl > max_load) {
2695 max_load = wl;
48f24c4d 2696 busiest = rq;
1da177e4
LT
2697 }
2698 }
2699
2700 return busiest;
2701}
2702
77391d71
NP
2703/*
2704 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2705 * so long as it is large enough.
2706 */
2707#define MAX_PINNED_INTERVAL 512
2708
1da177e4
LT
2709/*
2710 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2711 * tasks if there is an imbalance.
1da177e4 2712 */
70b97a7f 2713static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2714 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2715 int *balance)
1da177e4 2716{
43010659 2717 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2718 struct sched_group *group;
1da177e4 2719 unsigned long imbalance;
70b97a7f 2720 struct rq *busiest;
0a2966b4 2721 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2722 unsigned long flags;
5969fe06 2723
89c4710e
SS
2724 /*
2725 * When power savings policy is enabled for the parent domain, idle
2726 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2727 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2728 * portraying it as CPU_NOT_IDLE.
89c4710e 2729 */
d15bcfdb 2730 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2732 sd_idle = 1;
1da177e4 2733
2d72376b 2734 schedstat_inc(sd, lb_count[idle]);
1da177e4 2735
0a2966b4
CL
2736redo:
2737 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2738 &cpus, balance);
2739
06066714 2740 if (*balance == 0)
783609c6 2741 goto out_balanced;
783609c6 2742
1da177e4
LT
2743 if (!group) {
2744 schedstat_inc(sd, lb_nobusyg[idle]);
2745 goto out_balanced;
2746 }
2747
0a2966b4 2748 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2749 if (!busiest) {
2750 schedstat_inc(sd, lb_nobusyq[idle]);
2751 goto out_balanced;
2752 }
2753
db935dbd 2754 BUG_ON(busiest == this_rq);
1da177e4
LT
2755
2756 schedstat_add(sd, lb_imbalance[idle], imbalance);
2757
43010659 2758 ld_moved = 0;
1da177e4
LT
2759 if (busiest->nr_running > 1) {
2760 /*
2761 * Attempt to move tasks. If find_busiest_group has found
2762 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2763 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2764 * correctly treated as an imbalance.
2765 */
fe2eea3f 2766 local_irq_save(flags);
e17224bf 2767 double_rq_lock(this_rq, busiest);
43010659 2768 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2769 imbalance, sd, idle, &all_pinned);
e17224bf 2770 double_rq_unlock(this_rq, busiest);
fe2eea3f 2771 local_irq_restore(flags);
81026794 2772
46cb4b7c
SS
2773 /*
2774 * some other cpu did the load balance for us.
2775 */
43010659 2776 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2777 resched_cpu(this_cpu);
2778
81026794 2779 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2780 if (unlikely(all_pinned)) {
2781 cpu_clear(cpu_of(busiest), cpus);
2782 if (!cpus_empty(cpus))
2783 goto redo;
81026794 2784 goto out_balanced;
0a2966b4 2785 }
1da177e4 2786 }
81026794 2787
43010659 2788 if (!ld_moved) {
1da177e4
LT
2789 schedstat_inc(sd, lb_failed[idle]);
2790 sd->nr_balance_failed++;
2791
2792 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2793
fe2eea3f 2794 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2795
2796 /* don't kick the migration_thread, if the curr
2797 * task on busiest cpu can't be moved to this_cpu
2798 */
2799 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2800 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2801 all_pinned = 1;
2802 goto out_one_pinned;
2803 }
2804
1da177e4
LT
2805 if (!busiest->active_balance) {
2806 busiest->active_balance = 1;
2807 busiest->push_cpu = this_cpu;
81026794 2808 active_balance = 1;
1da177e4 2809 }
fe2eea3f 2810 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2811 if (active_balance)
1da177e4
LT
2812 wake_up_process(busiest->migration_thread);
2813
2814 /*
2815 * We've kicked active balancing, reset the failure
2816 * counter.
2817 */
39507451 2818 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2819 }
81026794 2820 } else
1da177e4
LT
2821 sd->nr_balance_failed = 0;
2822
81026794 2823 if (likely(!active_balance)) {
1da177e4
LT
2824 /* We were unbalanced, so reset the balancing interval */
2825 sd->balance_interval = sd->min_interval;
81026794
NP
2826 } else {
2827 /*
2828 * If we've begun active balancing, start to back off. This
2829 * case may not be covered by the all_pinned logic if there
2830 * is only 1 task on the busy runqueue (because we don't call
2831 * move_tasks).
2832 */
2833 if (sd->balance_interval < sd->max_interval)
2834 sd->balance_interval *= 2;
1da177e4
LT
2835 }
2836
43010659 2837 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2838 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2839 return -1;
43010659 2840 return ld_moved;
1da177e4
LT
2841
2842out_balanced:
1da177e4
LT
2843 schedstat_inc(sd, lb_balanced[idle]);
2844
16cfb1c0 2845 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2846
2847out_one_pinned:
1da177e4 2848 /* tune up the balancing interval */
77391d71
NP
2849 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2850 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2851 sd->balance_interval *= 2;
2852
48f24c4d 2853 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2854 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2855 return -1;
1da177e4
LT
2856 return 0;
2857}
2858
2859/*
2860 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2861 * tasks if there is an imbalance.
2862 *
d15bcfdb 2863 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2864 * this_rq is locked.
2865 */
48f24c4d 2866static int
70b97a7f 2867load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2868{
2869 struct sched_group *group;
70b97a7f 2870 struct rq *busiest = NULL;
1da177e4 2871 unsigned long imbalance;
43010659 2872 int ld_moved = 0;
5969fe06 2873 int sd_idle = 0;
969bb4e4 2874 int all_pinned = 0;
0a2966b4 2875 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2876
89c4710e
SS
2877 /*
2878 * When power savings policy is enabled for the parent domain, idle
2879 * sibling can pick up load irrespective of busy siblings. In this case,
2880 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2881 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2882 */
2883 if (sd->flags & SD_SHARE_CPUPOWER &&
2884 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2885 sd_idle = 1;
1da177e4 2886
2d72376b 2887 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2888redo:
d15bcfdb 2889 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2890 &sd_idle, &cpus, NULL);
1da177e4 2891 if (!group) {
d15bcfdb 2892 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2893 goto out_balanced;
1da177e4
LT
2894 }
2895
d15bcfdb 2896 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2897 &cpus);
db935dbd 2898 if (!busiest) {
d15bcfdb 2899 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2900 goto out_balanced;
1da177e4
LT
2901 }
2902
db935dbd
NP
2903 BUG_ON(busiest == this_rq);
2904
d15bcfdb 2905 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2906
43010659 2907 ld_moved = 0;
d6d5cfaf
NP
2908 if (busiest->nr_running > 1) {
2909 /* Attempt to move tasks */
2910 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2911 /* this_rq->clock is already updated */
2912 update_rq_clock(busiest);
43010659 2913 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2914 imbalance, sd, CPU_NEWLY_IDLE,
2915 &all_pinned);
d6d5cfaf 2916 spin_unlock(&busiest->lock);
0a2966b4 2917
969bb4e4 2918 if (unlikely(all_pinned)) {
0a2966b4
CL
2919 cpu_clear(cpu_of(busiest), cpus);
2920 if (!cpus_empty(cpus))
2921 goto redo;
2922 }
d6d5cfaf
NP
2923 }
2924
43010659 2925 if (!ld_moved) {
d15bcfdb 2926 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2927 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2928 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2929 return -1;
2930 } else
16cfb1c0 2931 sd->nr_balance_failed = 0;
1da177e4 2932
43010659 2933 return ld_moved;
16cfb1c0
NP
2934
2935out_balanced:
d15bcfdb 2936 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2937 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2938 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2939 return -1;
16cfb1c0 2940 sd->nr_balance_failed = 0;
48f24c4d 2941
16cfb1c0 2942 return 0;
1da177e4
LT
2943}
2944
2945/*
2946 * idle_balance is called by schedule() if this_cpu is about to become
2947 * idle. Attempts to pull tasks from other CPUs.
2948 */
70b97a7f 2949static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2950{
2951 struct sched_domain *sd;
dd41f596
IM
2952 int pulled_task = -1;
2953 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2954
2955 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2956 unsigned long interval;
2957
2958 if (!(sd->flags & SD_LOAD_BALANCE))
2959 continue;
2960
2961 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2962 /* If we've pulled tasks over stop searching: */
1bd77f2d 2963 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2964 this_rq, sd);
2965
2966 interval = msecs_to_jiffies(sd->balance_interval);
2967 if (time_after(next_balance, sd->last_balance + interval))
2968 next_balance = sd->last_balance + interval;
2969 if (pulled_task)
2970 break;
1da177e4 2971 }
dd41f596 2972 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2973 /*
2974 * We are going idle. next_balance may be set based on
2975 * a busy processor. So reset next_balance.
2976 */
2977 this_rq->next_balance = next_balance;
dd41f596 2978 }
1da177e4
LT
2979}
2980
2981/*
2982 * active_load_balance is run by migration threads. It pushes running tasks
2983 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2984 * running on each physical CPU where possible, and avoids physical /
2985 * logical imbalances.
2986 *
2987 * Called with busiest_rq locked.
2988 */
70b97a7f 2989static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2990{
39507451 2991 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2992 struct sched_domain *sd;
2993 struct rq *target_rq;
39507451 2994
48f24c4d 2995 /* Is there any task to move? */
39507451 2996 if (busiest_rq->nr_running <= 1)
39507451
NP
2997 return;
2998
2999 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3000
3001 /*
39507451
NP
3002 * This condition is "impossible", if it occurs
3003 * we need to fix it. Originally reported by
3004 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3005 */
39507451 3006 BUG_ON(busiest_rq == target_rq);
1da177e4 3007
39507451
NP
3008 /* move a task from busiest_rq to target_rq */
3009 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3010 update_rq_clock(busiest_rq);
3011 update_rq_clock(target_rq);
39507451
NP
3012
3013 /* Search for an sd spanning us and the target CPU. */
c96d145e 3014 for_each_domain(target_cpu, sd) {
39507451 3015 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3016 cpu_isset(busiest_cpu, sd->span))
39507451 3017 break;
c96d145e 3018 }
39507451 3019
48f24c4d 3020 if (likely(sd)) {
2d72376b 3021 schedstat_inc(sd, alb_count);
39507451 3022
43010659
PW
3023 if (move_one_task(target_rq, target_cpu, busiest_rq,
3024 sd, CPU_IDLE))
48f24c4d
IM
3025 schedstat_inc(sd, alb_pushed);
3026 else
3027 schedstat_inc(sd, alb_failed);
3028 }
39507451 3029 spin_unlock(&target_rq->lock);
1da177e4
LT
3030}
3031
46cb4b7c
SS
3032#ifdef CONFIG_NO_HZ
3033static struct {
3034 atomic_t load_balancer;
3035 cpumask_t cpu_mask;
3036} nohz ____cacheline_aligned = {
3037 .load_balancer = ATOMIC_INIT(-1),
3038 .cpu_mask = CPU_MASK_NONE,
3039};
3040
7835b98b 3041/*
46cb4b7c
SS
3042 * This routine will try to nominate the ilb (idle load balancing)
3043 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3044 * load balancing on behalf of all those cpus. If all the cpus in the system
3045 * go into this tickless mode, then there will be no ilb owner (as there is
3046 * no need for one) and all the cpus will sleep till the next wakeup event
3047 * arrives...
3048 *
3049 * For the ilb owner, tick is not stopped. And this tick will be used
3050 * for idle load balancing. ilb owner will still be part of
3051 * nohz.cpu_mask..
7835b98b 3052 *
46cb4b7c
SS
3053 * While stopping the tick, this cpu will become the ilb owner if there
3054 * is no other owner. And will be the owner till that cpu becomes busy
3055 * or if all cpus in the system stop their ticks at which point
3056 * there is no need for ilb owner.
3057 *
3058 * When the ilb owner becomes busy, it nominates another owner, during the
3059 * next busy scheduler_tick()
3060 */
3061int select_nohz_load_balancer(int stop_tick)
3062{
3063 int cpu = smp_processor_id();
3064
3065 if (stop_tick) {
3066 cpu_set(cpu, nohz.cpu_mask);
3067 cpu_rq(cpu)->in_nohz_recently = 1;
3068
3069 /*
3070 * If we are going offline and still the leader, give up!
3071 */
3072 if (cpu_is_offline(cpu) &&
3073 atomic_read(&nohz.load_balancer) == cpu) {
3074 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3075 BUG();
3076 return 0;
3077 }
3078
3079 /* time for ilb owner also to sleep */
3080 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3081 if (atomic_read(&nohz.load_balancer) == cpu)
3082 atomic_set(&nohz.load_balancer, -1);
3083 return 0;
3084 }
3085
3086 if (atomic_read(&nohz.load_balancer) == -1) {
3087 /* make me the ilb owner */
3088 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3089 return 1;
3090 } else if (atomic_read(&nohz.load_balancer) == cpu)
3091 return 1;
3092 } else {
3093 if (!cpu_isset(cpu, nohz.cpu_mask))
3094 return 0;
3095
3096 cpu_clear(cpu, nohz.cpu_mask);
3097
3098 if (atomic_read(&nohz.load_balancer) == cpu)
3099 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3100 BUG();
3101 }
3102 return 0;
3103}
3104#endif
3105
3106static DEFINE_SPINLOCK(balancing);
3107
3108/*
7835b98b
CL
3109 * It checks each scheduling domain to see if it is due to be balanced,
3110 * and initiates a balancing operation if so.
3111 *
3112 * Balancing parameters are set up in arch_init_sched_domains.
3113 */
a9957449 3114static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3115{
46cb4b7c
SS
3116 int balance = 1;
3117 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3118 unsigned long interval;
3119 struct sched_domain *sd;
46cb4b7c 3120 /* Earliest time when we have to do rebalance again */
c9819f45 3121 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3122 int update_next_balance = 0;
1da177e4 3123
46cb4b7c 3124 for_each_domain(cpu, sd) {
1da177e4
LT
3125 if (!(sd->flags & SD_LOAD_BALANCE))
3126 continue;
3127
3128 interval = sd->balance_interval;
d15bcfdb 3129 if (idle != CPU_IDLE)
1da177e4
LT
3130 interval *= sd->busy_factor;
3131
3132 /* scale ms to jiffies */
3133 interval = msecs_to_jiffies(interval);
3134 if (unlikely(!interval))
3135 interval = 1;
dd41f596
IM
3136 if (interval > HZ*NR_CPUS/10)
3137 interval = HZ*NR_CPUS/10;
3138
1da177e4 3139
08c183f3
CL
3140 if (sd->flags & SD_SERIALIZE) {
3141 if (!spin_trylock(&balancing))
3142 goto out;
3143 }
3144
c9819f45 3145 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3146 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3147 /*
3148 * We've pulled tasks over so either we're no
5969fe06
NP
3149 * longer idle, or one of our SMT siblings is
3150 * not idle.
3151 */
d15bcfdb 3152 idle = CPU_NOT_IDLE;
1da177e4 3153 }
1bd77f2d 3154 sd->last_balance = jiffies;
1da177e4 3155 }
08c183f3
CL
3156 if (sd->flags & SD_SERIALIZE)
3157 spin_unlock(&balancing);
3158out:
f549da84 3159 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3160 next_balance = sd->last_balance + interval;
f549da84
SS
3161 update_next_balance = 1;
3162 }
783609c6
SS
3163
3164 /*
3165 * Stop the load balance at this level. There is another
3166 * CPU in our sched group which is doing load balancing more
3167 * actively.
3168 */
3169 if (!balance)
3170 break;
1da177e4 3171 }
f549da84
SS
3172
3173 /*
3174 * next_balance will be updated only when there is a need.
3175 * When the cpu is attached to null domain for ex, it will not be
3176 * updated.
3177 */
3178 if (likely(update_next_balance))
3179 rq->next_balance = next_balance;
46cb4b7c
SS
3180}
3181
3182/*
3183 * run_rebalance_domains is triggered when needed from the scheduler tick.
3184 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3185 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3186 */
3187static void run_rebalance_domains(struct softirq_action *h)
3188{
dd41f596
IM
3189 int this_cpu = smp_processor_id();
3190 struct rq *this_rq = cpu_rq(this_cpu);
3191 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3192 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3193
dd41f596 3194 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3195
3196#ifdef CONFIG_NO_HZ
3197 /*
3198 * If this cpu is the owner for idle load balancing, then do the
3199 * balancing on behalf of the other idle cpus whose ticks are
3200 * stopped.
3201 */
dd41f596
IM
3202 if (this_rq->idle_at_tick &&
3203 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3204 cpumask_t cpus = nohz.cpu_mask;
3205 struct rq *rq;
3206 int balance_cpu;
3207
dd41f596 3208 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3209 for_each_cpu_mask(balance_cpu, cpus) {
3210 /*
3211 * If this cpu gets work to do, stop the load balancing
3212 * work being done for other cpus. Next load
3213 * balancing owner will pick it up.
3214 */
3215 if (need_resched())
3216 break;
3217
de0cf899 3218 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3219
3220 rq = cpu_rq(balance_cpu);
dd41f596
IM
3221 if (time_after(this_rq->next_balance, rq->next_balance))
3222 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3223 }
3224 }
3225#endif
3226}
3227
3228/*
3229 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3230 *
3231 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3232 * idle load balancing owner or decide to stop the periodic load balancing,
3233 * if the whole system is idle.
3234 */
dd41f596 3235static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3236{
46cb4b7c
SS
3237#ifdef CONFIG_NO_HZ
3238 /*
3239 * If we were in the nohz mode recently and busy at the current
3240 * scheduler tick, then check if we need to nominate new idle
3241 * load balancer.
3242 */
3243 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3244 rq->in_nohz_recently = 0;
3245
3246 if (atomic_read(&nohz.load_balancer) == cpu) {
3247 cpu_clear(cpu, nohz.cpu_mask);
3248 atomic_set(&nohz.load_balancer, -1);
3249 }
3250
3251 if (atomic_read(&nohz.load_balancer) == -1) {
3252 /*
3253 * simple selection for now: Nominate the
3254 * first cpu in the nohz list to be the next
3255 * ilb owner.
3256 *
3257 * TBD: Traverse the sched domains and nominate
3258 * the nearest cpu in the nohz.cpu_mask.
3259 */
3260 int ilb = first_cpu(nohz.cpu_mask);
3261
3262 if (ilb != NR_CPUS)
3263 resched_cpu(ilb);
3264 }
3265 }
3266
3267 /*
3268 * If this cpu is idle and doing idle load balancing for all the
3269 * cpus with ticks stopped, is it time for that to stop?
3270 */
3271 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3272 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3273 resched_cpu(cpu);
3274 return;
3275 }
3276
3277 /*
3278 * If this cpu is idle and the idle load balancing is done by
3279 * someone else, then no need raise the SCHED_SOFTIRQ
3280 */
3281 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3282 cpu_isset(cpu, nohz.cpu_mask))
3283 return;
3284#endif
3285 if (time_after_eq(jiffies, rq->next_balance))
3286 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3287}
dd41f596
IM
3288
3289#else /* CONFIG_SMP */
3290
1da177e4
LT
3291/*
3292 * on UP we do not need to balance between CPUs:
3293 */
70b97a7f 3294static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3295{
3296}
dd41f596 3297
1da177e4
LT
3298#endif
3299
1da177e4
LT
3300DEFINE_PER_CPU(struct kernel_stat, kstat);
3301
3302EXPORT_PER_CPU_SYMBOL(kstat);
3303
3304/*
41b86e9c
IM
3305 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3306 * that have not yet been banked in case the task is currently running.
1da177e4 3307 */
41b86e9c 3308unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3309{
1da177e4 3310 unsigned long flags;
41b86e9c
IM
3311 u64 ns, delta_exec;
3312 struct rq *rq;
48f24c4d 3313
41b86e9c
IM
3314 rq = task_rq_lock(p, &flags);
3315 ns = p->se.sum_exec_runtime;
3316 if (rq->curr == p) {
a8e504d2
IM
3317 update_rq_clock(rq);
3318 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3319 if ((s64)delta_exec > 0)
3320 ns += delta_exec;
3321 }
3322 task_rq_unlock(rq, &flags);
48f24c4d 3323
1da177e4
LT
3324 return ns;
3325}
3326
1da177e4
LT
3327/*
3328 * Account user cpu time to a process.
3329 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3330 * @cputime: the cpu time spent in user space since the last update
3331 */
3332void account_user_time(struct task_struct *p, cputime_t cputime)
3333{
3334 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3335 cputime64_t tmp;
62d0df64 3336 struct rq *rq = this_rq();
1da177e4
LT
3337
3338 p->utime = cputime_add(p->utime, cputime);
3339
62d0df64
PM
3340 if (p != rq->idle)
3341 cpuacct_charge(p, cputime);
3342
1da177e4
LT
3343 /* Add user time to cpustat. */
3344 tmp = cputime_to_cputime64(cputime);
3345 if (TASK_NICE(p) > 0)
3346 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3347 else
3348 cpustat->user = cputime64_add(cpustat->user, tmp);
3349}
3350
94886b84
LV
3351/*
3352 * Account guest cpu time to a process.
3353 * @p: the process that the cpu time gets accounted to
3354 * @cputime: the cpu time spent in virtual machine since the last update
3355 */
f7402e03 3356static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
3357{
3358 cputime64_t tmp;
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360
3361 tmp = cputime_to_cputime64(cputime);
3362
3363 p->utime = cputime_add(p->utime, cputime);
3364 p->gtime = cputime_add(p->gtime, cputime);
3365
3366 cpustat->user = cputime64_add(cpustat->user, tmp);
3367 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3368}
3369
c66f08be
MN
3370/*
3371 * Account scaled user cpu time to a process.
3372 * @p: the process that the cpu time gets accounted to
3373 * @cputime: the cpu time spent in user space since the last update
3374 */
3375void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3376{
3377 p->utimescaled = cputime_add(p->utimescaled, cputime);
3378}
3379
1da177e4
LT
3380/*
3381 * Account system cpu time to a process.
3382 * @p: the process that the cpu time gets accounted to
3383 * @hardirq_offset: the offset to subtract from hardirq_count()
3384 * @cputime: the cpu time spent in kernel space since the last update
3385 */
3386void account_system_time(struct task_struct *p, int hardirq_offset,
3387 cputime_t cputime)
3388{
3389 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3390 struct rq *rq = this_rq();
1da177e4
LT
3391 cputime64_t tmp;
3392
94886b84
LV
3393 if (p->flags & PF_VCPU) {
3394 account_guest_time(p, cputime);
94886b84
LV
3395 return;
3396 }
3397
1da177e4
LT
3398 p->stime = cputime_add(p->stime, cputime);
3399
3400 /* Add system time to cpustat. */
3401 tmp = cputime_to_cputime64(cputime);
3402 if (hardirq_count() - hardirq_offset)
3403 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3404 else if (softirq_count())
3405 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
62d0df64 3406 else if (p != rq->idle) {
1da177e4 3407 cpustat->system = cputime64_add(cpustat->system, tmp);
62d0df64
PM
3408 cpuacct_charge(p, cputime);
3409 } else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3410 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3411 else
3412 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3413 /* Account for system time used */
3414 acct_update_integrals(p);
1da177e4
LT
3415}
3416
c66f08be
MN
3417/*
3418 * Account scaled system cpu time to a process.
3419 * @p: the process that the cpu time gets accounted to
3420 * @hardirq_offset: the offset to subtract from hardirq_count()
3421 * @cputime: the cpu time spent in kernel space since the last update
3422 */
3423void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3424{
3425 p->stimescaled = cputime_add(p->stimescaled, cputime);
3426}
3427
1da177e4
LT
3428/*
3429 * Account for involuntary wait time.
3430 * @p: the process from which the cpu time has been stolen
3431 * @steal: the cpu time spent in involuntary wait
3432 */
3433void account_steal_time(struct task_struct *p, cputime_t steal)
3434{
3435 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3436 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3437 struct rq *rq = this_rq();
1da177e4
LT
3438
3439 if (p == rq->idle) {
3440 p->stime = cputime_add(p->stime, steal);
3441 if (atomic_read(&rq->nr_iowait) > 0)
3442 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3443 else
3444 cpustat->idle = cputime64_add(cpustat->idle, tmp);
62d0df64 3445 } else {
1da177e4 3446 cpustat->steal = cputime64_add(cpustat->steal, tmp);
62d0df64
PM
3447 cpuacct_charge(p, -tmp);
3448 }
1da177e4
LT
3449}
3450
7835b98b
CL
3451/*
3452 * This function gets called by the timer code, with HZ frequency.
3453 * We call it with interrupts disabled.
3454 *
3455 * It also gets called by the fork code, when changing the parent's
3456 * timeslices.
3457 */
3458void scheduler_tick(void)
3459{
7835b98b
CL
3460 int cpu = smp_processor_id();
3461 struct rq *rq = cpu_rq(cpu);
dd41f596 3462 struct task_struct *curr = rq->curr;
529c7726 3463 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3464
3465 spin_lock(&rq->lock);
546fe3c9 3466 __update_rq_clock(rq);
529c7726
IM
3467 /*
3468 * Let rq->clock advance by at least TICK_NSEC:
3469 */
3470 if (unlikely(rq->clock < next_tick))
3471 rq->clock = next_tick;
3472 rq->tick_timestamp = rq->clock;
f1a438d8 3473 update_cpu_load(rq);
dd41f596
IM
3474 if (curr != rq->idle) /* FIXME: needed? */
3475 curr->sched_class->task_tick(rq, curr);
dd41f596 3476 spin_unlock(&rq->lock);
7835b98b 3477
e418e1c2 3478#ifdef CONFIG_SMP
dd41f596
IM
3479 rq->idle_at_tick = idle_cpu(cpu);
3480 trigger_load_balance(rq, cpu);
e418e1c2 3481#endif
1da177e4
LT
3482}
3483
1da177e4
LT
3484#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3485
3486void fastcall add_preempt_count(int val)
3487{
3488 /*
3489 * Underflow?
3490 */
9a11b49a
IM
3491 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3492 return;
1da177e4
LT
3493 preempt_count() += val;
3494 /*
3495 * Spinlock count overflowing soon?
3496 */
33859f7f
MOS
3497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3498 PREEMPT_MASK - 10);
1da177e4
LT
3499}
3500EXPORT_SYMBOL(add_preempt_count);
3501
3502void fastcall sub_preempt_count(int val)
3503{
3504 /*
3505 * Underflow?
3506 */
9a11b49a
IM
3507 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3508 return;
1da177e4
LT
3509 /*
3510 * Is the spinlock portion underflowing?
3511 */
9a11b49a
IM
3512 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3513 !(preempt_count() & PREEMPT_MASK)))
3514 return;
3515
1da177e4
LT
3516 preempt_count() -= val;
3517}
3518EXPORT_SYMBOL(sub_preempt_count);
3519
3520#endif
3521
3522/*
dd41f596 3523 * Print scheduling while atomic bug:
1da177e4 3524 */
dd41f596 3525static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3526{
838225b4
SS
3527 struct pt_regs *regs = get_irq_regs();
3528
3529 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3530 prev->comm, prev->pid, preempt_count());
3531
dd41f596
IM
3532 debug_show_held_locks(prev);
3533 if (irqs_disabled())
3534 print_irqtrace_events(prev);
838225b4
SS
3535
3536 if (regs)
3537 show_regs(regs);
3538 else
3539 dump_stack();
dd41f596 3540}
1da177e4 3541
dd41f596
IM
3542/*
3543 * Various schedule()-time debugging checks and statistics:
3544 */
3545static inline void schedule_debug(struct task_struct *prev)
3546{
1da177e4
LT
3547 /*
3548 * Test if we are atomic. Since do_exit() needs to call into
3549 * schedule() atomically, we ignore that path for now.
3550 * Otherwise, whine if we are scheduling when we should not be.
3551 */
dd41f596
IM
3552 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3553 __schedule_bug(prev);
3554
1da177e4
LT
3555 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3556
2d72376b 3557 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3558#ifdef CONFIG_SCHEDSTATS
3559 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3560 schedstat_inc(this_rq(), bkl_count);
3561 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3562 }
3563#endif
dd41f596
IM
3564}
3565
3566/*
3567 * Pick up the highest-prio task:
3568 */
3569static inline struct task_struct *
ff95f3df 3570pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3571{
5522d5d5 3572 const struct sched_class *class;
dd41f596 3573 struct task_struct *p;
1da177e4
LT
3574
3575 /*
dd41f596
IM
3576 * Optimization: we know that if all tasks are in
3577 * the fair class we can call that function directly:
1da177e4 3578 */
dd41f596 3579 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3580 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3581 if (likely(p))
3582 return p;
1da177e4
LT
3583 }
3584
dd41f596
IM
3585 class = sched_class_highest;
3586 for ( ; ; ) {
fb8d4724 3587 p = class->pick_next_task(rq);
dd41f596
IM
3588 if (p)
3589 return p;
3590 /*
3591 * Will never be NULL as the idle class always
3592 * returns a non-NULL p:
3593 */
3594 class = class->next;
3595 }
3596}
1da177e4 3597
dd41f596
IM
3598/*
3599 * schedule() is the main scheduler function.
3600 */
3601asmlinkage void __sched schedule(void)
3602{
3603 struct task_struct *prev, *next;
3604 long *switch_count;
3605 struct rq *rq;
dd41f596
IM
3606 int cpu;
3607
3608need_resched:
3609 preempt_disable();
3610 cpu = smp_processor_id();
3611 rq = cpu_rq(cpu);
3612 rcu_qsctr_inc(cpu);
3613 prev = rq->curr;
3614 switch_count = &prev->nivcsw;
3615
3616 release_kernel_lock(prev);
3617need_resched_nonpreemptible:
3618
3619 schedule_debug(prev);
1da177e4 3620
1e819950
IM
3621 /*
3622 * Do the rq-clock update outside the rq lock:
3623 */
3624 local_irq_disable();
c1b3da3e 3625 __update_rq_clock(rq);
1e819950
IM
3626 spin_lock(&rq->lock);
3627 clear_tsk_need_resched(prev);
1da177e4 3628
1da177e4 3629 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3630 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3631 unlikely(signal_pending(prev)))) {
1da177e4 3632 prev->state = TASK_RUNNING;
dd41f596 3633 } else {
2e1cb74a 3634 deactivate_task(rq, prev, 1);
1da177e4 3635 }
dd41f596 3636 switch_count = &prev->nvcsw;
1da177e4
LT
3637 }
3638
dd41f596 3639 if (unlikely(!rq->nr_running))
1da177e4 3640 idle_balance(cpu, rq);
1da177e4 3641
31ee529c 3642 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3643 next = pick_next_task(rq, prev);
1da177e4
LT
3644
3645 sched_info_switch(prev, next);
dd41f596 3646
1da177e4 3647 if (likely(prev != next)) {
1da177e4
LT
3648 rq->nr_switches++;
3649 rq->curr = next;
3650 ++*switch_count;
3651
dd41f596 3652 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3653 } else
3654 spin_unlock_irq(&rq->lock);
3655
dd41f596
IM
3656 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3657 cpu = smp_processor_id();
3658 rq = cpu_rq(cpu);
1da177e4 3659 goto need_resched_nonpreemptible;
dd41f596 3660 }
1da177e4
LT
3661 preempt_enable_no_resched();
3662 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3663 goto need_resched;
3664}
1da177e4
LT
3665EXPORT_SYMBOL(schedule);
3666
3667#ifdef CONFIG_PREEMPT
3668/*
2ed6e34f 3669 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3670 * off of preempt_enable. Kernel preemptions off return from interrupt
3671 * occur there and call schedule directly.
3672 */
3673asmlinkage void __sched preempt_schedule(void)
3674{
3675 struct thread_info *ti = current_thread_info();
3676#ifdef CONFIG_PREEMPT_BKL
3677 struct task_struct *task = current;
3678 int saved_lock_depth;
3679#endif
3680 /*
3681 * If there is a non-zero preempt_count or interrupts are disabled,
3682 * we do not want to preempt the current task. Just return..
3683 */
beed33a8 3684 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3685 return;
3686
3a5c359a
AK
3687 do {
3688 add_preempt_count(PREEMPT_ACTIVE);
3689
3690 /*
3691 * We keep the big kernel semaphore locked, but we
3692 * clear ->lock_depth so that schedule() doesnt
3693 * auto-release the semaphore:
3694 */
1da177e4 3695#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3696 saved_lock_depth = task->lock_depth;
3697 task->lock_depth = -1;
1da177e4 3698#endif
3a5c359a 3699 schedule();
1da177e4 3700#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3701 task->lock_depth = saved_lock_depth;
1da177e4 3702#endif
3a5c359a 3703 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3704
3a5c359a
AK
3705 /*
3706 * Check again in case we missed a preemption opportunity
3707 * between schedule and now.
3708 */
3709 barrier();
3710 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3711}
1da177e4
LT
3712EXPORT_SYMBOL(preempt_schedule);
3713
3714/*
2ed6e34f 3715 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3716 * off of irq context.
3717 * Note, that this is called and return with irqs disabled. This will
3718 * protect us against recursive calling from irq.
3719 */
3720asmlinkage void __sched preempt_schedule_irq(void)
3721{
3722 struct thread_info *ti = current_thread_info();
3723#ifdef CONFIG_PREEMPT_BKL
3724 struct task_struct *task = current;
3725 int saved_lock_depth;
3726#endif
2ed6e34f 3727 /* Catch callers which need to be fixed */
1da177e4
LT
3728 BUG_ON(ti->preempt_count || !irqs_disabled());
3729
3a5c359a
AK
3730 do {
3731 add_preempt_count(PREEMPT_ACTIVE);
3732
3733 /*
3734 * We keep the big kernel semaphore locked, but we
3735 * clear ->lock_depth so that schedule() doesnt
3736 * auto-release the semaphore:
3737 */
1da177e4 3738#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3739 saved_lock_depth = task->lock_depth;
3740 task->lock_depth = -1;
1da177e4 3741#endif
3a5c359a
AK
3742 local_irq_enable();
3743 schedule();
3744 local_irq_disable();
1da177e4 3745#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3746 task->lock_depth = saved_lock_depth;
1da177e4 3747#endif
3a5c359a 3748 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3749
3a5c359a
AK
3750 /*
3751 * Check again in case we missed a preemption opportunity
3752 * between schedule and now.
3753 */
3754 barrier();
3755 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3756}
3757
3758#endif /* CONFIG_PREEMPT */
3759
95cdf3b7
IM
3760int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3761 void *key)
1da177e4 3762{
48f24c4d 3763 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3764}
1da177e4
LT
3765EXPORT_SYMBOL(default_wake_function);
3766
3767/*
3768 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3769 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3770 * number) then we wake all the non-exclusive tasks and one exclusive task.
3771 *
3772 * There are circumstances in which we can try to wake a task which has already
3773 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3774 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3775 */
3776static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3777 int nr_exclusive, int sync, void *key)
3778{
2e45874c 3779 wait_queue_t *curr, *next;
1da177e4 3780
2e45874c 3781 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3782 unsigned flags = curr->flags;
3783
1da177e4 3784 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3785 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3786 break;
3787 }
3788}
3789
3790/**
3791 * __wake_up - wake up threads blocked on a waitqueue.
3792 * @q: the waitqueue
3793 * @mode: which threads
3794 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3795 * @key: is directly passed to the wakeup function
1da177e4
LT
3796 */
3797void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3798 int nr_exclusive, void *key)
1da177e4
LT
3799{
3800 unsigned long flags;
3801
3802 spin_lock_irqsave(&q->lock, flags);
3803 __wake_up_common(q, mode, nr_exclusive, 0, key);
3804 spin_unlock_irqrestore(&q->lock, flags);
3805}
1da177e4
LT
3806EXPORT_SYMBOL(__wake_up);
3807
3808/*
3809 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3810 */
3811void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3812{
3813 __wake_up_common(q, mode, 1, 0, NULL);
3814}
3815
3816/**
67be2dd1 3817 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3818 * @q: the waitqueue
3819 * @mode: which threads
3820 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3821 *
3822 * The sync wakeup differs that the waker knows that it will schedule
3823 * away soon, so while the target thread will be woken up, it will not
3824 * be migrated to another CPU - ie. the two threads are 'synchronized'
3825 * with each other. This can prevent needless bouncing between CPUs.
3826 *
3827 * On UP it can prevent extra preemption.
3828 */
95cdf3b7
IM
3829void fastcall
3830__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3831{
3832 unsigned long flags;
3833 int sync = 1;
3834
3835 if (unlikely(!q))
3836 return;
3837
3838 if (unlikely(!nr_exclusive))
3839 sync = 0;
3840
3841 spin_lock_irqsave(&q->lock, flags);
3842 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3843 spin_unlock_irqrestore(&q->lock, flags);
3844}
3845EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3846
b15136e9 3847void complete(struct completion *x)
1da177e4
LT
3848{
3849 unsigned long flags;
3850
3851 spin_lock_irqsave(&x->wait.lock, flags);
3852 x->done++;
3853 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3854 1, 0, NULL);
3855 spin_unlock_irqrestore(&x->wait.lock, flags);
3856}
3857EXPORT_SYMBOL(complete);
3858
b15136e9 3859void complete_all(struct completion *x)
1da177e4
LT
3860{
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&x->wait.lock, flags);
3864 x->done += UINT_MAX/2;
3865 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3866 0, 0, NULL);
3867 spin_unlock_irqrestore(&x->wait.lock, flags);
3868}
3869EXPORT_SYMBOL(complete_all);
3870
8cbbe86d
AK
3871static inline long __sched
3872do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3873{
1da177e4
LT
3874 if (!x->done) {
3875 DECLARE_WAITQUEUE(wait, current);
3876
3877 wait.flags |= WQ_FLAG_EXCLUSIVE;
3878 __add_wait_queue_tail(&x->wait, &wait);
3879 do {
8cbbe86d
AK
3880 if (state == TASK_INTERRUPTIBLE &&
3881 signal_pending(current)) {
3882 __remove_wait_queue(&x->wait, &wait);
3883 return -ERESTARTSYS;
3884 }
3885 __set_current_state(state);
1da177e4
LT
3886 spin_unlock_irq(&x->wait.lock);
3887 timeout = schedule_timeout(timeout);
3888 spin_lock_irq(&x->wait.lock);
3889 if (!timeout) {
3890 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3891 return timeout;
1da177e4
LT
3892 }
3893 } while (!x->done);
3894 __remove_wait_queue(&x->wait, &wait);
3895 }
3896 x->done--;
1da177e4
LT
3897 return timeout;
3898}
1da177e4 3899
8cbbe86d
AK
3900static long __sched
3901wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3902{
1da177e4
LT
3903 might_sleep();
3904
3905 spin_lock_irq(&x->wait.lock);
8cbbe86d 3906 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3907 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3908 return timeout;
3909}
1da177e4 3910
b15136e9 3911void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3912{
3913 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3914}
8cbbe86d 3915EXPORT_SYMBOL(wait_for_completion);
1da177e4 3916
b15136e9 3917unsigned long __sched
8cbbe86d 3918wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3919{
8cbbe86d 3920 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3921}
8cbbe86d 3922EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3923
8cbbe86d 3924int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3925{
51e97990
AK
3926 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3927 if (t == -ERESTARTSYS)
3928 return t;
3929 return 0;
0fec171c 3930}
8cbbe86d 3931EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3932
b15136e9 3933unsigned long __sched
8cbbe86d
AK
3934wait_for_completion_interruptible_timeout(struct completion *x,
3935 unsigned long timeout)
0fec171c 3936{
8cbbe86d 3937 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3938}
8cbbe86d 3939EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3940
8cbbe86d
AK
3941static long __sched
3942sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3943{
0fec171c
IM
3944 unsigned long flags;
3945 wait_queue_t wait;
3946
3947 init_waitqueue_entry(&wait, current);
1da177e4 3948
8cbbe86d 3949 __set_current_state(state);
1da177e4 3950
8cbbe86d
AK
3951 spin_lock_irqsave(&q->lock, flags);
3952 __add_wait_queue(q, &wait);
3953 spin_unlock(&q->lock);
3954 timeout = schedule_timeout(timeout);
3955 spin_lock_irq(&q->lock);
3956 __remove_wait_queue(q, &wait);
3957 spin_unlock_irqrestore(&q->lock, flags);
3958
3959 return timeout;
3960}
3961
3962void __sched interruptible_sleep_on(wait_queue_head_t *q)
3963{
3964 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3965}
1da177e4
LT
3966EXPORT_SYMBOL(interruptible_sleep_on);
3967
0fec171c 3968long __sched
95cdf3b7 3969interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3970{
8cbbe86d 3971 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3972}
1da177e4
LT
3973EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3974
0fec171c 3975void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3976{
8cbbe86d 3977 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3978}
1da177e4
LT
3979EXPORT_SYMBOL(sleep_on);
3980
0fec171c 3981long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3982{
8cbbe86d 3983 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3984}
1da177e4
LT
3985EXPORT_SYMBOL(sleep_on_timeout);
3986
b29739f9
IM
3987#ifdef CONFIG_RT_MUTEXES
3988
3989/*
3990 * rt_mutex_setprio - set the current priority of a task
3991 * @p: task
3992 * @prio: prio value (kernel-internal form)
3993 *
3994 * This function changes the 'effective' priority of a task. It does
3995 * not touch ->normal_prio like __setscheduler().
3996 *
3997 * Used by the rt_mutex code to implement priority inheritance logic.
3998 */
36c8b586 3999void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4000{
4001 unsigned long flags;
83b699ed 4002 int oldprio, on_rq, running;
70b97a7f 4003 struct rq *rq;
b29739f9
IM
4004
4005 BUG_ON(prio < 0 || prio > MAX_PRIO);
4006
4007 rq = task_rq_lock(p, &flags);
a8e504d2 4008 update_rq_clock(rq);
b29739f9 4009
d5f9f942 4010 oldprio = p->prio;
dd41f596 4011 on_rq = p->se.on_rq;
83b699ed
SV
4012 running = task_running(rq, p);
4013 if (on_rq) {
69be72c1 4014 dequeue_task(rq, p, 0);
83b699ed
SV
4015 if (running)
4016 p->sched_class->put_prev_task(rq, p);
4017 }
dd41f596
IM
4018
4019 if (rt_prio(prio))
4020 p->sched_class = &rt_sched_class;
4021 else
4022 p->sched_class = &fair_sched_class;
4023
b29739f9
IM
4024 p->prio = prio;
4025
dd41f596 4026 if (on_rq) {
83b699ed
SV
4027 if (running)
4028 p->sched_class->set_curr_task(rq);
8159f87e 4029 enqueue_task(rq, p, 0);
b29739f9
IM
4030 /*
4031 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4032 * our priority decreased, or if we are not currently running on
4033 * this runqueue and our priority is higher than the current's
b29739f9 4034 */
83b699ed 4035 if (running) {
d5f9f942
AM
4036 if (p->prio > oldprio)
4037 resched_task(rq->curr);
dd41f596
IM
4038 } else {
4039 check_preempt_curr(rq, p);
4040 }
b29739f9
IM
4041 }
4042 task_rq_unlock(rq, &flags);
4043}
4044
4045#endif
4046
36c8b586 4047void set_user_nice(struct task_struct *p, long nice)
1da177e4 4048{
dd41f596 4049 int old_prio, delta, on_rq;
1da177e4 4050 unsigned long flags;
70b97a7f 4051 struct rq *rq;
1da177e4
LT
4052
4053 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4054 return;
4055 /*
4056 * We have to be careful, if called from sys_setpriority(),
4057 * the task might be in the middle of scheduling on another CPU.
4058 */
4059 rq = task_rq_lock(p, &flags);
a8e504d2 4060 update_rq_clock(rq);
1da177e4
LT
4061 /*
4062 * The RT priorities are set via sched_setscheduler(), but we still
4063 * allow the 'normal' nice value to be set - but as expected
4064 * it wont have any effect on scheduling until the task is
dd41f596 4065 * SCHED_FIFO/SCHED_RR:
1da177e4 4066 */
e05606d3 4067 if (task_has_rt_policy(p)) {
1da177e4
LT
4068 p->static_prio = NICE_TO_PRIO(nice);
4069 goto out_unlock;
4070 }
dd41f596
IM
4071 on_rq = p->se.on_rq;
4072 if (on_rq) {
69be72c1 4073 dequeue_task(rq, p, 0);
79b5dddf 4074 dec_load(rq, p);
2dd73a4f 4075 }
1da177e4 4076
1da177e4 4077 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4078 set_load_weight(p);
b29739f9
IM
4079 old_prio = p->prio;
4080 p->prio = effective_prio(p);
4081 delta = p->prio - old_prio;
1da177e4 4082
dd41f596 4083 if (on_rq) {
8159f87e 4084 enqueue_task(rq, p, 0);
29b4b623 4085 inc_load(rq, p);
1da177e4 4086 /*
d5f9f942
AM
4087 * If the task increased its priority or is running and
4088 * lowered its priority, then reschedule its CPU:
1da177e4 4089 */
d5f9f942 4090 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4091 resched_task(rq->curr);
4092 }
4093out_unlock:
4094 task_rq_unlock(rq, &flags);
4095}
1da177e4
LT
4096EXPORT_SYMBOL(set_user_nice);
4097
e43379f1
MM
4098/*
4099 * can_nice - check if a task can reduce its nice value
4100 * @p: task
4101 * @nice: nice value
4102 */
36c8b586 4103int can_nice(const struct task_struct *p, const int nice)
e43379f1 4104{
024f4747
MM
4105 /* convert nice value [19,-20] to rlimit style value [1,40] */
4106 int nice_rlim = 20 - nice;
48f24c4d 4107
e43379f1
MM
4108 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4109 capable(CAP_SYS_NICE));
4110}
4111
1da177e4
LT
4112#ifdef __ARCH_WANT_SYS_NICE
4113
4114/*
4115 * sys_nice - change the priority of the current process.
4116 * @increment: priority increment
4117 *
4118 * sys_setpriority is a more generic, but much slower function that
4119 * does similar things.
4120 */
4121asmlinkage long sys_nice(int increment)
4122{
48f24c4d 4123 long nice, retval;
1da177e4
LT
4124
4125 /*
4126 * Setpriority might change our priority at the same moment.
4127 * We don't have to worry. Conceptually one call occurs first
4128 * and we have a single winner.
4129 */
e43379f1
MM
4130 if (increment < -40)
4131 increment = -40;
1da177e4
LT
4132 if (increment > 40)
4133 increment = 40;
4134
4135 nice = PRIO_TO_NICE(current->static_prio) + increment;
4136 if (nice < -20)
4137 nice = -20;
4138 if (nice > 19)
4139 nice = 19;
4140
e43379f1
MM
4141 if (increment < 0 && !can_nice(current, nice))
4142 return -EPERM;
4143
1da177e4
LT
4144 retval = security_task_setnice(current, nice);
4145 if (retval)
4146 return retval;
4147
4148 set_user_nice(current, nice);
4149 return 0;
4150}
4151
4152#endif
4153
4154/**
4155 * task_prio - return the priority value of a given task.
4156 * @p: the task in question.
4157 *
4158 * This is the priority value as seen by users in /proc.
4159 * RT tasks are offset by -200. Normal tasks are centered
4160 * around 0, value goes from -16 to +15.
4161 */
36c8b586 4162int task_prio(const struct task_struct *p)
1da177e4
LT
4163{
4164 return p->prio - MAX_RT_PRIO;
4165}
4166
4167/**
4168 * task_nice - return the nice value of a given task.
4169 * @p: the task in question.
4170 */
36c8b586 4171int task_nice(const struct task_struct *p)
1da177e4
LT
4172{
4173 return TASK_NICE(p);
4174}
1da177e4 4175EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4176
4177/**
4178 * idle_cpu - is a given cpu idle currently?
4179 * @cpu: the processor in question.
4180 */
4181int idle_cpu(int cpu)
4182{
4183 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4184}
4185
1da177e4
LT
4186/**
4187 * idle_task - return the idle task for a given cpu.
4188 * @cpu: the processor in question.
4189 */
36c8b586 4190struct task_struct *idle_task(int cpu)
1da177e4
LT
4191{
4192 return cpu_rq(cpu)->idle;
4193}
4194
4195/**
4196 * find_process_by_pid - find a process with a matching PID value.
4197 * @pid: the pid in question.
4198 */
a9957449 4199static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4200{
228ebcbe 4201 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4202}
4203
4204/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4205static void
4206__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4207{
dd41f596 4208 BUG_ON(p->se.on_rq);
48f24c4d 4209
1da177e4 4210 p->policy = policy;
dd41f596
IM
4211 switch (p->policy) {
4212 case SCHED_NORMAL:
4213 case SCHED_BATCH:
4214 case SCHED_IDLE:
4215 p->sched_class = &fair_sched_class;
4216 break;
4217 case SCHED_FIFO:
4218 case SCHED_RR:
4219 p->sched_class = &rt_sched_class;
4220 break;
4221 }
4222
1da177e4 4223 p->rt_priority = prio;
b29739f9
IM
4224 p->normal_prio = normal_prio(p);
4225 /* we are holding p->pi_lock already */
4226 p->prio = rt_mutex_getprio(p);
2dd73a4f 4227 set_load_weight(p);
1da177e4
LT
4228}
4229
4230/**
72fd4a35 4231 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4232 * @p: the task in question.
4233 * @policy: new policy.
4234 * @param: structure containing the new RT priority.
5fe1d75f 4235 *
72fd4a35 4236 * NOTE that the task may be already dead.
1da177e4 4237 */
95cdf3b7
IM
4238int sched_setscheduler(struct task_struct *p, int policy,
4239 struct sched_param *param)
1da177e4 4240{
83b699ed 4241 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4242 unsigned long flags;
70b97a7f 4243 struct rq *rq;
1da177e4 4244
66e5393a
SR
4245 /* may grab non-irq protected spin_locks */
4246 BUG_ON(in_interrupt());
1da177e4
LT
4247recheck:
4248 /* double check policy once rq lock held */
4249 if (policy < 0)
4250 policy = oldpolicy = p->policy;
4251 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4252 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4253 policy != SCHED_IDLE)
b0a9499c 4254 return -EINVAL;
1da177e4
LT
4255 /*
4256 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4257 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4258 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4259 */
4260 if (param->sched_priority < 0 ||
95cdf3b7 4261 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4262 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4263 return -EINVAL;
e05606d3 4264 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4265 return -EINVAL;
4266
37e4ab3f
OC
4267 /*
4268 * Allow unprivileged RT tasks to decrease priority:
4269 */
4270 if (!capable(CAP_SYS_NICE)) {
e05606d3 4271 if (rt_policy(policy)) {
8dc3e909 4272 unsigned long rlim_rtprio;
8dc3e909
ON
4273
4274 if (!lock_task_sighand(p, &flags))
4275 return -ESRCH;
4276 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4277 unlock_task_sighand(p, &flags);
4278
4279 /* can't set/change the rt policy */
4280 if (policy != p->policy && !rlim_rtprio)
4281 return -EPERM;
4282
4283 /* can't increase priority */
4284 if (param->sched_priority > p->rt_priority &&
4285 param->sched_priority > rlim_rtprio)
4286 return -EPERM;
4287 }
dd41f596
IM
4288 /*
4289 * Like positive nice levels, dont allow tasks to
4290 * move out of SCHED_IDLE either:
4291 */
4292 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4293 return -EPERM;
5fe1d75f 4294
37e4ab3f
OC
4295 /* can't change other user's priorities */
4296 if ((current->euid != p->euid) &&
4297 (current->euid != p->uid))
4298 return -EPERM;
4299 }
1da177e4
LT
4300
4301 retval = security_task_setscheduler(p, policy, param);
4302 if (retval)
4303 return retval;
b29739f9
IM
4304 /*
4305 * make sure no PI-waiters arrive (or leave) while we are
4306 * changing the priority of the task:
4307 */
4308 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4309 /*
4310 * To be able to change p->policy safely, the apropriate
4311 * runqueue lock must be held.
4312 */
b29739f9 4313 rq = __task_rq_lock(p);
1da177e4
LT
4314 /* recheck policy now with rq lock held */
4315 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4316 policy = oldpolicy = -1;
b29739f9
IM
4317 __task_rq_unlock(rq);
4318 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4319 goto recheck;
4320 }
2daa3577 4321 update_rq_clock(rq);
dd41f596 4322 on_rq = p->se.on_rq;
83b699ed
SV
4323 running = task_running(rq, p);
4324 if (on_rq) {
2e1cb74a 4325 deactivate_task(rq, p, 0);
83b699ed
SV
4326 if (running)
4327 p->sched_class->put_prev_task(rq, p);
4328 }
f6b53205 4329
1da177e4 4330 oldprio = p->prio;
dd41f596 4331 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4332
dd41f596 4333 if (on_rq) {
83b699ed
SV
4334 if (running)
4335 p->sched_class->set_curr_task(rq);
dd41f596 4336 activate_task(rq, p, 0);
1da177e4
LT
4337 /*
4338 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4339 * our priority decreased, or if we are not currently running on
4340 * this runqueue and our priority is higher than the current's
1da177e4 4341 */
83b699ed 4342 if (running) {
d5f9f942
AM
4343 if (p->prio > oldprio)
4344 resched_task(rq->curr);
dd41f596
IM
4345 } else {
4346 check_preempt_curr(rq, p);
4347 }
1da177e4 4348 }
b29739f9
IM
4349 __task_rq_unlock(rq);
4350 spin_unlock_irqrestore(&p->pi_lock, flags);
4351
95e02ca9
TG
4352 rt_mutex_adjust_pi(p);
4353
1da177e4
LT
4354 return 0;
4355}
4356EXPORT_SYMBOL_GPL(sched_setscheduler);
4357
95cdf3b7
IM
4358static int
4359do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4360{
1da177e4
LT
4361 struct sched_param lparam;
4362 struct task_struct *p;
36c8b586 4363 int retval;
1da177e4
LT
4364
4365 if (!param || pid < 0)
4366 return -EINVAL;
4367 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4368 return -EFAULT;
5fe1d75f
ON
4369
4370 rcu_read_lock();
4371 retval = -ESRCH;
1da177e4 4372 p = find_process_by_pid(pid);
5fe1d75f
ON
4373 if (p != NULL)
4374 retval = sched_setscheduler(p, policy, &lparam);
4375 rcu_read_unlock();
36c8b586 4376
1da177e4
LT
4377 return retval;
4378}
4379
4380/**
4381 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4382 * @pid: the pid in question.
4383 * @policy: new policy.
4384 * @param: structure containing the new RT priority.
4385 */
4386asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4387 struct sched_param __user *param)
4388{
c21761f1
JB
4389 /* negative values for policy are not valid */
4390 if (policy < 0)
4391 return -EINVAL;
4392
1da177e4
LT
4393 return do_sched_setscheduler(pid, policy, param);
4394}
4395
4396/**
4397 * sys_sched_setparam - set/change the RT priority of a thread
4398 * @pid: the pid in question.
4399 * @param: structure containing the new RT priority.
4400 */
4401asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4402{
4403 return do_sched_setscheduler(pid, -1, param);
4404}
4405
4406/**
4407 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4408 * @pid: the pid in question.
4409 */
4410asmlinkage long sys_sched_getscheduler(pid_t pid)
4411{
36c8b586 4412 struct task_struct *p;
3a5c359a 4413 int retval;
1da177e4
LT
4414
4415 if (pid < 0)
3a5c359a 4416 return -EINVAL;
1da177e4
LT
4417
4418 retval = -ESRCH;
4419 read_lock(&tasklist_lock);
4420 p = find_process_by_pid(pid);
4421 if (p) {
4422 retval = security_task_getscheduler(p);
4423 if (!retval)
4424 retval = p->policy;
4425 }
4426 read_unlock(&tasklist_lock);
1da177e4
LT
4427 return retval;
4428}
4429
4430/**
4431 * sys_sched_getscheduler - get the RT priority of a thread
4432 * @pid: the pid in question.
4433 * @param: structure containing the RT priority.
4434 */
4435asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4436{
4437 struct sched_param lp;
36c8b586 4438 struct task_struct *p;
3a5c359a 4439 int retval;
1da177e4
LT
4440
4441 if (!param || pid < 0)
3a5c359a 4442 return -EINVAL;
1da177e4
LT
4443
4444 read_lock(&tasklist_lock);
4445 p = find_process_by_pid(pid);
4446 retval = -ESRCH;
4447 if (!p)
4448 goto out_unlock;
4449
4450 retval = security_task_getscheduler(p);
4451 if (retval)
4452 goto out_unlock;
4453
4454 lp.sched_priority = p->rt_priority;
4455 read_unlock(&tasklist_lock);
4456
4457 /*
4458 * This one might sleep, we cannot do it with a spinlock held ...
4459 */
4460 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4461
1da177e4
LT
4462 return retval;
4463
4464out_unlock:
4465 read_unlock(&tasklist_lock);
4466 return retval;
4467}
4468
4469long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4470{
1da177e4 4471 cpumask_t cpus_allowed;
36c8b586
IM
4472 struct task_struct *p;
4473 int retval;
1da177e4 4474
5be9361c 4475 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4476 read_lock(&tasklist_lock);
4477
4478 p = find_process_by_pid(pid);
4479 if (!p) {
4480 read_unlock(&tasklist_lock);
5be9361c 4481 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4482 return -ESRCH;
4483 }
4484
4485 /*
4486 * It is not safe to call set_cpus_allowed with the
4487 * tasklist_lock held. We will bump the task_struct's
4488 * usage count and then drop tasklist_lock.
4489 */
4490 get_task_struct(p);
4491 read_unlock(&tasklist_lock);
4492
4493 retval = -EPERM;
4494 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4495 !capable(CAP_SYS_NICE))
4496 goto out_unlock;
4497
e7834f8f
DQ
4498 retval = security_task_setscheduler(p, 0, NULL);
4499 if (retval)
4500 goto out_unlock;
4501
1da177e4
LT
4502 cpus_allowed = cpuset_cpus_allowed(p);
4503 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4504 again:
1da177e4
LT
4505 retval = set_cpus_allowed(p, new_mask);
4506
8707d8b8
PM
4507 if (!retval) {
4508 cpus_allowed = cpuset_cpus_allowed(p);
4509 if (!cpus_subset(new_mask, cpus_allowed)) {
4510 /*
4511 * We must have raced with a concurrent cpuset
4512 * update. Just reset the cpus_allowed to the
4513 * cpuset's cpus_allowed
4514 */
4515 new_mask = cpus_allowed;
4516 goto again;
4517 }
4518 }
1da177e4
LT
4519out_unlock:
4520 put_task_struct(p);
5be9361c 4521 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4522 return retval;
4523}
4524
4525static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4526 cpumask_t *new_mask)
4527{
4528 if (len < sizeof(cpumask_t)) {
4529 memset(new_mask, 0, sizeof(cpumask_t));
4530 } else if (len > sizeof(cpumask_t)) {
4531 len = sizeof(cpumask_t);
4532 }
4533 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4534}
4535
4536/**
4537 * sys_sched_setaffinity - set the cpu affinity of a process
4538 * @pid: pid of the process
4539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4540 * @user_mask_ptr: user-space pointer to the new cpu mask
4541 */
4542asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4543 unsigned long __user *user_mask_ptr)
4544{
4545 cpumask_t new_mask;
4546 int retval;
4547
4548 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4549 if (retval)
4550 return retval;
4551
4552 return sched_setaffinity(pid, new_mask);
4553}
4554
4555/*
4556 * Represents all cpu's present in the system
4557 * In systems capable of hotplug, this map could dynamically grow
4558 * as new cpu's are detected in the system via any platform specific
4559 * method, such as ACPI for e.g.
4560 */
4561
4cef0c61 4562cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4563EXPORT_SYMBOL(cpu_present_map);
4564
4565#ifndef CONFIG_SMP
4cef0c61 4566cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4567EXPORT_SYMBOL(cpu_online_map);
4568
4cef0c61 4569cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4570EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4571#endif
4572
4573long sched_getaffinity(pid_t pid, cpumask_t *mask)
4574{
36c8b586 4575 struct task_struct *p;
1da177e4 4576 int retval;
1da177e4 4577
5be9361c 4578 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4579 read_lock(&tasklist_lock);
4580
4581 retval = -ESRCH;
4582 p = find_process_by_pid(pid);
4583 if (!p)
4584 goto out_unlock;
4585
e7834f8f
DQ
4586 retval = security_task_getscheduler(p);
4587 if (retval)
4588 goto out_unlock;
4589
2f7016d9 4590 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4591
4592out_unlock:
4593 read_unlock(&tasklist_lock);
5be9361c 4594 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4595
9531b62f 4596 return retval;
1da177e4
LT
4597}
4598
4599/**
4600 * sys_sched_getaffinity - get the cpu affinity of a process
4601 * @pid: pid of the process
4602 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4603 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4604 */
4605asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4606 unsigned long __user *user_mask_ptr)
4607{
4608 int ret;
4609 cpumask_t mask;
4610
4611 if (len < sizeof(cpumask_t))
4612 return -EINVAL;
4613
4614 ret = sched_getaffinity(pid, &mask);
4615 if (ret < 0)
4616 return ret;
4617
4618 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4619 return -EFAULT;
4620
4621 return sizeof(cpumask_t);
4622}
4623
4624/**
4625 * sys_sched_yield - yield the current processor to other threads.
4626 *
dd41f596
IM
4627 * This function yields the current CPU to other tasks. If there are no
4628 * other threads running on this CPU then this function will return.
1da177e4
LT
4629 */
4630asmlinkage long sys_sched_yield(void)
4631{
70b97a7f 4632 struct rq *rq = this_rq_lock();
1da177e4 4633
2d72376b 4634 schedstat_inc(rq, yld_count);
4530d7ab 4635 current->sched_class->yield_task(rq);
1da177e4
LT
4636
4637 /*
4638 * Since we are going to call schedule() anyway, there's
4639 * no need to preempt or enable interrupts:
4640 */
4641 __release(rq->lock);
8a25d5de 4642 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4643 _raw_spin_unlock(&rq->lock);
4644 preempt_enable_no_resched();
4645
4646 schedule();
4647
4648 return 0;
4649}
4650
e7b38404 4651static void __cond_resched(void)
1da177e4 4652{
8e0a43d8
IM
4653#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4654 __might_sleep(__FILE__, __LINE__);
4655#endif
5bbcfd90
IM
4656 /*
4657 * The BKS might be reacquired before we have dropped
4658 * PREEMPT_ACTIVE, which could trigger a second
4659 * cond_resched() call.
4660 */
1da177e4
LT
4661 do {
4662 add_preempt_count(PREEMPT_ACTIVE);
4663 schedule();
4664 sub_preempt_count(PREEMPT_ACTIVE);
4665 } while (need_resched());
4666}
4667
4668int __sched cond_resched(void)
4669{
9414232f
IM
4670 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4671 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4672 __cond_resched();
4673 return 1;
4674 }
4675 return 0;
4676}
1da177e4
LT
4677EXPORT_SYMBOL(cond_resched);
4678
4679/*
4680 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4681 * call schedule, and on return reacquire the lock.
4682 *
4683 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4684 * operations here to prevent schedule() from being called twice (once via
4685 * spin_unlock(), once by hand).
4686 */
95cdf3b7 4687int cond_resched_lock(spinlock_t *lock)
1da177e4 4688{
6df3cecb
JK
4689 int ret = 0;
4690
1da177e4
LT
4691 if (need_lockbreak(lock)) {
4692 spin_unlock(lock);
4693 cpu_relax();
6df3cecb 4694 ret = 1;
1da177e4
LT
4695 spin_lock(lock);
4696 }
9414232f 4697 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4698 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4699 _raw_spin_unlock(lock);
4700 preempt_enable_no_resched();
4701 __cond_resched();
6df3cecb 4702 ret = 1;
1da177e4 4703 spin_lock(lock);
1da177e4 4704 }
6df3cecb 4705 return ret;
1da177e4 4706}
1da177e4
LT
4707EXPORT_SYMBOL(cond_resched_lock);
4708
4709int __sched cond_resched_softirq(void)
4710{
4711 BUG_ON(!in_softirq());
4712
9414232f 4713 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4714 local_bh_enable();
1da177e4
LT
4715 __cond_resched();
4716 local_bh_disable();
4717 return 1;
4718 }
4719 return 0;
4720}
1da177e4
LT
4721EXPORT_SYMBOL(cond_resched_softirq);
4722
1da177e4
LT
4723/**
4724 * yield - yield the current processor to other threads.
4725 *
72fd4a35 4726 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4727 * thread runnable and calls sys_sched_yield().
4728 */
4729void __sched yield(void)
4730{
4731 set_current_state(TASK_RUNNING);
4732 sys_sched_yield();
4733}
1da177e4
LT
4734EXPORT_SYMBOL(yield);
4735
4736/*
4737 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4738 * that process accounting knows that this is a task in IO wait state.
4739 *
4740 * But don't do that if it is a deliberate, throttling IO wait (this task
4741 * has set its backing_dev_info: the queue against which it should throttle)
4742 */
4743void __sched io_schedule(void)
4744{
70b97a7f 4745 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4746
0ff92245 4747 delayacct_blkio_start();
1da177e4
LT
4748 atomic_inc(&rq->nr_iowait);
4749 schedule();
4750 atomic_dec(&rq->nr_iowait);
0ff92245 4751 delayacct_blkio_end();
1da177e4 4752}
1da177e4
LT
4753EXPORT_SYMBOL(io_schedule);
4754
4755long __sched io_schedule_timeout(long timeout)
4756{
70b97a7f 4757 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4758 long ret;
4759
0ff92245 4760 delayacct_blkio_start();
1da177e4
LT
4761 atomic_inc(&rq->nr_iowait);
4762 ret = schedule_timeout(timeout);
4763 atomic_dec(&rq->nr_iowait);
0ff92245 4764 delayacct_blkio_end();
1da177e4
LT
4765 return ret;
4766}
4767
4768/**
4769 * sys_sched_get_priority_max - return maximum RT priority.
4770 * @policy: scheduling class.
4771 *
4772 * this syscall returns the maximum rt_priority that can be used
4773 * by a given scheduling class.
4774 */
4775asmlinkage long sys_sched_get_priority_max(int policy)
4776{
4777 int ret = -EINVAL;
4778
4779 switch (policy) {
4780 case SCHED_FIFO:
4781 case SCHED_RR:
4782 ret = MAX_USER_RT_PRIO-1;
4783 break;
4784 case SCHED_NORMAL:
b0a9499c 4785 case SCHED_BATCH:
dd41f596 4786 case SCHED_IDLE:
1da177e4
LT
4787 ret = 0;
4788 break;
4789 }
4790 return ret;
4791}
4792
4793/**
4794 * sys_sched_get_priority_min - return minimum RT priority.
4795 * @policy: scheduling class.
4796 *
4797 * this syscall returns the minimum rt_priority that can be used
4798 * by a given scheduling class.
4799 */
4800asmlinkage long sys_sched_get_priority_min(int policy)
4801{
4802 int ret = -EINVAL;
4803
4804 switch (policy) {
4805 case SCHED_FIFO:
4806 case SCHED_RR:
4807 ret = 1;
4808 break;
4809 case SCHED_NORMAL:
b0a9499c 4810 case SCHED_BATCH:
dd41f596 4811 case SCHED_IDLE:
1da177e4
LT
4812 ret = 0;
4813 }
4814 return ret;
4815}
4816
4817/**
4818 * sys_sched_rr_get_interval - return the default timeslice of a process.
4819 * @pid: pid of the process.
4820 * @interval: userspace pointer to the timeslice value.
4821 *
4822 * this syscall writes the default timeslice value of a given process
4823 * into the user-space timespec buffer. A value of '0' means infinity.
4824 */
4825asmlinkage
4826long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4827{
36c8b586 4828 struct task_struct *p;
a4ec24b4 4829 unsigned int time_slice;
3a5c359a 4830 int retval;
1da177e4 4831 struct timespec t;
1da177e4
LT
4832
4833 if (pid < 0)
3a5c359a 4834 return -EINVAL;
1da177e4
LT
4835
4836 retval = -ESRCH;
4837 read_lock(&tasklist_lock);
4838 p = find_process_by_pid(pid);
4839 if (!p)
4840 goto out_unlock;
4841
4842 retval = security_task_getscheduler(p);
4843 if (retval)
4844 goto out_unlock;
4845
a4ec24b4
DA
4846 if (p->policy == SCHED_FIFO)
4847 time_slice = 0;
4848 else if (p->policy == SCHED_RR)
4849 time_slice = DEF_TIMESLICE;
4850 else {
4851 struct sched_entity *se = &p->se;
4852 unsigned long flags;
4853 struct rq *rq;
4854
4855 rq = task_rq_lock(p, &flags);
4856 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4857 task_rq_unlock(rq, &flags);
4858 }
1da177e4 4859 read_unlock(&tasklist_lock);
a4ec24b4 4860 jiffies_to_timespec(time_slice, &t);
1da177e4 4861 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4862 return retval;
3a5c359a 4863
1da177e4
LT
4864out_unlock:
4865 read_unlock(&tasklist_lock);
4866 return retval;
4867}
4868
2ed6e34f 4869static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4870
4871static void show_task(struct task_struct *p)
1da177e4 4872{
1da177e4 4873 unsigned long free = 0;
36c8b586 4874 unsigned state;
1da177e4 4875
1da177e4 4876 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4877 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4878 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4879#if BITS_PER_LONG == 32
1da177e4 4880 if (state == TASK_RUNNING)
cc4ea795 4881 printk(KERN_CONT " running ");
1da177e4 4882 else
cc4ea795 4883 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4884#else
4885 if (state == TASK_RUNNING)
cc4ea795 4886 printk(KERN_CONT " running task ");
1da177e4 4887 else
cc4ea795 4888 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4889#endif
4890#ifdef CONFIG_DEBUG_STACK_USAGE
4891 {
10ebffde 4892 unsigned long *n = end_of_stack(p);
1da177e4
LT
4893 while (!*n)
4894 n++;
10ebffde 4895 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4896 }
4897#endif
ba25f9dc
PE
4898 printk(KERN_CONT "%5lu %5d %6d\n", free,
4899 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4900
4901 if (state != TASK_RUNNING)
4902 show_stack(p, NULL);
4903}
4904
e59e2ae2 4905void show_state_filter(unsigned long state_filter)
1da177e4 4906{
36c8b586 4907 struct task_struct *g, *p;
1da177e4 4908
4bd77321
IM
4909#if BITS_PER_LONG == 32
4910 printk(KERN_INFO
4911 " task PC stack pid father\n");
1da177e4 4912#else
4bd77321
IM
4913 printk(KERN_INFO
4914 " task PC stack pid father\n");
1da177e4
LT
4915#endif
4916 read_lock(&tasklist_lock);
4917 do_each_thread(g, p) {
4918 /*
4919 * reset the NMI-timeout, listing all files on a slow
4920 * console might take alot of time:
4921 */
4922 touch_nmi_watchdog();
39bc89fd 4923 if (!state_filter || (p->state & state_filter))
e59e2ae2 4924 show_task(p);
1da177e4
LT
4925 } while_each_thread(g, p);
4926
04c9167f
JF
4927 touch_all_softlockup_watchdogs();
4928
dd41f596
IM
4929#ifdef CONFIG_SCHED_DEBUG
4930 sysrq_sched_debug_show();
4931#endif
1da177e4 4932 read_unlock(&tasklist_lock);
e59e2ae2
IM
4933 /*
4934 * Only show locks if all tasks are dumped:
4935 */
4936 if (state_filter == -1)
4937 debug_show_all_locks();
1da177e4
LT
4938}
4939
1df21055
IM
4940void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4941{
dd41f596 4942 idle->sched_class = &idle_sched_class;
1df21055
IM
4943}
4944
f340c0d1
IM
4945/**
4946 * init_idle - set up an idle thread for a given CPU
4947 * @idle: task in question
4948 * @cpu: cpu the idle task belongs to
4949 *
4950 * NOTE: this function does not set the idle thread's NEED_RESCHED
4951 * flag, to make booting more robust.
4952 */
5c1e1767 4953void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4954{
70b97a7f 4955 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4956 unsigned long flags;
4957
dd41f596
IM
4958 __sched_fork(idle);
4959 idle->se.exec_start = sched_clock();
4960
b29739f9 4961 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4962 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4963 __set_task_cpu(idle, cpu);
1da177e4
LT
4964
4965 spin_lock_irqsave(&rq->lock, flags);
4966 rq->curr = rq->idle = idle;
4866cde0
NP
4967#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4968 idle->oncpu = 1;
4969#endif
1da177e4
LT
4970 spin_unlock_irqrestore(&rq->lock, flags);
4971
4972 /* Set the preempt count _outside_ the spinlocks! */
4973#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4974 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4975#else
a1261f54 4976 task_thread_info(idle)->preempt_count = 0;
1da177e4 4977#endif
dd41f596
IM
4978 /*
4979 * The idle tasks have their own, simple scheduling class:
4980 */
4981 idle->sched_class = &idle_sched_class;
1da177e4
LT
4982}
4983
4984/*
4985 * In a system that switches off the HZ timer nohz_cpu_mask
4986 * indicates which cpus entered this state. This is used
4987 * in the rcu update to wait only for active cpus. For system
4988 * which do not switch off the HZ timer nohz_cpu_mask should
4989 * always be CPU_MASK_NONE.
4990 */
4991cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4992
19978ca6
IM
4993/*
4994 * Increase the granularity value when there are more CPUs,
4995 * because with more CPUs the 'effective latency' as visible
4996 * to users decreases. But the relationship is not linear,
4997 * so pick a second-best guess by going with the log2 of the
4998 * number of CPUs.
4999 *
5000 * This idea comes from the SD scheduler of Con Kolivas:
5001 */
5002static inline void sched_init_granularity(void)
5003{
5004 unsigned int factor = 1 + ilog2(num_online_cpus());
5005 const unsigned long limit = 200000000;
5006
5007 sysctl_sched_min_granularity *= factor;
5008 if (sysctl_sched_min_granularity > limit)
5009 sysctl_sched_min_granularity = limit;
5010
5011 sysctl_sched_latency *= factor;
5012 if (sysctl_sched_latency > limit)
5013 sysctl_sched_latency = limit;
5014
5015 sysctl_sched_wakeup_granularity *= factor;
5016 sysctl_sched_batch_wakeup_granularity *= factor;
5017}
5018
1da177e4
LT
5019#ifdef CONFIG_SMP
5020/*
5021 * This is how migration works:
5022 *
70b97a7f 5023 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5024 * runqueue and wake up that CPU's migration thread.
5025 * 2) we down() the locked semaphore => thread blocks.
5026 * 3) migration thread wakes up (implicitly it forces the migrated
5027 * thread off the CPU)
5028 * 4) it gets the migration request and checks whether the migrated
5029 * task is still in the wrong runqueue.
5030 * 5) if it's in the wrong runqueue then the migration thread removes
5031 * it and puts it into the right queue.
5032 * 6) migration thread up()s the semaphore.
5033 * 7) we wake up and the migration is done.
5034 */
5035
5036/*
5037 * Change a given task's CPU affinity. Migrate the thread to a
5038 * proper CPU and schedule it away if the CPU it's executing on
5039 * is removed from the allowed bitmask.
5040 *
5041 * NOTE: the caller must have a valid reference to the task, the
5042 * task must not exit() & deallocate itself prematurely. The
5043 * call is not atomic; no spinlocks may be held.
5044 */
36c8b586 5045int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 5046{
70b97a7f 5047 struct migration_req req;
1da177e4 5048 unsigned long flags;
70b97a7f 5049 struct rq *rq;
48f24c4d 5050 int ret = 0;
1da177e4
LT
5051
5052 rq = task_rq_lock(p, &flags);
5053 if (!cpus_intersects(new_mask, cpu_online_map)) {
5054 ret = -EINVAL;
5055 goto out;
5056 }
5057
5058 p->cpus_allowed = new_mask;
5059 /* Can the task run on the task's current CPU? If so, we're done */
5060 if (cpu_isset(task_cpu(p), new_mask))
5061 goto out;
5062
5063 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5064 /* Need help from migration thread: drop lock and wait. */
5065 task_rq_unlock(rq, &flags);
5066 wake_up_process(rq->migration_thread);
5067 wait_for_completion(&req.done);
5068 tlb_migrate_finish(p->mm);
5069 return 0;
5070 }
5071out:
5072 task_rq_unlock(rq, &flags);
48f24c4d 5073
1da177e4
LT
5074 return ret;
5075}
1da177e4
LT
5076EXPORT_SYMBOL_GPL(set_cpus_allowed);
5077
5078/*
5079 * Move (not current) task off this cpu, onto dest cpu. We're doing
5080 * this because either it can't run here any more (set_cpus_allowed()
5081 * away from this CPU, or CPU going down), or because we're
5082 * attempting to rebalance this task on exec (sched_exec).
5083 *
5084 * So we race with normal scheduler movements, but that's OK, as long
5085 * as the task is no longer on this CPU.
efc30814
KK
5086 *
5087 * Returns non-zero if task was successfully migrated.
1da177e4 5088 */
efc30814 5089static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5090{
70b97a7f 5091 struct rq *rq_dest, *rq_src;
dd41f596 5092 int ret = 0, on_rq;
1da177e4
LT
5093
5094 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5095 return ret;
1da177e4
LT
5096
5097 rq_src = cpu_rq(src_cpu);
5098 rq_dest = cpu_rq(dest_cpu);
5099
5100 double_rq_lock(rq_src, rq_dest);
5101 /* Already moved. */
5102 if (task_cpu(p) != src_cpu)
5103 goto out;
5104 /* Affinity changed (again). */
5105 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5106 goto out;
5107
dd41f596 5108 on_rq = p->se.on_rq;
6e82a3be 5109 if (on_rq)
2e1cb74a 5110 deactivate_task(rq_src, p, 0);
6e82a3be 5111
1da177e4 5112 set_task_cpu(p, dest_cpu);
dd41f596
IM
5113 if (on_rq) {
5114 activate_task(rq_dest, p, 0);
5115 check_preempt_curr(rq_dest, p);
1da177e4 5116 }
efc30814 5117 ret = 1;
1da177e4
LT
5118out:
5119 double_rq_unlock(rq_src, rq_dest);
efc30814 5120 return ret;
1da177e4
LT
5121}
5122
5123/*
5124 * migration_thread - this is a highprio system thread that performs
5125 * thread migration by bumping thread off CPU then 'pushing' onto
5126 * another runqueue.
5127 */
95cdf3b7 5128static int migration_thread(void *data)
1da177e4 5129{
1da177e4 5130 int cpu = (long)data;
70b97a7f 5131 struct rq *rq;
1da177e4
LT
5132
5133 rq = cpu_rq(cpu);
5134 BUG_ON(rq->migration_thread != current);
5135
5136 set_current_state(TASK_INTERRUPTIBLE);
5137 while (!kthread_should_stop()) {
70b97a7f 5138 struct migration_req *req;
1da177e4 5139 struct list_head *head;
1da177e4 5140
1da177e4
LT
5141 spin_lock_irq(&rq->lock);
5142
5143 if (cpu_is_offline(cpu)) {
5144 spin_unlock_irq(&rq->lock);
5145 goto wait_to_die;
5146 }
5147
5148 if (rq->active_balance) {
5149 active_load_balance(rq, cpu);
5150 rq->active_balance = 0;
5151 }
5152
5153 head = &rq->migration_queue;
5154
5155 if (list_empty(head)) {
5156 spin_unlock_irq(&rq->lock);
5157 schedule();
5158 set_current_state(TASK_INTERRUPTIBLE);
5159 continue;
5160 }
70b97a7f 5161 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5162 list_del_init(head->next);
5163
674311d5
NP
5164 spin_unlock(&rq->lock);
5165 __migrate_task(req->task, cpu, req->dest_cpu);
5166 local_irq_enable();
1da177e4
LT
5167
5168 complete(&req->done);
5169 }
5170 __set_current_state(TASK_RUNNING);
5171 return 0;
5172
5173wait_to_die:
5174 /* Wait for kthread_stop */
5175 set_current_state(TASK_INTERRUPTIBLE);
5176 while (!kthread_should_stop()) {
5177 schedule();
5178 set_current_state(TASK_INTERRUPTIBLE);
5179 }
5180 __set_current_state(TASK_RUNNING);
5181 return 0;
5182}
5183
5184#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5185
5186static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5187{
5188 int ret;
5189
5190 local_irq_disable();
5191 ret = __migrate_task(p, src_cpu, dest_cpu);
5192 local_irq_enable();
5193 return ret;
5194}
5195
054b9108 5196/*
3a4fa0a2 5197 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5198 * NOTE: interrupts should be disabled by the caller
5199 */
48f24c4d 5200static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5201{
efc30814 5202 unsigned long flags;
1da177e4 5203 cpumask_t mask;
70b97a7f
IM
5204 struct rq *rq;
5205 int dest_cpu;
1da177e4 5206
3a5c359a
AK
5207 do {
5208 /* On same node? */
5209 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5210 cpus_and(mask, mask, p->cpus_allowed);
5211 dest_cpu = any_online_cpu(mask);
5212
5213 /* On any allowed CPU? */
5214 if (dest_cpu == NR_CPUS)
5215 dest_cpu = any_online_cpu(p->cpus_allowed);
5216
5217 /* No more Mr. Nice Guy. */
5218 if (dest_cpu == NR_CPUS) {
470fd646
CW
5219 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5220 /*
5221 * Try to stay on the same cpuset, where the
5222 * current cpuset may be a subset of all cpus.
5223 * The cpuset_cpus_allowed_locked() variant of
5224 * cpuset_cpus_allowed() will not block. It must be
5225 * called within calls to cpuset_lock/cpuset_unlock.
5226 */
3a5c359a 5227 rq = task_rq_lock(p, &flags);
470fd646 5228 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5229 dest_cpu = any_online_cpu(p->cpus_allowed);
5230 task_rq_unlock(rq, &flags);
1da177e4 5231
3a5c359a
AK
5232 /*
5233 * Don't tell them about moving exiting tasks or
5234 * kernel threads (both mm NULL), since they never
5235 * leave kernel.
5236 */
5237 if (p->mm && printk_ratelimit())
5238 printk(KERN_INFO "process %d (%s) no "
5239 "longer affine to cpu%d\n",
ba25f9dc 5240 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 5241 }
f7b4cddc 5242 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5243}
5244
5245/*
5246 * While a dead CPU has no uninterruptible tasks queued at this point,
5247 * it might still have a nonzero ->nr_uninterruptible counter, because
5248 * for performance reasons the counter is not stricly tracking tasks to
5249 * their home CPUs. So we just add the counter to another CPU's counter,
5250 * to keep the global sum constant after CPU-down:
5251 */
70b97a7f 5252static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5253{
70b97a7f 5254 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5255 unsigned long flags;
5256
5257 local_irq_save(flags);
5258 double_rq_lock(rq_src, rq_dest);
5259 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5260 rq_src->nr_uninterruptible = 0;
5261 double_rq_unlock(rq_src, rq_dest);
5262 local_irq_restore(flags);
5263}
5264
5265/* Run through task list and migrate tasks from the dead cpu. */
5266static void migrate_live_tasks(int src_cpu)
5267{
48f24c4d 5268 struct task_struct *p, *t;
1da177e4 5269
f7b4cddc 5270 read_lock(&tasklist_lock);
1da177e4 5271
48f24c4d
IM
5272 do_each_thread(t, p) {
5273 if (p == current)
1da177e4
LT
5274 continue;
5275
48f24c4d
IM
5276 if (task_cpu(p) == src_cpu)
5277 move_task_off_dead_cpu(src_cpu, p);
5278 } while_each_thread(t, p);
1da177e4 5279
f7b4cddc 5280 read_unlock(&tasklist_lock);
1da177e4
LT
5281}
5282
a9957449
AD
5283/*
5284 * activate_idle_task - move idle task to the _front_ of runqueue.
5285 */
5286static void activate_idle_task(struct task_struct *p, struct rq *rq)
5287{
5288 update_rq_clock(rq);
5289
5290 if (p->state == TASK_UNINTERRUPTIBLE)
5291 rq->nr_uninterruptible--;
5292
5293 enqueue_task(rq, p, 0);
5294 inc_nr_running(p, rq);
5295}
5296
dd41f596
IM
5297/*
5298 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5299 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5300 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5301 */
5302void sched_idle_next(void)
5303{
48f24c4d 5304 int this_cpu = smp_processor_id();
70b97a7f 5305 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5306 struct task_struct *p = rq->idle;
5307 unsigned long flags;
5308
5309 /* cpu has to be offline */
48f24c4d 5310 BUG_ON(cpu_online(this_cpu));
1da177e4 5311
48f24c4d
IM
5312 /*
5313 * Strictly not necessary since rest of the CPUs are stopped by now
5314 * and interrupts disabled on the current cpu.
1da177e4
LT
5315 */
5316 spin_lock_irqsave(&rq->lock, flags);
5317
dd41f596 5318 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5319
5320 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5321 activate_idle_task(p, rq);
1da177e4
LT
5322
5323 spin_unlock_irqrestore(&rq->lock, flags);
5324}
5325
48f24c4d
IM
5326/*
5327 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5328 * offline.
5329 */
5330void idle_task_exit(void)
5331{
5332 struct mm_struct *mm = current->active_mm;
5333
5334 BUG_ON(cpu_online(smp_processor_id()));
5335
5336 if (mm != &init_mm)
5337 switch_mm(mm, &init_mm, current);
5338 mmdrop(mm);
5339}
5340
054b9108 5341/* called under rq->lock with disabled interrupts */
36c8b586 5342static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5343{
70b97a7f 5344 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5345
5346 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5347 BUG_ON(!p->exit_state);
1da177e4
LT
5348
5349 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5350 BUG_ON(p->state == TASK_DEAD);
1da177e4 5351
48f24c4d 5352 get_task_struct(p);
1da177e4
LT
5353
5354 /*
5355 * Drop lock around migration; if someone else moves it,
5356 * that's OK. No task can be added to this CPU, so iteration is
5357 * fine.
5358 */
f7b4cddc 5359 spin_unlock_irq(&rq->lock);
48f24c4d 5360 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5361 spin_lock_irq(&rq->lock);
1da177e4 5362
48f24c4d 5363 put_task_struct(p);
1da177e4
LT
5364}
5365
5366/* release_task() removes task from tasklist, so we won't find dead tasks. */
5367static void migrate_dead_tasks(unsigned int dead_cpu)
5368{
70b97a7f 5369 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5370 struct task_struct *next;
48f24c4d 5371
dd41f596
IM
5372 for ( ; ; ) {
5373 if (!rq->nr_running)
5374 break;
a8e504d2 5375 update_rq_clock(rq);
ff95f3df 5376 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5377 if (!next)
5378 break;
5379 migrate_dead(dead_cpu, next);
e692ab53 5380
1da177e4
LT
5381 }
5382}
5383#endif /* CONFIG_HOTPLUG_CPU */
5384
e692ab53
NP
5385#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5386
5387static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5388 {
5389 .procname = "sched_domain",
c57baf1e 5390 .mode = 0555,
e0361851 5391 },
38605cae 5392 {0, },
e692ab53
NP
5393};
5394
5395static struct ctl_table sd_ctl_root[] = {
e0361851 5396 {
c57baf1e 5397 .ctl_name = CTL_KERN,
e0361851 5398 .procname = "kernel",
c57baf1e 5399 .mode = 0555,
e0361851
AD
5400 .child = sd_ctl_dir,
5401 },
38605cae 5402 {0, },
e692ab53
NP
5403};
5404
5405static struct ctl_table *sd_alloc_ctl_entry(int n)
5406{
5407 struct ctl_table *entry =
5cf9f062 5408 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5409
e692ab53
NP
5410 return entry;
5411}
5412
6382bc90
MM
5413static void sd_free_ctl_entry(struct ctl_table **tablep)
5414{
cd790076 5415 struct ctl_table *entry;
6382bc90 5416
cd790076
MM
5417 /*
5418 * In the intermediate directories, both the child directory and
5419 * procname are dynamically allocated and could fail but the mode
5420 * will always be set. In the lowest directory the names are
5421 * static strings and all have proc handlers.
5422 */
5423 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5424 if (entry->child)
5425 sd_free_ctl_entry(&entry->child);
cd790076
MM
5426 if (entry->proc_handler == NULL)
5427 kfree(entry->procname);
5428 }
6382bc90
MM
5429
5430 kfree(*tablep);
5431 *tablep = NULL;
5432}
5433
e692ab53 5434static void
e0361851 5435set_table_entry(struct ctl_table *entry,
e692ab53
NP
5436 const char *procname, void *data, int maxlen,
5437 mode_t mode, proc_handler *proc_handler)
5438{
e692ab53
NP
5439 entry->procname = procname;
5440 entry->data = data;
5441 entry->maxlen = maxlen;
5442 entry->mode = mode;
5443 entry->proc_handler = proc_handler;
5444}
5445
5446static struct ctl_table *
5447sd_alloc_ctl_domain_table(struct sched_domain *sd)
5448{
ace8b3d6 5449 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5450
ad1cdc1d
MM
5451 if (table == NULL)
5452 return NULL;
5453
e0361851 5454 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5455 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5456 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5457 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5458 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5459 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5460 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5461 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5462 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5463 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5464 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5465 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5466 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5467 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5468 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5469 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5470 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5471 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5472 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5473 &sd->cache_nice_tries,
5474 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5475 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5476 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5477 /* &table[11] is terminator */
e692ab53
NP
5478
5479 return table;
5480}
5481
8401f775 5482static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5483{
5484 struct ctl_table *entry, *table;
5485 struct sched_domain *sd;
5486 int domain_num = 0, i;
5487 char buf[32];
5488
5489 for_each_domain(cpu, sd)
5490 domain_num++;
5491 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5492 if (table == NULL)
5493 return NULL;
e692ab53
NP
5494
5495 i = 0;
5496 for_each_domain(cpu, sd) {
5497 snprintf(buf, 32, "domain%d", i);
e692ab53 5498 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5499 entry->mode = 0555;
e692ab53
NP
5500 entry->child = sd_alloc_ctl_domain_table(sd);
5501 entry++;
5502 i++;
5503 }
5504 return table;
5505}
5506
5507static struct ctl_table_header *sd_sysctl_header;
6382bc90 5508static void register_sched_domain_sysctl(void)
e692ab53
NP
5509{
5510 int i, cpu_num = num_online_cpus();
5511 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5512 char buf[32];
5513
7378547f
MM
5514 WARN_ON(sd_ctl_dir[0].child);
5515 sd_ctl_dir[0].child = entry;
5516
ad1cdc1d
MM
5517 if (entry == NULL)
5518 return;
5519
97b6ea7b 5520 for_each_online_cpu(i) {
e692ab53 5521 snprintf(buf, 32, "cpu%d", i);
e692ab53 5522 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5523 entry->mode = 0555;
e692ab53 5524 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5525 entry++;
e692ab53 5526 }
7378547f
MM
5527
5528 WARN_ON(sd_sysctl_header);
e692ab53
NP
5529 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5530}
6382bc90 5531
7378547f 5532/* may be called multiple times per register */
6382bc90
MM
5533static void unregister_sched_domain_sysctl(void)
5534{
7378547f
MM
5535 if (sd_sysctl_header)
5536 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5537 sd_sysctl_header = NULL;
7378547f
MM
5538 if (sd_ctl_dir[0].child)
5539 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5540}
e692ab53 5541#else
6382bc90
MM
5542static void register_sched_domain_sysctl(void)
5543{
5544}
5545static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5546{
5547}
5548#endif
5549
1da177e4
LT
5550/*
5551 * migration_call - callback that gets triggered when a CPU is added.
5552 * Here we can start up the necessary migration thread for the new CPU.
5553 */
48f24c4d
IM
5554static int __cpuinit
5555migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5556{
1da177e4 5557 struct task_struct *p;
48f24c4d 5558 int cpu = (long)hcpu;
1da177e4 5559 unsigned long flags;
70b97a7f 5560 struct rq *rq;
1da177e4
LT
5561
5562 switch (action) {
5be9361c
GS
5563 case CPU_LOCK_ACQUIRE:
5564 mutex_lock(&sched_hotcpu_mutex);
5565 break;
5566
1da177e4 5567 case CPU_UP_PREPARE:
8bb78442 5568 case CPU_UP_PREPARE_FROZEN:
dd41f596 5569 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5570 if (IS_ERR(p))
5571 return NOTIFY_BAD;
1da177e4
LT
5572 kthread_bind(p, cpu);
5573 /* Must be high prio: stop_machine expects to yield to it. */
5574 rq = task_rq_lock(p, &flags);
dd41f596 5575 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5576 task_rq_unlock(rq, &flags);
5577 cpu_rq(cpu)->migration_thread = p;
5578 break;
48f24c4d 5579
1da177e4 5580 case CPU_ONLINE:
8bb78442 5581 case CPU_ONLINE_FROZEN:
3a4fa0a2 5582 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5583 wake_up_process(cpu_rq(cpu)->migration_thread);
5584 break;
48f24c4d 5585
1da177e4
LT
5586#ifdef CONFIG_HOTPLUG_CPU
5587 case CPU_UP_CANCELED:
8bb78442 5588 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5589 if (!cpu_rq(cpu)->migration_thread)
5590 break;
1da177e4 5591 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5592 kthread_bind(cpu_rq(cpu)->migration_thread,
5593 any_online_cpu(cpu_online_map));
1da177e4
LT
5594 kthread_stop(cpu_rq(cpu)->migration_thread);
5595 cpu_rq(cpu)->migration_thread = NULL;
5596 break;
48f24c4d 5597
1da177e4 5598 case CPU_DEAD:
8bb78442 5599 case CPU_DEAD_FROZEN:
470fd646 5600 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5601 migrate_live_tasks(cpu);
5602 rq = cpu_rq(cpu);
5603 kthread_stop(rq->migration_thread);
5604 rq->migration_thread = NULL;
5605 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5606 spin_lock_irq(&rq->lock);
a8e504d2 5607 update_rq_clock(rq);
2e1cb74a 5608 deactivate_task(rq, rq->idle, 0);
1da177e4 5609 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5610 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5611 rq->idle->sched_class = &idle_sched_class;
1da177e4 5612 migrate_dead_tasks(cpu);
d2da272a 5613 spin_unlock_irq(&rq->lock);
470fd646 5614 cpuset_unlock();
1da177e4
LT
5615 migrate_nr_uninterruptible(rq);
5616 BUG_ON(rq->nr_running != 0);
5617
5618 /* No need to migrate the tasks: it was best-effort if
5be9361c 5619 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5620 * the requestors. */
5621 spin_lock_irq(&rq->lock);
5622 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5623 struct migration_req *req;
5624
1da177e4 5625 req = list_entry(rq->migration_queue.next,
70b97a7f 5626 struct migration_req, list);
1da177e4
LT
5627 list_del_init(&req->list);
5628 complete(&req->done);
5629 }
5630 spin_unlock_irq(&rq->lock);
5631 break;
5632#endif
5be9361c
GS
5633 case CPU_LOCK_RELEASE:
5634 mutex_unlock(&sched_hotcpu_mutex);
5635 break;
1da177e4
LT
5636 }
5637 return NOTIFY_OK;
5638}
5639
5640/* Register at highest priority so that task migration (migrate_all_tasks)
5641 * happens before everything else.
5642 */
26c2143b 5643static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5644 .notifier_call = migration_call,
5645 .priority = 10
5646};
5647
5648int __init migration_init(void)
5649{
5650 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5651 int err;
48f24c4d
IM
5652
5653 /* Start one for the boot CPU: */
07dccf33
AM
5654 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5655 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5656 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5657 register_cpu_notifier(&migration_notifier);
48f24c4d 5658
1da177e4
LT
5659 return 0;
5660}
5661#endif
5662
5663#ifdef CONFIG_SMP
476f3534
CL
5664
5665/* Number of possible processor ids */
5666int nr_cpu_ids __read_mostly = NR_CPUS;
5667EXPORT_SYMBOL(nr_cpu_ids);
5668
3e9830dc 5669#ifdef CONFIG_SCHED_DEBUG
4dcf6aff
IM
5670
5671static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
1da177e4 5672{
4dcf6aff
IM
5673 struct sched_group *group = sd->groups;
5674 cpumask_t groupmask;
5675 char str[NR_CPUS];
1da177e4 5676
4dcf6aff
IM
5677 cpumask_scnprintf(str, NR_CPUS, sd->span);
5678 cpus_clear(groupmask);
5679
5680 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5681
5682 if (!(sd->flags & SD_LOAD_BALANCE)) {
5683 printk("does not load-balance\n");
5684 if (sd->parent)
5685 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5686 " has parent");
5687 return -1;
41c7ce9a
NP
5688 }
5689
4dcf6aff
IM
5690 printk(KERN_CONT "span %s\n", str);
5691
5692 if (!cpu_isset(cpu, sd->span)) {
5693 printk(KERN_ERR "ERROR: domain->span does not contain "
5694 "CPU%d\n", cpu);
5695 }
5696 if (!cpu_isset(cpu, group->cpumask)) {
5697 printk(KERN_ERR "ERROR: domain->groups does not contain"
5698 " CPU%d\n", cpu);
5699 }
1da177e4 5700
4dcf6aff 5701 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5702 do {
4dcf6aff
IM
5703 if (!group) {
5704 printk("\n");
5705 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5706 break;
5707 }
5708
4dcf6aff
IM
5709 if (!group->__cpu_power) {
5710 printk(KERN_CONT "\n");
5711 printk(KERN_ERR "ERROR: domain->cpu_power not "
5712 "set\n");
5713 break;
5714 }
1da177e4 5715
4dcf6aff
IM
5716 if (!cpus_weight(group->cpumask)) {
5717 printk(KERN_CONT "\n");
5718 printk(KERN_ERR "ERROR: empty group\n");
5719 break;
5720 }
1da177e4 5721
4dcf6aff
IM
5722 if (cpus_intersects(groupmask, group->cpumask)) {
5723 printk(KERN_CONT "\n");
5724 printk(KERN_ERR "ERROR: repeated CPUs\n");
5725 break;
5726 }
1da177e4 5727
4dcf6aff 5728 cpus_or(groupmask, groupmask, group->cpumask);
1da177e4 5729
4dcf6aff
IM
5730 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5731 printk(KERN_CONT " %s", str);
1da177e4 5732
4dcf6aff
IM
5733 group = group->next;
5734 } while (group != sd->groups);
5735 printk(KERN_CONT "\n");
1da177e4 5736
4dcf6aff
IM
5737 if (!cpus_equal(sd->span, groupmask))
5738 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5739
4dcf6aff
IM
5740 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5741 printk(KERN_ERR "ERROR: parent span is not a superset "
5742 "of domain->span\n");
5743 return 0;
5744}
1da177e4 5745
4dcf6aff
IM
5746static void sched_domain_debug(struct sched_domain *sd, int cpu)
5747{
5748 int level = 0;
1da177e4 5749
4dcf6aff
IM
5750 if (!sd) {
5751 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5752 return;
5753 }
1da177e4 5754
4dcf6aff
IM
5755 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5756
5757 for (;;) {
5758 if (sched_domain_debug_one(sd, cpu, level))
5759 break;
1da177e4
LT
5760 level++;
5761 sd = sd->parent;
33859f7f 5762 if (!sd)
4dcf6aff
IM
5763 break;
5764 }
1da177e4
LT
5765}
5766#else
48f24c4d 5767# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5768#endif
5769
1a20ff27 5770static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5771{
5772 if (cpus_weight(sd->span) == 1)
5773 return 1;
5774
5775 /* Following flags need at least 2 groups */
5776 if (sd->flags & (SD_LOAD_BALANCE |
5777 SD_BALANCE_NEWIDLE |
5778 SD_BALANCE_FORK |
89c4710e
SS
5779 SD_BALANCE_EXEC |
5780 SD_SHARE_CPUPOWER |
5781 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5782 if (sd->groups != sd->groups->next)
5783 return 0;
5784 }
5785
5786 /* Following flags don't use groups */
5787 if (sd->flags & (SD_WAKE_IDLE |
5788 SD_WAKE_AFFINE |
5789 SD_WAKE_BALANCE))
5790 return 0;
5791
5792 return 1;
5793}
5794
48f24c4d
IM
5795static int
5796sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5797{
5798 unsigned long cflags = sd->flags, pflags = parent->flags;
5799
5800 if (sd_degenerate(parent))
5801 return 1;
5802
5803 if (!cpus_equal(sd->span, parent->span))
5804 return 0;
5805
5806 /* Does parent contain flags not in child? */
5807 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5808 if (cflags & SD_WAKE_AFFINE)
5809 pflags &= ~SD_WAKE_BALANCE;
5810 /* Flags needing groups don't count if only 1 group in parent */
5811 if (parent->groups == parent->groups->next) {
5812 pflags &= ~(SD_LOAD_BALANCE |
5813 SD_BALANCE_NEWIDLE |
5814 SD_BALANCE_FORK |
89c4710e
SS
5815 SD_BALANCE_EXEC |
5816 SD_SHARE_CPUPOWER |
5817 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5818 }
5819 if (~cflags & pflags)
5820 return 0;
5821
5822 return 1;
5823}
5824
1da177e4
LT
5825/*
5826 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5827 * hold the hotplug lock.
5828 */
9c1cfda2 5829static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5830{
70b97a7f 5831 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5832 struct sched_domain *tmp;
5833
5834 /* Remove the sched domains which do not contribute to scheduling. */
5835 for (tmp = sd; tmp; tmp = tmp->parent) {
5836 struct sched_domain *parent = tmp->parent;
5837 if (!parent)
5838 break;
1a848870 5839 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5840 tmp->parent = parent->parent;
1a848870
SS
5841 if (parent->parent)
5842 parent->parent->child = tmp;
5843 }
245af2c7
SS
5844 }
5845
1a848870 5846 if (sd && sd_degenerate(sd)) {
245af2c7 5847 sd = sd->parent;
1a848870
SS
5848 if (sd)
5849 sd->child = NULL;
5850 }
1da177e4
LT
5851
5852 sched_domain_debug(sd, cpu);
5853
674311d5 5854 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5855}
5856
5857/* cpus with isolated domains */
67af63a6 5858static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5859
5860/* Setup the mask of cpus configured for isolated domains */
5861static int __init isolated_cpu_setup(char *str)
5862{
5863 int ints[NR_CPUS], i;
5864
5865 str = get_options(str, ARRAY_SIZE(ints), ints);
5866 cpus_clear(cpu_isolated_map);
5867 for (i = 1; i <= ints[0]; i++)
5868 if (ints[i] < NR_CPUS)
5869 cpu_set(ints[i], cpu_isolated_map);
5870 return 1;
5871}
5872
8927f494 5873__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5874
5875/*
6711cab4
SS
5876 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5877 * to a function which identifies what group(along with sched group) a CPU
5878 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5879 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5880 *
5881 * init_sched_build_groups will build a circular linked list of the groups
5882 * covered by the given span, and will set each group's ->cpumask correctly,
5883 * and ->cpu_power to 0.
5884 */
a616058b 5885static void
6711cab4
SS
5886init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5887 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5888 struct sched_group **sg))
1da177e4
LT
5889{
5890 struct sched_group *first = NULL, *last = NULL;
5891 cpumask_t covered = CPU_MASK_NONE;
5892 int i;
5893
5894 for_each_cpu_mask(i, span) {
6711cab4
SS
5895 struct sched_group *sg;
5896 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5897 int j;
5898
5899 if (cpu_isset(i, covered))
5900 continue;
5901
5902 sg->cpumask = CPU_MASK_NONE;
5517d86b 5903 sg->__cpu_power = 0;
1da177e4
LT
5904
5905 for_each_cpu_mask(j, span) {
6711cab4 5906 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5907 continue;
5908
5909 cpu_set(j, covered);
5910 cpu_set(j, sg->cpumask);
5911 }
5912 if (!first)
5913 first = sg;
5914 if (last)
5915 last->next = sg;
5916 last = sg;
5917 }
5918 last->next = first;
5919}
5920
9c1cfda2 5921#define SD_NODES_PER_DOMAIN 16
1da177e4 5922
9c1cfda2 5923#ifdef CONFIG_NUMA
198e2f18 5924
9c1cfda2
JH
5925/**
5926 * find_next_best_node - find the next node to include in a sched_domain
5927 * @node: node whose sched_domain we're building
5928 * @used_nodes: nodes already in the sched_domain
5929 *
5930 * Find the next node to include in a given scheduling domain. Simply
5931 * finds the closest node not already in the @used_nodes map.
5932 *
5933 * Should use nodemask_t.
5934 */
5935static int find_next_best_node(int node, unsigned long *used_nodes)
5936{
5937 int i, n, val, min_val, best_node = 0;
5938
5939 min_val = INT_MAX;
5940
5941 for (i = 0; i < MAX_NUMNODES; i++) {
5942 /* Start at @node */
5943 n = (node + i) % MAX_NUMNODES;
5944
5945 if (!nr_cpus_node(n))
5946 continue;
5947
5948 /* Skip already used nodes */
5949 if (test_bit(n, used_nodes))
5950 continue;
5951
5952 /* Simple min distance search */
5953 val = node_distance(node, n);
5954
5955 if (val < min_val) {
5956 min_val = val;
5957 best_node = n;
5958 }
5959 }
5960
5961 set_bit(best_node, used_nodes);
5962 return best_node;
5963}
5964
5965/**
5966 * sched_domain_node_span - get a cpumask for a node's sched_domain
5967 * @node: node whose cpumask we're constructing
5968 * @size: number of nodes to include in this span
5969 *
5970 * Given a node, construct a good cpumask for its sched_domain to span. It
5971 * should be one that prevents unnecessary balancing, but also spreads tasks
5972 * out optimally.
5973 */
5974static cpumask_t sched_domain_node_span(int node)
5975{
9c1cfda2 5976 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5977 cpumask_t span, nodemask;
5978 int i;
9c1cfda2
JH
5979
5980 cpus_clear(span);
5981 bitmap_zero(used_nodes, MAX_NUMNODES);
5982
5983 nodemask = node_to_cpumask(node);
5984 cpus_or(span, span, nodemask);
5985 set_bit(node, used_nodes);
5986
5987 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5988 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5989
9c1cfda2
JH
5990 nodemask = node_to_cpumask(next_node);
5991 cpus_or(span, span, nodemask);
5992 }
5993
5994 return span;
5995}
5996#endif
5997
5c45bf27 5998int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5999
9c1cfda2 6000/*
48f24c4d 6001 * SMT sched-domains:
9c1cfda2 6002 */
1da177e4
LT
6003#ifdef CONFIG_SCHED_SMT
6004static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6005static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6006
6711cab4
SS
6007static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6008 struct sched_group **sg)
1da177e4 6009{
6711cab4
SS
6010 if (sg)
6011 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6012 return cpu;
6013}
6014#endif
6015
48f24c4d
IM
6016/*
6017 * multi-core sched-domains:
6018 */
1e9f28fa
SS
6019#ifdef CONFIG_SCHED_MC
6020static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6021static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6022#endif
6023
6024#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6025static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6026 struct sched_group **sg)
1e9f28fa 6027{
6711cab4 6028 int group;
d5a7430d 6029 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6030 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6031 group = first_cpu(mask);
6032 if (sg)
6033 *sg = &per_cpu(sched_group_core, group);
6034 return group;
1e9f28fa
SS
6035}
6036#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6037static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6038 struct sched_group **sg)
1e9f28fa 6039{
6711cab4
SS
6040 if (sg)
6041 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6042 return cpu;
6043}
6044#endif
6045
1da177e4 6046static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6047static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6048
6711cab4
SS
6049static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6050 struct sched_group **sg)
1da177e4 6051{
6711cab4 6052 int group;
48f24c4d 6053#ifdef CONFIG_SCHED_MC
1e9f28fa 6054 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6055 cpus_and(mask, mask, *cpu_map);
6711cab4 6056 group = first_cpu(mask);
1e9f28fa 6057#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6058 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6059 cpus_and(mask, mask, *cpu_map);
6711cab4 6060 group = first_cpu(mask);
1da177e4 6061#else
6711cab4 6062 group = cpu;
1da177e4 6063#endif
6711cab4
SS
6064 if (sg)
6065 *sg = &per_cpu(sched_group_phys, group);
6066 return group;
1da177e4
LT
6067}
6068
6069#ifdef CONFIG_NUMA
1da177e4 6070/*
9c1cfda2
JH
6071 * The init_sched_build_groups can't handle what we want to do with node
6072 * groups, so roll our own. Now each node has its own list of groups which
6073 * gets dynamically allocated.
1da177e4 6074 */
9c1cfda2 6075static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6076static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6077
9c1cfda2 6078static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6079static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6080
6711cab4
SS
6081static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6082 struct sched_group **sg)
9c1cfda2 6083{
6711cab4
SS
6084 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6085 int group;
6086
6087 cpus_and(nodemask, nodemask, *cpu_map);
6088 group = first_cpu(nodemask);
6089
6090 if (sg)
6091 *sg = &per_cpu(sched_group_allnodes, group);
6092 return group;
1da177e4 6093}
6711cab4 6094
08069033
SS
6095static void init_numa_sched_groups_power(struct sched_group *group_head)
6096{
6097 struct sched_group *sg = group_head;
6098 int j;
6099
6100 if (!sg)
6101 return;
3a5c359a
AK
6102 do {
6103 for_each_cpu_mask(j, sg->cpumask) {
6104 struct sched_domain *sd;
08069033 6105
3a5c359a
AK
6106 sd = &per_cpu(phys_domains, j);
6107 if (j != first_cpu(sd->groups->cpumask)) {
6108 /*
6109 * Only add "power" once for each
6110 * physical package.
6111 */
6112 continue;
6113 }
08069033 6114
3a5c359a
AK
6115 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6116 }
6117 sg = sg->next;
6118 } while (sg != group_head);
08069033 6119}
1da177e4
LT
6120#endif
6121
a616058b 6122#ifdef CONFIG_NUMA
51888ca2
SV
6123/* Free memory allocated for various sched_group structures */
6124static void free_sched_groups(const cpumask_t *cpu_map)
6125{
a616058b 6126 int cpu, i;
51888ca2
SV
6127
6128 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6129 struct sched_group **sched_group_nodes
6130 = sched_group_nodes_bycpu[cpu];
6131
51888ca2
SV
6132 if (!sched_group_nodes)
6133 continue;
6134
6135 for (i = 0; i < MAX_NUMNODES; i++) {
6136 cpumask_t nodemask = node_to_cpumask(i);
6137 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6138
6139 cpus_and(nodemask, nodemask, *cpu_map);
6140 if (cpus_empty(nodemask))
6141 continue;
6142
6143 if (sg == NULL)
6144 continue;
6145 sg = sg->next;
6146next_sg:
6147 oldsg = sg;
6148 sg = sg->next;
6149 kfree(oldsg);
6150 if (oldsg != sched_group_nodes[i])
6151 goto next_sg;
6152 }
6153 kfree(sched_group_nodes);
6154 sched_group_nodes_bycpu[cpu] = NULL;
6155 }
51888ca2 6156}
a616058b
SS
6157#else
6158static void free_sched_groups(const cpumask_t *cpu_map)
6159{
6160}
6161#endif
51888ca2 6162
89c4710e
SS
6163/*
6164 * Initialize sched groups cpu_power.
6165 *
6166 * cpu_power indicates the capacity of sched group, which is used while
6167 * distributing the load between different sched groups in a sched domain.
6168 * Typically cpu_power for all the groups in a sched domain will be same unless
6169 * there are asymmetries in the topology. If there are asymmetries, group
6170 * having more cpu_power will pickup more load compared to the group having
6171 * less cpu_power.
6172 *
6173 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6174 * the maximum number of tasks a group can handle in the presence of other idle
6175 * or lightly loaded groups in the same sched domain.
6176 */
6177static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6178{
6179 struct sched_domain *child;
6180 struct sched_group *group;
6181
6182 WARN_ON(!sd || !sd->groups);
6183
6184 if (cpu != first_cpu(sd->groups->cpumask))
6185 return;
6186
6187 child = sd->child;
6188
5517d86b
ED
6189 sd->groups->__cpu_power = 0;
6190
89c4710e
SS
6191 /*
6192 * For perf policy, if the groups in child domain share resources
6193 * (for example cores sharing some portions of the cache hierarchy
6194 * or SMT), then set this domain groups cpu_power such that each group
6195 * can handle only one task, when there are other idle groups in the
6196 * same sched domain.
6197 */
6198 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6199 (child->flags &
6200 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6201 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6202 return;
6203 }
6204
89c4710e
SS
6205 /*
6206 * add cpu_power of each child group to this groups cpu_power
6207 */
6208 group = child->groups;
6209 do {
5517d86b 6210 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6211 group = group->next;
6212 } while (group != child->groups);
6213}
6214
1da177e4 6215/*
1a20ff27
DG
6216 * Build sched domains for a given set of cpus and attach the sched domains
6217 * to the individual cpus
1da177e4 6218 */
51888ca2 6219static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6220{
6221 int i;
d1b55138
JH
6222#ifdef CONFIG_NUMA
6223 struct sched_group **sched_group_nodes = NULL;
6711cab4 6224 int sd_allnodes = 0;
d1b55138
JH
6225
6226 /*
6227 * Allocate the per-node list of sched groups
6228 */
5cf9f062 6229 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6230 GFP_KERNEL);
d1b55138
JH
6231 if (!sched_group_nodes) {
6232 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6233 return -ENOMEM;
d1b55138
JH
6234 }
6235 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6236#endif
1da177e4
LT
6237
6238 /*
1a20ff27 6239 * Set up domains for cpus specified by the cpu_map.
1da177e4 6240 */
1a20ff27 6241 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6242 struct sched_domain *sd = NULL, *p;
6243 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6244
1a20ff27 6245 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6246
6247#ifdef CONFIG_NUMA
dd41f596
IM
6248 if (cpus_weight(*cpu_map) >
6249 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6250 sd = &per_cpu(allnodes_domains, i);
6251 *sd = SD_ALLNODES_INIT;
6252 sd->span = *cpu_map;
6711cab4 6253 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6254 p = sd;
6711cab4 6255 sd_allnodes = 1;
9c1cfda2
JH
6256 } else
6257 p = NULL;
6258
1da177e4 6259 sd = &per_cpu(node_domains, i);
1da177e4 6260 *sd = SD_NODE_INIT;
9c1cfda2
JH
6261 sd->span = sched_domain_node_span(cpu_to_node(i));
6262 sd->parent = p;
1a848870
SS
6263 if (p)
6264 p->child = sd;
9c1cfda2 6265 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6266#endif
6267
6268 p = sd;
6269 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6270 *sd = SD_CPU_INIT;
6271 sd->span = nodemask;
6272 sd->parent = p;
1a848870
SS
6273 if (p)
6274 p->child = sd;
6711cab4 6275 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6276
1e9f28fa
SS
6277#ifdef CONFIG_SCHED_MC
6278 p = sd;
6279 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6280 *sd = SD_MC_INIT;
6281 sd->span = cpu_coregroup_map(i);
6282 cpus_and(sd->span, sd->span, *cpu_map);
6283 sd->parent = p;
1a848870 6284 p->child = sd;
6711cab4 6285 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6286#endif
6287
1da177e4
LT
6288#ifdef CONFIG_SCHED_SMT
6289 p = sd;
6290 sd = &per_cpu(cpu_domains, i);
1da177e4 6291 *sd = SD_SIBLING_INIT;
d5a7430d 6292 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6293 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6294 sd->parent = p;
1a848870 6295 p->child = sd;
6711cab4 6296 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6297#endif
6298 }
6299
6300#ifdef CONFIG_SCHED_SMT
6301 /* Set up CPU (sibling) groups */
9c1cfda2 6302 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6303 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6304 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6305 if (i != first_cpu(this_sibling_map))
6306 continue;
6307
dd41f596
IM
6308 init_sched_build_groups(this_sibling_map, cpu_map,
6309 &cpu_to_cpu_group);
1da177e4
LT
6310 }
6311#endif
6312
1e9f28fa
SS
6313#ifdef CONFIG_SCHED_MC
6314 /* Set up multi-core groups */
6315 for_each_cpu_mask(i, *cpu_map) {
6316 cpumask_t this_core_map = cpu_coregroup_map(i);
6317 cpus_and(this_core_map, this_core_map, *cpu_map);
6318 if (i != first_cpu(this_core_map))
6319 continue;
dd41f596
IM
6320 init_sched_build_groups(this_core_map, cpu_map,
6321 &cpu_to_core_group);
1e9f28fa
SS
6322 }
6323#endif
6324
1da177e4
LT
6325 /* Set up physical groups */
6326 for (i = 0; i < MAX_NUMNODES; i++) {
6327 cpumask_t nodemask = node_to_cpumask(i);
6328
1a20ff27 6329 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6330 if (cpus_empty(nodemask))
6331 continue;
6332
6711cab4 6333 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6334 }
6335
6336#ifdef CONFIG_NUMA
6337 /* Set up node groups */
6711cab4 6338 if (sd_allnodes)
dd41f596
IM
6339 init_sched_build_groups(*cpu_map, cpu_map,
6340 &cpu_to_allnodes_group);
9c1cfda2
JH
6341
6342 for (i = 0; i < MAX_NUMNODES; i++) {
6343 /* Set up node groups */
6344 struct sched_group *sg, *prev;
6345 cpumask_t nodemask = node_to_cpumask(i);
6346 cpumask_t domainspan;
6347 cpumask_t covered = CPU_MASK_NONE;
6348 int j;
6349
6350 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6351 if (cpus_empty(nodemask)) {
6352 sched_group_nodes[i] = NULL;
9c1cfda2 6353 continue;
d1b55138 6354 }
9c1cfda2
JH
6355
6356 domainspan = sched_domain_node_span(i);
6357 cpus_and(domainspan, domainspan, *cpu_map);
6358
15f0b676 6359 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6360 if (!sg) {
6361 printk(KERN_WARNING "Can not alloc domain group for "
6362 "node %d\n", i);
6363 goto error;
6364 }
9c1cfda2
JH
6365 sched_group_nodes[i] = sg;
6366 for_each_cpu_mask(j, nodemask) {
6367 struct sched_domain *sd;
9761eea8 6368
9c1cfda2
JH
6369 sd = &per_cpu(node_domains, j);
6370 sd->groups = sg;
9c1cfda2 6371 }
5517d86b 6372 sg->__cpu_power = 0;
9c1cfda2 6373 sg->cpumask = nodemask;
51888ca2 6374 sg->next = sg;
9c1cfda2
JH
6375 cpus_or(covered, covered, nodemask);
6376 prev = sg;
6377
6378 for (j = 0; j < MAX_NUMNODES; j++) {
6379 cpumask_t tmp, notcovered;
6380 int n = (i + j) % MAX_NUMNODES;
6381
6382 cpus_complement(notcovered, covered);
6383 cpus_and(tmp, notcovered, *cpu_map);
6384 cpus_and(tmp, tmp, domainspan);
6385 if (cpus_empty(tmp))
6386 break;
6387
6388 nodemask = node_to_cpumask(n);
6389 cpus_and(tmp, tmp, nodemask);
6390 if (cpus_empty(tmp))
6391 continue;
6392
15f0b676
SV
6393 sg = kmalloc_node(sizeof(struct sched_group),
6394 GFP_KERNEL, i);
9c1cfda2
JH
6395 if (!sg) {
6396 printk(KERN_WARNING
6397 "Can not alloc domain group for node %d\n", j);
51888ca2 6398 goto error;
9c1cfda2 6399 }
5517d86b 6400 sg->__cpu_power = 0;
9c1cfda2 6401 sg->cpumask = tmp;
51888ca2 6402 sg->next = prev->next;
9c1cfda2
JH
6403 cpus_or(covered, covered, tmp);
6404 prev->next = sg;
6405 prev = sg;
6406 }
9c1cfda2 6407 }
1da177e4
LT
6408#endif
6409
6410 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6411#ifdef CONFIG_SCHED_SMT
1a20ff27 6412 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6413 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6414
89c4710e 6415 init_sched_groups_power(i, sd);
5c45bf27 6416 }
1da177e4 6417#endif
1e9f28fa 6418#ifdef CONFIG_SCHED_MC
5c45bf27 6419 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6420 struct sched_domain *sd = &per_cpu(core_domains, i);
6421
89c4710e 6422 init_sched_groups_power(i, sd);
5c45bf27
SS
6423 }
6424#endif
1e9f28fa 6425
5c45bf27 6426 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6427 struct sched_domain *sd = &per_cpu(phys_domains, i);
6428
89c4710e 6429 init_sched_groups_power(i, sd);
1da177e4
LT
6430 }
6431
9c1cfda2 6432#ifdef CONFIG_NUMA
08069033
SS
6433 for (i = 0; i < MAX_NUMNODES; i++)
6434 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6435
6711cab4
SS
6436 if (sd_allnodes) {
6437 struct sched_group *sg;
f712c0c7 6438
6711cab4 6439 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6440 init_numa_sched_groups_power(sg);
6441 }
9c1cfda2
JH
6442#endif
6443
1da177e4 6444 /* Attach the domains */
1a20ff27 6445 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6446 struct sched_domain *sd;
6447#ifdef CONFIG_SCHED_SMT
6448 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6449#elif defined(CONFIG_SCHED_MC)
6450 sd = &per_cpu(core_domains, i);
1da177e4
LT
6451#else
6452 sd = &per_cpu(phys_domains, i);
6453#endif
6454 cpu_attach_domain(sd, i);
6455 }
51888ca2
SV
6456
6457 return 0;
6458
a616058b 6459#ifdef CONFIG_NUMA
51888ca2
SV
6460error:
6461 free_sched_groups(cpu_map);
6462 return -ENOMEM;
a616058b 6463#endif
1da177e4 6464}
029190c5
PJ
6465
6466static cpumask_t *doms_cur; /* current sched domains */
6467static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6468
6469/*
6470 * Special case: If a kmalloc of a doms_cur partition (array of
6471 * cpumask_t) fails, then fallback to a single sched domain,
6472 * as determined by the single cpumask_t fallback_doms.
6473 */
6474static cpumask_t fallback_doms;
6475
1a20ff27
DG
6476/*
6477 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6478 * For now this just excludes isolated cpus, but could be used to
6479 * exclude other special cases in the future.
1a20ff27 6480 */
51888ca2 6481static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6482{
7378547f
MM
6483 int err;
6484
029190c5
PJ
6485 ndoms_cur = 1;
6486 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6487 if (!doms_cur)
6488 doms_cur = &fallback_doms;
6489 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6490 err = build_sched_domains(doms_cur);
6382bc90 6491 register_sched_domain_sysctl();
7378547f
MM
6492
6493 return err;
1a20ff27
DG
6494}
6495
6496static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6497{
51888ca2 6498 free_sched_groups(cpu_map);
9c1cfda2 6499}
1da177e4 6500
1a20ff27
DG
6501/*
6502 * Detach sched domains from a group of cpus specified in cpu_map
6503 * These cpus will now be attached to the NULL domain
6504 */
858119e1 6505static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6506{
6507 int i;
6508
6382bc90
MM
6509 unregister_sched_domain_sysctl();
6510
1a20ff27
DG
6511 for_each_cpu_mask(i, *cpu_map)
6512 cpu_attach_domain(NULL, i);
6513 synchronize_sched();
6514 arch_destroy_sched_domains(cpu_map);
6515}
6516
029190c5
PJ
6517/*
6518 * Partition sched domains as specified by the 'ndoms_new'
6519 * cpumasks in the array doms_new[] of cpumasks. This compares
6520 * doms_new[] to the current sched domain partitioning, doms_cur[].
6521 * It destroys each deleted domain and builds each new domain.
6522 *
6523 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6524 * The masks don't intersect (don't overlap.) We should setup one
6525 * sched domain for each mask. CPUs not in any of the cpumasks will
6526 * not be load balanced. If the same cpumask appears both in the
6527 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6528 * it as it is.
6529 *
6530 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6531 * ownership of it and will kfree it when done with it. If the caller
6532 * failed the kmalloc call, then it can pass in doms_new == NULL,
6533 * and partition_sched_domains() will fallback to the single partition
6534 * 'fallback_doms'.
6535 *
6536 * Call with hotplug lock held
6537 */
6538void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6539{
6540 int i, j;
6541
7378547f
MM
6542 /* always unregister in case we don't destroy any domains */
6543 unregister_sched_domain_sysctl();
6544
029190c5
PJ
6545 if (doms_new == NULL) {
6546 ndoms_new = 1;
6547 doms_new = &fallback_doms;
6548 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6549 }
6550
6551 /* Destroy deleted domains */
6552 for (i = 0; i < ndoms_cur; i++) {
6553 for (j = 0; j < ndoms_new; j++) {
6554 if (cpus_equal(doms_cur[i], doms_new[j]))
6555 goto match1;
6556 }
6557 /* no match - a current sched domain not in new doms_new[] */
6558 detach_destroy_domains(doms_cur + i);
6559match1:
6560 ;
6561 }
6562
6563 /* Build new domains */
6564 for (i = 0; i < ndoms_new; i++) {
6565 for (j = 0; j < ndoms_cur; j++) {
6566 if (cpus_equal(doms_new[i], doms_cur[j]))
6567 goto match2;
6568 }
6569 /* no match - add a new doms_new */
6570 build_sched_domains(doms_new + i);
6571match2:
6572 ;
6573 }
6574
6575 /* Remember the new sched domains */
6576 if (doms_cur != &fallback_doms)
6577 kfree(doms_cur);
6578 doms_cur = doms_new;
6579 ndoms_cur = ndoms_new;
7378547f
MM
6580
6581 register_sched_domain_sysctl();
029190c5
PJ
6582}
6583
5c45bf27 6584#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6585static int arch_reinit_sched_domains(void)
5c45bf27
SS
6586{
6587 int err;
6588
5be9361c 6589 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6590 detach_destroy_domains(&cpu_online_map);
6591 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6592 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6593
6594 return err;
6595}
6596
6597static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6598{
6599 int ret;
6600
6601 if (buf[0] != '0' && buf[0] != '1')
6602 return -EINVAL;
6603
6604 if (smt)
6605 sched_smt_power_savings = (buf[0] == '1');
6606 else
6607 sched_mc_power_savings = (buf[0] == '1');
6608
6609 ret = arch_reinit_sched_domains();
6610
6611 return ret ? ret : count;
6612}
6613
5c45bf27
SS
6614#ifdef CONFIG_SCHED_MC
6615static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6616{
6617 return sprintf(page, "%u\n", sched_mc_power_savings);
6618}
48f24c4d
IM
6619static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6620 const char *buf, size_t count)
5c45bf27
SS
6621{
6622 return sched_power_savings_store(buf, count, 0);
6623}
6707de00
AB
6624static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6625 sched_mc_power_savings_store);
5c45bf27
SS
6626#endif
6627
6628#ifdef CONFIG_SCHED_SMT
6629static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6630{
6631 return sprintf(page, "%u\n", sched_smt_power_savings);
6632}
48f24c4d
IM
6633static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6634 const char *buf, size_t count)
5c45bf27
SS
6635{
6636 return sched_power_savings_store(buf, count, 1);
6637}
6707de00
AB
6638static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6639 sched_smt_power_savings_store);
6640#endif
6641
6642int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6643{
6644 int err = 0;
6645
6646#ifdef CONFIG_SCHED_SMT
6647 if (smt_capable())
6648 err = sysfs_create_file(&cls->kset.kobj,
6649 &attr_sched_smt_power_savings.attr);
6650#endif
6651#ifdef CONFIG_SCHED_MC
6652 if (!err && mc_capable())
6653 err = sysfs_create_file(&cls->kset.kobj,
6654 &attr_sched_mc_power_savings.attr);
6655#endif
6656 return err;
6657}
5c45bf27
SS
6658#endif
6659
1da177e4
LT
6660/*
6661 * Force a reinitialization of the sched domains hierarchy. The domains
6662 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6663 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6664 * which will prevent rebalancing while the sched domains are recalculated.
6665 */
6666static int update_sched_domains(struct notifier_block *nfb,
6667 unsigned long action, void *hcpu)
6668{
1da177e4
LT
6669 switch (action) {
6670 case CPU_UP_PREPARE:
8bb78442 6671 case CPU_UP_PREPARE_FROZEN:
1da177e4 6672 case CPU_DOWN_PREPARE:
8bb78442 6673 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6674 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6675 return NOTIFY_OK;
6676
6677 case CPU_UP_CANCELED:
8bb78442 6678 case CPU_UP_CANCELED_FROZEN:
1da177e4 6679 case CPU_DOWN_FAILED:
8bb78442 6680 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6681 case CPU_ONLINE:
8bb78442 6682 case CPU_ONLINE_FROZEN:
1da177e4 6683 case CPU_DEAD:
8bb78442 6684 case CPU_DEAD_FROZEN:
1da177e4
LT
6685 /*
6686 * Fall through and re-initialise the domains.
6687 */
6688 break;
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692
6693 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6694 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6695
6696 return NOTIFY_OK;
6697}
1da177e4
LT
6698
6699void __init sched_init_smp(void)
6700{
5c1e1767
NP
6701 cpumask_t non_isolated_cpus;
6702
5be9361c 6703 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6704 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6705 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6706 if (cpus_empty(non_isolated_cpus))
6707 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6708 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6709 /* XXX: Theoretical race here - CPU may be hotplugged now */
6710 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6711
6712 /* Move init over to a non-isolated CPU */
6713 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6714 BUG();
19978ca6 6715 sched_init_granularity();
1da177e4
LT
6716}
6717#else
6718void __init sched_init_smp(void)
6719{
19978ca6 6720 sched_init_granularity();
1da177e4
LT
6721}
6722#endif /* CONFIG_SMP */
6723
6724int in_sched_functions(unsigned long addr)
6725{
6726 /* Linker adds these: start and end of __sched functions */
6727 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6728
1da177e4
LT
6729 return in_lock_functions(addr) ||
6730 (addr >= (unsigned long)__sched_text_start
6731 && addr < (unsigned long)__sched_text_end);
6732}
6733
a9957449 6734static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6735{
6736 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6737#ifdef CONFIG_FAIR_GROUP_SCHED
6738 cfs_rq->rq = rq;
6739#endif
67e9fb2a 6740 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6741}
6742
1da177e4
LT
6743void __init sched_init(void)
6744{
476f3534 6745 int highest_cpu = 0;
dd41f596
IM
6746 int i, j;
6747
0a945022 6748 for_each_possible_cpu(i) {
dd41f596 6749 struct rt_prio_array *array;
70b97a7f 6750 struct rq *rq;
1da177e4
LT
6751
6752 rq = cpu_rq(i);
6753 spin_lock_init(&rq->lock);
fcb99371 6754 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6755 rq->nr_running = 0;
dd41f596
IM
6756 rq->clock = 1;
6757 init_cfs_rq(&rq->cfs, rq);
6758#ifdef CONFIG_FAIR_GROUP_SCHED
6759 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6760 {
6761 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6762 struct sched_entity *se =
6763 &per_cpu(init_sched_entity, i);
6764
6765 init_cfs_rq_p[i] = cfs_rq;
6766 init_cfs_rq(cfs_rq, rq);
4cf86d77 6767 cfs_rq->tg = &init_task_group;
3a252015 6768 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6769 &rq->leaf_cfs_rq_list);
6770
3a252015
IM
6771 init_sched_entity_p[i] = se;
6772 se->cfs_rq = &rq->cfs;
6773 se->my_q = cfs_rq;
4cf86d77 6774 se->load.weight = init_task_group_load;
9b5b7751 6775 se->load.inv_weight =
4cf86d77 6776 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6777 se->parent = NULL;
6778 }
4cf86d77 6779 init_task_group.shares = init_task_group_load;
5cb350ba 6780 spin_lock_init(&init_task_group.lock);
dd41f596 6781#endif
1da177e4 6782
dd41f596
IM
6783 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6784 rq->cpu_load[j] = 0;
1da177e4 6785#ifdef CONFIG_SMP
41c7ce9a 6786 rq->sd = NULL;
1da177e4 6787 rq->active_balance = 0;
dd41f596 6788 rq->next_balance = jiffies;
1da177e4 6789 rq->push_cpu = 0;
0a2966b4 6790 rq->cpu = i;
1da177e4
LT
6791 rq->migration_thread = NULL;
6792 INIT_LIST_HEAD(&rq->migration_queue);
6793#endif
6794 atomic_set(&rq->nr_iowait, 0);
6795
dd41f596
IM
6796 array = &rq->rt.active;
6797 for (j = 0; j < MAX_RT_PRIO; j++) {
6798 INIT_LIST_HEAD(array->queue + j);
6799 __clear_bit(j, array->bitmap);
1da177e4 6800 }
476f3534 6801 highest_cpu = i;
dd41f596
IM
6802 /* delimiter for bitsearch: */
6803 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6804 }
6805
2dd73a4f 6806 set_load_weight(&init_task);
b50f60ce 6807
e107be36
AK
6808#ifdef CONFIG_PREEMPT_NOTIFIERS
6809 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6810#endif
6811
c9819f45 6812#ifdef CONFIG_SMP
476f3534 6813 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6814 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6815#endif
6816
b50f60ce
HC
6817#ifdef CONFIG_RT_MUTEXES
6818 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6819#endif
6820
1da177e4
LT
6821 /*
6822 * The boot idle thread does lazy MMU switching as well:
6823 */
6824 atomic_inc(&init_mm.mm_count);
6825 enter_lazy_tlb(&init_mm, current);
6826
6827 /*
6828 * Make us the idle thread. Technically, schedule() should not be
6829 * called from this thread, however somewhere below it might be,
6830 * but because we are the idle thread, we just pick up running again
6831 * when this runqueue becomes "idle".
6832 */
6833 init_idle(current, smp_processor_id());
dd41f596
IM
6834 /*
6835 * During early bootup we pretend to be a normal task:
6836 */
6837 current->sched_class = &fair_sched_class;
1da177e4
LT
6838}
6839
6840#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6841void __might_sleep(char *file, int line)
6842{
48f24c4d 6843#ifdef in_atomic
1da177e4
LT
6844 static unsigned long prev_jiffy; /* ratelimiting */
6845
6846 if ((in_atomic() || irqs_disabled()) &&
6847 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6848 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6849 return;
6850 prev_jiffy = jiffies;
91368d73 6851 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6852 " context at %s:%d\n", file, line);
6853 printk("in_atomic():%d, irqs_disabled():%d\n",
6854 in_atomic(), irqs_disabled());
a4c410f0 6855 debug_show_held_locks(current);
3117df04
IM
6856 if (irqs_disabled())
6857 print_irqtrace_events(current);
1da177e4
LT
6858 dump_stack();
6859 }
6860#endif
6861}
6862EXPORT_SYMBOL(__might_sleep);
6863#endif
6864
6865#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6866static void normalize_task(struct rq *rq, struct task_struct *p)
6867{
6868 int on_rq;
6869 update_rq_clock(rq);
6870 on_rq = p->se.on_rq;
6871 if (on_rq)
6872 deactivate_task(rq, p, 0);
6873 __setscheduler(rq, p, SCHED_NORMAL, 0);
6874 if (on_rq) {
6875 activate_task(rq, p, 0);
6876 resched_task(rq->curr);
6877 }
6878}
6879
1da177e4
LT
6880void normalize_rt_tasks(void)
6881{
a0f98a1c 6882 struct task_struct *g, *p;
1da177e4 6883 unsigned long flags;
70b97a7f 6884 struct rq *rq;
1da177e4
LT
6885
6886 read_lock_irq(&tasklist_lock);
a0f98a1c 6887 do_each_thread(g, p) {
178be793
IM
6888 /*
6889 * Only normalize user tasks:
6890 */
6891 if (!p->mm)
6892 continue;
6893
6cfb0d5d 6894 p->se.exec_start = 0;
6cfb0d5d 6895#ifdef CONFIG_SCHEDSTATS
dd41f596 6896 p->se.wait_start = 0;
dd41f596 6897 p->se.sleep_start = 0;
dd41f596 6898 p->se.block_start = 0;
6cfb0d5d 6899#endif
dd41f596
IM
6900 task_rq(p)->clock = 0;
6901
6902 if (!rt_task(p)) {
6903 /*
6904 * Renice negative nice level userspace
6905 * tasks back to 0:
6906 */
6907 if (TASK_NICE(p) < 0 && p->mm)
6908 set_user_nice(p, 0);
1da177e4 6909 continue;
dd41f596 6910 }
1da177e4 6911
b29739f9
IM
6912 spin_lock_irqsave(&p->pi_lock, flags);
6913 rq = __task_rq_lock(p);
1da177e4 6914
178be793 6915 normalize_task(rq, p);
3a5e4dc1 6916
b29739f9
IM
6917 __task_rq_unlock(rq);
6918 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6919 } while_each_thread(g, p);
6920
1da177e4
LT
6921 read_unlock_irq(&tasklist_lock);
6922}
6923
6924#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6925
6926#ifdef CONFIG_IA64
6927/*
6928 * These functions are only useful for the IA64 MCA handling.
6929 *
6930 * They can only be called when the whole system has been
6931 * stopped - every CPU needs to be quiescent, and no scheduling
6932 * activity can take place. Using them for anything else would
6933 * be a serious bug, and as a result, they aren't even visible
6934 * under any other configuration.
6935 */
6936
6937/**
6938 * curr_task - return the current task for a given cpu.
6939 * @cpu: the processor in question.
6940 *
6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942 */
36c8b586 6943struct task_struct *curr_task(int cpu)
1df5c10a
LT
6944{
6945 return cpu_curr(cpu);
6946}
6947
6948/**
6949 * set_curr_task - set the current task for a given cpu.
6950 * @cpu: the processor in question.
6951 * @p: the task pointer to set.
6952 *
6953 * Description: This function must only be used when non-maskable interrupts
6954 * are serviced on a separate stack. It allows the architecture to switch the
6955 * notion of the current task on a cpu in a non-blocking manner. This function
6956 * must be called with all CPU's synchronized, and interrupts disabled, the
6957 * and caller must save the original value of the current task (see
6958 * curr_task() above) and restore that value before reenabling interrupts and
6959 * re-starting the system.
6960 *
6961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6962 */
36c8b586 6963void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6964{
6965 cpu_curr(cpu) = p;
6966}
6967
6968#endif
29f59db3
SV
6969
6970#ifdef CONFIG_FAIR_GROUP_SCHED
6971
29f59db3 6972/* allocate runqueue etc for a new task group */
4cf86d77 6973struct task_group *sched_create_group(void)
29f59db3 6974{
4cf86d77 6975 struct task_group *tg;
29f59db3
SV
6976 struct cfs_rq *cfs_rq;
6977 struct sched_entity *se;
9b5b7751 6978 struct rq *rq;
29f59db3
SV
6979 int i;
6980
29f59db3
SV
6981 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6982 if (!tg)
6983 return ERR_PTR(-ENOMEM);
6984
9b5b7751 6985 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6986 if (!tg->cfs_rq)
6987 goto err;
9b5b7751 6988 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6989 if (!tg->se)
6990 goto err;
6991
6992 for_each_possible_cpu(i) {
9b5b7751 6993 rq = cpu_rq(i);
29f59db3
SV
6994
6995 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6996 cpu_to_node(i));
6997 if (!cfs_rq)
6998 goto err;
6999
7000 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7001 cpu_to_node(i));
7002 if (!se)
7003 goto err;
7004
7005 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7006 memset(se, 0, sizeof(struct sched_entity));
7007
7008 tg->cfs_rq[i] = cfs_rq;
7009 init_cfs_rq(cfs_rq, rq);
7010 cfs_rq->tg = tg;
29f59db3
SV
7011
7012 tg->se[i] = se;
7013 se->cfs_rq = &rq->cfs;
7014 se->my_q = cfs_rq;
7015 se->load.weight = NICE_0_LOAD;
7016 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7017 se->parent = NULL;
7018 }
7019
9b5b7751
SV
7020 for_each_possible_cpu(i) {
7021 rq = cpu_rq(i);
7022 cfs_rq = tg->cfs_rq[i];
7023 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7024 }
29f59db3 7025
9b5b7751 7026 tg->shares = NICE_0_LOAD;
5cb350ba 7027 spin_lock_init(&tg->lock);
29f59db3 7028
9b5b7751 7029 return tg;
29f59db3
SV
7030
7031err:
7032 for_each_possible_cpu(i) {
a65914b3 7033 if (tg->cfs_rq)
29f59db3 7034 kfree(tg->cfs_rq[i]);
a65914b3 7035 if (tg->se)
29f59db3
SV
7036 kfree(tg->se[i]);
7037 }
a65914b3
IM
7038 kfree(tg->cfs_rq);
7039 kfree(tg->se);
7040 kfree(tg);
29f59db3
SV
7041
7042 return ERR_PTR(-ENOMEM);
7043}
7044
9b5b7751
SV
7045/* rcu callback to free various structures associated with a task group */
7046static void free_sched_group(struct rcu_head *rhp)
29f59db3 7047{
ae8393e5
SV
7048 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7049 struct cfs_rq *cfs_rq;
29f59db3
SV
7050 struct sched_entity *se;
7051 int i;
7052
29f59db3
SV
7053 /* now it should be safe to free those cfs_rqs */
7054 for_each_possible_cpu(i) {
7055 cfs_rq = tg->cfs_rq[i];
7056 kfree(cfs_rq);
7057
7058 se = tg->se[i];
7059 kfree(se);
7060 }
7061
7062 kfree(tg->cfs_rq);
7063 kfree(tg->se);
7064 kfree(tg);
7065}
7066
9b5b7751 7067/* Destroy runqueue etc associated with a task group */
4cf86d77 7068void sched_destroy_group(struct task_group *tg)
29f59db3 7069{
7bae49d4 7070 struct cfs_rq *cfs_rq = NULL;
9b5b7751 7071 int i;
29f59db3 7072
9b5b7751
SV
7073 for_each_possible_cpu(i) {
7074 cfs_rq = tg->cfs_rq[i];
7075 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7076 }
7077
7bae49d4 7078 BUG_ON(!cfs_rq);
9b5b7751
SV
7079
7080 /* wait for possible concurrent references to cfs_rqs complete */
ae8393e5 7081 call_rcu(&tg->rcu, free_sched_group);
29f59db3
SV
7082}
7083
9b5b7751 7084/* change task's runqueue when it moves between groups.
3a252015
IM
7085 * The caller of this function should have put the task in its new group
7086 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7087 * reflect its new group.
9b5b7751
SV
7088 */
7089void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7090{
7091 int on_rq, running;
7092 unsigned long flags;
7093 struct rq *rq;
7094
7095 rq = task_rq_lock(tsk, &flags);
7096
7097 if (tsk->sched_class != &fair_sched_class)
7098 goto done;
7099
7100 update_rq_clock(rq);
7101
7102 running = task_running(rq, tsk);
7103 on_rq = tsk->se.on_rq;
7104
83b699ed 7105 if (on_rq) {
29f59db3 7106 dequeue_task(rq, tsk, 0);
83b699ed
SV
7107 if (unlikely(running))
7108 tsk->sched_class->put_prev_task(rq, tsk);
7109 }
29f59db3
SV
7110
7111 set_task_cfs_rq(tsk);
7112
83b699ed
SV
7113 if (on_rq) {
7114 if (unlikely(running))
7115 tsk->sched_class->set_curr_task(rq);
7074badb 7116 enqueue_task(rq, tsk, 0);
83b699ed 7117 }
29f59db3
SV
7118
7119done:
7120 task_rq_unlock(rq, &flags);
7121}
7122
7123static void set_se_shares(struct sched_entity *se, unsigned long shares)
7124{
7125 struct cfs_rq *cfs_rq = se->cfs_rq;
7126 struct rq *rq = cfs_rq->rq;
7127 int on_rq;
7128
7129 spin_lock_irq(&rq->lock);
7130
7131 on_rq = se->on_rq;
7132 if (on_rq)
7133 dequeue_entity(cfs_rq, se, 0);
7134
7135 se->load.weight = shares;
7136 se->load.inv_weight = div64_64((1ULL<<32), shares);
7137
7138 if (on_rq)
7139 enqueue_entity(cfs_rq, se, 0);
7140
7141 spin_unlock_irq(&rq->lock);
7142}
7143
4cf86d77 7144int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7145{
7146 int i;
29f59db3 7147
5cb350ba 7148 spin_lock(&tg->lock);
9b5b7751 7149 if (tg->shares == shares)
5cb350ba 7150 goto done;
29f59db3 7151
9b5b7751 7152 tg->shares = shares;
29f59db3 7153 for_each_possible_cpu(i)
9b5b7751 7154 set_se_shares(tg->se[i], shares);
29f59db3 7155
5cb350ba
DG
7156done:
7157 spin_unlock(&tg->lock);
9b5b7751 7158 return 0;
29f59db3
SV
7159}
7160
5cb350ba
DG
7161unsigned long sched_group_shares(struct task_group *tg)
7162{
7163 return tg->shares;
7164}
7165
3a252015 7166#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7167
7168#ifdef CONFIG_FAIR_CGROUP_SCHED
7169
7170/* return corresponding task_group object of a cgroup */
2b01dfe3 7171static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7172{
2b01dfe3
PM
7173 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7174 struct task_group, css);
68318b8e
SV
7175}
7176
7177static struct cgroup_subsys_state *
2b01dfe3 7178cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e
SV
7179{
7180 struct task_group *tg;
7181
2b01dfe3 7182 if (!cgrp->parent) {
68318b8e 7183 /* This is early initialization for the top cgroup */
2b01dfe3 7184 init_task_group.css.cgroup = cgrp;
68318b8e
SV
7185 return &init_task_group.css;
7186 }
7187
7188 /* we support only 1-level deep hierarchical scheduler atm */
2b01dfe3 7189 if (cgrp->parent->parent)
68318b8e
SV
7190 return ERR_PTR(-EINVAL);
7191
7192 tg = sched_create_group();
7193 if (IS_ERR(tg))
7194 return ERR_PTR(-ENOMEM);
7195
7196 /* Bind the cgroup to task_group object we just created */
2b01dfe3 7197 tg->css.cgroup = cgrp;
68318b8e
SV
7198
7199 return &tg->css;
7200}
7201
7202static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
2b01dfe3 7203 struct cgroup *cgrp)
68318b8e 7204{
2b01dfe3 7205 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7206
7207 sched_destroy_group(tg);
7208}
7209
7210static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
2b01dfe3 7211 struct cgroup *cgrp, struct task_struct *tsk)
68318b8e
SV
7212{
7213 /* We don't support RT-tasks being in separate groups */
7214 if (tsk->sched_class != &fair_sched_class)
7215 return -EINVAL;
7216
7217 return 0;
7218}
7219
7220static void
2b01dfe3 7221cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
7222 struct cgroup *old_cont, struct task_struct *tsk)
7223{
7224 sched_move_task(tsk);
7225}
7226
2b01dfe3
PM
7227static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7228 u64 shareval)
68318b8e 7229{
2b01dfe3 7230 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
7231}
7232
2b01dfe3 7233static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7234{
2b01dfe3 7235 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7236
7237 return (u64) tg->shares;
7238}
7239
fe5c7cc2
PM
7240static u64 cpu_usage_read(struct cgroup *cgrp, struct cftype *cft)
7241{
7242 struct task_group *tg = cgroup_tg(cgrp);
7243 unsigned long flags;
7244 u64 res = 0;
7245 int i;
7246
7247 for_each_possible_cpu(i) {
7248 /*
7249 * Lock to prevent races with updating 64-bit counters
7250 * on 32-bit arches.
7251 */
7252 spin_lock_irqsave(&cpu_rq(i)->lock, flags);
7253 res += tg->se[i]->sum_exec_runtime;
7254 spin_unlock_irqrestore(&cpu_rq(i)->lock, flags);
7255 }
7256 /* Convert from ns to ms */
d6322faf 7257 do_div(res, NSEC_PER_MSEC);
fe5c7cc2
PM
7258
7259 return res;
7260}
7261
7262static struct cftype cpu_files[] = {
7263 {
7264 .name = "shares",
7265 .read_uint = cpu_shares_read_uint,
7266 .write_uint = cpu_shares_write_uint,
7267 },
7268 {
7269 .name = "usage",
7270 .read_uint = cpu_usage_read,
7271 },
68318b8e
SV
7272};
7273
7274static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7275{
fe5c7cc2 7276 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
7277}
7278
7279struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7280 .name = "cpu",
7281 .create = cpu_cgroup_create,
7282 .destroy = cpu_cgroup_destroy,
7283 .can_attach = cpu_cgroup_can_attach,
7284 .attach = cpu_cgroup_attach,
7285 .populate = cpu_cgroup_populate,
7286 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
7287 .early_init = 1,
7288};
7289
7290#endif /* CONFIG_FAIR_CGROUP_SCHED */