sched: optimize activate_task()
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
47#include <linux/smp.h>
48#include <linux/threads.h>
49#include <linux/timer.h>
50#include <linux/rcupdate.h>
51#include <linux/cpu.h>
52#include <linux/cpuset.h>
53#include <linux/percpu.h>
54#include <linux/kthread.h>
55#include <linux/seq_file.h>
e692ab53 56#include <linux/sysctl.h>
1da177e4
LT
57#include <linux/syscalls.h>
58#include <linux/times.h>
8f0ab514 59#include <linux/tsacct_kern.h>
c6fd91f0 60#include <linux/kprobes.h>
0ff92245 61#include <linux/delayacct.h>
5517d86b 62#include <linux/reciprocal_div.h>
dff06c15 63#include <linux/unistd.h>
1da177e4 64
5517d86b 65#include <asm/tlb.h>
1da177e4 66
b035b6de
AD
67/*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72unsigned long long __attribute__((weak)) sched_clock(void)
73{
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75}
76
1da177e4
LT
77/*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86/*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95/*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
6aa645ea
IM
101#define NICE_0_LOAD SCHED_LOAD_SCALE
102#define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
1da177e4
LT
104/*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
5517d86b
ED
114#ifdef CONFIG_SMP
115/*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120{
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122}
123
124/*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129{
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132}
133#endif
134
634fa8c9
IM
135#define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
91fcdd4e 138/*
634fa8c9 139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
91fcdd4e 140 * to time slice values: [800ms ... 100ms ... 5ms]
91fcdd4e 141 */
634fa8c9 142static unsigned int static_prio_timeslice(int static_prio)
2dd73a4f 143{
634fa8c9
IM
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
2dd73a4f
PW
151}
152
e05606d3
IM
153static inline int rt_policy(int policy)
154{
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158}
159
160static inline int task_has_rt_policy(struct task_struct *p)
161{
162 return rt_policy(p->policy);
163}
164
1da177e4 165/*
6aa645ea 166 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 167 */
6aa645ea
IM
168struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171};
172
173struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177};
178
179/* CFS-related fields in a runqueue */
180struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193#ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208#endif
209};
1da177e4 210
6aa645ea
IM
211/* Real-Time classes' related field in a runqueue: */
212struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216};
217
1da177e4
LT
218/*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
70b97a7f 225struct rq {
6aa645ea 226 spinlock_t lock; /* runqueue lock */
1da177e4
LT
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
6aa645ea
IM
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 235 unsigned char idle_at_tick;
46cb4b7c
SS
236#ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238#endif
6aa645ea
IM
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244#ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
1da177e4 246#endif
6aa645ea 247 struct rt_rq rt;
1da177e4
LT
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
36c8b586 257 struct task_struct *curr, *idle;
c9819f45 258 unsigned long next_balance;
1da177e4 259 struct mm_struct *prev_mm;
6aa645ea 260
6aa645ea
IM
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
1da177e4
LT
267 atomic_t nr_iowait;
268
269#ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
0a2966b4 275 int cpu; /* cpu of this runqueue */
1da177e4 276
36c8b586 277 struct task_struct *migration_thread;
1da177e4
LT
278 struct list_head migration_queue;
279#endif
280
281#ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299#endif
fcb99371 300 struct lock_class_key rq_lock_key;
1da177e4
LT
301};
302
f34e3b61 303static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 304static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 305
dd41f596
IM
306static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307{
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309}
310
0a2966b4
CL
311static inline int cpu_of(struct rq *rq)
312{
313#ifdef CONFIG_SMP
314 return rq->cpu;
315#else
316 return 0;
317#endif
318}
319
20d315d4 320/*
b04a0f4c
IM
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
20d315d4 323 */
b04a0f4c 324static void __update_rq_clock(struct rq *rq)
20d315d4
IM
325{
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
b04a0f4c
IM
331#ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333#endif
20d315d4
IM
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
b04a0f4c 356}
20d315d4 357
b04a0f4c
IM
358static void update_rq_clock(struct rq *rq)
359{
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
20d315d4
IM
362}
363
674311d5
NP
364/*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 366 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
48f24c4d
IM
371#define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
373
374#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375#define this_rq() (&__get_cpu_var(runqueues))
376#define task_rq(p) cpu_rq(task_cpu(p))
377#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
e436d800
IM
379/*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383unsigned long long cpu_clock(int cpu)
384{
e436d800
IM
385 unsigned long long now;
386 unsigned long flags;
b04a0f4c 387 struct rq *rq;
e436d800 388
2cd4d0ea 389 local_irq_save(flags);
b04a0f4c
IM
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
2cd4d0ea 393 local_irq_restore(flags);
e436d800
IM
394
395 return now;
396}
397
138a8aeb
IM
398#ifdef CONFIG_FAIR_GROUP_SCHED
399/* Change a task's ->cfs_rq if it moves across CPUs */
400static inline void set_task_cfs_rq(struct task_struct *p)
401{
402 p->se.cfs_rq = &task_rq(p)->cfs;
403}
404#else
405static inline void set_task_cfs_rq(struct task_struct *p)
406{
407}
408#endif
409
1da177e4 410#ifndef prepare_arch_switch
4866cde0
NP
411# define prepare_arch_switch(next) do { } while (0)
412#endif
413#ifndef finish_arch_switch
414# define finish_arch_switch(prev) do { } while (0)
415#endif
416
417#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 418static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
419{
420 return rq->curr == p;
421}
422
70b97a7f 423static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
424{
425}
426
70b97a7f 427static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 428{
da04c035
IM
429#ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432#endif
8a25d5de
IM
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
4866cde0
NP
440 spin_unlock_irq(&rq->lock);
441}
442
443#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 444static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
445{
446#ifdef CONFIG_SMP
447 return p->oncpu;
448#else
449 return rq->curr == p;
450#endif
451}
452
70b97a7f 453static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
454{
455#ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462#endif
463#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465#else
466 spin_unlock(&rq->lock);
467#endif
468}
469
70b97a7f 470static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
471{
472#ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480#endif
481#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
1da177e4 483#endif
4866cde0
NP
484}
485#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 486
b29739f9
IM
487/*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
70b97a7f 491static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
492 __acquires(rq->lock)
493{
70b97a7f 494 struct rq *rq;
b29739f9
IM
495
496repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504}
505
1da177e4
LT
506/*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
70b97a7f 511static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
512 __acquires(rq->lock)
513{
70b97a7f 514 struct rq *rq;
1da177e4
LT
515
516repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525}
526
70b97a7f 527static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
528 __releases(rq->lock)
529{
530 spin_unlock(&rq->lock);
531}
532
70b97a7f 533static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
534 __releases(rq->lock)
535{
536 spin_unlock_irqrestore(&rq->lock, *flags);
537}
538
1da177e4 539/*
cc2a73b5 540 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 541 */
70b97a7f 542static inline struct rq *this_rq_lock(void)
1da177e4
LT
543 __acquires(rq->lock)
544{
70b97a7f 545 struct rq *rq;
1da177e4
LT
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552}
553
1b9f19c2
IM
554/*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557void sched_clock_unstable_event(void)
558{
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566}
567
c24d20db
IM
568/*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575#ifdef CONFIG_SMP
576
577#ifndef tsk_is_polling
578#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579#endif
580
581static void resched_task(struct task_struct *p)
582{
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600}
601
602static void resched_cpu(int cpu)
603{
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611}
612#else
613static inline void resched_task(struct task_struct *p)
614{
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617}
618#endif
619
45bf76df
IM
620static u64 div64_likely32(u64 divident, unsigned long divisor)
621{
622#if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628#else
629 return divident / divisor;
630#endif
631}
632
633#if BITS_PER_LONG == 32
634# define WMULT_CONST (~0UL)
635#else
636# define WMULT_CONST (1UL << 32)
637#endif
638
639#define WMULT_SHIFT 32
640
cb1c4fc9 641static unsigned long
45bf76df
IM
642calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644{
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
ecf691da 661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
662}
663
664static inline unsigned long
665calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666{
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668}
669
670static void update_load_add(struct load_weight *lw, unsigned long inc)
671{
672 lw->weight += inc;
673 lw->inv_weight = 0;
674}
675
676static void update_load_sub(struct load_weight *lw, unsigned long dec)
677{
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680}
681
2dd73a4f
PW
682/*
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
dd41f596
IM
691#define WEIGHT_IDLEPRIO 2
692#define WMULT_IDLEPRIO (1 << 31)
693
694/*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
dd41f596
IM
705 */
706static const int prio_to_weight[40] = {
707/* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708/* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709/* 0 */ NICE_0_LOAD /* 1024 */,
710/* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711/* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
712};
713
5714d2de
IM
714/*
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 *
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
720 */
dd41f596 721static const u32 prio_to_wmult[40] = {
e4af30be
IM
722/* -20 */ 48356, 60446, 75558, 94446, 118058,
723/* -15 */ 147573, 184467, 230589, 288233, 360285,
724/* -10 */ 450347, 562979, 703746, 879575, 1099582,
725/* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726/* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727/* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728/* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729/* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 730};
2dd73a4f 731
dd41f596
IM
732static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
733
734/*
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
738 */
739struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
743};
744
745static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
a4ac01c3 749 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
750
751#include "sched_stats.h"
752#include "sched_rt.c"
753#include "sched_fair.c"
754#include "sched_idletask.c"
755#ifdef CONFIG_SCHED_DEBUG
756# include "sched_debug.c"
757#endif
758
759#define sched_class_highest (&rt_sched_class)
760
9c217245
IM
761static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762{
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768}
769
770/*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
84a1d7a2 785static void update_curr_load(struct rq *rq)
9c217245
IM
786{
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
d281918d
IM
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
9c217245
IM
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799}
800
29b4b623 801static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 802{
84a1d7a2 803 update_curr_load(rq);
9c217245
IM
804 update_load_add(&rq->ls.load, p->se.load.weight);
805}
806
79b5dddf 807static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 808{
84a1d7a2 809 update_curr_load(rq);
9c217245
IM
810 update_load_sub(&rq->ls.load, p->se.load.weight);
811}
812
e5fa2237 813static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
814{
815 rq->nr_running++;
29b4b623 816 inc_load(rq, p);
9c217245
IM
817}
818
db53181e 819static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
820{
821 rq->nr_running--;
79b5dddf 822 dec_load(rq, p);
9c217245
IM
823}
824
45bf76df
IM
825static void set_load_weight(struct task_struct *p)
826{
dd41f596
IM
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
829
45bf76df 830 if (task_has_rt_policy(p)) {
dd41f596
IM
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
834 }
45bf76df 835
dd41f596
IM
836 /*
837 * SCHED_IDLE tasks get minimal weight:
838 */
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
843 }
71f8bd46 844
dd41f596
IM
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
847}
848
8159f87e 849static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 850{
dd41f596 851 sched_info_queued(p);
fd390f6a 852 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 853 p->se.on_rq = 1;
71f8bd46
IM
854}
855
69be72c1 856static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 857{
f02231e5 858 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 859 p->se.on_rq = 0;
71f8bd46
IM
860}
861
14531189 862/*
dd41f596 863 * __normal_prio - return the priority that is based on the static prio
14531189 864 */
14531189
IM
865static inline int __normal_prio(struct task_struct *p)
866{
dd41f596 867 return p->static_prio;
14531189
IM
868}
869
b29739f9
IM
870/*
871 * Calculate the expected normal priority: i.e. priority
872 * without taking RT-inheritance into account. Might be
873 * boosted by interactivity modifiers. Changes upon fork,
874 * setprio syscalls, and whenever the interactivity
875 * estimator recalculates.
876 */
36c8b586 877static inline int normal_prio(struct task_struct *p)
b29739f9
IM
878{
879 int prio;
880
e05606d3 881 if (task_has_rt_policy(p))
b29739f9
IM
882 prio = MAX_RT_PRIO-1 - p->rt_priority;
883 else
884 prio = __normal_prio(p);
885 return prio;
886}
887
888/*
889 * Calculate the current priority, i.e. the priority
890 * taken into account by the scheduler. This value might
891 * be boosted by RT tasks, or might be boosted by
892 * interactivity modifiers. Will be RT if the task got
893 * RT-boosted. If not then it returns p->normal_prio.
894 */
36c8b586 895static int effective_prio(struct task_struct *p)
b29739f9
IM
896{
897 p->normal_prio = normal_prio(p);
898 /*
899 * If we are RT tasks or we were boosted to RT priority,
900 * keep the priority unchanged. Otherwise, update priority
901 * to the normal priority:
902 */
903 if (!rt_prio(p->prio))
904 return p->normal_prio;
905 return p->prio;
906}
907
1da177e4 908/*
dd41f596 909 * activate_task - move a task to the runqueue.
1da177e4 910 */
dd41f596 911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 912{
dd41f596
IM
913 if (p->state == TASK_UNINTERRUPTIBLE)
914 rq->nr_uninterruptible--;
1da177e4 915
8159f87e 916 enqueue_task(rq, p, wakeup);
e5fa2237 917 inc_nr_running(p, rq);
1da177e4
LT
918}
919
920/*
dd41f596 921 * activate_idle_task - move idle task to the _front_ of runqueue.
1da177e4 922 */
dd41f596 923static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4 924{
a8e504d2 925 update_rq_clock(rq);
1da177e4 926
dd41f596
IM
927 if (p->state == TASK_UNINTERRUPTIBLE)
928 rq->nr_uninterruptible--;
ece8a684 929
8159f87e 930 enqueue_task(rq, p, 0);
e5fa2237 931 inc_nr_running(p, rq);
1da177e4
LT
932}
933
934/*
935 * deactivate_task - remove a task from the runqueue.
936 */
2e1cb74a 937static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 938{
dd41f596
IM
939 if (p->state == TASK_UNINTERRUPTIBLE)
940 rq->nr_uninterruptible++;
941
69be72c1 942 dequeue_task(rq, p, sleep);
db53181e 943 dec_nr_running(p, rq);
1da177e4
LT
944}
945
1da177e4
LT
946/**
947 * task_curr - is this task currently executing on a CPU?
948 * @p: the task in question.
949 */
36c8b586 950inline int task_curr(const struct task_struct *p)
1da177e4
LT
951{
952 return cpu_curr(task_cpu(p)) == p;
953}
954
2dd73a4f
PW
955/* Used instead of source_load when we know the type == 0 */
956unsigned long weighted_cpuload(const int cpu)
957{
dd41f596
IM
958 return cpu_rq(cpu)->ls.load.weight;
959}
960
961static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
962{
963#ifdef CONFIG_SMP
964 task_thread_info(p)->cpu = cpu;
965 set_task_cfs_rq(p);
966#endif
2dd73a4f
PW
967}
968
1da177e4 969#ifdef CONFIG_SMP
c65cc870 970
dd41f596 971void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 972{
dd41f596
IM
973 int old_cpu = task_cpu(p);
974 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
975 u64 clock_offset, fair_clock_offset;
976
977 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
978 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
979
dd41f596
IM
980 if (p->se.wait_start_fair)
981 p->se.wait_start_fair -= fair_clock_offset;
6cfb0d5d
IM
982 if (p->se.sleep_start_fair)
983 p->se.sleep_start_fair -= fair_clock_offset;
984
985#ifdef CONFIG_SCHEDSTATS
986 if (p->se.wait_start)
987 p->se.wait_start -= clock_offset;
dd41f596
IM
988 if (p->se.sleep_start)
989 p->se.sleep_start -= clock_offset;
990 if (p->se.block_start)
991 p->se.block_start -= clock_offset;
6cfb0d5d 992#endif
dd41f596
IM
993
994 __set_task_cpu(p, new_cpu);
c65cc870
IM
995}
996
70b97a7f 997struct migration_req {
1da177e4 998 struct list_head list;
1da177e4 999
36c8b586 1000 struct task_struct *task;
1da177e4
LT
1001 int dest_cpu;
1002
1da177e4 1003 struct completion done;
70b97a7f 1004};
1da177e4
LT
1005
1006/*
1007 * The task's runqueue lock must be held.
1008 * Returns true if you have to wait for migration thread.
1009 */
36c8b586 1010static int
70b97a7f 1011migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1012{
70b97a7f 1013 struct rq *rq = task_rq(p);
1da177e4
LT
1014
1015 /*
1016 * If the task is not on a runqueue (and not running), then
1017 * it is sufficient to simply update the task's cpu field.
1018 */
dd41f596 1019 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1020 set_task_cpu(p, dest_cpu);
1021 return 0;
1022 }
1023
1024 init_completion(&req->done);
1da177e4
LT
1025 req->task = p;
1026 req->dest_cpu = dest_cpu;
1027 list_add(&req->list, &rq->migration_queue);
48f24c4d 1028
1da177e4
LT
1029 return 1;
1030}
1031
1032/*
1033 * wait_task_inactive - wait for a thread to unschedule.
1034 *
1035 * The caller must ensure that the task *will* unschedule sometime soon,
1036 * else this function might spin for a *long* time. This function can't
1037 * be called with interrupts off, or it may introduce deadlock with
1038 * smp_call_function() if an IPI is sent by the same process we are
1039 * waiting to become inactive.
1040 */
36c8b586 1041void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1042{
1043 unsigned long flags;
dd41f596 1044 int running, on_rq;
70b97a7f 1045 struct rq *rq;
1da177e4
LT
1046
1047repeat:
fa490cfd
LT
1048 /*
1049 * We do the initial early heuristics without holding
1050 * any task-queue locks at all. We'll only try to get
1051 * the runqueue lock when things look like they will
1052 * work out!
1053 */
1054 rq = task_rq(p);
1055
1056 /*
1057 * If the task is actively running on another CPU
1058 * still, just relax and busy-wait without holding
1059 * any locks.
1060 *
1061 * NOTE! Since we don't hold any locks, it's not
1062 * even sure that "rq" stays as the right runqueue!
1063 * But we don't care, since "task_running()" will
1064 * return false if the runqueue has changed and p
1065 * is actually now running somewhere else!
1066 */
1067 while (task_running(rq, p))
1068 cpu_relax();
1069
1070 /*
1071 * Ok, time to look more closely! We need the rq
1072 * lock now, to be *sure*. If we're wrong, we'll
1073 * just go back and repeat.
1074 */
1da177e4 1075 rq = task_rq_lock(p, &flags);
fa490cfd 1076 running = task_running(rq, p);
dd41f596 1077 on_rq = p->se.on_rq;
fa490cfd
LT
1078 task_rq_unlock(rq, &flags);
1079
1080 /*
1081 * Was it really running after all now that we
1082 * checked with the proper locks actually held?
1083 *
1084 * Oops. Go back and try again..
1085 */
1086 if (unlikely(running)) {
1da177e4 1087 cpu_relax();
1da177e4
LT
1088 goto repeat;
1089 }
fa490cfd
LT
1090
1091 /*
1092 * It's not enough that it's not actively running,
1093 * it must be off the runqueue _entirely_, and not
1094 * preempted!
1095 *
1096 * So if it wa still runnable (but just not actively
1097 * running right now), it's preempted, and we should
1098 * yield - it could be a while.
1099 */
dd41f596 1100 if (unlikely(on_rq)) {
fa490cfd
LT
1101 yield();
1102 goto repeat;
1103 }
1104
1105 /*
1106 * Ahh, all good. It wasn't running, and it wasn't
1107 * runnable, which means that it will never become
1108 * running in the future either. We're all done!
1109 */
1da177e4
LT
1110}
1111
1112/***
1113 * kick_process - kick a running thread to enter/exit the kernel
1114 * @p: the to-be-kicked thread
1115 *
1116 * Cause a process which is running on another CPU to enter
1117 * kernel-mode, without any delay. (to get signals handled.)
1118 *
1119 * NOTE: this function doesnt have to take the runqueue lock,
1120 * because all it wants to ensure is that the remote task enters
1121 * the kernel. If the IPI races and the task has been migrated
1122 * to another CPU then no harm is done and the purpose has been
1123 * achieved as well.
1124 */
36c8b586 1125void kick_process(struct task_struct *p)
1da177e4
LT
1126{
1127 int cpu;
1128
1129 preempt_disable();
1130 cpu = task_cpu(p);
1131 if ((cpu != smp_processor_id()) && task_curr(p))
1132 smp_send_reschedule(cpu);
1133 preempt_enable();
1134}
1135
1136/*
2dd73a4f
PW
1137 * Return a low guess at the load of a migration-source cpu weighted
1138 * according to the scheduling class and "nice" value.
1da177e4
LT
1139 *
1140 * We want to under-estimate the load of migration sources, to
1141 * balance conservatively.
1142 */
a2000572 1143static inline unsigned long source_load(int cpu, int type)
1da177e4 1144{
70b97a7f 1145 struct rq *rq = cpu_rq(cpu);
dd41f596 1146 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1147
3b0bd9bc 1148 if (type == 0)
dd41f596 1149 return total;
b910472d 1150
dd41f596 1151 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1152}
1153
1154/*
2dd73a4f
PW
1155 * Return a high guess at the load of a migration-target cpu weighted
1156 * according to the scheduling class and "nice" value.
1da177e4 1157 */
a2000572 1158static inline unsigned long target_load(int cpu, int type)
1da177e4 1159{
70b97a7f 1160 struct rq *rq = cpu_rq(cpu);
dd41f596 1161 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1162
7897986b 1163 if (type == 0)
dd41f596 1164 return total;
3b0bd9bc 1165
dd41f596 1166 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1167}
1168
1169/*
1170 * Return the average load per task on the cpu's run queue
1171 */
1172static inline unsigned long cpu_avg_load_per_task(int cpu)
1173{
70b97a7f 1174 struct rq *rq = cpu_rq(cpu);
dd41f596 1175 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1176 unsigned long n = rq->nr_running;
1177
dd41f596 1178 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1179}
1180
147cbb4b
NP
1181/*
1182 * find_idlest_group finds and returns the least busy CPU group within the
1183 * domain.
1184 */
1185static struct sched_group *
1186find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1187{
1188 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1189 unsigned long min_load = ULONG_MAX, this_load = 0;
1190 int load_idx = sd->forkexec_idx;
1191 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1192
1193 do {
1194 unsigned long load, avg_load;
1195 int local_group;
1196 int i;
1197
da5a5522
BD
1198 /* Skip over this group if it has no CPUs allowed */
1199 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1200 goto nextgroup;
1201
147cbb4b 1202 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1203
1204 /* Tally up the load of all CPUs in the group */
1205 avg_load = 0;
1206
1207 for_each_cpu_mask(i, group->cpumask) {
1208 /* Bias balancing toward cpus of our domain */
1209 if (local_group)
1210 load = source_load(i, load_idx);
1211 else
1212 load = target_load(i, load_idx);
1213
1214 avg_load += load;
1215 }
1216
1217 /* Adjust by relative CPU power of the group */
5517d86b
ED
1218 avg_load = sg_div_cpu_power(group,
1219 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1220
1221 if (local_group) {
1222 this_load = avg_load;
1223 this = group;
1224 } else if (avg_load < min_load) {
1225 min_load = avg_load;
1226 idlest = group;
1227 }
da5a5522 1228nextgroup:
147cbb4b
NP
1229 group = group->next;
1230 } while (group != sd->groups);
1231
1232 if (!idlest || 100*this_load < imbalance*min_load)
1233 return NULL;
1234 return idlest;
1235}
1236
1237/*
0feaece9 1238 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1239 */
95cdf3b7
IM
1240static int
1241find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1242{
da5a5522 1243 cpumask_t tmp;
147cbb4b
NP
1244 unsigned long load, min_load = ULONG_MAX;
1245 int idlest = -1;
1246 int i;
1247
da5a5522
BD
1248 /* Traverse only the allowed CPUs */
1249 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1250
1251 for_each_cpu_mask(i, tmp) {
2dd73a4f 1252 load = weighted_cpuload(i);
147cbb4b
NP
1253
1254 if (load < min_load || (load == min_load && i == this_cpu)) {
1255 min_load = load;
1256 idlest = i;
1257 }
1258 }
1259
1260 return idlest;
1261}
1262
476d139c
NP
1263/*
1264 * sched_balance_self: balance the current task (running on cpu) in domains
1265 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1266 * SD_BALANCE_EXEC.
1267 *
1268 * Balance, ie. select the least loaded group.
1269 *
1270 * Returns the target CPU number, or the same CPU if no balancing is needed.
1271 *
1272 * preempt must be disabled.
1273 */
1274static int sched_balance_self(int cpu, int flag)
1275{
1276 struct task_struct *t = current;
1277 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1278
c96d145e 1279 for_each_domain(cpu, tmp) {
9761eea8
IM
1280 /*
1281 * If power savings logic is enabled for a domain, stop there.
1282 */
5c45bf27
SS
1283 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1284 break;
476d139c
NP
1285 if (tmp->flags & flag)
1286 sd = tmp;
c96d145e 1287 }
476d139c
NP
1288
1289 while (sd) {
1290 cpumask_t span;
1291 struct sched_group *group;
1a848870
SS
1292 int new_cpu, weight;
1293
1294 if (!(sd->flags & flag)) {
1295 sd = sd->child;
1296 continue;
1297 }
476d139c
NP
1298
1299 span = sd->span;
1300 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1301 if (!group) {
1302 sd = sd->child;
1303 continue;
1304 }
476d139c 1305
da5a5522 1306 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1307 if (new_cpu == -1 || new_cpu == cpu) {
1308 /* Now try balancing at a lower domain level of cpu */
1309 sd = sd->child;
1310 continue;
1311 }
476d139c 1312
1a848870 1313 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1314 cpu = new_cpu;
476d139c
NP
1315 sd = NULL;
1316 weight = cpus_weight(span);
1317 for_each_domain(cpu, tmp) {
1318 if (weight <= cpus_weight(tmp->span))
1319 break;
1320 if (tmp->flags & flag)
1321 sd = tmp;
1322 }
1323 /* while loop will break here if sd == NULL */
1324 }
1325
1326 return cpu;
1327}
1328
1329#endif /* CONFIG_SMP */
1da177e4
LT
1330
1331/*
1332 * wake_idle() will wake a task on an idle cpu if task->cpu is
1333 * not idle and an idle cpu is available. The span of cpus to
1334 * search starts with cpus closest then further out as needed,
1335 * so we always favor a closer, idle cpu.
1336 *
1337 * Returns the CPU we should wake onto.
1338 */
1339#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1340static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1341{
1342 cpumask_t tmp;
1343 struct sched_domain *sd;
1344 int i;
1345
4953198b
SS
1346 /*
1347 * If it is idle, then it is the best cpu to run this task.
1348 *
1349 * This cpu is also the best, if it has more than one task already.
1350 * Siblings must be also busy(in most cases) as they didn't already
1351 * pickup the extra load from this cpu and hence we need not check
1352 * sibling runqueue info. This will avoid the checks and cache miss
1353 * penalities associated with that.
1354 */
1355 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1356 return cpu;
1357
1358 for_each_domain(cpu, sd) {
1359 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1360 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1361 for_each_cpu_mask(i, tmp) {
1362 if (idle_cpu(i))
1363 return i;
1364 }
9761eea8 1365 } else {
e0f364f4 1366 break;
9761eea8 1367 }
1da177e4
LT
1368 }
1369 return cpu;
1370}
1371#else
36c8b586 1372static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1373{
1374 return cpu;
1375}
1376#endif
1377
1378/***
1379 * try_to_wake_up - wake up a thread
1380 * @p: the to-be-woken-up thread
1381 * @state: the mask of task states that can be woken
1382 * @sync: do a synchronous wakeup?
1383 *
1384 * Put it on the run-queue if it's not already there. The "current"
1385 * thread is always on the run-queue (except when the actual
1386 * re-schedule is in progress), and as such you're allowed to do
1387 * the simpler "current->state = TASK_RUNNING" to mark yourself
1388 * runnable without the overhead of this.
1389 *
1390 * returns failure only if the task is already active.
1391 */
36c8b586 1392static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1393{
1394 int cpu, this_cpu, success = 0;
1395 unsigned long flags;
1396 long old_state;
70b97a7f 1397 struct rq *rq;
1da177e4 1398#ifdef CONFIG_SMP
7897986b 1399 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1400 unsigned long load, this_load;
1da177e4
LT
1401 int new_cpu;
1402#endif
1403
1404 rq = task_rq_lock(p, &flags);
1405 old_state = p->state;
1406 if (!(old_state & state))
1407 goto out;
1408
dd41f596 1409 if (p->se.on_rq)
1da177e4
LT
1410 goto out_running;
1411
1412 cpu = task_cpu(p);
1413 this_cpu = smp_processor_id();
1414
1415#ifdef CONFIG_SMP
1416 if (unlikely(task_running(rq, p)))
1417 goto out_activate;
1418
7897986b
NP
1419 new_cpu = cpu;
1420
1da177e4
LT
1421 schedstat_inc(rq, ttwu_cnt);
1422 if (cpu == this_cpu) {
1423 schedstat_inc(rq, ttwu_local);
7897986b
NP
1424 goto out_set_cpu;
1425 }
1426
1427 for_each_domain(this_cpu, sd) {
1428 if (cpu_isset(cpu, sd->span)) {
1429 schedstat_inc(sd, ttwu_wake_remote);
1430 this_sd = sd;
1431 break;
1da177e4
LT
1432 }
1433 }
1da177e4 1434
7897986b 1435 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1436 goto out_set_cpu;
1437
1da177e4 1438 /*
7897986b 1439 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1440 */
7897986b
NP
1441 if (this_sd) {
1442 int idx = this_sd->wake_idx;
1443 unsigned int imbalance;
1da177e4 1444
a3f21bce
NP
1445 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1446
7897986b
NP
1447 load = source_load(cpu, idx);
1448 this_load = target_load(this_cpu, idx);
1da177e4 1449
7897986b
NP
1450 new_cpu = this_cpu; /* Wake to this CPU if we can */
1451
a3f21bce
NP
1452 if (this_sd->flags & SD_WAKE_AFFINE) {
1453 unsigned long tl = this_load;
33859f7f
MOS
1454 unsigned long tl_per_task;
1455
1456 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1457
1da177e4 1458 /*
a3f21bce
NP
1459 * If sync wakeup then subtract the (maximum possible)
1460 * effect of the currently running task from the load
1461 * of the current CPU:
1da177e4 1462 */
a3f21bce 1463 if (sync)
dd41f596 1464 tl -= current->se.load.weight;
a3f21bce
NP
1465
1466 if ((tl <= load &&
2dd73a4f 1467 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1468 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1469 /*
1470 * This domain has SD_WAKE_AFFINE and
1471 * p is cache cold in this domain, and
1472 * there is no bad imbalance.
1473 */
1474 schedstat_inc(this_sd, ttwu_move_affine);
1475 goto out_set_cpu;
1476 }
1477 }
1478
1479 /*
1480 * Start passive balancing when half the imbalance_pct
1481 * limit is reached.
1482 */
1483 if (this_sd->flags & SD_WAKE_BALANCE) {
1484 if (imbalance*this_load <= 100*load) {
1485 schedstat_inc(this_sd, ttwu_move_balance);
1486 goto out_set_cpu;
1487 }
1da177e4
LT
1488 }
1489 }
1490
1491 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1492out_set_cpu:
1493 new_cpu = wake_idle(new_cpu, p);
1494 if (new_cpu != cpu) {
1495 set_task_cpu(p, new_cpu);
1496 task_rq_unlock(rq, &flags);
1497 /* might preempt at this point */
1498 rq = task_rq_lock(p, &flags);
1499 old_state = p->state;
1500 if (!(old_state & state))
1501 goto out;
dd41f596 1502 if (p->se.on_rq)
1da177e4
LT
1503 goto out_running;
1504
1505 this_cpu = smp_processor_id();
1506 cpu = task_cpu(p);
1507 }
1508
1509out_activate:
1510#endif /* CONFIG_SMP */
2daa3577 1511 update_rq_clock(rq);
dd41f596 1512 activate_task(rq, p, 1);
1da177e4
LT
1513 /*
1514 * Sync wakeups (i.e. those types of wakeups where the waker
1515 * has indicated that it will leave the CPU in short order)
1516 * don't trigger a preemption, if the woken up task will run on
1517 * this cpu. (in this case the 'I will reschedule' promise of
1518 * the waker guarantees that the freshly woken up task is going
1519 * to be considered on this CPU.)
1520 */
dd41f596
IM
1521 if (!sync || cpu != this_cpu)
1522 check_preempt_curr(rq, p);
1da177e4
LT
1523 success = 1;
1524
1525out_running:
1526 p->state = TASK_RUNNING;
1527out:
1528 task_rq_unlock(rq, &flags);
1529
1530 return success;
1531}
1532
36c8b586 1533int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1534{
1535 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1536 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1537}
1da177e4
LT
1538EXPORT_SYMBOL(wake_up_process);
1539
36c8b586 1540int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1541{
1542 return try_to_wake_up(p, state, 0);
1543}
1544
1da177e4
LT
1545/*
1546 * Perform scheduler related setup for a newly forked process p.
1547 * p is forked by current.
dd41f596
IM
1548 *
1549 * __sched_fork() is basic setup used by init_idle() too:
1550 */
1551static void __sched_fork(struct task_struct *p)
1552{
1553 p->se.wait_start_fair = 0;
dd41f596
IM
1554 p->se.exec_start = 0;
1555 p->se.sum_exec_runtime = 0;
1556 p->se.delta_exec = 0;
1557 p->se.delta_fair_run = 0;
1558 p->se.delta_fair_sleep = 0;
1559 p->se.wait_runtime = 0;
6cfb0d5d
IM
1560 p->se.sleep_start_fair = 0;
1561
1562#ifdef CONFIG_SCHEDSTATS
1563 p->se.wait_start = 0;
dd41f596
IM
1564 p->se.sum_wait_runtime = 0;
1565 p->se.sum_sleep_runtime = 0;
1566 p->se.sleep_start = 0;
dd41f596
IM
1567 p->se.block_start = 0;
1568 p->se.sleep_max = 0;
1569 p->se.block_max = 0;
1570 p->se.exec_max = 0;
1571 p->se.wait_max = 0;
1572 p->se.wait_runtime_overruns = 0;
1573 p->se.wait_runtime_underruns = 0;
6cfb0d5d 1574#endif
476d139c 1575
dd41f596
IM
1576 INIT_LIST_HEAD(&p->run_list);
1577 p->se.on_rq = 0;
476d139c 1578
e107be36
AK
1579#ifdef CONFIG_PREEMPT_NOTIFIERS
1580 INIT_HLIST_HEAD(&p->preempt_notifiers);
1581#endif
1582
1da177e4
LT
1583 /*
1584 * We mark the process as running here, but have not actually
1585 * inserted it onto the runqueue yet. This guarantees that
1586 * nobody will actually run it, and a signal or other external
1587 * event cannot wake it up and insert it on the runqueue either.
1588 */
1589 p->state = TASK_RUNNING;
dd41f596
IM
1590}
1591
1592/*
1593 * fork()/clone()-time setup:
1594 */
1595void sched_fork(struct task_struct *p, int clone_flags)
1596{
1597 int cpu = get_cpu();
1598
1599 __sched_fork(p);
1600
1601#ifdef CONFIG_SMP
1602 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1603#endif
1604 __set_task_cpu(p, cpu);
b29739f9
IM
1605
1606 /*
1607 * Make sure we do not leak PI boosting priority to the child:
1608 */
1609 p->prio = current->normal_prio;
1610
52f17b6c 1611#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1612 if (likely(sched_info_on()))
52f17b6c 1613 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1614#endif
d6077cb8 1615#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1616 p->oncpu = 0;
1617#endif
1da177e4 1618#ifdef CONFIG_PREEMPT
4866cde0 1619 /* Want to start with kernel preemption disabled. */
a1261f54 1620 task_thread_info(p)->preempt_count = 1;
1da177e4 1621#endif
476d139c 1622 put_cpu();
1da177e4
LT
1623}
1624
dd41f596
IM
1625/*
1626 * After fork, child runs first. (default) If set to 0 then
1627 * parent will (try to) run first.
1628 */
1629unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1630
1da177e4
LT
1631/*
1632 * wake_up_new_task - wake up a newly created task for the first time.
1633 *
1634 * This function will do some initial scheduler statistics housekeeping
1635 * that must be done for every newly created context, then puts the task
1636 * on the runqueue and wakes it.
1637 */
36c8b586 1638void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1639{
1640 unsigned long flags;
dd41f596
IM
1641 struct rq *rq;
1642 int this_cpu;
1da177e4
LT
1643
1644 rq = task_rq_lock(p, &flags);
147cbb4b 1645 BUG_ON(p->state != TASK_RUNNING);
dd41f596 1646 this_cpu = smp_processor_id(); /* parent's CPU */
a8e504d2 1647 update_rq_clock(rq);
1da177e4
LT
1648
1649 p->prio = effective_prio(p);
1650
cad60d93
IM
1651 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1652 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1653 !current->se.on_rq) {
1654
dd41f596 1655 activate_task(rq, p, 0);
1da177e4 1656 } else {
1da177e4 1657 /*
dd41f596
IM
1658 * Let the scheduling class do new task startup
1659 * management (if any):
1da177e4 1660 */
ee0827d8 1661 p->sched_class->task_new(rq, p);
e5fa2237 1662 inc_nr_running(p, rq);
1da177e4 1663 }
dd41f596
IM
1664 check_preempt_curr(rq, p);
1665 task_rq_unlock(rq, &flags);
1da177e4
LT
1666}
1667
e107be36
AK
1668#ifdef CONFIG_PREEMPT_NOTIFIERS
1669
1670/**
421cee29
RD
1671 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1672 * @notifier: notifier struct to register
e107be36
AK
1673 */
1674void preempt_notifier_register(struct preempt_notifier *notifier)
1675{
1676 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1677}
1678EXPORT_SYMBOL_GPL(preempt_notifier_register);
1679
1680/**
1681 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1682 * @notifier: notifier struct to unregister
e107be36
AK
1683 *
1684 * This is safe to call from within a preemption notifier.
1685 */
1686void preempt_notifier_unregister(struct preempt_notifier *notifier)
1687{
1688 hlist_del(&notifier->link);
1689}
1690EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1691
1692static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1693{
1694 struct preempt_notifier *notifier;
1695 struct hlist_node *node;
1696
1697 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1698 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1699}
1700
1701static void
1702fire_sched_out_preempt_notifiers(struct task_struct *curr,
1703 struct task_struct *next)
1704{
1705 struct preempt_notifier *notifier;
1706 struct hlist_node *node;
1707
1708 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1709 notifier->ops->sched_out(notifier, next);
1710}
1711
1712#else
1713
1714static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1715{
1716}
1717
1718static void
1719fire_sched_out_preempt_notifiers(struct task_struct *curr,
1720 struct task_struct *next)
1721{
1722}
1723
1724#endif
1725
4866cde0
NP
1726/**
1727 * prepare_task_switch - prepare to switch tasks
1728 * @rq: the runqueue preparing to switch
421cee29 1729 * @prev: the current task that is being switched out
4866cde0
NP
1730 * @next: the task we are going to switch to.
1731 *
1732 * This is called with the rq lock held and interrupts off. It must
1733 * be paired with a subsequent finish_task_switch after the context
1734 * switch.
1735 *
1736 * prepare_task_switch sets up locking and calls architecture specific
1737 * hooks.
1738 */
e107be36
AK
1739static inline void
1740prepare_task_switch(struct rq *rq, struct task_struct *prev,
1741 struct task_struct *next)
4866cde0 1742{
e107be36 1743 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1744 prepare_lock_switch(rq, next);
1745 prepare_arch_switch(next);
1746}
1747
1da177e4
LT
1748/**
1749 * finish_task_switch - clean up after a task-switch
344babaa 1750 * @rq: runqueue associated with task-switch
1da177e4
LT
1751 * @prev: the thread we just switched away from.
1752 *
4866cde0
NP
1753 * finish_task_switch must be called after the context switch, paired
1754 * with a prepare_task_switch call before the context switch.
1755 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1756 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1757 *
1758 * Note that we may have delayed dropping an mm in context_switch(). If
1759 * so, we finish that here outside of the runqueue lock. (Doing it
1760 * with the lock held can cause deadlocks; see schedule() for
1761 * details.)
1762 */
70b97a7f 1763static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1764 __releases(rq->lock)
1765{
1da177e4 1766 struct mm_struct *mm = rq->prev_mm;
55a101f8 1767 long prev_state;
1da177e4
LT
1768
1769 rq->prev_mm = NULL;
1770
1771 /*
1772 * A task struct has one reference for the use as "current".
c394cc9f 1773 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1774 * schedule one last time. The schedule call will never return, and
1775 * the scheduled task must drop that reference.
c394cc9f 1776 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1777 * still held, otherwise prev could be scheduled on another cpu, die
1778 * there before we look at prev->state, and then the reference would
1779 * be dropped twice.
1780 * Manfred Spraul <manfred@colorfullife.com>
1781 */
55a101f8 1782 prev_state = prev->state;
4866cde0
NP
1783 finish_arch_switch(prev);
1784 finish_lock_switch(rq, prev);
e107be36 1785 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1786 if (mm)
1787 mmdrop(mm);
c394cc9f 1788 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1789 /*
1790 * Remove function-return probe instances associated with this
1791 * task and put them back on the free list.
9761eea8 1792 */
c6fd91f0 1793 kprobe_flush_task(prev);
1da177e4 1794 put_task_struct(prev);
c6fd91f0 1795 }
1da177e4
LT
1796}
1797
1798/**
1799 * schedule_tail - first thing a freshly forked thread must call.
1800 * @prev: the thread we just switched away from.
1801 */
36c8b586 1802asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1803 __releases(rq->lock)
1804{
70b97a7f
IM
1805 struct rq *rq = this_rq();
1806
4866cde0
NP
1807 finish_task_switch(rq, prev);
1808#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1809 /* In this case, finish_task_switch does not reenable preemption */
1810 preempt_enable();
1811#endif
1da177e4
LT
1812 if (current->set_child_tid)
1813 put_user(current->pid, current->set_child_tid);
1814}
1815
1816/*
1817 * context_switch - switch to the new MM and the new
1818 * thread's register state.
1819 */
dd41f596 1820static inline void
70b97a7f 1821context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1822 struct task_struct *next)
1da177e4 1823{
dd41f596 1824 struct mm_struct *mm, *oldmm;
1da177e4 1825
e107be36 1826 prepare_task_switch(rq, prev, next);
dd41f596
IM
1827 mm = next->mm;
1828 oldmm = prev->active_mm;
9226d125
ZA
1829 /*
1830 * For paravirt, this is coupled with an exit in switch_to to
1831 * combine the page table reload and the switch backend into
1832 * one hypercall.
1833 */
1834 arch_enter_lazy_cpu_mode();
1835
dd41f596 1836 if (unlikely(!mm)) {
1da177e4
LT
1837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1842
dd41f596 1843 if (unlikely(!prev->mm)) {
1da177e4 1844 prev->active_mm = NULL;
1da177e4
LT
1845 rq->prev_mm = oldmm;
1846 }
3a5f5e48
IM
1847 /*
1848 * Since the runqueue lock will be released by the next
1849 * task (which is an invalid locking op but in the case
1850 * of the scheduler it's an obvious special-case), so we
1851 * do an early lockdep release here:
1852 */
1853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1854 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1855#endif
1da177e4
LT
1856
1857 /* Here we just switch the register state and the stack. */
1858 switch_to(prev, next, prev);
1859
dd41f596
IM
1860 barrier();
1861 /*
1862 * this_rq must be evaluated again because prev may have moved
1863 * CPUs since it called schedule(), thus the 'rq' on its stack
1864 * frame will be invalid.
1865 */
1866 finish_task_switch(this_rq(), prev);
1da177e4
LT
1867}
1868
1869/*
1870 * nr_running, nr_uninterruptible and nr_context_switches:
1871 *
1872 * externally visible scheduler statistics: current number of runnable
1873 * threads, current number of uninterruptible-sleeping threads, total
1874 * number of context switches performed since bootup.
1875 */
1876unsigned long nr_running(void)
1877{
1878 unsigned long i, sum = 0;
1879
1880 for_each_online_cpu(i)
1881 sum += cpu_rq(i)->nr_running;
1882
1883 return sum;
1884}
1885
1886unsigned long nr_uninterruptible(void)
1887{
1888 unsigned long i, sum = 0;
1889
0a945022 1890 for_each_possible_cpu(i)
1da177e4
LT
1891 sum += cpu_rq(i)->nr_uninterruptible;
1892
1893 /*
1894 * Since we read the counters lockless, it might be slightly
1895 * inaccurate. Do not allow it to go below zero though:
1896 */
1897 if (unlikely((long)sum < 0))
1898 sum = 0;
1899
1900 return sum;
1901}
1902
1903unsigned long long nr_context_switches(void)
1904{
cc94abfc
SR
1905 int i;
1906 unsigned long long sum = 0;
1da177e4 1907
0a945022 1908 for_each_possible_cpu(i)
1da177e4
LT
1909 sum += cpu_rq(i)->nr_switches;
1910
1911 return sum;
1912}
1913
1914unsigned long nr_iowait(void)
1915{
1916 unsigned long i, sum = 0;
1917
0a945022 1918 for_each_possible_cpu(i)
1da177e4
LT
1919 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1920
1921 return sum;
1922}
1923
db1b1fef
JS
1924unsigned long nr_active(void)
1925{
1926 unsigned long i, running = 0, uninterruptible = 0;
1927
1928 for_each_online_cpu(i) {
1929 running += cpu_rq(i)->nr_running;
1930 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1931 }
1932
1933 if (unlikely((long)uninterruptible < 0))
1934 uninterruptible = 0;
1935
1936 return running + uninterruptible;
1937}
1938
48f24c4d 1939/*
dd41f596
IM
1940 * Update rq->cpu_load[] statistics. This function is usually called every
1941 * scheduler tick (TICK_NSEC).
48f24c4d 1942 */
dd41f596 1943static void update_cpu_load(struct rq *this_rq)
48f24c4d 1944{
dd41f596
IM
1945 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1946 unsigned long total_load = this_rq->ls.load.weight;
1947 unsigned long this_load = total_load;
1948 struct load_stat *ls = &this_rq->ls;
dd41f596
IM
1949 int i, scale;
1950
1951 this_rq->nr_load_updates++;
1952 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1953 goto do_avg;
1954
1955 /* Update delta_fair/delta_exec fields first */
84a1d7a2 1956 update_curr_load(this_rq);
dd41f596
IM
1957
1958 fair_delta64 = ls->delta_fair + 1;
1959 ls->delta_fair = 0;
1960
1961 exec_delta64 = ls->delta_exec + 1;
1962 ls->delta_exec = 0;
1963
d281918d
IM
1964 sample_interval64 = this_rq->clock - ls->load_update_last;
1965 ls->load_update_last = this_rq->clock;
dd41f596
IM
1966
1967 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1968 sample_interval64 = TICK_NSEC;
1969
1970 if (exec_delta64 > sample_interval64)
1971 exec_delta64 = sample_interval64;
1972
1973 idle_delta64 = sample_interval64 - exec_delta64;
1974
1975 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1976 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1977
1978 this_load = (unsigned long)tmp64;
1979
1980do_avg:
1981
1982 /* Update our load: */
1983 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1984 unsigned long old_load, new_load;
1985
1986 /* scale is effectively 1 << i now, and >> i divides by scale */
1987
1988 old_load = this_rq->cpu_load[i];
1989 new_load = this_load;
1990
1991 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1992 }
48f24c4d
IM
1993}
1994
dd41f596
IM
1995#ifdef CONFIG_SMP
1996
1da177e4
LT
1997/*
1998 * double_rq_lock - safely lock two runqueues
1999 *
2000 * Note this does not disable interrupts like task_rq_lock,
2001 * you need to do so manually before calling.
2002 */
70b97a7f 2003static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2004 __acquires(rq1->lock)
2005 __acquires(rq2->lock)
2006{
054b9108 2007 BUG_ON(!irqs_disabled());
1da177e4
LT
2008 if (rq1 == rq2) {
2009 spin_lock(&rq1->lock);
2010 __acquire(rq2->lock); /* Fake it out ;) */
2011 } else {
c96d145e 2012 if (rq1 < rq2) {
1da177e4
LT
2013 spin_lock(&rq1->lock);
2014 spin_lock(&rq2->lock);
2015 } else {
2016 spin_lock(&rq2->lock);
2017 spin_lock(&rq1->lock);
2018 }
2019 }
2020}
2021
2022/*
2023 * double_rq_unlock - safely unlock two runqueues
2024 *
2025 * Note this does not restore interrupts like task_rq_unlock,
2026 * you need to do so manually after calling.
2027 */
70b97a7f 2028static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2029 __releases(rq1->lock)
2030 __releases(rq2->lock)
2031{
2032 spin_unlock(&rq1->lock);
2033 if (rq1 != rq2)
2034 spin_unlock(&rq2->lock);
2035 else
2036 __release(rq2->lock);
2037}
2038
2039/*
2040 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2041 */
70b97a7f 2042static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2043 __releases(this_rq->lock)
2044 __acquires(busiest->lock)
2045 __acquires(this_rq->lock)
2046{
054b9108
KK
2047 if (unlikely(!irqs_disabled())) {
2048 /* printk() doesn't work good under rq->lock */
2049 spin_unlock(&this_rq->lock);
2050 BUG_ON(1);
2051 }
1da177e4 2052 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2053 if (busiest < this_rq) {
1da177e4
LT
2054 spin_unlock(&this_rq->lock);
2055 spin_lock(&busiest->lock);
2056 spin_lock(&this_rq->lock);
2057 } else
2058 spin_lock(&busiest->lock);
2059 }
2060}
2061
1da177e4
LT
2062/*
2063 * If dest_cpu is allowed for this process, migrate the task to it.
2064 * This is accomplished by forcing the cpu_allowed mask to only
2065 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2066 * the cpu_allowed mask is restored.
2067 */
36c8b586 2068static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2069{
70b97a7f 2070 struct migration_req req;
1da177e4 2071 unsigned long flags;
70b97a7f 2072 struct rq *rq;
1da177e4
LT
2073
2074 rq = task_rq_lock(p, &flags);
2075 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2076 || unlikely(cpu_is_offline(dest_cpu)))
2077 goto out;
2078
2079 /* force the process onto the specified CPU */
2080 if (migrate_task(p, dest_cpu, &req)) {
2081 /* Need to wait for migration thread (might exit: take ref). */
2082 struct task_struct *mt = rq->migration_thread;
36c8b586 2083
1da177e4
LT
2084 get_task_struct(mt);
2085 task_rq_unlock(rq, &flags);
2086 wake_up_process(mt);
2087 put_task_struct(mt);
2088 wait_for_completion(&req.done);
36c8b586 2089
1da177e4
LT
2090 return;
2091 }
2092out:
2093 task_rq_unlock(rq, &flags);
2094}
2095
2096/*
476d139c
NP
2097 * sched_exec - execve() is a valuable balancing opportunity, because at
2098 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2099 */
2100void sched_exec(void)
2101{
1da177e4 2102 int new_cpu, this_cpu = get_cpu();
476d139c 2103 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2104 put_cpu();
476d139c
NP
2105 if (new_cpu != this_cpu)
2106 sched_migrate_task(current, new_cpu);
1da177e4
LT
2107}
2108
2109/*
2110 * pull_task - move a task from a remote runqueue to the local runqueue.
2111 * Both runqueues must be locked.
2112 */
dd41f596
IM
2113static void pull_task(struct rq *src_rq, struct task_struct *p,
2114 struct rq *this_rq, int this_cpu)
1da177e4 2115{
a8e504d2 2116 update_rq_clock(src_rq);
2e1cb74a 2117 deactivate_task(src_rq, p, 0);
1da177e4 2118 set_task_cpu(p, this_cpu);
2daa3577 2119 __update_rq_clock(this_rq);
dd41f596 2120 activate_task(this_rq, p, 0);
1da177e4
LT
2121 /*
2122 * Note that idle threads have a prio of MAX_PRIO, for this test
2123 * to be always true for them.
2124 */
dd41f596 2125 check_preempt_curr(this_rq, p);
1da177e4
LT
2126}
2127
2128/*
2129 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2130 */
858119e1 2131static
70b97a7f 2132int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2133 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2134 int *all_pinned)
1da177e4
LT
2135{
2136 /*
2137 * We do not migrate tasks that are:
2138 * 1) running (obviously), or
2139 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2140 * 3) are cache-hot on their current CPU.
2141 */
1da177e4
LT
2142 if (!cpu_isset(this_cpu, p->cpus_allowed))
2143 return 0;
81026794
NP
2144 *all_pinned = 0;
2145
2146 if (task_running(rq, p))
2147 return 0;
1da177e4
LT
2148
2149 /*
dd41f596 2150 * Aggressive migration if too many balance attempts have failed:
1da177e4 2151 */
dd41f596 2152 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
2153 return 1;
2154
1da177e4
LT
2155 return 1;
2156}
2157
dd41f596 2158static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2159 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2160 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2161 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2162 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2163{
dd41f596
IM
2164 int pulled = 0, pinned = 0, skip_for_load;
2165 struct task_struct *p;
2166 long rem_load_move = max_load_move;
1da177e4 2167
2dd73a4f 2168 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2169 goto out;
2170
81026794
NP
2171 pinned = 1;
2172
1da177e4 2173 /*
dd41f596 2174 * Start the load-balancing iterator:
1da177e4 2175 */
dd41f596
IM
2176 p = iterator->start(iterator->arg);
2177next:
2178 if (!p)
1da177e4 2179 goto out;
50ddd969
PW
2180 /*
2181 * To help distribute high priority tasks accross CPUs we don't
2182 * skip a task if it will be the highest priority task (i.e. smallest
2183 * prio value) on its new queue regardless of its load weight
2184 */
dd41f596
IM
2185 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2186 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2187 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2188 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2189 p = iterator->next(iterator->arg);
2190 goto next;
1da177e4
LT
2191 }
2192
dd41f596 2193 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2194 pulled++;
dd41f596 2195 rem_load_move -= p->se.load.weight;
1da177e4 2196
2dd73a4f
PW
2197 /*
2198 * We only want to steal up to the prescribed number of tasks
2199 * and the prescribed amount of weighted load.
2200 */
2201 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2202 if (p->prio < *this_best_prio)
2203 *this_best_prio = p->prio;
dd41f596
IM
2204 p = iterator->next(iterator->arg);
2205 goto next;
1da177e4
LT
2206 }
2207out:
2208 /*
2209 * Right now, this is the only place pull_task() is called,
2210 * so we can safely collect pull_task() stats here rather than
2211 * inside pull_task().
2212 */
2213 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2214
2215 if (all_pinned)
2216 *all_pinned = pinned;
dd41f596 2217 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2218 return pulled;
2219}
2220
dd41f596 2221/*
43010659
PW
2222 * move_tasks tries to move up to max_load_move weighted load from busiest to
2223 * this_rq, as part of a balancing operation within domain "sd".
2224 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2225 *
2226 * Called with both runqueues locked.
2227 */
2228static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2229 unsigned long max_load_move,
dd41f596
IM
2230 struct sched_domain *sd, enum cpu_idle_type idle,
2231 int *all_pinned)
2232{
2233 struct sched_class *class = sched_class_highest;
43010659 2234 unsigned long total_load_moved = 0;
a4ac01c3 2235 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2236
2237 do {
43010659
PW
2238 total_load_moved +=
2239 class->load_balance(this_rq, this_cpu, busiest,
2240 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2241 sd, idle, all_pinned, &this_best_prio);
dd41f596 2242 class = class->next;
43010659 2243 } while (class && max_load_move > total_load_moved);
dd41f596 2244
43010659
PW
2245 return total_load_moved > 0;
2246}
2247
2248/*
2249 * move_one_task tries to move exactly one task from busiest to this_rq, as
2250 * part of active balancing operations within "domain".
2251 * Returns 1 if successful and 0 otherwise.
2252 *
2253 * Called with both runqueues locked.
2254 */
2255static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 struct sched_domain *sd, enum cpu_idle_type idle)
2257{
2258 struct sched_class *class;
a4ac01c3 2259 int this_best_prio = MAX_PRIO;
43010659
PW
2260
2261 for (class = sched_class_highest; class; class = class->next)
2262 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2263 1, ULONG_MAX, sd, idle, NULL,
2264 &this_best_prio))
43010659
PW
2265 return 1;
2266
2267 return 0;
dd41f596
IM
2268}
2269
1da177e4
LT
2270/*
2271 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2272 * domain. It calculates and returns the amount of weighted load which
2273 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2274 */
2275static struct sched_group *
2276find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2277 unsigned long *imbalance, enum cpu_idle_type idle,
2278 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2279{
2280 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2281 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2282 unsigned long max_pull;
2dd73a4f
PW
2283 unsigned long busiest_load_per_task, busiest_nr_running;
2284 unsigned long this_load_per_task, this_nr_running;
7897986b 2285 int load_idx;
5c45bf27
SS
2286#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2287 int power_savings_balance = 1;
2288 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2289 unsigned long min_nr_running = ULONG_MAX;
2290 struct sched_group *group_min = NULL, *group_leader = NULL;
2291#endif
1da177e4
LT
2292
2293 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2294 busiest_load_per_task = busiest_nr_running = 0;
2295 this_load_per_task = this_nr_running = 0;
d15bcfdb 2296 if (idle == CPU_NOT_IDLE)
7897986b 2297 load_idx = sd->busy_idx;
d15bcfdb 2298 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2299 load_idx = sd->newidle_idx;
2300 else
2301 load_idx = sd->idle_idx;
1da177e4
LT
2302
2303 do {
5c45bf27 2304 unsigned long load, group_capacity;
1da177e4
LT
2305 int local_group;
2306 int i;
783609c6 2307 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2308 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2309
2310 local_group = cpu_isset(this_cpu, group->cpumask);
2311
783609c6
SS
2312 if (local_group)
2313 balance_cpu = first_cpu(group->cpumask);
2314
1da177e4 2315 /* Tally up the load of all CPUs in the group */
2dd73a4f 2316 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2317
2318 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2319 struct rq *rq;
2320
2321 if (!cpu_isset(i, *cpus))
2322 continue;
2323
2324 rq = cpu_rq(i);
2dd73a4f 2325
9439aab8 2326 if (*sd_idle && rq->nr_running)
5969fe06
NP
2327 *sd_idle = 0;
2328
1da177e4 2329 /* Bias balancing toward cpus of our domain */
783609c6
SS
2330 if (local_group) {
2331 if (idle_cpu(i) && !first_idle_cpu) {
2332 first_idle_cpu = 1;
2333 balance_cpu = i;
2334 }
2335
a2000572 2336 load = target_load(i, load_idx);
783609c6 2337 } else
a2000572 2338 load = source_load(i, load_idx);
1da177e4
LT
2339
2340 avg_load += load;
2dd73a4f 2341 sum_nr_running += rq->nr_running;
dd41f596 2342 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2343 }
2344
783609c6
SS
2345 /*
2346 * First idle cpu or the first cpu(busiest) in this sched group
2347 * is eligible for doing load balancing at this and above
9439aab8
SS
2348 * domains. In the newly idle case, we will allow all the cpu's
2349 * to do the newly idle load balance.
783609c6 2350 */
9439aab8
SS
2351 if (idle != CPU_NEWLY_IDLE && local_group &&
2352 balance_cpu != this_cpu && balance) {
783609c6
SS
2353 *balance = 0;
2354 goto ret;
2355 }
2356
1da177e4 2357 total_load += avg_load;
5517d86b 2358 total_pwr += group->__cpu_power;
1da177e4
LT
2359
2360 /* Adjust by relative CPU power of the group */
5517d86b
ED
2361 avg_load = sg_div_cpu_power(group,
2362 avg_load * SCHED_LOAD_SCALE);
1da177e4 2363
5517d86b 2364 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2365
1da177e4
LT
2366 if (local_group) {
2367 this_load = avg_load;
2368 this = group;
2dd73a4f
PW
2369 this_nr_running = sum_nr_running;
2370 this_load_per_task = sum_weighted_load;
2371 } else if (avg_load > max_load &&
5c45bf27 2372 sum_nr_running > group_capacity) {
1da177e4
LT
2373 max_load = avg_load;
2374 busiest = group;
2dd73a4f
PW
2375 busiest_nr_running = sum_nr_running;
2376 busiest_load_per_task = sum_weighted_load;
1da177e4 2377 }
5c45bf27
SS
2378
2379#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2380 /*
2381 * Busy processors will not participate in power savings
2382 * balance.
2383 */
dd41f596
IM
2384 if (idle == CPU_NOT_IDLE ||
2385 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2386 goto group_next;
5c45bf27
SS
2387
2388 /*
2389 * If the local group is idle or completely loaded
2390 * no need to do power savings balance at this domain
2391 */
2392 if (local_group && (this_nr_running >= group_capacity ||
2393 !this_nr_running))
2394 power_savings_balance = 0;
2395
dd41f596 2396 /*
5c45bf27
SS
2397 * If a group is already running at full capacity or idle,
2398 * don't include that group in power savings calculations
dd41f596
IM
2399 */
2400 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2401 || !sum_nr_running)
dd41f596 2402 goto group_next;
5c45bf27 2403
dd41f596 2404 /*
5c45bf27 2405 * Calculate the group which has the least non-idle load.
dd41f596
IM
2406 * This is the group from where we need to pick up the load
2407 * for saving power
2408 */
2409 if ((sum_nr_running < min_nr_running) ||
2410 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2411 first_cpu(group->cpumask) <
2412 first_cpu(group_min->cpumask))) {
dd41f596
IM
2413 group_min = group;
2414 min_nr_running = sum_nr_running;
5c45bf27
SS
2415 min_load_per_task = sum_weighted_load /
2416 sum_nr_running;
dd41f596 2417 }
5c45bf27 2418
dd41f596 2419 /*
5c45bf27 2420 * Calculate the group which is almost near its
dd41f596
IM
2421 * capacity but still has some space to pick up some load
2422 * from other group and save more power
2423 */
2424 if (sum_nr_running <= group_capacity - 1) {
2425 if (sum_nr_running > leader_nr_running ||
2426 (sum_nr_running == leader_nr_running &&
2427 first_cpu(group->cpumask) >
2428 first_cpu(group_leader->cpumask))) {
2429 group_leader = group;
2430 leader_nr_running = sum_nr_running;
2431 }
48f24c4d 2432 }
5c45bf27
SS
2433group_next:
2434#endif
1da177e4
LT
2435 group = group->next;
2436 } while (group != sd->groups);
2437
2dd73a4f 2438 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2439 goto out_balanced;
2440
2441 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2442
2443 if (this_load >= avg_load ||
2444 100*max_load <= sd->imbalance_pct*this_load)
2445 goto out_balanced;
2446
2dd73a4f 2447 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2448 /*
2449 * We're trying to get all the cpus to the average_load, so we don't
2450 * want to push ourselves above the average load, nor do we wish to
2451 * reduce the max loaded cpu below the average load, as either of these
2452 * actions would just result in more rebalancing later, and ping-pong
2453 * tasks around. Thus we look for the minimum possible imbalance.
2454 * Negative imbalances (*we* are more loaded than anyone else) will
2455 * be counted as no imbalance for these purposes -- we can't fix that
2456 * by pulling tasks to us. Be careful of negative numbers as they'll
2457 * appear as very large values with unsigned longs.
2458 */
2dd73a4f
PW
2459 if (max_load <= busiest_load_per_task)
2460 goto out_balanced;
2461
2462 /*
2463 * In the presence of smp nice balancing, certain scenarios can have
2464 * max load less than avg load(as we skip the groups at or below
2465 * its cpu_power, while calculating max_load..)
2466 */
2467 if (max_load < avg_load) {
2468 *imbalance = 0;
2469 goto small_imbalance;
2470 }
0c117f1b
SS
2471
2472 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2473 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2474
1da177e4 2475 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2476 *imbalance = min(max_pull * busiest->__cpu_power,
2477 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2478 / SCHED_LOAD_SCALE;
2479
2dd73a4f
PW
2480 /*
2481 * if *imbalance is less than the average load per runnable task
2482 * there is no gaurantee that any tasks will be moved so we'll have
2483 * a think about bumping its value to force at least one task to be
2484 * moved
2485 */
dd41f596 2486 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
48f24c4d 2487 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2488 unsigned int imbn;
2489
2490small_imbalance:
2491 pwr_move = pwr_now = 0;
2492 imbn = 2;
2493 if (this_nr_running) {
2494 this_load_per_task /= this_nr_running;
2495 if (busiest_load_per_task > this_load_per_task)
2496 imbn = 1;
2497 } else
2498 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2499
dd41f596
IM
2500 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2501 busiest_load_per_task * imbn) {
2dd73a4f 2502 *imbalance = busiest_load_per_task;
1da177e4
LT
2503 return busiest;
2504 }
2505
2506 /*
2507 * OK, we don't have enough imbalance to justify moving tasks,
2508 * however we may be able to increase total CPU power used by
2509 * moving them.
2510 */
2511
5517d86b
ED
2512 pwr_now += busiest->__cpu_power *
2513 min(busiest_load_per_task, max_load);
2514 pwr_now += this->__cpu_power *
2515 min(this_load_per_task, this_load);
1da177e4
LT
2516 pwr_now /= SCHED_LOAD_SCALE;
2517
2518 /* Amount of load we'd subtract */
5517d86b
ED
2519 tmp = sg_div_cpu_power(busiest,
2520 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2521 if (max_load > tmp)
5517d86b 2522 pwr_move += busiest->__cpu_power *
2dd73a4f 2523 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2524
2525 /* Amount of load we'd add */
5517d86b 2526 if (max_load * busiest->__cpu_power <
33859f7f 2527 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2528 tmp = sg_div_cpu_power(this,
2529 max_load * busiest->__cpu_power);
1da177e4 2530 else
5517d86b
ED
2531 tmp = sg_div_cpu_power(this,
2532 busiest_load_per_task * SCHED_LOAD_SCALE);
2533 pwr_move += this->__cpu_power *
2534 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2535 pwr_move /= SCHED_LOAD_SCALE;
2536
2537 /* Move if we gain throughput */
2538 if (pwr_move <= pwr_now)
2539 goto out_balanced;
2540
2dd73a4f 2541 *imbalance = busiest_load_per_task;
1da177e4
LT
2542 }
2543
1da177e4
LT
2544 return busiest;
2545
2546out_balanced:
5c45bf27 2547#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2548 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2549 goto ret;
1da177e4 2550
5c45bf27
SS
2551 if (this == group_leader && group_leader != group_min) {
2552 *imbalance = min_load_per_task;
2553 return group_min;
2554 }
5c45bf27 2555#endif
783609c6 2556ret:
1da177e4
LT
2557 *imbalance = 0;
2558 return NULL;
2559}
2560
2561/*
2562 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2563 */
70b97a7f 2564static struct rq *
d15bcfdb 2565find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2566 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2567{
70b97a7f 2568 struct rq *busiest = NULL, *rq;
2dd73a4f 2569 unsigned long max_load = 0;
1da177e4
LT
2570 int i;
2571
2572 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2573 unsigned long wl;
0a2966b4
CL
2574
2575 if (!cpu_isset(i, *cpus))
2576 continue;
2577
48f24c4d 2578 rq = cpu_rq(i);
dd41f596 2579 wl = weighted_cpuload(i);
2dd73a4f 2580
dd41f596 2581 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2582 continue;
1da177e4 2583
dd41f596
IM
2584 if (wl > max_load) {
2585 max_load = wl;
48f24c4d 2586 busiest = rq;
1da177e4
LT
2587 }
2588 }
2589
2590 return busiest;
2591}
2592
77391d71
NP
2593/*
2594 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2595 * so long as it is large enough.
2596 */
2597#define MAX_PINNED_INTERVAL 512
2598
1da177e4
LT
2599/*
2600 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2601 * tasks if there is an imbalance.
1da177e4 2602 */
70b97a7f 2603static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2604 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2605 int *balance)
1da177e4 2606{
43010659 2607 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2608 struct sched_group *group;
1da177e4 2609 unsigned long imbalance;
70b97a7f 2610 struct rq *busiest;
0a2966b4 2611 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2612 unsigned long flags;
5969fe06 2613
89c4710e
SS
2614 /*
2615 * When power savings policy is enabled for the parent domain, idle
2616 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2617 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2618 * portraying it as CPU_NOT_IDLE.
89c4710e 2619 */
d15bcfdb 2620 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2621 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2622 sd_idle = 1;
1da177e4 2623
1da177e4
LT
2624 schedstat_inc(sd, lb_cnt[idle]);
2625
0a2966b4
CL
2626redo:
2627 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2628 &cpus, balance);
2629
06066714 2630 if (*balance == 0)
783609c6 2631 goto out_balanced;
783609c6 2632
1da177e4
LT
2633 if (!group) {
2634 schedstat_inc(sd, lb_nobusyg[idle]);
2635 goto out_balanced;
2636 }
2637
0a2966b4 2638 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2639 if (!busiest) {
2640 schedstat_inc(sd, lb_nobusyq[idle]);
2641 goto out_balanced;
2642 }
2643
db935dbd 2644 BUG_ON(busiest == this_rq);
1da177e4
LT
2645
2646 schedstat_add(sd, lb_imbalance[idle], imbalance);
2647
43010659 2648 ld_moved = 0;
1da177e4
LT
2649 if (busiest->nr_running > 1) {
2650 /*
2651 * Attempt to move tasks. If find_busiest_group has found
2652 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2653 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2654 * correctly treated as an imbalance.
2655 */
fe2eea3f 2656 local_irq_save(flags);
e17224bf 2657 double_rq_lock(this_rq, busiest);
43010659 2658 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2659 imbalance, sd, idle, &all_pinned);
e17224bf 2660 double_rq_unlock(this_rq, busiest);
fe2eea3f 2661 local_irq_restore(flags);
81026794 2662
46cb4b7c
SS
2663 /*
2664 * some other cpu did the load balance for us.
2665 */
43010659 2666 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2667 resched_cpu(this_cpu);
2668
81026794 2669 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2670 if (unlikely(all_pinned)) {
2671 cpu_clear(cpu_of(busiest), cpus);
2672 if (!cpus_empty(cpus))
2673 goto redo;
81026794 2674 goto out_balanced;
0a2966b4 2675 }
1da177e4 2676 }
81026794 2677
43010659 2678 if (!ld_moved) {
1da177e4
LT
2679 schedstat_inc(sd, lb_failed[idle]);
2680 sd->nr_balance_failed++;
2681
2682 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2683
fe2eea3f 2684 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2685
2686 /* don't kick the migration_thread, if the curr
2687 * task on busiest cpu can't be moved to this_cpu
2688 */
2689 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2690 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2691 all_pinned = 1;
2692 goto out_one_pinned;
2693 }
2694
1da177e4
LT
2695 if (!busiest->active_balance) {
2696 busiest->active_balance = 1;
2697 busiest->push_cpu = this_cpu;
81026794 2698 active_balance = 1;
1da177e4 2699 }
fe2eea3f 2700 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2701 if (active_balance)
1da177e4
LT
2702 wake_up_process(busiest->migration_thread);
2703
2704 /*
2705 * We've kicked active balancing, reset the failure
2706 * counter.
2707 */
39507451 2708 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2709 }
81026794 2710 } else
1da177e4
LT
2711 sd->nr_balance_failed = 0;
2712
81026794 2713 if (likely(!active_balance)) {
1da177e4
LT
2714 /* We were unbalanced, so reset the balancing interval */
2715 sd->balance_interval = sd->min_interval;
81026794
NP
2716 } else {
2717 /*
2718 * If we've begun active balancing, start to back off. This
2719 * case may not be covered by the all_pinned logic if there
2720 * is only 1 task on the busy runqueue (because we don't call
2721 * move_tasks).
2722 */
2723 if (sd->balance_interval < sd->max_interval)
2724 sd->balance_interval *= 2;
1da177e4
LT
2725 }
2726
43010659 2727 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2729 return -1;
43010659 2730 return ld_moved;
1da177e4
LT
2731
2732out_balanced:
1da177e4
LT
2733 schedstat_inc(sd, lb_balanced[idle]);
2734
16cfb1c0 2735 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2736
2737out_one_pinned:
1da177e4 2738 /* tune up the balancing interval */
77391d71
NP
2739 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2740 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2741 sd->balance_interval *= 2;
2742
48f24c4d 2743 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2744 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2745 return -1;
1da177e4
LT
2746 return 0;
2747}
2748
2749/*
2750 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2751 * tasks if there is an imbalance.
2752 *
d15bcfdb 2753 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2754 * this_rq is locked.
2755 */
48f24c4d 2756static int
70b97a7f 2757load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2758{
2759 struct sched_group *group;
70b97a7f 2760 struct rq *busiest = NULL;
1da177e4 2761 unsigned long imbalance;
43010659 2762 int ld_moved = 0;
5969fe06 2763 int sd_idle = 0;
969bb4e4 2764 int all_pinned = 0;
0a2966b4 2765 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2766
89c4710e
SS
2767 /*
2768 * When power savings policy is enabled for the parent domain, idle
2769 * sibling can pick up load irrespective of busy siblings. In this case,
2770 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2771 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2772 */
2773 if (sd->flags & SD_SHARE_CPUPOWER &&
2774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2775 sd_idle = 1;
1da177e4 2776
d15bcfdb 2777 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
0a2966b4 2778redo:
d15bcfdb 2779 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2780 &sd_idle, &cpus, NULL);
1da177e4 2781 if (!group) {
d15bcfdb 2782 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2783 goto out_balanced;
1da177e4
LT
2784 }
2785
d15bcfdb 2786 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2787 &cpus);
db935dbd 2788 if (!busiest) {
d15bcfdb 2789 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2790 goto out_balanced;
1da177e4
LT
2791 }
2792
db935dbd
NP
2793 BUG_ON(busiest == this_rq);
2794
d15bcfdb 2795 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2796
43010659 2797 ld_moved = 0;
d6d5cfaf
NP
2798 if (busiest->nr_running > 1) {
2799 /* Attempt to move tasks */
2800 double_lock_balance(this_rq, busiest);
43010659 2801 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2802 imbalance, sd, CPU_NEWLY_IDLE,
2803 &all_pinned);
d6d5cfaf 2804 spin_unlock(&busiest->lock);
0a2966b4 2805
969bb4e4 2806 if (unlikely(all_pinned)) {
0a2966b4
CL
2807 cpu_clear(cpu_of(busiest), cpus);
2808 if (!cpus_empty(cpus))
2809 goto redo;
2810 }
d6d5cfaf
NP
2811 }
2812
43010659 2813 if (!ld_moved) {
d15bcfdb 2814 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2815 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2816 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2817 return -1;
2818 } else
16cfb1c0 2819 sd->nr_balance_failed = 0;
1da177e4 2820
43010659 2821 return ld_moved;
16cfb1c0
NP
2822
2823out_balanced:
d15bcfdb 2824 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2825 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2827 return -1;
16cfb1c0 2828 sd->nr_balance_failed = 0;
48f24c4d 2829
16cfb1c0 2830 return 0;
1da177e4
LT
2831}
2832
2833/*
2834 * idle_balance is called by schedule() if this_cpu is about to become
2835 * idle. Attempts to pull tasks from other CPUs.
2836 */
70b97a7f 2837static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2838{
2839 struct sched_domain *sd;
dd41f596
IM
2840 int pulled_task = -1;
2841 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2842
2843 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2844 unsigned long interval;
2845
2846 if (!(sd->flags & SD_LOAD_BALANCE))
2847 continue;
2848
2849 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2850 /* If we've pulled tasks over stop searching: */
1bd77f2d 2851 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2852 this_rq, sd);
2853
2854 interval = msecs_to_jiffies(sd->balance_interval);
2855 if (time_after(next_balance, sd->last_balance + interval))
2856 next_balance = sd->last_balance + interval;
2857 if (pulled_task)
2858 break;
1da177e4 2859 }
dd41f596 2860 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2861 /*
2862 * We are going idle. next_balance may be set based on
2863 * a busy processor. So reset next_balance.
2864 */
2865 this_rq->next_balance = next_balance;
dd41f596 2866 }
1da177e4
LT
2867}
2868
2869/*
2870 * active_load_balance is run by migration threads. It pushes running tasks
2871 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2872 * running on each physical CPU where possible, and avoids physical /
2873 * logical imbalances.
2874 *
2875 * Called with busiest_rq locked.
2876 */
70b97a7f 2877static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2878{
39507451 2879 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2880 struct sched_domain *sd;
2881 struct rq *target_rq;
39507451 2882
48f24c4d 2883 /* Is there any task to move? */
39507451 2884 if (busiest_rq->nr_running <= 1)
39507451
NP
2885 return;
2886
2887 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2888
2889 /*
39507451
NP
2890 * This condition is "impossible", if it occurs
2891 * we need to fix it. Originally reported by
2892 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2893 */
39507451 2894 BUG_ON(busiest_rq == target_rq);
1da177e4 2895
39507451
NP
2896 /* move a task from busiest_rq to target_rq */
2897 double_lock_balance(busiest_rq, target_rq);
2898
2899 /* Search for an sd spanning us and the target CPU. */
c96d145e 2900 for_each_domain(target_cpu, sd) {
39507451 2901 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2902 cpu_isset(busiest_cpu, sd->span))
39507451 2903 break;
c96d145e 2904 }
39507451 2905
48f24c4d
IM
2906 if (likely(sd)) {
2907 schedstat_inc(sd, alb_cnt);
39507451 2908
43010659
PW
2909 if (move_one_task(target_rq, target_cpu, busiest_rq,
2910 sd, CPU_IDLE))
48f24c4d
IM
2911 schedstat_inc(sd, alb_pushed);
2912 else
2913 schedstat_inc(sd, alb_failed);
2914 }
39507451 2915 spin_unlock(&target_rq->lock);
1da177e4
LT
2916}
2917
46cb4b7c
SS
2918#ifdef CONFIG_NO_HZ
2919static struct {
2920 atomic_t load_balancer;
2921 cpumask_t cpu_mask;
2922} nohz ____cacheline_aligned = {
2923 .load_balancer = ATOMIC_INIT(-1),
2924 .cpu_mask = CPU_MASK_NONE,
2925};
2926
7835b98b 2927/*
46cb4b7c
SS
2928 * This routine will try to nominate the ilb (idle load balancing)
2929 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2930 * load balancing on behalf of all those cpus. If all the cpus in the system
2931 * go into this tickless mode, then there will be no ilb owner (as there is
2932 * no need for one) and all the cpus will sleep till the next wakeup event
2933 * arrives...
2934 *
2935 * For the ilb owner, tick is not stopped. And this tick will be used
2936 * for idle load balancing. ilb owner will still be part of
2937 * nohz.cpu_mask..
7835b98b 2938 *
46cb4b7c
SS
2939 * While stopping the tick, this cpu will become the ilb owner if there
2940 * is no other owner. And will be the owner till that cpu becomes busy
2941 * or if all cpus in the system stop their ticks at which point
2942 * there is no need for ilb owner.
2943 *
2944 * When the ilb owner becomes busy, it nominates another owner, during the
2945 * next busy scheduler_tick()
2946 */
2947int select_nohz_load_balancer(int stop_tick)
2948{
2949 int cpu = smp_processor_id();
2950
2951 if (stop_tick) {
2952 cpu_set(cpu, nohz.cpu_mask);
2953 cpu_rq(cpu)->in_nohz_recently = 1;
2954
2955 /*
2956 * If we are going offline and still the leader, give up!
2957 */
2958 if (cpu_is_offline(cpu) &&
2959 atomic_read(&nohz.load_balancer) == cpu) {
2960 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2961 BUG();
2962 return 0;
2963 }
2964
2965 /* time for ilb owner also to sleep */
2966 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2967 if (atomic_read(&nohz.load_balancer) == cpu)
2968 atomic_set(&nohz.load_balancer, -1);
2969 return 0;
2970 }
2971
2972 if (atomic_read(&nohz.load_balancer) == -1) {
2973 /* make me the ilb owner */
2974 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2975 return 1;
2976 } else if (atomic_read(&nohz.load_balancer) == cpu)
2977 return 1;
2978 } else {
2979 if (!cpu_isset(cpu, nohz.cpu_mask))
2980 return 0;
2981
2982 cpu_clear(cpu, nohz.cpu_mask);
2983
2984 if (atomic_read(&nohz.load_balancer) == cpu)
2985 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2986 BUG();
2987 }
2988 return 0;
2989}
2990#endif
2991
2992static DEFINE_SPINLOCK(balancing);
2993
2994/*
7835b98b
CL
2995 * It checks each scheduling domain to see if it is due to be balanced,
2996 * and initiates a balancing operation if so.
2997 *
2998 * Balancing parameters are set up in arch_init_sched_domains.
2999 */
d15bcfdb 3000static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3001{
46cb4b7c
SS
3002 int balance = 1;
3003 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3004 unsigned long interval;
3005 struct sched_domain *sd;
46cb4b7c 3006 /* Earliest time when we have to do rebalance again */
c9819f45 3007 unsigned long next_balance = jiffies + 60*HZ;
1da177e4 3008
46cb4b7c 3009 for_each_domain(cpu, sd) {
1da177e4
LT
3010 if (!(sd->flags & SD_LOAD_BALANCE))
3011 continue;
3012
3013 interval = sd->balance_interval;
d15bcfdb 3014 if (idle != CPU_IDLE)
1da177e4
LT
3015 interval *= sd->busy_factor;
3016
3017 /* scale ms to jiffies */
3018 interval = msecs_to_jiffies(interval);
3019 if (unlikely(!interval))
3020 interval = 1;
dd41f596
IM
3021 if (interval > HZ*NR_CPUS/10)
3022 interval = HZ*NR_CPUS/10;
3023
1da177e4 3024
08c183f3
CL
3025 if (sd->flags & SD_SERIALIZE) {
3026 if (!spin_trylock(&balancing))
3027 goto out;
3028 }
3029
c9819f45 3030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3031 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3032 /*
3033 * We've pulled tasks over so either we're no
5969fe06
NP
3034 * longer idle, or one of our SMT siblings is
3035 * not idle.
3036 */
d15bcfdb 3037 idle = CPU_NOT_IDLE;
1da177e4 3038 }
1bd77f2d 3039 sd->last_balance = jiffies;
1da177e4 3040 }
08c183f3
CL
3041 if (sd->flags & SD_SERIALIZE)
3042 spin_unlock(&balancing);
3043out:
c9819f45
CL
3044 if (time_after(next_balance, sd->last_balance + interval))
3045 next_balance = sd->last_balance + interval;
783609c6
SS
3046
3047 /*
3048 * Stop the load balance at this level. There is another
3049 * CPU in our sched group which is doing load balancing more
3050 * actively.
3051 */
3052 if (!balance)
3053 break;
1da177e4 3054 }
46cb4b7c
SS
3055 rq->next_balance = next_balance;
3056}
3057
3058/*
3059 * run_rebalance_domains is triggered when needed from the scheduler tick.
3060 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3061 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3062 */
3063static void run_rebalance_domains(struct softirq_action *h)
3064{
dd41f596
IM
3065 int this_cpu = smp_processor_id();
3066 struct rq *this_rq = cpu_rq(this_cpu);
3067 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3068 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3069
dd41f596 3070 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3071
3072#ifdef CONFIG_NO_HZ
3073 /*
3074 * If this cpu is the owner for idle load balancing, then do the
3075 * balancing on behalf of the other idle cpus whose ticks are
3076 * stopped.
3077 */
dd41f596
IM
3078 if (this_rq->idle_at_tick &&
3079 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3080 cpumask_t cpus = nohz.cpu_mask;
3081 struct rq *rq;
3082 int balance_cpu;
3083
dd41f596 3084 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3085 for_each_cpu_mask(balance_cpu, cpus) {
3086 /*
3087 * If this cpu gets work to do, stop the load balancing
3088 * work being done for other cpus. Next load
3089 * balancing owner will pick it up.
3090 */
3091 if (need_resched())
3092 break;
3093
dd41f596 3094 rebalance_domains(balance_cpu, SCHED_IDLE);
46cb4b7c
SS
3095
3096 rq = cpu_rq(balance_cpu);
dd41f596
IM
3097 if (time_after(this_rq->next_balance, rq->next_balance))
3098 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3099 }
3100 }
3101#endif
3102}
3103
3104/*
3105 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3106 *
3107 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3108 * idle load balancing owner or decide to stop the periodic load balancing,
3109 * if the whole system is idle.
3110 */
dd41f596 3111static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3112{
46cb4b7c
SS
3113#ifdef CONFIG_NO_HZ
3114 /*
3115 * If we were in the nohz mode recently and busy at the current
3116 * scheduler tick, then check if we need to nominate new idle
3117 * load balancer.
3118 */
3119 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3120 rq->in_nohz_recently = 0;
3121
3122 if (atomic_read(&nohz.load_balancer) == cpu) {
3123 cpu_clear(cpu, nohz.cpu_mask);
3124 atomic_set(&nohz.load_balancer, -1);
3125 }
3126
3127 if (atomic_read(&nohz.load_balancer) == -1) {
3128 /*
3129 * simple selection for now: Nominate the
3130 * first cpu in the nohz list to be the next
3131 * ilb owner.
3132 *
3133 * TBD: Traverse the sched domains and nominate
3134 * the nearest cpu in the nohz.cpu_mask.
3135 */
3136 int ilb = first_cpu(nohz.cpu_mask);
3137
3138 if (ilb != NR_CPUS)
3139 resched_cpu(ilb);
3140 }
3141 }
3142
3143 /*
3144 * If this cpu is idle and doing idle load balancing for all the
3145 * cpus with ticks stopped, is it time for that to stop?
3146 */
3147 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3148 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3149 resched_cpu(cpu);
3150 return;
3151 }
3152
3153 /*
3154 * If this cpu is idle and the idle load balancing is done by
3155 * someone else, then no need raise the SCHED_SOFTIRQ
3156 */
3157 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3158 cpu_isset(cpu, nohz.cpu_mask))
3159 return;
3160#endif
3161 if (time_after_eq(jiffies, rq->next_balance))
3162 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3163}
dd41f596
IM
3164
3165#else /* CONFIG_SMP */
3166
1da177e4
LT
3167/*
3168 * on UP we do not need to balance between CPUs:
3169 */
70b97a7f 3170static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3171{
3172}
dd41f596
IM
3173
3174/* Avoid "used but not defined" warning on UP */
3175static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3176 unsigned long max_nr_move, unsigned long max_load_move,
3177 struct sched_domain *sd, enum cpu_idle_type idle,
3178 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3179 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3180{
3181 *load_moved = 0;
3182
3183 return 0;
3184}
3185
1da177e4
LT
3186#endif
3187
1da177e4
LT
3188DEFINE_PER_CPU(struct kernel_stat, kstat);
3189
3190EXPORT_PER_CPU_SYMBOL(kstat);
3191
3192/*
41b86e9c
IM
3193 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3194 * that have not yet been banked in case the task is currently running.
1da177e4 3195 */
41b86e9c 3196unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3197{
1da177e4 3198 unsigned long flags;
41b86e9c
IM
3199 u64 ns, delta_exec;
3200 struct rq *rq;
48f24c4d 3201
41b86e9c
IM
3202 rq = task_rq_lock(p, &flags);
3203 ns = p->se.sum_exec_runtime;
3204 if (rq->curr == p) {
a8e504d2
IM
3205 update_rq_clock(rq);
3206 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3207 if ((s64)delta_exec > 0)
3208 ns += delta_exec;
3209 }
3210 task_rq_unlock(rq, &flags);
48f24c4d 3211
1da177e4
LT
3212 return ns;
3213}
3214
1da177e4
LT
3215/*
3216 * Account user cpu time to a process.
3217 * @p: the process that the cpu time gets accounted to
3218 * @hardirq_offset: the offset to subtract from hardirq_count()
3219 * @cputime: the cpu time spent in user space since the last update
3220 */
3221void account_user_time(struct task_struct *p, cputime_t cputime)
3222{
3223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3224 cputime64_t tmp;
3225
3226 p->utime = cputime_add(p->utime, cputime);
3227
3228 /* Add user time to cpustat. */
3229 tmp = cputime_to_cputime64(cputime);
3230 if (TASK_NICE(p) > 0)
3231 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3232 else
3233 cpustat->user = cputime64_add(cpustat->user, tmp);
3234}
3235
3236/*
3237 * Account system cpu time to a process.
3238 * @p: the process that the cpu time gets accounted to
3239 * @hardirq_offset: the offset to subtract from hardirq_count()
3240 * @cputime: the cpu time spent in kernel space since the last update
3241 */
3242void account_system_time(struct task_struct *p, int hardirq_offset,
3243 cputime_t cputime)
3244{
3245 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3246 struct rq *rq = this_rq();
1da177e4
LT
3247 cputime64_t tmp;
3248
3249 p->stime = cputime_add(p->stime, cputime);
3250
3251 /* Add system time to cpustat. */
3252 tmp = cputime_to_cputime64(cputime);
3253 if (hardirq_count() - hardirq_offset)
3254 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3255 else if (softirq_count())
3256 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3257 else if (p != rq->idle)
3258 cpustat->system = cputime64_add(cpustat->system, tmp);
3259 else if (atomic_read(&rq->nr_iowait) > 0)
3260 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3261 else
3262 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3263 /* Account for system time used */
3264 acct_update_integrals(p);
1da177e4
LT
3265}
3266
3267/*
3268 * Account for involuntary wait time.
3269 * @p: the process from which the cpu time has been stolen
3270 * @steal: the cpu time spent in involuntary wait
3271 */
3272void account_steal_time(struct task_struct *p, cputime_t steal)
3273{
3274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3275 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3276 struct rq *rq = this_rq();
1da177e4
LT
3277
3278 if (p == rq->idle) {
3279 p->stime = cputime_add(p->stime, steal);
3280 if (atomic_read(&rq->nr_iowait) > 0)
3281 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3282 else
3283 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3284 } else
3285 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3286}
3287
7835b98b
CL
3288/*
3289 * This function gets called by the timer code, with HZ frequency.
3290 * We call it with interrupts disabled.
3291 *
3292 * It also gets called by the fork code, when changing the parent's
3293 * timeslices.
3294 */
3295void scheduler_tick(void)
3296{
7835b98b
CL
3297 int cpu = smp_processor_id();
3298 struct rq *rq = cpu_rq(cpu);
dd41f596
IM
3299 struct task_struct *curr = rq->curr;
3300
3301 spin_lock(&rq->lock);
546fe3c9 3302 __update_rq_clock(rq);
f1a438d8 3303 update_cpu_load(rq);
dd41f596
IM
3304 if (curr != rq->idle) /* FIXME: needed? */
3305 curr->sched_class->task_tick(rq, curr);
dd41f596 3306 spin_unlock(&rq->lock);
7835b98b 3307
e418e1c2 3308#ifdef CONFIG_SMP
dd41f596
IM
3309 rq->idle_at_tick = idle_cpu(cpu);
3310 trigger_load_balance(rq, cpu);
e418e1c2 3311#endif
1da177e4
LT
3312}
3313
1da177e4
LT
3314#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3315
3316void fastcall add_preempt_count(int val)
3317{
3318 /*
3319 * Underflow?
3320 */
9a11b49a
IM
3321 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3322 return;
1da177e4
LT
3323 preempt_count() += val;
3324 /*
3325 * Spinlock count overflowing soon?
3326 */
33859f7f
MOS
3327 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3328 PREEMPT_MASK - 10);
1da177e4
LT
3329}
3330EXPORT_SYMBOL(add_preempt_count);
3331
3332void fastcall sub_preempt_count(int val)
3333{
3334 /*
3335 * Underflow?
3336 */
9a11b49a
IM
3337 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3338 return;
1da177e4
LT
3339 /*
3340 * Is the spinlock portion underflowing?
3341 */
9a11b49a
IM
3342 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3343 !(preempt_count() & PREEMPT_MASK)))
3344 return;
3345
1da177e4
LT
3346 preempt_count() -= val;
3347}
3348EXPORT_SYMBOL(sub_preempt_count);
3349
3350#endif
3351
3352/*
dd41f596 3353 * Print scheduling while atomic bug:
1da177e4 3354 */
dd41f596 3355static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3356{
dd41f596
IM
3357 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3358 prev->comm, preempt_count(), prev->pid);
3359 debug_show_held_locks(prev);
3360 if (irqs_disabled())
3361 print_irqtrace_events(prev);
3362 dump_stack();
3363}
1da177e4 3364
dd41f596
IM
3365/*
3366 * Various schedule()-time debugging checks and statistics:
3367 */
3368static inline void schedule_debug(struct task_struct *prev)
3369{
1da177e4
LT
3370 /*
3371 * Test if we are atomic. Since do_exit() needs to call into
3372 * schedule() atomically, we ignore that path for now.
3373 * Otherwise, whine if we are scheduling when we should not be.
3374 */
dd41f596
IM
3375 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3376 __schedule_bug(prev);
3377
1da177e4
LT
3378 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3379
dd41f596
IM
3380 schedstat_inc(this_rq(), sched_cnt);
3381}
3382
3383/*
3384 * Pick up the highest-prio task:
3385 */
3386static inline struct task_struct *
ff95f3df 3387pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596
IM
3388{
3389 struct sched_class *class;
3390 struct task_struct *p;
1da177e4
LT
3391
3392 /*
dd41f596
IM
3393 * Optimization: we know that if all tasks are in
3394 * the fair class we can call that function directly:
1da177e4 3395 */
dd41f596 3396 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3397 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3398 if (likely(p))
3399 return p;
1da177e4
LT
3400 }
3401
dd41f596
IM
3402 class = sched_class_highest;
3403 for ( ; ; ) {
fb8d4724 3404 p = class->pick_next_task(rq);
dd41f596
IM
3405 if (p)
3406 return p;
3407 /*
3408 * Will never be NULL as the idle class always
3409 * returns a non-NULL p:
3410 */
3411 class = class->next;
3412 }
3413}
1da177e4 3414
dd41f596
IM
3415/*
3416 * schedule() is the main scheduler function.
3417 */
3418asmlinkage void __sched schedule(void)
3419{
3420 struct task_struct *prev, *next;
3421 long *switch_count;
3422 struct rq *rq;
dd41f596
IM
3423 int cpu;
3424
3425need_resched:
3426 preempt_disable();
3427 cpu = smp_processor_id();
3428 rq = cpu_rq(cpu);
3429 rcu_qsctr_inc(cpu);
3430 prev = rq->curr;
3431 switch_count = &prev->nivcsw;
3432
3433 release_kernel_lock(prev);
3434need_resched_nonpreemptible:
3435
3436 schedule_debug(prev);
1da177e4
LT
3437
3438 spin_lock_irq(&rq->lock);
dd41f596 3439 clear_tsk_need_resched(prev);
c1b3da3e 3440 __update_rq_clock(rq);
1da177e4 3441
1da177e4 3442 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3443 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3444 unlikely(signal_pending(prev)))) {
1da177e4 3445 prev->state = TASK_RUNNING;
dd41f596 3446 } else {
2e1cb74a 3447 deactivate_task(rq, prev, 1);
1da177e4 3448 }
dd41f596 3449 switch_count = &prev->nvcsw;
1da177e4
LT
3450 }
3451
dd41f596 3452 if (unlikely(!rq->nr_running))
1da177e4 3453 idle_balance(cpu, rq);
1da177e4 3454
31ee529c 3455 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3456 next = pick_next_task(rq, prev);
1da177e4
LT
3457
3458 sched_info_switch(prev, next);
dd41f596 3459
1da177e4 3460 if (likely(prev != next)) {
1da177e4
LT
3461 rq->nr_switches++;
3462 rq->curr = next;
3463 ++*switch_count;
3464
dd41f596 3465 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3466 } else
3467 spin_unlock_irq(&rq->lock);
3468
dd41f596
IM
3469 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3470 cpu = smp_processor_id();
3471 rq = cpu_rq(cpu);
1da177e4 3472 goto need_resched_nonpreemptible;
dd41f596 3473 }
1da177e4
LT
3474 preempt_enable_no_resched();
3475 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3476 goto need_resched;
3477}
1da177e4
LT
3478EXPORT_SYMBOL(schedule);
3479
3480#ifdef CONFIG_PREEMPT
3481/*
2ed6e34f 3482 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3483 * off of preempt_enable. Kernel preemptions off return from interrupt
3484 * occur there and call schedule directly.
3485 */
3486asmlinkage void __sched preempt_schedule(void)
3487{
3488 struct thread_info *ti = current_thread_info();
3489#ifdef CONFIG_PREEMPT_BKL
3490 struct task_struct *task = current;
3491 int saved_lock_depth;
3492#endif
3493 /*
3494 * If there is a non-zero preempt_count or interrupts are disabled,
3495 * we do not want to preempt the current task. Just return..
3496 */
beed33a8 3497 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3498 return;
3499
3500need_resched:
3501 add_preempt_count(PREEMPT_ACTIVE);
3502 /*
3503 * We keep the big kernel semaphore locked, but we
3504 * clear ->lock_depth so that schedule() doesnt
3505 * auto-release the semaphore:
3506 */
3507#ifdef CONFIG_PREEMPT_BKL
3508 saved_lock_depth = task->lock_depth;
3509 task->lock_depth = -1;
3510#endif
3511 schedule();
3512#ifdef CONFIG_PREEMPT_BKL
3513 task->lock_depth = saved_lock_depth;
3514#endif
3515 sub_preempt_count(PREEMPT_ACTIVE);
3516
3517 /* we could miss a preemption opportunity between schedule and now */
3518 barrier();
3519 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3520 goto need_resched;
3521}
1da177e4
LT
3522EXPORT_SYMBOL(preempt_schedule);
3523
3524/*
2ed6e34f 3525 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3526 * off of irq context.
3527 * Note, that this is called and return with irqs disabled. This will
3528 * protect us against recursive calling from irq.
3529 */
3530asmlinkage void __sched preempt_schedule_irq(void)
3531{
3532 struct thread_info *ti = current_thread_info();
3533#ifdef CONFIG_PREEMPT_BKL
3534 struct task_struct *task = current;
3535 int saved_lock_depth;
3536#endif
2ed6e34f 3537 /* Catch callers which need to be fixed */
1da177e4
LT
3538 BUG_ON(ti->preempt_count || !irqs_disabled());
3539
3540need_resched:
3541 add_preempt_count(PREEMPT_ACTIVE);
3542 /*
3543 * We keep the big kernel semaphore locked, but we
3544 * clear ->lock_depth so that schedule() doesnt
3545 * auto-release the semaphore:
3546 */
3547#ifdef CONFIG_PREEMPT_BKL
3548 saved_lock_depth = task->lock_depth;
3549 task->lock_depth = -1;
3550#endif
3551 local_irq_enable();
3552 schedule();
3553 local_irq_disable();
3554#ifdef CONFIG_PREEMPT_BKL
3555 task->lock_depth = saved_lock_depth;
3556#endif
3557 sub_preempt_count(PREEMPT_ACTIVE);
3558
3559 /* we could miss a preemption opportunity between schedule and now */
3560 barrier();
3561 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3562 goto need_resched;
3563}
3564
3565#endif /* CONFIG_PREEMPT */
3566
95cdf3b7
IM
3567int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3568 void *key)
1da177e4 3569{
48f24c4d 3570 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3571}
1da177e4
LT
3572EXPORT_SYMBOL(default_wake_function);
3573
3574/*
3575 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3576 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3577 * number) then we wake all the non-exclusive tasks and one exclusive task.
3578 *
3579 * There are circumstances in which we can try to wake a task which has already
3580 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3581 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3582 */
3583static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3584 int nr_exclusive, int sync, void *key)
3585{
3586 struct list_head *tmp, *next;
3587
3588 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3589 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3590 unsigned flags = curr->flags;
3591
1da177e4 3592 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3593 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3594 break;
3595 }
3596}
3597
3598/**
3599 * __wake_up - wake up threads blocked on a waitqueue.
3600 * @q: the waitqueue
3601 * @mode: which threads
3602 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3603 * @key: is directly passed to the wakeup function
1da177e4
LT
3604 */
3605void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3606 int nr_exclusive, void *key)
1da177e4
LT
3607{
3608 unsigned long flags;
3609
3610 spin_lock_irqsave(&q->lock, flags);
3611 __wake_up_common(q, mode, nr_exclusive, 0, key);
3612 spin_unlock_irqrestore(&q->lock, flags);
3613}
1da177e4
LT
3614EXPORT_SYMBOL(__wake_up);
3615
3616/*
3617 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3618 */
3619void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3620{
3621 __wake_up_common(q, mode, 1, 0, NULL);
3622}
3623
3624/**
67be2dd1 3625 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3626 * @q: the waitqueue
3627 * @mode: which threads
3628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3629 *
3630 * The sync wakeup differs that the waker knows that it will schedule
3631 * away soon, so while the target thread will be woken up, it will not
3632 * be migrated to another CPU - ie. the two threads are 'synchronized'
3633 * with each other. This can prevent needless bouncing between CPUs.
3634 *
3635 * On UP it can prevent extra preemption.
3636 */
95cdf3b7
IM
3637void fastcall
3638__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3639{
3640 unsigned long flags;
3641 int sync = 1;
3642
3643 if (unlikely(!q))
3644 return;
3645
3646 if (unlikely(!nr_exclusive))
3647 sync = 0;
3648
3649 spin_lock_irqsave(&q->lock, flags);
3650 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3651 spin_unlock_irqrestore(&q->lock, flags);
3652}
3653EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3654
3655void fastcall complete(struct completion *x)
3656{
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&x->wait.lock, flags);
3660 x->done++;
3661 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3662 1, 0, NULL);
3663 spin_unlock_irqrestore(&x->wait.lock, flags);
3664}
3665EXPORT_SYMBOL(complete);
3666
3667void fastcall complete_all(struct completion *x)
3668{
3669 unsigned long flags;
3670
3671 spin_lock_irqsave(&x->wait.lock, flags);
3672 x->done += UINT_MAX/2;
3673 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3674 0, 0, NULL);
3675 spin_unlock_irqrestore(&x->wait.lock, flags);
3676}
3677EXPORT_SYMBOL(complete_all);
3678
3679void fastcall __sched wait_for_completion(struct completion *x)
3680{
3681 might_sleep();
48f24c4d 3682
1da177e4
LT
3683 spin_lock_irq(&x->wait.lock);
3684 if (!x->done) {
3685 DECLARE_WAITQUEUE(wait, current);
3686
3687 wait.flags |= WQ_FLAG_EXCLUSIVE;
3688 __add_wait_queue_tail(&x->wait, &wait);
3689 do {
3690 __set_current_state(TASK_UNINTERRUPTIBLE);
3691 spin_unlock_irq(&x->wait.lock);
3692 schedule();
3693 spin_lock_irq(&x->wait.lock);
3694 } while (!x->done);
3695 __remove_wait_queue(&x->wait, &wait);
3696 }
3697 x->done--;
3698 spin_unlock_irq(&x->wait.lock);
3699}
3700EXPORT_SYMBOL(wait_for_completion);
3701
3702unsigned long fastcall __sched
3703wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3704{
3705 might_sleep();
3706
3707 spin_lock_irq(&x->wait.lock);
3708 if (!x->done) {
3709 DECLARE_WAITQUEUE(wait, current);
3710
3711 wait.flags |= WQ_FLAG_EXCLUSIVE;
3712 __add_wait_queue_tail(&x->wait, &wait);
3713 do {
3714 __set_current_state(TASK_UNINTERRUPTIBLE);
3715 spin_unlock_irq(&x->wait.lock);
3716 timeout = schedule_timeout(timeout);
3717 spin_lock_irq(&x->wait.lock);
3718 if (!timeout) {
3719 __remove_wait_queue(&x->wait, &wait);
3720 goto out;
3721 }
3722 } while (!x->done);
3723 __remove_wait_queue(&x->wait, &wait);
3724 }
3725 x->done--;
3726out:
3727 spin_unlock_irq(&x->wait.lock);
3728 return timeout;
3729}
3730EXPORT_SYMBOL(wait_for_completion_timeout);
3731
3732int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3733{
3734 int ret = 0;
3735
3736 might_sleep();
3737
3738 spin_lock_irq(&x->wait.lock);
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3741
3742 wait.flags |= WQ_FLAG_EXCLUSIVE;
3743 __add_wait_queue_tail(&x->wait, &wait);
3744 do {
3745 if (signal_pending(current)) {
3746 ret = -ERESTARTSYS;
3747 __remove_wait_queue(&x->wait, &wait);
3748 goto out;
3749 }
3750 __set_current_state(TASK_INTERRUPTIBLE);
3751 spin_unlock_irq(&x->wait.lock);
3752 schedule();
3753 spin_lock_irq(&x->wait.lock);
3754 } while (!x->done);
3755 __remove_wait_queue(&x->wait, &wait);
3756 }
3757 x->done--;
3758out:
3759 spin_unlock_irq(&x->wait.lock);
3760
3761 return ret;
3762}
3763EXPORT_SYMBOL(wait_for_completion_interruptible);
3764
3765unsigned long fastcall __sched
3766wait_for_completion_interruptible_timeout(struct completion *x,
3767 unsigned long timeout)
3768{
3769 might_sleep();
3770
3771 spin_lock_irq(&x->wait.lock);
3772 if (!x->done) {
3773 DECLARE_WAITQUEUE(wait, current);
3774
3775 wait.flags |= WQ_FLAG_EXCLUSIVE;
3776 __add_wait_queue_tail(&x->wait, &wait);
3777 do {
3778 if (signal_pending(current)) {
3779 timeout = -ERESTARTSYS;
3780 __remove_wait_queue(&x->wait, &wait);
3781 goto out;
3782 }
3783 __set_current_state(TASK_INTERRUPTIBLE);
3784 spin_unlock_irq(&x->wait.lock);
3785 timeout = schedule_timeout(timeout);
3786 spin_lock_irq(&x->wait.lock);
3787 if (!timeout) {
3788 __remove_wait_queue(&x->wait, &wait);
3789 goto out;
3790 }
3791 } while (!x->done);
3792 __remove_wait_queue(&x->wait, &wait);
3793 }
3794 x->done--;
3795out:
3796 spin_unlock_irq(&x->wait.lock);
3797 return timeout;
3798}
3799EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3800
0fec171c
IM
3801static inline void
3802sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3803{
3804 spin_lock_irqsave(&q->lock, *flags);
3805 __add_wait_queue(q, wait);
1da177e4 3806 spin_unlock(&q->lock);
0fec171c 3807}
1da177e4 3808
0fec171c
IM
3809static inline void
3810sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3811{
3812 spin_lock_irq(&q->lock);
3813 __remove_wait_queue(q, wait);
3814 spin_unlock_irqrestore(&q->lock, *flags);
3815}
1da177e4 3816
0fec171c 3817void __sched interruptible_sleep_on(wait_queue_head_t *q)
1da177e4 3818{
0fec171c
IM
3819 unsigned long flags;
3820 wait_queue_t wait;
3821
3822 init_waitqueue_entry(&wait, current);
1da177e4
LT
3823
3824 current->state = TASK_INTERRUPTIBLE;
3825
0fec171c 3826 sleep_on_head(q, &wait, &flags);
1da177e4 3827 schedule();
0fec171c 3828 sleep_on_tail(q, &wait, &flags);
1da177e4 3829}
1da177e4
LT
3830EXPORT_SYMBOL(interruptible_sleep_on);
3831
0fec171c 3832long __sched
95cdf3b7 3833interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3834{
0fec171c
IM
3835 unsigned long flags;
3836 wait_queue_t wait;
3837
3838 init_waitqueue_entry(&wait, current);
1da177e4
LT
3839
3840 current->state = TASK_INTERRUPTIBLE;
3841
0fec171c 3842 sleep_on_head(q, &wait, &flags);
1da177e4 3843 timeout = schedule_timeout(timeout);
0fec171c 3844 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3845
3846 return timeout;
3847}
1da177e4
LT
3848EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3849
0fec171c 3850void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3851{
0fec171c
IM
3852 unsigned long flags;
3853 wait_queue_t wait;
3854
3855 init_waitqueue_entry(&wait, current);
1da177e4
LT
3856
3857 current->state = TASK_UNINTERRUPTIBLE;
3858
0fec171c 3859 sleep_on_head(q, &wait, &flags);
1da177e4 3860 schedule();
0fec171c 3861 sleep_on_tail(q, &wait, &flags);
1da177e4 3862}
1da177e4
LT
3863EXPORT_SYMBOL(sleep_on);
3864
0fec171c 3865long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3866{
0fec171c
IM
3867 unsigned long flags;
3868 wait_queue_t wait;
3869
3870 init_waitqueue_entry(&wait, current);
1da177e4
LT
3871
3872 current->state = TASK_UNINTERRUPTIBLE;
3873
0fec171c 3874 sleep_on_head(q, &wait, &flags);
1da177e4 3875 timeout = schedule_timeout(timeout);
0fec171c 3876 sleep_on_tail(q, &wait, &flags);
1da177e4
LT
3877
3878 return timeout;
3879}
1da177e4
LT
3880EXPORT_SYMBOL(sleep_on_timeout);
3881
b29739f9
IM
3882#ifdef CONFIG_RT_MUTEXES
3883
3884/*
3885 * rt_mutex_setprio - set the current priority of a task
3886 * @p: task
3887 * @prio: prio value (kernel-internal form)
3888 *
3889 * This function changes the 'effective' priority of a task. It does
3890 * not touch ->normal_prio like __setscheduler().
3891 *
3892 * Used by the rt_mutex code to implement priority inheritance logic.
3893 */
36c8b586 3894void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3895{
3896 unsigned long flags;
dd41f596 3897 int oldprio, on_rq;
70b97a7f 3898 struct rq *rq;
b29739f9
IM
3899
3900 BUG_ON(prio < 0 || prio > MAX_PRIO);
3901
3902 rq = task_rq_lock(p, &flags);
a8e504d2 3903 update_rq_clock(rq);
b29739f9 3904
d5f9f942 3905 oldprio = p->prio;
dd41f596
IM
3906 on_rq = p->se.on_rq;
3907 if (on_rq)
69be72c1 3908 dequeue_task(rq, p, 0);
dd41f596
IM
3909
3910 if (rt_prio(prio))
3911 p->sched_class = &rt_sched_class;
3912 else
3913 p->sched_class = &fair_sched_class;
3914
b29739f9
IM
3915 p->prio = prio;
3916
dd41f596 3917 if (on_rq) {
8159f87e 3918 enqueue_task(rq, p, 0);
b29739f9
IM
3919 /*
3920 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
3921 * our priority decreased, or if we are not currently running on
3922 * this runqueue and our priority is higher than the current's
b29739f9 3923 */
d5f9f942
AM
3924 if (task_running(rq, p)) {
3925 if (p->prio > oldprio)
3926 resched_task(rq->curr);
dd41f596
IM
3927 } else {
3928 check_preempt_curr(rq, p);
3929 }
b29739f9
IM
3930 }
3931 task_rq_unlock(rq, &flags);
3932}
3933
3934#endif
3935
36c8b586 3936void set_user_nice(struct task_struct *p, long nice)
1da177e4 3937{
dd41f596 3938 int old_prio, delta, on_rq;
1da177e4 3939 unsigned long flags;
70b97a7f 3940 struct rq *rq;
1da177e4
LT
3941
3942 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3943 return;
3944 /*
3945 * We have to be careful, if called from sys_setpriority(),
3946 * the task might be in the middle of scheduling on another CPU.
3947 */
3948 rq = task_rq_lock(p, &flags);
a8e504d2 3949 update_rq_clock(rq);
1da177e4
LT
3950 /*
3951 * The RT priorities are set via sched_setscheduler(), but we still
3952 * allow the 'normal' nice value to be set - but as expected
3953 * it wont have any effect on scheduling until the task is
dd41f596 3954 * SCHED_FIFO/SCHED_RR:
1da177e4 3955 */
e05606d3 3956 if (task_has_rt_policy(p)) {
1da177e4
LT
3957 p->static_prio = NICE_TO_PRIO(nice);
3958 goto out_unlock;
3959 }
dd41f596
IM
3960 on_rq = p->se.on_rq;
3961 if (on_rq) {
69be72c1 3962 dequeue_task(rq, p, 0);
79b5dddf 3963 dec_load(rq, p);
2dd73a4f 3964 }
1da177e4 3965
1da177e4 3966 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3967 set_load_weight(p);
b29739f9
IM
3968 old_prio = p->prio;
3969 p->prio = effective_prio(p);
3970 delta = p->prio - old_prio;
1da177e4 3971
dd41f596 3972 if (on_rq) {
8159f87e 3973 enqueue_task(rq, p, 0);
29b4b623 3974 inc_load(rq, p);
1da177e4 3975 /*
d5f9f942
AM
3976 * If the task increased its priority or is running and
3977 * lowered its priority, then reschedule its CPU:
1da177e4 3978 */
d5f9f942 3979 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3980 resched_task(rq->curr);
3981 }
3982out_unlock:
3983 task_rq_unlock(rq, &flags);
3984}
1da177e4
LT
3985EXPORT_SYMBOL(set_user_nice);
3986
e43379f1
MM
3987/*
3988 * can_nice - check if a task can reduce its nice value
3989 * @p: task
3990 * @nice: nice value
3991 */
36c8b586 3992int can_nice(const struct task_struct *p, const int nice)
e43379f1 3993{
024f4747
MM
3994 /* convert nice value [19,-20] to rlimit style value [1,40] */
3995 int nice_rlim = 20 - nice;
48f24c4d 3996
e43379f1
MM
3997 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3998 capable(CAP_SYS_NICE));
3999}
4000
1da177e4
LT
4001#ifdef __ARCH_WANT_SYS_NICE
4002
4003/*
4004 * sys_nice - change the priority of the current process.
4005 * @increment: priority increment
4006 *
4007 * sys_setpriority is a more generic, but much slower function that
4008 * does similar things.
4009 */
4010asmlinkage long sys_nice(int increment)
4011{
48f24c4d 4012 long nice, retval;
1da177e4
LT
4013
4014 /*
4015 * Setpriority might change our priority at the same moment.
4016 * We don't have to worry. Conceptually one call occurs first
4017 * and we have a single winner.
4018 */
e43379f1
MM
4019 if (increment < -40)
4020 increment = -40;
1da177e4
LT
4021 if (increment > 40)
4022 increment = 40;
4023
4024 nice = PRIO_TO_NICE(current->static_prio) + increment;
4025 if (nice < -20)
4026 nice = -20;
4027 if (nice > 19)
4028 nice = 19;
4029
e43379f1
MM
4030 if (increment < 0 && !can_nice(current, nice))
4031 return -EPERM;
4032
1da177e4
LT
4033 retval = security_task_setnice(current, nice);
4034 if (retval)
4035 return retval;
4036
4037 set_user_nice(current, nice);
4038 return 0;
4039}
4040
4041#endif
4042
4043/**
4044 * task_prio - return the priority value of a given task.
4045 * @p: the task in question.
4046 *
4047 * This is the priority value as seen by users in /proc.
4048 * RT tasks are offset by -200. Normal tasks are centered
4049 * around 0, value goes from -16 to +15.
4050 */
36c8b586 4051int task_prio(const struct task_struct *p)
1da177e4
LT
4052{
4053 return p->prio - MAX_RT_PRIO;
4054}
4055
4056/**
4057 * task_nice - return the nice value of a given task.
4058 * @p: the task in question.
4059 */
36c8b586 4060int task_nice(const struct task_struct *p)
1da177e4
LT
4061{
4062 return TASK_NICE(p);
4063}
1da177e4 4064EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4065
4066/**
4067 * idle_cpu - is a given cpu idle currently?
4068 * @cpu: the processor in question.
4069 */
4070int idle_cpu(int cpu)
4071{
4072 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4073}
4074
1da177e4
LT
4075/**
4076 * idle_task - return the idle task for a given cpu.
4077 * @cpu: the processor in question.
4078 */
36c8b586 4079struct task_struct *idle_task(int cpu)
1da177e4
LT
4080{
4081 return cpu_rq(cpu)->idle;
4082}
4083
4084/**
4085 * find_process_by_pid - find a process with a matching PID value.
4086 * @pid: the pid in question.
4087 */
36c8b586 4088static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4089{
4090 return pid ? find_task_by_pid(pid) : current;
4091}
4092
4093/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4094static void
4095__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4096{
dd41f596 4097 BUG_ON(p->se.on_rq);
48f24c4d 4098
1da177e4 4099 p->policy = policy;
dd41f596
IM
4100 switch (p->policy) {
4101 case SCHED_NORMAL:
4102 case SCHED_BATCH:
4103 case SCHED_IDLE:
4104 p->sched_class = &fair_sched_class;
4105 break;
4106 case SCHED_FIFO:
4107 case SCHED_RR:
4108 p->sched_class = &rt_sched_class;
4109 break;
4110 }
4111
1da177e4 4112 p->rt_priority = prio;
b29739f9
IM
4113 p->normal_prio = normal_prio(p);
4114 /* we are holding p->pi_lock already */
4115 p->prio = rt_mutex_getprio(p);
2dd73a4f 4116 set_load_weight(p);
1da177e4
LT
4117}
4118
4119/**
72fd4a35 4120 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4121 * @p: the task in question.
4122 * @policy: new policy.
4123 * @param: structure containing the new RT priority.
5fe1d75f 4124 *
72fd4a35 4125 * NOTE that the task may be already dead.
1da177e4 4126 */
95cdf3b7
IM
4127int sched_setscheduler(struct task_struct *p, int policy,
4128 struct sched_param *param)
1da177e4 4129{
dd41f596 4130 int retval, oldprio, oldpolicy = -1, on_rq;
1da177e4 4131 unsigned long flags;
70b97a7f 4132 struct rq *rq;
1da177e4 4133
66e5393a
SR
4134 /* may grab non-irq protected spin_locks */
4135 BUG_ON(in_interrupt());
1da177e4
LT
4136recheck:
4137 /* double check policy once rq lock held */
4138 if (policy < 0)
4139 policy = oldpolicy = p->policy;
4140 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4141 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4142 policy != SCHED_IDLE)
b0a9499c 4143 return -EINVAL;
1da177e4
LT
4144 /*
4145 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4146 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4147 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4148 */
4149 if (param->sched_priority < 0 ||
95cdf3b7 4150 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4151 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4152 return -EINVAL;
e05606d3 4153 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4154 return -EINVAL;
4155
37e4ab3f
OC
4156 /*
4157 * Allow unprivileged RT tasks to decrease priority:
4158 */
4159 if (!capable(CAP_SYS_NICE)) {
e05606d3 4160 if (rt_policy(policy)) {
8dc3e909 4161 unsigned long rlim_rtprio;
8dc3e909
ON
4162
4163 if (!lock_task_sighand(p, &flags))
4164 return -ESRCH;
4165 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4166 unlock_task_sighand(p, &flags);
4167
4168 /* can't set/change the rt policy */
4169 if (policy != p->policy && !rlim_rtprio)
4170 return -EPERM;
4171
4172 /* can't increase priority */
4173 if (param->sched_priority > p->rt_priority &&
4174 param->sched_priority > rlim_rtprio)
4175 return -EPERM;
4176 }
dd41f596
IM
4177 /*
4178 * Like positive nice levels, dont allow tasks to
4179 * move out of SCHED_IDLE either:
4180 */
4181 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4182 return -EPERM;
5fe1d75f 4183
37e4ab3f
OC
4184 /* can't change other user's priorities */
4185 if ((current->euid != p->euid) &&
4186 (current->euid != p->uid))
4187 return -EPERM;
4188 }
1da177e4
LT
4189
4190 retval = security_task_setscheduler(p, policy, param);
4191 if (retval)
4192 return retval;
b29739f9
IM
4193 /*
4194 * make sure no PI-waiters arrive (or leave) while we are
4195 * changing the priority of the task:
4196 */
4197 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4198 /*
4199 * To be able to change p->policy safely, the apropriate
4200 * runqueue lock must be held.
4201 */
b29739f9 4202 rq = __task_rq_lock(p);
1da177e4
LT
4203 /* recheck policy now with rq lock held */
4204 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4205 policy = oldpolicy = -1;
b29739f9
IM
4206 __task_rq_unlock(rq);
4207 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4208 goto recheck;
4209 }
2daa3577 4210 update_rq_clock(rq);
dd41f596 4211 on_rq = p->se.on_rq;
2daa3577 4212 if (on_rq)
2e1cb74a 4213 deactivate_task(rq, p, 0);
1da177e4 4214 oldprio = p->prio;
dd41f596
IM
4215 __setscheduler(rq, p, policy, param->sched_priority);
4216 if (on_rq) {
4217 activate_task(rq, p, 0);
1da177e4
LT
4218 /*
4219 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4220 * our priority decreased, or if we are not currently running on
4221 * this runqueue and our priority is higher than the current's
1da177e4 4222 */
d5f9f942
AM
4223 if (task_running(rq, p)) {
4224 if (p->prio > oldprio)
4225 resched_task(rq->curr);
dd41f596
IM
4226 } else {
4227 check_preempt_curr(rq, p);
4228 }
1da177e4 4229 }
b29739f9
IM
4230 __task_rq_unlock(rq);
4231 spin_unlock_irqrestore(&p->pi_lock, flags);
4232
95e02ca9
TG
4233 rt_mutex_adjust_pi(p);
4234
1da177e4
LT
4235 return 0;
4236}
4237EXPORT_SYMBOL_GPL(sched_setscheduler);
4238
95cdf3b7
IM
4239static int
4240do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4241{
1da177e4
LT
4242 struct sched_param lparam;
4243 struct task_struct *p;
36c8b586 4244 int retval;
1da177e4
LT
4245
4246 if (!param || pid < 0)
4247 return -EINVAL;
4248 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4249 return -EFAULT;
5fe1d75f
ON
4250
4251 rcu_read_lock();
4252 retval = -ESRCH;
1da177e4 4253 p = find_process_by_pid(pid);
5fe1d75f
ON
4254 if (p != NULL)
4255 retval = sched_setscheduler(p, policy, &lparam);
4256 rcu_read_unlock();
36c8b586 4257
1da177e4
LT
4258 return retval;
4259}
4260
4261/**
4262 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4263 * @pid: the pid in question.
4264 * @policy: new policy.
4265 * @param: structure containing the new RT priority.
4266 */
4267asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4268 struct sched_param __user *param)
4269{
c21761f1
JB
4270 /* negative values for policy are not valid */
4271 if (policy < 0)
4272 return -EINVAL;
4273
1da177e4
LT
4274 return do_sched_setscheduler(pid, policy, param);
4275}
4276
4277/**
4278 * sys_sched_setparam - set/change the RT priority of a thread
4279 * @pid: the pid in question.
4280 * @param: structure containing the new RT priority.
4281 */
4282asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4283{
4284 return do_sched_setscheduler(pid, -1, param);
4285}
4286
4287/**
4288 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4289 * @pid: the pid in question.
4290 */
4291asmlinkage long sys_sched_getscheduler(pid_t pid)
4292{
36c8b586 4293 struct task_struct *p;
1da177e4 4294 int retval = -EINVAL;
1da177e4
LT
4295
4296 if (pid < 0)
4297 goto out_nounlock;
4298
4299 retval = -ESRCH;
4300 read_lock(&tasklist_lock);
4301 p = find_process_by_pid(pid);
4302 if (p) {
4303 retval = security_task_getscheduler(p);
4304 if (!retval)
4305 retval = p->policy;
4306 }
4307 read_unlock(&tasklist_lock);
4308
4309out_nounlock:
4310 return retval;
4311}
4312
4313/**
4314 * sys_sched_getscheduler - get the RT priority of a thread
4315 * @pid: the pid in question.
4316 * @param: structure containing the RT priority.
4317 */
4318asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4319{
4320 struct sched_param lp;
36c8b586 4321 struct task_struct *p;
1da177e4 4322 int retval = -EINVAL;
1da177e4
LT
4323
4324 if (!param || pid < 0)
4325 goto out_nounlock;
4326
4327 read_lock(&tasklist_lock);
4328 p = find_process_by_pid(pid);
4329 retval = -ESRCH;
4330 if (!p)
4331 goto out_unlock;
4332
4333 retval = security_task_getscheduler(p);
4334 if (retval)
4335 goto out_unlock;
4336
4337 lp.sched_priority = p->rt_priority;
4338 read_unlock(&tasklist_lock);
4339
4340 /*
4341 * This one might sleep, we cannot do it with a spinlock held ...
4342 */
4343 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4344
4345out_nounlock:
4346 return retval;
4347
4348out_unlock:
4349 read_unlock(&tasklist_lock);
4350 return retval;
4351}
4352
4353long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4354{
1da177e4 4355 cpumask_t cpus_allowed;
36c8b586
IM
4356 struct task_struct *p;
4357 int retval;
1da177e4 4358
5be9361c 4359 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4360 read_lock(&tasklist_lock);
4361
4362 p = find_process_by_pid(pid);
4363 if (!p) {
4364 read_unlock(&tasklist_lock);
5be9361c 4365 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4366 return -ESRCH;
4367 }
4368
4369 /*
4370 * It is not safe to call set_cpus_allowed with the
4371 * tasklist_lock held. We will bump the task_struct's
4372 * usage count and then drop tasklist_lock.
4373 */
4374 get_task_struct(p);
4375 read_unlock(&tasklist_lock);
4376
4377 retval = -EPERM;
4378 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4379 !capable(CAP_SYS_NICE))
4380 goto out_unlock;
4381
e7834f8f
DQ
4382 retval = security_task_setscheduler(p, 0, NULL);
4383 if (retval)
4384 goto out_unlock;
4385
1da177e4
LT
4386 cpus_allowed = cpuset_cpus_allowed(p);
4387 cpus_and(new_mask, new_mask, cpus_allowed);
4388 retval = set_cpus_allowed(p, new_mask);
4389
4390out_unlock:
4391 put_task_struct(p);
5be9361c 4392 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4393 return retval;
4394}
4395
4396static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4397 cpumask_t *new_mask)
4398{
4399 if (len < sizeof(cpumask_t)) {
4400 memset(new_mask, 0, sizeof(cpumask_t));
4401 } else if (len > sizeof(cpumask_t)) {
4402 len = sizeof(cpumask_t);
4403 }
4404 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4405}
4406
4407/**
4408 * sys_sched_setaffinity - set the cpu affinity of a process
4409 * @pid: pid of the process
4410 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4411 * @user_mask_ptr: user-space pointer to the new cpu mask
4412 */
4413asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4414 unsigned long __user *user_mask_ptr)
4415{
4416 cpumask_t new_mask;
4417 int retval;
4418
4419 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4420 if (retval)
4421 return retval;
4422
4423 return sched_setaffinity(pid, new_mask);
4424}
4425
4426/*
4427 * Represents all cpu's present in the system
4428 * In systems capable of hotplug, this map could dynamically grow
4429 * as new cpu's are detected in the system via any platform specific
4430 * method, such as ACPI for e.g.
4431 */
4432
4cef0c61 4433cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4434EXPORT_SYMBOL(cpu_present_map);
4435
4436#ifndef CONFIG_SMP
4cef0c61 4437cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4438EXPORT_SYMBOL(cpu_online_map);
4439
4cef0c61 4440cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4441EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4442#endif
4443
4444long sched_getaffinity(pid_t pid, cpumask_t *mask)
4445{
36c8b586 4446 struct task_struct *p;
1da177e4 4447 int retval;
1da177e4 4448
5be9361c 4449 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4450 read_lock(&tasklist_lock);
4451
4452 retval = -ESRCH;
4453 p = find_process_by_pid(pid);
4454 if (!p)
4455 goto out_unlock;
4456
e7834f8f
DQ
4457 retval = security_task_getscheduler(p);
4458 if (retval)
4459 goto out_unlock;
4460
2f7016d9 4461 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4462
4463out_unlock:
4464 read_unlock(&tasklist_lock);
5be9361c 4465 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4466
9531b62f 4467 return retval;
1da177e4
LT
4468}
4469
4470/**
4471 * sys_sched_getaffinity - get the cpu affinity of a process
4472 * @pid: pid of the process
4473 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4474 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4475 */
4476asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4477 unsigned long __user *user_mask_ptr)
4478{
4479 int ret;
4480 cpumask_t mask;
4481
4482 if (len < sizeof(cpumask_t))
4483 return -EINVAL;
4484
4485 ret = sched_getaffinity(pid, &mask);
4486 if (ret < 0)
4487 return ret;
4488
4489 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4490 return -EFAULT;
4491
4492 return sizeof(cpumask_t);
4493}
4494
4495/**
4496 * sys_sched_yield - yield the current processor to other threads.
4497 *
dd41f596
IM
4498 * This function yields the current CPU to other tasks. If there are no
4499 * other threads running on this CPU then this function will return.
1da177e4
LT
4500 */
4501asmlinkage long sys_sched_yield(void)
4502{
70b97a7f 4503 struct rq *rq = this_rq_lock();
1da177e4
LT
4504
4505 schedstat_inc(rq, yld_cnt);
dd41f596 4506 if (unlikely(rq->nr_running == 1))
1da177e4 4507 schedstat_inc(rq, yld_act_empty);
dd41f596
IM
4508 else
4509 current->sched_class->yield_task(rq, current);
1da177e4
LT
4510
4511 /*
4512 * Since we are going to call schedule() anyway, there's
4513 * no need to preempt or enable interrupts:
4514 */
4515 __release(rq->lock);
8a25d5de 4516 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4517 _raw_spin_unlock(&rq->lock);
4518 preempt_enable_no_resched();
4519
4520 schedule();
4521
4522 return 0;
4523}
4524
e7b38404 4525static void __cond_resched(void)
1da177e4 4526{
8e0a43d8
IM
4527#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4528 __might_sleep(__FILE__, __LINE__);
4529#endif
5bbcfd90
IM
4530 /*
4531 * The BKS might be reacquired before we have dropped
4532 * PREEMPT_ACTIVE, which could trigger a second
4533 * cond_resched() call.
4534 */
1da177e4
LT
4535 do {
4536 add_preempt_count(PREEMPT_ACTIVE);
4537 schedule();
4538 sub_preempt_count(PREEMPT_ACTIVE);
4539 } while (need_resched());
4540}
4541
4542int __sched cond_resched(void)
4543{
9414232f
IM
4544 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4545 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4546 __cond_resched();
4547 return 1;
4548 }
4549 return 0;
4550}
1da177e4
LT
4551EXPORT_SYMBOL(cond_resched);
4552
4553/*
4554 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4555 * call schedule, and on return reacquire the lock.
4556 *
4557 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4558 * operations here to prevent schedule() from being called twice (once via
4559 * spin_unlock(), once by hand).
4560 */
95cdf3b7 4561int cond_resched_lock(spinlock_t *lock)
1da177e4 4562{
6df3cecb
JK
4563 int ret = 0;
4564
1da177e4
LT
4565 if (need_lockbreak(lock)) {
4566 spin_unlock(lock);
4567 cpu_relax();
6df3cecb 4568 ret = 1;
1da177e4
LT
4569 spin_lock(lock);
4570 }
9414232f 4571 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4572 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4573 _raw_spin_unlock(lock);
4574 preempt_enable_no_resched();
4575 __cond_resched();
6df3cecb 4576 ret = 1;
1da177e4 4577 spin_lock(lock);
1da177e4 4578 }
6df3cecb 4579 return ret;
1da177e4 4580}
1da177e4
LT
4581EXPORT_SYMBOL(cond_resched_lock);
4582
4583int __sched cond_resched_softirq(void)
4584{
4585 BUG_ON(!in_softirq());
4586
9414232f 4587 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4588 local_bh_enable();
1da177e4
LT
4589 __cond_resched();
4590 local_bh_disable();
4591 return 1;
4592 }
4593 return 0;
4594}
1da177e4
LT
4595EXPORT_SYMBOL(cond_resched_softirq);
4596
1da177e4
LT
4597/**
4598 * yield - yield the current processor to other threads.
4599 *
72fd4a35 4600 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4601 * thread runnable and calls sys_sched_yield().
4602 */
4603void __sched yield(void)
4604{
4605 set_current_state(TASK_RUNNING);
4606 sys_sched_yield();
4607}
1da177e4
LT
4608EXPORT_SYMBOL(yield);
4609
4610/*
4611 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4612 * that process accounting knows that this is a task in IO wait state.
4613 *
4614 * But don't do that if it is a deliberate, throttling IO wait (this task
4615 * has set its backing_dev_info: the queue against which it should throttle)
4616 */
4617void __sched io_schedule(void)
4618{
70b97a7f 4619 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4620
0ff92245 4621 delayacct_blkio_start();
1da177e4
LT
4622 atomic_inc(&rq->nr_iowait);
4623 schedule();
4624 atomic_dec(&rq->nr_iowait);
0ff92245 4625 delayacct_blkio_end();
1da177e4 4626}
1da177e4
LT
4627EXPORT_SYMBOL(io_schedule);
4628
4629long __sched io_schedule_timeout(long timeout)
4630{
70b97a7f 4631 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4632 long ret;
4633
0ff92245 4634 delayacct_blkio_start();
1da177e4
LT
4635 atomic_inc(&rq->nr_iowait);
4636 ret = schedule_timeout(timeout);
4637 atomic_dec(&rq->nr_iowait);
0ff92245 4638 delayacct_blkio_end();
1da177e4
LT
4639 return ret;
4640}
4641
4642/**
4643 * sys_sched_get_priority_max - return maximum RT priority.
4644 * @policy: scheduling class.
4645 *
4646 * this syscall returns the maximum rt_priority that can be used
4647 * by a given scheduling class.
4648 */
4649asmlinkage long sys_sched_get_priority_max(int policy)
4650{
4651 int ret = -EINVAL;
4652
4653 switch (policy) {
4654 case SCHED_FIFO:
4655 case SCHED_RR:
4656 ret = MAX_USER_RT_PRIO-1;
4657 break;
4658 case SCHED_NORMAL:
b0a9499c 4659 case SCHED_BATCH:
dd41f596 4660 case SCHED_IDLE:
1da177e4
LT
4661 ret = 0;
4662 break;
4663 }
4664 return ret;
4665}
4666
4667/**
4668 * sys_sched_get_priority_min - return minimum RT priority.
4669 * @policy: scheduling class.
4670 *
4671 * this syscall returns the minimum rt_priority that can be used
4672 * by a given scheduling class.
4673 */
4674asmlinkage long sys_sched_get_priority_min(int policy)
4675{
4676 int ret = -EINVAL;
4677
4678 switch (policy) {
4679 case SCHED_FIFO:
4680 case SCHED_RR:
4681 ret = 1;
4682 break;
4683 case SCHED_NORMAL:
b0a9499c 4684 case SCHED_BATCH:
dd41f596 4685 case SCHED_IDLE:
1da177e4
LT
4686 ret = 0;
4687 }
4688 return ret;
4689}
4690
4691/**
4692 * sys_sched_rr_get_interval - return the default timeslice of a process.
4693 * @pid: pid of the process.
4694 * @interval: userspace pointer to the timeslice value.
4695 *
4696 * this syscall writes the default timeslice value of a given process
4697 * into the user-space timespec buffer. A value of '0' means infinity.
4698 */
4699asmlinkage
4700long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4701{
36c8b586 4702 struct task_struct *p;
1da177e4
LT
4703 int retval = -EINVAL;
4704 struct timespec t;
1da177e4
LT
4705
4706 if (pid < 0)
4707 goto out_nounlock;
4708
4709 retval = -ESRCH;
4710 read_lock(&tasklist_lock);
4711 p = find_process_by_pid(pid);
4712 if (!p)
4713 goto out_unlock;
4714
4715 retval = security_task_getscheduler(p);
4716 if (retval)
4717 goto out_unlock;
4718
b78709cf 4719 jiffies_to_timespec(p->policy == SCHED_FIFO ?
dd41f596 4720 0 : static_prio_timeslice(p->static_prio), &t);
1da177e4
LT
4721 read_unlock(&tasklist_lock);
4722 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4723out_nounlock:
4724 return retval;
4725out_unlock:
4726 read_unlock(&tasklist_lock);
4727 return retval;
4728}
4729
2ed6e34f 4730static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4731
4732static void show_task(struct task_struct *p)
1da177e4 4733{
1da177e4 4734 unsigned long free = 0;
36c8b586 4735 unsigned state;
1da177e4 4736
1da177e4 4737 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4738 printk("%-13.13s %c", p->comm,
4739 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4740#if BITS_PER_LONG == 32
1da177e4 4741 if (state == TASK_RUNNING)
4bd77321 4742 printk(" running ");
1da177e4 4743 else
4bd77321 4744 printk(" %08lx ", thread_saved_pc(p));
1da177e4
LT
4745#else
4746 if (state == TASK_RUNNING)
4bd77321 4747 printk(" running task ");
1da177e4
LT
4748 else
4749 printk(" %016lx ", thread_saved_pc(p));
4750#endif
4751#ifdef CONFIG_DEBUG_STACK_USAGE
4752 {
10ebffde 4753 unsigned long *n = end_of_stack(p);
1da177e4
LT
4754 while (!*n)
4755 n++;
10ebffde 4756 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4757 }
4758#endif
4bd77321 4759 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
1da177e4
LT
4760
4761 if (state != TASK_RUNNING)
4762 show_stack(p, NULL);
4763}
4764
e59e2ae2 4765void show_state_filter(unsigned long state_filter)
1da177e4 4766{
36c8b586 4767 struct task_struct *g, *p;
1da177e4 4768
4bd77321
IM
4769#if BITS_PER_LONG == 32
4770 printk(KERN_INFO
4771 " task PC stack pid father\n");
1da177e4 4772#else
4bd77321
IM
4773 printk(KERN_INFO
4774 " task PC stack pid father\n");
1da177e4
LT
4775#endif
4776 read_lock(&tasklist_lock);
4777 do_each_thread(g, p) {
4778 /*
4779 * reset the NMI-timeout, listing all files on a slow
4780 * console might take alot of time:
4781 */
4782 touch_nmi_watchdog();
39bc89fd 4783 if (!state_filter || (p->state & state_filter))
e59e2ae2 4784 show_task(p);
1da177e4
LT
4785 } while_each_thread(g, p);
4786
04c9167f
JF
4787 touch_all_softlockup_watchdogs();
4788
dd41f596
IM
4789#ifdef CONFIG_SCHED_DEBUG
4790 sysrq_sched_debug_show();
4791#endif
1da177e4 4792 read_unlock(&tasklist_lock);
e59e2ae2
IM
4793 /*
4794 * Only show locks if all tasks are dumped:
4795 */
4796 if (state_filter == -1)
4797 debug_show_all_locks();
1da177e4
LT
4798}
4799
1df21055
IM
4800void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4801{
dd41f596 4802 idle->sched_class = &idle_sched_class;
1df21055
IM
4803}
4804
f340c0d1
IM
4805/**
4806 * init_idle - set up an idle thread for a given CPU
4807 * @idle: task in question
4808 * @cpu: cpu the idle task belongs to
4809 *
4810 * NOTE: this function does not set the idle thread's NEED_RESCHED
4811 * flag, to make booting more robust.
4812 */
5c1e1767 4813void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4814{
70b97a7f 4815 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4816 unsigned long flags;
4817
dd41f596
IM
4818 __sched_fork(idle);
4819 idle->se.exec_start = sched_clock();
4820
b29739f9 4821 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4822 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4823 __set_task_cpu(idle, cpu);
1da177e4
LT
4824
4825 spin_lock_irqsave(&rq->lock, flags);
4826 rq->curr = rq->idle = idle;
4866cde0
NP
4827#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4828 idle->oncpu = 1;
4829#endif
1da177e4
LT
4830 spin_unlock_irqrestore(&rq->lock, flags);
4831
4832 /* Set the preempt count _outside_ the spinlocks! */
4833#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4834 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4835#else
a1261f54 4836 task_thread_info(idle)->preempt_count = 0;
1da177e4 4837#endif
dd41f596
IM
4838 /*
4839 * The idle tasks have their own, simple scheduling class:
4840 */
4841 idle->sched_class = &idle_sched_class;
1da177e4
LT
4842}
4843
4844/*
4845 * In a system that switches off the HZ timer nohz_cpu_mask
4846 * indicates which cpus entered this state. This is used
4847 * in the rcu update to wait only for active cpus. For system
4848 * which do not switch off the HZ timer nohz_cpu_mask should
4849 * always be CPU_MASK_NONE.
4850 */
4851cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4852
dd41f596
IM
4853/*
4854 * Increase the granularity value when there are more CPUs,
4855 * because with more CPUs the 'effective latency' as visible
4856 * to users decreases. But the relationship is not linear,
4857 * so pick a second-best guess by going with the log2 of the
4858 * number of CPUs.
4859 *
4860 * This idea comes from the SD scheduler of Con Kolivas:
4861 */
4862static inline void sched_init_granularity(void)
4863{
4864 unsigned int factor = 1 + ilog2(num_online_cpus());
a5968df8 4865 const unsigned long gran_limit = 100000000;
dd41f596
IM
4866
4867 sysctl_sched_granularity *= factor;
4868 if (sysctl_sched_granularity > gran_limit)
4869 sysctl_sched_granularity = gran_limit;
4870
4871 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4872 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4873}
4874
1da177e4
LT
4875#ifdef CONFIG_SMP
4876/*
4877 * This is how migration works:
4878 *
70b97a7f 4879 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4880 * runqueue and wake up that CPU's migration thread.
4881 * 2) we down() the locked semaphore => thread blocks.
4882 * 3) migration thread wakes up (implicitly it forces the migrated
4883 * thread off the CPU)
4884 * 4) it gets the migration request and checks whether the migrated
4885 * task is still in the wrong runqueue.
4886 * 5) if it's in the wrong runqueue then the migration thread removes
4887 * it and puts it into the right queue.
4888 * 6) migration thread up()s the semaphore.
4889 * 7) we wake up and the migration is done.
4890 */
4891
4892/*
4893 * Change a given task's CPU affinity. Migrate the thread to a
4894 * proper CPU and schedule it away if the CPU it's executing on
4895 * is removed from the allowed bitmask.
4896 *
4897 * NOTE: the caller must have a valid reference to the task, the
4898 * task must not exit() & deallocate itself prematurely. The
4899 * call is not atomic; no spinlocks may be held.
4900 */
36c8b586 4901int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4902{
70b97a7f 4903 struct migration_req req;
1da177e4 4904 unsigned long flags;
70b97a7f 4905 struct rq *rq;
48f24c4d 4906 int ret = 0;
1da177e4
LT
4907
4908 rq = task_rq_lock(p, &flags);
4909 if (!cpus_intersects(new_mask, cpu_online_map)) {
4910 ret = -EINVAL;
4911 goto out;
4912 }
4913
4914 p->cpus_allowed = new_mask;
4915 /* Can the task run on the task's current CPU? If so, we're done */
4916 if (cpu_isset(task_cpu(p), new_mask))
4917 goto out;
4918
4919 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4920 /* Need help from migration thread: drop lock and wait. */
4921 task_rq_unlock(rq, &flags);
4922 wake_up_process(rq->migration_thread);
4923 wait_for_completion(&req.done);
4924 tlb_migrate_finish(p->mm);
4925 return 0;
4926 }
4927out:
4928 task_rq_unlock(rq, &flags);
48f24c4d 4929
1da177e4
LT
4930 return ret;
4931}
1da177e4
LT
4932EXPORT_SYMBOL_GPL(set_cpus_allowed);
4933
4934/*
4935 * Move (not current) task off this cpu, onto dest cpu. We're doing
4936 * this because either it can't run here any more (set_cpus_allowed()
4937 * away from this CPU, or CPU going down), or because we're
4938 * attempting to rebalance this task on exec (sched_exec).
4939 *
4940 * So we race with normal scheduler movements, but that's OK, as long
4941 * as the task is no longer on this CPU.
efc30814
KK
4942 *
4943 * Returns non-zero if task was successfully migrated.
1da177e4 4944 */
efc30814 4945static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4946{
70b97a7f 4947 struct rq *rq_dest, *rq_src;
dd41f596 4948 int ret = 0, on_rq;
1da177e4
LT
4949
4950 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 4951 return ret;
1da177e4
LT
4952
4953 rq_src = cpu_rq(src_cpu);
4954 rq_dest = cpu_rq(dest_cpu);
4955
4956 double_rq_lock(rq_src, rq_dest);
4957 /* Already moved. */
4958 if (task_cpu(p) != src_cpu)
4959 goto out;
4960 /* Affinity changed (again). */
4961 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4962 goto out;
4963
dd41f596 4964 on_rq = p->se.on_rq;
a8e504d2
IM
4965 if (on_rq) {
4966 update_rq_clock(rq_src);
2e1cb74a 4967 deactivate_task(rq_src, p, 0);
a8e504d2 4968 }
1da177e4 4969 set_task_cpu(p, dest_cpu);
dd41f596 4970 if (on_rq) {
2daa3577 4971 update_rq_clock(rq_dest);
dd41f596
IM
4972 activate_task(rq_dest, p, 0);
4973 check_preempt_curr(rq_dest, p);
1da177e4 4974 }
efc30814 4975 ret = 1;
1da177e4
LT
4976out:
4977 double_rq_unlock(rq_src, rq_dest);
efc30814 4978 return ret;
1da177e4
LT
4979}
4980
4981/*
4982 * migration_thread - this is a highprio system thread that performs
4983 * thread migration by bumping thread off CPU then 'pushing' onto
4984 * another runqueue.
4985 */
95cdf3b7 4986static int migration_thread(void *data)
1da177e4 4987{
1da177e4 4988 int cpu = (long)data;
70b97a7f 4989 struct rq *rq;
1da177e4
LT
4990
4991 rq = cpu_rq(cpu);
4992 BUG_ON(rq->migration_thread != current);
4993
4994 set_current_state(TASK_INTERRUPTIBLE);
4995 while (!kthread_should_stop()) {
70b97a7f 4996 struct migration_req *req;
1da177e4 4997 struct list_head *head;
1da177e4 4998
1da177e4
LT
4999 spin_lock_irq(&rq->lock);
5000
5001 if (cpu_is_offline(cpu)) {
5002 spin_unlock_irq(&rq->lock);
5003 goto wait_to_die;
5004 }
5005
5006 if (rq->active_balance) {
5007 active_load_balance(rq, cpu);
5008 rq->active_balance = 0;
5009 }
5010
5011 head = &rq->migration_queue;
5012
5013 if (list_empty(head)) {
5014 spin_unlock_irq(&rq->lock);
5015 schedule();
5016 set_current_state(TASK_INTERRUPTIBLE);
5017 continue;
5018 }
70b97a7f 5019 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5020 list_del_init(head->next);
5021
674311d5
NP
5022 spin_unlock(&rq->lock);
5023 __migrate_task(req->task, cpu, req->dest_cpu);
5024 local_irq_enable();
1da177e4
LT
5025
5026 complete(&req->done);
5027 }
5028 __set_current_state(TASK_RUNNING);
5029 return 0;
5030
5031wait_to_die:
5032 /* Wait for kthread_stop */
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 while (!kthread_should_stop()) {
5035 schedule();
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 }
5038 __set_current_state(TASK_RUNNING);
5039 return 0;
5040}
5041
5042#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5043/*
5044 * Figure out where task on dead CPU should go, use force if neccessary.
5045 * NOTE: interrupts should be disabled by the caller
5046 */
48f24c4d 5047static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5048{
efc30814 5049 unsigned long flags;
1da177e4 5050 cpumask_t mask;
70b97a7f
IM
5051 struct rq *rq;
5052 int dest_cpu;
1da177e4 5053
efc30814 5054restart:
1da177e4
LT
5055 /* On same node? */
5056 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5057 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5058 dest_cpu = any_online_cpu(mask);
5059
5060 /* On any allowed CPU? */
5061 if (dest_cpu == NR_CPUS)
48f24c4d 5062 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5063
5064 /* No more Mr. Nice Guy. */
5065 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5066 rq = task_rq_lock(p, &flags);
5067 cpus_setall(p->cpus_allowed);
5068 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5069 task_rq_unlock(rq, &flags);
1da177e4
LT
5070
5071 /*
5072 * Don't tell them about moving exiting tasks or
5073 * kernel threads (both mm NULL), since they never
5074 * leave kernel.
5075 */
48f24c4d 5076 if (p->mm && printk_ratelimit())
1da177e4
LT
5077 printk(KERN_INFO "process %d (%s) no "
5078 "longer affine to cpu%d\n",
48f24c4d 5079 p->pid, p->comm, dead_cpu);
1da177e4 5080 }
48f24c4d 5081 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5082 goto restart;
1da177e4
LT
5083}
5084
5085/*
5086 * While a dead CPU has no uninterruptible tasks queued at this point,
5087 * it might still have a nonzero ->nr_uninterruptible counter, because
5088 * for performance reasons the counter is not stricly tracking tasks to
5089 * their home CPUs. So we just add the counter to another CPU's counter,
5090 * to keep the global sum constant after CPU-down:
5091 */
70b97a7f 5092static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5093{
70b97a7f 5094 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5095 unsigned long flags;
5096
5097 local_irq_save(flags);
5098 double_rq_lock(rq_src, rq_dest);
5099 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5100 rq_src->nr_uninterruptible = 0;
5101 double_rq_unlock(rq_src, rq_dest);
5102 local_irq_restore(flags);
5103}
5104
5105/* Run through task list and migrate tasks from the dead cpu. */
5106static void migrate_live_tasks(int src_cpu)
5107{
48f24c4d 5108 struct task_struct *p, *t;
1da177e4
LT
5109
5110 write_lock_irq(&tasklist_lock);
5111
48f24c4d
IM
5112 do_each_thread(t, p) {
5113 if (p == current)
1da177e4
LT
5114 continue;
5115
48f24c4d
IM
5116 if (task_cpu(p) == src_cpu)
5117 move_task_off_dead_cpu(src_cpu, p);
5118 } while_each_thread(t, p);
1da177e4
LT
5119
5120 write_unlock_irq(&tasklist_lock);
5121}
5122
dd41f596
IM
5123/*
5124 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5125 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5126 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5127 */
5128void sched_idle_next(void)
5129{
48f24c4d 5130 int this_cpu = smp_processor_id();
70b97a7f 5131 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5132 struct task_struct *p = rq->idle;
5133 unsigned long flags;
5134
5135 /* cpu has to be offline */
48f24c4d 5136 BUG_ON(cpu_online(this_cpu));
1da177e4 5137
48f24c4d
IM
5138 /*
5139 * Strictly not necessary since rest of the CPUs are stopped by now
5140 * and interrupts disabled on the current cpu.
1da177e4
LT
5141 */
5142 spin_lock_irqsave(&rq->lock, flags);
5143
dd41f596 5144 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5145
5146 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5147 activate_idle_task(p, rq);
1da177e4
LT
5148
5149 spin_unlock_irqrestore(&rq->lock, flags);
5150}
5151
48f24c4d
IM
5152/*
5153 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5154 * offline.
5155 */
5156void idle_task_exit(void)
5157{
5158 struct mm_struct *mm = current->active_mm;
5159
5160 BUG_ON(cpu_online(smp_processor_id()));
5161
5162 if (mm != &init_mm)
5163 switch_mm(mm, &init_mm, current);
5164 mmdrop(mm);
5165}
5166
054b9108 5167/* called under rq->lock with disabled interrupts */
36c8b586 5168static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5169{
70b97a7f 5170 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5171
5172 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5173 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5174
5175 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5176 BUG_ON(p->state == TASK_DEAD);
1da177e4 5177
48f24c4d 5178 get_task_struct(p);
1da177e4
LT
5179
5180 /*
5181 * Drop lock around migration; if someone else moves it,
5182 * that's OK. No task can be added to this CPU, so iteration is
5183 * fine.
054b9108 5184 * NOTE: interrupts should be left disabled --dev@
1da177e4 5185 */
054b9108 5186 spin_unlock(&rq->lock);
48f24c4d 5187 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5188 spin_lock(&rq->lock);
1da177e4 5189
48f24c4d 5190 put_task_struct(p);
1da177e4
LT
5191}
5192
5193/* release_task() removes task from tasklist, so we won't find dead tasks. */
5194static void migrate_dead_tasks(unsigned int dead_cpu)
5195{
70b97a7f 5196 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5197 struct task_struct *next;
48f24c4d 5198
dd41f596
IM
5199 for ( ; ; ) {
5200 if (!rq->nr_running)
5201 break;
a8e504d2 5202 update_rq_clock(rq);
ff95f3df 5203 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5204 if (!next)
5205 break;
5206 migrate_dead(dead_cpu, next);
e692ab53 5207
1da177e4
LT
5208 }
5209}
5210#endif /* CONFIG_HOTPLUG_CPU */
5211
e692ab53
NP
5212#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5213
5214static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5215 {
5216 .procname = "sched_domain",
5217 .mode = 0755,
5218 },
e692ab53
NP
5219 {0,},
5220};
5221
5222static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5223 {
5224 .procname = "kernel",
5225 .mode = 0755,
5226 .child = sd_ctl_dir,
5227 },
e692ab53
NP
5228 {0,},
5229};
5230
5231static struct ctl_table *sd_alloc_ctl_entry(int n)
5232{
5233 struct ctl_table *entry =
5234 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5235
5236 BUG_ON(!entry);
5237 memset(entry, 0, n * sizeof(struct ctl_table));
5238
5239 return entry;
5240}
5241
5242static void
e0361851 5243set_table_entry(struct ctl_table *entry,
e692ab53
NP
5244 const char *procname, void *data, int maxlen,
5245 mode_t mode, proc_handler *proc_handler)
5246{
e692ab53
NP
5247 entry->procname = procname;
5248 entry->data = data;
5249 entry->maxlen = maxlen;
5250 entry->mode = mode;
5251 entry->proc_handler = proc_handler;
5252}
5253
5254static struct ctl_table *
5255sd_alloc_ctl_domain_table(struct sched_domain *sd)
5256{
5257 struct ctl_table *table = sd_alloc_ctl_entry(14);
5258
e0361851 5259 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5260 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5261 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5262 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5263 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5264 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5265 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5266 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5267 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5268 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5269 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5270 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5271 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5272 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5273 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5274 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5275 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5276 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5277 set_table_entry(&table[10], "cache_nice_tries",
e692ab53
NP
5278 &sd->cache_nice_tries,
5279 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5280 set_table_entry(&table[12], "flags", &sd->flags,
e692ab53
NP
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282
5283 return table;
5284}
5285
5286static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5287{
5288 struct ctl_table *entry, *table;
5289 struct sched_domain *sd;
5290 int domain_num = 0, i;
5291 char buf[32];
5292
5293 for_each_domain(cpu, sd)
5294 domain_num++;
5295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5296
5297 i = 0;
5298 for_each_domain(cpu, sd) {
5299 snprintf(buf, 32, "domain%d", i);
e692ab53
NP
5300 entry->procname = kstrdup(buf, GFP_KERNEL);
5301 entry->mode = 0755;
5302 entry->child = sd_alloc_ctl_domain_table(sd);
5303 entry++;
5304 i++;
5305 }
5306 return table;
5307}
5308
5309static struct ctl_table_header *sd_sysctl_header;
5310static void init_sched_domain_sysctl(void)
5311{
5312 int i, cpu_num = num_online_cpus();
5313 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5314 char buf[32];
5315
5316 sd_ctl_dir[0].child = entry;
5317
5318 for (i = 0; i < cpu_num; i++, entry++) {
5319 snprintf(buf, 32, "cpu%d", i);
e692ab53
NP
5320 entry->procname = kstrdup(buf, GFP_KERNEL);
5321 entry->mode = 0755;
5322 entry->child = sd_alloc_ctl_cpu_table(i);
5323 }
5324 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5325}
5326#else
5327static void init_sched_domain_sysctl(void)
5328{
5329}
5330#endif
5331
1da177e4
LT
5332/*
5333 * migration_call - callback that gets triggered when a CPU is added.
5334 * Here we can start up the necessary migration thread for the new CPU.
5335 */
48f24c4d
IM
5336static int __cpuinit
5337migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5338{
1da177e4 5339 struct task_struct *p;
48f24c4d 5340 int cpu = (long)hcpu;
1da177e4 5341 unsigned long flags;
70b97a7f 5342 struct rq *rq;
1da177e4
LT
5343
5344 switch (action) {
5be9361c
GS
5345 case CPU_LOCK_ACQUIRE:
5346 mutex_lock(&sched_hotcpu_mutex);
5347 break;
5348
1da177e4 5349 case CPU_UP_PREPARE:
8bb78442 5350 case CPU_UP_PREPARE_FROZEN:
dd41f596 5351 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5352 if (IS_ERR(p))
5353 return NOTIFY_BAD;
1da177e4
LT
5354 kthread_bind(p, cpu);
5355 /* Must be high prio: stop_machine expects to yield to it. */
5356 rq = task_rq_lock(p, &flags);
dd41f596 5357 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5358 task_rq_unlock(rq, &flags);
5359 cpu_rq(cpu)->migration_thread = p;
5360 break;
48f24c4d 5361
1da177e4 5362 case CPU_ONLINE:
8bb78442 5363 case CPU_ONLINE_FROZEN:
1da177e4
LT
5364 /* Strictly unneccessary, as first user will wake it. */
5365 wake_up_process(cpu_rq(cpu)->migration_thread);
5366 break;
48f24c4d 5367
1da177e4
LT
5368#ifdef CONFIG_HOTPLUG_CPU
5369 case CPU_UP_CANCELED:
8bb78442 5370 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5371 if (!cpu_rq(cpu)->migration_thread)
5372 break;
1da177e4 5373 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5374 kthread_bind(cpu_rq(cpu)->migration_thread,
5375 any_online_cpu(cpu_online_map));
1da177e4
LT
5376 kthread_stop(cpu_rq(cpu)->migration_thread);
5377 cpu_rq(cpu)->migration_thread = NULL;
5378 break;
48f24c4d 5379
1da177e4 5380 case CPU_DEAD:
8bb78442 5381 case CPU_DEAD_FROZEN:
1da177e4
LT
5382 migrate_live_tasks(cpu);
5383 rq = cpu_rq(cpu);
5384 kthread_stop(rq->migration_thread);
5385 rq->migration_thread = NULL;
5386 /* Idle task back to normal (off runqueue, low prio) */
5387 rq = task_rq_lock(rq->idle, &flags);
a8e504d2 5388 update_rq_clock(rq);
2e1cb74a 5389 deactivate_task(rq, rq->idle, 0);
1da177e4 5390 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5391 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5392 rq->idle->sched_class = &idle_sched_class;
1da177e4
LT
5393 migrate_dead_tasks(cpu);
5394 task_rq_unlock(rq, &flags);
5395 migrate_nr_uninterruptible(rq);
5396 BUG_ON(rq->nr_running != 0);
5397
5398 /* No need to migrate the tasks: it was best-effort if
5be9361c 5399 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5400 * the requestors. */
5401 spin_lock_irq(&rq->lock);
5402 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5403 struct migration_req *req;
5404
1da177e4 5405 req = list_entry(rq->migration_queue.next,
70b97a7f 5406 struct migration_req, list);
1da177e4
LT
5407 list_del_init(&req->list);
5408 complete(&req->done);
5409 }
5410 spin_unlock_irq(&rq->lock);
5411 break;
5412#endif
5be9361c
GS
5413 case CPU_LOCK_RELEASE:
5414 mutex_unlock(&sched_hotcpu_mutex);
5415 break;
1da177e4
LT
5416 }
5417 return NOTIFY_OK;
5418}
5419
5420/* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5422 */
26c2143b 5423static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5424 .notifier_call = migration_call,
5425 .priority = 10
5426};
5427
5428int __init migration_init(void)
5429{
5430 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5431 int err;
48f24c4d
IM
5432
5433 /* Start one for the boot CPU: */
07dccf33
AM
5434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5435 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5437 register_cpu_notifier(&migration_notifier);
48f24c4d 5438
1da177e4
LT
5439 return 0;
5440}
5441#endif
5442
5443#ifdef CONFIG_SMP
476f3534
CL
5444
5445/* Number of possible processor ids */
5446int nr_cpu_ids __read_mostly = NR_CPUS;
5447EXPORT_SYMBOL(nr_cpu_ids);
5448
1a20ff27 5449#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5450#ifdef SCHED_DOMAIN_DEBUG
5451static void sched_domain_debug(struct sched_domain *sd, int cpu)
5452{
5453 int level = 0;
5454
41c7ce9a
NP
5455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5458 }
5459
1da177e4
LT
5460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5461
5462 do {
5463 int i;
5464 char str[NR_CPUS];
5465 struct sched_group *group = sd->groups;
5466 cpumask_t groupmask;
5467
5468 cpumask_scnprintf(str, NR_CPUS, sd->span);
5469 cpus_clear(groupmask);
5470
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 1; i++)
5473 printk(" ");
5474 printk("domain %d: ", level);
5475
5476 if (!(sd->flags & SD_LOAD_BALANCE)) {
5477 printk("does not load-balance\n");
5478 if (sd->parent)
33859f7f
MOS
5479 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 " has parent");
1da177e4
LT
5481 break;
5482 }
5483
5484 printk("span %s\n", str);
5485
5486 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5487 printk(KERN_ERR "ERROR: domain->span does not contain "
5488 "CPU%d\n", cpu);
1da177e4 5489 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5490 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 " CPU%d\n", cpu);
1da177e4
LT
5492
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 2; i++)
5495 printk(" ");
5496 printk("groups:");
5497 do {
5498 if (!group) {
5499 printk("\n");
5500 printk(KERN_ERR "ERROR: group is NULL\n");
5501 break;
5502 }
5503
5517d86b 5504 if (!group->__cpu_power) {
1da177e4 5505 printk("\n");
33859f7f
MOS
5506 printk(KERN_ERR "ERROR: domain->cpu_power not "
5507 "set\n");
1da177e4
LT
5508 }
5509
5510 if (!cpus_weight(group->cpumask)) {
5511 printk("\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5513 }
5514
5515 if (cpus_intersects(groupmask, group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: repeated CPUs\n");
5518 }
5519
5520 cpus_or(groupmask, groupmask, group->cpumask);
5521
5522 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5523 printk(" %s", str);
5524
5525 group = group->next;
5526 } while (group != sd->groups);
5527 printk("\n");
5528
5529 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5530 printk(KERN_ERR "ERROR: groups don't span "
5531 "domain->span\n");
1da177e4
LT
5532
5533 level++;
5534 sd = sd->parent;
33859f7f
MOS
5535 if (!sd)
5536 continue;
1da177e4 5537
33859f7f
MOS
5538 if (!cpus_subset(groupmask, sd->span))
5539 printk(KERN_ERR "ERROR: parent span is not a superset "
5540 "of domain->span\n");
1da177e4
LT
5541
5542 } while (sd);
5543}
5544#else
48f24c4d 5545# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5546#endif
5547
1a20ff27 5548static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5549{
5550 if (cpus_weight(sd->span) == 1)
5551 return 1;
5552
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
89c4710e
SS
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5560 if (sd->groups != sd->groups->next)
5561 return 0;
5562 }
5563
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_IDLE |
5566 SD_WAKE_AFFINE |
5567 SD_WAKE_BALANCE))
5568 return 0;
5569
5570 return 1;
5571}
5572
48f24c4d
IM
5573static int
5574sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5575{
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5577
5578 if (sd_degenerate(parent))
5579 return 1;
5580
5581 if (!cpus_equal(sd->span, parent->span))
5582 return 0;
5583
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags & SD_WAKE_AFFINE)
5587 pflags &= ~SD_WAKE_BALANCE;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent->groups == parent->groups->next) {
5590 pflags &= ~(SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
89c4710e
SS
5593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5596 }
5597 if (~cflags & pflags)
5598 return 0;
5599
5600 return 1;
5601}
5602
1da177e4
LT
5603/*
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5606 */
9c1cfda2 5607static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5608{
70b97a7f 5609 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5610 struct sched_domain *tmp;
5611
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp = sd; tmp; tmp = tmp->parent) {
5614 struct sched_domain *parent = tmp->parent;
5615 if (!parent)
5616 break;
1a848870 5617 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5618 tmp->parent = parent->parent;
1a848870
SS
5619 if (parent->parent)
5620 parent->parent->child = tmp;
5621 }
245af2c7
SS
5622 }
5623
1a848870 5624 if (sd && sd_degenerate(sd)) {
245af2c7 5625 sd = sd->parent;
1a848870
SS
5626 if (sd)
5627 sd->child = NULL;
5628 }
1da177e4
LT
5629
5630 sched_domain_debug(sd, cpu);
5631
674311d5 5632 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5633}
5634
5635/* cpus with isolated domains */
67af63a6 5636static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5637
5638/* Setup the mask of cpus configured for isolated domains */
5639static int __init isolated_cpu_setup(char *str)
5640{
5641 int ints[NR_CPUS], i;
5642
5643 str = get_options(str, ARRAY_SIZE(ints), ints);
5644 cpus_clear(cpu_isolated_map);
5645 for (i = 1; i <= ints[0]; i++)
5646 if (ints[i] < NR_CPUS)
5647 cpu_set(ints[i], cpu_isolated_map);
5648 return 1;
5649}
5650
5651__setup ("isolcpus=", isolated_cpu_setup);
5652
5653/*
6711cab4
SS
5654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5658 *
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5662 */
a616058b 5663static void
6711cab4
SS
5664init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5665 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg))
1da177e4
LT
5667{
5668 struct sched_group *first = NULL, *last = NULL;
5669 cpumask_t covered = CPU_MASK_NONE;
5670 int i;
5671
5672 for_each_cpu_mask(i, span) {
6711cab4
SS
5673 struct sched_group *sg;
5674 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5675 int j;
5676
5677 if (cpu_isset(i, covered))
5678 continue;
5679
5680 sg->cpumask = CPU_MASK_NONE;
5517d86b 5681 sg->__cpu_power = 0;
1da177e4
LT
5682
5683 for_each_cpu_mask(j, span) {
6711cab4 5684 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5685 continue;
5686
5687 cpu_set(j, covered);
5688 cpu_set(j, sg->cpumask);
5689 }
5690 if (!first)
5691 first = sg;
5692 if (last)
5693 last->next = sg;
5694 last = sg;
5695 }
5696 last->next = first;
5697}
5698
9c1cfda2 5699#define SD_NODES_PER_DOMAIN 16
1da177e4 5700
9c1cfda2 5701#ifdef CONFIG_NUMA
198e2f18 5702
9c1cfda2
JH
5703/**
5704 * find_next_best_node - find the next node to include in a sched_domain
5705 * @node: node whose sched_domain we're building
5706 * @used_nodes: nodes already in the sched_domain
5707 *
5708 * Find the next node to include in a given scheduling domain. Simply
5709 * finds the closest node not already in the @used_nodes map.
5710 *
5711 * Should use nodemask_t.
5712 */
5713static int find_next_best_node(int node, unsigned long *used_nodes)
5714{
5715 int i, n, val, min_val, best_node = 0;
5716
5717 min_val = INT_MAX;
5718
5719 for (i = 0; i < MAX_NUMNODES; i++) {
5720 /* Start at @node */
5721 n = (node + i) % MAX_NUMNODES;
5722
5723 if (!nr_cpus_node(n))
5724 continue;
5725
5726 /* Skip already used nodes */
5727 if (test_bit(n, used_nodes))
5728 continue;
5729
5730 /* Simple min distance search */
5731 val = node_distance(node, n);
5732
5733 if (val < min_val) {
5734 min_val = val;
5735 best_node = n;
5736 }
5737 }
5738
5739 set_bit(best_node, used_nodes);
5740 return best_node;
5741}
5742
5743/**
5744 * sched_domain_node_span - get a cpumask for a node's sched_domain
5745 * @node: node whose cpumask we're constructing
5746 * @size: number of nodes to include in this span
5747 *
5748 * Given a node, construct a good cpumask for its sched_domain to span. It
5749 * should be one that prevents unnecessary balancing, but also spreads tasks
5750 * out optimally.
5751 */
5752static cpumask_t sched_domain_node_span(int node)
5753{
9c1cfda2 5754 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5755 cpumask_t span, nodemask;
5756 int i;
9c1cfda2
JH
5757
5758 cpus_clear(span);
5759 bitmap_zero(used_nodes, MAX_NUMNODES);
5760
5761 nodemask = node_to_cpumask(node);
5762 cpus_or(span, span, nodemask);
5763 set_bit(node, used_nodes);
5764
5765 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5766 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5767
9c1cfda2
JH
5768 nodemask = node_to_cpumask(next_node);
5769 cpus_or(span, span, nodemask);
5770 }
5771
5772 return span;
5773}
5774#endif
5775
5c45bf27 5776int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5777
9c1cfda2 5778/*
48f24c4d 5779 * SMT sched-domains:
9c1cfda2 5780 */
1da177e4
LT
5781#ifdef CONFIG_SCHED_SMT
5782static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5783static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5784
6711cab4
SS
5785static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5786 struct sched_group **sg)
1da177e4 5787{
6711cab4
SS
5788 if (sg)
5789 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5790 return cpu;
5791}
5792#endif
5793
48f24c4d
IM
5794/*
5795 * multi-core sched-domains:
5796 */
1e9f28fa
SS
5797#ifdef CONFIG_SCHED_MC
5798static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5799static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5800#endif
5801
5802#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5803static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
1e9f28fa 5805{
6711cab4 5806 int group;
a616058b
SS
5807 cpumask_t mask = cpu_sibling_map[cpu];
5808 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5809 group = first_cpu(mask);
5810 if (sg)
5811 *sg = &per_cpu(sched_group_core, group);
5812 return group;
1e9f28fa
SS
5813}
5814#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5815static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
1e9f28fa 5817{
6711cab4
SS
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5820 return cpu;
5821}
5822#endif
5823
1da177e4 5824static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5825static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5826
6711cab4
SS
5827static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5828 struct sched_group **sg)
1da177e4 5829{
6711cab4 5830 int group;
48f24c4d 5831#ifdef CONFIG_SCHED_MC
1e9f28fa 5832 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 5833 cpus_and(mask, mask, *cpu_map);
6711cab4 5834 group = first_cpu(mask);
1e9f28fa 5835#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
5836 cpumask_t mask = cpu_sibling_map[cpu];
5837 cpus_and(mask, mask, *cpu_map);
6711cab4 5838 group = first_cpu(mask);
1da177e4 5839#else
6711cab4 5840 group = cpu;
1da177e4 5841#endif
6711cab4
SS
5842 if (sg)
5843 *sg = &per_cpu(sched_group_phys, group);
5844 return group;
1da177e4
LT
5845}
5846
5847#ifdef CONFIG_NUMA
1da177e4 5848/*
9c1cfda2
JH
5849 * The init_sched_build_groups can't handle what we want to do with node
5850 * groups, so roll our own. Now each node has its own list of groups which
5851 * gets dynamically allocated.
1da177e4 5852 */
9c1cfda2 5853static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5854static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5855
9c1cfda2 5856static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 5857static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 5858
6711cab4
SS
5859static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
9c1cfda2 5861{
6711cab4
SS
5862 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5863 int group;
5864
5865 cpus_and(nodemask, nodemask, *cpu_map);
5866 group = first_cpu(nodemask);
5867
5868 if (sg)
5869 *sg = &per_cpu(sched_group_allnodes, group);
5870 return group;
1da177e4 5871}
6711cab4 5872
08069033
SS
5873static void init_numa_sched_groups_power(struct sched_group *group_head)
5874{
5875 struct sched_group *sg = group_head;
5876 int j;
5877
5878 if (!sg)
5879 return;
5880next_sg:
5881 for_each_cpu_mask(j, sg->cpumask) {
5882 struct sched_domain *sd;
5883
5884 sd = &per_cpu(phys_domains, j);
5885 if (j != first_cpu(sd->groups->cpumask)) {
5886 /*
5887 * Only add "power" once for each
5888 * physical package.
5889 */
5890 continue;
5891 }
5892
5517d86b 5893 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
08069033
SS
5894 }
5895 sg = sg->next;
5896 if (sg != group_head)
5897 goto next_sg;
5898}
1da177e4
LT
5899#endif
5900
a616058b 5901#ifdef CONFIG_NUMA
51888ca2
SV
5902/* Free memory allocated for various sched_group structures */
5903static void free_sched_groups(const cpumask_t *cpu_map)
5904{
a616058b 5905 int cpu, i;
51888ca2
SV
5906
5907 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
5908 struct sched_group **sched_group_nodes
5909 = sched_group_nodes_bycpu[cpu];
5910
51888ca2
SV
5911 if (!sched_group_nodes)
5912 continue;
5913
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 cpumask_t nodemask = node_to_cpumask(i);
5916 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5917
5918 cpus_and(nodemask, nodemask, *cpu_map);
5919 if (cpus_empty(nodemask))
5920 continue;
5921
5922 if (sg == NULL)
5923 continue;
5924 sg = sg->next;
5925next_sg:
5926 oldsg = sg;
5927 sg = sg->next;
5928 kfree(oldsg);
5929 if (oldsg != sched_group_nodes[i])
5930 goto next_sg;
5931 }
5932 kfree(sched_group_nodes);
5933 sched_group_nodes_bycpu[cpu] = NULL;
5934 }
51888ca2 5935}
a616058b
SS
5936#else
5937static void free_sched_groups(const cpumask_t *cpu_map)
5938{
5939}
5940#endif
51888ca2 5941
89c4710e
SS
5942/*
5943 * Initialize sched groups cpu_power.
5944 *
5945 * cpu_power indicates the capacity of sched group, which is used while
5946 * distributing the load between different sched groups in a sched domain.
5947 * Typically cpu_power for all the groups in a sched domain will be same unless
5948 * there are asymmetries in the topology. If there are asymmetries, group
5949 * having more cpu_power will pickup more load compared to the group having
5950 * less cpu_power.
5951 *
5952 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5953 * the maximum number of tasks a group can handle in the presence of other idle
5954 * or lightly loaded groups in the same sched domain.
5955 */
5956static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5957{
5958 struct sched_domain *child;
5959 struct sched_group *group;
5960
5961 WARN_ON(!sd || !sd->groups);
5962
5963 if (cpu != first_cpu(sd->groups->cpumask))
5964 return;
5965
5966 child = sd->child;
5967
5517d86b
ED
5968 sd->groups->__cpu_power = 0;
5969
89c4710e
SS
5970 /*
5971 * For perf policy, if the groups in child domain share resources
5972 * (for example cores sharing some portions of the cache hierarchy
5973 * or SMT), then set this domain groups cpu_power such that each group
5974 * can handle only one task, when there are other idle groups in the
5975 * same sched domain.
5976 */
5977 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5978 (child->flags &
5979 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 5980 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
5981 return;
5982 }
5983
89c4710e
SS
5984 /*
5985 * add cpu_power of each child group to this groups cpu_power
5986 */
5987 group = child->groups;
5988 do {
5517d86b 5989 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
5990 group = group->next;
5991 } while (group != child->groups);
5992}
5993
1da177e4 5994/*
1a20ff27
DG
5995 * Build sched domains for a given set of cpus and attach the sched domains
5996 * to the individual cpus
1da177e4 5997 */
51888ca2 5998static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5999{
6000 int i;
d1b55138
JH
6001#ifdef CONFIG_NUMA
6002 struct sched_group **sched_group_nodes = NULL;
6711cab4 6003 int sd_allnodes = 0;
d1b55138
JH
6004
6005 /*
6006 * Allocate the per-node list of sched groups
6007 */
dd41f596 6008 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
d3a5aa98 6009 GFP_KERNEL);
d1b55138
JH
6010 if (!sched_group_nodes) {
6011 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6012 return -ENOMEM;
d1b55138
JH
6013 }
6014 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6015#endif
1da177e4
LT
6016
6017 /*
1a20ff27 6018 * Set up domains for cpus specified by the cpu_map.
1da177e4 6019 */
1a20ff27 6020 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6021 struct sched_domain *sd = NULL, *p;
6022 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6023
1a20ff27 6024 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6025
6026#ifdef CONFIG_NUMA
dd41f596
IM
6027 if (cpus_weight(*cpu_map) >
6028 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6029 sd = &per_cpu(allnodes_domains, i);
6030 *sd = SD_ALLNODES_INIT;
6031 sd->span = *cpu_map;
6711cab4 6032 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6033 p = sd;
6711cab4 6034 sd_allnodes = 1;
9c1cfda2
JH
6035 } else
6036 p = NULL;
6037
1da177e4 6038 sd = &per_cpu(node_domains, i);
1da177e4 6039 *sd = SD_NODE_INIT;
9c1cfda2
JH
6040 sd->span = sched_domain_node_span(cpu_to_node(i));
6041 sd->parent = p;
1a848870
SS
6042 if (p)
6043 p->child = sd;
9c1cfda2 6044 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6045#endif
6046
6047 p = sd;
6048 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6049 *sd = SD_CPU_INIT;
6050 sd->span = nodemask;
6051 sd->parent = p;
1a848870
SS
6052 if (p)
6053 p->child = sd;
6711cab4 6054 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6055
1e9f28fa
SS
6056#ifdef CONFIG_SCHED_MC
6057 p = sd;
6058 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6059 *sd = SD_MC_INIT;
6060 sd->span = cpu_coregroup_map(i);
6061 cpus_and(sd->span, sd->span, *cpu_map);
6062 sd->parent = p;
1a848870 6063 p->child = sd;
6711cab4 6064 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6065#endif
6066
1da177e4
LT
6067#ifdef CONFIG_SCHED_SMT
6068 p = sd;
6069 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6070 *sd = SD_SIBLING_INIT;
6071 sd->span = cpu_sibling_map[i];
1a20ff27 6072 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6073 sd->parent = p;
1a848870 6074 p->child = sd;
6711cab4 6075 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6076#endif
6077 }
6078
6079#ifdef CONFIG_SCHED_SMT
6080 /* Set up CPU (sibling) groups */
9c1cfda2 6081 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6082 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6083 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6084 if (i != first_cpu(this_sibling_map))
6085 continue;
6086
dd41f596
IM
6087 init_sched_build_groups(this_sibling_map, cpu_map,
6088 &cpu_to_cpu_group);
1da177e4
LT
6089 }
6090#endif
6091
1e9f28fa
SS
6092#ifdef CONFIG_SCHED_MC
6093 /* Set up multi-core groups */
6094 for_each_cpu_mask(i, *cpu_map) {
6095 cpumask_t this_core_map = cpu_coregroup_map(i);
6096 cpus_and(this_core_map, this_core_map, *cpu_map);
6097 if (i != first_cpu(this_core_map))
6098 continue;
dd41f596
IM
6099 init_sched_build_groups(this_core_map, cpu_map,
6100 &cpu_to_core_group);
1e9f28fa
SS
6101 }
6102#endif
6103
1da177e4
LT
6104 /* Set up physical groups */
6105 for (i = 0; i < MAX_NUMNODES; i++) {
6106 cpumask_t nodemask = node_to_cpumask(i);
6107
1a20ff27 6108 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6109 if (cpus_empty(nodemask))
6110 continue;
6111
6711cab4 6112 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6113 }
6114
6115#ifdef CONFIG_NUMA
6116 /* Set up node groups */
6711cab4 6117 if (sd_allnodes)
dd41f596
IM
6118 init_sched_build_groups(*cpu_map, cpu_map,
6119 &cpu_to_allnodes_group);
9c1cfda2
JH
6120
6121 for (i = 0; i < MAX_NUMNODES; i++) {
6122 /* Set up node groups */
6123 struct sched_group *sg, *prev;
6124 cpumask_t nodemask = node_to_cpumask(i);
6125 cpumask_t domainspan;
6126 cpumask_t covered = CPU_MASK_NONE;
6127 int j;
6128
6129 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6130 if (cpus_empty(nodemask)) {
6131 sched_group_nodes[i] = NULL;
9c1cfda2 6132 continue;
d1b55138 6133 }
9c1cfda2
JH
6134
6135 domainspan = sched_domain_node_span(i);
6136 cpus_and(domainspan, domainspan, *cpu_map);
6137
15f0b676 6138 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6139 if (!sg) {
6140 printk(KERN_WARNING "Can not alloc domain group for "
6141 "node %d\n", i);
6142 goto error;
6143 }
9c1cfda2
JH
6144 sched_group_nodes[i] = sg;
6145 for_each_cpu_mask(j, nodemask) {
6146 struct sched_domain *sd;
9761eea8 6147
9c1cfda2
JH
6148 sd = &per_cpu(node_domains, j);
6149 sd->groups = sg;
9c1cfda2 6150 }
5517d86b 6151 sg->__cpu_power = 0;
9c1cfda2 6152 sg->cpumask = nodemask;
51888ca2 6153 sg->next = sg;
9c1cfda2
JH
6154 cpus_or(covered, covered, nodemask);
6155 prev = sg;
6156
6157 for (j = 0; j < MAX_NUMNODES; j++) {
6158 cpumask_t tmp, notcovered;
6159 int n = (i + j) % MAX_NUMNODES;
6160
6161 cpus_complement(notcovered, covered);
6162 cpus_and(tmp, notcovered, *cpu_map);
6163 cpus_and(tmp, tmp, domainspan);
6164 if (cpus_empty(tmp))
6165 break;
6166
6167 nodemask = node_to_cpumask(n);
6168 cpus_and(tmp, tmp, nodemask);
6169 if (cpus_empty(tmp))
6170 continue;
6171
15f0b676
SV
6172 sg = kmalloc_node(sizeof(struct sched_group),
6173 GFP_KERNEL, i);
9c1cfda2
JH
6174 if (!sg) {
6175 printk(KERN_WARNING
6176 "Can not alloc domain group for node %d\n", j);
51888ca2 6177 goto error;
9c1cfda2 6178 }
5517d86b 6179 sg->__cpu_power = 0;
9c1cfda2 6180 sg->cpumask = tmp;
51888ca2 6181 sg->next = prev->next;
9c1cfda2
JH
6182 cpus_or(covered, covered, tmp);
6183 prev->next = sg;
6184 prev = sg;
6185 }
9c1cfda2 6186 }
1da177e4
LT
6187#endif
6188
6189 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6190#ifdef CONFIG_SCHED_SMT
1a20ff27 6191 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6192 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6193
89c4710e 6194 init_sched_groups_power(i, sd);
5c45bf27 6195 }
1da177e4 6196#endif
1e9f28fa 6197#ifdef CONFIG_SCHED_MC
5c45bf27 6198 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6199 struct sched_domain *sd = &per_cpu(core_domains, i);
6200
89c4710e 6201 init_sched_groups_power(i, sd);
5c45bf27
SS
6202 }
6203#endif
1e9f28fa 6204
5c45bf27 6205 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6206 struct sched_domain *sd = &per_cpu(phys_domains, i);
6207
89c4710e 6208 init_sched_groups_power(i, sd);
1da177e4
LT
6209 }
6210
9c1cfda2 6211#ifdef CONFIG_NUMA
08069033
SS
6212 for (i = 0; i < MAX_NUMNODES; i++)
6213 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6214
6711cab4
SS
6215 if (sd_allnodes) {
6216 struct sched_group *sg;
f712c0c7 6217
6711cab4 6218 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6219 init_numa_sched_groups_power(sg);
6220 }
9c1cfda2
JH
6221#endif
6222
1da177e4 6223 /* Attach the domains */
1a20ff27 6224 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6225 struct sched_domain *sd;
6226#ifdef CONFIG_SCHED_SMT
6227 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6228#elif defined(CONFIG_SCHED_MC)
6229 sd = &per_cpu(core_domains, i);
1da177e4
LT
6230#else
6231 sd = &per_cpu(phys_domains, i);
6232#endif
6233 cpu_attach_domain(sd, i);
6234 }
51888ca2
SV
6235
6236 return 0;
6237
a616058b 6238#ifdef CONFIG_NUMA
51888ca2
SV
6239error:
6240 free_sched_groups(cpu_map);
6241 return -ENOMEM;
a616058b 6242#endif
1da177e4 6243}
1a20ff27
DG
6244/*
6245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6246 */
51888ca2 6247static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6248{
6249 cpumask_t cpu_default_map;
51888ca2 6250 int err;
1da177e4 6251
1a20ff27
DG
6252 /*
6253 * Setup mask for cpus without special case scheduling requirements.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6256 */
6257 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6258
51888ca2
SV
6259 err = build_sched_domains(&cpu_default_map);
6260
6261 return err;
1a20ff27
DG
6262}
6263
6264static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6265{
51888ca2 6266 free_sched_groups(cpu_map);
9c1cfda2 6267}
1da177e4 6268
1a20ff27
DG
6269/*
6270 * Detach sched domains from a group of cpus specified in cpu_map
6271 * These cpus will now be attached to the NULL domain
6272 */
858119e1 6273static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6274{
6275 int i;
6276
6277 for_each_cpu_mask(i, *cpu_map)
6278 cpu_attach_domain(NULL, i);
6279 synchronize_sched();
6280 arch_destroy_sched_domains(cpu_map);
6281}
6282
6283/*
6284 * Partition sched domains as specified by the cpumasks below.
6285 * This attaches all cpus from the cpumasks to the NULL domain,
6286 * waits for a RCU quiescent period, recalculates sched
6287 * domain information and then attaches them back to the
6288 * correct sched domains
6289 * Call with hotplug lock held
6290 */
51888ca2 6291int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6292{
6293 cpumask_t change_map;
51888ca2 6294 int err = 0;
1a20ff27
DG
6295
6296 cpus_and(*partition1, *partition1, cpu_online_map);
6297 cpus_and(*partition2, *partition2, cpu_online_map);
6298 cpus_or(change_map, *partition1, *partition2);
6299
6300 /* Detach sched domains from all of the affected cpus */
6301 detach_destroy_domains(&change_map);
6302 if (!cpus_empty(*partition1))
51888ca2
SV
6303 err = build_sched_domains(partition1);
6304 if (!err && !cpus_empty(*partition2))
6305 err = build_sched_domains(partition2);
6306
6307 return err;
1a20ff27
DG
6308}
6309
5c45bf27
SS
6310#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6311int arch_reinit_sched_domains(void)
6312{
6313 int err;
6314
5be9361c 6315 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6316 detach_destroy_domains(&cpu_online_map);
6317 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6318 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6319
6320 return err;
6321}
6322
6323static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6324{
6325 int ret;
6326
6327 if (buf[0] != '0' && buf[0] != '1')
6328 return -EINVAL;
6329
6330 if (smt)
6331 sched_smt_power_savings = (buf[0] == '1');
6332 else
6333 sched_mc_power_savings = (buf[0] == '1');
6334
6335 ret = arch_reinit_sched_domains();
6336
6337 return ret ? ret : count;
6338}
6339
6340int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6341{
6342 int err = 0;
48f24c4d 6343
5c45bf27
SS
6344#ifdef CONFIG_SCHED_SMT
6345 if (smt_capable())
6346 err = sysfs_create_file(&cls->kset.kobj,
6347 &attr_sched_smt_power_savings.attr);
6348#endif
6349#ifdef CONFIG_SCHED_MC
6350 if (!err && mc_capable())
6351 err = sysfs_create_file(&cls->kset.kobj,
6352 &attr_sched_mc_power_savings.attr);
6353#endif
6354 return err;
6355}
6356#endif
6357
6358#ifdef CONFIG_SCHED_MC
6359static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6360{
6361 return sprintf(page, "%u\n", sched_mc_power_savings);
6362}
48f24c4d
IM
6363static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6364 const char *buf, size_t count)
5c45bf27
SS
6365{
6366 return sched_power_savings_store(buf, count, 0);
6367}
6368SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6369 sched_mc_power_savings_store);
6370#endif
6371
6372#ifdef CONFIG_SCHED_SMT
6373static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6374{
6375 return sprintf(page, "%u\n", sched_smt_power_savings);
6376}
48f24c4d
IM
6377static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
5c45bf27
SS
6379{
6380 return sched_power_savings_store(buf, count, 1);
6381}
6382SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6383 sched_smt_power_savings_store);
6384#endif
6385
1da177e4
LT
6386/*
6387 * Force a reinitialization of the sched domains hierarchy. The domains
6388 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6389 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6390 * which will prevent rebalancing while the sched domains are recalculated.
6391 */
6392static int update_sched_domains(struct notifier_block *nfb,
6393 unsigned long action, void *hcpu)
6394{
1da177e4
LT
6395 switch (action) {
6396 case CPU_UP_PREPARE:
8bb78442 6397 case CPU_UP_PREPARE_FROZEN:
1da177e4 6398 case CPU_DOWN_PREPARE:
8bb78442 6399 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6400 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6401 return NOTIFY_OK;
6402
6403 case CPU_UP_CANCELED:
8bb78442 6404 case CPU_UP_CANCELED_FROZEN:
1da177e4 6405 case CPU_DOWN_FAILED:
8bb78442 6406 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6407 case CPU_ONLINE:
8bb78442 6408 case CPU_ONLINE_FROZEN:
1da177e4 6409 case CPU_DEAD:
8bb78442 6410 case CPU_DEAD_FROZEN:
1da177e4
LT
6411 /*
6412 * Fall through and re-initialise the domains.
6413 */
6414 break;
6415 default:
6416 return NOTIFY_DONE;
6417 }
6418
6419 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6420 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6421
6422 return NOTIFY_OK;
6423}
1da177e4
LT
6424
6425void __init sched_init_smp(void)
6426{
5c1e1767
NP
6427 cpumask_t non_isolated_cpus;
6428
5be9361c 6429 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6430 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6431 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6432 if (cpus_empty(non_isolated_cpus))
6433 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6434 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6435 /* XXX: Theoretical race here - CPU may be hotplugged now */
6436 hotcpu_notifier(update_sched_domains, 0);
5c1e1767 6437
e692ab53
NP
6438 init_sched_domain_sysctl();
6439
5c1e1767
NP
6440 /* Move init over to a non-isolated CPU */
6441 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6442 BUG();
dd41f596 6443 sched_init_granularity();
1da177e4
LT
6444}
6445#else
6446void __init sched_init_smp(void)
6447{
dd41f596 6448 sched_init_granularity();
1da177e4
LT
6449}
6450#endif /* CONFIG_SMP */
6451
6452int in_sched_functions(unsigned long addr)
6453{
6454 /* Linker adds these: start and end of __sched functions */
6455 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6456
1da177e4
LT
6457 return in_lock_functions(addr) ||
6458 (addr >= (unsigned long)__sched_text_start
6459 && addr < (unsigned long)__sched_text_end);
6460}
6461
dd41f596
IM
6462static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6463{
6464 cfs_rq->tasks_timeline = RB_ROOT;
6465 cfs_rq->fair_clock = 1;
6466#ifdef CONFIG_FAIR_GROUP_SCHED
6467 cfs_rq->rq = rq;
6468#endif
6469}
6470
1da177e4
LT
6471void __init sched_init(void)
6472{
dd41f596 6473 u64 now = sched_clock();
476f3534 6474 int highest_cpu = 0;
dd41f596
IM
6475 int i, j;
6476
6477 /*
6478 * Link up the scheduling class hierarchy:
6479 */
6480 rt_sched_class.next = &fair_sched_class;
6481 fair_sched_class.next = &idle_sched_class;
6482 idle_sched_class.next = NULL;
1da177e4 6483
0a945022 6484 for_each_possible_cpu(i) {
dd41f596 6485 struct rt_prio_array *array;
70b97a7f 6486 struct rq *rq;
1da177e4
LT
6487
6488 rq = cpu_rq(i);
6489 spin_lock_init(&rq->lock);
fcb99371 6490 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6491 rq->nr_running = 0;
dd41f596
IM
6492 rq->clock = 1;
6493 init_cfs_rq(&rq->cfs, rq);
6494#ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6496 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6497#endif
6498 rq->ls.load_update_last = now;
6499 rq->ls.load_update_start = now;
1da177e4 6500
dd41f596
IM
6501 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6502 rq->cpu_load[j] = 0;
1da177e4 6503#ifdef CONFIG_SMP
41c7ce9a 6504 rq->sd = NULL;
1da177e4 6505 rq->active_balance = 0;
dd41f596 6506 rq->next_balance = jiffies;
1da177e4 6507 rq->push_cpu = 0;
0a2966b4 6508 rq->cpu = i;
1da177e4
LT
6509 rq->migration_thread = NULL;
6510 INIT_LIST_HEAD(&rq->migration_queue);
6511#endif
6512 atomic_set(&rq->nr_iowait, 0);
6513
dd41f596
IM
6514 array = &rq->rt.active;
6515 for (j = 0; j < MAX_RT_PRIO; j++) {
6516 INIT_LIST_HEAD(array->queue + j);
6517 __clear_bit(j, array->bitmap);
1da177e4 6518 }
476f3534 6519 highest_cpu = i;
dd41f596
IM
6520 /* delimiter for bitsearch: */
6521 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6522 }
6523
2dd73a4f 6524 set_load_weight(&init_task);
b50f60ce 6525
e107be36
AK
6526#ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528#endif
6529
c9819f45 6530#ifdef CONFIG_SMP
476f3534 6531 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6532 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6533#endif
6534
b50f60ce
HC
6535#ifdef CONFIG_RT_MUTEXES
6536 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6537#endif
6538
1da177e4
LT
6539 /*
6540 * The boot idle thread does lazy MMU switching as well:
6541 */
6542 atomic_inc(&init_mm.mm_count);
6543 enter_lazy_tlb(&init_mm, current);
6544
6545 /*
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6550 */
6551 init_idle(current, smp_processor_id());
dd41f596
IM
6552 /*
6553 * During early bootup we pretend to be a normal task:
6554 */
6555 current->sched_class = &fair_sched_class;
1da177e4
LT
6556}
6557
6558#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6559void __might_sleep(char *file, int line)
6560{
48f24c4d 6561#ifdef in_atomic
1da177e4
LT
6562 static unsigned long prev_jiffy; /* ratelimiting */
6563
6564 if ((in_atomic() || irqs_disabled()) &&
6565 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6567 return;
6568 prev_jiffy = jiffies;
91368d73 6569 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6570 " context at %s:%d\n", file, line);
6571 printk("in_atomic():%d, irqs_disabled():%d\n",
6572 in_atomic(), irqs_disabled());
a4c410f0 6573 debug_show_held_locks(current);
3117df04
IM
6574 if (irqs_disabled())
6575 print_irqtrace_events(current);
1da177e4
LT
6576 dump_stack();
6577 }
6578#endif
6579}
6580EXPORT_SYMBOL(__might_sleep);
6581#endif
6582
6583#ifdef CONFIG_MAGIC_SYSRQ
6584void normalize_rt_tasks(void)
6585{
a0f98a1c 6586 struct task_struct *g, *p;
1da177e4 6587 unsigned long flags;
70b97a7f 6588 struct rq *rq;
dd41f596 6589 int on_rq;
1da177e4
LT
6590
6591 read_lock_irq(&tasklist_lock);
a0f98a1c 6592 do_each_thread(g, p) {
dd41f596
IM
6593 p->se.fair_key = 0;
6594 p->se.wait_runtime = 0;
6cfb0d5d 6595 p->se.exec_start = 0;
dd41f596 6596 p->se.wait_start_fair = 0;
6cfb0d5d
IM
6597 p->se.sleep_start_fair = 0;
6598#ifdef CONFIG_SCHEDSTATS
dd41f596 6599 p->se.wait_start = 0;
dd41f596 6600 p->se.sleep_start = 0;
dd41f596 6601 p->se.block_start = 0;
6cfb0d5d 6602#endif
dd41f596
IM
6603 task_rq(p)->cfs.fair_clock = 0;
6604 task_rq(p)->clock = 0;
6605
6606 if (!rt_task(p)) {
6607 /*
6608 * Renice negative nice level userspace
6609 * tasks back to 0:
6610 */
6611 if (TASK_NICE(p) < 0 && p->mm)
6612 set_user_nice(p, 0);
1da177e4 6613 continue;
dd41f596 6614 }
1da177e4 6615
b29739f9
IM
6616 spin_lock_irqsave(&p->pi_lock, flags);
6617 rq = __task_rq_lock(p);
dd41f596
IM
6618#ifdef CONFIG_SMP
6619 /*
6620 * Do not touch the migration thread:
6621 */
6622 if (p == rq->migration_thread)
6623 goto out_unlock;
6624#endif
1da177e4 6625
2daa3577 6626 update_rq_clock(rq);
dd41f596 6627 on_rq = p->se.on_rq;
2daa3577
IM
6628 if (on_rq)
6629 deactivate_task(rq, p, 0);
dd41f596
IM
6630 __setscheduler(rq, p, SCHED_NORMAL, 0);
6631 if (on_rq) {
2daa3577 6632 activate_task(rq, p, 0);
1da177e4
LT
6633 resched_task(rq->curr);
6634 }
dd41f596
IM
6635#ifdef CONFIG_SMP
6636 out_unlock:
6637#endif
b29739f9
IM
6638 __task_rq_unlock(rq);
6639 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6640 } while_each_thread(g, p);
6641
1da177e4
LT
6642 read_unlock_irq(&tasklist_lock);
6643}
6644
6645#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6646
6647#ifdef CONFIG_IA64
6648/*
6649 * These functions are only useful for the IA64 MCA handling.
6650 *
6651 * They can only be called when the whole system has been
6652 * stopped - every CPU needs to be quiescent, and no scheduling
6653 * activity can take place. Using them for anything else would
6654 * be a serious bug, and as a result, they aren't even visible
6655 * under any other configuration.
6656 */
6657
6658/**
6659 * curr_task - return the current task for a given cpu.
6660 * @cpu: the processor in question.
6661 *
6662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6663 */
36c8b586 6664struct task_struct *curr_task(int cpu)
1df5c10a
LT
6665{
6666 return cpu_curr(cpu);
6667}
6668
6669/**
6670 * set_curr_task - set the current task for a given cpu.
6671 * @cpu: the processor in question.
6672 * @p: the task pointer to set.
6673 *
6674 * Description: This function must only be used when non-maskable interrupts
6675 * are serviced on a separate stack. It allows the architecture to switch the
6676 * notion of the current task on a cpu in a non-blocking manner. This function
6677 * must be called with all CPU's synchronized, and interrupts disabled, the
6678 * and caller must save the original value of the current task (see
6679 * curr_task() above) and restore that value before reenabling interrupts and
6680 * re-starting the system.
6681 *
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6683 */
36c8b586 6684void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6685{
6686 cpu_curr(cpu) = p;
6687}
6688
6689#endif