sched: add avg-overlap support to RT tasks
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
368static inline struct task_group *task_group(struct task_struct *p)
369{
370 return NULL;
371}
29f59db3 372
052f1dc7 373#endif /* CONFIG_GROUP_SCHED */
29f59db3 374
6aa645ea
IM
375/* CFS-related fields in a runqueue */
376struct cfs_rq {
377 struct load_weight load;
378 unsigned long nr_running;
379
6aa645ea 380 u64 exec_clock;
e9acbff6 381 u64 min_vruntime;
103638d9 382 u64 pair_start;
6aa645ea
IM
383
384 struct rb_root tasks_timeline;
385 struct rb_node *rb_leftmost;
4a55bd5e
PZ
386
387 struct list_head tasks;
388 struct list_head *balance_iterator;
389
390 /*
391 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
392 * It is set to NULL otherwise (i.e when none are currently running).
393 */
aa2ac252 394 struct sched_entity *curr, *next;
ddc97297
PZ
395
396 unsigned long nr_spread_over;
397
62160e3f 398#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
399 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
400
41a2d6cf
IM
401 /*
402 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
403 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
404 * (like users, containers etc.)
405 *
406 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
407 * list is used during load balance.
408 */
41a2d6cf
IM
409 struct list_head leaf_cfs_rq_list;
410 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
411
412#ifdef CONFIG_SMP
c09595f6 413 /*
c8cba857 414 * the part of load.weight contributed by tasks
c09595f6 415 */
c8cba857 416 unsigned long task_weight;
c09595f6 417
c8cba857
PZ
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
c09595f6 425
c8cba857
PZ
426 /*
427 * this cpu's part of tg->shares
428 */
429 unsigned long shares;
f1d239f7
PZ
430
431 /*
432 * load.weight at the time we set shares
433 */
434 unsigned long rq_weight;
c09595f6 435#endif
6aa645ea
IM
436#endif
437};
1da177e4 438
6aa645ea
IM
439/* Real-Time classes' related field in a runqueue: */
440struct rt_rq {
441 struct rt_prio_array active;
63489e45 442 unsigned long rt_nr_running;
052f1dc7 443#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
444 int highest_prio; /* highest queued rt task prio */
445#endif
fa85ae24 446#ifdef CONFIG_SMP
73fe6aae 447 unsigned long rt_nr_migratory;
a22d7fc1 448 int overloaded;
fa85ae24 449#endif
6f505b16 450 int rt_throttled;
fa85ae24 451 u64 rt_time;
ac086bc2 452 u64 rt_runtime;
ea736ed5 453 /* Nests inside the rq lock: */
ac086bc2 454 spinlock_t rt_runtime_lock;
6f505b16 455
052f1dc7 456#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
457 unsigned long rt_nr_boosted;
458
6f505b16
PZ
459 struct rq *rq;
460 struct list_head leaf_rt_rq_list;
461 struct task_group *tg;
462 struct sched_rt_entity *rt_se;
463#endif
6aa645ea
IM
464};
465
57d885fe
GH
466#ifdef CONFIG_SMP
467
468/*
469 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
474 *
57d885fe
GH
475 */
476struct root_domain {
477 atomic_t refcount;
478 cpumask_t span;
479 cpumask_t online;
637f5085 480
0eab9146 481 /*
637f5085
GH
482 * The "RT overload" flag: it gets set if a CPU has more than
483 * one runnable RT task.
484 */
485 cpumask_t rto_mask;
0eab9146 486 atomic_t rto_count;
6e0534f2
GH
487#ifdef CONFIG_SMP
488 struct cpupri cpupri;
489#endif
57d885fe
GH
490};
491
dc938520
GH
492/*
493 * By default the system creates a single root-domain with all cpus as
494 * members (mimicking the global state we have today).
495 */
57d885fe
GH
496static struct root_domain def_root_domain;
497
498#endif
499
1da177e4
LT
500/*
501 * This is the main, per-CPU runqueue data structure.
502 *
503 * Locking rule: those places that want to lock multiple runqueues
504 * (such as the load balancing or the thread migration code), lock
505 * acquire operations must be ordered by ascending &runqueue.
506 */
70b97a7f 507struct rq {
d8016491
IM
508 /* runqueue lock: */
509 spinlock_t lock;
1da177e4
LT
510
511 /*
512 * nr_running and cpu_load should be in the same cacheline because
513 * remote CPUs use both these fields when doing load calculation.
514 */
515 unsigned long nr_running;
6aa645ea
IM
516 #define CPU_LOAD_IDX_MAX 5
517 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 518 unsigned char idle_at_tick;
46cb4b7c 519#ifdef CONFIG_NO_HZ
15934a37 520 unsigned long last_tick_seen;
46cb4b7c
SS
521 unsigned char in_nohz_recently;
522#endif
d8016491
IM
523 /* capture load from *all* tasks on this cpu: */
524 struct load_weight load;
6aa645ea
IM
525 unsigned long nr_load_updates;
526 u64 nr_switches;
527
528 struct cfs_rq cfs;
6f505b16 529 struct rt_rq rt;
6f505b16 530
6aa645ea 531#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
532 /* list of leaf cfs_rq on this cpu: */
533 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
534#endif
535#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 536 struct list_head leaf_rt_rq_list;
1da177e4 537#endif
1da177e4
LT
538
539 /*
540 * This is part of a global counter where only the total sum
541 * over all CPUs matters. A task can increase this counter on
542 * one CPU and if it got migrated afterwards it may decrease
543 * it on another CPU. Always updated under the runqueue lock:
544 */
545 unsigned long nr_uninterruptible;
546
36c8b586 547 struct task_struct *curr, *idle;
c9819f45 548 unsigned long next_balance;
1da177e4 549 struct mm_struct *prev_mm;
6aa645ea 550
3e51f33f 551 u64 clock;
6aa645ea 552
1da177e4
LT
553 atomic_t nr_iowait;
554
555#ifdef CONFIG_SMP
0eab9146 556 struct root_domain *rd;
1da177e4
LT
557 struct sched_domain *sd;
558
559 /* For active balancing */
560 int active_balance;
561 int push_cpu;
d8016491
IM
562 /* cpu of this runqueue: */
563 int cpu;
1f11eb6a 564 int online;
1da177e4 565
a8a51d5e
PZ
566 unsigned long avg_load_per_task;
567
36c8b586 568 struct task_struct *migration_thread;
1da177e4
LT
569 struct list_head migration_queue;
570#endif
571
8f4d37ec
PZ
572#ifdef CONFIG_SCHED_HRTICK
573 unsigned long hrtick_flags;
574 ktime_t hrtick_expire;
575 struct hrtimer hrtick_timer;
576#endif
577
1da177e4
LT
578#ifdef CONFIG_SCHEDSTATS
579 /* latency stats */
580 struct sched_info rq_sched_info;
581
582 /* sys_sched_yield() stats */
480b9434
KC
583 unsigned int yld_exp_empty;
584 unsigned int yld_act_empty;
585 unsigned int yld_both_empty;
586 unsigned int yld_count;
1da177e4
LT
587
588 /* schedule() stats */
480b9434
KC
589 unsigned int sched_switch;
590 unsigned int sched_count;
591 unsigned int sched_goidle;
1da177e4
LT
592
593 /* try_to_wake_up() stats */
480b9434
KC
594 unsigned int ttwu_count;
595 unsigned int ttwu_local;
b8efb561
IM
596
597 /* BKL stats */
480b9434 598 unsigned int bkl_count;
1da177e4 599#endif
fcb99371 600 struct lock_class_key rq_lock_key;
1da177e4
LT
601};
602
f34e3b61 603static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 604
dd41f596
IM
605static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
606{
607 rq->curr->sched_class->check_preempt_curr(rq, p);
608}
609
0a2966b4
CL
610static inline int cpu_of(struct rq *rq)
611{
612#ifdef CONFIG_SMP
613 return rq->cpu;
614#else
615 return 0;
616#endif
617}
618
674311d5
NP
619/*
620 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 621 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
622 *
623 * The domain tree of any CPU may only be accessed from within
624 * preempt-disabled sections.
625 */
48f24c4d
IM
626#define for_each_domain(cpu, __sd) \
627 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
628
629#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
630#define this_rq() (&__get_cpu_var(runqueues))
631#define task_rq(p) cpu_rq(task_cpu(p))
632#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
633
3e51f33f
PZ
634static inline void update_rq_clock(struct rq *rq)
635{
636 rq->clock = sched_clock_cpu(cpu_of(rq));
637}
638
bf5c91ba
IM
639/*
640 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
641 */
642#ifdef CONFIG_SCHED_DEBUG
643# define const_debug __read_mostly
644#else
645# define const_debug static const
646#endif
647
648/*
649 * Debugging: various feature bits
650 */
f00b45c1
PZ
651
652#define SCHED_FEAT(name, enabled) \
653 __SCHED_FEAT_##name ,
654
bf5c91ba 655enum {
f00b45c1 656#include "sched_features.h"
bf5c91ba
IM
657};
658
f00b45c1
PZ
659#undef SCHED_FEAT
660
661#define SCHED_FEAT(name, enabled) \
662 (1UL << __SCHED_FEAT_##name) * enabled |
663
bf5c91ba 664const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
665#include "sched_features.h"
666 0;
667
668#undef SCHED_FEAT
669
670#ifdef CONFIG_SCHED_DEBUG
671#define SCHED_FEAT(name, enabled) \
672 #name ,
673
983ed7a6 674static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
675#include "sched_features.h"
676 NULL
677};
678
679#undef SCHED_FEAT
680
983ed7a6 681static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
682{
683 filp->private_data = inode->i_private;
684 return 0;
685}
686
687static ssize_t
688sched_feat_read(struct file *filp, char __user *ubuf,
689 size_t cnt, loff_t *ppos)
690{
691 char *buf;
692 int r = 0;
693 int len = 0;
694 int i;
695
696 for (i = 0; sched_feat_names[i]; i++) {
697 len += strlen(sched_feat_names[i]);
698 len += 4;
699 }
700
701 buf = kmalloc(len + 2, GFP_KERNEL);
702 if (!buf)
703 return -ENOMEM;
704
705 for (i = 0; sched_feat_names[i]; i++) {
706 if (sysctl_sched_features & (1UL << i))
707 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
708 else
c24b7c52 709 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
710 }
711
712 r += sprintf(buf + r, "\n");
713 WARN_ON(r >= len + 2);
714
715 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
716
717 kfree(buf);
718
719 return r;
720}
721
722static ssize_t
723sched_feat_write(struct file *filp, const char __user *ubuf,
724 size_t cnt, loff_t *ppos)
725{
726 char buf[64];
727 char *cmp = buf;
728 int neg = 0;
729 int i;
730
731 if (cnt > 63)
732 cnt = 63;
733
734 if (copy_from_user(&buf, ubuf, cnt))
735 return -EFAULT;
736
737 buf[cnt] = 0;
738
c24b7c52 739 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 int len = strlen(sched_feat_names[i]);
746
747 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
748 if (neg)
749 sysctl_sched_features &= ~(1UL << i);
750 else
751 sysctl_sched_features |= (1UL << i);
752 break;
753 }
754 }
755
756 if (!sched_feat_names[i])
757 return -EINVAL;
758
759 filp->f_pos += cnt;
760
761 return cnt;
762}
763
764static struct file_operations sched_feat_fops = {
765 .open = sched_feat_open,
766 .read = sched_feat_read,
767 .write = sched_feat_write,
768};
769
770static __init int sched_init_debug(void)
771{
f00b45c1
PZ
772 debugfs_create_file("sched_features", 0644, NULL, NULL,
773 &sched_feat_fops);
774
775 return 0;
776}
777late_initcall(sched_init_debug);
778
779#endif
780
781#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 782
b82d9fdd
PZ
783/*
784 * Number of tasks to iterate in a single balance run.
785 * Limited because this is done with IRQs disabled.
786 */
787const_debug unsigned int sysctl_sched_nr_migrate = 32;
788
2398f2c6
PZ
789/*
790 * ratelimit for updating the group shares.
791 * default: 0.5ms
792 */
793const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
794
fa85ae24 795/*
9f0c1e56 796 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
797 * default: 1s
798 */
9f0c1e56 799unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 800
6892b75e
IM
801static __read_mostly int scheduler_running;
802
9f0c1e56
PZ
803/*
804 * part of the period that we allow rt tasks to run in us.
805 * default: 0.95s
806 */
807int sysctl_sched_rt_runtime = 950000;
fa85ae24 808
d0b27fa7
PZ
809static inline u64 global_rt_period(void)
810{
811 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
812}
813
814static inline u64 global_rt_runtime(void)
815{
816 if (sysctl_sched_rt_period < 0)
817 return RUNTIME_INF;
818
819 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
820}
fa85ae24 821
1da177e4 822#ifndef prepare_arch_switch
4866cde0
NP
823# define prepare_arch_switch(next) do { } while (0)
824#endif
825#ifndef finish_arch_switch
826# define finish_arch_switch(prev) do { } while (0)
827#endif
828
051a1d1a
DA
829static inline int task_current(struct rq *rq, struct task_struct *p)
830{
831 return rq->curr == p;
832}
833
4866cde0 834#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 835static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 836{
051a1d1a 837 return task_current(rq, p);
4866cde0
NP
838}
839
70b97a7f 840static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
841{
842}
843
70b97a7f 844static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 845{
da04c035
IM
846#ifdef CONFIG_DEBUG_SPINLOCK
847 /* this is a valid case when another task releases the spinlock */
848 rq->lock.owner = current;
849#endif
8a25d5de
IM
850 /*
851 * If we are tracking spinlock dependencies then we have to
852 * fix up the runqueue lock - which gets 'carried over' from
853 * prev into current:
854 */
855 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
856
4866cde0
NP
857 spin_unlock_irq(&rq->lock);
858}
859
860#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 861static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
862{
863#ifdef CONFIG_SMP
864 return p->oncpu;
865#else
051a1d1a 866 return task_current(rq, p);
4866cde0
NP
867#endif
868}
869
70b97a7f 870static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * We can optimise this out completely for !SMP, because the
875 * SMP rebalancing from interrupt is the only thing that cares
876 * here.
877 */
878 next->oncpu = 1;
879#endif
880#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
881 spin_unlock_irq(&rq->lock);
882#else
883 spin_unlock(&rq->lock);
884#endif
885}
886
70b97a7f 887static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
888{
889#ifdef CONFIG_SMP
890 /*
891 * After ->oncpu is cleared, the task can be moved to a different CPU.
892 * We must ensure this doesn't happen until the switch is completely
893 * finished.
894 */
895 smp_wmb();
896 prev->oncpu = 0;
897#endif
898#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
899 local_irq_enable();
1da177e4 900#endif
4866cde0
NP
901}
902#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 903
b29739f9
IM
904/*
905 * __task_rq_lock - lock the runqueue a given task resides on.
906 * Must be called interrupts disabled.
907 */
70b97a7f 908static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
909 __acquires(rq->lock)
910{
3a5c359a
AK
911 for (;;) {
912 struct rq *rq = task_rq(p);
913 spin_lock(&rq->lock);
914 if (likely(rq == task_rq(p)))
915 return rq;
b29739f9 916 spin_unlock(&rq->lock);
b29739f9 917 }
b29739f9
IM
918}
919
1da177e4
LT
920/*
921 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 922 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
923 * explicitly disabling preemption.
924 */
70b97a7f 925static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
926 __acquires(rq->lock)
927{
70b97a7f 928 struct rq *rq;
1da177e4 929
3a5c359a
AK
930 for (;;) {
931 local_irq_save(*flags);
932 rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
1da177e4 936 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 937 }
1da177e4
LT
938}
939
a9957449 940static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
941 __releases(rq->lock)
942{
943 spin_unlock(&rq->lock);
944}
945
70b97a7f 946static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
947 __releases(rq->lock)
948{
949 spin_unlock_irqrestore(&rq->lock, *flags);
950}
951
1da177e4 952/*
cc2a73b5 953 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 954 */
a9957449 955static struct rq *this_rq_lock(void)
1da177e4
LT
956 __acquires(rq->lock)
957{
70b97a7f 958 struct rq *rq;
1da177e4
LT
959
960 local_irq_disable();
961 rq = this_rq();
962 spin_lock(&rq->lock);
963
964 return rq;
965}
966
8f4d37ec
PZ
967static void __resched_task(struct task_struct *p, int tif_bit);
968
969static inline void resched_task(struct task_struct *p)
970{
971 __resched_task(p, TIF_NEED_RESCHED);
972}
973
974#ifdef CONFIG_SCHED_HRTICK
975/*
976 * Use HR-timers to deliver accurate preemption points.
977 *
978 * Its all a bit involved since we cannot program an hrt while holding the
979 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
980 * reschedule event.
981 *
982 * When we get rescheduled we reprogram the hrtick_timer outside of the
983 * rq->lock.
984 */
985static inline void resched_hrt(struct task_struct *p)
986{
987 __resched_task(p, TIF_HRTICK_RESCHED);
988}
989
990static inline void resched_rq(struct rq *rq)
991{
992 unsigned long flags;
993
994 spin_lock_irqsave(&rq->lock, flags);
995 resched_task(rq->curr);
996 spin_unlock_irqrestore(&rq->lock, flags);
997}
998
999enum {
1000 HRTICK_SET, /* re-programm hrtick_timer */
1001 HRTICK_RESET, /* not a new slice */
b328ca18 1002 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1003};
1004
1005/*
1006 * Use hrtick when:
1007 * - enabled by features
1008 * - hrtimer is actually high res
1009 */
1010static inline int hrtick_enabled(struct rq *rq)
1011{
1012 if (!sched_feat(HRTICK))
1013 return 0;
b328ca18
PZ
1014 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1015 return 0;
8f4d37ec
PZ
1016 return hrtimer_is_hres_active(&rq->hrtick_timer);
1017}
1018
1019/*
1020 * Called to set the hrtick timer state.
1021 *
1022 * called with rq->lock held and irqs disabled
1023 */
1024static void hrtick_start(struct rq *rq, u64 delay, int reset)
1025{
1026 assert_spin_locked(&rq->lock);
1027
1028 /*
1029 * preempt at: now + delay
1030 */
1031 rq->hrtick_expire =
1032 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1033 /*
1034 * indicate we need to program the timer
1035 */
1036 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1037 if (reset)
1038 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1039
1040 /*
1041 * New slices are called from the schedule path and don't need a
1042 * forced reschedule.
1043 */
1044 if (reset)
1045 resched_hrt(rq->curr);
1046}
1047
1048static void hrtick_clear(struct rq *rq)
1049{
1050 if (hrtimer_active(&rq->hrtick_timer))
1051 hrtimer_cancel(&rq->hrtick_timer);
1052}
1053
1054/*
1055 * Update the timer from the possible pending state.
1056 */
1057static void hrtick_set(struct rq *rq)
1058{
1059 ktime_t time;
1060 int set, reset;
1061 unsigned long flags;
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock_irqsave(&rq->lock, flags);
1066 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1067 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1068 time = rq->hrtick_expire;
1069 clear_thread_flag(TIF_HRTICK_RESCHED);
1070 spin_unlock_irqrestore(&rq->lock, flags);
1071
1072 if (set) {
1073 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1074 if (reset && !hrtimer_active(&rq->hrtick_timer))
1075 resched_rq(rq);
1076 } else
1077 hrtick_clear(rq);
1078}
1079
1080/*
1081 * High-resolution timer tick.
1082 * Runs from hardirq context with interrupts disabled.
1083 */
1084static enum hrtimer_restart hrtick(struct hrtimer *timer)
1085{
1086 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1087
1088 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1089
1090 spin_lock(&rq->lock);
3e51f33f 1091 update_rq_clock(rq);
8f4d37ec
PZ
1092 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1093 spin_unlock(&rq->lock);
1094
1095 return HRTIMER_NORESTART;
1096}
1097
81d41d7e 1098#ifdef CONFIG_SMP
b328ca18
PZ
1099static void hotplug_hrtick_disable(int cpu)
1100{
1101 struct rq *rq = cpu_rq(cpu);
1102 unsigned long flags;
1103
1104 spin_lock_irqsave(&rq->lock, flags);
1105 rq->hrtick_flags = 0;
1106 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1107 spin_unlock_irqrestore(&rq->lock, flags);
1108
1109 hrtick_clear(rq);
1110}
1111
1112static void hotplug_hrtick_enable(int cpu)
1113{
1114 struct rq *rq = cpu_rq(cpu);
1115 unsigned long flags;
1116
1117 spin_lock_irqsave(&rq->lock, flags);
1118 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1119 spin_unlock_irqrestore(&rq->lock, flags);
1120}
1121
1122static int
1123hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1124{
1125 int cpu = (int)(long)hcpu;
1126
1127 switch (action) {
1128 case CPU_UP_CANCELED:
1129 case CPU_UP_CANCELED_FROZEN:
1130 case CPU_DOWN_PREPARE:
1131 case CPU_DOWN_PREPARE_FROZEN:
1132 case CPU_DEAD:
1133 case CPU_DEAD_FROZEN:
1134 hotplug_hrtick_disable(cpu);
1135 return NOTIFY_OK;
1136
1137 case CPU_UP_PREPARE:
1138 case CPU_UP_PREPARE_FROZEN:
1139 case CPU_DOWN_FAILED:
1140 case CPU_DOWN_FAILED_FROZEN:
1141 case CPU_ONLINE:
1142 case CPU_ONLINE_FROZEN:
1143 hotplug_hrtick_enable(cpu);
1144 return NOTIFY_OK;
1145 }
1146
1147 return NOTIFY_DONE;
1148}
1149
1150static void init_hrtick(void)
1151{
1152 hotcpu_notifier(hotplug_hrtick, 0);
1153}
81d41d7e 1154#endif /* CONFIG_SMP */
b328ca18
PZ
1155
1156static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1157{
1158 rq->hrtick_flags = 0;
1159 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1160 rq->hrtick_timer.function = hrtick;
1161 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1162}
1163
1164void hrtick_resched(void)
1165{
1166 struct rq *rq;
1167 unsigned long flags;
1168
1169 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1170 return;
1171
1172 local_irq_save(flags);
1173 rq = cpu_rq(smp_processor_id());
1174 hrtick_set(rq);
1175 local_irq_restore(flags);
1176}
1177#else
1178static inline void hrtick_clear(struct rq *rq)
1179{
1180}
1181
1182static inline void hrtick_set(struct rq *rq)
1183{
1184}
1185
1186static inline void init_rq_hrtick(struct rq *rq)
1187{
1188}
1189
1190void hrtick_resched(void)
1191{
1192}
b328ca18
PZ
1193
1194static inline void init_hrtick(void)
1195{
1196}
8f4d37ec
PZ
1197#endif
1198
c24d20db
IM
1199/*
1200 * resched_task - mark a task 'to be rescheduled now'.
1201 *
1202 * On UP this means the setting of the need_resched flag, on SMP it
1203 * might also involve a cross-CPU call to trigger the scheduler on
1204 * the target CPU.
1205 */
1206#ifdef CONFIG_SMP
1207
1208#ifndef tsk_is_polling
1209#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1210#endif
1211
8f4d37ec 1212static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1213{
1214 int cpu;
1215
1216 assert_spin_locked(&task_rq(p)->lock);
1217
8f4d37ec 1218 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1219 return;
1220
8f4d37ec 1221 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1222
1223 cpu = task_cpu(p);
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /* NEED_RESCHED must be visible before we test polling */
1228 smp_mb();
1229 if (!tsk_is_polling(p))
1230 smp_send_reschedule(cpu);
1231}
1232
1233static void resched_cpu(int cpu)
1234{
1235 struct rq *rq = cpu_rq(cpu);
1236 unsigned long flags;
1237
1238 if (!spin_trylock_irqsave(&rq->lock, flags))
1239 return;
1240 resched_task(cpu_curr(cpu));
1241 spin_unlock_irqrestore(&rq->lock, flags);
1242}
06d8308c
TG
1243
1244#ifdef CONFIG_NO_HZ
1245/*
1246 * When add_timer_on() enqueues a timer into the timer wheel of an
1247 * idle CPU then this timer might expire before the next timer event
1248 * which is scheduled to wake up that CPU. In case of a completely
1249 * idle system the next event might even be infinite time into the
1250 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1251 * leaves the inner idle loop so the newly added timer is taken into
1252 * account when the CPU goes back to idle and evaluates the timer
1253 * wheel for the next timer event.
1254 */
1255void wake_up_idle_cpu(int cpu)
1256{
1257 struct rq *rq = cpu_rq(cpu);
1258
1259 if (cpu == smp_processor_id())
1260 return;
1261
1262 /*
1263 * This is safe, as this function is called with the timer
1264 * wheel base lock of (cpu) held. When the CPU is on the way
1265 * to idle and has not yet set rq->curr to idle then it will
1266 * be serialized on the timer wheel base lock and take the new
1267 * timer into account automatically.
1268 */
1269 if (rq->curr != rq->idle)
1270 return;
1271
1272 /*
1273 * We can set TIF_RESCHED on the idle task of the other CPU
1274 * lockless. The worst case is that the other CPU runs the
1275 * idle task through an additional NOOP schedule()
1276 */
1277 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1278
1279 /* NEED_RESCHED must be visible before we test polling */
1280 smp_mb();
1281 if (!tsk_is_polling(rq->idle))
1282 smp_send_reschedule(cpu);
1283}
6d6bc0ad 1284#endif /* CONFIG_NO_HZ */
06d8308c 1285
6d6bc0ad 1286#else /* !CONFIG_SMP */
8f4d37ec 1287static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1288{
1289 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1290 set_tsk_thread_flag(p, tif_bit);
c24d20db 1291}
6d6bc0ad 1292#endif /* CONFIG_SMP */
c24d20db 1293
45bf76df
IM
1294#if BITS_PER_LONG == 32
1295# define WMULT_CONST (~0UL)
1296#else
1297# define WMULT_CONST (1UL << 32)
1298#endif
1299
1300#define WMULT_SHIFT 32
1301
194081eb
IM
1302/*
1303 * Shift right and round:
1304 */
cf2ab469 1305#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1306
a7be37ac
PZ
1307/*
1308 * delta *= weight / lw
1309 */
cb1c4fc9 1310static unsigned long
45bf76df
IM
1311calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1312 struct load_weight *lw)
1313{
1314 u64 tmp;
1315
7a232e03
LJ
1316 if (!lw->inv_weight) {
1317 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1318 lw->inv_weight = 1;
1319 else
1320 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1321 / (lw->weight+1);
1322 }
45bf76df
IM
1323
1324 tmp = (u64)delta_exec * weight;
1325 /*
1326 * Check whether we'd overflow the 64-bit multiplication:
1327 */
194081eb 1328 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1329 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1330 WMULT_SHIFT/2);
1331 else
cf2ab469 1332 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1333
ecf691da 1334 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1338{
1339 lw->weight += inc;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
1091985b 1343static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1344{
1345 lw->weight -= dec;
e89996ae 1346 lw->inv_weight = 0;
45bf76df
IM
1347}
1348
2dd73a4f
PW
1349/*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
dd41f596
IM
1358#define WEIGHT_IDLEPRIO 2
1359#define WMULT_IDLEPRIO (1 << 31)
1360
1361/*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
dd41f596
IM
1372 */
1373static const int prio_to_weight[40] = {
254753dc
IM
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1382};
1383
5714d2de
IM
1384/*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
dd41f596 1391static const u32 prio_to_wmult[40] = {
254753dc
IM
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1400};
2dd73a4f 1401
dd41f596
IM
1402static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1403
1404/*
1405 * runqueue iterator, to support SMP load-balancing between different
1406 * scheduling classes, without having to expose their internal data
1407 * structures to the load-balancing proper:
1408 */
1409struct rq_iterator {
1410 void *arg;
1411 struct task_struct *(*start)(void *);
1412 struct task_struct *(*next)(void *);
1413};
1414
e1d1484f
PW
1415#ifdef CONFIG_SMP
1416static unsigned long
1417balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 unsigned long max_load_move, struct sched_domain *sd,
1419 enum cpu_idle_type idle, int *all_pinned,
1420 int *this_best_prio, struct rq_iterator *iterator);
1421
1422static int
1423iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1424 struct sched_domain *sd, enum cpu_idle_type idle,
1425 struct rq_iterator *iterator);
e1d1484f 1426#endif
dd41f596 1427
d842de87
SV
1428#ifdef CONFIG_CGROUP_CPUACCT
1429static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1430#else
1431static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432#endif
1433
18d95a28
PZ
1434static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1435{
1436 update_load_add(&rq->load, load);
1437}
1438
1439static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1440{
1441 update_load_sub(&rq->load, load);
1442}
1443
e7693a36
GH
1444#ifdef CONFIG_SMP
1445static unsigned long source_load(int cpu, int type);
1446static unsigned long target_load(int cpu, int type);
e7693a36 1447static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1448
a8a51d5e
PZ
1449static unsigned long cpu_avg_load_per_task(int cpu)
1450{
1451 struct rq *rq = cpu_rq(cpu);
1452
1453 if (rq->nr_running)
1454 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1455
1456 return rq->avg_load_per_task;
1457}
1458
c09595f6
PZ
1459#ifdef CONFIG_FAIR_GROUP_SCHED
1460
c8cba857 1461typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1462
1463/*
1464 * Iterate the full tree, calling @down when first entering a node and @up when
1465 * leaving it for the final time.
1466 */
c8cba857
PZ
1467static void
1468walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1469{
1470 struct task_group *parent, *child;
1471
1472 rcu_read_lock();
1473 parent = &root_task_group;
1474down:
b6a86c74 1475 (*down)(parent, cpu, sd);
c09595f6
PZ
1476 list_for_each_entry_rcu(child, &parent->children, siblings) {
1477 parent = child;
1478 goto down;
1479
1480up:
1481 continue;
1482 }
b6a86c74 1483 (*up)(parent, cpu, sd);
c09595f6
PZ
1484
1485 child = parent;
1486 parent = parent->parent;
1487 if (parent)
1488 goto up;
1489 rcu_read_unlock();
1490}
1491
c09595f6
PZ
1492static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1493
1494/*
1495 * Calculate and set the cpu's group shares.
1496 */
1497static void
b6a86c74 1498__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1499 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1500{
1501 int boost = 0;
1502 unsigned long shares;
1503 unsigned long rq_weight;
1504
c8cba857 1505 if (!tg->se[cpu])
c09595f6
PZ
1506 return;
1507
c8cba857 1508 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1509
1510 /*
1511 * If there are currently no tasks on the cpu pretend there is one of
1512 * average load so that when a new task gets to run here it will not
1513 * get delayed by group starvation.
1514 */
1515 if (!rq_weight) {
1516 boost = 1;
1517 rq_weight = NICE_0_LOAD;
1518 }
1519
c8cba857
PZ
1520 if (unlikely(rq_weight > sd_rq_weight))
1521 rq_weight = sd_rq_weight;
1522
c09595f6
PZ
1523 /*
1524 * \Sum shares * rq_weight
1525 * shares = -----------------------
1526 * \Sum rq_weight
1527 *
1528 */
c8cba857 1529 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1530
1531 /*
1532 * record the actual number of shares, not the boosted amount.
1533 */
c8cba857 1534 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1535 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1536
1537 if (shares < MIN_SHARES)
1538 shares = MIN_SHARES;
1539 else if (shares > MAX_SHARES)
1540 shares = MAX_SHARES;
1541
c8cba857 1542 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1543}
1544
1545/*
c8cba857
PZ
1546 * Re-compute the task group their per cpu shares over the given domain.
1547 * This needs to be done in a bottom-up fashion because the rq weight of a
1548 * parent group depends on the shares of its child groups.
c09595f6
PZ
1549 */
1550static void
c8cba857 1551tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1552{
c8cba857
PZ
1553 unsigned long rq_weight = 0;
1554 unsigned long shares = 0;
1555 int i;
c09595f6 1556
c8cba857
PZ
1557 for_each_cpu_mask(i, sd->span) {
1558 rq_weight += tg->cfs_rq[i]->load.weight;
1559 shares += tg->cfs_rq[i]->shares;
c09595f6 1560 }
c09595f6 1561
c8cba857
PZ
1562 if ((!shares && rq_weight) || shares > tg->shares)
1563 shares = tg->shares;
1564
1565 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1566 shares = tg->shares;
c09595f6 1567
cd80917e
PZ
1568 if (!rq_weight)
1569 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1570
c09595f6
PZ
1571 for_each_cpu_mask(i, sd->span) {
1572 struct rq *rq = cpu_rq(i);
1573 unsigned long flags;
1574
1575 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1576 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1577 spin_unlock_irqrestore(&rq->lock, flags);
1578 }
c09595f6
PZ
1579}
1580
1581/*
c8cba857
PZ
1582 * Compute the cpu's hierarchical load factor for each task group.
1583 * This needs to be done in a top-down fashion because the load of a child
1584 * group is a fraction of its parents load.
c09595f6 1585 */
b6a86c74 1586static void
c8cba857 1587tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1588{
c8cba857 1589 unsigned long load;
c09595f6 1590
c8cba857
PZ
1591 if (!tg->parent) {
1592 load = cpu_rq(cpu)->load.weight;
1593 } else {
1594 load = tg->parent->cfs_rq[cpu]->h_load;
1595 load *= tg->cfs_rq[cpu]->shares;
1596 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1597 }
c09595f6 1598
c8cba857 1599 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1600}
1601
c8cba857
PZ
1602static void
1603tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1604{
c09595f6
PZ
1605}
1606
c8cba857 1607static void update_shares(struct sched_domain *sd)
4d8d595d 1608{
2398f2c6
PZ
1609 u64 now = cpu_clock(raw_smp_processor_id());
1610 s64 elapsed = now - sd->last_update;
1611
1612 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1613 sd->last_update = now;
1614 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1615 }
4d8d595d
PZ
1616}
1617
3e5459b4
PZ
1618static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1619{
1620 spin_unlock(&rq->lock);
1621 update_shares(sd);
1622 spin_lock(&rq->lock);
1623}
1624
c8cba857 1625static void update_h_load(int cpu)
c09595f6 1626{
c8cba857 1627 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1628}
1629
c09595f6
PZ
1630#else
1631
c8cba857 1632static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1633{
1634}
1635
3e5459b4
PZ
1636static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1637{
1638}
1639
c09595f6
PZ
1640#endif
1641
18d95a28
PZ
1642#endif
1643
30432094 1644#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1645static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1646{
30432094 1647#ifdef CONFIG_SMP
34e83e85
IM
1648 cfs_rq->shares = shares;
1649#endif
1650}
30432094 1651#endif
34e83e85 1652
dd41f596 1653#include "sched_stats.h"
dd41f596 1654#include "sched_idletask.c"
5522d5d5
IM
1655#include "sched_fair.c"
1656#include "sched_rt.c"
dd41f596
IM
1657#ifdef CONFIG_SCHED_DEBUG
1658# include "sched_debug.c"
1659#endif
1660
1661#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1662#define for_each_class(class) \
1663 for (class = sched_class_highest; class; class = class->next)
dd41f596 1664
c09595f6 1665static void inc_nr_running(struct rq *rq)
9c217245
IM
1666{
1667 rq->nr_running++;
9c217245
IM
1668}
1669
c09595f6 1670static void dec_nr_running(struct rq *rq)
9c217245
IM
1671{
1672 rq->nr_running--;
9c217245
IM
1673}
1674
45bf76df
IM
1675static void set_load_weight(struct task_struct *p)
1676{
1677 if (task_has_rt_policy(p)) {
dd41f596
IM
1678 p->se.load.weight = prio_to_weight[0] * 2;
1679 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1680 return;
1681 }
45bf76df 1682
dd41f596
IM
1683 /*
1684 * SCHED_IDLE tasks get minimal weight:
1685 */
1686 if (p->policy == SCHED_IDLE) {
1687 p->se.load.weight = WEIGHT_IDLEPRIO;
1688 p->se.load.inv_weight = WMULT_IDLEPRIO;
1689 return;
1690 }
71f8bd46 1691
dd41f596
IM
1692 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1693 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1694}
1695
2087a1ad
GH
1696static void update_avg(u64 *avg, u64 sample)
1697{
1698 s64 diff = sample - *avg;
1699 *avg += diff >> 3;
1700}
1701
8159f87e 1702static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1703{
dd41f596 1704 sched_info_queued(p);
fd390f6a 1705 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1706 p->se.on_rq = 1;
71f8bd46
IM
1707}
1708
69be72c1 1709static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1710{
2087a1ad
GH
1711 if (sleep && p->se.last_wakeup) {
1712 update_avg(&p->se.avg_overlap,
1713 p->se.sum_exec_runtime - p->se.last_wakeup);
1714 p->se.last_wakeup = 0;
1715 }
1716
f02231e5 1717 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1718 p->se.on_rq = 0;
71f8bd46
IM
1719}
1720
14531189 1721/*
dd41f596 1722 * __normal_prio - return the priority that is based on the static prio
14531189 1723 */
14531189
IM
1724static inline int __normal_prio(struct task_struct *p)
1725{
dd41f596 1726 return p->static_prio;
14531189
IM
1727}
1728
b29739f9
IM
1729/*
1730 * Calculate the expected normal priority: i.e. priority
1731 * without taking RT-inheritance into account. Might be
1732 * boosted by interactivity modifiers. Changes upon fork,
1733 * setprio syscalls, and whenever the interactivity
1734 * estimator recalculates.
1735 */
36c8b586 1736static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1737{
1738 int prio;
1739
e05606d3 1740 if (task_has_rt_policy(p))
b29739f9
IM
1741 prio = MAX_RT_PRIO-1 - p->rt_priority;
1742 else
1743 prio = __normal_prio(p);
1744 return prio;
1745}
1746
1747/*
1748 * Calculate the current priority, i.e. the priority
1749 * taken into account by the scheduler. This value might
1750 * be boosted by RT tasks, or might be boosted by
1751 * interactivity modifiers. Will be RT if the task got
1752 * RT-boosted. If not then it returns p->normal_prio.
1753 */
36c8b586 1754static int effective_prio(struct task_struct *p)
b29739f9
IM
1755{
1756 p->normal_prio = normal_prio(p);
1757 /*
1758 * If we are RT tasks or we were boosted to RT priority,
1759 * keep the priority unchanged. Otherwise, update priority
1760 * to the normal priority:
1761 */
1762 if (!rt_prio(p->prio))
1763 return p->normal_prio;
1764 return p->prio;
1765}
1766
1da177e4 1767/*
dd41f596 1768 * activate_task - move a task to the runqueue.
1da177e4 1769 */
dd41f596 1770static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1771{
d9514f6c 1772 if (task_contributes_to_load(p))
dd41f596 1773 rq->nr_uninterruptible--;
1da177e4 1774
8159f87e 1775 enqueue_task(rq, p, wakeup);
c09595f6 1776 inc_nr_running(rq);
1da177e4
LT
1777}
1778
1da177e4
LT
1779/*
1780 * deactivate_task - remove a task from the runqueue.
1781 */
2e1cb74a 1782static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1783{
d9514f6c 1784 if (task_contributes_to_load(p))
dd41f596
IM
1785 rq->nr_uninterruptible++;
1786
69be72c1 1787 dequeue_task(rq, p, sleep);
c09595f6 1788 dec_nr_running(rq);
1da177e4
LT
1789}
1790
1da177e4
LT
1791/**
1792 * task_curr - is this task currently executing on a CPU?
1793 * @p: the task in question.
1794 */
36c8b586 1795inline int task_curr(const struct task_struct *p)
1da177e4
LT
1796{
1797 return cpu_curr(task_cpu(p)) == p;
1798}
1799
dd41f596
IM
1800static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1801{
6f505b16 1802 set_task_rq(p, cpu);
dd41f596 1803#ifdef CONFIG_SMP
ce96b5ac
DA
1804 /*
1805 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1806 * successfuly executed on another CPU. We must ensure that updates of
1807 * per-task data have been completed by this moment.
1808 */
1809 smp_wmb();
dd41f596 1810 task_thread_info(p)->cpu = cpu;
dd41f596 1811#endif
2dd73a4f
PW
1812}
1813
cb469845
SR
1814static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1815 const struct sched_class *prev_class,
1816 int oldprio, int running)
1817{
1818 if (prev_class != p->sched_class) {
1819 if (prev_class->switched_from)
1820 prev_class->switched_from(rq, p, running);
1821 p->sched_class->switched_to(rq, p, running);
1822 } else
1823 p->sched_class->prio_changed(rq, p, oldprio, running);
1824}
1825
1da177e4 1826#ifdef CONFIG_SMP
c65cc870 1827
e958b360
TG
1828/* Used instead of source_load when we know the type == 0 */
1829static unsigned long weighted_cpuload(const int cpu)
1830{
1831 return cpu_rq(cpu)->load.weight;
1832}
1833
cc367732
IM
1834/*
1835 * Is this task likely cache-hot:
1836 */
e7693a36 1837static int
cc367732
IM
1838task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1839{
1840 s64 delta;
1841
f540a608
IM
1842 /*
1843 * Buddy candidates are cache hot:
1844 */
d25ce4cd 1845 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1846 return 1;
1847
cc367732
IM
1848 if (p->sched_class != &fair_sched_class)
1849 return 0;
1850
6bc1665b
IM
1851 if (sysctl_sched_migration_cost == -1)
1852 return 1;
1853 if (sysctl_sched_migration_cost == 0)
1854 return 0;
1855
cc367732
IM
1856 delta = now - p->se.exec_start;
1857
1858 return delta < (s64)sysctl_sched_migration_cost;
1859}
1860
1861
dd41f596 1862void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1863{
dd41f596
IM
1864 int old_cpu = task_cpu(p);
1865 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1866 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1867 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1868 u64 clock_offset;
dd41f596
IM
1869
1870 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1871
1872#ifdef CONFIG_SCHEDSTATS
1873 if (p->se.wait_start)
1874 p->se.wait_start -= clock_offset;
dd41f596
IM
1875 if (p->se.sleep_start)
1876 p->se.sleep_start -= clock_offset;
1877 if (p->se.block_start)
1878 p->se.block_start -= clock_offset;
cc367732
IM
1879 if (old_cpu != new_cpu) {
1880 schedstat_inc(p, se.nr_migrations);
1881 if (task_hot(p, old_rq->clock, NULL))
1882 schedstat_inc(p, se.nr_forced2_migrations);
1883 }
6cfb0d5d 1884#endif
2830cf8c
SV
1885 p->se.vruntime -= old_cfsrq->min_vruntime -
1886 new_cfsrq->min_vruntime;
dd41f596
IM
1887
1888 __set_task_cpu(p, new_cpu);
c65cc870
IM
1889}
1890
70b97a7f 1891struct migration_req {
1da177e4 1892 struct list_head list;
1da177e4 1893
36c8b586 1894 struct task_struct *task;
1da177e4
LT
1895 int dest_cpu;
1896
1da177e4 1897 struct completion done;
70b97a7f 1898};
1da177e4
LT
1899
1900/*
1901 * The task's runqueue lock must be held.
1902 * Returns true if you have to wait for migration thread.
1903 */
36c8b586 1904static int
70b97a7f 1905migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1906{
70b97a7f 1907 struct rq *rq = task_rq(p);
1da177e4
LT
1908
1909 /*
1910 * If the task is not on a runqueue (and not running), then
1911 * it is sufficient to simply update the task's cpu field.
1912 */
dd41f596 1913 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1914 set_task_cpu(p, dest_cpu);
1915 return 0;
1916 }
1917
1918 init_completion(&req->done);
1da177e4
LT
1919 req->task = p;
1920 req->dest_cpu = dest_cpu;
1921 list_add(&req->list, &rq->migration_queue);
48f24c4d 1922
1da177e4
LT
1923 return 1;
1924}
1925
1926/*
1927 * wait_task_inactive - wait for a thread to unschedule.
1928 *
1929 * The caller must ensure that the task *will* unschedule sometime soon,
1930 * else this function might spin for a *long* time. This function can't
1931 * be called with interrupts off, or it may introduce deadlock with
1932 * smp_call_function() if an IPI is sent by the same process we are
1933 * waiting to become inactive.
1934 */
36c8b586 1935void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1936{
1937 unsigned long flags;
dd41f596 1938 int running, on_rq;
70b97a7f 1939 struct rq *rq;
1da177e4 1940
3a5c359a
AK
1941 for (;;) {
1942 /*
1943 * We do the initial early heuristics without holding
1944 * any task-queue locks at all. We'll only try to get
1945 * the runqueue lock when things look like they will
1946 * work out!
1947 */
1948 rq = task_rq(p);
fa490cfd 1949
3a5c359a
AK
1950 /*
1951 * If the task is actively running on another CPU
1952 * still, just relax and busy-wait without holding
1953 * any locks.
1954 *
1955 * NOTE! Since we don't hold any locks, it's not
1956 * even sure that "rq" stays as the right runqueue!
1957 * But we don't care, since "task_running()" will
1958 * return false if the runqueue has changed and p
1959 * is actually now running somewhere else!
1960 */
1961 while (task_running(rq, p))
1962 cpu_relax();
fa490cfd 1963
3a5c359a
AK
1964 /*
1965 * Ok, time to look more closely! We need the rq
1966 * lock now, to be *sure*. If we're wrong, we'll
1967 * just go back and repeat.
1968 */
1969 rq = task_rq_lock(p, &flags);
1970 running = task_running(rq, p);
1971 on_rq = p->se.on_rq;
1972 task_rq_unlock(rq, &flags);
fa490cfd 1973
3a5c359a
AK
1974 /*
1975 * Was it really running after all now that we
1976 * checked with the proper locks actually held?
1977 *
1978 * Oops. Go back and try again..
1979 */
1980 if (unlikely(running)) {
1981 cpu_relax();
1982 continue;
1983 }
fa490cfd 1984
3a5c359a
AK
1985 /*
1986 * It's not enough that it's not actively running,
1987 * it must be off the runqueue _entirely_, and not
1988 * preempted!
1989 *
1990 * So if it wa still runnable (but just not actively
1991 * running right now), it's preempted, and we should
1992 * yield - it could be a while.
1993 */
1994 if (unlikely(on_rq)) {
1995 schedule_timeout_uninterruptible(1);
1996 continue;
1997 }
fa490cfd 1998
3a5c359a
AK
1999 /*
2000 * Ahh, all good. It wasn't running, and it wasn't
2001 * runnable, which means that it will never become
2002 * running in the future either. We're all done!
2003 */
2004 break;
2005 }
1da177e4
LT
2006}
2007
2008/***
2009 * kick_process - kick a running thread to enter/exit the kernel
2010 * @p: the to-be-kicked thread
2011 *
2012 * Cause a process which is running on another CPU to enter
2013 * kernel-mode, without any delay. (to get signals handled.)
2014 *
2015 * NOTE: this function doesnt have to take the runqueue lock,
2016 * because all it wants to ensure is that the remote task enters
2017 * the kernel. If the IPI races and the task has been migrated
2018 * to another CPU then no harm is done and the purpose has been
2019 * achieved as well.
2020 */
36c8b586 2021void kick_process(struct task_struct *p)
1da177e4
LT
2022{
2023 int cpu;
2024
2025 preempt_disable();
2026 cpu = task_cpu(p);
2027 if ((cpu != smp_processor_id()) && task_curr(p))
2028 smp_send_reschedule(cpu);
2029 preempt_enable();
2030}
2031
2032/*
2dd73a4f
PW
2033 * Return a low guess at the load of a migration-source cpu weighted
2034 * according to the scheduling class and "nice" value.
1da177e4
LT
2035 *
2036 * We want to under-estimate the load of migration sources, to
2037 * balance conservatively.
2038 */
a9957449 2039static unsigned long source_load(int cpu, int type)
1da177e4 2040{
70b97a7f 2041 struct rq *rq = cpu_rq(cpu);
dd41f596 2042 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2043
93b75217 2044 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2045 return total;
b910472d 2046
dd41f596 2047 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2048}
2049
2050/*
2dd73a4f
PW
2051 * Return a high guess at the load of a migration-target cpu weighted
2052 * according to the scheduling class and "nice" value.
1da177e4 2053 */
a9957449 2054static unsigned long target_load(int cpu, int type)
1da177e4 2055{
70b97a7f 2056 struct rq *rq = cpu_rq(cpu);
dd41f596 2057 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2058
93b75217 2059 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2060 return total;
3b0bd9bc 2061
dd41f596 2062 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2063}
2064
147cbb4b
NP
2065/*
2066 * find_idlest_group finds and returns the least busy CPU group within the
2067 * domain.
2068 */
2069static struct sched_group *
2070find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2071{
2072 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2073 unsigned long min_load = ULONG_MAX, this_load = 0;
2074 int load_idx = sd->forkexec_idx;
2075 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2076
2077 do {
2078 unsigned long load, avg_load;
2079 int local_group;
2080 int i;
2081
da5a5522
BD
2082 /* Skip over this group if it has no CPUs allowed */
2083 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2084 continue;
da5a5522 2085
147cbb4b 2086 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2087
2088 /* Tally up the load of all CPUs in the group */
2089 avg_load = 0;
2090
2091 for_each_cpu_mask(i, group->cpumask) {
2092 /* Bias balancing toward cpus of our domain */
2093 if (local_group)
2094 load = source_load(i, load_idx);
2095 else
2096 load = target_load(i, load_idx);
2097
2098 avg_load += load;
2099 }
2100
2101 /* Adjust by relative CPU power of the group */
5517d86b
ED
2102 avg_load = sg_div_cpu_power(group,
2103 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2104
2105 if (local_group) {
2106 this_load = avg_load;
2107 this = group;
2108 } else if (avg_load < min_load) {
2109 min_load = avg_load;
2110 idlest = group;
2111 }
3a5c359a 2112 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2113
2114 if (!idlest || 100*this_load < imbalance*min_load)
2115 return NULL;
2116 return idlest;
2117}
2118
2119/*
0feaece9 2120 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2121 */
95cdf3b7 2122static int
7c16ec58
MT
2123find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2124 cpumask_t *tmp)
147cbb4b
NP
2125{
2126 unsigned long load, min_load = ULONG_MAX;
2127 int idlest = -1;
2128 int i;
2129
da5a5522 2130 /* Traverse only the allowed CPUs */
7c16ec58 2131 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2132
7c16ec58 2133 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2134 load = weighted_cpuload(i);
147cbb4b
NP
2135
2136 if (load < min_load || (load == min_load && i == this_cpu)) {
2137 min_load = load;
2138 idlest = i;
2139 }
2140 }
2141
2142 return idlest;
2143}
2144
476d139c
NP
2145/*
2146 * sched_balance_self: balance the current task (running on cpu) in domains
2147 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2148 * SD_BALANCE_EXEC.
2149 *
2150 * Balance, ie. select the least loaded group.
2151 *
2152 * Returns the target CPU number, or the same CPU if no balancing is needed.
2153 *
2154 * preempt must be disabled.
2155 */
2156static int sched_balance_self(int cpu, int flag)
2157{
2158 struct task_struct *t = current;
2159 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2160
c96d145e 2161 for_each_domain(cpu, tmp) {
9761eea8
IM
2162 /*
2163 * If power savings logic is enabled for a domain, stop there.
2164 */
5c45bf27
SS
2165 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2166 break;
476d139c
NP
2167 if (tmp->flags & flag)
2168 sd = tmp;
c96d145e 2169 }
476d139c 2170
039a1c41
PZ
2171 if (sd)
2172 update_shares(sd);
2173
476d139c 2174 while (sd) {
7c16ec58 2175 cpumask_t span, tmpmask;
476d139c 2176 struct sched_group *group;
1a848870
SS
2177 int new_cpu, weight;
2178
2179 if (!(sd->flags & flag)) {
2180 sd = sd->child;
2181 continue;
2182 }
476d139c
NP
2183
2184 span = sd->span;
2185 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2186 if (!group) {
2187 sd = sd->child;
2188 continue;
2189 }
476d139c 2190
7c16ec58 2191 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2192 if (new_cpu == -1 || new_cpu == cpu) {
2193 /* Now try balancing at a lower domain level of cpu */
2194 sd = sd->child;
2195 continue;
2196 }
476d139c 2197
1a848870 2198 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2199 cpu = new_cpu;
476d139c
NP
2200 sd = NULL;
2201 weight = cpus_weight(span);
2202 for_each_domain(cpu, tmp) {
2203 if (weight <= cpus_weight(tmp->span))
2204 break;
2205 if (tmp->flags & flag)
2206 sd = tmp;
2207 }
2208 /* while loop will break here if sd == NULL */
2209 }
2210
2211 return cpu;
2212}
2213
2214#endif /* CONFIG_SMP */
1da177e4 2215
1da177e4
LT
2216/***
2217 * try_to_wake_up - wake up a thread
2218 * @p: the to-be-woken-up thread
2219 * @state: the mask of task states that can be woken
2220 * @sync: do a synchronous wakeup?
2221 *
2222 * Put it on the run-queue if it's not already there. The "current"
2223 * thread is always on the run-queue (except when the actual
2224 * re-schedule is in progress), and as such you're allowed to do
2225 * the simpler "current->state = TASK_RUNNING" to mark yourself
2226 * runnable without the overhead of this.
2227 *
2228 * returns failure only if the task is already active.
2229 */
36c8b586 2230static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2231{
cc367732 2232 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2233 unsigned long flags;
2234 long old_state;
70b97a7f 2235 struct rq *rq;
1da177e4 2236
b85d0667
IM
2237 if (!sched_feat(SYNC_WAKEUPS))
2238 sync = 0;
2239
2398f2c6
PZ
2240#ifdef CONFIG_SMP
2241 if (sched_feat(LB_WAKEUP_UPDATE)) {
2242 struct sched_domain *sd;
2243
2244 this_cpu = raw_smp_processor_id();
2245 cpu = task_cpu(p);
2246
2247 for_each_domain(this_cpu, sd) {
2248 if (cpu_isset(cpu, sd->span)) {
2249 update_shares(sd);
2250 break;
2251 }
2252 }
2253 }
2254#endif
2255
04e2f174 2256 smp_wmb();
1da177e4
LT
2257 rq = task_rq_lock(p, &flags);
2258 old_state = p->state;
2259 if (!(old_state & state))
2260 goto out;
2261
dd41f596 2262 if (p->se.on_rq)
1da177e4
LT
2263 goto out_running;
2264
2265 cpu = task_cpu(p);
cc367732 2266 orig_cpu = cpu;
1da177e4
LT
2267 this_cpu = smp_processor_id();
2268
2269#ifdef CONFIG_SMP
2270 if (unlikely(task_running(rq, p)))
2271 goto out_activate;
2272
5d2f5a61
DA
2273 cpu = p->sched_class->select_task_rq(p, sync);
2274 if (cpu != orig_cpu) {
2275 set_task_cpu(p, cpu);
1da177e4
LT
2276 task_rq_unlock(rq, &flags);
2277 /* might preempt at this point */
2278 rq = task_rq_lock(p, &flags);
2279 old_state = p->state;
2280 if (!(old_state & state))
2281 goto out;
dd41f596 2282 if (p->se.on_rq)
1da177e4
LT
2283 goto out_running;
2284
2285 this_cpu = smp_processor_id();
2286 cpu = task_cpu(p);
2287 }
2288
e7693a36
GH
2289#ifdef CONFIG_SCHEDSTATS
2290 schedstat_inc(rq, ttwu_count);
2291 if (cpu == this_cpu)
2292 schedstat_inc(rq, ttwu_local);
2293 else {
2294 struct sched_domain *sd;
2295 for_each_domain(this_cpu, sd) {
2296 if (cpu_isset(cpu, sd->span)) {
2297 schedstat_inc(sd, ttwu_wake_remote);
2298 break;
2299 }
2300 }
2301 }
6d6bc0ad 2302#endif /* CONFIG_SCHEDSTATS */
e7693a36 2303
1da177e4
LT
2304out_activate:
2305#endif /* CONFIG_SMP */
cc367732
IM
2306 schedstat_inc(p, se.nr_wakeups);
2307 if (sync)
2308 schedstat_inc(p, se.nr_wakeups_sync);
2309 if (orig_cpu != cpu)
2310 schedstat_inc(p, se.nr_wakeups_migrate);
2311 if (cpu == this_cpu)
2312 schedstat_inc(p, se.nr_wakeups_local);
2313 else
2314 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2315 update_rq_clock(rq);
dd41f596 2316 activate_task(rq, p, 1);
1da177e4
LT
2317 success = 1;
2318
2319out_running:
4ae7d5ce
IM
2320 check_preempt_curr(rq, p);
2321
1da177e4 2322 p->state = TASK_RUNNING;
9a897c5a
SR
2323#ifdef CONFIG_SMP
2324 if (p->sched_class->task_wake_up)
2325 p->sched_class->task_wake_up(rq, p);
2326#endif
1da177e4 2327out:
2087a1ad
GH
2328 current->se.last_wakeup = current->se.sum_exec_runtime;
2329
1da177e4
LT
2330 task_rq_unlock(rq, &flags);
2331
2332 return success;
2333}
2334
7ad5b3a5 2335int wake_up_process(struct task_struct *p)
1da177e4 2336{
d9514f6c 2337 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2338}
1da177e4
LT
2339EXPORT_SYMBOL(wake_up_process);
2340
7ad5b3a5 2341int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2342{
2343 return try_to_wake_up(p, state, 0);
2344}
2345
1da177e4
LT
2346/*
2347 * Perform scheduler related setup for a newly forked process p.
2348 * p is forked by current.
dd41f596
IM
2349 *
2350 * __sched_fork() is basic setup used by init_idle() too:
2351 */
2352static void __sched_fork(struct task_struct *p)
2353{
dd41f596
IM
2354 p->se.exec_start = 0;
2355 p->se.sum_exec_runtime = 0;
f6cf891c 2356 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2357 p->se.last_wakeup = 0;
2358 p->se.avg_overlap = 0;
6cfb0d5d
IM
2359
2360#ifdef CONFIG_SCHEDSTATS
2361 p->se.wait_start = 0;
dd41f596
IM
2362 p->se.sum_sleep_runtime = 0;
2363 p->se.sleep_start = 0;
dd41f596
IM
2364 p->se.block_start = 0;
2365 p->se.sleep_max = 0;
2366 p->se.block_max = 0;
2367 p->se.exec_max = 0;
eba1ed4b 2368 p->se.slice_max = 0;
dd41f596 2369 p->se.wait_max = 0;
6cfb0d5d 2370#endif
476d139c 2371
fa717060 2372 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2373 p->se.on_rq = 0;
4a55bd5e 2374 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2375
e107be36
AK
2376#ifdef CONFIG_PREEMPT_NOTIFIERS
2377 INIT_HLIST_HEAD(&p->preempt_notifiers);
2378#endif
2379
1da177e4
LT
2380 /*
2381 * We mark the process as running here, but have not actually
2382 * inserted it onto the runqueue yet. This guarantees that
2383 * nobody will actually run it, and a signal or other external
2384 * event cannot wake it up and insert it on the runqueue either.
2385 */
2386 p->state = TASK_RUNNING;
dd41f596
IM
2387}
2388
2389/*
2390 * fork()/clone()-time setup:
2391 */
2392void sched_fork(struct task_struct *p, int clone_flags)
2393{
2394 int cpu = get_cpu();
2395
2396 __sched_fork(p);
2397
2398#ifdef CONFIG_SMP
2399 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2400#endif
02e4bac2 2401 set_task_cpu(p, cpu);
b29739f9
IM
2402
2403 /*
2404 * Make sure we do not leak PI boosting priority to the child:
2405 */
2406 p->prio = current->normal_prio;
2ddbf952
HS
2407 if (!rt_prio(p->prio))
2408 p->sched_class = &fair_sched_class;
b29739f9 2409
52f17b6c 2410#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2411 if (likely(sched_info_on()))
52f17b6c 2412 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2413#endif
d6077cb8 2414#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2415 p->oncpu = 0;
2416#endif
1da177e4 2417#ifdef CONFIG_PREEMPT
4866cde0 2418 /* Want to start with kernel preemption disabled. */
a1261f54 2419 task_thread_info(p)->preempt_count = 1;
1da177e4 2420#endif
476d139c 2421 put_cpu();
1da177e4
LT
2422}
2423
2424/*
2425 * wake_up_new_task - wake up a newly created task for the first time.
2426 *
2427 * This function will do some initial scheduler statistics housekeeping
2428 * that must be done for every newly created context, then puts the task
2429 * on the runqueue and wakes it.
2430 */
7ad5b3a5 2431void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2432{
2433 unsigned long flags;
dd41f596 2434 struct rq *rq;
1da177e4
LT
2435
2436 rq = task_rq_lock(p, &flags);
147cbb4b 2437 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2438 update_rq_clock(rq);
1da177e4
LT
2439
2440 p->prio = effective_prio(p);
2441
b9dca1e0 2442 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2443 activate_task(rq, p, 0);
1da177e4 2444 } else {
1da177e4 2445 /*
dd41f596
IM
2446 * Let the scheduling class do new task startup
2447 * management (if any):
1da177e4 2448 */
ee0827d8 2449 p->sched_class->task_new(rq, p);
c09595f6 2450 inc_nr_running(rq);
1da177e4 2451 }
dd41f596 2452 check_preempt_curr(rq, p);
9a897c5a
SR
2453#ifdef CONFIG_SMP
2454 if (p->sched_class->task_wake_up)
2455 p->sched_class->task_wake_up(rq, p);
2456#endif
dd41f596 2457 task_rq_unlock(rq, &flags);
1da177e4
LT
2458}
2459
e107be36
AK
2460#ifdef CONFIG_PREEMPT_NOTIFIERS
2461
2462/**
421cee29
RD
2463 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2464 * @notifier: notifier struct to register
e107be36
AK
2465 */
2466void preempt_notifier_register(struct preempt_notifier *notifier)
2467{
2468 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2469}
2470EXPORT_SYMBOL_GPL(preempt_notifier_register);
2471
2472/**
2473 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2474 * @notifier: notifier struct to unregister
e107be36
AK
2475 *
2476 * This is safe to call from within a preemption notifier.
2477 */
2478void preempt_notifier_unregister(struct preempt_notifier *notifier)
2479{
2480 hlist_del(&notifier->link);
2481}
2482EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2483
2484static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2485{
2486 struct preempt_notifier *notifier;
2487 struct hlist_node *node;
2488
2489 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2490 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2491}
2492
2493static void
2494fire_sched_out_preempt_notifiers(struct task_struct *curr,
2495 struct task_struct *next)
2496{
2497 struct preempt_notifier *notifier;
2498 struct hlist_node *node;
2499
2500 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2501 notifier->ops->sched_out(notifier, next);
2502}
2503
6d6bc0ad 2504#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2505
2506static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2507{
2508}
2509
2510static void
2511fire_sched_out_preempt_notifiers(struct task_struct *curr,
2512 struct task_struct *next)
2513{
2514}
2515
6d6bc0ad 2516#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2517
4866cde0
NP
2518/**
2519 * prepare_task_switch - prepare to switch tasks
2520 * @rq: the runqueue preparing to switch
421cee29 2521 * @prev: the current task that is being switched out
4866cde0
NP
2522 * @next: the task we are going to switch to.
2523 *
2524 * This is called with the rq lock held and interrupts off. It must
2525 * be paired with a subsequent finish_task_switch after the context
2526 * switch.
2527 *
2528 * prepare_task_switch sets up locking and calls architecture specific
2529 * hooks.
2530 */
e107be36
AK
2531static inline void
2532prepare_task_switch(struct rq *rq, struct task_struct *prev,
2533 struct task_struct *next)
4866cde0 2534{
e107be36 2535 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2536 prepare_lock_switch(rq, next);
2537 prepare_arch_switch(next);
2538}
2539
1da177e4
LT
2540/**
2541 * finish_task_switch - clean up after a task-switch
344babaa 2542 * @rq: runqueue associated with task-switch
1da177e4
LT
2543 * @prev: the thread we just switched away from.
2544 *
4866cde0
NP
2545 * finish_task_switch must be called after the context switch, paired
2546 * with a prepare_task_switch call before the context switch.
2547 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2548 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2549 *
2550 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2551 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2552 * with the lock held can cause deadlocks; see schedule() for
2553 * details.)
2554 */
a9957449 2555static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2556 __releases(rq->lock)
2557{
1da177e4 2558 struct mm_struct *mm = rq->prev_mm;
55a101f8 2559 long prev_state;
1da177e4
LT
2560
2561 rq->prev_mm = NULL;
2562
2563 /*
2564 * A task struct has one reference for the use as "current".
c394cc9f 2565 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2566 * schedule one last time. The schedule call will never return, and
2567 * the scheduled task must drop that reference.
c394cc9f 2568 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2569 * still held, otherwise prev could be scheduled on another cpu, die
2570 * there before we look at prev->state, and then the reference would
2571 * be dropped twice.
2572 * Manfred Spraul <manfred@colorfullife.com>
2573 */
55a101f8 2574 prev_state = prev->state;
4866cde0
NP
2575 finish_arch_switch(prev);
2576 finish_lock_switch(rq, prev);
9a897c5a
SR
2577#ifdef CONFIG_SMP
2578 if (current->sched_class->post_schedule)
2579 current->sched_class->post_schedule(rq);
2580#endif
e8fa1362 2581
e107be36 2582 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2583 if (mm)
2584 mmdrop(mm);
c394cc9f 2585 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2586 /*
2587 * Remove function-return probe instances associated with this
2588 * task and put them back on the free list.
9761eea8 2589 */
c6fd91f0 2590 kprobe_flush_task(prev);
1da177e4 2591 put_task_struct(prev);
c6fd91f0 2592 }
1da177e4
LT
2593}
2594
2595/**
2596 * schedule_tail - first thing a freshly forked thread must call.
2597 * @prev: the thread we just switched away from.
2598 */
36c8b586 2599asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2600 __releases(rq->lock)
2601{
70b97a7f
IM
2602 struct rq *rq = this_rq();
2603
4866cde0
NP
2604 finish_task_switch(rq, prev);
2605#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2606 /* In this case, finish_task_switch does not reenable preemption */
2607 preempt_enable();
2608#endif
1da177e4 2609 if (current->set_child_tid)
b488893a 2610 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2611}
2612
2613/*
2614 * context_switch - switch to the new MM and the new
2615 * thread's register state.
2616 */
dd41f596 2617static inline void
70b97a7f 2618context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2619 struct task_struct *next)
1da177e4 2620{
dd41f596 2621 struct mm_struct *mm, *oldmm;
1da177e4 2622
e107be36 2623 prepare_task_switch(rq, prev, next);
dd41f596
IM
2624 mm = next->mm;
2625 oldmm = prev->active_mm;
9226d125
ZA
2626 /*
2627 * For paravirt, this is coupled with an exit in switch_to to
2628 * combine the page table reload and the switch backend into
2629 * one hypercall.
2630 */
2631 arch_enter_lazy_cpu_mode();
2632
dd41f596 2633 if (unlikely(!mm)) {
1da177e4
LT
2634 next->active_mm = oldmm;
2635 atomic_inc(&oldmm->mm_count);
2636 enter_lazy_tlb(oldmm, next);
2637 } else
2638 switch_mm(oldmm, mm, next);
2639
dd41f596 2640 if (unlikely(!prev->mm)) {
1da177e4 2641 prev->active_mm = NULL;
1da177e4
LT
2642 rq->prev_mm = oldmm;
2643 }
3a5f5e48
IM
2644 /*
2645 * Since the runqueue lock will be released by the next
2646 * task (which is an invalid locking op but in the case
2647 * of the scheduler it's an obvious special-case), so we
2648 * do an early lockdep release here:
2649 */
2650#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2651 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2652#endif
1da177e4
LT
2653
2654 /* Here we just switch the register state and the stack. */
2655 switch_to(prev, next, prev);
2656
dd41f596
IM
2657 barrier();
2658 /*
2659 * this_rq must be evaluated again because prev may have moved
2660 * CPUs since it called schedule(), thus the 'rq' on its stack
2661 * frame will be invalid.
2662 */
2663 finish_task_switch(this_rq(), prev);
1da177e4
LT
2664}
2665
2666/*
2667 * nr_running, nr_uninterruptible and nr_context_switches:
2668 *
2669 * externally visible scheduler statistics: current number of runnable
2670 * threads, current number of uninterruptible-sleeping threads, total
2671 * number of context switches performed since bootup.
2672 */
2673unsigned long nr_running(void)
2674{
2675 unsigned long i, sum = 0;
2676
2677 for_each_online_cpu(i)
2678 sum += cpu_rq(i)->nr_running;
2679
2680 return sum;
2681}
2682
2683unsigned long nr_uninterruptible(void)
2684{
2685 unsigned long i, sum = 0;
2686
0a945022 2687 for_each_possible_cpu(i)
1da177e4
LT
2688 sum += cpu_rq(i)->nr_uninterruptible;
2689
2690 /*
2691 * Since we read the counters lockless, it might be slightly
2692 * inaccurate. Do not allow it to go below zero though:
2693 */
2694 if (unlikely((long)sum < 0))
2695 sum = 0;
2696
2697 return sum;
2698}
2699
2700unsigned long long nr_context_switches(void)
2701{
cc94abfc
SR
2702 int i;
2703 unsigned long long sum = 0;
1da177e4 2704
0a945022 2705 for_each_possible_cpu(i)
1da177e4
LT
2706 sum += cpu_rq(i)->nr_switches;
2707
2708 return sum;
2709}
2710
2711unsigned long nr_iowait(void)
2712{
2713 unsigned long i, sum = 0;
2714
0a945022 2715 for_each_possible_cpu(i)
1da177e4
LT
2716 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2717
2718 return sum;
2719}
2720
db1b1fef
JS
2721unsigned long nr_active(void)
2722{
2723 unsigned long i, running = 0, uninterruptible = 0;
2724
2725 for_each_online_cpu(i) {
2726 running += cpu_rq(i)->nr_running;
2727 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2728 }
2729
2730 if (unlikely((long)uninterruptible < 0))
2731 uninterruptible = 0;
2732
2733 return running + uninterruptible;
2734}
2735
48f24c4d 2736/*
dd41f596
IM
2737 * Update rq->cpu_load[] statistics. This function is usually called every
2738 * scheduler tick (TICK_NSEC).
48f24c4d 2739 */
dd41f596 2740static void update_cpu_load(struct rq *this_rq)
48f24c4d 2741{
495eca49 2742 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2743 int i, scale;
2744
2745 this_rq->nr_load_updates++;
dd41f596
IM
2746
2747 /* Update our load: */
2748 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2749 unsigned long old_load, new_load;
2750
2751 /* scale is effectively 1 << i now, and >> i divides by scale */
2752
2753 old_load = this_rq->cpu_load[i];
2754 new_load = this_load;
a25707f3
IM
2755 /*
2756 * Round up the averaging division if load is increasing. This
2757 * prevents us from getting stuck on 9 if the load is 10, for
2758 * example.
2759 */
2760 if (new_load > old_load)
2761 new_load += scale-1;
dd41f596
IM
2762 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2763 }
48f24c4d
IM
2764}
2765
dd41f596
IM
2766#ifdef CONFIG_SMP
2767
1da177e4
LT
2768/*
2769 * double_rq_lock - safely lock two runqueues
2770 *
2771 * Note this does not disable interrupts like task_rq_lock,
2772 * you need to do so manually before calling.
2773 */
70b97a7f 2774static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2775 __acquires(rq1->lock)
2776 __acquires(rq2->lock)
2777{
054b9108 2778 BUG_ON(!irqs_disabled());
1da177e4
LT
2779 if (rq1 == rq2) {
2780 spin_lock(&rq1->lock);
2781 __acquire(rq2->lock); /* Fake it out ;) */
2782 } else {
c96d145e 2783 if (rq1 < rq2) {
1da177e4
LT
2784 spin_lock(&rq1->lock);
2785 spin_lock(&rq2->lock);
2786 } else {
2787 spin_lock(&rq2->lock);
2788 spin_lock(&rq1->lock);
2789 }
2790 }
6e82a3be
IM
2791 update_rq_clock(rq1);
2792 update_rq_clock(rq2);
1da177e4
LT
2793}
2794
2795/*
2796 * double_rq_unlock - safely unlock two runqueues
2797 *
2798 * Note this does not restore interrupts like task_rq_unlock,
2799 * you need to do so manually after calling.
2800 */
70b97a7f 2801static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2802 __releases(rq1->lock)
2803 __releases(rq2->lock)
2804{
2805 spin_unlock(&rq1->lock);
2806 if (rq1 != rq2)
2807 spin_unlock(&rq2->lock);
2808 else
2809 __release(rq2->lock);
2810}
2811
2812/*
2813 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2814 */
e8fa1362 2815static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2816 __releases(this_rq->lock)
2817 __acquires(busiest->lock)
2818 __acquires(this_rq->lock)
2819{
e8fa1362
SR
2820 int ret = 0;
2821
054b9108
KK
2822 if (unlikely(!irqs_disabled())) {
2823 /* printk() doesn't work good under rq->lock */
2824 spin_unlock(&this_rq->lock);
2825 BUG_ON(1);
2826 }
1da177e4 2827 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2828 if (busiest < this_rq) {
1da177e4
LT
2829 spin_unlock(&this_rq->lock);
2830 spin_lock(&busiest->lock);
2831 spin_lock(&this_rq->lock);
e8fa1362 2832 ret = 1;
1da177e4
LT
2833 } else
2834 spin_lock(&busiest->lock);
2835 }
e8fa1362 2836 return ret;
1da177e4
LT
2837}
2838
1da177e4
LT
2839/*
2840 * If dest_cpu is allowed for this process, migrate the task to it.
2841 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2842 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2843 * the cpu_allowed mask is restored.
2844 */
36c8b586 2845static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2846{
70b97a7f 2847 struct migration_req req;
1da177e4 2848 unsigned long flags;
70b97a7f 2849 struct rq *rq;
1da177e4
LT
2850
2851 rq = task_rq_lock(p, &flags);
2852 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2853 || unlikely(cpu_is_offline(dest_cpu)))
2854 goto out;
2855
2856 /* force the process onto the specified CPU */
2857 if (migrate_task(p, dest_cpu, &req)) {
2858 /* Need to wait for migration thread (might exit: take ref). */
2859 struct task_struct *mt = rq->migration_thread;
36c8b586 2860
1da177e4
LT
2861 get_task_struct(mt);
2862 task_rq_unlock(rq, &flags);
2863 wake_up_process(mt);
2864 put_task_struct(mt);
2865 wait_for_completion(&req.done);
36c8b586 2866
1da177e4
LT
2867 return;
2868 }
2869out:
2870 task_rq_unlock(rq, &flags);
2871}
2872
2873/*
476d139c
NP
2874 * sched_exec - execve() is a valuable balancing opportunity, because at
2875 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2876 */
2877void sched_exec(void)
2878{
1da177e4 2879 int new_cpu, this_cpu = get_cpu();
476d139c 2880 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2881 put_cpu();
476d139c
NP
2882 if (new_cpu != this_cpu)
2883 sched_migrate_task(current, new_cpu);
1da177e4
LT
2884}
2885
2886/*
2887 * pull_task - move a task from a remote runqueue to the local runqueue.
2888 * Both runqueues must be locked.
2889 */
dd41f596
IM
2890static void pull_task(struct rq *src_rq, struct task_struct *p,
2891 struct rq *this_rq, int this_cpu)
1da177e4 2892{
2e1cb74a 2893 deactivate_task(src_rq, p, 0);
1da177e4 2894 set_task_cpu(p, this_cpu);
dd41f596 2895 activate_task(this_rq, p, 0);
1da177e4
LT
2896 /*
2897 * Note that idle threads have a prio of MAX_PRIO, for this test
2898 * to be always true for them.
2899 */
dd41f596 2900 check_preempt_curr(this_rq, p);
1da177e4
LT
2901}
2902
2903/*
2904 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2905 */
858119e1 2906static
70b97a7f 2907int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2908 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2909 int *all_pinned)
1da177e4
LT
2910{
2911 /*
2912 * We do not migrate tasks that are:
2913 * 1) running (obviously), or
2914 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2915 * 3) are cache-hot on their current CPU.
2916 */
cc367732
IM
2917 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2918 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2919 return 0;
cc367732 2920 }
81026794
NP
2921 *all_pinned = 0;
2922
cc367732
IM
2923 if (task_running(rq, p)) {
2924 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2925 return 0;
cc367732 2926 }
1da177e4 2927
da84d961
IM
2928 /*
2929 * Aggressive migration if:
2930 * 1) task is cache cold, or
2931 * 2) too many balance attempts have failed.
2932 */
2933
6bc1665b
IM
2934 if (!task_hot(p, rq->clock, sd) ||
2935 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2936#ifdef CONFIG_SCHEDSTATS
cc367732 2937 if (task_hot(p, rq->clock, sd)) {
da84d961 2938 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2939 schedstat_inc(p, se.nr_forced_migrations);
2940 }
da84d961
IM
2941#endif
2942 return 1;
2943 }
2944
cc367732
IM
2945 if (task_hot(p, rq->clock, sd)) {
2946 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2947 return 0;
cc367732 2948 }
1da177e4
LT
2949 return 1;
2950}
2951
e1d1484f
PW
2952static unsigned long
2953balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2954 unsigned long max_load_move, struct sched_domain *sd,
2955 enum cpu_idle_type idle, int *all_pinned,
2956 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2957{
051c6764 2958 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2959 struct task_struct *p;
2960 long rem_load_move = max_load_move;
1da177e4 2961
e1d1484f 2962 if (max_load_move == 0)
1da177e4
LT
2963 goto out;
2964
81026794
NP
2965 pinned = 1;
2966
1da177e4 2967 /*
dd41f596 2968 * Start the load-balancing iterator:
1da177e4 2969 */
dd41f596
IM
2970 p = iterator->start(iterator->arg);
2971next:
b82d9fdd 2972 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2973 goto out;
051c6764
PZ
2974
2975 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2976 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2977 p = iterator->next(iterator->arg);
2978 goto next;
1da177e4
LT
2979 }
2980
dd41f596 2981 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2982 pulled++;
dd41f596 2983 rem_load_move -= p->se.load.weight;
1da177e4 2984
2dd73a4f 2985 /*
b82d9fdd 2986 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2987 */
e1d1484f 2988 if (rem_load_move > 0) {
a4ac01c3
PW
2989 if (p->prio < *this_best_prio)
2990 *this_best_prio = p->prio;
dd41f596
IM
2991 p = iterator->next(iterator->arg);
2992 goto next;
1da177e4
LT
2993 }
2994out:
2995 /*
e1d1484f 2996 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2997 * so we can safely collect pull_task() stats here rather than
2998 * inside pull_task().
2999 */
3000 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3001
3002 if (all_pinned)
3003 *all_pinned = pinned;
e1d1484f
PW
3004
3005 return max_load_move - rem_load_move;
1da177e4
LT
3006}
3007
dd41f596 3008/*
43010659
PW
3009 * move_tasks tries to move up to max_load_move weighted load from busiest to
3010 * this_rq, as part of a balancing operation within domain "sd".
3011 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3012 *
3013 * Called with both runqueues locked.
3014 */
3015static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3016 unsigned long max_load_move,
dd41f596
IM
3017 struct sched_domain *sd, enum cpu_idle_type idle,
3018 int *all_pinned)
3019{
5522d5d5 3020 const struct sched_class *class = sched_class_highest;
43010659 3021 unsigned long total_load_moved = 0;
a4ac01c3 3022 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3023
3024 do {
43010659
PW
3025 total_load_moved +=
3026 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3027 max_load_move - total_load_moved,
a4ac01c3 3028 sd, idle, all_pinned, &this_best_prio);
dd41f596 3029 class = class->next;
c4acb2c0
GH
3030
3031 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3032 break;
3033
43010659 3034 } while (class && max_load_move > total_load_moved);
dd41f596 3035
43010659
PW
3036 return total_load_moved > 0;
3037}
3038
e1d1484f
PW
3039static int
3040iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3041 struct sched_domain *sd, enum cpu_idle_type idle,
3042 struct rq_iterator *iterator)
3043{
3044 struct task_struct *p = iterator->start(iterator->arg);
3045 int pinned = 0;
3046
3047 while (p) {
3048 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3049 pull_task(busiest, p, this_rq, this_cpu);
3050 /*
3051 * Right now, this is only the second place pull_task()
3052 * is called, so we can safely collect pull_task()
3053 * stats here rather than inside pull_task().
3054 */
3055 schedstat_inc(sd, lb_gained[idle]);
3056
3057 return 1;
3058 }
3059 p = iterator->next(iterator->arg);
3060 }
3061
3062 return 0;
3063}
3064
43010659
PW
3065/*
3066 * move_one_task tries to move exactly one task from busiest to this_rq, as
3067 * part of active balancing operations within "domain".
3068 * Returns 1 if successful and 0 otherwise.
3069 *
3070 * Called with both runqueues locked.
3071 */
3072static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3073 struct sched_domain *sd, enum cpu_idle_type idle)
3074{
5522d5d5 3075 const struct sched_class *class;
43010659
PW
3076
3077 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3078 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3079 return 1;
3080
3081 return 0;
dd41f596
IM
3082}
3083
1da177e4
LT
3084/*
3085 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3086 * domain. It calculates and returns the amount of weighted load which
3087 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3088 */
3089static struct sched_group *
3090find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3091 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3092 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3093{
3094 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3095 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3096 unsigned long max_pull;
2dd73a4f
PW
3097 unsigned long busiest_load_per_task, busiest_nr_running;
3098 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3099 int load_idx, group_imb = 0;
5c45bf27
SS
3100#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3101 int power_savings_balance = 1;
3102 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3103 unsigned long min_nr_running = ULONG_MAX;
3104 struct sched_group *group_min = NULL, *group_leader = NULL;
3105#endif
1da177e4
LT
3106
3107 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3108 busiest_load_per_task = busiest_nr_running = 0;
3109 this_load_per_task = this_nr_running = 0;
408ed066 3110
d15bcfdb 3111 if (idle == CPU_NOT_IDLE)
7897986b 3112 load_idx = sd->busy_idx;
d15bcfdb 3113 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3114 load_idx = sd->newidle_idx;
3115 else
3116 load_idx = sd->idle_idx;
1da177e4
LT
3117
3118 do {
908a7c1b 3119 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3120 int local_group;
3121 int i;
908a7c1b 3122 int __group_imb = 0;
783609c6 3123 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3124 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3125 unsigned long sum_avg_load_per_task;
3126 unsigned long avg_load_per_task;
1da177e4
LT
3127
3128 local_group = cpu_isset(this_cpu, group->cpumask);
3129
783609c6
SS
3130 if (local_group)
3131 balance_cpu = first_cpu(group->cpumask);
3132
1da177e4 3133 /* Tally up the load of all CPUs in the group */
2dd73a4f 3134 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3135 sum_avg_load_per_task = avg_load_per_task = 0;
3136
908a7c1b
KC
3137 max_cpu_load = 0;
3138 min_cpu_load = ~0UL;
1da177e4
LT
3139
3140 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3141 struct rq *rq;
3142
3143 if (!cpu_isset(i, *cpus))
3144 continue;
3145
3146 rq = cpu_rq(i);
2dd73a4f 3147
9439aab8 3148 if (*sd_idle && rq->nr_running)
5969fe06
NP
3149 *sd_idle = 0;
3150
1da177e4 3151 /* Bias balancing toward cpus of our domain */
783609c6
SS
3152 if (local_group) {
3153 if (idle_cpu(i) && !first_idle_cpu) {
3154 first_idle_cpu = 1;
3155 balance_cpu = i;
3156 }
3157
a2000572 3158 load = target_load(i, load_idx);
908a7c1b 3159 } else {
a2000572 3160 load = source_load(i, load_idx);
908a7c1b
KC
3161 if (load > max_cpu_load)
3162 max_cpu_load = load;
3163 if (min_cpu_load > load)
3164 min_cpu_load = load;
3165 }
1da177e4
LT
3166
3167 avg_load += load;
2dd73a4f 3168 sum_nr_running += rq->nr_running;
dd41f596 3169 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3170
3171 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3172 }
3173
783609c6
SS
3174 /*
3175 * First idle cpu or the first cpu(busiest) in this sched group
3176 * is eligible for doing load balancing at this and above
9439aab8
SS
3177 * domains. In the newly idle case, we will allow all the cpu's
3178 * to do the newly idle load balance.
783609c6 3179 */
9439aab8
SS
3180 if (idle != CPU_NEWLY_IDLE && local_group &&
3181 balance_cpu != this_cpu && balance) {
783609c6
SS
3182 *balance = 0;
3183 goto ret;
3184 }
3185
1da177e4 3186 total_load += avg_load;
5517d86b 3187 total_pwr += group->__cpu_power;
1da177e4
LT
3188
3189 /* Adjust by relative CPU power of the group */
5517d86b
ED
3190 avg_load = sg_div_cpu_power(group,
3191 avg_load * SCHED_LOAD_SCALE);
1da177e4 3192
408ed066
PZ
3193
3194 /*
3195 * Consider the group unbalanced when the imbalance is larger
3196 * than the average weight of two tasks.
3197 *
3198 * APZ: with cgroup the avg task weight can vary wildly and
3199 * might not be a suitable number - should we keep a
3200 * normalized nr_running number somewhere that negates
3201 * the hierarchy?
3202 */
3203 avg_load_per_task = sg_div_cpu_power(group,
3204 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3205
3206 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3207 __group_imb = 1;
3208
5517d86b 3209 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3210
1da177e4
LT
3211 if (local_group) {
3212 this_load = avg_load;
3213 this = group;
2dd73a4f
PW
3214 this_nr_running = sum_nr_running;
3215 this_load_per_task = sum_weighted_load;
3216 } else if (avg_load > max_load &&
908a7c1b 3217 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3218 max_load = avg_load;
3219 busiest = group;
2dd73a4f
PW
3220 busiest_nr_running = sum_nr_running;
3221 busiest_load_per_task = sum_weighted_load;
908a7c1b 3222 group_imb = __group_imb;
1da177e4 3223 }
5c45bf27
SS
3224
3225#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3226 /*
3227 * Busy processors will not participate in power savings
3228 * balance.
3229 */
dd41f596
IM
3230 if (idle == CPU_NOT_IDLE ||
3231 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3232 goto group_next;
5c45bf27
SS
3233
3234 /*
3235 * If the local group is idle or completely loaded
3236 * no need to do power savings balance at this domain
3237 */
3238 if (local_group && (this_nr_running >= group_capacity ||
3239 !this_nr_running))
3240 power_savings_balance = 0;
3241
dd41f596 3242 /*
5c45bf27
SS
3243 * If a group is already running at full capacity or idle,
3244 * don't include that group in power savings calculations
dd41f596
IM
3245 */
3246 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3247 || !sum_nr_running)
dd41f596 3248 goto group_next;
5c45bf27 3249
dd41f596 3250 /*
5c45bf27 3251 * Calculate the group which has the least non-idle load.
dd41f596
IM
3252 * This is the group from where we need to pick up the load
3253 * for saving power
3254 */
3255 if ((sum_nr_running < min_nr_running) ||
3256 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3257 first_cpu(group->cpumask) <
3258 first_cpu(group_min->cpumask))) {
dd41f596
IM
3259 group_min = group;
3260 min_nr_running = sum_nr_running;
5c45bf27
SS
3261 min_load_per_task = sum_weighted_load /
3262 sum_nr_running;
dd41f596 3263 }
5c45bf27 3264
dd41f596 3265 /*
5c45bf27 3266 * Calculate the group which is almost near its
dd41f596
IM
3267 * capacity but still has some space to pick up some load
3268 * from other group and save more power
3269 */
3270 if (sum_nr_running <= group_capacity - 1) {
3271 if (sum_nr_running > leader_nr_running ||
3272 (sum_nr_running == leader_nr_running &&
3273 first_cpu(group->cpumask) >
3274 first_cpu(group_leader->cpumask))) {
3275 group_leader = group;
3276 leader_nr_running = sum_nr_running;
3277 }
48f24c4d 3278 }
5c45bf27
SS
3279group_next:
3280#endif
1da177e4
LT
3281 group = group->next;
3282 } while (group != sd->groups);
3283
2dd73a4f 3284 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3285 goto out_balanced;
3286
3287 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3288
3289 if (this_load >= avg_load ||
3290 100*max_load <= sd->imbalance_pct*this_load)
3291 goto out_balanced;
3292
2dd73a4f 3293 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3294 if (group_imb)
3295 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3296
1da177e4
LT
3297 /*
3298 * We're trying to get all the cpus to the average_load, so we don't
3299 * want to push ourselves above the average load, nor do we wish to
3300 * reduce the max loaded cpu below the average load, as either of these
3301 * actions would just result in more rebalancing later, and ping-pong
3302 * tasks around. Thus we look for the minimum possible imbalance.
3303 * Negative imbalances (*we* are more loaded than anyone else) will
3304 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3305 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3306 * appear as very large values with unsigned longs.
3307 */
2dd73a4f
PW
3308 if (max_load <= busiest_load_per_task)
3309 goto out_balanced;
3310
3311 /*
3312 * In the presence of smp nice balancing, certain scenarios can have
3313 * max load less than avg load(as we skip the groups at or below
3314 * its cpu_power, while calculating max_load..)
3315 */
3316 if (max_load < avg_load) {
3317 *imbalance = 0;
3318 goto small_imbalance;
3319 }
0c117f1b
SS
3320
3321 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3322 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3323
1da177e4 3324 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3325 *imbalance = min(max_pull * busiest->__cpu_power,
3326 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3327 / SCHED_LOAD_SCALE;
3328
2dd73a4f
PW
3329 /*
3330 * if *imbalance is less than the average load per runnable task
3331 * there is no gaurantee that any tasks will be moved so we'll have
3332 * a think about bumping its value to force at least one task to be
3333 * moved
3334 */
7fd0d2dd 3335 if (*imbalance < busiest_load_per_task) {
48f24c4d 3336 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3337 unsigned int imbn;
3338
3339small_imbalance:
3340 pwr_move = pwr_now = 0;
3341 imbn = 2;
3342 if (this_nr_running) {
3343 this_load_per_task /= this_nr_running;
3344 if (busiest_load_per_task > this_load_per_task)
3345 imbn = 1;
3346 } else
408ed066 3347 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3348
408ed066 3349 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3350 busiest_load_per_task * imbn) {
2dd73a4f 3351 *imbalance = busiest_load_per_task;
1da177e4
LT
3352 return busiest;
3353 }
3354
3355 /*
3356 * OK, we don't have enough imbalance to justify moving tasks,
3357 * however we may be able to increase total CPU power used by
3358 * moving them.
3359 */
3360
5517d86b
ED
3361 pwr_now += busiest->__cpu_power *
3362 min(busiest_load_per_task, max_load);
3363 pwr_now += this->__cpu_power *
3364 min(this_load_per_task, this_load);
1da177e4
LT
3365 pwr_now /= SCHED_LOAD_SCALE;
3366
3367 /* Amount of load we'd subtract */
5517d86b
ED
3368 tmp = sg_div_cpu_power(busiest,
3369 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3370 if (max_load > tmp)
5517d86b 3371 pwr_move += busiest->__cpu_power *
2dd73a4f 3372 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3373
3374 /* Amount of load we'd add */
5517d86b 3375 if (max_load * busiest->__cpu_power <
33859f7f 3376 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3377 tmp = sg_div_cpu_power(this,
3378 max_load * busiest->__cpu_power);
1da177e4 3379 else
5517d86b
ED
3380 tmp = sg_div_cpu_power(this,
3381 busiest_load_per_task * SCHED_LOAD_SCALE);
3382 pwr_move += this->__cpu_power *
3383 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3384 pwr_move /= SCHED_LOAD_SCALE;
3385
3386 /* Move if we gain throughput */
7fd0d2dd
SS
3387 if (pwr_move > pwr_now)
3388 *imbalance = busiest_load_per_task;
1da177e4
LT
3389 }
3390
1da177e4
LT
3391 return busiest;
3392
3393out_balanced:
5c45bf27 3394#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3395 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3396 goto ret;
1da177e4 3397
5c45bf27
SS
3398 if (this == group_leader && group_leader != group_min) {
3399 *imbalance = min_load_per_task;
3400 return group_min;
3401 }
5c45bf27 3402#endif
783609c6 3403ret:
1da177e4
LT
3404 *imbalance = 0;
3405 return NULL;
3406}
3407
3408/*
3409 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3410 */
70b97a7f 3411static struct rq *
d15bcfdb 3412find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3413 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3414{
70b97a7f 3415 struct rq *busiest = NULL, *rq;
2dd73a4f 3416 unsigned long max_load = 0;
1da177e4
LT
3417 int i;
3418
3419 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3420 unsigned long wl;
0a2966b4
CL
3421
3422 if (!cpu_isset(i, *cpus))
3423 continue;
3424
48f24c4d 3425 rq = cpu_rq(i);
dd41f596 3426 wl = weighted_cpuload(i);
2dd73a4f 3427
dd41f596 3428 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3429 continue;
1da177e4 3430
dd41f596
IM
3431 if (wl > max_load) {
3432 max_load = wl;
48f24c4d 3433 busiest = rq;
1da177e4
LT
3434 }
3435 }
3436
3437 return busiest;
3438}
3439
77391d71
NP
3440/*
3441 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3442 * so long as it is large enough.
3443 */
3444#define MAX_PINNED_INTERVAL 512
3445
1da177e4
LT
3446/*
3447 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3448 * tasks if there is an imbalance.
1da177e4 3449 */
70b97a7f 3450static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3451 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3452 int *balance, cpumask_t *cpus)
1da177e4 3453{
43010659 3454 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3455 struct sched_group *group;
1da177e4 3456 unsigned long imbalance;
70b97a7f 3457 struct rq *busiest;
fe2eea3f 3458 unsigned long flags;
5969fe06 3459
7c16ec58
MT
3460 cpus_setall(*cpus);
3461
89c4710e
SS
3462 /*
3463 * When power savings policy is enabled for the parent domain, idle
3464 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3465 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3466 * portraying it as CPU_NOT_IDLE.
89c4710e 3467 */
d15bcfdb 3468 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3469 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3470 sd_idle = 1;
1da177e4 3471
2d72376b 3472 schedstat_inc(sd, lb_count[idle]);
1da177e4 3473
0a2966b4 3474redo:
c8cba857 3475 update_shares(sd);
0a2966b4 3476 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3477 cpus, balance);
783609c6 3478
06066714 3479 if (*balance == 0)
783609c6 3480 goto out_balanced;
783609c6 3481
1da177e4
LT
3482 if (!group) {
3483 schedstat_inc(sd, lb_nobusyg[idle]);
3484 goto out_balanced;
3485 }
3486
7c16ec58 3487 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3488 if (!busiest) {
3489 schedstat_inc(sd, lb_nobusyq[idle]);
3490 goto out_balanced;
3491 }
3492
db935dbd 3493 BUG_ON(busiest == this_rq);
1da177e4
LT
3494
3495 schedstat_add(sd, lb_imbalance[idle], imbalance);
3496
43010659 3497 ld_moved = 0;
1da177e4
LT
3498 if (busiest->nr_running > 1) {
3499 /*
3500 * Attempt to move tasks. If find_busiest_group has found
3501 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3502 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3503 * correctly treated as an imbalance.
3504 */
fe2eea3f 3505 local_irq_save(flags);
e17224bf 3506 double_rq_lock(this_rq, busiest);
43010659 3507 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3508 imbalance, sd, idle, &all_pinned);
e17224bf 3509 double_rq_unlock(this_rq, busiest);
fe2eea3f 3510 local_irq_restore(flags);
81026794 3511
46cb4b7c
SS
3512 /*
3513 * some other cpu did the load balance for us.
3514 */
43010659 3515 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3516 resched_cpu(this_cpu);
3517
81026794 3518 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3519 if (unlikely(all_pinned)) {
7c16ec58
MT
3520 cpu_clear(cpu_of(busiest), *cpus);
3521 if (!cpus_empty(*cpus))
0a2966b4 3522 goto redo;
81026794 3523 goto out_balanced;
0a2966b4 3524 }
1da177e4 3525 }
81026794 3526
43010659 3527 if (!ld_moved) {
1da177e4
LT
3528 schedstat_inc(sd, lb_failed[idle]);
3529 sd->nr_balance_failed++;
3530
3531 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3532
fe2eea3f 3533 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3534
3535 /* don't kick the migration_thread, if the curr
3536 * task on busiest cpu can't be moved to this_cpu
3537 */
3538 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3539 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3540 all_pinned = 1;
3541 goto out_one_pinned;
3542 }
3543
1da177e4
LT
3544 if (!busiest->active_balance) {
3545 busiest->active_balance = 1;
3546 busiest->push_cpu = this_cpu;
81026794 3547 active_balance = 1;
1da177e4 3548 }
fe2eea3f 3549 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3550 if (active_balance)
1da177e4
LT
3551 wake_up_process(busiest->migration_thread);
3552
3553 /*
3554 * We've kicked active balancing, reset the failure
3555 * counter.
3556 */
39507451 3557 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3558 }
81026794 3559 } else
1da177e4
LT
3560 sd->nr_balance_failed = 0;
3561
81026794 3562 if (likely(!active_balance)) {
1da177e4
LT
3563 /* We were unbalanced, so reset the balancing interval */
3564 sd->balance_interval = sd->min_interval;
81026794
NP
3565 } else {
3566 /*
3567 * If we've begun active balancing, start to back off. This
3568 * case may not be covered by the all_pinned logic if there
3569 * is only 1 task on the busy runqueue (because we don't call
3570 * move_tasks).
3571 */
3572 if (sd->balance_interval < sd->max_interval)
3573 sd->balance_interval *= 2;
1da177e4
LT
3574 }
3575
43010659 3576 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3577 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3578 ld_moved = -1;
3579
3580 goto out;
1da177e4
LT
3581
3582out_balanced:
1da177e4
LT
3583 schedstat_inc(sd, lb_balanced[idle]);
3584
16cfb1c0 3585 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3586
3587out_one_pinned:
1da177e4 3588 /* tune up the balancing interval */
77391d71
NP
3589 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3590 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3591 sd->balance_interval *= 2;
3592
48f24c4d 3593 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3594 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3595 ld_moved = -1;
3596 else
3597 ld_moved = 0;
3598out:
c8cba857
PZ
3599 if (ld_moved)
3600 update_shares(sd);
c09595f6 3601 return ld_moved;
1da177e4
LT
3602}
3603
3604/*
3605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3606 * tasks if there is an imbalance.
3607 *
d15bcfdb 3608 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3609 * this_rq is locked.
3610 */
48f24c4d 3611static int
7c16ec58
MT
3612load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3613 cpumask_t *cpus)
1da177e4
LT
3614{
3615 struct sched_group *group;
70b97a7f 3616 struct rq *busiest = NULL;
1da177e4 3617 unsigned long imbalance;
43010659 3618 int ld_moved = 0;
5969fe06 3619 int sd_idle = 0;
969bb4e4 3620 int all_pinned = 0;
7c16ec58
MT
3621
3622 cpus_setall(*cpus);
5969fe06 3623
89c4710e
SS
3624 /*
3625 * When power savings policy is enabled for the parent domain, idle
3626 * sibling can pick up load irrespective of busy siblings. In this case,
3627 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3628 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3629 */
3630 if (sd->flags & SD_SHARE_CPUPOWER &&
3631 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3632 sd_idle = 1;
1da177e4 3633
2d72376b 3634 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3635redo:
3e5459b4 3636 update_shares_locked(this_rq, sd);
d15bcfdb 3637 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3638 &sd_idle, cpus, NULL);
1da177e4 3639 if (!group) {
d15bcfdb 3640 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3641 goto out_balanced;
1da177e4
LT
3642 }
3643
7c16ec58 3644 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3645 if (!busiest) {
d15bcfdb 3646 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3647 goto out_balanced;
1da177e4
LT
3648 }
3649
db935dbd
NP
3650 BUG_ON(busiest == this_rq);
3651
d15bcfdb 3652 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3653
43010659 3654 ld_moved = 0;
d6d5cfaf
NP
3655 if (busiest->nr_running > 1) {
3656 /* Attempt to move tasks */
3657 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3658 /* this_rq->clock is already updated */
3659 update_rq_clock(busiest);
43010659 3660 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3661 imbalance, sd, CPU_NEWLY_IDLE,
3662 &all_pinned);
d6d5cfaf 3663 spin_unlock(&busiest->lock);
0a2966b4 3664
969bb4e4 3665 if (unlikely(all_pinned)) {
7c16ec58
MT
3666 cpu_clear(cpu_of(busiest), *cpus);
3667 if (!cpus_empty(*cpus))
0a2966b4
CL
3668 goto redo;
3669 }
d6d5cfaf
NP
3670 }
3671
43010659 3672 if (!ld_moved) {
d15bcfdb 3673 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3674 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3675 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3676 return -1;
3677 } else
16cfb1c0 3678 sd->nr_balance_failed = 0;
1da177e4 3679
3e5459b4 3680 update_shares_locked(this_rq, sd);
43010659 3681 return ld_moved;
16cfb1c0
NP
3682
3683out_balanced:
d15bcfdb 3684 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3685 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3686 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3687 return -1;
16cfb1c0 3688 sd->nr_balance_failed = 0;
48f24c4d 3689
16cfb1c0 3690 return 0;
1da177e4
LT
3691}
3692
3693/*
3694 * idle_balance is called by schedule() if this_cpu is about to become
3695 * idle. Attempts to pull tasks from other CPUs.
3696 */
70b97a7f 3697static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3698{
3699 struct sched_domain *sd;
dd41f596
IM
3700 int pulled_task = -1;
3701 unsigned long next_balance = jiffies + HZ;
7c16ec58 3702 cpumask_t tmpmask;
1da177e4
LT
3703
3704 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3705 unsigned long interval;
3706
3707 if (!(sd->flags & SD_LOAD_BALANCE))
3708 continue;
3709
3710 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3711 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3712 pulled_task = load_balance_newidle(this_cpu, this_rq,
3713 sd, &tmpmask);
92c4ca5c
CL
3714
3715 interval = msecs_to_jiffies(sd->balance_interval);
3716 if (time_after(next_balance, sd->last_balance + interval))
3717 next_balance = sd->last_balance + interval;
3718 if (pulled_task)
3719 break;
1da177e4 3720 }
dd41f596 3721 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3722 /*
3723 * We are going idle. next_balance may be set based on
3724 * a busy processor. So reset next_balance.
3725 */
3726 this_rq->next_balance = next_balance;
dd41f596 3727 }
1da177e4
LT
3728}
3729
3730/*
3731 * active_load_balance is run by migration threads. It pushes running tasks
3732 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3733 * running on each physical CPU where possible, and avoids physical /
3734 * logical imbalances.
3735 *
3736 * Called with busiest_rq locked.
3737 */
70b97a7f 3738static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3739{
39507451 3740 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3741 struct sched_domain *sd;
3742 struct rq *target_rq;
39507451 3743
48f24c4d 3744 /* Is there any task to move? */
39507451 3745 if (busiest_rq->nr_running <= 1)
39507451
NP
3746 return;
3747
3748 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3749
3750 /*
39507451 3751 * This condition is "impossible", if it occurs
41a2d6cf 3752 * we need to fix it. Originally reported by
39507451 3753 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3754 */
39507451 3755 BUG_ON(busiest_rq == target_rq);
1da177e4 3756
39507451
NP
3757 /* move a task from busiest_rq to target_rq */
3758 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3759 update_rq_clock(busiest_rq);
3760 update_rq_clock(target_rq);
39507451
NP
3761
3762 /* Search for an sd spanning us and the target CPU. */
c96d145e 3763 for_each_domain(target_cpu, sd) {
39507451 3764 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3765 cpu_isset(busiest_cpu, sd->span))
39507451 3766 break;
c96d145e 3767 }
39507451 3768
48f24c4d 3769 if (likely(sd)) {
2d72376b 3770 schedstat_inc(sd, alb_count);
39507451 3771
43010659
PW
3772 if (move_one_task(target_rq, target_cpu, busiest_rq,
3773 sd, CPU_IDLE))
48f24c4d
IM
3774 schedstat_inc(sd, alb_pushed);
3775 else
3776 schedstat_inc(sd, alb_failed);
3777 }
39507451 3778 spin_unlock(&target_rq->lock);
1da177e4
LT
3779}
3780
46cb4b7c
SS
3781#ifdef CONFIG_NO_HZ
3782static struct {
3783 atomic_t load_balancer;
41a2d6cf 3784 cpumask_t cpu_mask;
46cb4b7c
SS
3785} nohz ____cacheline_aligned = {
3786 .load_balancer = ATOMIC_INIT(-1),
3787 .cpu_mask = CPU_MASK_NONE,
3788};
3789
7835b98b 3790/*
46cb4b7c
SS
3791 * This routine will try to nominate the ilb (idle load balancing)
3792 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3793 * load balancing on behalf of all those cpus. If all the cpus in the system
3794 * go into this tickless mode, then there will be no ilb owner (as there is
3795 * no need for one) and all the cpus will sleep till the next wakeup event
3796 * arrives...
3797 *
3798 * For the ilb owner, tick is not stopped. And this tick will be used
3799 * for idle load balancing. ilb owner will still be part of
3800 * nohz.cpu_mask..
7835b98b 3801 *
46cb4b7c
SS
3802 * While stopping the tick, this cpu will become the ilb owner if there
3803 * is no other owner. And will be the owner till that cpu becomes busy
3804 * or if all cpus in the system stop their ticks at which point
3805 * there is no need for ilb owner.
3806 *
3807 * When the ilb owner becomes busy, it nominates another owner, during the
3808 * next busy scheduler_tick()
3809 */
3810int select_nohz_load_balancer(int stop_tick)
3811{
3812 int cpu = smp_processor_id();
3813
3814 if (stop_tick) {
3815 cpu_set(cpu, nohz.cpu_mask);
3816 cpu_rq(cpu)->in_nohz_recently = 1;
3817
3818 /*
3819 * If we are going offline and still the leader, give up!
3820 */
3821 if (cpu_is_offline(cpu) &&
3822 atomic_read(&nohz.load_balancer) == cpu) {
3823 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3824 BUG();
3825 return 0;
3826 }
3827
3828 /* time for ilb owner also to sleep */
3829 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3830 if (atomic_read(&nohz.load_balancer) == cpu)
3831 atomic_set(&nohz.load_balancer, -1);
3832 return 0;
3833 }
3834
3835 if (atomic_read(&nohz.load_balancer) == -1) {
3836 /* make me the ilb owner */
3837 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3838 return 1;
3839 } else if (atomic_read(&nohz.load_balancer) == cpu)
3840 return 1;
3841 } else {
3842 if (!cpu_isset(cpu, nohz.cpu_mask))
3843 return 0;
3844
3845 cpu_clear(cpu, nohz.cpu_mask);
3846
3847 if (atomic_read(&nohz.load_balancer) == cpu)
3848 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3849 BUG();
3850 }
3851 return 0;
3852}
3853#endif
3854
3855static DEFINE_SPINLOCK(balancing);
3856
3857/*
7835b98b
CL
3858 * It checks each scheduling domain to see if it is due to be balanced,
3859 * and initiates a balancing operation if so.
3860 *
3861 * Balancing parameters are set up in arch_init_sched_domains.
3862 */
a9957449 3863static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3864{
46cb4b7c
SS
3865 int balance = 1;
3866 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3867 unsigned long interval;
3868 struct sched_domain *sd;
46cb4b7c 3869 /* Earliest time when we have to do rebalance again */
c9819f45 3870 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3871 int update_next_balance = 0;
d07355f5 3872 int need_serialize;
7c16ec58 3873 cpumask_t tmp;
1da177e4 3874
46cb4b7c 3875 for_each_domain(cpu, sd) {
1da177e4
LT
3876 if (!(sd->flags & SD_LOAD_BALANCE))
3877 continue;
3878
3879 interval = sd->balance_interval;
d15bcfdb 3880 if (idle != CPU_IDLE)
1da177e4
LT
3881 interval *= sd->busy_factor;
3882
3883 /* scale ms to jiffies */
3884 interval = msecs_to_jiffies(interval);
3885 if (unlikely(!interval))
3886 interval = 1;
dd41f596
IM
3887 if (interval > HZ*NR_CPUS/10)
3888 interval = HZ*NR_CPUS/10;
3889
d07355f5 3890 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3891
d07355f5 3892 if (need_serialize) {
08c183f3
CL
3893 if (!spin_trylock(&balancing))
3894 goto out;
3895 }
3896
c9819f45 3897 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3898 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3899 /*
3900 * We've pulled tasks over so either we're no
5969fe06
NP
3901 * longer idle, or one of our SMT siblings is
3902 * not idle.
3903 */
d15bcfdb 3904 idle = CPU_NOT_IDLE;
1da177e4 3905 }
1bd77f2d 3906 sd->last_balance = jiffies;
1da177e4 3907 }
d07355f5 3908 if (need_serialize)
08c183f3
CL
3909 spin_unlock(&balancing);
3910out:
f549da84 3911 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3912 next_balance = sd->last_balance + interval;
f549da84
SS
3913 update_next_balance = 1;
3914 }
783609c6
SS
3915
3916 /*
3917 * Stop the load balance at this level. There is another
3918 * CPU in our sched group which is doing load balancing more
3919 * actively.
3920 */
3921 if (!balance)
3922 break;
1da177e4 3923 }
f549da84
SS
3924
3925 /*
3926 * next_balance will be updated only when there is a need.
3927 * When the cpu is attached to null domain for ex, it will not be
3928 * updated.
3929 */
3930 if (likely(update_next_balance))
3931 rq->next_balance = next_balance;
46cb4b7c
SS
3932}
3933
3934/*
3935 * run_rebalance_domains is triggered when needed from the scheduler tick.
3936 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3937 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3938 */
3939static void run_rebalance_domains(struct softirq_action *h)
3940{
dd41f596
IM
3941 int this_cpu = smp_processor_id();
3942 struct rq *this_rq = cpu_rq(this_cpu);
3943 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3944 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3945
dd41f596 3946 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3947
3948#ifdef CONFIG_NO_HZ
3949 /*
3950 * If this cpu is the owner for idle load balancing, then do the
3951 * balancing on behalf of the other idle cpus whose ticks are
3952 * stopped.
3953 */
dd41f596
IM
3954 if (this_rq->idle_at_tick &&
3955 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3956 cpumask_t cpus = nohz.cpu_mask;
3957 struct rq *rq;
3958 int balance_cpu;
3959
dd41f596 3960 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3961 for_each_cpu_mask(balance_cpu, cpus) {
3962 /*
3963 * If this cpu gets work to do, stop the load balancing
3964 * work being done for other cpus. Next load
3965 * balancing owner will pick it up.
3966 */
3967 if (need_resched())
3968 break;
3969
de0cf899 3970 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3971
3972 rq = cpu_rq(balance_cpu);
dd41f596
IM
3973 if (time_after(this_rq->next_balance, rq->next_balance))
3974 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3975 }
3976 }
3977#endif
3978}
3979
3980/*
3981 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3982 *
3983 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3984 * idle load balancing owner or decide to stop the periodic load balancing,
3985 * if the whole system is idle.
3986 */
dd41f596 3987static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3988{
46cb4b7c
SS
3989#ifdef CONFIG_NO_HZ
3990 /*
3991 * If we were in the nohz mode recently and busy at the current
3992 * scheduler tick, then check if we need to nominate new idle
3993 * load balancer.
3994 */
3995 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3996 rq->in_nohz_recently = 0;
3997
3998 if (atomic_read(&nohz.load_balancer) == cpu) {
3999 cpu_clear(cpu, nohz.cpu_mask);
4000 atomic_set(&nohz.load_balancer, -1);
4001 }
4002
4003 if (atomic_read(&nohz.load_balancer) == -1) {
4004 /*
4005 * simple selection for now: Nominate the
4006 * first cpu in the nohz list to be the next
4007 * ilb owner.
4008 *
4009 * TBD: Traverse the sched domains and nominate
4010 * the nearest cpu in the nohz.cpu_mask.
4011 */
4012 int ilb = first_cpu(nohz.cpu_mask);
4013
434d53b0 4014 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4015 resched_cpu(ilb);
4016 }
4017 }
4018
4019 /*
4020 * If this cpu is idle and doing idle load balancing for all the
4021 * cpus with ticks stopped, is it time for that to stop?
4022 */
4023 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4024 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4025 resched_cpu(cpu);
4026 return;
4027 }
4028
4029 /*
4030 * If this cpu is idle and the idle load balancing is done by
4031 * someone else, then no need raise the SCHED_SOFTIRQ
4032 */
4033 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4034 cpu_isset(cpu, nohz.cpu_mask))
4035 return;
4036#endif
4037 if (time_after_eq(jiffies, rq->next_balance))
4038 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4039}
dd41f596
IM
4040
4041#else /* CONFIG_SMP */
4042
1da177e4
LT
4043/*
4044 * on UP we do not need to balance between CPUs:
4045 */
70b97a7f 4046static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4047{
4048}
dd41f596 4049
1da177e4
LT
4050#endif
4051
1da177e4
LT
4052DEFINE_PER_CPU(struct kernel_stat, kstat);
4053
4054EXPORT_PER_CPU_SYMBOL(kstat);
4055
4056/*
41b86e9c
IM
4057 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4058 * that have not yet been banked in case the task is currently running.
1da177e4 4059 */
41b86e9c 4060unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4061{
1da177e4 4062 unsigned long flags;
41b86e9c
IM
4063 u64 ns, delta_exec;
4064 struct rq *rq;
48f24c4d 4065
41b86e9c
IM
4066 rq = task_rq_lock(p, &flags);
4067 ns = p->se.sum_exec_runtime;
051a1d1a 4068 if (task_current(rq, p)) {
a8e504d2
IM
4069 update_rq_clock(rq);
4070 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4071 if ((s64)delta_exec > 0)
4072 ns += delta_exec;
4073 }
4074 task_rq_unlock(rq, &flags);
48f24c4d 4075
1da177e4
LT
4076 return ns;
4077}
4078
1da177e4
LT
4079/*
4080 * Account user cpu time to a process.
4081 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4082 * @cputime: the cpu time spent in user space since the last update
4083 */
4084void account_user_time(struct task_struct *p, cputime_t cputime)
4085{
4086 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4087 cputime64_t tmp;
4088
4089 p->utime = cputime_add(p->utime, cputime);
4090
4091 /* Add user time to cpustat. */
4092 tmp = cputime_to_cputime64(cputime);
4093 if (TASK_NICE(p) > 0)
4094 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4095 else
4096 cpustat->user = cputime64_add(cpustat->user, tmp);
4097}
4098
94886b84
LV
4099/*
4100 * Account guest cpu time to a process.
4101 * @p: the process that the cpu time gets accounted to
4102 * @cputime: the cpu time spent in virtual machine since the last update
4103 */
f7402e03 4104static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4105{
4106 cputime64_t tmp;
4107 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4108
4109 tmp = cputime_to_cputime64(cputime);
4110
4111 p->utime = cputime_add(p->utime, cputime);
4112 p->gtime = cputime_add(p->gtime, cputime);
4113
4114 cpustat->user = cputime64_add(cpustat->user, tmp);
4115 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4116}
4117
c66f08be
MN
4118/*
4119 * Account scaled user cpu time to a process.
4120 * @p: the process that the cpu time gets accounted to
4121 * @cputime: the cpu time spent in user space since the last update
4122 */
4123void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4124{
4125 p->utimescaled = cputime_add(p->utimescaled, cputime);
4126}
4127
1da177e4
LT
4128/*
4129 * Account system cpu time to a process.
4130 * @p: the process that the cpu time gets accounted to
4131 * @hardirq_offset: the offset to subtract from hardirq_count()
4132 * @cputime: the cpu time spent in kernel space since the last update
4133 */
4134void account_system_time(struct task_struct *p, int hardirq_offset,
4135 cputime_t cputime)
4136{
4137 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4138 struct rq *rq = this_rq();
1da177e4
LT
4139 cputime64_t tmp;
4140
983ed7a6
HH
4141 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4142 account_guest_time(p, cputime);
4143 return;
4144 }
94886b84 4145
1da177e4
LT
4146 p->stime = cputime_add(p->stime, cputime);
4147
4148 /* Add system time to cpustat. */
4149 tmp = cputime_to_cputime64(cputime);
4150 if (hardirq_count() - hardirq_offset)
4151 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4152 else if (softirq_count())
4153 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4154 else if (p != rq->idle)
1da177e4 4155 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4156 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4157 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4158 else
4159 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4160 /* Account for system time used */
4161 acct_update_integrals(p);
1da177e4
LT
4162}
4163
c66f08be
MN
4164/*
4165 * Account scaled system cpu time to a process.
4166 * @p: the process that the cpu time gets accounted to
4167 * @hardirq_offset: the offset to subtract from hardirq_count()
4168 * @cputime: the cpu time spent in kernel space since the last update
4169 */
4170void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4171{
4172 p->stimescaled = cputime_add(p->stimescaled, cputime);
4173}
4174
1da177e4
LT
4175/*
4176 * Account for involuntary wait time.
4177 * @p: the process from which the cpu time has been stolen
4178 * @steal: the cpu time spent in involuntary wait
4179 */
4180void account_steal_time(struct task_struct *p, cputime_t steal)
4181{
4182 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4183 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4184 struct rq *rq = this_rq();
1da177e4
LT
4185
4186 if (p == rq->idle) {
4187 p->stime = cputime_add(p->stime, steal);
4188 if (atomic_read(&rq->nr_iowait) > 0)
4189 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4190 else
4191 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4192 } else
1da177e4
LT
4193 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4194}
4195
7835b98b
CL
4196/*
4197 * This function gets called by the timer code, with HZ frequency.
4198 * We call it with interrupts disabled.
4199 *
4200 * It also gets called by the fork code, when changing the parent's
4201 * timeslices.
4202 */
4203void scheduler_tick(void)
4204{
7835b98b
CL
4205 int cpu = smp_processor_id();
4206 struct rq *rq = cpu_rq(cpu);
dd41f596 4207 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4208
4209 sched_clock_tick();
dd41f596
IM
4210
4211 spin_lock(&rq->lock);
3e51f33f 4212 update_rq_clock(rq);
f1a438d8 4213 update_cpu_load(rq);
fa85ae24 4214 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4215 spin_unlock(&rq->lock);
7835b98b 4216
e418e1c2 4217#ifdef CONFIG_SMP
dd41f596
IM
4218 rq->idle_at_tick = idle_cpu(cpu);
4219 trigger_load_balance(rq, cpu);
e418e1c2 4220#endif
1da177e4
LT
4221}
4222
1da177e4
LT
4223#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4224
43627582 4225void __kprobes add_preempt_count(int val)
1da177e4
LT
4226{
4227 /*
4228 * Underflow?
4229 */
9a11b49a
IM
4230 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4231 return;
1da177e4
LT
4232 preempt_count() += val;
4233 /*
4234 * Spinlock count overflowing soon?
4235 */
33859f7f
MOS
4236 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4237 PREEMPT_MASK - 10);
1da177e4
LT
4238}
4239EXPORT_SYMBOL(add_preempt_count);
4240
43627582 4241void __kprobes sub_preempt_count(int val)
1da177e4
LT
4242{
4243 /*
4244 * Underflow?
4245 */
9a11b49a
IM
4246 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4247 return;
1da177e4
LT
4248 /*
4249 * Is the spinlock portion underflowing?
4250 */
9a11b49a
IM
4251 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4252 !(preempt_count() & PREEMPT_MASK)))
4253 return;
4254
1da177e4
LT
4255 preempt_count() -= val;
4256}
4257EXPORT_SYMBOL(sub_preempt_count);
4258
4259#endif
4260
4261/*
dd41f596 4262 * Print scheduling while atomic bug:
1da177e4 4263 */
dd41f596 4264static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4265{
838225b4
SS
4266 struct pt_regs *regs = get_irq_regs();
4267
4268 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4269 prev->comm, prev->pid, preempt_count());
4270
dd41f596 4271 debug_show_held_locks(prev);
e21f5b15 4272 print_modules();
dd41f596
IM
4273 if (irqs_disabled())
4274 print_irqtrace_events(prev);
838225b4
SS
4275
4276 if (regs)
4277 show_regs(regs);
4278 else
4279 dump_stack();
dd41f596 4280}
1da177e4 4281
dd41f596
IM
4282/*
4283 * Various schedule()-time debugging checks and statistics:
4284 */
4285static inline void schedule_debug(struct task_struct *prev)
4286{
1da177e4 4287 /*
41a2d6cf 4288 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4289 * schedule() atomically, we ignore that path for now.
4290 * Otherwise, whine if we are scheduling when we should not be.
4291 */
3f33a7ce 4292 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4293 __schedule_bug(prev);
4294
1da177e4
LT
4295 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4296
2d72376b 4297 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4298#ifdef CONFIG_SCHEDSTATS
4299 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4300 schedstat_inc(this_rq(), bkl_count);
4301 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4302 }
4303#endif
dd41f596
IM
4304}
4305
4306/*
4307 * Pick up the highest-prio task:
4308 */
4309static inline struct task_struct *
ff95f3df 4310pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4311{
5522d5d5 4312 const struct sched_class *class;
dd41f596 4313 struct task_struct *p;
1da177e4
LT
4314
4315 /*
dd41f596
IM
4316 * Optimization: we know that if all tasks are in
4317 * the fair class we can call that function directly:
1da177e4 4318 */
dd41f596 4319 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4320 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4321 if (likely(p))
4322 return p;
1da177e4
LT
4323 }
4324
dd41f596
IM
4325 class = sched_class_highest;
4326 for ( ; ; ) {
fb8d4724 4327 p = class->pick_next_task(rq);
dd41f596
IM
4328 if (p)
4329 return p;
4330 /*
4331 * Will never be NULL as the idle class always
4332 * returns a non-NULL p:
4333 */
4334 class = class->next;
4335 }
4336}
1da177e4 4337
dd41f596
IM
4338/*
4339 * schedule() is the main scheduler function.
4340 */
4341asmlinkage void __sched schedule(void)
4342{
4343 struct task_struct *prev, *next;
67ca7bde 4344 unsigned long *switch_count;
dd41f596 4345 struct rq *rq;
f333fdc9 4346 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4347
4348need_resched:
4349 preempt_disable();
4350 cpu = smp_processor_id();
4351 rq = cpu_rq(cpu);
4352 rcu_qsctr_inc(cpu);
4353 prev = rq->curr;
4354 switch_count = &prev->nivcsw;
4355
4356 release_kernel_lock(prev);
4357need_resched_nonpreemptible:
4358
4359 schedule_debug(prev);
1da177e4 4360
f333fdc9
MG
4361 if (hrtick)
4362 hrtick_clear(rq);
8f4d37ec 4363
1e819950
IM
4364 /*
4365 * Do the rq-clock update outside the rq lock:
4366 */
4367 local_irq_disable();
3e51f33f 4368 update_rq_clock(rq);
1e819950
IM
4369 spin_lock(&rq->lock);
4370 clear_tsk_need_resched(prev);
1da177e4 4371
1da177e4 4372 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4373 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4374 prev->state = TASK_RUNNING;
16882c1e 4375 else
2e1cb74a 4376 deactivate_task(rq, prev, 1);
dd41f596 4377 switch_count = &prev->nvcsw;
1da177e4
LT
4378 }
4379
9a897c5a
SR
4380#ifdef CONFIG_SMP
4381 if (prev->sched_class->pre_schedule)
4382 prev->sched_class->pre_schedule(rq, prev);
4383#endif
f65eda4f 4384
dd41f596 4385 if (unlikely(!rq->nr_running))
1da177e4 4386 idle_balance(cpu, rq);
1da177e4 4387
31ee529c 4388 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4389 next = pick_next_task(rq, prev);
1da177e4 4390
1da177e4 4391 if (likely(prev != next)) {
673a90a1
DS
4392 sched_info_switch(prev, next);
4393
1da177e4
LT
4394 rq->nr_switches++;
4395 rq->curr = next;
4396 ++*switch_count;
4397
dd41f596 4398 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4399 /*
4400 * the context switch might have flipped the stack from under
4401 * us, hence refresh the local variables.
4402 */
4403 cpu = smp_processor_id();
4404 rq = cpu_rq(cpu);
1da177e4
LT
4405 } else
4406 spin_unlock_irq(&rq->lock);
4407
f333fdc9
MG
4408 if (hrtick)
4409 hrtick_set(rq);
8f4d37ec
PZ
4410
4411 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4412 goto need_resched_nonpreemptible;
8f4d37ec 4413
1da177e4
LT
4414 preempt_enable_no_resched();
4415 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4416 goto need_resched;
4417}
1da177e4
LT
4418EXPORT_SYMBOL(schedule);
4419
4420#ifdef CONFIG_PREEMPT
4421/*
2ed6e34f 4422 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4423 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4424 * occur there and call schedule directly.
4425 */
4426asmlinkage void __sched preempt_schedule(void)
4427{
4428 struct thread_info *ti = current_thread_info();
6478d880 4429
1da177e4
LT
4430 /*
4431 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4432 * we do not want to preempt the current task. Just return..
1da177e4 4433 */
beed33a8 4434 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4435 return;
4436
3a5c359a
AK
4437 do {
4438 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4439 schedule();
3a5c359a 4440 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4441
3a5c359a
AK
4442 /*
4443 * Check again in case we missed a preemption opportunity
4444 * between schedule and now.
4445 */
4446 barrier();
4447 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4448}
1da177e4
LT
4449EXPORT_SYMBOL(preempt_schedule);
4450
4451/*
2ed6e34f 4452 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4453 * off of irq context.
4454 * Note, that this is called and return with irqs disabled. This will
4455 * protect us against recursive calling from irq.
4456 */
4457asmlinkage void __sched preempt_schedule_irq(void)
4458{
4459 struct thread_info *ti = current_thread_info();
6478d880 4460
2ed6e34f 4461 /* Catch callers which need to be fixed */
1da177e4
LT
4462 BUG_ON(ti->preempt_count || !irqs_disabled());
4463
3a5c359a
AK
4464 do {
4465 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4466 local_irq_enable();
4467 schedule();
4468 local_irq_disable();
3a5c359a 4469 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4470
3a5c359a
AK
4471 /*
4472 * Check again in case we missed a preemption opportunity
4473 * between schedule and now.
4474 */
4475 barrier();
4476 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4477}
4478
4479#endif /* CONFIG_PREEMPT */
4480
95cdf3b7
IM
4481int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4482 void *key)
1da177e4 4483{
48f24c4d 4484 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4485}
1da177e4
LT
4486EXPORT_SYMBOL(default_wake_function);
4487
4488/*
41a2d6cf
IM
4489 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4490 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4491 * number) then we wake all the non-exclusive tasks and one exclusive task.
4492 *
4493 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4494 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4495 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4496 */
4497static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4498 int nr_exclusive, int sync, void *key)
4499{
2e45874c 4500 wait_queue_t *curr, *next;
1da177e4 4501
2e45874c 4502 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4503 unsigned flags = curr->flags;
4504
1da177e4 4505 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4506 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4507 break;
4508 }
4509}
4510
4511/**
4512 * __wake_up - wake up threads blocked on a waitqueue.
4513 * @q: the waitqueue
4514 * @mode: which threads
4515 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4516 * @key: is directly passed to the wakeup function
1da177e4 4517 */
7ad5b3a5 4518void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4519 int nr_exclusive, void *key)
1da177e4
LT
4520{
4521 unsigned long flags;
4522
4523 spin_lock_irqsave(&q->lock, flags);
4524 __wake_up_common(q, mode, nr_exclusive, 0, key);
4525 spin_unlock_irqrestore(&q->lock, flags);
4526}
1da177e4
LT
4527EXPORT_SYMBOL(__wake_up);
4528
4529/*
4530 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4531 */
7ad5b3a5 4532void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4533{
4534 __wake_up_common(q, mode, 1, 0, NULL);
4535}
4536
4537/**
67be2dd1 4538 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4539 * @q: the waitqueue
4540 * @mode: which threads
4541 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4542 *
4543 * The sync wakeup differs that the waker knows that it will schedule
4544 * away soon, so while the target thread will be woken up, it will not
4545 * be migrated to another CPU - ie. the two threads are 'synchronized'
4546 * with each other. This can prevent needless bouncing between CPUs.
4547 *
4548 * On UP it can prevent extra preemption.
4549 */
7ad5b3a5 4550void
95cdf3b7 4551__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4552{
4553 unsigned long flags;
4554 int sync = 1;
4555
4556 if (unlikely(!q))
4557 return;
4558
4559 if (unlikely(!nr_exclusive))
4560 sync = 0;
4561
4562 spin_lock_irqsave(&q->lock, flags);
4563 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4564 spin_unlock_irqrestore(&q->lock, flags);
4565}
4566EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4567
b15136e9 4568void complete(struct completion *x)
1da177e4
LT
4569{
4570 unsigned long flags;
4571
4572 spin_lock_irqsave(&x->wait.lock, flags);
4573 x->done++;
d9514f6c 4574 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4575 spin_unlock_irqrestore(&x->wait.lock, flags);
4576}
4577EXPORT_SYMBOL(complete);
4578
b15136e9 4579void complete_all(struct completion *x)
1da177e4
LT
4580{
4581 unsigned long flags;
4582
4583 spin_lock_irqsave(&x->wait.lock, flags);
4584 x->done += UINT_MAX/2;
d9514f6c 4585 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4586 spin_unlock_irqrestore(&x->wait.lock, flags);
4587}
4588EXPORT_SYMBOL(complete_all);
4589
8cbbe86d
AK
4590static inline long __sched
4591do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4592{
1da177e4
LT
4593 if (!x->done) {
4594 DECLARE_WAITQUEUE(wait, current);
4595
4596 wait.flags |= WQ_FLAG_EXCLUSIVE;
4597 __add_wait_queue_tail(&x->wait, &wait);
4598 do {
009e577e
MW
4599 if ((state == TASK_INTERRUPTIBLE &&
4600 signal_pending(current)) ||
4601 (state == TASK_KILLABLE &&
4602 fatal_signal_pending(current))) {
ea71a546
ON
4603 timeout = -ERESTARTSYS;
4604 break;
8cbbe86d
AK
4605 }
4606 __set_current_state(state);
1da177e4
LT
4607 spin_unlock_irq(&x->wait.lock);
4608 timeout = schedule_timeout(timeout);
4609 spin_lock_irq(&x->wait.lock);
ea71a546 4610 } while (!x->done && timeout);
1da177e4 4611 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4612 if (!x->done)
4613 return timeout;
1da177e4
LT
4614 }
4615 x->done--;
ea71a546 4616 return timeout ?: 1;
1da177e4 4617}
1da177e4 4618
8cbbe86d
AK
4619static long __sched
4620wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4621{
1da177e4
LT
4622 might_sleep();
4623
4624 spin_lock_irq(&x->wait.lock);
8cbbe86d 4625 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4626 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4627 return timeout;
4628}
1da177e4 4629
b15136e9 4630void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4631{
4632 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4633}
8cbbe86d 4634EXPORT_SYMBOL(wait_for_completion);
1da177e4 4635
b15136e9 4636unsigned long __sched
8cbbe86d 4637wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4638{
8cbbe86d 4639 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4640}
8cbbe86d 4641EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4642
8cbbe86d 4643int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4644{
51e97990
AK
4645 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4646 if (t == -ERESTARTSYS)
4647 return t;
4648 return 0;
0fec171c 4649}
8cbbe86d 4650EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4651
b15136e9 4652unsigned long __sched
8cbbe86d
AK
4653wait_for_completion_interruptible_timeout(struct completion *x,
4654 unsigned long timeout)
0fec171c 4655{
8cbbe86d 4656 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4657}
8cbbe86d 4658EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4659
009e577e
MW
4660int __sched wait_for_completion_killable(struct completion *x)
4661{
4662 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4663 if (t == -ERESTARTSYS)
4664 return t;
4665 return 0;
4666}
4667EXPORT_SYMBOL(wait_for_completion_killable);
4668
8cbbe86d
AK
4669static long __sched
4670sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4671{
0fec171c
IM
4672 unsigned long flags;
4673 wait_queue_t wait;
4674
4675 init_waitqueue_entry(&wait, current);
1da177e4 4676
8cbbe86d 4677 __set_current_state(state);
1da177e4 4678
8cbbe86d
AK
4679 spin_lock_irqsave(&q->lock, flags);
4680 __add_wait_queue(q, &wait);
4681 spin_unlock(&q->lock);
4682 timeout = schedule_timeout(timeout);
4683 spin_lock_irq(&q->lock);
4684 __remove_wait_queue(q, &wait);
4685 spin_unlock_irqrestore(&q->lock, flags);
4686
4687 return timeout;
4688}
4689
4690void __sched interruptible_sleep_on(wait_queue_head_t *q)
4691{
4692 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4693}
1da177e4
LT
4694EXPORT_SYMBOL(interruptible_sleep_on);
4695
0fec171c 4696long __sched
95cdf3b7 4697interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4698{
8cbbe86d 4699 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4700}
1da177e4
LT
4701EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4702
0fec171c 4703void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4704{
8cbbe86d 4705 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4706}
1da177e4
LT
4707EXPORT_SYMBOL(sleep_on);
4708
0fec171c 4709long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4710{
8cbbe86d 4711 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4712}
1da177e4
LT
4713EXPORT_SYMBOL(sleep_on_timeout);
4714
b29739f9
IM
4715#ifdef CONFIG_RT_MUTEXES
4716
4717/*
4718 * rt_mutex_setprio - set the current priority of a task
4719 * @p: task
4720 * @prio: prio value (kernel-internal form)
4721 *
4722 * This function changes the 'effective' priority of a task. It does
4723 * not touch ->normal_prio like __setscheduler().
4724 *
4725 * Used by the rt_mutex code to implement priority inheritance logic.
4726 */
36c8b586 4727void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4728{
4729 unsigned long flags;
83b699ed 4730 int oldprio, on_rq, running;
70b97a7f 4731 struct rq *rq;
cb469845 4732 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4733
4734 BUG_ON(prio < 0 || prio > MAX_PRIO);
4735
4736 rq = task_rq_lock(p, &flags);
a8e504d2 4737 update_rq_clock(rq);
b29739f9 4738
d5f9f942 4739 oldprio = p->prio;
dd41f596 4740 on_rq = p->se.on_rq;
051a1d1a 4741 running = task_current(rq, p);
0e1f3483 4742 if (on_rq)
69be72c1 4743 dequeue_task(rq, p, 0);
0e1f3483
HS
4744 if (running)
4745 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4746
4747 if (rt_prio(prio))
4748 p->sched_class = &rt_sched_class;
4749 else
4750 p->sched_class = &fair_sched_class;
4751
b29739f9
IM
4752 p->prio = prio;
4753
0e1f3483
HS
4754 if (running)
4755 p->sched_class->set_curr_task(rq);
dd41f596 4756 if (on_rq) {
8159f87e 4757 enqueue_task(rq, p, 0);
cb469845
SR
4758
4759 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4760 }
4761 task_rq_unlock(rq, &flags);
4762}
4763
4764#endif
4765
36c8b586 4766void set_user_nice(struct task_struct *p, long nice)
1da177e4 4767{
dd41f596 4768 int old_prio, delta, on_rq;
1da177e4 4769 unsigned long flags;
70b97a7f 4770 struct rq *rq;
1da177e4
LT
4771
4772 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4773 return;
4774 /*
4775 * We have to be careful, if called from sys_setpriority(),
4776 * the task might be in the middle of scheduling on another CPU.
4777 */
4778 rq = task_rq_lock(p, &flags);
a8e504d2 4779 update_rq_clock(rq);
1da177e4
LT
4780 /*
4781 * The RT priorities are set via sched_setscheduler(), but we still
4782 * allow the 'normal' nice value to be set - but as expected
4783 * it wont have any effect on scheduling until the task is
dd41f596 4784 * SCHED_FIFO/SCHED_RR:
1da177e4 4785 */
e05606d3 4786 if (task_has_rt_policy(p)) {
1da177e4
LT
4787 p->static_prio = NICE_TO_PRIO(nice);
4788 goto out_unlock;
4789 }
dd41f596 4790 on_rq = p->se.on_rq;
c09595f6 4791 if (on_rq)
69be72c1 4792 dequeue_task(rq, p, 0);
1da177e4 4793
1da177e4 4794 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4795 set_load_weight(p);
b29739f9
IM
4796 old_prio = p->prio;
4797 p->prio = effective_prio(p);
4798 delta = p->prio - old_prio;
1da177e4 4799
dd41f596 4800 if (on_rq) {
8159f87e 4801 enqueue_task(rq, p, 0);
1da177e4 4802 /*
d5f9f942
AM
4803 * If the task increased its priority or is running and
4804 * lowered its priority, then reschedule its CPU:
1da177e4 4805 */
d5f9f942 4806 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4807 resched_task(rq->curr);
4808 }
4809out_unlock:
4810 task_rq_unlock(rq, &flags);
4811}
1da177e4
LT
4812EXPORT_SYMBOL(set_user_nice);
4813
e43379f1
MM
4814/*
4815 * can_nice - check if a task can reduce its nice value
4816 * @p: task
4817 * @nice: nice value
4818 */
36c8b586 4819int can_nice(const struct task_struct *p, const int nice)
e43379f1 4820{
024f4747
MM
4821 /* convert nice value [19,-20] to rlimit style value [1,40] */
4822 int nice_rlim = 20 - nice;
48f24c4d 4823
e43379f1
MM
4824 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4825 capable(CAP_SYS_NICE));
4826}
4827
1da177e4
LT
4828#ifdef __ARCH_WANT_SYS_NICE
4829
4830/*
4831 * sys_nice - change the priority of the current process.
4832 * @increment: priority increment
4833 *
4834 * sys_setpriority is a more generic, but much slower function that
4835 * does similar things.
4836 */
4837asmlinkage long sys_nice(int increment)
4838{
48f24c4d 4839 long nice, retval;
1da177e4
LT
4840
4841 /*
4842 * Setpriority might change our priority at the same moment.
4843 * We don't have to worry. Conceptually one call occurs first
4844 * and we have a single winner.
4845 */
e43379f1
MM
4846 if (increment < -40)
4847 increment = -40;
1da177e4
LT
4848 if (increment > 40)
4849 increment = 40;
4850
4851 nice = PRIO_TO_NICE(current->static_prio) + increment;
4852 if (nice < -20)
4853 nice = -20;
4854 if (nice > 19)
4855 nice = 19;
4856
e43379f1
MM
4857 if (increment < 0 && !can_nice(current, nice))
4858 return -EPERM;
4859
1da177e4
LT
4860 retval = security_task_setnice(current, nice);
4861 if (retval)
4862 return retval;
4863
4864 set_user_nice(current, nice);
4865 return 0;
4866}
4867
4868#endif
4869
4870/**
4871 * task_prio - return the priority value of a given task.
4872 * @p: the task in question.
4873 *
4874 * This is the priority value as seen by users in /proc.
4875 * RT tasks are offset by -200. Normal tasks are centered
4876 * around 0, value goes from -16 to +15.
4877 */
36c8b586 4878int task_prio(const struct task_struct *p)
1da177e4
LT
4879{
4880 return p->prio - MAX_RT_PRIO;
4881}
4882
4883/**
4884 * task_nice - return the nice value of a given task.
4885 * @p: the task in question.
4886 */
36c8b586 4887int task_nice(const struct task_struct *p)
1da177e4
LT
4888{
4889 return TASK_NICE(p);
4890}
150d8bed 4891EXPORT_SYMBOL(task_nice);
1da177e4
LT
4892
4893/**
4894 * idle_cpu - is a given cpu idle currently?
4895 * @cpu: the processor in question.
4896 */
4897int idle_cpu(int cpu)
4898{
4899 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4900}
4901
1da177e4
LT
4902/**
4903 * idle_task - return the idle task for a given cpu.
4904 * @cpu: the processor in question.
4905 */
36c8b586 4906struct task_struct *idle_task(int cpu)
1da177e4
LT
4907{
4908 return cpu_rq(cpu)->idle;
4909}
4910
4911/**
4912 * find_process_by_pid - find a process with a matching PID value.
4913 * @pid: the pid in question.
4914 */
a9957449 4915static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4916{
228ebcbe 4917 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4918}
4919
4920/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4921static void
4922__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4923{
dd41f596 4924 BUG_ON(p->se.on_rq);
48f24c4d 4925
1da177e4 4926 p->policy = policy;
dd41f596
IM
4927 switch (p->policy) {
4928 case SCHED_NORMAL:
4929 case SCHED_BATCH:
4930 case SCHED_IDLE:
4931 p->sched_class = &fair_sched_class;
4932 break;
4933 case SCHED_FIFO:
4934 case SCHED_RR:
4935 p->sched_class = &rt_sched_class;
4936 break;
4937 }
4938
1da177e4 4939 p->rt_priority = prio;
b29739f9
IM
4940 p->normal_prio = normal_prio(p);
4941 /* we are holding p->pi_lock already */
4942 p->prio = rt_mutex_getprio(p);
2dd73a4f 4943 set_load_weight(p);
1da177e4
LT
4944}
4945
4946/**
72fd4a35 4947 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4948 * @p: the task in question.
4949 * @policy: new policy.
4950 * @param: structure containing the new RT priority.
5fe1d75f 4951 *
72fd4a35 4952 * NOTE that the task may be already dead.
1da177e4 4953 */
95cdf3b7
IM
4954int sched_setscheduler(struct task_struct *p, int policy,
4955 struct sched_param *param)
1da177e4 4956{
83b699ed 4957 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4958 unsigned long flags;
cb469845 4959 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4960 struct rq *rq;
1da177e4 4961
66e5393a
SR
4962 /* may grab non-irq protected spin_locks */
4963 BUG_ON(in_interrupt());
1da177e4
LT
4964recheck:
4965 /* double check policy once rq lock held */
4966 if (policy < 0)
4967 policy = oldpolicy = p->policy;
4968 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4969 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4970 policy != SCHED_IDLE)
b0a9499c 4971 return -EINVAL;
1da177e4
LT
4972 /*
4973 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4974 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4975 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4976 */
4977 if (param->sched_priority < 0 ||
95cdf3b7 4978 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4979 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4980 return -EINVAL;
e05606d3 4981 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4982 return -EINVAL;
4983
37e4ab3f
OC
4984 /*
4985 * Allow unprivileged RT tasks to decrease priority:
4986 */
4987 if (!capable(CAP_SYS_NICE)) {
e05606d3 4988 if (rt_policy(policy)) {
8dc3e909 4989 unsigned long rlim_rtprio;
8dc3e909
ON
4990
4991 if (!lock_task_sighand(p, &flags))
4992 return -ESRCH;
4993 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4994 unlock_task_sighand(p, &flags);
4995
4996 /* can't set/change the rt policy */
4997 if (policy != p->policy && !rlim_rtprio)
4998 return -EPERM;
4999
5000 /* can't increase priority */
5001 if (param->sched_priority > p->rt_priority &&
5002 param->sched_priority > rlim_rtprio)
5003 return -EPERM;
5004 }
dd41f596
IM
5005 /*
5006 * Like positive nice levels, dont allow tasks to
5007 * move out of SCHED_IDLE either:
5008 */
5009 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5010 return -EPERM;
5fe1d75f 5011
37e4ab3f
OC
5012 /* can't change other user's priorities */
5013 if ((current->euid != p->euid) &&
5014 (current->euid != p->uid))
5015 return -EPERM;
5016 }
1da177e4 5017
b68aa230
PZ
5018#ifdef CONFIG_RT_GROUP_SCHED
5019 /*
5020 * Do not allow realtime tasks into groups that have no runtime
5021 * assigned.
5022 */
d0b27fa7 5023 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5024 return -EPERM;
5025#endif
5026
1da177e4
LT
5027 retval = security_task_setscheduler(p, policy, param);
5028 if (retval)
5029 return retval;
b29739f9
IM
5030 /*
5031 * make sure no PI-waiters arrive (or leave) while we are
5032 * changing the priority of the task:
5033 */
5034 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5035 /*
5036 * To be able to change p->policy safely, the apropriate
5037 * runqueue lock must be held.
5038 */
b29739f9 5039 rq = __task_rq_lock(p);
1da177e4
LT
5040 /* recheck policy now with rq lock held */
5041 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5042 policy = oldpolicy = -1;
b29739f9
IM
5043 __task_rq_unlock(rq);
5044 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5045 goto recheck;
5046 }
2daa3577 5047 update_rq_clock(rq);
dd41f596 5048 on_rq = p->se.on_rq;
051a1d1a 5049 running = task_current(rq, p);
0e1f3483 5050 if (on_rq)
2e1cb74a 5051 deactivate_task(rq, p, 0);
0e1f3483
HS
5052 if (running)
5053 p->sched_class->put_prev_task(rq, p);
f6b53205 5054
1da177e4 5055 oldprio = p->prio;
dd41f596 5056 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5057
0e1f3483
HS
5058 if (running)
5059 p->sched_class->set_curr_task(rq);
dd41f596
IM
5060 if (on_rq) {
5061 activate_task(rq, p, 0);
cb469845
SR
5062
5063 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5064 }
b29739f9
IM
5065 __task_rq_unlock(rq);
5066 spin_unlock_irqrestore(&p->pi_lock, flags);
5067
95e02ca9
TG
5068 rt_mutex_adjust_pi(p);
5069
1da177e4
LT
5070 return 0;
5071}
5072EXPORT_SYMBOL_GPL(sched_setscheduler);
5073
95cdf3b7
IM
5074static int
5075do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5076{
1da177e4
LT
5077 struct sched_param lparam;
5078 struct task_struct *p;
36c8b586 5079 int retval;
1da177e4
LT
5080
5081 if (!param || pid < 0)
5082 return -EINVAL;
5083 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5084 return -EFAULT;
5fe1d75f
ON
5085
5086 rcu_read_lock();
5087 retval = -ESRCH;
1da177e4 5088 p = find_process_by_pid(pid);
5fe1d75f
ON
5089 if (p != NULL)
5090 retval = sched_setscheduler(p, policy, &lparam);
5091 rcu_read_unlock();
36c8b586 5092
1da177e4
LT
5093 return retval;
5094}
5095
5096/**
5097 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5098 * @pid: the pid in question.
5099 * @policy: new policy.
5100 * @param: structure containing the new RT priority.
5101 */
41a2d6cf
IM
5102asmlinkage long
5103sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5104{
c21761f1
JB
5105 /* negative values for policy are not valid */
5106 if (policy < 0)
5107 return -EINVAL;
5108
1da177e4
LT
5109 return do_sched_setscheduler(pid, policy, param);
5110}
5111
5112/**
5113 * sys_sched_setparam - set/change the RT priority of a thread
5114 * @pid: the pid in question.
5115 * @param: structure containing the new RT priority.
5116 */
5117asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5118{
5119 return do_sched_setscheduler(pid, -1, param);
5120}
5121
5122/**
5123 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5124 * @pid: the pid in question.
5125 */
5126asmlinkage long sys_sched_getscheduler(pid_t pid)
5127{
36c8b586 5128 struct task_struct *p;
3a5c359a 5129 int retval;
1da177e4
LT
5130
5131 if (pid < 0)
3a5c359a 5132 return -EINVAL;
1da177e4
LT
5133
5134 retval = -ESRCH;
5135 read_lock(&tasklist_lock);
5136 p = find_process_by_pid(pid);
5137 if (p) {
5138 retval = security_task_getscheduler(p);
5139 if (!retval)
5140 retval = p->policy;
5141 }
5142 read_unlock(&tasklist_lock);
1da177e4
LT
5143 return retval;
5144}
5145
5146/**
5147 * sys_sched_getscheduler - get the RT priority of a thread
5148 * @pid: the pid in question.
5149 * @param: structure containing the RT priority.
5150 */
5151asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5152{
5153 struct sched_param lp;
36c8b586 5154 struct task_struct *p;
3a5c359a 5155 int retval;
1da177e4
LT
5156
5157 if (!param || pid < 0)
3a5c359a 5158 return -EINVAL;
1da177e4
LT
5159
5160 read_lock(&tasklist_lock);
5161 p = find_process_by_pid(pid);
5162 retval = -ESRCH;
5163 if (!p)
5164 goto out_unlock;
5165
5166 retval = security_task_getscheduler(p);
5167 if (retval)
5168 goto out_unlock;
5169
5170 lp.sched_priority = p->rt_priority;
5171 read_unlock(&tasklist_lock);
5172
5173 /*
5174 * This one might sleep, we cannot do it with a spinlock held ...
5175 */
5176 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5177
1da177e4
LT
5178 return retval;
5179
5180out_unlock:
5181 read_unlock(&tasklist_lock);
5182 return retval;
5183}
5184
b53e921b 5185long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5186{
1da177e4 5187 cpumask_t cpus_allowed;
b53e921b 5188 cpumask_t new_mask = *in_mask;
36c8b586
IM
5189 struct task_struct *p;
5190 int retval;
1da177e4 5191
95402b38 5192 get_online_cpus();
1da177e4
LT
5193 read_lock(&tasklist_lock);
5194
5195 p = find_process_by_pid(pid);
5196 if (!p) {
5197 read_unlock(&tasklist_lock);
95402b38 5198 put_online_cpus();
1da177e4
LT
5199 return -ESRCH;
5200 }
5201
5202 /*
5203 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5204 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5205 * usage count and then drop tasklist_lock.
5206 */
5207 get_task_struct(p);
5208 read_unlock(&tasklist_lock);
5209
5210 retval = -EPERM;
5211 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5212 !capable(CAP_SYS_NICE))
5213 goto out_unlock;
5214
e7834f8f
DQ
5215 retval = security_task_setscheduler(p, 0, NULL);
5216 if (retval)
5217 goto out_unlock;
5218
f9a86fcb 5219 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5220 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5221 again:
7c16ec58 5222 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5223
8707d8b8 5224 if (!retval) {
f9a86fcb 5225 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5226 if (!cpus_subset(new_mask, cpus_allowed)) {
5227 /*
5228 * We must have raced with a concurrent cpuset
5229 * update. Just reset the cpus_allowed to the
5230 * cpuset's cpus_allowed
5231 */
5232 new_mask = cpus_allowed;
5233 goto again;
5234 }
5235 }
1da177e4
LT
5236out_unlock:
5237 put_task_struct(p);
95402b38 5238 put_online_cpus();
1da177e4
LT
5239 return retval;
5240}
5241
5242static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5243 cpumask_t *new_mask)
5244{
5245 if (len < sizeof(cpumask_t)) {
5246 memset(new_mask, 0, sizeof(cpumask_t));
5247 } else if (len > sizeof(cpumask_t)) {
5248 len = sizeof(cpumask_t);
5249 }
5250 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5251}
5252
5253/**
5254 * sys_sched_setaffinity - set the cpu affinity of a process
5255 * @pid: pid of the process
5256 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5257 * @user_mask_ptr: user-space pointer to the new cpu mask
5258 */
5259asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5260 unsigned long __user *user_mask_ptr)
5261{
5262 cpumask_t new_mask;
5263 int retval;
5264
5265 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5266 if (retval)
5267 return retval;
5268
b53e921b 5269 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5270}
5271
1da177e4
LT
5272long sched_getaffinity(pid_t pid, cpumask_t *mask)
5273{
36c8b586 5274 struct task_struct *p;
1da177e4 5275 int retval;
1da177e4 5276
95402b38 5277 get_online_cpus();
1da177e4
LT
5278 read_lock(&tasklist_lock);
5279
5280 retval = -ESRCH;
5281 p = find_process_by_pid(pid);
5282 if (!p)
5283 goto out_unlock;
5284
e7834f8f
DQ
5285 retval = security_task_getscheduler(p);
5286 if (retval)
5287 goto out_unlock;
5288
2f7016d9 5289 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5290
5291out_unlock:
5292 read_unlock(&tasklist_lock);
95402b38 5293 put_online_cpus();
1da177e4 5294
9531b62f 5295 return retval;
1da177e4
LT
5296}
5297
5298/**
5299 * sys_sched_getaffinity - get the cpu affinity of a process
5300 * @pid: pid of the process
5301 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5302 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5303 */
5304asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5305 unsigned long __user *user_mask_ptr)
5306{
5307 int ret;
5308 cpumask_t mask;
5309
5310 if (len < sizeof(cpumask_t))
5311 return -EINVAL;
5312
5313 ret = sched_getaffinity(pid, &mask);
5314 if (ret < 0)
5315 return ret;
5316
5317 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5318 return -EFAULT;
5319
5320 return sizeof(cpumask_t);
5321}
5322
5323/**
5324 * sys_sched_yield - yield the current processor to other threads.
5325 *
dd41f596
IM
5326 * This function yields the current CPU to other tasks. If there are no
5327 * other threads running on this CPU then this function will return.
1da177e4
LT
5328 */
5329asmlinkage long sys_sched_yield(void)
5330{
70b97a7f 5331 struct rq *rq = this_rq_lock();
1da177e4 5332
2d72376b 5333 schedstat_inc(rq, yld_count);
4530d7ab 5334 current->sched_class->yield_task(rq);
1da177e4
LT
5335
5336 /*
5337 * Since we are going to call schedule() anyway, there's
5338 * no need to preempt or enable interrupts:
5339 */
5340 __release(rq->lock);
8a25d5de 5341 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5342 _raw_spin_unlock(&rq->lock);
5343 preempt_enable_no_resched();
5344
5345 schedule();
5346
5347 return 0;
5348}
5349
e7b38404 5350static void __cond_resched(void)
1da177e4 5351{
8e0a43d8
IM
5352#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5353 __might_sleep(__FILE__, __LINE__);
5354#endif
5bbcfd90
IM
5355 /*
5356 * The BKS might be reacquired before we have dropped
5357 * PREEMPT_ACTIVE, which could trigger a second
5358 * cond_resched() call.
5359 */
1da177e4
LT
5360 do {
5361 add_preempt_count(PREEMPT_ACTIVE);
5362 schedule();
5363 sub_preempt_count(PREEMPT_ACTIVE);
5364 } while (need_resched());
5365}
5366
02b67cc3 5367int __sched _cond_resched(void)
1da177e4 5368{
9414232f
IM
5369 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5370 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5371 __cond_resched();
5372 return 1;
5373 }
5374 return 0;
5375}
02b67cc3 5376EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5377
5378/*
5379 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5380 * call schedule, and on return reacquire the lock.
5381 *
41a2d6cf 5382 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5383 * operations here to prevent schedule() from being called twice (once via
5384 * spin_unlock(), once by hand).
5385 */
95cdf3b7 5386int cond_resched_lock(spinlock_t *lock)
1da177e4 5387{
95c354fe 5388 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5389 int ret = 0;
5390
95c354fe 5391 if (spin_needbreak(lock) || resched) {
1da177e4 5392 spin_unlock(lock);
95c354fe
NP
5393 if (resched && need_resched())
5394 __cond_resched();
5395 else
5396 cpu_relax();
6df3cecb 5397 ret = 1;
1da177e4 5398 spin_lock(lock);
1da177e4 5399 }
6df3cecb 5400 return ret;
1da177e4 5401}
1da177e4
LT
5402EXPORT_SYMBOL(cond_resched_lock);
5403
5404int __sched cond_resched_softirq(void)
5405{
5406 BUG_ON(!in_softirq());
5407
9414232f 5408 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5409 local_bh_enable();
1da177e4
LT
5410 __cond_resched();
5411 local_bh_disable();
5412 return 1;
5413 }
5414 return 0;
5415}
1da177e4
LT
5416EXPORT_SYMBOL(cond_resched_softirq);
5417
1da177e4
LT
5418/**
5419 * yield - yield the current processor to other threads.
5420 *
72fd4a35 5421 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5422 * thread runnable and calls sys_sched_yield().
5423 */
5424void __sched yield(void)
5425{
5426 set_current_state(TASK_RUNNING);
5427 sys_sched_yield();
5428}
1da177e4
LT
5429EXPORT_SYMBOL(yield);
5430
5431/*
41a2d6cf 5432 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5433 * that process accounting knows that this is a task in IO wait state.
5434 *
5435 * But don't do that if it is a deliberate, throttling IO wait (this task
5436 * has set its backing_dev_info: the queue against which it should throttle)
5437 */
5438void __sched io_schedule(void)
5439{
70b97a7f 5440 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5441
0ff92245 5442 delayacct_blkio_start();
1da177e4
LT
5443 atomic_inc(&rq->nr_iowait);
5444 schedule();
5445 atomic_dec(&rq->nr_iowait);
0ff92245 5446 delayacct_blkio_end();
1da177e4 5447}
1da177e4
LT
5448EXPORT_SYMBOL(io_schedule);
5449
5450long __sched io_schedule_timeout(long timeout)
5451{
70b97a7f 5452 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5453 long ret;
5454
0ff92245 5455 delayacct_blkio_start();
1da177e4
LT
5456 atomic_inc(&rq->nr_iowait);
5457 ret = schedule_timeout(timeout);
5458 atomic_dec(&rq->nr_iowait);
0ff92245 5459 delayacct_blkio_end();
1da177e4
LT
5460 return ret;
5461}
5462
5463/**
5464 * sys_sched_get_priority_max - return maximum RT priority.
5465 * @policy: scheduling class.
5466 *
5467 * this syscall returns the maximum rt_priority that can be used
5468 * by a given scheduling class.
5469 */
5470asmlinkage long sys_sched_get_priority_max(int policy)
5471{
5472 int ret = -EINVAL;
5473
5474 switch (policy) {
5475 case SCHED_FIFO:
5476 case SCHED_RR:
5477 ret = MAX_USER_RT_PRIO-1;
5478 break;
5479 case SCHED_NORMAL:
b0a9499c 5480 case SCHED_BATCH:
dd41f596 5481 case SCHED_IDLE:
1da177e4
LT
5482 ret = 0;
5483 break;
5484 }
5485 return ret;
5486}
5487
5488/**
5489 * sys_sched_get_priority_min - return minimum RT priority.
5490 * @policy: scheduling class.
5491 *
5492 * this syscall returns the minimum rt_priority that can be used
5493 * by a given scheduling class.
5494 */
5495asmlinkage long sys_sched_get_priority_min(int policy)
5496{
5497 int ret = -EINVAL;
5498
5499 switch (policy) {
5500 case SCHED_FIFO:
5501 case SCHED_RR:
5502 ret = 1;
5503 break;
5504 case SCHED_NORMAL:
b0a9499c 5505 case SCHED_BATCH:
dd41f596 5506 case SCHED_IDLE:
1da177e4
LT
5507 ret = 0;
5508 }
5509 return ret;
5510}
5511
5512/**
5513 * sys_sched_rr_get_interval - return the default timeslice of a process.
5514 * @pid: pid of the process.
5515 * @interval: userspace pointer to the timeslice value.
5516 *
5517 * this syscall writes the default timeslice value of a given process
5518 * into the user-space timespec buffer. A value of '0' means infinity.
5519 */
5520asmlinkage
5521long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5522{
36c8b586 5523 struct task_struct *p;
a4ec24b4 5524 unsigned int time_slice;
3a5c359a 5525 int retval;
1da177e4 5526 struct timespec t;
1da177e4
LT
5527
5528 if (pid < 0)
3a5c359a 5529 return -EINVAL;
1da177e4
LT
5530
5531 retval = -ESRCH;
5532 read_lock(&tasklist_lock);
5533 p = find_process_by_pid(pid);
5534 if (!p)
5535 goto out_unlock;
5536
5537 retval = security_task_getscheduler(p);
5538 if (retval)
5539 goto out_unlock;
5540
77034937
IM
5541 /*
5542 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5543 * tasks that are on an otherwise idle runqueue:
5544 */
5545 time_slice = 0;
5546 if (p->policy == SCHED_RR) {
a4ec24b4 5547 time_slice = DEF_TIMESLICE;
1868f958 5548 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5549 struct sched_entity *se = &p->se;
5550 unsigned long flags;
5551 struct rq *rq;
5552
5553 rq = task_rq_lock(p, &flags);
77034937
IM
5554 if (rq->cfs.load.weight)
5555 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5556 task_rq_unlock(rq, &flags);
5557 }
1da177e4 5558 read_unlock(&tasklist_lock);
a4ec24b4 5559 jiffies_to_timespec(time_slice, &t);
1da177e4 5560 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5561 return retval;
3a5c359a 5562
1da177e4
LT
5563out_unlock:
5564 read_unlock(&tasklist_lock);
5565 return retval;
5566}
5567
2ed6e34f 5568static const char stat_nam[] = "RSDTtZX";
36c8b586 5569
82a1fcb9 5570void sched_show_task(struct task_struct *p)
1da177e4 5571{
1da177e4 5572 unsigned long free = 0;
36c8b586 5573 unsigned state;
1da177e4 5574
1da177e4 5575 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5576 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5577 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5578#if BITS_PER_LONG == 32
1da177e4 5579 if (state == TASK_RUNNING)
cc4ea795 5580 printk(KERN_CONT " running ");
1da177e4 5581 else
cc4ea795 5582 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5583#else
5584 if (state == TASK_RUNNING)
cc4ea795 5585 printk(KERN_CONT " running task ");
1da177e4 5586 else
cc4ea795 5587 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5588#endif
5589#ifdef CONFIG_DEBUG_STACK_USAGE
5590 {
10ebffde 5591 unsigned long *n = end_of_stack(p);
1da177e4
LT
5592 while (!*n)
5593 n++;
10ebffde 5594 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5595 }
5596#endif
ba25f9dc 5597 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5598 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5599
5fb5e6de 5600 show_stack(p, NULL);
1da177e4
LT
5601}
5602
e59e2ae2 5603void show_state_filter(unsigned long state_filter)
1da177e4 5604{
36c8b586 5605 struct task_struct *g, *p;
1da177e4 5606
4bd77321
IM
5607#if BITS_PER_LONG == 32
5608 printk(KERN_INFO
5609 " task PC stack pid father\n");
1da177e4 5610#else
4bd77321
IM
5611 printk(KERN_INFO
5612 " task PC stack pid father\n");
1da177e4
LT
5613#endif
5614 read_lock(&tasklist_lock);
5615 do_each_thread(g, p) {
5616 /*
5617 * reset the NMI-timeout, listing all files on a slow
5618 * console might take alot of time:
5619 */
5620 touch_nmi_watchdog();
39bc89fd 5621 if (!state_filter || (p->state & state_filter))
82a1fcb9 5622 sched_show_task(p);
1da177e4
LT
5623 } while_each_thread(g, p);
5624
04c9167f
JF
5625 touch_all_softlockup_watchdogs();
5626
dd41f596
IM
5627#ifdef CONFIG_SCHED_DEBUG
5628 sysrq_sched_debug_show();
5629#endif
1da177e4 5630 read_unlock(&tasklist_lock);
e59e2ae2
IM
5631 /*
5632 * Only show locks if all tasks are dumped:
5633 */
5634 if (state_filter == -1)
5635 debug_show_all_locks();
1da177e4
LT
5636}
5637
1df21055
IM
5638void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5639{
dd41f596 5640 idle->sched_class = &idle_sched_class;
1df21055
IM
5641}
5642
f340c0d1
IM
5643/**
5644 * init_idle - set up an idle thread for a given CPU
5645 * @idle: task in question
5646 * @cpu: cpu the idle task belongs to
5647 *
5648 * NOTE: this function does not set the idle thread's NEED_RESCHED
5649 * flag, to make booting more robust.
5650 */
5c1e1767 5651void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5652{
70b97a7f 5653 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5654 unsigned long flags;
5655
dd41f596
IM
5656 __sched_fork(idle);
5657 idle->se.exec_start = sched_clock();
5658
b29739f9 5659 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5660 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5661 __set_task_cpu(idle, cpu);
1da177e4
LT
5662
5663 spin_lock_irqsave(&rq->lock, flags);
5664 rq->curr = rq->idle = idle;
4866cde0
NP
5665#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5666 idle->oncpu = 1;
5667#endif
1da177e4
LT
5668 spin_unlock_irqrestore(&rq->lock, flags);
5669
5670 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5671#if defined(CONFIG_PREEMPT)
5672 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5673#else
a1261f54 5674 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5675#endif
dd41f596
IM
5676 /*
5677 * The idle tasks have their own, simple scheduling class:
5678 */
5679 idle->sched_class = &idle_sched_class;
1da177e4
LT
5680}
5681
5682/*
5683 * In a system that switches off the HZ timer nohz_cpu_mask
5684 * indicates which cpus entered this state. This is used
5685 * in the rcu update to wait only for active cpus. For system
5686 * which do not switch off the HZ timer nohz_cpu_mask should
5687 * always be CPU_MASK_NONE.
5688 */
5689cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5690
19978ca6
IM
5691/*
5692 * Increase the granularity value when there are more CPUs,
5693 * because with more CPUs the 'effective latency' as visible
5694 * to users decreases. But the relationship is not linear,
5695 * so pick a second-best guess by going with the log2 of the
5696 * number of CPUs.
5697 *
5698 * This idea comes from the SD scheduler of Con Kolivas:
5699 */
5700static inline void sched_init_granularity(void)
5701{
5702 unsigned int factor = 1 + ilog2(num_online_cpus());
5703 const unsigned long limit = 200000000;
5704
5705 sysctl_sched_min_granularity *= factor;
5706 if (sysctl_sched_min_granularity > limit)
5707 sysctl_sched_min_granularity = limit;
5708
5709 sysctl_sched_latency *= factor;
5710 if (sysctl_sched_latency > limit)
5711 sysctl_sched_latency = limit;
5712
5713 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5714}
5715
1da177e4
LT
5716#ifdef CONFIG_SMP
5717/*
5718 * This is how migration works:
5719 *
70b97a7f 5720 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5721 * runqueue and wake up that CPU's migration thread.
5722 * 2) we down() the locked semaphore => thread blocks.
5723 * 3) migration thread wakes up (implicitly it forces the migrated
5724 * thread off the CPU)
5725 * 4) it gets the migration request and checks whether the migrated
5726 * task is still in the wrong runqueue.
5727 * 5) if it's in the wrong runqueue then the migration thread removes
5728 * it and puts it into the right queue.
5729 * 6) migration thread up()s the semaphore.
5730 * 7) we wake up and the migration is done.
5731 */
5732
5733/*
5734 * Change a given task's CPU affinity. Migrate the thread to a
5735 * proper CPU and schedule it away if the CPU it's executing on
5736 * is removed from the allowed bitmask.
5737 *
5738 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5739 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5740 * call is not atomic; no spinlocks may be held.
5741 */
cd8ba7cd 5742int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5743{
70b97a7f 5744 struct migration_req req;
1da177e4 5745 unsigned long flags;
70b97a7f 5746 struct rq *rq;
48f24c4d 5747 int ret = 0;
1da177e4
LT
5748
5749 rq = task_rq_lock(p, &flags);
cd8ba7cd 5750 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5751 ret = -EINVAL;
5752 goto out;
5753 }
5754
9985b0ba
DR
5755 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5756 !cpus_equal(p->cpus_allowed, *new_mask))) {
5757 ret = -EINVAL;
5758 goto out;
5759 }
5760
73fe6aae 5761 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5762 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5763 else {
cd8ba7cd
MT
5764 p->cpus_allowed = *new_mask;
5765 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5766 }
5767
1da177e4 5768 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5769 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5770 goto out;
5771
cd8ba7cd 5772 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5773 /* Need help from migration thread: drop lock and wait. */
5774 task_rq_unlock(rq, &flags);
5775 wake_up_process(rq->migration_thread);
5776 wait_for_completion(&req.done);
5777 tlb_migrate_finish(p->mm);
5778 return 0;
5779 }
5780out:
5781 task_rq_unlock(rq, &flags);
48f24c4d 5782
1da177e4
LT
5783 return ret;
5784}
cd8ba7cd 5785EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5786
5787/*
41a2d6cf 5788 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5789 * this because either it can't run here any more (set_cpus_allowed()
5790 * away from this CPU, or CPU going down), or because we're
5791 * attempting to rebalance this task on exec (sched_exec).
5792 *
5793 * So we race with normal scheduler movements, but that's OK, as long
5794 * as the task is no longer on this CPU.
efc30814
KK
5795 *
5796 * Returns non-zero if task was successfully migrated.
1da177e4 5797 */
efc30814 5798static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5799{
70b97a7f 5800 struct rq *rq_dest, *rq_src;
dd41f596 5801 int ret = 0, on_rq;
1da177e4
LT
5802
5803 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5804 return ret;
1da177e4
LT
5805
5806 rq_src = cpu_rq(src_cpu);
5807 rq_dest = cpu_rq(dest_cpu);
5808
5809 double_rq_lock(rq_src, rq_dest);
5810 /* Already moved. */
5811 if (task_cpu(p) != src_cpu)
5812 goto out;
5813 /* Affinity changed (again). */
5814 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5815 goto out;
5816
dd41f596 5817 on_rq = p->se.on_rq;
6e82a3be 5818 if (on_rq)
2e1cb74a 5819 deactivate_task(rq_src, p, 0);
6e82a3be 5820
1da177e4 5821 set_task_cpu(p, dest_cpu);
dd41f596
IM
5822 if (on_rq) {
5823 activate_task(rq_dest, p, 0);
5824 check_preempt_curr(rq_dest, p);
1da177e4 5825 }
efc30814 5826 ret = 1;
1da177e4
LT
5827out:
5828 double_rq_unlock(rq_src, rq_dest);
efc30814 5829 return ret;
1da177e4
LT
5830}
5831
5832/*
5833 * migration_thread - this is a highprio system thread that performs
5834 * thread migration by bumping thread off CPU then 'pushing' onto
5835 * another runqueue.
5836 */
95cdf3b7 5837static int migration_thread(void *data)
1da177e4 5838{
1da177e4 5839 int cpu = (long)data;
70b97a7f 5840 struct rq *rq;
1da177e4
LT
5841
5842 rq = cpu_rq(cpu);
5843 BUG_ON(rq->migration_thread != current);
5844
5845 set_current_state(TASK_INTERRUPTIBLE);
5846 while (!kthread_should_stop()) {
70b97a7f 5847 struct migration_req *req;
1da177e4 5848 struct list_head *head;
1da177e4 5849
1da177e4
LT
5850 spin_lock_irq(&rq->lock);
5851
5852 if (cpu_is_offline(cpu)) {
5853 spin_unlock_irq(&rq->lock);
5854 goto wait_to_die;
5855 }
5856
5857 if (rq->active_balance) {
5858 active_load_balance(rq, cpu);
5859 rq->active_balance = 0;
5860 }
5861
5862 head = &rq->migration_queue;
5863
5864 if (list_empty(head)) {
5865 spin_unlock_irq(&rq->lock);
5866 schedule();
5867 set_current_state(TASK_INTERRUPTIBLE);
5868 continue;
5869 }
70b97a7f 5870 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5871 list_del_init(head->next);
5872
674311d5
NP
5873 spin_unlock(&rq->lock);
5874 __migrate_task(req->task, cpu, req->dest_cpu);
5875 local_irq_enable();
1da177e4
LT
5876
5877 complete(&req->done);
5878 }
5879 __set_current_state(TASK_RUNNING);
5880 return 0;
5881
5882wait_to_die:
5883 /* Wait for kthread_stop */
5884 set_current_state(TASK_INTERRUPTIBLE);
5885 while (!kthread_should_stop()) {
5886 schedule();
5887 set_current_state(TASK_INTERRUPTIBLE);
5888 }
5889 __set_current_state(TASK_RUNNING);
5890 return 0;
5891}
5892
5893#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5894
5895static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5896{
5897 int ret;
5898
5899 local_irq_disable();
5900 ret = __migrate_task(p, src_cpu, dest_cpu);
5901 local_irq_enable();
5902 return ret;
5903}
5904
054b9108 5905/*
3a4fa0a2 5906 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5907 * NOTE: interrupts should be disabled by the caller
5908 */
48f24c4d 5909static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5910{
efc30814 5911 unsigned long flags;
1da177e4 5912 cpumask_t mask;
70b97a7f
IM
5913 struct rq *rq;
5914 int dest_cpu;
1da177e4 5915
3a5c359a
AK
5916 do {
5917 /* On same node? */
5918 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5919 cpus_and(mask, mask, p->cpus_allowed);
5920 dest_cpu = any_online_cpu(mask);
5921
5922 /* On any allowed CPU? */
434d53b0 5923 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5924 dest_cpu = any_online_cpu(p->cpus_allowed);
5925
5926 /* No more Mr. Nice Guy. */
434d53b0 5927 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5928 cpumask_t cpus_allowed;
5929
5930 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5931 /*
5932 * Try to stay on the same cpuset, where the
5933 * current cpuset may be a subset of all cpus.
5934 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5935 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5936 * called within calls to cpuset_lock/cpuset_unlock.
5937 */
3a5c359a 5938 rq = task_rq_lock(p, &flags);
470fd646 5939 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5940 dest_cpu = any_online_cpu(p->cpus_allowed);
5941 task_rq_unlock(rq, &flags);
1da177e4 5942
3a5c359a
AK
5943 /*
5944 * Don't tell them about moving exiting tasks or
5945 * kernel threads (both mm NULL), since they never
5946 * leave kernel.
5947 */
41a2d6cf 5948 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5949 printk(KERN_INFO "process %d (%s) no "
5950 "longer affine to cpu%d\n",
41a2d6cf
IM
5951 task_pid_nr(p), p->comm, dead_cpu);
5952 }
3a5c359a 5953 }
f7b4cddc 5954 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5955}
5956
5957/*
5958 * While a dead CPU has no uninterruptible tasks queued at this point,
5959 * it might still have a nonzero ->nr_uninterruptible counter, because
5960 * for performance reasons the counter is not stricly tracking tasks to
5961 * their home CPUs. So we just add the counter to another CPU's counter,
5962 * to keep the global sum constant after CPU-down:
5963 */
70b97a7f 5964static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5965{
7c16ec58 5966 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5967 unsigned long flags;
5968
5969 local_irq_save(flags);
5970 double_rq_lock(rq_src, rq_dest);
5971 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5972 rq_src->nr_uninterruptible = 0;
5973 double_rq_unlock(rq_src, rq_dest);
5974 local_irq_restore(flags);
5975}
5976
5977/* Run through task list and migrate tasks from the dead cpu. */
5978static void migrate_live_tasks(int src_cpu)
5979{
48f24c4d 5980 struct task_struct *p, *t;
1da177e4 5981
f7b4cddc 5982 read_lock(&tasklist_lock);
1da177e4 5983
48f24c4d
IM
5984 do_each_thread(t, p) {
5985 if (p == current)
1da177e4
LT
5986 continue;
5987
48f24c4d
IM
5988 if (task_cpu(p) == src_cpu)
5989 move_task_off_dead_cpu(src_cpu, p);
5990 } while_each_thread(t, p);
1da177e4 5991
f7b4cddc 5992 read_unlock(&tasklist_lock);
1da177e4
LT
5993}
5994
dd41f596
IM
5995/*
5996 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5997 * It does so by boosting its priority to highest possible.
5998 * Used by CPU offline code.
1da177e4
LT
5999 */
6000void sched_idle_next(void)
6001{
48f24c4d 6002 int this_cpu = smp_processor_id();
70b97a7f 6003 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6004 struct task_struct *p = rq->idle;
6005 unsigned long flags;
6006
6007 /* cpu has to be offline */
48f24c4d 6008 BUG_ON(cpu_online(this_cpu));
1da177e4 6009
48f24c4d
IM
6010 /*
6011 * Strictly not necessary since rest of the CPUs are stopped by now
6012 * and interrupts disabled on the current cpu.
1da177e4
LT
6013 */
6014 spin_lock_irqsave(&rq->lock, flags);
6015
dd41f596 6016 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6017
94bc9a7b
DA
6018 update_rq_clock(rq);
6019 activate_task(rq, p, 0);
1da177e4
LT
6020
6021 spin_unlock_irqrestore(&rq->lock, flags);
6022}
6023
48f24c4d
IM
6024/*
6025 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6026 * offline.
6027 */
6028void idle_task_exit(void)
6029{
6030 struct mm_struct *mm = current->active_mm;
6031
6032 BUG_ON(cpu_online(smp_processor_id()));
6033
6034 if (mm != &init_mm)
6035 switch_mm(mm, &init_mm, current);
6036 mmdrop(mm);
6037}
6038
054b9108 6039/* called under rq->lock with disabled interrupts */
36c8b586 6040static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6041{
70b97a7f 6042 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6043
6044 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6045 BUG_ON(!p->exit_state);
1da177e4
LT
6046
6047 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6048 BUG_ON(p->state == TASK_DEAD);
1da177e4 6049
48f24c4d 6050 get_task_struct(p);
1da177e4
LT
6051
6052 /*
6053 * Drop lock around migration; if someone else moves it,
41a2d6cf 6054 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6055 * fine.
6056 */
f7b4cddc 6057 spin_unlock_irq(&rq->lock);
48f24c4d 6058 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6059 spin_lock_irq(&rq->lock);
1da177e4 6060
48f24c4d 6061 put_task_struct(p);
1da177e4
LT
6062}
6063
6064/* release_task() removes task from tasklist, so we won't find dead tasks. */
6065static void migrate_dead_tasks(unsigned int dead_cpu)
6066{
70b97a7f 6067 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6068 struct task_struct *next;
48f24c4d 6069
dd41f596
IM
6070 for ( ; ; ) {
6071 if (!rq->nr_running)
6072 break;
a8e504d2 6073 update_rq_clock(rq);
ff95f3df 6074 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6075 if (!next)
6076 break;
6077 migrate_dead(dead_cpu, next);
e692ab53 6078
1da177e4
LT
6079 }
6080}
6081#endif /* CONFIG_HOTPLUG_CPU */
6082
e692ab53
NP
6083#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6084
6085static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6086 {
6087 .procname = "sched_domain",
c57baf1e 6088 .mode = 0555,
e0361851 6089 },
38605cae 6090 {0, },
e692ab53
NP
6091};
6092
6093static struct ctl_table sd_ctl_root[] = {
e0361851 6094 {
c57baf1e 6095 .ctl_name = CTL_KERN,
e0361851 6096 .procname = "kernel",
c57baf1e 6097 .mode = 0555,
e0361851
AD
6098 .child = sd_ctl_dir,
6099 },
38605cae 6100 {0, },
e692ab53
NP
6101};
6102
6103static struct ctl_table *sd_alloc_ctl_entry(int n)
6104{
6105 struct ctl_table *entry =
5cf9f062 6106 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6107
e692ab53
NP
6108 return entry;
6109}
6110
6382bc90
MM
6111static void sd_free_ctl_entry(struct ctl_table **tablep)
6112{
cd790076 6113 struct ctl_table *entry;
6382bc90 6114
cd790076
MM
6115 /*
6116 * In the intermediate directories, both the child directory and
6117 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6118 * will always be set. In the lowest directory the names are
cd790076
MM
6119 * static strings and all have proc handlers.
6120 */
6121 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6122 if (entry->child)
6123 sd_free_ctl_entry(&entry->child);
cd790076
MM
6124 if (entry->proc_handler == NULL)
6125 kfree(entry->procname);
6126 }
6382bc90
MM
6127
6128 kfree(*tablep);
6129 *tablep = NULL;
6130}
6131
e692ab53 6132static void
e0361851 6133set_table_entry(struct ctl_table *entry,
e692ab53
NP
6134 const char *procname, void *data, int maxlen,
6135 mode_t mode, proc_handler *proc_handler)
6136{
e692ab53
NP
6137 entry->procname = procname;
6138 entry->data = data;
6139 entry->maxlen = maxlen;
6140 entry->mode = mode;
6141 entry->proc_handler = proc_handler;
6142}
6143
6144static struct ctl_table *
6145sd_alloc_ctl_domain_table(struct sched_domain *sd)
6146{
ace8b3d6 6147 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6148
ad1cdc1d
MM
6149 if (table == NULL)
6150 return NULL;
6151
e0361851 6152 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6153 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6154 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6155 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6156 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6157 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6158 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6159 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6160 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6161 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6162 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6163 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6164 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6165 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6166 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6167 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6168 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6169 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6170 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6171 &sd->cache_nice_tries,
6172 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6173 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6174 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6175 /* &table[11] is terminator */
e692ab53
NP
6176
6177 return table;
6178}
6179
9a4e7159 6180static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6181{
6182 struct ctl_table *entry, *table;
6183 struct sched_domain *sd;
6184 int domain_num = 0, i;
6185 char buf[32];
6186
6187 for_each_domain(cpu, sd)
6188 domain_num++;
6189 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6190 if (table == NULL)
6191 return NULL;
e692ab53
NP
6192
6193 i = 0;
6194 for_each_domain(cpu, sd) {
6195 snprintf(buf, 32, "domain%d", i);
e692ab53 6196 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6197 entry->mode = 0555;
e692ab53
NP
6198 entry->child = sd_alloc_ctl_domain_table(sd);
6199 entry++;
6200 i++;
6201 }
6202 return table;
6203}
6204
6205static struct ctl_table_header *sd_sysctl_header;
6382bc90 6206static void register_sched_domain_sysctl(void)
e692ab53
NP
6207{
6208 int i, cpu_num = num_online_cpus();
6209 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6210 char buf[32];
6211
7378547f
MM
6212 WARN_ON(sd_ctl_dir[0].child);
6213 sd_ctl_dir[0].child = entry;
6214
ad1cdc1d
MM
6215 if (entry == NULL)
6216 return;
6217
97b6ea7b 6218 for_each_online_cpu(i) {
e692ab53 6219 snprintf(buf, 32, "cpu%d", i);
e692ab53 6220 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6221 entry->mode = 0555;
e692ab53 6222 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6223 entry++;
e692ab53 6224 }
7378547f
MM
6225
6226 WARN_ON(sd_sysctl_header);
e692ab53
NP
6227 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6228}
6382bc90 6229
7378547f 6230/* may be called multiple times per register */
6382bc90
MM
6231static void unregister_sched_domain_sysctl(void)
6232{
7378547f
MM
6233 if (sd_sysctl_header)
6234 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6235 sd_sysctl_header = NULL;
7378547f
MM
6236 if (sd_ctl_dir[0].child)
6237 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6238}
e692ab53 6239#else
6382bc90
MM
6240static void register_sched_domain_sysctl(void)
6241{
6242}
6243static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6244{
6245}
6246#endif
6247
1f11eb6a
GH
6248static void set_rq_online(struct rq *rq)
6249{
6250 if (!rq->online) {
6251 const struct sched_class *class;
6252
6253 cpu_set(rq->cpu, rq->rd->online);
6254 rq->online = 1;
6255
6256 for_each_class(class) {
6257 if (class->rq_online)
6258 class->rq_online(rq);
6259 }
6260 }
6261}
6262
6263static void set_rq_offline(struct rq *rq)
6264{
6265 if (rq->online) {
6266 const struct sched_class *class;
6267
6268 for_each_class(class) {
6269 if (class->rq_offline)
6270 class->rq_offline(rq);
6271 }
6272
6273 cpu_clear(rq->cpu, rq->rd->online);
6274 rq->online = 0;
6275 }
6276}
6277
1da177e4
LT
6278/*
6279 * migration_call - callback that gets triggered when a CPU is added.
6280 * Here we can start up the necessary migration thread for the new CPU.
6281 */
48f24c4d
IM
6282static int __cpuinit
6283migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6284{
1da177e4 6285 struct task_struct *p;
48f24c4d 6286 int cpu = (long)hcpu;
1da177e4 6287 unsigned long flags;
70b97a7f 6288 struct rq *rq;
1da177e4
LT
6289
6290 switch (action) {
5be9361c 6291
1da177e4 6292 case CPU_UP_PREPARE:
8bb78442 6293 case CPU_UP_PREPARE_FROZEN:
dd41f596 6294 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6295 if (IS_ERR(p))
6296 return NOTIFY_BAD;
1da177e4
LT
6297 kthread_bind(p, cpu);
6298 /* Must be high prio: stop_machine expects to yield to it. */
6299 rq = task_rq_lock(p, &flags);
dd41f596 6300 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6301 task_rq_unlock(rq, &flags);
6302 cpu_rq(cpu)->migration_thread = p;
6303 break;
48f24c4d 6304
1da177e4 6305 case CPU_ONLINE:
8bb78442 6306 case CPU_ONLINE_FROZEN:
3a4fa0a2 6307 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6308 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6309
6310 /* Update our root-domain */
6311 rq = cpu_rq(cpu);
6312 spin_lock_irqsave(&rq->lock, flags);
6313 if (rq->rd) {
6314 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6315
6316 set_rq_online(rq);
1f94ef59
GH
6317 }
6318 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6319 break;
48f24c4d 6320
1da177e4
LT
6321#ifdef CONFIG_HOTPLUG_CPU
6322 case CPU_UP_CANCELED:
8bb78442 6323 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6324 if (!cpu_rq(cpu)->migration_thread)
6325 break;
41a2d6cf 6326 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6327 kthread_bind(cpu_rq(cpu)->migration_thread,
6328 any_online_cpu(cpu_online_map));
1da177e4
LT
6329 kthread_stop(cpu_rq(cpu)->migration_thread);
6330 cpu_rq(cpu)->migration_thread = NULL;
6331 break;
48f24c4d 6332
1da177e4 6333 case CPU_DEAD:
8bb78442 6334 case CPU_DEAD_FROZEN:
470fd646 6335 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6336 migrate_live_tasks(cpu);
6337 rq = cpu_rq(cpu);
6338 kthread_stop(rq->migration_thread);
6339 rq->migration_thread = NULL;
6340 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6341 spin_lock_irq(&rq->lock);
a8e504d2 6342 update_rq_clock(rq);
2e1cb74a 6343 deactivate_task(rq, rq->idle, 0);
1da177e4 6344 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6345 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6346 rq->idle->sched_class = &idle_sched_class;
1da177e4 6347 migrate_dead_tasks(cpu);
d2da272a 6348 spin_unlock_irq(&rq->lock);
470fd646 6349 cpuset_unlock();
1da177e4
LT
6350 migrate_nr_uninterruptible(rq);
6351 BUG_ON(rq->nr_running != 0);
6352
41a2d6cf
IM
6353 /*
6354 * No need to migrate the tasks: it was best-effort if
6355 * they didn't take sched_hotcpu_mutex. Just wake up
6356 * the requestors.
6357 */
1da177e4
LT
6358 spin_lock_irq(&rq->lock);
6359 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6360 struct migration_req *req;
6361
1da177e4 6362 req = list_entry(rq->migration_queue.next,
70b97a7f 6363 struct migration_req, list);
1da177e4
LT
6364 list_del_init(&req->list);
6365 complete(&req->done);
6366 }
6367 spin_unlock_irq(&rq->lock);
6368 break;
57d885fe 6369
08f503b0
GH
6370 case CPU_DYING:
6371 case CPU_DYING_FROZEN:
57d885fe
GH
6372 /* Update our root-domain */
6373 rq = cpu_rq(cpu);
6374 spin_lock_irqsave(&rq->lock, flags);
6375 if (rq->rd) {
6376 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6377 set_rq_offline(rq);
57d885fe
GH
6378 }
6379 spin_unlock_irqrestore(&rq->lock, flags);
6380 break;
1da177e4
LT
6381#endif
6382 }
6383 return NOTIFY_OK;
6384}
6385
6386/* Register at highest priority so that task migration (migrate_all_tasks)
6387 * happens before everything else.
6388 */
26c2143b 6389static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6390 .notifier_call = migration_call,
6391 .priority = 10
6392};
6393
e6fe6649 6394void __init migration_init(void)
1da177e4
LT
6395{
6396 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6397 int err;
48f24c4d
IM
6398
6399 /* Start one for the boot CPU: */
07dccf33
AM
6400 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6401 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6402 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6403 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6404}
6405#endif
6406
6407#ifdef CONFIG_SMP
476f3534 6408
3e9830dc 6409#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6410
099f98c8
GS
6411static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6412{
6413 switch (lvl) {
6414 case SD_LV_NONE:
6415 return "NONE";
6416 case SD_LV_SIBLING:
6417 return "SIBLING";
6418 case SD_LV_MC:
6419 return "MC";
6420 case SD_LV_CPU:
6421 return "CPU";
6422 case SD_LV_NODE:
6423 return "NODE";
6424 case SD_LV_ALLNODES:
6425 return "ALLNODES";
6426 case SD_LV_MAX:
6427 return "MAX";
6428
6429 }
6430 return "MAX";
6431}
6432
7c16ec58
MT
6433static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6434 cpumask_t *groupmask)
1da177e4 6435{
4dcf6aff 6436 struct sched_group *group = sd->groups;
434d53b0 6437 char str[256];
1da177e4 6438
434d53b0 6439 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6440 cpus_clear(*groupmask);
4dcf6aff
IM
6441
6442 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6443
6444 if (!(sd->flags & SD_LOAD_BALANCE)) {
6445 printk("does not load-balance\n");
6446 if (sd->parent)
6447 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6448 " has parent");
6449 return -1;
41c7ce9a
NP
6450 }
6451
099f98c8
GS
6452 printk(KERN_CONT "span %s level %s\n",
6453 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6454
6455 if (!cpu_isset(cpu, sd->span)) {
6456 printk(KERN_ERR "ERROR: domain->span does not contain "
6457 "CPU%d\n", cpu);
6458 }
6459 if (!cpu_isset(cpu, group->cpumask)) {
6460 printk(KERN_ERR "ERROR: domain->groups does not contain"
6461 " CPU%d\n", cpu);
6462 }
1da177e4 6463
4dcf6aff 6464 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6465 do {
4dcf6aff
IM
6466 if (!group) {
6467 printk("\n");
6468 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6469 break;
6470 }
6471
4dcf6aff
IM
6472 if (!group->__cpu_power) {
6473 printk(KERN_CONT "\n");
6474 printk(KERN_ERR "ERROR: domain->cpu_power not "
6475 "set\n");
6476 break;
6477 }
1da177e4 6478
4dcf6aff
IM
6479 if (!cpus_weight(group->cpumask)) {
6480 printk(KERN_CONT "\n");
6481 printk(KERN_ERR "ERROR: empty group\n");
6482 break;
6483 }
1da177e4 6484
7c16ec58 6485 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6486 printk(KERN_CONT "\n");
6487 printk(KERN_ERR "ERROR: repeated CPUs\n");
6488 break;
6489 }
1da177e4 6490
7c16ec58 6491 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6492
434d53b0 6493 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6494 printk(KERN_CONT " %s", str);
1da177e4 6495
4dcf6aff
IM
6496 group = group->next;
6497 } while (group != sd->groups);
6498 printk(KERN_CONT "\n");
1da177e4 6499
7c16ec58 6500 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6501 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6502
7c16ec58 6503 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6504 printk(KERN_ERR "ERROR: parent span is not a superset "
6505 "of domain->span\n");
6506 return 0;
6507}
1da177e4 6508
4dcf6aff
IM
6509static void sched_domain_debug(struct sched_domain *sd, int cpu)
6510{
7c16ec58 6511 cpumask_t *groupmask;
4dcf6aff 6512 int level = 0;
1da177e4 6513
4dcf6aff
IM
6514 if (!sd) {
6515 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6516 return;
6517 }
1da177e4 6518
4dcf6aff
IM
6519 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6520
7c16ec58
MT
6521 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6522 if (!groupmask) {
6523 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6524 return;
6525 }
6526
4dcf6aff 6527 for (;;) {
7c16ec58 6528 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6529 break;
1da177e4
LT
6530 level++;
6531 sd = sd->parent;
33859f7f 6532 if (!sd)
4dcf6aff
IM
6533 break;
6534 }
7c16ec58 6535 kfree(groupmask);
1da177e4 6536}
6d6bc0ad 6537#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6538# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6539#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6540
1a20ff27 6541static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6542{
6543 if (cpus_weight(sd->span) == 1)
6544 return 1;
6545
6546 /* Following flags need at least 2 groups */
6547 if (sd->flags & (SD_LOAD_BALANCE |
6548 SD_BALANCE_NEWIDLE |
6549 SD_BALANCE_FORK |
89c4710e
SS
6550 SD_BALANCE_EXEC |
6551 SD_SHARE_CPUPOWER |
6552 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6553 if (sd->groups != sd->groups->next)
6554 return 0;
6555 }
6556
6557 /* Following flags don't use groups */
6558 if (sd->flags & (SD_WAKE_IDLE |
6559 SD_WAKE_AFFINE |
6560 SD_WAKE_BALANCE))
6561 return 0;
6562
6563 return 1;
6564}
6565
48f24c4d
IM
6566static int
6567sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6568{
6569 unsigned long cflags = sd->flags, pflags = parent->flags;
6570
6571 if (sd_degenerate(parent))
6572 return 1;
6573
6574 if (!cpus_equal(sd->span, parent->span))
6575 return 0;
6576
6577 /* Does parent contain flags not in child? */
6578 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6579 if (cflags & SD_WAKE_AFFINE)
6580 pflags &= ~SD_WAKE_BALANCE;
6581 /* Flags needing groups don't count if only 1 group in parent */
6582 if (parent->groups == parent->groups->next) {
6583 pflags &= ~(SD_LOAD_BALANCE |
6584 SD_BALANCE_NEWIDLE |
6585 SD_BALANCE_FORK |
89c4710e
SS
6586 SD_BALANCE_EXEC |
6587 SD_SHARE_CPUPOWER |
6588 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6589 }
6590 if (~cflags & pflags)
6591 return 0;
6592
6593 return 1;
6594}
6595
57d885fe
GH
6596static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6597{
6598 unsigned long flags;
57d885fe
GH
6599
6600 spin_lock_irqsave(&rq->lock, flags);
6601
6602 if (rq->rd) {
6603 struct root_domain *old_rd = rq->rd;
6604
1f11eb6a
GH
6605 if (cpu_isset(rq->cpu, old_rd->online))
6606 set_rq_offline(rq);
57d885fe 6607
dc938520 6608 cpu_clear(rq->cpu, old_rd->span);
dc938520 6609
57d885fe
GH
6610 if (atomic_dec_and_test(&old_rd->refcount))
6611 kfree(old_rd);
6612 }
6613
6614 atomic_inc(&rd->refcount);
6615 rq->rd = rd;
6616
dc938520 6617 cpu_set(rq->cpu, rd->span);
1f94ef59 6618 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6619 set_rq_online(rq);
57d885fe
GH
6620
6621 spin_unlock_irqrestore(&rq->lock, flags);
6622}
6623
dc938520 6624static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6625{
6626 memset(rd, 0, sizeof(*rd));
6627
dc938520
GH
6628 cpus_clear(rd->span);
6629 cpus_clear(rd->online);
6e0534f2
GH
6630
6631 cpupri_init(&rd->cpupri);
57d885fe
GH
6632}
6633
6634static void init_defrootdomain(void)
6635{
dc938520 6636 init_rootdomain(&def_root_domain);
57d885fe
GH
6637 atomic_set(&def_root_domain.refcount, 1);
6638}
6639
dc938520 6640static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6641{
6642 struct root_domain *rd;
6643
6644 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6645 if (!rd)
6646 return NULL;
6647
dc938520 6648 init_rootdomain(rd);
57d885fe
GH
6649
6650 return rd;
6651}
6652
1da177e4 6653/*
0eab9146 6654 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6655 * hold the hotplug lock.
6656 */
0eab9146
IM
6657static void
6658cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6659{
70b97a7f 6660 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6661 struct sched_domain *tmp;
6662
6663 /* Remove the sched domains which do not contribute to scheduling. */
6664 for (tmp = sd; tmp; tmp = tmp->parent) {
6665 struct sched_domain *parent = tmp->parent;
6666 if (!parent)
6667 break;
1a848870 6668 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6669 tmp->parent = parent->parent;
1a848870
SS
6670 if (parent->parent)
6671 parent->parent->child = tmp;
6672 }
245af2c7
SS
6673 }
6674
1a848870 6675 if (sd && sd_degenerate(sd)) {
245af2c7 6676 sd = sd->parent;
1a848870
SS
6677 if (sd)
6678 sd->child = NULL;
6679 }
1da177e4
LT
6680
6681 sched_domain_debug(sd, cpu);
6682
57d885fe 6683 rq_attach_root(rq, rd);
674311d5 6684 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6685}
6686
6687/* cpus with isolated domains */
67af63a6 6688static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6689
6690/* Setup the mask of cpus configured for isolated domains */
6691static int __init isolated_cpu_setup(char *str)
6692{
6693 int ints[NR_CPUS], i;
6694
6695 str = get_options(str, ARRAY_SIZE(ints), ints);
6696 cpus_clear(cpu_isolated_map);
6697 for (i = 1; i <= ints[0]; i++)
6698 if (ints[i] < NR_CPUS)
6699 cpu_set(ints[i], cpu_isolated_map);
6700 return 1;
6701}
6702
8927f494 6703__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6704
6705/*
6711cab4
SS
6706 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6707 * to a function which identifies what group(along with sched group) a CPU
6708 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6709 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6710 *
6711 * init_sched_build_groups will build a circular linked list of the groups
6712 * covered by the given span, and will set each group's ->cpumask correctly,
6713 * and ->cpu_power to 0.
6714 */
a616058b 6715static void
7c16ec58 6716init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6717 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6718 struct sched_group **sg,
6719 cpumask_t *tmpmask),
6720 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6721{
6722 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6723 int i;
6724
7c16ec58
MT
6725 cpus_clear(*covered);
6726
6727 for_each_cpu_mask(i, *span) {
6711cab4 6728 struct sched_group *sg;
7c16ec58 6729 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6730 int j;
6731
7c16ec58 6732 if (cpu_isset(i, *covered))
1da177e4
LT
6733 continue;
6734
7c16ec58 6735 cpus_clear(sg->cpumask);
5517d86b 6736 sg->__cpu_power = 0;
1da177e4 6737
7c16ec58
MT
6738 for_each_cpu_mask(j, *span) {
6739 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6740 continue;
6741
7c16ec58 6742 cpu_set(j, *covered);
1da177e4
LT
6743 cpu_set(j, sg->cpumask);
6744 }
6745 if (!first)
6746 first = sg;
6747 if (last)
6748 last->next = sg;
6749 last = sg;
6750 }
6751 last->next = first;
6752}
6753
9c1cfda2 6754#define SD_NODES_PER_DOMAIN 16
1da177e4 6755
9c1cfda2 6756#ifdef CONFIG_NUMA
198e2f18 6757
9c1cfda2
JH
6758/**
6759 * find_next_best_node - find the next node to include in a sched_domain
6760 * @node: node whose sched_domain we're building
6761 * @used_nodes: nodes already in the sched_domain
6762 *
41a2d6cf 6763 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6764 * finds the closest node not already in the @used_nodes map.
6765 *
6766 * Should use nodemask_t.
6767 */
c5f59f08 6768static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6769{
6770 int i, n, val, min_val, best_node = 0;
6771
6772 min_val = INT_MAX;
6773
6774 for (i = 0; i < MAX_NUMNODES; i++) {
6775 /* Start at @node */
6776 n = (node + i) % MAX_NUMNODES;
6777
6778 if (!nr_cpus_node(n))
6779 continue;
6780
6781 /* Skip already used nodes */
c5f59f08 6782 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6783 continue;
6784
6785 /* Simple min distance search */
6786 val = node_distance(node, n);
6787
6788 if (val < min_val) {
6789 min_val = val;
6790 best_node = n;
6791 }
6792 }
6793
c5f59f08 6794 node_set(best_node, *used_nodes);
9c1cfda2
JH
6795 return best_node;
6796}
6797
6798/**
6799 * sched_domain_node_span - get a cpumask for a node's sched_domain
6800 * @node: node whose cpumask we're constructing
73486722 6801 * @span: resulting cpumask
9c1cfda2 6802 *
41a2d6cf 6803 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6804 * should be one that prevents unnecessary balancing, but also spreads tasks
6805 * out optimally.
6806 */
4bdbaad3 6807static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6808{
c5f59f08 6809 nodemask_t used_nodes;
c5f59f08 6810 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6811 int i;
9c1cfda2 6812
4bdbaad3 6813 cpus_clear(*span);
c5f59f08 6814 nodes_clear(used_nodes);
9c1cfda2 6815
4bdbaad3 6816 cpus_or(*span, *span, *nodemask);
c5f59f08 6817 node_set(node, used_nodes);
9c1cfda2
JH
6818
6819 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6820 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6821
c5f59f08 6822 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6823 cpus_or(*span, *span, *nodemask);
9c1cfda2 6824 }
9c1cfda2 6825}
6d6bc0ad 6826#endif /* CONFIG_NUMA */
9c1cfda2 6827
5c45bf27 6828int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6829
9c1cfda2 6830/*
48f24c4d 6831 * SMT sched-domains:
9c1cfda2 6832 */
1da177e4
LT
6833#ifdef CONFIG_SCHED_SMT
6834static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6835static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6836
41a2d6cf 6837static int
7c16ec58
MT
6838cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6839 cpumask_t *unused)
1da177e4 6840{
6711cab4
SS
6841 if (sg)
6842 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6843 return cpu;
6844}
6d6bc0ad 6845#endif /* CONFIG_SCHED_SMT */
1da177e4 6846
48f24c4d
IM
6847/*
6848 * multi-core sched-domains:
6849 */
1e9f28fa
SS
6850#ifdef CONFIG_SCHED_MC
6851static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6852static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6853#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6854
6855#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6856static int
7c16ec58
MT
6857cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6858 cpumask_t *mask)
1e9f28fa 6859{
6711cab4 6860 int group;
7c16ec58
MT
6861
6862 *mask = per_cpu(cpu_sibling_map, cpu);
6863 cpus_and(*mask, *mask, *cpu_map);
6864 group = first_cpu(*mask);
6711cab4
SS
6865 if (sg)
6866 *sg = &per_cpu(sched_group_core, group);
6867 return group;
1e9f28fa
SS
6868}
6869#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6870static int
7c16ec58
MT
6871cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6872 cpumask_t *unused)
1e9f28fa 6873{
6711cab4
SS
6874 if (sg)
6875 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6876 return cpu;
6877}
6878#endif
6879
1da177e4 6880static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6881static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6882
41a2d6cf 6883static int
7c16ec58
MT
6884cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6885 cpumask_t *mask)
1da177e4 6886{
6711cab4 6887 int group;
48f24c4d 6888#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6889 *mask = cpu_coregroup_map(cpu);
6890 cpus_and(*mask, *mask, *cpu_map);
6891 group = first_cpu(*mask);
1e9f28fa 6892#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6893 *mask = per_cpu(cpu_sibling_map, cpu);
6894 cpus_and(*mask, *mask, *cpu_map);
6895 group = first_cpu(*mask);
1da177e4 6896#else
6711cab4 6897 group = cpu;
1da177e4 6898#endif
6711cab4
SS
6899 if (sg)
6900 *sg = &per_cpu(sched_group_phys, group);
6901 return group;
1da177e4
LT
6902}
6903
6904#ifdef CONFIG_NUMA
1da177e4 6905/*
9c1cfda2
JH
6906 * The init_sched_build_groups can't handle what we want to do with node
6907 * groups, so roll our own. Now each node has its own list of groups which
6908 * gets dynamically allocated.
1da177e4 6909 */
9c1cfda2 6910static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6911static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6912
9c1cfda2 6913static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6914static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6915
6711cab4 6916static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6917 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6918{
6711cab4
SS
6919 int group;
6920
7c16ec58
MT
6921 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6922 cpus_and(*nodemask, *nodemask, *cpu_map);
6923 group = first_cpu(*nodemask);
6711cab4
SS
6924
6925 if (sg)
6926 *sg = &per_cpu(sched_group_allnodes, group);
6927 return group;
1da177e4 6928}
6711cab4 6929
08069033
SS
6930static void init_numa_sched_groups_power(struct sched_group *group_head)
6931{
6932 struct sched_group *sg = group_head;
6933 int j;
6934
6935 if (!sg)
6936 return;
3a5c359a
AK
6937 do {
6938 for_each_cpu_mask(j, sg->cpumask) {
6939 struct sched_domain *sd;
08069033 6940
3a5c359a
AK
6941 sd = &per_cpu(phys_domains, j);
6942 if (j != first_cpu(sd->groups->cpumask)) {
6943 /*
6944 * Only add "power" once for each
6945 * physical package.
6946 */
6947 continue;
6948 }
08069033 6949
3a5c359a
AK
6950 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6951 }
6952 sg = sg->next;
6953 } while (sg != group_head);
08069033 6954}
6d6bc0ad 6955#endif /* CONFIG_NUMA */
1da177e4 6956
a616058b 6957#ifdef CONFIG_NUMA
51888ca2 6958/* Free memory allocated for various sched_group structures */
7c16ec58 6959static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6960{
a616058b 6961 int cpu, i;
51888ca2
SV
6962
6963 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6964 struct sched_group **sched_group_nodes
6965 = sched_group_nodes_bycpu[cpu];
6966
51888ca2
SV
6967 if (!sched_group_nodes)
6968 continue;
6969
6970 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6971 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6972
7c16ec58
MT
6973 *nodemask = node_to_cpumask(i);
6974 cpus_and(*nodemask, *nodemask, *cpu_map);
6975 if (cpus_empty(*nodemask))
51888ca2
SV
6976 continue;
6977
6978 if (sg == NULL)
6979 continue;
6980 sg = sg->next;
6981next_sg:
6982 oldsg = sg;
6983 sg = sg->next;
6984 kfree(oldsg);
6985 if (oldsg != sched_group_nodes[i])
6986 goto next_sg;
6987 }
6988 kfree(sched_group_nodes);
6989 sched_group_nodes_bycpu[cpu] = NULL;
6990 }
51888ca2 6991}
6d6bc0ad 6992#else /* !CONFIG_NUMA */
7c16ec58 6993static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6994{
6995}
6d6bc0ad 6996#endif /* CONFIG_NUMA */
51888ca2 6997
89c4710e
SS
6998/*
6999 * Initialize sched groups cpu_power.
7000 *
7001 * cpu_power indicates the capacity of sched group, which is used while
7002 * distributing the load between different sched groups in a sched domain.
7003 * Typically cpu_power for all the groups in a sched domain will be same unless
7004 * there are asymmetries in the topology. If there are asymmetries, group
7005 * having more cpu_power will pickup more load compared to the group having
7006 * less cpu_power.
7007 *
7008 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7009 * the maximum number of tasks a group can handle in the presence of other idle
7010 * or lightly loaded groups in the same sched domain.
7011 */
7012static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7013{
7014 struct sched_domain *child;
7015 struct sched_group *group;
7016
7017 WARN_ON(!sd || !sd->groups);
7018
7019 if (cpu != first_cpu(sd->groups->cpumask))
7020 return;
7021
7022 child = sd->child;
7023
5517d86b
ED
7024 sd->groups->__cpu_power = 0;
7025
89c4710e
SS
7026 /*
7027 * For perf policy, if the groups in child domain share resources
7028 * (for example cores sharing some portions of the cache hierarchy
7029 * or SMT), then set this domain groups cpu_power such that each group
7030 * can handle only one task, when there are other idle groups in the
7031 * same sched domain.
7032 */
7033 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7034 (child->flags &
7035 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7036 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7037 return;
7038 }
7039
89c4710e
SS
7040 /*
7041 * add cpu_power of each child group to this groups cpu_power
7042 */
7043 group = child->groups;
7044 do {
5517d86b 7045 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7046 group = group->next;
7047 } while (group != child->groups);
7048}
7049
7c16ec58
MT
7050/*
7051 * Initializers for schedule domains
7052 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7053 */
7054
7055#define SD_INIT(sd, type) sd_init_##type(sd)
7056#define SD_INIT_FUNC(type) \
7057static noinline void sd_init_##type(struct sched_domain *sd) \
7058{ \
7059 memset(sd, 0, sizeof(*sd)); \
7060 *sd = SD_##type##_INIT; \
1d3504fc 7061 sd->level = SD_LV_##type; \
7c16ec58
MT
7062}
7063
7064SD_INIT_FUNC(CPU)
7065#ifdef CONFIG_NUMA
7066 SD_INIT_FUNC(ALLNODES)
7067 SD_INIT_FUNC(NODE)
7068#endif
7069#ifdef CONFIG_SCHED_SMT
7070 SD_INIT_FUNC(SIBLING)
7071#endif
7072#ifdef CONFIG_SCHED_MC
7073 SD_INIT_FUNC(MC)
7074#endif
7075
7076/*
7077 * To minimize stack usage kmalloc room for cpumasks and share the
7078 * space as the usage in build_sched_domains() dictates. Used only
7079 * if the amount of space is significant.
7080 */
7081struct allmasks {
7082 cpumask_t tmpmask; /* make this one first */
7083 union {
7084 cpumask_t nodemask;
7085 cpumask_t this_sibling_map;
7086 cpumask_t this_core_map;
7087 };
7088 cpumask_t send_covered;
7089
7090#ifdef CONFIG_NUMA
7091 cpumask_t domainspan;
7092 cpumask_t covered;
7093 cpumask_t notcovered;
7094#endif
7095};
7096
7097#if NR_CPUS > 128
7098#define SCHED_CPUMASK_ALLOC 1
7099#define SCHED_CPUMASK_FREE(v) kfree(v)
7100#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7101#else
7102#define SCHED_CPUMASK_ALLOC 0
7103#define SCHED_CPUMASK_FREE(v)
7104#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7105#endif
7106
7107#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7108 ((unsigned long)(a) + offsetof(struct allmasks, v))
7109
1d3504fc
HS
7110static int default_relax_domain_level = -1;
7111
7112static int __init setup_relax_domain_level(char *str)
7113{
30e0e178
LZ
7114 unsigned long val;
7115
7116 val = simple_strtoul(str, NULL, 0);
7117 if (val < SD_LV_MAX)
7118 default_relax_domain_level = val;
7119
1d3504fc
HS
7120 return 1;
7121}
7122__setup("relax_domain_level=", setup_relax_domain_level);
7123
7124static void set_domain_attribute(struct sched_domain *sd,
7125 struct sched_domain_attr *attr)
7126{
7127 int request;
7128
7129 if (!attr || attr->relax_domain_level < 0) {
7130 if (default_relax_domain_level < 0)
7131 return;
7132 else
7133 request = default_relax_domain_level;
7134 } else
7135 request = attr->relax_domain_level;
7136 if (request < sd->level) {
7137 /* turn off idle balance on this domain */
7138 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7139 } else {
7140 /* turn on idle balance on this domain */
7141 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7142 }
7143}
7144
1da177e4 7145/*
1a20ff27
DG
7146 * Build sched domains for a given set of cpus and attach the sched domains
7147 * to the individual cpus
1da177e4 7148 */
1d3504fc
HS
7149static int __build_sched_domains(const cpumask_t *cpu_map,
7150 struct sched_domain_attr *attr)
1da177e4
LT
7151{
7152 int i;
57d885fe 7153 struct root_domain *rd;
7c16ec58
MT
7154 SCHED_CPUMASK_DECLARE(allmasks);
7155 cpumask_t *tmpmask;
d1b55138
JH
7156#ifdef CONFIG_NUMA
7157 struct sched_group **sched_group_nodes = NULL;
6711cab4 7158 int sd_allnodes = 0;
d1b55138
JH
7159
7160 /*
7161 * Allocate the per-node list of sched groups
7162 */
5cf9f062 7163 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7164 GFP_KERNEL);
d1b55138
JH
7165 if (!sched_group_nodes) {
7166 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7167 return -ENOMEM;
d1b55138 7168 }
d1b55138 7169#endif
1da177e4 7170
dc938520 7171 rd = alloc_rootdomain();
57d885fe
GH
7172 if (!rd) {
7173 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7174#ifdef CONFIG_NUMA
7175 kfree(sched_group_nodes);
7176#endif
57d885fe
GH
7177 return -ENOMEM;
7178 }
7179
7c16ec58
MT
7180#if SCHED_CPUMASK_ALLOC
7181 /* get space for all scratch cpumask variables */
7182 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7183 if (!allmasks) {
7184 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7185 kfree(rd);
7186#ifdef CONFIG_NUMA
7187 kfree(sched_group_nodes);
7188#endif
7189 return -ENOMEM;
7190 }
7191#endif
7192 tmpmask = (cpumask_t *)allmasks;
7193
7194
7195#ifdef CONFIG_NUMA
7196 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7197#endif
7198
1da177e4 7199 /*
1a20ff27 7200 * Set up domains for cpus specified by the cpu_map.
1da177e4 7201 */
1a20ff27 7202 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7203 struct sched_domain *sd = NULL, *p;
7c16ec58 7204 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7205
7c16ec58
MT
7206 *nodemask = node_to_cpumask(cpu_to_node(i));
7207 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7208
7209#ifdef CONFIG_NUMA
dd41f596 7210 if (cpus_weight(*cpu_map) >
7c16ec58 7211 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7212 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7213 SD_INIT(sd, ALLNODES);
1d3504fc 7214 set_domain_attribute(sd, attr);
9c1cfda2 7215 sd->span = *cpu_map;
7c16ec58 7216 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7217 p = sd;
6711cab4 7218 sd_allnodes = 1;
9c1cfda2
JH
7219 } else
7220 p = NULL;
7221
1da177e4 7222 sd = &per_cpu(node_domains, i);
7c16ec58 7223 SD_INIT(sd, NODE);
1d3504fc 7224 set_domain_attribute(sd, attr);
4bdbaad3 7225 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7226 sd->parent = p;
1a848870
SS
7227 if (p)
7228 p->child = sd;
9c1cfda2 7229 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7230#endif
7231
7232 p = sd;
7233 sd = &per_cpu(phys_domains, i);
7c16ec58 7234 SD_INIT(sd, CPU);
1d3504fc 7235 set_domain_attribute(sd, attr);
7c16ec58 7236 sd->span = *nodemask;
1da177e4 7237 sd->parent = p;
1a848870
SS
7238 if (p)
7239 p->child = sd;
7c16ec58 7240 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7241
1e9f28fa
SS
7242#ifdef CONFIG_SCHED_MC
7243 p = sd;
7244 sd = &per_cpu(core_domains, i);
7c16ec58 7245 SD_INIT(sd, MC);
1d3504fc 7246 set_domain_attribute(sd, attr);
1e9f28fa
SS
7247 sd->span = cpu_coregroup_map(i);
7248 cpus_and(sd->span, sd->span, *cpu_map);
7249 sd->parent = p;
1a848870 7250 p->child = sd;
7c16ec58 7251 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7252#endif
7253
1da177e4
LT
7254#ifdef CONFIG_SCHED_SMT
7255 p = sd;
7256 sd = &per_cpu(cpu_domains, i);
7c16ec58 7257 SD_INIT(sd, SIBLING);
1d3504fc 7258 set_domain_attribute(sd, attr);
d5a7430d 7259 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7260 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7261 sd->parent = p;
1a848870 7262 p->child = sd;
7c16ec58 7263 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7264#endif
7265 }
7266
7267#ifdef CONFIG_SCHED_SMT
7268 /* Set up CPU (sibling) groups */
9c1cfda2 7269 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7270 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7271 SCHED_CPUMASK_VAR(send_covered, allmasks);
7272
7273 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7274 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7275 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7276 continue;
7277
dd41f596 7278 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7279 &cpu_to_cpu_group,
7280 send_covered, tmpmask);
1da177e4
LT
7281 }
7282#endif
7283
1e9f28fa
SS
7284#ifdef CONFIG_SCHED_MC
7285 /* Set up multi-core groups */
7286 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7287 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7288 SCHED_CPUMASK_VAR(send_covered, allmasks);
7289
7290 *this_core_map = cpu_coregroup_map(i);
7291 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7292 if (i != first_cpu(*this_core_map))
1e9f28fa 7293 continue;
7c16ec58 7294
dd41f596 7295 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7296 &cpu_to_core_group,
7297 send_covered, tmpmask);
1e9f28fa
SS
7298 }
7299#endif
7300
1da177e4
LT
7301 /* Set up physical groups */
7302 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7303 SCHED_CPUMASK_VAR(nodemask, allmasks);
7304 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7305
7c16ec58
MT
7306 *nodemask = node_to_cpumask(i);
7307 cpus_and(*nodemask, *nodemask, *cpu_map);
7308 if (cpus_empty(*nodemask))
1da177e4
LT
7309 continue;
7310
7c16ec58
MT
7311 init_sched_build_groups(nodemask, cpu_map,
7312 &cpu_to_phys_group,
7313 send_covered, tmpmask);
1da177e4
LT
7314 }
7315
7316#ifdef CONFIG_NUMA
7317 /* Set up node groups */
7c16ec58
MT
7318 if (sd_allnodes) {
7319 SCHED_CPUMASK_VAR(send_covered, allmasks);
7320
7321 init_sched_build_groups(cpu_map, cpu_map,
7322 &cpu_to_allnodes_group,
7323 send_covered, tmpmask);
7324 }
9c1cfda2
JH
7325
7326 for (i = 0; i < MAX_NUMNODES; i++) {
7327 /* Set up node groups */
7328 struct sched_group *sg, *prev;
7c16ec58
MT
7329 SCHED_CPUMASK_VAR(nodemask, allmasks);
7330 SCHED_CPUMASK_VAR(domainspan, allmasks);
7331 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7332 int j;
7333
7c16ec58
MT
7334 *nodemask = node_to_cpumask(i);
7335 cpus_clear(*covered);
7336
7337 cpus_and(*nodemask, *nodemask, *cpu_map);
7338 if (cpus_empty(*nodemask)) {
d1b55138 7339 sched_group_nodes[i] = NULL;
9c1cfda2 7340 continue;
d1b55138 7341 }
9c1cfda2 7342
4bdbaad3 7343 sched_domain_node_span(i, domainspan);
7c16ec58 7344 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7345
15f0b676 7346 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7347 if (!sg) {
7348 printk(KERN_WARNING "Can not alloc domain group for "
7349 "node %d\n", i);
7350 goto error;
7351 }
9c1cfda2 7352 sched_group_nodes[i] = sg;
7c16ec58 7353 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7354 struct sched_domain *sd;
9761eea8 7355
9c1cfda2
JH
7356 sd = &per_cpu(node_domains, j);
7357 sd->groups = sg;
9c1cfda2 7358 }
5517d86b 7359 sg->__cpu_power = 0;
7c16ec58 7360 sg->cpumask = *nodemask;
51888ca2 7361 sg->next = sg;
7c16ec58 7362 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7363 prev = sg;
7364
7365 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7366 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7367 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7368 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7369
7c16ec58
MT
7370 cpus_complement(*notcovered, *covered);
7371 cpus_and(*tmpmask, *notcovered, *cpu_map);
7372 cpus_and(*tmpmask, *tmpmask, *domainspan);
7373 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7374 break;
7375
7c16ec58
MT
7376 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7377 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7378 continue;
7379
15f0b676
SV
7380 sg = kmalloc_node(sizeof(struct sched_group),
7381 GFP_KERNEL, i);
9c1cfda2
JH
7382 if (!sg) {
7383 printk(KERN_WARNING
7384 "Can not alloc domain group for node %d\n", j);
51888ca2 7385 goto error;
9c1cfda2 7386 }
5517d86b 7387 sg->__cpu_power = 0;
7c16ec58 7388 sg->cpumask = *tmpmask;
51888ca2 7389 sg->next = prev->next;
7c16ec58 7390 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7391 prev->next = sg;
7392 prev = sg;
7393 }
9c1cfda2 7394 }
1da177e4
LT
7395#endif
7396
7397 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7398#ifdef CONFIG_SCHED_SMT
1a20ff27 7399 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7400 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7401
89c4710e 7402 init_sched_groups_power(i, sd);
5c45bf27 7403 }
1da177e4 7404#endif
1e9f28fa 7405#ifdef CONFIG_SCHED_MC
5c45bf27 7406 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7407 struct sched_domain *sd = &per_cpu(core_domains, i);
7408
89c4710e 7409 init_sched_groups_power(i, sd);
5c45bf27
SS
7410 }
7411#endif
1e9f28fa 7412
5c45bf27 7413 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7414 struct sched_domain *sd = &per_cpu(phys_domains, i);
7415
89c4710e 7416 init_sched_groups_power(i, sd);
1da177e4
LT
7417 }
7418
9c1cfda2 7419#ifdef CONFIG_NUMA
08069033
SS
7420 for (i = 0; i < MAX_NUMNODES; i++)
7421 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7422
6711cab4
SS
7423 if (sd_allnodes) {
7424 struct sched_group *sg;
f712c0c7 7425
7c16ec58
MT
7426 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7427 tmpmask);
f712c0c7
SS
7428 init_numa_sched_groups_power(sg);
7429 }
9c1cfda2
JH
7430#endif
7431
1da177e4 7432 /* Attach the domains */
1a20ff27 7433 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7434 struct sched_domain *sd;
7435#ifdef CONFIG_SCHED_SMT
7436 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7437#elif defined(CONFIG_SCHED_MC)
7438 sd = &per_cpu(core_domains, i);
1da177e4
LT
7439#else
7440 sd = &per_cpu(phys_domains, i);
7441#endif
57d885fe 7442 cpu_attach_domain(sd, rd, i);
1da177e4 7443 }
51888ca2 7444
7c16ec58 7445 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7446 return 0;
7447
a616058b 7448#ifdef CONFIG_NUMA
51888ca2 7449error:
7c16ec58
MT
7450 free_sched_groups(cpu_map, tmpmask);
7451 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7452 return -ENOMEM;
a616058b 7453#endif
1da177e4 7454}
029190c5 7455
1d3504fc
HS
7456static int build_sched_domains(const cpumask_t *cpu_map)
7457{
7458 return __build_sched_domains(cpu_map, NULL);
7459}
7460
029190c5
PJ
7461static cpumask_t *doms_cur; /* current sched domains */
7462static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7463static struct sched_domain_attr *dattr_cur;
7464 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7465
7466/*
7467 * Special case: If a kmalloc of a doms_cur partition (array of
7468 * cpumask_t) fails, then fallback to a single sched domain,
7469 * as determined by the single cpumask_t fallback_doms.
7470 */
7471static cpumask_t fallback_doms;
7472
22e52b07
HC
7473void __attribute__((weak)) arch_update_cpu_topology(void)
7474{
7475}
7476
5c8e1ed1
MK
7477/*
7478 * Free current domain masks.
7479 * Called after all cpus are attached to NULL domain.
7480 */
7481static void free_sched_domains(void)
7482{
7483 ndoms_cur = 0;
7484 if (doms_cur != &fallback_doms)
7485 kfree(doms_cur);
7486 doms_cur = &fallback_doms;
7487}
7488
1a20ff27 7489/*
41a2d6cf 7490 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7491 * For now this just excludes isolated cpus, but could be used to
7492 * exclude other special cases in the future.
1a20ff27 7493 */
51888ca2 7494static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7495{
7378547f
MM
7496 int err;
7497
22e52b07 7498 arch_update_cpu_topology();
029190c5
PJ
7499 ndoms_cur = 1;
7500 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7501 if (!doms_cur)
7502 doms_cur = &fallback_doms;
7503 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7504 dattr_cur = NULL;
7378547f 7505 err = build_sched_domains(doms_cur);
6382bc90 7506 register_sched_domain_sysctl();
7378547f
MM
7507
7508 return err;
1a20ff27
DG
7509}
7510
7c16ec58
MT
7511static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7512 cpumask_t *tmpmask)
1da177e4 7513{
7c16ec58 7514 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7515}
1da177e4 7516
1a20ff27
DG
7517/*
7518 * Detach sched domains from a group of cpus specified in cpu_map
7519 * These cpus will now be attached to the NULL domain
7520 */
858119e1 7521static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7522{
7c16ec58 7523 cpumask_t tmpmask;
1a20ff27
DG
7524 int i;
7525
6382bc90
MM
7526 unregister_sched_domain_sysctl();
7527
1a20ff27 7528 for_each_cpu_mask(i, *cpu_map)
57d885fe 7529 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7530 synchronize_sched();
7c16ec58 7531 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7532}
7533
1d3504fc
HS
7534/* handle null as "default" */
7535static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7536 struct sched_domain_attr *new, int idx_new)
7537{
7538 struct sched_domain_attr tmp;
7539
7540 /* fast path */
7541 if (!new && !cur)
7542 return 1;
7543
7544 tmp = SD_ATTR_INIT;
7545 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7546 new ? (new + idx_new) : &tmp,
7547 sizeof(struct sched_domain_attr));
7548}
7549
029190c5
PJ
7550/*
7551 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7552 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7553 * doms_new[] to the current sched domain partitioning, doms_cur[].
7554 * It destroys each deleted domain and builds each new domain.
7555 *
7556 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7557 * The masks don't intersect (don't overlap.) We should setup one
7558 * sched domain for each mask. CPUs not in any of the cpumasks will
7559 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7560 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7561 * it as it is.
7562 *
41a2d6cf
IM
7563 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7564 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7565 * failed the kmalloc call, then it can pass in doms_new == NULL,
7566 * and partition_sched_domains() will fallback to the single partition
7567 * 'fallback_doms'.
7568 *
7569 * Call with hotplug lock held
7570 */
1d3504fc
HS
7571void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7572 struct sched_domain_attr *dattr_new)
029190c5
PJ
7573{
7574 int i, j;
7575
712555ee 7576 mutex_lock(&sched_domains_mutex);
a1835615 7577
7378547f
MM
7578 /* always unregister in case we don't destroy any domains */
7579 unregister_sched_domain_sysctl();
7580
029190c5
PJ
7581 if (doms_new == NULL) {
7582 ndoms_new = 1;
7583 doms_new = &fallback_doms;
7584 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7585 dattr_new = NULL;
029190c5
PJ
7586 }
7587
7588 /* Destroy deleted domains */
7589 for (i = 0; i < ndoms_cur; i++) {
7590 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7591 if (cpus_equal(doms_cur[i], doms_new[j])
7592 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7593 goto match1;
7594 }
7595 /* no match - a current sched domain not in new doms_new[] */
7596 detach_destroy_domains(doms_cur + i);
7597match1:
7598 ;
7599 }
7600
7601 /* Build new domains */
7602 for (i = 0; i < ndoms_new; i++) {
7603 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7604 if (cpus_equal(doms_new[i], doms_cur[j])
7605 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7606 goto match2;
7607 }
7608 /* no match - add a new doms_new */
1d3504fc
HS
7609 __build_sched_domains(doms_new + i,
7610 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7611match2:
7612 ;
7613 }
7614
7615 /* Remember the new sched domains */
7616 if (doms_cur != &fallback_doms)
7617 kfree(doms_cur);
1d3504fc 7618 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7619 doms_cur = doms_new;
1d3504fc 7620 dattr_cur = dattr_new;
029190c5 7621 ndoms_cur = ndoms_new;
7378547f
MM
7622
7623 register_sched_domain_sysctl();
a1835615 7624
712555ee 7625 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7626}
7627
5c45bf27 7628#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7629int arch_reinit_sched_domains(void)
5c45bf27
SS
7630{
7631 int err;
7632
95402b38 7633 get_online_cpus();
712555ee 7634 mutex_lock(&sched_domains_mutex);
5c45bf27 7635 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7636 free_sched_domains();
5c45bf27 7637 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7638 mutex_unlock(&sched_domains_mutex);
95402b38 7639 put_online_cpus();
5c45bf27
SS
7640
7641 return err;
7642}
7643
7644static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7645{
7646 int ret;
7647
7648 if (buf[0] != '0' && buf[0] != '1')
7649 return -EINVAL;
7650
7651 if (smt)
7652 sched_smt_power_savings = (buf[0] == '1');
7653 else
7654 sched_mc_power_savings = (buf[0] == '1');
7655
7656 ret = arch_reinit_sched_domains();
7657
7658 return ret ? ret : count;
7659}
7660
5c45bf27
SS
7661#ifdef CONFIG_SCHED_MC
7662static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7663{
7664 return sprintf(page, "%u\n", sched_mc_power_savings);
7665}
48f24c4d
IM
7666static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7667 const char *buf, size_t count)
5c45bf27
SS
7668{
7669 return sched_power_savings_store(buf, count, 0);
7670}
6707de00
AB
7671static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7672 sched_mc_power_savings_store);
5c45bf27
SS
7673#endif
7674
7675#ifdef CONFIG_SCHED_SMT
7676static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7677{
7678 return sprintf(page, "%u\n", sched_smt_power_savings);
7679}
48f24c4d
IM
7680static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7681 const char *buf, size_t count)
5c45bf27
SS
7682{
7683 return sched_power_savings_store(buf, count, 1);
7684}
6707de00
AB
7685static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7686 sched_smt_power_savings_store);
7687#endif
7688
7689int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7690{
7691 int err = 0;
7692
7693#ifdef CONFIG_SCHED_SMT
7694 if (smt_capable())
7695 err = sysfs_create_file(&cls->kset.kobj,
7696 &attr_sched_smt_power_savings.attr);
7697#endif
7698#ifdef CONFIG_SCHED_MC
7699 if (!err && mc_capable())
7700 err = sysfs_create_file(&cls->kset.kobj,
7701 &attr_sched_mc_power_savings.attr);
7702#endif
7703 return err;
7704}
6d6bc0ad 7705#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7706
1da177e4 7707/*
41a2d6cf 7708 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7709 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7710 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7711 * which will prevent rebalancing while the sched domains are recalculated.
7712 */
7713static int update_sched_domains(struct notifier_block *nfb,
7714 unsigned long action, void *hcpu)
7715{
7def2be1
PZ
7716 int cpu = (int)(long)hcpu;
7717
1da177e4 7718 switch (action) {
1da177e4 7719 case CPU_DOWN_PREPARE:
8bb78442 7720 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7721 disable_runtime(cpu_rq(cpu));
7722 /* fall-through */
7723 case CPU_UP_PREPARE:
7724 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7725 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7726 free_sched_domains();
1da177e4
LT
7727 return NOTIFY_OK;
7728
7def2be1 7729
1da177e4 7730 case CPU_DOWN_FAILED:
8bb78442 7731 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7732 case CPU_ONLINE:
8bb78442 7733 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7734 enable_runtime(cpu_rq(cpu));
7735 /* fall-through */
7736 case CPU_UP_CANCELED:
7737 case CPU_UP_CANCELED_FROZEN:
1da177e4 7738 case CPU_DEAD:
8bb78442 7739 case CPU_DEAD_FROZEN:
1da177e4
LT
7740 /*
7741 * Fall through and re-initialise the domains.
7742 */
7743 break;
7744 default:
7745 return NOTIFY_DONE;
7746 }
7747
5c8e1ed1
MK
7748#ifndef CONFIG_CPUSETS
7749 /*
7750 * Create default domain partitioning if cpusets are disabled.
7751 * Otherwise we let cpusets rebuild the domains based on the
7752 * current setup.
7753 */
7754
1da177e4 7755 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7756 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7757#endif
1da177e4
LT
7758
7759 return NOTIFY_OK;
7760}
1da177e4
LT
7761
7762void __init sched_init_smp(void)
7763{
5c1e1767
NP
7764 cpumask_t non_isolated_cpus;
7765
434d53b0
MT
7766#if defined(CONFIG_NUMA)
7767 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7768 GFP_KERNEL);
7769 BUG_ON(sched_group_nodes_bycpu == NULL);
7770#endif
95402b38 7771 get_online_cpus();
712555ee 7772 mutex_lock(&sched_domains_mutex);
1a20ff27 7773 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7774 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7775 if (cpus_empty(non_isolated_cpus))
7776 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7777 mutex_unlock(&sched_domains_mutex);
95402b38 7778 put_online_cpus();
1da177e4
LT
7779 /* XXX: Theoretical race here - CPU may be hotplugged now */
7780 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7781 init_hrtick();
5c1e1767
NP
7782
7783 /* Move init over to a non-isolated CPU */
7c16ec58 7784 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7785 BUG();
19978ca6 7786 sched_init_granularity();
1da177e4
LT
7787}
7788#else
7789void __init sched_init_smp(void)
7790{
19978ca6 7791 sched_init_granularity();
1da177e4
LT
7792}
7793#endif /* CONFIG_SMP */
7794
7795int in_sched_functions(unsigned long addr)
7796{
1da177e4
LT
7797 return in_lock_functions(addr) ||
7798 (addr >= (unsigned long)__sched_text_start
7799 && addr < (unsigned long)__sched_text_end);
7800}
7801
a9957449 7802static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7803{
7804 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7805 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7806#ifdef CONFIG_FAIR_GROUP_SCHED
7807 cfs_rq->rq = rq;
7808#endif
67e9fb2a 7809 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7810}
7811
fa85ae24
PZ
7812static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7813{
7814 struct rt_prio_array *array;
7815 int i;
7816
7817 array = &rt_rq->active;
7818 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7819 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7820 __clear_bit(i, array->bitmap);
7821 }
7822 /* delimiter for bitsearch: */
7823 __set_bit(MAX_RT_PRIO, array->bitmap);
7824
052f1dc7 7825#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7826 rt_rq->highest_prio = MAX_RT_PRIO;
7827#endif
fa85ae24
PZ
7828#ifdef CONFIG_SMP
7829 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7830 rt_rq->overloaded = 0;
7831#endif
7832
7833 rt_rq->rt_time = 0;
7834 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7835 rt_rq->rt_runtime = 0;
7836 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7837
052f1dc7 7838#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7839 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7840 rt_rq->rq = rq;
7841#endif
fa85ae24
PZ
7842}
7843
6f505b16 7844#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7845static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7846 struct sched_entity *se, int cpu, int add,
7847 struct sched_entity *parent)
6f505b16 7848{
ec7dc8ac 7849 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7850 tg->cfs_rq[cpu] = cfs_rq;
7851 init_cfs_rq(cfs_rq, rq);
7852 cfs_rq->tg = tg;
7853 if (add)
7854 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7855
7856 tg->se[cpu] = se;
354d60c2
DG
7857 /* se could be NULL for init_task_group */
7858 if (!se)
7859 return;
7860
ec7dc8ac
DG
7861 if (!parent)
7862 se->cfs_rq = &rq->cfs;
7863 else
7864 se->cfs_rq = parent->my_q;
7865
6f505b16
PZ
7866 se->my_q = cfs_rq;
7867 se->load.weight = tg->shares;
e05510d0 7868 se->load.inv_weight = 0;
ec7dc8ac 7869 se->parent = parent;
6f505b16 7870}
052f1dc7 7871#endif
6f505b16 7872
052f1dc7 7873#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7874static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7875 struct sched_rt_entity *rt_se, int cpu, int add,
7876 struct sched_rt_entity *parent)
6f505b16 7877{
ec7dc8ac
DG
7878 struct rq *rq = cpu_rq(cpu);
7879
6f505b16
PZ
7880 tg->rt_rq[cpu] = rt_rq;
7881 init_rt_rq(rt_rq, rq);
7882 rt_rq->tg = tg;
7883 rt_rq->rt_se = rt_se;
ac086bc2 7884 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7885 if (add)
7886 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7887
7888 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7889 if (!rt_se)
7890 return;
7891
ec7dc8ac
DG
7892 if (!parent)
7893 rt_se->rt_rq = &rq->rt;
7894 else
7895 rt_se->rt_rq = parent->my_q;
7896
6f505b16 7897 rt_se->my_q = rt_rq;
ec7dc8ac 7898 rt_se->parent = parent;
6f505b16
PZ
7899 INIT_LIST_HEAD(&rt_se->run_list);
7900}
7901#endif
7902
1da177e4
LT
7903void __init sched_init(void)
7904{
dd41f596 7905 int i, j;
434d53b0
MT
7906 unsigned long alloc_size = 0, ptr;
7907
7908#ifdef CONFIG_FAIR_GROUP_SCHED
7909 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7910#endif
7911#ifdef CONFIG_RT_GROUP_SCHED
7912 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7913#endif
7914#ifdef CONFIG_USER_SCHED
7915 alloc_size *= 2;
434d53b0
MT
7916#endif
7917 /*
7918 * As sched_init() is called before page_alloc is setup,
7919 * we use alloc_bootmem().
7920 */
7921 if (alloc_size) {
5a9d3225 7922 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7923
7924#ifdef CONFIG_FAIR_GROUP_SCHED
7925 init_task_group.se = (struct sched_entity **)ptr;
7926 ptr += nr_cpu_ids * sizeof(void **);
7927
7928 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7929 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7930
7931#ifdef CONFIG_USER_SCHED
7932 root_task_group.se = (struct sched_entity **)ptr;
7933 ptr += nr_cpu_ids * sizeof(void **);
7934
7935 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7936 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7937#endif /* CONFIG_USER_SCHED */
7938#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7939#ifdef CONFIG_RT_GROUP_SCHED
7940 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7941 ptr += nr_cpu_ids * sizeof(void **);
7942
7943 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7944 ptr += nr_cpu_ids * sizeof(void **);
7945
7946#ifdef CONFIG_USER_SCHED
7947 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7948 ptr += nr_cpu_ids * sizeof(void **);
7949
7950 root_task_group.rt_rq = (struct rt_rq **)ptr;
7951 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7952#endif /* CONFIG_USER_SCHED */
7953#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7954 }
dd41f596 7955
57d885fe
GH
7956#ifdef CONFIG_SMP
7957 init_defrootdomain();
7958#endif
7959
d0b27fa7
PZ
7960 init_rt_bandwidth(&def_rt_bandwidth,
7961 global_rt_period(), global_rt_runtime());
7962
7963#ifdef CONFIG_RT_GROUP_SCHED
7964 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7965 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7966#ifdef CONFIG_USER_SCHED
7967 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7968 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7969#endif /* CONFIG_USER_SCHED */
7970#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7971
052f1dc7 7972#ifdef CONFIG_GROUP_SCHED
6f505b16 7973 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7974 INIT_LIST_HEAD(&init_task_group.children);
7975
7976#ifdef CONFIG_USER_SCHED
7977 INIT_LIST_HEAD(&root_task_group.children);
7978 init_task_group.parent = &root_task_group;
7979 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7980#endif /* CONFIG_USER_SCHED */
7981#endif /* CONFIG_GROUP_SCHED */
6f505b16 7982
0a945022 7983 for_each_possible_cpu(i) {
70b97a7f 7984 struct rq *rq;
1da177e4
LT
7985
7986 rq = cpu_rq(i);
7987 spin_lock_init(&rq->lock);
fcb99371 7988 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7989 rq->nr_running = 0;
dd41f596 7990 init_cfs_rq(&rq->cfs, rq);
6f505b16 7991 init_rt_rq(&rq->rt, rq);
dd41f596 7992#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7993 init_task_group.shares = init_task_group_load;
6f505b16 7994 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7995#ifdef CONFIG_CGROUP_SCHED
7996 /*
7997 * How much cpu bandwidth does init_task_group get?
7998 *
7999 * In case of task-groups formed thr' the cgroup filesystem, it
8000 * gets 100% of the cpu resources in the system. This overall
8001 * system cpu resource is divided among the tasks of
8002 * init_task_group and its child task-groups in a fair manner,
8003 * based on each entity's (task or task-group's) weight
8004 * (se->load.weight).
8005 *
8006 * In other words, if init_task_group has 10 tasks of weight
8007 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8008 * then A0's share of the cpu resource is:
8009 *
8010 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8011 *
8012 * We achieve this by letting init_task_group's tasks sit
8013 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8014 */
ec7dc8ac 8015 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8016#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8017 root_task_group.shares = NICE_0_LOAD;
8018 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8019 /*
8020 * In case of task-groups formed thr' the user id of tasks,
8021 * init_task_group represents tasks belonging to root user.
8022 * Hence it forms a sibling of all subsequent groups formed.
8023 * In this case, init_task_group gets only a fraction of overall
8024 * system cpu resource, based on the weight assigned to root
8025 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8026 * by letting tasks of init_task_group sit in a separate cfs_rq
8027 * (init_cfs_rq) and having one entity represent this group of
8028 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8029 */
ec7dc8ac 8030 init_tg_cfs_entry(&init_task_group,
6f505b16 8031 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8032 &per_cpu(init_sched_entity, i), i, 1,
8033 root_task_group.se[i]);
6f505b16 8034
052f1dc7 8035#endif
354d60c2
DG
8036#endif /* CONFIG_FAIR_GROUP_SCHED */
8037
8038 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8039#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8040 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8041#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8042 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8043#elif defined CONFIG_USER_SCHED
eff766a6 8044 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8045 init_tg_rt_entry(&init_task_group,
6f505b16 8046 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8047 &per_cpu(init_sched_rt_entity, i), i, 1,
8048 root_task_group.rt_se[i]);
354d60c2 8049#endif
dd41f596 8050#endif
1da177e4 8051
dd41f596
IM
8052 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8053 rq->cpu_load[j] = 0;
1da177e4 8054#ifdef CONFIG_SMP
41c7ce9a 8055 rq->sd = NULL;
57d885fe 8056 rq->rd = NULL;
1da177e4 8057 rq->active_balance = 0;
dd41f596 8058 rq->next_balance = jiffies;
1da177e4 8059 rq->push_cpu = 0;
0a2966b4 8060 rq->cpu = i;
1f11eb6a 8061 rq->online = 0;
1da177e4
LT
8062 rq->migration_thread = NULL;
8063 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8064 rq_attach_root(rq, &def_root_domain);
1da177e4 8065#endif
8f4d37ec 8066 init_rq_hrtick(rq);
1da177e4 8067 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8068 }
8069
2dd73a4f 8070 set_load_weight(&init_task);
b50f60ce 8071
e107be36
AK
8072#ifdef CONFIG_PREEMPT_NOTIFIERS
8073 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8074#endif
8075
c9819f45
CL
8076#ifdef CONFIG_SMP
8077 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8078#endif
8079
b50f60ce
HC
8080#ifdef CONFIG_RT_MUTEXES
8081 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8082#endif
8083
1da177e4
LT
8084 /*
8085 * The boot idle thread does lazy MMU switching as well:
8086 */
8087 atomic_inc(&init_mm.mm_count);
8088 enter_lazy_tlb(&init_mm, current);
8089
8090 /*
8091 * Make us the idle thread. Technically, schedule() should not be
8092 * called from this thread, however somewhere below it might be,
8093 * but because we are the idle thread, we just pick up running again
8094 * when this runqueue becomes "idle".
8095 */
8096 init_idle(current, smp_processor_id());
dd41f596
IM
8097 /*
8098 * During early bootup we pretend to be a normal task:
8099 */
8100 current->sched_class = &fair_sched_class;
6892b75e
IM
8101
8102 scheduler_running = 1;
1da177e4
LT
8103}
8104
8105#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8106void __might_sleep(char *file, int line)
8107{
48f24c4d 8108#ifdef in_atomic
1da177e4
LT
8109 static unsigned long prev_jiffy; /* ratelimiting */
8110
8111 if ((in_atomic() || irqs_disabled()) &&
8112 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8113 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8114 return;
8115 prev_jiffy = jiffies;
91368d73 8116 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8117 " context at %s:%d\n", file, line);
8118 printk("in_atomic():%d, irqs_disabled():%d\n",
8119 in_atomic(), irqs_disabled());
a4c410f0 8120 debug_show_held_locks(current);
3117df04
IM
8121 if (irqs_disabled())
8122 print_irqtrace_events(current);
1da177e4
LT
8123 dump_stack();
8124 }
8125#endif
8126}
8127EXPORT_SYMBOL(__might_sleep);
8128#endif
8129
8130#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8131static void normalize_task(struct rq *rq, struct task_struct *p)
8132{
8133 int on_rq;
3e51f33f 8134
3a5e4dc1
AK
8135 update_rq_clock(rq);
8136 on_rq = p->se.on_rq;
8137 if (on_rq)
8138 deactivate_task(rq, p, 0);
8139 __setscheduler(rq, p, SCHED_NORMAL, 0);
8140 if (on_rq) {
8141 activate_task(rq, p, 0);
8142 resched_task(rq->curr);
8143 }
8144}
8145
1da177e4
LT
8146void normalize_rt_tasks(void)
8147{
a0f98a1c 8148 struct task_struct *g, *p;
1da177e4 8149 unsigned long flags;
70b97a7f 8150 struct rq *rq;
1da177e4 8151
4cf5d77a 8152 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8153 do_each_thread(g, p) {
178be793
IM
8154 /*
8155 * Only normalize user tasks:
8156 */
8157 if (!p->mm)
8158 continue;
8159
6cfb0d5d 8160 p->se.exec_start = 0;
6cfb0d5d 8161#ifdef CONFIG_SCHEDSTATS
dd41f596 8162 p->se.wait_start = 0;
dd41f596 8163 p->se.sleep_start = 0;
dd41f596 8164 p->se.block_start = 0;
6cfb0d5d 8165#endif
dd41f596
IM
8166
8167 if (!rt_task(p)) {
8168 /*
8169 * Renice negative nice level userspace
8170 * tasks back to 0:
8171 */
8172 if (TASK_NICE(p) < 0 && p->mm)
8173 set_user_nice(p, 0);
1da177e4 8174 continue;
dd41f596 8175 }
1da177e4 8176
4cf5d77a 8177 spin_lock(&p->pi_lock);
b29739f9 8178 rq = __task_rq_lock(p);
1da177e4 8179
178be793 8180 normalize_task(rq, p);
3a5e4dc1 8181
b29739f9 8182 __task_rq_unlock(rq);
4cf5d77a 8183 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8184 } while_each_thread(g, p);
8185
4cf5d77a 8186 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8187}
8188
8189#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8190
8191#ifdef CONFIG_IA64
8192/*
8193 * These functions are only useful for the IA64 MCA handling.
8194 *
8195 * They can only be called when the whole system has been
8196 * stopped - every CPU needs to be quiescent, and no scheduling
8197 * activity can take place. Using them for anything else would
8198 * be a serious bug, and as a result, they aren't even visible
8199 * under any other configuration.
8200 */
8201
8202/**
8203 * curr_task - return the current task for a given cpu.
8204 * @cpu: the processor in question.
8205 *
8206 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8207 */
36c8b586 8208struct task_struct *curr_task(int cpu)
1df5c10a
LT
8209{
8210 return cpu_curr(cpu);
8211}
8212
8213/**
8214 * set_curr_task - set the current task for a given cpu.
8215 * @cpu: the processor in question.
8216 * @p: the task pointer to set.
8217 *
8218 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8219 * are serviced on a separate stack. It allows the architecture to switch the
8220 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8221 * must be called with all CPU's synchronized, and interrupts disabled, the
8222 * and caller must save the original value of the current task (see
8223 * curr_task() above) and restore that value before reenabling interrupts and
8224 * re-starting the system.
8225 *
8226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8227 */
36c8b586 8228void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8229{
8230 cpu_curr(cpu) = p;
8231}
8232
8233#endif
29f59db3 8234
bccbe08a
PZ
8235#ifdef CONFIG_FAIR_GROUP_SCHED
8236static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8237{
8238 int i;
8239
8240 for_each_possible_cpu(i) {
8241 if (tg->cfs_rq)
8242 kfree(tg->cfs_rq[i]);
8243 if (tg->se)
8244 kfree(tg->se[i]);
6f505b16
PZ
8245 }
8246
8247 kfree(tg->cfs_rq);
8248 kfree(tg->se);
6f505b16
PZ
8249}
8250
ec7dc8ac
DG
8251static
8252int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8253{
29f59db3 8254 struct cfs_rq *cfs_rq;
ec7dc8ac 8255 struct sched_entity *se, *parent_se;
9b5b7751 8256 struct rq *rq;
29f59db3
SV
8257 int i;
8258
434d53b0 8259 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8260 if (!tg->cfs_rq)
8261 goto err;
434d53b0 8262 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8263 if (!tg->se)
8264 goto err;
052f1dc7
PZ
8265
8266 tg->shares = NICE_0_LOAD;
29f59db3
SV
8267
8268 for_each_possible_cpu(i) {
9b5b7751 8269 rq = cpu_rq(i);
29f59db3 8270
6f505b16
PZ
8271 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8272 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8273 if (!cfs_rq)
8274 goto err;
8275
6f505b16
PZ
8276 se = kmalloc_node(sizeof(struct sched_entity),
8277 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8278 if (!se)
8279 goto err;
8280
ec7dc8ac
DG
8281 parent_se = parent ? parent->se[i] : NULL;
8282 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8283 }
8284
8285 return 1;
8286
8287 err:
8288 return 0;
8289}
8290
8291static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8292{
8293 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8294 &cpu_rq(cpu)->leaf_cfs_rq_list);
8295}
8296
8297static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8298{
8299 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8300}
6d6bc0ad 8301#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8302static inline void free_fair_sched_group(struct task_group *tg)
8303{
8304}
8305
ec7dc8ac
DG
8306static inline
8307int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8308{
8309 return 1;
8310}
8311
8312static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8313{
8314}
8315
8316static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8317{
8318}
6d6bc0ad 8319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8320
8321#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8322static void free_rt_sched_group(struct task_group *tg)
8323{
8324 int i;
8325
d0b27fa7
PZ
8326 destroy_rt_bandwidth(&tg->rt_bandwidth);
8327
bccbe08a
PZ
8328 for_each_possible_cpu(i) {
8329 if (tg->rt_rq)
8330 kfree(tg->rt_rq[i]);
8331 if (tg->rt_se)
8332 kfree(tg->rt_se[i]);
8333 }
8334
8335 kfree(tg->rt_rq);
8336 kfree(tg->rt_se);
8337}
8338
ec7dc8ac
DG
8339static
8340int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8341{
8342 struct rt_rq *rt_rq;
ec7dc8ac 8343 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8344 struct rq *rq;
8345 int i;
8346
434d53b0 8347 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8348 if (!tg->rt_rq)
8349 goto err;
434d53b0 8350 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8351 if (!tg->rt_se)
8352 goto err;
8353
d0b27fa7
PZ
8354 init_rt_bandwidth(&tg->rt_bandwidth,
8355 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8356
8357 for_each_possible_cpu(i) {
8358 rq = cpu_rq(i);
8359
6f505b16
PZ
8360 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8361 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8362 if (!rt_rq)
8363 goto err;
29f59db3 8364
6f505b16
PZ
8365 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8366 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8367 if (!rt_se)
8368 goto err;
29f59db3 8369
ec7dc8ac
DG
8370 parent_se = parent ? parent->rt_se[i] : NULL;
8371 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8372 }
8373
bccbe08a
PZ
8374 return 1;
8375
8376 err:
8377 return 0;
8378}
8379
8380static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8381{
8382 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8383 &cpu_rq(cpu)->leaf_rt_rq_list);
8384}
8385
8386static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8387{
8388 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8389}
6d6bc0ad 8390#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8391static inline void free_rt_sched_group(struct task_group *tg)
8392{
8393}
8394
ec7dc8ac
DG
8395static inline
8396int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8397{
8398 return 1;
8399}
8400
8401static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8402{
8403}
8404
8405static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8406{
8407}
6d6bc0ad 8408#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8409
d0b27fa7 8410#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8411static void free_sched_group(struct task_group *tg)
8412{
8413 free_fair_sched_group(tg);
8414 free_rt_sched_group(tg);
8415 kfree(tg);
8416}
8417
8418/* allocate runqueue etc for a new task group */
ec7dc8ac 8419struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8420{
8421 struct task_group *tg;
8422 unsigned long flags;
8423 int i;
8424
8425 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8426 if (!tg)
8427 return ERR_PTR(-ENOMEM);
8428
ec7dc8ac 8429 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8430 goto err;
8431
ec7dc8ac 8432 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8433 goto err;
8434
8ed36996 8435 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8436 for_each_possible_cpu(i) {
bccbe08a
PZ
8437 register_fair_sched_group(tg, i);
8438 register_rt_sched_group(tg, i);
9b5b7751 8439 }
6f505b16 8440 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8441
8442 WARN_ON(!parent); /* root should already exist */
8443
8444 tg->parent = parent;
8445 list_add_rcu(&tg->siblings, &parent->children);
8446 INIT_LIST_HEAD(&tg->children);
8ed36996 8447 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8448
9b5b7751 8449 return tg;
29f59db3
SV
8450
8451err:
6f505b16 8452 free_sched_group(tg);
29f59db3
SV
8453 return ERR_PTR(-ENOMEM);
8454}
8455
9b5b7751 8456/* rcu callback to free various structures associated with a task group */
6f505b16 8457static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8458{
29f59db3 8459 /* now it should be safe to free those cfs_rqs */
6f505b16 8460 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8461}
8462
9b5b7751 8463/* Destroy runqueue etc associated with a task group */
4cf86d77 8464void sched_destroy_group(struct task_group *tg)
29f59db3 8465{
8ed36996 8466 unsigned long flags;
9b5b7751 8467 int i;
29f59db3 8468
8ed36996 8469 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8470 for_each_possible_cpu(i) {
bccbe08a
PZ
8471 unregister_fair_sched_group(tg, i);
8472 unregister_rt_sched_group(tg, i);
9b5b7751 8473 }
6f505b16 8474 list_del_rcu(&tg->list);
f473aa5e 8475 list_del_rcu(&tg->siblings);
8ed36996 8476 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8477
9b5b7751 8478 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8479 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8480}
8481
9b5b7751 8482/* change task's runqueue when it moves between groups.
3a252015
IM
8483 * The caller of this function should have put the task in its new group
8484 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8485 * reflect its new group.
9b5b7751
SV
8486 */
8487void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8488{
8489 int on_rq, running;
8490 unsigned long flags;
8491 struct rq *rq;
8492
8493 rq = task_rq_lock(tsk, &flags);
8494
29f59db3
SV
8495 update_rq_clock(rq);
8496
051a1d1a 8497 running = task_current(rq, tsk);
29f59db3
SV
8498 on_rq = tsk->se.on_rq;
8499
0e1f3483 8500 if (on_rq)
29f59db3 8501 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8502 if (unlikely(running))
8503 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8504
6f505b16 8505 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8506
810b3817
PZ
8507#ifdef CONFIG_FAIR_GROUP_SCHED
8508 if (tsk->sched_class->moved_group)
8509 tsk->sched_class->moved_group(tsk);
8510#endif
8511
0e1f3483
HS
8512 if (unlikely(running))
8513 tsk->sched_class->set_curr_task(rq);
8514 if (on_rq)
7074badb 8515 enqueue_task(rq, tsk, 0);
29f59db3 8516
29f59db3
SV
8517 task_rq_unlock(rq, &flags);
8518}
6d6bc0ad 8519#endif /* CONFIG_GROUP_SCHED */
29f59db3 8520
052f1dc7 8521#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8522static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8523{
8524 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8525 int on_rq;
8526
29f59db3 8527 on_rq = se->on_rq;
62fb1851 8528 if (on_rq)
29f59db3
SV
8529 dequeue_entity(cfs_rq, se, 0);
8530
8531 se->load.weight = shares;
e05510d0 8532 se->load.inv_weight = 0;
29f59db3 8533
62fb1851 8534 if (on_rq)
29f59db3 8535 enqueue_entity(cfs_rq, se, 0);
c09595f6 8536}
62fb1851 8537
c09595f6
PZ
8538static void set_se_shares(struct sched_entity *se, unsigned long shares)
8539{
8540 struct cfs_rq *cfs_rq = se->cfs_rq;
8541 struct rq *rq = cfs_rq->rq;
8542 unsigned long flags;
8543
8544 spin_lock_irqsave(&rq->lock, flags);
8545 __set_se_shares(se, shares);
8546 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8547}
8548
8ed36996
PZ
8549static DEFINE_MUTEX(shares_mutex);
8550
4cf86d77 8551int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8552{
8553 int i;
8ed36996 8554 unsigned long flags;
c61935fd 8555
ec7dc8ac
DG
8556 /*
8557 * We can't change the weight of the root cgroup.
8558 */
8559 if (!tg->se[0])
8560 return -EINVAL;
8561
18d95a28
PZ
8562 if (shares < MIN_SHARES)
8563 shares = MIN_SHARES;
cb4ad1ff
MX
8564 else if (shares > MAX_SHARES)
8565 shares = MAX_SHARES;
62fb1851 8566
8ed36996 8567 mutex_lock(&shares_mutex);
9b5b7751 8568 if (tg->shares == shares)
5cb350ba 8569 goto done;
29f59db3 8570
8ed36996 8571 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8572 for_each_possible_cpu(i)
8573 unregister_fair_sched_group(tg, i);
f473aa5e 8574 list_del_rcu(&tg->siblings);
8ed36996 8575 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8576
8577 /* wait for any ongoing reference to this group to finish */
8578 synchronize_sched();
8579
8580 /*
8581 * Now we are free to modify the group's share on each cpu
8582 * w/o tripping rebalance_share or load_balance_fair.
8583 */
9b5b7751 8584 tg->shares = shares;
c09595f6
PZ
8585 for_each_possible_cpu(i) {
8586 /*
8587 * force a rebalance
8588 */
8589 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8590 set_se_shares(tg->se[i], shares);
c09595f6 8591 }
29f59db3 8592
6b2d7700
SV
8593 /*
8594 * Enable load balance activity on this group, by inserting it back on
8595 * each cpu's rq->leaf_cfs_rq_list.
8596 */
8ed36996 8597 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8598 for_each_possible_cpu(i)
8599 register_fair_sched_group(tg, i);
f473aa5e 8600 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8601 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8602done:
8ed36996 8603 mutex_unlock(&shares_mutex);
9b5b7751 8604 return 0;
29f59db3
SV
8605}
8606
5cb350ba
DG
8607unsigned long sched_group_shares(struct task_group *tg)
8608{
8609 return tg->shares;
8610}
052f1dc7 8611#endif
5cb350ba 8612
052f1dc7 8613#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8614/*
9f0c1e56 8615 * Ensure that the real time constraints are schedulable.
6f505b16 8616 */
9f0c1e56
PZ
8617static DEFINE_MUTEX(rt_constraints_mutex);
8618
8619static unsigned long to_ratio(u64 period, u64 runtime)
8620{
8621 if (runtime == RUNTIME_INF)
8622 return 1ULL << 16;
8623
6f6d6a1a 8624 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8625}
8626
b40b2e8e
PZ
8627#ifdef CONFIG_CGROUP_SCHED
8628static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8629{
10b612f4 8630 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8631 unsigned long total = 0;
8632
8633 if (!parent) {
8634 if (global_rt_period() < period)
8635 return 0;
8636
8637 return to_ratio(period, runtime) <
8638 to_ratio(global_rt_period(), global_rt_runtime());
8639 }
8640
8641 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8642 return 0;
8643
8644 rcu_read_lock();
8645 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8646 if (tgi == tg)
8647 continue;
8648
8649 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8650 tgi->rt_bandwidth.rt_runtime);
8651 }
8652 rcu_read_unlock();
8653
10b612f4 8654 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8655 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8656 parent->rt_bandwidth.rt_runtime);
8657}
8658#elif defined CONFIG_USER_SCHED
9f0c1e56 8659static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8660{
8661 struct task_group *tgi;
8662 unsigned long total = 0;
9f0c1e56 8663 unsigned long global_ratio =
d0b27fa7 8664 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8665
8666 rcu_read_lock();
9f0c1e56
PZ
8667 list_for_each_entry_rcu(tgi, &task_groups, list) {
8668 if (tgi == tg)
8669 continue;
6f505b16 8670
d0b27fa7
PZ
8671 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8672 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8673 }
8674 rcu_read_unlock();
6f505b16 8675
9f0c1e56 8676 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8677}
b40b2e8e 8678#endif
6f505b16 8679
521f1a24
DG
8680/* Must be called with tasklist_lock held */
8681static inline int tg_has_rt_tasks(struct task_group *tg)
8682{
8683 struct task_struct *g, *p;
8684 do_each_thread(g, p) {
8685 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8686 return 1;
8687 } while_each_thread(g, p);
8688 return 0;
8689}
8690
d0b27fa7
PZ
8691static int tg_set_bandwidth(struct task_group *tg,
8692 u64 rt_period, u64 rt_runtime)
6f505b16 8693{
ac086bc2 8694 int i, err = 0;
9f0c1e56 8695
9f0c1e56 8696 mutex_lock(&rt_constraints_mutex);
521f1a24 8697 read_lock(&tasklist_lock);
ac086bc2 8698 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8699 err = -EBUSY;
8700 goto unlock;
8701 }
9f0c1e56
PZ
8702 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8703 err = -EINVAL;
8704 goto unlock;
8705 }
ac086bc2
PZ
8706
8707 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8708 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8709 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8710
8711 for_each_possible_cpu(i) {
8712 struct rt_rq *rt_rq = tg->rt_rq[i];
8713
8714 spin_lock(&rt_rq->rt_runtime_lock);
8715 rt_rq->rt_runtime = rt_runtime;
8716 spin_unlock(&rt_rq->rt_runtime_lock);
8717 }
8718 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8719 unlock:
521f1a24 8720 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8721 mutex_unlock(&rt_constraints_mutex);
8722
8723 return err;
6f505b16
PZ
8724}
8725
d0b27fa7
PZ
8726int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8727{
8728 u64 rt_runtime, rt_period;
8729
8730 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8731 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8732 if (rt_runtime_us < 0)
8733 rt_runtime = RUNTIME_INF;
8734
8735 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8736}
8737
9f0c1e56
PZ
8738long sched_group_rt_runtime(struct task_group *tg)
8739{
8740 u64 rt_runtime_us;
8741
d0b27fa7 8742 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8743 return -1;
8744
d0b27fa7 8745 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8746 do_div(rt_runtime_us, NSEC_PER_USEC);
8747 return rt_runtime_us;
8748}
d0b27fa7
PZ
8749
8750int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8751{
8752 u64 rt_runtime, rt_period;
8753
8754 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8755 rt_runtime = tg->rt_bandwidth.rt_runtime;
8756
8757 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8758}
8759
8760long sched_group_rt_period(struct task_group *tg)
8761{
8762 u64 rt_period_us;
8763
8764 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8765 do_div(rt_period_us, NSEC_PER_USEC);
8766 return rt_period_us;
8767}
8768
8769static int sched_rt_global_constraints(void)
8770{
10b612f4
PZ
8771 struct task_group *tg = &root_task_group;
8772 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8773 int ret = 0;
8774
10b612f4
PZ
8775 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8776 rt_runtime = tg->rt_bandwidth.rt_runtime;
8777
d0b27fa7 8778 mutex_lock(&rt_constraints_mutex);
10b612f4 8779 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8780 ret = -EINVAL;
8781 mutex_unlock(&rt_constraints_mutex);
8782
8783 return ret;
8784}
6d6bc0ad 8785#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8786static int sched_rt_global_constraints(void)
8787{
ac086bc2
PZ
8788 unsigned long flags;
8789 int i;
8790
8791 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8792 for_each_possible_cpu(i) {
8793 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8794
8795 spin_lock(&rt_rq->rt_runtime_lock);
8796 rt_rq->rt_runtime = global_rt_runtime();
8797 spin_unlock(&rt_rq->rt_runtime_lock);
8798 }
8799 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8800
d0b27fa7
PZ
8801 return 0;
8802}
6d6bc0ad 8803#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8804
8805int sched_rt_handler(struct ctl_table *table, int write,
8806 struct file *filp, void __user *buffer, size_t *lenp,
8807 loff_t *ppos)
8808{
8809 int ret;
8810 int old_period, old_runtime;
8811 static DEFINE_MUTEX(mutex);
8812
8813 mutex_lock(&mutex);
8814 old_period = sysctl_sched_rt_period;
8815 old_runtime = sysctl_sched_rt_runtime;
8816
8817 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8818
8819 if (!ret && write) {
8820 ret = sched_rt_global_constraints();
8821 if (ret) {
8822 sysctl_sched_rt_period = old_period;
8823 sysctl_sched_rt_runtime = old_runtime;
8824 } else {
8825 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8826 def_rt_bandwidth.rt_period =
8827 ns_to_ktime(global_rt_period());
8828 }
8829 }
8830 mutex_unlock(&mutex);
8831
8832 return ret;
8833}
68318b8e 8834
052f1dc7 8835#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8836
8837/* return corresponding task_group object of a cgroup */
2b01dfe3 8838static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8839{
2b01dfe3
PM
8840 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8841 struct task_group, css);
68318b8e
SV
8842}
8843
8844static struct cgroup_subsys_state *
2b01dfe3 8845cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8846{
ec7dc8ac 8847 struct task_group *tg, *parent;
68318b8e 8848
2b01dfe3 8849 if (!cgrp->parent) {
68318b8e 8850 /* This is early initialization for the top cgroup */
2b01dfe3 8851 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8852 return &init_task_group.css;
8853 }
8854
ec7dc8ac
DG
8855 parent = cgroup_tg(cgrp->parent);
8856 tg = sched_create_group(parent);
68318b8e
SV
8857 if (IS_ERR(tg))
8858 return ERR_PTR(-ENOMEM);
8859
8860 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8861 tg->css.cgroup = cgrp;
68318b8e
SV
8862
8863 return &tg->css;
8864}
8865
41a2d6cf
IM
8866static void
8867cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8868{
2b01dfe3 8869 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8870
8871 sched_destroy_group(tg);
8872}
8873
41a2d6cf
IM
8874static int
8875cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8876 struct task_struct *tsk)
68318b8e 8877{
b68aa230
PZ
8878#ifdef CONFIG_RT_GROUP_SCHED
8879 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8880 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8881 return -EINVAL;
8882#else
68318b8e
SV
8883 /* We don't support RT-tasks being in separate groups */
8884 if (tsk->sched_class != &fair_sched_class)
8885 return -EINVAL;
b68aa230 8886#endif
68318b8e
SV
8887
8888 return 0;
8889}
8890
8891static void
2b01dfe3 8892cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8893 struct cgroup *old_cont, struct task_struct *tsk)
8894{
8895 sched_move_task(tsk);
8896}
8897
052f1dc7 8898#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8899static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8900 u64 shareval)
68318b8e 8901{
2b01dfe3 8902 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8903}
8904
f4c753b7 8905static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8906{
2b01dfe3 8907 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8908
8909 return (u64) tg->shares;
8910}
6d6bc0ad 8911#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8912
052f1dc7 8913#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8914static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8915 s64 val)
6f505b16 8916{
06ecb27c 8917 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8918}
8919
06ecb27c 8920static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8921{
06ecb27c 8922 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8923}
d0b27fa7
PZ
8924
8925static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8926 u64 rt_period_us)
8927{
8928 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8929}
8930
8931static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8932{
8933 return sched_group_rt_period(cgroup_tg(cgrp));
8934}
6d6bc0ad 8935#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8936
fe5c7cc2 8937static struct cftype cpu_files[] = {
052f1dc7 8938#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8939 {
8940 .name = "shares",
f4c753b7
PM
8941 .read_u64 = cpu_shares_read_u64,
8942 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8943 },
052f1dc7
PZ
8944#endif
8945#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8946 {
9f0c1e56 8947 .name = "rt_runtime_us",
06ecb27c
PM
8948 .read_s64 = cpu_rt_runtime_read,
8949 .write_s64 = cpu_rt_runtime_write,
6f505b16 8950 },
d0b27fa7
PZ
8951 {
8952 .name = "rt_period_us",
f4c753b7
PM
8953 .read_u64 = cpu_rt_period_read_uint,
8954 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8955 },
052f1dc7 8956#endif
68318b8e
SV
8957};
8958
8959static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8960{
fe5c7cc2 8961 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8962}
8963
8964struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8965 .name = "cpu",
8966 .create = cpu_cgroup_create,
8967 .destroy = cpu_cgroup_destroy,
8968 .can_attach = cpu_cgroup_can_attach,
8969 .attach = cpu_cgroup_attach,
8970 .populate = cpu_cgroup_populate,
8971 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8972 .early_init = 1,
8973};
8974
052f1dc7 8975#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8976
8977#ifdef CONFIG_CGROUP_CPUACCT
8978
8979/*
8980 * CPU accounting code for task groups.
8981 *
8982 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8983 * (balbir@in.ibm.com).
8984 */
8985
8986/* track cpu usage of a group of tasks */
8987struct cpuacct {
8988 struct cgroup_subsys_state css;
8989 /* cpuusage holds pointer to a u64-type object on every cpu */
8990 u64 *cpuusage;
8991};
8992
8993struct cgroup_subsys cpuacct_subsys;
8994
8995/* return cpu accounting group corresponding to this container */
32cd756a 8996static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8997{
32cd756a 8998 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8999 struct cpuacct, css);
9000}
9001
9002/* return cpu accounting group to which this task belongs */
9003static inline struct cpuacct *task_ca(struct task_struct *tsk)
9004{
9005 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9006 struct cpuacct, css);
9007}
9008
9009/* create a new cpu accounting group */
9010static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9011 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9012{
9013 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9014
9015 if (!ca)
9016 return ERR_PTR(-ENOMEM);
9017
9018 ca->cpuusage = alloc_percpu(u64);
9019 if (!ca->cpuusage) {
9020 kfree(ca);
9021 return ERR_PTR(-ENOMEM);
9022 }
9023
9024 return &ca->css;
9025}
9026
9027/* destroy an existing cpu accounting group */
41a2d6cf 9028static void
32cd756a 9029cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9030{
32cd756a 9031 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9032
9033 free_percpu(ca->cpuusage);
9034 kfree(ca);
9035}
9036
9037/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9038static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9039{
32cd756a 9040 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9041 u64 totalcpuusage = 0;
9042 int i;
9043
9044 for_each_possible_cpu(i) {
9045 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9046
9047 /*
9048 * Take rq->lock to make 64-bit addition safe on 32-bit
9049 * platforms.
9050 */
9051 spin_lock_irq(&cpu_rq(i)->lock);
9052 totalcpuusage += *cpuusage;
9053 spin_unlock_irq(&cpu_rq(i)->lock);
9054 }
9055
9056 return totalcpuusage;
9057}
9058
0297b803
DG
9059static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9060 u64 reset)
9061{
9062 struct cpuacct *ca = cgroup_ca(cgrp);
9063 int err = 0;
9064 int i;
9065
9066 if (reset) {
9067 err = -EINVAL;
9068 goto out;
9069 }
9070
9071 for_each_possible_cpu(i) {
9072 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9073
9074 spin_lock_irq(&cpu_rq(i)->lock);
9075 *cpuusage = 0;
9076 spin_unlock_irq(&cpu_rq(i)->lock);
9077 }
9078out:
9079 return err;
9080}
9081
d842de87
SV
9082static struct cftype files[] = {
9083 {
9084 .name = "usage",
f4c753b7
PM
9085 .read_u64 = cpuusage_read,
9086 .write_u64 = cpuusage_write,
d842de87
SV
9087 },
9088};
9089
32cd756a 9090static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9091{
32cd756a 9092 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9093}
9094
9095/*
9096 * charge this task's execution time to its accounting group.
9097 *
9098 * called with rq->lock held.
9099 */
9100static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9101{
9102 struct cpuacct *ca;
9103
9104 if (!cpuacct_subsys.active)
9105 return;
9106
9107 ca = task_ca(tsk);
9108 if (ca) {
9109 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9110
9111 *cpuusage += cputime;
9112 }
9113}
9114
9115struct cgroup_subsys cpuacct_subsys = {
9116 .name = "cpuacct",
9117 .create = cpuacct_create,
9118 .destroy = cpuacct_destroy,
9119 .populate = cpuacct_populate,
9120 .subsys_id = cpuacct_subsys_id,
9121};
9122#endif /* CONFIG_CGROUP_CPUACCT */