numa, cpumask: move numa_node_id default implementation to topology.h, fix
[linux-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
3e51f33f
PZ
671static inline void update_rq_clock(struct rq *rq)
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
31656519 1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1187 return;
1188
31656519 1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db
IM
1256{
1257 assert_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
6d6bc0ad 1260#endif /* CONFIG_SMP */
c24d20db 1261
45bf76df
IM
1262#if BITS_PER_LONG == 32
1263# define WMULT_CONST (~0UL)
1264#else
1265# define WMULT_CONST (1UL << 32)
1266#endif
1267
1268#define WMULT_SHIFT 32
1269
194081eb
IM
1270/*
1271 * Shift right and round:
1272 */
cf2ab469 1273#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1274
a7be37ac
PZ
1275/*
1276 * delta *= weight / lw
1277 */
cb1c4fc9 1278static unsigned long
45bf76df
IM
1279calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1281{
1282 u64 tmp;
1283
7a232e03
LJ
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1290 }
45bf76df
IM
1291
1292 tmp = (u64)delta_exec * weight;
1293 /*
1294 * Check whether we'd overflow the 64-bit multiplication:
1295 */
194081eb 1296 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1298 WMULT_SHIFT/2);
1299 else
cf2ab469 1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1301
ecf691da 1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1303}
1304
1091985b 1305static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1306{
1307 lw->weight += inc;
e89996ae 1308 lw->inv_weight = 0;
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1312{
1313 lw->weight -= dec;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
2dd73a4f
PW
1317/*
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1324 */
1325
cce7ade8
PZ
1326#define WEIGHT_IDLEPRIO 3
1327#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1328
1329/*
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1334 *
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
dd41f596
IM
1340 */
1341static const int prio_to_weight[40] = {
254753dc
IM
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1350};
1351
5714d2de
IM
1352/*
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354 *
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1358 */
dd41f596 1359static const u32 prio_to_wmult[40] = {
254753dc
IM
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1368};
2dd73a4f 1369
dd41f596
IM
1370static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371
1372/*
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1376 */
1377struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1381};
1382
e1d1484f
PW
1383#ifdef CONFIG_SMP
1384static unsigned long
1385balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1389
1390static int
1391iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
e1d1484f 1394#endif
dd41f596 1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398#else
1399static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400#endif
1401
18d95a28
PZ
1402static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_add(&rq->load, load);
1405}
1406
1407static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_sub(&rq->load, load);
1410}
1411
7940ca36 1412#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1413typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1414
1415/*
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1418 */
eb755805 1419static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1420{
1421 struct task_group *parent, *child;
eb755805 1422 int ret;
c09595f6
PZ
1423
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426down:
eb755805
PZ
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1433
1434up:
1435 continue;
1436 }
eb755805
PZ
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
eb755805 1445out_unlock:
c09595f6 1446 rcu_read_unlock();
eb755805
PZ
1447
1448 return ret;
c09595f6
PZ
1449}
1450
eb755805
PZ
1451static int tg_nop(struct task_group *tg, void *data)
1452{
1453 return 0;
c09595f6 1454}
eb755805
PZ
1455#endif
1456
1457#ifdef CONFIG_SMP
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
1460static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461
1462static unsigned long cpu_avg_load_per_task(int cpu)
1463{
1464 struct rq *rq = cpu_rq(cpu);
af6d596f 1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1466
4cd42620
SR
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1469 else
1470 rq->avg_load_per_task = 0;
eb755805
PZ
1471
1472 return rq->avg_load_per_task;
1473}
1474
1475#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
ffda12a1
PZ
1483update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1485{
c09595f6
PZ
1486 unsigned long shares;
1487 unsigned long rq_weight;
1488
c8cba857 1489 if (!tg->se[cpu])
c09595f6
PZ
1490 return;
1491
ec4e0e2f 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1493
c09595f6
PZ
1494 /*
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1498 *
1499 */
ec4e0e2f 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1502
ffda12a1
PZ
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
c09595f6 1507
ffda12a1 1508 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1509 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1510
ffda12a1
PZ
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1513 }
18d95a28 1514}
c09595f6
PZ
1515
1516/*
c8cba857
PZ
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
c09595f6 1520 */
eb755805 1521static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1522{
ec4e0e2f 1523 unsigned long weight, rq_weight = 0;
c8cba857 1524 unsigned long shares = 0;
eb755805 1525 struct sched_domain *sd = data;
c8cba857 1526 int i;
c09595f6 1527
758b2cdc 1528 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
c8cba857 1540 shares += tg->cfs_rq[i]->shares;
c09595f6 1541 }
c09595f6 1542
c8cba857
PZ
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1545
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
c09595f6 1548
758b2cdc 1549 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1551
1552 return 0;
c09595f6
PZ
1553}
1554
1555/*
c8cba857
PZ
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
c09595f6 1559 */
eb755805 1560static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1561{
c8cba857 1562 unsigned long load;
eb755805 1563 long cpu = (long)data;
c09595f6 1564
c8cba857
PZ
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 }
c09595f6 1572
c8cba857 1573 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1574
eb755805 1575 return 0;
c09595f6
PZ
1576}
1577
c8cba857 1578static void update_shares(struct sched_domain *sd)
4d8d595d 1579{
2398f2c6
PZ
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
e1d1484f 1582
2398f2c6
PZ
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
eb755805 1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1586 }
4d8d595d
PZ
1587}
1588
3e5459b4
PZ
1589static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590{
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6 1599}
dd41f596 1600
d842de87 1601#else
d842de87 1602
c8cba857 1603static inline void update_shares(struct sched_domain *sd)
18d95a28 1604{
18d95a28
PZ
1605}
1606
3e5459b4 1607static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
18d95a28 1608{
18d95a28
PZ
1609}
1610
18d95a28
PZ
1611#endif
1612
70574a99
AD
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
18d95a28 1646#endif
18d95a28
PZ
1647
1648#ifdef CONFIG_FAIR_GROUP_SCHED
1649static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650{
30432094 1651#ifdef CONFIG_SMP
34e83e85
IM
1652 cfs_rq->shares = shares;
1653#endif
18d95a28
PZ
1654}
1655#endif
1656
dd41f596 1657#include "sched_stats.h"
dd41f596 1658#include "sched_idletask.c"
5522d5d5
IM
1659#include "sched_fair.c"
1660#include "sched_rt.c"
dd41f596
IM
1661#ifdef CONFIG_SCHED_DEBUG
1662# include "sched_debug.c"
1663#endif
1664
1665#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1666#define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
dd41f596 1668
c09595f6 1669static void inc_nr_running(struct rq *rq)
9c217245
IM
1670{
1671 rq->nr_running++;
9c217245
IM
1672}
1673
c09595f6 1674static void dec_nr_running(struct rq *rq)
9c217245
IM
1675{
1676 rq->nr_running--;
9c217245
IM
1677}
1678
45bf76df
IM
1679static void set_load_weight(struct task_struct *p)
1680{
1681 if (task_has_rt_policy(p)) {
dd41f596
IM
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1685 }
45bf76df 1686
dd41f596
IM
1687 /*
1688 * SCHED_IDLE tasks get minimal weight:
1689 */
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1694 }
71f8bd46 1695
dd41f596
IM
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1698}
1699
2087a1ad
GH
1700static void update_avg(u64 *avg, u64 sample)
1701{
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1704}
1705
8159f87e 1706static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1707{
dd41f596 1708 sched_info_queued(p);
fd390f6a 1709 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1710 p->se.on_rq = 1;
71f8bd46
IM
1711}
1712
69be72c1 1713static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1714{
2087a1ad
GH
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1719 }
1720
46ac22ba 1721 sched_info_dequeued(p);
f02231e5 1722 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1723 p->se.on_rq = 0;
71f8bd46
IM
1724}
1725
14531189 1726/*
dd41f596 1727 * __normal_prio - return the priority that is based on the static prio
14531189 1728 */
14531189
IM
1729static inline int __normal_prio(struct task_struct *p)
1730{
dd41f596 1731 return p->static_prio;
14531189
IM
1732}
1733
b29739f9
IM
1734/*
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1740 */
36c8b586 1741static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1742{
1743 int prio;
1744
e05606d3 1745 if (task_has_rt_policy(p))
b29739f9
IM
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1750}
1751
1752/*
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1758 */
36c8b586 1759static int effective_prio(struct task_struct *p)
b29739f9
IM
1760{
1761 p->normal_prio = normal_prio(p);
1762 /*
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1766 */
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1770}
1771
1da177e4 1772/*
dd41f596 1773 * activate_task - move a task to the runqueue.
1da177e4 1774 */
dd41f596 1775static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1776{
d9514f6c 1777 if (task_contributes_to_load(p))
dd41f596 1778 rq->nr_uninterruptible--;
1da177e4 1779
8159f87e 1780 enqueue_task(rq, p, wakeup);
c09595f6 1781 inc_nr_running(rq);
1da177e4
LT
1782}
1783
1da177e4
LT
1784/*
1785 * deactivate_task - remove a task from the runqueue.
1786 */
2e1cb74a 1787static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1788{
d9514f6c 1789 if (task_contributes_to_load(p))
dd41f596
IM
1790 rq->nr_uninterruptible++;
1791
69be72c1 1792 dequeue_task(rq, p, sleep);
c09595f6 1793 dec_nr_running(rq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1799 */
36c8b586 1800inline int task_curr(const struct task_struct *p)
1da177e4
LT
1801{
1802 return cpu_curr(task_cpu(p)) == p;
1803}
1804
dd41f596
IM
1805static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806{
6f505b16 1807 set_task_rq(p, cpu);
dd41f596 1808#ifdef CONFIG_SMP
ce96b5ac
DA
1809 /*
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1813 */
1814 smp_wmb();
dd41f596 1815 task_thread_info(p)->cpu = cpu;
dd41f596 1816#endif
2dd73a4f
PW
1817}
1818
cb469845
SR
1819static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1822{
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1829}
1830
1da177e4 1831#ifdef CONFIG_SMP
c65cc870 1832
e958b360
TG
1833/* Used instead of source_load when we know the type == 0 */
1834static unsigned long weighted_cpuload(const int cpu)
1835{
1836 return cpu_rq(cpu)->load.weight;
1837}
1838
cc367732
IM
1839/*
1840 * Is this task likely cache-hot:
1841 */
e7693a36 1842static int
cc367732
IM
1843task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844{
1845 s64 delta;
1846
f540a608
IM
1847 /*
1848 * Buddy candidates are cache hot:
1849 */
4793241b
PZ
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1853 return 1;
1854
cc367732
IM
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1857
6bc1665b
IM
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1862
cc367732
IM
1863 delta = now - p->se.exec_start;
1864
1865 return delta < (s64)sysctl_sched_migration_cost;
1866}
1867
1868
dd41f596 1869void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1870{
dd41f596
IM
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1875 u64 clock_offset;
dd41f596
IM
1876
1877 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1878
cbc34ed1
PZ
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
6cfb0d5d
IM
1881#ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
dd41f596
IM
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
cc367732
IM
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
6cfb0d5d 1893#endif
2830cf8c
SV
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
dd41f596
IM
1896
1897 __set_task_cpu(p, new_cpu);
c65cc870
IM
1898}
1899
70b97a7f 1900struct migration_req {
1da177e4 1901 struct list_head list;
1da177e4 1902
36c8b586 1903 struct task_struct *task;
1da177e4
LT
1904 int dest_cpu;
1905
1da177e4 1906 struct completion done;
70b97a7f 1907};
1da177e4
LT
1908
1909/*
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1912 */
36c8b586 1913static int
70b97a7f 1914migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1915{
70b97a7f 1916 struct rq *rq = task_rq(p);
1da177e4
LT
1917
1918 /*
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1921 */
dd41f596 1922 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1925 }
1926
1927 init_completion(&req->done);
1da177e4
LT
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
48f24c4d 1931
1da177e4
LT
1932 return 1;
1933}
1934
1935/*
1936 * wait_task_inactive - wait for a thread to unschedule.
1937 *
85ba2d86
RM
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1944 *
1da177e4
LT
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1950 */
85ba2d86 1951unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1952{
1953 unsigned long flags;
dd41f596 1954 int running, on_rq;
85ba2d86 1955 unsigned long ncsw;
70b97a7f 1956 struct rq *rq;
1da177e4 1957
3a5c359a
AK
1958 for (;;) {
1959 /*
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1964 */
1965 rq = task_rq(p);
fa490cfd 1966
3a5c359a
AK
1967 /*
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1971 *
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1977 */
85ba2d86
RM
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
3a5c359a 1981 cpu_relax();
85ba2d86 1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
0a16b607 1990 trace_sched_wait_task(rq, p);
3a5c359a
AK
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
85ba2d86 1993 ncsw = 0;
f31e11d8 1994 if (!match_state || p->state == match_state)
93dcf55f 1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1996 task_rq_unlock(rq, &flags);
fa490cfd 1997
85ba2d86
RM
1998 /*
1999 * If it changed from the expected state, bail out now.
2000 */
2001 if (unlikely(!ncsw))
2002 break;
2003
3a5c359a
AK
2004 /*
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2007 *
2008 * Oops. Go back and try again..
2009 */
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2013 }
fa490cfd 2014
3a5c359a
AK
2015 /*
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2019 *
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2023 */
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2027 }
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2033 */
2034 break;
2035 }
85ba2d86
RM
2036
2037 return ncsw;
1da177e4
LT
2038}
2039
2040/***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2043 *
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2046 *
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2052 */
36c8b586 2053void kick_process(struct task_struct *p)
1da177e4
LT
2054{
2055 int cpu;
2056
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2062}
2063
2064/*
2dd73a4f
PW
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
1da177e4
LT
2067 *
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2070 */
a9957449 2071static unsigned long source_load(int cpu, int type)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = cpu_rq(cpu);
dd41f596 2074 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2075
93b75217 2076 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2077 return total;
b910472d 2078
dd41f596 2079 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2080}
2081
2082/*
2dd73a4f
PW
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
1da177e4 2085 */
a9957449 2086static unsigned long target_load(int cpu, int type)
1da177e4 2087{
70b97a7f 2088 struct rq *rq = cpu_rq(cpu);
dd41f596 2089 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2090
93b75217 2091 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2092 return total;
3b0bd9bc 2093
dd41f596 2094 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2095}
2096
147cbb4b
NP
2097/*
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2100 */
2101static struct sched_group *
2102find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103{
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2113
da5a5522 2114 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
3a5c359a 2117 continue;
da5a5522 2118
758b2cdc
RR
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
147cbb4b
NP
2121
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2124
758b2cdc 2125 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2131
2132 avg_load += load;
2133 }
2134
2135 /* Adjust by relative CPU power of the group */
5517d86b
ED
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2138
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2145 }
3a5c359a 2146 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2147
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2151}
2152
2153/*
0feaece9 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2155 */
95cdf3b7 2156static int
758b2cdc 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2158{
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2162
da5a5522 2163 /* Traverse only the allowed CPUs */
758b2cdc 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2165 load = weighted_cpuload(i);
147cbb4b
NP
2166
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2170 }
2171 }
2172
2173 return idlest;
2174}
2175
476d139c
NP
2176/*
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2180 *
2181 * Balance, ie. select the least loaded group.
2182 *
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2184 *
2185 * preempt must be disabled.
2186 */
2187static int sched_balance_self(int cpu, int flag)
2188{
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2191
c96d145e 2192 for_each_domain(cpu, tmp) {
9761eea8
IM
2193 /*
2194 * If power savings logic is enabled for a domain, stop there.
2195 */
5c45bf27
SS
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
476d139c
NP
2198 if (tmp->flags & flag)
2199 sd = tmp;
c96d145e 2200 }
476d139c 2201
039a1c41
PZ
2202 if (sd)
2203 update_shares(sd);
2204
476d139c 2205 while (sd) {
476d139c 2206 struct sched_group *group;
1a848870
SS
2207 int new_cpu, weight;
2208
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2212 }
476d139c 2213
476d139c 2214 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2218 }
476d139c 2219
758b2cdc 2220 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2225 }
476d139c 2226
1a848870 2227 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2228 cpu = new_cpu;
758b2cdc 2229 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2230 sd = NULL;
476d139c 2231 for_each_domain(cpu, tmp) {
758b2cdc 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2236 }
2237 /* while loop will break here if sd == NULL */
2238 }
2239
2240 return cpu;
2241}
2242
2243#endif /* CONFIG_SMP */
1da177e4 2244
1da177e4
LT
2245/***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2250 *
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2256 *
2257 * returns failure only if the task is already active.
2258 */
36c8b586 2259static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2260{
cc367732 2261 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2262 unsigned long flags;
2263 long old_state;
70b97a7f 2264 struct rq *rq;
1da177e4 2265
b85d0667
IM
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2268
2398f2c6
PZ
2269#ifdef CONFIG_SMP
2270 if (sched_feat(LB_WAKEUP_UPDATE)) {
2271 struct sched_domain *sd;
2272
2273 this_cpu = raw_smp_processor_id();
2274 cpu = task_cpu(p);
2275
2276 for_each_domain(this_cpu, sd) {
758b2cdc 2277 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2278 update_shares(sd);
2279 break;
2280 }
2281 }
2282 }
2283#endif
2284
04e2f174 2285 smp_wmb();
1da177e4 2286 rq = task_rq_lock(p, &flags);
03e89e45 2287 update_rq_clock(rq);
1da177e4
LT
2288 old_state = p->state;
2289 if (!(old_state & state))
2290 goto out;
2291
dd41f596 2292 if (p->se.on_rq)
1da177e4
LT
2293 goto out_running;
2294
2295 cpu = task_cpu(p);
cc367732 2296 orig_cpu = cpu;
1da177e4
LT
2297 this_cpu = smp_processor_id();
2298
2299#ifdef CONFIG_SMP
2300 if (unlikely(task_running(rq, p)))
2301 goto out_activate;
2302
5d2f5a61
DA
2303 cpu = p->sched_class->select_task_rq(p, sync);
2304 if (cpu != orig_cpu) {
2305 set_task_cpu(p, cpu);
1da177e4
LT
2306 task_rq_unlock(rq, &flags);
2307 /* might preempt at this point */
2308 rq = task_rq_lock(p, &flags);
2309 old_state = p->state;
2310 if (!(old_state & state))
2311 goto out;
dd41f596 2312 if (p->se.on_rq)
1da177e4
LT
2313 goto out_running;
2314
2315 this_cpu = smp_processor_id();
2316 cpu = task_cpu(p);
2317 }
2318
e7693a36
GH
2319#ifdef CONFIG_SCHEDSTATS
2320 schedstat_inc(rq, ttwu_count);
2321 if (cpu == this_cpu)
2322 schedstat_inc(rq, ttwu_local);
2323 else {
2324 struct sched_domain *sd;
2325 for_each_domain(this_cpu, sd) {
758b2cdc 2326 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2327 schedstat_inc(sd, ttwu_wake_remote);
2328 break;
2329 }
2330 }
2331 }
6d6bc0ad 2332#endif /* CONFIG_SCHEDSTATS */
e7693a36 2333
1da177e4
LT
2334out_activate:
2335#endif /* CONFIG_SMP */
cc367732
IM
2336 schedstat_inc(p, se.nr_wakeups);
2337 if (sync)
2338 schedstat_inc(p, se.nr_wakeups_sync);
2339 if (orig_cpu != cpu)
2340 schedstat_inc(p, se.nr_wakeups_migrate);
2341 if (cpu == this_cpu)
2342 schedstat_inc(p, se.nr_wakeups_local);
2343 else
2344 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2345 activate_task(rq, p, 1);
1da177e4
LT
2346 success = 1;
2347
2348out_running:
468a15bb 2349 trace_sched_wakeup(rq, p, success);
15afe09b 2350 check_preempt_curr(rq, p, sync);
4ae7d5ce 2351
1da177e4 2352 p->state = TASK_RUNNING;
9a897c5a
SR
2353#ifdef CONFIG_SMP
2354 if (p->sched_class->task_wake_up)
2355 p->sched_class->task_wake_up(rq, p);
2356#endif
1da177e4 2357out:
2087a1ad
GH
2358 current->se.last_wakeup = current->se.sum_exec_runtime;
2359
1da177e4
LT
2360 task_rq_unlock(rq, &flags);
2361
2362 return success;
2363}
2364
7ad5b3a5 2365int wake_up_process(struct task_struct *p)
1da177e4 2366{
d9514f6c 2367 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2368}
1da177e4
LT
2369EXPORT_SYMBOL(wake_up_process);
2370
7ad5b3a5 2371int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2372{
2373 return try_to_wake_up(p, state, 0);
2374}
2375
1da177e4
LT
2376/*
2377 * Perform scheduler related setup for a newly forked process p.
2378 * p is forked by current.
dd41f596
IM
2379 *
2380 * __sched_fork() is basic setup used by init_idle() too:
2381 */
2382static void __sched_fork(struct task_struct *p)
2383{
dd41f596
IM
2384 p->se.exec_start = 0;
2385 p->se.sum_exec_runtime = 0;
f6cf891c 2386 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2387 p->se.last_wakeup = 0;
2388 p->se.avg_overlap = 0;
6cfb0d5d
IM
2389
2390#ifdef CONFIG_SCHEDSTATS
2391 p->se.wait_start = 0;
dd41f596
IM
2392 p->se.sum_sleep_runtime = 0;
2393 p->se.sleep_start = 0;
dd41f596
IM
2394 p->se.block_start = 0;
2395 p->se.sleep_max = 0;
2396 p->se.block_max = 0;
2397 p->se.exec_max = 0;
eba1ed4b 2398 p->se.slice_max = 0;
dd41f596 2399 p->se.wait_max = 0;
6cfb0d5d 2400#endif
476d139c 2401
fa717060 2402 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2403 p->se.on_rq = 0;
4a55bd5e 2404 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2405
e107be36
AK
2406#ifdef CONFIG_PREEMPT_NOTIFIERS
2407 INIT_HLIST_HEAD(&p->preempt_notifiers);
2408#endif
2409
1da177e4
LT
2410 /*
2411 * We mark the process as running here, but have not actually
2412 * inserted it onto the runqueue yet. This guarantees that
2413 * nobody will actually run it, and a signal or other external
2414 * event cannot wake it up and insert it on the runqueue either.
2415 */
2416 p->state = TASK_RUNNING;
dd41f596
IM
2417}
2418
2419/*
2420 * fork()/clone()-time setup:
2421 */
2422void sched_fork(struct task_struct *p, int clone_flags)
2423{
2424 int cpu = get_cpu();
2425
2426 __sched_fork(p);
2427
2428#ifdef CONFIG_SMP
2429 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2430#endif
02e4bac2 2431 set_task_cpu(p, cpu);
b29739f9
IM
2432
2433 /*
2434 * Make sure we do not leak PI boosting priority to the child:
2435 */
2436 p->prio = current->normal_prio;
2ddbf952
HS
2437 if (!rt_prio(p->prio))
2438 p->sched_class = &fair_sched_class;
b29739f9 2439
52f17b6c 2440#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2441 if (likely(sched_info_on()))
52f17b6c 2442 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2443#endif
d6077cb8 2444#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2445 p->oncpu = 0;
2446#endif
1da177e4 2447#ifdef CONFIG_PREEMPT
4866cde0 2448 /* Want to start with kernel preemption disabled. */
a1261f54 2449 task_thread_info(p)->preempt_count = 1;
1da177e4 2450#endif
476d139c 2451 put_cpu();
1da177e4
LT
2452}
2453
2454/*
2455 * wake_up_new_task - wake up a newly created task for the first time.
2456 *
2457 * This function will do some initial scheduler statistics housekeeping
2458 * that must be done for every newly created context, then puts the task
2459 * on the runqueue and wakes it.
2460 */
7ad5b3a5 2461void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2462{
2463 unsigned long flags;
dd41f596 2464 struct rq *rq;
1da177e4
LT
2465
2466 rq = task_rq_lock(p, &flags);
147cbb4b 2467 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2468 update_rq_clock(rq);
1da177e4
LT
2469
2470 p->prio = effective_prio(p);
2471
b9dca1e0 2472 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2473 activate_task(rq, p, 0);
1da177e4 2474 } else {
1da177e4 2475 /*
dd41f596
IM
2476 * Let the scheduling class do new task startup
2477 * management (if any):
1da177e4 2478 */
ee0827d8 2479 p->sched_class->task_new(rq, p);
c09595f6 2480 inc_nr_running(rq);
1da177e4 2481 }
c71dd42d 2482 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2483 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2484#ifdef CONFIG_SMP
2485 if (p->sched_class->task_wake_up)
2486 p->sched_class->task_wake_up(rq, p);
2487#endif
dd41f596 2488 task_rq_unlock(rq, &flags);
1da177e4
LT
2489}
2490
e107be36
AK
2491#ifdef CONFIG_PREEMPT_NOTIFIERS
2492
2493/**
421cee29
RD
2494 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2495 * @notifier: notifier struct to register
e107be36
AK
2496 */
2497void preempt_notifier_register(struct preempt_notifier *notifier)
2498{
2499 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2500}
2501EXPORT_SYMBOL_GPL(preempt_notifier_register);
2502
2503/**
2504 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2505 * @notifier: notifier struct to unregister
e107be36
AK
2506 *
2507 * This is safe to call from within a preemption notifier.
2508 */
2509void preempt_notifier_unregister(struct preempt_notifier *notifier)
2510{
2511 hlist_del(&notifier->link);
2512}
2513EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2514
2515static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516{
2517 struct preempt_notifier *notifier;
2518 struct hlist_node *node;
2519
2520 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2521 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2522}
2523
2524static void
2525fire_sched_out_preempt_notifiers(struct task_struct *curr,
2526 struct task_struct *next)
2527{
2528 struct preempt_notifier *notifier;
2529 struct hlist_node *node;
2530
2531 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2532 notifier->ops->sched_out(notifier, next);
2533}
2534
6d6bc0ad 2535#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2536
2537static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2538{
2539}
2540
2541static void
2542fire_sched_out_preempt_notifiers(struct task_struct *curr,
2543 struct task_struct *next)
2544{
2545}
2546
6d6bc0ad 2547#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2548
4866cde0
NP
2549/**
2550 * prepare_task_switch - prepare to switch tasks
2551 * @rq: the runqueue preparing to switch
421cee29 2552 * @prev: the current task that is being switched out
4866cde0
NP
2553 * @next: the task we are going to switch to.
2554 *
2555 * This is called with the rq lock held and interrupts off. It must
2556 * be paired with a subsequent finish_task_switch after the context
2557 * switch.
2558 *
2559 * prepare_task_switch sets up locking and calls architecture specific
2560 * hooks.
2561 */
e107be36
AK
2562static inline void
2563prepare_task_switch(struct rq *rq, struct task_struct *prev,
2564 struct task_struct *next)
4866cde0 2565{
e107be36 2566 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2567 prepare_lock_switch(rq, next);
2568 prepare_arch_switch(next);
2569}
2570
1da177e4
LT
2571/**
2572 * finish_task_switch - clean up after a task-switch
344babaa 2573 * @rq: runqueue associated with task-switch
1da177e4
LT
2574 * @prev: the thread we just switched away from.
2575 *
4866cde0
NP
2576 * finish_task_switch must be called after the context switch, paired
2577 * with a prepare_task_switch call before the context switch.
2578 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2579 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2580 *
2581 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2582 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2583 * with the lock held can cause deadlocks; see schedule() for
2584 * details.)
2585 */
a9957449 2586static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2587 __releases(rq->lock)
2588{
1da177e4 2589 struct mm_struct *mm = rq->prev_mm;
55a101f8 2590 long prev_state;
1da177e4
LT
2591
2592 rq->prev_mm = NULL;
2593
2594 /*
2595 * A task struct has one reference for the use as "current".
c394cc9f 2596 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2597 * schedule one last time. The schedule call will never return, and
2598 * the scheduled task must drop that reference.
c394cc9f 2599 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2600 * still held, otherwise prev could be scheduled on another cpu, die
2601 * there before we look at prev->state, and then the reference would
2602 * be dropped twice.
2603 * Manfred Spraul <manfred@colorfullife.com>
2604 */
55a101f8 2605 prev_state = prev->state;
4866cde0
NP
2606 finish_arch_switch(prev);
2607 finish_lock_switch(rq, prev);
9a897c5a
SR
2608#ifdef CONFIG_SMP
2609 if (current->sched_class->post_schedule)
2610 current->sched_class->post_schedule(rq);
2611#endif
e8fa1362 2612
e107be36 2613 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2614 if (mm)
2615 mmdrop(mm);
c394cc9f 2616 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2617 /*
2618 * Remove function-return probe instances associated with this
2619 * task and put them back on the free list.
9761eea8 2620 */
c6fd91f0 2621 kprobe_flush_task(prev);
1da177e4 2622 put_task_struct(prev);
c6fd91f0 2623 }
1da177e4
LT
2624}
2625
2626/**
2627 * schedule_tail - first thing a freshly forked thread must call.
2628 * @prev: the thread we just switched away from.
2629 */
36c8b586 2630asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2631 __releases(rq->lock)
2632{
70b97a7f
IM
2633 struct rq *rq = this_rq();
2634
4866cde0
NP
2635 finish_task_switch(rq, prev);
2636#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2637 /* In this case, finish_task_switch does not reenable preemption */
2638 preempt_enable();
2639#endif
1da177e4 2640 if (current->set_child_tid)
b488893a 2641 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2642}
2643
2644/*
2645 * context_switch - switch to the new MM and the new
2646 * thread's register state.
2647 */
dd41f596 2648static inline void
70b97a7f 2649context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2650 struct task_struct *next)
1da177e4 2651{
dd41f596 2652 struct mm_struct *mm, *oldmm;
1da177e4 2653
e107be36 2654 prepare_task_switch(rq, prev, next);
0a16b607 2655 trace_sched_switch(rq, prev, next);
dd41f596
IM
2656 mm = next->mm;
2657 oldmm = prev->active_mm;
9226d125
ZA
2658 /*
2659 * For paravirt, this is coupled with an exit in switch_to to
2660 * combine the page table reload and the switch backend into
2661 * one hypercall.
2662 */
2663 arch_enter_lazy_cpu_mode();
2664
dd41f596 2665 if (unlikely(!mm)) {
1da177e4
LT
2666 next->active_mm = oldmm;
2667 atomic_inc(&oldmm->mm_count);
2668 enter_lazy_tlb(oldmm, next);
2669 } else
2670 switch_mm(oldmm, mm, next);
2671
dd41f596 2672 if (unlikely(!prev->mm)) {
1da177e4 2673 prev->active_mm = NULL;
1da177e4
LT
2674 rq->prev_mm = oldmm;
2675 }
3a5f5e48
IM
2676 /*
2677 * Since the runqueue lock will be released by the next
2678 * task (which is an invalid locking op but in the case
2679 * of the scheduler it's an obvious special-case), so we
2680 * do an early lockdep release here:
2681 */
2682#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2683 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2684#endif
1da177e4
LT
2685
2686 /* Here we just switch the register state and the stack. */
2687 switch_to(prev, next, prev);
2688
dd41f596
IM
2689 barrier();
2690 /*
2691 * this_rq must be evaluated again because prev may have moved
2692 * CPUs since it called schedule(), thus the 'rq' on its stack
2693 * frame will be invalid.
2694 */
2695 finish_task_switch(this_rq(), prev);
1da177e4
LT
2696}
2697
2698/*
2699 * nr_running, nr_uninterruptible and nr_context_switches:
2700 *
2701 * externally visible scheduler statistics: current number of runnable
2702 * threads, current number of uninterruptible-sleeping threads, total
2703 * number of context switches performed since bootup.
2704 */
2705unsigned long nr_running(void)
2706{
2707 unsigned long i, sum = 0;
2708
2709 for_each_online_cpu(i)
2710 sum += cpu_rq(i)->nr_running;
2711
2712 return sum;
2713}
2714
2715unsigned long nr_uninterruptible(void)
2716{
2717 unsigned long i, sum = 0;
2718
0a945022 2719 for_each_possible_cpu(i)
1da177e4
LT
2720 sum += cpu_rq(i)->nr_uninterruptible;
2721
2722 /*
2723 * Since we read the counters lockless, it might be slightly
2724 * inaccurate. Do not allow it to go below zero though:
2725 */
2726 if (unlikely((long)sum < 0))
2727 sum = 0;
2728
2729 return sum;
2730}
2731
2732unsigned long long nr_context_switches(void)
2733{
cc94abfc
SR
2734 int i;
2735 unsigned long long sum = 0;
1da177e4 2736
0a945022 2737 for_each_possible_cpu(i)
1da177e4
LT
2738 sum += cpu_rq(i)->nr_switches;
2739
2740 return sum;
2741}
2742
2743unsigned long nr_iowait(void)
2744{
2745 unsigned long i, sum = 0;
2746
0a945022 2747 for_each_possible_cpu(i)
1da177e4
LT
2748 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2749
2750 return sum;
2751}
2752
db1b1fef
JS
2753unsigned long nr_active(void)
2754{
2755 unsigned long i, running = 0, uninterruptible = 0;
2756
2757 for_each_online_cpu(i) {
2758 running += cpu_rq(i)->nr_running;
2759 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2760 }
2761
2762 if (unlikely((long)uninterruptible < 0))
2763 uninterruptible = 0;
2764
2765 return running + uninterruptible;
2766}
2767
48f24c4d 2768/*
dd41f596
IM
2769 * Update rq->cpu_load[] statistics. This function is usually called every
2770 * scheduler tick (TICK_NSEC).
48f24c4d 2771 */
dd41f596 2772static void update_cpu_load(struct rq *this_rq)
48f24c4d 2773{
495eca49 2774 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2775 int i, scale;
2776
2777 this_rq->nr_load_updates++;
dd41f596
IM
2778
2779 /* Update our load: */
2780 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2781 unsigned long old_load, new_load;
2782
2783 /* scale is effectively 1 << i now, and >> i divides by scale */
2784
2785 old_load = this_rq->cpu_load[i];
2786 new_load = this_load;
a25707f3
IM
2787 /*
2788 * Round up the averaging division if load is increasing. This
2789 * prevents us from getting stuck on 9 if the load is 10, for
2790 * example.
2791 */
2792 if (new_load > old_load)
2793 new_load += scale-1;
dd41f596
IM
2794 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2795 }
48f24c4d
IM
2796}
2797
dd41f596
IM
2798#ifdef CONFIG_SMP
2799
1da177e4
LT
2800/*
2801 * double_rq_lock - safely lock two runqueues
2802 *
2803 * Note this does not disable interrupts like task_rq_lock,
2804 * you need to do so manually before calling.
2805 */
70b97a7f 2806static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2807 __acquires(rq1->lock)
2808 __acquires(rq2->lock)
2809{
054b9108 2810 BUG_ON(!irqs_disabled());
1da177e4
LT
2811 if (rq1 == rq2) {
2812 spin_lock(&rq1->lock);
2813 __acquire(rq2->lock); /* Fake it out ;) */
2814 } else {
c96d145e 2815 if (rq1 < rq2) {
1da177e4 2816 spin_lock(&rq1->lock);
5e710e37 2817 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2818 } else {
2819 spin_lock(&rq2->lock);
5e710e37 2820 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2821 }
2822 }
6e82a3be
IM
2823 update_rq_clock(rq1);
2824 update_rq_clock(rq2);
1da177e4
LT
2825}
2826
2827/*
2828 * double_rq_unlock - safely unlock two runqueues
2829 *
2830 * Note this does not restore interrupts like task_rq_unlock,
2831 * you need to do so manually after calling.
2832 */
70b97a7f 2833static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2834 __releases(rq1->lock)
2835 __releases(rq2->lock)
2836{
2837 spin_unlock(&rq1->lock);
2838 if (rq1 != rq2)
2839 spin_unlock(&rq2->lock);
2840 else
2841 __release(rq2->lock);
2842}
2843
1da177e4
LT
2844/*
2845 * If dest_cpu is allowed for this process, migrate the task to it.
2846 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2847 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2848 * the cpu_allowed mask is restored.
2849 */
36c8b586 2850static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2851{
70b97a7f 2852 struct migration_req req;
1da177e4 2853 unsigned long flags;
70b97a7f 2854 struct rq *rq;
1da177e4
LT
2855
2856 rq = task_rq_lock(p, &flags);
96f874e2 2857 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2858 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2859 goto out;
2860
2861 /* force the process onto the specified CPU */
2862 if (migrate_task(p, dest_cpu, &req)) {
2863 /* Need to wait for migration thread (might exit: take ref). */
2864 struct task_struct *mt = rq->migration_thread;
36c8b586 2865
1da177e4
LT
2866 get_task_struct(mt);
2867 task_rq_unlock(rq, &flags);
2868 wake_up_process(mt);
2869 put_task_struct(mt);
2870 wait_for_completion(&req.done);
36c8b586 2871
1da177e4
LT
2872 return;
2873 }
2874out:
2875 task_rq_unlock(rq, &flags);
2876}
2877
2878/*
476d139c
NP
2879 * sched_exec - execve() is a valuable balancing opportunity, because at
2880 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2881 */
2882void sched_exec(void)
2883{
1da177e4 2884 int new_cpu, this_cpu = get_cpu();
476d139c 2885 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2886 put_cpu();
476d139c
NP
2887 if (new_cpu != this_cpu)
2888 sched_migrate_task(current, new_cpu);
1da177e4
LT
2889}
2890
2891/*
2892 * pull_task - move a task from a remote runqueue to the local runqueue.
2893 * Both runqueues must be locked.
2894 */
dd41f596
IM
2895static void pull_task(struct rq *src_rq, struct task_struct *p,
2896 struct rq *this_rq, int this_cpu)
1da177e4 2897{
2e1cb74a 2898 deactivate_task(src_rq, p, 0);
1da177e4 2899 set_task_cpu(p, this_cpu);
dd41f596 2900 activate_task(this_rq, p, 0);
1da177e4
LT
2901 /*
2902 * Note that idle threads have a prio of MAX_PRIO, for this test
2903 * to be always true for them.
2904 */
15afe09b 2905 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2906}
2907
2908/*
2909 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2910 */
858119e1 2911static
70b97a7f 2912int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2913 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2914 int *all_pinned)
1da177e4
LT
2915{
2916 /*
2917 * We do not migrate tasks that are:
2918 * 1) running (obviously), or
2919 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2920 * 3) are cache-hot on their current CPU.
2921 */
96f874e2 2922 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2923 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2924 return 0;
cc367732 2925 }
81026794
NP
2926 *all_pinned = 0;
2927
cc367732
IM
2928 if (task_running(rq, p)) {
2929 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2930 return 0;
cc367732 2931 }
1da177e4 2932
da84d961
IM
2933 /*
2934 * Aggressive migration if:
2935 * 1) task is cache cold, or
2936 * 2) too many balance attempts have failed.
2937 */
2938
6bc1665b
IM
2939 if (!task_hot(p, rq->clock, sd) ||
2940 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2941#ifdef CONFIG_SCHEDSTATS
cc367732 2942 if (task_hot(p, rq->clock, sd)) {
da84d961 2943 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2944 schedstat_inc(p, se.nr_forced_migrations);
2945 }
da84d961
IM
2946#endif
2947 return 1;
2948 }
2949
cc367732
IM
2950 if (task_hot(p, rq->clock, sd)) {
2951 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2952 return 0;
cc367732 2953 }
1da177e4
LT
2954 return 1;
2955}
2956
e1d1484f
PW
2957static unsigned long
2958balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2959 unsigned long max_load_move, struct sched_domain *sd,
2960 enum cpu_idle_type idle, int *all_pinned,
2961 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2962{
051c6764 2963 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2964 struct task_struct *p;
2965 long rem_load_move = max_load_move;
1da177e4 2966
e1d1484f 2967 if (max_load_move == 0)
1da177e4
LT
2968 goto out;
2969
81026794
NP
2970 pinned = 1;
2971
1da177e4 2972 /*
dd41f596 2973 * Start the load-balancing iterator:
1da177e4 2974 */
dd41f596
IM
2975 p = iterator->start(iterator->arg);
2976next:
b82d9fdd 2977 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2978 goto out;
051c6764
PZ
2979
2980 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2981 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2982 p = iterator->next(iterator->arg);
2983 goto next;
1da177e4
LT
2984 }
2985
dd41f596 2986 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2987 pulled++;
dd41f596 2988 rem_load_move -= p->se.load.weight;
1da177e4 2989
2dd73a4f 2990 /*
b82d9fdd 2991 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2992 */
e1d1484f 2993 if (rem_load_move > 0) {
a4ac01c3
PW
2994 if (p->prio < *this_best_prio)
2995 *this_best_prio = p->prio;
dd41f596
IM
2996 p = iterator->next(iterator->arg);
2997 goto next;
1da177e4
LT
2998 }
2999out:
3000 /*
e1d1484f 3001 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3002 * so we can safely collect pull_task() stats here rather than
3003 * inside pull_task().
3004 */
3005 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3006
3007 if (all_pinned)
3008 *all_pinned = pinned;
e1d1484f
PW
3009
3010 return max_load_move - rem_load_move;
1da177e4
LT
3011}
3012
dd41f596 3013/*
43010659
PW
3014 * move_tasks tries to move up to max_load_move weighted load from busiest to
3015 * this_rq, as part of a balancing operation within domain "sd".
3016 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3017 *
3018 * Called with both runqueues locked.
3019 */
3020static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3021 unsigned long max_load_move,
dd41f596
IM
3022 struct sched_domain *sd, enum cpu_idle_type idle,
3023 int *all_pinned)
3024{
5522d5d5 3025 const struct sched_class *class = sched_class_highest;
43010659 3026 unsigned long total_load_moved = 0;
a4ac01c3 3027 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3028
3029 do {
43010659
PW
3030 total_load_moved +=
3031 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3032 max_load_move - total_load_moved,
a4ac01c3 3033 sd, idle, all_pinned, &this_best_prio);
dd41f596 3034 class = class->next;
c4acb2c0
GH
3035
3036 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3037 break;
3038
43010659 3039 } while (class && max_load_move > total_load_moved);
dd41f596 3040
43010659
PW
3041 return total_load_moved > 0;
3042}
3043
e1d1484f
PW
3044static int
3045iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3046 struct sched_domain *sd, enum cpu_idle_type idle,
3047 struct rq_iterator *iterator)
3048{
3049 struct task_struct *p = iterator->start(iterator->arg);
3050 int pinned = 0;
3051
3052 while (p) {
3053 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3054 pull_task(busiest, p, this_rq, this_cpu);
3055 /*
3056 * Right now, this is only the second place pull_task()
3057 * is called, so we can safely collect pull_task()
3058 * stats here rather than inside pull_task().
3059 */
3060 schedstat_inc(sd, lb_gained[idle]);
3061
3062 return 1;
3063 }
3064 p = iterator->next(iterator->arg);
3065 }
3066
3067 return 0;
3068}
3069
43010659
PW
3070/*
3071 * move_one_task tries to move exactly one task from busiest to this_rq, as
3072 * part of active balancing operations within "domain".
3073 * Returns 1 if successful and 0 otherwise.
3074 *
3075 * Called with both runqueues locked.
3076 */
3077static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3078 struct sched_domain *sd, enum cpu_idle_type idle)
3079{
5522d5d5 3080 const struct sched_class *class;
43010659
PW
3081
3082 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3083 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3084 return 1;
3085
3086 return 0;
dd41f596
IM
3087}
3088
1da177e4
LT
3089/*
3090 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3091 * domain. It calculates and returns the amount of weighted load which
3092 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3093 */
3094static struct sched_group *
3095find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3096 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3097 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3098{
3099 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3100 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3101 unsigned long max_pull;
2dd73a4f
PW
3102 unsigned long busiest_load_per_task, busiest_nr_running;
3103 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3104 int load_idx, group_imb = 0;
5c45bf27
SS
3105#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3106 int power_savings_balance = 1;
3107 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3108 unsigned long min_nr_running = ULONG_MAX;
3109 struct sched_group *group_min = NULL, *group_leader = NULL;
3110#endif
1da177e4
LT
3111
3112 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3113 busiest_load_per_task = busiest_nr_running = 0;
3114 this_load_per_task = this_nr_running = 0;
408ed066 3115
d15bcfdb 3116 if (idle == CPU_NOT_IDLE)
7897986b 3117 load_idx = sd->busy_idx;
d15bcfdb 3118 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3119 load_idx = sd->newidle_idx;
3120 else
3121 load_idx = sd->idle_idx;
1da177e4
LT
3122
3123 do {
908a7c1b 3124 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3125 int local_group;
3126 int i;
908a7c1b 3127 int __group_imb = 0;
783609c6 3128 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3129 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3130 unsigned long sum_avg_load_per_task;
3131 unsigned long avg_load_per_task;
1da177e4 3132
758b2cdc
RR
3133 local_group = cpumask_test_cpu(this_cpu,
3134 sched_group_cpus(group));
1da177e4 3135
783609c6 3136 if (local_group)
758b2cdc 3137 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3138
1da177e4 3139 /* Tally up the load of all CPUs in the group */
2dd73a4f 3140 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3141 sum_avg_load_per_task = avg_load_per_task = 0;
3142
908a7c1b
KC
3143 max_cpu_load = 0;
3144 min_cpu_load = ~0UL;
1da177e4 3145
758b2cdc
RR
3146 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3147 struct rq *rq = cpu_rq(i);
2dd73a4f 3148
9439aab8 3149 if (*sd_idle && rq->nr_running)
5969fe06
NP
3150 *sd_idle = 0;
3151
1da177e4 3152 /* Bias balancing toward cpus of our domain */
783609c6
SS
3153 if (local_group) {
3154 if (idle_cpu(i) && !first_idle_cpu) {
3155 first_idle_cpu = 1;
3156 balance_cpu = i;
3157 }
3158
a2000572 3159 load = target_load(i, load_idx);
908a7c1b 3160 } else {
a2000572 3161 load = source_load(i, load_idx);
908a7c1b
KC
3162 if (load > max_cpu_load)
3163 max_cpu_load = load;
3164 if (min_cpu_load > load)
3165 min_cpu_load = load;
3166 }
1da177e4
LT
3167
3168 avg_load += load;
2dd73a4f 3169 sum_nr_running += rq->nr_running;
dd41f596 3170 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3171
3172 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3173 }
3174
783609c6
SS
3175 /*
3176 * First idle cpu or the first cpu(busiest) in this sched group
3177 * is eligible for doing load balancing at this and above
9439aab8
SS
3178 * domains. In the newly idle case, we will allow all the cpu's
3179 * to do the newly idle load balance.
783609c6 3180 */
9439aab8
SS
3181 if (idle != CPU_NEWLY_IDLE && local_group &&
3182 balance_cpu != this_cpu && balance) {
783609c6
SS
3183 *balance = 0;
3184 goto ret;
3185 }
3186
1da177e4 3187 total_load += avg_load;
5517d86b 3188 total_pwr += group->__cpu_power;
1da177e4
LT
3189
3190 /* Adjust by relative CPU power of the group */
5517d86b
ED
3191 avg_load = sg_div_cpu_power(group,
3192 avg_load * SCHED_LOAD_SCALE);
1da177e4 3193
408ed066
PZ
3194
3195 /*
3196 * Consider the group unbalanced when the imbalance is larger
3197 * than the average weight of two tasks.
3198 *
3199 * APZ: with cgroup the avg task weight can vary wildly and
3200 * might not be a suitable number - should we keep a
3201 * normalized nr_running number somewhere that negates
3202 * the hierarchy?
3203 */
3204 avg_load_per_task = sg_div_cpu_power(group,
3205 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3206
3207 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3208 __group_imb = 1;
3209
5517d86b 3210 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3211
1da177e4
LT
3212 if (local_group) {
3213 this_load = avg_load;
3214 this = group;
2dd73a4f
PW
3215 this_nr_running = sum_nr_running;
3216 this_load_per_task = sum_weighted_load;
3217 } else if (avg_load > max_load &&
908a7c1b 3218 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3219 max_load = avg_load;
3220 busiest = group;
2dd73a4f
PW
3221 busiest_nr_running = sum_nr_running;
3222 busiest_load_per_task = sum_weighted_load;
908a7c1b 3223 group_imb = __group_imb;
1da177e4 3224 }
5c45bf27
SS
3225
3226#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3227 /*
3228 * Busy processors will not participate in power savings
3229 * balance.
3230 */
dd41f596
IM
3231 if (idle == CPU_NOT_IDLE ||
3232 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3233 goto group_next;
5c45bf27
SS
3234
3235 /*
3236 * If the local group is idle or completely loaded
3237 * no need to do power savings balance at this domain
3238 */
3239 if (local_group && (this_nr_running >= group_capacity ||
3240 !this_nr_running))
3241 power_savings_balance = 0;
3242
dd41f596 3243 /*
5c45bf27
SS
3244 * If a group is already running at full capacity or idle,
3245 * don't include that group in power savings calculations
dd41f596
IM
3246 */
3247 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3248 || !sum_nr_running)
dd41f596 3249 goto group_next;
5c45bf27 3250
dd41f596 3251 /*
5c45bf27 3252 * Calculate the group which has the least non-idle load.
dd41f596
IM
3253 * This is the group from where we need to pick up the load
3254 * for saving power
3255 */
3256 if ((sum_nr_running < min_nr_running) ||
3257 (sum_nr_running == min_nr_running &&
d5679bd1 3258 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3259 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3260 group_min = group;
3261 min_nr_running = sum_nr_running;
5c45bf27
SS
3262 min_load_per_task = sum_weighted_load /
3263 sum_nr_running;
dd41f596 3264 }
5c45bf27 3265
dd41f596 3266 /*
5c45bf27 3267 * Calculate the group which is almost near its
dd41f596
IM
3268 * capacity but still has some space to pick up some load
3269 * from other group and save more power
3270 */
3271 if (sum_nr_running <= group_capacity - 1) {
3272 if (sum_nr_running > leader_nr_running ||
3273 (sum_nr_running == leader_nr_running &&
d5679bd1 3274 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3275 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3276 group_leader = group;
3277 leader_nr_running = sum_nr_running;
3278 }
48f24c4d 3279 }
5c45bf27
SS
3280group_next:
3281#endif
1da177e4
LT
3282 group = group->next;
3283 } while (group != sd->groups);
3284
2dd73a4f 3285 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3286 goto out_balanced;
3287
3288 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3289
3290 if (this_load >= avg_load ||
3291 100*max_load <= sd->imbalance_pct*this_load)
3292 goto out_balanced;
3293
2dd73a4f 3294 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3295 if (group_imb)
3296 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3297
1da177e4
LT
3298 /*
3299 * We're trying to get all the cpus to the average_load, so we don't
3300 * want to push ourselves above the average load, nor do we wish to
3301 * reduce the max loaded cpu below the average load, as either of these
3302 * actions would just result in more rebalancing later, and ping-pong
3303 * tasks around. Thus we look for the minimum possible imbalance.
3304 * Negative imbalances (*we* are more loaded than anyone else) will
3305 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3306 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3307 * appear as very large values with unsigned longs.
3308 */
2dd73a4f
PW
3309 if (max_load <= busiest_load_per_task)
3310 goto out_balanced;
3311
3312 /*
3313 * In the presence of smp nice balancing, certain scenarios can have
3314 * max load less than avg load(as we skip the groups at or below
3315 * its cpu_power, while calculating max_load..)
3316 */
3317 if (max_load < avg_load) {
3318 *imbalance = 0;
3319 goto small_imbalance;
3320 }
0c117f1b
SS
3321
3322 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3323 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3324
1da177e4 3325 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3326 *imbalance = min(max_pull * busiest->__cpu_power,
3327 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3328 / SCHED_LOAD_SCALE;
3329
2dd73a4f
PW
3330 /*
3331 * if *imbalance is less than the average load per runnable task
3332 * there is no gaurantee that any tasks will be moved so we'll have
3333 * a think about bumping its value to force at least one task to be
3334 * moved
3335 */
7fd0d2dd 3336 if (*imbalance < busiest_load_per_task) {
48f24c4d 3337 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3338 unsigned int imbn;
3339
3340small_imbalance:
3341 pwr_move = pwr_now = 0;
3342 imbn = 2;
3343 if (this_nr_running) {
3344 this_load_per_task /= this_nr_running;
3345 if (busiest_load_per_task > this_load_per_task)
3346 imbn = 1;
3347 } else
408ed066 3348 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3349
01c8c57d 3350 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3351 busiest_load_per_task * imbn) {
2dd73a4f 3352 *imbalance = busiest_load_per_task;
1da177e4
LT
3353 return busiest;
3354 }
3355
3356 /*
3357 * OK, we don't have enough imbalance to justify moving tasks,
3358 * however we may be able to increase total CPU power used by
3359 * moving them.
3360 */
3361
5517d86b
ED
3362 pwr_now += busiest->__cpu_power *
3363 min(busiest_load_per_task, max_load);
3364 pwr_now += this->__cpu_power *
3365 min(this_load_per_task, this_load);
1da177e4
LT
3366 pwr_now /= SCHED_LOAD_SCALE;
3367
3368 /* Amount of load we'd subtract */
5517d86b
ED
3369 tmp = sg_div_cpu_power(busiest,
3370 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3371 if (max_load > tmp)
5517d86b 3372 pwr_move += busiest->__cpu_power *
2dd73a4f 3373 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3374
3375 /* Amount of load we'd add */
5517d86b 3376 if (max_load * busiest->__cpu_power <
33859f7f 3377 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3378 tmp = sg_div_cpu_power(this,
3379 max_load * busiest->__cpu_power);
1da177e4 3380 else
5517d86b
ED
3381 tmp = sg_div_cpu_power(this,
3382 busiest_load_per_task * SCHED_LOAD_SCALE);
3383 pwr_move += this->__cpu_power *
3384 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3385 pwr_move /= SCHED_LOAD_SCALE;
3386
3387 /* Move if we gain throughput */
7fd0d2dd
SS
3388 if (pwr_move > pwr_now)
3389 *imbalance = busiest_load_per_task;
1da177e4
LT
3390 }
3391
1da177e4
LT
3392 return busiest;
3393
3394out_balanced:
5c45bf27 3395#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3396 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3397 goto ret;
1da177e4 3398
5c45bf27
SS
3399 if (this == group_leader && group_leader != group_min) {
3400 *imbalance = min_load_per_task;
7a09b1a2
VS
3401 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3402 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3403 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3404 }
5c45bf27
SS
3405 return group_min;
3406 }
5c45bf27 3407#endif
783609c6 3408ret:
1da177e4
LT
3409 *imbalance = 0;
3410 return NULL;
3411}
3412
3413/*
3414 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3415 */
70b97a7f 3416static struct rq *
d15bcfdb 3417find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3418 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3419{
70b97a7f 3420 struct rq *busiest = NULL, *rq;
2dd73a4f 3421 unsigned long max_load = 0;
1da177e4
LT
3422 int i;
3423
758b2cdc 3424 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3425 unsigned long wl;
0a2966b4 3426
96f874e2 3427 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3428 continue;
3429
48f24c4d 3430 rq = cpu_rq(i);
dd41f596 3431 wl = weighted_cpuload(i);
2dd73a4f 3432
dd41f596 3433 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3434 continue;
1da177e4 3435
dd41f596
IM
3436 if (wl > max_load) {
3437 max_load = wl;
48f24c4d 3438 busiest = rq;
1da177e4
LT
3439 }
3440 }
3441
3442 return busiest;
3443}
3444
77391d71
NP
3445/*
3446 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3447 * so long as it is large enough.
3448 */
3449#define MAX_PINNED_INTERVAL 512
3450
df7c8e84
RR
3451/* Working cpumask for load_balance and load_balance_newidle. */
3452static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3453
1da177e4
LT
3454/*
3455 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3456 * tasks if there is an imbalance.
1da177e4 3457 */
70b97a7f 3458static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3459 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3460 int *balance)
1da177e4 3461{
43010659 3462 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3463 struct sched_group *group;
1da177e4 3464 unsigned long imbalance;
70b97a7f 3465 struct rq *busiest;
fe2eea3f 3466 unsigned long flags;
df7c8e84 3467 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3468
96f874e2 3469 cpumask_setall(cpus);
7c16ec58 3470
89c4710e
SS
3471 /*
3472 * When power savings policy is enabled for the parent domain, idle
3473 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3474 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3475 * portraying it as CPU_NOT_IDLE.
89c4710e 3476 */
d15bcfdb 3477 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3478 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3479 sd_idle = 1;
1da177e4 3480
2d72376b 3481 schedstat_inc(sd, lb_count[idle]);
1da177e4 3482
0a2966b4 3483redo:
c8cba857 3484 update_shares(sd);
0a2966b4 3485 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3486 cpus, balance);
783609c6 3487
06066714 3488 if (*balance == 0)
783609c6 3489 goto out_balanced;
783609c6 3490
1da177e4
LT
3491 if (!group) {
3492 schedstat_inc(sd, lb_nobusyg[idle]);
3493 goto out_balanced;
3494 }
3495
7c16ec58 3496 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3497 if (!busiest) {
3498 schedstat_inc(sd, lb_nobusyq[idle]);
3499 goto out_balanced;
3500 }
3501
db935dbd 3502 BUG_ON(busiest == this_rq);
1da177e4
LT
3503
3504 schedstat_add(sd, lb_imbalance[idle], imbalance);
3505
43010659 3506 ld_moved = 0;
1da177e4
LT
3507 if (busiest->nr_running > 1) {
3508 /*
3509 * Attempt to move tasks. If find_busiest_group has found
3510 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3511 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3512 * correctly treated as an imbalance.
3513 */
fe2eea3f 3514 local_irq_save(flags);
e17224bf 3515 double_rq_lock(this_rq, busiest);
43010659 3516 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3517 imbalance, sd, idle, &all_pinned);
e17224bf 3518 double_rq_unlock(this_rq, busiest);
fe2eea3f 3519 local_irq_restore(flags);
81026794 3520
46cb4b7c
SS
3521 /*
3522 * some other cpu did the load balance for us.
3523 */
43010659 3524 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3525 resched_cpu(this_cpu);
3526
81026794 3527 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3528 if (unlikely(all_pinned)) {
96f874e2
RR
3529 cpumask_clear_cpu(cpu_of(busiest), cpus);
3530 if (!cpumask_empty(cpus))
0a2966b4 3531 goto redo;
81026794 3532 goto out_balanced;
0a2966b4 3533 }
1da177e4 3534 }
81026794 3535
43010659 3536 if (!ld_moved) {
1da177e4
LT
3537 schedstat_inc(sd, lb_failed[idle]);
3538 sd->nr_balance_failed++;
3539
3540 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3541
fe2eea3f 3542 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3543
3544 /* don't kick the migration_thread, if the curr
3545 * task on busiest cpu can't be moved to this_cpu
3546 */
96f874e2
RR
3547 if (!cpumask_test_cpu(this_cpu,
3548 &busiest->curr->cpus_allowed)) {
fe2eea3f 3549 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3550 all_pinned = 1;
3551 goto out_one_pinned;
3552 }
3553
1da177e4
LT
3554 if (!busiest->active_balance) {
3555 busiest->active_balance = 1;
3556 busiest->push_cpu = this_cpu;
81026794 3557 active_balance = 1;
1da177e4 3558 }
fe2eea3f 3559 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3560 if (active_balance)
1da177e4
LT
3561 wake_up_process(busiest->migration_thread);
3562
3563 /*
3564 * We've kicked active balancing, reset the failure
3565 * counter.
3566 */
39507451 3567 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3568 }
81026794 3569 } else
1da177e4
LT
3570 sd->nr_balance_failed = 0;
3571
81026794 3572 if (likely(!active_balance)) {
1da177e4
LT
3573 /* We were unbalanced, so reset the balancing interval */
3574 sd->balance_interval = sd->min_interval;
81026794
NP
3575 } else {
3576 /*
3577 * If we've begun active balancing, start to back off. This
3578 * case may not be covered by the all_pinned logic if there
3579 * is only 1 task on the busy runqueue (because we don't call
3580 * move_tasks).
3581 */
3582 if (sd->balance_interval < sd->max_interval)
3583 sd->balance_interval *= 2;
1da177e4
LT
3584 }
3585
43010659 3586 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3587 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3588 ld_moved = -1;
3589
3590 goto out;
1da177e4
LT
3591
3592out_balanced:
1da177e4
LT
3593 schedstat_inc(sd, lb_balanced[idle]);
3594
16cfb1c0 3595 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3596
3597out_one_pinned:
1da177e4 3598 /* tune up the balancing interval */
77391d71
NP
3599 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3600 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3601 sd->balance_interval *= 2;
3602
48f24c4d 3603 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3604 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3605 ld_moved = -1;
3606 else
3607 ld_moved = 0;
3608out:
c8cba857
PZ
3609 if (ld_moved)
3610 update_shares(sd);
c09595f6 3611 return ld_moved;
1da177e4
LT
3612}
3613
3614/*
3615 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3616 * tasks if there is an imbalance.
3617 *
d15bcfdb 3618 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3619 * this_rq is locked.
3620 */
48f24c4d 3621static int
df7c8e84 3622load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
3623{
3624 struct sched_group *group;
70b97a7f 3625 struct rq *busiest = NULL;
1da177e4 3626 unsigned long imbalance;
43010659 3627 int ld_moved = 0;
5969fe06 3628 int sd_idle = 0;
969bb4e4 3629 int all_pinned = 0;
df7c8e84 3630 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 3631
96f874e2 3632 cpumask_setall(cpus);
5969fe06 3633
89c4710e
SS
3634 /*
3635 * When power savings policy is enabled for the parent domain, idle
3636 * sibling can pick up load irrespective of busy siblings. In this case,
3637 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3638 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3639 */
3640 if (sd->flags & SD_SHARE_CPUPOWER &&
3641 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3642 sd_idle = 1;
1da177e4 3643
2d72376b 3644 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3645redo:
3e5459b4 3646 update_shares_locked(this_rq, sd);
d15bcfdb 3647 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3648 &sd_idle, cpus, NULL);
1da177e4 3649 if (!group) {
d15bcfdb 3650 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3651 goto out_balanced;
1da177e4
LT
3652 }
3653
7c16ec58 3654 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3655 if (!busiest) {
d15bcfdb 3656 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3657 goto out_balanced;
1da177e4
LT
3658 }
3659
db935dbd
NP
3660 BUG_ON(busiest == this_rq);
3661
d15bcfdb 3662 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3663
43010659 3664 ld_moved = 0;
d6d5cfaf
NP
3665 if (busiest->nr_running > 1) {
3666 /* Attempt to move tasks */
3667 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3668 /* this_rq->clock is already updated */
3669 update_rq_clock(busiest);
43010659 3670 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3671 imbalance, sd, CPU_NEWLY_IDLE,
3672 &all_pinned);
1b12bbc7 3673 double_unlock_balance(this_rq, busiest);
0a2966b4 3674
969bb4e4 3675 if (unlikely(all_pinned)) {
96f874e2
RR
3676 cpumask_clear_cpu(cpu_of(busiest), cpus);
3677 if (!cpumask_empty(cpus))
0a2966b4
CL
3678 goto redo;
3679 }
d6d5cfaf
NP
3680 }
3681
43010659 3682 if (!ld_moved) {
36dffab6 3683 int active_balance = 0;
ad273b32 3684
d15bcfdb 3685 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3686 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3687 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3688 return -1;
ad273b32
VS
3689
3690 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3691 return -1;
3692
3693 if (sd->nr_balance_failed++ < 2)
3694 return -1;
3695
3696 /*
3697 * The only task running in a non-idle cpu can be moved to this
3698 * cpu in an attempt to completely freeup the other CPU
3699 * package. The same method used to move task in load_balance()
3700 * have been extended for load_balance_newidle() to speedup
3701 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3702 *
3703 * The package power saving logic comes from
3704 * find_busiest_group(). If there are no imbalance, then
3705 * f_b_g() will return NULL. However when sched_mc={1,2} then
3706 * f_b_g() will select a group from which a running task may be
3707 * pulled to this cpu in order to make the other package idle.
3708 * If there is no opportunity to make a package idle and if
3709 * there are no imbalance, then f_b_g() will return NULL and no
3710 * action will be taken in load_balance_newidle().
3711 *
3712 * Under normal task pull operation due to imbalance, there
3713 * will be more than one task in the source run queue and
3714 * move_tasks() will succeed. ld_moved will be true and this
3715 * active balance code will not be triggered.
3716 */
3717
3718 /* Lock busiest in correct order while this_rq is held */
3719 double_lock_balance(this_rq, busiest);
3720
3721 /*
3722 * don't kick the migration_thread, if the curr
3723 * task on busiest cpu can't be moved to this_cpu
3724 */
6ca09dfc 3725 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3726 double_unlock_balance(this_rq, busiest);
3727 all_pinned = 1;
3728 return ld_moved;
3729 }
3730
3731 if (!busiest->active_balance) {
3732 busiest->active_balance = 1;
3733 busiest->push_cpu = this_cpu;
3734 active_balance = 1;
3735 }
3736
3737 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3738 /*
3739 * Should not call ttwu while holding a rq->lock
3740 */
3741 spin_unlock(&this_rq->lock);
ad273b32
VS
3742 if (active_balance)
3743 wake_up_process(busiest->migration_thread);
da8d5089 3744 spin_lock(&this_rq->lock);
ad273b32 3745
5969fe06 3746 } else
16cfb1c0 3747 sd->nr_balance_failed = 0;
1da177e4 3748
3e5459b4 3749 update_shares_locked(this_rq, sd);
43010659 3750 return ld_moved;
16cfb1c0
NP
3751
3752out_balanced:
d15bcfdb 3753 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3754 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3756 return -1;
16cfb1c0 3757 sd->nr_balance_failed = 0;
48f24c4d 3758
16cfb1c0 3759 return 0;
1da177e4
LT
3760}
3761
3762/*
3763 * idle_balance is called by schedule() if this_cpu is about to become
3764 * idle. Attempts to pull tasks from other CPUs.
3765 */
70b97a7f 3766static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3767{
3768 struct sched_domain *sd;
efbe027e 3769 int pulled_task = 0;
dd41f596 3770 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
3771
3772 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3773 unsigned long interval;
3774
3775 if (!(sd->flags & SD_LOAD_BALANCE))
3776 continue;
3777
3778 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3779 /* If we've pulled tasks over stop searching: */
7c16ec58 3780 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 3781 sd);
92c4ca5c
CL
3782
3783 interval = msecs_to_jiffies(sd->balance_interval);
3784 if (time_after(next_balance, sd->last_balance + interval))
3785 next_balance = sd->last_balance + interval;
3786 if (pulled_task)
3787 break;
1da177e4 3788 }
dd41f596 3789 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3790 /*
3791 * We are going idle. next_balance may be set based on
3792 * a busy processor. So reset next_balance.
3793 */
3794 this_rq->next_balance = next_balance;
dd41f596 3795 }
1da177e4
LT
3796}
3797
3798/*
3799 * active_load_balance is run by migration threads. It pushes running tasks
3800 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3801 * running on each physical CPU where possible, and avoids physical /
3802 * logical imbalances.
3803 *
3804 * Called with busiest_rq locked.
3805 */
70b97a7f 3806static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3807{
39507451 3808 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3809 struct sched_domain *sd;
3810 struct rq *target_rq;
39507451 3811
48f24c4d 3812 /* Is there any task to move? */
39507451 3813 if (busiest_rq->nr_running <= 1)
39507451
NP
3814 return;
3815
3816 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3817
3818 /*
39507451 3819 * This condition is "impossible", if it occurs
41a2d6cf 3820 * we need to fix it. Originally reported by
39507451 3821 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3822 */
39507451 3823 BUG_ON(busiest_rq == target_rq);
1da177e4 3824
39507451
NP
3825 /* move a task from busiest_rq to target_rq */
3826 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3827 update_rq_clock(busiest_rq);
3828 update_rq_clock(target_rq);
39507451
NP
3829
3830 /* Search for an sd spanning us and the target CPU. */
c96d145e 3831 for_each_domain(target_cpu, sd) {
39507451 3832 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3833 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3834 break;
c96d145e 3835 }
39507451 3836
48f24c4d 3837 if (likely(sd)) {
2d72376b 3838 schedstat_inc(sd, alb_count);
39507451 3839
43010659
PW
3840 if (move_one_task(target_rq, target_cpu, busiest_rq,
3841 sd, CPU_IDLE))
48f24c4d
IM
3842 schedstat_inc(sd, alb_pushed);
3843 else
3844 schedstat_inc(sd, alb_failed);
3845 }
1b12bbc7 3846 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3847}
3848
46cb4b7c
SS
3849#ifdef CONFIG_NO_HZ
3850static struct {
3851 atomic_t load_balancer;
7d1e6a9b 3852 cpumask_var_t cpu_mask;
46cb4b7c
SS
3853} nohz ____cacheline_aligned = {
3854 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3855};
3856
7835b98b 3857/*
46cb4b7c
SS
3858 * This routine will try to nominate the ilb (idle load balancing)
3859 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3860 * load balancing on behalf of all those cpus. If all the cpus in the system
3861 * go into this tickless mode, then there will be no ilb owner (as there is
3862 * no need for one) and all the cpus will sleep till the next wakeup event
3863 * arrives...
3864 *
3865 * For the ilb owner, tick is not stopped. And this tick will be used
3866 * for idle load balancing. ilb owner will still be part of
3867 * nohz.cpu_mask..
7835b98b 3868 *
46cb4b7c
SS
3869 * While stopping the tick, this cpu will become the ilb owner if there
3870 * is no other owner. And will be the owner till that cpu becomes busy
3871 * or if all cpus in the system stop their ticks at which point
3872 * there is no need for ilb owner.
3873 *
3874 * When the ilb owner becomes busy, it nominates another owner, during the
3875 * next busy scheduler_tick()
3876 */
3877int select_nohz_load_balancer(int stop_tick)
3878{
3879 int cpu = smp_processor_id();
3880
3881 if (stop_tick) {
46cb4b7c
SS
3882 cpu_rq(cpu)->in_nohz_recently = 1;
3883
483b4ee6
SS
3884 if (!cpu_active(cpu)) {
3885 if (atomic_read(&nohz.load_balancer) != cpu)
3886 return 0;
3887
3888 /*
3889 * If we are going offline and still the leader,
3890 * give up!
3891 */
46cb4b7c
SS
3892 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3893 BUG();
483b4ee6 3894
46cb4b7c
SS
3895 return 0;
3896 }
3897
483b4ee6
SS
3898 cpumask_set_cpu(cpu, nohz.cpu_mask);
3899
46cb4b7c 3900 /* time for ilb owner also to sleep */
7d1e6a9b 3901 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3902 if (atomic_read(&nohz.load_balancer) == cpu)
3903 atomic_set(&nohz.load_balancer, -1);
3904 return 0;
3905 }
3906
3907 if (atomic_read(&nohz.load_balancer) == -1) {
3908 /* make me the ilb owner */
3909 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3910 return 1;
3911 } else if (atomic_read(&nohz.load_balancer) == cpu)
3912 return 1;
3913 } else {
7d1e6a9b 3914 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3915 return 0;
3916
7d1e6a9b 3917 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3918
3919 if (atomic_read(&nohz.load_balancer) == cpu)
3920 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3921 BUG();
3922 }
3923 return 0;
3924}
3925#endif
3926
3927static DEFINE_SPINLOCK(balancing);
3928
3929/*
7835b98b
CL
3930 * It checks each scheduling domain to see if it is due to be balanced,
3931 * and initiates a balancing operation if so.
3932 *
3933 * Balancing parameters are set up in arch_init_sched_domains.
3934 */
a9957449 3935static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3936{
46cb4b7c
SS
3937 int balance = 1;
3938 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3939 unsigned long interval;
3940 struct sched_domain *sd;
46cb4b7c 3941 /* Earliest time when we have to do rebalance again */
c9819f45 3942 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3943 int update_next_balance = 0;
d07355f5 3944 int need_serialize;
1da177e4 3945
46cb4b7c 3946 for_each_domain(cpu, sd) {
1da177e4
LT
3947 if (!(sd->flags & SD_LOAD_BALANCE))
3948 continue;
3949
3950 interval = sd->balance_interval;
d15bcfdb 3951 if (idle != CPU_IDLE)
1da177e4
LT
3952 interval *= sd->busy_factor;
3953
3954 /* scale ms to jiffies */
3955 interval = msecs_to_jiffies(interval);
3956 if (unlikely(!interval))
3957 interval = 1;
dd41f596
IM
3958 if (interval > HZ*NR_CPUS/10)
3959 interval = HZ*NR_CPUS/10;
3960
d07355f5 3961 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3962
d07355f5 3963 if (need_serialize) {
08c183f3
CL
3964 if (!spin_trylock(&balancing))
3965 goto out;
3966 }
3967
c9819f45 3968 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 3969 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3970 /*
3971 * We've pulled tasks over so either we're no
5969fe06
NP
3972 * longer idle, or one of our SMT siblings is
3973 * not idle.
3974 */
d15bcfdb 3975 idle = CPU_NOT_IDLE;
1da177e4 3976 }
1bd77f2d 3977 sd->last_balance = jiffies;
1da177e4 3978 }
d07355f5 3979 if (need_serialize)
08c183f3
CL
3980 spin_unlock(&balancing);
3981out:
f549da84 3982 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3983 next_balance = sd->last_balance + interval;
f549da84
SS
3984 update_next_balance = 1;
3985 }
783609c6
SS
3986
3987 /*
3988 * Stop the load balance at this level. There is another
3989 * CPU in our sched group which is doing load balancing more
3990 * actively.
3991 */
3992 if (!balance)
3993 break;
1da177e4 3994 }
f549da84
SS
3995
3996 /*
3997 * next_balance will be updated only when there is a need.
3998 * When the cpu is attached to null domain for ex, it will not be
3999 * updated.
4000 */
4001 if (likely(update_next_balance))
4002 rq->next_balance = next_balance;
46cb4b7c
SS
4003}
4004
4005/*
4006 * run_rebalance_domains is triggered when needed from the scheduler tick.
4007 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4008 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4009 */
4010static void run_rebalance_domains(struct softirq_action *h)
4011{
dd41f596
IM
4012 int this_cpu = smp_processor_id();
4013 struct rq *this_rq = cpu_rq(this_cpu);
4014 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4015 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4016
dd41f596 4017 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4018
4019#ifdef CONFIG_NO_HZ
4020 /*
4021 * If this cpu is the owner for idle load balancing, then do the
4022 * balancing on behalf of the other idle cpus whose ticks are
4023 * stopped.
4024 */
dd41f596
IM
4025 if (this_rq->idle_at_tick &&
4026 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4027 struct rq *rq;
4028 int balance_cpu;
4029
7d1e6a9b
RR
4030 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4031 if (balance_cpu == this_cpu)
4032 continue;
4033
46cb4b7c
SS
4034 /*
4035 * If this cpu gets work to do, stop the load balancing
4036 * work being done for other cpus. Next load
4037 * balancing owner will pick it up.
4038 */
4039 if (need_resched())
4040 break;
4041
de0cf899 4042 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4043
4044 rq = cpu_rq(balance_cpu);
dd41f596
IM
4045 if (time_after(this_rq->next_balance, rq->next_balance))
4046 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4047 }
4048 }
4049#endif
4050}
4051
4052/*
4053 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4054 *
4055 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4056 * idle load balancing owner or decide to stop the periodic load balancing,
4057 * if the whole system is idle.
4058 */
dd41f596 4059static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4060{
46cb4b7c
SS
4061#ifdef CONFIG_NO_HZ
4062 /*
4063 * If we were in the nohz mode recently and busy at the current
4064 * scheduler tick, then check if we need to nominate new idle
4065 * load balancer.
4066 */
4067 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4068 rq->in_nohz_recently = 0;
4069
4070 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4071 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4072 atomic_set(&nohz.load_balancer, -1);
4073 }
4074
4075 if (atomic_read(&nohz.load_balancer) == -1) {
4076 /*
4077 * simple selection for now: Nominate the
4078 * first cpu in the nohz list to be the next
4079 * ilb owner.
4080 *
4081 * TBD: Traverse the sched domains and nominate
4082 * the nearest cpu in the nohz.cpu_mask.
4083 */
7d1e6a9b 4084 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4085
434d53b0 4086 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4087 resched_cpu(ilb);
4088 }
4089 }
4090
4091 /*
4092 * If this cpu is idle and doing idle load balancing for all the
4093 * cpus with ticks stopped, is it time for that to stop?
4094 */
4095 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4096 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4097 resched_cpu(cpu);
4098 return;
4099 }
4100
4101 /*
4102 * If this cpu is idle and the idle load balancing is done by
4103 * someone else, then no need raise the SCHED_SOFTIRQ
4104 */
4105 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4106 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4107 return;
4108#endif
4109 if (time_after_eq(jiffies, rq->next_balance))
4110 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4111}
dd41f596
IM
4112
4113#else /* CONFIG_SMP */
4114
1da177e4
LT
4115/*
4116 * on UP we do not need to balance between CPUs:
4117 */
70b97a7f 4118static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4119{
4120}
dd41f596 4121
1da177e4
LT
4122#endif
4123
1da177e4
LT
4124DEFINE_PER_CPU(struct kernel_stat, kstat);
4125
4126EXPORT_PER_CPU_SYMBOL(kstat);
4127
4128/*
f06febc9
FM
4129 * Return any ns on the sched_clock that have not yet been banked in
4130 * @p in case that task is currently running.
1da177e4 4131 */
bb34d92f 4132unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4133{
1da177e4 4134 unsigned long flags;
41b86e9c 4135 struct rq *rq;
bb34d92f 4136 u64 ns = 0;
48f24c4d 4137
41b86e9c 4138 rq = task_rq_lock(p, &flags);
1508487e 4139
051a1d1a 4140 if (task_current(rq, p)) {
f06febc9
FM
4141 u64 delta_exec;
4142
a8e504d2
IM
4143 update_rq_clock(rq);
4144 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4145 if ((s64)delta_exec > 0)
bb34d92f 4146 ns = delta_exec;
41b86e9c 4147 }
48f24c4d 4148
41b86e9c 4149 task_rq_unlock(rq, &flags);
48f24c4d 4150
1da177e4
LT
4151 return ns;
4152}
4153
1da177e4
LT
4154/*
4155 * Account user cpu time to a process.
4156 * @p: the process that the cpu time gets accounted to
1da177e4 4157 * @cputime: the cpu time spent in user space since the last update
457533a7 4158 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4159 */
457533a7
MS
4160void account_user_time(struct task_struct *p, cputime_t cputime,
4161 cputime_t cputime_scaled)
1da177e4
LT
4162{
4163 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4164 cputime64_t tmp;
4165
457533a7 4166 /* Add user time to process. */
1da177e4 4167 p->utime = cputime_add(p->utime, cputime);
457533a7 4168 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4169 account_group_user_time(p, cputime);
1da177e4
LT
4170
4171 /* Add user time to cpustat. */
4172 tmp = cputime_to_cputime64(cputime);
4173 if (TASK_NICE(p) > 0)
4174 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4175 else
4176 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4177 /* Account for user time used */
4178 acct_update_integrals(p);
1da177e4
LT
4179}
4180
94886b84
LV
4181/*
4182 * Account guest cpu time to a process.
4183 * @p: the process that the cpu time gets accounted to
4184 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4185 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4186 */
457533a7
MS
4187static void account_guest_time(struct task_struct *p, cputime_t cputime,
4188 cputime_t cputime_scaled)
94886b84
LV
4189{
4190 cputime64_t tmp;
4191 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4192
4193 tmp = cputime_to_cputime64(cputime);
4194
457533a7 4195 /* Add guest time to process. */
94886b84 4196 p->utime = cputime_add(p->utime, cputime);
457533a7 4197 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4198 account_group_user_time(p, cputime);
94886b84
LV
4199 p->gtime = cputime_add(p->gtime, cputime);
4200
457533a7 4201 /* Add guest time to cpustat. */
94886b84
LV
4202 cpustat->user = cputime64_add(cpustat->user, tmp);
4203 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4204}
4205
1da177e4
LT
4206/*
4207 * Account system cpu time to a process.
4208 * @p: the process that the cpu time gets accounted to
4209 * @hardirq_offset: the offset to subtract from hardirq_count()
4210 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4211 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4212 */
4213void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4214 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4215{
4216 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4217 cputime64_t tmp;
4218
983ed7a6 4219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4220 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4221 return;
4222 }
94886b84 4223
457533a7 4224 /* Add system time to process. */
1da177e4 4225 p->stime = cputime_add(p->stime, cputime);
457533a7 4226 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4227 account_group_system_time(p, cputime);
1da177e4
LT
4228
4229 /* Add system time to cpustat. */
4230 tmp = cputime_to_cputime64(cputime);
4231 if (hardirq_count() - hardirq_offset)
4232 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4233 else if (softirq_count())
4234 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4235 else
79741dd3
MS
4236 cpustat->system = cputime64_add(cpustat->system, tmp);
4237
1da177e4
LT
4238 /* Account for system time used */
4239 acct_update_integrals(p);
1da177e4
LT
4240}
4241
c66f08be 4242/*
1da177e4 4243 * Account for involuntary wait time.
1da177e4 4244 * @steal: the cpu time spent in involuntary wait
c66f08be 4245 */
79741dd3 4246void account_steal_time(cputime_t cputime)
c66f08be 4247{
79741dd3
MS
4248 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4249 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4250
4251 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4252}
4253
1da177e4 4254/*
79741dd3
MS
4255 * Account for idle time.
4256 * @cputime: the cpu time spent in idle wait
1da177e4 4257 */
79741dd3 4258void account_idle_time(cputime_t cputime)
1da177e4
LT
4259{
4260 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4261 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4262 struct rq *rq = this_rq();
1da177e4 4263
79741dd3
MS
4264 if (atomic_read(&rq->nr_iowait) > 0)
4265 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4266 else
4267 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4268}
4269
79741dd3
MS
4270#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4271
4272/*
4273 * Account a single tick of cpu time.
4274 * @p: the process that the cpu time gets accounted to
4275 * @user_tick: indicates if the tick is a user or a system tick
4276 */
4277void account_process_tick(struct task_struct *p, int user_tick)
4278{
4279 cputime_t one_jiffy = jiffies_to_cputime(1);
4280 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4281 struct rq *rq = this_rq();
4282
4283 if (user_tick)
4284 account_user_time(p, one_jiffy, one_jiffy_scaled);
4285 else if (p != rq->idle)
4286 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4287 one_jiffy_scaled);
4288 else
4289 account_idle_time(one_jiffy);
1da177e4
LT
4290}
4291
79741dd3
MS
4292/*
4293 * Account multiple ticks of steal time.
4294 * @p: the process from which the cpu time has been stolen
4295 * @ticks: number of stolen ticks
4296 */
4297void account_steal_ticks(unsigned long ticks)
4298{
4299 account_steal_time(jiffies_to_cputime(ticks));
4300}
4301
4302/*
4303 * Account multiple ticks of idle time.
4304 * @ticks: number of stolen ticks
4305 */
4306void account_idle_ticks(unsigned long ticks)
4307{
4308 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4309}
4310
79741dd3
MS
4311#endif
4312
49048622
BS
4313/*
4314 * Use precise platform statistics if available:
4315 */
4316#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4317cputime_t task_utime(struct task_struct *p)
4318{
4319 return p->utime;
4320}
4321
4322cputime_t task_stime(struct task_struct *p)
4323{
4324 return p->stime;
4325}
4326#else
4327cputime_t task_utime(struct task_struct *p)
4328{
4329 clock_t utime = cputime_to_clock_t(p->utime),
4330 total = utime + cputime_to_clock_t(p->stime);
4331 u64 temp;
4332
4333 /*
4334 * Use CFS's precise accounting:
4335 */
4336 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4337
4338 if (total) {
4339 temp *= utime;
4340 do_div(temp, total);
4341 }
4342 utime = (clock_t)temp;
4343
4344 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4345 return p->prev_utime;
4346}
4347
4348cputime_t task_stime(struct task_struct *p)
4349{
4350 clock_t stime;
4351
4352 /*
4353 * Use CFS's precise accounting. (we subtract utime from
4354 * the total, to make sure the total observed by userspace
4355 * grows monotonically - apps rely on that):
4356 */
4357 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4358 cputime_to_clock_t(task_utime(p));
4359
4360 if (stime >= 0)
4361 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4362
4363 return p->prev_stime;
4364}
4365#endif
4366
4367inline cputime_t task_gtime(struct task_struct *p)
4368{
4369 return p->gtime;
4370}
4371
7835b98b
CL
4372/*
4373 * This function gets called by the timer code, with HZ frequency.
4374 * We call it with interrupts disabled.
4375 *
4376 * It also gets called by the fork code, when changing the parent's
4377 * timeslices.
4378 */
4379void scheduler_tick(void)
4380{
7835b98b
CL
4381 int cpu = smp_processor_id();
4382 struct rq *rq = cpu_rq(cpu);
dd41f596 4383 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4384
4385 sched_clock_tick();
dd41f596
IM
4386
4387 spin_lock(&rq->lock);
3e51f33f 4388 update_rq_clock(rq);
f1a438d8 4389 update_cpu_load(rq);
fa85ae24 4390 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4391 spin_unlock(&rq->lock);
7835b98b 4392
e418e1c2 4393#ifdef CONFIG_SMP
dd41f596
IM
4394 rq->idle_at_tick = idle_cpu(cpu);
4395 trigger_load_balance(rq, cpu);
e418e1c2 4396#endif
1da177e4
LT
4397}
4398
6cd8a4bb
SR
4399#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4400 defined(CONFIG_PREEMPT_TRACER))
4401
4402static inline unsigned long get_parent_ip(unsigned long addr)
4403{
4404 if (in_lock_functions(addr)) {
4405 addr = CALLER_ADDR2;
4406 if (in_lock_functions(addr))
4407 addr = CALLER_ADDR3;
4408 }
4409 return addr;
4410}
1da177e4 4411
43627582 4412void __kprobes add_preempt_count(int val)
1da177e4 4413{
6cd8a4bb 4414#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4415 /*
4416 * Underflow?
4417 */
9a11b49a
IM
4418 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4419 return;
6cd8a4bb 4420#endif
1da177e4 4421 preempt_count() += val;
6cd8a4bb 4422#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4423 /*
4424 * Spinlock count overflowing soon?
4425 */
33859f7f
MOS
4426 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4427 PREEMPT_MASK - 10);
6cd8a4bb
SR
4428#endif
4429 if (preempt_count() == val)
4430 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4431}
4432EXPORT_SYMBOL(add_preempt_count);
4433
43627582 4434void __kprobes sub_preempt_count(int val)
1da177e4 4435{
6cd8a4bb 4436#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4437 /*
4438 * Underflow?
4439 */
01e3eb82 4440 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4441 return;
1da177e4
LT
4442 /*
4443 * Is the spinlock portion underflowing?
4444 */
9a11b49a
IM
4445 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4446 !(preempt_count() & PREEMPT_MASK)))
4447 return;
6cd8a4bb 4448#endif
9a11b49a 4449
6cd8a4bb
SR
4450 if (preempt_count() == val)
4451 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4452 preempt_count() -= val;
4453}
4454EXPORT_SYMBOL(sub_preempt_count);
4455
4456#endif
4457
4458/*
dd41f596 4459 * Print scheduling while atomic bug:
1da177e4 4460 */
dd41f596 4461static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4462{
838225b4
SS
4463 struct pt_regs *regs = get_irq_regs();
4464
4465 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4466 prev->comm, prev->pid, preempt_count());
4467
dd41f596 4468 debug_show_held_locks(prev);
e21f5b15 4469 print_modules();
dd41f596
IM
4470 if (irqs_disabled())
4471 print_irqtrace_events(prev);
838225b4
SS
4472
4473 if (regs)
4474 show_regs(regs);
4475 else
4476 dump_stack();
dd41f596 4477}
1da177e4 4478
dd41f596
IM
4479/*
4480 * Various schedule()-time debugging checks and statistics:
4481 */
4482static inline void schedule_debug(struct task_struct *prev)
4483{
1da177e4 4484 /*
41a2d6cf 4485 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4486 * schedule() atomically, we ignore that path for now.
4487 * Otherwise, whine if we are scheduling when we should not be.
4488 */
3f33a7ce 4489 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4490 __schedule_bug(prev);
4491
1da177e4
LT
4492 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4493
2d72376b 4494 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4495#ifdef CONFIG_SCHEDSTATS
4496 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4497 schedstat_inc(this_rq(), bkl_count);
4498 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4499 }
4500#endif
dd41f596
IM
4501}
4502
4503/*
4504 * Pick up the highest-prio task:
4505 */
4506static inline struct task_struct *
ff95f3df 4507pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4508{
5522d5d5 4509 const struct sched_class *class;
dd41f596 4510 struct task_struct *p;
1da177e4
LT
4511
4512 /*
dd41f596
IM
4513 * Optimization: we know that if all tasks are in
4514 * the fair class we can call that function directly:
1da177e4 4515 */
dd41f596 4516 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4517 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4518 if (likely(p))
4519 return p;
1da177e4
LT
4520 }
4521
dd41f596
IM
4522 class = sched_class_highest;
4523 for ( ; ; ) {
fb8d4724 4524 p = class->pick_next_task(rq);
dd41f596
IM
4525 if (p)
4526 return p;
4527 /*
4528 * Will never be NULL as the idle class always
4529 * returns a non-NULL p:
4530 */
4531 class = class->next;
4532 }
4533}
1da177e4 4534
dd41f596
IM
4535/*
4536 * schedule() is the main scheduler function.
4537 */
4538asmlinkage void __sched schedule(void)
4539{
4540 struct task_struct *prev, *next;
67ca7bde 4541 unsigned long *switch_count;
dd41f596 4542 struct rq *rq;
dd41f596
IM
4543 int cpu;
4544
4545need_resched:
4546 preempt_disable();
4547 cpu = smp_processor_id();
4548 rq = cpu_rq(cpu);
4549 rcu_qsctr_inc(cpu);
4550 prev = rq->curr;
4551 switch_count = &prev->nivcsw;
4552
4553 release_kernel_lock(prev);
4554need_resched_nonpreemptible:
4555
4556 schedule_debug(prev);
1da177e4 4557
31656519 4558 if (sched_feat(HRTICK))
f333fdc9 4559 hrtick_clear(rq);
8f4d37ec 4560
8cd162ce 4561 spin_lock_irq(&rq->lock);
3e51f33f 4562 update_rq_clock(rq);
1e819950 4563 clear_tsk_need_resched(prev);
1da177e4 4564
1da177e4 4565 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4566 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4567 prev->state = TASK_RUNNING;
16882c1e 4568 else
2e1cb74a 4569 deactivate_task(rq, prev, 1);
dd41f596 4570 switch_count = &prev->nvcsw;
1da177e4
LT
4571 }
4572
9a897c5a
SR
4573#ifdef CONFIG_SMP
4574 if (prev->sched_class->pre_schedule)
4575 prev->sched_class->pre_schedule(rq, prev);
4576#endif
f65eda4f 4577
dd41f596 4578 if (unlikely(!rq->nr_running))
1da177e4 4579 idle_balance(cpu, rq);
1da177e4 4580
31ee529c 4581 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4582 next = pick_next_task(rq, prev);
1da177e4 4583
1da177e4 4584 if (likely(prev != next)) {
673a90a1
DS
4585 sched_info_switch(prev, next);
4586
1da177e4
LT
4587 rq->nr_switches++;
4588 rq->curr = next;
4589 ++*switch_count;
4590
dd41f596 4591 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4592 /*
4593 * the context switch might have flipped the stack from under
4594 * us, hence refresh the local variables.
4595 */
4596 cpu = smp_processor_id();
4597 rq = cpu_rq(cpu);
1da177e4
LT
4598 } else
4599 spin_unlock_irq(&rq->lock);
4600
8f4d37ec 4601 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4602 goto need_resched_nonpreemptible;
8f4d37ec 4603
1da177e4
LT
4604 preempt_enable_no_resched();
4605 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4606 goto need_resched;
4607}
1da177e4
LT
4608EXPORT_SYMBOL(schedule);
4609
4610#ifdef CONFIG_PREEMPT
4611/*
2ed6e34f 4612 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4613 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4614 * occur there and call schedule directly.
4615 */
4616asmlinkage void __sched preempt_schedule(void)
4617{
4618 struct thread_info *ti = current_thread_info();
6478d880 4619
1da177e4
LT
4620 /*
4621 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4622 * we do not want to preempt the current task. Just return..
1da177e4 4623 */
beed33a8 4624 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4625 return;
4626
3a5c359a
AK
4627 do {
4628 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4629 schedule();
3a5c359a 4630 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4631
3a5c359a
AK
4632 /*
4633 * Check again in case we missed a preemption opportunity
4634 * between schedule and now.
4635 */
4636 barrier();
4637 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4638}
1da177e4
LT
4639EXPORT_SYMBOL(preempt_schedule);
4640
4641/*
2ed6e34f 4642 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4643 * off of irq context.
4644 * Note, that this is called and return with irqs disabled. This will
4645 * protect us against recursive calling from irq.
4646 */
4647asmlinkage void __sched preempt_schedule_irq(void)
4648{
4649 struct thread_info *ti = current_thread_info();
6478d880 4650
2ed6e34f 4651 /* Catch callers which need to be fixed */
1da177e4
LT
4652 BUG_ON(ti->preempt_count || !irqs_disabled());
4653
3a5c359a
AK
4654 do {
4655 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4656 local_irq_enable();
4657 schedule();
4658 local_irq_disable();
3a5c359a 4659 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4660
3a5c359a
AK
4661 /*
4662 * Check again in case we missed a preemption opportunity
4663 * between schedule and now.
4664 */
4665 barrier();
4666 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4667}
4668
4669#endif /* CONFIG_PREEMPT */
4670
95cdf3b7
IM
4671int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4672 void *key)
1da177e4 4673{
48f24c4d 4674 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4675}
1da177e4
LT
4676EXPORT_SYMBOL(default_wake_function);
4677
4678/*
41a2d6cf
IM
4679 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4680 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4681 * number) then we wake all the non-exclusive tasks and one exclusive task.
4682 *
4683 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4684 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4685 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4686 */
777c6c5f
JW
4687void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4688 int nr_exclusive, int sync, void *key)
1da177e4 4689{
2e45874c 4690 wait_queue_t *curr, *next;
1da177e4 4691
2e45874c 4692 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4693 unsigned flags = curr->flags;
4694
1da177e4 4695 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4696 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4697 break;
4698 }
4699}
4700
4701/**
4702 * __wake_up - wake up threads blocked on a waitqueue.
4703 * @q: the waitqueue
4704 * @mode: which threads
4705 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4706 * @key: is directly passed to the wakeup function
1da177e4 4707 */
7ad5b3a5 4708void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4709 int nr_exclusive, void *key)
1da177e4
LT
4710{
4711 unsigned long flags;
4712
4713 spin_lock_irqsave(&q->lock, flags);
4714 __wake_up_common(q, mode, nr_exclusive, 0, key);
4715 spin_unlock_irqrestore(&q->lock, flags);
4716}
1da177e4
LT
4717EXPORT_SYMBOL(__wake_up);
4718
4719/*
4720 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4721 */
7ad5b3a5 4722void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4723{
4724 __wake_up_common(q, mode, 1, 0, NULL);
4725}
4726
4727/**
67be2dd1 4728 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4729 * @q: the waitqueue
4730 * @mode: which threads
4731 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4732 *
4733 * The sync wakeup differs that the waker knows that it will schedule
4734 * away soon, so while the target thread will be woken up, it will not
4735 * be migrated to another CPU - ie. the two threads are 'synchronized'
4736 * with each other. This can prevent needless bouncing between CPUs.
4737 *
4738 * On UP it can prevent extra preemption.
4739 */
7ad5b3a5 4740void
95cdf3b7 4741__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4742{
4743 unsigned long flags;
4744 int sync = 1;
4745
4746 if (unlikely(!q))
4747 return;
4748
4749 if (unlikely(!nr_exclusive))
4750 sync = 0;
4751
4752 spin_lock_irqsave(&q->lock, flags);
4753 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4754 spin_unlock_irqrestore(&q->lock, flags);
4755}
4756EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4757
65eb3dc6
KD
4758/**
4759 * complete: - signals a single thread waiting on this completion
4760 * @x: holds the state of this particular completion
4761 *
4762 * This will wake up a single thread waiting on this completion. Threads will be
4763 * awakened in the same order in which they were queued.
4764 *
4765 * See also complete_all(), wait_for_completion() and related routines.
4766 */
b15136e9 4767void complete(struct completion *x)
1da177e4
LT
4768{
4769 unsigned long flags;
4770
4771 spin_lock_irqsave(&x->wait.lock, flags);
4772 x->done++;
d9514f6c 4773 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4774 spin_unlock_irqrestore(&x->wait.lock, flags);
4775}
4776EXPORT_SYMBOL(complete);
4777
65eb3dc6
KD
4778/**
4779 * complete_all: - signals all threads waiting on this completion
4780 * @x: holds the state of this particular completion
4781 *
4782 * This will wake up all threads waiting on this particular completion event.
4783 */
b15136e9 4784void complete_all(struct completion *x)
1da177e4
LT
4785{
4786 unsigned long flags;
4787
4788 spin_lock_irqsave(&x->wait.lock, flags);
4789 x->done += UINT_MAX/2;
d9514f6c 4790 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4791 spin_unlock_irqrestore(&x->wait.lock, flags);
4792}
4793EXPORT_SYMBOL(complete_all);
4794
8cbbe86d
AK
4795static inline long __sched
4796do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4797{
1da177e4
LT
4798 if (!x->done) {
4799 DECLARE_WAITQUEUE(wait, current);
4800
4801 wait.flags |= WQ_FLAG_EXCLUSIVE;
4802 __add_wait_queue_tail(&x->wait, &wait);
4803 do {
94d3d824 4804 if (signal_pending_state(state, current)) {
ea71a546
ON
4805 timeout = -ERESTARTSYS;
4806 break;
8cbbe86d
AK
4807 }
4808 __set_current_state(state);
1da177e4
LT
4809 spin_unlock_irq(&x->wait.lock);
4810 timeout = schedule_timeout(timeout);
4811 spin_lock_irq(&x->wait.lock);
ea71a546 4812 } while (!x->done && timeout);
1da177e4 4813 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4814 if (!x->done)
4815 return timeout;
1da177e4
LT
4816 }
4817 x->done--;
ea71a546 4818 return timeout ?: 1;
1da177e4 4819}
1da177e4 4820
8cbbe86d
AK
4821static long __sched
4822wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4823{
1da177e4
LT
4824 might_sleep();
4825
4826 spin_lock_irq(&x->wait.lock);
8cbbe86d 4827 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4828 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4829 return timeout;
4830}
1da177e4 4831
65eb3dc6
KD
4832/**
4833 * wait_for_completion: - waits for completion of a task
4834 * @x: holds the state of this particular completion
4835 *
4836 * This waits to be signaled for completion of a specific task. It is NOT
4837 * interruptible and there is no timeout.
4838 *
4839 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4840 * and interrupt capability. Also see complete().
4841 */
b15136e9 4842void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4843{
4844 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4845}
8cbbe86d 4846EXPORT_SYMBOL(wait_for_completion);
1da177e4 4847
65eb3dc6
KD
4848/**
4849 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4850 * @x: holds the state of this particular completion
4851 * @timeout: timeout value in jiffies
4852 *
4853 * This waits for either a completion of a specific task to be signaled or for a
4854 * specified timeout to expire. The timeout is in jiffies. It is not
4855 * interruptible.
4856 */
b15136e9 4857unsigned long __sched
8cbbe86d 4858wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4859{
8cbbe86d 4860 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4861}
8cbbe86d 4862EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4863
65eb3dc6
KD
4864/**
4865 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4866 * @x: holds the state of this particular completion
4867 *
4868 * This waits for completion of a specific task to be signaled. It is
4869 * interruptible.
4870 */
8cbbe86d 4871int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4872{
51e97990
AK
4873 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4874 if (t == -ERESTARTSYS)
4875 return t;
4876 return 0;
0fec171c 4877}
8cbbe86d 4878EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4879
65eb3dc6
KD
4880/**
4881 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4882 * @x: holds the state of this particular completion
4883 * @timeout: timeout value in jiffies
4884 *
4885 * This waits for either a completion of a specific task to be signaled or for a
4886 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4887 */
b15136e9 4888unsigned long __sched
8cbbe86d
AK
4889wait_for_completion_interruptible_timeout(struct completion *x,
4890 unsigned long timeout)
0fec171c 4891{
8cbbe86d 4892 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4893}
8cbbe86d 4894EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4895
65eb3dc6
KD
4896/**
4897 * wait_for_completion_killable: - waits for completion of a task (killable)
4898 * @x: holds the state of this particular completion
4899 *
4900 * This waits to be signaled for completion of a specific task. It can be
4901 * interrupted by a kill signal.
4902 */
009e577e
MW
4903int __sched wait_for_completion_killable(struct completion *x)
4904{
4905 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4906 if (t == -ERESTARTSYS)
4907 return t;
4908 return 0;
4909}
4910EXPORT_SYMBOL(wait_for_completion_killable);
4911
be4de352
DC
4912/**
4913 * try_wait_for_completion - try to decrement a completion without blocking
4914 * @x: completion structure
4915 *
4916 * Returns: 0 if a decrement cannot be done without blocking
4917 * 1 if a decrement succeeded.
4918 *
4919 * If a completion is being used as a counting completion,
4920 * attempt to decrement the counter without blocking. This
4921 * enables us to avoid waiting if the resource the completion
4922 * is protecting is not available.
4923 */
4924bool try_wait_for_completion(struct completion *x)
4925{
4926 int ret = 1;
4927
4928 spin_lock_irq(&x->wait.lock);
4929 if (!x->done)
4930 ret = 0;
4931 else
4932 x->done--;
4933 spin_unlock_irq(&x->wait.lock);
4934 return ret;
4935}
4936EXPORT_SYMBOL(try_wait_for_completion);
4937
4938/**
4939 * completion_done - Test to see if a completion has any waiters
4940 * @x: completion structure
4941 *
4942 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4943 * 1 if there are no waiters.
4944 *
4945 */
4946bool completion_done(struct completion *x)
4947{
4948 int ret = 1;
4949
4950 spin_lock_irq(&x->wait.lock);
4951 if (!x->done)
4952 ret = 0;
4953 spin_unlock_irq(&x->wait.lock);
4954 return ret;
4955}
4956EXPORT_SYMBOL(completion_done);
4957
8cbbe86d
AK
4958static long __sched
4959sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4960{
0fec171c
IM
4961 unsigned long flags;
4962 wait_queue_t wait;
4963
4964 init_waitqueue_entry(&wait, current);
1da177e4 4965
8cbbe86d 4966 __set_current_state(state);
1da177e4 4967
8cbbe86d
AK
4968 spin_lock_irqsave(&q->lock, flags);
4969 __add_wait_queue(q, &wait);
4970 spin_unlock(&q->lock);
4971 timeout = schedule_timeout(timeout);
4972 spin_lock_irq(&q->lock);
4973 __remove_wait_queue(q, &wait);
4974 spin_unlock_irqrestore(&q->lock, flags);
4975
4976 return timeout;
4977}
4978
4979void __sched interruptible_sleep_on(wait_queue_head_t *q)
4980{
4981 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4982}
1da177e4
LT
4983EXPORT_SYMBOL(interruptible_sleep_on);
4984
0fec171c 4985long __sched
95cdf3b7 4986interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4987{
8cbbe86d 4988 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4989}
1da177e4
LT
4990EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4991
0fec171c 4992void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4993{
8cbbe86d 4994 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4995}
1da177e4
LT
4996EXPORT_SYMBOL(sleep_on);
4997
0fec171c 4998long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4999{
8cbbe86d 5000 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5001}
1da177e4
LT
5002EXPORT_SYMBOL(sleep_on_timeout);
5003
b29739f9
IM
5004#ifdef CONFIG_RT_MUTEXES
5005
5006/*
5007 * rt_mutex_setprio - set the current priority of a task
5008 * @p: task
5009 * @prio: prio value (kernel-internal form)
5010 *
5011 * This function changes the 'effective' priority of a task. It does
5012 * not touch ->normal_prio like __setscheduler().
5013 *
5014 * Used by the rt_mutex code to implement priority inheritance logic.
5015 */
36c8b586 5016void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5017{
5018 unsigned long flags;
83b699ed 5019 int oldprio, on_rq, running;
70b97a7f 5020 struct rq *rq;
cb469845 5021 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5022
5023 BUG_ON(prio < 0 || prio > MAX_PRIO);
5024
5025 rq = task_rq_lock(p, &flags);
a8e504d2 5026 update_rq_clock(rq);
b29739f9 5027
d5f9f942 5028 oldprio = p->prio;
dd41f596 5029 on_rq = p->se.on_rq;
051a1d1a 5030 running = task_current(rq, p);
0e1f3483 5031 if (on_rq)
69be72c1 5032 dequeue_task(rq, p, 0);
0e1f3483
HS
5033 if (running)
5034 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5035
5036 if (rt_prio(prio))
5037 p->sched_class = &rt_sched_class;
5038 else
5039 p->sched_class = &fair_sched_class;
5040
b29739f9
IM
5041 p->prio = prio;
5042
0e1f3483
HS
5043 if (running)
5044 p->sched_class->set_curr_task(rq);
dd41f596 5045 if (on_rq) {
8159f87e 5046 enqueue_task(rq, p, 0);
cb469845
SR
5047
5048 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5049 }
5050 task_rq_unlock(rq, &flags);
5051}
5052
5053#endif
5054
36c8b586 5055void set_user_nice(struct task_struct *p, long nice)
1da177e4 5056{
dd41f596 5057 int old_prio, delta, on_rq;
1da177e4 5058 unsigned long flags;
70b97a7f 5059 struct rq *rq;
1da177e4
LT
5060
5061 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5062 return;
5063 /*
5064 * We have to be careful, if called from sys_setpriority(),
5065 * the task might be in the middle of scheduling on another CPU.
5066 */
5067 rq = task_rq_lock(p, &flags);
a8e504d2 5068 update_rq_clock(rq);
1da177e4
LT
5069 /*
5070 * The RT priorities are set via sched_setscheduler(), but we still
5071 * allow the 'normal' nice value to be set - but as expected
5072 * it wont have any effect on scheduling until the task is
dd41f596 5073 * SCHED_FIFO/SCHED_RR:
1da177e4 5074 */
e05606d3 5075 if (task_has_rt_policy(p)) {
1da177e4
LT
5076 p->static_prio = NICE_TO_PRIO(nice);
5077 goto out_unlock;
5078 }
dd41f596 5079 on_rq = p->se.on_rq;
c09595f6 5080 if (on_rq)
69be72c1 5081 dequeue_task(rq, p, 0);
1da177e4 5082
1da177e4 5083 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5084 set_load_weight(p);
b29739f9
IM
5085 old_prio = p->prio;
5086 p->prio = effective_prio(p);
5087 delta = p->prio - old_prio;
1da177e4 5088
dd41f596 5089 if (on_rq) {
8159f87e 5090 enqueue_task(rq, p, 0);
1da177e4 5091 /*
d5f9f942
AM
5092 * If the task increased its priority or is running and
5093 * lowered its priority, then reschedule its CPU:
1da177e4 5094 */
d5f9f942 5095 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5096 resched_task(rq->curr);
5097 }
5098out_unlock:
5099 task_rq_unlock(rq, &flags);
5100}
1da177e4
LT
5101EXPORT_SYMBOL(set_user_nice);
5102
e43379f1
MM
5103/*
5104 * can_nice - check if a task can reduce its nice value
5105 * @p: task
5106 * @nice: nice value
5107 */
36c8b586 5108int can_nice(const struct task_struct *p, const int nice)
e43379f1 5109{
024f4747
MM
5110 /* convert nice value [19,-20] to rlimit style value [1,40] */
5111 int nice_rlim = 20 - nice;
48f24c4d 5112
e43379f1
MM
5113 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5114 capable(CAP_SYS_NICE));
5115}
5116
1da177e4
LT
5117#ifdef __ARCH_WANT_SYS_NICE
5118
5119/*
5120 * sys_nice - change the priority of the current process.
5121 * @increment: priority increment
5122 *
5123 * sys_setpriority is a more generic, but much slower function that
5124 * does similar things.
5125 */
5add95d4 5126SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5127{
48f24c4d 5128 long nice, retval;
1da177e4
LT
5129
5130 /*
5131 * Setpriority might change our priority at the same moment.
5132 * We don't have to worry. Conceptually one call occurs first
5133 * and we have a single winner.
5134 */
e43379f1
MM
5135 if (increment < -40)
5136 increment = -40;
1da177e4
LT
5137 if (increment > 40)
5138 increment = 40;
5139
5140 nice = PRIO_TO_NICE(current->static_prio) + increment;
5141 if (nice < -20)
5142 nice = -20;
5143 if (nice > 19)
5144 nice = 19;
5145
e43379f1
MM
5146 if (increment < 0 && !can_nice(current, nice))
5147 return -EPERM;
5148
1da177e4
LT
5149 retval = security_task_setnice(current, nice);
5150 if (retval)
5151 return retval;
5152
5153 set_user_nice(current, nice);
5154 return 0;
5155}
5156
5157#endif
5158
5159/**
5160 * task_prio - return the priority value of a given task.
5161 * @p: the task in question.
5162 *
5163 * This is the priority value as seen by users in /proc.
5164 * RT tasks are offset by -200. Normal tasks are centered
5165 * around 0, value goes from -16 to +15.
5166 */
36c8b586 5167int task_prio(const struct task_struct *p)
1da177e4
LT
5168{
5169 return p->prio - MAX_RT_PRIO;
5170}
5171
5172/**
5173 * task_nice - return the nice value of a given task.
5174 * @p: the task in question.
5175 */
36c8b586 5176int task_nice(const struct task_struct *p)
1da177e4
LT
5177{
5178 return TASK_NICE(p);
5179}
150d8bed 5180EXPORT_SYMBOL(task_nice);
1da177e4
LT
5181
5182/**
5183 * idle_cpu - is a given cpu idle currently?
5184 * @cpu: the processor in question.
5185 */
5186int idle_cpu(int cpu)
5187{
5188 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5189}
5190
1da177e4
LT
5191/**
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5194 */
36c8b586 5195struct task_struct *idle_task(int cpu)
1da177e4
LT
5196{
5197 return cpu_rq(cpu)->idle;
5198}
5199
5200/**
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5203 */
a9957449 5204static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5205{
228ebcbe 5206 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5207}
5208
5209/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5210static void
5211__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5212{
dd41f596 5213 BUG_ON(p->se.on_rq);
48f24c4d 5214
1da177e4 5215 p->policy = policy;
dd41f596
IM
5216 switch (p->policy) {
5217 case SCHED_NORMAL:
5218 case SCHED_BATCH:
5219 case SCHED_IDLE:
5220 p->sched_class = &fair_sched_class;
5221 break;
5222 case SCHED_FIFO:
5223 case SCHED_RR:
5224 p->sched_class = &rt_sched_class;
5225 break;
5226 }
5227
1da177e4 5228 p->rt_priority = prio;
b29739f9
IM
5229 p->normal_prio = normal_prio(p);
5230 /* we are holding p->pi_lock already */
5231 p->prio = rt_mutex_getprio(p);
2dd73a4f 5232 set_load_weight(p);
1da177e4
LT
5233}
5234
c69e8d9c
DH
5235/*
5236 * check the target process has a UID that matches the current process's
5237 */
5238static bool check_same_owner(struct task_struct *p)
5239{
5240 const struct cred *cred = current_cred(), *pcred;
5241 bool match;
5242
5243 rcu_read_lock();
5244 pcred = __task_cred(p);
5245 match = (cred->euid == pcred->euid ||
5246 cred->euid == pcred->uid);
5247 rcu_read_unlock();
5248 return match;
5249}
5250
961ccddd
RR
5251static int __sched_setscheduler(struct task_struct *p, int policy,
5252 struct sched_param *param, bool user)
1da177e4 5253{
83b699ed 5254 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5255 unsigned long flags;
cb469845 5256 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5257 struct rq *rq;
1da177e4 5258
66e5393a
SR
5259 /* may grab non-irq protected spin_locks */
5260 BUG_ON(in_interrupt());
1da177e4
LT
5261recheck:
5262 /* double check policy once rq lock held */
5263 if (policy < 0)
5264 policy = oldpolicy = p->policy;
5265 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5266 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5267 policy != SCHED_IDLE)
b0a9499c 5268 return -EINVAL;
1da177e4
LT
5269 /*
5270 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5272 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5273 */
5274 if (param->sched_priority < 0 ||
95cdf3b7 5275 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5276 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5277 return -EINVAL;
e05606d3 5278 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5279 return -EINVAL;
5280
37e4ab3f
OC
5281 /*
5282 * Allow unprivileged RT tasks to decrease priority:
5283 */
961ccddd 5284 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5285 if (rt_policy(policy)) {
8dc3e909 5286 unsigned long rlim_rtprio;
8dc3e909
ON
5287
5288 if (!lock_task_sighand(p, &flags))
5289 return -ESRCH;
5290 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5291 unlock_task_sighand(p, &flags);
5292
5293 /* can't set/change the rt policy */
5294 if (policy != p->policy && !rlim_rtprio)
5295 return -EPERM;
5296
5297 /* can't increase priority */
5298 if (param->sched_priority > p->rt_priority &&
5299 param->sched_priority > rlim_rtprio)
5300 return -EPERM;
5301 }
dd41f596
IM
5302 /*
5303 * Like positive nice levels, dont allow tasks to
5304 * move out of SCHED_IDLE either:
5305 */
5306 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5307 return -EPERM;
5fe1d75f 5308
37e4ab3f 5309 /* can't change other user's priorities */
c69e8d9c 5310 if (!check_same_owner(p))
37e4ab3f
OC
5311 return -EPERM;
5312 }
1da177e4 5313
725aad24 5314 if (user) {
b68aa230 5315#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5316 /*
5317 * Do not allow realtime tasks into groups that have no runtime
5318 * assigned.
5319 */
9a7e0b18
PZ
5320 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5321 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5322 return -EPERM;
b68aa230
PZ
5323#endif
5324
725aad24
JF
5325 retval = security_task_setscheduler(p, policy, param);
5326 if (retval)
5327 return retval;
5328 }
5329
b29739f9
IM
5330 /*
5331 * make sure no PI-waiters arrive (or leave) while we are
5332 * changing the priority of the task:
5333 */
5334 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5335 /*
5336 * To be able to change p->policy safely, the apropriate
5337 * runqueue lock must be held.
5338 */
b29739f9 5339 rq = __task_rq_lock(p);
1da177e4
LT
5340 /* recheck policy now with rq lock held */
5341 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5342 policy = oldpolicy = -1;
b29739f9
IM
5343 __task_rq_unlock(rq);
5344 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5345 goto recheck;
5346 }
2daa3577 5347 update_rq_clock(rq);
dd41f596 5348 on_rq = p->se.on_rq;
051a1d1a 5349 running = task_current(rq, p);
0e1f3483 5350 if (on_rq)
2e1cb74a 5351 deactivate_task(rq, p, 0);
0e1f3483
HS
5352 if (running)
5353 p->sched_class->put_prev_task(rq, p);
f6b53205 5354
1da177e4 5355 oldprio = p->prio;
dd41f596 5356 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5357
0e1f3483
HS
5358 if (running)
5359 p->sched_class->set_curr_task(rq);
dd41f596
IM
5360 if (on_rq) {
5361 activate_task(rq, p, 0);
cb469845
SR
5362
5363 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5364 }
b29739f9
IM
5365 __task_rq_unlock(rq);
5366 spin_unlock_irqrestore(&p->pi_lock, flags);
5367
95e02ca9
TG
5368 rt_mutex_adjust_pi(p);
5369
1da177e4
LT
5370 return 0;
5371}
961ccddd
RR
5372
5373/**
5374 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5375 * @p: the task in question.
5376 * @policy: new policy.
5377 * @param: structure containing the new RT priority.
5378 *
5379 * NOTE that the task may be already dead.
5380 */
5381int sched_setscheduler(struct task_struct *p, int policy,
5382 struct sched_param *param)
5383{
5384 return __sched_setscheduler(p, policy, param, true);
5385}
1da177e4
LT
5386EXPORT_SYMBOL_GPL(sched_setscheduler);
5387
961ccddd
RR
5388/**
5389 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5390 * @p: the task in question.
5391 * @policy: new policy.
5392 * @param: structure containing the new RT priority.
5393 *
5394 * Just like sched_setscheduler, only don't bother checking if the
5395 * current context has permission. For example, this is needed in
5396 * stop_machine(): we create temporary high priority worker threads,
5397 * but our caller might not have that capability.
5398 */
5399int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5400 struct sched_param *param)
5401{
5402 return __sched_setscheduler(p, policy, param, false);
5403}
5404
95cdf3b7
IM
5405static int
5406do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5407{
1da177e4
LT
5408 struct sched_param lparam;
5409 struct task_struct *p;
36c8b586 5410 int retval;
1da177e4
LT
5411
5412 if (!param || pid < 0)
5413 return -EINVAL;
5414 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5415 return -EFAULT;
5fe1d75f
ON
5416
5417 rcu_read_lock();
5418 retval = -ESRCH;
1da177e4 5419 p = find_process_by_pid(pid);
5fe1d75f
ON
5420 if (p != NULL)
5421 retval = sched_setscheduler(p, policy, &lparam);
5422 rcu_read_unlock();
36c8b586 5423
1da177e4
LT
5424 return retval;
5425}
5426
5427/**
5428 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5429 * @pid: the pid in question.
5430 * @policy: new policy.
5431 * @param: structure containing the new RT priority.
5432 */
5add95d4
HC
5433SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5434 struct sched_param __user *, param)
1da177e4 5435{
c21761f1
JB
5436 /* negative values for policy are not valid */
5437 if (policy < 0)
5438 return -EINVAL;
5439
1da177e4
LT
5440 return do_sched_setscheduler(pid, policy, param);
5441}
5442
5443/**
5444 * sys_sched_setparam - set/change the RT priority of a thread
5445 * @pid: the pid in question.
5446 * @param: structure containing the new RT priority.
5447 */
5add95d4 5448SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5449{
5450 return do_sched_setscheduler(pid, -1, param);
5451}
5452
5453/**
5454 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5455 * @pid: the pid in question.
5456 */
5add95d4 5457SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5458{
36c8b586 5459 struct task_struct *p;
3a5c359a 5460 int retval;
1da177e4
LT
5461
5462 if (pid < 0)
3a5c359a 5463 return -EINVAL;
1da177e4
LT
5464
5465 retval = -ESRCH;
5466 read_lock(&tasklist_lock);
5467 p = find_process_by_pid(pid);
5468 if (p) {
5469 retval = security_task_getscheduler(p);
5470 if (!retval)
5471 retval = p->policy;
5472 }
5473 read_unlock(&tasklist_lock);
1da177e4
LT
5474 return retval;
5475}
5476
5477/**
5478 * sys_sched_getscheduler - get the RT priority of a thread
5479 * @pid: the pid in question.
5480 * @param: structure containing the RT priority.
5481 */
5add95d4 5482SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5483{
5484 struct sched_param lp;
36c8b586 5485 struct task_struct *p;
3a5c359a 5486 int retval;
1da177e4
LT
5487
5488 if (!param || pid < 0)
3a5c359a 5489 return -EINVAL;
1da177e4
LT
5490
5491 read_lock(&tasklist_lock);
5492 p = find_process_by_pid(pid);
5493 retval = -ESRCH;
5494 if (!p)
5495 goto out_unlock;
5496
5497 retval = security_task_getscheduler(p);
5498 if (retval)
5499 goto out_unlock;
5500
5501 lp.sched_priority = p->rt_priority;
5502 read_unlock(&tasklist_lock);
5503
5504 /*
5505 * This one might sleep, we cannot do it with a spinlock held ...
5506 */
5507 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5508
1da177e4
LT
5509 return retval;
5510
5511out_unlock:
5512 read_unlock(&tasklist_lock);
5513 return retval;
5514}
5515
96f874e2 5516long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5517{
5a16f3d3 5518 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5519 struct task_struct *p;
5520 int retval;
1da177e4 5521
95402b38 5522 get_online_cpus();
1da177e4
LT
5523 read_lock(&tasklist_lock);
5524
5525 p = find_process_by_pid(pid);
5526 if (!p) {
5527 read_unlock(&tasklist_lock);
95402b38 5528 put_online_cpus();
1da177e4
LT
5529 return -ESRCH;
5530 }
5531
5532 /*
5533 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5534 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5535 * usage count and then drop tasklist_lock.
5536 */
5537 get_task_struct(p);
5538 read_unlock(&tasklist_lock);
5539
5a16f3d3
RR
5540 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5541 retval = -ENOMEM;
5542 goto out_put_task;
5543 }
5544 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5545 retval = -ENOMEM;
5546 goto out_free_cpus_allowed;
5547 }
1da177e4 5548 retval = -EPERM;
c69e8d9c 5549 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5550 goto out_unlock;
5551
e7834f8f
DQ
5552 retval = security_task_setscheduler(p, 0, NULL);
5553 if (retval)
5554 goto out_unlock;
5555
5a16f3d3
RR
5556 cpuset_cpus_allowed(p, cpus_allowed);
5557 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5558 again:
5a16f3d3 5559 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5560
8707d8b8 5561 if (!retval) {
5a16f3d3
RR
5562 cpuset_cpus_allowed(p, cpus_allowed);
5563 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5564 /*
5565 * We must have raced with a concurrent cpuset
5566 * update. Just reset the cpus_allowed to the
5567 * cpuset's cpus_allowed
5568 */
5a16f3d3 5569 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5570 goto again;
5571 }
5572 }
1da177e4 5573out_unlock:
5a16f3d3
RR
5574 free_cpumask_var(new_mask);
5575out_free_cpus_allowed:
5576 free_cpumask_var(cpus_allowed);
5577out_put_task:
1da177e4 5578 put_task_struct(p);
95402b38 5579 put_online_cpus();
1da177e4
LT
5580 return retval;
5581}
5582
5583static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5584 struct cpumask *new_mask)
1da177e4 5585{
96f874e2
RR
5586 if (len < cpumask_size())
5587 cpumask_clear(new_mask);
5588 else if (len > cpumask_size())
5589 len = cpumask_size();
5590
1da177e4
LT
5591 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5592}
5593
5594/**
5595 * sys_sched_setaffinity - set the cpu affinity of a process
5596 * @pid: pid of the process
5597 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5598 * @user_mask_ptr: user-space pointer to the new cpu mask
5599 */
5add95d4
HC
5600SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5601 unsigned long __user *, user_mask_ptr)
1da177e4 5602{
5a16f3d3 5603 cpumask_var_t new_mask;
1da177e4
LT
5604 int retval;
5605
5a16f3d3
RR
5606 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5607 return -ENOMEM;
1da177e4 5608
5a16f3d3
RR
5609 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5610 if (retval == 0)
5611 retval = sched_setaffinity(pid, new_mask);
5612 free_cpumask_var(new_mask);
5613 return retval;
1da177e4
LT
5614}
5615
96f874e2 5616long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5617{
36c8b586 5618 struct task_struct *p;
1da177e4 5619 int retval;
1da177e4 5620
95402b38 5621 get_online_cpus();
1da177e4
LT
5622 read_lock(&tasklist_lock);
5623
5624 retval = -ESRCH;
5625 p = find_process_by_pid(pid);
5626 if (!p)
5627 goto out_unlock;
5628
e7834f8f
DQ
5629 retval = security_task_getscheduler(p);
5630 if (retval)
5631 goto out_unlock;
5632
96f874e2 5633 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5634
5635out_unlock:
5636 read_unlock(&tasklist_lock);
95402b38 5637 put_online_cpus();
1da177e4 5638
9531b62f 5639 return retval;
1da177e4
LT
5640}
5641
5642/**
5643 * sys_sched_getaffinity - get the cpu affinity of a process
5644 * @pid: pid of the process
5645 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5646 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5647 */
5add95d4
HC
5648SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5649 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5650{
5651 int ret;
f17c8607 5652 cpumask_var_t mask;
1da177e4 5653
f17c8607 5654 if (len < cpumask_size())
1da177e4
LT
5655 return -EINVAL;
5656
f17c8607
RR
5657 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5658 return -ENOMEM;
1da177e4 5659
f17c8607
RR
5660 ret = sched_getaffinity(pid, mask);
5661 if (ret == 0) {
5662 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5663 ret = -EFAULT;
5664 else
5665 ret = cpumask_size();
5666 }
5667 free_cpumask_var(mask);
1da177e4 5668
f17c8607 5669 return ret;
1da177e4
LT
5670}
5671
5672/**
5673 * sys_sched_yield - yield the current processor to other threads.
5674 *
dd41f596
IM
5675 * This function yields the current CPU to other tasks. If there are no
5676 * other threads running on this CPU then this function will return.
1da177e4 5677 */
5add95d4 5678SYSCALL_DEFINE0(sched_yield)
1da177e4 5679{
70b97a7f 5680 struct rq *rq = this_rq_lock();
1da177e4 5681
2d72376b 5682 schedstat_inc(rq, yld_count);
4530d7ab 5683 current->sched_class->yield_task(rq);
1da177e4
LT
5684
5685 /*
5686 * Since we are going to call schedule() anyway, there's
5687 * no need to preempt or enable interrupts:
5688 */
5689 __release(rq->lock);
8a25d5de 5690 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5691 _raw_spin_unlock(&rq->lock);
5692 preempt_enable_no_resched();
5693
5694 schedule();
5695
5696 return 0;
5697}
5698
e7b38404 5699static void __cond_resched(void)
1da177e4 5700{
8e0a43d8
IM
5701#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5702 __might_sleep(__FILE__, __LINE__);
5703#endif
5bbcfd90
IM
5704 /*
5705 * The BKS might be reacquired before we have dropped
5706 * PREEMPT_ACTIVE, which could trigger a second
5707 * cond_resched() call.
5708 */
1da177e4
LT
5709 do {
5710 add_preempt_count(PREEMPT_ACTIVE);
5711 schedule();
5712 sub_preempt_count(PREEMPT_ACTIVE);
5713 } while (need_resched());
5714}
5715
02b67cc3 5716int __sched _cond_resched(void)
1da177e4 5717{
9414232f
IM
5718 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5719 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5720 __cond_resched();
5721 return 1;
5722 }
5723 return 0;
5724}
02b67cc3 5725EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5726
5727/*
5728 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5729 * call schedule, and on return reacquire the lock.
5730 *
41a2d6cf 5731 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5732 * operations here to prevent schedule() from being called twice (once via
5733 * spin_unlock(), once by hand).
5734 */
95cdf3b7 5735int cond_resched_lock(spinlock_t *lock)
1da177e4 5736{
95c354fe 5737 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5738 int ret = 0;
5739
95c354fe 5740 if (spin_needbreak(lock) || resched) {
1da177e4 5741 spin_unlock(lock);
95c354fe
NP
5742 if (resched && need_resched())
5743 __cond_resched();
5744 else
5745 cpu_relax();
6df3cecb 5746 ret = 1;
1da177e4 5747 spin_lock(lock);
1da177e4 5748 }
6df3cecb 5749 return ret;
1da177e4 5750}
1da177e4
LT
5751EXPORT_SYMBOL(cond_resched_lock);
5752
5753int __sched cond_resched_softirq(void)
5754{
5755 BUG_ON(!in_softirq());
5756
9414232f 5757 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5758 local_bh_enable();
1da177e4
LT
5759 __cond_resched();
5760 local_bh_disable();
5761 return 1;
5762 }
5763 return 0;
5764}
1da177e4
LT
5765EXPORT_SYMBOL(cond_resched_softirq);
5766
1da177e4
LT
5767/**
5768 * yield - yield the current processor to other threads.
5769 *
72fd4a35 5770 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5771 * thread runnable and calls sys_sched_yield().
5772 */
5773void __sched yield(void)
5774{
5775 set_current_state(TASK_RUNNING);
5776 sys_sched_yield();
5777}
1da177e4
LT
5778EXPORT_SYMBOL(yield);
5779
5780/*
41a2d6cf 5781 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5782 * that process accounting knows that this is a task in IO wait state.
5783 *
5784 * But don't do that if it is a deliberate, throttling IO wait (this task
5785 * has set its backing_dev_info: the queue against which it should throttle)
5786 */
5787void __sched io_schedule(void)
5788{
70b97a7f 5789 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5790
0ff92245 5791 delayacct_blkio_start();
1da177e4
LT
5792 atomic_inc(&rq->nr_iowait);
5793 schedule();
5794 atomic_dec(&rq->nr_iowait);
0ff92245 5795 delayacct_blkio_end();
1da177e4 5796}
1da177e4
LT
5797EXPORT_SYMBOL(io_schedule);
5798
5799long __sched io_schedule_timeout(long timeout)
5800{
70b97a7f 5801 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5802 long ret;
5803
0ff92245 5804 delayacct_blkio_start();
1da177e4
LT
5805 atomic_inc(&rq->nr_iowait);
5806 ret = schedule_timeout(timeout);
5807 atomic_dec(&rq->nr_iowait);
0ff92245 5808 delayacct_blkio_end();
1da177e4
LT
5809 return ret;
5810}
5811
5812/**
5813 * sys_sched_get_priority_max - return maximum RT priority.
5814 * @policy: scheduling class.
5815 *
5816 * this syscall returns the maximum rt_priority that can be used
5817 * by a given scheduling class.
5818 */
5add95d4 5819SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5820{
5821 int ret = -EINVAL;
5822
5823 switch (policy) {
5824 case SCHED_FIFO:
5825 case SCHED_RR:
5826 ret = MAX_USER_RT_PRIO-1;
5827 break;
5828 case SCHED_NORMAL:
b0a9499c 5829 case SCHED_BATCH:
dd41f596 5830 case SCHED_IDLE:
1da177e4
LT
5831 ret = 0;
5832 break;
5833 }
5834 return ret;
5835}
5836
5837/**
5838 * sys_sched_get_priority_min - return minimum RT priority.
5839 * @policy: scheduling class.
5840 *
5841 * this syscall returns the minimum rt_priority that can be used
5842 * by a given scheduling class.
5843 */
5add95d4 5844SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5845{
5846 int ret = -EINVAL;
5847
5848 switch (policy) {
5849 case SCHED_FIFO:
5850 case SCHED_RR:
5851 ret = 1;
5852 break;
5853 case SCHED_NORMAL:
b0a9499c 5854 case SCHED_BATCH:
dd41f596 5855 case SCHED_IDLE:
1da177e4
LT
5856 ret = 0;
5857 }
5858 return ret;
5859}
5860
5861/**
5862 * sys_sched_rr_get_interval - return the default timeslice of a process.
5863 * @pid: pid of the process.
5864 * @interval: userspace pointer to the timeslice value.
5865 *
5866 * this syscall writes the default timeslice value of a given process
5867 * into the user-space timespec buffer. A value of '0' means infinity.
5868 */
17da2bd9 5869SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5870 struct timespec __user *, interval)
1da177e4 5871{
36c8b586 5872 struct task_struct *p;
a4ec24b4 5873 unsigned int time_slice;
3a5c359a 5874 int retval;
1da177e4 5875 struct timespec t;
1da177e4
LT
5876
5877 if (pid < 0)
3a5c359a 5878 return -EINVAL;
1da177e4
LT
5879
5880 retval = -ESRCH;
5881 read_lock(&tasklist_lock);
5882 p = find_process_by_pid(pid);
5883 if (!p)
5884 goto out_unlock;
5885
5886 retval = security_task_getscheduler(p);
5887 if (retval)
5888 goto out_unlock;
5889
77034937
IM
5890 /*
5891 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5892 * tasks that are on an otherwise idle runqueue:
5893 */
5894 time_slice = 0;
5895 if (p->policy == SCHED_RR) {
a4ec24b4 5896 time_slice = DEF_TIMESLICE;
1868f958 5897 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5898 struct sched_entity *se = &p->se;
5899 unsigned long flags;
5900 struct rq *rq;
5901
5902 rq = task_rq_lock(p, &flags);
77034937
IM
5903 if (rq->cfs.load.weight)
5904 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5905 task_rq_unlock(rq, &flags);
5906 }
1da177e4 5907 read_unlock(&tasklist_lock);
a4ec24b4 5908 jiffies_to_timespec(time_slice, &t);
1da177e4 5909 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5910 return retval;
3a5c359a 5911
1da177e4
LT
5912out_unlock:
5913 read_unlock(&tasklist_lock);
5914 return retval;
5915}
5916
7c731e0a 5917static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5918
82a1fcb9 5919void sched_show_task(struct task_struct *p)
1da177e4 5920{
1da177e4 5921 unsigned long free = 0;
36c8b586 5922 unsigned state;
1da177e4 5923
1da177e4 5924 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5925 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5926 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5927#if BITS_PER_LONG == 32
1da177e4 5928 if (state == TASK_RUNNING)
cc4ea795 5929 printk(KERN_CONT " running ");
1da177e4 5930 else
cc4ea795 5931 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5932#else
5933 if (state == TASK_RUNNING)
cc4ea795 5934 printk(KERN_CONT " running task ");
1da177e4 5935 else
cc4ea795 5936 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5937#endif
5938#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5939 free = stack_not_used(p);
1da177e4 5940#endif
ba25f9dc 5941 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5942 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5943
5fb5e6de 5944 show_stack(p, NULL);
1da177e4
LT
5945}
5946
e59e2ae2 5947void show_state_filter(unsigned long state_filter)
1da177e4 5948{
36c8b586 5949 struct task_struct *g, *p;
1da177e4 5950
4bd77321
IM
5951#if BITS_PER_LONG == 32
5952 printk(KERN_INFO
5953 " task PC stack pid father\n");
1da177e4 5954#else
4bd77321
IM
5955 printk(KERN_INFO
5956 " task PC stack pid father\n");
1da177e4
LT
5957#endif
5958 read_lock(&tasklist_lock);
5959 do_each_thread(g, p) {
5960 /*
5961 * reset the NMI-timeout, listing all files on a slow
5962 * console might take alot of time:
5963 */
5964 touch_nmi_watchdog();
39bc89fd 5965 if (!state_filter || (p->state & state_filter))
82a1fcb9 5966 sched_show_task(p);
1da177e4
LT
5967 } while_each_thread(g, p);
5968
04c9167f
JF
5969 touch_all_softlockup_watchdogs();
5970
dd41f596
IM
5971#ifdef CONFIG_SCHED_DEBUG
5972 sysrq_sched_debug_show();
5973#endif
1da177e4 5974 read_unlock(&tasklist_lock);
e59e2ae2
IM
5975 /*
5976 * Only show locks if all tasks are dumped:
5977 */
5978 if (state_filter == -1)
5979 debug_show_all_locks();
1da177e4
LT
5980}
5981
1df21055
IM
5982void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5983{
dd41f596 5984 idle->sched_class = &idle_sched_class;
1df21055
IM
5985}
5986
f340c0d1
IM
5987/**
5988 * init_idle - set up an idle thread for a given CPU
5989 * @idle: task in question
5990 * @cpu: cpu the idle task belongs to
5991 *
5992 * NOTE: this function does not set the idle thread's NEED_RESCHED
5993 * flag, to make booting more robust.
5994 */
5c1e1767 5995void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5996{
70b97a7f 5997 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5998 unsigned long flags;
5999
5cbd54ef
IM
6000 spin_lock_irqsave(&rq->lock, flags);
6001
dd41f596
IM
6002 __sched_fork(idle);
6003 idle->se.exec_start = sched_clock();
6004
b29739f9 6005 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6006 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6007 __set_task_cpu(idle, cpu);
1da177e4 6008
1da177e4 6009 rq->curr = rq->idle = idle;
4866cde0
NP
6010#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6011 idle->oncpu = 1;
6012#endif
1da177e4
LT
6013 spin_unlock_irqrestore(&rq->lock, flags);
6014
6015 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6016#if defined(CONFIG_PREEMPT)
6017 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6018#else
a1261f54 6019 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6020#endif
dd41f596
IM
6021 /*
6022 * The idle tasks have their own, simple scheduling class:
6023 */
6024 idle->sched_class = &idle_sched_class;
fb52607a 6025 ftrace_graph_init_task(idle);
1da177e4
LT
6026}
6027
6028/*
6029 * In a system that switches off the HZ timer nohz_cpu_mask
6030 * indicates which cpus entered this state. This is used
6031 * in the rcu update to wait only for active cpus. For system
6032 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6033 * always be CPU_BITS_NONE.
1da177e4 6034 */
6a7b3dc3 6035cpumask_var_t nohz_cpu_mask;
1da177e4 6036
19978ca6
IM
6037/*
6038 * Increase the granularity value when there are more CPUs,
6039 * because with more CPUs the 'effective latency' as visible
6040 * to users decreases. But the relationship is not linear,
6041 * so pick a second-best guess by going with the log2 of the
6042 * number of CPUs.
6043 *
6044 * This idea comes from the SD scheduler of Con Kolivas:
6045 */
6046static inline void sched_init_granularity(void)
6047{
6048 unsigned int factor = 1 + ilog2(num_online_cpus());
6049 const unsigned long limit = 200000000;
6050
6051 sysctl_sched_min_granularity *= factor;
6052 if (sysctl_sched_min_granularity > limit)
6053 sysctl_sched_min_granularity = limit;
6054
6055 sysctl_sched_latency *= factor;
6056 if (sysctl_sched_latency > limit)
6057 sysctl_sched_latency = limit;
6058
6059 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6060
6061 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6062}
6063
1da177e4
LT
6064#ifdef CONFIG_SMP
6065/*
6066 * This is how migration works:
6067 *
70b97a7f 6068 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6069 * runqueue and wake up that CPU's migration thread.
6070 * 2) we down() the locked semaphore => thread blocks.
6071 * 3) migration thread wakes up (implicitly it forces the migrated
6072 * thread off the CPU)
6073 * 4) it gets the migration request and checks whether the migrated
6074 * task is still in the wrong runqueue.
6075 * 5) if it's in the wrong runqueue then the migration thread removes
6076 * it and puts it into the right queue.
6077 * 6) migration thread up()s the semaphore.
6078 * 7) we wake up and the migration is done.
6079 */
6080
6081/*
6082 * Change a given task's CPU affinity. Migrate the thread to a
6083 * proper CPU and schedule it away if the CPU it's executing on
6084 * is removed from the allowed bitmask.
6085 *
6086 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6087 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6088 * call is not atomic; no spinlocks may be held.
6089 */
96f874e2 6090int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6091{
70b97a7f 6092 struct migration_req req;
1da177e4 6093 unsigned long flags;
70b97a7f 6094 struct rq *rq;
48f24c4d 6095 int ret = 0;
1da177e4
LT
6096
6097 rq = task_rq_lock(p, &flags);
96f874e2 6098 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6099 ret = -EINVAL;
6100 goto out;
6101 }
6102
9985b0ba 6103 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6104 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6105 ret = -EINVAL;
6106 goto out;
6107 }
6108
73fe6aae 6109 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6110 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6111 else {
96f874e2
RR
6112 cpumask_copy(&p->cpus_allowed, new_mask);
6113 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6114 }
6115
1da177e4 6116 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6117 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6118 goto out;
6119
1e5ce4f4 6120 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6121 /* Need help from migration thread: drop lock and wait. */
6122 task_rq_unlock(rq, &flags);
6123 wake_up_process(rq->migration_thread);
6124 wait_for_completion(&req.done);
6125 tlb_migrate_finish(p->mm);
6126 return 0;
6127 }
6128out:
6129 task_rq_unlock(rq, &flags);
48f24c4d 6130
1da177e4
LT
6131 return ret;
6132}
cd8ba7cd 6133EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6134
6135/*
41a2d6cf 6136 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6137 * this because either it can't run here any more (set_cpus_allowed()
6138 * away from this CPU, or CPU going down), or because we're
6139 * attempting to rebalance this task on exec (sched_exec).
6140 *
6141 * So we race with normal scheduler movements, but that's OK, as long
6142 * as the task is no longer on this CPU.
efc30814
KK
6143 *
6144 * Returns non-zero if task was successfully migrated.
1da177e4 6145 */
efc30814 6146static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6147{
70b97a7f 6148 struct rq *rq_dest, *rq_src;
dd41f596 6149 int ret = 0, on_rq;
1da177e4 6150
e761b772 6151 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6152 return ret;
1da177e4
LT
6153
6154 rq_src = cpu_rq(src_cpu);
6155 rq_dest = cpu_rq(dest_cpu);
6156
6157 double_rq_lock(rq_src, rq_dest);
6158 /* Already moved. */
6159 if (task_cpu(p) != src_cpu)
b1e38734 6160 goto done;
1da177e4 6161 /* Affinity changed (again). */
96f874e2 6162 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6163 goto fail;
1da177e4 6164
dd41f596 6165 on_rq = p->se.on_rq;
6e82a3be 6166 if (on_rq)
2e1cb74a 6167 deactivate_task(rq_src, p, 0);
6e82a3be 6168
1da177e4 6169 set_task_cpu(p, dest_cpu);
dd41f596
IM
6170 if (on_rq) {
6171 activate_task(rq_dest, p, 0);
15afe09b 6172 check_preempt_curr(rq_dest, p, 0);
1da177e4 6173 }
b1e38734 6174done:
efc30814 6175 ret = 1;
b1e38734 6176fail:
1da177e4 6177 double_rq_unlock(rq_src, rq_dest);
efc30814 6178 return ret;
1da177e4
LT
6179}
6180
6181/*
6182 * migration_thread - this is a highprio system thread that performs
6183 * thread migration by bumping thread off CPU then 'pushing' onto
6184 * another runqueue.
6185 */
95cdf3b7 6186static int migration_thread(void *data)
1da177e4 6187{
1da177e4 6188 int cpu = (long)data;
70b97a7f 6189 struct rq *rq;
1da177e4
LT
6190
6191 rq = cpu_rq(cpu);
6192 BUG_ON(rq->migration_thread != current);
6193
6194 set_current_state(TASK_INTERRUPTIBLE);
6195 while (!kthread_should_stop()) {
70b97a7f 6196 struct migration_req *req;
1da177e4 6197 struct list_head *head;
1da177e4 6198
1da177e4
LT
6199 spin_lock_irq(&rq->lock);
6200
6201 if (cpu_is_offline(cpu)) {
6202 spin_unlock_irq(&rq->lock);
6203 goto wait_to_die;
6204 }
6205
6206 if (rq->active_balance) {
6207 active_load_balance(rq, cpu);
6208 rq->active_balance = 0;
6209 }
6210
6211 head = &rq->migration_queue;
6212
6213 if (list_empty(head)) {
6214 spin_unlock_irq(&rq->lock);
6215 schedule();
6216 set_current_state(TASK_INTERRUPTIBLE);
6217 continue;
6218 }
70b97a7f 6219 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6220 list_del_init(head->next);
6221
674311d5
NP
6222 spin_unlock(&rq->lock);
6223 __migrate_task(req->task, cpu, req->dest_cpu);
6224 local_irq_enable();
1da177e4
LT
6225
6226 complete(&req->done);
6227 }
6228 __set_current_state(TASK_RUNNING);
6229 return 0;
6230
6231wait_to_die:
6232 /* Wait for kthread_stop */
6233 set_current_state(TASK_INTERRUPTIBLE);
6234 while (!kthread_should_stop()) {
6235 schedule();
6236 set_current_state(TASK_INTERRUPTIBLE);
6237 }
6238 __set_current_state(TASK_RUNNING);
6239 return 0;
6240}
6241
6242#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6243
6244static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6245{
6246 int ret;
6247
6248 local_irq_disable();
6249 ret = __migrate_task(p, src_cpu, dest_cpu);
6250 local_irq_enable();
6251 return ret;
6252}
6253
054b9108 6254/*
3a4fa0a2 6255 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6256 */
48f24c4d 6257static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6258{
70b97a7f 6259 int dest_cpu;
6ca09dfc 6260 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
1da177e4 6261
e76bd8d9
RR
6262again:
6263 /* Look for allowed, online CPU in same node. */
6264 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6265 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6266 goto move;
3a5c359a 6267
e76bd8d9
RR
6268 /* Any allowed, online CPU? */
6269 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6270 if (dest_cpu < nr_cpu_ids)
6271 goto move;
3a5c359a 6272
e76bd8d9
RR
6273 /* No more Mr. Nice Guy. */
6274 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6275 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6276 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
f9a86fcb 6277
e76bd8d9
RR
6278 /*
6279 * Don't tell them about moving exiting tasks or
6280 * kernel threads (both mm NULL), since they never
6281 * leave kernel.
6282 */
6283 if (p->mm && printk_ratelimit()) {
6284 printk(KERN_INFO "process %d (%s) no "
6285 "longer affine to cpu%d\n",
6286 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6287 }
e76bd8d9
RR
6288 }
6289
6290move:
6291 /* It can have affinity changed while we were choosing. */
6292 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6293 goto again;
1da177e4
LT
6294}
6295
6296/*
6297 * While a dead CPU has no uninterruptible tasks queued at this point,
6298 * it might still have a nonzero ->nr_uninterruptible counter, because
6299 * for performance reasons the counter is not stricly tracking tasks to
6300 * their home CPUs. So we just add the counter to another CPU's counter,
6301 * to keep the global sum constant after CPU-down:
6302 */
70b97a7f 6303static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6304{
1e5ce4f4 6305 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6306 unsigned long flags;
6307
6308 local_irq_save(flags);
6309 double_rq_lock(rq_src, rq_dest);
6310 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6311 rq_src->nr_uninterruptible = 0;
6312 double_rq_unlock(rq_src, rq_dest);
6313 local_irq_restore(flags);
6314}
6315
6316/* Run through task list and migrate tasks from the dead cpu. */
6317static void migrate_live_tasks(int src_cpu)
6318{
48f24c4d 6319 struct task_struct *p, *t;
1da177e4 6320
f7b4cddc 6321 read_lock(&tasklist_lock);
1da177e4 6322
48f24c4d
IM
6323 do_each_thread(t, p) {
6324 if (p == current)
1da177e4
LT
6325 continue;
6326
48f24c4d
IM
6327 if (task_cpu(p) == src_cpu)
6328 move_task_off_dead_cpu(src_cpu, p);
6329 } while_each_thread(t, p);
1da177e4 6330
f7b4cddc 6331 read_unlock(&tasklist_lock);
1da177e4
LT
6332}
6333
dd41f596
IM
6334/*
6335 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6336 * It does so by boosting its priority to highest possible.
6337 * Used by CPU offline code.
1da177e4
LT
6338 */
6339void sched_idle_next(void)
6340{
48f24c4d 6341 int this_cpu = smp_processor_id();
70b97a7f 6342 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6343 struct task_struct *p = rq->idle;
6344 unsigned long flags;
6345
6346 /* cpu has to be offline */
48f24c4d 6347 BUG_ON(cpu_online(this_cpu));
1da177e4 6348
48f24c4d
IM
6349 /*
6350 * Strictly not necessary since rest of the CPUs are stopped by now
6351 * and interrupts disabled on the current cpu.
1da177e4
LT
6352 */
6353 spin_lock_irqsave(&rq->lock, flags);
6354
dd41f596 6355 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6356
94bc9a7b
DA
6357 update_rq_clock(rq);
6358 activate_task(rq, p, 0);
1da177e4
LT
6359
6360 spin_unlock_irqrestore(&rq->lock, flags);
6361}
6362
48f24c4d
IM
6363/*
6364 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6365 * offline.
6366 */
6367void idle_task_exit(void)
6368{
6369 struct mm_struct *mm = current->active_mm;
6370
6371 BUG_ON(cpu_online(smp_processor_id()));
6372
6373 if (mm != &init_mm)
6374 switch_mm(mm, &init_mm, current);
6375 mmdrop(mm);
6376}
6377
054b9108 6378/* called under rq->lock with disabled interrupts */
36c8b586 6379static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6380{
70b97a7f 6381 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6382
6383 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6384 BUG_ON(!p->exit_state);
1da177e4
LT
6385
6386 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6387 BUG_ON(p->state == TASK_DEAD);
1da177e4 6388
48f24c4d 6389 get_task_struct(p);
1da177e4
LT
6390
6391 /*
6392 * Drop lock around migration; if someone else moves it,
41a2d6cf 6393 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6394 * fine.
6395 */
f7b4cddc 6396 spin_unlock_irq(&rq->lock);
48f24c4d 6397 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6398 spin_lock_irq(&rq->lock);
1da177e4 6399
48f24c4d 6400 put_task_struct(p);
1da177e4
LT
6401}
6402
6403/* release_task() removes task from tasklist, so we won't find dead tasks. */
6404static void migrate_dead_tasks(unsigned int dead_cpu)
6405{
70b97a7f 6406 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6407 struct task_struct *next;
48f24c4d 6408
dd41f596
IM
6409 for ( ; ; ) {
6410 if (!rq->nr_running)
6411 break;
a8e504d2 6412 update_rq_clock(rq);
ff95f3df 6413 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6414 if (!next)
6415 break;
79c53799 6416 next->sched_class->put_prev_task(rq, next);
dd41f596 6417 migrate_dead(dead_cpu, next);
e692ab53 6418
1da177e4
LT
6419 }
6420}
6421#endif /* CONFIG_HOTPLUG_CPU */
6422
e692ab53
NP
6423#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6424
6425static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6426 {
6427 .procname = "sched_domain",
c57baf1e 6428 .mode = 0555,
e0361851 6429 },
38605cae 6430 {0, },
e692ab53
NP
6431};
6432
6433static struct ctl_table sd_ctl_root[] = {
e0361851 6434 {
c57baf1e 6435 .ctl_name = CTL_KERN,
e0361851 6436 .procname = "kernel",
c57baf1e 6437 .mode = 0555,
e0361851
AD
6438 .child = sd_ctl_dir,
6439 },
38605cae 6440 {0, },
e692ab53
NP
6441};
6442
6443static struct ctl_table *sd_alloc_ctl_entry(int n)
6444{
6445 struct ctl_table *entry =
5cf9f062 6446 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6447
e692ab53
NP
6448 return entry;
6449}
6450
6382bc90
MM
6451static void sd_free_ctl_entry(struct ctl_table **tablep)
6452{
cd790076 6453 struct ctl_table *entry;
6382bc90 6454
cd790076
MM
6455 /*
6456 * In the intermediate directories, both the child directory and
6457 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6458 * will always be set. In the lowest directory the names are
cd790076
MM
6459 * static strings and all have proc handlers.
6460 */
6461 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6462 if (entry->child)
6463 sd_free_ctl_entry(&entry->child);
cd790076
MM
6464 if (entry->proc_handler == NULL)
6465 kfree(entry->procname);
6466 }
6382bc90
MM
6467
6468 kfree(*tablep);
6469 *tablep = NULL;
6470}
6471
e692ab53 6472static void
e0361851 6473set_table_entry(struct ctl_table *entry,
e692ab53
NP
6474 const char *procname, void *data, int maxlen,
6475 mode_t mode, proc_handler *proc_handler)
6476{
e692ab53
NP
6477 entry->procname = procname;
6478 entry->data = data;
6479 entry->maxlen = maxlen;
6480 entry->mode = mode;
6481 entry->proc_handler = proc_handler;
6482}
6483
6484static struct ctl_table *
6485sd_alloc_ctl_domain_table(struct sched_domain *sd)
6486{
a5d8c348 6487 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6488
ad1cdc1d
MM
6489 if (table == NULL)
6490 return NULL;
6491
e0361851 6492 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6493 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6494 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6495 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6496 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6497 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6498 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6499 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6500 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6501 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6502 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6503 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6504 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6505 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6506 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6508 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6509 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6510 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6511 &sd->cache_nice_tries,
6512 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6513 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6514 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6515 set_table_entry(&table[11], "name", sd->name,
6516 CORENAME_MAX_SIZE, 0444, proc_dostring);
6517 /* &table[12] is terminator */
e692ab53
NP
6518
6519 return table;
6520}
6521
9a4e7159 6522static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6523{
6524 struct ctl_table *entry, *table;
6525 struct sched_domain *sd;
6526 int domain_num = 0, i;
6527 char buf[32];
6528
6529 for_each_domain(cpu, sd)
6530 domain_num++;
6531 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6532 if (table == NULL)
6533 return NULL;
e692ab53
NP
6534
6535 i = 0;
6536 for_each_domain(cpu, sd) {
6537 snprintf(buf, 32, "domain%d", i);
e692ab53 6538 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6539 entry->mode = 0555;
e692ab53
NP
6540 entry->child = sd_alloc_ctl_domain_table(sd);
6541 entry++;
6542 i++;
6543 }
6544 return table;
6545}
6546
6547static struct ctl_table_header *sd_sysctl_header;
6382bc90 6548static void register_sched_domain_sysctl(void)
e692ab53
NP
6549{
6550 int i, cpu_num = num_online_cpus();
6551 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6552 char buf[32];
6553
7378547f
MM
6554 WARN_ON(sd_ctl_dir[0].child);
6555 sd_ctl_dir[0].child = entry;
6556
ad1cdc1d
MM
6557 if (entry == NULL)
6558 return;
6559
97b6ea7b 6560 for_each_online_cpu(i) {
e692ab53 6561 snprintf(buf, 32, "cpu%d", i);
e692ab53 6562 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6563 entry->mode = 0555;
e692ab53 6564 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6565 entry++;
e692ab53 6566 }
7378547f
MM
6567
6568 WARN_ON(sd_sysctl_header);
e692ab53
NP
6569 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6570}
6382bc90 6571
7378547f 6572/* may be called multiple times per register */
6382bc90
MM
6573static void unregister_sched_domain_sysctl(void)
6574{
7378547f
MM
6575 if (sd_sysctl_header)
6576 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6577 sd_sysctl_header = NULL;
7378547f
MM
6578 if (sd_ctl_dir[0].child)
6579 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6580}
e692ab53 6581#else
6382bc90
MM
6582static void register_sched_domain_sysctl(void)
6583{
6584}
6585static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6586{
6587}
6588#endif
6589
1f11eb6a
GH
6590static void set_rq_online(struct rq *rq)
6591{
6592 if (!rq->online) {
6593 const struct sched_class *class;
6594
c6c4927b 6595 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6596 rq->online = 1;
6597
6598 for_each_class(class) {
6599 if (class->rq_online)
6600 class->rq_online(rq);
6601 }
6602 }
6603}
6604
6605static void set_rq_offline(struct rq *rq)
6606{
6607 if (rq->online) {
6608 const struct sched_class *class;
6609
6610 for_each_class(class) {
6611 if (class->rq_offline)
6612 class->rq_offline(rq);
6613 }
6614
c6c4927b 6615 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6616 rq->online = 0;
6617 }
6618}
6619
1da177e4
LT
6620/*
6621 * migration_call - callback that gets triggered when a CPU is added.
6622 * Here we can start up the necessary migration thread for the new CPU.
6623 */
48f24c4d
IM
6624static int __cpuinit
6625migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6626{
1da177e4 6627 struct task_struct *p;
48f24c4d 6628 int cpu = (long)hcpu;
1da177e4 6629 unsigned long flags;
70b97a7f 6630 struct rq *rq;
1da177e4
LT
6631
6632 switch (action) {
5be9361c 6633
1da177e4 6634 case CPU_UP_PREPARE:
8bb78442 6635 case CPU_UP_PREPARE_FROZEN:
dd41f596 6636 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6637 if (IS_ERR(p))
6638 return NOTIFY_BAD;
1da177e4
LT
6639 kthread_bind(p, cpu);
6640 /* Must be high prio: stop_machine expects to yield to it. */
6641 rq = task_rq_lock(p, &flags);
dd41f596 6642 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6643 task_rq_unlock(rq, &flags);
6644 cpu_rq(cpu)->migration_thread = p;
6645 break;
48f24c4d 6646
1da177e4 6647 case CPU_ONLINE:
8bb78442 6648 case CPU_ONLINE_FROZEN:
3a4fa0a2 6649 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6650 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6651
6652 /* Update our root-domain */
6653 rq = cpu_rq(cpu);
6654 spin_lock_irqsave(&rq->lock, flags);
6655 if (rq->rd) {
c6c4927b 6656 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6657
6658 set_rq_online(rq);
1f94ef59
GH
6659 }
6660 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6661 break;
48f24c4d 6662
1da177e4
LT
6663#ifdef CONFIG_HOTPLUG_CPU
6664 case CPU_UP_CANCELED:
8bb78442 6665 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6666 if (!cpu_rq(cpu)->migration_thread)
6667 break;
41a2d6cf 6668 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6669 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6670 cpumask_any(cpu_online_mask));
1da177e4
LT
6671 kthread_stop(cpu_rq(cpu)->migration_thread);
6672 cpu_rq(cpu)->migration_thread = NULL;
6673 break;
48f24c4d 6674
1da177e4 6675 case CPU_DEAD:
8bb78442 6676 case CPU_DEAD_FROZEN:
470fd646 6677 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6678 migrate_live_tasks(cpu);
6679 rq = cpu_rq(cpu);
6680 kthread_stop(rq->migration_thread);
6681 rq->migration_thread = NULL;
6682 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6683 spin_lock_irq(&rq->lock);
a8e504d2 6684 update_rq_clock(rq);
2e1cb74a 6685 deactivate_task(rq, rq->idle, 0);
1da177e4 6686 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6687 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6688 rq->idle->sched_class = &idle_sched_class;
1da177e4 6689 migrate_dead_tasks(cpu);
d2da272a 6690 spin_unlock_irq(&rq->lock);
470fd646 6691 cpuset_unlock();
1da177e4
LT
6692 migrate_nr_uninterruptible(rq);
6693 BUG_ON(rq->nr_running != 0);
6694
41a2d6cf
IM
6695 /*
6696 * No need to migrate the tasks: it was best-effort if
6697 * they didn't take sched_hotcpu_mutex. Just wake up
6698 * the requestors.
6699 */
1da177e4
LT
6700 spin_lock_irq(&rq->lock);
6701 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6702 struct migration_req *req;
6703
1da177e4 6704 req = list_entry(rq->migration_queue.next,
70b97a7f 6705 struct migration_req, list);
1da177e4 6706 list_del_init(&req->list);
9a2bd244 6707 spin_unlock_irq(&rq->lock);
1da177e4 6708 complete(&req->done);
9a2bd244 6709 spin_lock_irq(&rq->lock);
1da177e4
LT
6710 }
6711 spin_unlock_irq(&rq->lock);
6712 break;
57d885fe 6713
08f503b0
GH
6714 case CPU_DYING:
6715 case CPU_DYING_FROZEN:
57d885fe
GH
6716 /* Update our root-domain */
6717 rq = cpu_rq(cpu);
6718 spin_lock_irqsave(&rq->lock, flags);
6719 if (rq->rd) {
c6c4927b 6720 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6721 set_rq_offline(rq);
57d885fe
GH
6722 }
6723 spin_unlock_irqrestore(&rq->lock, flags);
6724 break;
1da177e4
LT
6725#endif
6726 }
6727 return NOTIFY_OK;
6728}
6729
6730/* Register at highest priority so that task migration (migrate_all_tasks)
6731 * happens before everything else.
6732 */
26c2143b 6733static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6734 .notifier_call = migration_call,
6735 .priority = 10
6736};
6737
7babe8db 6738static int __init migration_init(void)
1da177e4
LT
6739{
6740 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6741 int err;
48f24c4d
IM
6742
6743 /* Start one for the boot CPU: */
07dccf33
AM
6744 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6745 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6746 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6747 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6748
6749 return err;
1da177e4 6750}
7babe8db 6751early_initcall(migration_init);
1da177e4
LT
6752#endif
6753
6754#ifdef CONFIG_SMP
476f3534 6755
3e9830dc 6756#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6757
7c16ec58 6758static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6759 struct cpumask *groupmask)
1da177e4 6760{
4dcf6aff 6761 struct sched_group *group = sd->groups;
434d53b0 6762 char str[256];
1da177e4 6763
968ea6d8 6764 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6765 cpumask_clear(groupmask);
4dcf6aff
IM
6766
6767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6768
6769 if (!(sd->flags & SD_LOAD_BALANCE)) {
6770 printk("does not load-balance\n");
6771 if (sd->parent)
6772 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6773 " has parent");
6774 return -1;
41c7ce9a
NP
6775 }
6776
eefd796a 6777 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6778
758b2cdc 6779 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6780 printk(KERN_ERR "ERROR: domain->span does not contain "
6781 "CPU%d\n", cpu);
6782 }
758b2cdc 6783 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6784 printk(KERN_ERR "ERROR: domain->groups does not contain"
6785 " CPU%d\n", cpu);
6786 }
1da177e4 6787
4dcf6aff 6788 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6789 do {
4dcf6aff
IM
6790 if (!group) {
6791 printk("\n");
6792 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6793 break;
6794 }
6795
4dcf6aff
IM
6796 if (!group->__cpu_power) {
6797 printk(KERN_CONT "\n");
6798 printk(KERN_ERR "ERROR: domain->cpu_power not "
6799 "set\n");
6800 break;
6801 }
1da177e4 6802
758b2cdc 6803 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6804 printk(KERN_CONT "\n");
6805 printk(KERN_ERR "ERROR: empty group\n");
6806 break;
6807 }
1da177e4 6808
758b2cdc 6809 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6810 printk(KERN_CONT "\n");
6811 printk(KERN_ERR "ERROR: repeated CPUs\n");
6812 break;
6813 }
1da177e4 6814
758b2cdc 6815 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6816
968ea6d8 6817 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6818 printk(KERN_CONT " %s", str);
1da177e4 6819
4dcf6aff
IM
6820 group = group->next;
6821 } while (group != sd->groups);
6822 printk(KERN_CONT "\n");
1da177e4 6823
758b2cdc 6824 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6825 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6826
758b2cdc
RR
6827 if (sd->parent &&
6828 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6829 printk(KERN_ERR "ERROR: parent span is not a superset "
6830 "of domain->span\n");
6831 return 0;
6832}
1da177e4 6833
4dcf6aff
IM
6834static void sched_domain_debug(struct sched_domain *sd, int cpu)
6835{
d5dd3db1 6836 cpumask_var_t groupmask;
4dcf6aff 6837 int level = 0;
1da177e4 6838
4dcf6aff
IM
6839 if (!sd) {
6840 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6841 return;
6842 }
1da177e4 6843
4dcf6aff
IM
6844 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6845
d5dd3db1 6846 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6847 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6848 return;
6849 }
6850
4dcf6aff 6851 for (;;) {
7c16ec58 6852 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6853 break;
1da177e4
LT
6854 level++;
6855 sd = sd->parent;
33859f7f 6856 if (!sd)
4dcf6aff
IM
6857 break;
6858 }
d5dd3db1 6859 free_cpumask_var(groupmask);
1da177e4 6860}
6d6bc0ad 6861#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6862# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6863#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6864
1a20ff27 6865static int sd_degenerate(struct sched_domain *sd)
245af2c7 6866{
758b2cdc 6867 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6868 return 1;
6869
6870 /* Following flags need at least 2 groups */
6871 if (sd->flags & (SD_LOAD_BALANCE |
6872 SD_BALANCE_NEWIDLE |
6873 SD_BALANCE_FORK |
89c4710e
SS
6874 SD_BALANCE_EXEC |
6875 SD_SHARE_CPUPOWER |
6876 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6877 if (sd->groups != sd->groups->next)
6878 return 0;
6879 }
6880
6881 /* Following flags don't use groups */
6882 if (sd->flags & (SD_WAKE_IDLE |
6883 SD_WAKE_AFFINE |
6884 SD_WAKE_BALANCE))
6885 return 0;
6886
6887 return 1;
6888}
6889
48f24c4d
IM
6890static int
6891sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6892{
6893 unsigned long cflags = sd->flags, pflags = parent->flags;
6894
6895 if (sd_degenerate(parent))
6896 return 1;
6897
758b2cdc 6898 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6899 return 0;
6900
6901 /* Does parent contain flags not in child? */
6902 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6903 if (cflags & SD_WAKE_AFFINE)
6904 pflags &= ~SD_WAKE_BALANCE;
6905 /* Flags needing groups don't count if only 1 group in parent */
6906 if (parent->groups == parent->groups->next) {
6907 pflags &= ~(SD_LOAD_BALANCE |
6908 SD_BALANCE_NEWIDLE |
6909 SD_BALANCE_FORK |
89c4710e
SS
6910 SD_BALANCE_EXEC |
6911 SD_SHARE_CPUPOWER |
6912 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6913 if (nr_node_ids == 1)
6914 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6915 }
6916 if (~cflags & pflags)
6917 return 0;
6918
6919 return 1;
6920}
6921
c6c4927b
RR
6922static void free_rootdomain(struct root_domain *rd)
6923{
68e74568
RR
6924 cpupri_cleanup(&rd->cpupri);
6925
c6c4927b
RR
6926 free_cpumask_var(rd->rto_mask);
6927 free_cpumask_var(rd->online);
6928 free_cpumask_var(rd->span);
6929 kfree(rd);
6930}
6931
57d885fe
GH
6932static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6933{
a0490fa3 6934 struct root_domain *old_rd = NULL;
57d885fe 6935 unsigned long flags;
57d885fe
GH
6936
6937 spin_lock_irqsave(&rq->lock, flags);
6938
6939 if (rq->rd) {
a0490fa3 6940 old_rd = rq->rd;
57d885fe 6941
c6c4927b 6942 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6943 set_rq_offline(rq);
57d885fe 6944
c6c4927b 6945 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6946
a0490fa3
IM
6947 /*
6948 * If we dont want to free the old_rt yet then
6949 * set old_rd to NULL to skip the freeing later
6950 * in this function:
6951 */
6952 if (!atomic_dec_and_test(&old_rd->refcount))
6953 old_rd = NULL;
57d885fe
GH
6954 }
6955
6956 atomic_inc(&rd->refcount);
6957 rq->rd = rd;
6958
c6c4927b
RR
6959 cpumask_set_cpu(rq->cpu, rd->span);
6960 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 6961 set_rq_online(rq);
57d885fe
GH
6962
6963 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6964
6965 if (old_rd)
6966 free_rootdomain(old_rd);
57d885fe
GH
6967}
6968
db2f59c8 6969static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
6970{
6971 memset(rd, 0, sizeof(*rd));
6972
c6c4927b
RR
6973 if (bootmem) {
6974 alloc_bootmem_cpumask_var(&def_root_domain.span);
6975 alloc_bootmem_cpumask_var(&def_root_domain.online);
6976 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 6977 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
6978 return 0;
6979 }
6980
6981 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 6982 goto out;
c6c4927b
RR
6983 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6984 goto free_span;
6985 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6986 goto free_online;
6e0534f2 6987
68e74568
RR
6988 if (cpupri_init(&rd->cpupri, false) != 0)
6989 goto free_rto_mask;
c6c4927b 6990 return 0;
6e0534f2 6991
68e74568
RR
6992free_rto_mask:
6993 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6994free_online:
6995 free_cpumask_var(rd->online);
6996free_span:
6997 free_cpumask_var(rd->span);
0c910d28 6998out:
c6c4927b 6999 return -ENOMEM;
57d885fe
GH
7000}
7001
7002static void init_defrootdomain(void)
7003{
c6c4927b
RR
7004 init_rootdomain(&def_root_domain, true);
7005
57d885fe
GH
7006 atomic_set(&def_root_domain.refcount, 1);
7007}
7008
dc938520 7009static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7010{
7011 struct root_domain *rd;
7012
7013 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7014 if (!rd)
7015 return NULL;
7016
c6c4927b
RR
7017 if (init_rootdomain(rd, false) != 0) {
7018 kfree(rd);
7019 return NULL;
7020 }
57d885fe
GH
7021
7022 return rd;
7023}
7024
1da177e4 7025/*
0eab9146 7026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7027 * hold the hotplug lock.
7028 */
0eab9146
IM
7029static void
7030cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7031{
70b97a7f 7032 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7033 struct sched_domain *tmp;
7034
7035 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7036 for (tmp = sd; tmp; ) {
245af2c7
SS
7037 struct sched_domain *parent = tmp->parent;
7038 if (!parent)
7039 break;
f29c9b1c 7040
1a848870 7041 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7042 tmp->parent = parent->parent;
1a848870
SS
7043 if (parent->parent)
7044 parent->parent->child = tmp;
f29c9b1c
LZ
7045 } else
7046 tmp = tmp->parent;
245af2c7
SS
7047 }
7048
1a848870 7049 if (sd && sd_degenerate(sd)) {
245af2c7 7050 sd = sd->parent;
1a848870
SS
7051 if (sd)
7052 sd->child = NULL;
7053 }
1da177e4
LT
7054
7055 sched_domain_debug(sd, cpu);
7056
57d885fe 7057 rq_attach_root(rq, rd);
674311d5 7058 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7059}
7060
7061/* cpus with isolated domains */
dcc30a35 7062static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7063
7064/* Setup the mask of cpus configured for isolated domains */
7065static int __init isolated_cpu_setup(char *str)
7066{
968ea6d8 7067 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7068 return 1;
7069}
7070
8927f494 7071__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7072
7073/*
6711cab4
SS
7074 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7075 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7076 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7077 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7078 *
7079 * init_sched_build_groups will build a circular linked list of the groups
7080 * covered by the given span, and will set each group's ->cpumask correctly,
7081 * and ->cpu_power to 0.
7082 */
a616058b 7083static void
96f874e2
RR
7084init_sched_build_groups(const struct cpumask *span,
7085 const struct cpumask *cpu_map,
7086 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7087 struct sched_group **sg,
96f874e2
RR
7088 struct cpumask *tmpmask),
7089 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7090{
7091 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7092 int i;
7093
96f874e2 7094 cpumask_clear(covered);
7c16ec58 7095
abcd083a 7096 for_each_cpu(i, span) {
6711cab4 7097 struct sched_group *sg;
7c16ec58 7098 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7099 int j;
7100
758b2cdc 7101 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7102 continue;
7103
758b2cdc 7104 cpumask_clear(sched_group_cpus(sg));
5517d86b 7105 sg->__cpu_power = 0;
1da177e4 7106
abcd083a 7107 for_each_cpu(j, span) {
7c16ec58 7108 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7109 continue;
7110
96f874e2 7111 cpumask_set_cpu(j, covered);
758b2cdc 7112 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7113 }
7114 if (!first)
7115 first = sg;
7116 if (last)
7117 last->next = sg;
7118 last = sg;
7119 }
7120 last->next = first;
7121}
7122
9c1cfda2 7123#define SD_NODES_PER_DOMAIN 16
1da177e4 7124
9c1cfda2 7125#ifdef CONFIG_NUMA
198e2f18 7126
9c1cfda2
JH
7127/**
7128 * find_next_best_node - find the next node to include in a sched_domain
7129 * @node: node whose sched_domain we're building
7130 * @used_nodes: nodes already in the sched_domain
7131 *
41a2d6cf 7132 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7133 * finds the closest node not already in the @used_nodes map.
7134 *
7135 * Should use nodemask_t.
7136 */
c5f59f08 7137static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7138{
7139 int i, n, val, min_val, best_node = 0;
7140
7141 min_val = INT_MAX;
7142
076ac2af 7143 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7144 /* Start at @node */
076ac2af 7145 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7146
7147 if (!nr_cpus_node(n))
7148 continue;
7149
7150 /* Skip already used nodes */
c5f59f08 7151 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7152 continue;
7153
7154 /* Simple min distance search */
7155 val = node_distance(node, n);
7156
7157 if (val < min_val) {
7158 min_val = val;
7159 best_node = n;
7160 }
7161 }
7162
c5f59f08 7163 node_set(best_node, *used_nodes);
9c1cfda2
JH
7164 return best_node;
7165}
7166
7167/**
7168 * sched_domain_node_span - get a cpumask for a node's sched_domain
7169 * @node: node whose cpumask we're constructing
73486722 7170 * @span: resulting cpumask
9c1cfda2 7171 *
41a2d6cf 7172 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7173 * should be one that prevents unnecessary balancing, but also spreads tasks
7174 * out optimally.
7175 */
96f874e2 7176static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7177{
c5f59f08 7178 nodemask_t used_nodes;
48f24c4d 7179 int i;
9c1cfda2 7180
6ca09dfc 7181 cpumask_clear(span);
c5f59f08 7182 nodes_clear(used_nodes);
9c1cfda2 7183
6ca09dfc 7184 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7185 node_set(node, used_nodes);
9c1cfda2
JH
7186
7187 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7188 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7189
6ca09dfc 7190 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7191 }
9c1cfda2 7192}
6d6bc0ad 7193#endif /* CONFIG_NUMA */
9c1cfda2 7194
5c45bf27 7195int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7196
6c99e9ad
RR
7197/*
7198 * The cpus mask in sched_group and sched_domain hangs off the end.
7199 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7200 * for nr_cpu_ids < CONFIG_NR_CPUS.
7201 */
7202struct static_sched_group {
7203 struct sched_group sg;
7204 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7205};
7206
7207struct static_sched_domain {
7208 struct sched_domain sd;
7209 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7210};
7211
9c1cfda2 7212/*
48f24c4d 7213 * SMT sched-domains:
9c1cfda2 7214 */
1da177e4 7215#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7216static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7217static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7218
41a2d6cf 7219static int
96f874e2
RR
7220cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7221 struct sched_group **sg, struct cpumask *unused)
1da177e4 7222{
6711cab4 7223 if (sg)
6c99e9ad 7224 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7225 return cpu;
7226}
6d6bc0ad 7227#endif /* CONFIG_SCHED_SMT */
1da177e4 7228
48f24c4d
IM
7229/*
7230 * multi-core sched-domains:
7231 */
1e9f28fa 7232#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7233static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7234static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7235#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7236
7237#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7238static int
96f874e2
RR
7239cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7240 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7241{
6711cab4 7242 int group;
7c16ec58 7243
c69fc56d 7244 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7245 group = cpumask_first(mask);
6711cab4 7246 if (sg)
6c99e9ad 7247 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7248 return group;
1e9f28fa
SS
7249}
7250#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7251static int
96f874e2
RR
7252cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7253 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7254{
6711cab4 7255 if (sg)
6c99e9ad 7256 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7257 return cpu;
7258}
7259#endif
7260
6c99e9ad
RR
7261static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7262static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7263
41a2d6cf 7264static int
96f874e2
RR
7265cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7266 struct sched_group **sg, struct cpumask *mask)
1da177e4 7267{
6711cab4 7268 int group;
48f24c4d 7269#ifdef CONFIG_SCHED_MC
6ca09dfc 7270 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7271 group = cpumask_first(mask);
1e9f28fa 7272#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7273 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7274 group = cpumask_first(mask);
1da177e4 7275#else
6711cab4 7276 group = cpu;
1da177e4 7277#endif
6711cab4 7278 if (sg)
6c99e9ad 7279 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7280 return group;
1da177e4
LT
7281}
7282
7283#ifdef CONFIG_NUMA
1da177e4 7284/*
9c1cfda2
JH
7285 * The init_sched_build_groups can't handle what we want to do with node
7286 * groups, so roll our own. Now each node has its own list of groups which
7287 * gets dynamically allocated.
1da177e4 7288 */
62ea9ceb 7289static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7290static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7291
62ea9ceb 7292static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7293static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7294
96f874e2
RR
7295static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7296 struct sched_group **sg,
7297 struct cpumask *nodemask)
9c1cfda2 7298{
6711cab4
SS
7299 int group;
7300
6ca09dfc 7301 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7302 group = cpumask_first(nodemask);
6711cab4
SS
7303
7304 if (sg)
6c99e9ad 7305 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7306 return group;
1da177e4 7307}
6711cab4 7308
08069033
SS
7309static void init_numa_sched_groups_power(struct sched_group *group_head)
7310{
7311 struct sched_group *sg = group_head;
7312 int j;
7313
7314 if (!sg)
7315 return;
3a5c359a 7316 do {
758b2cdc 7317 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7318 struct sched_domain *sd;
08069033 7319
6c99e9ad 7320 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7321 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7322 /*
7323 * Only add "power" once for each
7324 * physical package.
7325 */
7326 continue;
7327 }
08069033 7328
3a5c359a
AK
7329 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7330 }
7331 sg = sg->next;
7332 } while (sg != group_head);
08069033 7333}
6d6bc0ad 7334#endif /* CONFIG_NUMA */
1da177e4 7335
a616058b 7336#ifdef CONFIG_NUMA
51888ca2 7337/* Free memory allocated for various sched_group structures */
96f874e2
RR
7338static void free_sched_groups(const struct cpumask *cpu_map,
7339 struct cpumask *nodemask)
51888ca2 7340{
a616058b 7341 int cpu, i;
51888ca2 7342
abcd083a 7343 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7344 struct sched_group **sched_group_nodes
7345 = sched_group_nodes_bycpu[cpu];
7346
51888ca2
SV
7347 if (!sched_group_nodes)
7348 continue;
7349
076ac2af 7350 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7351 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7352
6ca09dfc 7353 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7354 if (cpumask_empty(nodemask))
51888ca2
SV
7355 continue;
7356
7357 if (sg == NULL)
7358 continue;
7359 sg = sg->next;
7360next_sg:
7361 oldsg = sg;
7362 sg = sg->next;
7363 kfree(oldsg);
7364 if (oldsg != sched_group_nodes[i])
7365 goto next_sg;
7366 }
7367 kfree(sched_group_nodes);
7368 sched_group_nodes_bycpu[cpu] = NULL;
7369 }
51888ca2 7370}
6d6bc0ad 7371#else /* !CONFIG_NUMA */
96f874e2
RR
7372static void free_sched_groups(const struct cpumask *cpu_map,
7373 struct cpumask *nodemask)
a616058b
SS
7374{
7375}
6d6bc0ad 7376#endif /* CONFIG_NUMA */
51888ca2 7377
89c4710e
SS
7378/*
7379 * Initialize sched groups cpu_power.
7380 *
7381 * cpu_power indicates the capacity of sched group, which is used while
7382 * distributing the load between different sched groups in a sched domain.
7383 * Typically cpu_power for all the groups in a sched domain will be same unless
7384 * there are asymmetries in the topology. If there are asymmetries, group
7385 * having more cpu_power will pickup more load compared to the group having
7386 * less cpu_power.
7387 *
7388 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7389 * the maximum number of tasks a group can handle in the presence of other idle
7390 * or lightly loaded groups in the same sched domain.
7391 */
7392static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7393{
7394 struct sched_domain *child;
7395 struct sched_group *group;
7396
7397 WARN_ON(!sd || !sd->groups);
7398
758b2cdc 7399 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7400 return;
7401
7402 child = sd->child;
7403
5517d86b
ED
7404 sd->groups->__cpu_power = 0;
7405
89c4710e
SS
7406 /*
7407 * For perf policy, if the groups in child domain share resources
7408 * (for example cores sharing some portions of the cache hierarchy
7409 * or SMT), then set this domain groups cpu_power such that each group
7410 * can handle only one task, when there are other idle groups in the
7411 * same sched domain.
7412 */
7413 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7414 (child->flags &
7415 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7416 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7417 return;
7418 }
7419
89c4710e
SS
7420 /*
7421 * add cpu_power of each child group to this groups cpu_power
7422 */
7423 group = child->groups;
7424 do {
5517d86b 7425 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7426 group = group->next;
7427 } while (group != child->groups);
7428}
7429
7c16ec58
MT
7430/*
7431 * Initializers for schedule domains
7432 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7433 */
7434
a5d8c348
IM
7435#ifdef CONFIG_SCHED_DEBUG
7436# define SD_INIT_NAME(sd, type) sd->name = #type
7437#else
7438# define SD_INIT_NAME(sd, type) do { } while (0)
7439#endif
7440
7c16ec58 7441#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7442
7c16ec58
MT
7443#define SD_INIT_FUNC(type) \
7444static noinline void sd_init_##type(struct sched_domain *sd) \
7445{ \
7446 memset(sd, 0, sizeof(*sd)); \
7447 *sd = SD_##type##_INIT; \
1d3504fc 7448 sd->level = SD_LV_##type; \
a5d8c348 7449 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7450}
7451
7452SD_INIT_FUNC(CPU)
7453#ifdef CONFIG_NUMA
7454 SD_INIT_FUNC(ALLNODES)
7455 SD_INIT_FUNC(NODE)
7456#endif
7457#ifdef CONFIG_SCHED_SMT
7458 SD_INIT_FUNC(SIBLING)
7459#endif
7460#ifdef CONFIG_SCHED_MC
7461 SD_INIT_FUNC(MC)
7462#endif
7463
1d3504fc
HS
7464static int default_relax_domain_level = -1;
7465
7466static int __init setup_relax_domain_level(char *str)
7467{
30e0e178
LZ
7468 unsigned long val;
7469
7470 val = simple_strtoul(str, NULL, 0);
7471 if (val < SD_LV_MAX)
7472 default_relax_domain_level = val;
7473
1d3504fc
HS
7474 return 1;
7475}
7476__setup("relax_domain_level=", setup_relax_domain_level);
7477
7478static void set_domain_attribute(struct sched_domain *sd,
7479 struct sched_domain_attr *attr)
7480{
7481 int request;
7482
7483 if (!attr || attr->relax_domain_level < 0) {
7484 if (default_relax_domain_level < 0)
7485 return;
7486 else
7487 request = default_relax_domain_level;
7488 } else
7489 request = attr->relax_domain_level;
7490 if (request < sd->level) {
7491 /* turn off idle balance on this domain */
7492 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7493 } else {
7494 /* turn on idle balance on this domain */
7495 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7496 }
7497}
7498
1da177e4 7499/*
1a20ff27
DG
7500 * Build sched domains for a given set of cpus and attach the sched domains
7501 * to the individual cpus
1da177e4 7502 */
96f874e2 7503static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7504 struct sched_domain_attr *attr)
1da177e4 7505{
3404c8d9 7506 int i, err = -ENOMEM;
57d885fe 7507 struct root_domain *rd;
3404c8d9
RR
7508 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7509 tmpmask;
d1b55138 7510#ifdef CONFIG_NUMA
3404c8d9 7511 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7512 struct sched_group **sched_group_nodes = NULL;
6711cab4 7513 int sd_allnodes = 0;
d1b55138 7514
3404c8d9
RR
7515 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7516 goto out;
7517 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7518 goto free_domainspan;
7519 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7520 goto free_covered;
7521#endif
7522
7523 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7524 goto free_notcovered;
7525 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7526 goto free_nodemask;
7527 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7528 goto free_this_sibling_map;
7529 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7530 goto free_this_core_map;
7531 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7532 goto free_send_covered;
7533
7534#ifdef CONFIG_NUMA
d1b55138
JH
7535 /*
7536 * Allocate the per-node list of sched groups
7537 */
076ac2af 7538 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7539 GFP_KERNEL);
d1b55138
JH
7540 if (!sched_group_nodes) {
7541 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7542 goto free_tmpmask;
d1b55138 7543 }
d1b55138 7544#endif
1da177e4 7545
dc938520 7546 rd = alloc_rootdomain();
57d885fe
GH
7547 if (!rd) {
7548 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7549 goto free_sched_groups;
7c16ec58 7550 }
6d21cd62 7551
7c16ec58 7552#ifdef CONFIG_NUMA
96f874e2 7553 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7554#endif
7555
1da177e4 7556 /*
1a20ff27 7557 * Set up domains for cpus specified by the cpu_map.
1da177e4 7558 */
abcd083a 7559 for_each_cpu(i, cpu_map) {
1da177e4 7560 struct sched_domain *sd = NULL, *p;
1da177e4 7561
6ca09dfc 7562 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7563
7564#ifdef CONFIG_NUMA
96f874e2
RR
7565 if (cpumask_weight(cpu_map) >
7566 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7567 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7568 SD_INIT(sd, ALLNODES);
1d3504fc 7569 set_domain_attribute(sd, attr);
758b2cdc 7570 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7571 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7572 p = sd;
6711cab4 7573 sd_allnodes = 1;
9c1cfda2
JH
7574 } else
7575 p = NULL;
7576
62ea9ceb 7577 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7578 SD_INIT(sd, NODE);
1d3504fc 7579 set_domain_attribute(sd, attr);
758b2cdc 7580 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7581 sd->parent = p;
1a848870
SS
7582 if (p)
7583 p->child = sd;
758b2cdc
RR
7584 cpumask_and(sched_domain_span(sd),
7585 sched_domain_span(sd), cpu_map);
1da177e4
LT
7586#endif
7587
7588 p = sd;
6c99e9ad 7589 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7590 SD_INIT(sd, CPU);
1d3504fc 7591 set_domain_attribute(sd, attr);
758b2cdc 7592 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7593 sd->parent = p;
1a848870
SS
7594 if (p)
7595 p->child = sd;
7c16ec58 7596 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7597
1e9f28fa
SS
7598#ifdef CONFIG_SCHED_MC
7599 p = sd;
6c99e9ad 7600 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7601 SD_INIT(sd, MC);
1d3504fc 7602 set_domain_attribute(sd, attr);
6ca09dfc
MT
7603 cpumask_and(sched_domain_span(sd), cpu_map,
7604 cpu_coregroup_mask(i));
1e9f28fa 7605 sd->parent = p;
1a848870 7606 p->child = sd;
7c16ec58 7607 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7608#endif
7609
1da177e4
LT
7610#ifdef CONFIG_SCHED_SMT
7611 p = sd;
6c99e9ad 7612 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7613 SD_INIT(sd, SIBLING);
1d3504fc 7614 set_domain_attribute(sd, attr);
758b2cdc 7615 cpumask_and(sched_domain_span(sd),
c69fc56d 7616 topology_thread_cpumask(i), cpu_map);
1da177e4 7617 sd->parent = p;
1a848870 7618 p->child = sd;
7c16ec58 7619 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7620#endif
7621 }
7622
7623#ifdef CONFIG_SCHED_SMT
7624 /* Set up CPU (sibling) groups */
abcd083a 7625 for_each_cpu(i, cpu_map) {
96f874e2 7626 cpumask_and(this_sibling_map,
c69fc56d 7627 topology_thread_cpumask(i), cpu_map);
96f874e2 7628 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7629 continue;
7630
dd41f596 7631 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7632 &cpu_to_cpu_group,
7633 send_covered, tmpmask);
1da177e4
LT
7634 }
7635#endif
7636
1e9f28fa
SS
7637#ifdef CONFIG_SCHED_MC
7638 /* Set up multi-core groups */
abcd083a 7639 for_each_cpu(i, cpu_map) {
6ca09dfc 7640 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7641 if (i != cpumask_first(this_core_map))
1e9f28fa 7642 continue;
7c16ec58 7643
dd41f596 7644 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7645 &cpu_to_core_group,
7646 send_covered, tmpmask);
1e9f28fa
SS
7647 }
7648#endif
7649
1da177e4 7650 /* Set up physical groups */
076ac2af 7651 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7652 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7653 if (cpumask_empty(nodemask))
1da177e4
LT
7654 continue;
7655
7c16ec58
MT
7656 init_sched_build_groups(nodemask, cpu_map,
7657 &cpu_to_phys_group,
7658 send_covered, tmpmask);
1da177e4
LT
7659 }
7660
7661#ifdef CONFIG_NUMA
7662 /* Set up node groups */
7c16ec58 7663 if (sd_allnodes) {
7c16ec58
MT
7664 init_sched_build_groups(cpu_map, cpu_map,
7665 &cpu_to_allnodes_group,
7666 send_covered, tmpmask);
7667 }
9c1cfda2 7668
076ac2af 7669 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7670 /* Set up node groups */
7671 struct sched_group *sg, *prev;
9c1cfda2
JH
7672 int j;
7673
96f874e2 7674 cpumask_clear(covered);
6ca09dfc 7675 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7676 if (cpumask_empty(nodemask)) {
d1b55138 7677 sched_group_nodes[i] = NULL;
9c1cfda2 7678 continue;
d1b55138 7679 }
9c1cfda2 7680
4bdbaad3 7681 sched_domain_node_span(i, domainspan);
96f874e2 7682 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7683
6c99e9ad
RR
7684 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7685 GFP_KERNEL, i);
51888ca2
SV
7686 if (!sg) {
7687 printk(KERN_WARNING "Can not alloc domain group for "
7688 "node %d\n", i);
7689 goto error;
7690 }
9c1cfda2 7691 sched_group_nodes[i] = sg;
abcd083a 7692 for_each_cpu(j, nodemask) {
9c1cfda2 7693 struct sched_domain *sd;
9761eea8 7694
62ea9ceb 7695 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7696 sd->groups = sg;
9c1cfda2 7697 }
5517d86b 7698 sg->__cpu_power = 0;
758b2cdc 7699 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7700 sg->next = sg;
96f874e2 7701 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7702 prev = sg;
7703
076ac2af 7704 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7705 int n = (i + j) % nr_node_ids;
9c1cfda2 7706
96f874e2
RR
7707 cpumask_complement(notcovered, covered);
7708 cpumask_and(tmpmask, notcovered, cpu_map);
7709 cpumask_and(tmpmask, tmpmask, domainspan);
7710 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7711 break;
7712
6ca09dfc 7713 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7714 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7715 continue;
7716
6c99e9ad
RR
7717 sg = kmalloc_node(sizeof(struct sched_group) +
7718 cpumask_size(),
15f0b676 7719 GFP_KERNEL, i);
9c1cfda2
JH
7720 if (!sg) {
7721 printk(KERN_WARNING
7722 "Can not alloc domain group for node %d\n", j);
51888ca2 7723 goto error;
9c1cfda2 7724 }
5517d86b 7725 sg->__cpu_power = 0;
758b2cdc 7726 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7727 sg->next = prev->next;
96f874e2 7728 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7729 prev->next = sg;
7730 prev = sg;
7731 }
9c1cfda2 7732 }
1da177e4
LT
7733#endif
7734
7735 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7736#ifdef CONFIG_SCHED_SMT
abcd083a 7737 for_each_cpu(i, cpu_map) {
6c99e9ad 7738 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7739
89c4710e 7740 init_sched_groups_power(i, sd);
5c45bf27 7741 }
1da177e4 7742#endif
1e9f28fa 7743#ifdef CONFIG_SCHED_MC
abcd083a 7744 for_each_cpu(i, cpu_map) {
6c99e9ad 7745 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7746
89c4710e 7747 init_sched_groups_power(i, sd);
5c45bf27
SS
7748 }
7749#endif
1e9f28fa 7750
abcd083a 7751 for_each_cpu(i, cpu_map) {
6c99e9ad 7752 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7753
89c4710e 7754 init_sched_groups_power(i, sd);
1da177e4
LT
7755 }
7756
9c1cfda2 7757#ifdef CONFIG_NUMA
076ac2af 7758 for (i = 0; i < nr_node_ids; i++)
08069033 7759 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7760
6711cab4
SS
7761 if (sd_allnodes) {
7762 struct sched_group *sg;
f712c0c7 7763
96f874e2 7764 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7765 tmpmask);
f712c0c7
SS
7766 init_numa_sched_groups_power(sg);
7767 }
9c1cfda2
JH
7768#endif
7769
1da177e4 7770 /* Attach the domains */
abcd083a 7771 for_each_cpu(i, cpu_map) {
1da177e4
LT
7772 struct sched_domain *sd;
7773#ifdef CONFIG_SCHED_SMT
6c99e9ad 7774 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7775#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7776 sd = &per_cpu(core_domains, i).sd;
1da177e4 7777#else
6c99e9ad 7778 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7779#endif
57d885fe 7780 cpu_attach_domain(sd, rd, i);
1da177e4 7781 }
51888ca2 7782
3404c8d9
RR
7783 err = 0;
7784
7785free_tmpmask:
7786 free_cpumask_var(tmpmask);
7787free_send_covered:
7788 free_cpumask_var(send_covered);
7789free_this_core_map:
7790 free_cpumask_var(this_core_map);
7791free_this_sibling_map:
7792 free_cpumask_var(this_sibling_map);
7793free_nodemask:
7794 free_cpumask_var(nodemask);
7795free_notcovered:
7796#ifdef CONFIG_NUMA
7797 free_cpumask_var(notcovered);
7798free_covered:
7799 free_cpumask_var(covered);
7800free_domainspan:
7801 free_cpumask_var(domainspan);
7802out:
7803#endif
7804 return err;
7805
7806free_sched_groups:
7807#ifdef CONFIG_NUMA
7808 kfree(sched_group_nodes);
7809#endif
7810 goto free_tmpmask;
51888ca2 7811
a616058b 7812#ifdef CONFIG_NUMA
51888ca2 7813error:
7c16ec58 7814 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7815 free_rootdomain(rd);
3404c8d9 7816 goto free_tmpmask;
a616058b 7817#endif
1da177e4 7818}
029190c5 7819
96f874e2 7820static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7821{
7822 return __build_sched_domains(cpu_map, NULL);
7823}
7824
96f874e2 7825static struct cpumask *doms_cur; /* current sched domains */
029190c5 7826static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7827static struct sched_domain_attr *dattr_cur;
7828 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7829
7830/*
7831 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7832 * cpumask) fails, then fallback to a single sched domain,
7833 * as determined by the single cpumask fallback_doms.
029190c5 7834 */
4212823f 7835static cpumask_var_t fallback_doms;
029190c5 7836
ee79d1bd
HC
7837/*
7838 * arch_update_cpu_topology lets virtualized architectures update the
7839 * cpu core maps. It is supposed to return 1 if the topology changed
7840 * or 0 if it stayed the same.
7841 */
7842int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7843{
ee79d1bd 7844 return 0;
22e52b07
HC
7845}
7846
1a20ff27 7847/*
41a2d6cf 7848 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7849 * For now this just excludes isolated cpus, but could be used to
7850 * exclude other special cases in the future.
1a20ff27 7851 */
96f874e2 7852static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7853{
7378547f
MM
7854 int err;
7855
22e52b07 7856 arch_update_cpu_topology();
029190c5 7857 ndoms_cur = 1;
96f874e2 7858 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7859 if (!doms_cur)
4212823f 7860 doms_cur = fallback_doms;
dcc30a35 7861 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7862 dattr_cur = NULL;
7378547f 7863 err = build_sched_domains(doms_cur);
6382bc90 7864 register_sched_domain_sysctl();
7378547f
MM
7865
7866 return err;
1a20ff27
DG
7867}
7868
96f874e2
RR
7869static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7870 struct cpumask *tmpmask)
1da177e4 7871{
7c16ec58 7872 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7873}
1da177e4 7874
1a20ff27
DG
7875/*
7876 * Detach sched domains from a group of cpus specified in cpu_map
7877 * These cpus will now be attached to the NULL domain
7878 */
96f874e2 7879static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7880{
96f874e2
RR
7881 /* Save because hotplug lock held. */
7882 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7883 int i;
7884
abcd083a 7885 for_each_cpu(i, cpu_map)
57d885fe 7886 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7887 synchronize_sched();
96f874e2 7888 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7889}
7890
1d3504fc
HS
7891/* handle null as "default" */
7892static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7893 struct sched_domain_attr *new, int idx_new)
7894{
7895 struct sched_domain_attr tmp;
7896
7897 /* fast path */
7898 if (!new && !cur)
7899 return 1;
7900
7901 tmp = SD_ATTR_INIT;
7902 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7903 new ? (new + idx_new) : &tmp,
7904 sizeof(struct sched_domain_attr));
7905}
7906
029190c5
PJ
7907/*
7908 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7909 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7910 * doms_new[] to the current sched domain partitioning, doms_cur[].
7911 * It destroys each deleted domain and builds each new domain.
7912 *
96f874e2 7913 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7914 * The masks don't intersect (don't overlap.) We should setup one
7915 * sched domain for each mask. CPUs not in any of the cpumasks will
7916 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7917 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7918 * it as it is.
7919 *
41a2d6cf
IM
7920 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7921 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7922 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7923 * ndoms_new == 1, and partition_sched_domains() will fallback to
7924 * the single partition 'fallback_doms', it also forces the domains
7925 * to be rebuilt.
029190c5 7926 *
96f874e2 7927 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7928 * ndoms_new == 0 is a special case for destroying existing domains,
7929 * and it will not create the default domain.
029190c5
PJ
7930 *
7931 * Call with hotplug lock held
7932 */
96f874e2
RR
7933/* FIXME: Change to struct cpumask *doms_new[] */
7934void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 7935 struct sched_domain_attr *dattr_new)
029190c5 7936{
dfb512ec 7937 int i, j, n;
d65bd5ec 7938 int new_topology;
029190c5 7939
712555ee 7940 mutex_lock(&sched_domains_mutex);
a1835615 7941
7378547f
MM
7942 /* always unregister in case we don't destroy any domains */
7943 unregister_sched_domain_sysctl();
7944
d65bd5ec
HC
7945 /* Let architecture update cpu core mappings. */
7946 new_topology = arch_update_cpu_topology();
7947
dfb512ec 7948 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7949
7950 /* Destroy deleted domains */
7951 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7952 for (j = 0; j < n && !new_topology; j++) {
96f874e2 7953 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 7954 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7955 goto match1;
7956 }
7957 /* no match - a current sched domain not in new doms_new[] */
7958 detach_destroy_domains(doms_cur + i);
7959match1:
7960 ;
7961 }
7962
e761b772
MK
7963 if (doms_new == NULL) {
7964 ndoms_cur = 0;
4212823f 7965 doms_new = fallback_doms;
dcc30a35 7966 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 7967 WARN_ON_ONCE(dattr_new);
e761b772
MK
7968 }
7969
029190c5
PJ
7970 /* Build new domains */
7971 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7972 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 7973 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 7974 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7975 goto match2;
7976 }
7977 /* no match - add a new doms_new */
1d3504fc
HS
7978 __build_sched_domains(doms_new + i,
7979 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7980match2:
7981 ;
7982 }
7983
7984 /* Remember the new sched domains */
4212823f 7985 if (doms_cur != fallback_doms)
029190c5 7986 kfree(doms_cur);
1d3504fc 7987 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7988 doms_cur = doms_new;
1d3504fc 7989 dattr_cur = dattr_new;
029190c5 7990 ndoms_cur = ndoms_new;
7378547f
MM
7991
7992 register_sched_domain_sysctl();
a1835615 7993
712555ee 7994 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7995}
7996
5c45bf27 7997#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7998static void arch_reinit_sched_domains(void)
5c45bf27 7999{
95402b38 8000 get_online_cpus();
dfb512ec
MK
8001
8002 /* Destroy domains first to force the rebuild */
8003 partition_sched_domains(0, NULL, NULL);
8004
e761b772 8005 rebuild_sched_domains();
95402b38 8006 put_online_cpus();
5c45bf27
SS
8007}
8008
8009static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8010{
afb8a9b7 8011 unsigned int level = 0;
5c45bf27 8012
afb8a9b7
GS
8013 if (sscanf(buf, "%u", &level) != 1)
8014 return -EINVAL;
8015
8016 /*
8017 * level is always be positive so don't check for
8018 * level < POWERSAVINGS_BALANCE_NONE which is 0
8019 * What happens on 0 or 1 byte write,
8020 * need to check for count as well?
8021 */
5c45bf27 8022
afb8a9b7 8023 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8024 return -EINVAL;
8025
8026 if (smt)
afb8a9b7 8027 sched_smt_power_savings = level;
5c45bf27 8028 else
afb8a9b7 8029 sched_mc_power_savings = level;
5c45bf27 8030
c70f22d2 8031 arch_reinit_sched_domains();
5c45bf27 8032
c70f22d2 8033 return count;
5c45bf27
SS
8034}
8035
5c45bf27 8036#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8037static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8038 char *page)
5c45bf27
SS
8039{
8040 return sprintf(page, "%u\n", sched_mc_power_savings);
8041}
f718cd4a 8042static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8043 const char *buf, size_t count)
5c45bf27
SS
8044{
8045 return sched_power_savings_store(buf, count, 0);
8046}
f718cd4a
AK
8047static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8048 sched_mc_power_savings_show,
8049 sched_mc_power_savings_store);
5c45bf27
SS
8050#endif
8051
8052#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8053static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8054 char *page)
5c45bf27
SS
8055{
8056 return sprintf(page, "%u\n", sched_smt_power_savings);
8057}
f718cd4a 8058static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8059 const char *buf, size_t count)
5c45bf27
SS
8060{
8061 return sched_power_savings_store(buf, count, 1);
8062}
f718cd4a
AK
8063static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8064 sched_smt_power_savings_show,
6707de00
AB
8065 sched_smt_power_savings_store);
8066#endif
8067
39aac648 8068int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8069{
8070 int err = 0;
8071
8072#ifdef CONFIG_SCHED_SMT
8073 if (smt_capable())
8074 err = sysfs_create_file(&cls->kset.kobj,
8075 &attr_sched_smt_power_savings.attr);
8076#endif
8077#ifdef CONFIG_SCHED_MC
8078 if (!err && mc_capable())
8079 err = sysfs_create_file(&cls->kset.kobj,
8080 &attr_sched_mc_power_savings.attr);
8081#endif
8082 return err;
8083}
6d6bc0ad 8084#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8085
e761b772 8086#ifndef CONFIG_CPUSETS
1da177e4 8087/*
e761b772
MK
8088 * Add online and remove offline CPUs from the scheduler domains.
8089 * When cpusets are enabled they take over this function.
1da177e4
LT
8090 */
8091static int update_sched_domains(struct notifier_block *nfb,
8092 unsigned long action, void *hcpu)
8093{
1da177e4 8094 switch (action) {
e761b772
MK
8095 case CPU_ONLINE:
8096 case CPU_ONLINE_FROZEN:
8097 case CPU_DEAD:
8098 case CPU_DEAD_FROZEN:
dfb512ec 8099 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8100 return NOTIFY_OK;
8101
8102 default:
8103 return NOTIFY_DONE;
8104 }
8105}
8106#endif
8107
8108static int update_runtime(struct notifier_block *nfb,
8109 unsigned long action, void *hcpu)
1da177e4 8110{
7def2be1
PZ
8111 int cpu = (int)(long)hcpu;
8112
1da177e4 8113 switch (action) {
1da177e4 8114 case CPU_DOWN_PREPARE:
8bb78442 8115 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8116 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8117 return NOTIFY_OK;
8118
1da177e4 8119 case CPU_DOWN_FAILED:
8bb78442 8120 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8121 case CPU_ONLINE:
8bb78442 8122 case CPU_ONLINE_FROZEN:
7def2be1 8123 enable_runtime(cpu_rq(cpu));
e761b772
MK
8124 return NOTIFY_OK;
8125
1da177e4
LT
8126 default:
8127 return NOTIFY_DONE;
8128 }
1da177e4 8129}
1da177e4
LT
8130
8131void __init sched_init_smp(void)
8132{
dcc30a35
RR
8133 cpumask_var_t non_isolated_cpus;
8134
8135 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8136
434d53b0
MT
8137#if defined(CONFIG_NUMA)
8138 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8139 GFP_KERNEL);
8140 BUG_ON(sched_group_nodes_bycpu == NULL);
8141#endif
95402b38 8142 get_online_cpus();
712555ee 8143 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8144 arch_init_sched_domains(cpu_online_mask);
8145 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8146 if (cpumask_empty(non_isolated_cpus))
8147 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8148 mutex_unlock(&sched_domains_mutex);
95402b38 8149 put_online_cpus();
e761b772
MK
8150
8151#ifndef CONFIG_CPUSETS
1da177e4
LT
8152 /* XXX: Theoretical race here - CPU may be hotplugged now */
8153 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8154#endif
8155
8156 /* RT runtime code needs to handle some hotplug events */
8157 hotcpu_notifier(update_runtime, 0);
8158
b328ca18 8159 init_hrtick();
5c1e1767
NP
8160
8161 /* Move init over to a non-isolated CPU */
dcc30a35 8162 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8163 BUG();
19978ca6 8164 sched_init_granularity();
dcc30a35 8165 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8166
8167 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8168 init_sched_rt_class();
1da177e4
LT
8169}
8170#else
8171void __init sched_init_smp(void)
8172{
19978ca6 8173 sched_init_granularity();
1da177e4
LT
8174}
8175#endif /* CONFIG_SMP */
8176
8177int in_sched_functions(unsigned long addr)
8178{
1da177e4
LT
8179 return in_lock_functions(addr) ||
8180 (addr >= (unsigned long)__sched_text_start
8181 && addr < (unsigned long)__sched_text_end);
8182}
8183
a9957449 8184static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8185{
8186 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8187 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8188#ifdef CONFIG_FAIR_GROUP_SCHED
8189 cfs_rq->rq = rq;
8190#endif
67e9fb2a 8191 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8192}
8193
fa85ae24
PZ
8194static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8195{
8196 struct rt_prio_array *array;
8197 int i;
8198
8199 array = &rt_rq->active;
8200 for (i = 0; i < MAX_RT_PRIO; i++) {
8201 INIT_LIST_HEAD(array->queue + i);
8202 __clear_bit(i, array->bitmap);
8203 }
8204 /* delimiter for bitsearch: */
8205 __set_bit(MAX_RT_PRIO, array->bitmap);
8206
052f1dc7 8207#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8208 rt_rq->highest_prio = MAX_RT_PRIO;
8209#endif
fa85ae24
PZ
8210#ifdef CONFIG_SMP
8211 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8212 rt_rq->overloaded = 0;
8213#endif
8214
8215 rt_rq->rt_time = 0;
8216 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8217 rt_rq->rt_runtime = 0;
8218 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8219
052f1dc7 8220#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8221 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8222 rt_rq->rq = rq;
8223#endif
fa85ae24
PZ
8224}
8225
6f505b16 8226#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8227static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8228 struct sched_entity *se, int cpu, int add,
8229 struct sched_entity *parent)
6f505b16 8230{
ec7dc8ac 8231 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8232 tg->cfs_rq[cpu] = cfs_rq;
8233 init_cfs_rq(cfs_rq, rq);
8234 cfs_rq->tg = tg;
8235 if (add)
8236 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8237
8238 tg->se[cpu] = se;
354d60c2
DG
8239 /* se could be NULL for init_task_group */
8240 if (!se)
8241 return;
8242
ec7dc8ac
DG
8243 if (!parent)
8244 se->cfs_rq = &rq->cfs;
8245 else
8246 se->cfs_rq = parent->my_q;
8247
6f505b16
PZ
8248 se->my_q = cfs_rq;
8249 se->load.weight = tg->shares;
e05510d0 8250 se->load.inv_weight = 0;
ec7dc8ac 8251 se->parent = parent;
6f505b16 8252}
052f1dc7 8253#endif
6f505b16 8254
052f1dc7 8255#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8256static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8257 struct sched_rt_entity *rt_se, int cpu, int add,
8258 struct sched_rt_entity *parent)
6f505b16 8259{
ec7dc8ac
DG
8260 struct rq *rq = cpu_rq(cpu);
8261
6f505b16
PZ
8262 tg->rt_rq[cpu] = rt_rq;
8263 init_rt_rq(rt_rq, rq);
8264 rt_rq->tg = tg;
8265 rt_rq->rt_se = rt_se;
ac086bc2 8266 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8267 if (add)
8268 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8269
8270 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8271 if (!rt_se)
8272 return;
8273
ec7dc8ac
DG
8274 if (!parent)
8275 rt_se->rt_rq = &rq->rt;
8276 else
8277 rt_se->rt_rq = parent->my_q;
8278
6f505b16 8279 rt_se->my_q = rt_rq;
ec7dc8ac 8280 rt_se->parent = parent;
6f505b16
PZ
8281 INIT_LIST_HEAD(&rt_se->run_list);
8282}
8283#endif
8284
1da177e4
LT
8285void __init sched_init(void)
8286{
dd41f596 8287 int i, j;
434d53b0
MT
8288 unsigned long alloc_size = 0, ptr;
8289
8290#ifdef CONFIG_FAIR_GROUP_SCHED
8291 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8292#endif
8293#ifdef CONFIG_RT_GROUP_SCHED
8294 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8295#endif
8296#ifdef CONFIG_USER_SCHED
8297 alloc_size *= 2;
df7c8e84
RR
8298#endif
8299#ifdef CONFIG_CPUMASK_OFFSTACK
8300 alloc_size *= num_possible_cpus() * cpumask_size();
434d53b0
MT
8301#endif
8302 /*
8303 * As sched_init() is called before page_alloc is setup,
8304 * we use alloc_bootmem().
8305 */
8306 if (alloc_size) {
5a9d3225 8307 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8308
8309#ifdef CONFIG_FAIR_GROUP_SCHED
8310 init_task_group.se = (struct sched_entity **)ptr;
8311 ptr += nr_cpu_ids * sizeof(void **);
8312
8313 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8314 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8315
8316#ifdef CONFIG_USER_SCHED
8317 root_task_group.se = (struct sched_entity **)ptr;
8318 ptr += nr_cpu_ids * sizeof(void **);
8319
8320 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8321 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8322#endif /* CONFIG_USER_SCHED */
8323#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8324#ifdef CONFIG_RT_GROUP_SCHED
8325 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8326 ptr += nr_cpu_ids * sizeof(void **);
8327
8328 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8329 ptr += nr_cpu_ids * sizeof(void **);
8330
8331#ifdef CONFIG_USER_SCHED
8332 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8333 ptr += nr_cpu_ids * sizeof(void **);
8334
8335 root_task_group.rt_rq = (struct rt_rq **)ptr;
8336 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8337#endif /* CONFIG_USER_SCHED */
8338#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8339#ifdef CONFIG_CPUMASK_OFFSTACK
8340 for_each_possible_cpu(i) {
8341 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8342 ptr += cpumask_size();
8343 }
8344#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8345 }
dd41f596 8346
57d885fe
GH
8347#ifdef CONFIG_SMP
8348 init_defrootdomain();
8349#endif
8350
d0b27fa7
PZ
8351 init_rt_bandwidth(&def_rt_bandwidth,
8352 global_rt_period(), global_rt_runtime());
8353
8354#ifdef CONFIG_RT_GROUP_SCHED
8355 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8356 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8357#ifdef CONFIG_USER_SCHED
8358 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8359 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8360#endif /* CONFIG_USER_SCHED */
8361#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8362
052f1dc7 8363#ifdef CONFIG_GROUP_SCHED
6f505b16 8364 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8365 INIT_LIST_HEAD(&init_task_group.children);
8366
8367#ifdef CONFIG_USER_SCHED
8368 INIT_LIST_HEAD(&root_task_group.children);
8369 init_task_group.parent = &root_task_group;
8370 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8371#endif /* CONFIG_USER_SCHED */
8372#endif /* CONFIG_GROUP_SCHED */
6f505b16 8373
0a945022 8374 for_each_possible_cpu(i) {
70b97a7f 8375 struct rq *rq;
1da177e4
LT
8376
8377 rq = cpu_rq(i);
8378 spin_lock_init(&rq->lock);
7897986b 8379 rq->nr_running = 0;
dd41f596 8380 init_cfs_rq(&rq->cfs, rq);
6f505b16 8381 init_rt_rq(&rq->rt, rq);
dd41f596 8382#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8383 init_task_group.shares = init_task_group_load;
6f505b16 8384 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8385#ifdef CONFIG_CGROUP_SCHED
8386 /*
8387 * How much cpu bandwidth does init_task_group get?
8388 *
8389 * In case of task-groups formed thr' the cgroup filesystem, it
8390 * gets 100% of the cpu resources in the system. This overall
8391 * system cpu resource is divided among the tasks of
8392 * init_task_group and its child task-groups in a fair manner,
8393 * based on each entity's (task or task-group's) weight
8394 * (se->load.weight).
8395 *
8396 * In other words, if init_task_group has 10 tasks of weight
8397 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8398 * then A0's share of the cpu resource is:
8399 *
8400 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8401 *
8402 * We achieve this by letting init_task_group's tasks sit
8403 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8404 */
ec7dc8ac 8405 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8406#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8407 root_task_group.shares = NICE_0_LOAD;
8408 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8409 /*
8410 * In case of task-groups formed thr' the user id of tasks,
8411 * init_task_group represents tasks belonging to root user.
8412 * Hence it forms a sibling of all subsequent groups formed.
8413 * In this case, init_task_group gets only a fraction of overall
8414 * system cpu resource, based on the weight assigned to root
8415 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8416 * by letting tasks of init_task_group sit in a separate cfs_rq
8417 * (init_cfs_rq) and having one entity represent this group of
8418 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8419 */
ec7dc8ac 8420 init_tg_cfs_entry(&init_task_group,
6f505b16 8421 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8422 &per_cpu(init_sched_entity, i), i, 1,
8423 root_task_group.se[i]);
6f505b16 8424
052f1dc7 8425#endif
354d60c2
DG
8426#endif /* CONFIG_FAIR_GROUP_SCHED */
8427
8428 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8429#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8430 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8431#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8432 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8433#elif defined CONFIG_USER_SCHED
eff766a6 8434 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8435 init_tg_rt_entry(&init_task_group,
6f505b16 8436 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8437 &per_cpu(init_sched_rt_entity, i), i, 1,
8438 root_task_group.rt_se[i]);
354d60c2 8439#endif
dd41f596 8440#endif
1da177e4 8441
dd41f596
IM
8442 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8443 rq->cpu_load[j] = 0;
1da177e4 8444#ifdef CONFIG_SMP
41c7ce9a 8445 rq->sd = NULL;
57d885fe 8446 rq->rd = NULL;
1da177e4 8447 rq->active_balance = 0;
dd41f596 8448 rq->next_balance = jiffies;
1da177e4 8449 rq->push_cpu = 0;
0a2966b4 8450 rq->cpu = i;
1f11eb6a 8451 rq->online = 0;
1da177e4
LT
8452 rq->migration_thread = NULL;
8453 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8454 rq_attach_root(rq, &def_root_domain);
1da177e4 8455#endif
8f4d37ec 8456 init_rq_hrtick(rq);
1da177e4 8457 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8458 }
8459
2dd73a4f 8460 set_load_weight(&init_task);
b50f60ce 8461
e107be36
AK
8462#ifdef CONFIG_PREEMPT_NOTIFIERS
8463 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8464#endif
8465
c9819f45 8466#ifdef CONFIG_SMP
962cf36c 8467 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8468#endif
8469
b50f60ce
HC
8470#ifdef CONFIG_RT_MUTEXES
8471 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8472#endif
8473
1da177e4
LT
8474 /*
8475 * The boot idle thread does lazy MMU switching as well:
8476 */
8477 atomic_inc(&init_mm.mm_count);
8478 enter_lazy_tlb(&init_mm, current);
8479
8480 /*
8481 * Make us the idle thread. Technically, schedule() should not be
8482 * called from this thread, however somewhere below it might be,
8483 * but because we are the idle thread, we just pick up running again
8484 * when this runqueue becomes "idle".
8485 */
8486 init_idle(current, smp_processor_id());
dd41f596
IM
8487 /*
8488 * During early bootup we pretend to be a normal task:
8489 */
8490 current->sched_class = &fair_sched_class;
6892b75e 8491
6a7b3dc3
RR
8492 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8493 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8494#ifdef CONFIG_SMP
7d1e6a9b
RR
8495#ifdef CONFIG_NO_HZ
8496 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8497#endif
dcc30a35 8498 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8499#endif /* SMP */
6a7b3dc3 8500
6892b75e 8501 scheduler_running = 1;
1da177e4
LT
8502}
8503
8504#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8505void __might_sleep(char *file, int line)
8506{
48f24c4d 8507#ifdef in_atomic
1da177e4
LT
8508 static unsigned long prev_jiffy; /* ratelimiting */
8509
aef745fc
IM
8510 if ((!in_atomic() && !irqs_disabled()) ||
8511 system_state != SYSTEM_RUNNING || oops_in_progress)
8512 return;
8513 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8514 return;
8515 prev_jiffy = jiffies;
8516
8517 printk(KERN_ERR
8518 "BUG: sleeping function called from invalid context at %s:%d\n",
8519 file, line);
8520 printk(KERN_ERR
8521 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8522 in_atomic(), irqs_disabled(),
8523 current->pid, current->comm);
8524
8525 debug_show_held_locks(current);
8526 if (irqs_disabled())
8527 print_irqtrace_events(current);
8528 dump_stack();
1da177e4
LT
8529#endif
8530}
8531EXPORT_SYMBOL(__might_sleep);
8532#endif
8533
8534#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8535static void normalize_task(struct rq *rq, struct task_struct *p)
8536{
8537 int on_rq;
3e51f33f 8538
3a5e4dc1
AK
8539 update_rq_clock(rq);
8540 on_rq = p->se.on_rq;
8541 if (on_rq)
8542 deactivate_task(rq, p, 0);
8543 __setscheduler(rq, p, SCHED_NORMAL, 0);
8544 if (on_rq) {
8545 activate_task(rq, p, 0);
8546 resched_task(rq->curr);
8547 }
8548}
8549
1da177e4
LT
8550void normalize_rt_tasks(void)
8551{
a0f98a1c 8552 struct task_struct *g, *p;
1da177e4 8553 unsigned long flags;
70b97a7f 8554 struct rq *rq;
1da177e4 8555
4cf5d77a 8556 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8557 do_each_thread(g, p) {
178be793
IM
8558 /*
8559 * Only normalize user tasks:
8560 */
8561 if (!p->mm)
8562 continue;
8563
6cfb0d5d 8564 p->se.exec_start = 0;
6cfb0d5d 8565#ifdef CONFIG_SCHEDSTATS
dd41f596 8566 p->se.wait_start = 0;
dd41f596 8567 p->se.sleep_start = 0;
dd41f596 8568 p->se.block_start = 0;
6cfb0d5d 8569#endif
dd41f596
IM
8570
8571 if (!rt_task(p)) {
8572 /*
8573 * Renice negative nice level userspace
8574 * tasks back to 0:
8575 */
8576 if (TASK_NICE(p) < 0 && p->mm)
8577 set_user_nice(p, 0);
1da177e4 8578 continue;
dd41f596 8579 }
1da177e4 8580
4cf5d77a 8581 spin_lock(&p->pi_lock);
b29739f9 8582 rq = __task_rq_lock(p);
1da177e4 8583
178be793 8584 normalize_task(rq, p);
3a5e4dc1 8585
b29739f9 8586 __task_rq_unlock(rq);
4cf5d77a 8587 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8588 } while_each_thread(g, p);
8589
4cf5d77a 8590 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8591}
8592
8593#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8594
8595#ifdef CONFIG_IA64
8596/*
8597 * These functions are only useful for the IA64 MCA handling.
8598 *
8599 * They can only be called when the whole system has been
8600 * stopped - every CPU needs to be quiescent, and no scheduling
8601 * activity can take place. Using them for anything else would
8602 * be a serious bug, and as a result, they aren't even visible
8603 * under any other configuration.
8604 */
8605
8606/**
8607 * curr_task - return the current task for a given cpu.
8608 * @cpu: the processor in question.
8609 *
8610 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8611 */
36c8b586 8612struct task_struct *curr_task(int cpu)
1df5c10a
LT
8613{
8614 return cpu_curr(cpu);
8615}
8616
8617/**
8618 * set_curr_task - set the current task for a given cpu.
8619 * @cpu: the processor in question.
8620 * @p: the task pointer to set.
8621 *
8622 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8623 * are serviced on a separate stack. It allows the architecture to switch the
8624 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8625 * must be called with all CPU's synchronized, and interrupts disabled, the
8626 * and caller must save the original value of the current task (see
8627 * curr_task() above) and restore that value before reenabling interrupts and
8628 * re-starting the system.
8629 *
8630 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8631 */
36c8b586 8632void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8633{
8634 cpu_curr(cpu) = p;
8635}
8636
8637#endif
29f59db3 8638
bccbe08a
PZ
8639#ifdef CONFIG_FAIR_GROUP_SCHED
8640static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8641{
8642 int i;
8643
8644 for_each_possible_cpu(i) {
8645 if (tg->cfs_rq)
8646 kfree(tg->cfs_rq[i]);
8647 if (tg->se)
8648 kfree(tg->se[i]);
6f505b16
PZ
8649 }
8650
8651 kfree(tg->cfs_rq);
8652 kfree(tg->se);
6f505b16
PZ
8653}
8654
ec7dc8ac
DG
8655static
8656int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8657{
29f59db3 8658 struct cfs_rq *cfs_rq;
eab17229 8659 struct sched_entity *se;
9b5b7751 8660 struct rq *rq;
29f59db3
SV
8661 int i;
8662
434d53b0 8663 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8664 if (!tg->cfs_rq)
8665 goto err;
434d53b0 8666 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8667 if (!tg->se)
8668 goto err;
052f1dc7
PZ
8669
8670 tg->shares = NICE_0_LOAD;
29f59db3
SV
8671
8672 for_each_possible_cpu(i) {
9b5b7751 8673 rq = cpu_rq(i);
29f59db3 8674
eab17229
LZ
8675 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8676 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8677 if (!cfs_rq)
8678 goto err;
8679
eab17229
LZ
8680 se = kzalloc_node(sizeof(struct sched_entity),
8681 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8682 if (!se)
8683 goto err;
8684
eab17229 8685 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8686 }
8687
8688 return 1;
8689
8690 err:
8691 return 0;
8692}
8693
8694static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8695{
8696 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8697 &cpu_rq(cpu)->leaf_cfs_rq_list);
8698}
8699
8700static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8701{
8702 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8703}
6d6bc0ad 8704#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8705static inline void free_fair_sched_group(struct task_group *tg)
8706{
8707}
8708
ec7dc8ac
DG
8709static inline
8710int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8711{
8712 return 1;
8713}
8714
8715static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8716{
8717}
8718
8719static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8720{
8721}
6d6bc0ad 8722#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8723
8724#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8725static void free_rt_sched_group(struct task_group *tg)
8726{
8727 int i;
8728
d0b27fa7
PZ
8729 destroy_rt_bandwidth(&tg->rt_bandwidth);
8730
bccbe08a
PZ
8731 for_each_possible_cpu(i) {
8732 if (tg->rt_rq)
8733 kfree(tg->rt_rq[i]);
8734 if (tg->rt_se)
8735 kfree(tg->rt_se[i]);
8736 }
8737
8738 kfree(tg->rt_rq);
8739 kfree(tg->rt_se);
8740}
8741
ec7dc8ac
DG
8742static
8743int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8744{
8745 struct rt_rq *rt_rq;
eab17229 8746 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8747 struct rq *rq;
8748 int i;
8749
434d53b0 8750 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8751 if (!tg->rt_rq)
8752 goto err;
434d53b0 8753 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8754 if (!tg->rt_se)
8755 goto err;
8756
d0b27fa7
PZ
8757 init_rt_bandwidth(&tg->rt_bandwidth,
8758 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8759
8760 for_each_possible_cpu(i) {
8761 rq = cpu_rq(i);
8762
eab17229
LZ
8763 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8764 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8765 if (!rt_rq)
8766 goto err;
29f59db3 8767
eab17229
LZ
8768 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8769 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8770 if (!rt_se)
8771 goto err;
29f59db3 8772
eab17229 8773 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8774 }
8775
bccbe08a
PZ
8776 return 1;
8777
8778 err:
8779 return 0;
8780}
8781
8782static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8783{
8784 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8785 &cpu_rq(cpu)->leaf_rt_rq_list);
8786}
8787
8788static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8789{
8790 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8791}
6d6bc0ad 8792#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8793static inline void free_rt_sched_group(struct task_group *tg)
8794{
8795}
8796
ec7dc8ac
DG
8797static inline
8798int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8799{
8800 return 1;
8801}
8802
8803static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8804{
8805}
8806
8807static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8808{
8809}
6d6bc0ad 8810#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8811
d0b27fa7 8812#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8813static void free_sched_group(struct task_group *tg)
8814{
8815 free_fair_sched_group(tg);
8816 free_rt_sched_group(tg);
8817 kfree(tg);
8818}
8819
8820/* allocate runqueue etc for a new task group */
ec7dc8ac 8821struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8822{
8823 struct task_group *tg;
8824 unsigned long flags;
8825 int i;
8826
8827 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8828 if (!tg)
8829 return ERR_PTR(-ENOMEM);
8830
ec7dc8ac 8831 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8832 goto err;
8833
ec7dc8ac 8834 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8835 goto err;
8836
8ed36996 8837 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8838 for_each_possible_cpu(i) {
bccbe08a
PZ
8839 register_fair_sched_group(tg, i);
8840 register_rt_sched_group(tg, i);
9b5b7751 8841 }
6f505b16 8842 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8843
8844 WARN_ON(!parent); /* root should already exist */
8845
8846 tg->parent = parent;
f473aa5e 8847 INIT_LIST_HEAD(&tg->children);
09f2724a 8848 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8849 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8850
9b5b7751 8851 return tg;
29f59db3
SV
8852
8853err:
6f505b16 8854 free_sched_group(tg);
29f59db3
SV
8855 return ERR_PTR(-ENOMEM);
8856}
8857
9b5b7751 8858/* rcu callback to free various structures associated with a task group */
6f505b16 8859static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8860{
29f59db3 8861 /* now it should be safe to free those cfs_rqs */
6f505b16 8862 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8863}
8864
9b5b7751 8865/* Destroy runqueue etc associated with a task group */
4cf86d77 8866void sched_destroy_group(struct task_group *tg)
29f59db3 8867{
8ed36996 8868 unsigned long flags;
9b5b7751 8869 int i;
29f59db3 8870
8ed36996 8871 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8872 for_each_possible_cpu(i) {
bccbe08a
PZ
8873 unregister_fair_sched_group(tg, i);
8874 unregister_rt_sched_group(tg, i);
9b5b7751 8875 }
6f505b16 8876 list_del_rcu(&tg->list);
f473aa5e 8877 list_del_rcu(&tg->siblings);
8ed36996 8878 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8879
9b5b7751 8880 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8881 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8882}
8883
9b5b7751 8884/* change task's runqueue when it moves between groups.
3a252015
IM
8885 * The caller of this function should have put the task in its new group
8886 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8887 * reflect its new group.
9b5b7751
SV
8888 */
8889void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8890{
8891 int on_rq, running;
8892 unsigned long flags;
8893 struct rq *rq;
8894
8895 rq = task_rq_lock(tsk, &flags);
8896
29f59db3
SV
8897 update_rq_clock(rq);
8898
051a1d1a 8899 running = task_current(rq, tsk);
29f59db3
SV
8900 on_rq = tsk->se.on_rq;
8901
0e1f3483 8902 if (on_rq)
29f59db3 8903 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8904 if (unlikely(running))
8905 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8906
6f505b16 8907 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8908
810b3817
PZ
8909#ifdef CONFIG_FAIR_GROUP_SCHED
8910 if (tsk->sched_class->moved_group)
8911 tsk->sched_class->moved_group(tsk);
8912#endif
8913
0e1f3483
HS
8914 if (unlikely(running))
8915 tsk->sched_class->set_curr_task(rq);
8916 if (on_rq)
7074badb 8917 enqueue_task(rq, tsk, 0);
29f59db3 8918
29f59db3
SV
8919 task_rq_unlock(rq, &flags);
8920}
6d6bc0ad 8921#endif /* CONFIG_GROUP_SCHED */
29f59db3 8922
052f1dc7 8923#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8924static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8925{
8926 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8927 int on_rq;
8928
29f59db3 8929 on_rq = se->on_rq;
62fb1851 8930 if (on_rq)
29f59db3
SV
8931 dequeue_entity(cfs_rq, se, 0);
8932
8933 se->load.weight = shares;
e05510d0 8934 se->load.inv_weight = 0;
29f59db3 8935
62fb1851 8936 if (on_rq)
29f59db3 8937 enqueue_entity(cfs_rq, se, 0);
c09595f6 8938}
18d95a28 8939
c09595f6
PZ
8940static void set_se_shares(struct sched_entity *se, unsigned long shares)
8941{
8942 struct cfs_rq *cfs_rq = se->cfs_rq;
8943 struct rq *rq = cfs_rq->rq;
8944 unsigned long flags;
8945
8946 spin_lock_irqsave(&rq->lock, flags);
8947 __set_se_shares(se, shares);
8948 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8949}
8950
8ed36996
PZ
8951static DEFINE_MUTEX(shares_mutex);
8952
4cf86d77 8953int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8954{
8955 int i;
8ed36996 8956 unsigned long flags;
c61935fd 8957
ec7dc8ac
DG
8958 /*
8959 * We can't change the weight of the root cgroup.
8960 */
8961 if (!tg->se[0])
8962 return -EINVAL;
8963
18d95a28
PZ
8964 if (shares < MIN_SHARES)
8965 shares = MIN_SHARES;
cb4ad1ff
MX
8966 else if (shares > MAX_SHARES)
8967 shares = MAX_SHARES;
62fb1851 8968
8ed36996 8969 mutex_lock(&shares_mutex);
9b5b7751 8970 if (tg->shares == shares)
5cb350ba 8971 goto done;
29f59db3 8972
8ed36996 8973 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8974 for_each_possible_cpu(i)
8975 unregister_fair_sched_group(tg, i);
f473aa5e 8976 list_del_rcu(&tg->siblings);
8ed36996 8977 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8978
8979 /* wait for any ongoing reference to this group to finish */
8980 synchronize_sched();
8981
8982 /*
8983 * Now we are free to modify the group's share on each cpu
8984 * w/o tripping rebalance_share or load_balance_fair.
8985 */
9b5b7751 8986 tg->shares = shares;
c09595f6
PZ
8987 for_each_possible_cpu(i) {
8988 /*
8989 * force a rebalance
8990 */
8991 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8992 set_se_shares(tg->se[i], shares);
c09595f6 8993 }
29f59db3 8994
6b2d7700
SV
8995 /*
8996 * Enable load balance activity on this group, by inserting it back on
8997 * each cpu's rq->leaf_cfs_rq_list.
8998 */
8ed36996 8999 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9000 for_each_possible_cpu(i)
9001 register_fair_sched_group(tg, i);
f473aa5e 9002 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9003 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9004done:
8ed36996 9005 mutex_unlock(&shares_mutex);
9b5b7751 9006 return 0;
29f59db3
SV
9007}
9008
5cb350ba
DG
9009unsigned long sched_group_shares(struct task_group *tg)
9010{
9011 return tg->shares;
9012}
052f1dc7 9013#endif
5cb350ba 9014
052f1dc7 9015#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9016/*
9f0c1e56 9017 * Ensure that the real time constraints are schedulable.
6f505b16 9018 */
9f0c1e56
PZ
9019static DEFINE_MUTEX(rt_constraints_mutex);
9020
9021static unsigned long to_ratio(u64 period, u64 runtime)
9022{
9023 if (runtime == RUNTIME_INF)
9a7e0b18 9024 return 1ULL << 20;
9f0c1e56 9025
9a7e0b18 9026 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9027}
9028
9a7e0b18
PZ
9029/* Must be called with tasklist_lock held */
9030static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9031{
9a7e0b18 9032 struct task_struct *g, *p;
b40b2e8e 9033
9a7e0b18
PZ
9034 do_each_thread(g, p) {
9035 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9036 return 1;
9037 } while_each_thread(g, p);
b40b2e8e 9038
9a7e0b18
PZ
9039 return 0;
9040}
b40b2e8e 9041
9a7e0b18
PZ
9042struct rt_schedulable_data {
9043 struct task_group *tg;
9044 u64 rt_period;
9045 u64 rt_runtime;
9046};
b40b2e8e 9047
9a7e0b18
PZ
9048static int tg_schedulable(struct task_group *tg, void *data)
9049{
9050 struct rt_schedulable_data *d = data;
9051 struct task_group *child;
9052 unsigned long total, sum = 0;
9053 u64 period, runtime;
b40b2e8e 9054
9a7e0b18
PZ
9055 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9056 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9057
9a7e0b18
PZ
9058 if (tg == d->tg) {
9059 period = d->rt_period;
9060 runtime = d->rt_runtime;
b40b2e8e 9061 }
b40b2e8e 9062
98a4826b
PZ
9063#ifdef CONFIG_USER_SCHED
9064 if (tg == &root_task_group) {
9065 period = global_rt_period();
9066 runtime = global_rt_runtime();
9067 }
9068#endif
9069
4653f803
PZ
9070 /*
9071 * Cannot have more runtime than the period.
9072 */
9073 if (runtime > period && runtime != RUNTIME_INF)
9074 return -EINVAL;
6f505b16 9075
4653f803
PZ
9076 /*
9077 * Ensure we don't starve existing RT tasks.
9078 */
9a7e0b18
PZ
9079 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9080 return -EBUSY;
6f505b16 9081
9a7e0b18 9082 total = to_ratio(period, runtime);
6f505b16 9083
4653f803
PZ
9084 /*
9085 * Nobody can have more than the global setting allows.
9086 */
9087 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9088 return -EINVAL;
9089
9090 /*
9091 * The sum of our children's runtime should not exceed our own.
9092 */
9a7e0b18
PZ
9093 list_for_each_entry_rcu(child, &tg->children, siblings) {
9094 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9095 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9096
9a7e0b18
PZ
9097 if (child == d->tg) {
9098 period = d->rt_period;
9099 runtime = d->rt_runtime;
9100 }
6f505b16 9101
9a7e0b18 9102 sum += to_ratio(period, runtime);
9f0c1e56 9103 }
6f505b16 9104
9a7e0b18
PZ
9105 if (sum > total)
9106 return -EINVAL;
9107
9108 return 0;
6f505b16
PZ
9109}
9110
9a7e0b18 9111static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9112{
9a7e0b18
PZ
9113 struct rt_schedulable_data data = {
9114 .tg = tg,
9115 .rt_period = period,
9116 .rt_runtime = runtime,
9117 };
9118
9119 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9120}
9121
d0b27fa7
PZ
9122static int tg_set_bandwidth(struct task_group *tg,
9123 u64 rt_period, u64 rt_runtime)
6f505b16 9124{
ac086bc2 9125 int i, err = 0;
9f0c1e56 9126
9f0c1e56 9127 mutex_lock(&rt_constraints_mutex);
521f1a24 9128 read_lock(&tasklist_lock);
9a7e0b18
PZ
9129 err = __rt_schedulable(tg, rt_period, rt_runtime);
9130 if (err)
9f0c1e56 9131 goto unlock;
ac086bc2
PZ
9132
9133 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9134 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9135 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9136
9137 for_each_possible_cpu(i) {
9138 struct rt_rq *rt_rq = tg->rt_rq[i];
9139
9140 spin_lock(&rt_rq->rt_runtime_lock);
9141 rt_rq->rt_runtime = rt_runtime;
9142 spin_unlock(&rt_rq->rt_runtime_lock);
9143 }
9144 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9145 unlock:
521f1a24 9146 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9147 mutex_unlock(&rt_constraints_mutex);
9148
9149 return err;
6f505b16
PZ
9150}
9151
d0b27fa7
PZ
9152int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9153{
9154 u64 rt_runtime, rt_period;
9155
9156 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9157 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9158 if (rt_runtime_us < 0)
9159 rt_runtime = RUNTIME_INF;
9160
9161 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9162}
9163
9f0c1e56
PZ
9164long sched_group_rt_runtime(struct task_group *tg)
9165{
9166 u64 rt_runtime_us;
9167
d0b27fa7 9168 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9169 return -1;
9170
d0b27fa7 9171 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9172 do_div(rt_runtime_us, NSEC_PER_USEC);
9173 return rt_runtime_us;
9174}
d0b27fa7
PZ
9175
9176int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9177{
9178 u64 rt_runtime, rt_period;
9179
9180 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9181 rt_runtime = tg->rt_bandwidth.rt_runtime;
9182
619b0488
R
9183 if (rt_period == 0)
9184 return -EINVAL;
9185
d0b27fa7
PZ
9186 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9187}
9188
9189long sched_group_rt_period(struct task_group *tg)
9190{
9191 u64 rt_period_us;
9192
9193 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9194 do_div(rt_period_us, NSEC_PER_USEC);
9195 return rt_period_us;
9196}
9197
9198static int sched_rt_global_constraints(void)
9199{
4653f803 9200 u64 runtime, period;
d0b27fa7
PZ
9201 int ret = 0;
9202
ec5d4989
HS
9203 if (sysctl_sched_rt_period <= 0)
9204 return -EINVAL;
9205
4653f803
PZ
9206 runtime = global_rt_runtime();
9207 period = global_rt_period();
9208
9209 /*
9210 * Sanity check on the sysctl variables.
9211 */
9212 if (runtime > period && runtime != RUNTIME_INF)
9213 return -EINVAL;
10b612f4 9214
d0b27fa7 9215 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9216 read_lock(&tasklist_lock);
4653f803 9217 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9218 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9219 mutex_unlock(&rt_constraints_mutex);
9220
9221 return ret;
9222}
54e99124
DG
9223
9224int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9225{
9226 /* Don't accept realtime tasks when there is no way for them to run */
9227 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9228 return 0;
9229
9230 return 1;
9231}
9232
6d6bc0ad 9233#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9234static int sched_rt_global_constraints(void)
9235{
ac086bc2
PZ
9236 unsigned long flags;
9237 int i;
9238
ec5d4989
HS
9239 if (sysctl_sched_rt_period <= 0)
9240 return -EINVAL;
9241
ac086bc2
PZ
9242 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9243 for_each_possible_cpu(i) {
9244 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9245
9246 spin_lock(&rt_rq->rt_runtime_lock);
9247 rt_rq->rt_runtime = global_rt_runtime();
9248 spin_unlock(&rt_rq->rt_runtime_lock);
9249 }
9250 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9251
d0b27fa7
PZ
9252 return 0;
9253}
6d6bc0ad 9254#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9255
9256int sched_rt_handler(struct ctl_table *table, int write,
9257 struct file *filp, void __user *buffer, size_t *lenp,
9258 loff_t *ppos)
9259{
9260 int ret;
9261 int old_period, old_runtime;
9262 static DEFINE_MUTEX(mutex);
9263
9264 mutex_lock(&mutex);
9265 old_period = sysctl_sched_rt_period;
9266 old_runtime = sysctl_sched_rt_runtime;
9267
9268 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9269
9270 if (!ret && write) {
9271 ret = sched_rt_global_constraints();
9272 if (ret) {
9273 sysctl_sched_rt_period = old_period;
9274 sysctl_sched_rt_runtime = old_runtime;
9275 } else {
9276 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9277 def_rt_bandwidth.rt_period =
9278 ns_to_ktime(global_rt_period());
9279 }
9280 }
9281 mutex_unlock(&mutex);
9282
9283 return ret;
9284}
68318b8e 9285
052f1dc7 9286#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9287
9288/* return corresponding task_group object of a cgroup */
2b01dfe3 9289static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9290{
2b01dfe3
PM
9291 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9292 struct task_group, css);
68318b8e
SV
9293}
9294
9295static struct cgroup_subsys_state *
2b01dfe3 9296cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9297{
ec7dc8ac 9298 struct task_group *tg, *parent;
68318b8e 9299
2b01dfe3 9300 if (!cgrp->parent) {
68318b8e 9301 /* This is early initialization for the top cgroup */
68318b8e
SV
9302 return &init_task_group.css;
9303 }
9304
ec7dc8ac
DG
9305 parent = cgroup_tg(cgrp->parent);
9306 tg = sched_create_group(parent);
68318b8e
SV
9307 if (IS_ERR(tg))
9308 return ERR_PTR(-ENOMEM);
9309
68318b8e
SV
9310 return &tg->css;
9311}
9312
41a2d6cf
IM
9313static void
9314cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9315{
2b01dfe3 9316 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9317
9318 sched_destroy_group(tg);
9319}
9320
41a2d6cf
IM
9321static int
9322cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9323 struct task_struct *tsk)
68318b8e 9324{
b68aa230 9325#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9326 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9327 return -EINVAL;
9328#else
68318b8e
SV
9329 /* We don't support RT-tasks being in separate groups */
9330 if (tsk->sched_class != &fair_sched_class)
9331 return -EINVAL;
b68aa230 9332#endif
68318b8e
SV
9333
9334 return 0;
9335}
9336
9337static void
2b01dfe3 9338cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9339 struct cgroup *old_cont, struct task_struct *tsk)
9340{
9341 sched_move_task(tsk);
9342}
9343
052f1dc7 9344#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9345static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9346 u64 shareval)
68318b8e 9347{
2b01dfe3 9348 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9349}
9350
f4c753b7 9351static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9352{
2b01dfe3 9353 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9354
9355 return (u64) tg->shares;
9356}
6d6bc0ad 9357#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9358
052f1dc7 9359#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9360static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9361 s64 val)
6f505b16 9362{
06ecb27c 9363 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9364}
9365
06ecb27c 9366static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9367{
06ecb27c 9368 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9369}
d0b27fa7
PZ
9370
9371static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9372 u64 rt_period_us)
9373{
9374 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9375}
9376
9377static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9378{
9379 return sched_group_rt_period(cgroup_tg(cgrp));
9380}
6d6bc0ad 9381#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9382
fe5c7cc2 9383static struct cftype cpu_files[] = {
052f1dc7 9384#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9385 {
9386 .name = "shares",
f4c753b7
PM
9387 .read_u64 = cpu_shares_read_u64,
9388 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9389 },
052f1dc7
PZ
9390#endif
9391#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9392 {
9f0c1e56 9393 .name = "rt_runtime_us",
06ecb27c
PM
9394 .read_s64 = cpu_rt_runtime_read,
9395 .write_s64 = cpu_rt_runtime_write,
6f505b16 9396 },
d0b27fa7
PZ
9397 {
9398 .name = "rt_period_us",
f4c753b7
PM
9399 .read_u64 = cpu_rt_period_read_uint,
9400 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9401 },
052f1dc7 9402#endif
68318b8e
SV
9403};
9404
9405static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9406{
fe5c7cc2 9407 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9408}
9409
9410struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9411 .name = "cpu",
9412 .create = cpu_cgroup_create,
9413 .destroy = cpu_cgroup_destroy,
9414 .can_attach = cpu_cgroup_can_attach,
9415 .attach = cpu_cgroup_attach,
9416 .populate = cpu_cgroup_populate,
9417 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9418 .early_init = 1,
9419};
9420
052f1dc7 9421#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9422
9423#ifdef CONFIG_CGROUP_CPUACCT
9424
9425/*
9426 * CPU accounting code for task groups.
9427 *
9428 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9429 * (balbir@in.ibm.com).
9430 */
9431
934352f2 9432/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9433struct cpuacct {
9434 struct cgroup_subsys_state css;
9435 /* cpuusage holds pointer to a u64-type object on every cpu */
9436 u64 *cpuusage;
934352f2 9437 struct cpuacct *parent;
d842de87
SV
9438};
9439
9440struct cgroup_subsys cpuacct_subsys;
9441
9442/* return cpu accounting group corresponding to this container */
32cd756a 9443static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9444{
32cd756a 9445 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9446 struct cpuacct, css);
9447}
9448
9449/* return cpu accounting group to which this task belongs */
9450static inline struct cpuacct *task_ca(struct task_struct *tsk)
9451{
9452 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9453 struct cpuacct, css);
9454}
9455
9456/* create a new cpu accounting group */
9457static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9458 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9459{
9460 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9461
9462 if (!ca)
9463 return ERR_PTR(-ENOMEM);
9464
9465 ca->cpuusage = alloc_percpu(u64);
9466 if (!ca->cpuusage) {
9467 kfree(ca);
9468 return ERR_PTR(-ENOMEM);
9469 }
9470
934352f2
BR
9471 if (cgrp->parent)
9472 ca->parent = cgroup_ca(cgrp->parent);
9473
d842de87
SV
9474 return &ca->css;
9475}
9476
9477/* destroy an existing cpu accounting group */
41a2d6cf 9478static void
32cd756a 9479cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9480{
32cd756a 9481 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9482
9483 free_percpu(ca->cpuusage);
9484 kfree(ca);
9485}
9486
720f5498
KC
9487static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9488{
b36128c8 9489 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9490 u64 data;
9491
9492#ifndef CONFIG_64BIT
9493 /*
9494 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9495 */
9496 spin_lock_irq(&cpu_rq(cpu)->lock);
9497 data = *cpuusage;
9498 spin_unlock_irq(&cpu_rq(cpu)->lock);
9499#else
9500 data = *cpuusage;
9501#endif
9502
9503 return data;
9504}
9505
9506static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9507{
b36128c8 9508 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
9509
9510#ifndef CONFIG_64BIT
9511 /*
9512 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9513 */
9514 spin_lock_irq(&cpu_rq(cpu)->lock);
9515 *cpuusage = val;
9516 spin_unlock_irq(&cpu_rq(cpu)->lock);
9517#else
9518 *cpuusage = val;
9519#endif
9520}
9521
d842de87 9522/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9523static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9524{
32cd756a 9525 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9526 u64 totalcpuusage = 0;
9527 int i;
9528
720f5498
KC
9529 for_each_present_cpu(i)
9530 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9531
9532 return totalcpuusage;
9533}
9534
0297b803
DG
9535static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9536 u64 reset)
9537{
9538 struct cpuacct *ca = cgroup_ca(cgrp);
9539 int err = 0;
9540 int i;
9541
9542 if (reset) {
9543 err = -EINVAL;
9544 goto out;
9545 }
9546
720f5498
KC
9547 for_each_present_cpu(i)
9548 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9549
0297b803
DG
9550out:
9551 return err;
9552}
9553
e9515c3c
KC
9554static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9555 struct seq_file *m)
9556{
9557 struct cpuacct *ca = cgroup_ca(cgroup);
9558 u64 percpu;
9559 int i;
9560
9561 for_each_present_cpu(i) {
9562 percpu = cpuacct_cpuusage_read(ca, i);
9563 seq_printf(m, "%llu ", (unsigned long long) percpu);
9564 }
9565 seq_printf(m, "\n");
9566 return 0;
9567}
9568
d842de87
SV
9569static struct cftype files[] = {
9570 {
9571 .name = "usage",
f4c753b7
PM
9572 .read_u64 = cpuusage_read,
9573 .write_u64 = cpuusage_write,
d842de87 9574 },
e9515c3c
KC
9575 {
9576 .name = "usage_percpu",
9577 .read_seq_string = cpuacct_percpu_seq_read,
9578 },
9579
d842de87
SV
9580};
9581
32cd756a 9582static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9583{
32cd756a 9584 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9585}
9586
9587/*
9588 * charge this task's execution time to its accounting group.
9589 *
9590 * called with rq->lock held.
9591 */
9592static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9593{
9594 struct cpuacct *ca;
934352f2 9595 int cpu;
d842de87
SV
9596
9597 if (!cpuacct_subsys.active)
9598 return;
9599
934352f2 9600 cpu = task_cpu(tsk);
d842de87 9601 ca = task_ca(tsk);
d842de87 9602
934352f2 9603 for (; ca; ca = ca->parent) {
b36128c8 9604 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9605 *cpuusage += cputime;
9606 }
9607}
9608
9609struct cgroup_subsys cpuacct_subsys = {
9610 .name = "cpuacct",
9611 .create = cpuacct_create,
9612 .destroy = cpuacct_destroy,
9613 .populate = cpuacct_populate,
9614 .subsys_id = cpuacct_subsys_id,
9615};
9616#endif /* CONFIG_CGROUP_CPUACCT */