Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
5a0e3ad6 74#include <linux/slab.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
e05606d3
IM
123static inline int rt_policy(int policy)
124{
3f33a7ce 125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
126 return 1;
127 return 0;
128}
129
130static inline int task_has_rt_policy(struct task_struct *p)
131{
132 return rt_policy(p->policy);
133}
134
1da177e4 135/*
6aa645ea 136 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 137 */
6aa645ea
IM
138struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141};
142
d0b27fa7 143struct rt_bandwidth {
ea736ed5 144 /* nests inside the rq lock: */
0986b11b 145 raw_spinlock_t rt_runtime_lock;
ea736ed5
IM
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
d0b27fa7
PZ
149};
150
151static struct rt_bandwidth def_rt_bandwidth;
152
153static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156{
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174}
175
176static
177void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178{
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
0986b11b 182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
ac086bc2 183
d0b27fa7
PZ
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
187}
188
c8bfff6d
KH
189static inline int rt_bandwidth_enabled(void)
190{
191 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
192}
193
194static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195{
196 ktime_t now;
197
cac64d00 198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
0986b11b 204 raw_spin_lock(&rt_b->rt_runtime_lock);
d0b27fa7 205 for (;;) {
7f1e2ca9
PZ
206 unsigned long delta;
207 ktime_t soft, hard;
208
d0b27fa7
PZ
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 219 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7 220 }
0986b11b 221 raw_spin_unlock(&rt_b->rt_runtime_lock);
d0b27fa7
PZ
222}
223
224#ifdef CONFIG_RT_GROUP_SCHED
225static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226{
227 hrtimer_cancel(&rt_b->rt_period_timer);
228}
229#endif
230
712555ee
HC
231/*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235static DEFINE_MUTEX(sched_domains_mutex);
236
7c941438 237#ifdef CONFIG_CGROUP_SCHED
29f59db3 238
68318b8e
SV
239#include <linux/cgroup.h>
240
29f59db3
SV
241struct cfs_rq;
242
6f505b16
PZ
243static LIST_HEAD(task_groups);
244
29f59db3 245/* task group related information */
4cf86d77 246struct task_group {
68318b8e 247 struct cgroup_subsys_state css;
6c415b92 248
052f1dc7 249#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
052f1dc7
PZ
255#endif
256
257#ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
d0b27fa7 261 struct rt_bandwidth rt_bandwidth;
052f1dc7 262#endif
6b2d7700 263
ae8393e5 264 struct rcu_head rcu;
6f505b16 265 struct list_head list;
f473aa5e
PZ
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
29f59db3
SV
270};
271
eff766a6 272#define root_task_group init_task_group
6f505b16 273
8ed36996 274/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
275 * a task group's cpu shares.
276 */
8ed36996 277static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 278
e9036b36
CG
279#ifdef CONFIG_FAIR_GROUP_SCHED
280
57310a98
PZ
281#ifdef CONFIG_SMP
282static int root_task_group_empty(void)
283{
284 return list_empty(&root_task_group.children);
285}
286#endif
287
052f1dc7 288# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
052f1dc7 289
cb4ad1ff 290/*
2e084786
LJ
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
cb4ad1ff
MX
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
18d95a28 298#define MIN_SHARES 2
2e084786 299#define MAX_SHARES (1UL << 18)
18d95a28 300
052f1dc7
PZ
301static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302#endif
303
29f59db3 304/* Default task group.
3a252015 305 * Every task in system belong to this group at bootup.
29f59db3 306 */
434d53b0 307struct task_group init_task_group;
29f59db3
SV
308
309/* return group to which a task belongs */
4cf86d77 310static inline struct task_group *task_group(struct task_struct *p)
29f59db3 311{
4cf86d77 312 struct task_group *tg;
9b5b7751 313
7c941438 314#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
24e377a8 317#else
41a2d6cf 318 tg = &init_task_group;
24e377a8 319#endif
9b5b7751 320 return tg;
29f59db3
SV
321}
322
323/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 324static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 325{
8b08ca52
PZ
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
052f1dc7 335#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
052f1dc7 338#endif
6f505b16 339
052f1dc7 340#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 343#endif
8b08ca52 344 rcu_read_unlock();
29f59db3
SV
345}
346
347#else
348
6f505b16 349static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
350static inline struct task_group *task_group(struct task_struct *p)
351{
352 return NULL;
353}
29f59db3 354
7c941438 355#endif /* CONFIG_CGROUP_SCHED */
29f59db3 356
6aa645ea
IM
357/* CFS-related fields in a runqueue */
358struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
6aa645ea 362 u64 exec_clock;
e9acbff6 363 u64 min_vruntime;
6aa645ea
IM
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
4a55bd5e
PZ
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
4793241b 375 struct sched_entity *curr, *next, *last;
ddc97297 376
5ac5c4d6 377 unsigned int nr_spread_over;
ddc97297 378
62160e3f 379#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
41a2d6cf
IM
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
41a2d6cf
IM
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
392
393#ifdef CONFIG_SMP
c09595f6 394 /*
c8cba857 395 * the part of load.weight contributed by tasks
c09595f6 396 */
c8cba857 397 unsigned long task_weight;
c09595f6 398
c8cba857
PZ
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
c09595f6 406
c8cba857
PZ
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
f1d239f7
PZ
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
c09595f6 416#endif
6aa645ea
IM
417#endif
418};
1da177e4 419
6aa645ea
IM
420/* Real-Time classes' related field in a runqueue: */
421struct rt_rq {
422 struct rt_prio_array active;
63489e45 423 unsigned long rt_nr_running;
052f1dc7 424#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
425 struct {
426 int curr; /* highest queued rt task prio */
398a153b 427#ifdef CONFIG_SMP
e864c499 428 int next; /* next highest */
398a153b 429#endif
e864c499 430 } highest_prio;
6f505b16 431#endif
fa85ae24 432#ifdef CONFIG_SMP
73fe6aae 433 unsigned long rt_nr_migratory;
a1ba4d8b 434 unsigned long rt_nr_total;
a22d7fc1 435 int overloaded;
917b627d 436 struct plist_head pushable_tasks;
fa85ae24 437#endif
6f505b16 438 int rt_throttled;
fa85ae24 439 u64 rt_time;
ac086bc2 440 u64 rt_runtime;
ea736ed5 441 /* Nests inside the rq lock: */
0986b11b 442 raw_spinlock_t rt_runtime_lock;
6f505b16 443
052f1dc7 444#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
445 unsigned long rt_nr_boosted;
446
6f505b16
PZ
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
6f505b16 450#endif
6aa645ea
IM
451};
452
57d885fe
GH
453#ifdef CONFIG_SMP
454
455/*
456 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
57d885fe
GH
462 */
463struct root_domain {
464 atomic_t refcount;
c6c4927b
RR
465 cpumask_var_t span;
466 cpumask_var_t online;
637f5085 467
0eab9146 468 /*
637f5085
GH
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
c6c4927b 472 cpumask_var_t rto_mask;
0eab9146 473 atomic_t rto_count;
6e0534f2
GH
474#ifdef CONFIG_SMP
475 struct cpupri cpupri;
476#endif
57d885fe
GH
477};
478
dc938520
GH
479/*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
57d885fe
GH
483static struct root_domain def_root_domain;
484
485#endif
486
1da177e4
LT
487/*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
70b97a7f 494struct rq {
d8016491 495 /* runqueue lock: */
05fa785c 496 raw_spinlock_t lock;
1da177e4
LT
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
6aa645ea
IM
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c
SS
505#ifdef CONFIG_NO_HZ
506 unsigned char in_nohz_recently;
507#endif
d8016491
IM
508 /* capture load from *all* tasks on this cpu: */
509 struct load_weight load;
6aa645ea
IM
510 unsigned long nr_load_updates;
511 u64 nr_switches;
512
513 struct cfs_rq cfs;
6f505b16 514 struct rt_rq rt;
6f505b16 515
6aa645ea 516#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
517 /* list of leaf cfs_rq on this cpu: */
518 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
519#endif
520#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 521 struct list_head leaf_rt_rq_list;
1da177e4 522#endif
1da177e4
LT
523
524 /*
525 * This is part of a global counter where only the total sum
526 * over all CPUs matters. A task can increase this counter on
527 * one CPU and if it got migrated afterwards it may decrease
528 * it on another CPU. Always updated under the runqueue lock:
529 */
530 unsigned long nr_uninterruptible;
531
36c8b586 532 struct task_struct *curr, *idle;
c9819f45 533 unsigned long next_balance;
1da177e4 534 struct mm_struct *prev_mm;
6aa645ea 535
3e51f33f 536 u64 clock;
6aa645ea 537
1da177e4
LT
538 atomic_t nr_iowait;
539
540#ifdef CONFIG_SMP
0eab9146 541 struct root_domain *rd;
1da177e4
LT
542 struct sched_domain *sd;
543
a0a522ce 544 unsigned char idle_at_tick;
1da177e4 545 /* For active balancing */
3f029d3c 546 int post_schedule;
1da177e4
LT
547 int active_balance;
548 int push_cpu;
d8016491
IM
549 /* cpu of this runqueue: */
550 int cpu;
1f11eb6a 551 int online;
1da177e4 552
a8a51d5e 553 unsigned long avg_load_per_task;
1da177e4 554
36c8b586 555 struct task_struct *migration_thread;
1da177e4 556 struct list_head migration_queue;
e9e9250b
PZ
557
558 u64 rt_avg;
559 u64 age_stamp;
1b9508f6
MG
560 u64 idle_stamp;
561 u64 avg_idle;
1da177e4
LT
562#endif
563
dce48a84
TG
564 /* calc_load related fields */
565 unsigned long calc_load_update;
566 long calc_load_active;
567
8f4d37ec 568#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
569#ifdef CONFIG_SMP
570 int hrtick_csd_pending;
571 struct call_single_data hrtick_csd;
572#endif
8f4d37ec
PZ
573 struct hrtimer hrtick_timer;
574#endif
575
1da177e4
LT
576#ifdef CONFIG_SCHEDSTATS
577 /* latency stats */
578 struct sched_info rq_sched_info;
9c2c4802
KC
579 unsigned long long rq_cpu_time;
580 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
581
582 /* sys_sched_yield() stats */
480b9434 583 unsigned int yld_count;
1da177e4
LT
584
585 /* schedule() stats */
480b9434
KC
586 unsigned int sched_switch;
587 unsigned int sched_count;
588 unsigned int sched_goidle;
1da177e4
LT
589
590 /* try_to_wake_up() stats */
480b9434
KC
591 unsigned int ttwu_count;
592 unsigned int ttwu_local;
b8efb561
IM
593
594 /* BKL stats */
480b9434 595 unsigned int bkl_count;
1da177e4
LT
596#endif
597};
598
f34e3b61 599static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 600
7d478721
PZ
601static inline
602void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
dd41f596 603{
7d478721 604 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
dd41f596
IM
605}
606
0a2966b4
CL
607static inline int cpu_of(struct rq *rq)
608{
609#ifdef CONFIG_SMP
610 return rq->cpu;
611#else
612 return 0;
613#endif
614}
615
497f0ab3 616#define rcu_dereference_check_sched_domain(p) \
d11c563d
PM
617 rcu_dereference_check((p), \
618 rcu_read_lock_sched_held() || \
619 lockdep_is_held(&sched_domains_mutex))
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d 628#define for_each_domain(cpu, __sd) \
497f0ab3 629 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 635#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 636
aa9c4c0f 637inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
638{
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640}
641
bf5c91ba
IM
642/*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645#ifdef CONFIG_SCHED_DEBUG
646# define const_debug __read_mostly
647#else
648# define const_debug static const
649#endif
650
017730c1
IM
651/**
652 * runqueue_is_locked
e17b38bf 653 * @cpu: the processor in question.
017730c1
IM
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
89f19f04 659int runqueue_is_locked(int cpu)
017730c1 660{
05fa785c 661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
017730c1
IM
662}
663
bf5c91ba
IM
664/*
665 * Debugging: various feature bits
666 */
f00b45c1
PZ
667
668#define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
bf5c91ba 671enum {
f00b45c1 672#include "sched_features.h"
bf5c91ba
IM
673};
674
f00b45c1
PZ
675#undef SCHED_FEAT
676
677#define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
bf5c91ba 680const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
681#include "sched_features.h"
682 0;
683
684#undef SCHED_FEAT
685
686#ifdef CONFIG_SCHED_DEBUG
687#define SCHED_FEAT(name, enabled) \
688 #name ,
689
983ed7a6 690static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
691#include "sched_features.h"
692 NULL
693};
694
695#undef SCHED_FEAT
696
34f3a814 697static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 698{
f00b45c1
PZ
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 705 }
34f3a814 706 seq_puts(m, "\n");
f00b45c1 707
34f3a814 708 return 0;
f00b45c1
PZ
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
42994724 748 *ppos += cnt;
f00b45c1
PZ
749
750 return cnt;
751}
752
34f3a814
LZ
753static int sched_feat_open(struct inode *inode, struct file *filp)
754{
755 return single_open(filp, sched_feat_show, NULL);
756}
757
828c0950 758static const struct file_operations sched_feat_fops = {
34f3a814
LZ
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
f00b45c1
PZ
764};
765
766static __init int sched_init_debug(void)
767{
f00b45c1
PZ
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772}
773late_initcall(sched_init_debug);
774
775#endif
776
777#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 778
b82d9fdd
PZ
779/*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
2398f2c6
PZ
785/*
786 * ratelimit for updating the group shares.
55cd5340 787 * default: 0.25ms
2398f2c6 788 */
55cd5340 789unsigned int sysctl_sched_shares_ratelimit = 250000;
0bcdcf28 790unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
2398f2c6 791
ffda12a1
PZ
792/*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797unsigned int sysctl_sched_shares_thresh = 4;
798
e9e9250b
PZ
799/*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
fa85ae24 807/*
9f0c1e56 808 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
809 * default: 1s
810 */
9f0c1e56 811unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 812
6892b75e
IM
813static __read_mostly int scheduler_running;
814
9f0c1e56
PZ
815/*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819int sysctl_sched_rt_runtime = 950000;
fa85ae24 820
d0b27fa7
PZ
821static inline u64 global_rt_period(void)
822{
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824}
825
826static inline u64 global_rt_runtime(void)
827{
e26873bb 828 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832}
fa85ae24 833
1da177e4 834#ifndef prepare_arch_switch
4866cde0
NP
835# define prepare_arch_switch(next) do { } while (0)
836#endif
837#ifndef finish_arch_switch
838# define finish_arch_switch(prev) do { } while (0)
839#endif
840
051a1d1a
DA
841static inline int task_current(struct rq *rq, struct task_struct *p)
842{
843 return rq->curr == p;
844}
845
4866cde0 846#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 847static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 848{
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850}
851
70b97a7f 852static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
853{
854}
855
70b97a7f 856static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 857{
da04c035
IM
858#ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861#endif
8a25d5de
IM
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
05fa785c 869 raw_spin_unlock_irq(&rq->lock);
4866cde0
NP
870}
871
872#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
874{
875#ifdef CONFIG_SMP
876 return p->oncpu;
877#else
051a1d1a 878 return task_current(rq, p);
4866cde0
NP
879#endif
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884#ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891#endif
892#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
05fa785c 893 raw_spin_unlock_irq(&rq->lock);
4866cde0 894#else
05fa785c 895 raw_spin_unlock(&rq->lock);
4866cde0
NP
896#endif
897}
898
70b97a7f 899static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909#endif
910#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
1da177e4 912#endif
4866cde0
NP
913}
914#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 915
0970d299
PZ
916/*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924static inline int task_is_waking(struct task_struct *p)
925{
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927}
928
b29739f9
IM
929/*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
70b97a7f 933static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
934 __acquires(rq->lock)
935{
0970d299
PZ
936 struct rq *rq;
937
3a5c359a 938 for (;;) {
0970d299
PZ
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
05fa785c 942 raw_spin_lock(&rq->lock);
0970d299 943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 944 return rq;
05fa785c 945 raw_spin_unlock(&rq->lock);
b29739f9 946 }
b29739f9
IM
947}
948
1da177e4
LT
949/*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 951 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
952 * explicitly disabling preemption.
953 */
70b97a7f 954static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
955 __acquires(rq->lock)
956{
70b97a7f 957 struct rq *rq;
1da177e4 958
3a5c359a 959 for (;;) {
0970d299
PZ
960 while (task_is_waking(p))
961 cpu_relax();
3a5c359a
AK
962 local_irq_save(*flags);
963 rq = task_rq(p);
05fa785c 964 raw_spin_lock(&rq->lock);
0970d299 965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
3a5c359a 966 return rq;
05fa785c 967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 968 }
1da177e4
LT
969}
970
ad474cac
ON
971void task_rq_unlock_wait(struct task_struct *p)
972{
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
05fa785c 976 raw_spin_unlock_wait(&rq->lock);
ad474cac
ON
977}
978
a9957449 979static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
980 __releases(rq->lock)
981{
05fa785c 982 raw_spin_unlock(&rq->lock);
b29739f9
IM
983}
984
70b97a7f 985static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
986 __releases(rq->lock)
987{
05fa785c 988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4
LT
989}
990
1da177e4 991/*
cc2a73b5 992 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 993 */
a9957449 994static struct rq *this_rq_lock(void)
1da177e4
LT
995 __acquires(rq->lock)
996{
70b97a7f 997 struct rq *rq;
1da177e4
LT
998
999 local_irq_disable();
1000 rq = this_rq();
05fa785c 1001 raw_spin_lock(&rq->lock);
1da177e4
LT
1002
1003 return rq;
1004}
1005
8f4d37ec
PZ
1006#ifdef CONFIG_SCHED_HRTICK
1007/*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
8f4d37ec
PZ
1017
1018/*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023static inline int hrtick_enabled(struct rq *rq)
1024{
1025 if (!sched_feat(HRTICK))
1026 return 0;
ba42059f 1027 if (!cpu_active(cpu_of(rq)))
b328ca18 1028 return 0;
8f4d37ec
PZ
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030}
1031
8f4d37ec
PZ
1032static void hrtick_clear(struct rq *rq)
1033{
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036}
1037
8f4d37ec
PZ
1038/*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043{
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
05fa785c 1048 raw_spin_lock(&rq->lock);
3e51f33f 1049 update_rq_clock(rq);
8f4d37ec 1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 1051 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
1052
1053 return HRTIMER_NORESTART;
1054}
1055
95e904c7 1056#ifdef CONFIG_SMP
31656519
PZ
1057/*
1058 * called from hardirq (IPI) context
1059 */
1060static void __hrtick_start(void *arg)
b328ca18 1061{
31656519 1062 struct rq *rq = arg;
b328ca18 1063
05fa785c 1064 raw_spin_lock(&rq->lock);
31656519
PZ
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
05fa785c 1067 raw_spin_unlock(&rq->lock);
b328ca18
PZ
1068}
1069
31656519
PZ
1070/*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1076{
31656519
PZ
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1079
cc584b21 1080 hrtimer_set_expires(timer, time);
31656519
PZ
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
6e275637 1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1086 rq->hrtick_csd_pending = 1;
1087 }
b328ca18
PZ
1088}
1089
1090static int
1091hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092{
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
31656519 1102 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107}
1108
fa748203 1109static __init void init_hrtick(void)
b328ca18
PZ
1110{
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112}
31656519
PZ
1113#else
1114/*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119static void hrtick_start(struct rq *rq, u64 delay)
1120{
7f1e2ca9 1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1122 HRTIMER_MODE_REL_PINNED, 0);
31656519 1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
8f4d37ec 1142}
006c75f1 1143#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1144static inline void hrtick_clear(struct rq *rq)
1145{
1146}
1147
8f4d37ec
PZ
1148static inline void init_rq_hrtick(struct rq *rq)
1149{
1150}
1151
b328ca18
PZ
1152static inline void init_hrtick(void)
1153{
1154}
006c75f1 1155#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1156
c24d20db
IM
1157/*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164#ifdef CONFIG_SMP
1165
1166#ifndef tsk_is_polling
1167#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168#endif
1169
31656519 1170static void resched_task(struct task_struct *p)
c24d20db
IM
1171{
1172 int cpu;
1173
05fa785c 1174 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 1175
5ed0cec0 1176 if (test_tsk_need_resched(p))
c24d20db
IM
1177 return;
1178
5ed0cec0 1179 set_tsk_need_resched(p);
c24d20db
IM
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189}
1190
1191static void resched_cpu(int cpu)
1192{
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
05fa785c 1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
1197 return;
1198 resched_task(cpu_curr(cpu));
05fa785c 1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 1200}
06d8308c
TG
1201
1202#ifdef CONFIG_NO_HZ
1203/*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213void wake_up_idle_cpu(int cpu)
1214{
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
5ed0cec0 1235 set_tsk_need_resched(rq->idle);
06d8308c
TG
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241}
6d6bc0ad 1242#endif /* CONFIG_NO_HZ */
06d8308c 1243
e9e9250b
PZ
1244static u64 sched_avg_period(void)
1245{
1246 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1247}
1248
1249static void sched_avg_update(struct rq *rq)
1250{
1251 s64 period = sched_avg_period();
1252
1253 while ((s64)(rq->clock - rq->age_stamp) > period) {
1254 rq->age_stamp += period;
1255 rq->rt_avg /= 2;
1256 }
1257}
1258
1259static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1260{
1261 rq->rt_avg += rt_delta;
1262 sched_avg_update(rq);
1263}
1264
6d6bc0ad 1265#else /* !CONFIG_SMP */
31656519 1266static void resched_task(struct task_struct *p)
c24d20db 1267{
05fa785c 1268 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 1269 set_tsk_need_resched(p);
c24d20db 1270}
e9e9250b
PZ
1271
1272static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273{
1274}
6d6bc0ad 1275#endif /* CONFIG_SMP */
c24d20db 1276
45bf76df
IM
1277#if BITS_PER_LONG == 32
1278# define WMULT_CONST (~0UL)
1279#else
1280# define WMULT_CONST (1UL << 32)
1281#endif
1282
1283#define WMULT_SHIFT 32
1284
194081eb
IM
1285/*
1286 * Shift right and round:
1287 */
cf2ab469 1288#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1289
a7be37ac
PZ
1290/*
1291 * delta *= weight / lw
1292 */
cb1c4fc9 1293static unsigned long
45bf76df
IM
1294calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296{
1297 u64 tmp;
1298
7a232e03
LJ
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
45bf76df
IM
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
194081eb 1311 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1313 WMULT_SHIFT/2);
1314 else
cf2ab469 1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1316
ecf691da 1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1318}
1319
1091985b 1320static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1321{
1322 lw->weight += inc;
e89996ae 1323 lw->inv_weight = 0;
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1327{
1328 lw->weight -= dec;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
2dd73a4f
PW
1332/*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
cce7ade8
PZ
1341#define WEIGHT_IDLEPRIO 3
1342#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1343
1344/*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
dd41f596
IM
1355 */
1356static const int prio_to_weight[40] = {
254753dc
IM
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1365};
1366
5714d2de
IM
1367/*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
dd41f596 1374static const u32 prio_to_wmult[40] = {
254753dc
IM
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1383};
2dd73a4f 1384
ef12fefa
BR
1385/* Time spent by the tasks of the cpu accounting group executing in ... */
1386enum cpuacct_stat_index {
1387 CPUACCT_STAT_USER, /* ... user mode */
1388 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1389
1390 CPUACCT_STAT_NSTATS,
1391};
1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1395static void cpuacct_update_stats(struct task_struct *tsk,
1396 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1397#else
1398static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1399static inline void cpuacct_update_stats(struct task_struct *tsk,
1400 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1401#endif
1402
18d95a28
PZ
1403static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1404{
1405 update_load_add(&rq->load, load);
1406}
1407
1408static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1409{
1410 update_load_sub(&rq->load, load);
1411}
1412
7940ca36 1413#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1414typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1415
1416/*
1417 * Iterate the full tree, calling @down when first entering a node and @up when
1418 * leaving it for the final time.
1419 */
eb755805 1420static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1421{
1422 struct task_group *parent, *child;
eb755805 1423 int ret;
c09595f6
PZ
1424
1425 rcu_read_lock();
1426 parent = &root_task_group;
1427down:
eb755805
PZ
1428 ret = (*down)(parent, data);
1429 if (ret)
1430 goto out_unlock;
c09595f6
PZ
1431 list_for_each_entry_rcu(child, &parent->children, siblings) {
1432 parent = child;
1433 goto down;
1434
1435up:
1436 continue;
1437 }
eb755805
PZ
1438 ret = (*up)(parent, data);
1439 if (ret)
1440 goto out_unlock;
c09595f6
PZ
1441
1442 child = parent;
1443 parent = parent->parent;
1444 if (parent)
1445 goto up;
eb755805 1446out_unlock:
c09595f6 1447 rcu_read_unlock();
eb755805
PZ
1448
1449 return ret;
c09595f6
PZ
1450}
1451
eb755805
PZ
1452static int tg_nop(struct task_group *tg, void *data)
1453{
1454 return 0;
c09595f6 1455}
eb755805
PZ
1456#endif
1457
1458#ifdef CONFIG_SMP
f5f08f39
PZ
1459/* Used instead of source_load when we know the type == 0 */
1460static unsigned long weighted_cpuload(const int cpu)
1461{
1462 return cpu_rq(cpu)->load.weight;
1463}
1464
1465/*
1466 * Return a low guess at the load of a migration-source cpu weighted
1467 * according to the scheduling class and "nice" value.
1468 *
1469 * We want to under-estimate the load of migration sources, to
1470 * balance conservatively.
1471 */
1472static unsigned long source_load(int cpu, int type)
1473{
1474 struct rq *rq = cpu_rq(cpu);
1475 unsigned long total = weighted_cpuload(cpu);
1476
1477 if (type == 0 || !sched_feat(LB_BIAS))
1478 return total;
1479
1480 return min(rq->cpu_load[type-1], total);
1481}
1482
1483/*
1484 * Return a high guess at the load of a migration-target cpu weighted
1485 * according to the scheduling class and "nice" value.
1486 */
1487static unsigned long target_load(int cpu, int type)
1488{
1489 struct rq *rq = cpu_rq(cpu);
1490 unsigned long total = weighted_cpuload(cpu);
1491
1492 if (type == 0 || !sched_feat(LB_BIAS))
1493 return total;
1494
1495 return max(rq->cpu_load[type-1], total);
1496}
1497
ae154be1
PZ
1498static struct sched_group *group_of(int cpu)
1499{
d11c563d 1500 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
ae154be1
PZ
1501
1502 if (!sd)
1503 return NULL;
1504
1505 return sd->groups;
1506}
1507
1508static unsigned long power_of(int cpu)
1509{
1510 struct sched_group *group = group_of(cpu);
1511
1512 if (!group)
1513 return SCHED_LOAD_SCALE;
1514
1515 return group->cpu_power;
1516}
1517
eb755805
PZ
1518static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1519
1520static unsigned long cpu_avg_load_per_task(int cpu)
1521{
1522 struct rq *rq = cpu_rq(cpu);
af6d596f 1523 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1524
4cd42620
SR
1525 if (nr_running)
1526 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1527 else
1528 rq->avg_load_per_task = 0;
eb755805
PZ
1529
1530 return rq->avg_load_per_task;
1531}
1532
1533#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1534
43cf38eb 1535static __read_mostly unsigned long __percpu *update_shares_data;
34d76c41 1536
c09595f6
PZ
1537static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1538
1539/*
1540 * Calculate and set the cpu's group shares.
1541 */
34d76c41
PZ
1542static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
4a6cc4bd 1545 unsigned long *usd_rq_weight)
18d95a28 1546{
34d76c41 1547 unsigned long shares, rq_weight;
a5004278 1548 int boost = 0;
c09595f6 1549
4a6cc4bd 1550 rq_weight = usd_rq_weight[cpu];
a5004278
PZ
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1554 }
c8cba857 1555
c09595f6 1556 /*
a8af7246
PZ
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
c09595f6 1560 */
ec4e0e2f 1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1563
ffda12a1
PZ
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
c09595f6 1568
05fa785c 1569 raw_spin_lock_irqsave(&rq->lock, flags);
34d76c41 1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1 1572 __set_se_shares(tg->se[cpu], shares);
05fa785c 1573 raw_spin_unlock_irqrestore(&rq->lock, flags);
ffda12a1 1574 }
18d95a28 1575}
c09595f6
PZ
1576
1577/*
c8cba857
PZ
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
c09595f6 1581 */
eb755805 1582static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1583{
cd8ad40d 1584 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
4a6cc4bd 1585 unsigned long *usd_rq_weight;
eb755805 1586 struct sched_domain *sd = data;
34d76c41 1587 unsigned long flags;
c8cba857 1588 int i;
c09595f6 1589
34d76c41
PZ
1590 if (!tg->se[0])
1591 return 0;
1592
1593 local_irq_save(flags);
4a6cc4bd 1594 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
34d76c41 1595
758b2cdc 1596 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41 1597 weight = tg->cfs_rq[i]->load.weight;
4a6cc4bd 1598 usd_rq_weight[i] = weight;
34d76c41 1599
cd8ad40d 1600 rq_weight += weight;
ec4e0e2f
KC
1601 /*
1602 * If there are currently no tasks on the cpu pretend there
1603 * is one of average load so that when a new task gets to
1604 * run here it will not get delayed by group starvation.
1605 */
ec4e0e2f
KC
1606 if (!weight)
1607 weight = NICE_0_LOAD;
1608
cd8ad40d 1609 sum_weight += weight;
c8cba857 1610 shares += tg->cfs_rq[i]->shares;
c09595f6 1611 }
c09595f6 1612
cd8ad40d
PZ
1613 if (!rq_weight)
1614 rq_weight = sum_weight;
1615
c8cba857
PZ
1616 if ((!shares && rq_weight) || shares > tg->shares)
1617 shares = tg->shares;
1618
1619 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1620 shares = tg->shares;
c09595f6 1621
758b2cdc 1622 for_each_cpu(i, sched_domain_span(sd))
4a6cc4bd 1623 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
34d76c41
PZ
1624
1625 local_irq_restore(flags);
eb755805
PZ
1626
1627 return 0;
c09595f6
PZ
1628}
1629
1630/*
c8cba857
PZ
1631 * Compute the cpu's hierarchical load factor for each task group.
1632 * This needs to be done in a top-down fashion because the load of a child
1633 * group is a fraction of its parents load.
c09595f6 1634 */
eb755805 1635static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1636{
c8cba857 1637 unsigned long load;
eb755805 1638 long cpu = (long)data;
c09595f6 1639
c8cba857
PZ
1640 if (!tg->parent) {
1641 load = cpu_rq(cpu)->load.weight;
1642 } else {
1643 load = tg->parent->cfs_rq[cpu]->h_load;
1644 load *= tg->cfs_rq[cpu]->shares;
1645 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1646 }
c09595f6 1647
c8cba857 1648 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1649
eb755805 1650 return 0;
c09595f6
PZ
1651}
1652
c8cba857 1653static void update_shares(struct sched_domain *sd)
4d8d595d 1654{
e7097159
PZ
1655 s64 elapsed;
1656 u64 now;
1657
1658 if (root_task_group_empty())
1659 return;
1660
1661 now = cpu_clock(raw_smp_processor_id());
1662 elapsed = now - sd->last_update;
2398f2c6
PZ
1663
1664 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1665 sd->last_update = now;
eb755805 1666 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1667 }
4d8d595d
PZ
1668}
1669
eb755805 1670static void update_h_load(long cpu)
c09595f6 1671{
e7097159
PZ
1672 if (root_task_group_empty())
1673 return;
1674
eb755805 1675 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1676}
1677
c09595f6
PZ
1678#else
1679
c8cba857 1680static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1681{
1682}
1683
18d95a28
PZ
1684#endif
1685
8f45e2b5
GH
1686#ifdef CONFIG_PREEMPT
1687
b78bb868
PZ
1688static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1689
70574a99 1690/*
8f45e2b5
GH
1691 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1692 * way at the expense of forcing extra atomic operations in all
1693 * invocations. This assures that the double_lock is acquired using the
1694 * same underlying policy as the spinlock_t on this architecture, which
1695 * reduces latency compared to the unfair variant below. However, it
1696 * also adds more overhead and therefore may reduce throughput.
70574a99 1697 */
8f45e2b5
GH
1698static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1702{
05fa785c 1703 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1704 double_rq_lock(this_rq, busiest);
1705
1706 return 1;
1707}
1708
1709#else
1710/*
1711 * Unfair double_lock_balance: Optimizes throughput at the expense of
1712 * latency by eliminating extra atomic operations when the locks are
1713 * already in proper order on entry. This favors lower cpu-ids and will
1714 * grant the double lock to lower cpus over higher ids under contention,
1715 * regardless of entry order into the function.
1716 */
1717static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1718 __releases(this_rq->lock)
1719 __acquires(busiest->lock)
1720 __acquires(this_rq->lock)
1721{
1722 int ret = 0;
1723
05fa785c 1724 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
70574a99 1725 if (busiest < this_rq) {
05fa785c
TG
1726 raw_spin_unlock(&this_rq->lock);
1727 raw_spin_lock(&busiest->lock);
1728 raw_spin_lock_nested(&this_rq->lock,
1729 SINGLE_DEPTH_NESTING);
70574a99
AD
1730 ret = 1;
1731 } else
05fa785c
TG
1732 raw_spin_lock_nested(&busiest->lock,
1733 SINGLE_DEPTH_NESTING);
70574a99
AD
1734 }
1735 return ret;
1736}
1737
8f45e2b5
GH
1738#endif /* CONFIG_PREEMPT */
1739
1740/*
1741 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1742 */
1743static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1744{
1745 if (unlikely(!irqs_disabled())) {
1746 /* printk() doesn't work good under rq->lock */
05fa785c 1747 raw_spin_unlock(&this_rq->lock);
8f45e2b5
GH
1748 BUG_ON(1);
1749 }
1750
1751 return _double_lock_balance(this_rq, busiest);
1752}
1753
70574a99
AD
1754static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1755 __releases(busiest->lock)
1756{
05fa785c 1757 raw_spin_unlock(&busiest->lock);
70574a99
AD
1758 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1759}
1e3c88bd
PZ
1760
1761/*
1762 * double_rq_lock - safely lock two runqueues
1763 *
1764 * Note this does not disable interrupts like task_rq_lock,
1765 * you need to do so manually before calling.
1766 */
1767static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1768 __acquires(rq1->lock)
1769 __acquires(rq2->lock)
1770{
1771 BUG_ON(!irqs_disabled());
1772 if (rq1 == rq2) {
1773 raw_spin_lock(&rq1->lock);
1774 __acquire(rq2->lock); /* Fake it out ;) */
1775 } else {
1776 if (rq1 < rq2) {
1777 raw_spin_lock(&rq1->lock);
1778 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1779 } else {
1780 raw_spin_lock(&rq2->lock);
1781 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1782 }
1783 }
1784 update_rq_clock(rq1);
1785 update_rq_clock(rq2);
1786}
1787
1788/*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797{
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803}
1804
18d95a28
PZ
1805#endif
1806
30432094 1807#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1808static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809{
30432094 1810#ifdef CONFIG_SMP
34e83e85
IM
1811 cfs_rq->shares = shares;
1812#endif
1813}
30432094 1814#endif
e7693a36 1815
dce48a84 1816static void calc_load_account_active(struct rq *this_rq);
0bcdcf28 1817static void update_sysctl(void);
acb4a848 1818static int get_update_sysctl_factor(void);
dce48a84 1819
cd29fe6f
PZ
1820static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821{
1822 set_task_rq(p, cpu);
1823#ifdef CONFIG_SMP
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
1830 task_thread_info(p)->cpu = cpu;
1831#endif
1832}
dce48a84 1833
1e3c88bd 1834static const struct sched_class rt_sched_class;
dd41f596
IM
1835
1836#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1837#define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
dd41f596 1839
1e3c88bd
PZ
1840#include "sched_stats.h"
1841
c09595f6 1842static void inc_nr_running(struct rq *rq)
9c217245
IM
1843{
1844 rq->nr_running++;
9c217245
IM
1845}
1846
c09595f6 1847static void dec_nr_running(struct rq *rq)
9c217245
IM
1848{
1849 rq->nr_running--;
9c217245
IM
1850}
1851
45bf76df
IM
1852static void set_load_weight(struct task_struct *p)
1853{
1854 if (task_has_rt_policy(p)) {
dd41f596
IM
1855 p->se.load.weight = prio_to_weight[0] * 2;
1856 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1857 return;
1858 }
45bf76df 1859
dd41f596
IM
1860 /*
1861 * SCHED_IDLE tasks get minimal weight:
1862 */
1863 if (p->policy == SCHED_IDLE) {
1864 p->se.load.weight = WEIGHT_IDLEPRIO;
1865 p->se.load.inv_weight = WMULT_IDLEPRIO;
1866 return;
1867 }
71f8bd46 1868
dd41f596
IM
1869 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1870 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1871}
1872
2087a1ad
GH
1873static void update_avg(u64 *avg, u64 sample)
1874{
1875 s64 diff = sample - *avg;
1876 *avg += diff >> 3;
1877}
1878
ea87bb78
TG
1879static void
1880enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
71f8bd46 1881{
831451ac
PZ
1882 if (wakeup)
1883 p->se.start_runtime = p->se.sum_exec_runtime;
1884
dd41f596 1885 sched_info_queued(p);
ea87bb78 1886 p->sched_class->enqueue_task(rq, p, wakeup, head);
dd41f596 1887 p->se.on_rq = 1;
71f8bd46
IM
1888}
1889
69be72c1 1890static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1891{
831451ac
PZ
1892 if (sleep) {
1893 if (p->se.last_wakeup) {
1894 update_avg(&p->se.avg_overlap,
1895 p->se.sum_exec_runtime - p->se.last_wakeup);
1896 p->se.last_wakeup = 0;
1897 } else {
1898 update_avg(&p->se.avg_wakeup,
1899 sysctl_sched_wakeup_granularity);
1900 }
2087a1ad
GH
1901 }
1902
46ac22ba 1903 sched_info_dequeued(p);
f02231e5 1904 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1905 p->se.on_rq = 0;
71f8bd46
IM
1906}
1907
1e3c88bd
PZ
1908/*
1909 * activate_task - move a task to the runqueue.
1910 */
1911static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1912{
1913 if (task_contributes_to_load(p))
1914 rq->nr_uninterruptible--;
1915
ea87bb78 1916 enqueue_task(rq, p, wakeup, false);
1e3c88bd
PZ
1917 inc_nr_running(rq);
1918}
1919
1920/*
1921 * deactivate_task - remove a task from the runqueue.
1922 */
1923static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1924{
1925 if (task_contributes_to_load(p))
1926 rq->nr_uninterruptible++;
1927
1928 dequeue_task(rq, p, sleep);
1929 dec_nr_running(rq);
1930}
1931
1932#include "sched_idletask.c"
1933#include "sched_fair.c"
1934#include "sched_rt.c"
1935#ifdef CONFIG_SCHED_DEBUG
1936# include "sched_debug.c"
1937#endif
1938
14531189 1939/*
dd41f596 1940 * __normal_prio - return the priority that is based on the static prio
14531189 1941 */
14531189
IM
1942static inline int __normal_prio(struct task_struct *p)
1943{
dd41f596 1944 return p->static_prio;
14531189
IM
1945}
1946
b29739f9
IM
1947/*
1948 * Calculate the expected normal priority: i.e. priority
1949 * without taking RT-inheritance into account. Might be
1950 * boosted by interactivity modifiers. Changes upon fork,
1951 * setprio syscalls, and whenever the interactivity
1952 * estimator recalculates.
1953 */
36c8b586 1954static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1955{
1956 int prio;
1957
e05606d3 1958 if (task_has_rt_policy(p))
b29739f9
IM
1959 prio = MAX_RT_PRIO-1 - p->rt_priority;
1960 else
1961 prio = __normal_prio(p);
1962 return prio;
1963}
1964
1965/*
1966 * Calculate the current priority, i.e. the priority
1967 * taken into account by the scheduler. This value might
1968 * be boosted by RT tasks, or might be boosted by
1969 * interactivity modifiers. Will be RT if the task got
1970 * RT-boosted. If not then it returns p->normal_prio.
1971 */
36c8b586 1972static int effective_prio(struct task_struct *p)
b29739f9
IM
1973{
1974 p->normal_prio = normal_prio(p);
1975 /*
1976 * If we are RT tasks or we were boosted to RT priority,
1977 * keep the priority unchanged. Otherwise, update priority
1978 * to the normal priority:
1979 */
1980 if (!rt_prio(p->prio))
1981 return p->normal_prio;
1982 return p->prio;
1983}
1984
1da177e4
LT
1985/**
1986 * task_curr - is this task currently executing on a CPU?
1987 * @p: the task in question.
1988 */
36c8b586 1989inline int task_curr(const struct task_struct *p)
1da177e4
LT
1990{
1991 return cpu_curr(task_cpu(p)) == p;
1992}
1993
cb469845
SR
1994static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1995 const struct sched_class *prev_class,
1996 int oldprio, int running)
1997{
1998 if (prev_class != p->sched_class) {
1999 if (prev_class->switched_from)
2000 prev_class->switched_from(rq, p, running);
2001 p->sched_class->switched_to(rq, p, running);
2002 } else
2003 p->sched_class->prio_changed(rq, p, oldprio, running);
2004}
2005
1da177e4 2006#ifdef CONFIG_SMP
cc367732
IM
2007/*
2008 * Is this task likely cache-hot:
2009 */
e7693a36 2010static int
cc367732
IM
2011task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2012{
2013 s64 delta;
2014
e6c8fba7
PZ
2015 if (p->sched_class != &fair_sched_class)
2016 return 0;
2017
f540a608
IM
2018 /*
2019 * Buddy candidates are cache hot:
2020 */
f685ceac 2021 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4793241b
PZ
2022 (&p->se == cfs_rq_of(&p->se)->next ||
2023 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
2024 return 1;
2025
6bc1665b
IM
2026 if (sysctl_sched_migration_cost == -1)
2027 return 1;
2028 if (sysctl_sched_migration_cost == 0)
2029 return 0;
2030
cc367732
IM
2031 delta = now - p->se.exec_start;
2032
2033 return delta < (s64)sysctl_sched_migration_cost;
2034}
2035
dd41f596 2036void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 2037{
e2912009
PZ
2038#ifdef CONFIG_SCHED_DEBUG
2039 /*
2040 * We should never call set_task_cpu() on a blocked task,
2041 * ttwu() will sort out the placement.
2042 */
077614ee
PZ
2043 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2044 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
e2912009
PZ
2045#endif
2046
de1d7286 2047 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 2048
0c69774e
PZ
2049 if (task_cpu(p) != new_cpu) {
2050 p->se.nr_migrations++;
2051 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2052 }
dd41f596
IM
2053
2054 __set_task_cpu(p, new_cpu);
c65cc870
IM
2055}
2056
70b97a7f 2057struct migration_req {
1da177e4 2058 struct list_head list;
1da177e4 2059
36c8b586 2060 struct task_struct *task;
1da177e4
LT
2061 int dest_cpu;
2062
1da177e4 2063 struct completion done;
70b97a7f 2064};
1da177e4
LT
2065
2066/*
2067 * The task's runqueue lock must be held.
2068 * Returns true if you have to wait for migration thread.
2069 */
36c8b586 2070static int
70b97a7f 2071migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = task_rq(p);
1da177e4
LT
2074
2075 /*
2076 * If the task is not on a runqueue (and not running), then
e2912009 2077 * the next wake-up will properly place the task.
1da177e4 2078 */
e2912009 2079 if (!p->se.on_rq && !task_running(rq, p))
1da177e4 2080 return 0;
1da177e4
LT
2081
2082 init_completion(&req->done);
1da177e4
LT
2083 req->task = p;
2084 req->dest_cpu = dest_cpu;
2085 list_add(&req->list, &rq->migration_queue);
48f24c4d 2086
1da177e4
LT
2087 return 1;
2088}
2089
2090/*
2091 * wait_task_inactive - wait for a thread to unschedule.
2092 *
85ba2d86
RM
2093 * If @match_state is nonzero, it's the @p->state value just checked and
2094 * not expected to change. If it changes, i.e. @p might have woken up,
2095 * then return zero. When we succeed in waiting for @p to be off its CPU,
2096 * we return a positive number (its total switch count). If a second call
2097 * a short while later returns the same number, the caller can be sure that
2098 * @p has remained unscheduled the whole time.
2099 *
1da177e4
LT
2100 * The caller must ensure that the task *will* unschedule sometime soon,
2101 * else this function might spin for a *long* time. This function can't
2102 * be called with interrupts off, or it may introduce deadlock with
2103 * smp_call_function() if an IPI is sent by the same process we are
2104 * waiting to become inactive.
2105 */
85ba2d86 2106unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2107{
2108 unsigned long flags;
dd41f596 2109 int running, on_rq;
85ba2d86 2110 unsigned long ncsw;
70b97a7f 2111 struct rq *rq;
1da177e4 2112
3a5c359a
AK
2113 for (;;) {
2114 /*
2115 * We do the initial early heuristics without holding
2116 * any task-queue locks at all. We'll only try to get
2117 * the runqueue lock when things look like they will
2118 * work out!
2119 */
2120 rq = task_rq(p);
fa490cfd 2121
3a5c359a
AK
2122 /*
2123 * If the task is actively running on another CPU
2124 * still, just relax and busy-wait without holding
2125 * any locks.
2126 *
2127 * NOTE! Since we don't hold any locks, it's not
2128 * even sure that "rq" stays as the right runqueue!
2129 * But we don't care, since "task_running()" will
2130 * return false if the runqueue has changed and p
2131 * is actually now running somewhere else!
2132 */
85ba2d86
RM
2133 while (task_running(rq, p)) {
2134 if (match_state && unlikely(p->state != match_state))
2135 return 0;
3a5c359a 2136 cpu_relax();
85ba2d86 2137 }
fa490cfd 2138
3a5c359a
AK
2139 /*
2140 * Ok, time to look more closely! We need the rq
2141 * lock now, to be *sure*. If we're wrong, we'll
2142 * just go back and repeat.
2143 */
2144 rq = task_rq_lock(p, &flags);
0a16b607 2145 trace_sched_wait_task(rq, p);
3a5c359a
AK
2146 running = task_running(rq, p);
2147 on_rq = p->se.on_rq;
85ba2d86 2148 ncsw = 0;
f31e11d8 2149 if (!match_state || p->state == match_state)
93dcf55f 2150 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2151 task_rq_unlock(rq, &flags);
fa490cfd 2152
85ba2d86
RM
2153 /*
2154 * If it changed from the expected state, bail out now.
2155 */
2156 if (unlikely(!ncsw))
2157 break;
2158
3a5c359a
AK
2159 /*
2160 * Was it really running after all now that we
2161 * checked with the proper locks actually held?
2162 *
2163 * Oops. Go back and try again..
2164 */
2165 if (unlikely(running)) {
2166 cpu_relax();
2167 continue;
2168 }
fa490cfd 2169
3a5c359a
AK
2170 /*
2171 * It's not enough that it's not actively running,
2172 * it must be off the runqueue _entirely_, and not
2173 * preempted!
2174 *
80dd99b3 2175 * So if it was still runnable (but just not actively
3a5c359a
AK
2176 * running right now), it's preempted, and we should
2177 * yield - it could be a while.
2178 */
2179 if (unlikely(on_rq)) {
2180 schedule_timeout_uninterruptible(1);
2181 continue;
2182 }
fa490cfd 2183
3a5c359a
AK
2184 /*
2185 * Ahh, all good. It wasn't running, and it wasn't
2186 * runnable, which means that it will never become
2187 * running in the future either. We're all done!
2188 */
2189 break;
2190 }
85ba2d86
RM
2191
2192 return ncsw;
1da177e4
LT
2193}
2194
2195/***
2196 * kick_process - kick a running thread to enter/exit the kernel
2197 * @p: the to-be-kicked thread
2198 *
2199 * Cause a process which is running on another CPU to enter
2200 * kernel-mode, without any delay. (to get signals handled.)
2201 *
2202 * NOTE: this function doesnt have to take the runqueue lock,
2203 * because all it wants to ensure is that the remote task enters
2204 * the kernel. If the IPI races and the task has been migrated
2205 * to another CPU then no harm is done and the purpose has been
2206 * achieved as well.
2207 */
36c8b586 2208void kick_process(struct task_struct *p)
1da177e4
LT
2209{
2210 int cpu;
2211
2212 preempt_disable();
2213 cpu = task_cpu(p);
2214 if ((cpu != smp_processor_id()) && task_curr(p))
2215 smp_send_reschedule(cpu);
2216 preempt_enable();
2217}
b43e3521 2218EXPORT_SYMBOL_GPL(kick_process);
476d139c 2219#endif /* CONFIG_SMP */
1da177e4 2220
0793a61d
TG
2221/**
2222 * task_oncpu_function_call - call a function on the cpu on which a task runs
2223 * @p: the task to evaluate
2224 * @func: the function to be called
2225 * @info: the function call argument
2226 *
2227 * Calls the function @func when the task is currently running. This might
2228 * be on the current CPU, which just calls the function directly
2229 */
2230void task_oncpu_function_call(struct task_struct *p,
2231 void (*func) (void *info), void *info)
2232{
2233 int cpu;
2234
2235 preempt_disable();
2236 cpu = task_cpu(p);
2237 if (task_curr(p))
2238 smp_call_function_single(cpu, func, info, 1);
2239 preempt_enable();
2240}
2241
970b13ba 2242#ifdef CONFIG_SMP
5da9a0fb
PZ
2243static int select_fallback_rq(int cpu, struct task_struct *p)
2244{
2245 int dest_cpu;
2246 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2247
2248 /* Look for allowed, online CPU in same node. */
2249 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2250 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2251 return dest_cpu;
2252
2253 /* Any allowed, online CPU? */
2254 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2255 if (dest_cpu < nr_cpu_ids)
2256 return dest_cpu;
2257
2258 /* No more Mr. Nice Guy. */
2259 if (dest_cpu >= nr_cpu_ids) {
2260 rcu_read_lock();
2261 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2262 rcu_read_unlock();
2263 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2264
2265 /*
2266 * Don't tell them about moving exiting tasks or
2267 * kernel threads (both mm NULL), since they never
2268 * leave kernel.
2269 */
2270 if (p->mm && printk_ratelimit()) {
2271 printk(KERN_INFO "process %d (%s) no "
2272 "longer affine to cpu%d\n",
2273 task_pid_nr(p), p->comm, cpu);
2274 }
2275 }
2276
2277 return dest_cpu;
2278}
2279
e2912009 2280/*
fabf318e
PZ
2281 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2282 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2283 * by:
e2912009 2284 *
fabf318e
PZ
2285 * exec: is unstable, retry loop
2286 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
e2912009 2287 */
970b13ba
PZ
2288static inline
2289int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2290{
e2912009
PZ
2291 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2292
2293 /*
2294 * In order not to call set_task_cpu() on a blocking task we need
2295 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2296 * cpu.
2297 *
2298 * Since this is common to all placement strategies, this lives here.
2299 *
2300 * [ this allows ->select_task() to simply return task_cpu(p) and
2301 * not worry about this generic constraint ]
2302 */
2303 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
70f11205 2304 !cpu_online(cpu)))
5da9a0fb 2305 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
2306
2307 return cpu;
970b13ba
PZ
2308}
2309#endif
2310
1da177e4
LT
2311/***
2312 * try_to_wake_up - wake up a thread
2313 * @p: the to-be-woken-up thread
2314 * @state: the mask of task states that can be woken
2315 * @sync: do a synchronous wakeup?
2316 *
2317 * Put it on the run-queue if it's not already there. The "current"
2318 * thread is always on the run-queue (except when the actual
2319 * re-schedule is in progress), and as such you're allowed to do
2320 * the simpler "current->state = TASK_RUNNING" to mark yourself
2321 * runnable without the overhead of this.
2322 *
2323 * returns failure only if the task is already active.
2324 */
7d478721
PZ
2325static int try_to_wake_up(struct task_struct *p, unsigned int state,
2326 int wake_flags)
1da177e4 2327{
cc367732 2328 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4 2329 unsigned long flags;
ab3b3aa5 2330 struct rq *rq;
1da177e4 2331
b85d0667 2332 if (!sched_feat(SYNC_WAKEUPS))
7d478721 2333 wake_flags &= ~WF_SYNC;
2398f2c6 2334
e9c84311 2335 this_cpu = get_cpu();
2398f2c6 2336
04e2f174 2337 smp_wmb();
ab3b3aa5 2338 rq = task_rq_lock(p, &flags);
03e89e45 2339 update_rq_clock(rq);
e9c84311 2340 if (!(p->state & state))
1da177e4
LT
2341 goto out;
2342
dd41f596 2343 if (p->se.on_rq)
1da177e4
LT
2344 goto out_running;
2345
2346 cpu = task_cpu(p);
cc367732 2347 orig_cpu = cpu;
1da177e4
LT
2348
2349#ifdef CONFIG_SMP
2350 if (unlikely(task_running(rq, p)))
2351 goto out_activate;
2352
e9c84311
PZ
2353 /*
2354 * In order to handle concurrent wakeups and release the rq->lock
2355 * we put the task in TASK_WAKING state.
eb24073b
IM
2356 *
2357 * First fix up the nr_uninterruptible count:
e9c84311 2358 */
eb24073b
IM
2359 if (task_contributes_to_load(p))
2360 rq->nr_uninterruptible--;
e9c84311 2361 p->state = TASK_WAKING;
efbbd05a
PZ
2362
2363 if (p->sched_class->task_waking)
2364 p->sched_class->task_waking(rq, p);
2365
ab19cb23 2366 __task_rq_unlock(rq);
e9c84311 2367
970b13ba 2368 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
0970d299
PZ
2369 if (cpu != orig_cpu) {
2370 /*
2371 * Since we migrate the task without holding any rq->lock,
2372 * we need to be careful with task_rq_lock(), since that
2373 * might end up locking an invalid rq.
2374 */
5d2f5a61 2375 set_task_cpu(p, cpu);
0970d299 2376 }
ab19cb23 2377
0970d299
PZ
2378 rq = cpu_rq(cpu);
2379 raw_spin_lock(&rq->lock);
ab19cb23 2380 update_rq_clock(rq);
f5dc3753 2381
0970d299
PZ
2382 /*
2383 * We migrated the task without holding either rq->lock, however
2384 * since the task is not on the task list itself, nobody else
2385 * will try and migrate the task, hence the rq should match the
2386 * cpu we just moved it to.
2387 */
2388 WARN_ON(task_cpu(p) != cpu);
e9c84311 2389 WARN_ON(p->state != TASK_WAKING);
1da177e4 2390
e7693a36
GH
2391#ifdef CONFIG_SCHEDSTATS
2392 schedstat_inc(rq, ttwu_count);
2393 if (cpu == this_cpu)
2394 schedstat_inc(rq, ttwu_local);
2395 else {
2396 struct sched_domain *sd;
2397 for_each_domain(this_cpu, sd) {
758b2cdc 2398 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2399 schedstat_inc(sd, ttwu_wake_remote);
2400 break;
2401 }
2402 }
2403 }
6d6bc0ad 2404#endif /* CONFIG_SCHEDSTATS */
e7693a36 2405
1da177e4
LT
2406out_activate:
2407#endif /* CONFIG_SMP */
cc367732 2408 schedstat_inc(p, se.nr_wakeups);
7d478721 2409 if (wake_flags & WF_SYNC)
cc367732
IM
2410 schedstat_inc(p, se.nr_wakeups_sync);
2411 if (orig_cpu != cpu)
2412 schedstat_inc(p, se.nr_wakeups_migrate);
2413 if (cpu == this_cpu)
2414 schedstat_inc(p, se.nr_wakeups_local);
2415 else
2416 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2417 activate_task(rq, p, 1);
1da177e4
LT
2418 success = 1;
2419
831451ac
PZ
2420 /*
2421 * Only attribute actual wakeups done by this task.
2422 */
2423 if (!in_interrupt()) {
2424 struct sched_entity *se = &current->se;
2425 u64 sample = se->sum_exec_runtime;
2426
2427 if (se->last_wakeup)
2428 sample -= se->last_wakeup;
2429 else
2430 sample -= se->start_runtime;
2431 update_avg(&se->avg_wakeup, sample);
2432
2433 se->last_wakeup = se->sum_exec_runtime;
2434 }
2435
1da177e4 2436out_running:
468a15bb 2437 trace_sched_wakeup(rq, p, success);
7d478721 2438 check_preempt_curr(rq, p, wake_flags);
4ae7d5ce 2439
1da177e4 2440 p->state = TASK_RUNNING;
9a897c5a 2441#ifdef CONFIG_SMP
efbbd05a
PZ
2442 if (p->sched_class->task_woken)
2443 p->sched_class->task_woken(rq, p);
eae0c9df
MG
2444
2445 if (unlikely(rq->idle_stamp)) {
2446 u64 delta = rq->clock - rq->idle_stamp;
2447 u64 max = 2*sysctl_sched_migration_cost;
2448
2449 if (delta > max)
2450 rq->avg_idle = max;
2451 else
2452 update_avg(&rq->avg_idle, delta);
2453 rq->idle_stamp = 0;
2454 }
9a897c5a 2455#endif
1da177e4
LT
2456out:
2457 task_rq_unlock(rq, &flags);
e9c84311 2458 put_cpu();
1da177e4
LT
2459
2460 return success;
2461}
2462
50fa610a
DH
2463/**
2464 * wake_up_process - Wake up a specific process
2465 * @p: The process to be woken up.
2466 *
2467 * Attempt to wake up the nominated process and move it to the set of runnable
2468 * processes. Returns 1 if the process was woken up, 0 if it was already
2469 * running.
2470 *
2471 * It may be assumed that this function implies a write memory barrier before
2472 * changing the task state if and only if any tasks are woken up.
2473 */
7ad5b3a5 2474int wake_up_process(struct task_struct *p)
1da177e4 2475{
d9514f6c 2476 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2477}
1da177e4
LT
2478EXPORT_SYMBOL(wake_up_process);
2479
7ad5b3a5 2480int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2481{
2482 return try_to_wake_up(p, state, 0);
2483}
2484
1da177e4
LT
2485/*
2486 * Perform scheduler related setup for a newly forked process p.
2487 * p is forked by current.
dd41f596
IM
2488 *
2489 * __sched_fork() is basic setup used by init_idle() too:
2490 */
2491static void __sched_fork(struct task_struct *p)
2492{
dd41f596
IM
2493 p->se.exec_start = 0;
2494 p->se.sum_exec_runtime = 0;
f6cf891c 2495 p->se.prev_sum_exec_runtime = 0;
6c594c21 2496 p->se.nr_migrations = 0;
4ae7d5ce
IM
2497 p->se.last_wakeup = 0;
2498 p->se.avg_overlap = 0;
831451ac
PZ
2499 p->se.start_runtime = 0;
2500 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2501
2502#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2503 p->se.wait_start = 0;
2504 p->se.wait_max = 0;
2505 p->se.wait_count = 0;
2506 p->se.wait_sum = 0;
2507
2508 p->se.sleep_start = 0;
2509 p->se.sleep_max = 0;
2510 p->se.sum_sleep_runtime = 0;
2511
2512 p->se.block_start = 0;
2513 p->se.block_max = 0;
2514 p->se.exec_max = 0;
2515 p->se.slice_max = 0;
2516
2517 p->se.nr_migrations_cold = 0;
2518 p->se.nr_failed_migrations_affine = 0;
2519 p->se.nr_failed_migrations_running = 0;
2520 p->se.nr_failed_migrations_hot = 0;
2521 p->se.nr_forced_migrations = 0;
7793527b
LDM
2522
2523 p->se.nr_wakeups = 0;
2524 p->se.nr_wakeups_sync = 0;
2525 p->se.nr_wakeups_migrate = 0;
2526 p->se.nr_wakeups_local = 0;
2527 p->se.nr_wakeups_remote = 0;
2528 p->se.nr_wakeups_affine = 0;
2529 p->se.nr_wakeups_affine_attempts = 0;
2530 p->se.nr_wakeups_passive = 0;
2531 p->se.nr_wakeups_idle = 0;
2532
6cfb0d5d 2533#endif
476d139c 2534
fa717060 2535 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2536 p->se.on_rq = 0;
4a55bd5e 2537 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2538
e107be36
AK
2539#ifdef CONFIG_PREEMPT_NOTIFIERS
2540 INIT_HLIST_HEAD(&p->preempt_notifiers);
2541#endif
dd41f596
IM
2542}
2543
2544/*
2545 * fork()/clone()-time setup:
2546 */
2547void sched_fork(struct task_struct *p, int clone_flags)
2548{
2549 int cpu = get_cpu();
2550
2551 __sched_fork(p);
06b83b5f
PZ
2552 /*
2553 * We mark the process as waking here. This guarantees that
2554 * nobody will actually run it, and a signal or other external
2555 * event cannot wake it up and insert it on the runqueue either.
2556 */
2557 p->state = TASK_WAKING;
dd41f596 2558
b9dc29e7
MG
2559 /*
2560 * Revert to default priority/policy on fork if requested.
2561 */
2562 if (unlikely(p->sched_reset_on_fork)) {
f83f9ac2 2563 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
b9dc29e7 2564 p->policy = SCHED_NORMAL;
f83f9ac2
PW
2565 p->normal_prio = p->static_prio;
2566 }
b9dc29e7 2567
6c697bdf
MG
2568 if (PRIO_TO_NICE(p->static_prio) < 0) {
2569 p->static_prio = NICE_TO_PRIO(0);
f83f9ac2 2570 p->normal_prio = p->static_prio;
6c697bdf
MG
2571 set_load_weight(p);
2572 }
2573
b9dc29e7
MG
2574 /*
2575 * We don't need the reset flag anymore after the fork. It has
2576 * fulfilled its duty:
2577 */
2578 p->sched_reset_on_fork = 0;
2579 }
ca94c442 2580
f83f9ac2
PW
2581 /*
2582 * Make sure we do not leak PI boosting priority to the child.
2583 */
2584 p->prio = current->normal_prio;
2585
2ddbf952
HS
2586 if (!rt_prio(p->prio))
2587 p->sched_class = &fair_sched_class;
b29739f9 2588
cd29fe6f
PZ
2589 if (p->sched_class->task_fork)
2590 p->sched_class->task_fork(p);
2591
5f3edc1b
PZ
2592 set_task_cpu(p, cpu);
2593
52f17b6c 2594#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2595 if (likely(sched_info_on()))
52f17b6c 2596 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2597#endif
d6077cb8 2598#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2599 p->oncpu = 0;
2600#endif
1da177e4 2601#ifdef CONFIG_PREEMPT
4866cde0 2602 /* Want to start with kernel preemption disabled. */
a1261f54 2603 task_thread_info(p)->preempt_count = 1;
1da177e4 2604#endif
917b627d
GH
2605 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2606
476d139c 2607 put_cpu();
1da177e4
LT
2608}
2609
2610/*
2611 * wake_up_new_task - wake up a newly created task for the first time.
2612 *
2613 * This function will do some initial scheduler statistics housekeeping
2614 * that must be done for every newly created context, then puts the task
2615 * on the runqueue and wakes it.
2616 */
7ad5b3a5 2617void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2618{
2619 unsigned long flags;
dd41f596 2620 struct rq *rq;
c890692b 2621 int cpu __maybe_unused = get_cpu();
fabf318e
PZ
2622
2623#ifdef CONFIG_SMP
2624 /*
2625 * Fork balancing, do it here and not earlier because:
2626 * - cpus_allowed can change in the fork path
2627 * - any previously selected cpu might disappear through hotplug
2628 *
2629 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2630 * ->cpus_allowed is stable, we have preemption disabled, meaning
2631 * cpu_online_mask is stable.
2632 */
2633 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2634 set_task_cpu(p, cpu);
2635#endif
1da177e4 2636
0970d299
PZ
2637 /*
2638 * Since the task is not on the rq and we still have TASK_WAKING set
2639 * nobody else will migrate this task.
2640 */
2641 rq = cpu_rq(cpu);
2642 raw_spin_lock_irqsave(&rq->lock, flags);
2643
06b83b5f
PZ
2644 BUG_ON(p->state != TASK_WAKING);
2645 p->state = TASK_RUNNING;
a8e504d2 2646 update_rq_clock(rq);
cd29fe6f 2647 activate_task(rq, p, 0);
c71dd42d 2648 trace_sched_wakeup_new(rq, p, 1);
a7558e01 2649 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2650#ifdef CONFIG_SMP
efbbd05a
PZ
2651 if (p->sched_class->task_woken)
2652 p->sched_class->task_woken(rq, p);
9a897c5a 2653#endif
dd41f596 2654 task_rq_unlock(rq, &flags);
fabf318e 2655 put_cpu();
1da177e4
LT
2656}
2657
e107be36
AK
2658#ifdef CONFIG_PREEMPT_NOTIFIERS
2659
2660/**
80dd99b3 2661 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2662 * @notifier: notifier struct to register
e107be36
AK
2663 */
2664void preempt_notifier_register(struct preempt_notifier *notifier)
2665{
2666 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2667}
2668EXPORT_SYMBOL_GPL(preempt_notifier_register);
2669
2670/**
2671 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2672 * @notifier: notifier struct to unregister
e107be36
AK
2673 *
2674 * This is safe to call from within a preemption notifier.
2675 */
2676void preempt_notifier_unregister(struct preempt_notifier *notifier)
2677{
2678 hlist_del(&notifier->link);
2679}
2680EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2681
2682static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2683{
2684 struct preempt_notifier *notifier;
2685 struct hlist_node *node;
2686
2687 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2688 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2689}
2690
2691static void
2692fire_sched_out_preempt_notifiers(struct task_struct *curr,
2693 struct task_struct *next)
2694{
2695 struct preempt_notifier *notifier;
2696 struct hlist_node *node;
2697
2698 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2699 notifier->ops->sched_out(notifier, next);
2700}
2701
6d6bc0ad 2702#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2703
2704static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2705{
2706}
2707
2708static void
2709fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711{
2712}
2713
6d6bc0ad 2714#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2715
4866cde0
NP
2716/**
2717 * prepare_task_switch - prepare to switch tasks
2718 * @rq: the runqueue preparing to switch
421cee29 2719 * @prev: the current task that is being switched out
4866cde0
NP
2720 * @next: the task we are going to switch to.
2721 *
2722 * This is called with the rq lock held and interrupts off. It must
2723 * be paired with a subsequent finish_task_switch after the context
2724 * switch.
2725 *
2726 * prepare_task_switch sets up locking and calls architecture specific
2727 * hooks.
2728 */
e107be36
AK
2729static inline void
2730prepare_task_switch(struct rq *rq, struct task_struct *prev,
2731 struct task_struct *next)
4866cde0 2732{
e107be36 2733 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2734 prepare_lock_switch(rq, next);
2735 prepare_arch_switch(next);
2736}
2737
1da177e4
LT
2738/**
2739 * finish_task_switch - clean up after a task-switch
344babaa 2740 * @rq: runqueue associated with task-switch
1da177e4
LT
2741 * @prev: the thread we just switched away from.
2742 *
4866cde0
NP
2743 * finish_task_switch must be called after the context switch, paired
2744 * with a prepare_task_switch call before the context switch.
2745 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2746 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2747 *
2748 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2749 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2750 * with the lock held can cause deadlocks; see schedule() for
2751 * details.)
2752 */
a9957449 2753static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2754 __releases(rq->lock)
2755{
1da177e4 2756 struct mm_struct *mm = rq->prev_mm;
55a101f8 2757 long prev_state;
1da177e4
LT
2758
2759 rq->prev_mm = NULL;
2760
2761 /*
2762 * A task struct has one reference for the use as "current".
c394cc9f 2763 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2764 * schedule one last time. The schedule call will never return, and
2765 * the scheduled task must drop that reference.
c394cc9f 2766 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2767 * still held, otherwise prev could be scheduled on another cpu, die
2768 * there before we look at prev->state, and then the reference would
2769 * be dropped twice.
2770 * Manfred Spraul <manfred@colorfullife.com>
2771 */
55a101f8 2772 prev_state = prev->state;
4866cde0 2773 finish_arch_switch(prev);
8381f65d
JI
2774#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2775 local_irq_disable();
2776#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
49f47433 2777 perf_event_task_sched_in(current);
8381f65d
JI
2778#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2779 local_irq_enable();
2780#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 2781 finish_lock_switch(rq, prev);
e8fa1362 2782
e107be36 2783 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2784 if (mm)
2785 mmdrop(mm);
c394cc9f 2786 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2787 /*
2788 * Remove function-return probe instances associated with this
2789 * task and put them back on the free list.
9761eea8 2790 */
c6fd91f0 2791 kprobe_flush_task(prev);
1da177e4 2792 put_task_struct(prev);
c6fd91f0 2793 }
1da177e4
LT
2794}
2795
3f029d3c
GH
2796#ifdef CONFIG_SMP
2797
2798/* assumes rq->lock is held */
2799static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2800{
2801 if (prev->sched_class->pre_schedule)
2802 prev->sched_class->pre_schedule(rq, prev);
2803}
2804
2805/* rq->lock is NOT held, but preemption is disabled */
2806static inline void post_schedule(struct rq *rq)
2807{
2808 if (rq->post_schedule) {
2809 unsigned long flags;
2810
05fa785c 2811 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2812 if (rq->curr->sched_class->post_schedule)
2813 rq->curr->sched_class->post_schedule(rq);
05fa785c 2814 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2815
2816 rq->post_schedule = 0;
2817 }
2818}
2819
2820#else
da19ab51 2821
3f029d3c
GH
2822static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2823{
2824}
2825
2826static inline void post_schedule(struct rq *rq)
2827{
1da177e4
LT
2828}
2829
3f029d3c
GH
2830#endif
2831
1da177e4
LT
2832/**
2833 * schedule_tail - first thing a freshly forked thread must call.
2834 * @prev: the thread we just switched away from.
2835 */
36c8b586 2836asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2837 __releases(rq->lock)
2838{
70b97a7f
IM
2839 struct rq *rq = this_rq();
2840
4866cde0 2841 finish_task_switch(rq, prev);
da19ab51 2842
3f029d3c
GH
2843 /*
2844 * FIXME: do we need to worry about rq being invalidated by the
2845 * task_switch?
2846 */
2847 post_schedule(rq);
70b97a7f 2848
4866cde0
NP
2849#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2850 /* In this case, finish_task_switch does not reenable preemption */
2851 preempt_enable();
2852#endif
1da177e4 2853 if (current->set_child_tid)
b488893a 2854 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2855}
2856
2857/*
2858 * context_switch - switch to the new MM and the new
2859 * thread's register state.
2860 */
dd41f596 2861static inline void
70b97a7f 2862context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2863 struct task_struct *next)
1da177e4 2864{
dd41f596 2865 struct mm_struct *mm, *oldmm;
1da177e4 2866
e107be36 2867 prepare_task_switch(rq, prev, next);
0a16b607 2868 trace_sched_switch(rq, prev, next);
dd41f596
IM
2869 mm = next->mm;
2870 oldmm = prev->active_mm;
9226d125
ZA
2871 /*
2872 * For paravirt, this is coupled with an exit in switch_to to
2873 * combine the page table reload and the switch backend into
2874 * one hypercall.
2875 */
224101ed 2876 arch_start_context_switch(prev);
9226d125 2877
710390d9 2878 if (likely(!mm)) {
1da177e4
LT
2879 next->active_mm = oldmm;
2880 atomic_inc(&oldmm->mm_count);
2881 enter_lazy_tlb(oldmm, next);
2882 } else
2883 switch_mm(oldmm, mm, next);
2884
710390d9 2885 if (likely(!prev->mm)) {
1da177e4 2886 prev->active_mm = NULL;
1da177e4
LT
2887 rq->prev_mm = oldmm;
2888 }
3a5f5e48
IM
2889 /*
2890 * Since the runqueue lock will be released by the next
2891 * task (which is an invalid locking op but in the case
2892 * of the scheduler it's an obvious special-case), so we
2893 * do an early lockdep release here:
2894 */
2895#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2897#endif
1da177e4
LT
2898
2899 /* Here we just switch the register state and the stack. */
2900 switch_to(prev, next, prev);
2901
dd41f596
IM
2902 barrier();
2903 /*
2904 * this_rq must be evaluated again because prev may have moved
2905 * CPUs since it called schedule(), thus the 'rq' on its stack
2906 * frame will be invalid.
2907 */
2908 finish_task_switch(this_rq(), prev);
1da177e4
LT
2909}
2910
2911/*
2912 * nr_running, nr_uninterruptible and nr_context_switches:
2913 *
2914 * externally visible scheduler statistics: current number of runnable
2915 * threads, current number of uninterruptible-sleeping threads, total
2916 * number of context switches performed since bootup.
2917 */
2918unsigned long nr_running(void)
2919{
2920 unsigned long i, sum = 0;
2921
2922 for_each_online_cpu(i)
2923 sum += cpu_rq(i)->nr_running;
2924
2925 return sum;
f711f609 2926}
1da177e4
LT
2927
2928unsigned long nr_uninterruptible(void)
f711f609 2929{
1da177e4 2930 unsigned long i, sum = 0;
f711f609 2931
0a945022 2932 for_each_possible_cpu(i)
1da177e4 2933 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2934
2935 /*
1da177e4
LT
2936 * Since we read the counters lockless, it might be slightly
2937 * inaccurate. Do not allow it to go below zero though:
f711f609 2938 */
1da177e4
LT
2939 if (unlikely((long)sum < 0))
2940 sum = 0;
f711f609 2941
1da177e4 2942 return sum;
f711f609 2943}
f711f609 2944
1da177e4 2945unsigned long long nr_context_switches(void)
46cb4b7c 2946{
cc94abfc
SR
2947 int i;
2948 unsigned long long sum = 0;
46cb4b7c 2949
0a945022 2950 for_each_possible_cpu(i)
1da177e4 2951 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2952
1da177e4
LT
2953 return sum;
2954}
483b4ee6 2955
1da177e4
LT
2956unsigned long nr_iowait(void)
2957{
2958 unsigned long i, sum = 0;
483b4ee6 2959
0a945022 2960 for_each_possible_cpu(i)
1da177e4 2961 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2962
1da177e4
LT
2963 return sum;
2964}
483b4ee6 2965
69d25870
AV
2966unsigned long nr_iowait_cpu(void)
2967{
2968 struct rq *this = this_rq();
2969 return atomic_read(&this->nr_iowait);
2970}
46cb4b7c 2971
69d25870
AV
2972unsigned long this_cpu_load(void)
2973{
2974 struct rq *this = this_rq();
2975 return this->cpu_load[0];
2976}
e790fb0b 2977
46cb4b7c 2978
dce48a84
TG
2979/* Variables and functions for calc_load */
2980static atomic_long_t calc_load_tasks;
2981static unsigned long calc_load_update;
2982unsigned long avenrun[3];
2983EXPORT_SYMBOL(avenrun);
46cb4b7c 2984
2d02494f
TG
2985/**
2986 * get_avenrun - get the load average array
2987 * @loads: pointer to dest load array
2988 * @offset: offset to add
2989 * @shift: shift count to shift the result left
2990 *
2991 * These values are estimates at best, so no need for locking.
2992 */
2993void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2994{
2995 loads[0] = (avenrun[0] + offset) << shift;
2996 loads[1] = (avenrun[1] + offset) << shift;
2997 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2998}
46cb4b7c 2999
dce48a84
TG
3000static unsigned long
3001calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3002{
dce48a84
TG
3003 load *= exp;
3004 load += active * (FIXED_1 - exp);
3005 return load >> FSHIFT;
3006}
46cb4b7c
SS
3007
3008/*
dce48a84
TG
3009 * calc_load - update the avenrun load estimates 10 ticks after the
3010 * CPUs have updated calc_load_tasks.
7835b98b 3011 */
dce48a84 3012void calc_global_load(void)
7835b98b 3013{
dce48a84
TG
3014 unsigned long upd = calc_load_update + 10;
3015 long active;
1da177e4 3016
dce48a84
TG
3017 if (time_before(jiffies, upd))
3018 return;
1da177e4 3019
dce48a84
TG
3020 active = atomic_long_read(&calc_load_tasks);
3021 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 3022
dce48a84
TG
3023 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3024 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3025 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 3026
dce48a84
TG
3027 calc_load_update += LOAD_FREQ;
3028}
1da177e4 3029
dce48a84
TG
3030/*
3031 * Either called from update_cpu_load() or from a cpu going idle
3032 */
3033static void calc_load_account_active(struct rq *this_rq)
3034{
3035 long nr_active, delta;
08c183f3 3036
dce48a84
TG
3037 nr_active = this_rq->nr_running;
3038 nr_active += (long) this_rq->nr_uninterruptible;
783609c6 3039
dce48a84
TG
3040 if (nr_active != this_rq->calc_load_active) {
3041 delta = nr_active - this_rq->calc_load_active;
3042 this_rq->calc_load_active = nr_active;
3043 atomic_long_add(delta, &calc_load_tasks);
1da177e4 3044 }
46cb4b7c
SS
3045}
3046
3047/*
dd41f596
IM
3048 * Update rq->cpu_load[] statistics. This function is usually called every
3049 * scheduler tick (TICK_NSEC).
46cb4b7c 3050 */
dd41f596 3051static void update_cpu_load(struct rq *this_rq)
46cb4b7c 3052{
495eca49 3053 unsigned long this_load = this_rq->load.weight;
dd41f596 3054 int i, scale;
46cb4b7c 3055
dd41f596 3056 this_rq->nr_load_updates++;
46cb4b7c 3057
dd41f596
IM
3058 /* Update our load: */
3059 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3060 unsigned long old_load, new_load;
7d1e6a9b 3061
dd41f596 3062 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 3063
dd41f596
IM
3064 old_load = this_rq->cpu_load[i];
3065 new_load = this_load;
a25707f3
IM
3066 /*
3067 * Round up the averaging division if load is increasing. This
3068 * prevents us from getting stuck on 9 if the load is 10, for
3069 * example.
3070 */
3071 if (new_load > old_load)
3072 new_load += scale-1;
dd41f596
IM
3073 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3074 }
46cb4b7c 3075
dce48a84
TG
3076 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3077 this_rq->calc_load_update += LOAD_FREQ;
3078 calc_load_account_active(this_rq);
46cb4b7c 3079 }
46cb4b7c
SS
3080}
3081
dd41f596 3082#ifdef CONFIG_SMP
8a0be9ef 3083
46cb4b7c 3084/*
38022906
PZ
3085 * sched_exec - execve() is a valuable balancing opportunity, because at
3086 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 3087 */
38022906 3088void sched_exec(void)
46cb4b7c 3089{
38022906 3090 struct task_struct *p = current;
70b97a7f 3091 struct migration_req req;
38022906 3092 int dest_cpu, this_cpu;
1da177e4 3093 unsigned long flags;
70b97a7f 3094 struct rq *rq;
46cb4b7c 3095
38022906
PZ
3096again:
3097 this_cpu = get_cpu();
3098 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3099 if (dest_cpu == this_cpu) {
3100 put_cpu();
3101 return;
46cb4b7c
SS
3102 }
3103
1da177e4 3104 rq = task_rq_lock(p, &flags);
38022906
PZ
3105 put_cpu();
3106
46cb4b7c 3107 /*
38022906 3108 * select_task_rq() can race against ->cpus_allowed
46cb4b7c 3109 */
96f874e2 3110 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
38022906
PZ
3111 || unlikely(!cpu_active(dest_cpu))) {
3112 task_rq_unlock(rq, &flags);
3113 goto again;
46cb4b7c
SS
3114 }
3115
1da177e4
LT
3116 /* force the process onto the specified CPU */
3117 if (migrate_task(p, dest_cpu, &req)) {
3118 /* Need to wait for migration thread (might exit: take ref). */
3119 struct task_struct *mt = rq->migration_thread;
dd41f596 3120
1da177e4
LT
3121 get_task_struct(mt);
3122 task_rq_unlock(rq, &flags);
3123 wake_up_process(mt);
3124 put_task_struct(mt);
3125 wait_for_completion(&req.done);
dd41f596 3126
1da177e4
LT
3127 return;
3128 }
1da177e4 3129 task_rq_unlock(rq, &flags);
1da177e4 3130}
dd41f596 3131
1da177e4
LT
3132#endif
3133
1da177e4
LT
3134DEFINE_PER_CPU(struct kernel_stat, kstat);
3135
3136EXPORT_PER_CPU_SYMBOL(kstat);
3137
3138/*
c5f8d995 3139 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 3140 * @p in case that task is currently running.
c5f8d995
HS
3141 *
3142 * Called with task_rq_lock() held on @rq.
1da177e4 3143 */
c5f8d995
HS
3144static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3145{
3146 u64 ns = 0;
3147
3148 if (task_current(rq, p)) {
3149 update_rq_clock(rq);
3150 ns = rq->clock - p->se.exec_start;
3151 if ((s64)ns < 0)
3152 ns = 0;
3153 }
3154
3155 return ns;
3156}
3157
bb34d92f 3158unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 3159{
1da177e4 3160 unsigned long flags;
41b86e9c 3161 struct rq *rq;
bb34d92f 3162 u64 ns = 0;
48f24c4d 3163
41b86e9c 3164 rq = task_rq_lock(p, &flags);
c5f8d995
HS
3165 ns = do_task_delta_exec(p, rq);
3166 task_rq_unlock(rq, &flags);
1508487e 3167
c5f8d995
HS
3168 return ns;
3169}
f06febc9 3170
c5f8d995
HS
3171/*
3172 * Return accounted runtime for the task.
3173 * In case the task is currently running, return the runtime plus current's
3174 * pending runtime that have not been accounted yet.
3175 */
3176unsigned long long task_sched_runtime(struct task_struct *p)
3177{
3178 unsigned long flags;
3179 struct rq *rq;
3180 u64 ns = 0;
3181
3182 rq = task_rq_lock(p, &flags);
3183 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3184 task_rq_unlock(rq, &flags);
3185
3186 return ns;
3187}
48f24c4d 3188
c5f8d995
HS
3189/*
3190 * Return sum_exec_runtime for the thread group.
3191 * In case the task is currently running, return the sum plus current's
3192 * pending runtime that have not been accounted yet.
3193 *
3194 * Note that the thread group might have other running tasks as well,
3195 * so the return value not includes other pending runtime that other
3196 * running tasks might have.
3197 */
3198unsigned long long thread_group_sched_runtime(struct task_struct *p)
3199{
3200 struct task_cputime totals;
3201 unsigned long flags;
3202 struct rq *rq;
3203 u64 ns;
3204
3205 rq = task_rq_lock(p, &flags);
3206 thread_group_cputime(p, &totals);
3207 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 3208 task_rq_unlock(rq, &flags);
48f24c4d 3209
1da177e4
LT
3210 return ns;
3211}
3212
1da177e4
LT
3213/*
3214 * Account user cpu time to a process.
3215 * @p: the process that the cpu time gets accounted to
1da177e4 3216 * @cputime: the cpu time spent in user space since the last update
457533a7 3217 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 3218 */
457533a7
MS
3219void account_user_time(struct task_struct *p, cputime_t cputime,
3220 cputime_t cputime_scaled)
1da177e4
LT
3221{
3222 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3223 cputime64_t tmp;
3224
457533a7 3225 /* Add user time to process. */
1da177e4 3226 p->utime = cputime_add(p->utime, cputime);
457533a7 3227 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3228 account_group_user_time(p, cputime);
1da177e4
LT
3229
3230 /* Add user time to cpustat. */
3231 tmp = cputime_to_cputime64(cputime);
3232 if (TASK_NICE(p) > 0)
3233 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3234 else
3235 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
3236
3237 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
3238 /* Account for user time used */
3239 acct_update_integrals(p);
1da177e4
LT
3240}
3241
94886b84
LV
3242/*
3243 * Account guest cpu time to a process.
3244 * @p: the process that the cpu time gets accounted to
3245 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 3246 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 3247 */
457533a7
MS
3248static void account_guest_time(struct task_struct *p, cputime_t cputime,
3249 cputime_t cputime_scaled)
94886b84
LV
3250{
3251 cputime64_t tmp;
3252 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3253
3254 tmp = cputime_to_cputime64(cputime);
3255
457533a7 3256 /* Add guest time to process. */
94886b84 3257 p->utime = cputime_add(p->utime, cputime);
457533a7 3258 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 3259 account_group_user_time(p, cputime);
94886b84
LV
3260 p->gtime = cputime_add(p->gtime, cputime);
3261
457533a7 3262 /* Add guest time to cpustat. */
ce0e7b28
RO
3263 if (TASK_NICE(p) > 0) {
3264 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3265 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3266 } else {
3267 cpustat->user = cputime64_add(cpustat->user, tmp);
3268 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3269 }
94886b84
LV
3270}
3271
1da177e4
LT
3272/*
3273 * Account system cpu time to a process.
3274 * @p: the process that the cpu time gets accounted to
3275 * @hardirq_offset: the offset to subtract from hardirq_count()
3276 * @cputime: the cpu time spent in kernel space since the last update
457533a7 3277 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
3278 */
3279void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 3280 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
3281{
3282 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
3283 cputime64_t tmp;
3284
983ed7a6 3285 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 3286 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
3287 return;
3288 }
94886b84 3289
457533a7 3290 /* Add system time to process. */
1da177e4 3291 p->stime = cputime_add(p->stime, cputime);
457533a7 3292 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 3293 account_group_system_time(p, cputime);
1da177e4
LT
3294
3295 /* Add system time to cpustat. */
3296 tmp = cputime_to_cputime64(cputime);
3297 if (hardirq_count() - hardirq_offset)
3298 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3299 else if (softirq_count())
3300 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 3301 else
79741dd3
MS
3302 cpustat->system = cputime64_add(cpustat->system, tmp);
3303
ef12fefa
BR
3304 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3305
1da177e4
LT
3306 /* Account for system time used */
3307 acct_update_integrals(p);
1da177e4
LT
3308}
3309
c66f08be 3310/*
1da177e4 3311 * Account for involuntary wait time.
1da177e4 3312 * @steal: the cpu time spent in involuntary wait
c66f08be 3313 */
79741dd3 3314void account_steal_time(cputime_t cputime)
c66f08be 3315{
79741dd3
MS
3316 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3317 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3318
3319 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
3320}
3321
1da177e4 3322/*
79741dd3
MS
3323 * Account for idle time.
3324 * @cputime: the cpu time spent in idle wait
1da177e4 3325 */
79741dd3 3326void account_idle_time(cputime_t cputime)
1da177e4
LT
3327{
3328 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 3329 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 3330 struct rq *rq = this_rq();
1da177e4 3331
79741dd3
MS
3332 if (atomic_read(&rq->nr_iowait) > 0)
3333 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3334 else
3335 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
3336}
3337
79741dd3
MS
3338#ifndef CONFIG_VIRT_CPU_ACCOUNTING
3339
3340/*
3341 * Account a single tick of cpu time.
3342 * @p: the process that the cpu time gets accounted to
3343 * @user_tick: indicates if the tick is a user or a system tick
3344 */
3345void account_process_tick(struct task_struct *p, int user_tick)
3346{
a42548a1 3347 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
3348 struct rq *rq = this_rq();
3349
3350 if (user_tick)
a42548a1 3351 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 3352 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 3353 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
3354 one_jiffy_scaled);
3355 else
a42548a1 3356 account_idle_time(cputime_one_jiffy);
79741dd3
MS
3357}
3358
3359/*
3360 * Account multiple ticks of steal time.
3361 * @p: the process from which the cpu time has been stolen
3362 * @ticks: number of stolen ticks
3363 */
3364void account_steal_ticks(unsigned long ticks)
3365{
3366 account_steal_time(jiffies_to_cputime(ticks));
3367}
3368
3369/*
3370 * Account multiple ticks of idle time.
3371 * @ticks: number of stolen ticks
3372 */
3373void account_idle_ticks(unsigned long ticks)
3374{
3375 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
3376}
3377
79741dd3
MS
3378#endif
3379
49048622
BS
3380/*
3381 * Use precise platform statistics if available:
3382 */
3383#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 3384void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3385{
d99ca3b9
HS
3386 *ut = p->utime;
3387 *st = p->stime;
49048622
BS
3388}
3389
0cf55e1e 3390void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3391{
0cf55e1e
HS
3392 struct task_cputime cputime;
3393
3394 thread_group_cputime(p, &cputime);
3395
3396 *ut = cputime.utime;
3397 *st = cputime.stime;
49048622
BS
3398}
3399#else
761b1d26
HS
3400
3401#ifndef nsecs_to_cputime
b7b20df9 3402# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3403#endif
3404
d180c5bc 3405void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3406{
d99ca3b9 3407 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
49048622
BS
3408
3409 /*
3410 * Use CFS's precise accounting:
3411 */
d180c5bc 3412 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3413
3414 if (total) {
d180c5bc
HS
3415 u64 temp;
3416
3417 temp = (u64)(rtime * utime);
49048622 3418 do_div(temp, total);
d180c5bc
HS
3419 utime = (cputime_t)temp;
3420 } else
3421 utime = rtime;
49048622 3422
d180c5bc
HS
3423 /*
3424 * Compare with previous values, to keep monotonicity:
3425 */
761b1d26 3426 p->prev_utime = max(p->prev_utime, utime);
d99ca3b9 3427 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
49048622 3428
d99ca3b9
HS
3429 *ut = p->prev_utime;
3430 *st = p->prev_stime;
49048622
BS
3431}
3432
0cf55e1e
HS
3433/*
3434 * Must be called with siglock held.
3435 */
3436void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3437{
0cf55e1e
HS
3438 struct signal_struct *sig = p->signal;
3439 struct task_cputime cputime;
3440 cputime_t rtime, utime, total;
49048622 3441
0cf55e1e 3442 thread_group_cputime(p, &cputime);
49048622 3443
0cf55e1e
HS
3444 total = cputime_add(cputime.utime, cputime.stime);
3445 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3446
0cf55e1e
HS
3447 if (total) {
3448 u64 temp;
49048622 3449
0cf55e1e
HS
3450 temp = (u64)(rtime * cputime.utime);
3451 do_div(temp, total);
3452 utime = (cputime_t)temp;
3453 } else
3454 utime = rtime;
3455
3456 sig->prev_utime = max(sig->prev_utime, utime);
3457 sig->prev_stime = max(sig->prev_stime,
3458 cputime_sub(rtime, sig->prev_utime));
3459
3460 *ut = sig->prev_utime;
3461 *st = sig->prev_stime;
49048622 3462}
49048622 3463#endif
49048622 3464
7835b98b
CL
3465/*
3466 * This function gets called by the timer code, with HZ frequency.
3467 * We call it with interrupts disabled.
3468 *
3469 * It also gets called by the fork code, when changing the parent's
3470 * timeslices.
3471 */
3472void scheduler_tick(void)
3473{
7835b98b
CL
3474 int cpu = smp_processor_id();
3475 struct rq *rq = cpu_rq(cpu);
dd41f596 3476 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3477
3478 sched_clock_tick();
dd41f596 3479
05fa785c 3480 raw_spin_lock(&rq->lock);
3e51f33f 3481 update_rq_clock(rq);
f1a438d8 3482 update_cpu_load(rq);
fa85ae24 3483 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3484 raw_spin_unlock(&rq->lock);
7835b98b 3485
49f47433 3486 perf_event_task_tick(curr);
e220d2dc 3487
e418e1c2 3488#ifdef CONFIG_SMP
dd41f596
IM
3489 rq->idle_at_tick = idle_cpu(cpu);
3490 trigger_load_balance(rq, cpu);
e418e1c2 3491#endif
1da177e4
LT
3492}
3493
132380a0 3494notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3495{
3496 if (in_lock_functions(addr)) {
3497 addr = CALLER_ADDR2;
3498 if (in_lock_functions(addr))
3499 addr = CALLER_ADDR3;
3500 }
3501 return addr;
3502}
1da177e4 3503
7e49fcce
SR
3504#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3505 defined(CONFIG_PREEMPT_TRACER))
3506
43627582 3507void __kprobes add_preempt_count(int val)
1da177e4 3508{
6cd8a4bb 3509#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3510 /*
3511 * Underflow?
3512 */
9a11b49a
IM
3513 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3514 return;
6cd8a4bb 3515#endif
1da177e4 3516 preempt_count() += val;
6cd8a4bb 3517#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3518 /*
3519 * Spinlock count overflowing soon?
3520 */
33859f7f
MOS
3521 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3522 PREEMPT_MASK - 10);
6cd8a4bb
SR
3523#endif
3524 if (preempt_count() == val)
3525 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3526}
3527EXPORT_SYMBOL(add_preempt_count);
3528
43627582 3529void __kprobes sub_preempt_count(int val)
1da177e4 3530{
6cd8a4bb 3531#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3532 /*
3533 * Underflow?
3534 */
01e3eb82 3535 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3536 return;
1da177e4
LT
3537 /*
3538 * Is the spinlock portion underflowing?
3539 */
9a11b49a
IM
3540 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3541 !(preempt_count() & PREEMPT_MASK)))
3542 return;
6cd8a4bb 3543#endif
9a11b49a 3544
6cd8a4bb
SR
3545 if (preempt_count() == val)
3546 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3547 preempt_count() -= val;
3548}
3549EXPORT_SYMBOL(sub_preempt_count);
3550
3551#endif
3552
3553/*
dd41f596 3554 * Print scheduling while atomic bug:
1da177e4 3555 */
dd41f596 3556static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3557{
838225b4
SS
3558 struct pt_regs *regs = get_irq_regs();
3559
3df0fc5b
PZ
3560 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3561 prev->comm, prev->pid, preempt_count());
838225b4 3562
dd41f596 3563 debug_show_held_locks(prev);
e21f5b15 3564 print_modules();
dd41f596
IM
3565 if (irqs_disabled())
3566 print_irqtrace_events(prev);
838225b4
SS
3567
3568 if (regs)
3569 show_regs(regs);
3570 else
3571 dump_stack();
dd41f596 3572}
1da177e4 3573
dd41f596
IM
3574/*
3575 * Various schedule()-time debugging checks and statistics:
3576 */
3577static inline void schedule_debug(struct task_struct *prev)
3578{
1da177e4 3579 /*
41a2d6cf 3580 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3581 * schedule() atomically, we ignore that path for now.
3582 * Otherwise, whine if we are scheduling when we should not be.
3583 */
3f33a7ce 3584 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
3585 __schedule_bug(prev);
3586
1da177e4
LT
3587 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3588
2d72376b 3589 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3590#ifdef CONFIG_SCHEDSTATS
3591 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3592 schedstat_inc(this_rq(), bkl_count);
3593 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3594 }
3595#endif
dd41f596
IM
3596}
3597
6cecd084 3598static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3599{
6cecd084
PZ
3600 if (prev->state == TASK_RUNNING) {
3601 u64 runtime = prev->se.sum_exec_runtime;
df1c99d4 3602
6cecd084
PZ
3603 runtime -= prev->se.prev_sum_exec_runtime;
3604 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
df1c99d4
MG
3605
3606 /*
3607 * In order to avoid avg_overlap growing stale when we are
3608 * indeed overlapping and hence not getting put to sleep, grow
3609 * the avg_overlap on preemption.
3610 *
3611 * We use the average preemption runtime because that
3612 * correlates to the amount of cache footprint a task can
3613 * build up.
3614 */
6cecd084 3615 update_avg(&prev->se.avg_overlap, runtime);
df1c99d4 3616 }
6cecd084 3617 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3618}
3619
dd41f596
IM
3620/*
3621 * Pick up the highest-prio task:
3622 */
3623static inline struct task_struct *
b67802ea 3624pick_next_task(struct rq *rq)
dd41f596 3625{
5522d5d5 3626 const struct sched_class *class;
dd41f596 3627 struct task_struct *p;
1da177e4
LT
3628
3629 /*
dd41f596
IM
3630 * Optimization: we know that if all tasks are in
3631 * the fair class we can call that function directly:
1da177e4 3632 */
dd41f596 3633 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3634 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3635 if (likely(p))
3636 return p;
1da177e4
LT
3637 }
3638
dd41f596
IM
3639 class = sched_class_highest;
3640 for ( ; ; ) {
fb8d4724 3641 p = class->pick_next_task(rq);
dd41f596
IM
3642 if (p)
3643 return p;
3644 /*
3645 * Will never be NULL as the idle class always
3646 * returns a non-NULL p:
3647 */
3648 class = class->next;
3649 }
3650}
1da177e4 3651
dd41f596
IM
3652/*
3653 * schedule() is the main scheduler function.
3654 */
ff743345 3655asmlinkage void __sched schedule(void)
dd41f596
IM
3656{
3657 struct task_struct *prev, *next;
67ca7bde 3658 unsigned long *switch_count;
dd41f596 3659 struct rq *rq;
31656519 3660 int cpu;
dd41f596 3661
ff743345
PZ
3662need_resched:
3663 preempt_disable();
dd41f596
IM
3664 cpu = smp_processor_id();
3665 rq = cpu_rq(cpu);
25502a6c 3666 rcu_note_context_switch(cpu);
dd41f596
IM
3667 prev = rq->curr;
3668 switch_count = &prev->nivcsw;
3669
3670 release_kernel_lock(prev);
3671need_resched_nonpreemptible:
3672
3673 schedule_debug(prev);
1da177e4 3674
31656519 3675 if (sched_feat(HRTICK))
f333fdc9 3676 hrtick_clear(rq);
8f4d37ec 3677
05fa785c 3678 raw_spin_lock_irq(&rq->lock);
3e51f33f 3679 update_rq_clock(rq);
1e819950 3680 clear_tsk_need_resched(prev);
1da177e4 3681
1da177e4 3682 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 3683 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 3684 prev->state = TASK_RUNNING;
16882c1e 3685 else
2e1cb74a 3686 deactivate_task(rq, prev, 1);
dd41f596 3687 switch_count = &prev->nvcsw;
1da177e4
LT
3688 }
3689
3f029d3c 3690 pre_schedule(rq, prev);
f65eda4f 3691
dd41f596 3692 if (unlikely(!rq->nr_running))
1da177e4 3693 idle_balance(cpu, rq);
1da177e4 3694
df1c99d4 3695 put_prev_task(rq, prev);
b67802ea 3696 next = pick_next_task(rq);
1da177e4 3697
1da177e4 3698 if (likely(prev != next)) {
673a90a1 3699 sched_info_switch(prev, next);
49f47433 3700 perf_event_task_sched_out(prev, next);
673a90a1 3701
1da177e4
LT
3702 rq->nr_switches++;
3703 rq->curr = next;
3704 ++*switch_count;
3705
dd41f596 3706 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
3707 /*
3708 * the context switch might have flipped the stack from under
3709 * us, hence refresh the local variables.
3710 */
3711 cpu = smp_processor_id();
3712 rq = cpu_rq(cpu);
1da177e4 3713 } else
05fa785c 3714 raw_spin_unlock_irq(&rq->lock);
1da177e4 3715
3f029d3c 3716 post_schedule(rq);
1da177e4 3717
6d558c3a
YZ
3718 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3719 prev = rq->curr;
3720 switch_count = &prev->nivcsw;
1da177e4 3721 goto need_resched_nonpreemptible;
6d558c3a 3722 }
8f4d37ec 3723
1da177e4 3724 preempt_enable_no_resched();
ff743345 3725 if (need_resched())
1da177e4
LT
3726 goto need_resched;
3727}
1da177e4
LT
3728EXPORT_SYMBOL(schedule);
3729
c08f7829 3730#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d
PZ
3731/*
3732 * Look out! "owner" is an entirely speculative pointer
3733 * access and not reliable.
3734 */
3735int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3736{
3737 unsigned int cpu;
3738 struct rq *rq;
3739
3740 if (!sched_feat(OWNER_SPIN))
3741 return 0;
3742
3743#ifdef CONFIG_DEBUG_PAGEALLOC
3744 /*
3745 * Need to access the cpu field knowing that
3746 * DEBUG_PAGEALLOC could have unmapped it if
3747 * the mutex owner just released it and exited.
3748 */
3749 if (probe_kernel_address(&owner->cpu, cpu))
4b402210 3750 return 0;
0d66bf6d
PZ
3751#else
3752 cpu = owner->cpu;
3753#endif
3754
3755 /*
3756 * Even if the access succeeded (likely case),
3757 * the cpu field may no longer be valid.
3758 */
3759 if (cpu >= nr_cpumask_bits)
4b402210 3760 return 0;
0d66bf6d
PZ
3761
3762 /*
3763 * We need to validate that we can do a
3764 * get_cpu() and that we have the percpu area.
3765 */
3766 if (!cpu_online(cpu))
4b402210 3767 return 0;
0d66bf6d
PZ
3768
3769 rq = cpu_rq(cpu);
3770
3771 for (;;) {
3772 /*
3773 * Owner changed, break to re-assess state.
3774 */
3775 if (lock->owner != owner)
3776 break;
3777
3778 /*
3779 * Is that owner really running on that cpu?
3780 */
3781 if (task_thread_info(rq->curr) != owner || need_resched())
3782 return 0;
3783
3784 cpu_relax();
3785 }
4b402210 3786
0d66bf6d
PZ
3787 return 1;
3788}
3789#endif
3790
1da177e4
LT
3791#ifdef CONFIG_PREEMPT
3792/*
2ed6e34f 3793 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3794 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3795 * occur there and call schedule directly.
3796 */
3797asmlinkage void __sched preempt_schedule(void)
3798{
3799 struct thread_info *ti = current_thread_info();
6478d880 3800
1da177e4
LT
3801 /*
3802 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3803 * we do not want to preempt the current task. Just return..
1da177e4 3804 */
beed33a8 3805 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3806 return;
3807
3a5c359a
AK
3808 do {
3809 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3810 schedule();
3a5c359a 3811 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3812
3a5c359a
AK
3813 /*
3814 * Check again in case we missed a preemption opportunity
3815 * between schedule and now.
3816 */
3817 barrier();
5ed0cec0 3818 } while (need_resched());
1da177e4 3819}
1da177e4
LT
3820EXPORT_SYMBOL(preempt_schedule);
3821
3822/*
2ed6e34f 3823 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3824 * off of irq context.
3825 * Note, that this is called and return with irqs disabled. This will
3826 * protect us against recursive calling from irq.
3827 */
3828asmlinkage void __sched preempt_schedule_irq(void)
3829{
3830 struct thread_info *ti = current_thread_info();
6478d880 3831
2ed6e34f 3832 /* Catch callers which need to be fixed */
1da177e4
LT
3833 BUG_ON(ti->preempt_count || !irqs_disabled());
3834
3a5c359a
AK
3835 do {
3836 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
3837 local_irq_enable();
3838 schedule();
3839 local_irq_disable();
3a5c359a 3840 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3841
3a5c359a
AK
3842 /*
3843 * Check again in case we missed a preemption opportunity
3844 * between schedule and now.
3845 */
3846 barrier();
5ed0cec0 3847 } while (need_resched());
1da177e4
LT
3848}
3849
3850#endif /* CONFIG_PREEMPT */
3851
63859d4f 3852int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3853 void *key)
1da177e4 3854{
63859d4f 3855 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3856}
1da177e4
LT
3857EXPORT_SYMBOL(default_wake_function);
3858
3859/*
41a2d6cf
IM
3860 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3861 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3862 * number) then we wake all the non-exclusive tasks and one exclusive task.
3863 *
3864 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3865 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3866 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3867 */
78ddb08f 3868static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3869 int nr_exclusive, int wake_flags, void *key)
1da177e4 3870{
2e45874c 3871 wait_queue_t *curr, *next;
1da177e4 3872
2e45874c 3873 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3874 unsigned flags = curr->flags;
3875
63859d4f 3876 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3877 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3878 break;
3879 }
3880}
3881
3882/**
3883 * __wake_up - wake up threads blocked on a waitqueue.
3884 * @q: the waitqueue
3885 * @mode: which threads
3886 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3887 * @key: is directly passed to the wakeup function
50fa610a
DH
3888 *
3889 * It may be assumed that this function implies a write memory barrier before
3890 * changing the task state if and only if any tasks are woken up.
1da177e4 3891 */
7ad5b3a5 3892void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3893 int nr_exclusive, void *key)
1da177e4
LT
3894{
3895 unsigned long flags;
3896
3897 spin_lock_irqsave(&q->lock, flags);
3898 __wake_up_common(q, mode, nr_exclusive, 0, key);
3899 spin_unlock_irqrestore(&q->lock, flags);
3900}
1da177e4
LT
3901EXPORT_SYMBOL(__wake_up);
3902
3903/*
3904 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3905 */
7ad5b3a5 3906void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
3907{
3908 __wake_up_common(q, mode, 1, 0, NULL);
3909}
3910
4ede816a
DL
3911void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3912{
3913 __wake_up_common(q, mode, 1, 0, key);
3914}
3915
1da177e4 3916/**
4ede816a 3917 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3918 * @q: the waitqueue
3919 * @mode: which threads
3920 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3921 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3922 *
3923 * The sync wakeup differs that the waker knows that it will schedule
3924 * away soon, so while the target thread will be woken up, it will not
3925 * be migrated to another CPU - ie. the two threads are 'synchronized'
3926 * with each other. This can prevent needless bouncing between CPUs.
3927 *
3928 * On UP it can prevent extra preemption.
50fa610a
DH
3929 *
3930 * It may be assumed that this function implies a write memory barrier before
3931 * changing the task state if and only if any tasks are woken up.
1da177e4 3932 */
4ede816a
DL
3933void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3934 int nr_exclusive, void *key)
1da177e4
LT
3935{
3936 unsigned long flags;
7d478721 3937 int wake_flags = WF_SYNC;
1da177e4
LT
3938
3939 if (unlikely(!q))
3940 return;
3941
3942 if (unlikely(!nr_exclusive))
7d478721 3943 wake_flags = 0;
1da177e4
LT
3944
3945 spin_lock_irqsave(&q->lock, flags);
7d478721 3946 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3947 spin_unlock_irqrestore(&q->lock, flags);
3948}
4ede816a
DL
3949EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3950
3951/*
3952 * __wake_up_sync - see __wake_up_sync_key()
3953 */
3954void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3955{
3956 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3957}
1da177e4
LT
3958EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3959
65eb3dc6
KD
3960/**
3961 * complete: - signals a single thread waiting on this completion
3962 * @x: holds the state of this particular completion
3963 *
3964 * This will wake up a single thread waiting on this completion. Threads will be
3965 * awakened in the same order in which they were queued.
3966 *
3967 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3968 *
3969 * It may be assumed that this function implies a write memory barrier before
3970 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3971 */
b15136e9 3972void complete(struct completion *x)
1da177e4
LT
3973{
3974 unsigned long flags;
3975
3976 spin_lock_irqsave(&x->wait.lock, flags);
3977 x->done++;
d9514f6c 3978 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3979 spin_unlock_irqrestore(&x->wait.lock, flags);
3980}
3981EXPORT_SYMBOL(complete);
3982
65eb3dc6
KD
3983/**
3984 * complete_all: - signals all threads waiting on this completion
3985 * @x: holds the state of this particular completion
3986 *
3987 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3988 *
3989 * It may be assumed that this function implies a write memory barrier before
3990 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3991 */
b15136e9 3992void complete_all(struct completion *x)
1da177e4
LT
3993{
3994 unsigned long flags;
3995
3996 spin_lock_irqsave(&x->wait.lock, flags);
3997 x->done += UINT_MAX/2;
d9514f6c 3998 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3999 spin_unlock_irqrestore(&x->wait.lock, flags);
4000}
4001EXPORT_SYMBOL(complete_all);
4002
8cbbe86d
AK
4003static inline long __sched
4004do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4005{
1da177e4
LT
4006 if (!x->done) {
4007 DECLARE_WAITQUEUE(wait, current);
4008
4009 wait.flags |= WQ_FLAG_EXCLUSIVE;
4010 __add_wait_queue_tail(&x->wait, &wait);
4011 do {
94d3d824 4012 if (signal_pending_state(state, current)) {
ea71a546
ON
4013 timeout = -ERESTARTSYS;
4014 break;
8cbbe86d
AK
4015 }
4016 __set_current_state(state);
1da177e4
LT
4017 spin_unlock_irq(&x->wait.lock);
4018 timeout = schedule_timeout(timeout);
4019 spin_lock_irq(&x->wait.lock);
ea71a546 4020 } while (!x->done && timeout);
1da177e4 4021 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4022 if (!x->done)
4023 return timeout;
1da177e4
LT
4024 }
4025 x->done--;
ea71a546 4026 return timeout ?: 1;
1da177e4 4027}
1da177e4 4028
8cbbe86d
AK
4029static long __sched
4030wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4031{
1da177e4
LT
4032 might_sleep();
4033
4034 spin_lock_irq(&x->wait.lock);
8cbbe86d 4035 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4036 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4037 return timeout;
4038}
1da177e4 4039
65eb3dc6
KD
4040/**
4041 * wait_for_completion: - waits for completion of a task
4042 * @x: holds the state of this particular completion
4043 *
4044 * This waits to be signaled for completion of a specific task. It is NOT
4045 * interruptible and there is no timeout.
4046 *
4047 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4048 * and interrupt capability. Also see complete().
4049 */
b15136e9 4050void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4051{
4052 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4053}
8cbbe86d 4054EXPORT_SYMBOL(wait_for_completion);
1da177e4 4055
65eb3dc6
KD
4056/**
4057 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4058 * @x: holds the state of this particular completion
4059 * @timeout: timeout value in jiffies
4060 *
4061 * This waits for either a completion of a specific task to be signaled or for a
4062 * specified timeout to expire. The timeout is in jiffies. It is not
4063 * interruptible.
4064 */
b15136e9 4065unsigned long __sched
8cbbe86d 4066wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4067{
8cbbe86d 4068 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4069}
8cbbe86d 4070EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4071
65eb3dc6
KD
4072/**
4073 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4074 * @x: holds the state of this particular completion
4075 *
4076 * This waits for completion of a specific task to be signaled. It is
4077 * interruptible.
4078 */
8cbbe86d 4079int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4080{
51e97990
AK
4081 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4082 if (t == -ERESTARTSYS)
4083 return t;
4084 return 0;
0fec171c 4085}
8cbbe86d 4086EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4087
65eb3dc6
KD
4088/**
4089 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4090 * @x: holds the state of this particular completion
4091 * @timeout: timeout value in jiffies
4092 *
4093 * This waits for either a completion of a specific task to be signaled or for a
4094 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4095 */
b15136e9 4096unsigned long __sched
8cbbe86d
AK
4097wait_for_completion_interruptible_timeout(struct completion *x,
4098 unsigned long timeout)
0fec171c 4099{
8cbbe86d 4100 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4101}
8cbbe86d 4102EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4103
65eb3dc6
KD
4104/**
4105 * wait_for_completion_killable: - waits for completion of a task (killable)
4106 * @x: holds the state of this particular completion
4107 *
4108 * This waits to be signaled for completion of a specific task. It can be
4109 * interrupted by a kill signal.
4110 */
009e577e
MW
4111int __sched wait_for_completion_killable(struct completion *x)
4112{
4113 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4114 if (t == -ERESTARTSYS)
4115 return t;
4116 return 0;
4117}
4118EXPORT_SYMBOL(wait_for_completion_killable);
4119
be4de352
DC
4120/**
4121 * try_wait_for_completion - try to decrement a completion without blocking
4122 * @x: completion structure
4123 *
4124 * Returns: 0 if a decrement cannot be done without blocking
4125 * 1 if a decrement succeeded.
4126 *
4127 * If a completion is being used as a counting completion,
4128 * attempt to decrement the counter without blocking. This
4129 * enables us to avoid waiting if the resource the completion
4130 * is protecting is not available.
4131 */
4132bool try_wait_for_completion(struct completion *x)
4133{
7539a3b3 4134 unsigned long flags;
be4de352
DC
4135 int ret = 1;
4136
7539a3b3 4137 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4138 if (!x->done)
4139 ret = 0;
4140 else
4141 x->done--;
7539a3b3 4142 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4143 return ret;
4144}
4145EXPORT_SYMBOL(try_wait_for_completion);
4146
4147/**
4148 * completion_done - Test to see if a completion has any waiters
4149 * @x: completion structure
4150 *
4151 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4152 * 1 if there are no waiters.
4153 *
4154 */
4155bool completion_done(struct completion *x)
4156{
7539a3b3 4157 unsigned long flags;
be4de352
DC
4158 int ret = 1;
4159
7539a3b3 4160 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
4161 if (!x->done)
4162 ret = 0;
7539a3b3 4163 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
4164 return ret;
4165}
4166EXPORT_SYMBOL(completion_done);
4167
8cbbe86d
AK
4168static long __sched
4169sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4170{
0fec171c
IM
4171 unsigned long flags;
4172 wait_queue_t wait;
4173
4174 init_waitqueue_entry(&wait, current);
1da177e4 4175
8cbbe86d 4176 __set_current_state(state);
1da177e4 4177
8cbbe86d
AK
4178 spin_lock_irqsave(&q->lock, flags);
4179 __add_wait_queue(q, &wait);
4180 spin_unlock(&q->lock);
4181 timeout = schedule_timeout(timeout);
4182 spin_lock_irq(&q->lock);
4183 __remove_wait_queue(q, &wait);
4184 spin_unlock_irqrestore(&q->lock, flags);
4185
4186 return timeout;
4187}
4188
4189void __sched interruptible_sleep_on(wait_queue_head_t *q)
4190{
4191 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4192}
1da177e4
LT
4193EXPORT_SYMBOL(interruptible_sleep_on);
4194
0fec171c 4195long __sched
95cdf3b7 4196interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4197{
8cbbe86d 4198 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4199}
1da177e4
LT
4200EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4201
0fec171c 4202void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4203{
8cbbe86d 4204 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4205}
1da177e4
LT
4206EXPORT_SYMBOL(sleep_on);
4207
0fec171c 4208long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4209{
8cbbe86d 4210 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4211}
1da177e4
LT
4212EXPORT_SYMBOL(sleep_on_timeout);
4213
b29739f9
IM
4214#ifdef CONFIG_RT_MUTEXES
4215
4216/*
4217 * rt_mutex_setprio - set the current priority of a task
4218 * @p: task
4219 * @prio: prio value (kernel-internal form)
4220 *
4221 * This function changes the 'effective' priority of a task. It does
4222 * not touch ->normal_prio like __setscheduler().
4223 *
4224 * Used by the rt_mutex code to implement priority inheritance logic.
4225 */
36c8b586 4226void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4227{
4228 unsigned long flags;
83b699ed 4229 int oldprio, on_rq, running;
70b97a7f 4230 struct rq *rq;
83ab0aa0 4231 const struct sched_class *prev_class;
b29739f9
IM
4232
4233 BUG_ON(prio < 0 || prio > MAX_PRIO);
4234
4235 rq = task_rq_lock(p, &flags);
a8e504d2 4236 update_rq_clock(rq);
b29739f9 4237
d5f9f942 4238 oldprio = p->prio;
83ab0aa0 4239 prev_class = p->sched_class;
dd41f596 4240 on_rq = p->se.on_rq;
051a1d1a 4241 running = task_current(rq, p);
0e1f3483 4242 if (on_rq)
69be72c1 4243 dequeue_task(rq, p, 0);
0e1f3483
HS
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4246
4247 if (rt_prio(prio))
4248 p->sched_class = &rt_sched_class;
4249 else
4250 p->sched_class = &fair_sched_class;
4251
b29739f9
IM
4252 p->prio = prio;
4253
0e1f3483
HS
4254 if (running)
4255 p->sched_class->set_curr_task(rq);
dd41f596 4256 if (on_rq) {
60db48ca 4257 enqueue_task(rq, p, 0, oldprio < prio);
cb469845
SR
4258
4259 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4260 }
4261 task_rq_unlock(rq, &flags);
4262}
4263
4264#endif
4265
36c8b586 4266void set_user_nice(struct task_struct *p, long nice)
1da177e4 4267{
dd41f596 4268 int old_prio, delta, on_rq;
1da177e4 4269 unsigned long flags;
70b97a7f 4270 struct rq *rq;
1da177e4
LT
4271
4272 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4273 return;
4274 /*
4275 * We have to be careful, if called from sys_setpriority(),
4276 * the task might be in the middle of scheduling on another CPU.
4277 */
4278 rq = task_rq_lock(p, &flags);
a8e504d2 4279 update_rq_clock(rq);
1da177e4
LT
4280 /*
4281 * The RT priorities are set via sched_setscheduler(), but we still
4282 * allow the 'normal' nice value to be set - but as expected
4283 * it wont have any effect on scheduling until the task is
dd41f596 4284 * SCHED_FIFO/SCHED_RR:
1da177e4 4285 */
e05606d3 4286 if (task_has_rt_policy(p)) {
1da177e4
LT
4287 p->static_prio = NICE_TO_PRIO(nice);
4288 goto out_unlock;
4289 }
dd41f596 4290 on_rq = p->se.on_rq;
c09595f6 4291 if (on_rq)
69be72c1 4292 dequeue_task(rq, p, 0);
1da177e4 4293
1da177e4 4294 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4295 set_load_weight(p);
b29739f9
IM
4296 old_prio = p->prio;
4297 p->prio = effective_prio(p);
4298 delta = p->prio - old_prio;
1da177e4 4299
dd41f596 4300 if (on_rq) {
ea87bb78 4301 enqueue_task(rq, p, 0, false);
1da177e4 4302 /*
d5f9f942
AM
4303 * If the task increased its priority or is running and
4304 * lowered its priority, then reschedule its CPU:
1da177e4 4305 */
d5f9f942 4306 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4307 resched_task(rq->curr);
4308 }
4309out_unlock:
4310 task_rq_unlock(rq, &flags);
4311}
1da177e4
LT
4312EXPORT_SYMBOL(set_user_nice);
4313
e43379f1
MM
4314/*
4315 * can_nice - check if a task can reduce its nice value
4316 * @p: task
4317 * @nice: nice value
4318 */
36c8b586 4319int can_nice(const struct task_struct *p, const int nice)
e43379f1 4320{
024f4747
MM
4321 /* convert nice value [19,-20] to rlimit style value [1,40] */
4322 int nice_rlim = 20 - nice;
48f24c4d 4323
78d7d407 4324 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
4325 capable(CAP_SYS_NICE));
4326}
4327
1da177e4
LT
4328#ifdef __ARCH_WANT_SYS_NICE
4329
4330/*
4331 * sys_nice - change the priority of the current process.
4332 * @increment: priority increment
4333 *
4334 * sys_setpriority is a more generic, but much slower function that
4335 * does similar things.
4336 */
5add95d4 4337SYSCALL_DEFINE1(nice, int, increment)
1da177e4 4338{
48f24c4d 4339 long nice, retval;
1da177e4
LT
4340
4341 /*
4342 * Setpriority might change our priority at the same moment.
4343 * We don't have to worry. Conceptually one call occurs first
4344 * and we have a single winner.
4345 */
e43379f1
MM
4346 if (increment < -40)
4347 increment = -40;
1da177e4
LT
4348 if (increment > 40)
4349 increment = 40;
4350
2b8f836f 4351 nice = TASK_NICE(current) + increment;
1da177e4
LT
4352 if (nice < -20)
4353 nice = -20;
4354 if (nice > 19)
4355 nice = 19;
4356
e43379f1
MM
4357 if (increment < 0 && !can_nice(current, nice))
4358 return -EPERM;
4359
1da177e4
LT
4360 retval = security_task_setnice(current, nice);
4361 if (retval)
4362 return retval;
4363
4364 set_user_nice(current, nice);
4365 return 0;
4366}
4367
4368#endif
4369
4370/**
4371 * task_prio - return the priority value of a given task.
4372 * @p: the task in question.
4373 *
4374 * This is the priority value as seen by users in /proc.
4375 * RT tasks are offset by -200. Normal tasks are centered
4376 * around 0, value goes from -16 to +15.
4377 */
36c8b586 4378int task_prio(const struct task_struct *p)
1da177e4
LT
4379{
4380 return p->prio - MAX_RT_PRIO;
4381}
4382
4383/**
4384 * task_nice - return the nice value of a given task.
4385 * @p: the task in question.
4386 */
36c8b586 4387int task_nice(const struct task_struct *p)
1da177e4
LT
4388{
4389 return TASK_NICE(p);
4390}
150d8bed 4391EXPORT_SYMBOL(task_nice);
1da177e4
LT
4392
4393/**
4394 * idle_cpu - is a given cpu idle currently?
4395 * @cpu: the processor in question.
4396 */
4397int idle_cpu(int cpu)
4398{
4399 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4400}
4401
1da177e4
LT
4402/**
4403 * idle_task - return the idle task for a given cpu.
4404 * @cpu: the processor in question.
4405 */
36c8b586 4406struct task_struct *idle_task(int cpu)
1da177e4
LT
4407{
4408 return cpu_rq(cpu)->idle;
4409}
4410
4411/**
4412 * find_process_by_pid - find a process with a matching PID value.
4413 * @pid: the pid in question.
4414 */
a9957449 4415static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4416{
228ebcbe 4417 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4418}
4419
4420/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4421static void
4422__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4423{
dd41f596 4424 BUG_ON(p->se.on_rq);
48f24c4d 4425
1da177e4
LT
4426 p->policy = policy;
4427 p->rt_priority = prio;
b29739f9
IM
4428 p->normal_prio = normal_prio(p);
4429 /* we are holding p->pi_lock already */
4430 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4431 if (rt_prio(p->prio))
4432 p->sched_class = &rt_sched_class;
4433 else
4434 p->sched_class = &fair_sched_class;
2dd73a4f 4435 set_load_weight(p);
1da177e4
LT
4436}
4437
c69e8d9c
DH
4438/*
4439 * check the target process has a UID that matches the current process's
4440 */
4441static bool check_same_owner(struct task_struct *p)
4442{
4443 const struct cred *cred = current_cred(), *pcred;
4444 bool match;
4445
4446 rcu_read_lock();
4447 pcred = __task_cred(p);
4448 match = (cred->euid == pcred->euid ||
4449 cred->euid == pcred->uid);
4450 rcu_read_unlock();
4451 return match;
4452}
4453
961ccddd
RR
4454static int __sched_setscheduler(struct task_struct *p, int policy,
4455 struct sched_param *param, bool user)
1da177e4 4456{
83b699ed 4457 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4458 unsigned long flags;
83ab0aa0 4459 const struct sched_class *prev_class;
70b97a7f 4460 struct rq *rq;
ca94c442 4461 int reset_on_fork;
1da177e4 4462
66e5393a
SR
4463 /* may grab non-irq protected spin_locks */
4464 BUG_ON(in_interrupt());
1da177e4
LT
4465recheck:
4466 /* double check policy once rq lock held */
ca94c442
LP
4467 if (policy < 0) {
4468 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4469 policy = oldpolicy = p->policy;
ca94c442
LP
4470 } else {
4471 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4472 policy &= ~SCHED_RESET_ON_FORK;
4473
4474 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4475 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4476 policy != SCHED_IDLE)
4477 return -EINVAL;
4478 }
4479
1da177e4
LT
4480 /*
4481 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4482 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4483 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4484 */
4485 if (param->sched_priority < 0 ||
95cdf3b7 4486 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4487 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4488 return -EINVAL;
e05606d3 4489 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4490 return -EINVAL;
4491
37e4ab3f
OC
4492 /*
4493 * Allow unprivileged RT tasks to decrease priority:
4494 */
961ccddd 4495 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4496 if (rt_policy(policy)) {
8dc3e909 4497 unsigned long rlim_rtprio;
8dc3e909
ON
4498
4499 if (!lock_task_sighand(p, &flags))
4500 return -ESRCH;
78d7d407 4501 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4502 unlock_task_sighand(p, &flags);
4503
4504 /* can't set/change the rt policy */
4505 if (policy != p->policy && !rlim_rtprio)
4506 return -EPERM;
4507
4508 /* can't increase priority */
4509 if (param->sched_priority > p->rt_priority &&
4510 param->sched_priority > rlim_rtprio)
4511 return -EPERM;
4512 }
dd41f596
IM
4513 /*
4514 * Like positive nice levels, dont allow tasks to
4515 * move out of SCHED_IDLE either:
4516 */
4517 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4518 return -EPERM;
5fe1d75f 4519
37e4ab3f 4520 /* can't change other user's priorities */
c69e8d9c 4521 if (!check_same_owner(p))
37e4ab3f 4522 return -EPERM;
ca94c442
LP
4523
4524 /* Normal users shall not reset the sched_reset_on_fork flag */
4525 if (p->sched_reset_on_fork && !reset_on_fork)
4526 return -EPERM;
37e4ab3f 4527 }
1da177e4 4528
725aad24 4529 if (user) {
b68aa230 4530#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
4531 /*
4532 * Do not allow realtime tasks into groups that have no runtime
4533 * assigned.
4534 */
9a7e0b18
PZ
4535 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4536 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 4537 return -EPERM;
b68aa230
PZ
4538#endif
4539
725aad24
JF
4540 retval = security_task_setscheduler(p, policy, param);
4541 if (retval)
4542 return retval;
4543 }
4544
b29739f9
IM
4545 /*
4546 * make sure no PI-waiters arrive (or leave) while we are
4547 * changing the priority of the task:
4548 */
1d615482 4549 raw_spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4550 /*
4551 * To be able to change p->policy safely, the apropriate
4552 * runqueue lock must be held.
4553 */
b29739f9 4554 rq = __task_rq_lock(p);
1da177e4
LT
4555 /* recheck policy now with rq lock held */
4556 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4557 policy = oldpolicy = -1;
b29739f9 4558 __task_rq_unlock(rq);
1d615482 4559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4560 goto recheck;
4561 }
2daa3577 4562 update_rq_clock(rq);
dd41f596 4563 on_rq = p->se.on_rq;
051a1d1a 4564 running = task_current(rq, p);
0e1f3483 4565 if (on_rq)
2e1cb74a 4566 deactivate_task(rq, p, 0);
0e1f3483
HS
4567 if (running)
4568 p->sched_class->put_prev_task(rq, p);
f6b53205 4569
ca94c442
LP
4570 p->sched_reset_on_fork = reset_on_fork;
4571
1da177e4 4572 oldprio = p->prio;
83ab0aa0 4573 prev_class = p->sched_class;
dd41f596 4574 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4575
0e1f3483
HS
4576 if (running)
4577 p->sched_class->set_curr_task(rq);
dd41f596
IM
4578 if (on_rq) {
4579 activate_task(rq, p, 0);
cb469845
SR
4580
4581 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4582 }
b29739f9 4583 __task_rq_unlock(rq);
1d615482 4584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b29739f9 4585
95e02ca9
TG
4586 rt_mutex_adjust_pi(p);
4587
1da177e4
LT
4588 return 0;
4589}
961ccddd
RR
4590
4591/**
4592 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4593 * @p: the task in question.
4594 * @policy: new policy.
4595 * @param: structure containing the new RT priority.
4596 *
4597 * NOTE that the task may be already dead.
4598 */
4599int sched_setscheduler(struct task_struct *p, int policy,
4600 struct sched_param *param)
4601{
4602 return __sched_setscheduler(p, policy, param, true);
4603}
1da177e4
LT
4604EXPORT_SYMBOL_GPL(sched_setscheduler);
4605
961ccddd
RR
4606/**
4607 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4608 * @p: the task in question.
4609 * @policy: new policy.
4610 * @param: structure containing the new RT priority.
4611 *
4612 * Just like sched_setscheduler, only don't bother checking if the
4613 * current context has permission. For example, this is needed in
4614 * stop_machine(): we create temporary high priority worker threads,
4615 * but our caller might not have that capability.
4616 */
4617int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4618 struct sched_param *param)
4619{
4620 return __sched_setscheduler(p, policy, param, false);
4621}
4622
95cdf3b7
IM
4623static int
4624do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4625{
1da177e4
LT
4626 struct sched_param lparam;
4627 struct task_struct *p;
36c8b586 4628 int retval;
1da177e4
LT
4629
4630 if (!param || pid < 0)
4631 return -EINVAL;
4632 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4633 return -EFAULT;
5fe1d75f
ON
4634
4635 rcu_read_lock();
4636 retval = -ESRCH;
1da177e4 4637 p = find_process_by_pid(pid);
5fe1d75f
ON
4638 if (p != NULL)
4639 retval = sched_setscheduler(p, policy, &lparam);
4640 rcu_read_unlock();
36c8b586 4641
1da177e4
LT
4642 return retval;
4643}
4644
4645/**
4646 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4647 * @pid: the pid in question.
4648 * @policy: new policy.
4649 * @param: structure containing the new RT priority.
4650 */
5add95d4
HC
4651SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4652 struct sched_param __user *, param)
1da177e4 4653{
c21761f1
JB
4654 /* negative values for policy are not valid */
4655 if (policy < 0)
4656 return -EINVAL;
4657
1da177e4
LT
4658 return do_sched_setscheduler(pid, policy, param);
4659}
4660
4661/**
4662 * sys_sched_setparam - set/change the RT priority of a thread
4663 * @pid: the pid in question.
4664 * @param: structure containing the new RT priority.
4665 */
5add95d4 4666SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4667{
4668 return do_sched_setscheduler(pid, -1, param);
4669}
4670
4671/**
4672 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4673 * @pid: the pid in question.
4674 */
5add95d4 4675SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4676{
36c8b586 4677 struct task_struct *p;
3a5c359a 4678 int retval;
1da177e4
LT
4679
4680 if (pid < 0)
3a5c359a 4681 return -EINVAL;
1da177e4
LT
4682
4683 retval = -ESRCH;
5fe85be0 4684 rcu_read_lock();
1da177e4
LT
4685 p = find_process_by_pid(pid);
4686 if (p) {
4687 retval = security_task_getscheduler(p);
4688 if (!retval)
ca94c442
LP
4689 retval = p->policy
4690 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4691 }
5fe85be0 4692 rcu_read_unlock();
1da177e4
LT
4693 return retval;
4694}
4695
4696/**
ca94c442 4697 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4698 * @pid: the pid in question.
4699 * @param: structure containing the RT priority.
4700 */
5add95d4 4701SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4702{
4703 struct sched_param lp;
36c8b586 4704 struct task_struct *p;
3a5c359a 4705 int retval;
1da177e4
LT
4706
4707 if (!param || pid < 0)
3a5c359a 4708 return -EINVAL;
1da177e4 4709
5fe85be0 4710 rcu_read_lock();
1da177e4
LT
4711 p = find_process_by_pid(pid);
4712 retval = -ESRCH;
4713 if (!p)
4714 goto out_unlock;
4715
4716 retval = security_task_getscheduler(p);
4717 if (retval)
4718 goto out_unlock;
4719
4720 lp.sched_priority = p->rt_priority;
5fe85be0 4721 rcu_read_unlock();
1da177e4
LT
4722
4723 /*
4724 * This one might sleep, we cannot do it with a spinlock held ...
4725 */
4726 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4727
1da177e4
LT
4728 return retval;
4729
4730out_unlock:
5fe85be0 4731 rcu_read_unlock();
1da177e4
LT
4732 return retval;
4733}
4734
96f874e2 4735long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4736{
5a16f3d3 4737 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4738 struct task_struct *p;
4739 int retval;
1da177e4 4740
95402b38 4741 get_online_cpus();
23f5d142 4742 rcu_read_lock();
1da177e4
LT
4743
4744 p = find_process_by_pid(pid);
4745 if (!p) {
23f5d142 4746 rcu_read_unlock();
95402b38 4747 put_online_cpus();
1da177e4
LT
4748 return -ESRCH;
4749 }
4750
23f5d142 4751 /* Prevent p going away */
1da177e4 4752 get_task_struct(p);
23f5d142 4753 rcu_read_unlock();
1da177e4 4754
5a16f3d3
RR
4755 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4756 retval = -ENOMEM;
4757 goto out_put_task;
4758 }
4759 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4760 retval = -ENOMEM;
4761 goto out_free_cpus_allowed;
4762 }
1da177e4 4763 retval = -EPERM;
c69e8d9c 4764 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
4765 goto out_unlock;
4766
e7834f8f
DQ
4767 retval = security_task_setscheduler(p, 0, NULL);
4768 if (retval)
4769 goto out_unlock;
4770
5a16f3d3
RR
4771 cpuset_cpus_allowed(p, cpus_allowed);
4772 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 4773 again:
5a16f3d3 4774 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4775
8707d8b8 4776 if (!retval) {
5a16f3d3
RR
4777 cpuset_cpus_allowed(p, cpus_allowed);
4778 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4779 /*
4780 * We must have raced with a concurrent cpuset
4781 * update. Just reset the cpus_allowed to the
4782 * cpuset's cpus_allowed
4783 */
5a16f3d3 4784 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4785 goto again;
4786 }
4787 }
1da177e4 4788out_unlock:
5a16f3d3
RR
4789 free_cpumask_var(new_mask);
4790out_free_cpus_allowed:
4791 free_cpumask_var(cpus_allowed);
4792out_put_task:
1da177e4 4793 put_task_struct(p);
95402b38 4794 put_online_cpus();
1da177e4
LT
4795 return retval;
4796}
4797
4798static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4799 struct cpumask *new_mask)
1da177e4 4800{
96f874e2
RR
4801 if (len < cpumask_size())
4802 cpumask_clear(new_mask);
4803 else if (len > cpumask_size())
4804 len = cpumask_size();
4805
1da177e4
LT
4806 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4807}
4808
4809/**
4810 * sys_sched_setaffinity - set the cpu affinity of a process
4811 * @pid: pid of the process
4812 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4813 * @user_mask_ptr: user-space pointer to the new cpu mask
4814 */
5add95d4
HC
4815SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4816 unsigned long __user *, user_mask_ptr)
1da177e4 4817{
5a16f3d3 4818 cpumask_var_t new_mask;
1da177e4
LT
4819 int retval;
4820
5a16f3d3
RR
4821 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4822 return -ENOMEM;
1da177e4 4823
5a16f3d3
RR
4824 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4825 if (retval == 0)
4826 retval = sched_setaffinity(pid, new_mask);
4827 free_cpumask_var(new_mask);
4828 return retval;
1da177e4
LT
4829}
4830
96f874e2 4831long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4832{
36c8b586 4833 struct task_struct *p;
31605683
TG
4834 unsigned long flags;
4835 struct rq *rq;
1da177e4 4836 int retval;
1da177e4 4837
95402b38 4838 get_online_cpus();
23f5d142 4839 rcu_read_lock();
1da177e4
LT
4840
4841 retval = -ESRCH;
4842 p = find_process_by_pid(pid);
4843 if (!p)
4844 goto out_unlock;
4845
e7834f8f
DQ
4846 retval = security_task_getscheduler(p);
4847 if (retval)
4848 goto out_unlock;
4849
31605683 4850 rq = task_rq_lock(p, &flags);
96f874e2 4851 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
31605683 4852 task_rq_unlock(rq, &flags);
1da177e4
LT
4853
4854out_unlock:
23f5d142 4855 rcu_read_unlock();
95402b38 4856 put_online_cpus();
1da177e4 4857
9531b62f 4858 return retval;
1da177e4
LT
4859}
4860
4861/**
4862 * sys_sched_getaffinity - get the cpu affinity of a process
4863 * @pid: pid of the process
4864 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4865 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4866 */
5add95d4
HC
4867SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4868 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4869{
4870 int ret;
f17c8607 4871 cpumask_var_t mask;
1da177e4 4872
84fba5ec 4873 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4874 return -EINVAL;
4875 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4876 return -EINVAL;
4877
f17c8607
RR
4878 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4879 return -ENOMEM;
1da177e4 4880
f17c8607
RR
4881 ret = sched_getaffinity(pid, mask);
4882 if (ret == 0) {
8bc037fb 4883 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4884
4885 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4886 ret = -EFAULT;
4887 else
cd3d8031 4888 ret = retlen;
f17c8607
RR
4889 }
4890 free_cpumask_var(mask);
1da177e4 4891
f17c8607 4892 return ret;
1da177e4
LT
4893}
4894
4895/**
4896 * sys_sched_yield - yield the current processor to other threads.
4897 *
dd41f596
IM
4898 * This function yields the current CPU to other tasks. If there are no
4899 * other threads running on this CPU then this function will return.
1da177e4 4900 */
5add95d4 4901SYSCALL_DEFINE0(sched_yield)
1da177e4 4902{
70b97a7f 4903 struct rq *rq = this_rq_lock();
1da177e4 4904
2d72376b 4905 schedstat_inc(rq, yld_count);
4530d7ab 4906 current->sched_class->yield_task(rq);
1da177e4
LT
4907
4908 /*
4909 * Since we are going to call schedule() anyway, there's
4910 * no need to preempt or enable interrupts:
4911 */
4912 __release(rq->lock);
8a25d5de 4913 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4914 do_raw_spin_unlock(&rq->lock);
1da177e4
LT
4915 preempt_enable_no_resched();
4916
4917 schedule();
4918
4919 return 0;
4920}
4921
d86ee480
PZ
4922static inline int should_resched(void)
4923{
4924 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4925}
4926
e7b38404 4927static void __cond_resched(void)
1da177e4 4928{
e7aaaa69
FW
4929 add_preempt_count(PREEMPT_ACTIVE);
4930 schedule();
4931 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4932}
4933
02b67cc3 4934int __sched _cond_resched(void)
1da177e4 4935{
d86ee480 4936 if (should_resched()) {
1da177e4
LT
4937 __cond_resched();
4938 return 1;
4939 }
4940 return 0;
4941}
02b67cc3 4942EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4943
4944/*
613afbf8 4945 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4946 * call schedule, and on return reacquire the lock.
4947 *
41a2d6cf 4948 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4949 * operations here to prevent schedule() from being called twice (once via
4950 * spin_unlock(), once by hand).
4951 */
613afbf8 4952int __cond_resched_lock(spinlock_t *lock)
1da177e4 4953{
d86ee480 4954 int resched = should_resched();
6df3cecb
JK
4955 int ret = 0;
4956
f607c668
PZ
4957 lockdep_assert_held(lock);
4958
95c354fe 4959 if (spin_needbreak(lock) || resched) {
1da177e4 4960 spin_unlock(lock);
d86ee480 4961 if (resched)
95c354fe
NP
4962 __cond_resched();
4963 else
4964 cpu_relax();
6df3cecb 4965 ret = 1;
1da177e4 4966 spin_lock(lock);
1da177e4 4967 }
6df3cecb 4968 return ret;
1da177e4 4969}
613afbf8 4970EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4971
613afbf8 4972int __sched __cond_resched_softirq(void)
1da177e4
LT
4973{
4974 BUG_ON(!in_softirq());
4975
d86ee480 4976 if (should_resched()) {
98d82567 4977 local_bh_enable();
1da177e4
LT
4978 __cond_resched();
4979 local_bh_disable();
4980 return 1;
4981 }
4982 return 0;
4983}
613afbf8 4984EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4985
1da177e4
LT
4986/**
4987 * yield - yield the current processor to other threads.
4988 *
72fd4a35 4989 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4990 * thread runnable and calls sys_sched_yield().
4991 */
4992void __sched yield(void)
4993{
4994 set_current_state(TASK_RUNNING);
4995 sys_sched_yield();
4996}
1da177e4
LT
4997EXPORT_SYMBOL(yield);
4998
4999/*
41a2d6cf 5000 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5001 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
5002 */
5003void __sched io_schedule(void)
5004{
54d35f29 5005 struct rq *rq = raw_rq();
1da177e4 5006
0ff92245 5007 delayacct_blkio_start();
1da177e4 5008 atomic_inc(&rq->nr_iowait);
8f0dfc34 5009 current->in_iowait = 1;
1da177e4 5010 schedule();
8f0dfc34 5011 current->in_iowait = 0;
1da177e4 5012 atomic_dec(&rq->nr_iowait);
0ff92245 5013 delayacct_blkio_end();
1da177e4 5014}
1da177e4
LT
5015EXPORT_SYMBOL(io_schedule);
5016
5017long __sched io_schedule_timeout(long timeout)
5018{
54d35f29 5019 struct rq *rq = raw_rq();
1da177e4
LT
5020 long ret;
5021
0ff92245 5022 delayacct_blkio_start();
1da177e4 5023 atomic_inc(&rq->nr_iowait);
8f0dfc34 5024 current->in_iowait = 1;
1da177e4 5025 ret = schedule_timeout(timeout);
8f0dfc34 5026 current->in_iowait = 0;
1da177e4 5027 atomic_dec(&rq->nr_iowait);
0ff92245 5028 delayacct_blkio_end();
1da177e4
LT
5029 return ret;
5030}
5031
5032/**
5033 * sys_sched_get_priority_max - return maximum RT priority.
5034 * @policy: scheduling class.
5035 *
5036 * this syscall returns the maximum rt_priority that can be used
5037 * by a given scheduling class.
5038 */
5add95d4 5039SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5040{
5041 int ret = -EINVAL;
5042
5043 switch (policy) {
5044 case SCHED_FIFO:
5045 case SCHED_RR:
5046 ret = MAX_USER_RT_PRIO-1;
5047 break;
5048 case SCHED_NORMAL:
b0a9499c 5049 case SCHED_BATCH:
dd41f596 5050 case SCHED_IDLE:
1da177e4
LT
5051 ret = 0;
5052 break;
5053 }
5054 return ret;
5055}
5056
5057/**
5058 * sys_sched_get_priority_min - return minimum RT priority.
5059 * @policy: scheduling class.
5060 *
5061 * this syscall returns the minimum rt_priority that can be used
5062 * by a given scheduling class.
5063 */
5add95d4 5064SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5065{
5066 int ret = -EINVAL;
5067
5068 switch (policy) {
5069 case SCHED_FIFO:
5070 case SCHED_RR:
5071 ret = 1;
5072 break;
5073 case SCHED_NORMAL:
b0a9499c 5074 case SCHED_BATCH:
dd41f596 5075 case SCHED_IDLE:
1da177e4
LT
5076 ret = 0;
5077 }
5078 return ret;
5079}
5080
5081/**
5082 * sys_sched_rr_get_interval - return the default timeslice of a process.
5083 * @pid: pid of the process.
5084 * @interval: userspace pointer to the timeslice value.
5085 *
5086 * this syscall writes the default timeslice value of a given process
5087 * into the user-space timespec buffer. A value of '0' means infinity.
5088 */
17da2bd9 5089SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5090 struct timespec __user *, interval)
1da177e4 5091{
36c8b586 5092 struct task_struct *p;
a4ec24b4 5093 unsigned int time_slice;
dba091b9
TG
5094 unsigned long flags;
5095 struct rq *rq;
3a5c359a 5096 int retval;
1da177e4 5097 struct timespec t;
1da177e4
LT
5098
5099 if (pid < 0)
3a5c359a 5100 return -EINVAL;
1da177e4
LT
5101
5102 retval = -ESRCH;
1a551ae7 5103 rcu_read_lock();
1da177e4
LT
5104 p = find_process_by_pid(pid);
5105 if (!p)
5106 goto out_unlock;
5107
5108 retval = security_task_getscheduler(p);
5109 if (retval)
5110 goto out_unlock;
5111
dba091b9
TG
5112 rq = task_rq_lock(p, &flags);
5113 time_slice = p->sched_class->get_rr_interval(rq, p);
5114 task_rq_unlock(rq, &flags);
a4ec24b4 5115
1a551ae7 5116 rcu_read_unlock();
a4ec24b4 5117 jiffies_to_timespec(time_slice, &t);
1da177e4 5118 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5119 return retval;
3a5c359a 5120
1da177e4 5121out_unlock:
1a551ae7 5122 rcu_read_unlock();
1da177e4
LT
5123 return retval;
5124}
5125
7c731e0a 5126static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5127
82a1fcb9 5128void sched_show_task(struct task_struct *p)
1da177e4 5129{
1da177e4 5130 unsigned long free = 0;
36c8b586 5131 unsigned state;
1da177e4 5132
1da177e4 5133 state = p->state ? __ffs(p->state) + 1 : 0;
3df0fc5b 5134 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5135 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5136#if BITS_PER_LONG == 32
1da177e4 5137 if (state == TASK_RUNNING)
3df0fc5b 5138 printk(KERN_CONT " running ");
1da177e4 5139 else
3df0fc5b 5140 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5141#else
5142 if (state == TASK_RUNNING)
3df0fc5b 5143 printk(KERN_CONT " running task ");
1da177e4 5144 else
3df0fc5b 5145 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5146#endif
5147#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5148 free = stack_not_used(p);
1da177e4 5149#endif
3df0fc5b 5150 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
aa47b7e0
DR
5151 task_pid_nr(p), task_pid_nr(p->real_parent),
5152 (unsigned long)task_thread_info(p)->flags);
1da177e4 5153
5fb5e6de 5154 show_stack(p, NULL);
1da177e4
LT
5155}
5156
e59e2ae2 5157void show_state_filter(unsigned long state_filter)
1da177e4 5158{
36c8b586 5159 struct task_struct *g, *p;
1da177e4 5160
4bd77321 5161#if BITS_PER_LONG == 32
3df0fc5b
PZ
5162 printk(KERN_INFO
5163 " task PC stack pid father\n");
1da177e4 5164#else
3df0fc5b
PZ
5165 printk(KERN_INFO
5166 " task PC stack pid father\n");
1da177e4
LT
5167#endif
5168 read_lock(&tasklist_lock);
5169 do_each_thread(g, p) {
5170 /*
5171 * reset the NMI-timeout, listing all files on a slow
5172 * console might take alot of time:
5173 */
5174 touch_nmi_watchdog();
39bc89fd 5175 if (!state_filter || (p->state & state_filter))
82a1fcb9 5176 sched_show_task(p);
1da177e4
LT
5177 } while_each_thread(g, p);
5178
04c9167f
JF
5179 touch_all_softlockup_watchdogs();
5180
dd41f596
IM
5181#ifdef CONFIG_SCHED_DEBUG
5182 sysrq_sched_debug_show();
5183#endif
1da177e4 5184 read_unlock(&tasklist_lock);
e59e2ae2
IM
5185 /*
5186 * Only show locks if all tasks are dumped:
5187 */
93335a21 5188 if (!state_filter)
e59e2ae2 5189 debug_show_all_locks();
1da177e4
LT
5190}
5191
1df21055
IM
5192void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5193{
dd41f596 5194 idle->sched_class = &idle_sched_class;
1df21055
IM
5195}
5196
f340c0d1
IM
5197/**
5198 * init_idle - set up an idle thread for a given CPU
5199 * @idle: task in question
5200 * @cpu: cpu the idle task belongs to
5201 *
5202 * NOTE: this function does not set the idle thread's NEED_RESCHED
5203 * flag, to make booting more robust.
5204 */
5c1e1767 5205void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5206{
70b97a7f 5207 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5208 unsigned long flags;
5209
05fa785c 5210 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 5211
dd41f596 5212 __sched_fork(idle);
06b83b5f 5213 idle->state = TASK_RUNNING;
dd41f596
IM
5214 idle->se.exec_start = sched_clock();
5215
96f874e2 5216 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 5217 __set_task_cpu(idle, cpu);
1da177e4 5218
1da177e4 5219 rq->curr = rq->idle = idle;
4866cde0
NP
5220#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5221 idle->oncpu = 1;
5222#endif
05fa785c 5223 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5224
5225 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5226#if defined(CONFIG_PREEMPT)
5227 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5228#else
a1261f54 5229 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5230#endif
dd41f596
IM
5231 /*
5232 * The idle tasks have their own, simple scheduling class:
5233 */
5234 idle->sched_class = &idle_sched_class;
fb52607a 5235 ftrace_graph_init_task(idle);
1da177e4
LT
5236}
5237
5238/*
5239 * In a system that switches off the HZ timer nohz_cpu_mask
5240 * indicates which cpus entered this state. This is used
5241 * in the rcu update to wait only for active cpus. For system
5242 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 5243 * always be CPU_BITS_NONE.
1da177e4 5244 */
6a7b3dc3 5245cpumask_var_t nohz_cpu_mask;
1da177e4 5246
19978ca6
IM
5247/*
5248 * Increase the granularity value when there are more CPUs,
5249 * because with more CPUs the 'effective latency' as visible
5250 * to users decreases. But the relationship is not linear,
5251 * so pick a second-best guess by going with the log2 of the
5252 * number of CPUs.
5253 *
5254 * This idea comes from the SD scheduler of Con Kolivas:
5255 */
acb4a848 5256static int get_update_sysctl_factor(void)
19978ca6 5257{
4ca3ef71 5258 unsigned int cpus = min_t(int, num_online_cpus(), 8);
1983a922
CE
5259 unsigned int factor;
5260
5261 switch (sysctl_sched_tunable_scaling) {
5262 case SCHED_TUNABLESCALING_NONE:
5263 factor = 1;
5264 break;
5265 case SCHED_TUNABLESCALING_LINEAR:
5266 factor = cpus;
5267 break;
5268 case SCHED_TUNABLESCALING_LOG:
5269 default:
5270 factor = 1 + ilog2(cpus);
5271 break;
5272 }
19978ca6 5273
acb4a848
CE
5274 return factor;
5275}
19978ca6 5276
acb4a848
CE
5277static void update_sysctl(void)
5278{
5279 unsigned int factor = get_update_sysctl_factor();
19978ca6 5280
0bcdcf28
CE
5281#define SET_SYSCTL(name) \
5282 (sysctl_##name = (factor) * normalized_sysctl_##name)
5283 SET_SYSCTL(sched_min_granularity);
5284 SET_SYSCTL(sched_latency);
5285 SET_SYSCTL(sched_wakeup_granularity);
5286 SET_SYSCTL(sched_shares_ratelimit);
5287#undef SET_SYSCTL
5288}
55cd5340 5289
0bcdcf28
CE
5290static inline void sched_init_granularity(void)
5291{
5292 update_sysctl();
19978ca6
IM
5293}
5294
1da177e4
LT
5295#ifdef CONFIG_SMP
5296/*
5297 * This is how migration works:
5298 *
70b97a7f 5299 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5300 * runqueue and wake up that CPU's migration thread.
5301 * 2) we down() the locked semaphore => thread blocks.
5302 * 3) migration thread wakes up (implicitly it forces the migrated
5303 * thread off the CPU)
5304 * 4) it gets the migration request and checks whether the migrated
5305 * task is still in the wrong runqueue.
5306 * 5) if it's in the wrong runqueue then the migration thread removes
5307 * it and puts it into the right queue.
5308 * 6) migration thread up()s the semaphore.
5309 * 7) we wake up and the migration is done.
5310 */
5311
5312/*
5313 * Change a given task's CPU affinity. Migrate the thread to a
5314 * proper CPU and schedule it away if the CPU it's executing on
5315 * is removed from the allowed bitmask.
5316 *
5317 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5318 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5319 * call is not atomic; no spinlocks may be held.
5320 */
96f874e2 5321int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 5322{
70b97a7f 5323 struct migration_req req;
1da177e4 5324 unsigned long flags;
70b97a7f 5325 struct rq *rq;
48f24c4d 5326 int ret = 0;
1da177e4
LT
5327
5328 rq = task_rq_lock(p, &flags);
e2912009 5329
6ad4c188 5330 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5331 ret = -EINVAL;
5332 goto out;
5333 }
5334
9985b0ba 5335 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 5336 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
5337 ret = -EINVAL;
5338 goto out;
5339 }
5340
73fe6aae 5341 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5342 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5343 else {
96f874e2
RR
5344 cpumask_copy(&p->cpus_allowed, new_mask);
5345 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
5346 }
5347
1da177e4 5348 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5349 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5350 goto out;
5351
6ad4c188 5352 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
1da177e4 5353 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
5354 struct task_struct *mt = rq->migration_thread;
5355
5356 get_task_struct(mt);
1da177e4 5357 task_rq_unlock(rq, &flags);
47a70985 5358 wake_up_process(mt);
693525e3 5359 put_task_struct(mt);
1da177e4
LT
5360 wait_for_completion(&req.done);
5361 tlb_migrate_finish(p->mm);
5362 return 0;
5363 }
5364out:
5365 task_rq_unlock(rq, &flags);
48f24c4d 5366
1da177e4
LT
5367 return ret;
5368}
cd8ba7cd 5369EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5370
5371/*
41a2d6cf 5372 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5373 * this because either it can't run here any more (set_cpus_allowed()
5374 * away from this CPU, or CPU going down), or because we're
5375 * attempting to rebalance this task on exec (sched_exec).
5376 *
5377 * So we race with normal scheduler movements, but that's OK, as long
5378 * as the task is no longer on this CPU.
efc30814
KK
5379 *
5380 * Returns non-zero if task was successfully migrated.
1da177e4 5381 */
efc30814 5382static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5383{
70b97a7f 5384 struct rq *rq_dest, *rq_src;
e2912009 5385 int ret = 0;
1da177e4 5386
e761b772 5387 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5388 return ret;
1da177e4
LT
5389
5390 rq_src = cpu_rq(src_cpu);
5391 rq_dest = cpu_rq(dest_cpu);
5392
5393 double_rq_lock(rq_src, rq_dest);
5394 /* Already moved. */
5395 if (task_cpu(p) != src_cpu)
b1e38734 5396 goto done;
1da177e4 5397 /* Affinity changed (again). */
96f874e2 5398 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 5399 goto fail;
1da177e4 5400
e2912009
PZ
5401 /*
5402 * If we're not on a rq, the next wake-up will ensure we're
5403 * placed properly.
5404 */
5405 if (p->se.on_rq) {
2e1cb74a 5406 deactivate_task(rq_src, p, 0);
e2912009 5407 set_task_cpu(p, dest_cpu);
dd41f596 5408 activate_task(rq_dest, p, 0);
15afe09b 5409 check_preempt_curr(rq_dest, p, 0);
1da177e4 5410 }
b1e38734 5411done:
efc30814 5412 ret = 1;
b1e38734 5413fail:
1da177e4 5414 double_rq_unlock(rq_src, rq_dest);
efc30814 5415 return ret;
1da177e4
LT
5416}
5417
03b042bf
PM
5418#define RCU_MIGRATION_IDLE 0
5419#define RCU_MIGRATION_NEED_QS 1
5420#define RCU_MIGRATION_GOT_QS 2
5421#define RCU_MIGRATION_MUST_SYNC 3
5422
1da177e4
LT
5423/*
5424 * migration_thread - this is a highprio system thread that performs
5425 * thread migration by bumping thread off CPU then 'pushing' onto
5426 * another runqueue.
5427 */
95cdf3b7 5428static int migration_thread(void *data)
1da177e4 5429{
03b042bf 5430 int badcpu;
1da177e4 5431 int cpu = (long)data;
70b97a7f 5432 struct rq *rq;
1da177e4
LT
5433
5434 rq = cpu_rq(cpu);
5435 BUG_ON(rq->migration_thread != current);
5436
5437 set_current_state(TASK_INTERRUPTIBLE);
5438 while (!kthread_should_stop()) {
70b97a7f 5439 struct migration_req *req;
1da177e4 5440 struct list_head *head;
1da177e4 5441
05fa785c 5442 raw_spin_lock_irq(&rq->lock);
1da177e4
LT
5443
5444 if (cpu_is_offline(cpu)) {
05fa785c 5445 raw_spin_unlock_irq(&rq->lock);
371cbb38 5446 break;
1da177e4
LT
5447 }
5448
5449 if (rq->active_balance) {
5450 active_load_balance(rq, cpu);
5451 rq->active_balance = 0;
5452 }
5453
5454 head = &rq->migration_queue;
5455
5456 if (list_empty(head)) {
05fa785c 5457 raw_spin_unlock_irq(&rq->lock);
1da177e4
LT
5458 schedule();
5459 set_current_state(TASK_INTERRUPTIBLE);
5460 continue;
5461 }
70b97a7f 5462 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5463 list_del_init(head->next);
5464
03b042bf 5465 if (req->task != NULL) {
05fa785c 5466 raw_spin_unlock(&rq->lock);
03b042bf
PM
5467 __migrate_task(req->task, cpu, req->dest_cpu);
5468 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5469 req->dest_cpu = RCU_MIGRATION_GOT_QS;
05fa785c 5470 raw_spin_unlock(&rq->lock);
03b042bf
PM
5471 } else {
5472 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
05fa785c 5473 raw_spin_unlock(&rq->lock);
03b042bf
PM
5474 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5475 }
674311d5 5476 local_irq_enable();
1da177e4
LT
5477
5478 complete(&req->done);
5479 }
5480 __set_current_state(TASK_RUNNING);
1da177e4 5481
1da177e4
LT
5482 return 0;
5483}
5484
5485#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5486
5487static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5488{
5489 int ret;
5490
5491 local_irq_disable();
5492 ret = __migrate_task(p, src_cpu, dest_cpu);
5493 local_irq_enable();
5494 return ret;
5495}
5496
054b9108 5497/*
3a4fa0a2 5498 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 5499 */
48f24c4d 5500static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5501{
70b97a7f 5502 int dest_cpu;
e76bd8d9
RR
5503
5504again:
5da9a0fb 5505 dest_cpu = select_fallback_rq(dead_cpu, p);
e76bd8d9 5506
e76bd8d9
RR
5507 /* It can have affinity changed while we were choosing. */
5508 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5509 goto again;
1da177e4
LT
5510}
5511
5512/*
5513 * While a dead CPU has no uninterruptible tasks queued at this point,
5514 * it might still have a nonzero ->nr_uninterruptible counter, because
5515 * for performance reasons the counter is not stricly tracking tasks to
5516 * their home CPUs. So we just add the counter to another CPU's counter,
5517 * to keep the global sum constant after CPU-down:
5518 */
70b97a7f 5519static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5520{
6ad4c188 5521 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4
LT
5522 unsigned long flags;
5523
5524 local_irq_save(flags);
5525 double_rq_lock(rq_src, rq_dest);
5526 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5527 rq_src->nr_uninterruptible = 0;
5528 double_rq_unlock(rq_src, rq_dest);
5529 local_irq_restore(flags);
5530}
5531
5532/* Run through task list and migrate tasks from the dead cpu. */
5533static void migrate_live_tasks(int src_cpu)
5534{
48f24c4d 5535 struct task_struct *p, *t;
1da177e4 5536
f7b4cddc 5537 read_lock(&tasklist_lock);
1da177e4 5538
48f24c4d
IM
5539 do_each_thread(t, p) {
5540 if (p == current)
1da177e4
LT
5541 continue;
5542
48f24c4d
IM
5543 if (task_cpu(p) == src_cpu)
5544 move_task_off_dead_cpu(src_cpu, p);
5545 } while_each_thread(t, p);
1da177e4 5546
f7b4cddc 5547 read_unlock(&tasklist_lock);
1da177e4
LT
5548}
5549
dd41f596
IM
5550/*
5551 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5552 * It does so by boosting its priority to highest possible.
5553 * Used by CPU offline code.
1da177e4
LT
5554 */
5555void sched_idle_next(void)
5556{
48f24c4d 5557 int this_cpu = smp_processor_id();
70b97a7f 5558 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5559 struct task_struct *p = rq->idle;
5560 unsigned long flags;
5561
5562 /* cpu has to be offline */
48f24c4d 5563 BUG_ON(cpu_online(this_cpu));
1da177e4 5564
48f24c4d
IM
5565 /*
5566 * Strictly not necessary since rest of the CPUs are stopped by now
5567 * and interrupts disabled on the current cpu.
1da177e4 5568 */
05fa785c 5569 raw_spin_lock_irqsave(&rq->lock, flags);
1da177e4 5570
dd41f596 5571 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5572
94bc9a7b
DA
5573 update_rq_clock(rq);
5574 activate_task(rq, p, 0);
1da177e4 5575
05fa785c 5576 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
5577}
5578
48f24c4d
IM
5579/*
5580 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5581 * offline.
5582 */
5583void idle_task_exit(void)
5584{
5585 struct mm_struct *mm = current->active_mm;
5586
5587 BUG_ON(cpu_online(smp_processor_id()));
5588
5589 if (mm != &init_mm)
5590 switch_mm(mm, &init_mm, current);
5591 mmdrop(mm);
5592}
5593
054b9108 5594/* called under rq->lock with disabled interrupts */
36c8b586 5595static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5596{
70b97a7f 5597 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5598
5599 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5600 BUG_ON(!p->exit_state);
1da177e4
LT
5601
5602 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5603 BUG_ON(p->state == TASK_DEAD);
1da177e4 5604
48f24c4d 5605 get_task_struct(p);
1da177e4
LT
5606
5607 /*
5608 * Drop lock around migration; if someone else moves it,
41a2d6cf 5609 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5610 * fine.
5611 */
05fa785c 5612 raw_spin_unlock_irq(&rq->lock);
48f24c4d 5613 move_task_off_dead_cpu(dead_cpu, p);
05fa785c 5614 raw_spin_lock_irq(&rq->lock);
1da177e4 5615
48f24c4d 5616 put_task_struct(p);
1da177e4
LT
5617}
5618
5619/* release_task() removes task from tasklist, so we won't find dead tasks. */
5620static void migrate_dead_tasks(unsigned int dead_cpu)
5621{
70b97a7f 5622 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5623 struct task_struct *next;
48f24c4d 5624
dd41f596
IM
5625 for ( ; ; ) {
5626 if (!rq->nr_running)
5627 break;
a8e504d2 5628 update_rq_clock(rq);
b67802ea 5629 next = pick_next_task(rq);
dd41f596
IM
5630 if (!next)
5631 break;
79c53799 5632 next->sched_class->put_prev_task(rq, next);
dd41f596 5633 migrate_dead(dead_cpu, next);
e692ab53 5634
1da177e4
LT
5635 }
5636}
dce48a84
TG
5637
5638/*
5639 * remove the tasks which were accounted by rq from calc_load_tasks.
5640 */
5641static void calc_global_load_remove(struct rq *rq)
5642{
5643 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 5644 rq->calc_load_active = 0;
dce48a84 5645}
1da177e4
LT
5646#endif /* CONFIG_HOTPLUG_CPU */
5647
e692ab53
NP
5648#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5649
5650static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5651 {
5652 .procname = "sched_domain",
c57baf1e 5653 .mode = 0555,
e0361851 5654 },
56992309 5655 {}
e692ab53
NP
5656};
5657
5658static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5659 {
5660 .procname = "kernel",
c57baf1e 5661 .mode = 0555,
e0361851
AD
5662 .child = sd_ctl_dir,
5663 },
56992309 5664 {}
e692ab53
NP
5665};
5666
5667static struct ctl_table *sd_alloc_ctl_entry(int n)
5668{
5669 struct ctl_table *entry =
5cf9f062 5670 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5671
e692ab53
NP
5672 return entry;
5673}
5674
6382bc90
MM
5675static void sd_free_ctl_entry(struct ctl_table **tablep)
5676{
cd790076 5677 struct ctl_table *entry;
6382bc90 5678
cd790076
MM
5679 /*
5680 * In the intermediate directories, both the child directory and
5681 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5682 * will always be set. In the lowest directory the names are
cd790076
MM
5683 * static strings and all have proc handlers.
5684 */
5685 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5686 if (entry->child)
5687 sd_free_ctl_entry(&entry->child);
cd790076
MM
5688 if (entry->proc_handler == NULL)
5689 kfree(entry->procname);
5690 }
6382bc90
MM
5691
5692 kfree(*tablep);
5693 *tablep = NULL;
5694}
5695
e692ab53 5696static void
e0361851 5697set_table_entry(struct ctl_table *entry,
e692ab53
NP
5698 const char *procname, void *data, int maxlen,
5699 mode_t mode, proc_handler *proc_handler)
5700{
e692ab53
NP
5701 entry->procname = procname;
5702 entry->data = data;
5703 entry->maxlen = maxlen;
5704 entry->mode = mode;
5705 entry->proc_handler = proc_handler;
5706}
5707
5708static struct ctl_table *
5709sd_alloc_ctl_domain_table(struct sched_domain *sd)
5710{
a5d8c348 5711 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5712
ad1cdc1d
MM
5713 if (table == NULL)
5714 return NULL;
5715
e0361851 5716 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5717 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5718 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5719 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5720 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5721 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5722 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5723 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5724 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5725 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5726 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5727 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5728 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5729 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5730 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5731 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5732 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5733 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5734 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5735 &sd->cache_nice_tries,
5736 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5737 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5738 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5739 set_table_entry(&table[11], "name", sd->name,
5740 CORENAME_MAX_SIZE, 0444, proc_dostring);
5741 /* &table[12] is terminator */
e692ab53
NP
5742
5743 return table;
5744}
5745
9a4e7159 5746static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5747{
5748 struct ctl_table *entry, *table;
5749 struct sched_domain *sd;
5750 int domain_num = 0, i;
5751 char buf[32];
5752
5753 for_each_domain(cpu, sd)
5754 domain_num++;
5755 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5756 if (table == NULL)
5757 return NULL;
e692ab53
NP
5758
5759 i = 0;
5760 for_each_domain(cpu, sd) {
5761 snprintf(buf, 32, "domain%d", i);
e692ab53 5762 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5763 entry->mode = 0555;
e692ab53
NP
5764 entry->child = sd_alloc_ctl_domain_table(sd);
5765 entry++;
5766 i++;
5767 }
5768 return table;
5769}
5770
5771static struct ctl_table_header *sd_sysctl_header;
6382bc90 5772static void register_sched_domain_sysctl(void)
e692ab53 5773{
6ad4c188 5774 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5775 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5776 char buf[32];
5777
7378547f
MM
5778 WARN_ON(sd_ctl_dir[0].child);
5779 sd_ctl_dir[0].child = entry;
5780
ad1cdc1d
MM
5781 if (entry == NULL)
5782 return;
5783
6ad4c188 5784 for_each_possible_cpu(i) {
e692ab53 5785 snprintf(buf, 32, "cpu%d", i);
e692ab53 5786 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5787 entry->mode = 0555;
e692ab53 5788 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5789 entry++;
e692ab53 5790 }
7378547f
MM
5791
5792 WARN_ON(sd_sysctl_header);
e692ab53
NP
5793 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5794}
6382bc90 5795
7378547f 5796/* may be called multiple times per register */
6382bc90
MM
5797static void unregister_sched_domain_sysctl(void)
5798{
7378547f
MM
5799 if (sd_sysctl_header)
5800 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5801 sd_sysctl_header = NULL;
7378547f
MM
5802 if (sd_ctl_dir[0].child)
5803 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5804}
e692ab53 5805#else
6382bc90
MM
5806static void register_sched_domain_sysctl(void)
5807{
5808}
5809static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5810{
5811}
5812#endif
5813
1f11eb6a
GH
5814static void set_rq_online(struct rq *rq)
5815{
5816 if (!rq->online) {
5817 const struct sched_class *class;
5818
c6c4927b 5819 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5820 rq->online = 1;
5821
5822 for_each_class(class) {
5823 if (class->rq_online)
5824 class->rq_online(rq);
5825 }
5826 }
5827}
5828
5829static void set_rq_offline(struct rq *rq)
5830{
5831 if (rq->online) {
5832 const struct sched_class *class;
5833
5834 for_each_class(class) {
5835 if (class->rq_offline)
5836 class->rq_offline(rq);
5837 }
5838
c6c4927b 5839 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5840 rq->online = 0;
5841 }
5842}
5843
1da177e4
LT
5844/*
5845 * migration_call - callback that gets triggered when a CPU is added.
5846 * Here we can start up the necessary migration thread for the new CPU.
5847 */
48f24c4d
IM
5848static int __cpuinit
5849migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5850{
1da177e4 5851 struct task_struct *p;
48f24c4d 5852 int cpu = (long)hcpu;
1da177e4 5853 unsigned long flags;
70b97a7f 5854 struct rq *rq;
1da177e4
LT
5855
5856 switch (action) {
5be9361c 5857
1da177e4 5858 case CPU_UP_PREPARE:
8bb78442 5859 case CPU_UP_PREPARE_FROZEN:
dd41f596 5860 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5861 if (IS_ERR(p))
5862 return NOTIFY_BAD;
1da177e4
LT
5863 kthread_bind(p, cpu);
5864 /* Must be high prio: stop_machine expects to yield to it. */
5865 rq = task_rq_lock(p, &flags);
dd41f596 5866 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 5867 task_rq_unlock(rq, &flags);
371cbb38 5868 get_task_struct(p);
1da177e4 5869 cpu_rq(cpu)->migration_thread = p;
a468d389 5870 rq->calc_load_update = calc_load_update;
1da177e4 5871 break;
48f24c4d 5872
1da177e4 5873 case CPU_ONLINE:
8bb78442 5874 case CPU_ONLINE_FROZEN:
3a4fa0a2 5875 /* Strictly unnecessary, as first user will wake it. */
1da177e4 5876 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
5877
5878 /* Update our root-domain */
5879 rq = cpu_rq(cpu);
05fa785c 5880 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5881 if (rq->rd) {
c6c4927b 5882 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5883
5884 set_rq_online(rq);
1f94ef59 5885 }
05fa785c 5886 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5887 break;
48f24c4d 5888
1da177e4
LT
5889#ifdef CONFIG_HOTPLUG_CPU
5890 case CPU_UP_CANCELED:
8bb78442 5891 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5892 if (!cpu_rq(cpu)->migration_thread)
5893 break;
41a2d6cf 5894 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 5895 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 5896 cpumask_any(cpu_online_mask));
1da177e4 5897 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 5898 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
5899 cpu_rq(cpu)->migration_thread = NULL;
5900 break;
48f24c4d 5901
1da177e4 5902 case CPU_DEAD:
8bb78442 5903 case CPU_DEAD_FROZEN:
470fd646 5904 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5905 migrate_live_tasks(cpu);
5906 rq = cpu_rq(cpu);
5907 kthread_stop(rq->migration_thread);
371cbb38 5908 put_task_struct(rq->migration_thread);
1da177e4
LT
5909 rq->migration_thread = NULL;
5910 /* Idle task back to normal (off runqueue, low prio) */
05fa785c 5911 raw_spin_lock_irq(&rq->lock);
a8e504d2 5912 update_rq_clock(rq);
2e1cb74a 5913 deactivate_task(rq, rq->idle, 0);
dd41f596
IM
5914 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5915 rq->idle->sched_class = &idle_sched_class;
1da177e4 5916 migrate_dead_tasks(cpu);
05fa785c 5917 raw_spin_unlock_irq(&rq->lock);
470fd646 5918 cpuset_unlock();
1da177e4
LT
5919 migrate_nr_uninterruptible(rq);
5920 BUG_ON(rq->nr_running != 0);
dce48a84 5921 calc_global_load_remove(rq);
41a2d6cf
IM
5922 /*
5923 * No need to migrate the tasks: it was best-effort if
5924 * they didn't take sched_hotcpu_mutex. Just wake up
5925 * the requestors.
5926 */
05fa785c 5927 raw_spin_lock_irq(&rq->lock);
1da177e4 5928 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5929 struct migration_req *req;
5930
1da177e4 5931 req = list_entry(rq->migration_queue.next,
70b97a7f 5932 struct migration_req, list);
1da177e4 5933 list_del_init(&req->list);
05fa785c 5934 raw_spin_unlock_irq(&rq->lock);
1da177e4 5935 complete(&req->done);
05fa785c 5936 raw_spin_lock_irq(&rq->lock);
1da177e4 5937 }
05fa785c 5938 raw_spin_unlock_irq(&rq->lock);
1da177e4 5939 break;
57d885fe 5940
08f503b0
GH
5941 case CPU_DYING:
5942 case CPU_DYING_FROZEN:
57d885fe
GH
5943 /* Update our root-domain */
5944 rq = cpu_rq(cpu);
05fa785c 5945 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5946 if (rq->rd) {
c6c4927b 5947 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5948 set_rq_offline(rq);
57d885fe 5949 }
05fa785c 5950 raw_spin_unlock_irqrestore(&rq->lock, flags);
57d885fe 5951 break;
1da177e4
LT
5952#endif
5953 }
5954 return NOTIFY_OK;
5955}
5956
f38b0820
PM
5957/*
5958 * Register at high priority so that task migration (migrate_all_tasks)
5959 * happens before everything else. This has to be lower priority than
cdd6c482 5960 * the notifier in the perf_event subsystem, though.
1da177e4 5961 */
26c2143b 5962static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5963 .notifier_call = migration_call,
5964 .priority = 10
5965};
5966
7babe8db 5967static int __init migration_init(void)
1da177e4
LT
5968{
5969 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5970 int err;
48f24c4d
IM
5971
5972 /* Start one for the boot CPU: */
07dccf33
AM
5973 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5974 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5975 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5976 register_cpu_notifier(&migration_notifier);
7babe8db 5977
a004cd42 5978 return 0;
1da177e4 5979}
7babe8db 5980early_initcall(migration_init);
1da177e4
LT
5981#endif
5982
5983#ifdef CONFIG_SMP
476f3534 5984
3e9830dc 5985#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5986
f6630114
MT
5987static __read_mostly int sched_domain_debug_enabled;
5988
5989static int __init sched_domain_debug_setup(char *str)
5990{
5991 sched_domain_debug_enabled = 1;
5992
5993 return 0;
5994}
5995early_param("sched_debug", sched_domain_debug_setup);
5996
7c16ec58 5997static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5998 struct cpumask *groupmask)
1da177e4 5999{
4dcf6aff 6000 struct sched_group *group = sd->groups;
434d53b0 6001 char str[256];
1da177e4 6002
968ea6d8 6003 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6004 cpumask_clear(groupmask);
4dcf6aff
IM
6005
6006 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6007
6008 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 6009 printk("does not load-balance\n");
4dcf6aff 6010 if (sd->parent)
3df0fc5b
PZ
6011 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6012 " has parent");
4dcf6aff 6013 return -1;
41c7ce9a
NP
6014 }
6015
3df0fc5b 6016 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6017
758b2cdc 6018 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
6019 printk(KERN_ERR "ERROR: domain->span does not contain "
6020 "CPU%d\n", cpu);
4dcf6aff 6021 }
758b2cdc 6022 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
6023 printk(KERN_ERR "ERROR: domain->groups does not contain"
6024 " CPU%d\n", cpu);
4dcf6aff 6025 }
1da177e4 6026
4dcf6aff 6027 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6028 do {
4dcf6aff 6029 if (!group) {
3df0fc5b
PZ
6030 printk("\n");
6031 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6032 break;
6033 }
6034
18a3885f 6035 if (!group->cpu_power) {
3df0fc5b
PZ
6036 printk(KERN_CONT "\n");
6037 printk(KERN_ERR "ERROR: domain->cpu_power not "
6038 "set\n");
4dcf6aff
IM
6039 break;
6040 }
1da177e4 6041
758b2cdc 6042 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
6043 printk(KERN_CONT "\n");
6044 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
6045 break;
6046 }
1da177e4 6047
758b2cdc 6048 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
6049 printk(KERN_CONT "\n");
6050 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
6051 break;
6052 }
1da177e4 6053
758b2cdc 6054 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6055
968ea6d8 6056 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 6057
3df0fc5b 6058 printk(KERN_CONT " %s", str);
18a3885f 6059 if (group->cpu_power != SCHED_LOAD_SCALE) {
3df0fc5b
PZ
6060 printk(KERN_CONT " (cpu_power = %d)",
6061 group->cpu_power);
381512cf 6062 }
1da177e4 6063
4dcf6aff
IM
6064 group = group->next;
6065 } while (group != sd->groups);
3df0fc5b 6066 printk(KERN_CONT "\n");
1da177e4 6067
758b2cdc 6068 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 6069 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6070
758b2cdc
RR
6071 if (sd->parent &&
6072 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
6073 printk(KERN_ERR "ERROR: parent span is not a superset "
6074 "of domain->span\n");
4dcf6aff
IM
6075 return 0;
6076}
1da177e4 6077
4dcf6aff
IM
6078static void sched_domain_debug(struct sched_domain *sd, int cpu)
6079{
d5dd3db1 6080 cpumask_var_t groupmask;
4dcf6aff 6081 int level = 0;
1da177e4 6082
f6630114
MT
6083 if (!sched_domain_debug_enabled)
6084 return;
6085
4dcf6aff
IM
6086 if (!sd) {
6087 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6088 return;
6089 }
1da177e4 6090
4dcf6aff
IM
6091 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6092
d5dd3db1 6093 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6094 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6095 return;
6096 }
6097
4dcf6aff 6098 for (;;) {
7c16ec58 6099 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6100 break;
1da177e4
LT
6101 level++;
6102 sd = sd->parent;
33859f7f 6103 if (!sd)
4dcf6aff
IM
6104 break;
6105 }
d5dd3db1 6106 free_cpumask_var(groupmask);
1da177e4 6107}
6d6bc0ad 6108#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6109# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6110#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6111
1a20ff27 6112static int sd_degenerate(struct sched_domain *sd)
245af2c7 6113{
758b2cdc 6114 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6115 return 1;
6116
6117 /* Following flags need at least 2 groups */
6118 if (sd->flags & (SD_LOAD_BALANCE |
6119 SD_BALANCE_NEWIDLE |
6120 SD_BALANCE_FORK |
89c4710e
SS
6121 SD_BALANCE_EXEC |
6122 SD_SHARE_CPUPOWER |
6123 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6124 if (sd->groups != sd->groups->next)
6125 return 0;
6126 }
6127
6128 /* Following flags don't use groups */
c88d5910 6129 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
6130 return 0;
6131
6132 return 1;
6133}
6134
48f24c4d
IM
6135static int
6136sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6137{
6138 unsigned long cflags = sd->flags, pflags = parent->flags;
6139
6140 if (sd_degenerate(parent))
6141 return 1;
6142
758b2cdc 6143 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6144 return 0;
6145
245af2c7
SS
6146 /* Flags needing groups don't count if only 1 group in parent */
6147 if (parent->groups == parent->groups->next) {
6148 pflags &= ~(SD_LOAD_BALANCE |
6149 SD_BALANCE_NEWIDLE |
6150 SD_BALANCE_FORK |
89c4710e
SS
6151 SD_BALANCE_EXEC |
6152 SD_SHARE_CPUPOWER |
6153 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6154 if (nr_node_ids == 1)
6155 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6156 }
6157 if (~cflags & pflags)
6158 return 0;
6159
6160 return 1;
6161}
6162
c6c4927b
RR
6163static void free_rootdomain(struct root_domain *rd)
6164{
047106ad
PZ
6165 synchronize_sched();
6166
68e74568
RR
6167 cpupri_cleanup(&rd->cpupri);
6168
c6c4927b
RR
6169 free_cpumask_var(rd->rto_mask);
6170 free_cpumask_var(rd->online);
6171 free_cpumask_var(rd->span);
6172 kfree(rd);
6173}
6174
57d885fe
GH
6175static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6176{
a0490fa3 6177 struct root_domain *old_rd = NULL;
57d885fe 6178 unsigned long flags;
57d885fe 6179
05fa785c 6180 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
6181
6182 if (rq->rd) {
a0490fa3 6183 old_rd = rq->rd;
57d885fe 6184
c6c4927b 6185 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 6186 set_rq_offline(rq);
57d885fe 6187
c6c4927b 6188 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 6189
a0490fa3
IM
6190 /*
6191 * If we dont want to free the old_rt yet then
6192 * set old_rd to NULL to skip the freeing later
6193 * in this function:
6194 */
6195 if (!atomic_dec_and_test(&old_rd->refcount))
6196 old_rd = NULL;
57d885fe
GH
6197 }
6198
6199 atomic_inc(&rd->refcount);
6200 rq->rd = rd;
6201
c6c4927b 6202 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 6203 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 6204 set_rq_online(rq);
57d885fe 6205
05fa785c 6206 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
6207
6208 if (old_rd)
6209 free_rootdomain(old_rd);
57d885fe
GH
6210}
6211
fd5e1b5d 6212static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 6213{
36b7b6d4
PE
6214 gfp_t gfp = GFP_KERNEL;
6215
57d885fe
GH
6216 memset(rd, 0, sizeof(*rd));
6217
36b7b6d4
PE
6218 if (bootmem)
6219 gfp = GFP_NOWAIT;
c6c4927b 6220
36b7b6d4 6221 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 6222 goto out;
36b7b6d4 6223 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 6224 goto free_span;
36b7b6d4 6225 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 6226 goto free_online;
6e0534f2 6227
0fb53029 6228 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 6229 goto free_rto_mask;
c6c4927b 6230 return 0;
6e0534f2 6231
68e74568
RR
6232free_rto_mask:
6233 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
6234free_online:
6235 free_cpumask_var(rd->online);
6236free_span:
6237 free_cpumask_var(rd->span);
0c910d28 6238out:
c6c4927b 6239 return -ENOMEM;
57d885fe
GH
6240}
6241
6242static void init_defrootdomain(void)
6243{
c6c4927b
RR
6244 init_rootdomain(&def_root_domain, true);
6245
57d885fe
GH
6246 atomic_set(&def_root_domain.refcount, 1);
6247}
6248
dc938520 6249static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6250{
6251 struct root_domain *rd;
6252
6253 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6254 if (!rd)
6255 return NULL;
6256
c6c4927b
RR
6257 if (init_rootdomain(rd, false) != 0) {
6258 kfree(rd);
6259 return NULL;
6260 }
57d885fe
GH
6261
6262 return rd;
6263}
6264
1da177e4 6265/*
0eab9146 6266 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6267 * hold the hotplug lock.
6268 */
0eab9146
IM
6269static void
6270cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6271{
70b97a7f 6272 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6273 struct sched_domain *tmp;
6274
6275 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6276 for (tmp = sd; tmp; ) {
245af2c7
SS
6277 struct sched_domain *parent = tmp->parent;
6278 if (!parent)
6279 break;
f29c9b1c 6280
1a848870 6281 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6282 tmp->parent = parent->parent;
1a848870
SS
6283 if (parent->parent)
6284 parent->parent->child = tmp;
f29c9b1c
LZ
6285 } else
6286 tmp = tmp->parent;
245af2c7
SS
6287 }
6288
1a848870 6289 if (sd && sd_degenerate(sd)) {
245af2c7 6290 sd = sd->parent;
1a848870
SS
6291 if (sd)
6292 sd->child = NULL;
6293 }
1da177e4
LT
6294
6295 sched_domain_debug(sd, cpu);
6296
57d885fe 6297 rq_attach_root(rq, rd);
674311d5 6298 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6299}
6300
6301/* cpus with isolated domains */
dcc30a35 6302static cpumask_var_t cpu_isolated_map;
1da177e4
LT
6303
6304/* Setup the mask of cpus configured for isolated domains */
6305static int __init isolated_cpu_setup(char *str)
6306{
bdddd296 6307 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6308 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6309 return 1;
6310}
6311
8927f494 6312__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6313
6314/*
6711cab4
SS
6315 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6316 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
6317 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6318 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
6319 *
6320 * init_sched_build_groups will build a circular linked list of the groups
6321 * covered by the given span, and will set each group's ->cpumask correctly,
6322 * and ->cpu_power to 0.
6323 */
a616058b 6324static void
96f874e2
RR
6325init_sched_build_groups(const struct cpumask *span,
6326 const struct cpumask *cpu_map,
6327 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 6328 struct sched_group **sg,
96f874e2
RR
6329 struct cpumask *tmpmask),
6330 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
6331{
6332 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6333 int i;
6334
96f874e2 6335 cpumask_clear(covered);
7c16ec58 6336
abcd083a 6337 for_each_cpu(i, span) {
6711cab4 6338 struct sched_group *sg;
7c16ec58 6339 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6340 int j;
6341
758b2cdc 6342 if (cpumask_test_cpu(i, covered))
1da177e4
LT
6343 continue;
6344
758b2cdc 6345 cpumask_clear(sched_group_cpus(sg));
18a3885f 6346 sg->cpu_power = 0;
1da177e4 6347
abcd083a 6348 for_each_cpu(j, span) {
7c16ec58 6349 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6350 continue;
6351
96f874e2 6352 cpumask_set_cpu(j, covered);
758b2cdc 6353 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
6354 }
6355 if (!first)
6356 first = sg;
6357 if (last)
6358 last->next = sg;
6359 last = sg;
6360 }
6361 last->next = first;
6362}
6363
9c1cfda2 6364#define SD_NODES_PER_DOMAIN 16
1da177e4 6365
9c1cfda2 6366#ifdef CONFIG_NUMA
198e2f18 6367
9c1cfda2
JH
6368/**
6369 * find_next_best_node - find the next node to include in a sched_domain
6370 * @node: node whose sched_domain we're building
6371 * @used_nodes: nodes already in the sched_domain
6372 *
41a2d6cf 6373 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6374 * finds the closest node not already in the @used_nodes map.
6375 *
6376 * Should use nodemask_t.
6377 */
c5f59f08 6378static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6379{
6380 int i, n, val, min_val, best_node = 0;
6381
6382 min_val = INT_MAX;
6383
076ac2af 6384 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6385 /* Start at @node */
076ac2af 6386 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6387
6388 if (!nr_cpus_node(n))
6389 continue;
6390
6391 /* Skip already used nodes */
c5f59f08 6392 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6393 continue;
6394
6395 /* Simple min distance search */
6396 val = node_distance(node, n);
6397
6398 if (val < min_val) {
6399 min_val = val;
6400 best_node = n;
6401 }
6402 }
6403
c5f59f08 6404 node_set(best_node, *used_nodes);
9c1cfda2
JH
6405 return best_node;
6406}
6407
6408/**
6409 * sched_domain_node_span - get a cpumask for a node's sched_domain
6410 * @node: node whose cpumask we're constructing
73486722 6411 * @span: resulting cpumask
9c1cfda2 6412 *
41a2d6cf 6413 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6414 * should be one that prevents unnecessary balancing, but also spreads tasks
6415 * out optimally.
6416 */
96f874e2 6417static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 6418{
c5f59f08 6419 nodemask_t used_nodes;
48f24c4d 6420 int i;
9c1cfda2 6421
6ca09dfc 6422 cpumask_clear(span);
c5f59f08 6423 nodes_clear(used_nodes);
9c1cfda2 6424
6ca09dfc 6425 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 6426 node_set(node, used_nodes);
9c1cfda2
JH
6427
6428 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6429 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6430
6ca09dfc 6431 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 6432 }
9c1cfda2 6433}
6d6bc0ad 6434#endif /* CONFIG_NUMA */
9c1cfda2 6435
5c45bf27 6436int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6437
6c99e9ad
RR
6438/*
6439 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
6440 *
6441 * ( See the the comments in include/linux/sched.h:struct sched_group
6442 * and struct sched_domain. )
6c99e9ad
RR
6443 */
6444struct static_sched_group {
6445 struct sched_group sg;
6446 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6447};
6448
6449struct static_sched_domain {
6450 struct sched_domain sd;
6451 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6452};
6453
49a02c51
AH
6454struct s_data {
6455#ifdef CONFIG_NUMA
6456 int sd_allnodes;
6457 cpumask_var_t domainspan;
6458 cpumask_var_t covered;
6459 cpumask_var_t notcovered;
6460#endif
6461 cpumask_var_t nodemask;
6462 cpumask_var_t this_sibling_map;
6463 cpumask_var_t this_core_map;
6464 cpumask_var_t send_covered;
6465 cpumask_var_t tmpmask;
6466 struct sched_group **sched_group_nodes;
6467 struct root_domain *rd;
6468};
6469
2109b99e
AH
6470enum s_alloc {
6471 sa_sched_groups = 0,
6472 sa_rootdomain,
6473 sa_tmpmask,
6474 sa_send_covered,
6475 sa_this_core_map,
6476 sa_this_sibling_map,
6477 sa_nodemask,
6478 sa_sched_group_nodes,
6479#ifdef CONFIG_NUMA
6480 sa_notcovered,
6481 sa_covered,
6482 sa_domainspan,
6483#endif
6484 sa_none,
6485};
6486
9c1cfda2 6487/*
48f24c4d 6488 * SMT sched-domains:
9c1cfda2 6489 */
1da177e4 6490#ifdef CONFIG_SCHED_SMT
6c99e9ad 6491static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
1871e52c 6492static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
48f24c4d 6493
41a2d6cf 6494static int
96f874e2
RR
6495cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6496 struct sched_group **sg, struct cpumask *unused)
1da177e4 6497{
6711cab4 6498 if (sg)
1871e52c 6499 *sg = &per_cpu(sched_groups, cpu).sg;
1da177e4
LT
6500 return cpu;
6501}
6d6bc0ad 6502#endif /* CONFIG_SCHED_SMT */
1da177e4 6503
48f24c4d
IM
6504/*
6505 * multi-core sched-domains:
6506 */
1e9f28fa 6507#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
6508static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6509static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 6510#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6511
6512#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6513static int
96f874e2
RR
6514cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6515 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 6516{
6711cab4 6517 int group;
7c16ec58 6518
c69fc56d 6519 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6520 group = cpumask_first(mask);
6711cab4 6521 if (sg)
6c99e9ad 6522 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 6523 return group;
1e9f28fa
SS
6524}
6525#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6526static int
96f874e2
RR
6527cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6528 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 6529{
6711cab4 6530 if (sg)
6c99e9ad 6531 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
6532 return cpu;
6533}
6534#endif
6535
6c99e9ad
RR
6536static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6537static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 6538
41a2d6cf 6539static int
96f874e2
RR
6540cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6541 struct sched_group **sg, struct cpumask *mask)
1da177e4 6542{
6711cab4 6543 int group;
48f24c4d 6544#ifdef CONFIG_SCHED_MC
6ca09dfc 6545 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 6546 group = cpumask_first(mask);
1e9f28fa 6547#elif defined(CONFIG_SCHED_SMT)
c69fc56d 6548 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 6549 group = cpumask_first(mask);
1da177e4 6550#else
6711cab4 6551 group = cpu;
1da177e4 6552#endif
6711cab4 6553 if (sg)
6c99e9ad 6554 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 6555 return group;
1da177e4
LT
6556}
6557
6558#ifdef CONFIG_NUMA
1da177e4 6559/*
9c1cfda2
JH
6560 * The init_sched_build_groups can't handle what we want to do with node
6561 * groups, so roll our own. Now each node has its own list of groups which
6562 * gets dynamically allocated.
1da177e4 6563 */
62ea9ceb 6564static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 6565static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6566
62ea9ceb 6567static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 6568static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 6569
96f874e2
RR
6570static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6571 struct sched_group **sg,
6572 struct cpumask *nodemask)
9c1cfda2 6573{
6711cab4
SS
6574 int group;
6575
6ca09dfc 6576 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 6577 group = cpumask_first(nodemask);
6711cab4
SS
6578
6579 if (sg)
6c99e9ad 6580 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 6581 return group;
1da177e4 6582}
6711cab4 6583
08069033
SS
6584static void init_numa_sched_groups_power(struct sched_group *group_head)
6585{
6586 struct sched_group *sg = group_head;
6587 int j;
6588
6589 if (!sg)
6590 return;
3a5c359a 6591 do {
758b2cdc 6592 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 6593 struct sched_domain *sd;
08069033 6594
6c99e9ad 6595 sd = &per_cpu(phys_domains, j).sd;
13318a71 6596 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
6597 /*
6598 * Only add "power" once for each
6599 * physical package.
6600 */
6601 continue;
6602 }
08069033 6603
18a3885f 6604 sg->cpu_power += sd->groups->cpu_power;
3a5c359a
AK
6605 }
6606 sg = sg->next;
6607 } while (sg != group_head);
08069033 6608}
0601a88d
AH
6609
6610static int build_numa_sched_groups(struct s_data *d,
6611 const struct cpumask *cpu_map, int num)
6612{
6613 struct sched_domain *sd;
6614 struct sched_group *sg, *prev;
6615 int n, j;
6616
6617 cpumask_clear(d->covered);
6618 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6619 if (cpumask_empty(d->nodemask)) {
6620 d->sched_group_nodes[num] = NULL;
6621 goto out;
6622 }
6623
6624 sched_domain_node_span(num, d->domainspan);
6625 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6626
6627 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6628 GFP_KERNEL, num);
6629 if (!sg) {
3df0fc5b
PZ
6630 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6631 num);
0601a88d
AH
6632 return -ENOMEM;
6633 }
6634 d->sched_group_nodes[num] = sg;
6635
6636 for_each_cpu(j, d->nodemask) {
6637 sd = &per_cpu(node_domains, j).sd;
6638 sd->groups = sg;
6639 }
6640
18a3885f 6641 sg->cpu_power = 0;
0601a88d
AH
6642 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6643 sg->next = sg;
6644 cpumask_or(d->covered, d->covered, d->nodemask);
6645
6646 prev = sg;
6647 for (j = 0; j < nr_node_ids; j++) {
6648 n = (num + j) % nr_node_ids;
6649 cpumask_complement(d->notcovered, d->covered);
6650 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6651 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6652 if (cpumask_empty(d->tmpmask))
6653 break;
6654 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6655 if (cpumask_empty(d->tmpmask))
6656 continue;
6657 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6658 GFP_KERNEL, num);
6659 if (!sg) {
3df0fc5b
PZ
6660 printk(KERN_WARNING
6661 "Can not alloc domain group for node %d\n", j);
0601a88d
AH
6662 return -ENOMEM;
6663 }
18a3885f 6664 sg->cpu_power = 0;
0601a88d
AH
6665 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6666 sg->next = prev->next;
6667 cpumask_or(d->covered, d->covered, d->tmpmask);
6668 prev->next = sg;
6669 prev = sg;
6670 }
6671out:
6672 return 0;
6673}
6d6bc0ad 6674#endif /* CONFIG_NUMA */
1da177e4 6675
a616058b 6676#ifdef CONFIG_NUMA
51888ca2 6677/* Free memory allocated for various sched_group structures */
96f874e2
RR
6678static void free_sched_groups(const struct cpumask *cpu_map,
6679 struct cpumask *nodemask)
51888ca2 6680{
a616058b 6681 int cpu, i;
51888ca2 6682
abcd083a 6683 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
6684 struct sched_group **sched_group_nodes
6685 = sched_group_nodes_bycpu[cpu];
6686
51888ca2
SV
6687 if (!sched_group_nodes)
6688 continue;
6689
076ac2af 6690 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6691 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6692
6ca09dfc 6693 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 6694 if (cpumask_empty(nodemask))
51888ca2
SV
6695 continue;
6696
6697 if (sg == NULL)
6698 continue;
6699 sg = sg->next;
6700next_sg:
6701 oldsg = sg;
6702 sg = sg->next;
6703 kfree(oldsg);
6704 if (oldsg != sched_group_nodes[i])
6705 goto next_sg;
6706 }
6707 kfree(sched_group_nodes);
6708 sched_group_nodes_bycpu[cpu] = NULL;
6709 }
51888ca2 6710}
6d6bc0ad 6711#else /* !CONFIG_NUMA */
96f874e2
RR
6712static void free_sched_groups(const struct cpumask *cpu_map,
6713 struct cpumask *nodemask)
a616058b
SS
6714{
6715}
6d6bc0ad 6716#endif /* CONFIG_NUMA */
51888ca2 6717
89c4710e
SS
6718/*
6719 * Initialize sched groups cpu_power.
6720 *
6721 * cpu_power indicates the capacity of sched group, which is used while
6722 * distributing the load between different sched groups in a sched domain.
6723 * Typically cpu_power for all the groups in a sched domain will be same unless
6724 * there are asymmetries in the topology. If there are asymmetries, group
6725 * having more cpu_power will pickup more load compared to the group having
6726 * less cpu_power.
89c4710e
SS
6727 */
6728static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6729{
6730 struct sched_domain *child;
6731 struct sched_group *group;
f93e65c1
PZ
6732 long power;
6733 int weight;
89c4710e
SS
6734
6735 WARN_ON(!sd || !sd->groups);
6736
13318a71 6737 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
6738 return;
6739
6740 child = sd->child;
6741
18a3885f 6742 sd->groups->cpu_power = 0;
5517d86b 6743
f93e65c1
PZ
6744 if (!child) {
6745 power = SCHED_LOAD_SCALE;
6746 weight = cpumask_weight(sched_domain_span(sd));
6747 /*
6748 * SMT siblings share the power of a single core.
a52bfd73
PZ
6749 * Usually multiple threads get a better yield out of
6750 * that one core than a single thread would have,
6751 * reflect that in sd->smt_gain.
f93e65c1 6752 */
a52bfd73
PZ
6753 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6754 power *= sd->smt_gain;
f93e65c1 6755 power /= weight;
a52bfd73
PZ
6756 power >>= SCHED_LOAD_SHIFT;
6757 }
18a3885f 6758 sd->groups->cpu_power += power;
89c4710e
SS
6759 return;
6760 }
6761
89c4710e 6762 /*
f93e65c1 6763 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
6764 */
6765 group = child->groups;
6766 do {
18a3885f 6767 sd->groups->cpu_power += group->cpu_power;
89c4710e
SS
6768 group = group->next;
6769 } while (group != child->groups);
6770}
6771
7c16ec58
MT
6772/*
6773 * Initializers for schedule domains
6774 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6775 */
6776
a5d8c348
IM
6777#ifdef CONFIG_SCHED_DEBUG
6778# define SD_INIT_NAME(sd, type) sd->name = #type
6779#else
6780# define SD_INIT_NAME(sd, type) do { } while (0)
6781#endif
6782
7c16ec58 6783#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 6784
7c16ec58
MT
6785#define SD_INIT_FUNC(type) \
6786static noinline void sd_init_##type(struct sched_domain *sd) \
6787{ \
6788 memset(sd, 0, sizeof(*sd)); \
6789 *sd = SD_##type##_INIT; \
1d3504fc 6790 sd->level = SD_LV_##type; \
a5d8c348 6791 SD_INIT_NAME(sd, type); \
7c16ec58
MT
6792}
6793
6794SD_INIT_FUNC(CPU)
6795#ifdef CONFIG_NUMA
6796 SD_INIT_FUNC(ALLNODES)
6797 SD_INIT_FUNC(NODE)
6798#endif
6799#ifdef CONFIG_SCHED_SMT
6800 SD_INIT_FUNC(SIBLING)
6801#endif
6802#ifdef CONFIG_SCHED_MC
6803 SD_INIT_FUNC(MC)
6804#endif
6805
1d3504fc
HS
6806static int default_relax_domain_level = -1;
6807
6808static int __init setup_relax_domain_level(char *str)
6809{
30e0e178
LZ
6810 unsigned long val;
6811
6812 val = simple_strtoul(str, NULL, 0);
6813 if (val < SD_LV_MAX)
6814 default_relax_domain_level = val;
6815
1d3504fc
HS
6816 return 1;
6817}
6818__setup("relax_domain_level=", setup_relax_domain_level);
6819
6820static void set_domain_attribute(struct sched_domain *sd,
6821 struct sched_domain_attr *attr)
6822{
6823 int request;
6824
6825 if (!attr || attr->relax_domain_level < 0) {
6826 if (default_relax_domain_level < 0)
6827 return;
6828 else
6829 request = default_relax_domain_level;
6830 } else
6831 request = attr->relax_domain_level;
6832 if (request < sd->level) {
6833 /* turn off idle balance on this domain */
c88d5910 6834 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6835 } else {
6836 /* turn on idle balance on this domain */
c88d5910 6837 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6838 }
6839}
6840
2109b99e
AH
6841static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6842 const struct cpumask *cpu_map)
6843{
6844 switch (what) {
6845 case sa_sched_groups:
6846 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6847 d->sched_group_nodes = NULL;
6848 case sa_rootdomain:
6849 free_rootdomain(d->rd); /* fall through */
6850 case sa_tmpmask:
6851 free_cpumask_var(d->tmpmask); /* fall through */
6852 case sa_send_covered:
6853 free_cpumask_var(d->send_covered); /* fall through */
6854 case sa_this_core_map:
6855 free_cpumask_var(d->this_core_map); /* fall through */
6856 case sa_this_sibling_map:
6857 free_cpumask_var(d->this_sibling_map); /* fall through */
6858 case sa_nodemask:
6859 free_cpumask_var(d->nodemask); /* fall through */
6860 case sa_sched_group_nodes:
d1b55138 6861#ifdef CONFIG_NUMA
2109b99e
AH
6862 kfree(d->sched_group_nodes); /* fall through */
6863 case sa_notcovered:
6864 free_cpumask_var(d->notcovered); /* fall through */
6865 case sa_covered:
6866 free_cpumask_var(d->covered); /* fall through */
6867 case sa_domainspan:
6868 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 6869#endif
2109b99e
AH
6870 case sa_none:
6871 break;
6872 }
6873}
3404c8d9 6874
2109b99e
AH
6875static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6876 const struct cpumask *cpu_map)
6877{
3404c8d9 6878#ifdef CONFIG_NUMA
2109b99e
AH
6879 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6880 return sa_none;
6881 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6882 return sa_domainspan;
6883 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6884 return sa_covered;
6885 /* Allocate the per-node list of sched groups */
6886 d->sched_group_nodes = kcalloc(nr_node_ids,
6887 sizeof(struct sched_group *), GFP_KERNEL);
6888 if (!d->sched_group_nodes) {
3df0fc5b 6889 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 6890 return sa_notcovered;
d1b55138 6891 }
2109b99e 6892 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 6893#endif
2109b99e
AH
6894 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6895 return sa_sched_group_nodes;
6896 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6897 return sa_nodemask;
6898 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6899 return sa_this_sibling_map;
6900 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6901 return sa_this_core_map;
6902 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6903 return sa_send_covered;
6904 d->rd = alloc_rootdomain();
6905 if (!d->rd) {
3df0fc5b 6906 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 6907 return sa_tmpmask;
57d885fe 6908 }
2109b99e
AH
6909 return sa_rootdomain;
6910}
57d885fe 6911
7f4588f3
AH
6912static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6913 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6914{
6915 struct sched_domain *sd = NULL;
7c16ec58 6916#ifdef CONFIG_NUMA
7f4588f3 6917 struct sched_domain *parent;
1da177e4 6918
7f4588f3
AH
6919 d->sd_allnodes = 0;
6920 if (cpumask_weight(cpu_map) >
6921 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6922 sd = &per_cpu(allnodes_domains, i).sd;
6923 SD_INIT(sd, ALLNODES);
1d3504fc 6924 set_domain_attribute(sd, attr);
7f4588f3
AH
6925 cpumask_copy(sched_domain_span(sd), cpu_map);
6926 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6927 d->sd_allnodes = 1;
6928 }
6929 parent = sd;
6930
6931 sd = &per_cpu(node_domains, i).sd;
6932 SD_INIT(sd, NODE);
6933 set_domain_attribute(sd, attr);
6934 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6935 sd->parent = parent;
6936 if (parent)
6937 parent->child = sd;
6938 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 6939#endif
7f4588f3
AH
6940 return sd;
6941}
1da177e4 6942
87cce662
AH
6943static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6944 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6945 struct sched_domain *parent, int i)
6946{
6947 struct sched_domain *sd;
6948 sd = &per_cpu(phys_domains, i).sd;
6949 SD_INIT(sd, CPU);
6950 set_domain_attribute(sd, attr);
6951 cpumask_copy(sched_domain_span(sd), d->nodemask);
6952 sd->parent = parent;
6953 if (parent)
6954 parent->child = sd;
6955 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6956 return sd;
6957}
1da177e4 6958
410c4081
AH
6959static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6960 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6961 struct sched_domain *parent, int i)
6962{
6963 struct sched_domain *sd = parent;
1e9f28fa 6964#ifdef CONFIG_SCHED_MC
410c4081
AH
6965 sd = &per_cpu(core_domains, i).sd;
6966 SD_INIT(sd, MC);
6967 set_domain_attribute(sd, attr);
6968 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6969 sd->parent = parent;
6970 parent->child = sd;
6971 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 6972#endif
410c4081
AH
6973 return sd;
6974}
1e9f28fa 6975
d8173535
AH
6976static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6977 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6978 struct sched_domain *parent, int i)
6979{
6980 struct sched_domain *sd = parent;
1da177e4 6981#ifdef CONFIG_SCHED_SMT
d8173535
AH
6982 sd = &per_cpu(cpu_domains, i).sd;
6983 SD_INIT(sd, SIBLING);
6984 set_domain_attribute(sd, attr);
6985 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6986 sd->parent = parent;
6987 parent->child = sd;
6988 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 6989#endif
d8173535
AH
6990 return sd;
6991}
1da177e4 6992
0e8e85c9
AH
6993static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6994 const struct cpumask *cpu_map, int cpu)
6995{
6996 switch (l) {
1da177e4 6997#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
6998 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6999 cpumask_and(d->this_sibling_map, cpu_map,
7000 topology_thread_cpumask(cpu));
7001 if (cpu == cpumask_first(d->this_sibling_map))
7002 init_sched_build_groups(d->this_sibling_map, cpu_map,
7003 &cpu_to_cpu_group,
7004 d->send_covered, d->tmpmask);
7005 break;
1da177e4 7006#endif
1e9f28fa 7007#ifdef CONFIG_SCHED_MC
a2af04cd
AH
7008 case SD_LV_MC: /* set up multi-core groups */
7009 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7010 if (cpu == cpumask_first(d->this_core_map))
7011 init_sched_build_groups(d->this_core_map, cpu_map,
7012 &cpu_to_core_group,
7013 d->send_covered, d->tmpmask);
7014 break;
1e9f28fa 7015#endif
86548096
AH
7016 case SD_LV_CPU: /* set up physical groups */
7017 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7018 if (!cpumask_empty(d->nodemask))
7019 init_sched_build_groups(d->nodemask, cpu_map,
7020 &cpu_to_phys_group,
7021 d->send_covered, d->tmpmask);
7022 break;
1da177e4 7023#ifdef CONFIG_NUMA
de616e36
AH
7024 case SD_LV_ALLNODES:
7025 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7026 d->send_covered, d->tmpmask);
7027 break;
7028#endif
0e8e85c9
AH
7029 default:
7030 break;
7c16ec58 7031 }
0e8e85c9 7032}
9c1cfda2 7033
2109b99e
AH
7034/*
7035 * Build sched domains for a given set of cpus and attach the sched domains
7036 * to the individual cpus
7037 */
7038static int __build_sched_domains(const struct cpumask *cpu_map,
7039 struct sched_domain_attr *attr)
7040{
7041 enum s_alloc alloc_state = sa_none;
7042 struct s_data d;
294b0c96 7043 struct sched_domain *sd;
2109b99e 7044 int i;
7c16ec58 7045#ifdef CONFIG_NUMA
2109b99e 7046 d.sd_allnodes = 0;
7c16ec58 7047#endif
9c1cfda2 7048
2109b99e
AH
7049 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7050 if (alloc_state != sa_rootdomain)
7051 goto error;
7052 alloc_state = sa_sched_groups;
9c1cfda2 7053
1da177e4 7054 /*
1a20ff27 7055 * Set up domains for cpus specified by the cpu_map.
1da177e4 7056 */
abcd083a 7057 for_each_cpu(i, cpu_map) {
49a02c51
AH
7058 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7059 cpu_map);
9761eea8 7060
7f4588f3 7061 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 7062 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 7063 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 7064 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 7065 }
9c1cfda2 7066
abcd083a 7067 for_each_cpu(i, cpu_map) {
0e8e85c9 7068 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 7069 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 7070 }
9c1cfda2 7071
1da177e4 7072 /* Set up physical groups */
86548096
AH
7073 for (i = 0; i < nr_node_ids; i++)
7074 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 7075
1da177e4
LT
7076#ifdef CONFIG_NUMA
7077 /* Set up node groups */
de616e36
AH
7078 if (d.sd_allnodes)
7079 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 7080
0601a88d
AH
7081 for (i = 0; i < nr_node_ids; i++)
7082 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 7083 goto error;
1da177e4
LT
7084#endif
7085
7086 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7087#ifdef CONFIG_SCHED_SMT
abcd083a 7088 for_each_cpu(i, cpu_map) {
294b0c96 7089 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 7090 init_sched_groups_power(i, sd);
5c45bf27 7091 }
1da177e4 7092#endif
1e9f28fa 7093#ifdef CONFIG_SCHED_MC
abcd083a 7094 for_each_cpu(i, cpu_map) {
294b0c96 7095 sd = &per_cpu(core_domains, i).sd;
89c4710e 7096 init_sched_groups_power(i, sd);
5c45bf27
SS
7097 }
7098#endif
1e9f28fa 7099
abcd083a 7100 for_each_cpu(i, cpu_map) {
294b0c96 7101 sd = &per_cpu(phys_domains, i).sd;
89c4710e 7102 init_sched_groups_power(i, sd);
1da177e4
LT
7103 }
7104
9c1cfda2 7105#ifdef CONFIG_NUMA
076ac2af 7106 for (i = 0; i < nr_node_ids; i++)
49a02c51 7107 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 7108
49a02c51 7109 if (d.sd_allnodes) {
6711cab4 7110 struct sched_group *sg;
f712c0c7 7111
96f874e2 7112 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 7113 d.tmpmask);
f712c0c7
SS
7114 init_numa_sched_groups_power(sg);
7115 }
9c1cfda2
JH
7116#endif
7117
1da177e4 7118 /* Attach the domains */
abcd083a 7119 for_each_cpu(i, cpu_map) {
1da177e4 7120#ifdef CONFIG_SCHED_SMT
6c99e9ad 7121 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7122#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7123 sd = &per_cpu(core_domains, i).sd;
1da177e4 7124#else
6c99e9ad 7125 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7126#endif
49a02c51 7127 cpu_attach_domain(sd, d.rd, i);
1da177e4 7128 }
51888ca2 7129
2109b99e
AH
7130 d.sched_group_nodes = NULL; /* don't free this we still need it */
7131 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7132 return 0;
51888ca2 7133
51888ca2 7134error:
2109b99e
AH
7135 __free_domain_allocs(&d, alloc_state, cpu_map);
7136 return -ENOMEM;
1da177e4 7137}
029190c5 7138
96f874e2 7139static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7140{
7141 return __build_sched_domains(cpu_map, NULL);
7142}
7143
acc3f5d7 7144static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7145static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7146static struct sched_domain_attr *dattr_cur;
7147 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7148
7149/*
7150 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7151 * cpumask) fails, then fallback to a single sched domain,
7152 * as determined by the single cpumask fallback_doms.
029190c5 7153 */
4212823f 7154static cpumask_var_t fallback_doms;
029190c5 7155
ee79d1bd
HC
7156/*
7157 * arch_update_cpu_topology lets virtualized architectures update the
7158 * cpu core maps. It is supposed to return 1 if the topology changed
7159 * or 0 if it stayed the same.
7160 */
7161int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7162{
ee79d1bd 7163 return 0;
22e52b07
HC
7164}
7165
acc3f5d7
RR
7166cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7167{
7168 int i;
7169 cpumask_var_t *doms;
7170
7171 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7172 if (!doms)
7173 return NULL;
7174 for (i = 0; i < ndoms; i++) {
7175 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7176 free_sched_domains(doms, i);
7177 return NULL;
7178 }
7179 }
7180 return doms;
7181}
7182
7183void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7184{
7185 unsigned int i;
7186 for (i = 0; i < ndoms; i++)
7187 free_cpumask_var(doms[i]);
7188 kfree(doms);
7189}
7190
1a20ff27 7191/*
41a2d6cf 7192 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7193 * For now this just excludes isolated cpus, but could be used to
7194 * exclude other special cases in the future.
1a20ff27 7195 */
96f874e2 7196static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7197{
7378547f
MM
7198 int err;
7199
22e52b07 7200 arch_update_cpu_topology();
029190c5 7201 ndoms_cur = 1;
acc3f5d7 7202 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7203 if (!doms_cur)
acc3f5d7
RR
7204 doms_cur = &fallback_doms;
7205 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
1d3504fc 7206 dattr_cur = NULL;
acc3f5d7 7207 err = build_sched_domains(doms_cur[0]);
6382bc90 7208 register_sched_domain_sysctl();
7378547f
MM
7209
7210 return err;
1a20ff27
DG
7211}
7212
96f874e2
RR
7213static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7214 struct cpumask *tmpmask)
1da177e4 7215{
7c16ec58 7216 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7217}
1da177e4 7218
1a20ff27
DG
7219/*
7220 * Detach sched domains from a group of cpus specified in cpu_map
7221 * These cpus will now be attached to the NULL domain
7222 */
96f874e2 7223static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7224{
96f874e2
RR
7225 /* Save because hotplug lock held. */
7226 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7227 int i;
7228
abcd083a 7229 for_each_cpu(i, cpu_map)
57d885fe 7230 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7231 synchronize_sched();
96f874e2 7232 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7233}
7234
1d3504fc
HS
7235/* handle null as "default" */
7236static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7237 struct sched_domain_attr *new, int idx_new)
7238{
7239 struct sched_domain_attr tmp;
7240
7241 /* fast path */
7242 if (!new && !cur)
7243 return 1;
7244
7245 tmp = SD_ATTR_INIT;
7246 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7247 new ? (new + idx_new) : &tmp,
7248 sizeof(struct sched_domain_attr));
7249}
7250
029190c5
PJ
7251/*
7252 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7253 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7254 * doms_new[] to the current sched domain partitioning, doms_cur[].
7255 * It destroys each deleted domain and builds each new domain.
7256 *
acc3f5d7 7257 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7258 * The masks don't intersect (don't overlap.) We should setup one
7259 * sched domain for each mask. CPUs not in any of the cpumasks will
7260 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7261 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7262 * it as it is.
7263 *
acc3f5d7
RR
7264 * The passed in 'doms_new' should be allocated using
7265 * alloc_sched_domains. This routine takes ownership of it and will
7266 * free_sched_domains it when done with it. If the caller failed the
7267 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7268 * and partition_sched_domains() will fallback to the single partition
7269 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7270 *
96f874e2 7271 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7272 * ndoms_new == 0 is a special case for destroying existing domains,
7273 * and it will not create the default domain.
dfb512ec 7274 *
029190c5
PJ
7275 * Call with hotplug lock held
7276 */
acc3f5d7 7277void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7278 struct sched_domain_attr *dattr_new)
029190c5 7279{
dfb512ec 7280 int i, j, n;
d65bd5ec 7281 int new_topology;
029190c5 7282
712555ee 7283 mutex_lock(&sched_domains_mutex);
a1835615 7284
7378547f
MM
7285 /* always unregister in case we don't destroy any domains */
7286 unregister_sched_domain_sysctl();
7287
d65bd5ec
HC
7288 /* Let architecture update cpu core mappings. */
7289 new_topology = arch_update_cpu_topology();
7290
dfb512ec 7291 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7292
7293 /* Destroy deleted domains */
7294 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7295 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7296 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7297 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7298 goto match1;
7299 }
7300 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7301 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7302match1:
7303 ;
7304 }
7305
e761b772
MK
7306 if (doms_new == NULL) {
7307 ndoms_cur = 0;
acc3f5d7 7308 doms_new = &fallback_doms;
6ad4c188 7309 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7310 WARN_ON_ONCE(dattr_new);
e761b772
MK
7311 }
7312
029190c5
PJ
7313 /* Build new domains */
7314 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 7315 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 7316 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7317 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7318 goto match2;
7319 }
7320 /* no match - add a new doms_new */
acc3f5d7 7321 __build_sched_domains(doms_new[i],
1d3504fc 7322 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7323match2:
7324 ;
7325 }
7326
7327 /* Remember the new sched domains */
acc3f5d7
RR
7328 if (doms_cur != &fallback_doms)
7329 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7330 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7331 doms_cur = doms_new;
1d3504fc 7332 dattr_cur = dattr_new;
029190c5 7333 ndoms_cur = ndoms_new;
7378547f
MM
7334
7335 register_sched_domain_sysctl();
a1835615 7336
712555ee 7337 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7338}
7339
5c45bf27 7340#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 7341static void arch_reinit_sched_domains(void)
5c45bf27 7342{
95402b38 7343 get_online_cpus();
dfb512ec
MK
7344
7345 /* Destroy domains first to force the rebuild */
7346 partition_sched_domains(0, NULL, NULL);
7347
e761b772 7348 rebuild_sched_domains();
95402b38 7349 put_online_cpus();
5c45bf27
SS
7350}
7351
7352static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7353{
afb8a9b7 7354 unsigned int level = 0;
5c45bf27 7355
afb8a9b7
GS
7356 if (sscanf(buf, "%u", &level) != 1)
7357 return -EINVAL;
7358
7359 /*
7360 * level is always be positive so don't check for
7361 * level < POWERSAVINGS_BALANCE_NONE which is 0
7362 * What happens on 0 or 1 byte write,
7363 * need to check for count as well?
7364 */
7365
7366 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
7367 return -EINVAL;
7368
7369 if (smt)
afb8a9b7 7370 sched_smt_power_savings = level;
5c45bf27 7371 else
afb8a9b7 7372 sched_mc_power_savings = level;
5c45bf27 7373
c70f22d2 7374 arch_reinit_sched_domains();
5c45bf27 7375
c70f22d2 7376 return count;
5c45bf27
SS
7377}
7378
5c45bf27 7379#ifdef CONFIG_SCHED_MC
f718cd4a 7380static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
c9be0a36 7381 struct sysdev_class_attribute *attr,
f718cd4a 7382 char *page)
5c45bf27
SS
7383{
7384 return sprintf(page, "%u\n", sched_mc_power_savings);
7385}
f718cd4a 7386static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
c9be0a36 7387 struct sysdev_class_attribute *attr,
48f24c4d 7388 const char *buf, size_t count)
5c45bf27
SS
7389{
7390 return sched_power_savings_store(buf, count, 0);
7391}
f718cd4a
AK
7392static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7393 sched_mc_power_savings_show,
7394 sched_mc_power_savings_store);
5c45bf27
SS
7395#endif
7396
7397#ifdef CONFIG_SCHED_SMT
f718cd4a 7398static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
c9be0a36 7399 struct sysdev_class_attribute *attr,
f718cd4a 7400 char *page)
5c45bf27
SS
7401{
7402 return sprintf(page, "%u\n", sched_smt_power_savings);
7403}
f718cd4a 7404static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
c9be0a36 7405 struct sysdev_class_attribute *attr,
48f24c4d 7406 const char *buf, size_t count)
5c45bf27
SS
7407{
7408 return sched_power_savings_store(buf, count, 1);
7409}
f718cd4a
AK
7410static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7411 sched_smt_power_savings_show,
6707de00
AB
7412 sched_smt_power_savings_store);
7413#endif
7414
39aac648 7415int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
7416{
7417 int err = 0;
7418
7419#ifdef CONFIG_SCHED_SMT
7420 if (smt_capable())
7421 err = sysfs_create_file(&cls->kset.kobj,
7422 &attr_sched_smt_power_savings.attr);
7423#endif
7424#ifdef CONFIG_SCHED_MC
7425 if (!err && mc_capable())
7426 err = sysfs_create_file(&cls->kset.kobj,
7427 &attr_sched_mc_power_savings.attr);
7428#endif
7429 return err;
7430}
6d6bc0ad 7431#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7432
e761b772 7433#ifndef CONFIG_CPUSETS
1da177e4 7434/*
e761b772
MK
7435 * Add online and remove offline CPUs from the scheduler domains.
7436 * When cpusets are enabled they take over this function.
1da177e4
LT
7437 */
7438static int update_sched_domains(struct notifier_block *nfb,
7439 unsigned long action, void *hcpu)
e761b772
MK
7440{
7441 switch (action) {
7442 case CPU_ONLINE:
7443 case CPU_ONLINE_FROZEN:
6ad4c188
PZ
7444 case CPU_DOWN_PREPARE:
7445 case CPU_DOWN_PREPARE_FROZEN:
7446 case CPU_DOWN_FAILED:
7447 case CPU_DOWN_FAILED_FROZEN:
dfb512ec 7448 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7449 return NOTIFY_OK;
7450
7451 default:
7452 return NOTIFY_DONE;
7453 }
7454}
7455#endif
7456
7457static int update_runtime(struct notifier_block *nfb,
7458 unsigned long action, void *hcpu)
1da177e4 7459{
7def2be1
PZ
7460 int cpu = (int)(long)hcpu;
7461
1da177e4 7462 switch (action) {
1da177e4 7463 case CPU_DOWN_PREPARE:
8bb78442 7464 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7465 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7466 return NOTIFY_OK;
7467
1da177e4 7468 case CPU_DOWN_FAILED:
8bb78442 7469 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7470 case CPU_ONLINE:
8bb78442 7471 case CPU_ONLINE_FROZEN:
7def2be1 7472 enable_runtime(cpu_rq(cpu));
e761b772
MK
7473 return NOTIFY_OK;
7474
1da177e4
LT
7475 default:
7476 return NOTIFY_DONE;
7477 }
1da177e4 7478}
1da177e4
LT
7479
7480void __init sched_init_smp(void)
7481{
dcc30a35
RR
7482 cpumask_var_t non_isolated_cpus;
7483
7484 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7485 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7486
434d53b0
MT
7487#if defined(CONFIG_NUMA)
7488 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7489 GFP_KERNEL);
7490 BUG_ON(sched_group_nodes_bycpu == NULL);
7491#endif
95402b38 7492 get_online_cpus();
712555ee 7493 mutex_lock(&sched_domains_mutex);
6ad4c188 7494 arch_init_sched_domains(cpu_active_mask);
dcc30a35
RR
7495 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7496 if (cpumask_empty(non_isolated_cpus))
7497 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7498 mutex_unlock(&sched_domains_mutex);
95402b38 7499 put_online_cpus();
e761b772
MK
7500
7501#ifndef CONFIG_CPUSETS
1da177e4
LT
7502 /* XXX: Theoretical race here - CPU may be hotplugged now */
7503 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7504#endif
7505
7506 /* RT runtime code needs to handle some hotplug events */
7507 hotcpu_notifier(update_runtime, 0);
7508
b328ca18 7509 init_hrtick();
5c1e1767
NP
7510
7511 /* Move init over to a non-isolated CPU */
dcc30a35 7512 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7513 BUG();
19978ca6 7514 sched_init_granularity();
dcc30a35 7515 free_cpumask_var(non_isolated_cpus);
4212823f 7516
0e3900e6 7517 init_sched_rt_class();
1da177e4
LT
7518}
7519#else
7520void __init sched_init_smp(void)
7521{
19978ca6 7522 sched_init_granularity();
1da177e4
LT
7523}
7524#endif /* CONFIG_SMP */
7525
cd1bb94b
AB
7526const_debug unsigned int sysctl_timer_migration = 1;
7527
1da177e4
LT
7528int in_sched_functions(unsigned long addr)
7529{
1da177e4
LT
7530 return in_lock_functions(addr) ||
7531 (addr >= (unsigned long)__sched_text_start
7532 && addr < (unsigned long)__sched_text_end);
7533}
7534
a9957449 7535static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7536{
7537 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7538 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7539#ifdef CONFIG_FAIR_GROUP_SCHED
7540 cfs_rq->rq = rq;
7541#endif
67e9fb2a 7542 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7543}
7544
fa85ae24
PZ
7545static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7546{
7547 struct rt_prio_array *array;
7548 int i;
7549
7550 array = &rt_rq->active;
7551 for (i = 0; i < MAX_RT_PRIO; i++) {
7552 INIT_LIST_HEAD(array->queue + i);
7553 __clear_bit(i, array->bitmap);
7554 }
7555 /* delimiter for bitsearch: */
7556 __set_bit(MAX_RT_PRIO, array->bitmap);
7557
052f1dc7 7558#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 7559 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 7560#ifdef CONFIG_SMP
e864c499 7561 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 7562#endif
48d5e258 7563#endif
fa85ae24
PZ
7564#ifdef CONFIG_SMP
7565 rt_rq->rt_nr_migratory = 0;
fa85ae24 7566 rt_rq->overloaded = 0;
05fa785c 7567 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
7568#endif
7569
7570 rt_rq->rt_time = 0;
7571 rt_rq->rt_throttled = 0;
ac086bc2 7572 rt_rq->rt_runtime = 0;
0986b11b 7573 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7574
052f1dc7 7575#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7576 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7577 rt_rq->rq = rq;
7578#endif
fa85ae24
PZ
7579}
7580
6f505b16 7581#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7582static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7583 struct sched_entity *se, int cpu, int add,
7584 struct sched_entity *parent)
6f505b16 7585{
ec7dc8ac 7586 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7587 tg->cfs_rq[cpu] = cfs_rq;
7588 init_cfs_rq(cfs_rq, rq);
7589 cfs_rq->tg = tg;
7590 if (add)
7591 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7592
7593 tg->se[cpu] = se;
354d60c2
DG
7594 /* se could be NULL for init_task_group */
7595 if (!se)
7596 return;
7597
ec7dc8ac
DG
7598 if (!parent)
7599 se->cfs_rq = &rq->cfs;
7600 else
7601 se->cfs_rq = parent->my_q;
7602
6f505b16
PZ
7603 se->my_q = cfs_rq;
7604 se->load.weight = tg->shares;
e05510d0 7605 se->load.inv_weight = 0;
ec7dc8ac 7606 se->parent = parent;
6f505b16 7607}
052f1dc7 7608#endif
6f505b16 7609
052f1dc7 7610#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7611static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7612 struct sched_rt_entity *rt_se, int cpu, int add,
7613 struct sched_rt_entity *parent)
6f505b16 7614{
ec7dc8ac
DG
7615 struct rq *rq = cpu_rq(cpu);
7616
6f505b16
PZ
7617 tg->rt_rq[cpu] = rt_rq;
7618 init_rt_rq(rt_rq, rq);
7619 rt_rq->tg = tg;
ac086bc2 7620 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7621 if (add)
7622 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7623
7624 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7625 if (!rt_se)
7626 return;
7627
ec7dc8ac
DG
7628 if (!parent)
7629 rt_se->rt_rq = &rq->rt;
7630 else
7631 rt_se->rt_rq = parent->my_q;
7632
6f505b16 7633 rt_se->my_q = rt_rq;
ec7dc8ac 7634 rt_se->parent = parent;
6f505b16
PZ
7635 INIT_LIST_HEAD(&rt_se->run_list);
7636}
7637#endif
7638
1da177e4
LT
7639void __init sched_init(void)
7640{
dd41f596 7641 int i, j;
434d53b0
MT
7642 unsigned long alloc_size = 0, ptr;
7643
7644#ifdef CONFIG_FAIR_GROUP_SCHED
7645 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7646#endif
7647#ifdef CONFIG_RT_GROUP_SCHED
7648 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7649#endif
df7c8e84 7650#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7651 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7652#endif
434d53b0 7653 if (alloc_size) {
36b7b6d4 7654 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7655
7656#ifdef CONFIG_FAIR_GROUP_SCHED
7657 init_task_group.se = (struct sched_entity **)ptr;
7658 ptr += nr_cpu_ids * sizeof(void **);
7659
7660 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7661 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7662
6d6bc0ad 7663#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7664#ifdef CONFIG_RT_GROUP_SCHED
7665 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7666 ptr += nr_cpu_ids * sizeof(void **);
7667
7668 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7669 ptr += nr_cpu_ids * sizeof(void **);
7670
6d6bc0ad 7671#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7672#ifdef CONFIG_CPUMASK_OFFSTACK
7673 for_each_possible_cpu(i) {
7674 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7675 ptr += cpumask_size();
7676 }
7677#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7678 }
dd41f596 7679
57d885fe
GH
7680#ifdef CONFIG_SMP
7681 init_defrootdomain();
7682#endif
7683
d0b27fa7
PZ
7684 init_rt_bandwidth(&def_rt_bandwidth,
7685 global_rt_period(), global_rt_runtime());
7686
7687#ifdef CONFIG_RT_GROUP_SCHED
7688 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7689 global_rt_period(), global_rt_runtime());
6d6bc0ad 7690#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7691
7c941438 7692#ifdef CONFIG_CGROUP_SCHED
6f505b16 7693 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7694 INIT_LIST_HEAD(&init_task_group.children);
7695
7c941438 7696#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7697
4a6cc4bd
JK
7698#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7699 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7700 __alignof__(unsigned long));
7701#endif
0a945022 7702 for_each_possible_cpu(i) {
70b97a7f 7703 struct rq *rq;
1da177e4
LT
7704
7705 rq = cpu_rq(i);
05fa785c 7706 raw_spin_lock_init(&rq->lock);
7897986b 7707 rq->nr_running = 0;
dce48a84
TG
7708 rq->calc_load_active = 0;
7709 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 7710 init_cfs_rq(&rq->cfs, rq);
6f505b16 7711 init_rt_rq(&rq->rt, rq);
dd41f596 7712#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7713 init_task_group.shares = init_task_group_load;
6f505b16 7714 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7715#ifdef CONFIG_CGROUP_SCHED
7716 /*
7717 * How much cpu bandwidth does init_task_group get?
7718 *
7719 * In case of task-groups formed thr' the cgroup filesystem, it
7720 * gets 100% of the cpu resources in the system. This overall
7721 * system cpu resource is divided among the tasks of
7722 * init_task_group and its child task-groups in a fair manner,
7723 * based on each entity's (task or task-group's) weight
7724 * (se->load.weight).
7725 *
7726 * In other words, if init_task_group has 10 tasks of weight
7727 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7728 * then A0's share of the cpu resource is:
7729 *
0d905bca 7730 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
7731 *
7732 * We achieve this by letting init_task_group's tasks sit
7733 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7734 */
ec7dc8ac 7735 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
052f1dc7 7736#endif
354d60c2
DG
7737#endif /* CONFIG_FAIR_GROUP_SCHED */
7738
7739 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7740#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7741 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7742#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7743 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7744#endif
dd41f596 7745#endif
1da177e4 7746
dd41f596
IM
7747 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7748 rq->cpu_load[j] = 0;
1da177e4 7749#ifdef CONFIG_SMP
41c7ce9a 7750 rq->sd = NULL;
57d885fe 7751 rq->rd = NULL;
3f029d3c 7752 rq->post_schedule = 0;
1da177e4 7753 rq->active_balance = 0;
dd41f596 7754 rq->next_balance = jiffies;
1da177e4 7755 rq->push_cpu = 0;
0a2966b4 7756 rq->cpu = i;
1f11eb6a 7757 rq->online = 0;
1da177e4 7758 rq->migration_thread = NULL;
eae0c9df
MG
7759 rq->idle_stamp = 0;
7760 rq->avg_idle = 2*sysctl_sched_migration_cost;
1da177e4 7761 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7762 rq_attach_root(rq, &def_root_domain);
1da177e4 7763#endif
8f4d37ec 7764 init_rq_hrtick(rq);
1da177e4 7765 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7766 }
7767
2dd73a4f 7768 set_load_weight(&init_task);
b50f60ce 7769
e107be36
AK
7770#ifdef CONFIG_PREEMPT_NOTIFIERS
7771 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7772#endif
7773
c9819f45 7774#ifdef CONFIG_SMP
962cf36c 7775 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
7776#endif
7777
b50f60ce 7778#ifdef CONFIG_RT_MUTEXES
1d615482 7779 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
b50f60ce
HC
7780#endif
7781
1da177e4
LT
7782 /*
7783 * The boot idle thread does lazy MMU switching as well:
7784 */
7785 atomic_inc(&init_mm.mm_count);
7786 enter_lazy_tlb(&init_mm, current);
7787
7788 /*
7789 * Make us the idle thread. Technically, schedule() should not be
7790 * called from this thread, however somewhere below it might be,
7791 * but because we are the idle thread, we just pick up running again
7792 * when this runqueue becomes "idle".
7793 */
7794 init_idle(current, smp_processor_id());
dce48a84
TG
7795
7796 calc_load_update = jiffies + LOAD_FREQ;
7797
dd41f596
IM
7798 /*
7799 * During early bootup we pretend to be a normal task:
7800 */
7801 current->sched_class = &fair_sched_class;
6892b75e 7802
6a7b3dc3 7803 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
49557e62 7804 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 7805#ifdef CONFIG_SMP
7d1e6a9b 7806#ifdef CONFIG_NO_HZ
49557e62 7807 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
4bdddf8f 7808 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 7809#endif
bdddd296
RR
7810 /* May be allocated at isolcpus cmdline parse time */
7811 if (cpu_isolated_map == NULL)
7812 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 7813#endif /* SMP */
6a7b3dc3 7814
cdd6c482 7815 perf_event_init();
0d905bca 7816
6892b75e 7817 scheduler_running = 1;
1da177e4
LT
7818}
7819
7820#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
7821static inline int preempt_count_equals(int preempt_offset)
7822{
234da7bc 7823 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2
FW
7824
7825 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7826}
7827
d894837f 7828void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7829{
48f24c4d 7830#ifdef in_atomic
1da177e4
LT
7831 static unsigned long prev_jiffy; /* ratelimiting */
7832
e4aafea2
FW
7833 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7834 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7835 return;
7836 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7837 return;
7838 prev_jiffy = jiffies;
7839
3df0fc5b
PZ
7840 printk(KERN_ERR
7841 "BUG: sleeping function called from invalid context at %s:%d\n",
7842 file, line);
7843 printk(KERN_ERR
7844 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7845 in_atomic(), irqs_disabled(),
7846 current->pid, current->comm);
aef745fc
IM
7847
7848 debug_show_held_locks(current);
7849 if (irqs_disabled())
7850 print_irqtrace_events(current);
7851 dump_stack();
1da177e4
LT
7852#endif
7853}
7854EXPORT_SYMBOL(__might_sleep);
7855#endif
7856
7857#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7858static void normalize_task(struct rq *rq, struct task_struct *p)
7859{
7860 int on_rq;
3e51f33f 7861
3a5e4dc1
AK
7862 update_rq_clock(rq);
7863 on_rq = p->se.on_rq;
7864 if (on_rq)
7865 deactivate_task(rq, p, 0);
7866 __setscheduler(rq, p, SCHED_NORMAL, 0);
7867 if (on_rq) {
7868 activate_task(rq, p, 0);
7869 resched_task(rq->curr);
7870 }
7871}
7872
1da177e4
LT
7873void normalize_rt_tasks(void)
7874{
a0f98a1c 7875 struct task_struct *g, *p;
1da177e4 7876 unsigned long flags;
70b97a7f 7877 struct rq *rq;
1da177e4 7878
4cf5d77a 7879 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7880 do_each_thread(g, p) {
178be793
IM
7881 /*
7882 * Only normalize user tasks:
7883 */
7884 if (!p->mm)
7885 continue;
7886
6cfb0d5d 7887 p->se.exec_start = 0;
6cfb0d5d 7888#ifdef CONFIG_SCHEDSTATS
dd41f596 7889 p->se.wait_start = 0;
dd41f596 7890 p->se.sleep_start = 0;
dd41f596 7891 p->se.block_start = 0;
6cfb0d5d 7892#endif
dd41f596
IM
7893
7894 if (!rt_task(p)) {
7895 /*
7896 * Renice negative nice level userspace
7897 * tasks back to 0:
7898 */
7899 if (TASK_NICE(p) < 0 && p->mm)
7900 set_user_nice(p, 0);
1da177e4 7901 continue;
dd41f596 7902 }
1da177e4 7903
1d615482 7904 raw_spin_lock(&p->pi_lock);
b29739f9 7905 rq = __task_rq_lock(p);
1da177e4 7906
178be793 7907 normalize_task(rq, p);
3a5e4dc1 7908
b29739f9 7909 __task_rq_unlock(rq);
1d615482 7910 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7911 } while_each_thread(g, p);
7912
4cf5d77a 7913 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7914}
7915
7916#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7917
7918#ifdef CONFIG_IA64
7919/*
7920 * These functions are only useful for the IA64 MCA handling.
7921 *
7922 * They can only be called when the whole system has been
7923 * stopped - every CPU needs to be quiescent, and no scheduling
7924 * activity can take place. Using them for anything else would
7925 * be a serious bug, and as a result, they aren't even visible
7926 * under any other configuration.
7927 */
7928
7929/**
7930 * curr_task - return the current task for a given cpu.
7931 * @cpu: the processor in question.
7932 *
7933 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7934 */
36c8b586 7935struct task_struct *curr_task(int cpu)
1df5c10a
LT
7936{
7937 return cpu_curr(cpu);
7938}
7939
7940/**
7941 * set_curr_task - set the current task for a given cpu.
7942 * @cpu: the processor in question.
7943 * @p: the task pointer to set.
7944 *
7945 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7946 * are serviced on a separate stack. It allows the architecture to switch the
7947 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7948 * must be called with all CPU's synchronized, and interrupts disabled, the
7949 * and caller must save the original value of the current task (see
7950 * curr_task() above) and restore that value before reenabling interrupts and
7951 * re-starting the system.
7952 *
7953 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7954 */
36c8b586 7955void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7956{
7957 cpu_curr(cpu) = p;
7958}
7959
7960#endif
29f59db3 7961
bccbe08a
PZ
7962#ifdef CONFIG_FAIR_GROUP_SCHED
7963static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
7964{
7965 int i;
7966
7967 for_each_possible_cpu(i) {
7968 if (tg->cfs_rq)
7969 kfree(tg->cfs_rq[i]);
7970 if (tg->se)
7971 kfree(tg->se[i]);
6f505b16
PZ
7972 }
7973
7974 kfree(tg->cfs_rq);
7975 kfree(tg->se);
6f505b16
PZ
7976}
7977
ec7dc8ac
DG
7978static
7979int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 7980{
29f59db3 7981 struct cfs_rq *cfs_rq;
eab17229 7982 struct sched_entity *se;
9b5b7751 7983 struct rq *rq;
29f59db3
SV
7984 int i;
7985
434d53b0 7986 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7987 if (!tg->cfs_rq)
7988 goto err;
434d53b0 7989 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
7990 if (!tg->se)
7991 goto err;
052f1dc7
PZ
7992
7993 tg->shares = NICE_0_LOAD;
29f59db3
SV
7994
7995 for_each_possible_cpu(i) {
9b5b7751 7996 rq = cpu_rq(i);
29f59db3 7997
eab17229
LZ
7998 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7999 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8000 if (!cfs_rq)
8001 goto err;
8002
eab17229
LZ
8003 se = kzalloc_node(sizeof(struct sched_entity),
8004 GFP_KERNEL, cpu_to_node(i));
29f59db3 8005 if (!se)
dfc12eb2 8006 goto err_free_rq;
29f59db3 8007
eab17229 8008 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8009 }
8010
8011 return 1;
8012
dfc12eb2
PC
8013 err_free_rq:
8014 kfree(cfs_rq);
bccbe08a
PZ
8015 err:
8016 return 0;
8017}
8018
8019static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8020{
8021 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8022 &cpu_rq(cpu)->leaf_cfs_rq_list);
8023}
8024
8025static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8026{
8027 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8028}
6d6bc0ad 8029#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8030static inline void free_fair_sched_group(struct task_group *tg)
8031{
8032}
8033
ec7dc8ac
DG
8034static inline
8035int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8036{
8037 return 1;
8038}
8039
8040static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8041{
8042}
8043
8044static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8045{
8046}
6d6bc0ad 8047#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8048
8049#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8050static void free_rt_sched_group(struct task_group *tg)
8051{
8052 int i;
8053
d0b27fa7
PZ
8054 destroy_rt_bandwidth(&tg->rt_bandwidth);
8055
bccbe08a
PZ
8056 for_each_possible_cpu(i) {
8057 if (tg->rt_rq)
8058 kfree(tg->rt_rq[i]);
8059 if (tg->rt_se)
8060 kfree(tg->rt_se[i]);
8061 }
8062
8063 kfree(tg->rt_rq);
8064 kfree(tg->rt_se);
8065}
8066
ec7dc8ac
DG
8067static
8068int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8069{
8070 struct rt_rq *rt_rq;
eab17229 8071 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8072 struct rq *rq;
8073 int i;
8074
434d53b0 8075 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8076 if (!tg->rt_rq)
8077 goto err;
434d53b0 8078 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8079 if (!tg->rt_se)
8080 goto err;
8081
d0b27fa7
PZ
8082 init_rt_bandwidth(&tg->rt_bandwidth,
8083 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8084
8085 for_each_possible_cpu(i) {
8086 rq = cpu_rq(i);
8087
eab17229
LZ
8088 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8089 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8090 if (!rt_rq)
8091 goto err;
29f59db3 8092
eab17229
LZ
8093 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8094 GFP_KERNEL, cpu_to_node(i));
6f505b16 8095 if (!rt_se)
dfc12eb2 8096 goto err_free_rq;
29f59db3 8097
eab17229 8098 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8099 }
8100
bccbe08a
PZ
8101 return 1;
8102
dfc12eb2
PC
8103 err_free_rq:
8104 kfree(rt_rq);
bccbe08a
PZ
8105 err:
8106 return 0;
8107}
8108
8109static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8110{
8111 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8112 &cpu_rq(cpu)->leaf_rt_rq_list);
8113}
8114
8115static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8116{
8117 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8118}
6d6bc0ad 8119#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8120static inline void free_rt_sched_group(struct task_group *tg)
8121{
8122}
8123
ec7dc8ac
DG
8124static inline
8125int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8126{
8127 return 1;
8128}
8129
8130static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8131{
8132}
8133
8134static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8135{
8136}
6d6bc0ad 8137#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8138
7c941438 8139#ifdef CONFIG_CGROUP_SCHED
bccbe08a
PZ
8140static void free_sched_group(struct task_group *tg)
8141{
8142 free_fair_sched_group(tg);
8143 free_rt_sched_group(tg);
8144 kfree(tg);
8145}
8146
8147/* allocate runqueue etc for a new task group */
ec7dc8ac 8148struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8149{
8150 struct task_group *tg;
8151 unsigned long flags;
8152 int i;
8153
8154 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8155 if (!tg)
8156 return ERR_PTR(-ENOMEM);
8157
ec7dc8ac 8158 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8159 goto err;
8160
ec7dc8ac 8161 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8162 goto err;
8163
8ed36996 8164 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8165 for_each_possible_cpu(i) {
bccbe08a
PZ
8166 register_fair_sched_group(tg, i);
8167 register_rt_sched_group(tg, i);
9b5b7751 8168 }
6f505b16 8169 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8170
8171 WARN_ON(!parent); /* root should already exist */
8172
8173 tg->parent = parent;
f473aa5e 8174 INIT_LIST_HEAD(&tg->children);
09f2724a 8175 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8176 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8177
9b5b7751 8178 return tg;
29f59db3
SV
8179
8180err:
6f505b16 8181 free_sched_group(tg);
29f59db3
SV
8182 return ERR_PTR(-ENOMEM);
8183}
8184
9b5b7751 8185/* rcu callback to free various structures associated with a task group */
6f505b16 8186static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8187{
29f59db3 8188 /* now it should be safe to free those cfs_rqs */
6f505b16 8189 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8190}
8191
9b5b7751 8192/* Destroy runqueue etc associated with a task group */
4cf86d77 8193void sched_destroy_group(struct task_group *tg)
29f59db3 8194{
8ed36996 8195 unsigned long flags;
9b5b7751 8196 int i;
29f59db3 8197
8ed36996 8198 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8199 for_each_possible_cpu(i) {
bccbe08a
PZ
8200 unregister_fair_sched_group(tg, i);
8201 unregister_rt_sched_group(tg, i);
9b5b7751 8202 }
6f505b16 8203 list_del_rcu(&tg->list);
f473aa5e 8204 list_del_rcu(&tg->siblings);
8ed36996 8205 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8206
9b5b7751 8207 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8208 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8209}
8210
9b5b7751 8211/* change task's runqueue when it moves between groups.
3a252015
IM
8212 * The caller of this function should have put the task in its new group
8213 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8214 * reflect its new group.
9b5b7751
SV
8215 */
8216void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8217{
8218 int on_rq, running;
8219 unsigned long flags;
8220 struct rq *rq;
8221
8222 rq = task_rq_lock(tsk, &flags);
8223
29f59db3
SV
8224 update_rq_clock(rq);
8225
051a1d1a 8226 running = task_current(rq, tsk);
29f59db3
SV
8227 on_rq = tsk->se.on_rq;
8228
0e1f3483 8229 if (on_rq)
29f59db3 8230 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8231 if (unlikely(running))
8232 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8233
6f505b16 8234 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8235
810b3817
PZ
8236#ifdef CONFIG_FAIR_GROUP_SCHED
8237 if (tsk->sched_class->moved_group)
88ec22d3 8238 tsk->sched_class->moved_group(tsk, on_rq);
810b3817
PZ
8239#endif
8240
0e1f3483
HS
8241 if (unlikely(running))
8242 tsk->sched_class->set_curr_task(rq);
8243 if (on_rq)
ea87bb78 8244 enqueue_task(rq, tsk, 0, false);
29f59db3 8245
29f59db3
SV
8246 task_rq_unlock(rq, &flags);
8247}
7c941438 8248#endif /* CONFIG_CGROUP_SCHED */
29f59db3 8249
052f1dc7 8250#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8251static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8252{
8253 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8254 int on_rq;
8255
29f59db3 8256 on_rq = se->on_rq;
62fb1851 8257 if (on_rq)
29f59db3
SV
8258 dequeue_entity(cfs_rq, se, 0);
8259
8260 se->load.weight = shares;
e05510d0 8261 se->load.inv_weight = 0;
29f59db3 8262
62fb1851 8263 if (on_rq)
29f59db3 8264 enqueue_entity(cfs_rq, se, 0);
c09595f6 8265}
62fb1851 8266
c09595f6
PZ
8267static void set_se_shares(struct sched_entity *se, unsigned long shares)
8268{
8269 struct cfs_rq *cfs_rq = se->cfs_rq;
8270 struct rq *rq = cfs_rq->rq;
8271 unsigned long flags;
8272
05fa785c 8273 raw_spin_lock_irqsave(&rq->lock, flags);
c09595f6 8274 __set_se_shares(se, shares);
05fa785c 8275 raw_spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8276}
8277
8ed36996
PZ
8278static DEFINE_MUTEX(shares_mutex);
8279
4cf86d77 8280int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8281{
8282 int i;
8ed36996 8283 unsigned long flags;
c61935fd 8284
ec7dc8ac
DG
8285 /*
8286 * We can't change the weight of the root cgroup.
8287 */
8288 if (!tg->se[0])
8289 return -EINVAL;
8290
18d95a28
PZ
8291 if (shares < MIN_SHARES)
8292 shares = MIN_SHARES;
cb4ad1ff
MX
8293 else if (shares > MAX_SHARES)
8294 shares = MAX_SHARES;
62fb1851 8295
8ed36996 8296 mutex_lock(&shares_mutex);
9b5b7751 8297 if (tg->shares == shares)
5cb350ba 8298 goto done;
29f59db3 8299
8ed36996 8300 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8301 for_each_possible_cpu(i)
8302 unregister_fair_sched_group(tg, i);
f473aa5e 8303 list_del_rcu(&tg->siblings);
8ed36996 8304 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8305
8306 /* wait for any ongoing reference to this group to finish */
8307 synchronize_sched();
8308
8309 /*
8310 * Now we are free to modify the group's share on each cpu
8311 * w/o tripping rebalance_share or load_balance_fair.
8312 */
9b5b7751 8313 tg->shares = shares;
c09595f6
PZ
8314 for_each_possible_cpu(i) {
8315 /*
8316 * force a rebalance
8317 */
8318 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8319 set_se_shares(tg->se[i], shares);
c09595f6 8320 }
29f59db3 8321
6b2d7700
SV
8322 /*
8323 * Enable load balance activity on this group, by inserting it back on
8324 * each cpu's rq->leaf_cfs_rq_list.
8325 */
8ed36996 8326 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8327 for_each_possible_cpu(i)
8328 register_fair_sched_group(tg, i);
f473aa5e 8329 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8330 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8331done:
8ed36996 8332 mutex_unlock(&shares_mutex);
9b5b7751 8333 return 0;
29f59db3
SV
8334}
8335
5cb350ba
DG
8336unsigned long sched_group_shares(struct task_group *tg)
8337{
8338 return tg->shares;
8339}
052f1dc7 8340#endif
5cb350ba 8341
052f1dc7 8342#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8343/*
9f0c1e56 8344 * Ensure that the real time constraints are schedulable.
6f505b16 8345 */
9f0c1e56
PZ
8346static DEFINE_MUTEX(rt_constraints_mutex);
8347
8348static unsigned long to_ratio(u64 period, u64 runtime)
8349{
8350 if (runtime == RUNTIME_INF)
9a7e0b18 8351 return 1ULL << 20;
9f0c1e56 8352
9a7e0b18 8353 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8354}
8355
9a7e0b18
PZ
8356/* Must be called with tasklist_lock held */
8357static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8358{
9a7e0b18 8359 struct task_struct *g, *p;
b40b2e8e 8360
9a7e0b18
PZ
8361 do_each_thread(g, p) {
8362 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8363 return 1;
8364 } while_each_thread(g, p);
b40b2e8e 8365
9a7e0b18
PZ
8366 return 0;
8367}
b40b2e8e 8368
9a7e0b18
PZ
8369struct rt_schedulable_data {
8370 struct task_group *tg;
8371 u64 rt_period;
8372 u64 rt_runtime;
8373};
b40b2e8e 8374
9a7e0b18
PZ
8375static int tg_schedulable(struct task_group *tg, void *data)
8376{
8377 struct rt_schedulable_data *d = data;
8378 struct task_group *child;
8379 unsigned long total, sum = 0;
8380 u64 period, runtime;
b40b2e8e 8381
9a7e0b18
PZ
8382 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8383 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8384
9a7e0b18
PZ
8385 if (tg == d->tg) {
8386 period = d->rt_period;
8387 runtime = d->rt_runtime;
b40b2e8e 8388 }
b40b2e8e 8389
4653f803
PZ
8390 /*
8391 * Cannot have more runtime than the period.
8392 */
8393 if (runtime > period && runtime != RUNTIME_INF)
8394 return -EINVAL;
6f505b16 8395
4653f803
PZ
8396 /*
8397 * Ensure we don't starve existing RT tasks.
8398 */
9a7e0b18
PZ
8399 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8400 return -EBUSY;
6f505b16 8401
9a7e0b18 8402 total = to_ratio(period, runtime);
6f505b16 8403
4653f803
PZ
8404 /*
8405 * Nobody can have more than the global setting allows.
8406 */
8407 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8408 return -EINVAL;
6f505b16 8409
4653f803
PZ
8410 /*
8411 * The sum of our children's runtime should not exceed our own.
8412 */
9a7e0b18
PZ
8413 list_for_each_entry_rcu(child, &tg->children, siblings) {
8414 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8415 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8416
9a7e0b18
PZ
8417 if (child == d->tg) {
8418 period = d->rt_period;
8419 runtime = d->rt_runtime;
8420 }
6f505b16 8421
9a7e0b18 8422 sum += to_ratio(period, runtime);
9f0c1e56 8423 }
6f505b16 8424
9a7e0b18
PZ
8425 if (sum > total)
8426 return -EINVAL;
8427
8428 return 0;
6f505b16
PZ
8429}
8430
9a7e0b18 8431static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8432{
9a7e0b18
PZ
8433 struct rt_schedulable_data data = {
8434 .tg = tg,
8435 .rt_period = period,
8436 .rt_runtime = runtime,
8437 };
8438
8439 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8440}
8441
d0b27fa7
PZ
8442static int tg_set_bandwidth(struct task_group *tg,
8443 u64 rt_period, u64 rt_runtime)
6f505b16 8444{
ac086bc2 8445 int i, err = 0;
9f0c1e56 8446
9f0c1e56 8447 mutex_lock(&rt_constraints_mutex);
521f1a24 8448 read_lock(&tasklist_lock);
9a7e0b18
PZ
8449 err = __rt_schedulable(tg, rt_period, rt_runtime);
8450 if (err)
9f0c1e56 8451 goto unlock;
ac086bc2 8452
0986b11b 8453 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8454 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8455 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8456
8457 for_each_possible_cpu(i) {
8458 struct rt_rq *rt_rq = tg->rt_rq[i];
8459
0986b11b 8460 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8461 rt_rq->rt_runtime = rt_runtime;
0986b11b 8462 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8463 }
0986b11b 8464 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8465 unlock:
521f1a24 8466 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8467 mutex_unlock(&rt_constraints_mutex);
8468
8469 return err;
6f505b16
PZ
8470}
8471
d0b27fa7
PZ
8472int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8473{
8474 u64 rt_runtime, rt_period;
8475
8476 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8477 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8478 if (rt_runtime_us < 0)
8479 rt_runtime = RUNTIME_INF;
8480
8481 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8482}
8483
9f0c1e56
PZ
8484long sched_group_rt_runtime(struct task_group *tg)
8485{
8486 u64 rt_runtime_us;
8487
d0b27fa7 8488 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8489 return -1;
8490
d0b27fa7 8491 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8492 do_div(rt_runtime_us, NSEC_PER_USEC);
8493 return rt_runtime_us;
8494}
d0b27fa7
PZ
8495
8496int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8497{
8498 u64 rt_runtime, rt_period;
8499
8500 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8501 rt_runtime = tg->rt_bandwidth.rt_runtime;
8502
619b0488
R
8503 if (rt_period == 0)
8504 return -EINVAL;
8505
d0b27fa7
PZ
8506 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8507}
8508
8509long sched_group_rt_period(struct task_group *tg)
8510{
8511 u64 rt_period_us;
8512
8513 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8514 do_div(rt_period_us, NSEC_PER_USEC);
8515 return rt_period_us;
8516}
8517
8518static int sched_rt_global_constraints(void)
8519{
4653f803 8520 u64 runtime, period;
d0b27fa7
PZ
8521 int ret = 0;
8522
ec5d4989
HS
8523 if (sysctl_sched_rt_period <= 0)
8524 return -EINVAL;
8525
4653f803
PZ
8526 runtime = global_rt_runtime();
8527 period = global_rt_period();
8528
8529 /*
8530 * Sanity check on the sysctl variables.
8531 */
8532 if (runtime > period && runtime != RUNTIME_INF)
8533 return -EINVAL;
10b612f4 8534
d0b27fa7 8535 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8536 read_lock(&tasklist_lock);
4653f803 8537 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8538 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8539 mutex_unlock(&rt_constraints_mutex);
8540
8541 return ret;
8542}
54e99124
DG
8543
8544int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8545{
8546 /* Don't accept realtime tasks when there is no way for them to run */
8547 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8548 return 0;
8549
8550 return 1;
8551}
8552
6d6bc0ad 8553#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8554static int sched_rt_global_constraints(void)
8555{
ac086bc2
PZ
8556 unsigned long flags;
8557 int i;
8558
ec5d4989
HS
8559 if (sysctl_sched_rt_period <= 0)
8560 return -EINVAL;
8561
60aa605d
PZ
8562 /*
8563 * There's always some RT tasks in the root group
8564 * -- migration, kstopmachine etc..
8565 */
8566 if (sysctl_sched_rt_runtime == 0)
8567 return -EBUSY;
8568
0986b11b 8569 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8570 for_each_possible_cpu(i) {
8571 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8572
0986b11b 8573 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8574 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8575 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8576 }
0986b11b 8577 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8578
d0b27fa7
PZ
8579 return 0;
8580}
6d6bc0ad 8581#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8582
8583int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8584 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8585 loff_t *ppos)
8586{
8587 int ret;
8588 int old_period, old_runtime;
8589 static DEFINE_MUTEX(mutex);
8590
8591 mutex_lock(&mutex);
8592 old_period = sysctl_sched_rt_period;
8593 old_runtime = sysctl_sched_rt_runtime;
8594
8d65af78 8595 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8596
8597 if (!ret && write) {
8598 ret = sched_rt_global_constraints();
8599 if (ret) {
8600 sysctl_sched_rt_period = old_period;
8601 sysctl_sched_rt_runtime = old_runtime;
8602 } else {
8603 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8604 def_rt_bandwidth.rt_period =
8605 ns_to_ktime(global_rt_period());
8606 }
8607 }
8608 mutex_unlock(&mutex);
8609
8610 return ret;
8611}
68318b8e 8612
052f1dc7 8613#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8614
8615/* return corresponding task_group object of a cgroup */
2b01dfe3 8616static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8617{
2b01dfe3
PM
8618 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8619 struct task_group, css);
68318b8e
SV
8620}
8621
8622static struct cgroup_subsys_state *
2b01dfe3 8623cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8624{
ec7dc8ac 8625 struct task_group *tg, *parent;
68318b8e 8626
2b01dfe3 8627 if (!cgrp->parent) {
68318b8e 8628 /* This is early initialization for the top cgroup */
68318b8e
SV
8629 return &init_task_group.css;
8630 }
8631
ec7dc8ac
DG
8632 parent = cgroup_tg(cgrp->parent);
8633 tg = sched_create_group(parent);
68318b8e
SV
8634 if (IS_ERR(tg))
8635 return ERR_PTR(-ENOMEM);
8636
68318b8e
SV
8637 return &tg->css;
8638}
8639
41a2d6cf
IM
8640static void
8641cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8642{
2b01dfe3 8643 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8644
8645 sched_destroy_group(tg);
8646}
8647
41a2d6cf 8648static int
be367d09 8649cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
68318b8e 8650{
b68aa230 8651#ifdef CONFIG_RT_GROUP_SCHED
54e99124 8652 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
8653 return -EINVAL;
8654#else
68318b8e
SV
8655 /* We don't support RT-tasks being in separate groups */
8656 if (tsk->sched_class != &fair_sched_class)
8657 return -EINVAL;
b68aa230 8658#endif
be367d09
BB
8659 return 0;
8660}
68318b8e 8661
be367d09
BB
8662static int
8663cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8664 struct task_struct *tsk, bool threadgroup)
8665{
8666 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8667 if (retval)
8668 return retval;
8669 if (threadgroup) {
8670 struct task_struct *c;
8671 rcu_read_lock();
8672 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8673 retval = cpu_cgroup_can_attach_task(cgrp, c);
8674 if (retval) {
8675 rcu_read_unlock();
8676 return retval;
8677 }
8678 }
8679 rcu_read_unlock();
8680 }
68318b8e
SV
8681 return 0;
8682}
8683
8684static void
2b01dfe3 8685cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
be367d09
BB
8686 struct cgroup *old_cont, struct task_struct *tsk,
8687 bool threadgroup)
68318b8e
SV
8688{
8689 sched_move_task(tsk);
be367d09
BB
8690 if (threadgroup) {
8691 struct task_struct *c;
8692 rcu_read_lock();
8693 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8694 sched_move_task(c);
8695 }
8696 rcu_read_unlock();
8697 }
68318b8e
SV
8698}
8699
052f1dc7 8700#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8701static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8702 u64 shareval)
68318b8e 8703{
2b01dfe3 8704 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8705}
8706
f4c753b7 8707static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8708{
2b01dfe3 8709 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8710
8711 return (u64) tg->shares;
8712}
6d6bc0ad 8713#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8714
052f1dc7 8715#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8716static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8717 s64 val)
6f505b16 8718{
06ecb27c 8719 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8720}
8721
06ecb27c 8722static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8723{
06ecb27c 8724 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8725}
d0b27fa7
PZ
8726
8727static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8728 u64 rt_period_us)
8729{
8730 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8731}
8732
8733static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8734{
8735 return sched_group_rt_period(cgroup_tg(cgrp));
8736}
6d6bc0ad 8737#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8738
fe5c7cc2 8739static struct cftype cpu_files[] = {
052f1dc7 8740#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8741 {
8742 .name = "shares",
f4c753b7
PM
8743 .read_u64 = cpu_shares_read_u64,
8744 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8745 },
052f1dc7
PZ
8746#endif
8747#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8748 {
9f0c1e56 8749 .name = "rt_runtime_us",
06ecb27c
PM
8750 .read_s64 = cpu_rt_runtime_read,
8751 .write_s64 = cpu_rt_runtime_write,
6f505b16 8752 },
d0b27fa7
PZ
8753 {
8754 .name = "rt_period_us",
f4c753b7
PM
8755 .read_u64 = cpu_rt_period_read_uint,
8756 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8757 },
052f1dc7 8758#endif
68318b8e
SV
8759};
8760
8761static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8762{
fe5c7cc2 8763 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8764}
8765
8766struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8767 .name = "cpu",
8768 .create = cpu_cgroup_create,
8769 .destroy = cpu_cgroup_destroy,
8770 .can_attach = cpu_cgroup_can_attach,
8771 .attach = cpu_cgroup_attach,
8772 .populate = cpu_cgroup_populate,
8773 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8774 .early_init = 1,
8775};
8776
052f1dc7 8777#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8778
8779#ifdef CONFIG_CGROUP_CPUACCT
8780
8781/*
8782 * CPU accounting code for task groups.
8783 *
8784 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8785 * (balbir@in.ibm.com).
8786 */
8787
934352f2 8788/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
8789struct cpuacct {
8790 struct cgroup_subsys_state css;
8791 /* cpuusage holds pointer to a u64-type object on every cpu */
43cf38eb 8792 u64 __percpu *cpuusage;
ef12fefa 8793 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 8794 struct cpuacct *parent;
d842de87
SV
8795};
8796
8797struct cgroup_subsys cpuacct_subsys;
8798
8799/* return cpu accounting group corresponding to this container */
32cd756a 8800static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8801{
32cd756a 8802 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8803 struct cpuacct, css);
8804}
8805
8806/* return cpu accounting group to which this task belongs */
8807static inline struct cpuacct *task_ca(struct task_struct *tsk)
8808{
8809 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8810 struct cpuacct, css);
8811}
8812
8813/* create a new cpu accounting group */
8814static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8815 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8816{
8817 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 8818 int i;
d842de87
SV
8819
8820 if (!ca)
ef12fefa 8821 goto out;
d842de87
SV
8822
8823 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8824 if (!ca->cpuusage)
8825 goto out_free_ca;
8826
8827 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8828 if (percpu_counter_init(&ca->cpustat[i], 0))
8829 goto out_free_counters;
d842de87 8830
934352f2
BR
8831 if (cgrp->parent)
8832 ca->parent = cgroup_ca(cgrp->parent);
8833
d842de87 8834 return &ca->css;
ef12fefa
BR
8835
8836out_free_counters:
8837 while (--i >= 0)
8838 percpu_counter_destroy(&ca->cpustat[i]);
8839 free_percpu(ca->cpuusage);
8840out_free_ca:
8841 kfree(ca);
8842out:
8843 return ERR_PTR(-ENOMEM);
d842de87
SV
8844}
8845
8846/* destroy an existing cpu accounting group */
41a2d6cf 8847static void
32cd756a 8848cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8849{
32cd756a 8850 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 8851 int i;
d842de87 8852
ef12fefa
BR
8853 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8854 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
8855 free_percpu(ca->cpuusage);
8856 kfree(ca);
8857}
8858
720f5498
KC
8859static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8860{
b36128c8 8861 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8862 u64 data;
8863
8864#ifndef CONFIG_64BIT
8865 /*
8866 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8867 */
05fa785c 8868 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8869 data = *cpuusage;
05fa785c 8870 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8871#else
8872 data = *cpuusage;
8873#endif
8874
8875 return data;
8876}
8877
8878static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8879{
b36128c8 8880 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8881
8882#ifndef CONFIG_64BIT
8883 /*
8884 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8885 */
05fa785c 8886 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8887 *cpuusage = val;
05fa785c 8888 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8889#else
8890 *cpuusage = val;
8891#endif
8892}
8893
d842de87 8894/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8895static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8896{
32cd756a 8897 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8898 u64 totalcpuusage = 0;
8899 int i;
8900
720f5498
KC
8901 for_each_present_cpu(i)
8902 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8903
8904 return totalcpuusage;
8905}
8906
0297b803
DG
8907static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8908 u64 reset)
8909{
8910 struct cpuacct *ca = cgroup_ca(cgrp);
8911 int err = 0;
8912 int i;
8913
8914 if (reset) {
8915 err = -EINVAL;
8916 goto out;
8917 }
8918
720f5498
KC
8919 for_each_present_cpu(i)
8920 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8921
0297b803
DG
8922out:
8923 return err;
8924}
8925
e9515c3c
KC
8926static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8927 struct seq_file *m)
8928{
8929 struct cpuacct *ca = cgroup_ca(cgroup);
8930 u64 percpu;
8931 int i;
8932
8933 for_each_present_cpu(i) {
8934 percpu = cpuacct_cpuusage_read(ca, i);
8935 seq_printf(m, "%llu ", (unsigned long long) percpu);
8936 }
8937 seq_printf(m, "\n");
8938 return 0;
8939}
8940
ef12fefa
BR
8941static const char *cpuacct_stat_desc[] = {
8942 [CPUACCT_STAT_USER] = "user",
8943 [CPUACCT_STAT_SYSTEM] = "system",
8944};
8945
8946static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8947 struct cgroup_map_cb *cb)
8948{
8949 struct cpuacct *ca = cgroup_ca(cgrp);
8950 int i;
8951
8952 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8953 s64 val = percpu_counter_read(&ca->cpustat[i]);
8954 val = cputime64_to_clock_t(val);
8955 cb->fill(cb, cpuacct_stat_desc[i], val);
8956 }
8957 return 0;
8958}
8959
d842de87
SV
8960static struct cftype files[] = {
8961 {
8962 .name = "usage",
f4c753b7
PM
8963 .read_u64 = cpuusage_read,
8964 .write_u64 = cpuusage_write,
d842de87 8965 },
e9515c3c
KC
8966 {
8967 .name = "usage_percpu",
8968 .read_seq_string = cpuacct_percpu_seq_read,
8969 },
ef12fefa
BR
8970 {
8971 .name = "stat",
8972 .read_map = cpuacct_stats_show,
8973 },
d842de87
SV
8974};
8975
32cd756a 8976static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8977{
32cd756a 8978 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
8979}
8980
8981/*
8982 * charge this task's execution time to its accounting group.
8983 *
8984 * called with rq->lock held.
8985 */
8986static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8987{
8988 struct cpuacct *ca;
934352f2 8989 int cpu;
d842de87 8990
c40c6f85 8991 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8992 return;
8993
934352f2 8994 cpu = task_cpu(tsk);
a18b83b7
BR
8995
8996 rcu_read_lock();
8997
d842de87 8998 ca = task_ca(tsk);
d842de87 8999
934352f2 9000 for (; ca; ca = ca->parent) {
b36128c8 9001 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9002 *cpuusage += cputime;
9003 }
a18b83b7
BR
9004
9005 rcu_read_unlock();
d842de87
SV
9006}
9007
fa535a77
AB
9008/*
9009 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9010 * in cputime_t units. As a result, cpuacct_update_stats calls
9011 * percpu_counter_add with values large enough to always overflow the
9012 * per cpu batch limit causing bad SMP scalability.
9013 *
9014 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9015 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9016 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9017 */
9018#ifdef CONFIG_SMP
9019#define CPUACCT_BATCH \
9020 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9021#else
9022#define CPUACCT_BATCH 0
9023#endif
9024
ef12fefa
BR
9025/*
9026 * Charge the system/user time to the task's accounting group.
9027 */
9028static void cpuacct_update_stats(struct task_struct *tsk,
9029 enum cpuacct_stat_index idx, cputime_t val)
9030{
9031 struct cpuacct *ca;
fa535a77 9032 int batch = CPUACCT_BATCH;
ef12fefa
BR
9033
9034 if (unlikely(!cpuacct_subsys.active))
9035 return;
9036
9037 rcu_read_lock();
9038 ca = task_ca(tsk);
9039
9040 do {
fa535a77 9041 __percpu_counter_add(&ca->cpustat[idx], val, batch);
ef12fefa
BR
9042 ca = ca->parent;
9043 } while (ca);
9044 rcu_read_unlock();
9045}
9046
d842de87
SV
9047struct cgroup_subsys cpuacct_subsys = {
9048 .name = "cpuacct",
9049 .create = cpuacct_create,
9050 .destroy = cpuacct_destroy,
9051 .populate = cpuacct_populate,
9052 .subsys_id = cpuacct_subsys_id,
9053};
9054#endif /* CONFIG_CGROUP_CPUACCT */
03b042bf
PM
9055
9056#ifndef CONFIG_SMP
9057
9058int rcu_expedited_torture_stats(char *page)
9059{
9060 return 0;
9061}
9062EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9063
9064void synchronize_sched_expedited(void)
9065{
9066}
9067EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9068
9069#else /* #ifndef CONFIG_SMP */
9070
9071static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9072static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9073
9074#define RCU_EXPEDITED_STATE_POST -2
9075#define RCU_EXPEDITED_STATE_IDLE -1
9076
9077static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9078
9079int rcu_expedited_torture_stats(char *page)
9080{
9081 int cnt = 0;
9082 int cpu;
9083
9084 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9085 for_each_online_cpu(cpu) {
9086 cnt += sprintf(&page[cnt], " %d:%d",
9087 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9088 }
9089 cnt += sprintf(&page[cnt], "\n");
9090 return cnt;
9091}
9092EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9093
9094static long synchronize_sched_expedited_count;
9095
9096/*
9097 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9098 * approach to force grace period to end quickly. This consumes
9099 * significant time on all CPUs, and is thus not recommended for
9100 * any sort of common-case code.
9101 *
9102 * Note that it is illegal to call this function while holding any
9103 * lock that is acquired by a CPU-hotplug notifier. Failing to
9104 * observe this restriction will result in deadlock.
9105 */
9106void synchronize_sched_expedited(void)
9107{
9108 int cpu;
9109 unsigned long flags;
9110 bool need_full_sync = 0;
9111 struct rq *rq;
9112 struct migration_req *req;
9113 long snap;
9114 int trycount = 0;
9115
9116 smp_mb(); /* ensure prior mod happens before capturing snap. */
9117 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9118 get_online_cpus();
9119 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9120 put_online_cpus();
9121 if (trycount++ < 10)
9122 udelay(trycount * num_online_cpus());
9123 else {
9124 synchronize_sched();
9125 return;
9126 }
9127 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9128 smp_mb(); /* ensure test happens before caller kfree */
9129 return;
9130 }
9131 get_online_cpus();
9132 }
9133 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9134 for_each_online_cpu(cpu) {
9135 rq = cpu_rq(cpu);
9136 req = &per_cpu(rcu_migration_req, cpu);
9137 init_completion(&req->done);
9138 req->task = NULL;
9139 req->dest_cpu = RCU_MIGRATION_NEED_QS;
05fa785c 9140 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf 9141 list_add(&req->list, &rq->migration_queue);
05fa785c 9142 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9143 wake_up_process(rq->migration_thread);
9144 }
9145 for_each_online_cpu(cpu) {
9146 rcu_expedited_state = cpu;
9147 req = &per_cpu(rcu_migration_req, cpu);
9148 rq = cpu_rq(cpu);
9149 wait_for_completion(&req->done);
05fa785c 9150 raw_spin_lock_irqsave(&rq->lock, flags);
03b042bf
PM
9151 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9152 need_full_sync = 1;
9153 req->dest_cpu = RCU_MIGRATION_IDLE;
05fa785c 9154 raw_spin_unlock_irqrestore(&rq->lock, flags);
03b042bf
PM
9155 }
9156 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
956539b7 9157 synchronize_sched_expedited_count++;
03b042bf
PM
9158 mutex_unlock(&rcu_sched_expedited_mutex);
9159 put_online_cpus();
9160 if (need_full_sync)
9161 synchronize_sched();
9162}
9163EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9164
9165#endif /* #else #ifndef CONFIG_SMP */