sched/isolation: Move isolcpus= handling to the housekeeping code
[linux-2.6-block.git] / kernel / sched / topology.c
CommitLineData
f2cb1360
IM
1/*
2 * Scheduler topology setup/handling methods
3 */
4#include <linux/sched.h>
5#include <linux/mutex.h>
edb93821 6#include <linux/sched/isolation.h>
f2cb1360
IM
7
8#include "sched.h"
9
10DEFINE_MUTEX(sched_domains_mutex);
11
12/* Protected by sched_domains_mutex: */
13cpumask_var_t sched_domains_tmpmask;
1676330e 14cpumask_var_t sched_domains_tmpmask2;
f2cb1360
IM
15
16#ifdef CONFIG_SCHED_DEBUG
17
f2cb1360
IM
18static int __init sched_debug_setup(char *str)
19{
9469eb01 20 sched_debug_enabled = true;
f2cb1360
IM
21
22 return 0;
23}
24early_param("sched_debug", sched_debug_setup);
25
26static inline bool sched_debug(void)
27{
28 return sched_debug_enabled;
29}
30
31static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
32 struct cpumask *groupmask)
33{
34 struct sched_group *group = sd->groups;
35
36 cpumask_clear(groupmask);
37
005f874d 38 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
f2cb1360
IM
39
40 if (!(sd->flags & SD_LOAD_BALANCE)) {
41 printk("does not load-balance\n");
42 if (sd->parent)
43 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
44 " has parent");
45 return -1;
46 }
47
005f874d 48 printk(KERN_CONT "span=%*pbl level=%s\n",
f2cb1360
IM
49 cpumask_pr_args(sched_domain_span(sd)), sd->name);
50
51 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
52 printk(KERN_ERR "ERROR: domain->span does not contain "
53 "CPU%d\n", cpu);
54 }
ae4df9d6 55 if (!cpumask_test_cpu(cpu, sched_group_span(group))) {
f2cb1360
IM
56 printk(KERN_ERR "ERROR: domain->groups does not contain"
57 " CPU%d\n", cpu);
58 }
59
60 printk(KERN_DEBUG "%*s groups:", level + 1, "");
61 do {
62 if (!group) {
63 printk("\n");
64 printk(KERN_ERR "ERROR: group is NULL\n");
65 break;
66 }
67
ae4df9d6 68 if (!cpumask_weight(sched_group_span(group))) {
f2cb1360
IM
69 printk(KERN_CONT "\n");
70 printk(KERN_ERR "ERROR: empty group\n");
71 break;
72 }
73
74 if (!(sd->flags & SD_OVERLAP) &&
ae4df9d6 75 cpumask_intersects(groupmask, sched_group_span(group))) {
f2cb1360
IM
76 printk(KERN_CONT "\n");
77 printk(KERN_ERR "ERROR: repeated CPUs\n");
78 break;
79 }
80
ae4df9d6 81 cpumask_or(groupmask, groupmask, sched_group_span(group));
f2cb1360 82
005f874d
PZ
83 printk(KERN_CONT " %d:{ span=%*pbl",
84 group->sgc->id,
ae4df9d6 85 cpumask_pr_args(sched_group_span(group)));
b0151c25 86
af218122 87 if ((sd->flags & SD_OVERLAP) &&
ae4df9d6 88 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
005f874d 89 printk(KERN_CONT " mask=%*pbl",
e5c14b1f 90 cpumask_pr_args(group_balance_mask(group)));
b0151c25
PZ
91 }
92
005f874d
PZ
93 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
94 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
f2cb1360 95
a420b063
PZ
96 if (group == sd->groups && sd->child &&
97 !cpumask_equal(sched_domain_span(sd->child),
ae4df9d6 98 sched_group_span(group))) {
a420b063
PZ
99 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
100 }
101
005f874d
PZ
102 printk(KERN_CONT " }");
103
f2cb1360 104 group = group->next;
b0151c25
PZ
105
106 if (group != sd->groups)
107 printk(KERN_CONT ",");
108
f2cb1360
IM
109 } while (group != sd->groups);
110 printk(KERN_CONT "\n");
111
112 if (!cpumask_equal(sched_domain_span(sd), groupmask))
113 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
114
115 if (sd->parent &&
116 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
117 printk(KERN_ERR "ERROR: parent span is not a superset "
118 "of domain->span\n");
119 return 0;
120}
121
122static void sched_domain_debug(struct sched_domain *sd, int cpu)
123{
124 int level = 0;
125
126 if (!sched_debug_enabled)
127 return;
128
129 if (!sd) {
130 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
131 return;
132 }
133
005f874d 134 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
f2cb1360
IM
135
136 for (;;) {
137 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
138 break;
139 level++;
140 sd = sd->parent;
141 if (!sd)
142 break;
143 }
144}
145#else /* !CONFIG_SCHED_DEBUG */
146
147# define sched_debug_enabled 0
148# define sched_domain_debug(sd, cpu) do { } while (0)
149static inline bool sched_debug(void)
150{
151 return false;
152}
153#endif /* CONFIG_SCHED_DEBUG */
154
155static int sd_degenerate(struct sched_domain *sd)
156{
157 if (cpumask_weight(sched_domain_span(sd)) == 1)
158 return 1;
159
160 /* Following flags need at least 2 groups */
161 if (sd->flags & (SD_LOAD_BALANCE |
162 SD_BALANCE_NEWIDLE |
163 SD_BALANCE_FORK |
164 SD_BALANCE_EXEC |
165 SD_SHARE_CPUCAPACITY |
166 SD_ASYM_CPUCAPACITY |
167 SD_SHARE_PKG_RESOURCES |
168 SD_SHARE_POWERDOMAIN)) {
169 if (sd->groups != sd->groups->next)
170 return 0;
171 }
172
173 /* Following flags don't use groups */
174 if (sd->flags & (SD_WAKE_AFFINE))
175 return 0;
176
177 return 1;
178}
179
180static int
181sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
182{
183 unsigned long cflags = sd->flags, pflags = parent->flags;
184
185 if (sd_degenerate(parent))
186 return 1;
187
188 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
189 return 0;
190
191 /* Flags needing groups don't count if only 1 group in parent */
192 if (parent->groups == parent->groups->next) {
193 pflags &= ~(SD_LOAD_BALANCE |
194 SD_BALANCE_NEWIDLE |
195 SD_BALANCE_FORK |
196 SD_BALANCE_EXEC |
197 SD_ASYM_CPUCAPACITY |
198 SD_SHARE_CPUCAPACITY |
199 SD_SHARE_PKG_RESOURCES |
200 SD_PREFER_SIBLING |
201 SD_SHARE_POWERDOMAIN);
202 if (nr_node_ids == 1)
203 pflags &= ~SD_SERIALIZE;
204 }
205 if (~cflags & pflags)
206 return 0;
207
208 return 1;
209}
210
211static void free_rootdomain(struct rcu_head *rcu)
212{
213 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
214
215 cpupri_cleanup(&rd->cpupri);
216 cpudl_cleanup(&rd->cpudl);
217 free_cpumask_var(rd->dlo_mask);
218 free_cpumask_var(rd->rto_mask);
219 free_cpumask_var(rd->online);
220 free_cpumask_var(rd->span);
221 kfree(rd);
222}
223
224void rq_attach_root(struct rq *rq, struct root_domain *rd)
225{
226 struct root_domain *old_rd = NULL;
227 unsigned long flags;
228
229 raw_spin_lock_irqsave(&rq->lock, flags);
230
231 if (rq->rd) {
232 old_rd = rq->rd;
233
234 if (cpumask_test_cpu(rq->cpu, old_rd->online))
235 set_rq_offline(rq);
236
237 cpumask_clear_cpu(rq->cpu, old_rd->span);
238
239 /*
240 * If we dont want to free the old_rd yet then
241 * set old_rd to NULL to skip the freeing later
242 * in this function:
243 */
244 if (!atomic_dec_and_test(&old_rd->refcount))
245 old_rd = NULL;
246 }
247
248 atomic_inc(&rd->refcount);
249 rq->rd = rd;
250
251 cpumask_set_cpu(rq->cpu, rd->span);
252 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
253 set_rq_online(rq);
254
255 raw_spin_unlock_irqrestore(&rq->lock, flags);
256
257 if (old_rd)
258 call_rcu_sched(&old_rd->rcu, free_rootdomain);
259}
260
261static int init_rootdomain(struct root_domain *rd)
262{
f2cb1360
IM
263 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
264 goto out;
265 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
266 goto free_span;
267 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
268 goto free_online;
269 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
270 goto free_dlo_mask;
271
4bdced5c
SRRH
272#ifdef HAVE_RT_PUSH_IPI
273 rd->rto_cpu = -1;
274 raw_spin_lock_init(&rd->rto_lock);
275 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
276#endif
277
f2cb1360
IM
278 init_dl_bw(&rd->dl_bw);
279 if (cpudl_init(&rd->cpudl) != 0)
280 goto free_rto_mask;
281
282 if (cpupri_init(&rd->cpupri) != 0)
283 goto free_cpudl;
284 return 0;
285
286free_cpudl:
287 cpudl_cleanup(&rd->cpudl);
288free_rto_mask:
289 free_cpumask_var(rd->rto_mask);
290free_dlo_mask:
291 free_cpumask_var(rd->dlo_mask);
292free_online:
293 free_cpumask_var(rd->online);
294free_span:
295 free_cpumask_var(rd->span);
296out:
297 return -ENOMEM;
298}
299
300/*
301 * By default the system creates a single root-domain with all CPUs as
302 * members (mimicking the global state we have today).
303 */
304struct root_domain def_root_domain;
305
306void init_defrootdomain(void)
307{
308 init_rootdomain(&def_root_domain);
309
310 atomic_set(&def_root_domain.refcount, 1);
311}
312
313static struct root_domain *alloc_rootdomain(void)
314{
315 struct root_domain *rd;
316
4d13a06d 317 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
f2cb1360
IM
318 if (!rd)
319 return NULL;
320
321 if (init_rootdomain(rd) != 0) {
322 kfree(rd);
323 return NULL;
324 }
325
326 return rd;
327}
328
329static void free_sched_groups(struct sched_group *sg, int free_sgc)
330{
331 struct sched_group *tmp, *first;
332
333 if (!sg)
334 return;
335
336 first = sg;
337 do {
338 tmp = sg->next;
339
340 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
341 kfree(sg->sgc);
342
213c5a45
SW
343 if (atomic_dec_and_test(&sg->ref))
344 kfree(sg);
f2cb1360
IM
345 sg = tmp;
346 } while (sg != first);
347}
348
349static void destroy_sched_domain(struct sched_domain *sd)
350{
351 /*
a090c4f2
PZ
352 * A normal sched domain may have multiple group references, an
353 * overlapping domain, having private groups, only one. Iterate,
354 * dropping group/capacity references, freeing where none remain.
f2cb1360 355 */
213c5a45
SW
356 free_sched_groups(sd->groups, 1);
357
f2cb1360
IM
358 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
359 kfree(sd->shared);
360 kfree(sd);
361}
362
363static void destroy_sched_domains_rcu(struct rcu_head *rcu)
364{
365 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
366
367 while (sd) {
368 struct sched_domain *parent = sd->parent;
369 destroy_sched_domain(sd);
370 sd = parent;
371 }
372}
373
374static void destroy_sched_domains(struct sched_domain *sd)
375{
376 if (sd)
377 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
378}
379
380/*
381 * Keep a special pointer to the highest sched_domain that has
382 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
383 * allows us to avoid some pointer chasing select_idle_sibling().
384 *
385 * Also keep a unique ID per domain (we use the first CPU number in
386 * the cpumask of the domain), this allows us to quickly tell if
387 * two CPUs are in the same cache domain, see cpus_share_cache().
388 */
389DEFINE_PER_CPU(struct sched_domain *, sd_llc);
390DEFINE_PER_CPU(int, sd_llc_size);
391DEFINE_PER_CPU(int, sd_llc_id);
392DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
393DEFINE_PER_CPU(struct sched_domain *, sd_numa);
394DEFINE_PER_CPU(struct sched_domain *, sd_asym);
395
396static void update_top_cache_domain(int cpu)
397{
398 struct sched_domain_shared *sds = NULL;
399 struct sched_domain *sd;
400 int id = cpu;
401 int size = 1;
402
403 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
404 if (sd) {
405 id = cpumask_first(sched_domain_span(sd));
406 size = cpumask_weight(sched_domain_span(sd));
407 sds = sd->shared;
408 }
409
410 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
411 per_cpu(sd_llc_size, cpu) = size;
412 per_cpu(sd_llc_id, cpu) = id;
413 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
414
415 sd = lowest_flag_domain(cpu, SD_NUMA);
416 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
417
418 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
419 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
420}
421
422/*
423 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
424 * hold the hotplug lock.
425 */
426static void
427cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
428{
429 struct rq *rq = cpu_rq(cpu);
430 struct sched_domain *tmp;
431
432 /* Remove the sched domains which do not contribute to scheduling. */
433 for (tmp = sd; tmp; ) {
434 struct sched_domain *parent = tmp->parent;
435 if (!parent)
436 break;
437
438 if (sd_parent_degenerate(tmp, parent)) {
439 tmp->parent = parent->parent;
440 if (parent->parent)
441 parent->parent->child = tmp;
442 /*
443 * Transfer SD_PREFER_SIBLING down in case of a
444 * degenerate parent; the spans match for this
445 * so the property transfers.
446 */
447 if (parent->flags & SD_PREFER_SIBLING)
448 tmp->flags |= SD_PREFER_SIBLING;
449 destroy_sched_domain(parent);
450 } else
451 tmp = tmp->parent;
452 }
453
454 if (sd && sd_degenerate(sd)) {
455 tmp = sd;
456 sd = sd->parent;
457 destroy_sched_domain(tmp);
458 if (sd)
459 sd->child = NULL;
460 }
461
462 sched_domain_debug(sd, cpu);
463
464 rq_attach_root(rq, rd);
465 tmp = rq->sd;
466 rcu_assign_pointer(rq->sd, sd);
bbdacdfe 467 dirty_sched_domain_sysctl(cpu);
f2cb1360
IM
468 destroy_sched_domains(tmp);
469
470 update_top_cache_domain(cpu);
471}
472
f2cb1360
IM
473struct s_data {
474 struct sched_domain ** __percpu sd;
475 struct root_domain *rd;
476};
477
478enum s_alloc {
479 sa_rootdomain,
480 sa_sd,
481 sa_sd_storage,
482 sa_none,
483};
484
35a566e6
PZ
485/*
486 * Return the canonical balance CPU for this group, this is the first CPU
e5c14b1f 487 * of this group that's also in the balance mask.
35a566e6 488 *
e5c14b1f
PZ
489 * The balance mask are all those CPUs that could actually end up at this
490 * group. See build_balance_mask().
35a566e6
PZ
491 *
492 * Also see should_we_balance().
493 */
494int group_balance_cpu(struct sched_group *sg)
495{
e5c14b1f 496 return cpumask_first(group_balance_mask(sg));
35a566e6
PZ
497}
498
499
500/*
501 * NUMA topology (first read the regular topology blurb below)
502 *
503 * Given a node-distance table, for example:
504 *
505 * node 0 1 2 3
506 * 0: 10 20 30 20
507 * 1: 20 10 20 30
508 * 2: 30 20 10 20
509 * 3: 20 30 20 10
510 *
511 * which represents a 4 node ring topology like:
512 *
513 * 0 ----- 1
514 * | |
515 * | |
516 * | |
517 * 3 ----- 2
518 *
519 * We want to construct domains and groups to represent this. The way we go
520 * about doing this is to build the domains on 'hops'. For each NUMA level we
521 * construct the mask of all nodes reachable in @level hops.
522 *
523 * For the above NUMA topology that gives 3 levels:
524 *
525 * NUMA-2 0-3 0-3 0-3 0-3
526 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
527 *
528 * NUMA-1 0-1,3 0-2 1-3 0,2-3
529 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
530 *
531 * NUMA-0 0 1 2 3
532 *
533 *
534 * As can be seen; things don't nicely line up as with the regular topology.
535 * When we iterate a domain in child domain chunks some nodes can be
536 * represented multiple times -- hence the "overlap" naming for this part of
537 * the topology.
538 *
539 * In order to minimize this overlap, we only build enough groups to cover the
540 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
541 *
542 * Because:
543 *
544 * - the first group of each domain is its child domain; this
545 * gets us the first 0-1,3
546 * - the only uncovered node is 2, who's child domain is 1-3.
547 *
548 * However, because of the overlap, computing a unique CPU for each group is
549 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
550 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
551 * end up at those groups (they would end up in group: 0-1,3).
552 *
e5c14b1f 553 * To correct this we have to introduce the group balance mask. This mask
35a566e6
PZ
554 * will contain those CPUs in the group that can reach this group given the
555 * (child) domain tree.
556 *
557 * With this we can once again compute balance_cpu and sched_group_capacity
558 * relations.
559 *
560 * XXX include words on how balance_cpu is unique and therefore can be
561 * used for sched_group_capacity links.
562 *
563 *
564 * Another 'interesting' topology is:
565 *
566 * node 0 1 2 3
567 * 0: 10 20 20 30
568 * 1: 20 10 20 20
569 * 2: 20 20 10 20
570 * 3: 30 20 20 10
571 *
572 * Which looks a little like:
573 *
574 * 0 ----- 1
575 * | / |
576 * | / |
577 * | / |
578 * 2 ----- 3
579 *
580 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
581 * are not.
582 *
583 * This leads to a few particularly weird cases where the sched_domain's are
584 * not of the same number for each cpu. Consider:
585 *
586 * NUMA-2 0-3 0-3
587 * groups: {0-2},{1-3} {1-3},{0-2}
588 *
589 * NUMA-1 0-2 0-3 0-3 1-3
590 *
591 * NUMA-0 0 1 2 3
592 *
593 */
594
595
f2cb1360 596/*
e5c14b1f
PZ
597 * Build the balance mask; it contains only those CPUs that can arrive at this
598 * group and should be considered to continue balancing.
35a566e6
PZ
599 *
600 * We do this during the group creation pass, therefore the group information
601 * isn't complete yet, however since each group represents a (child) domain we
602 * can fully construct this using the sched_domain bits (which are already
603 * complete).
f2cb1360 604 */
1676330e 605static void
e5c14b1f 606build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
f2cb1360 607{
ae4df9d6 608 const struct cpumask *sg_span = sched_group_span(sg);
f2cb1360
IM
609 struct sd_data *sdd = sd->private;
610 struct sched_domain *sibling;
611 int i;
612
1676330e
PZ
613 cpumask_clear(mask);
614
f32d782e 615 for_each_cpu(i, sg_span) {
f2cb1360 616 sibling = *per_cpu_ptr(sdd->sd, i);
73bb059f
PZ
617
618 /*
619 * Can happen in the asymmetric case, where these siblings are
620 * unused. The mask will not be empty because those CPUs that
621 * do have the top domain _should_ span the domain.
622 */
623 if (!sibling->child)
624 continue;
625
626 /* If we would not end up here, we can't continue from here */
627 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
f2cb1360
IM
628 continue;
629
1676330e 630 cpumask_set_cpu(i, mask);
f2cb1360 631 }
73bb059f
PZ
632
633 /* We must not have empty masks here */
1676330e 634 WARN_ON_ONCE(cpumask_empty(mask));
f2cb1360
IM
635}
636
637/*
35a566e6
PZ
638 * XXX: This creates per-node group entries; since the load-balancer will
639 * immediately access remote memory to construct this group's load-balance
640 * statistics having the groups node local is of dubious benefit.
f2cb1360 641 */
8c033469
LRV
642static struct sched_group *
643build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
644{
645 struct sched_group *sg;
646 struct cpumask *sg_span;
647
648 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
649 GFP_KERNEL, cpu_to_node(cpu));
650
651 if (!sg)
652 return NULL;
653
ae4df9d6 654 sg_span = sched_group_span(sg);
8c033469
LRV
655 if (sd->child)
656 cpumask_copy(sg_span, sched_domain_span(sd->child));
657 else
658 cpumask_copy(sg_span, sched_domain_span(sd));
659
213c5a45 660 atomic_inc(&sg->ref);
8c033469
LRV
661 return sg;
662}
663
664static void init_overlap_sched_group(struct sched_domain *sd,
1676330e 665 struct sched_group *sg)
8c033469 666{
1676330e 667 struct cpumask *mask = sched_domains_tmpmask2;
8c033469
LRV
668 struct sd_data *sdd = sd->private;
669 struct cpumask *sg_span;
1676330e
PZ
670 int cpu;
671
e5c14b1f 672 build_balance_mask(sd, sg, mask);
ae4df9d6 673 cpu = cpumask_first_and(sched_group_span(sg), mask);
8c033469
LRV
674
675 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
676 if (atomic_inc_return(&sg->sgc->ref) == 1)
e5c14b1f 677 cpumask_copy(group_balance_mask(sg), mask);
35a566e6 678 else
e5c14b1f 679 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
8c033469
LRV
680
681 /*
682 * Initialize sgc->capacity such that even if we mess up the
683 * domains and no possible iteration will get us here, we won't
684 * die on a /0 trap.
685 */
ae4df9d6 686 sg_span = sched_group_span(sg);
8c033469
LRV
687 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
688 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
689}
690
f2cb1360
IM
691static int
692build_overlap_sched_groups(struct sched_domain *sd, int cpu)
693{
91eaed0d 694 struct sched_group *first = NULL, *last = NULL, *sg;
f2cb1360
IM
695 const struct cpumask *span = sched_domain_span(sd);
696 struct cpumask *covered = sched_domains_tmpmask;
697 struct sd_data *sdd = sd->private;
698 struct sched_domain *sibling;
699 int i;
700
701 cpumask_clear(covered);
702
0372dd27 703 for_each_cpu_wrap(i, span, cpu) {
f2cb1360
IM
704 struct cpumask *sg_span;
705
706 if (cpumask_test_cpu(i, covered))
707 continue;
708
709 sibling = *per_cpu_ptr(sdd->sd, i);
710
c20e1ea4
LRV
711 /*
712 * Asymmetric node setups can result in situations where the
713 * domain tree is of unequal depth, make sure to skip domains
714 * that already cover the entire range.
715 *
716 * In that case build_sched_domains() will have terminated the
717 * iteration early and our sibling sd spans will be empty.
718 * Domains should always include the CPU they're built on, so
719 * check that.
720 */
f2cb1360
IM
721 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
722 continue;
723
8c033469 724 sg = build_group_from_child_sched_domain(sibling, cpu);
f2cb1360
IM
725 if (!sg)
726 goto fail;
727
ae4df9d6 728 sg_span = sched_group_span(sg);
f2cb1360
IM
729 cpumask_or(covered, covered, sg_span);
730
1676330e 731 init_overlap_sched_group(sd, sg);
f2cb1360 732
f2cb1360
IM
733 if (!first)
734 first = sg;
735 if (last)
736 last->next = sg;
737 last = sg;
738 last->next = first;
739 }
91eaed0d 740 sd->groups = first;
f2cb1360
IM
741
742 return 0;
743
744fail:
745 free_sched_groups(first, 0);
746
747 return -ENOMEM;
748}
749
35a566e6
PZ
750
751/*
752 * Package topology (also see the load-balance blurb in fair.c)
753 *
754 * The scheduler builds a tree structure to represent a number of important
755 * topology features. By default (default_topology[]) these include:
756 *
757 * - Simultaneous multithreading (SMT)
758 * - Multi-Core Cache (MC)
759 * - Package (DIE)
760 *
761 * Where the last one more or less denotes everything up to a NUMA node.
762 *
763 * The tree consists of 3 primary data structures:
764 *
765 * sched_domain -> sched_group -> sched_group_capacity
766 * ^ ^ ^ ^
767 * `-' `-'
768 *
769 * The sched_domains are per-cpu and have a two way link (parent & child) and
770 * denote the ever growing mask of CPUs belonging to that level of topology.
771 *
772 * Each sched_domain has a circular (double) linked list of sched_group's, each
773 * denoting the domains of the level below (or individual CPUs in case of the
774 * first domain level). The sched_group linked by a sched_domain includes the
775 * CPU of that sched_domain [*].
776 *
777 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
778 *
779 * CPU 0 1 2 3 4 5 6 7
780 *
781 * DIE [ ]
782 * MC [ ] [ ]
783 * SMT [ ] [ ] [ ] [ ]
784 *
785 * - or -
786 *
787 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
788 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
789 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
790 *
791 * CPU 0 1 2 3 4 5 6 7
792 *
793 * One way to think about it is: sched_domain moves you up and down among these
794 * topology levels, while sched_group moves you sideways through it, at child
795 * domain granularity.
796 *
797 * sched_group_capacity ensures each unique sched_group has shared storage.
798 *
799 * There are two related construction problems, both require a CPU that
800 * uniquely identify each group (for a given domain):
801 *
802 * - The first is the balance_cpu (see should_we_balance() and the
803 * load-balance blub in fair.c); for each group we only want 1 CPU to
804 * continue balancing at a higher domain.
805 *
806 * - The second is the sched_group_capacity; we want all identical groups
807 * to share a single sched_group_capacity.
808 *
809 * Since these topologies are exclusive by construction. That is, its
810 * impossible for an SMT thread to belong to multiple cores, and cores to
811 * be part of multiple caches. There is a very clear and unique location
812 * for each CPU in the hierarchy.
813 *
814 * Therefore computing a unique CPU for each group is trivial (the iteration
815 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
816 * group), we can simply pick the first CPU in each group.
817 *
818 *
819 * [*] in other words, the first group of each domain is its child domain.
820 */
821
0c0e776a 822static struct sched_group *get_group(int cpu, struct sd_data *sdd)
f2cb1360
IM
823{
824 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
825 struct sched_domain *child = sd->child;
0c0e776a 826 struct sched_group *sg;
f2cb1360
IM
827
828 if (child)
829 cpu = cpumask_first(sched_domain_span(child));
830
0c0e776a
PZ
831 sg = *per_cpu_ptr(sdd->sg, cpu);
832 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
833
834 /* For claim_allocations: */
835 atomic_inc(&sg->ref);
836 atomic_inc(&sg->sgc->ref);
f2cb1360 837
0c0e776a 838 if (child) {
ae4df9d6
PZ
839 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
840 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
0c0e776a 841 } else {
ae4df9d6 842 cpumask_set_cpu(cpu, sched_group_span(sg));
e5c14b1f 843 cpumask_set_cpu(cpu, group_balance_mask(sg));
f2cb1360
IM
844 }
845
ae4df9d6 846 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
0c0e776a
PZ
847 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
848
849 return sg;
f2cb1360
IM
850}
851
852/*
853 * build_sched_groups will build a circular linked list of the groups
854 * covered by the given span, and will set each group's ->cpumask correctly,
855 * and ->cpu_capacity to 0.
856 *
857 * Assumes the sched_domain tree is fully constructed
858 */
859static int
860build_sched_groups(struct sched_domain *sd, int cpu)
861{
862 struct sched_group *first = NULL, *last = NULL;
863 struct sd_data *sdd = sd->private;
864 const struct cpumask *span = sched_domain_span(sd);
865 struct cpumask *covered;
866 int i;
867
f2cb1360
IM
868 lockdep_assert_held(&sched_domains_mutex);
869 covered = sched_domains_tmpmask;
870
871 cpumask_clear(covered);
872
0c0e776a 873 for_each_cpu_wrap(i, span, cpu) {
f2cb1360 874 struct sched_group *sg;
f2cb1360
IM
875
876 if (cpumask_test_cpu(i, covered))
877 continue;
878
0c0e776a 879 sg = get_group(i, sdd);
f2cb1360 880
ae4df9d6 881 cpumask_or(covered, covered, sched_group_span(sg));
f2cb1360
IM
882
883 if (!first)
884 first = sg;
885 if (last)
886 last->next = sg;
887 last = sg;
888 }
889 last->next = first;
0c0e776a 890 sd->groups = first;
f2cb1360
IM
891
892 return 0;
893}
894
895/*
896 * Initialize sched groups cpu_capacity.
897 *
898 * cpu_capacity indicates the capacity of sched group, which is used while
899 * distributing the load between different sched groups in a sched domain.
900 * Typically cpu_capacity for all the groups in a sched domain will be same
901 * unless there are asymmetries in the topology. If there are asymmetries,
902 * group having more cpu_capacity will pickup more load compared to the
903 * group having less cpu_capacity.
904 */
905static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
906{
907 struct sched_group *sg = sd->groups;
908
909 WARN_ON(!sg);
910
911 do {
912 int cpu, max_cpu = -1;
913
ae4df9d6 914 sg->group_weight = cpumask_weight(sched_group_span(sg));
f2cb1360
IM
915
916 if (!(sd->flags & SD_ASYM_PACKING))
917 goto next;
918
ae4df9d6 919 for_each_cpu(cpu, sched_group_span(sg)) {
f2cb1360
IM
920 if (max_cpu < 0)
921 max_cpu = cpu;
922 else if (sched_asym_prefer(cpu, max_cpu))
923 max_cpu = cpu;
924 }
925 sg->asym_prefer_cpu = max_cpu;
926
927next:
928 sg = sg->next;
929 } while (sg != sd->groups);
930
931 if (cpu != group_balance_cpu(sg))
932 return;
933
934 update_group_capacity(sd, cpu);
935}
936
937/*
938 * Initializers for schedule domains
939 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
940 */
941
942static int default_relax_domain_level = -1;
943int sched_domain_level_max;
944
945static int __init setup_relax_domain_level(char *str)
946{
947 if (kstrtoint(str, 0, &default_relax_domain_level))
948 pr_warn("Unable to set relax_domain_level\n");
949
950 return 1;
951}
952__setup("relax_domain_level=", setup_relax_domain_level);
953
954static void set_domain_attribute(struct sched_domain *sd,
955 struct sched_domain_attr *attr)
956{
957 int request;
958
959 if (!attr || attr->relax_domain_level < 0) {
960 if (default_relax_domain_level < 0)
961 return;
962 else
963 request = default_relax_domain_level;
964 } else
965 request = attr->relax_domain_level;
966 if (request < sd->level) {
967 /* Turn off idle balance on this domain: */
968 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
969 } else {
970 /* Turn on idle balance on this domain: */
971 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
972 }
973}
974
975static void __sdt_free(const struct cpumask *cpu_map);
976static int __sdt_alloc(const struct cpumask *cpu_map);
977
978static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
979 const struct cpumask *cpu_map)
980{
981 switch (what) {
982 case sa_rootdomain:
983 if (!atomic_read(&d->rd->refcount))
984 free_rootdomain(&d->rd->rcu);
985 /* Fall through */
986 case sa_sd:
987 free_percpu(d->sd);
988 /* Fall through */
989 case sa_sd_storage:
990 __sdt_free(cpu_map);
991 /* Fall through */
992 case sa_none:
993 break;
994 }
995}
996
997static enum s_alloc
998__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
999{
1000 memset(d, 0, sizeof(*d));
1001
1002 if (__sdt_alloc(cpu_map))
1003 return sa_sd_storage;
1004 d->sd = alloc_percpu(struct sched_domain *);
1005 if (!d->sd)
1006 return sa_sd_storage;
1007 d->rd = alloc_rootdomain();
1008 if (!d->rd)
1009 return sa_sd;
1010 return sa_rootdomain;
1011}
1012
1013/*
1014 * NULL the sd_data elements we've used to build the sched_domain and
1015 * sched_group structure so that the subsequent __free_domain_allocs()
1016 * will not free the data we're using.
1017 */
1018static void claim_allocations(int cpu, struct sched_domain *sd)
1019{
1020 struct sd_data *sdd = sd->private;
1021
1022 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1023 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1024
1025 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1026 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1027
1028 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1029 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1030
1031 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1032 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1033}
1034
1035#ifdef CONFIG_NUMA
1036static int sched_domains_numa_levels;
1037enum numa_topology_type sched_numa_topology_type;
1038static int *sched_domains_numa_distance;
1039int sched_max_numa_distance;
1040static struct cpumask ***sched_domains_numa_masks;
1041static int sched_domains_curr_level;
1042#endif
1043
1044/*
1045 * SD_flags allowed in topology descriptions.
1046 *
1047 * These flags are purely descriptive of the topology and do not prescribe
1048 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1049 * function:
1050 *
1051 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1052 * SD_SHARE_PKG_RESOURCES - describes shared caches
1053 * SD_NUMA - describes NUMA topologies
1054 * SD_SHARE_POWERDOMAIN - describes shared power domain
1055 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
1056 *
1057 * Odd one out, which beside describing the topology has a quirk also
1058 * prescribes the desired behaviour that goes along with it:
1059 *
1060 * SD_ASYM_PACKING - describes SMT quirks
1061 */
1062#define TOPOLOGY_SD_FLAGS \
1063 (SD_SHARE_CPUCAPACITY | \
1064 SD_SHARE_PKG_RESOURCES | \
1065 SD_NUMA | \
1066 SD_ASYM_PACKING | \
1067 SD_ASYM_CPUCAPACITY | \
1068 SD_SHARE_POWERDOMAIN)
1069
1070static struct sched_domain *
1071sd_init(struct sched_domain_topology_level *tl,
1072 const struct cpumask *cpu_map,
1073 struct sched_domain *child, int cpu)
1074{
1075 struct sd_data *sdd = &tl->data;
1076 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1077 int sd_id, sd_weight, sd_flags = 0;
1078
1079#ifdef CONFIG_NUMA
1080 /*
1081 * Ugly hack to pass state to sd_numa_mask()...
1082 */
1083 sched_domains_curr_level = tl->numa_level;
1084#endif
1085
1086 sd_weight = cpumask_weight(tl->mask(cpu));
1087
1088 if (tl->sd_flags)
1089 sd_flags = (*tl->sd_flags)();
1090 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1091 "wrong sd_flags in topology description\n"))
1092 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1093
1094 *sd = (struct sched_domain){
1095 .min_interval = sd_weight,
1096 .max_interval = 2*sd_weight,
1097 .busy_factor = 32,
1098 .imbalance_pct = 125,
1099
1100 .cache_nice_tries = 0,
1101 .busy_idx = 0,
1102 .idle_idx = 0,
1103 .newidle_idx = 0,
1104 .wake_idx = 0,
1105 .forkexec_idx = 0,
1106
1107 .flags = 1*SD_LOAD_BALANCE
1108 | 1*SD_BALANCE_NEWIDLE
1109 | 1*SD_BALANCE_EXEC
1110 | 1*SD_BALANCE_FORK
1111 | 0*SD_BALANCE_WAKE
1112 | 1*SD_WAKE_AFFINE
1113 | 0*SD_SHARE_CPUCAPACITY
1114 | 0*SD_SHARE_PKG_RESOURCES
1115 | 0*SD_SERIALIZE
1116 | 0*SD_PREFER_SIBLING
1117 | 0*SD_NUMA
1118 | sd_flags
1119 ,
1120
1121 .last_balance = jiffies,
1122 .balance_interval = sd_weight,
1123 .smt_gain = 0,
1124 .max_newidle_lb_cost = 0,
1125 .next_decay_max_lb_cost = jiffies,
1126 .child = child,
1127#ifdef CONFIG_SCHED_DEBUG
1128 .name = tl->name,
1129#endif
1130 };
1131
1132 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1133 sd_id = cpumask_first(sched_domain_span(sd));
1134
1135 /*
1136 * Convert topological properties into behaviour.
1137 */
1138
1139 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1140 struct sched_domain *t = sd;
1141
1142 for_each_lower_domain(t)
1143 t->flags |= SD_BALANCE_WAKE;
1144 }
1145
1146 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1147 sd->flags |= SD_PREFER_SIBLING;
1148 sd->imbalance_pct = 110;
1149 sd->smt_gain = 1178; /* ~15% */
1150
1151 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
ed4ad1ca 1152 sd->flags |= SD_PREFER_SIBLING;
f2cb1360
IM
1153 sd->imbalance_pct = 117;
1154 sd->cache_nice_tries = 1;
1155 sd->busy_idx = 2;
1156
1157#ifdef CONFIG_NUMA
1158 } else if (sd->flags & SD_NUMA) {
1159 sd->cache_nice_tries = 2;
1160 sd->busy_idx = 3;
1161 sd->idle_idx = 2;
1162
1163 sd->flags |= SD_SERIALIZE;
1164 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1165 sd->flags &= ~(SD_BALANCE_EXEC |
1166 SD_BALANCE_FORK |
1167 SD_WAKE_AFFINE);
1168 }
1169
1170#endif
1171 } else {
1172 sd->flags |= SD_PREFER_SIBLING;
1173 sd->cache_nice_tries = 1;
1174 sd->busy_idx = 2;
1175 sd->idle_idx = 1;
1176 }
1177
1178 /*
1179 * For all levels sharing cache; connect a sched_domain_shared
1180 * instance.
1181 */
1182 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1183 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1184 atomic_inc(&sd->shared->ref);
1185 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1186 }
1187
1188 sd->private = sdd;
1189
1190 return sd;
1191}
1192
1193/*
1194 * Topology list, bottom-up.
1195 */
1196static struct sched_domain_topology_level default_topology[] = {
1197#ifdef CONFIG_SCHED_SMT
1198 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1199#endif
1200#ifdef CONFIG_SCHED_MC
1201 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1202#endif
1203 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1204 { NULL, },
1205};
1206
1207static struct sched_domain_topology_level *sched_domain_topology =
1208 default_topology;
1209
1210#define for_each_sd_topology(tl) \
1211 for (tl = sched_domain_topology; tl->mask; tl++)
1212
1213void set_sched_topology(struct sched_domain_topology_level *tl)
1214{
1215 if (WARN_ON_ONCE(sched_smp_initialized))
1216 return;
1217
1218 sched_domain_topology = tl;
1219}
1220
1221#ifdef CONFIG_NUMA
1222
1223static const struct cpumask *sd_numa_mask(int cpu)
1224{
1225 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1226}
1227
1228static void sched_numa_warn(const char *str)
1229{
1230 static int done = false;
1231 int i,j;
1232
1233 if (done)
1234 return;
1235
1236 done = true;
1237
1238 printk(KERN_WARNING "ERROR: %s\n\n", str);
1239
1240 for (i = 0; i < nr_node_ids; i++) {
1241 printk(KERN_WARNING " ");
1242 for (j = 0; j < nr_node_ids; j++)
1243 printk(KERN_CONT "%02d ", node_distance(i,j));
1244 printk(KERN_CONT "\n");
1245 }
1246 printk(KERN_WARNING "\n");
1247}
1248
1249bool find_numa_distance(int distance)
1250{
1251 int i;
1252
1253 if (distance == node_distance(0, 0))
1254 return true;
1255
1256 for (i = 0; i < sched_domains_numa_levels; i++) {
1257 if (sched_domains_numa_distance[i] == distance)
1258 return true;
1259 }
1260
1261 return false;
1262}
1263
1264/*
1265 * A system can have three types of NUMA topology:
1266 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1267 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1268 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1269 *
1270 * The difference between a glueless mesh topology and a backplane
1271 * topology lies in whether communication between not directly
1272 * connected nodes goes through intermediary nodes (where programs
1273 * could run), or through backplane controllers. This affects
1274 * placement of programs.
1275 *
1276 * The type of topology can be discerned with the following tests:
1277 * - If the maximum distance between any nodes is 1 hop, the system
1278 * is directly connected.
1279 * - If for two nodes A and B, located N > 1 hops away from each other,
1280 * there is an intermediary node C, which is < N hops away from both
1281 * nodes A and B, the system is a glueless mesh.
1282 */
1283static void init_numa_topology_type(void)
1284{
1285 int a, b, c, n;
1286
1287 n = sched_max_numa_distance;
1288
1289 if (sched_domains_numa_levels <= 1) {
1290 sched_numa_topology_type = NUMA_DIRECT;
1291 return;
1292 }
1293
1294 for_each_online_node(a) {
1295 for_each_online_node(b) {
1296 /* Find two nodes furthest removed from each other. */
1297 if (node_distance(a, b) < n)
1298 continue;
1299
1300 /* Is there an intermediary node between a and b? */
1301 for_each_online_node(c) {
1302 if (node_distance(a, c) < n &&
1303 node_distance(b, c) < n) {
1304 sched_numa_topology_type =
1305 NUMA_GLUELESS_MESH;
1306 return;
1307 }
1308 }
1309
1310 sched_numa_topology_type = NUMA_BACKPLANE;
1311 return;
1312 }
1313 }
1314}
1315
1316void sched_init_numa(void)
1317{
1318 int next_distance, curr_distance = node_distance(0, 0);
1319 struct sched_domain_topology_level *tl;
1320 int level = 0;
1321 int i, j, k;
1322
1323 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
1324 if (!sched_domains_numa_distance)
1325 return;
1326
051f3ca0
SS
1327 /* Includes NUMA identity node at level 0. */
1328 sched_domains_numa_distance[level++] = curr_distance;
1329 sched_domains_numa_levels = level;
1330
f2cb1360
IM
1331 /*
1332 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1333 * unique distances in the node_distance() table.
1334 *
1335 * Assumes node_distance(0,j) includes all distances in
1336 * node_distance(i,j) in order to avoid cubic time.
1337 */
1338 next_distance = curr_distance;
1339 for (i = 0; i < nr_node_ids; i++) {
1340 for (j = 0; j < nr_node_ids; j++) {
1341 for (k = 0; k < nr_node_ids; k++) {
1342 int distance = node_distance(i, k);
1343
1344 if (distance > curr_distance &&
1345 (distance < next_distance ||
1346 next_distance == curr_distance))
1347 next_distance = distance;
1348
1349 /*
1350 * While not a strong assumption it would be nice to know
1351 * about cases where if node A is connected to B, B is not
1352 * equally connected to A.
1353 */
1354 if (sched_debug() && node_distance(k, i) != distance)
1355 sched_numa_warn("Node-distance not symmetric");
1356
1357 if (sched_debug() && i && !find_numa_distance(distance))
1358 sched_numa_warn("Node-0 not representative");
1359 }
1360 if (next_distance != curr_distance) {
1361 sched_domains_numa_distance[level++] = next_distance;
1362 sched_domains_numa_levels = level;
1363 curr_distance = next_distance;
1364 } else break;
1365 }
1366
1367 /*
1368 * In case of sched_debug() we verify the above assumption.
1369 */
1370 if (!sched_debug())
1371 break;
1372 }
1373
1374 if (!level)
1375 return;
1376
1377 /*
051f3ca0 1378 * 'level' contains the number of unique distances
f2cb1360
IM
1379 *
1380 * The sched_domains_numa_distance[] array includes the actual distance
1381 * numbers.
1382 */
1383
1384 /*
1385 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1386 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1387 * the array will contain less then 'level' members. This could be
1388 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1389 * in other functions.
1390 *
1391 * We reset it to 'level' at the end of this function.
1392 */
1393 sched_domains_numa_levels = 0;
1394
1395 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1396 if (!sched_domains_numa_masks)
1397 return;
1398
1399 /*
1400 * Now for each level, construct a mask per node which contains all
1401 * CPUs of nodes that are that many hops away from us.
1402 */
1403 for (i = 0; i < level; i++) {
1404 sched_domains_numa_masks[i] =
1405 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1406 if (!sched_domains_numa_masks[i])
1407 return;
1408
1409 for (j = 0; j < nr_node_ids; j++) {
1410 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1411 if (!mask)
1412 return;
1413
1414 sched_domains_numa_masks[i][j] = mask;
1415
1416 for_each_node(k) {
1417 if (node_distance(j, k) > sched_domains_numa_distance[i])
1418 continue;
1419
1420 cpumask_or(mask, mask, cpumask_of_node(k));
1421 }
1422 }
1423 }
1424
1425 /* Compute default topology size */
1426 for (i = 0; sched_domain_topology[i].mask; i++);
1427
1428 tl = kzalloc((i + level + 1) *
1429 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1430 if (!tl)
1431 return;
1432
1433 /*
1434 * Copy the default topology bits..
1435 */
1436 for (i = 0; sched_domain_topology[i].mask; i++)
1437 tl[i] = sched_domain_topology[i];
1438
051f3ca0
SS
1439 /*
1440 * Add the NUMA identity distance, aka single NODE.
1441 */
1442 tl[i++] = (struct sched_domain_topology_level){
1443 .mask = sd_numa_mask,
1444 .numa_level = 0,
1445 SD_INIT_NAME(NODE)
1446 };
1447
f2cb1360
IM
1448 /*
1449 * .. and append 'j' levels of NUMA goodness.
1450 */
051f3ca0 1451 for (j = 1; j < level; i++, j++) {
f2cb1360
IM
1452 tl[i] = (struct sched_domain_topology_level){
1453 .mask = sd_numa_mask,
1454 .sd_flags = cpu_numa_flags,
1455 .flags = SDTL_OVERLAP,
1456 .numa_level = j,
1457 SD_INIT_NAME(NUMA)
1458 };
1459 }
1460
1461 sched_domain_topology = tl;
1462
1463 sched_domains_numa_levels = level;
1464 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1465
1466 init_numa_topology_type();
1467}
1468
1469void sched_domains_numa_masks_set(unsigned int cpu)
1470{
1471 int node = cpu_to_node(cpu);
1472 int i, j;
1473
1474 for (i = 0; i < sched_domains_numa_levels; i++) {
1475 for (j = 0; j < nr_node_ids; j++) {
1476 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1477 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1478 }
1479 }
1480}
1481
1482void sched_domains_numa_masks_clear(unsigned int cpu)
1483{
1484 int i, j;
1485
1486 for (i = 0; i < sched_domains_numa_levels; i++) {
1487 for (j = 0; j < nr_node_ids; j++)
1488 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1489 }
1490}
1491
1492#endif /* CONFIG_NUMA */
1493
1494static int __sdt_alloc(const struct cpumask *cpu_map)
1495{
1496 struct sched_domain_topology_level *tl;
1497 int j;
1498
1499 for_each_sd_topology(tl) {
1500 struct sd_data *sdd = &tl->data;
1501
1502 sdd->sd = alloc_percpu(struct sched_domain *);
1503 if (!sdd->sd)
1504 return -ENOMEM;
1505
1506 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1507 if (!sdd->sds)
1508 return -ENOMEM;
1509
1510 sdd->sg = alloc_percpu(struct sched_group *);
1511 if (!sdd->sg)
1512 return -ENOMEM;
1513
1514 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1515 if (!sdd->sgc)
1516 return -ENOMEM;
1517
1518 for_each_cpu(j, cpu_map) {
1519 struct sched_domain *sd;
1520 struct sched_domain_shared *sds;
1521 struct sched_group *sg;
1522 struct sched_group_capacity *sgc;
1523
1524 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1525 GFP_KERNEL, cpu_to_node(j));
1526 if (!sd)
1527 return -ENOMEM;
1528
1529 *per_cpu_ptr(sdd->sd, j) = sd;
1530
1531 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1532 GFP_KERNEL, cpu_to_node(j));
1533 if (!sds)
1534 return -ENOMEM;
1535
1536 *per_cpu_ptr(sdd->sds, j) = sds;
1537
1538 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1539 GFP_KERNEL, cpu_to_node(j));
1540 if (!sg)
1541 return -ENOMEM;
1542
1543 sg->next = sg;
1544
1545 *per_cpu_ptr(sdd->sg, j) = sg;
1546
1547 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1548 GFP_KERNEL, cpu_to_node(j));
1549 if (!sgc)
1550 return -ENOMEM;
1551
005f874d
PZ
1552#ifdef CONFIG_SCHED_DEBUG
1553 sgc->id = j;
1554#endif
1555
f2cb1360
IM
1556 *per_cpu_ptr(sdd->sgc, j) = sgc;
1557 }
1558 }
1559
1560 return 0;
1561}
1562
1563static void __sdt_free(const struct cpumask *cpu_map)
1564{
1565 struct sched_domain_topology_level *tl;
1566 int j;
1567
1568 for_each_sd_topology(tl) {
1569 struct sd_data *sdd = &tl->data;
1570
1571 for_each_cpu(j, cpu_map) {
1572 struct sched_domain *sd;
1573
1574 if (sdd->sd) {
1575 sd = *per_cpu_ptr(sdd->sd, j);
1576 if (sd && (sd->flags & SD_OVERLAP))
1577 free_sched_groups(sd->groups, 0);
1578 kfree(*per_cpu_ptr(sdd->sd, j));
1579 }
1580
1581 if (sdd->sds)
1582 kfree(*per_cpu_ptr(sdd->sds, j));
1583 if (sdd->sg)
1584 kfree(*per_cpu_ptr(sdd->sg, j));
1585 if (sdd->sgc)
1586 kfree(*per_cpu_ptr(sdd->sgc, j));
1587 }
1588 free_percpu(sdd->sd);
1589 sdd->sd = NULL;
1590 free_percpu(sdd->sds);
1591 sdd->sds = NULL;
1592 free_percpu(sdd->sg);
1593 sdd->sg = NULL;
1594 free_percpu(sdd->sgc);
1595 sdd->sgc = NULL;
1596 }
1597}
1598
181a80d1 1599static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
f2cb1360
IM
1600 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1601 struct sched_domain *child, int cpu)
1602{
1603 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
1604
1605 if (child) {
1606 sd->level = child->level + 1;
1607 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1608 child->parent = sd;
1609
1610 if (!cpumask_subset(sched_domain_span(child),
1611 sched_domain_span(sd))) {
1612 pr_err("BUG: arch topology borken\n");
1613#ifdef CONFIG_SCHED_DEBUG
1614 pr_err(" the %s domain not a subset of the %s domain\n",
1615 child->name, sd->name);
1616#endif
1617 /* Fixup, ensure @sd has at least @child cpus. */
1618 cpumask_or(sched_domain_span(sd),
1619 sched_domain_span(sd),
1620 sched_domain_span(child));
1621 }
1622
1623 }
1624 set_domain_attribute(sd, attr);
1625
1626 return sd;
1627}
1628
1629/*
1630 * Build sched domains for a given set of CPUs and attach the sched domains
1631 * to the individual CPUs
1632 */
1633static int
1634build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1635{
1636 enum s_alloc alloc_state;
1637 struct sched_domain *sd;
1638 struct s_data d;
1639 struct rq *rq = NULL;
1640 int i, ret = -ENOMEM;
1641
1642 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1643 if (alloc_state != sa_rootdomain)
1644 goto error;
1645
1646 /* Set up domains for CPUs specified by the cpu_map: */
1647 for_each_cpu(i, cpu_map) {
1648 struct sched_domain_topology_level *tl;
1649
1650 sd = NULL;
1651 for_each_sd_topology(tl) {
1652 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
1653 if (tl == sched_domain_topology)
1654 *per_cpu_ptr(d.sd, i) = sd;
af85596c 1655 if (tl->flags & SDTL_OVERLAP)
f2cb1360
IM
1656 sd->flags |= SD_OVERLAP;
1657 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1658 break;
1659 }
1660 }
1661
1662 /* Build the groups for the domains */
1663 for_each_cpu(i, cpu_map) {
1664 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1665 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1666 if (sd->flags & SD_OVERLAP) {
1667 if (build_overlap_sched_groups(sd, i))
1668 goto error;
1669 } else {
1670 if (build_sched_groups(sd, i))
1671 goto error;
1672 }
1673 }
1674 }
1675
1676 /* Calculate CPU capacity for physical packages and nodes */
1677 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1678 if (!cpumask_test_cpu(i, cpu_map))
1679 continue;
1680
1681 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1682 claim_allocations(i, sd);
1683 init_sched_groups_capacity(i, sd);
1684 }
1685 }
1686
1687 /* Attach the domains */
1688 rcu_read_lock();
1689 for_each_cpu(i, cpu_map) {
1690 rq = cpu_rq(i);
1691 sd = *per_cpu_ptr(d.sd, i);
1692
1693 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1694 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1695 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1696
1697 cpu_attach_domain(sd, d.rd, i);
1698 }
1699 rcu_read_unlock();
1700
1701 if (rq && sched_debug_enabled) {
1702 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
1703 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1704 }
1705
1706 ret = 0;
1707error:
1708 __free_domain_allocs(&d, alloc_state, cpu_map);
1709 return ret;
1710}
1711
1712/* Current sched domains: */
1713static cpumask_var_t *doms_cur;
1714
1715/* Number of sched domains in 'doms_cur': */
1716static int ndoms_cur;
1717
1718/* Attribues of custom domains in 'doms_cur' */
1719static struct sched_domain_attr *dattr_cur;
1720
1721/*
1722 * Special case: If a kmalloc() of a doms_cur partition (array of
1723 * cpumask) fails, then fallback to a single sched domain,
1724 * as determined by the single cpumask fallback_doms.
1725 */
8d5dc512 1726static cpumask_var_t fallback_doms;
f2cb1360
IM
1727
1728/*
1729 * arch_update_cpu_topology lets virtualized architectures update the
1730 * CPU core maps. It is supposed to return 1 if the topology changed
1731 * or 0 if it stayed the same.
1732 */
1733int __weak arch_update_cpu_topology(void)
1734{
1735 return 0;
1736}
1737
1738cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
1739{
1740 int i;
1741 cpumask_var_t *doms;
1742
1743 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
1744 if (!doms)
1745 return NULL;
1746 for (i = 0; i < ndoms; i++) {
1747 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
1748 free_sched_domains(doms, i);
1749 return NULL;
1750 }
1751 }
1752 return doms;
1753}
1754
1755void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
1756{
1757 unsigned int i;
1758 for (i = 0; i < ndoms; i++)
1759 free_cpumask_var(doms[i]);
1760 kfree(doms);
1761}
1762
1763/*
1764 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
1765 * For now this just excludes isolated CPUs, but could be used to
1766 * exclude other special cases in the future.
1767 */
8d5dc512 1768int sched_init_domains(const struct cpumask *cpu_map)
f2cb1360
IM
1769{
1770 int err;
1771
8d5dc512 1772 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
1676330e 1773 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
8d5dc512
PZ
1774 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
1775
f2cb1360
IM
1776 arch_update_cpu_topology();
1777 ndoms_cur = 1;
1778 doms_cur = alloc_sched_domains(ndoms_cur);
1779 if (!doms_cur)
1780 doms_cur = &fallback_doms;
edb93821 1781 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
1782 err = build_sched_domains(doms_cur[0], NULL);
1783 register_sched_domain_sysctl();
1784
1785 return err;
1786}
1787
1788/*
1789 * Detach sched domains from a group of CPUs specified in cpu_map
1790 * These CPUs will now be attached to the NULL domain
1791 */
1792static void detach_destroy_domains(const struct cpumask *cpu_map)
1793{
1794 int i;
1795
1796 rcu_read_lock();
1797 for_each_cpu(i, cpu_map)
1798 cpu_attach_domain(NULL, &def_root_domain, i);
1799 rcu_read_unlock();
1800}
1801
1802/* handle null as "default" */
1803static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
1804 struct sched_domain_attr *new, int idx_new)
1805{
1806 struct sched_domain_attr tmp;
1807
1808 /* Fast path: */
1809 if (!new && !cur)
1810 return 1;
1811
1812 tmp = SD_ATTR_INIT;
1813 return !memcmp(cur ? (cur + idx_cur) : &tmp,
1814 new ? (new + idx_new) : &tmp,
1815 sizeof(struct sched_domain_attr));
1816}
1817
1818/*
1819 * Partition sched domains as specified by the 'ndoms_new'
1820 * cpumasks in the array doms_new[] of cpumasks. This compares
1821 * doms_new[] to the current sched domain partitioning, doms_cur[].
1822 * It destroys each deleted domain and builds each new domain.
1823 *
1824 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
1825 * The masks don't intersect (don't overlap.) We should setup one
1826 * sched domain for each mask. CPUs not in any of the cpumasks will
1827 * not be load balanced. If the same cpumask appears both in the
1828 * current 'doms_cur' domains and in the new 'doms_new', we can leave
1829 * it as it is.
1830 *
1831 * The passed in 'doms_new' should be allocated using
1832 * alloc_sched_domains. This routine takes ownership of it and will
1833 * free_sched_domains it when done with it. If the caller failed the
1834 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
1835 * and partition_sched_domains() will fallback to the single partition
1836 * 'fallback_doms', it also forces the domains to be rebuilt.
1837 *
1838 * If doms_new == NULL it will be replaced with cpu_online_mask.
1839 * ndoms_new == 0 is a special case for destroying existing domains,
1840 * and it will not create the default domain.
1841 *
1842 * Call with hotplug lock held
1843 */
1844void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1845 struct sched_domain_attr *dattr_new)
1846{
1847 int i, j, n;
1848 int new_topology;
1849
1850 mutex_lock(&sched_domains_mutex);
1851
1852 /* Always unregister in case we don't destroy any domains: */
1853 unregister_sched_domain_sysctl();
1854
1855 /* Let the architecture update CPU core mappings: */
1856 new_topology = arch_update_cpu_topology();
1857
09e0dd8e
PZ
1858 if (!doms_new) {
1859 WARN_ON_ONCE(dattr_new);
1860 n = 0;
1861 doms_new = alloc_sched_domains(1);
1862 if (doms_new) {
1863 n = 1;
edb93821
FW
1864 cpumask_and(doms_new[0], cpu_active_mask,
1865 housekeeping_cpumask(HK_FLAG_DOMAIN));
09e0dd8e
PZ
1866 }
1867 } else {
1868 n = ndoms_new;
1869 }
f2cb1360
IM
1870
1871 /* Destroy deleted domains: */
1872 for (i = 0; i < ndoms_cur; i++) {
1873 for (j = 0; j < n && !new_topology; j++) {
1874 if (cpumask_equal(doms_cur[i], doms_new[j])
1875 && dattrs_equal(dattr_cur, i, dattr_new, j))
1876 goto match1;
1877 }
1878 /* No match - a current sched domain not in new doms_new[] */
1879 detach_destroy_domains(doms_cur[i]);
1880match1:
1881 ;
1882 }
1883
1884 n = ndoms_cur;
09e0dd8e 1885 if (!doms_new) {
f2cb1360
IM
1886 n = 0;
1887 doms_new = &fallback_doms;
edb93821
FW
1888 cpumask_and(doms_new[0], cpu_active_mask,
1889 housekeeping_cpumask(HK_FLAG_DOMAIN));
f2cb1360
IM
1890 }
1891
1892 /* Build new domains: */
1893 for (i = 0; i < ndoms_new; i++) {
1894 for (j = 0; j < n && !new_topology; j++) {
1895 if (cpumask_equal(doms_new[i], doms_cur[j])
1896 && dattrs_equal(dattr_new, i, dattr_cur, j))
1897 goto match2;
1898 }
1899 /* No match - add a new doms_new */
1900 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
1901match2:
1902 ;
1903 }
1904
1905 /* Remember the new sched domains: */
1906 if (doms_cur != &fallback_doms)
1907 free_sched_domains(doms_cur, ndoms_cur);
1908
1909 kfree(dattr_cur);
1910 doms_cur = doms_new;
1911 dattr_cur = dattr_new;
1912 ndoms_cur = ndoms_new;
1913
1914 register_sched_domain_sysctl();
1915
1916 mutex_unlock(&sched_domains_mutex);
1917}
1918