sched: Rename load-balancing fields
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
3#include <linux/mutex.h>
4#include <linux/spinlock.h>
5#include <linux/stop_machine.h>
6
391e43da 7#include "cpupri.h"
029632fb
PZ
8
9extern __read_mostly int scheduler_running;
10
11/*
12 * Convert user-nice values [ -20 ... 0 ... 19 ]
13 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
14 * and back.
15 */
16#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
17#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
18#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
19
20/*
21 * 'User priority' is the nice value converted to something we
22 * can work with better when scaling various scheduler parameters,
23 * it's a [ 0 ... 39 ] range.
24 */
25#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
26#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
27#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
28
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
34#define NICE_0_LOAD SCHED_LOAD_SCALE
35#define NICE_0_SHIFT SCHED_LOAD_SHIFT
36
37/*
38 * These are the 'tuning knobs' of the scheduler:
029632fb 39 */
029632fb
PZ
40
41/*
42 * single value that denotes runtime == period, ie unlimited time.
43 */
44#define RUNTIME_INF ((u64)~0ULL)
45
46static inline int rt_policy(int policy)
47{
48 if (policy == SCHED_FIFO || policy == SCHED_RR)
49 return 1;
50 return 0;
51}
52
53static inline int task_has_rt_policy(struct task_struct *p)
54{
55 return rt_policy(p->policy);
56}
57
58/*
59 * This is the priority-queue data structure of the RT scheduling class:
60 */
61struct rt_prio_array {
62 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
63 struct list_head queue[MAX_RT_PRIO];
64};
65
66struct rt_bandwidth {
67 /* nests inside the rq lock: */
68 raw_spinlock_t rt_runtime_lock;
69 ktime_t rt_period;
70 u64 rt_runtime;
71 struct hrtimer rt_period_timer;
72};
73
74extern struct mutex sched_domains_mutex;
75
76#ifdef CONFIG_CGROUP_SCHED
77
78#include <linux/cgroup.h>
79
80struct cfs_rq;
81struct rt_rq;
82
83static LIST_HEAD(task_groups);
84
85struct cfs_bandwidth {
86#ifdef CONFIG_CFS_BANDWIDTH
87 raw_spinlock_t lock;
88 ktime_t period;
89 u64 quota, runtime;
90 s64 hierarchal_quota;
91 u64 runtime_expires;
92
93 int idle, timer_active;
94 struct hrtimer period_timer, slack_timer;
95 struct list_head throttled_cfs_rq;
96
97 /* statistics */
98 int nr_periods, nr_throttled;
99 u64 throttled_time;
100#endif
101};
102
103/* task group related information */
104struct task_group {
105 struct cgroup_subsys_state css;
106
107#ifdef CONFIG_FAIR_GROUP_SCHED
108 /* schedulable entities of this group on each cpu */
109 struct sched_entity **se;
110 /* runqueue "owned" by this group on each cpu */
111 struct cfs_rq **cfs_rq;
112 unsigned long shares;
113
114 atomic_t load_weight;
115#endif
116
117#ifdef CONFIG_RT_GROUP_SCHED
118 struct sched_rt_entity **rt_se;
119 struct rt_rq **rt_rq;
120
121 struct rt_bandwidth rt_bandwidth;
122#endif
123
124 struct rcu_head rcu;
125 struct list_head list;
126
127 struct task_group *parent;
128 struct list_head siblings;
129 struct list_head children;
130
131#ifdef CONFIG_SCHED_AUTOGROUP
132 struct autogroup *autogroup;
133#endif
134
135 struct cfs_bandwidth cfs_bandwidth;
136};
137
138#ifdef CONFIG_FAIR_GROUP_SCHED
139#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
140
141/*
142 * A weight of 0 or 1 can cause arithmetics problems.
143 * A weight of a cfs_rq is the sum of weights of which entities
144 * are queued on this cfs_rq, so a weight of a entity should not be
145 * too large, so as the shares value of a task group.
146 * (The default weight is 1024 - so there's no practical
147 * limitation from this.)
148 */
149#define MIN_SHARES (1UL << 1)
150#define MAX_SHARES (1UL << 18)
151#endif
152
153/* Default task group.
154 * Every task in system belong to this group at bootup.
155 */
156extern struct task_group root_task_group;
157
158typedef int (*tg_visitor)(struct task_group *, void *);
159
160extern int walk_tg_tree_from(struct task_group *from,
161 tg_visitor down, tg_visitor up, void *data);
162
163/*
164 * Iterate the full tree, calling @down when first entering a node and @up when
165 * leaving it for the final time.
166 *
167 * Caller must hold rcu_lock or sufficient equivalent.
168 */
169static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
170{
171 return walk_tg_tree_from(&root_task_group, down, up, data);
172}
173
174extern int tg_nop(struct task_group *tg, void *data);
175
176extern void free_fair_sched_group(struct task_group *tg);
177extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
178extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
179extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
180 struct sched_entity *se, int cpu,
181 struct sched_entity *parent);
182extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
183extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
184
185extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
186extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
188
189extern void free_rt_sched_group(struct task_group *tg);
190extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
191extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
192 struct sched_rt_entity *rt_se, int cpu,
193 struct sched_rt_entity *parent);
194
195#else /* CONFIG_CGROUP_SCHED */
196
197struct cfs_bandwidth { };
198
199#endif /* CONFIG_CGROUP_SCHED */
200
201/* CFS-related fields in a runqueue */
202struct cfs_rq {
203 struct load_weight load;
204 unsigned long nr_running, h_nr_running;
205
206 u64 exec_clock;
207 u64 min_vruntime;
208#ifndef CONFIG_64BIT
209 u64 min_vruntime_copy;
210#endif
211
212 struct rb_root tasks_timeline;
213 struct rb_node *rb_leftmost;
214
215 struct list_head tasks;
216 struct list_head *balance_iterator;
217
218 /*
219 * 'curr' points to currently running entity on this cfs_rq.
220 * It is set to NULL otherwise (i.e when none are currently running).
221 */
222 struct sched_entity *curr, *next, *last, *skip;
223
224#ifdef CONFIG_SCHED_DEBUG
225 unsigned int nr_spread_over;
226#endif
227
228#ifdef CONFIG_FAIR_GROUP_SCHED
229 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
230
231 /*
232 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
233 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
234 * (like users, containers etc.)
235 *
236 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
237 * list is used during load balance.
238 */
239 int on_list;
240 struct list_head leaf_cfs_rq_list;
241 struct task_group *tg; /* group that "owns" this runqueue */
242
243#ifdef CONFIG_SMP
244 /*
245 * the part of load.weight contributed by tasks
246 */
247 unsigned long task_weight;
248
249 /*
250 * h_load = weight * f(tg)
251 *
252 * Where f(tg) is the recursive weight fraction assigned to
253 * this group.
254 */
255 unsigned long h_load;
256
257 /*
258 * Maintaining per-cpu shares distribution for group scheduling
259 *
260 * load_stamp is the last time we updated the load average
261 * load_last is the last time we updated the load average and saw load
262 * load_unacc_exec_time is currently unaccounted execution time
263 */
264 u64 load_avg;
265 u64 load_period;
266 u64 load_stamp, load_last, load_unacc_exec_time;
267
268 unsigned long load_contribution;
269#endif /* CONFIG_SMP */
270#ifdef CONFIG_CFS_BANDWIDTH
271 int runtime_enabled;
272 u64 runtime_expires;
273 s64 runtime_remaining;
274
275 u64 throttled_timestamp;
276 int throttled, throttle_count;
277 struct list_head throttled_list;
278#endif /* CONFIG_CFS_BANDWIDTH */
279#endif /* CONFIG_FAIR_GROUP_SCHED */
280};
281
282static inline int rt_bandwidth_enabled(void)
283{
284 return sysctl_sched_rt_runtime >= 0;
285}
286
287/* Real-Time classes' related field in a runqueue: */
288struct rt_rq {
289 struct rt_prio_array active;
290 unsigned long rt_nr_running;
291#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
292 struct {
293 int curr; /* highest queued rt task prio */
294#ifdef CONFIG_SMP
295 int next; /* next highest */
296#endif
297 } highest_prio;
298#endif
299#ifdef CONFIG_SMP
300 unsigned long rt_nr_migratory;
301 unsigned long rt_nr_total;
302 int overloaded;
303 struct plist_head pushable_tasks;
304#endif
305 int rt_throttled;
306 u64 rt_time;
307 u64 rt_runtime;
308 /* Nests inside the rq lock: */
309 raw_spinlock_t rt_runtime_lock;
310
311#ifdef CONFIG_RT_GROUP_SCHED
312 unsigned long rt_nr_boosted;
313
314 struct rq *rq;
315 struct list_head leaf_rt_rq_list;
316 struct task_group *tg;
317#endif
318};
319
320#ifdef CONFIG_SMP
321
322/*
323 * We add the notion of a root-domain which will be used to define per-domain
324 * variables. Each exclusive cpuset essentially defines an island domain by
325 * fully partitioning the member cpus from any other cpuset. Whenever a new
326 * exclusive cpuset is created, we also create and attach a new root-domain
327 * object.
328 *
329 */
330struct root_domain {
331 atomic_t refcount;
332 atomic_t rto_count;
333 struct rcu_head rcu;
334 cpumask_var_t span;
335 cpumask_var_t online;
336
337 /*
338 * The "RT overload" flag: it gets set if a CPU has more than
339 * one runnable RT task.
340 */
341 cpumask_var_t rto_mask;
342 struct cpupri cpupri;
343};
344
345extern struct root_domain def_root_domain;
346
347#endif /* CONFIG_SMP */
348
349/*
350 * This is the main, per-CPU runqueue data structure.
351 *
352 * Locking rule: those places that want to lock multiple runqueues
353 * (such as the load balancing or the thread migration code), lock
354 * acquire operations must be ordered by ascending &runqueue.
355 */
356struct rq {
357 /* runqueue lock: */
358 raw_spinlock_t lock;
359
360 /*
361 * nr_running and cpu_load should be in the same cacheline because
362 * remote CPUs use both these fields when doing load calculation.
363 */
364 unsigned long nr_running;
365 #define CPU_LOAD_IDX_MAX 5
366 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
367 unsigned long last_load_update_tick;
368#ifdef CONFIG_NO_HZ
369 u64 nohz_stamp;
1c792db7 370 unsigned long nohz_flags;
029632fb
PZ
371#endif
372 int skip_clock_update;
373
374 /* capture load from *all* tasks on this cpu: */
375 struct load_weight load;
376 unsigned long nr_load_updates;
377 u64 nr_switches;
378
379 struct cfs_rq cfs;
380 struct rt_rq rt;
381
382#ifdef CONFIG_FAIR_GROUP_SCHED
383 /* list of leaf cfs_rq on this cpu: */
384 struct list_head leaf_cfs_rq_list;
385#endif
386#ifdef CONFIG_RT_GROUP_SCHED
387 struct list_head leaf_rt_rq_list;
388#endif
389
390 /*
391 * This is part of a global counter where only the total sum
392 * over all CPUs matters. A task can increase this counter on
393 * one CPU and if it got migrated afterwards it may decrease
394 * it on another CPU. Always updated under the runqueue lock:
395 */
396 unsigned long nr_uninterruptible;
397
398 struct task_struct *curr, *idle, *stop;
399 unsigned long next_balance;
400 struct mm_struct *prev_mm;
401
402 u64 clock;
403 u64 clock_task;
404
405 atomic_t nr_iowait;
406
407#ifdef CONFIG_SMP
408 struct root_domain *rd;
409 struct sched_domain *sd;
410
411 unsigned long cpu_power;
412
413 unsigned char idle_balance;
414 /* For active balancing */
415 int post_schedule;
416 int active_balance;
417 int push_cpu;
418 struct cpu_stop_work active_balance_work;
419 /* cpu of this runqueue: */
420 int cpu;
421 int online;
422
423 u64 rt_avg;
424 u64 age_stamp;
425 u64 idle_stamp;
426 u64 avg_idle;
427#endif
428
429#ifdef CONFIG_IRQ_TIME_ACCOUNTING
430 u64 prev_irq_time;
431#endif
432#ifdef CONFIG_PARAVIRT
433 u64 prev_steal_time;
434#endif
435#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
436 u64 prev_steal_time_rq;
437#endif
438
439 /* calc_load related fields */
440 unsigned long calc_load_update;
441 long calc_load_active;
442
443#ifdef CONFIG_SCHED_HRTICK
444#ifdef CONFIG_SMP
445 int hrtick_csd_pending;
446 struct call_single_data hrtick_csd;
447#endif
448 struct hrtimer hrtick_timer;
449#endif
450
451#ifdef CONFIG_SCHEDSTATS
452 /* latency stats */
453 struct sched_info rq_sched_info;
454 unsigned long long rq_cpu_time;
455 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
456
457 /* sys_sched_yield() stats */
458 unsigned int yld_count;
459
460 /* schedule() stats */
029632fb
PZ
461 unsigned int sched_count;
462 unsigned int sched_goidle;
463
464 /* try_to_wake_up() stats */
465 unsigned int ttwu_count;
466 unsigned int ttwu_local;
467#endif
468
469#ifdef CONFIG_SMP
470 struct llist_head wake_list;
471#endif
472};
473
474static inline int cpu_of(struct rq *rq)
475{
476#ifdef CONFIG_SMP
477 return rq->cpu;
478#else
479 return 0;
480#endif
481}
482
483DECLARE_PER_CPU(struct rq, runqueues);
484
518cd623
PZ
485#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
486#define this_rq() (&__get_cpu_var(runqueues))
487#define task_rq(p) cpu_rq(task_cpu(p))
488#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
489#define raw_rq() (&__raw_get_cpu_var(runqueues))
490
491#ifdef CONFIG_SMP
492
029632fb
PZ
493#define rcu_dereference_check_sched_domain(p) \
494 rcu_dereference_check((p), \
495 lockdep_is_held(&sched_domains_mutex))
496
497/*
498 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
499 * See detach_destroy_domains: synchronize_sched for details.
500 *
501 * The domain tree of any CPU may only be accessed from within
502 * preempt-disabled sections.
503 */
504#define for_each_domain(cpu, __sd) \
518cd623
PZ
505 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
506 __sd; __sd = __sd->parent)
029632fb 507
77e81365
SS
508#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
509
518cd623
PZ
510/**
511 * highest_flag_domain - Return highest sched_domain containing flag.
512 * @cpu: The cpu whose highest level of sched domain is to
513 * be returned.
514 * @flag: The flag to check for the highest sched_domain
515 * for the given cpu.
516 *
517 * Returns the highest sched_domain of a cpu which contains the given flag.
518 */
519static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
520{
521 struct sched_domain *sd, *hsd = NULL;
522
523 for_each_domain(cpu, sd) {
524 if (!(sd->flags & flag))
525 break;
526 hsd = sd;
527 }
528
529 return hsd;
530}
531
532DECLARE_PER_CPU(struct sched_domain *, sd_llc);
533DECLARE_PER_CPU(int, sd_llc_id);
534
535#endif /* CONFIG_SMP */
029632fb 536
391e43da
PZ
537#include "stats.h"
538#include "auto_group.h"
029632fb
PZ
539
540#ifdef CONFIG_CGROUP_SCHED
541
542/*
543 * Return the group to which this tasks belongs.
544 *
545 * We use task_subsys_state_check() and extend the RCU verification with
546 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
547 * task it moves into the cgroup. Therefore by holding either of those locks,
548 * we pin the task to the current cgroup.
549 */
550static inline struct task_group *task_group(struct task_struct *p)
551{
552 struct task_group *tg;
553 struct cgroup_subsys_state *css;
554
555 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
556 lockdep_is_held(&p->pi_lock) ||
557 lockdep_is_held(&task_rq(p)->lock));
558 tg = container_of(css, struct task_group, css);
559
560 return autogroup_task_group(p, tg);
561}
562
563/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
564static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
565{
566#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
567 struct task_group *tg = task_group(p);
568#endif
569
570#ifdef CONFIG_FAIR_GROUP_SCHED
571 p->se.cfs_rq = tg->cfs_rq[cpu];
572 p->se.parent = tg->se[cpu];
573#endif
574
575#ifdef CONFIG_RT_GROUP_SCHED
576 p->rt.rt_rq = tg->rt_rq[cpu];
577 p->rt.parent = tg->rt_se[cpu];
578#endif
579}
580
581#else /* CONFIG_CGROUP_SCHED */
582
583static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
584static inline struct task_group *task_group(struct task_struct *p)
585{
586 return NULL;
587}
588
589#endif /* CONFIG_CGROUP_SCHED */
590
591static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
592{
593 set_task_rq(p, cpu);
594#ifdef CONFIG_SMP
595 /*
596 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
597 * successfuly executed on another CPU. We must ensure that updates of
598 * per-task data have been completed by this moment.
599 */
600 smp_wmb();
601 task_thread_info(p)->cpu = cpu;
602#endif
603}
604
605/*
606 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
607 */
608#ifdef CONFIG_SCHED_DEBUG
f8b6d1cc 609# include <linux/jump_label.h>
029632fb
PZ
610# define const_debug __read_mostly
611#else
612# define const_debug const
613#endif
614
615extern const_debug unsigned int sysctl_sched_features;
616
617#define SCHED_FEAT(name, enabled) \
618 __SCHED_FEAT_##name ,
619
620enum {
391e43da 621#include "features.h"
f8b6d1cc 622 __SCHED_FEAT_NR,
029632fb
PZ
623};
624
625#undef SCHED_FEAT
626
f8b6d1cc
PZ
627#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
628static __always_inline bool static_branch__true(struct jump_label_key *key)
629{
630 return likely(static_branch(key)); /* Not out of line branch. */
631}
632
633static __always_inline bool static_branch__false(struct jump_label_key *key)
634{
635 return unlikely(static_branch(key)); /* Out of line branch. */
636}
637
638#define SCHED_FEAT(name, enabled) \
639static __always_inline bool static_branch_##name(struct jump_label_key *key) \
640{ \
641 return static_branch__##enabled(key); \
642}
643
644#include "features.h"
645
646#undef SCHED_FEAT
647
648extern struct jump_label_key sched_feat_keys[__SCHED_FEAT_NR];
649#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
650#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 651#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 652#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb
PZ
653
654static inline u64 global_rt_period(void)
655{
656 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
657}
658
659static inline u64 global_rt_runtime(void)
660{
661 if (sysctl_sched_rt_runtime < 0)
662 return RUNTIME_INF;
663
664 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
665}
666
667
668
669static inline int task_current(struct rq *rq, struct task_struct *p)
670{
671 return rq->curr == p;
672}
673
674static inline int task_running(struct rq *rq, struct task_struct *p)
675{
676#ifdef CONFIG_SMP
677 return p->on_cpu;
678#else
679 return task_current(rq, p);
680#endif
681}
682
683
684#ifndef prepare_arch_switch
685# define prepare_arch_switch(next) do { } while (0)
686#endif
687#ifndef finish_arch_switch
688# define finish_arch_switch(prev) do { } while (0)
689#endif
690
691#ifndef __ARCH_WANT_UNLOCKED_CTXSW
692static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
693{
694#ifdef CONFIG_SMP
695 /*
696 * We can optimise this out completely for !SMP, because the
697 * SMP rebalancing from interrupt is the only thing that cares
698 * here.
699 */
700 next->on_cpu = 1;
701#endif
702}
703
704static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
705{
706#ifdef CONFIG_SMP
707 /*
708 * After ->on_cpu is cleared, the task can be moved to a different CPU.
709 * We must ensure this doesn't happen until the switch is completely
710 * finished.
711 */
712 smp_wmb();
713 prev->on_cpu = 0;
714#endif
715#ifdef CONFIG_DEBUG_SPINLOCK
716 /* this is a valid case when another task releases the spinlock */
717 rq->lock.owner = current;
718#endif
719 /*
720 * If we are tracking spinlock dependencies then we have to
721 * fix up the runqueue lock - which gets 'carried over' from
722 * prev into current:
723 */
724 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
725
726 raw_spin_unlock_irq(&rq->lock);
727}
728
729#else /* __ARCH_WANT_UNLOCKED_CTXSW */
730static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
731{
732#ifdef CONFIG_SMP
733 /*
734 * We can optimise this out completely for !SMP, because the
735 * SMP rebalancing from interrupt is the only thing that cares
736 * here.
737 */
738 next->on_cpu = 1;
739#endif
740#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
741 raw_spin_unlock_irq(&rq->lock);
742#else
743 raw_spin_unlock(&rq->lock);
744#endif
745}
746
747static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
748{
749#ifdef CONFIG_SMP
750 /*
751 * After ->on_cpu is cleared, the task can be moved to a different CPU.
752 * We must ensure this doesn't happen until the switch is completely
753 * finished.
754 */
755 smp_wmb();
756 prev->on_cpu = 0;
757#endif
758#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
759 local_irq_enable();
760#endif
761}
762#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
763
764
765static inline void update_load_add(struct load_weight *lw, unsigned long inc)
766{
767 lw->weight += inc;
768 lw->inv_weight = 0;
769}
770
771static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
772{
773 lw->weight -= dec;
774 lw->inv_weight = 0;
775}
776
777static inline void update_load_set(struct load_weight *lw, unsigned long w)
778{
779 lw->weight = w;
780 lw->inv_weight = 0;
781}
782
783/*
784 * To aid in avoiding the subversion of "niceness" due to uneven distribution
785 * of tasks with abnormal "nice" values across CPUs the contribution that
786 * each task makes to its run queue's load is weighted according to its
787 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
788 * scaled version of the new time slice allocation that they receive on time
789 * slice expiry etc.
790 */
791
792#define WEIGHT_IDLEPRIO 3
793#define WMULT_IDLEPRIO 1431655765
794
795/*
796 * Nice levels are multiplicative, with a gentle 10% change for every
797 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
798 * nice 1, it will get ~10% less CPU time than another CPU-bound task
799 * that remained on nice 0.
800 *
801 * The "10% effect" is relative and cumulative: from _any_ nice level,
802 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
803 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
804 * If a task goes up by ~10% and another task goes down by ~10% then
805 * the relative distance between them is ~25%.)
806 */
807static const int prio_to_weight[40] = {
808 /* -20 */ 88761, 71755, 56483, 46273, 36291,
809 /* -15 */ 29154, 23254, 18705, 14949, 11916,
810 /* -10 */ 9548, 7620, 6100, 4904, 3906,
811 /* -5 */ 3121, 2501, 1991, 1586, 1277,
812 /* 0 */ 1024, 820, 655, 526, 423,
813 /* 5 */ 335, 272, 215, 172, 137,
814 /* 10 */ 110, 87, 70, 56, 45,
815 /* 15 */ 36, 29, 23, 18, 15,
816};
817
818/*
819 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
820 *
821 * In cases where the weight does not change often, we can use the
822 * precalculated inverse to speed up arithmetics by turning divisions
823 * into multiplications:
824 */
825static const u32 prio_to_wmult[40] = {
826 /* -20 */ 48388, 59856, 76040, 92818, 118348,
827 /* -15 */ 147320, 184698, 229616, 287308, 360437,
828 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
829 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
830 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
831 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
832 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
833 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
834};
835
836/* Time spent by the tasks of the cpu accounting group executing in ... */
837enum cpuacct_stat_index {
838 CPUACCT_STAT_USER, /* ... user mode */
839 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
840
841 CPUACCT_STAT_NSTATS,
842};
843
844
845#define sched_class_highest (&stop_sched_class)
846#define for_each_class(class) \
847 for (class = sched_class_highest; class; class = class->next)
848
849extern const struct sched_class stop_sched_class;
850extern const struct sched_class rt_sched_class;
851extern const struct sched_class fair_sched_class;
852extern const struct sched_class idle_sched_class;
853
854
855#ifdef CONFIG_SMP
856
857extern void trigger_load_balance(struct rq *rq, int cpu);
858extern void idle_balance(int this_cpu, struct rq *this_rq);
859
860#else /* CONFIG_SMP */
861
862static inline void idle_balance(int cpu, struct rq *rq)
863{
864}
865
866#endif
867
868extern void sysrq_sched_debug_show(void);
869extern void sched_init_granularity(void);
870extern void update_max_interval(void);
871extern void update_group_power(struct sched_domain *sd, int cpu);
872extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
873extern void init_sched_rt_class(void);
874extern void init_sched_fair_class(void);
875
876extern void resched_task(struct task_struct *p);
877extern void resched_cpu(int cpu);
878
879extern struct rt_bandwidth def_rt_bandwidth;
880extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
881
882extern void update_cpu_load(struct rq *this_rq);
883
884#ifdef CONFIG_CGROUP_CPUACCT
54c707e9
GC
885#include <linux/cgroup.h>
886/* track cpu usage of a group of tasks and its child groups */
887struct cpuacct {
888 struct cgroup_subsys_state css;
889 /* cpuusage holds pointer to a u64-type object on every cpu */
890 u64 __percpu *cpuusage;
891 struct kernel_cpustat __percpu *cpustat;
892};
893
894/* return cpu accounting group corresponding to this container */
895static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
896{
897 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
898 struct cpuacct, css);
899}
900
901/* return cpu accounting group to which this task belongs */
902static inline struct cpuacct *task_ca(struct task_struct *tsk)
903{
904 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
905 struct cpuacct, css);
906}
907
908static inline struct cpuacct *parent_ca(struct cpuacct *ca)
909{
910 if (!ca || !ca->css.cgroup->parent)
911 return NULL;
912 return cgroup_ca(ca->css.cgroup->parent);
913}
914
029632fb 915extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
029632fb
PZ
916#else
917static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
029632fb
PZ
918#endif
919
920static inline void inc_nr_running(struct rq *rq)
921{
922 rq->nr_running++;
923}
924
925static inline void dec_nr_running(struct rq *rq)
926{
927 rq->nr_running--;
928}
929
930extern void update_rq_clock(struct rq *rq);
931
932extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
933extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
934
935extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
936
937extern const_debug unsigned int sysctl_sched_time_avg;
938extern const_debug unsigned int sysctl_sched_nr_migrate;
939extern const_debug unsigned int sysctl_sched_migration_cost;
940
941static inline u64 sched_avg_period(void)
942{
943 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
944}
945
946void calc_load_account_idle(struct rq *this_rq);
947
948#ifdef CONFIG_SCHED_HRTICK
949
950/*
951 * Use hrtick when:
952 * - enabled by features
953 * - hrtimer is actually high res
954 */
955static inline int hrtick_enabled(struct rq *rq)
956{
957 if (!sched_feat(HRTICK))
958 return 0;
959 if (!cpu_active(cpu_of(rq)))
960 return 0;
961 return hrtimer_is_hres_active(&rq->hrtick_timer);
962}
963
964void hrtick_start(struct rq *rq, u64 delay);
965
b39e66ea
MG
966#else
967
968static inline int hrtick_enabled(struct rq *rq)
969{
970 return 0;
971}
972
029632fb
PZ
973#endif /* CONFIG_SCHED_HRTICK */
974
975#ifdef CONFIG_SMP
976extern void sched_avg_update(struct rq *rq);
977static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
978{
979 rq->rt_avg += rt_delta;
980 sched_avg_update(rq);
981}
982#else
983static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
984static inline void sched_avg_update(struct rq *rq) { }
985#endif
986
987extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
988
989#ifdef CONFIG_SMP
990#ifdef CONFIG_PREEMPT
991
992static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
993
994/*
995 * fair double_lock_balance: Safely acquires both rq->locks in a fair
996 * way at the expense of forcing extra atomic operations in all
997 * invocations. This assures that the double_lock is acquired using the
998 * same underlying policy as the spinlock_t on this architecture, which
999 * reduces latency compared to the unfair variant below. However, it
1000 * also adds more overhead and therefore may reduce throughput.
1001 */
1002static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1003 __releases(this_rq->lock)
1004 __acquires(busiest->lock)
1005 __acquires(this_rq->lock)
1006{
1007 raw_spin_unlock(&this_rq->lock);
1008 double_rq_lock(this_rq, busiest);
1009
1010 return 1;
1011}
1012
1013#else
1014/*
1015 * Unfair double_lock_balance: Optimizes throughput at the expense of
1016 * latency by eliminating extra atomic operations when the locks are
1017 * already in proper order on entry. This favors lower cpu-ids and will
1018 * grant the double lock to lower cpus over higher ids under contention,
1019 * regardless of entry order into the function.
1020 */
1021static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1022 __releases(this_rq->lock)
1023 __acquires(busiest->lock)
1024 __acquires(this_rq->lock)
1025{
1026 int ret = 0;
1027
1028 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1029 if (busiest < this_rq) {
1030 raw_spin_unlock(&this_rq->lock);
1031 raw_spin_lock(&busiest->lock);
1032 raw_spin_lock_nested(&this_rq->lock,
1033 SINGLE_DEPTH_NESTING);
1034 ret = 1;
1035 } else
1036 raw_spin_lock_nested(&busiest->lock,
1037 SINGLE_DEPTH_NESTING);
1038 }
1039 return ret;
1040}
1041
1042#endif /* CONFIG_PREEMPT */
1043
1044/*
1045 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1046 */
1047static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1048{
1049 if (unlikely(!irqs_disabled())) {
1050 /* printk() doesn't work good under rq->lock */
1051 raw_spin_unlock(&this_rq->lock);
1052 BUG_ON(1);
1053 }
1054
1055 return _double_lock_balance(this_rq, busiest);
1056}
1057
1058static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1059 __releases(busiest->lock)
1060{
1061 raw_spin_unlock(&busiest->lock);
1062 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1063}
1064
1065/*
1066 * double_rq_lock - safely lock two runqueues
1067 *
1068 * Note this does not disable interrupts like task_rq_lock,
1069 * you need to do so manually before calling.
1070 */
1071static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1072 __acquires(rq1->lock)
1073 __acquires(rq2->lock)
1074{
1075 BUG_ON(!irqs_disabled());
1076 if (rq1 == rq2) {
1077 raw_spin_lock(&rq1->lock);
1078 __acquire(rq2->lock); /* Fake it out ;) */
1079 } else {
1080 if (rq1 < rq2) {
1081 raw_spin_lock(&rq1->lock);
1082 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1083 } else {
1084 raw_spin_lock(&rq2->lock);
1085 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1086 }
1087 }
1088}
1089
1090/*
1091 * double_rq_unlock - safely unlock two runqueues
1092 *
1093 * Note this does not restore interrupts like task_rq_unlock,
1094 * you need to do so manually after calling.
1095 */
1096static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1097 __releases(rq1->lock)
1098 __releases(rq2->lock)
1099{
1100 raw_spin_unlock(&rq1->lock);
1101 if (rq1 != rq2)
1102 raw_spin_unlock(&rq2->lock);
1103 else
1104 __release(rq2->lock);
1105}
1106
1107#else /* CONFIG_SMP */
1108
1109/*
1110 * double_rq_lock - safely lock two runqueues
1111 *
1112 * Note this does not disable interrupts like task_rq_lock,
1113 * you need to do so manually before calling.
1114 */
1115static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1116 __acquires(rq1->lock)
1117 __acquires(rq2->lock)
1118{
1119 BUG_ON(!irqs_disabled());
1120 BUG_ON(rq1 != rq2);
1121 raw_spin_lock(&rq1->lock);
1122 __acquire(rq2->lock); /* Fake it out ;) */
1123}
1124
1125/*
1126 * double_rq_unlock - safely unlock two runqueues
1127 *
1128 * Note this does not restore interrupts like task_rq_unlock,
1129 * you need to do so manually after calling.
1130 */
1131static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1132 __releases(rq1->lock)
1133 __releases(rq2->lock)
1134{
1135 BUG_ON(rq1 != rq2);
1136 raw_spin_unlock(&rq1->lock);
1137 __release(rq2->lock);
1138}
1139
1140#endif
1141
1142extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1143extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1144extern void print_cfs_stats(struct seq_file *m, int cpu);
1145extern void print_rt_stats(struct seq_file *m, int cpu);
1146
1147extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1148extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1149extern void unthrottle_offline_cfs_rqs(struct rq *rq);
1150
1151extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7
SS
1152
1153#ifdef CONFIG_NO_HZ
1154enum rq_nohz_flag_bits {
1155 NOHZ_TICK_STOPPED,
1156 NOHZ_BALANCE_KICK,
69e1e811 1157 NOHZ_IDLE,
1c792db7
SS
1158};
1159
1160#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1161#endif