sched: Add wrapper for checking task_struct::on_rq
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7
PG
16struct rq;
17
da0c1e65
KT
18/* task_struct::on_rq states: */
19#define TASK_ON_RQ_QUEUED 1
20
029632fb
PZ
21extern __read_mostly int scheduler_running;
22
45ceebf7
PG
23extern unsigned long calc_load_update;
24extern atomic_long_t calc_load_tasks;
25
26extern long calc_load_fold_active(struct rq *this_rq);
27extern void update_cpu_load_active(struct rq *this_rq);
28
029632fb
PZ
29/*
30 * Helpers for converting nanosecond timing to jiffy resolution
31 */
32#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
33
cc1f4b1f
LZ
34/*
35 * Increase resolution of nice-level calculations for 64-bit architectures.
36 * The extra resolution improves shares distribution and load balancing of
37 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
38 * hierarchies, especially on larger systems. This is not a user-visible change
39 * and does not change the user-interface for setting shares/weights.
40 *
41 * We increase resolution only if we have enough bits to allow this increased
42 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
43 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
44 * increased costs.
45 */
46#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
47# define SCHED_LOAD_RESOLUTION 10
48# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
49# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
50#else
51# define SCHED_LOAD_RESOLUTION 0
52# define scale_load(w) (w)
53# define scale_load_down(w) (w)
54#endif
55
56#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
57#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
58
029632fb
PZ
59#define NICE_0_LOAD SCHED_LOAD_SCALE
60#define NICE_0_SHIFT SCHED_LOAD_SHIFT
61
332ac17e
DF
62/*
63 * Single value that decides SCHED_DEADLINE internal math precision.
64 * 10 -> just above 1us
65 * 9 -> just above 0.5us
66 */
67#define DL_SCALE (10)
68
029632fb
PZ
69/*
70 * These are the 'tuning knobs' of the scheduler:
029632fb 71 */
029632fb
PZ
72
73/*
74 * single value that denotes runtime == period, ie unlimited time.
75 */
76#define RUNTIME_INF ((u64)~0ULL)
77
d50dde5a
DF
78static inline int fair_policy(int policy)
79{
80 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
81}
82
029632fb
PZ
83static inline int rt_policy(int policy)
84{
d50dde5a 85 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
86}
87
aab03e05
DF
88static inline int dl_policy(int policy)
89{
90 return policy == SCHED_DEADLINE;
91}
92
029632fb
PZ
93static inline int task_has_rt_policy(struct task_struct *p)
94{
95 return rt_policy(p->policy);
96}
97
aab03e05
DF
98static inline int task_has_dl_policy(struct task_struct *p)
99{
100 return dl_policy(p->policy);
101}
102
332ac17e 103static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
104{
105 return (s64)(a - b) < 0;
106}
107
108/*
109 * Tells if entity @a should preempt entity @b.
110 */
332ac17e
DF
111static inline bool
112dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
113{
114 return dl_time_before(a->deadline, b->deadline);
115}
116
029632fb
PZ
117/*
118 * This is the priority-queue data structure of the RT scheduling class:
119 */
120struct rt_prio_array {
121 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
122 struct list_head queue[MAX_RT_PRIO];
123};
124
125struct rt_bandwidth {
126 /* nests inside the rq lock: */
127 raw_spinlock_t rt_runtime_lock;
128 ktime_t rt_period;
129 u64 rt_runtime;
130 struct hrtimer rt_period_timer;
131};
332ac17e
DF
132/*
133 * To keep the bandwidth of -deadline tasks and groups under control
134 * we need some place where:
135 * - store the maximum -deadline bandwidth of the system (the group);
136 * - cache the fraction of that bandwidth that is currently allocated.
137 *
138 * This is all done in the data structure below. It is similar to the
139 * one used for RT-throttling (rt_bandwidth), with the main difference
140 * that, since here we are only interested in admission control, we
141 * do not decrease any runtime while the group "executes", neither we
142 * need a timer to replenish it.
143 *
144 * With respect to SMP, the bandwidth is given on a per-CPU basis,
145 * meaning that:
146 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
147 * - dl_total_bw array contains, in the i-eth element, the currently
148 * allocated bandwidth on the i-eth CPU.
149 * Moreover, groups consume bandwidth on each CPU, while tasks only
150 * consume bandwidth on the CPU they're running on.
151 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
152 * that will be shown the next time the proc or cgroup controls will
153 * be red. It on its turn can be changed by writing on its own
154 * control.
155 */
156struct dl_bandwidth {
157 raw_spinlock_t dl_runtime_lock;
158 u64 dl_runtime;
159 u64 dl_period;
160};
161
162static inline int dl_bandwidth_enabled(void)
163{
1724813d 164 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
165}
166
167extern struct dl_bw *dl_bw_of(int i);
168
169struct dl_bw {
170 raw_spinlock_t lock;
171 u64 bw, total_bw;
172};
173
029632fb
PZ
174extern struct mutex sched_domains_mutex;
175
176#ifdef CONFIG_CGROUP_SCHED
177
178#include <linux/cgroup.h>
179
180struct cfs_rq;
181struct rt_rq;
182
35cf4e50 183extern struct list_head task_groups;
029632fb
PZ
184
185struct cfs_bandwidth {
186#ifdef CONFIG_CFS_BANDWIDTH
187 raw_spinlock_t lock;
188 ktime_t period;
189 u64 quota, runtime;
190 s64 hierarchal_quota;
191 u64 runtime_expires;
192
193 int idle, timer_active;
194 struct hrtimer period_timer, slack_timer;
195 struct list_head throttled_cfs_rq;
196
197 /* statistics */
198 int nr_periods, nr_throttled;
199 u64 throttled_time;
200#endif
201};
202
203/* task group related information */
204struct task_group {
205 struct cgroup_subsys_state css;
206
207#ifdef CONFIG_FAIR_GROUP_SCHED
208 /* schedulable entities of this group on each cpu */
209 struct sched_entity **se;
210 /* runqueue "owned" by this group on each cpu */
211 struct cfs_rq **cfs_rq;
212 unsigned long shares;
213
fa6bddeb 214#ifdef CONFIG_SMP
bf5b986e 215 atomic_long_t load_avg;
bb17f655 216 atomic_t runnable_avg;
029632fb 217#endif
fa6bddeb 218#endif
029632fb
PZ
219
220#ifdef CONFIG_RT_GROUP_SCHED
221 struct sched_rt_entity **rt_se;
222 struct rt_rq **rt_rq;
223
224 struct rt_bandwidth rt_bandwidth;
225#endif
226
227 struct rcu_head rcu;
228 struct list_head list;
229
230 struct task_group *parent;
231 struct list_head siblings;
232 struct list_head children;
233
234#ifdef CONFIG_SCHED_AUTOGROUP
235 struct autogroup *autogroup;
236#endif
237
238 struct cfs_bandwidth cfs_bandwidth;
239};
240
241#ifdef CONFIG_FAIR_GROUP_SCHED
242#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
243
244/*
245 * A weight of 0 or 1 can cause arithmetics problems.
246 * A weight of a cfs_rq is the sum of weights of which entities
247 * are queued on this cfs_rq, so a weight of a entity should not be
248 * too large, so as the shares value of a task group.
249 * (The default weight is 1024 - so there's no practical
250 * limitation from this.)
251 */
252#define MIN_SHARES (1UL << 1)
253#define MAX_SHARES (1UL << 18)
254#endif
255
029632fb
PZ
256typedef int (*tg_visitor)(struct task_group *, void *);
257
258extern int walk_tg_tree_from(struct task_group *from,
259 tg_visitor down, tg_visitor up, void *data);
260
261/*
262 * Iterate the full tree, calling @down when first entering a node and @up when
263 * leaving it for the final time.
264 *
265 * Caller must hold rcu_lock or sufficient equivalent.
266 */
267static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
268{
269 return walk_tg_tree_from(&root_task_group, down, up, data);
270}
271
272extern int tg_nop(struct task_group *tg, void *data);
273
274extern void free_fair_sched_group(struct task_group *tg);
275extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
276extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
277extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
278 struct sched_entity *se, int cpu,
279 struct sched_entity *parent);
280extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
281extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
282
283extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 284extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
285extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
286
287extern void free_rt_sched_group(struct task_group *tg);
288extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
289extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
290 struct sched_rt_entity *rt_se, int cpu,
291 struct sched_rt_entity *parent);
292
25cc7da7
LZ
293extern struct task_group *sched_create_group(struct task_group *parent);
294extern void sched_online_group(struct task_group *tg,
295 struct task_group *parent);
296extern void sched_destroy_group(struct task_group *tg);
297extern void sched_offline_group(struct task_group *tg);
298
299extern void sched_move_task(struct task_struct *tsk);
300
301#ifdef CONFIG_FAIR_GROUP_SCHED
302extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
303#endif
304
029632fb
PZ
305#else /* CONFIG_CGROUP_SCHED */
306
307struct cfs_bandwidth { };
308
309#endif /* CONFIG_CGROUP_SCHED */
310
311/* CFS-related fields in a runqueue */
312struct cfs_rq {
313 struct load_weight load;
c82513e5 314 unsigned int nr_running, h_nr_running;
029632fb
PZ
315
316 u64 exec_clock;
317 u64 min_vruntime;
318#ifndef CONFIG_64BIT
319 u64 min_vruntime_copy;
320#endif
321
322 struct rb_root tasks_timeline;
323 struct rb_node *rb_leftmost;
324
029632fb
PZ
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last, *skip;
330
331#ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333#endif
334
2dac754e
PT
335#ifdef CONFIG_SMP
336 /*
337 * CFS Load tracking
338 * Under CFS, load is tracked on a per-entity basis and aggregated up.
339 * This allows for the description of both thread and group usage (in
340 * the FAIR_GROUP_SCHED case).
341 */
72a4cf20 342 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 343 atomic64_t decay_counter;
9ee474f5 344 u64 last_decay;
2509940f 345 atomic_long_t removed_load;
141965c7 346
c566e8e9 347#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 348 /* Required to track per-cpu representation of a task_group */
bb17f655 349 u32 tg_runnable_contrib;
bf5b986e 350 unsigned long tg_load_contrib;
82958366
PT
351
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
68520796
VD
359 u64 last_h_load_update;
360 struct sched_entity *h_load_next;
361#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
362#endif /* CONFIG_SMP */
363
029632fb
PZ
364#ifdef CONFIG_FAIR_GROUP_SCHED
365 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
366
367 /*
368 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
369 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
370 * (like users, containers etc.)
371 *
372 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
373 * list is used during load balance.
374 */
375 int on_list;
376 struct list_head leaf_cfs_rq_list;
377 struct task_group *tg; /* group that "owns" this runqueue */
378
029632fb
PZ
379#ifdef CONFIG_CFS_BANDWIDTH
380 int runtime_enabled;
381 u64 runtime_expires;
382 s64 runtime_remaining;
383
f1b17280
PT
384 u64 throttled_clock, throttled_clock_task;
385 u64 throttled_clock_task_time;
029632fb
PZ
386 int throttled, throttle_count;
387 struct list_head throttled_list;
388#endif /* CONFIG_CFS_BANDWIDTH */
389#endif /* CONFIG_FAIR_GROUP_SCHED */
390};
391
392static inline int rt_bandwidth_enabled(void)
393{
394 return sysctl_sched_rt_runtime >= 0;
395}
396
397/* Real-Time classes' related field in a runqueue: */
398struct rt_rq {
399 struct rt_prio_array active;
c82513e5 400 unsigned int rt_nr_running;
029632fb
PZ
401#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
402 struct {
403 int curr; /* highest queued rt task prio */
404#ifdef CONFIG_SMP
405 int next; /* next highest */
406#endif
407 } highest_prio;
408#endif
409#ifdef CONFIG_SMP
410 unsigned long rt_nr_migratory;
411 unsigned long rt_nr_total;
412 int overloaded;
413 struct plist_head pushable_tasks;
414#endif
f4ebcbc0
KT
415 int rt_queued;
416
029632fb
PZ
417 int rt_throttled;
418 u64 rt_time;
419 u64 rt_runtime;
420 /* Nests inside the rq lock: */
421 raw_spinlock_t rt_runtime_lock;
422
423#ifdef CONFIG_RT_GROUP_SCHED
424 unsigned long rt_nr_boosted;
425
426 struct rq *rq;
029632fb
PZ
427 struct task_group *tg;
428#endif
429};
430
aab03e05
DF
431/* Deadline class' related fields in a runqueue */
432struct dl_rq {
433 /* runqueue is an rbtree, ordered by deadline */
434 struct rb_root rb_root;
435 struct rb_node *rb_leftmost;
436
437 unsigned long dl_nr_running;
1baca4ce
JL
438
439#ifdef CONFIG_SMP
440 /*
441 * Deadline values of the currently executing and the
442 * earliest ready task on this rq. Caching these facilitates
443 * the decision wether or not a ready but not running task
444 * should migrate somewhere else.
445 */
446 struct {
447 u64 curr;
448 u64 next;
449 } earliest_dl;
450
451 unsigned long dl_nr_migratory;
1baca4ce
JL
452 int overloaded;
453
454 /*
455 * Tasks on this rq that can be pushed away. They are kept in
456 * an rb-tree, ordered by tasks' deadlines, with caching
457 * of the leftmost (earliest deadline) element.
458 */
459 struct rb_root pushable_dl_tasks_root;
460 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
461#else
462 struct dl_bw dl_bw;
1baca4ce 463#endif
aab03e05
DF
464};
465
029632fb
PZ
466#ifdef CONFIG_SMP
467
468/*
469 * We add the notion of a root-domain which will be used to define per-domain
470 * variables. Each exclusive cpuset essentially defines an island domain by
471 * fully partitioning the member cpus from any other cpuset. Whenever a new
472 * exclusive cpuset is created, we also create and attach a new root-domain
473 * object.
474 *
475 */
476struct root_domain {
477 atomic_t refcount;
478 atomic_t rto_count;
479 struct rcu_head rcu;
480 cpumask_var_t span;
481 cpumask_var_t online;
482
4486edd1
TC
483 /* Indicate more than one runnable task for any CPU */
484 bool overload;
485
1baca4ce
JL
486 /*
487 * The bit corresponding to a CPU gets set here if such CPU has more
488 * than one runnable -deadline task (as it is below for RT tasks).
489 */
490 cpumask_var_t dlo_mask;
491 atomic_t dlo_count;
332ac17e 492 struct dl_bw dl_bw;
6bfd6d72 493 struct cpudl cpudl;
1baca4ce 494
029632fb
PZ
495 /*
496 * The "RT overload" flag: it gets set if a CPU has more than
497 * one runnable RT task.
498 */
499 cpumask_var_t rto_mask;
500 struct cpupri cpupri;
501};
502
503extern struct root_domain def_root_domain;
504
505#endif /* CONFIG_SMP */
506
507/*
508 * This is the main, per-CPU runqueue data structure.
509 *
510 * Locking rule: those places that want to lock multiple runqueues
511 * (such as the load balancing or the thread migration code), lock
512 * acquire operations must be ordered by ascending &runqueue.
513 */
514struct rq {
515 /* runqueue lock: */
516 raw_spinlock_t lock;
517
518 /*
519 * nr_running and cpu_load should be in the same cacheline because
520 * remote CPUs use both these fields when doing load calculation.
521 */
c82513e5 522 unsigned int nr_running;
0ec8aa00
PZ
523#ifdef CONFIG_NUMA_BALANCING
524 unsigned int nr_numa_running;
525 unsigned int nr_preferred_running;
526#endif
029632fb
PZ
527 #define CPU_LOAD_IDX_MAX 5
528 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
529 unsigned long last_load_update_tick;
3451d024 530#ifdef CONFIG_NO_HZ_COMMON
029632fb 531 u64 nohz_stamp;
1c792db7 532 unsigned long nohz_flags;
265f22a9
FW
533#endif
534#ifdef CONFIG_NO_HZ_FULL
535 unsigned long last_sched_tick;
029632fb
PZ
536#endif
537 int skip_clock_update;
538
539 /* capture load from *all* tasks on this cpu: */
540 struct load_weight load;
541 unsigned long nr_load_updates;
542 u64 nr_switches;
543
544 struct cfs_rq cfs;
545 struct rt_rq rt;
aab03e05 546 struct dl_rq dl;
029632fb
PZ
547
548#ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
551
552 struct sched_avg avg;
a35b6466
PZ
553#endif /* CONFIG_FAIR_GROUP_SCHED */
554
029632fb
PZ
555 /*
556 * This is part of a global counter where only the total sum
557 * over all CPUs matters. A task can increase this counter on
558 * one CPU and if it got migrated afterwards it may decrease
559 * it on another CPU. Always updated under the runqueue lock:
560 */
561 unsigned long nr_uninterruptible;
562
563 struct task_struct *curr, *idle, *stop;
564 unsigned long next_balance;
565 struct mm_struct *prev_mm;
566
567 u64 clock;
568 u64 clock_task;
569
570 atomic_t nr_iowait;
571
572#ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
ced549fa 576 unsigned long cpu_capacity;
029632fb
PZ
577
578 unsigned char idle_balance;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 struct cpu_stop_work active_balance_work;
584 /* cpu of this runqueue: */
585 int cpu;
586 int online;
587
367456c7
PZ
588 struct list_head cfs_tasks;
589
029632fb
PZ
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
9bd721c5
JL
594
595 /* This is used to determine avg_idle's max value */
596 u64 max_idle_balance_cost;
029632fb
PZ
597#endif
598
599#ifdef CONFIG_IRQ_TIME_ACCOUNTING
600 u64 prev_irq_time;
601#endif
602#ifdef CONFIG_PARAVIRT
603 u64 prev_steal_time;
604#endif
605#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
606 u64 prev_steal_time_rq;
607#endif
608
609 /* calc_load related fields */
610 unsigned long calc_load_update;
611 long calc_load_active;
612
613#ifdef CONFIG_SCHED_HRTICK
614#ifdef CONFIG_SMP
615 int hrtick_csd_pending;
616 struct call_single_data hrtick_csd;
617#endif
618 struct hrtimer hrtick_timer;
619#endif
620
621#ifdef CONFIG_SCHEDSTATS
622 /* latency stats */
623 struct sched_info rq_sched_info;
624 unsigned long long rq_cpu_time;
625 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
626
627 /* sys_sched_yield() stats */
628 unsigned int yld_count;
629
630 /* schedule() stats */
029632fb
PZ
631 unsigned int sched_count;
632 unsigned int sched_goidle;
633
634 /* try_to_wake_up() stats */
635 unsigned int ttwu_count;
636 unsigned int ttwu_local;
637#endif
638
639#ifdef CONFIG_SMP
640 struct llist_head wake_list;
641#endif
642};
643
644static inline int cpu_of(struct rq *rq)
645{
646#ifdef CONFIG_SMP
647 return rq->cpu;
648#else
649 return 0;
650#endif
651}
652
8b06c55b 653DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 654
518cd623
PZ
655#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
656#define this_rq() (&__get_cpu_var(runqueues))
657#define task_rq(p) cpu_rq(task_cpu(p))
658#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
659#define raw_rq() (&__raw_get_cpu_var(runqueues))
660
78becc27
FW
661static inline u64 rq_clock(struct rq *rq)
662{
663 return rq->clock;
664}
665
666static inline u64 rq_clock_task(struct rq *rq)
667{
668 return rq->clock_task;
669}
670
f809ca9a 671#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 672extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 673extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 674extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
675#endif /* CONFIG_NUMA_BALANCING */
676
518cd623
PZ
677#ifdef CONFIG_SMP
678
e3baac47
PZ
679extern void sched_ttwu_pending(void);
680
029632fb
PZ
681#define rcu_dereference_check_sched_domain(p) \
682 rcu_dereference_check((p), \
683 lockdep_is_held(&sched_domains_mutex))
684
685/*
686 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
687 * See detach_destroy_domains: synchronize_sched for details.
688 *
689 * The domain tree of any CPU may only be accessed from within
690 * preempt-disabled sections.
691 */
692#define for_each_domain(cpu, __sd) \
518cd623
PZ
693 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
694 __sd; __sd = __sd->parent)
029632fb 695
77e81365
SS
696#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
697
518cd623
PZ
698/**
699 * highest_flag_domain - Return highest sched_domain containing flag.
700 * @cpu: The cpu whose highest level of sched domain is to
701 * be returned.
702 * @flag: The flag to check for the highest sched_domain
703 * for the given cpu.
704 *
705 * Returns the highest sched_domain of a cpu which contains the given flag.
706 */
707static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
708{
709 struct sched_domain *sd, *hsd = NULL;
710
711 for_each_domain(cpu, sd) {
712 if (!(sd->flags & flag))
713 break;
714 hsd = sd;
715 }
716
717 return hsd;
718}
719
fb13c7ee
MG
720static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
721{
722 struct sched_domain *sd;
723
724 for_each_domain(cpu, sd) {
725 if (sd->flags & flag)
726 break;
727 }
728
729 return sd;
730}
731
518cd623 732DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 733DECLARE_PER_CPU(int, sd_llc_size);
518cd623 734DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 735DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
736DECLARE_PER_CPU(struct sched_domain *, sd_busy);
737DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 738
63b2ca30 739struct sched_group_capacity {
5e6521ea
LZ
740 atomic_t ref;
741 /*
63b2ca30
NP
742 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
743 * for a single CPU.
5e6521ea 744 */
63b2ca30 745 unsigned int capacity, capacity_orig;
5e6521ea 746 unsigned long next_update;
63b2ca30 747 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
748 /*
749 * Number of busy cpus in this group.
750 */
751 atomic_t nr_busy_cpus;
752
753 unsigned long cpumask[0]; /* iteration mask */
754};
755
756struct sched_group {
757 struct sched_group *next; /* Must be a circular list */
758 atomic_t ref;
759
760 unsigned int group_weight;
63b2ca30 761 struct sched_group_capacity *sgc;
5e6521ea
LZ
762
763 /*
764 * The CPUs this group covers.
765 *
766 * NOTE: this field is variable length. (Allocated dynamically
767 * by attaching extra space to the end of the structure,
768 * depending on how many CPUs the kernel has booted up with)
769 */
770 unsigned long cpumask[0];
771};
772
773static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
774{
775 return to_cpumask(sg->cpumask);
776}
777
778/*
779 * cpumask masking which cpus in the group are allowed to iterate up the domain
780 * tree.
781 */
782static inline struct cpumask *sched_group_mask(struct sched_group *sg)
783{
63b2ca30 784 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
785}
786
787/**
788 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
789 * @group: The group whose first cpu is to be returned.
790 */
791static inline unsigned int group_first_cpu(struct sched_group *group)
792{
793 return cpumask_first(sched_group_cpus(group));
794}
795
c1174876
PZ
796extern int group_balance_cpu(struct sched_group *sg);
797
e3baac47
PZ
798#else
799
800static inline void sched_ttwu_pending(void) { }
801
518cd623 802#endif /* CONFIG_SMP */
029632fb 803
391e43da
PZ
804#include "stats.h"
805#include "auto_group.h"
029632fb
PZ
806
807#ifdef CONFIG_CGROUP_SCHED
808
809/*
810 * Return the group to which this tasks belongs.
811 *
8af01f56
TH
812 * We cannot use task_css() and friends because the cgroup subsystem
813 * changes that value before the cgroup_subsys::attach() method is called,
814 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
815 *
816 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
817 * core changes this before calling sched_move_task().
818 *
819 * Instead we use a 'copy' which is updated from sched_move_task() while
820 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
821 */
822static inline struct task_group *task_group(struct task_struct *p)
823{
8323f26c 824 return p->sched_task_group;
029632fb
PZ
825}
826
827/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
828static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
829{
830#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
831 struct task_group *tg = task_group(p);
832#endif
833
834#ifdef CONFIG_FAIR_GROUP_SCHED
835 p->se.cfs_rq = tg->cfs_rq[cpu];
836 p->se.parent = tg->se[cpu];
837#endif
838
839#ifdef CONFIG_RT_GROUP_SCHED
840 p->rt.rt_rq = tg->rt_rq[cpu];
841 p->rt.parent = tg->rt_se[cpu];
842#endif
843}
844
845#else /* CONFIG_CGROUP_SCHED */
846
847static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
848static inline struct task_group *task_group(struct task_struct *p)
849{
850 return NULL;
851}
852
853#endif /* CONFIG_CGROUP_SCHED */
854
855static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
856{
857 set_task_rq(p, cpu);
858#ifdef CONFIG_SMP
859 /*
860 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
861 * successfuly executed on another CPU. We must ensure that updates of
862 * per-task data have been completed by this moment.
863 */
864 smp_wmb();
865 task_thread_info(p)->cpu = cpu;
ac66f547 866 p->wake_cpu = cpu;
029632fb
PZ
867#endif
868}
869
870/*
871 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
872 */
873#ifdef CONFIG_SCHED_DEBUG
c5905afb 874# include <linux/static_key.h>
029632fb
PZ
875# define const_debug __read_mostly
876#else
877# define const_debug const
878#endif
879
880extern const_debug unsigned int sysctl_sched_features;
881
882#define SCHED_FEAT(name, enabled) \
883 __SCHED_FEAT_##name ,
884
885enum {
391e43da 886#include "features.h"
f8b6d1cc 887 __SCHED_FEAT_NR,
029632fb
PZ
888};
889
890#undef SCHED_FEAT
891
f8b6d1cc 892#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 893#define SCHED_FEAT(name, enabled) \
c5905afb 894static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 895{ \
6e76ea8a 896 return static_key_##enabled(key); \
f8b6d1cc
PZ
897}
898
899#include "features.h"
900
901#undef SCHED_FEAT
902
c5905afb 903extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
904#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
905#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 906#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 907#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 908
cbee9f88
PZ
909#ifdef CONFIG_NUMA_BALANCING
910#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
911#ifdef CONFIG_SCHED_DEBUG
912#define numabalancing_enabled sched_feat_numa(NUMA)
913#else
914extern bool numabalancing_enabled;
915#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
916#else
917#define sched_feat_numa(x) (0)
3105b86a
MG
918#define numabalancing_enabled (0)
919#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 920
029632fb
PZ
921static inline u64 global_rt_period(void)
922{
923 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
924}
925
926static inline u64 global_rt_runtime(void)
927{
928 if (sysctl_sched_rt_runtime < 0)
929 return RUNTIME_INF;
930
931 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
932}
933
029632fb
PZ
934static inline int task_current(struct rq *rq, struct task_struct *p)
935{
936 return rq->curr == p;
937}
938
939static inline int task_running(struct rq *rq, struct task_struct *p)
940{
941#ifdef CONFIG_SMP
942 return p->on_cpu;
943#else
944 return task_current(rq, p);
945#endif
946}
947
da0c1e65
KT
948static inline int task_on_rq_queued(struct task_struct *p)
949{
950 return p->on_rq == TASK_ON_RQ_QUEUED;
951}
029632fb
PZ
952
953#ifndef prepare_arch_switch
954# define prepare_arch_switch(next) do { } while (0)
955#endif
956#ifndef finish_arch_switch
957# define finish_arch_switch(prev) do { } while (0)
958#endif
01f23e16
CM
959#ifndef finish_arch_post_lock_switch
960# define finish_arch_post_lock_switch() do { } while (0)
961#endif
029632fb
PZ
962
963#ifndef __ARCH_WANT_UNLOCKED_CTXSW
964static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
965{
966#ifdef CONFIG_SMP
967 /*
968 * We can optimise this out completely for !SMP, because the
969 * SMP rebalancing from interrupt is the only thing that cares
970 * here.
971 */
972 next->on_cpu = 1;
973#endif
974}
975
976static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
977{
978#ifdef CONFIG_SMP
979 /*
980 * After ->on_cpu is cleared, the task can be moved to a different CPU.
981 * We must ensure this doesn't happen until the switch is completely
982 * finished.
983 */
984 smp_wmb();
985 prev->on_cpu = 0;
986#endif
987#ifdef CONFIG_DEBUG_SPINLOCK
988 /* this is a valid case when another task releases the spinlock */
989 rq->lock.owner = current;
990#endif
991 /*
992 * If we are tracking spinlock dependencies then we have to
993 * fix up the runqueue lock - which gets 'carried over' from
994 * prev into current:
995 */
996 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
997
998 raw_spin_unlock_irq(&rq->lock);
999}
1000
1001#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1002static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003{
1004#ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011#endif
029632fb 1012 raw_spin_unlock(&rq->lock);
029632fb
PZ
1013}
1014
1015static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1016{
1017#ifdef CONFIG_SMP
1018 /*
1019 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1020 * We must ensure this doesn't happen until the switch is completely
1021 * finished.
1022 */
1023 smp_wmb();
1024 prev->on_cpu = 0;
1025#endif
029632fb 1026 local_irq_enable();
029632fb
PZ
1027}
1028#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1029
b13095f0
LZ
1030/*
1031 * wake flags
1032 */
1033#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1034#define WF_FORK 0x02 /* child wakeup after fork */
1035#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1036
029632fb
PZ
1037/*
1038 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1039 * of tasks with abnormal "nice" values across CPUs the contribution that
1040 * each task makes to its run queue's load is weighted according to its
1041 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1042 * scaled version of the new time slice allocation that they receive on time
1043 * slice expiry etc.
1044 */
1045
1046#define WEIGHT_IDLEPRIO 3
1047#define WMULT_IDLEPRIO 1431655765
1048
1049/*
1050 * Nice levels are multiplicative, with a gentle 10% change for every
1051 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1052 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1053 * that remained on nice 0.
1054 *
1055 * The "10% effect" is relative and cumulative: from _any_ nice level,
1056 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1057 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1058 * If a task goes up by ~10% and another task goes down by ~10% then
1059 * the relative distance between them is ~25%.)
1060 */
1061static const int prio_to_weight[40] = {
1062 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1063 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1064 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1065 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1066 /* 0 */ 1024, 820, 655, 526, 423,
1067 /* 5 */ 335, 272, 215, 172, 137,
1068 /* 10 */ 110, 87, 70, 56, 45,
1069 /* 15 */ 36, 29, 23, 18, 15,
1070};
1071
1072/*
1073 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1074 *
1075 * In cases where the weight does not change often, we can use the
1076 * precalculated inverse to speed up arithmetics by turning divisions
1077 * into multiplications:
1078 */
1079static const u32 prio_to_wmult[40] = {
1080 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1081 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1082 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1083 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1084 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1085 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1086 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1087 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1088};
1089
c82ba9fa
LZ
1090#define ENQUEUE_WAKEUP 1
1091#define ENQUEUE_HEAD 2
1092#ifdef CONFIG_SMP
1093#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1094#else
1095#define ENQUEUE_WAKING 0
1096#endif
aab03e05 1097#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1098
1099#define DEQUEUE_SLEEP 1
1100
37e117c0
PZ
1101#define RETRY_TASK ((void *)-1UL)
1102
c82ba9fa
LZ
1103struct sched_class {
1104 const struct sched_class *next;
1105
1106 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1107 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1108 void (*yield_task) (struct rq *rq);
1109 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1110
1111 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1112
606dba2e
PZ
1113 /*
1114 * It is the responsibility of the pick_next_task() method that will
1115 * return the next task to call put_prev_task() on the @prev task or
1116 * something equivalent.
37e117c0
PZ
1117 *
1118 * May return RETRY_TASK when it finds a higher prio class has runnable
1119 * tasks.
606dba2e
PZ
1120 */
1121 struct task_struct * (*pick_next_task) (struct rq *rq,
1122 struct task_struct *prev);
c82ba9fa
LZ
1123 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1124
1125#ifdef CONFIG_SMP
ac66f547 1126 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1127 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1128
c82ba9fa
LZ
1129 void (*post_schedule) (struct rq *this_rq);
1130 void (*task_waking) (struct task_struct *task);
1131 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1132
1133 void (*set_cpus_allowed)(struct task_struct *p,
1134 const struct cpumask *newmask);
1135
1136 void (*rq_online)(struct rq *rq);
1137 void (*rq_offline)(struct rq *rq);
1138#endif
1139
1140 void (*set_curr_task) (struct rq *rq);
1141 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1142 void (*task_fork) (struct task_struct *p);
e6c390f2 1143 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1144
1145 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1146 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1147 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1148 int oldprio);
1149
1150 unsigned int (*get_rr_interval) (struct rq *rq,
1151 struct task_struct *task);
1152
1153#ifdef CONFIG_FAIR_GROUP_SCHED
1154 void (*task_move_group) (struct task_struct *p, int on_rq);
1155#endif
1156};
029632fb 1157
3f1d2a31
PZ
1158static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1159{
1160 prev->sched_class->put_prev_task(rq, prev);
1161}
1162
029632fb
PZ
1163#define sched_class_highest (&stop_sched_class)
1164#define for_each_class(class) \
1165 for (class = sched_class_highest; class; class = class->next)
1166
1167extern const struct sched_class stop_sched_class;
aab03e05 1168extern const struct sched_class dl_sched_class;
029632fb
PZ
1169extern const struct sched_class rt_sched_class;
1170extern const struct sched_class fair_sched_class;
1171extern const struct sched_class idle_sched_class;
1172
1173
1174#ifdef CONFIG_SMP
1175
63b2ca30 1176extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1177
7caff66f 1178extern void trigger_load_balance(struct rq *rq);
029632fb 1179
642dbc39
VG
1180extern void idle_enter_fair(struct rq *this_rq);
1181extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1182
dc877341
PZ
1183#else
1184
1185static inline void idle_enter_fair(struct rq *rq) { }
1186static inline void idle_exit_fair(struct rq *rq) { }
1187
029632fb
PZ
1188#endif
1189
1190extern void sysrq_sched_debug_show(void);
1191extern void sched_init_granularity(void);
1192extern void update_max_interval(void);
1baca4ce
JL
1193
1194extern void init_sched_dl_class(void);
029632fb
PZ
1195extern void init_sched_rt_class(void);
1196extern void init_sched_fair_class(void);
332ac17e 1197extern void init_sched_dl_class(void);
029632fb 1198
8875125e 1199extern void resched_curr(struct rq *rq);
029632fb
PZ
1200extern void resched_cpu(int cpu);
1201
1202extern struct rt_bandwidth def_rt_bandwidth;
1203extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1204
332ac17e
DF
1205extern struct dl_bandwidth def_dl_bandwidth;
1206extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1207extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1208
332ac17e
DF
1209unsigned long to_ratio(u64 period, u64 runtime);
1210
556061b0 1211extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1212
a75cdaa9
AS
1213extern void init_task_runnable_average(struct task_struct *p);
1214
72465447 1215static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1216{
72465447
KT
1217 unsigned prev_nr = rq->nr_running;
1218
1219 rq->nr_running = prev_nr + count;
9f3660c2 1220
72465447 1221 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1222#ifdef CONFIG_SMP
1223 if (!rq->rd->overload)
1224 rq->rd->overload = true;
1225#endif
1226
1227#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1228 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1229 /*
1230 * Tick is needed if more than one task runs on a CPU.
1231 * Send the target an IPI to kick it out of nohz mode.
1232 *
1233 * We assume that IPI implies full memory barrier and the
1234 * new value of rq->nr_running is visible on reception
1235 * from the target.
1236 */
fd2ac4f4 1237 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1238 }
9f3660c2 1239#endif
4486edd1 1240 }
029632fb
PZ
1241}
1242
72465447 1243static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1244{
72465447 1245 rq->nr_running -= count;
029632fb
PZ
1246}
1247
265f22a9
FW
1248static inline void rq_last_tick_reset(struct rq *rq)
1249{
1250#ifdef CONFIG_NO_HZ_FULL
1251 rq->last_sched_tick = jiffies;
1252#endif
1253}
1254
029632fb
PZ
1255extern void update_rq_clock(struct rq *rq);
1256
1257extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1258extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1259
1260extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1261
1262extern const_debug unsigned int sysctl_sched_time_avg;
1263extern const_debug unsigned int sysctl_sched_nr_migrate;
1264extern const_debug unsigned int sysctl_sched_migration_cost;
1265
1266static inline u64 sched_avg_period(void)
1267{
1268 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1269}
1270
029632fb
PZ
1271#ifdef CONFIG_SCHED_HRTICK
1272
1273/*
1274 * Use hrtick when:
1275 * - enabled by features
1276 * - hrtimer is actually high res
1277 */
1278static inline int hrtick_enabled(struct rq *rq)
1279{
1280 if (!sched_feat(HRTICK))
1281 return 0;
1282 if (!cpu_active(cpu_of(rq)))
1283 return 0;
1284 return hrtimer_is_hres_active(&rq->hrtick_timer);
1285}
1286
1287void hrtick_start(struct rq *rq, u64 delay);
1288
b39e66ea
MG
1289#else
1290
1291static inline int hrtick_enabled(struct rq *rq)
1292{
1293 return 0;
1294}
1295
029632fb
PZ
1296#endif /* CONFIG_SCHED_HRTICK */
1297
1298#ifdef CONFIG_SMP
1299extern void sched_avg_update(struct rq *rq);
1300static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1301{
1302 rq->rt_avg += rt_delta;
1303 sched_avg_update(rq);
1304}
1305#else
1306static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1307static inline void sched_avg_update(struct rq *rq) { }
1308#endif
1309
1310extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1311
1312#ifdef CONFIG_SMP
1313#ifdef CONFIG_PREEMPT
1314
1315static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1316
1317/*
1318 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1319 * way at the expense of forcing extra atomic operations in all
1320 * invocations. This assures that the double_lock is acquired using the
1321 * same underlying policy as the spinlock_t on this architecture, which
1322 * reduces latency compared to the unfair variant below. However, it
1323 * also adds more overhead and therefore may reduce throughput.
1324 */
1325static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1326 __releases(this_rq->lock)
1327 __acquires(busiest->lock)
1328 __acquires(this_rq->lock)
1329{
1330 raw_spin_unlock(&this_rq->lock);
1331 double_rq_lock(this_rq, busiest);
1332
1333 return 1;
1334}
1335
1336#else
1337/*
1338 * Unfair double_lock_balance: Optimizes throughput at the expense of
1339 * latency by eliminating extra atomic operations when the locks are
1340 * already in proper order on entry. This favors lower cpu-ids and will
1341 * grant the double lock to lower cpus over higher ids under contention,
1342 * regardless of entry order into the function.
1343 */
1344static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1345 __releases(this_rq->lock)
1346 __acquires(busiest->lock)
1347 __acquires(this_rq->lock)
1348{
1349 int ret = 0;
1350
1351 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1352 if (busiest < this_rq) {
1353 raw_spin_unlock(&this_rq->lock);
1354 raw_spin_lock(&busiest->lock);
1355 raw_spin_lock_nested(&this_rq->lock,
1356 SINGLE_DEPTH_NESTING);
1357 ret = 1;
1358 } else
1359 raw_spin_lock_nested(&busiest->lock,
1360 SINGLE_DEPTH_NESTING);
1361 }
1362 return ret;
1363}
1364
1365#endif /* CONFIG_PREEMPT */
1366
1367/*
1368 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1369 */
1370static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1371{
1372 if (unlikely(!irqs_disabled())) {
1373 /* printk() doesn't work good under rq->lock */
1374 raw_spin_unlock(&this_rq->lock);
1375 BUG_ON(1);
1376 }
1377
1378 return _double_lock_balance(this_rq, busiest);
1379}
1380
1381static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1382 __releases(busiest->lock)
1383{
1384 raw_spin_unlock(&busiest->lock);
1385 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1386}
1387
74602315
PZ
1388static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1389{
1390 if (l1 > l2)
1391 swap(l1, l2);
1392
1393 spin_lock(l1);
1394 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1395}
1396
60e69eed
MG
1397static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1398{
1399 if (l1 > l2)
1400 swap(l1, l2);
1401
1402 spin_lock_irq(l1);
1403 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1404}
1405
74602315
PZ
1406static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1407{
1408 if (l1 > l2)
1409 swap(l1, l2);
1410
1411 raw_spin_lock(l1);
1412 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1413}
1414
029632fb
PZ
1415/*
1416 * double_rq_lock - safely lock two runqueues
1417 *
1418 * Note this does not disable interrupts like task_rq_lock,
1419 * you need to do so manually before calling.
1420 */
1421static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1422 __acquires(rq1->lock)
1423 __acquires(rq2->lock)
1424{
1425 BUG_ON(!irqs_disabled());
1426 if (rq1 == rq2) {
1427 raw_spin_lock(&rq1->lock);
1428 __acquire(rq2->lock); /* Fake it out ;) */
1429 } else {
1430 if (rq1 < rq2) {
1431 raw_spin_lock(&rq1->lock);
1432 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1433 } else {
1434 raw_spin_lock(&rq2->lock);
1435 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1436 }
1437 }
1438}
1439
1440/*
1441 * double_rq_unlock - safely unlock two runqueues
1442 *
1443 * Note this does not restore interrupts like task_rq_unlock,
1444 * you need to do so manually after calling.
1445 */
1446static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1447 __releases(rq1->lock)
1448 __releases(rq2->lock)
1449{
1450 raw_spin_unlock(&rq1->lock);
1451 if (rq1 != rq2)
1452 raw_spin_unlock(&rq2->lock);
1453 else
1454 __release(rq2->lock);
1455}
1456
1457#else /* CONFIG_SMP */
1458
1459/*
1460 * double_rq_lock - safely lock two runqueues
1461 *
1462 * Note this does not disable interrupts like task_rq_lock,
1463 * you need to do so manually before calling.
1464 */
1465static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1466 __acquires(rq1->lock)
1467 __acquires(rq2->lock)
1468{
1469 BUG_ON(!irqs_disabled());
1470 BUG_ON(rq1 != rq2);
1471 raw_spin_lock(&rq1->lock);
1472 __acquire(rq2->lock); /* Fake it out ;) */
1473}
1474
1475/*
1476 * double_rq_unlock - safely unlock two runqueues
1477 *
1478 * Note this does not restore interrupts like task_rq_unlock,
1479 * you need to do so manually after calling.
1480 */
1481static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1482 __releases(rq1->lock)
1483 __releases(rq2->lock)
1484{
1485 BUG_ON(rq1 != rq2);
1486 raw_spin_unlock(&rq1->lock);
1487 __release(rq2->lock);
1488}
1489
1490#endif
1491
1492extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1493extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1494extern void print_cfs_stats(struct seq_file *m, int cpu);
1495extern void print_rt_stats(struct seq_file *m, int cpu);
1496
1497extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1498extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1499extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1500
1ee14e6c
BS
1501extern void cfs_bandwidth_usage_inc(void);
1502extern void cfs_bandwidth_usage_dec(void);
1c792db7 1503
3451d024 1504#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1505enum rq_nohz_flag_bits {
1506 NOHZ_TICK_STOPPED,
1507 NOHZ_BALANCE_KICK,
1508};
1509
1510#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1511#endif
73fbec60
FW
1512
1513#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1514
1515DECLARE_PER_CPU(u64, cpu_hardirq_time);
1516DECLARE_PER_CPU(u64, cpu_softirq_time);
1517
1518#ifndef CONFIG_64BIT
1519DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1520
1521static inline void irq_time_write_begin(void)
1522{
1523 __this_cpu_inc(irq_time_seq.sequence);
1524 smp_wmb();
1525}
1526
1527static inline void irq_time_write_end(void)
1528{
1529 smp_wmb();
1530 __this_cpu_inc(irq_time_seq.sequence);
1531}
1532
1533static inline u64 irq_time_read(int cpu)
1534{
1535 u64 irq_time;
1536 unsigned seq;
1537
1538 do {
1539 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1540 irq_time = per_cpu(cpu_softirq_time, cpu) +
1541 per_cpu(cpu_hardirq_time, cpu);
1542 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1543
1544 return irq_time;
1545}
1546#else /* CONFIG_64BIT */
1547static inline void irq_time_write_begin(void)
1548{
1549}
1550
1551static inline void irq_time_write_end(void)
1552{
1553}
1554
1555static inline u64 irq_time_read(int cpu)
1556{
1557 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1558}
1559#endif /* CONFIG_64BIT */
1560#endif /* CONFIG_IRQ_TIME_ACCOUNTING */