sched/deadline: Do not try to push tasks if pinned task switches to dl
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
9f3660c2 9#include <linux/tick.h>
f809ca9a 10#include <linux/slab.h>
029632fb 11
391e43da 12#include "cpupri.h"
6bfd6d72 13#include "cpudeadline.h"
60fed789 14#include "cpuacct.h"
029632fb 15
45ceebf7 16struct rq;
442bf3aa 17struct cpuidle_state;
45ceebf7 18
da0c1e65
KT
19/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
cca26e80 21#define TASK_ON_RQ_MIGRATING 2
da0c1e65 22
029632fb
PZ
23extern __read_mostly int scheduler_running;
24
45ceebf7
PG
25extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
029632fb
PZ
31/*
32 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
cc1f4b1f
LZ
36/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
029632fb
PZ
61#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
332ac17e
DF
64/*
65 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
029632fb
PZ
71/*
72 * These are the 'tuning knobs' of the scheduler:
029632fb 73 */
029632fb
PZ
74
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
d50dde5a
DF
80static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
029632fb
PZ
85static inline int rt_policy(int policy)
86{
d50dde5a 87 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
88}
89
aab03e05
DF
90static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
029632fb
PZ
95static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
aab03e05
DF
100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
332ac17e 105static inline bool dl_time_before(u64 a, u64 b)
2d3d891d
DF
106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
332ac17e
DF
113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
029632fb
PZ
119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
a5e7be3b
JL
134
135void __dl_clear_params(struct task_struct *p);
136
332ac17e
DF
137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
1724813d 169 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
029632fb
PZ
179extern struct mutex sched_domains_mutex;
180
181#ifdef CONFIG_CGROUP_SCHED
182
183#include <linux/cgroup.h>
184
185struct cfs_rq;
186struct rt_rq;
187
35cf4e50 188extern struct list_head task_groups;
029632fb
PZ
189
190struct cfs_bandwidth {
191#ifdef CONFIG_CFS_BANDWIDTH
192 raw_spinlock_t lock;
193 ktime_t period;
194 u64 quota, runtime;
9c58c79a 195 s64 hierarchical_quota;
029632fb
PZ
196 u64 runtime_expires;
197
198 int idle, timer_active;
199 struct hrtimer period_timer, slack_timer;
200 struct list_head throttled_cfs_rq;
201
202 /* statistics */
203 int nr_periods, nr_throttled;
204 u64 throttled_time;
205#endif
206};
207
208/* task group related information */
209struct task_group {
210 struct cgroup_subsys_state css;
211
212#ifdef CONFIG_FAIR_GROUP_SCHED
213 /* schedulable entities of this group on each cpu */
214 struct sched_entity **se;
215 /* runqueue "owned" by this group on each cpu */
216 struct cfs_rq **cfs_rq;
217 unsigned long shares;
218
fa6bddeb 219#ifdef CONFIG_SMP
bf5b986e 220 atomic_long_t load_avg;
bb17f655 221 atomic_t runnable_avg;
029632fb 222#endif
fa6bddeb 223#endif
029632fb
PZ
224
225#ifdef CONFIG_RT_GROUP_SCHED
226 struct sched_rt_entity **rt_se;
227 struct rt_rq **rt_rq;
228
229 struct rt_bandwidth rt_bandwidth;
230#endif
231
232 struct rcu_head rcu;
233 struct list_head list;
234
235 struct task_group *parent;
236 struct list_head siblings;
237 struct list_head children;
238
239#ifdef CONFIG_SCHED_AUTOGROUP
240 struct autogroup *autogroup;
241#endif
242
243 struct cfs_bandwidth cfs_bandwidth;
244};
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
248
249/*
250 * A weight of 0 or 1 can cause arithmetics problems.
251 * A weight of a cfs_rq is the sum of weights of which entities
252 * are queued on this cfs_rq, so a weight of a entity should not be
253 * too large, so as the shares value of a task group.
254 * (The default weight is 1024 - so there's no practical
255 * limitation from this.)
256 */
257#define MIN_SHARES (1UL << 1)
258#define MAX_SHARES (1UL << 18)
259#endif
260
029632fb
PZ
261typedef int (*tg_visitor)(struct task_group *, void *);
262
263extern int walk_tg_tree_from(struct task_group *from,
264 tg_visitor down, tg_visitor up, void *data);
265
266/*
267 * Iterate the full tree, calling @down when first entering a node and @up when
268 * leaving it for the final time.
269 *
270 * Caller must hold rcu_lock or sufficient equivalent.
271 */
272static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
273{
274 return walk_tg_tree_from(&root_task_group, down, up, data);
275}
276
277extern int tg_nop(struct task_group *tg, void *data);
278
279extern void free_fair_sched_group(struct task_group *tg);
280extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
281extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
282extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
283 struct sched_entity *se, int cpu,
284 struct sched_entity *parent);
285extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
286extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
287
288extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
09dc4ab0 289extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
029632fb
PZ
290extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
291
292extern void free_rt_sched_group(struct task_group *tg);
293extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
294extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
295 struct sched_rt_entity *rt_se, int cpu,
296 struct sched_rt_entity *parent);
297
25cc7da7
LZ
298extern struct task_group *sched_create_group(struct task_group *parent);
299extern void sched_online_group(struct task_group *tg,
300 struct task_group *parent);
301extern void sched_destroy_group(struct task_group *tg);
302extern void sched_offline_group(struct task_group *tg);
303
304extern void sched_move_task(struct task_struct *tsk);
305
306#ifdef CONFIG_FAIR_GROUP_SCHED
307extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
308#endif
309
029632fb
PZ
310#else /* CONFIG_CGROUP_SCHED */
311
312struct cfs_bandwidth { };
313
314#endif /* CONFIG_CGROUP_SCHED */
315
316/* CFS-related fields in a runqueue */
317struct cfs_rq {
318 struct load_weight load;
c82513e5 319 unsigned int nr_running, h_nr_running;
029632fb
PZ
320
321 u64 exec_clock;
322 u64 min_vruntime;
323#ifndef CONFIG_64BIT
324 u64 min_vruntime_copy;
325#endif
326
327 struct rb_root tasks_timeline;
328 struct rb_node *rb_leftmost;
329
029632fb
PZ
330 /*
331 * 'curr' points to currently running entity on this cfs_rq.
332 * It is set to NULL otherwise (i.e when none are currently running).
333 */
334 struct sched_entity *curr, *next, *last, *skip;
335
336#ifdef CONFIG_SCHED_DEBUG
337 unsigned int nr_spread_over;
338#endif
339
2dac754e
PT
340#ifdef CONFIG_SMP
341 /*
342 * CFS Load tracking
343 * Under CFS, load is tracked on a per-entity basis and aggregated up.
344 * This allows for the description of both thread and group usage (in
345 * the FAIR_GROUP_SCHED case).
346 */
72a4cf20 347 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 348 atomic64_t decay_counter;
9ee474f5 349 u64 last_decay;
2509940f 350 atomic_long_t removed_load;
141965c7 351
c566e8e9 352#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 353 /* Required to track per-cpu representation of a task_group */
bb17f655 354 u32 tg_runnable_contrib;
bf5b986e 355 unsigned long tg_load_contrib;
82958366
PT
356
357 /*
358 * h_load = weight * f(tg)
359 *
360 * Where f(tg) is the recursive weight fraction assigned to
361 * this group.
362 */
363 unsigned long h_load;
68520796
VD
364 u64 last_h_load_update;
365 struct sched_entity *h_load_next;
366#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
367#endif /* CONFIG_SMP */
368
029632fb
PZ
369#ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 int on_list;
381 struct list_head leaf_cfs_rq_list;
382 struct task_group *tg; /* group that "owns" this runqueue */
383
029632fb
PZ
384#ifdef CONFIG_CFS_BANDWIDTH
385 int runtime_enabled;
386 u64 runtime_expires;
387 s64 runtime_remaining;
388
f1b17280
PT
389 u64 throttled_clock, throttled_clock_task;
390 u64 throttled_clock_task_time;
029632fb
PZ
391 int throttled, throttle_count;
392 struct list_head throttled_list;
393#endif /* CONFIG_CFS_BANDWIDTH */
394#endif /* CONFIG_FAIR_GROUP_SCHED */
395};
396
397static inline int rt_bandwidth_enabled(void)
398{
399 return sysctl_sched_rt_runtime >= 0;
400}
401
402/* Real-Time classes' related field in a runqueue: */
403struct rt_rq {
404 struct rt_prio_array active;
c82513e5 405 unsigned int rt_nr_running;
029632fb
PZ
406#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
407 struct {
408 int curr; /* highest queued rt task prio */
409#ifdef CONFIG_SMP
410 int next; /* next highest */
411#endif
412 } highest_prio;
413#endif
414#ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 unsigned long rt_nr_total;
417 int overloaded;
418 struct plist_head pushable_tasks;
419#endif
f4ebcbc0
KT
420 int rt_queued;
421
029632fb
PZ
422 int rt_throttled;
423 u64 rt_time;
424 u64 rt_runtime;
425 /* Nests inside the rq lock: */
426 raw_spinlock_t rt_runtime_lock;
427
428#ifdef CONFIG_RT_GROUP_SCHED
429 unsigned long rt_nr_boosted;
430
431 struct rq *rq;
029632fb
PZ
432 struct task_group *tg;
433#endif
434};
435
aab03e05
DF
436/* Deadline class' related fields in a runqueue */
437struct dl_rq {
438 /* runqueue is an rbtree, ordered by deadline */
439 struct rb_root rb_root;
440 struct rb_node *rb_leftmost;
441
442 unsigned long dl_nr_running;
1baca4ce
JL
443
444#ifdef CONFIG_SMP
445 /*
446 * Deadline values of the currently executing and the
447 * earliest ready task on this rq. Caching these facilitates
448 * the decision wether or not a ready but not running task
449 * should migrate somewhere else.
450 */
451 struct {
452 u64 curr;
453 u64 next;
454 } earliest_dl;
455
456 unsigned long dl_nr_migratory;
1baca4ce
JL
457 int overloaded;
458
459 /*
460 * Tasks on this rq that can be pushed away. They are kept in
461 * an rb-tree, ordered by tasks' deadlines, with caching
462 * of the leftmost (earliest deadline) element.
463 */
464 struct rb_root pushable_dl_tasks_root;
465 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
466#else
467 struct dl_bw dl_bw;
1baca4ce 468#endif
aab03e05
DF
469};
470
029632fb
PZ
471#ifdef CONFIG_SMP
472
473/*
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
480 */
481struct root_domain {
482 atomic_t refcount;
483 atomic_t rto_count;
484 struct rcu_head rcu;
485 cpumask_var_t span;
486 cpumask_var_t online;
487
4486edd1
TC
488 /* Indicate more than one runnable task for any CPU */
489 bool overload;
490
1baca4ce
JL
491 /*
492 * The bit corresponding to a CPU gets set here if such CPU has more
493 * than one runnable -deadline task (as it is below for RT tasks).
494 */
495 cpumask_var_t dlo_mask;
496 atomic_t dlo_count;
332ac17e 497 struct dl_bw dl_bw;
6bfd6d72 498 struct cpudl cpudl;
1baca4ce 499
029632fb
PZ
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 struct cpupri cpupri;
506};
507
508extern struct root_domain def_root_domain;
509
510#endif /* CONFIG_SMP */
511
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519struct rq {
520 /* runqueue lock: */
521 raw_spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
c82513e5 527 unsigned int nr_running;
0ec8aa00
PZ
528#ifdef CONFIG_NUMA_BALANCING
529 unsigned int nr_numa_running;
530 unsigned int nr_preferred_running;
531#endif
029632fb
PZ
532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534 unsigned long last_load_update_tick;
3451d024 535#ifdef CONFIG_NO_HZ_COMMON
029632fb 536 u64 nohz_stamp;
1c792db7 537 unsigned long nohz_flags;
265f22a9
FW
538#endif
539#ifdef CONFIG_NO_HZ_FULL
540 unsigned long last_sched_tick;
029632fb
PZ
541#endif
542 int skip_clock_update;
543
544 /* capture load from *all* tasks on this cpu: */
545 struct load_weight load;
546 unsigned long nr_load_updates;
547 u64 nr_switches;
548
549 struct cfs_rq cfs;
550 struct rt_rq rt;
aab03e05 551 struct dl_rq dl;
029632fb
PZ
552
553#ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list;
f5f9739d
DE
556
557 struct sched_avg avg;
a35b6466
PZ
558#endif /* CONFIG_FAIR_GROUP_SCHED */
559
029632fb
PZ
560 /*
561 * This is part of a global counter where only the total sum
562 * over all CPUs matters. A task can increase this counter on
563 * one CPU and if it got migrated afterwards it may decrease
564 * it on another CPU. Always updated under the runqueue lock:
565 */
566 unsigned long nr_uninterruptible;
567
568 struct task_struct *curr, *idle, *stop;
569 unsigned long next_balance;
570 struct mm_struct *prev_mm;
571
572 u64 clock;
573 u64 clock_task;
574
575 atomic_t nr_iowait;
576
577#ifdef CONFIG_SMP
578 struct root_domain *rd;
579 struct sched_domain *sd;
580
ced549fa 581 unsigned long cpu_capacity;
029632fb
PZ
582
583 unsigned char idle_balance;
584 /* For active balancing */
585 int post_schedule;
586 int active_balance;
587 int push_cpu;
588 struct cpu_stop_work active_balance_work;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
367456c7
PZ
593 struct list_head cfs_tasks;
594
029632fb
PZ
595 u64 rt_avg;
596 u64 age_stamp;
597 u64 idle_stamp;
598 u64 avg_idle;
9bd721c5
JL
599
600 /* This is used to determine avg_idle's max value */
601 u64 max_idle_balance_cost;
029632fb
PZ
602#endif
603
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 u64 prev_irq_time;
606#endif
607#ifdef CONFIG_PARAVIRT
608 u64 prev_steal_time;
609#endif
610#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
611 u64 prev_steal_time_rq;
612#endif
613
614 /* calc_load related fields */
615 unsigned long calc_load_update;
616 long calc_load_active;
617
618#ifdef CONFIG_SCHED_HRTICK
619#ifdef CONFIG_SMP
620 int hrtick_csd_pending;
621 struct call_single_data hrtick_csd;
622#endif
623 struct hrtimer hrtick_timer;
624#endif
625
626#ifdef CONFIG_SCHEDSTATS
627 /* latency stats */
628 struct sched_info rq_sched_info;
629 unsigned long long rq_cpu_time;
630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
631
632 /* sys_sched_yield() stats */
633 unsigned int yld_count;
634
635 /* schedule() stats */
029632fb
PZ
636 unsigned int sched_count;
637 unsigned int sched_goidle;
638
639 /* try_to_wake_up() stats */
640 unsigned int ttwu_count;
641 unsigned int ttwu_local;
642#endif
643
644#ifdef CONFIG_SMP
645 struct llist_head wake_list;
646#endif
442bf3aa
DL
647
648#ifdef CONFIG_CPU_IDLE
649 /* Must be inspected within a rcu lock section */
650 struct cpuidle_state *idle_state;
651#endif
029632fb
PZ
652};
653
654static inline int cpu_of(struct rq *rq)
655{
656#ifdef CONFIG_SMP
657 return rq->cpu;
658#else
659 return 0;
660#endif
661}
662
8b06c55b 663DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 664
518cd623 665#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 666#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
667#define task_rq(p) cpu_rq(task_cpu(p))
668#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 669#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 670
78becc27
FW
671static inline u64 rq_clock(struct rq *rq)
672{
673 return rq->clock;
674}
675
676static inline u64 rq_clock_task(struct rq *rq)
677{
678 return rq->clock_task;
679}
680
9942f79b 681#ifdef CONFIG_NUMA
e3fe70b1
RR
682enum numa_topology_type {
683 NUMA_DIRECT,
684 NUMA_GLUELESS_MESH,
685 NUMA_BACKPLANE,
686};
687extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
688extern int sched_max_numa_distance;
689extern bool find_numa_distance(int distance);
690#endif
691
f809ca9a 692#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 693extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 694extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 695extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
696#endif /* CONFIG_NUMA_BALANCING */
697
518cd623
PZ
698#ifdef CONFIG_SMP
699
e3baac47
PZ
700extern void sched_ttwu_pending(void);
701
029632fb
PZ
702#define rcu_dereference_check_sched_domain(p) \
703 rcu_dereference_check((p), \
704 lockdep_is_held(&sched_domains_mutex))
705
706/*
707 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
708 * See detach_destroy_domains: synchronize_sched for details.
709 *
710 * The domain tree of any CPU may only be accessed from within
711 * preempt-disabled sections.
712 */
713#define for_each_domain(cpu, __sd) \
518cd623
PZ
714 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
715 __sd; __sd = __sd->parent)
029632fb 716
77e81365
SS
717#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
718
518cd623
PZ
719/**
720 * highest_flag_domain - Return highest sched_domain containing flag.
721 * @cpu: The cpu whose highest level of sched domain is to
722 * be returned.
723 * @flag: The flag to check for the highest sched_domain
724 * for the given cpu.
725 *
726 * Returns the highest sched_domain of a cpu which contains the given flag.
727 */
728static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
729{
730 struct sched_domain *sd, *hsd = NULL;
731
732 for_each_domain(cpu, sd) {
733 if (!(sd->flags & flag))
734 break;
735 hsd = sd;
736 }
737
738 return hsd;
739}
740
fb13c7ee
MG
741static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
742{
743 struct sched_domain *sd;
744
745 for_each_domain(cpu, sd) {
746 if (sd->flags & flag)
747 break;
748 }
749
750 return sd;
751}
752
518cd623 753DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 754DECLARE_PER_CPU(int, sd_llc_size);
518cd623 755DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 756DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
757DECLARE_PER_CPU(struct sched_domain *, sd_busy);
758DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 759
63b2ca30 760struct sched_group_capacity {
5e6521ea
LZ
761 atomic_t ref;
762 /*
63b2ca30
NP
763 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
764 * for a single CPU.
5e6521ea 765 */
63b2ca30 766 unsigned int capacity, capacity_orig;
5e6521ea 767 unsigned long next_update;
63b2ca30 768 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
769 /*
770 * Number of busy cpus in this group.
771 */
772 atomic_t nr_busy_cpus;
773
774 unsigned long cpumask[0]; /* iteration mask */
775};
776
777struct sched_group {
778 struct sched_group *next; /* Must be a circular list */
779 atomic_t ref;
780
781 unsigned int group_weight;
63b2ca30 782 struct sched_group_capacity *sgc;
5e6521ea
LZ
783
784 /*
785 * The CPUs this group covers.
786 *
787 * NOTE: this field is variable length. (Allocated dynamically
788 * by attaching extra space to the end of the structure,
789 * depending on how many CPUs the kernel has booted up with)
790 */
791 unsigned long cpumask[0];
792};
793
794static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
795{
796 return to_cpumask(sg->cpumask);
797}
798
799/*
800 * cpumask masking which cpus in the group are allowed to iterate up the domain
801 * tree.
802 */
803static inline struct cpumask *sched_group_mask(struct sched_group *sg)
804{
63b2ca30 805 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
806}
807
808/**
809 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
810 * @group: The group whose first cpu is to be returned.
811 */
812static inline unsigned int group_first_cpu(struct sched_group *group)
813{
814 return cpumask_first(sched_group_cpus(group));
815}
816
c1174876
PZ
817extern int group_balance_cpu(struct sched_group *sg);
818
e3baac47
PZ
819#else
820
821static inline void sched_ttwu_pending(void) { }
822
518cd623 823#endif /* CONFIG_SMP */
029632fb 824
391e43da
PZ
825#include "stats.h"
826#include "auto_group.h"
029632fb
PZ
827
828#ifdef CONFIG_CGROUP_SCHED
829
830/*
831 * Return the group to which this tasks belongs.
832 *
8af01f56
TH
833 * We cannot use task_css() and friends because the cgroup subsystem
834 * changes that value before the cgroup_subsys::attach() method is called,
835 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
836 *
837 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
838 * core changes this before calling sched_move_task().
839 *
840 * Instead we use a 'copy' which is updated from sched_move_task() while
841 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
842 */
843static inline struct task_group *task_group(struct task_struct *p)
844{
8323f26c 845 return p->sched_task_group;
029632fb
PZ
846}
847
848/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
849static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
850{
851#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
852 struct task_group *tg = task_group(p);
853#endif
854
855#ifdef CONFIG_FAIR_GROUP_SCHED
856 p->se.cfs_rq = tg->cfs_rq[cpu];
857 p->se.parent = tg->se[cpu];
858#endif
859
860#ifdef CONFIG_RT_GROUP_SCHED
861 p->rt.rt_rq = tg->rt_rq[cpu];
862 p->rt.parent = tg->rt_se[cpu];
863#endif
864}
865
866#else /* CONFIG_CGROUP_SCHED */
867
868static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
869static inline struct task_group *task_group(struct task_struct *p)
870{
871 return NULL;
872}
873
874#endif /* CONFIG_CGROUP_SCHED */
875
876static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
877{
878 set_task_rq(p, cpu);
879#ifdef CONFIG_SMP
880 /*
881 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
882 * successfuly executed on another CPU. We must ensure that updates of
883 * per-task data have been completed by this moment.
884 */
885 smp_wmb();
886 task_thread_info(p)->cpu = cpu;
ac66f547 887 p->wake_cpu = cpu;
029632fb
PZ
888#endif
889}
890
891/*
892 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
893 */
894#ifdef CONFIG_SCHED_DEBUG
c5905afb 895# include <linux/static_key.h>
029632fb
PZ
896# define const_debug __read_mostly
897#else
898# define const_debug const
899#endif
900
901extern const_debug unsigned int sysctl_sched_features;
902
903#define SCHED_FEAT(name, enabled) \
904 __SCHED_FEAT_##name ,
905
906enum {
391e43da 907#include "features.h"
f8b6d1cc 908 __SCHED_FEAT_NR,
029632fb
PZ
909};
910
911#undef SCHED_FEAT
912
f8b6d1cc 913#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 914#define SCHED_FEAT(name, enabled) \
c5905afb 915static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 916{ \
6e76ea8a 917 return static_key_##enabled(key); \
f8b6d1cc
PZ
918}
919
920#include "features.h"
921
922#undef SCHED_FEAT
923
c5905afb 924extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
925#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
926#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 927#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 928#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 929
cbee9f88
PZ
930#ifdef CONFIG_NUMA_BALANCING
931#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
932#ifdef CONFIG_SCHED_DEBUG
933#define numabalancing_enabled sched_feat_numa(NUMA)
934#else
935extern bool numabalancing_enabled;
936#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
937#else
938#define sched_feat_numa(x) (0)
3105b86a
MG
939#define numabalancing_enabled (0)
940#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 941
029632fb
PZ
942static inline u64 global_rt_period(void)
943{
944 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
945}
946
947static inline u64 global_rt_runtime(void)
948{
949 if (sysctl_sched_rt_runtime < 0)
950 return RUNTIME_INF;
951
952 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
953}
954
029632fb
PZ
955static inline int task_current(struct rq *rq, struct task_struct *p)
956{
957 return rq->curr == p;
958}
959
960static inline int task_running(struct rq *rq, struct task_struct *p)
961{
962#ifdef CONFIG_SMP
963 return p->on_cpu;
964#else
965 return task_current(rq, p);
966#endif
967}
968
da0c1e65
KT
969static inline int task_on_rq_queued(struct task_struct *p)
970{
971 return p->on_rq == TASK_ON_RQ_QUEUED;
972}
029632fb 973
cca26e80
KT
974static inline int task_on_rq_migrating(struct task_struct *p)
975{
976 return p->on_rq == TASK_ON_RQ_MIGRATING;
977}
978
029632fb
PZ
979#ifndef prepare_arch_switch
980# define prepare_arch_switch(next) do { } while (0)
981#endif
982#ifndef finish_arch_switch
983# define finish_arch_switch(prev) do { } while (0)
984#endif
01f23e16
CM
985#ifndef finish_arch_post_lock_switch
986# define finish_arch_post_lock_switch() do { } while (0)
987#endif
029632fb 988
029632fb
PZ
989static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
990{
991#ifdef CONFIG_SMP
992 /*
993 * We can optimise this out completely for !SMP, because the
994 * SMP rebalancing from interrupt is the only thing that cares
995 * here.
996 */
997 next->on_cpu = 1;
998#endif
999}
1000
1001static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1002{
1003#ifdef CONFIG_SMP
1004 /*
1005 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1006 * We must ensure this doesn't happen until the switch is completely
1007 * finished.
1008 */
1009 smp_wmb();
1010 prev->on_cpu = 0;
1011#endif
1012#ifdef CONFIG_DEBUG_SPINLOCK
1013 /* this is a valid case when another task releases the spinlock */
1014 rq->lock.owner = current;
1015#endif
1016 /*
1017 * If we are tracking spinlock dependencies then we have to
1018 * fix up the runqueue lock - which gets 'carried over' from
1019 * prev into current:
1020 */
1021 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1022
1023 raw_spin_unlock_irq(&rq->lock);
1024}
1025
b13095f0
LZ
1026/*
1027 * wake flags
1028 */
1029#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1030#define WF_FORK 0x02 /* child wakeup after fork */
1031#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1032
029632fb
PZ
1033/*
1034 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1035 * of tasks with abnormal "nice" values across CPUs the contribution that
1036 * each task makes to its run queue's load is weighted according to its
1037 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1038 * scaled version of the new time slice allocation that they receive on time
1039 * slice expiry etc.
1040 */
1041
1042#define WEIGHT_IDLEPRIO 3
1043#define WMULT_IDLEPRIO 1431655765
1044
1045/*
1046 * Nice levels are multiplicative, with a gentle 10% change for every
1047 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1048 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1049 * that remained on nice 0.
1050 *
1051 * The "10% effect" is relative and cumulative: from _any_ nice level,
1052 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1053 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1054 * If a task goes up by ~10% and another task goes down by ~10% then
1055 * the relative distance between them is ~25%.)
1056 */
1057static const int prio_to_weight[40] = {
1058 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1059 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1060 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1061 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1062 /* 0 */ 1024, 820, 655, 526, 423,
1063 /* 5 */ 335, 272, 215, 172, 137,
1064 /* 10 */ 110, 87, 70, 56, 45,
1065 /* 15 */ 36, 29, 23, 18, 15,
1066};
1067
1068/*
1069 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1070 *
1071 * In cases where the weight does not change often, we can use the
1072 * precalculated inverse to speed up arithmetics by turning divisions
1073 * into multiplications:
1074 */
1075static const u32 prio_to_wmult[40] = {
1076 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1077 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1078 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1079 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1080 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1081 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1082 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1083 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1084};
1085
c82ba9fa
LZ
1086#define ENQUEUE_WAKEUP 1
1087#define ENQUEUE_HEAD 2
1088#ifdef CONFIG_SMP
1089#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1090#else
1091#define ENQUEUE_WAKING 0
1092#endif
aab03e05 1093#define ENQUEUE_REPLENISH 8
c82ba9fa
LZ
1094
1095#define DEQUEUE_SLEEP 1
1096
37e117c0
PZ
1097#define RETRY_TASK ((void *)-1UL)
1098
c82ba9fa
LZ
1099struct sched_class {
1100 const struct sched_class *next;
1101
1102 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1103 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1104 void (*yield_task) (struct rq *rq);
1105 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1106
1107 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1108
606dba2e
PZ
1109 /*
1110 * It is the responsibility of the pick_next_task() method that will
1111 * return the next task to call put_prev_task() on the @prev task or
1112 * something equivalent.
37e117c0
PZ
1113 *
1114 * May return RETRY_TASK when it finds a higher prio class has runnable
1115 * tasks.
606dba2e
PZ
1116 */
1117 struct task_struct * (*pick_next_task) (struct rq *rq,
1118 struct task_struct *prev);
c82ba9fa
LZ
1119 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1120
1121#ifdef CONFIG_SMP
ac66f547 1122 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1123 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1124
c82ba9fa
LZ
1125 void (*post_schedule) (struct rq *this_rq);
1126 void (*task_waking) (struct task_struct *task);
1127 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1128
1129 void (*set_cpus_allowed)(struct task_struct *p,
1130 const struct cpumask *newmask);
1131
1132 void (*rq_online)(struct rq *rq);
1133 void (*rq_offline)(struct rq *rq);
1134#endif
1135
1136 void (*set_curr_task) (struct rq *rq);
1137 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1138 void (*task_fork) (struct task_struct *p);
e6c390f2 1139 void (*task_dead) (struct task_struct *p);
c82ba9fa
LZ
1140
1141 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1142 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1143 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1144 int oldprio);
1145
1146 unsigned int (*get_rr_interval) (struct rq *rq,
1147 struct task_struct *task);
1148
1149#ifdef CONFIG_FAIR_GROUP_SCHED
1150 void (*task_move_group) (struct task_struct *p, int on_rq);
1151#endif
1152};
029632fb 1153
3f1d2a31
PZ
1154static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1155{
1156 prev->sched_class->put_prev_task(rq, prev);
1157}
1158
029632fb
PZ
1159#define sched_class_highest (&stop_sched_class)
1160#define for_each_class(class) \
1161 for (class = sched_class_highest; class; class = class->next)
1162
1163extern const struct sched_class stop_sched_class;
aab03e05 1164extern const struct sched_class dl_sched_class;
029632fb
PZ
1165extern const struct sched_class rt_sched_class;
1166extern const struct sched_class fair_sched_class;
1167extern const struct sched_class idle_sched_class;
1168
1169
1170#ifdef CONFIG_SMP
1171
63b2ca30 1172extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1173
7caff66f 1174extern void trigger_load_balance(struct rq *rq);
029632fb 1175
642dbc39
VG
1176extern void idle_enter_fair(struct rq *this_rq);
1177extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1178
dc877341
PZ
1179#else
1180
1181static inline void idle_enter_fair(struct rq *rq) { }
1182static inline void idle_exit_fair(struct rq *rq) { }
1183
029632fb
PZ
1184#endif
1185
442bf3aa
DL
1186#ifdef CONFIG_CPU_IDLE
1187static inline void idle_set_state(struct rq *rq,
1188 struct cpuidle_state *idle_state)
1189{
1190 rq->idle_state = idle_state;
1191}
1192
1193static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1194{
1195 WARN_ON(!rcu_read_lock_held());
1196 return rq->idle_state;
1197}
1198#else
1199static inline void idle_set_state(struct rq *rq,
1200 struct cpuidle_state *idle_state)
1201{
1202}
1203
1204static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1205{
1206 return NULL;
1207}
1208#endif
1209
029632fb
PZ
1210extern void sysrq_sched_debug_show(void);
1211extern void sched_init_granularity(void);
1212extern void update_max_interval(void);
1baca4ce
JL
1213
1214extern void init_sched_dl_class(void);
029632fb
PZ
1215extern void init_sched_rt_class(void);
1216extern void init_sched_fair_class(void);
332ac17e 1217extern void init_sched_dl_class(void);
029632fb 1218
8875125e 1219extern void resched_curr(struct rq *rq);
029632fb
PZ
1220extern void resched_cpu(int cpu);
1221
1222extern struct rt_bandwidth def_rt_bandwidth;
1223extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1224
332ac17e
DF
1225extern struct dl_bandwidth def_dl_bandwidth;
1226extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1227extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1228
332ac17e
DF
1229unsigned long to_ratio(u64 period, u64 runtime);
1230
556061b0 1231extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1232
a75cdaa9
AS
1233extern void init_task_runnable_average(struct task_struct *p);
1234
72465447 1235static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1236{
72465447
KT
1237 unsigned prev_nr = rq->nr_running;
1238
1239 rq->nr_running = prev_nr + count;
9f3660c2 1240
72465447 1241 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1242#ifdef CONFIG_SMP
1243 if (!rq->rd->overload)
1244 rq->rd->overload = true;
1245#endif
1246
1247#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1248 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1249 /*
1250 * Tick is needed if more than one task runs on a CPU.
1251 * Send the target an IPI to kick it out of nohz mode.
1252 *
1253 * We assume that IPI implies full memory barrier and the
1254 * new value of rq->nr_running is visible on reception
1255 * from the target.
1256 */
fd2ac4f4 1257 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1258 }
9f3660c2 1259#endif
4486edd1 1260 }
029632fb
PZ
1261}
1262
72465447 1263static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1264{
72465447 1265 rq->nr_running -= count;
029632fb
PZ
1266}
1267
265f22a9
FW
1268static inline void rq_last_tick_reset(struct rq *rq)
1269{
1270#ifdef CONFIG_NO_HZ_FULL
1271 rq->last_sched_tick = jiffies;
1272#endif
1273}
1274
029632fb
PZ
1275extern void update_rq_clock(struct rq *rq);
1276
1277extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1278extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1279
1280extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1281
1282extern const_debug unsigned int sysctl_sched_time_avg;
1283extern const_debug unsigned int sysctl_sched_nr_migrate;
1284extern const_debug unsigned int sysctl_sched_migration_cost;
1285
1286static inline u64 sched_avg_period(void)
1287{
1288 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1289}
1290
029632fb
PZ
1291#ifdef CONFIG_SCHED_HRTICK
1292
1293/*
1294 * Use hrtick when:
1295 * - enabled by features
1296 * - hrtimer is actually high res
1297 */
1298static inline int hrtick_enabled(struct rq *rq)
1299{
1300 if (!sched_feat(HRTICK))
1301 return 0;
1302 if (!cpu_active(cpu_of(rq)))
1303 return 0;
1304 return hrtimer_is_hres_active(&rq->hrtick_timer);
1305}
1306
1307void hrtick_start(struct rq *rq, u64 delay);
1308
b39e66ea
MG
1309#else
1310
1311static inline int hrtick_enabled(struct rq *rq)
1312{
1313 return 0;
1314}
1315
029632fb
PZ
1316#endif /* CONFIG_SCHED_HRTICK */
1317
1318#ifdef CONFIG_SMP
1319extern void sched_avg_update(struct rq *rq);
1320static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1321{
1322 rq->rt_avg += rt_delta;
1323 sched_avg_update(rq);
1324}
1325#else
1326static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1327static inline void sched_avg_update(struct rq *rq) { }
1328#endif
1329
1330extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1331
1332#ifdef CONFIG_SMP
1333#ifdef CONFIG_PREEMPT
1334
1335static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1336
1337/*
1338 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1339 * way at the expense of forcing extra atomic operations in all
1340 * invocations. This assures that the double_lock is acquired using the
1341 * same underlying policy as the spinlock_t on this architecture, which
1342 * reduces latency compared to the unfair variant below. However, it
1343 * also adds more overhead and therefore may reduce throughput.
1344 */
1345static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1346 __releases(this_rq->lock)
1347 __acquires(busiest->lock)
1348 __acquires(this_rq->lock)
1349{
1350 raw_spin_unlock(&this_rq->lock);
1351 double_rq_lock(this_rq, busiest);
1352
1353 return 1;
1354}
1355
1356#else
1357/*
1358 * Unfair double_lock_balance: Optimizes throughput at the expense of
1359 * latency by eliminating extra atomic operations when the locks are
1360 * already in proper order on entry. This favors lower cpu-ids and will
1361 * grant the double lock to lower cpus over higher ids under contention,
1362 * regardless of entry order into the function.
1363 */
1364static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1365 __releases(this_rq->lock)
1366 __acquires(busiest->lock)
1367 __acquires(this_rq->lock)
1368{
1369 int ret = 0;
1370
1371 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1372 if (busiest < this_rq) {
1373 raw_spin_unlock(&this_rq->lock);
1374 raw_spin_lock(&busiest->lock);
1375 raw_spin_lock_nested(&this_rq->lock,
1376 SINGLE_DEPTH_NESTING);
1377 ret = 1;
1378 } else
1379 raw_spin_lock_nested(&busiest->lock,
1380 SINGLE_DEPTH_NESTING);
1381 }
1382 return ret;
1383}
1384
1385#endif /* CONFIG_PREEMPT */
1386
1387/*
1388 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1389 */
1390static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1391{
1392 if (unlikely(!irqs_disabled())) {
1393 /* printk() doesn't work good under rq->lock */
1394 raw_spin_unlock(&this_rq->lock);
1395 BUG_ON(1);
1396 }
1397
1398 return _double_lock_balance(this_rq, busiest);
1399}
1400
1401static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1402 __releases(busiest->lock)
1403{
1404 raw_spin_unlock(&busiest->lock);
1405 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1406}
1407
74602315
PZ
1408static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1409{
1410 if (l1 > l2)
1411 swap(l1, l2);
1412
1413 spin_lock(l1);
1414 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1415}
1416
60e69eed
MG
1417static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1418{
1419 if (l1 > l2)
1420 swap(l1, l2);
1421
1422 spin_lock_irq(l1);
1423 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1424}
1425
74602315
PZ
1426static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1427{
1428 if (l1 > l2)
1429 swap(l1, l2);
1430
1431 raw_spin_lock(l1);
1432 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1433}
1434
029632fb
PZ
1435/*
1436 * double_rq_lock - safely lock two runqueues
1437 *
1438 * Note this does not disable interrupts like task_rq_lock,
1439 * you need to do so manually before calling.
1440 */
1441static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1442 __acquires(rq1->lock)
1443 __acquires(rq2->lock)
1444{
1445 BUG_ON(!irqs_disabled());
1446 if (rq1 == rq2) {
1447 raw_spin_lock(&rq1->lock);
1448 __acquire(rq2->lock); /* Fake it out ;) */
1449 } else {
1450 if (rq1 < rq2) {
1451 raw_spin_lock(&rq1->lock);
1452 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1453 } else {
1454 raw_spin_lock(&rq2->lock);
1455 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1456 }
1457 }
1458}
1459
1460/*
1461 * double_rq_unlock - safely unlock two runqueues
1462 *
1463 * Note this does not restore interrupts like task_rq_unlock,
1464 * you need to do so manually after calling.
1465 */
1466static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1467 __releases(rq1->lock)
1468 __releases(rq2->lock)
1469{
1470 raw_spin_unlock(&rq1->lock);
1471 if (rq1 != rq2)
1472 raw_spin_unlock(&rq2->lock);
1473 else
1474 __release(rq2->lock);
1475}
1476
1477#else /* CONFIG_SMP */
1478
1479/*
1480 * double_rq_lock - safely lock two runqueues
1481 *
1482 * Note this does not disable interrupts like task_rq_lock,
1483 * you need to do so manually before calling.
1484 */
1485static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1486 __acquires(rq1->lock)
1487 __acquires(rq2->lock)
1488{
1489 BUG_ON(!irqs_disabled());
1490 BUG_ON(rq1 != rq2);
1491 raw_spin_lock(&rq1->lock);
1492 __acquire(rq2->lock); /* Fake it out ;) */
1493}
1494
1495/*
1496 * double_rq_unlock - safely unlock two runqueues
1497 *
1498 * Note this does not restore interrupts like task_rq_unlock,
1499 * you need to do so manually after calling.
1500 */
1501static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1502 __releases(rq1->lock)
1503 __releases(rq2->lock)
1504{
1505 BUG_ON(rq1 != rq2);
1506 raw_spin_unlock(&rq1->lock);
1507 __release(rq2->lock);
1508}
1509
1510#endif
1511
1512extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1513extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1514extern void print_cfs_stats(struct seq_file *m, int cpu);
1515extern void print_rt_stats(struct seq_file *m, int cpu);
1516
1517extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1518extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
aab03e05 1519extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
029632fb 1520
1ee14e6c
BS
1521extern void cfs_bandwidth_usage_inc(void);
1522extern void cfs_bandwidth_usage_dec(void);
1c792db7 1523
3451d024 1524#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1525enum rq_nohz_flag_bits {
1526 NOHZ_TICK_STOPPED,
1527 NOHZ_BALANCE_KICK,
1528};
1529
1530#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1531#endif
73fbec60
FW
1532
1533#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1534
1535DECLARE_PER_CPU(u64, cpu_hardirq_time);
1536DECLARE_PER_CPU(u64, cpu_softirq_time);
1537
1538#ifndef CONFIG_64BIT
1539DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1540
1541static inline void irq_time_write_begin(void)
1542{
1543 __this_cpu_inc(irq_time_seq.sequence);
1544 smp_wmb();
1545}
1546
1547static inline void irq_time_write_end(void)
1548{
1549 smp_wmb();
1550 __this_cpu_inc(irq_time_seq.sequence);
1551}
1552
1553static inline u64 irq_time_read(int cpu)
1554{
1555 u64 irq_time;
1556 unsigned seq;
1557
1558 do {
1559 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1560 irq_time = per_cpu(cpu_softirq_time, cpu) +
1561 per_cpu(cpu_hardirq_time, cpu);
1562 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1563
1564 return irq_time;
1565}
1566#else /* CONFIG_64BIT */
1567static inline void irq_time_write_begin(void)
1568{
1569}
1570
1571static inline void irq_time_write_end(void)
1572{
1573}
1574
1575static inline u64 irq_time_read(int cpu)
1576{
1577 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1578}
1579#endif /* CONFIG_64BIT */
1580#endif /* CONFIG_IRQ_TIME_ACCOUNTING */