sched/debug: Move the /sys/kernel/debug/sched_features file setup into debug.c
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
aab03e05 5#include <linux/sched/deadline.h>
029632fb
PZ
6#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
b6366f04 9#include <linux/irq_work.h>
9f3660c2 10#include <linux/tick.h>
f809ca9a 11#include <linux/slab.h>
029632fb 12
391e43da 13#include "cpupri.h"
6bfd6d72 14#include "cpudeadline.h"
60fed789 15#include "cpuacct.h"
029632fb 16
45ceebf7 17struct rq;
442bf3aa 18struct cpuidle_state;
45ceebf7 19
da0c1e65
KT
20/* task_struct::on_rq states: */
21#define TASK_ON_RQ_QUEUED 1
cca26e80 22#define TASK_ON_RQ_MIGRATING 2
da0c1e65 23
029632fb
PZ
24extern __read_mostly int scheduler_running;
25
45ceebf7
PG
26extern unsigned long calc_load_update;
27extern atomic_long_t calc_load_tasks;
28
3289bdb4 29extern void calc_global_load_tick(struct rq *this_rq);
45ceebf7 30extern long calc_load_fold_active(struct rq *this_rq);
3289bdb4
PZ
31
32#ifdef CONFIG_SMP
45ceebf7 33extern void update_cpu_load_active(struct rq *this_rq);
3289bdb4
PZ
34#else
35static inline void update_cpu_load_active(struct rq *this_rq) { }
36#endif
45ceebf7 37
029632fb
PZ
38/*
39 * Helpers for converting nanosecond timing to jiffy resolution
40 */
41#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
42
cc1f4b1f
LZ
43/*
44 * Increase resolution of nice-level calculations for 64-bit architectures.
45 * The extra resolution improves shares distribution and load balancing of
46 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
47 * hierarchies, especially on larger systems. This is not a user-visible change
48 * and does not change the user-interface for setting shares/weights.
49 *
50 * We increase resolution only if we have enough bits to allow this increased
51 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
52 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
53 * increased costs.
54 */
55#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
56# define SCHED_LOAD_RESOLUTION 10
57# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
58# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
59#else
60# define SCHED_LOAD_RESOLUTION 0
61# define scale_load(w) (w)
62# define scale_load_down(w) (w)
63#endif
64
65#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
66#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
67
029632fb
PZ
68#define NICE_0_LOAD SCHED_LOAD_SCALE
69#define NICE_0_SHIFT SCHED_LOAD_SHIFT
70
332ac17e
DF
71/*
72 * Single value that decides SCHED_DEADLINE internal math precision.
73 * 10 -> just above 1us
74 * 9 -> just above 0.5us
75 */
76#define DL_SCALE (10)
77
029632fb
PZ
78/*
79 * These are the 'tuning knobs' of the scheduler:
029632fb 80 */
029632fb
PZ
81
82/*
83 * single value that denotes runtime == period, ie unlimited time.
84 */
85#define RUNTIME_INF ((u64)~0ULL)
86
20f9cd2a
HA
87static inline int idle_policy(int policy)
88{
89 return policy == SCHED_IDLE;
90}
d50dde5a
DF
91static inline int fair_policy(int policy)
92{
93 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
94}
95
029632fb
PZ
96static inline int rt_policy(int policy)
97{
d50dde5a 98 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
99}
100
aab03e05
DF
101static inline int dl_policy(int policy)
102{
103 return policy == SCHED_DEADLINE;
104}
20f9cd2a
HA
105static inline bool valid_policy(int policy)
106{
107 return idle_policy(policy) || fair_policy(policy) ||
108 rt_policy(policy) || dl_policy(policy);
109}
aab03e05 110
029632fb
PZ
111static inline int task_has_rt_policy(struct task_struct *p)
112{
113 return rt_policy(p->policy);
114}
115
aab03e05
DF
116static inline int task_has_dl_policy(struct task_struct *p)
117{
118 return dl_policy(p->policy);
119}
120
2d3d891d
DF
121/*
122 * Tells if entity @a should preempt entity @b.
123 */
332ac17e
DF
124static inline bool
125dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
126{
127 return dl_time_before(a->deadline, b->deadline);
128}
129
029632fb
PZ
130/*
131 * This is the priority-queue data structure of the RT scheduling class:
132 */
133struct rt_prio_array {
134 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
135 struct list_head queue[MAX_RT_PRIO];
136};
137
138struct rt_bandwidth {
139 /* nests inside the rq lock: */
140 raw_spinlock_t rt_runtime_lock;
141 ktime_t rt_period;
142 u64 rt_runtime;
143 struct hrtimer rt_period_timer;
4cfafd30 144 unsigned int rt_period_active;
029632fb 145};
a5e7be3b
JL
146
147void __dl_clear_params(struct task_struct *p);
148
332ac17e
DF
149/*
150 * To keep the bandwidth of -deadline tasks and groups under control
151 * we need some place where:
152 * - store the maximum -deadline bandwidth of the system (the group);
153 * - cache the fraction of that bandwidth that is currently allocated.
154 *
155 * This is all done in the data structure below. It is similar to the
156 * one used for RT-throttling (rt_bandwidth), with the main difference
157 * that, since here we are only interested in admission control, we
158 * do not decrease any runtime while the group "executes", neither we
159 * need a timer to replenish it.
160 *
161 * With respect to SMP, the bandwidth is given on a per-CPU basis,
162 * meaning that:
163 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
164 * - dl_total_bw array contains, in the i-eth element, the currently
165 * allocated bandwidth on the i-eth CPU.
166 * Moreover, groups consume bandwidth on each CPU, while tasks only
167 * consume bandwidth on the CPU they're running on.
168 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
169 * that will be shown the next time the proc or cgroup controls will
170 * be red. It on its turn can be changed by writing on its own
171 * control.
172 */
173struct dl_bandwidth {
174 raw_spinlock_t dl_runtime_lock;
175 u64 dl_runtime;
176 u64 dl_period;
177};
178
179static inline int dl_bandwidth_enabled(void)
180{
1724813d 181 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
182}
183
184extern struct dl_bw *dl_bw_of(int i);
185
186struct dl_bw {
187 raw_spinlock_t lock;
188 u64 bw, total_bw;
189};
190
7f51412a
JL
191static inline
192void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
193{
194 dl_b->total_bw -= tsk_bw;
195}
196
197static inline
198void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
199{
200 dl_b->total_bw += tsk_bw;
201}
202
203static inline
204bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
205{
206 return dl_b->bw != -1 &&
207 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
208}
209
029632fb
PZ
210extern struct mutex sched_domains_mutex;
211
212#ifdef CONFIG_CGROUP_SCHED
213
214#include <linux/cgroup.h>
215
216struct cfs_rq;
217struct rt_rq;
218
35cf4e50 219extern struct list_head task_groups;
029632fb
PZ
220
221struct cfs_bandwidth {
222#ifdef CONFIG_CFS_BANDWIDTH
223 raw_spinlock_t lock;
224 ktime_t period;
225 u64 quota, runtime;
9c58c79a 226 s64 hierarchical_quota;
029632fb
PZ
227 u64 runtime_expires;
228
4cfafd30 229 int idle, period_active;
029632fb
PZ
230 struct hrtimer period_timer, slack_timer;
231 struct list_head throttled_cfs_rq;
232
233 /* statistics */
234 int nr_periods, nr_throttled;
235 u64 throttled_time;
236#endif
237};
238
239/* task group related information */
240struct task_group {
241 struct cgroup_subsys_state css;
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244 /* schedulable entities of this group on each cpu */
245 struct sched_entity **se;
246 /* runqueue "owned" by this group on each cpu */
247 struct cfs_rq **cfs_rq;
248 unsigned long shares;
249
fa6bddeb 250#ifdef CONFIG_SMP
b0367629
WL
251 /*
252 * load_avg can be heavily contended at clock tick time, so put
253 * it in its own cacheline separated from the fields above which
254 * will also be accessed at each tick.
255 */
256 atomic_long_t load_avg ____cacheline_aligned;
029632fb 257#endif
fa6bddeb 258#endif
029632fb
PZ
259
260#ifdef CONFIG_RT_GROUP_SCHED
261 struct sched_rt_entity **rt_se;
262 struct rt_rq **rt_rq;
263
264 struct rt_bandwidth rt_bandwidth;
265#endif
266
267 struct rcu_head rcu;
268 struct list_head list;
269
270 struct task_group *parent;
271 struct list_head siblings;
272 struct list_head children;
273
274#ifdef CONFIG_SCHED_AUTOGROUP
275 struct autogroup *autogroup;
276#endif
277
278 struct cfs_bandwidth cfs_bandwidth;
279};
280
281#ifdef CONFIG_FAIR_GROUP_SCHED
282#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
283
284/*
285 * A weight of 0 or 1 can cause arithmetics problems.
286 * A weight of a cfs_rq is the sum of weights of which entities
287 * are queued on this cfs_rq, so a weight of a entity should not be
288 * too large, so as the shares value of a task group.
289 * (The default weight is 1024 - so there's no practical
290 * limitation from this.)
291 */
292#define MIN_SHARES (1UL << 1)
293#define MAX_SHARES (1UL << 18)
294#endif
295
029632fb
PZ
296typedef int (*tg_visitor)(struct task_group *, void *);
297
298extern int walk_tg_tree_from(struct task_group *from,
299 tg_visitor down, tg_visitor up, void *data);
300
301/*
302 * Iterate the full tree, calling @down when first entering a node and @up when
303 * leaving it for the final time.
304 *
305 * Caller must hold rcu_lock or sufficient equivalent.
306 */
307static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
308{
309 return walk_tg_tree_from(&root_task_group, down, up, data);
310}
311
312extern int tg_nop(struct task_group *tg, void *data);
313
314extern void free_fair_sched_group(struct task_group *tg);
315extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
6fe1f348 316extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
317extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
318 struct sched_entity *se, int cpu,
319 struct sched_entity *parent);
320extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
321
322extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 323extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
324extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
325
326extern void free_rt_sched_group(struct task_group *tg);
327extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
328extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
329 struct sched_rt_entity *rt_se, int cpu,
330 struct sched_rt_entity *parent);
331
25cc7da7
LZ
332extern struct task_group *sched_create_group(struct task_group *parent);
333extern void sched_online_group(struct task_group *tg,
334 struct task_group *parent);
335extern void sched_destroy_group(struct task_group *tg);
336extern void sched_offline_group(struct task_group *tg);
337
338extern void sched_move_task(struct task_struct *tsk);
339
340#ifdef CONFIG_FAIR_GROUP_SCHED
341extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
342
343#ifdef CONFIG_SMP
344extern void set_task_rq_fair(struct sched_entity *se,
345 struct cfs_rq *prev, struct cfs_rq *next);
346#else /* !CONFIG_SMP */
347static inline void set_task_rq_fair(struct sched_entity *se,
348 struct cfs_rq *prev, struct cfs_rq *next) { }
349#endif /* CONFIG_SMP */
350#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 351
029632fb
PZ
352#else /* CONFIG_CGROUP_SCHED */
353
354struct cfs_bandwidth { };
355
356#endif /* CONFIG_CGROUP_SCHED */
357
358/* CFS-related fields in a runqueue */
359struct cfs_rq {
360 struct load_weight load;
c82513e5 361 unsigned int nr_running, h_nr_running;
029632fb
PZ
362
363 u64 exec_clock;
364 u64 min_vruntime;
365#ifndef CONFIG_64BIT
366 u64 min_vruntime_copy;
367#endif
368
369 struct rb_root tasks_timeline;
370 struct rb_node *rb_leftmost;
371
029632fb
PZ
372 /*
373 * 'curr' points to currently running entity on this cfs_rq.
374 * It is set to NULL otherwise (i.e when none are currently running).
375 */
376 struct sched_entity *curr, *next, *last, *skip;
377
378#ifdef CONFIG_SCHED_DEBUG
379 unsigned int nr_spread_over;
380#endif
381
2dac754e
PT
382#ifdef CONFIG_SMP
383 /*
9d89c257 384 * CFS load tracking
2dac754e 385 */
9d89c257 386 struct sched_avg avg;
13962234
YD
387 u64 runnable_load_sum;
388 unsigned long runnable_load_avg;
c566e8e9 389#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257
YD
390 unsigned long tg_load_avg_contrib;
391#endif
392 atomic_long_t removed_load_avg, removed_util_avg;
393#ifndef CONFIG_64BIT
394 u64 load_last_update_time_copy;
395#endif
82958366 396
9d89c257 397#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
398 /*
399 * h_load = weight * f(tg)
400 *
401 * Where f(tg) is the recursive weight fraction assigned to
402 * this group.
403 */
404 unsigned long h_load;
68520796
VD
405 u64 last_h_load_update;
406 struct sched_entity *h_load_next;
407#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
408#endif /* CONFIG_SMP */
409
029632fb
PZ
410#ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 int on_list;
422 struct list_head leaf_cfs_rq_list;
423 struct task_group *tg; /* group that "owns" this runqueue */
424
029632fb
PZ
425#ifdef CONFIG_CFS_BANDWIDTH
426 int runtime_enabled;
427 u64 runtime_expires;
428 s64 runtime_remaining;
429
f1b17280
PT
430 u64 throttled_clock, throttled_clock_task;
431 u64 throttled_clock_task_time;
029632fb
PZ
432 int throttled, throttle_count;
433 struct list_head throttled_list;
434#endif /* CONFIG_CFS_BANDWIDTH */
435#endif /* CONFIG_FAIR_GROUP_SCHED */
436};
437
438static inline int rt_bandwidth_enabled(void)
439{
440 return sysctl_sched_rt_runtime >= 0;
441}
442
b6366f04
SR
443/* RT IPI pull logic requires IRQ_WORK */
444#ifdef CONFIG_IRQ_WORK
445# define HAVE_RT_PUSH_IPI
446#endif
447
029632fb
PZ
448/* Real-Time classes' related field in a runqueue: */
449struct rt_rq {
450 struct rt_prio_array active;
c82513e5 451 unsigned int rt_nr_running;
029632fb
PZ
452#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
453 struct {
454 int curr; /* highest queued rt task prio */
455#ifdef CONFIG_SMP
456 int next; /* next highest */
457#endif
458 } highest_prio;
459#endif
460#ifdef CONFIG_SMP
461 unsigned long rt_nr_migratory;
462 unsigned long rt_nr_total;
463 int overloaded;
464 struct plist_head pushable_tasks;
b6366f04
SR
465#ifdef HAVE_RT_PUSH_IPI
466 int push_flags;
467 int push_cpu;
468 struct irq_work push_work;
469 raw_spinlock_t push_lock;
029632fb 470#endif
b6366f04 471#endif /* CONFIG_SMP */
f4ebcbc0
KT
472 int rt_queued;
473
029632fb
PZ
474 int rt_throttled;
475 u64 rt_time;
476 u64 rt_runtime;
477 /* Nests inside the rq lock: */
478 raw_spinlock_t rt_runtime_lock;
479
480#ifdef CONFIG_RT_GROUP_SCHED
481 unsigned long rt_nr_boosted;
482
483 struct rq *rq;
029632fb
PZ
484 struct task_group *tg;
485#endif
486};
487
aab03e05
DF
488/* Deadline class' related fields in a runqueue */
489struct dl_rq {
490 /* runqueue is an rbtree, ordered by deadline */
491 struct rb_root rb_root;
492 struct rb_node *rb_leftmost;
493
494 unsigned long dl_nr_running;
1baca4ce
JL
495
496#ifdef CONFIG_SMP
497 /*
498 * Deadline values of the currently executing and the
499 * earliest ready task on this rq. Caching these facilitates
500 * the decision wether or not a ready but not running task
501 * should migrate somewhere else.
502 */
503 struct {
504 u64 curr;
505 u64 next;
506 } earliest_dl;
507
508 unsigned long dl_nr_migratory;
1baca4ce
JL
509 int overloaded;
510
511 /*
512 * Tasks on this rq that can be pushed away. They are kept in
513 * an rb-tree, ordered by tasks' deadlines, with caching
514 * of the leftmost (earliest deadline) element.
515 */
516 struct rb_root pushable_dl_tasks_root;
517 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
518#else
519 struct dl_bw dl_bw;
1baca4ce 520#endif
aab03e05
DF
521};
522
029632fb
PZ
523#ifdef CONFIG_SMP
524
525/*
526 * We add the notion of a root-domain which will be used to define per-domain
527 * variables. Each exclusive cpuset essentially defines an island domain by
528 * fully partitioning the member cpus from any other cpuset. Whenever a new
529 * exclusive cpuset is created, we also create and attach a new root-domain
530 * object.
531 *
532 */
533struct root_domain {
534 atomic_t refcount;
535 atomic_t rto_count;
536 struct rcu_head rcu;
537 cpumask_var_t span;
538 cpumask_var_t online;
539
4486edd1
TC
540 /* Indicate more than one runnable task for any CPU */
541 bool overload;
542
1baca4ce
JL
543 /*
544 * The bit corresponding to a CPU gets set here if such CPU has more
545 * than one runnable -deadline task (as it is below for RT tasks).
546 */
547 cpumask_var_t dlo_mask;
548 atomic_t dlo_count;
332ac17e 549 struct dl_bw dl_bw;
6bfd6d72 550 struct cpudl cpudl;
1baca4ce 551
029632fb
PZ
552 /*
553 * The "RT overload" flag: it gets set if a CPU has more than
554 * one runnable RT task.
555 */
556 cpumask_var_t rto_mask;
557 struct cpupri cpupri;
558};
559
560extern struct root_domain def_root_domain;
561
562#endif /* CONFIG_SMP */
563
564/*
565 * This is the main, per-CPU runqueue data structure.
566 *
567 * Locking rule: those places that want to lock multiple runqueues
568 * (such as the load balancing or the thread migration code), lock
569 * acquire operations must be ordered by ascending &runqueue.
570 */
571struct rq {
572 /* runqueue lock: */
573 raw_spinlock_t lock;
574
575 /*
576 * nr_running and cpu_load should be in the same cacheline because
577 * remote CPUs use both these fields when doing load calculation.
578 */
c82513e5 579 unsigned int nr_running;
0ec8aa00
PZ
580#ifdef CONFIG_NUMA_BALANCING
581 unsigned int nr_numa_running;
582 unsigned int nr_preferred_running;
583#endif
029632fb
PZ
584 #define CPU_LOAD_IDX_MAX 5
585 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
586 unsigned long last_load_update_tick;
3451d024 587#ifdef CONFIG_NO_HZ_COMMON
029632fb 588 u64 nohz_stamp;
1c792db7 589 unsigned long nohz_flags;
265f22a9
FW
590#endif
591#ifdef CONFIG_NO_HZ_FULL
592 unsigned long last_sched_tick;
029632fb 593#endif
029632fb
PZ
594 /* capture load from *all* tasks on this cpu: */
595 struct load_weight load;
596 unsigned long nr_load_updates;
597 u64 nr_switches;
598
599 struct cfs_rq cfs;
600 struct rt_rq rt;
aab03e05 601 struct dl_rq dl;
029632fb
PZ
602
603#ifdef CONFIG_FAIR_GROUP_SCHED
604 /* list of leaf cfs_rq on this cpu: */
605 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
606#endif /* CONFIG_FAIR_GROUP_SCHED */
607
029632fb
PZ
608 /*
609 * This is part of a global counter where only the total sum
610 * over all CPUs matters. A task can increase this counter on
611 * one CPU and if it got migrated afterwards it may decrease
612 * it on another CPU. Always updated under the runqueue lock:
613 */
614 unsigned long nr_uninterruptible;
615
616 struct task_struct *curr, *idle, *stop;
617 unsigned long next_balance;
618 struct mm_struct *prev_mm;
619
9edfbfed 620 unsigned int clock_skip_update;
029632fb
PZ
621 u64 clock;
622 u64 clock_task;
623
624 atomic_t nr_iowait;
625
626#ifdef CONFIG_SMP
627 struct root_domain *rd;
628 struct sched_domain *sd;
629
ced549fa 630 unsigned long cpu_capacity;
ca6d75e6 631 unsigned long cpu_capacity_orig;
029632fb 632
e3fca9e7
PZ
633 struct callback_head *balance_callback;
634
029632fb
PZ
635 unsigned char idle_balance;
636 /* For active balancing */
029632fb
PZ
637 int active_balance;
638 int push_cpu;
639 struct cpu_stop_work active_balance_work;
640 /* cpu of this runqueue: */
641 int cpu;
642 int online;
643
367456c7
PZ
644 struct list_head cfs_tasks;
645
029632fb
PZ
646 u64 rt_avg;
647 u64 age_stamp;
648 u64 idle_stamp;
649 u64 avg_idle;
9bd721c5
JL
650
651 /* This is used to determine avg_idle's max value */
652 u64 max_idle_balance_cost;
029632fb
PZ
653#endif
654
655#ifdef CONFIG_IRQ_TIME_ACCOUNTING
656 u64 prev_irq_time;
657#endif
658#ifdef CONFIG_PARAVIRT
659 u64 prev_steal_time;
660#endif
661#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
662 u64 prev_steal_time_rq;
663#endif
664
665 /* calc_load related fields */
666 unsigned long calc_load_update;
667 long calc_load_active;
668
669#ifdef CONFIG_SCHED_HRTICK
670#ifdef CONFIG_SMP
671 int hrtick_csd_pending;
672 struct call_single_data hrtick_csd;
673#endif
674 struct hrtimer hrtick_timer;
675#endif
676
677#ifdef CONFIG_SCHEDSTATS
678 /* latency stats */
679 struct sched_info rq_sched_info;
680 unsigned long long rq_cpu_time;
681 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
682
683 /* sys_sched_yield() stats */
684 unsigned int yld_count;
685
686 /* schedule() stats */
029632fb
PZ
687 unsigned int sched_count;
688 unsigned int sched_goidle;
689
690 /* try_to_wake_up() stats */
691 unsigned int ttwu_count;
692 unsigned int ttwu_local;
693#endif
694
695#ifdef CONFIG_SMP
696 struct llist_head wake_list;
697#endif
442bf3aa
DL
698
699#ifdef CONFIG_CPU_IDLE
700 /* Must be inspected within a rcu lock section */
701 struct cpuidle_state *idle_state;
702#endif
029632fb
PZ
703};
704
705static inline int cpu_of(struct rq *rq)
706{
707#ifdef CONFIG_SMP
708 return rq->cpu;
709#else
710 return 0;
711#endif
712}
713
8b06c55b 714DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 715
518cd623 716#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 717#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
718#define task_rq(p) cpu_rq(task_cpu(p))
719#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 720#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 721
cebde6d6
PZ
722static inline u64 __rq_clock_broken(struct rq *rq)
723{
316c1608 724 return READ_ONCE(rq->clock);
cebde6d6
PZ
725}
726
78becc27
FW
727static inline u64 rq_clock(struct rq *rq)
728{
cebde6d6 729 lockdep_assert_held(&rq->lock);
78becc27
FW
730 return rq->clock;
731}
732
733static inline u64 rq_clock_task(struct rq *rq)
734{
cebde6d6 735 lockdep_assert_held(&rq->lock);
78becc27
FW
736 return rq->clock_task;
737}
738
9edfbfed
PZ
739#define RQCF_REQ_SKIP 0x01
740#define RQCF_ACT_SKIP 0x02
741
742static inline void rq_clock_skip_update(struct rq *rq, bool skip)
743{
744 lockdep_assert_held(&rq->lock);
745 if (skip)
746 rq->clock_skip_update |= RQCF_REQ_SKIP;
747 else
748 rq->clock_skip_update &= ~RQCF_REQ_SKIP;
749}
750
9942f79b 751#ifdef CONFIG_NUMA
e3fe70b1
RR
752enum numa_topology_type {
753 NUMA_DIRECT,
754 NUMA_GLUELESS_MESH,
755 NUMA_BACKPLANE,
756};
757extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
758extern int sched_max_numa_distance;
759extern bool find_numa_distance(int distance);
760#endif
761
f809ca9a 762#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
763/* The regions in numa_faults array from task_struct */
764enum numa_faults_stats {
765 NUMA_MEM = 0,
766 NUMA_CPU,
767 NUMA_MEMBUF,
768 NUMA_CPUBUF
769};
0ec8aa00 770extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 771extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 772extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
773#endif /* CONFIG_NUMA_BALANCING */
774
518cd623
PZ
775#ifdef CONFIG_SMP
776
e3fca9e7
PZ
777static inline void
778queue_balance_callback(struct rq *rq,
779 struct callback_head *head,
780 void (*func)(struct rq *rq))
781{
782 lockdep_assert_held(&rq->lock);
783
784 if (unlikely(head->next))
785 return;
786
787 head->func = (void (*)(struct callback_head *))func;
788 head->next = rq->balance_callback;
789 rq->balance_callback = head;
790}
791
e3baac47
PZ
792extern void sched_ttwu_pending(void);
793
029632fb
PZ
794#define rcu_dereference_check_sched_domain(p) \
795 rcu_dereference_check((p), \
796 lockdep_is_held(&sched_domains_mutex))
797
798/*
799 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
800 * See detach_destroy_domains: synchronize_sched for details.
801 *
802 * The domain tree of any CPU may only be accessed from within
803 * preempt-disabled sections.
804 */
805#define for_each_domain(cpu, __sd) \
518cd623
PZ
806 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
807 __sd; __sd = __sd->parent)
029632fb 808
77e81365
SS
809#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
810
518cd623
PZ
811/**
812 * highest_flag_domain - Return highest sched_domain containing flag.
813 * @cpu: The cpu whose highest level of sched domain is to
814 * be returned.
815 * @flag: The flag to check for the highest sched_domain
816 * for the given cpu.
817 *
818 * Returns the highest sched_domain of a cpu which contains the given flag.
819 */
820static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
821{
822 struct sched_domain *sd, *hsd = NULL;
823
824 for_each_domain(cpu, sd) {
825 if (!(sd->flags & flag))
826 break;
827 hsd = sd;
828 }
829
830 return hsd;
831}
832
fb13c7ee
MG
833static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
834{
835 struct sched_domain *sd;
836
837 for_each_domain(cpu, sd) {
838 if (sd->flags & flag)
839 break;
840 }
841
842 return sd;
843}
844
518cd623 845DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 846DECLARE_PER_CPU(int, sd_llc_size);
518cd623 847DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 848DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
849DECLARE_PER_CPU(struct sched_domain *, sd_busy);
850DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 851
63b2ca30 852struct sched_group_capacity {
5e6521ea
LZ
853 atomic_t ref;
854 /*
63b2ca30
NP
855 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
856 * for a single CPU.
5e6521ea 857 */
dc7ff76e 858 unsigned int capacity;
5e6521ea 859 unsigned long next_update;
63b2ca30 860 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
861 /*
862 * Number of busy cpus in this group.
863 */
864 atomic_t nr_busy_cpus;
865
866 unsigned long cpumask[0]; /* iteration mask */
867};
868
869struct sched_group {
870 struct sched_group *next; /* Must be a circular list */
871 atomic_t ref;
872
873 unsigned int group_weight;
63b2ca30 874 struct sched_group_capacity *sgc;
5e6521ea
LZ
875
876 /*
877 * The CPUs this group covers.
878 *
879 * NOTE: this field is variable length. (Allocated dynamically
880 * by attaching extra space to the end of the structure,
881 * depending on how many CPUs the kernel has booted up with)
882 */
883 unsigned long cpumask[0];
884};
885
886static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
887{
888 return to_cpumask(sg->cpumask);
889}
890
891/*
892 * cpumask masking which cpus in the group are allowed to iterate up the domain
893 * tree.
894 */
895static inline struct cpumask *sched_group_mask(struct sched_group *sg)
896{
63b2ca30 897 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
898}
899
900/**
901 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
902 * @group: The group whose first cpu is to be returned.
903 */
904static inline unsigned int group_first_cpu(struct sched_group *group)
905{
906 return cpumask_first(sched_group_cpus(group));
907}
908
c1174876
PZ
909extern int group_balance_cpu(struct sched_group *sg);
910
e3baac47
PZ
911#else
912
913static inline void sched_ttwu_pending(void) { }
914
518cd623 915#endif /* CONFIG_SMP */
029632fb 916
391e43da
PZ
917#include "stats.h"
918#include "auto_group.h"
029632fb
PZ
919
920#ifdef CONFIG_CGROUP_SCHED
921
922/*
923 * Return the group to which this tasks belongs.
924 *
8af01f56
TH
925 * We cannot use task_css() and friends because the cgroup subsystem
926 * changes that value before the cgroup_subsys::attach() method is called,
927 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
928 *
929 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
930 * core changes this before calling sched_move_task().
931 *
932 * Instead we use a 'copy' which is updated from sched_move_task() while
933 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
934 */
935static inline struct task_group *task_group(struct task_struct *p)
936{
8323f26c 937 return p->sched_task_group;
029632fb
PZ
938}
939
940/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
941static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
942{
943#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
944 struct task_group *tg = task_group(p);
945#endif
946
947#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 948 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
949 p->se.cfs_rq = tg->cfs_rq[cpu];
950 p->se.parent = tg->se[cpu];
951#endif
952
953#ifdef CONFIG_RT_GROUP_SCHED
954 p->rt.rt_rq = tg->rt_rq[cpu];
955 p->rt.parent = tg->rt_se[cpu];
956#endif
957}
958
959#else /* CONFIG_CGROUP_SCHED */
960
961static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
962static inline struct task_group *task_group(struct task_struct *p)
963{
964 return NULL;
965}
966
967#endif /* CONFIG_CGROUP_SCHED */
968
969static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
970{
971 set_task_rq(p, cpu);
972#ifdef CONFIG_SMP
973 /*
974 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
975 * successfuly executed on another CPU. We must ensure that updates of
976 * per-task data have been completed by this moment.
977 */
978 smp_wmb();
979 task_thread_info(p)->cpu = cpu;
ac66f547 980 p->wake_cpu = cpu;
029632fb
PZ
981#endif
982}
983
984/*
985 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
986 */
987#ifdef CONFIG_SCHED_DEBUG
c5905afb 988# include <linux/static_key.h>
029632fb
PZ
989# define const_debug __read_mostly
990#else
991# define const_debug const
992#endif
993
994extern const_debug unsigned int sysctl_sched_features;
995
996#define SCHED_FEAT(name, enabled) \
997 __SCHED_FEAT_##name ,
998
999enum {
391e43da 1000#include "features.h"
f8b6d1cc 1001 __SCHED_FEAT_NR,
029632fb
PZ
1002};
1003
1004#undef SCHED_FEAT
1005
f8b6d1cc 1006#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1007#define SCHED_FEAT(name, enabled) \
c5905afb 1008static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1009{ \
6e76ea8a 1010 return static_key_##enabled(key); \
f8b6d1cc
PZ
1011}
1012
1013#include "features.h"
1014
1015#undef SCHED_FEAT
1016
c5905afb 1017extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1018#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1019#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1020#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1021#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1022
2a595721 1023extern struct static_key_false sched_numa_balancing;
cb251765 1024extern struct static_key_false sched_schedstats;
cbee9f88 1025
029632fb
PZ
1026static inline u64 global_rt_period(void)
1027{
1028 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1029}
1030
1031static inline u64 global_rt_runtime(void)
1032{
1033 if (sysctl_sched_rt_runtime < 0)
1034 return RUNTIME_INF;
1035
1036 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1037}
1038
029632fb
PZ
1039static inline int task_current(struct rq *rq, struct task_struct *p)
1040{
1041 return rq->curr == p;
1042}
1043
1044static inline int task_running(struct rq *rq, struct task_struct *p)
1045{
1046#ifdef CONFIG_SMP
1047 return p->on_cpu;
1048#else
1049 return task_current(rq, p);
1050#endif
1051}
1052
da0c1e65
KT
1053static inline int task_on_rq_queued(struct task_struct *p)
1054{
1055 return p->on_rq == TASK_ON_RQ_QUEUED;
1056}
029632fb 1057
cca26e80
KT
1058static inline int task_on_rq_migrating(struct task_struct *p)
1059{
1060 return p->on_rq == TASK_ON_RQ_MIGRATING;
1061}
1062
029632fb
PZ
1063#ifndef prepare_arch_switch
1064# define prepare_arch_switch(next) do { } while (0)
1065#endif
01f23e16
CM
1066#ifndef finish_arch_post_lock_switch
1067# define finish_arch_post_lock_switch() do { } while (0)
1068#endif
029632fb 1069
029632fb
PZ
1070static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1071{
1072#ifdef CONFIG_SMP
1073 /*
1074 * We can optimise this out completely for !SMP, because the
1075 * SMP rebalancing from interrupt is the only thing that cares
1076 * here.
1077 */
1078 next->on_cpu = 1;
1079#endif
1080}
1081
1082static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1083{
1084#ifdef CONFIG_SMP
1085 /*
1086 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1087 * We must ensure this doesn't happen until the switch is completely
1088 * finished.
95913d97 1089 *
b75a2253
PZ
1090 * In particular, the load of prev->state in finish_task_switch() must
1091 * happen before this.
1092 *
b3e0b1b6 1093 * Pairs with the smp_cond_acquire() in try_to_wake_up().
029632fb 1094 */
95913d97 1095 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1096#endif
1097#ifdef CONFIG_DEBUG_SPINLOCK
1098 /* this is a valid case when another task releases the spinlock */
1099 rq->lock.owner = current;
1100#endif
1101 /*
1102 * If we are tracking spinlock dependencies then we have to
1103 * fix up the runqueue lock - which gets 'carried over' from
1104 * prev into current:
1105 */
1106 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1107
1108 raw_spin_unlock_irq(&rq->lock);
1109}
1110
b13095f0
LZ
1111/*
1112 * wake flags
1113 */
1114#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1115#define WF_FORK 0x02 /* child wakeup after fork */
1116#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1117
029632fb
PZ
1118/*
1119 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1120 * of tasks with abnormal "nice" values across CPUs the contribution that
1121 * each task makes to its run queue's load is weighted according to its
1122 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1123 * scaled version of the new time slice allocation that they receive on time
1124 * slice expiry etc.
1125 */
1126
1127#define WEIGHT_IDLEPRIO 3
1128#define WMULT_IDLEPRIO 1431655765
1129
ed82b8a1
AK
1130extern const int sched_prio_to_weight[40];
1131extern const u32 sched_prio_to_wmult[40];
029632fb 1132
ff77e468
PZ
1133/*
1134 * {de,en}queue flags:
1135 *
1136 * DEQUEUE_SLEEP - task is no longer runnable
1137 * ENQUEUE_WAKEUP - task just became runnable
1138 *
1139 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1140 * are in a known state which allows modification. Such pairs
1141 * should preserve as much state as possible.
1142 *
1143 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1144 * in the runqueue.
1145 *
1146 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1147 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1148 * ENQUEUE_WAKING - sched_class::task_waking was called
1149 *
1150 */
1151
1152#define DEQUEUE_SLEEP 0x01
1153#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1154#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1155
1de64443 1156#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1157#define ENQUEUE_RESTORE 0x02
1158#define ENQUEUE_MOVE 0x04
1159
1160#define ENQUEUE_HEAD 0x08
1161#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1162#ifdef CONFIG_SMP
ff77e468 1163#define ENQUEUE_WAKING 0x20
c82ba9fa 1164#else
1de64443 1165#define ENQUEUE_WAKING 0x00
c82ba9fa 1166#endif
c82ba9fa 1167
37e117c0
PZ
1168#define RETRY_TASK ((void *)-1UL)
1169
c82ba9fa
LZ
1170struct sched_class {
1171 const struct sched_class *next;
1172
1173 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1174 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1175 void (*yield_task) (struct rq *rq);
1176 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1177
1178 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1179
606dba2e
PZ
1180 /*
1181 * It is the responsibility of the pick_next_task() method that will
1182 * return the next task to call put_prev_task() on the @prev task or
1183 * something equivalent.
37e117c0
PZ
1184 *
1185 * May return RETRY_TASK when it finds a higher prio class has runnable
1186 * tasks.
606dba2e
PZ
1187 */
1188 struct task_struct * (*pick_next_task) (struct rq *rq,
1189 struct task_struct *prev);
c82ba9fa
LZ
1190 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1191
1192#ifdef CONFIG_SMP
ac66f547 1193 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1194 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1195
c82ba9fa
LZ
1196 void (*task_waking) (struct task_struct *task);
1197 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1198
1199 void (*set_cpus_allowed)(struct task_struct *p,
1200 const struct cpumask *newmask);
1201
1202 void (*rq_online)(struct rq *rq);
1203 void (*rq_offline)(struct rq *rq);
1204#endif
1205
1206 void (*set_curr_task) (struct rq *rq);
1207 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1208 void (*task_fork) (struct task_struct *p);
e6c390f2 1209 void (*task_dead) (struct task_struct *p);
c82ba9fa 1210
67dfa1b7
KT
1211 /*
1212 * The switched_from() call is allowed to drop rq->lock, therefore we
1213 * cannot assume the switched_from/switched_to pair is serliazed by
1214 * rq->lock. They are however serialized by p->pi_lock.
1215 */
c82ba9fa
LZ
1216 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1217 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1218 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1219 int oldprio);
1220
1221 unsigned int (*get_rr_interval) (struct rq *rq,
1222 struct task_struct *task);
1223
6e998916
SG
1224 void (*update_curr) (struct rq *rq);
1225
c82ba9fa 1226#ifdef CONFIG_FAIR_GROUP_SCHED
bc54da21 1227 void (*task_move_group) (struct task_struct *p);
c82ba9fa
LZ
1228#endif
1229};
029632fb 1230
3f1d2a31
PZ
1231static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1232{
1233 prev->sched_class->put_prev_task(rq, prev);
1234}
1235
029632fb
PZ
1236#define sched_class_highest (&stop_sched_class)
1237#define for_each_class(class) \
1238 for (class = sched_class_highest; class; class = class->next)
1239
1240extern const struct sched_class stop_sched_class;
aab03e05 1241extern const struct sched_class dl_sched_class;
029632fb
PZ
1242extern const struct sched_class rt_sched_class;
1243extern const struct sched_class fair_sched_class;
1244extern const struct sched_class idle_sched_class;
1245
1246
1247#ifdef CONFIG_SMP
1248
63b2ca30 1249extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1250
7caff66f 1251extern void trigger_load_balance(struct rq *rq);
029632fb 1252
c5b28038
PZ
1253extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1254
029632fb
PZ
1255#endif
1256
442bf3aa
DL
1257#ifdef CONFIG_CPU_IDLE
1258static inline void idle_set_state(struct rq *rq,
1259 struct cpuidle_state *idle_state)
1260{
1261 rq->idle_state = idle_state;
1262}
1263
1264static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1265{
1266 WARN_ON(!rcu_read_lock_held());
1267 return rq->idle_state;
1268}
1269#else
1270static inline void idle_set_state(struct rq *rq,
1271 struct cpuidle_state *idle_state)
1272{
1273}
1274
1275static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1276{
1277 return NULL;
1278}
1279#endif
1280
029632fb
PZ
1281extern void sysrq_sched_debug_show(void);
1282extern void sched_init_granularity(void);
1283extern void update_max_interval(void);
1baca4ce
JL
1284
1285extern void init_sched_dl_class(void);
029632fb
PZ
1286extern void init_sched_rt_class(void);
1287extern void init_sched_fair_class(void);
1288
8875125e 1289extern void resched_curr(struct rq *rq);
029632fb
PZ
1290extern void resched_cpu(int cpu);
1291
1292extern struct rt_bandwidth def_rt_bandwidth;
1293extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1294
332ac17e
DF
1295extern struct dl_bandwidth def_dl_bandwidth;
1296extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1297extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1298
332ac17e
DF
1299unsigned long to_ratio(u64 period, u64 runtime);
1300
540247fb 1301extern void init_entity_runnable_average(struct sched_entity *se);
a75cdaa9 1302
72465447 1303static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1304{
72465447
KT
1305 unsigned prev_nr = rq->nr_running;
1306
1307 rq->nr_running = prev_nr + count;
9f3660c2 1308
72465447 1309 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1310#ifdef CONFIG_SMP
1311 if (!rq->rd->overload)
1312 rq->rd->overload = true;
1313#endif
1314
1315#ifdef CONFIG_NO_HZ_FULL
9f3660c2 1316 if (tick_nohz_full_cpu(rq->cpu)) {
3882ec64
FW
1317 /*
1318 * Tick is needed if more than one task runs on a CPU.
1319 * Send the target an IPI to kick it out of nohz mode.
1320 *
1321 * We assume that IPI implies full memory barrier and the
1322 * new value of rq->nr_running is visible on reception
1323 * from the target.
1324 */
fd2ac4f4 1325 tick_nohz_full_kick_cpu(rq->cpu);
9f3660c2 1326 }
9f3660c2 1327#endif
4486edd1 1328 }
029632fb
PZ
1329}
1330
72465447 1331static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1332{
72465447 1333 rq->nr_running -= count;
029632fb
PZ
1334}
1335
265f22a9
FW
1336static inline void rq_last_tick_reset(struct rq *rq)
1337{
1338#ifdef CONFIG_NO_HZ_FULL
1339 rq->last_sched_tick = jiffies;
1340#endif
1341}
1342
029632fb
PZ
1343extern void update_rq_clock(struct rq *rq);
1344
1345extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1346extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1347
1348extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1349
1350extern const_debug unsigned int sysctl_sched_time_avg;
1351extern const_debug unsigned int sysctl_sched_nr_migrate;
1352extern const_debug unsigned int sysctl_sched_migration_cost;
1353
1354static inline u64 sched_avg_period(void)
1355{
1356 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1357}
1358
029632fb
PZ
1359#ifdef CONFIG_SCHED_HRTICK
1360
1361/*
1362 * Use hrtick when:
1363 * - enabled by features
1364 * - hrtimer is actually high res
1365 */
1366static inline int hrtick_enabled(struct rq *rq)
1367{
1368 if (!sched_feat(HRTICK))
1369 return 0;
1370 if (!cpu_active(cpu_of(rq)))
1371 return 0;
1372 return hrtimer_is_hres_active(&rq->hrtick_timer);
1373}
1374
1375void hrtick_start(struct rq *rq, u64 delay);
1376
b39e66ea
MG
1377#else
1378
1379static inline int hrtick_enabled(struct rq *rq)
1380{
1381 return 0;
1382}
1383
029632fb
PZ
1384#endif /* CONFIG_SCHED_HRTICK */
1385
1386#ifdef CONFIG_SMP
1387extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1388
1389#ifndef arch_scale_freq_capacity
1390static __always_inline
1391unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1392{
1393 return SCHED_CAPACITY_SCALE;
1394}
1395#endif
b5b4860d 1396
8cd5601c
MR
1397#ifndef arch_scale_cpu_capacity
1398static __always_inline
1399unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1400{
e3279a2e 1401 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1402 return sd->smt_gain / sd->span_weight;
1403
1404 return SCHED_CAPACITY_SCALE;
1405}
1406#endif
1407
029632fb
PZ
1408static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1409{
b5b4860d 1410 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1411 sched_avg_update(rq);
1412}
1413#else
1414static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1415static inline void sched_avg_update(struct rq *rq) { }
1416#endif
1417
3960c8c0
PZ
1418/*
1419 * __task_rq_lock - lock the rq @p resides on.
1420 */
1421static inline struct rq *__task_rq_lock(struct task_struct *p)
1422 __acquires(rq->lock)
1423{
1424 struct rq *rq;
1425
1426 lockdep_assert_held(&p->pi_lock);
1427
1428 for (;;) {
1429 rq = task_rq(p);
1430 raw_spin_lock(&rq->lock);
cbce1a68
PZ
1431 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1432 lockdep_pin_lock(&rq->lock);
3960c8c0 1433 return rq;
cbce1a68 1434 }
3960c8c0
PZ
1435 raw_spin_unlock(&rq->lock);
1436
1437 while (unlikely(task_on_rq_migrating(p)))
1438 cpu_relax();
1439 }
1440}
1441
1442/*
1443 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1444 */
1445static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1446 __acquires(p->pi_lock)
1447 __acquires(rq->lock)
1448{
1449 struct rq *rq;
1450
1451 for (;;) {
1452 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1453 rq = task_rq(p);
1454 raw_spin_lock(&rq->lock);
1455 /*
1456 * move_queued_task() task_rq_lock()
1457 *
1458 * ACQUIRE (rq->lock)
1459 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
1460 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
1461 * [S] ->cpu = new_cpu [L] task_rq()
1462 * [L] ->on_rq
1463 * RELEASE (rq->lock)
1464 *
1465 * If we observe the old cpu in task_rq_lock, the acquire of
1466 * the old rq->lock will fully serialize against the stores.
1467 *
1468 * If we observe the new cpu in task_rq_lock, the acquire will
1469 * pair with the WMB to ensure we must then also see migrating.
1470 */
cbce1a68
PZ
1471 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1472 lockdep_pin_lock(&rq->lock);
3960c8c0 1473 return rq;
cbce1a68 1474 }
3960c8c0
PZ
1475 raw_spin_unlock(&rq->lock);
1476 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1477
1478 while (unlikely(task_on_rq_migrating(p)))
1479 cpu_relax();
1480 }
1481}
1482
1483static inline void __task_rq_unlock(struct rq *rq)
1484 __releases(rq->lock)
1485{
cbce1a68 1486 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1487 raw_spin_unlock(&rq->lock);
1488}
1489
1490static inline void
1491task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1492 __releases(rq->lock)
1493 __releases(p->pi_lock)
1494{
cbce1a68 1495 lockdep_unpin_lock(&rq->lock);
3960c8c0
PZ
1496 raw_spin_unlock(&rq->lock);
1497 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1498}
1499
029632fb
PZ
1500#ifdef CONFIG_SMP
1501#ifdef CONFIG_PREEMPT
1502
1503static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1504
1505/*
1506 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1507 * way at the expense of forcing extra atomic operations in all
1508 * invocations. This assures that the double_lock is acquired using the
1509 * same underlying policy as the spinlock_t on this architecture, which
1510 * reduces latency compared to the unfair variant below. However, it
1511 * also adds more overhead and therefore may reduce throughput.
1512 */
1513static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1514 __releases(this_rq->lock)
1515 __acquires(busiest->lock)
1516 __acquires(this_rq->lock)
1517{
1518 raw_spin_unlock(&this_rq->lock);
1519 double_rq_lock(this_rq, busiest);
1520
1521 return 1;
1522}
1523
1524#else
1525/*
1526 * Unfair double_lock_balance: Optimizes throughput at the expense of
1527 * latency by eliminating extra atomic operations when the locks are
1528 * already in proper order on entry. This favors lower cpu-ids and will
1529 * grant the double lock to lower cpus over higher ids under contention,
1530 * regardless of entry order into the function.
1531 */
1532static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1533 __releases(this_rq->lock)
1534 __acquires(busiest->lock)
1535 __acquires(this_rq->lock)
1536{
1537 int ret = 0;
1538
1539 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1540 if (busiest < this_rq) {
1541 raw_spin_unlock(&this_rq->lock);
1542 raw_spin_lock(&busiest->lock);
1543 raw_spin_lock_nested(&this_rq->lock,
1544 SINGLE_DEPTH_NESTING);
1545 ret = 1;
1546 } else
1547 raw_spin_lock_nested(&busiest->lock,
1548 SINGLE_DEPTH_NESTING);
1549 }
1550 return ret;
1551}
1552
1553#endif /* CONFIG_PREEMPT */
1554
1555/*
1556 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1557 */
1558static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1559{
1560 if (unlikely(!irqs_disabled())) {
1561 /* printk() doesn't work good under rq->lock */
1562 raw_spin_unlock(&this_rq->lock);
1563 BUG_ON(1);
1564 }
1565
1566 return _double_lock_balance(this_rq, busiest);
1567}
1568
1569static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1570 __releases(busiest->lock)
1571{
1572 raw_spin_unlock(&busiest->lock);
1573 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1574}
1575
74602315
PZ
1576static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1577{
1578 if (l1 > l2)
1579 swap(l1, l2);
1580
1581 spin_lock(l1);
1582 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1583}
1584
60e69eed
MG
1585static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1586{
1587 if (l1 > l2)
1588 swap(l1, l2);
1589
1590 spin_lock_irq(l1);
1591 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1592}
1593
74602315
PZ
1594static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1595{
1596 if (l1 > l2)
1597 swap(l1, l2);
1598
1599 raw_spin_lock(l1);
1600 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1601}
1602
029632fb
PZ
1603/*
1604 * double_rq_lock - safely lock two runqueues
1605 *
1606 * Note this does not disable interrupts like task_rq_lock,
1607 * you need to do so manually before calling.
1608 */
1609static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1610 __acquires(rq1->lock)
1611 __acquires(rq2->lock)
1612{
1613 BUG_ON(!irqs_disabled());
1614 if (rq1 == rq2) {
1615 raw_spin_lock(&rq1->lock);
1616 __acquire(rq2->lock); /* Fake it out ;) */
1617 } else {
1618 if (rq1 < rq2) {
1619 raw_spin_lock(&rq1->lock);
1620 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1621 } else {
1622 raw_spin_lock(&rq2->lock);
1623 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1624 }
1625 }
1626}
1627
1628/*
1629 * double_rq_unlock - safely unlock two runqueues
1630 *
1631 * Note this does not restore interrupts like task_rq_unlock,
1632 * you need to do so manually after calling.
1633 */
1634static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1635 __releases(rq1->lock)
1636 __releases(rq2->lock)
1637{
1638 raw_spin_unlock(&rq1->lock);
1639 if (rq1 != rq2)
1640 raw_spin_unlock(&rq2->lock);
1641 else
1642 __release(rq2->lock);
1643}
1644
1645#else /* CONFIG_SMP */
1646
1647/*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656{
1657 BUG_ON(!irqs_disabled());
1658 BUG_ON(rq1 != rq2);
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661}
1662
1663/*
1664 * double_rq_unlock - safely unlock two runqueues
1665 *
1666 * Note this does not restore interrupts like task_rq_unlock,
1667 * you need to do so manually after calling.
1668 */
1669static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1670 __releases(rq1->lock)
1671 __releases(rq2->lock)
1672{
1673 BUG_ON(rq1 != rq2);
1674 raw_spin_unlock(&rq1->lock);
1675 __release(rq2->lock);
1676}
1677
1678#endif
1679
1680extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1681extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1682
1683#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1684extern void print_cfs_stats(struct seq_file *m, int cpu);
1685extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1686extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1687extern void
1688print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1689
1690#ifdef CONFIG_NUMA_BALANCING
1691extern void
1692show_numa_stats(struct task_struct *p, struct seq_file *m);
1693extern void
1694print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1695 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1696#endif /* CONFIG_NUMA_BALANCING */
1697#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1698
1699extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1700extern void init_rt_rq(struct rt_rq *rt_rq);
1701extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1702
1ee14e6c
BS
1703extern void cfs_bandwidth_usage_inc(void);
1704extern void cfs_bandwidth_usage_dec(void);
1c792db7 1705
3451d024 1706#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1707enum rq_nohz_flag_bits {
1708 NOHZ_TICK_STOPPED,
1709 NOHZ_BALANCE_KICK,
1710};
1711
1712#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1713#endif
73fbec60
FW
1714
1715#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1716
1717DECLARE_PER_CPU(u64, cpu_hardirq_time);
1718DECLARE_PER_CPU(u64, cpu_softirq_time);
1719
1720#ifndef CONFIG_64BIT
1721DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1722
1723static inline void irq_time_write_begin(void)
1724{
1725 __this_cpu_inc(irq_time_seq.sequence);
1726 smp_wmb();
1727}
1728
1729static inline void irq_time_write_end(void)
1730{
1731 smp_wmb();
1732 __this_cpu_inc(irq_time_seq.sequence);
1733}
1734
1735static inline u64 irq_time_read(int cpu)
1736{
1737 u64 irq_time;
1738 unsigned seq;
1739
1740 do {
1741 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1742 irq_time = per_cpu(cpu_softirq_time, cpu) +
1743 per_cpu(cpu_hardirq_time, cpu);
1744 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1745
1746 return irq_time;
1747}
1748#else /* CONFIG_64BIT */
1749static inline void irq_time_write_begin(void)
1750{
1751}
1752
1753static inline void irq_time_write_end(void)
1754{
1755}
1756
1757static inline u64 irq_time_read(int cpu)
1758{
1759 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1760}
1761#endif /* CONFIG_64BIT */
1762#endif /* CONFIG_IRQ_TIME_ACCOUNTING */