sched/deadline: Clean up various coding style details
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
029632fb
PZ
2
3#include <linux/sched.h>
dfc3401a 4#include <linux/sched/autogroup.h>
cf4aebc2 5#include <linux/sched/sysctl.h>
105ab3d8 6#include <linux/sched/topology.h>
8bd75c77 7#include <linux/sched/rt.h>
ef8bd77f 8#include <linux/sched/deadline.h>
e6017571 9#include <linux/sched/clock.h>
84f001e1 10#include <linux/sched/wake_q.h>
3f07c014 11#include <linux/sched/signal.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
6e84f315 13#include <linux/sched/mm.h>
55687da1 14#include <linux/sched/cpufreq.h>
03441a34 15#include <linux/sched/stat.h>
370c9135 16#include <linux/sched/nohz.h>
b17b0153 17#include <linux/sched/debug.h>
ef8bd77f 18#include <linux/sched/hotplug.h>
29930025 19#include <linux/sched/task.h>
68db0cf1 20#include <linux/sched/task_stack.h>
32ef5517 21#include <linux/sched/cputime.h>
1777e463 22#include <linux/sched/init.h>
ef8bd77f 23
19d23dbf 24#include <linux/u64_stats_sync.h>
a499a5a1 25#include <linux/kernel_stat.h>
3866e845 26#include <linux/binfmts.h>
029632fb
PZ
27#include <linux/mutex.h>
28#include <linux/spinlock.h>
29#include <linux/stop_machine.h>
b6366f04 30#include <linux/irq_work.h>
9f3660c2 31#include <linux/tick.h>
f809ca9a 32#include <linux/slab.h>
d2cc5ed6 33#include <linux/cgroup.h>
029632fb 34
7fce777c
IM
35#ifdef CONFIG_PARAVIRT
36#include <asm/paravirt.h>
37#endif
38
391e43da 39#include "cpupri.h"
6bfd6d72 40#include "cpudeadline.h"
029632fb 41
9148a3a1 42#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 43# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 44#else
6d3aed3d 45# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
46#endif
47
45ceebf7 48struct rq;
442bf3aa 49struct cpuidle_state;
45ceebf7 50
da0c1e65
KT
51/* task_struct::on_rq states: */
52#define TASK_ON_RQ_QUEUED 1
cca26e80 53#define TASK_ON_RQ_MIGRATING 2
da0c1e65 54
029632fb
PZ
55extern __read_mostly int scheduler_running;
56
45ceebf7
PG
57extern unsigned long calc_load_update;
58extern atomic_long_t calc_load_tasks;
59
3289bdb4 60extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 61extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
62
63#ifdef CONFIG_SMP
cee1afce 64extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 65#else
cee1afce 66static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 67#endif
45ceebf7 68
029632fb
PZ
69/*
70 * Helpers for converting nanosecond timing to jiffy resolution
71 */
72#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
73
cc1f4b1f
LZ
74/*
75 * Increase resolution of nice-level calculations for 64-bit architectures.
76 * The extra resolution improves shares distribution and load balancing of
77 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
78 * hierarchies, especially on larger systems. This is not a user-visible change
79 * and does not change the user-interface for setting shares/weights.
80 *
81 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
82 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
83 * pretty high and the returns do not justify the increased costs.
84 *
85 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
86 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 87 */
2159197d 88#ifdef CONFIG_64BIT
172895e6 89# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
90# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
91# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 92#else
172895e6 93# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
94# define scale_load(w) (w)
95# define scale_load_down(w) (w)
96#endif
97
6ecdd749 98/*
172895e6
YD
99 * Task weight (visible to users) and its load (invisible to users) have
100 * independent resolution, but they should be well calibrated. We use
101 * scale_load() and scale_load_down(w) to convert between them. The
102 * following must be true:
103 *
104 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
105 *
6ecdd749 106 */
172895e6 107#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 108
332ac17e
DF
109/*
110 * Single value that decides SCHED_DEADLINE internal math precision.
111 * 10 -> just above 1us
112 * 9 -> just above 0.5us
113 */
114#define DL_SCALE (10)
115
029632fb
PZ
116/*
117 * These are the 'tuning knobs' of the scheduler:
029632fb 118 */
029632fb
PZ
119
120/*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123#define RUNTIME_INF ((u64)~0ULL)
124
20f9cd2a
HA
125static inline int idle_policy(int policy)
126{
127 return policy == SCHED_IDLE;
128}
d50dde5a
DF
129static inline int fair_policy(int policy)
130{
131 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
132}
133
029632fb
PZ
134static inline int rt_policy(int policy)
135{
d50dde5a 136 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
137}
138
aab03e05
DF
139static inline int dl_policy(int policy)
140{
141 return policy == SCHED_DEADLINE;
142}
20f9cd2a
HA
143static inline bool valid_policy(int policy)
144{
145 return idle_policy(policy) || fair_policy(policy) ||
146 rt_policy(policy) || dl_policy(policy);
147}
aab03e05 148
029632fb
PZ
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
aab03e05
DF
154static inline int task_has_dl_policy(struct task_struct *p)
155{
156 return dl_policy(p->policy);
157}
158
07881166
JL
159#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
160
794a56eb
JL
161/*
162 * !! For sched_setattr_nocheck() (kernel) only !!
163 *
164 * This is actually gross. :(
165 *
166 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
167 * tasks, but still be able to sleep. We need this on platforms that cannot
168 * atomically change clock frequency. Remove once fast switching will be
169 * available on such platforms.
170 *
171 * SUGOV stands for SchedUtil GOVernor.
172 */
173#define SCHED_FLAG_SUGOV 0x10000000
174
175static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
176{
177#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
178 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
179#else
180 return false;
181#endif
182}
183
2d3d891d
DF
184/*
185 * Tells if entity @a should preempt entity @b.
186 */
332ac17e
DF
187static inline bool
188dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 189{
794a56eb
JL
190 return dl_entity_is_special(a) ||
191 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
192}
193
029632fb
PZ
194/*
195 * This is the priority-queue data structure of the RT scheduling class:
196 */
197struct rt_prio_array {
198 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
199 struct list_head queue[MAX_RT_PRIO];
200};
201
202struct rt_bandwidth {
203 /* nests inside the rq lock: */
204 raw_spinlock_t rt_runtime_lock;
205 ktime_t rt_period;
206 u64 rt_runtime;
207 struct hrtimer rt_period_timer;
4cfafd30 208 unsigned int rt_period_active;
029632fb 209};
a5e7be3b
JL
210
211void __dl_clear_params(struct task_struct *p);
212
332ac17e
DF
213/*
214 * To keep the bandwidth of -deadline tasks and groups under control
215 * we need some place where:
216 * - store the maximum -deadline bandwidth of the system (the group);
217 * - cache the fraction of that bandwidth that is currently allocated.
218 *
219 * This is all done in the data structure below. It is similar to the
220 * one used for RT-throttling (rt_bandwidth), with the main difference
221 * that, since here we are only interested in admission control, we
222 * do not decrease any runtime while the group "executes", neither we
223 * need a timer to replenish it.
224 *
225 * With respect to SMP, the bandwidth is given on a per-CPU basis,
226 * meaning that:
227 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
228 * - dl_total_bw array contains, in the i-eth element, the currently
229 * allocated bandwidth on the i-eth CPU.
230 * Moreover, groups consume bandwidth on each CPU, while tasks only
231 * consume bandwidth on the CPU they're running on.
232 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
233 * that will be shown the next time the proc or cgroup controls will
234 * be red. It on its turn can be changed by writing on its own
235 * control.
236 */
237struct dl_bandwidth {
238 raw_spinlock_t dl_runtime_lock;
239 u64 dl_runtime;
240 u64 dl_period;
241};
242
243static inline int dl_bandwidth_enabled(void)
244{
1724813d 245 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
246}
247
332ac17e
DF
248struct dl_bw {
249 raw_spinlock_t lock;
250 u64 bw, total_bw;
251};
252
daec5798
LA
253static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
254
7f51412a 255static inline
8c0944ce 256void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
257{
258 dl_b->total_bw -= tsk_bw;
daec5798 259 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
260}
261
262static inline
daec5798 263void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
264{
265 dl_b->total_bw += tsk_bw;
daec5798 266 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
267}
268
269static inline
270bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
271{
272 return dl_b->bw != -1 &&
273 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
274}
275
209a0cbd 276void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 277extern void init_dl_bw(struct dl_bw *dl_b);
06a76fe0
NP
278extern int sched_dl_global_validate(void);
279extern void sched_dl_do_global(void);
280extern int sched_dl_overflow(struct task_struct *p, int policy,
281 const struct sched_attr *attr);
282extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
283extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
284extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0
NP
285extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
286extern int dl_task_can_attach(struct task_struct *p,
287 const struct cpumask *cs_cpus_allowed);
288extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
289 const struct cpumask *trial);
290extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
291
292#ifdef CONFIG_CGROUP_SCHED
293
294#include <linux/cgroup.h>
295
296struct cfs_rq;
297struct rt_rq;
298
35cf4e50 299extern struct list_head task_groups;
029632fb
PZ
300
301struct cfs_bandwidth {
302#ifdef CONFIG_CFS_BANDWIDTH
303 raw_spinlock_t lock;
304 ktime_t period;
305 u64 quota, runtime;
9c58c79a 306 s64 hierarchical_quota;
029632fb
PZ
307 u64 runtime_expires;
308
4cfafd30 309 int idle, period_active;
029632fb
PZ
310 struct hrtimer period_timer, slack_timer;
311 struct list_head throttled_cfs_rq;
312
313 /* statistics */
314 int nr_periods, nr_throttled;
315 u64 throttled_time;
316#endif
317};
318
319/* task group related information */
320struct task_group {
321 struct cgroup_subsys_state css;
322
323#ifdef CONFIG_FAIR_GROUP_SCHED
324 /* schedulable entities of this group on each cpu */
325 struct sched_entity **se;
326 /* runqueue "owned" by this group on each cpu */
327 struct cfs_rq **cfs_rq;
328 unsigned long shares;
329
fa6bddeb 330#ifdef CONFIG_SMP
b0367629
WL
331 /*
332 * load_avg can be heavily contended at clock tick time, so put
333 * it in its own cacheline separated from the fields above which
334 * will also be accessed at each tick.
335 */
336 atomic_long_t load_avg ____cacheline_aligned;
029632fb 337#endif
fa6bddeb 338#endif
029632fb
PZ
339
340#ifdef CONFIG_RT_GROUP_SCHED
341 struct sched_rt_entity **rt_se;
342 struct rt_rq **rt_rq;
343
344 struct rt_bandwidth rt_bandwidth;
345#endif
346
347 struct rcu_head rcu;
348 struct list_head list;
349
350 struct task_group *parent;
351 struct list_head siblings;
352 struct list_head children;
353
354#ifdef CONFIG_SCHED_AUTOGROUP
355 struct autogroup *autogroup;
356#endif
357
358 struct cfs_bandwidth cfs_bandwidth;
359};
360
361#ifdef CONFIG_FAIR_GROUP_SCHED
362#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
363
364/*
365 * A weight of 0 or 1 can cause arithmetics problems.
366 * A weight of a cfs_rq is the sum of weights of which entities
367 * are queued on this cfs_rq, so a weight of a entity should not be
368 * too large, so as the shares value of a task group.
369 * (The default weight is 1024 - so there's no practical
370 * limitation from this.)
371 */
372#define MIN_SHARES (1UL << 1)
373#define MAX_SHARES (1UL << 18)
374#endif
375
029632fb
PZ
376typedef int (*tg_visitor)(struct task_group *, void *);
377
378extern int walk_tg_tree_from(struct task_group *from,
379 tg_visitor down, tg_visitor up, void *data);
380
381/*
382 * Iterate the full tree, calling @down when first entering a node and @up when
383 * leaving it for the final time.
384 *
385 * Caller must hold rcu_lock or sufficient equivalent.
386 */
387static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
388{
389 return walk_tg_tree_from(&root_task_group, down, up, data);
390}
391
392extern int tg_nop(struct task_group *tg, void *data);
393
394extern void free_fair_sched_group(struct task_group *tg);
395extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 396extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 397extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
398extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
399 struct sched_entity *se, int cpu,
400 struct sched_entity *parent);
401extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
402
403extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 404extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
405extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
406
407extern void free_rt_sched_group(struct task_group *tg);
408extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
409extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
410 struct sched_rt_entity *rt_se, int cpu,
411 struct sched_rt_entity *parent);
8887cd99
NP
412extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
413extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
414extern long sched_group_rt_runtime(struct task_group *tg);
415extern long sched_group_rt_period(struct task_group *tg);
416extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 417
25cc7da7
LZ
418extern struct task_group *sched_create_group(struct task_group *parent);
419extern void sched_online_group(struct task_group *tg,
420 struct task_group *parent);
421extern void sched_destroy_group(struct task_group *tg);
422extern void sched_offline_group(struct task_group *tg);
423
424extern void sched_move_task(struct task_struct *tsk);
425
426#ifdef CONFIG_FAIR_GROUP_SCHED
427extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
428
429#ifdef CONFIG_SMP
430extern void set_task_rq_fair(struct sched_entity *se,
431 struct cfs_rq *prev, struct cfs_rq *next);
432#else /* !CONFIG_SMP */
433static inline void set_task_rq_fair(struct sched_entity *se,
434 struct cfs_rq *prev, struct cfs_rq *next) { }
435#endif /* CONFIG_SMP */
436#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 437
029632fb
PZ
438#else /* CONFIG_CGROUP_SCHED */
439
440struct cfs_bandwidth { };
441
442#endif /* CONFIG_CGROUP_SCHED */
443
444/* CFS-related fields in a runqueue */
445struct cfs_rq {
446 struct load_weight load;
1ea6c46a 447 unsigned long runnable_weight;
c82513e5 448 unsigned int nr_running, h_nr_running;
029632fb
PZ
449
450 u64 exec_clock;
451 u64 min_vruntime;
452#ifndef CONFIG_64BIT
453 u64 min_vruntime_copy;
454#endif
455
bfb06889 456 struct rb_root_cached tasks_timeline;
029632fb 457
029632fb
PZ
458 /*
459 * 'curr' points to currently running entity on this cfs_rq.
460 * It is set to NULL otherwise (i.e when none are currently running).
461 */
462 struct sched_entity *curr, *next, *last, *skip;
463
464#ifdef CONFIG_SCHED_DEBUG
465 unsigned int nr_spread_over;
466#endif
467
2dac754e
PT
468#ifdef CONFIG_SMP
469 /*
9d89c257 470 * CFS load tracking
2dac754e 471 */
9d89c257 472 struct sched_avg avg;
2a2f5d4e
PZ
473#ifndef CONFIG_64BIT
474 u64 load_last_update_time_copy;
9d89c257 475#endif
2a2f5d4e
PZ
476 struct {
477 raw_spinlock_t lock ____cacheline_aligned;
478 int nr;
479 unsigned long load_avg;
480 unsigned long util_avg;
0e2d2aaa 481 unsigned long runnable_sum;
2a2f5d4e 482 } removed;
82958366 483
9d89c257 484#ifdef CONFIG_FAIR_GROUP_SCHED
0e2d2aaa
PZ
485 unsigned long tg_load_avg_contrib;
486 long propagate;
487 long prop_runnable_sum;
488
82958366
PT
489 /*
490 * h_load = weight * f(tg)
491 *
492 * Where f(tg) is the recursive weight fraction assigned to
493 * this group.
494 */
495 unsigned long h_load;
68520796
VD
496 u64 last_h_load_update;
497 struct sched_entity *h_load_next;
498#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
499#endif /* CONFIG_SMP */
500
029632fb
PZ
501#ifdef CONFIG_FAIR_GROUP_SCHED
502 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
503
504 /*
505 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
506 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
507 * (like users, containers etc.)
508 *
509 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
510 * list is used during load balance.
511 */
512 int on_list;
513 struct list_head leaf_cfs_rq_list;
514 struct task_group *tg; /* group that "owns" this runqueue */
515
029632fb
PZ
516#ifdef CONFIG_CFS_BANDWIDTH
517 int runtime_enabled;
518 u64 runtime_expires;
519 s64 runtime_remaining;
520
f1b17280
PT
521 u64 throttled_clock, throttled_clock_task;
522 u64 throttled_clock_task_time;
55e16d30 523 int throttled, throttle_count;
029632fb
PZ
524 struct list_head throttled_list;
525#endif /* CONFIG_CFS_BANDWIDTH */
526#endif /* CONFIG_FAIR_GROUP_SCHED */
527};
528
529static inline int rt_bandwidth_enabled(void)
530{
531 return sysctl_sched_rt_runtime >= 0;
532}
533
b6366f04 534/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 535#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
536# define HAVE_RT_PUSH_IPI
537#endif
538
029632fb
PZ
539/* Real-Time classes' related field in a runqueue: */
540struct rt_rq {
541 struct rt_prio_array active;
c82513e5 542 unsigned int rt_nr_running;
01d36d0a 543 unsigned int rr_nr_running;
029632fb
PZ
544#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
545 struct {
546 int curr; /* highest queued rt task prio */
547#ifdef CONFIG_SMP
548 int next; /* next highest */
549#endif
550 } highest_prio;
551#endif
552#ifdef CONFIG_SMP
553 unsigned long rt_nr_migratory;
554 unsigned long rt_nr_total;
555 int overloaded;
556 struct plist_head pushable_tasks;
b6366f04 557#endif /* CONFIG_SMP */
f4ebcbc0
KT
558 int rt_queued;
559
029632fb
PZ
560 int rt_throttled;
561 u64 rt_time;
562 u64 rt_runtime;
563 /* Nests inside the rq lock: */
564 raw_spinlock_t rt_runtime_lock;
565
566#ifdef CONFIG_RT_GROUP_SCHED
567 unsigned long rt_nr_boosted;
568
569 struct rq *rq;
029632fb
PZ
570 struct task_group *tg;
571#endif
572};
573
aab03e05
DF
574/* Deadline class' related fields in a runqueue */
575struct dl_rq {
576 /* runqueue is an rbtree, ordered by deadline */
2161573e 577 struct rb_root_cached root;
aab03e05
DF
578
579 unsigned long dl_nr_running;
1baca4ce
JL
580
581#ifdef CONFIG_SMP
582 /*
583 * Deadline values of the currently executing and the
584 * earliest ready task on this rq. Caching these facilitates
585 * the decision wether or not a ready but not running task
586 * should migrate somewhere else.
587 */
588 struct {
589 u64 curr;
590 u64 next;
591 } earliest_dl;
592
593 unsigned long dl_nr_migratory;
1baca4ce
JL
594 int overloaded;
595
596 /*
597 * Tasks on this rq that can be pushed away. They are kept in
598 * an rb-tree, ordered by tasks' deadlines, with caching
599 * of the leftmost (earliest deadline) element.
600 */
2161573e 601 struct rb_root_cached pushable_dl_tasks_root;
332ac17e
DF
602#else
603 struct dl_bw dl_bw;
1baca4ce 604#endif
e36d8677
LA
605 /*
606 * "Active utilization" for this runqueue: increased when a
607 * task wakes up (becomes TASK_RUNNING) and decreased when a
608 * task blocks
609 */
610 u64 running_bw;
4da3abce 611
8fd27231
LA
612 /*
613 * Utilization of the tasks "assigned" to this runqueue (including
614 * the tasks that are in runqueue and the tasks that executed on this
615 * CPU and blocked). Increased when a task moves to this runqueue, and
616 * decreased when the task moves away (migrates, changes scheduling
617 * policy, or terminates).
618 * This is needed to compute the "inactive utilization" for the
619 * runqueue (inactive utilization = this_bw - running_bw).
620 */
621 u64 this_bw;
daec5798 622 u64 extra_bw;
8fd27231 623
4da3abce
LA
624 /*
625 * Inverse of the fraction of CPU utilization that can be reclaimed
626 * by the GRUB algorithm.
627 */
628 u64 bw_ratio;
aab03e05
DF
629};
630
029632fb
PZ
631#ifdef CONFIG_SMP
632
afe06efd
TC
633static inline bool sched_asym_prefer(int a, int b)
634{
635 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
636}
637
029632fb
PZ
638/*
639 * We add the notion of a root-domain which will be used to define per-domain
640 * variables. Each exclusive cpuset essentially defines an island domain by
641 * fully partitioning the member cpus from any other cpuset. Whenever a new
642 * exclusive cpuset is created, we also create and attach a new root-domain
643 * object.
644 *
645 */
646struct root_domain {
647 atomic_t refcount;
648 atomic_t rto_count;
649 struct rcu_head rcu;
650 cpumask_var_t span;
651 cpumask_var_t online;
652
4486edd1
TC
653 /* Indicate more than one runnable task for any CPU */
654 bool overload;
655
1baca4ce
JL
656 /*
657 * The bit corresponding to a CPU gets set here if such CPU has more
658 * than one runnable -deadline task (as it is below for RT tasks).
659 */
660 cpumask_var_t dlo_mask;
661 atomic_t dlo_count;
332ac17e 662 struct dl_bw dl_bw;
6bfd6d72 663 struct cpudl cpudl;
1baca4ce 664
4bdced5c
SRRH
665#ifdef HAVE_RT_PUSH_IPI
666 /*
667 * For IPI pull requests, loop across the rto_mask.
668 */
669 struct irq_work rto_push_work;
670 raw_spinlock_t rto_lock;
671 /* These are only updated and read within rto_lock */
672 int rto_loop;
673 int rto_cpu;
674 /* These atomics are updated outside of a lock */
675 atomic_t rto_loop_next;
676 atomic_t rto_loop_start;
677#endif
029632fb
PZ
678 /*
679 * The "RT overload" flag: it gets set if a CPU has more than
680 * one runnable RT task.
681 */
682 cpumask_var_t rto_mask;
683 struct cpupri cpupri;
cd92bfd3
DE
684
685 unsigned long max_cpu_capacity;
029632fb
PZ
686};
687
688extern struct root_domain def_root_domain;
f2cb1360 689extern struct mutex sched_domains_mutex;
f2cb1360
IM
690
691extern void init_defrootdomain(void);
8d5dc512 692extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 693extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
694extern void sched_get_rd(struct root_domain *rd);
695extern void sched_put_rd(struct root_domain *rd);
029632fb 696
4bdced5c
SRRH
697#ifdef HAVE_RT_PUSH_IPI
698extern void rto_push_irq_work_func(struct irq_work *work);
699#endif
029632fb
PZ
700#endif /* CONFIG_SMP */
701
702/*
703 * This is the main, per-CPU runqueue data structure.
704 *
705 * Locking rule: those places that want to lock multiple runqueues
706 * (such as the load balancing or the thread migration code), lock
707 * acquire operations must be ordered by ascending &runqueue.
708 */
709struct rq {
710 /* runqueue lock: */
711 raw_spinlock_t lock;
712
713 /*
714 * nr_running and cpu_load should be in the same cacheline because
715 * remote CPUs use both these fields when doing load calculation.
716 */
c82513e5 717 unsigned int nr_running;
0ec8aa00
PZ
718#ifdef CONFIG_NUMA_BALANCING
719 unsigned int nr_numa_running;
720 unsigned int nr_preferred_running;
721#endif
029632fb
PZ
722 #define CPU_LOAD_IDX_MAX 5
723 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 724#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
725#ifdef CONFIG_SMP
726 unsigned long last_load_update_tick;
727#endif /* CONFIG_SMP */
1c792db7 728 unsigned long nohz_flags;
9fd81dd5 729#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 730
029632fb
PZ
731 /* capture load from *all* tasks on this cpu: */
732 struct load_weight load;
733 unsigned long nr_load_updates;
734 u64 nr_switches;
735
736 struct cfs_rq cfs;
737 struct rt_rq rt;
aab03e05 738 struct dl_rq dl;
029632fb
PZ
739
740#ifdef CONFIG_FAIR_GROUP_SCHED
741 /* list of leaf cfs_rq on this cpu: */
742 struct list_head leaf_cfs_rq_list;
9c2791f9 743 struct list_head *tmp_alone_branch;
a35b6466
PZ
744#endif /* CONFIG_FAIR_GROUP_SCHED */
745
029632fb
PZ
746 /*
747 * This is part of a global counter where only the total sum
748 * over all CPUs matters. A task can increase this counter on
749 * one CPU and if it got migrated afterwards it may decrease
750 * it on another CPU. Always updated under the runqueue lock:
751 */
752 unsigned long nr_uninterruptible;
753
754 struct task_struct *curr, *idle, *stop;
755 unsigned long next_balance;
756 struct mm_struct *prev_mm;
757
cb42c9a3 758 unsigned int clock_update_flags;
029632fb
PZ
759 u64 clock;
760 u64 clock_task;
761
762 atomic_t nr_iowait;
763
764#ifdef CONFIG_SMP
765 struct root_domain *rd;
766 struct sched_domain *sd;
767
ced549fa 768 unsigned long cpu_capacity;
ca6d75e6 769 unsigned long cpu_capacity_orig;
029632fb 770
e3fca9e7
PZ
771 struct callback_head *balance_callback;
772
029632fb
PZ
773 unsigned char idle_balance;
774 /* For active balancing */
029632fb
PZ
775 int active_balance;
776 int push_cpu;
777 struct cpu_stop_work active_balance_work;
778 /* cpu of this runqueue: */
779 int cpu;
780 int online;
781
367456c7
PZ
782 struct list_head cfs_tasks;
783
029632fb
PZ
784 u64 rt_avg;
785 u64 age_stamp;
786 u64 idle_stamp;
787 u64 avg_idle;
9bd721c5
JL
788
789 /* This is used to determine avg_idle's max value */
790 u64 max_idle_balance_cost;
029632fb
PZ
791#endif
792
793#ifdef CONFIG_IRQ_TIME_ACCOUNTING
794 u64 prev_irq_time;
795#endif
796#ifdef CONFIG_PARAVIRT
797 u64 prev_steal_time;
798#endif
799#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
800 u64 prev_steal_time_rq;
801#endif
802
803 /* calc_load related fields */
804 unsigned long calc_load_update;
805 long calc_load_active;
806
807#ifdef CONFIG_SCHED_HRTICK
808#ifdef CONFIG_SMP
809 int hrtick_csd_pending;
966a9671 810 call_single_data_t hrtick_csd;
029632fb
PZ
811#endif
812 struct hrtimer hrtick_timer;
813#endif
814
815#ifdef CONFIG_SCHEDSTATS
816 /* latency stats */
817 struct sched_info rq_sched_info;
818 unsigned long long rq_cpu_time;
819 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
820
821 /* sys_sched_yield() stats */
822 unsigned int yld_count;
823
824 /* schedule() stats */
029632fb
PZ
825 unsigned int sched_count;
826 unsigned int sched_goidle;
827
828 /* try_to_wake_up() stats */
829 unsigned int ttwu_count;
830 unsigned int ttwu_local;
831#endif
832
833#ifdef CONFIG_SMP
834 struct llist_head wake_list;
835#endif
442bf3aa
DL
836
837#ifdef CONFIG_CPU_IDLE
838 /* Must be inspected within a rcu lock section */
839 struct cpuidle_state *idle_state;
840#endif
029632fb
PZ
841};
842
843static inline int cpu_of(struct rq *rq)
844{
845#ifdef CONFIG_SMP
846 return rq->cpu;
847#else
848 return 0;
849#endif
850}
851
1b568f0a
PZ
852
853#ifdef CONFIG_SCHED_SMT
854
855extern struct static_key_false sched_smt_present;
856
857extern void __update_idle_core(struct rq *rq);
858
859static inline void update_idle_core(struct rq *rq)
860{
861 if (static_branch_unlikely(&sched_smt_present))
862 __update_idle_core(rq);
863}
864
865#else
866static inline void update_idle_core(struct rq *rq) { }
867#endif
868
8b06c55b 869DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 870
518cd623 871#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 872#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
873#define task_rq(p) cpu_rq(task_cpu(p))
874#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 875#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 876
cebde6d6
PZ
877static inline u64 __rq_clock_broken(struct rq *rq)
878{
316c1608 879 return READ_ONCE(rq->clock);
cebde6d6
PZ
880}
881
cb42c9a3
MF
882/*
883 * rq::clock_update_flags bits
884 *
885 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
886 * call to __schedule(). This is an optimisation to avoid
887 * neighbouring rq clock updates.
888 *
889 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
890 * in effect and calls to update_rq_clock() are being ignored.
891 *
892 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
893 * made to update_rq_clock() since the last time rq::lock was pinned.
894 *
895 * If inside of __schedule(), clock_update_flags will have been
896 * shifted left (a left shift is a cheap operation for the fast path
897 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
898 *
899 * if (rq-clock_update_flags >= RQCF_UPDATED)
900 *
901 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
902 * one position though, because the next rq_unpin_lock() will shift it
903 * back.
904 */
905#define RQCF_REQ_SKIP 0x01
906#define RQCF_ACT_SKIP 0x02
907#define RQCF_UPDATED 0x04
908
909static inline void assert_clock_updated(struct rq *rq)
910{
911 /*
912 * The only reason for not seeing a clock update since the
913 * last rq_pin_lock() is if we're currently skipping updates.
914 */
915 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
916}
917
78becc27
FW
918static inline u64 rq_clock(struct rq *rq)
919{
cebde6d6 920 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
921 assert_clock_updated(rq);
922
78becc27
FW
923 return rq->clock;
924}
925
926static inline u64 rq_clock_task(struct rq *rq)
927{
cebde6d6 928 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
929 assert_clock_updated(rq);
930
78becc27
FW
931 return rq->clock_task;
932}
933
9edfbfed
PZ
934static inline void rq_clock_skip_update(struct rq *rq, bool skip)
935{
936 lockdep_assert_held(&rq->lock);
937 if (skip)
cb42c9a3 938 rq->clock_update_flags |= RQCF_REQ_SKIP;
9edfbfed 939 else
cb42c9a3 940 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
941}
942
d8ac8971
MF
943struct rq_flags {
944 unsigned long flags;
945 struct pin_cookie cookie;
cb42c9a3
MF
946#ifdef CONFIG_SCHED_DEBUG
947 /*
948 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
949 * current pin context is stashed here in case it needs to be
950 * restored in rq_repin_lock().
951 */
952 unsigned int clock_update_flags;
953#endif
d8ac8971
MF
954};
955
956static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
957{
958 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
959
960#ifdef CONFIG_SCHED_DEBUG
961 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
962 rf->clock_update_flags = 0;
963#endif
d8ac8971
MF
964}
965
966static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
967{
cb42c9a3
MF
968#ifdef CONFIG_SCHED_DEBUG
969 if (rq->clock_update_flags > RQCF_ACT_SKIP)
970 rf->clock_update_flags = RQCF_UPDATED;
971#endif
972
d8ac8971
MF
973 lockdep_unpin_lock(&rq->lock, rf->cookie);
974}
975
976static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
977{
978 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
979
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * Restore the value we stashed in @rf for this pin context.
983 */
984 rq->clock_update_flags |= rf->clock_update_flags;
985#endif
d8ac8971
MF
986}
987
9942f79b 988#ifdef CONFIG_NUMA
e3fe70b1
RR
989enum numa_topology_type {
990 NUMA_DIRECT,
991 NUMA_GLUELESS_MESH,
992 NUMA_BACKPLANE,
993};
994extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
995extern int sched_max_numa_distance;
996extern bool find_numa_distance(int distance);
997#endif
998
f2cb1360
IM
999#ifdef CONFIG_NUMA
1000extern void sched_init_numa(void);
1001extern void sched_domains_numa_masks_set(unsigned int cpu);
1002extern void sched_domains_numa_masks_clear(unsigned int cpu);
1003#else
1004static inline void sched_init_numa(void) { }
1005static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1006static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1007#endif
1008
f809ca9a 1009#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1010/* The regions in numa_faults array from task_struct */
1011enum numa_faults_stats {
1012 NUMA_MEM = 0,
1013 NUMA_CPU,
1014 NUMA_MEMBUF,
1015 NUMA_CPUBUF
1016};
0ec8aa00 1017extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1018extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 1019extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
1020#endif /* CONFIG_NUMA_BALANCING */
1021
518cd623
PZ
1022#ifdef CONFIG_SMP
1023
e3fca9e7
PZ
1024static inline void
1025queue_balance_callback(struct rq *rq,
1026 struct callback_head *head,
1027 void (*func)(struct rq *rq))
1028{
1029 lockdep_assert_held(&rq->lock);
1030
1031 if (unlikely(head->next))
1032 return;
1033
1034 head->func = (void (*)(struct callback_head *))func;
1035 head->next = rq->balance_callback;
1036 rq->balance_callback = head;
1037}
1038
e3baac47
PZ
1039extern void sched_ttwu_pending(void);
1040
029632fb
PZ
1041#define rcu_dereference_check_sched_domain(p) \
1042 rcu_dereference_check((p), \
1043 lockdep_is_held(&sched_domains_mutex))
1044
1045/*
1046 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1047 * See detach_destroy_domains: synchronize_sched for details.
1048 *
1049 * The domain tree of any CPU may only be accessed from within
1050 * preempt-disabled sections.
1051 */
1052#define for_each_domain(cpu, __sd) \
518cd623
PZ
1053 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1054 __sd; __sd = __sd->parent)
029632fb 1055
77e81365
SS
1056#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1057
518cd623
PZ
1058/**
1059 * highest_flag_domain - Return highest sched_domain containing flag.
1060 * @cpu: The cpu whose highest level of sched domain is to
1061 * be returned.
1062 * @flag: The flag to check for the highest sched_domain
1063 * for the given cpu.
1064 *
1065 * Returns the highest sched_domain of a cpu which contains the given flag.
1066 */
1067static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1068{
1069 struct sched_domain *sd, *hsd = NULL;
1070
1071 for_each_domain(cpu, sd) {
1072 if (!(sd->flags & flag))
1073 break;
1074 hsd = sd;
1075 }
1076
1077 return hsd;
1078}
1079
fb13c7ee
MG
1080static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1081{
1082 struct sched_domain *sd;
1083
1084 for_each_domain(cpu, sd) {
1085 if (sd->flags & flag)
1086 break;
1087 }
1088
1089 return sd;
1090}
1091
518cd623 1092DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1093DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1094DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1095DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1096DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1097DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 1098
63b2ca30 1099struct sched_group_capacity {
5e6521ea
LZ
1100 atomic_t ref;
1101 /*
172895e6 1102 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1103 * for a single CPU.
5e6521ea 1104 */
bf475ce0
MR
1105 unsigned long capacity;
1106 unsigned long min_capacity; /* Min per-CPU capacity in group */
5e6521ea 1107 unsigned long next_update;
63b2ca30 1108 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1109
005f874d
PZ
1110#ifdef CONFIG_SCHED_DEBUG
1111 int id;
1112#endif
1113
e5c14b1f 1114 unsigned long cpumask[0]; /* balance mask */
5e6521ea
LZ
1115};
1116
1117struct sched_group {
1118 struct sched_group *next; /* Must be a circular list */
1119 atomic_t ref;
1120
1121 unsigned int group_weight;
63b2ca30 1122 struct sched_group_capacity *sgc;
afe06efd 1123 int asym_prefer_cpu; /* cpu of highest priority in group */
5e6521ea
LZ
1124
1125 /*
1126 * The CPUs this group covers.
1127 *
1128 * NOTE: this field is variable length. (Allocated dynamically
1129 * by attaching extra space to the end of the structure,
1130 * depending on how many CPUs the kernel has booted up with)
1131 */
1132 unsigned long cpumask[0];
1133};
1134
ae4df9d6 1135static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1136{
1137 return to_cpumask(sg->cpumask);
1138}
1139
1140/*
e5c14b1f 1141 * See build_balance_mask().
5e6521ea 1142 */
e5c14b1f 1143static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1144{
63b2ca30 1145 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1146}
1147
1148/**
1149 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1150 * @group: The group whose first cpu is to be returned.
1151 */
1152static inline unsigned int group_first_cpu(struct sched_group *group)
1153{
ae4df9d6 1154 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1155}
1156
c1174876
PZ
1157extern int group_balance_cpu(struct sched_group *sg);
1158
3866e845
SRRH
1159#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1160void register_sched_domain_sysctl(void);
bbdacdfe 1161void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1162void unregister_sched_domain_sysctl(void);
1163#else
1164static inline void register_sched_domain_sysctl(void)
1165{
1166}
bbdacdfe
PZ
1167static inline void dirty_sched_domain_sysctl(int cpu)
1168{
1169}
3866e845
SRRH
1170static inline void unregister_sched_domain_sysctl(void)
1171{
1172}
1173#endif
1174
e3baac47
PZ
1175#else
1176
1177static inline void sched_ttwu_pending(void) { }
1178
518cd623 1179#endif /* CONFIG_SMP */
029632fb 1180
391e43da 1181#include "stats.h"
1051408f 1182#include "autogroup.h"
029632fb
PZ
1183
1184#ifdef CONFIG_CGROUP_SCHED
1185
1186/*
1187 * Return the group to which this tasks belongs.
1188 *
8af01f56
TH
1189 * We cannot use task_css() and friends because the cgroup subsystem
1190 * changes that value before the cgroup_subsys::attach() method is called,
1191 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1192 *
1193 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1194 * core changes this before calling sched_move_task().
1195 *
1196 * Instead we use a 'copy' which is updated from sched_move_task() while
1197 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1198 */
1199static inline struct task_group *task_group(struct task_struct *p)
1200{
8323f26c 1201 return p->sched_task_group;
029632fb
PZ
1202}
1203
1204/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1205static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1206{
1207#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1208 struct task_group *tg = task_group(p);
1209#endif
1210
1211#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1212 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1213 p->se.cfs_rq = tg->cfs_rq[cpu];
1214 p->se.parent = tg->se[cpu];
1215#endif
1216
1217#ifdef CONFIG_RT_GROUP_SCHED
1218 p->rt.rt_rq = tg->rt_rq[cpu];
1219 p->rt.parent = tg->rt_se[cpu];
1220#endif
1221}
1222
1223#else /* CONFIG_CGROUP_SCHED */
1224
1225static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1226static inline struct task_group *task_group(struct task_struct *p)
1227{
1228 return NULL;
1229}
1230
1231#endif /* CONFIG_CGROUP_SCHED */
1232
1233static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1234{
1235 set_task_rq(p, cpu);
1236#ifdef CONFIG_SMP
1237 /*
1238 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1239 * successfuly executed on another CPU. We must ensure that updates of
1240 * per-task data have been completed by this moment.
1241 */
1242 smp_wmb();
c65eacbe
AL
1243#ifdef CONFIG_THREAD_INFO_IN_TASK
1244 p->cpu = cpu;
1245#else
029632fb 1246 task_thread_info(p)->cpu = cpu;
c65eacbe 1247#endif
ac66f547 1248 p->wake_cpu = cpu;
029632fb
PZ
1249#endif
1250}
1251
1252/*
1253 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1254 */
1255#ifdef CONFIG_SCHED_DEBUG
c5905afb 1256# include <linux/static_key.h>
029632fb
PZ
1257# define const_debug __read_mostly
1258#else
1259# define const_debug const
1260#endif
1261
029632fb
PZ
1262#define SCHED_FEAT(name, enabled) \
1263 __SCHED_FEAT_##name ,
1264
1265enum {
391e43da 1266#include "features.h"
f8b6d1cc 1267 __SCHED_FEAT_NR,
029632fb
PZ
1268};
1269
1270#undef SCHED_FEAT
1271
f8b6d1cc 1272#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1273
1274/*
1275 * To support run-time toggling of sched features, all the translation units
1276 * (but core.c) reference the sysctl_sched_features defined in core.c.
1277 */
1278extern const_debug unsigned int sysctl_sched_features;
1279
f8b6d1cc 1280#define SCHED_FEAT(name, enabled) \
c5905afb 1281static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1282{ \
6e76ea8a 1283 return static_key_##enabled(key); \
f8b6d1cc
PZ
1284}
1285
1286#include "features.h"
f8b6d1cc
PZ
1287#undef SCHED_FEAT
1288
c5905afb 1289extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1290#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1291
f8b6d1cc 1292#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1293
1294/*
1295 * Each translation unit has its own copy of sysctl_sched_features to allow
1296 * constants propagation at compile time and compiler optimization based on
1297 * features default.
1298 */
1299#define SCHED_FEAT(name, enabled) \
1300 (1UL << __SCHED_FEAT_##name) * enabled |
1301static const_debug __maybe_unused unsigned int sysctl_sched_features =
1302#include "features.h"
1303 0;
1304#undef SCHED_FEAT
1305
029632fb 1306#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1307
f8b6d1cc 1308#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1309
2a595721 1310extern struct static_key_false sched_numa_balancing;
cb251765 1311extern struct static_key_false sched_schedstats;
cbee9f88 1312
029632fb
PZ
1313static inline u64 global_rt_period(void)
1314{
1315 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1316}
1317
1318static inline u64 global_rt_runtime(void)
1319{
1320 if (sysctl_sched_rt_runtime < 0)
1321 return RUNTIME_INF;
1322
1323 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1324}
1325
029632fb
PZ
1326static inline int task_current(struct rq *rq, struct task_struct *p)
1327{
1328 return rq->curr == p;
1329}
1330
1331static inline int task_running(struct rq *rq, struct task_struct *p)
1332{
1333#ifdef CONFIG_SMP
1334 return p->on_cpu;
1335#else
1336 return task_current(rq, p);
1337#endif
1338}
1339
da0c1e65
KT
1340static inline int task_on_rq_queued(struct task_struct *p)
1341{
1342 return p->on_rq == TASK_ON_RQ_QUEUED;
1343}
029632fb 1344
cca26e80
KT
1345static inline int task_on_rq_migrating(struct task_struct *p)
1346{
1347 return p->on_rq == TASK_ON_RQ_MIGRATING;
1348}
1349
029632fb
PZ
1350#ifndef prepare_arch_switch
1351# define prepare_arch_switch(next) do { } while (0)
1352#endif
01f23e16
CM
1353#ifndef finish_arch_post_lock_switch
1354# define finish_arch_post_lock_switch() do { } while (0)
1355#endif
029632fb 1356
b13095f0
LZ
1357/*
1358 * wake flags
1359 */
1360#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1361#define WF_FORK 0x02 /* child wakeup after fork */
1362#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1363
029632fb
PZ
1364/*
1365 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1366 * of tasks with abnormal "nice" values across CPUs the contribution that
1367 * each task makes to its run queue's load is weighted according to its
1368 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1369 * scaled version of the new time slice allocation that they receive on time
1370 * slice expiry etc.
1371 */
1372
1373#define WEIGHT_IDLEPRIO 3
1374#define WMULT_IDLEPRIO 1431655765
1375
ed82b8a1
AK
1376extern const int sched_prio_to_weight[40];
1377extern const u32 sched_prio_to_wmult[40];
029632fb 1378
ff77e468
PZ
1379/*
1380 * {de,en}queue flags:
1381 *
1382 * DEQUEUE_SLEEP - task is no longer runnable
1383 * ENQUEUE_WAKEUP - task just became runnable
1384 *
1385 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1386 * are in a known state which allows modification. Such pairs
1387 * should preserve as much state as possible.
1388 *
1389 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1390 * in the runqueue.
1391 *
1392 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1393 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1394 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1395 *
1396 */
1397
1398#define DEQUEUE_SLEEP 0x01
1399#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1400#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
0a67d1ee 1401#define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
ff77e468 1402
1de64443 1403#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1404#define ENQUEUE_RESTORE 0x02
1405#define ENQUEUE_MOVE 0x04
0a67d1ee 1406#define ENQUEUE_NOCLOCK 0x08
ff77e468 1407
0a67d1ee
PZ
1408#define ENQUEUE_HEAD 0x10
1409#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1410#ifdef CONFIG_SMP
0a67d1ee 1411#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1412#else
59efa0ba 1413#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1414#endif
c82ba9fa 1415
37e117c0
PZ
1416#define RETRY_TASK ((void *)-1UL)
1417
c82ba9fa
LZ
1418struct sched_class {
1419 const struct sched_class *next;
1420
1421 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1422 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1423 void (*yield_task) (struct rq *rq);
1424 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1425
1426 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1427
606dba2e
PZ
1428 /*
1429 * It is the responsibility of the pick_next_task() method that will
1430 * return the next task to call put_prev_task() on the @prev task or
1431 * something equivalent.
37e117c0
PZ
1432 *
1433 * May return RETRY_TASK when it finds a higher prio class has runnable
1434 * tasks.
606dba2e
PZ
1435 */
1436 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28 1437 struct task_struct *prev,
d8ac8971 1438 struct rq_flags *rf);
c82ba9fa
LZ
1439 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1440
1441#ifdef CONFIG_SMP
ac66f547 1442 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1443 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1444
c82ba9fa
LZ
1445 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1446
1447 void (*set_cpus_allowed)(struct task_struct *p,
1448 const struct cpumask *newmask);
1449
1450 void (*rq_online)(struct rq *rq);
1451 void (*rq_offline)(struct rq *rq);
1452#endif
1453
1454 void (*set_curr_task) (struct rq *rq);
1455 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1456 void (*task_fork) (struct task_struct *p);
e6c390f2 1457 void (*task_dead) (struct task_struct *p);
c82ba9fa 1458
67dfa1b7
KT
1459 /*
1460 * The switched_from() call is allowed to drop rq->lock, therefore we
1461 * cannot assume the switched_from/switched_to pair is serliazed by
1462 * rq->lock. They are however serialized by p->pi_lock.
1463 */
c82ba9fa
LZ
1464 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1465 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1466 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1467 int oldprio);
1468
1469 unsigned int (*get_rr_interval) (struct rq *rq,
1470 struct task_struct *task);
1471
6e998916
SG
1472 void (*update_curr) (struct rq *rq);
1473
ea86cb4b
VG
1474#define TASK_SET_GROUP 0
1475#define TASK_MOVE_GROUP 1
1476
c82ba9fa 1477#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1478 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1479#endif
1480};
029632fb 1481
3f1d2a31
PZ
1482static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1483{
1484 prev->sched_class->put_prev_task(rq, prev);
1485}
1486
b2bf6c31
PZ
1487static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1488{
1489 curr->sched_class->set_curr_task(rq);
1490}
1491
f5832c19 1492#ifdef CONFIG_SMP
029632fb 1493#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1494#else
1495#define sched_class_highest (&dl_sched_class)
1496#endif
029632fb
PZ
1497#define for_each_class(class) \
1498 for (class = sched_class_highest; class; class = class->next)
1499
1500extern const struct sched_class stop_sched_class;
aab03e05 1501extern const struct sched_class dl_sched_class;
029632fb
PZ
1502extern const struct sched_class rt_sched_class;
1503extern const struct sched_class fair_sched_class;
1504extern const struct sched_class idle_sched_class;
1505
1506
1507#ifdef CONFIG_SMP
1508
63b2ca30 1509extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1510
7caff66f 1511extern void trigger_load_balance(struct rq *rq);
029632fb 1512
c5b28038
PZ
1513extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1514
029632fb
PZ
1515#endif
1516
442bf3aa
DL
1517#ifdef CONFIG_CPU_IDLE
1518static inline void idle_set_state(struct rq *rq,
1519 struct cpuidle_state *idle_state)
1520{
1521 rq->idle_state = idle_state;
1522}
1523
1524static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1525{
9148a3a1 1526 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1527 return rq->idle_state;
1528}
1529#else
1530static inline void idle_set_state(struct rq *rq,
1531 struct cpuidle_state *idle_state)
1532{
1533}
1534
1535static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1536{
1537 return NULL;
1538}
1539#endif
1540
8663effb
SRV
1541extern void schedule_idle(void);
1542
029632fb
PZ
1543extern void sysrq_sched_debug_show(void);
1544extern void sched_init_granularity(void);
1545extern void update_max_interval(void);
1baca4ce
JL
1546
1547extern void init_sched_dl_class(void);
029632fb
PZ
1548extern void init_sched_rt_class(void);
1549extern void init_sched_fair_class(void);
1550
9059393e
VG
1551extern void reweight_task(struct task_struct *p, int prio);
1552
8875125e 1553extern void resched_curr(struct rq *rq);
029632fb
PZ
1554extern void resched_cpu(int cpu);
1555
1556extern struct rt_bandwidth def_rt_bandwidth;
1557extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1558
332ac17e
DF
1559extern struct dl_bandwidth def_dl_bandwidth;
1560extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1561extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1562extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1563extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1564
c52f14d3
LA
1565#define BW_SHIFT 20
1566#define BW_UNIT (1 << BW_SHIFT)
4da3abce 1567#define RATIO_SHIFT 8
332ac17e
DF
1568unsigned long to_ratio(u64 period, u64 runtime);
1569
540247fb 1570extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1571extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1572
76d92ac3
FW
1573#ifdef CONFIG_NO_HZ_FULL
1574extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1575extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1576
1577/*
1578 * Tick may be needed by tasks in the runqueue depending on their policy and
1579 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1580 * nohz mode if necessary.
1581 */
1582static inline void sched_update_tick_dependency(struct rq *rq)
1583{
1584 int cpu;
1585
1586 if (!tick_nohz_full_enabled())
1587 return;
1588
1589 cpu = cpu_of(rq);
1590
1591 if (!tick_nohz_full_cpu(cpu))
1592 return;
1593
1594 if (sched_can_stop_tick(rq))
1595 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1596 else
1597 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1598}
1599#else
d84b3131 1600static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1601static inline void sched_update_tick_dependency(struct rq *rq) { }
1602#endif
1603
72465447 1604static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1605{
72465447
KT
1606 unsigned prev_nr = rq->nr_running;
1607
1608 rq->nr_running = prev_nr + count;
9f3660c2 1609
72465447 1610 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1611#ifdef CONFIG_SMP
1612 if (!rq->rd->overload)
1613 rq->rd->overload = true;
1614#endif
4486edd1 1615 }
76d92ac3
FW
1616
1617 sched_update_tick_dependency(rq);
029632fb
PZ
1618}
1619
72465447 1620static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1621{
72465447 1622 rq->nr_running -= count;
76d92ac3
FW
1623 /* Check if we still need preemption */
1624 sched_update_tick_dependency(rq);
029632fb
PZ
1625}
1626
1627extern void update_rq_clock(struct rq *rq);
1628
1629extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1630extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1631
1632extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1633
1634extern const_debug unsigned int sysctl_sched_time_avg;
1635extern const_debug unsigned int sysctl_sched_nr_migrate;
1636extern const_debug unsigned int sysctl_sched_migration_cost;
1637
1638static inline u64 sched_avg_period(void)
1639{
1640 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1641}
1642
029632fb
PZ
1643#ifdef CONFIG_SCHED_HRTICK
1644
1645/*
1646 * Use hrtick when:
1647 * - enabled by features
1648 * - hrtimer is actually high res
1649 */
1650static inline int hrtick_enabled(struct rq *rq)
1651{
1652 if (!sched_feat(HRTICK))
1653 return 0;
1654 if (!cpu_active(cpu_of(rq)))
1655 return 0;
1656 return hrtimer_is_hres_active(&rq->hrtick_timer);
1657}
1658
1659void hrtick_start(struct rq *rq, u64 delay);
1660
b39e66ea
MG
1661#else
1662
1663static inline int hrtick_enabled(struct rq *rq)
1664{
1665 return 0;
1666}
1667
029632fb
PZ
1668#endif /* CONFIG_SCHED_HRTICK */
1669
dfbca41f
PZ
1670#ifndef arch_scale_freq_capacity
1671static __always_inline
7673c8a4 1672unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1673{
1674 return SCHED_CAPACITY_SCALE;
1675}
1676#endif
b5b4860d 1677
7e1a9208
JL
1678#ifdef CONFIG_SMP
1679extern void sched_avg_update(struct rq *rq);
1680
8cd5601c
MR
1681#ifndef arch_scale_cpu_capacity
1682static __always_inline
1683unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1684{
e3279a2e 1685 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1686 return sd->smt_gain / sd->span_weight;
1687
1688 return SCHED_CAPACITY_SCALE;
1689}
1690#endif
1691
029632fb
PZ
1692static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1693{
7673c8a4 1694 rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
029632fb
PZ
1695 sched_avg_update(rq);
1696}
1697#else
7e1a9208
JL
1698#ifndef arch_scale_cpu_capacity
1699static __always_inline
1700unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1701{
1702 return SCHED_CAPACITY_SCALE;
1703}
1704#endif
029632fb
PZ
1705static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1706static inline void sched_avg_update(struct rq *rq) { }
1707#endif
1708
eb580751 1709struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1710 __acquires(rq->lock);
8a8c69c3 1711
eb580751 1712struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1713 __acquires(p->pi_lock)
3e71a462 1714 __acquires(rq->lock);
3960c8c0 1715
eb580751 1716static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1717 __releases(rq->lock)
1718{
d8ac8971 1719 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1720 raw_spin_unlock(&rq->lock);
1721}
1722
1723static inline void
eb580751 1724task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1725 __releases(rq->lock)
1726 __releases(p->pi_lock)
1727{
d8ac8971 1728 rq_unpin_lock(rq, rf);
3960c8c0 1729 raw_spin_unlock(&rq->lock);
eb580751 1730 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1731}
1732
8a8c69c3
PZ
1733static inline void
1734rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1735 __acquires(rq->lock)
1736{
1737 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1738 rq_pin_lock(rq, rf);
1739}
1740
1741static inline void
1742rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1743 __acquires(rq->lock)
1744{
1745 raw_spin_lock_irq(&rq->lock);
1746 rq_pin_lock(rq, rf);
1747}
1748
1749static inline void
1750rq_lock(struct rq *rq, struct rq_flags *rf)
1751 __acquires(rq->lock)
1752{
1753 raw_spin_lock(&rq->lock);
1754 rq_pin_lock(rq, rf);
1755}
1756
1757static inline void
1758rq_relock(struct rq *rq, struct rq_flags *rf)
1759 __acquires(rq->lock)
1760{
1761 raw_spin_lock(&rq->lock);
1762 rq_repin_lock(rq, rf);
1763}
1764
1765static inline void
1766rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1767 __releases(rq->lock)
1768{
1769 rq_unpin_lock(rq, rf);
1770 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1771}
1772
1773static inline void
1774rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1775 __releases(rq->lock)
1776{
1777 rq_unpin_lock(rq, rf);
1778 raw_spin_unlock_irq(&rq->lock);
1779}
1780
1781static inline void
1782rq_unlock(struct rq *rq, struct rq_flags *rf)
1783 __releases(rq->lock)
1784{
1785 rq_unpin_lock(rq, rf);
1786 raw_spin_unlock(&rq->lock);
1787}
1788
029632fb
PZ
1789#ifdef CONFIG_SMP
1790#ifdef CONFIG_PREEMPT
1791
1792static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1793
1794/*
1795 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1796 * way at the expense of forcing extra atomic operations in all
1797 * invocations. This assures that the double_lock is acquired using the
1798 * same underlying policy as the spinlock_t on this architecture, which
1799 * reduces latency compared to the unfair variant below. However, it
1800 * also adds more overhead and therefore may reduce throughput.
1801 */
1802static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(this_rq->lock)
1804 __acquires(busiest->lock)
1805 __acquires(this_rq->lock)
1806{
1807 raw_spin_unlock(&this_rq->lock);
1808 double_rq_lock(this_rq, busiest);
1809
1810 return 1;
1811}
1812
1813#else
1814/*
1815 * Unfair double_lock_balance: Optimizes throughput at the expense of
1816 * latency by eliminating extra atomic operations when the locks are
1817 * already in proper order on entry. This favors lower cpu-ids and will
1818 * grant the double lock to lower cpus over higher ids under contention,
1819 * regardless of entry order into the function.
1820 */
1821static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1822 __releases(this_rq->lock)
1823 __acquires(busiest->lock)
1824 __acquires(this_rq->lock)
1825{
1826 int ret = 0;
1827
1828 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1829 if (busiest < this_rq) {
1830 raw_spin_unlock(&this_rq->lock);
1831 raw_spin_lock(&busiest->lock);
1832 raw_spin_lock_nested(&this_rq->lock,
1833 SINGLE_DEPTH_NESTING);
1834 ret = 1;
1835 } else
1836 raw_spin_lock_nested(&busiest->lock,
1837 SINGLE_DEPTH_NESTING);
1838 }
1839 return ret;
1840}
1841
1842#endif /* CONFIG_PREEMPT */
1843
1844/*
1845 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1846 */
1847static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1848{
1849 if (unlikely(!irqs_disabled())) {
1850 /* printk() doesn't work good under rq->lock */
1851 raw_spin_unlock(&this_rq->lock);
1852 BUG_ON(1);
1853 }
1854
1855 return _double_lock_balance(this_rq, busiest);
1856}
1857
1858static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1859 __releases(busiest->lock)
1860{
1861 raw_spin_unlock(&busiest->lock);
1862 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1863}
1864
74602315
PZ
1865static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1866{
1867 if (l1 > l2)
1868 swap(l1, l2);
1869
1870 spin_lock(l1);
1871 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1872}
1873
60e69eed
MG
1874static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1875{
1876 if (l1 > l2)
1877 swap(l1, l2);
1878
1879 spin_lock_irq(l1);
1880 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1881}
1882
74602315
PZ
1883static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1884{
1885 if (l1 > l2)
1886 swap(l1, l2);
1887
1888 raw_spin_lock(l1);
1889 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1890}
1891
029632fb
PZ
1892/*
1893 * double_rq_lock - safely lock two runqueues
1894 *
1895 * Note this does not disable interrupts like task_rq_lock,
1896 * you need to do so manually before calling.
1897 */
1898static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1899 __acquires(rq1->lock)
1900 __acquires(rq2->lock)
1901{
1902 BUG_ON(!irqs_disabled());
1903 if (rq1 == rq2) {
1904 raw_spin_lock(&rq1->lock);
1905 __acquire(rq2->lock); /* Fake it out ;) */
1906 } else {
1907 if (rq1 < rq2) {
1908 raw_spin_lock(&rq1->lock);
1909 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1910 } else {
1911 raw_spin_lock(&rq2->lock);
1912 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1913 }
1914 }
1915}
1916
1917/*
1918 * double_rq_unlock - safely unlock two runqueues
1919 *
1920 * Note this does not restore interrupts like task_rq_unlock,
1921 * you need to do so manually after calling.
1922 */
1923static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1924 __releases(rq1->lock)
1925 __releases(rq2->lock)
1926{
1927 raw_spin_unlock(&rq1->lock);
1928 if (rq1 != rq2)
1929 raw_spin_unlock(&rq2->lock);
1930 else
1931 __release(rq2->lock);
1932}
1933
f2cb1360
IM
1934extern void set_rq_online (struct rq *rq);
1935extern void set_rq_offline(struct rq *rq);
1936extern bool sched_smp_initialized;
1937
029632fb
PZ
1938#else /* CONFIG_SMP */
1939
1940/*
1941 * double_rq_lock - safely lock two runqueues
1942 *
1943 * Note this does not disable interrupts like task_rq_lock,
1944 * you need to do so manually before calling.
1945 */
1946static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1947 __acquires(rq1->lock)
1948 __acquires(rq2->lock)
1949{
1950 BUG_ON(!irqs_disabled());
1951 BUG_ON(rq1 != rq2);
1952 raw_spin_lock(&rq1->lock);
1953 __acquire(rq2->lock); /* Fake it out ;) */
1954}
1955
1956/*
1957 * double_rq_unlock - safely unlock two runqueues
1958 *
1959 * Note this does not restore interrupts like task_rq_unlock,
1960 * you need to do so manually after calling.
1961 */
1962static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1963 __releases(rq1->lock)
1964 __releases(rq2->lock)
1965{
1966 BUG_ON(rq1 != rq2);
1967 raw_spin_unlock(&rq1->lock);
1968 __release(rq2->lock);
1969}
1970
1971#endif
1972
1973extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1974extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1975
1976#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
1977extern bool sched_debug_enabled;
1978
029632fb
PZ
1979extern void print_cfs_stats(struct seq_file *m, int cpu);
1980extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1981extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1982extern void
1983print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1984#ifdef CONFIG_NUMA_BALANCING
1985extern void
1986show_numa_stats(struct task_struct *p, struct seq_file *m);
1987extern void
1988print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1989 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1990#endif /* CONFIG_NUMA_BALANCING */
1991#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1992
1993extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1994extern void init_rt_rq(struct rt_rq *rt_rq);
1995extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1996
1ee14e6c
BS
1997extern void cfs_bandwidth_usage_inc(void);
1998extern void cfs_bandwidth_usage_dec(void);
1c792db7 1999
3451d024 2000#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
2001enum rq_nohz_flag_bits {
2002 NOHZ_TICK_STOPPED,
2003 NOHZ_BALANCE_KICK,
2004};
2005
2006#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
2007
2008extern void nohz_balance_exit_idle(unsigned int cpu);
2009#else
2010static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 2011#endif
73fbec60 2012
daec5798
LA
2013
2014#ifdef CONFIG_SMP
2015static inline
2016void __dl_update(struct dl_bw *dl_b, s64 bw)
2017{
2018 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2019 int i;
2020
2021 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2022 "sched RCU must be held");
2023 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2024 struct rq *rq = cpu_rq(i);
2025
2026 rq->dl.extra_bw += bw;
2027 }
2028}
2029#else
2030static inline
2031void __dl_update(struct dl_bw *dl_b, s64 bw)
2032{
2033 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2034
2035 dl->extra_bw += bw;
2036}
2037#endif
2038
2039
73fbec60 2040#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2041struct irqtime {
25e2d8c1 2042 u64 total;
a499a5a1 2043 u64 tick_delta;
19d23dbf
FW
2044 u64 irq_start_time;
2045 struct u64_stats_sync sync;
2046};
73fbec60 2047
19d23dbf 2048DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2049
25e2d8c1
FW
2050/*
2051 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2052 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2053 * and never move forward.
2054 */
73fbec60
FW
2055static inline u64 irq_time_read(int cpu)
2056{
19d23dbf
FW
2057 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2058 unsigned int seq;
2059 u64 total;
73fbec60
FW
2060
2061 do {
19d23dbf 2062 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2063 total = irqtime->total;
19d23dbf 2064 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2065
19d23dbf 2066 return total;
73fbec60 2067}
73fbec60 2068#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2069
2070#ifdef CONFIG_CPU_FREQ
2071DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2072
2073/**
2074 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2075 * @rq: Runqueue to carry out the update for.
58919e83 2076 * @flags: Update reason flags.
adaf9fcd 2077 *
58919e83
RW
2078 * This function is called by the scheduler on the CPU whose utilization is
2079 * being updated.
adaf9fcd
RW
2080 *
2081 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2082 *
2083 * The way cpufreq is currently arranged requires it to evaluate the CPU
2084 * performance state (frequency/voltage) on a regular basis to prevent it from
2085 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2086 * That is not guaranteed to happen if the updates are only triggered from CFS
2087 * and DL, though, because they may not be coming in if only RT tasks are
2088 * active all the time (or there are RT tasks only).
adaf9fcd 2089 *
e0367b12
JL
2090 * As a workaround for that issue, this function is called periodically by the
2091 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2092 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2093 * solutions targeted more specifically at RT tasks.
adaf9fcd 2094 */
12bde33d 2095static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2096{
58919e83
RW
2097 struct update_util_data *data;
2098
674e7541
VK
2099 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2100 cpu_of(rq)));
58919e83 2101 if (data)
12bde33d
RW
2102 data->func(data, rq_clock(rq), flags);
2103}
adaf9fcd 2104#else
12bde33d 2105static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2106#endif /* CONFIG_CPU_FREQ */
be53f58f 2107
9bdcb44e
RW
2108#ifdef arch_scale_freq_capacity
2109#ifndef arch_scale_freq_invariant
2110#define arch_scale_freq_invariant() (true)
2111#endif
2112#else /* arch_scale_freq_capacity */
2113#define arch_scale_freq_invariant() (false)
2114#endif
d4edd662 2115
794a56eb
JL
2116#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2117
d4edd662
JL
2118static inline unsigned long cpu_util_dl(struct rq *rq)
2119{
2120 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2121}
2122
2123static inline unsigned long cpu_util_cfs(struct rq *rq)
2124{
2125 return rq->cfs.avg.util_avg;
2126}
794a56eb
JL
2127
2128#endif