sched/topology: Disable EAS on inappropriate platforms
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
6aa140fa 48#include <linux/energy_model.h>
325ea10c
IM
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
eb414681 59#include <linux/psi.h>
325ea10c
IM
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
029632fb 62#include <linux/stop_machine.h>
325ea10c
IM
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
029632fb 70
7fce777c 71#ifdef CONFIG_PARAVIRT
325ea10c 72# include <asm/paravirt.h>
7fce777c
IM
73#endif
74
391e43da 75#include "cpupri.h"
6bfd6d72 76#include "cpudeadline.h"
029632fb 77
9148a3a1 78#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 80#else
6d3aed3d 81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
82#endif
83
45ceebf7 84struct rq;
442bf3aa 85struct cpuidle_state;
45ceebf7 86
da0c1e65
KT
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
cca26e80 89#define TASK_ON_RQ_MIGRATING 2
da0c1e65 90
029632fb
PZ
91extern __read_mostly int scheduler_running;
92
45ceebf7
PG
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
3289bdb4 96extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
98
99#ifdef CONFIG_SMP
cee1afce 100extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 101#else
cee1afce 102static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 103#endif
45ceebf7 104
029632fb
PZ
105/*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
cc1f4b1f
LZ
110/*
111 * Increase resolution of nice-level calculations for 64-bit architectures.
112 * The extra resolution improves shares distribution and load balancing of
113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114 * hierarchies, especially on larger systems. This is not a user-visible change
115 * and does not change the user-interface for setting shares/weights.
116 *
117 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119 * are pretty high and the returns do not justify the increased costs.
2159197d 120 *
97fb7a0a
IM
121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 123 */
2159197d 124#ifdef CONFIG_64BIT
172895e6 125# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
126# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
127# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 128#else
172895e6 129# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
130# define scale_load(w) (w)
131# define scale_load_down(w) (w)
132#endif
133
6ecdd749 134/*
172895e6
YD
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
139 *
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141 *
6ecdd749 142 */
172895e6 143#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 144
332ac17e
DF
145/*
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
149 */
97fb7a0a 150#define DL_SCALE 10
029632fb
PZ
151
152/*
97fb7a0a 153 * Single value that denotes runtime == period, ie unlimited time.
029632fb 154 */
97fb7a0a 155#define RUNTIME_INF ((u64)~0ULL)
029632fb 156
20f9cd2a
HA
157static inline int idle_policy(int policy)
158{
159 return policy == SCHED_IDLE;
160}
d50dde5a
DF
161static inline int fair_policy(int policy)
162{
163 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164}
165
029632fb
PZ
166static inline int rt_policy(int policy)
167{
d50dde5a 168 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
169}
170
aab03e05
DF
171static inline int dl_policy(int policy)
172{
173 return policy == SCHED_DEADLINE;
174}
20f9cd2a
HA
175static inline bool valid_policy(int policy)
176{
177 return idle_policy(policy) || fair_policy(policy) ||
178 rt_policy(policy) || dl_policy(policy);
179}
aab03e05 180
1da1843f
VK
181static inline int task_has_idle_policy(struct task_struct *p)
182{
183 return idle_policy(p->policy);
184}
185
029632fb
PZ
186static inline int task_has_rt_policy(struct task_struct *p)
187{
188 return rt_policy(p->policy);
189}
190
aab03e05
DF
191static inline int task_has_dl_policy(struct task_struct *p)
192{
193 return dl_policy(p->policy);
194}
195
07881166
JL
196#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197
794a56eb
JL
198/*
199 * !! For sched_setattr_nocheck() (kernel) only !!
200 *
201 * This is actually gross. :(
202 *
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
207 *
208 * SUGOV stands for SchedUtil GOVernor.
209 */
210#define SCHED_FLAG_SUGOV 0x10000000
211
212static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213{
214#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216#else
217 return false;
218#endif
219}
220
2d3d891d
DF
221/*
222 * Tells if entity @a should preempt entity @b.
223 */
332ac17e
DF
224static inline bool
225dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 226{
794a56eb
JL
227 return dl_entity_is_special(a) ||
228 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
229}
230
029632fb
PZ
231/*
232 * This is the priority-queue data structure of the RT scheduling class:
233 */
234struct rt_prio_array {
235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 struct list_head queue[MAX_RT_PRIO];
237};
238
239struct rt_bandwidth {
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock;
242 ktime_t rt_period;
243 u64 rt_runtime;
244 struct hrtimer rt_period_timer;
4cfafd30 245 unsigned int rt_period_active;
029632fb 246};
a5e7be3b
JL
247
248void __dl_clear_params(struct task_struct *p);
249
332ac17e
DF
250/*
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
255 *
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
261 *
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
263 * meaning that:
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
272 * control.
273 */
274struct dl_bandwidth {
97fb7a0a
IM
275 raw_spinlock_t dl_runtime_lock;
276 u64 dl_runtime;
277 u64 dl_period;
332ac17e
DF
278};
279
280static inline int dl_bandwidth_enabled(void)
281{
1724813d 282 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
283}
284
332ac17e 285struct dl_bw {
97fb7a0a
IM
286 raw_spinlock_t lock;
287 u64 bw;
288 u64 total_bw;
332ac17e
DF
289};
290
daec5798
LA
291static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292
7f51412a 293static inline
8c0944ce 294void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
295{
296 dl_b->total_bw -= tsk_bw;
daec5798 297 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
298}
299
300static inline
daec5798 301void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
302{
303 dl_b->total_bw += tsk_bw;
daec5798 304 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
305}
306
307static inline
308bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309{
310 return dl_b->bw != -1 &&
311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312}
313
97fb7a0a 314extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 315extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 316extern int sched_dl_global_validate(void);
06a76fe0 317extern void sched_dl_do_global(void);
97fb7a0a 318extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
319extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 322extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
323extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 325extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
326
327#ifdef CONFIG_CGROUP_SCHED
328
329#include <linux/cgroup.h>
eb414681 330#include <linux/psi.h>
029632fb
PZ
331
332struct cfs_rq;
333struct rt_rq;
334
35cf4e50 335extern struct list_head task_groups;
029632fb
PZ
336
337struct cfs_bandwidth {
338#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
339 raw_spinlock_t lock;
340 ktime_t period;
341 u64 quota;
342 u64 runtime;
343 s64 hierarchical_quota;
344 u64 runtime_expires;
512ac999 345 int expires_seq;
97fb7a0a 346
512ac999
XP
347 short idle;
348 short period_active;
97fb7a0a
IM
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 u64 throttled_time;
baa9be4f
PA
357
358 bool distribute_running;
029632fb
PZ
359#endif
360};
361
97fb7a0a 362/* Task group related information */
029632fb
PZ
363struct task_group {
364 struct cgroup_subsys_state css;
365
366#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
029632fb 372
fa6bddeb 373#ifdef CONFIG_SMP
b0367629
WL
374 /*
375 * load_avg can be heavily contended at clock tick time, so put
376 * it in its own cacheline separated from the fields above which
377 * will also be accessed at each tick.
378 */
97fb7a0a 379 atomic_long_t load_avg ____cacheline_aligned;
029632fb 380#endif
fa6bddeb 381#endif
029632fb
PZ
382
383#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
384 struct sched_rt_entity **rt_se;
385 struct rt_rq **rt_rq;
029632fb 386
97fb7a0a 387 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
388#endif
389
97fb7a0a
IM
390 struct rcu_head rcu;
391 struct list_head list;
029632fb 392
97fb7a0a
IM
393 struct task_group *parent;
394 struct list_head siblings;
395 struct list_head children;
029632fb
PZ
396
397#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 398 struct autogroup *autogroup;
029632fb
PZ
399#endif
400
97fb7a0a 401 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
402};
403
404#ifdef CONFIG_FAIR_GROUP_SCHED
405#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
406
407/*
408 * A weight of 0 or 1 can cause arithmetics problems.
409 * A weight of a cfs_rq is the sum of weights of which entities
410 * are queued on this cfs_rq, so a weight of a entity should not be
411 * too large, so as the shares value of a task group.
412 * (The default weight is 1024 - so there's no practical
413 * limitation from this.)
414 */
97fb7a0a
IM
415#define MIN_SHARES (1UL << 1)
416#define MAX_SHARES (1UL << 18)
029632fb
PZ
417#endif
418
029632fb
PZ
419typedef int (*tg_visitor)(struct task_group *, void *);
420
421extern int walk_tg_tree_from(struct task_group *from,
422 tg_visitor down, tg_visitor up, void *data);
423
424/*
425 * Iterate the full tree, calling @down when first entering a node and @up when
426 * leaving it for the final time.
427 *
428 * Caller must hold rcu_lock or sufficient equivalent.
429 */
430static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
431{
432 return walk_tg_tree_from(&root_task_group, down, up, data);
433}
434
435extern int tg_nop(struct task_group *tg, void *data);
436
437extern void free_fair_sched_group(struct task_group *tg);
438extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 439extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 440extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
441extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
442 struct sched_entity *se, int cpu,
443 struct sched_entity *parent);
444extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
445
446extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 447extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
448extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
449
450extern void free_rt_sched_group(struct task_group *tg);
451extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
452extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
453 struct sched_rt_entity *rt_se, int cpu,
454 struct sched_rt_entity *parent);
8887cd99
NP
455extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
456extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
457extern long sched_group_rt_runtime(struct task_group *tg);
458extern long sched_group_rt_period(struct task_group *tg);
459extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 460
25cc7da7
LZ
461extern struct task_group *sched_create_group(struct task_group *parent);
462extern void sched_online_group(struct task_group *tg,
463 struct task_group *parent);
464extern void sched_destroy_group(struct task_group *tg);
465extern void sched_offline_group(struct task_group *tg);
466
467extern void sched_move_task(struct task_struct *tsk);
468
469#ifdef CONFIG_FAIR_GROUP_SCHED
470extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
471
472#ifdef CONFIG_SMP
473extern void set_task_rq_fair(struct sched_entity *se,
474 struct cfs_rq *prev, struct cfs_rq *next);
475#else /* !CONFIG_SMP */
476static inline void set_task_rq_fair(struct sched_entity *se,
477 struct cfs_rq *prev, struct cfs_rq *next) { }
478#endif /* CONFIG_SMP */
479#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 480
029632fb
PZ
481#else /* CONFIG_CGROUP_SCHED */
482
483struct cfs_bandwidth { };
484
485#endif /* CONFIG_CGROUP_SCHED */
486
487/* CFS-related fields in a runqueue */
488struct cfs_rq {
97fb7a0a
IM
489 struct load_weight load;
490 unsigned long runnable_weight;
491 unsigned int nr_running;
492 unsigned int h_nr_running;
029632fb 493
97fb7a0a
IM
494 u64 exec_clock;
495 u64 min_vruntime;
029632fb 496#ifndef CONFIG_64BIT
97fb7a0a 497 u64 min_vruntime_copy;
029632fb
PZ
498#endif
499
97fb7a0a 500 struct rb_root_cached tasks_timeline;
029632fb 501
029632fb
PZ
502 /*
503 * 'curr' points to currently running entity on this cfs_rq.
504 * It is set to NULL otherwise (i.e when none are currently running).
505 */
97fb7a0a
IM
506 struct sched_entity *curr;
507 struct sched_entity *next;
508 struct sched_entity *last;
509 struct sched_entity *skip;
029632fb
PZ
510
511#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 512 unsigned int nr_spread_over;
029632fb
PZ
513#endif
514
2dac754e
PT
515#ifdef CONFIG_SMP
516 /*
9d89c257 517 * CFS load tracking
2dac754e 518 */
97fb7a0a 519 struct sched_avg avg;
2a2f5d4e 520#ifndef CONFIG_64BIT
97fb7a0a 521 u64 load_last_update_time_copy;
9d89c257 522#endif
2a2f5d4e
PZ
523 struct {
524 raw_spinlock_t lock ____cacheline_aligned;
525 int nr;
526 unsigned long load_avg;
527 unsigned long util_avg;
0e2d2aaa 528 unsigned long runnable_sum;
2a2f5d4e 529 } removed;
82958366 530
9d89c257 531#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
532 unsigned long tg_load_avg_contrib;
533 long propagate;
534 long prop_runnable_sum;
0e2d2aaa 535
82958366
PT
536 /*
537 * h_load = weight * f(tg)
538 *
539 * Where f(tg) is the recursive weight fraction assigned to
540 * this group.
541 */
97fb7a0a
IM
542 unsigned long h_load;
543 u64 last_h_load_update;
544 struct sched_entity *h_load_next;
68520796 545#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
546#endif /* CONFIG_SMP */
547
029632fb 548#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 549 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
550
551 /*
552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
554 * (like users, containers etc.)
555 *
97fb7a0a
IM
556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
557 * This list is used during load balance.
029632fb 558 */
97fb7a0a
IM
559 int on_list;
560 struct list_head leaf_cfs_rq_list;
561 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 562
029632fb 563#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 564 int runtime_enabled;
512ac999 565 int expires_seq;
97fb7a0a
IM
566 u64 runtime_expires;
567 s64 runtime_remaining;
568
569 u64 throttled_clock;
570 u64 throttled_clock_task;
571 u64 throttled_clock_task_time;
572 int throttled;
573 int throttle_count;
574 struct list_head throttled_list;
029632fb
PZ
575#endif /* CONFIG_CFS_BANDWIDTH */
576#endif /* CONFIG_FAIR_GROUP_SCHED */
577};
578
579static inline int rt_bandwidth_enabled(void)
580{
581 return sysctl_sched_rt_runtime >= 0;
582}
583
b6366f04 584/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 585#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
586# define HAVE_RT_PUSH_IPI
587#endif
588
029632fb
PZ
589/* Real-Time classes' related field in a runqueue: */
590struct rt_rq {
97fb7a0a
IM
591 struct rt_prio_array active;
592 unsigned int rt_nr_running;
593 unsigned int rr_nr_running;
029632fb
PZ
594#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
595 struct {
97fb7a0a 596 int curr; /* highest queued rt task prio */
029632fb 597#ifdef CONFIG_SMP
97fb7a0a 598 int next; /* next highest */
029632fb
PZ
599#endif
600 } highest_prio;
601#endif
602#ifdef CONFIG_SMP
97fb7a0a
IM
603 unsigned long rt_nr_migratory;
604 unsigned long rt_nr_total;
605 int overloaded;
606 struct plist_head pushable_tasks;
371bf427 607
b6366f04 608#endif /* CONFIG_SMP */
97fb7a0a 609 int rt_queued;
f4ebcbc0 610
97fb7a0a
IM
611 int rt_throttled;
612 u64 rt_time;
613 u64 rt_runtime;
029632fb 614 /* Nests inside the rq lock: */
97fb7a0a 615 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
616
617#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 618 unsigned long rt_nr_boosted;
029632fb 619
97fb7a0a
IM
620 struct rq *rq;
621 struct task_group *tg;
029632fb
PZ
622#endif
623};
624
296b2ffe
VG
625static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
626{
627 return rt_rq->rt_queued && rt_rq->rt_nr_running;
628}
629
aab03e05
DF
630/* Deadline class' related fields in a runqueue */
631struct dl_rq {
632 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 633 struct rb_root_cached root;
aab03e05 634
97fb7a0a 635 unsigned long dl_nr_running;
1baca4ce
JL
636
637#ifdef CONFIG_SMP
638 /*
639 * Deadline values of the currently executing and the
640 * earliest ready task on this rq. Caching these facilitates
dfcb245e 641 * the decision whether or not a ready but not running task
1baca4ce
JL
642 * should migrate somewhere else.
643 */
644 struct {
97fb7a0a
IM
645 u64 curr;
646 u64 next;
1baca4ce
JL
647 } earliest_dl;
648
97fb7a0a
IM
649 unsigned long dl_nr_migratory;
650 int overloaded;
1baca4ce
JL
651
652 /*
653 * Tasks on this rq that can be pushed away. They are kept in
654 * an rb-tree, ordered by tasks' deadlines, with caching
655 * of the leftmost (earliest deadline) element.
656 */
97fb7a0a 657 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 658#else
97fb7a0a 659 struct dl_bw dl_bw;
1baca4ce 660#endif
e36d8677
LA
661 /*
662 * "Active utilization" for this runqueue: increased when a
663 * task wakes up (becomes TASK_RUNNING) and decreased when a
664 * task blocks
665 */
97fb7a0a 666 u64 running_bw;
4da3abce 667
8fd27231
LA
668 /*
669 * Utilization of the tasks "assigned" to this runqueue (including
670 * the tasks that are in runqueue and the tasks that executed on this
671 * CPU and blocked). Increased when a task moves to this runqueue, and
672 * decreased when the task moves away (migrates, changes scheduling
673 * policy, or terminates).
674 * This is needed to compute the "inactive utilization" for the
675 * runqueue (inactive utilization = this_bw - running_bw).
676 */
97fb7a0a
IM
677 u64 this_bw;
678 u64 extra_bw;
8fd27231 679
4da3abce
LA
680 /*
681 * Inverse of the fraction of CPU utilization that can be reclaimed
682 * by the GRUB algorithm.
683 */
97fb7a0a 684 u64 bw_ratio;
aab03e05
DF
685};
686
c0796298
VG
687#ifdef CONFIG_FAIR_GROUP_SCHED
688/* An entity is a task if it doesn't "own" a runqueue */
689#define entity_is_task(se) (!se->my_q)
690#else
691#define entity_is_task(se) 1
692#endif
693
029632fb 694#ifdef CONFIG_SMP
c0796298
VG
695/*
696 * XXX we want to get rid of these helpers and use the full load resolution.
697 */
698static inline long se_weight(struct sched_entity *se)
699{
700 return scale_load_down(se->load.weight);
701}
702
703static inline long se_runnable(struct sched_entity *se)
704{
705 return scale_load_down(se->runnable_weight);
706}
029632fb 707
afe06efd
TC
708static inline bool sched_asym_prefer(int a, int b)
709{
710 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
711}
712
6aa140fa
QP
713struct perf_domain {
714 struct em_perf_domain *em_pd;
715 struct perf_domain *next;
716 struct rcu_head rcu;
717};
718
029632fb
PZ
719/*
720 * We add the notion of a root-domain which will be used to define per-domain
721 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 722 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
723 * exclusive cpuset is created, we also create and attach a new root-domain
724 * object.
725 *
726 */
727struct root_domain {
97fb7a0a
IM
728 atomic_t refcount;
729 atomic_t rto_count;
730 struct rcu_head rcu;
731 cpumask_var_t span;
732 cpumask_var_t online;
029632fb 733
757ffdd7
VS
734 /*
735 * Indicate pullable load on at least one CPU, e.g:
736 * - More than one runnable task
737 * - Running task is misfit
738 */
575638d1 739 int overload;
4486edd1 740
1baca4ce
JL
741 /*
742 * The bit corresponding to a CPU gets set here if such CPU has more
743 * than one runnable -deadline task (as it is below for RT tasks).
744 */
97fb7a0a
IM
745 cpumask_var_t dlo_mask;
746 atomic_t dlo_count;
747 struct dl_bw dl_bw;
748 struct cpudl cpudl;
1baca4ce 749
4bdced5c
SRRH
750#ifdef HAVE_RT_PUSH_IPI
751 /*
752 * For IPI pull requests, loop across the rto_mask.
753 */
97fb7a0a
IM
754 struct irq_work rto_push_work;
755 raw_spinlock_t rto_lock;
4bdced5c 756 /* These are only updated and read within rto_lock */
97fb7a0a
IM
757 int rto_loop;
758 int rto_cpu;
4bdced5c 759 /* These atomics are updated outside of a lock */
97fb7a0a
IM
760 atomic_t rto_loop_next;
761 atomic_t rto_loop_start;
4bdced5c 762#endif
029632fb
PZ
763 /*
764 * The "RT overload" flag: it gets set if a CPU has more than
765 * one runnable RT task.
766 */
97fb7a0a
IM
767 cpumask_var_t rto_mask;
768 struct cpupri cpupri;
cd92bfd3 769
97fb7a0a 770 unsigned long max_cpu_capacity;
6aa140fa
QP
771
772 /*
773 * NULL-terminated list of performance domains intersecting with the
774 * CPUs of the rd. Protected by RCU.
775 */
776 struct perf_domain *pd;
029632fb
PZ
777};
778
779extern struct root_domain def_root_domain;
f2cb1360 780extern struct mutex sched_domains_mutex;
f2cb1360
IM
781
782extern void init_defrootdomain(void);
8d5dc512 783extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 784extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
785extern void sched_get_rd(struct root_domain *rd);
786extern void sched_put_rd(struct root_domain *rd);
029632fb 787
4bdced5c
SRRH
788#ifdef HAVE_RT_PUSH_IPI
789extern void rto_push_irq_work_func(struct irq_work *work);
790#endif
029632fb
PZ
791#endif /* CONFIG_SMP */
792
793/*
794 * This is the main, per-CPU runqueue data structure.
795 *
796 * Locking rule: those places that want to lock multiple runqueues
797 * (such as the load balancing or the thread migration code), lock
798 * acquire operations must be ordered by ascending &runqueue.
799 */
800struct rq {
801 /* runqueue lock: */
97fb7a0a 802 raw_spinlock_t lock;
029632fb
PZ
803
804 /*
805 * nr_running and cpu_load should be in the same cacheline because
806 * remote CPUs use both these fields when doing load calculation.
807 */
97fb7a0a 808 unsigned int nr_running;
0ec8aa00 809#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
810 unsigned int nr_numa_running;
811 unsigned int nr_preferred_running;
a4739eca 812 unsigned int numa_migrate_on;
0ec8aa00 813#endif
029632fb 814 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 815 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 816#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 817#ifdef CONFIG_SMP
97fb7a0a 818 unsigned long last_load_update_tick;
e022e0d3 819 unsigned long last_blocked_load_update_tick;
f643ea22 820 unsigned int has_blocked_load;
9fd81dd5 821#endif /* CONFIG_SMP */
00357f5e 822 unsigned int nohz_tick_stopped;
a22e47a4 823 atomic_t nohz_flags;
9fd81dd5 824#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 825
97fb7a0a
IM
826 /* capture load from *all* tasks on this CPU: */
827 struct load_weight load;
828 unsigned long nr_load_updates;
829 u64 nr_switches;
029632fb 830
97fb7a0a
IM
831 struct cfs_rq cfs;
832 struct rt_rq rt;
833 struct dl_rq dl;
029632fb
PZ
834
835#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
836 /* list of leaf cfs_rq on this CPU: */
837 struct list_head leaf_cfs_rq_list;
838 struct list_head *tmp_alone_branch;
a35b6466
PZ
839#endif /* CONFIG_FAIR_GROUP_SCHED */
840
029632fb
PZ
841 /*
842 * This is part of a global counter where only the total sum
843 * over all CPUs matters. A task can increase this counter on
844 * one CPU and if it got migrated afterwards it may decrease
845 * it on another CPU. Always updated under the runqueue lock:
846 */
97fb7a0a 847 unsigned long nr_uninterruptible;
029632fb 848
97fb7a0a
IM
849 struct task_struct *curr;
850 struct task_struct *idle;
851 struct task_struct *stop;
852 unsigned long next_balance;
853 struct mm_struct *prev_mm;
029632fb 854
97fb7a0a
IM
855 unsigned int clock_update_flags;
856 u64 clock;
857 u64 clock_task;
029632fb 858
97fb7a0a 859 atomic_t nr_iowait;
029632fb
PZ
860
861#ifdef CONFIG_SMP
97fb7a0a
IM
862 struct root_domain *rd;
863 struct sched_domain *sd;
864
865 unsigned long cpu_capacity;
866 unsigned long cpu_capacity_orig;
029632fb 867
97fb7a0a 868 struct callback_head *balance_callback;
029632fb 869
97fb7a0a 870 unsigned char idle_balance;
e3fca9e7 871
3b1baa64
MR
872 unsigned long misfit_task_load;
873
029632fb 874 /* For active balancing */
97fb7a0a
IM
875 int active_balance;
876 int push_cpu;
877 struct cpu_stop_work active_balance_work;
878
879 /* CPU of this runqueue: */
880 int cpu;
881 int online;
029632fb 882
367456c7
PZ
883 struct list_head cfs_tasks;
884
371bf427 885 struct sched_avg avg_rt;
3727e0e1 886 struct sched_avg avg_dl;
11d4afd4 887#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
888 struct sched_avg avg_irq;
889#endif
97fb7a0a
IM
890 u64 idle_stamp;
891 u64 avg_idle;
9bd721c5
JL
892
893 /* This is used to determine avg_idle's max value */
97fb7a0a 894 u64 max_idle_balance_cost;
029632fb
PZ
895#endif
896
897#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 898 u64 prev_irq_time;
029632fb
PZ
899#endif
900#ifdef CONFIG_PARAVIRT
97fb7a0a 901 u64 prev_steal_time;
029632fb
PZ
902#endif
903#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 904 u64 prev_steal_time_rq;
029632fb
PZ
905#endif
906
907 /* calc_load related fields */
97fb7a0a
IM
908 unsigned long calc_load_update;
909 long calc_load_active;
029632fb
PZ
910
911#ifdef CONFIG_SCHED_HRTICK
912#ifdef CONFIG_SMP
97fb7a0a
IM
913 int hrtick_csd_pending;
914 call_single_data_t hrtick_csd;
029632fb 915#endif
97fb7a0a 916 struct hrtimer hrtick_timer;
029632fb
PZ
917#endif
918
919#ifdef CONFIG_SCHEDSTATS
920 /* latency stats */
97fb7a0a
IM
921 struct sched_info rq_sched_info;
922 unsigned long long rq_cpu_time;
029632fb
PZ
923 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
924
925 /* sys_sched_yield() stats */
97fb7a0a 926 unsigned int yld_count;
029632fb
PZ
927
928 /* schedule() stats */
97fb7a0a
IM
929 unsigned int sched_count;
930 unsigned int sched_goidle;
029632fb
PZ
931
932 /* try_to_wake_up() stats */
97fb7a0a
IM
933 unsigned int ttwu_count;
934 unsigned int ttwu_local;
029632fb
PZ
935#endif
936
937#ifdef CONFIG_SMP
97fb7a0a 938 struct llist_head wake_list;
029632fb 939#endif
442bf3aa
DL
940
941#ifdef CONFIG_CPU_IDLE
942 /* Must be inspected within a rcu lock section */
97fb7a0a 943 struct cpuidle_state *idle_state;
442bf3aa 944#endif
029632fb
PZ
945};
946
947static inline int cpu_of(struct rq *rq)
948{
949#ifdef CONFIG_SMP
950 return rq->cpu;
951#else
952 return 0;
953#endif
954}
955
1b568f0a
PZ
956
957#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
958extern void __update_idle_core(struct rq *rq);
959
960static inline void update_idle_core(struct rq *rq)
961{
962 if (static_branch_unlikely(&sched_smt_present))
963 __update_idle_core(rq);
964}
965
966#else
967static inline void update_idle_core(struct rq *rq) { }
968#endif
969
8b06c55b 970DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 971
518cd623 972#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 973#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
974#define task_rq(p) cpu_rq(task_cpu(p))
975#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 976#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 977
1f351d7f
JW
978extern void update_rq_clock(struct rq *rq);
979
cebde6d6
PZ
980static inline u64 __rq_clock_broken(struct rq *rq)
981{
316c1608 982 return READ_ONCE(rq->clock);
cebde6d6
PZ
983}
984
cb42c9a3
MF
985/*
986 * rq::clock_update_flags bits
987 *
988 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
989 * call to __schedule(). This is an optimisation to avoid
990 * neighbouring rq clock updates.
991 *
992 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
993 * in effect and calls to update_rq_clock() are being ignored.
994 *
995 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
996 * made to update_rq_clock() since the last time rq::lock was pinned.
997 *
998 * If inside of __schedule(), clock_update_flags will have been
999 * shifted left (a left shift is a cheap operation for the fast path
1000 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1001 *
1002 * if (rq-clock_update_flags >= RQCF_UPDATED)
1003 *
1004 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1005 * one position though, because the next rq_unpin_lock() will shift it
1006 * back.
1007 */
97fb7a0a
IM
1008#define RQCF_REQ_SKIP 0x01
1009#define RQCF_ACT_SKIP 0x02
1010#define RQCF_UPDATED 0x04
cb42c9a3
MF
1011
1012static inline void assert_clock_updated(struct rq *rq)
1013{
1014 /*
1015 * The only reason for not seeing a clock update since the
1016 * last rq_pin_lock() is if we're currently skipping updates.
1017 */
1018 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1019}
1020
78becc27
FW
1021static inline u64 rq_clock(struct rq *rq)
1022{
cebde6d6 1023 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1024 assert_clock_updated(rq);
1025
78becc27
FW
1026 return rq->clock;
1027}
1028
1029static inline u64 rq_clock_task(struct rq *rq)
1030{
cebde6d6 1031 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1032 assert_clock_updated(rq);
1033
78becc27
FW
1034 return rq->clock_task;
1035}
1036
adcc8da8 1037static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1038{
1039 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1040 rq->clock_update_flags |= RQCF_REQ_SKIP;
1041}
1042
1043/*
595058b6 1044 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1045 * request is cancelled.
1046 */
1047static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1048{
1049 lockdep_assert_held(&rq->lock);
1050 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1051}
1052
d8ac8971
MF
1053struct rq_flags {
1054 unsigned long flags;
1055 struct pin_cookie cookie;
cb42c9a3
MF
1056#ifdef CONFIG_SCHED_DEBUG
1057 /*
1058 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1059 * current pin context is stashed here in case it needs to be
1060 * restored in rq_repin_lock().
1061 */
1062 unsigned int clock_update_flags;
1063#endif
d8ac8971
MF
1064};
1065
1066static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1067{
1068 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1069
1070#ifdef CONFIG_SCHED_DEBUG
1071 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1072 rf->clock_update_flags = 0;
1073#endif
d8ac8971
MF
1074}
1075
1076static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1077{
cb42c9a3
MF
1078#ifdef CONFIG_SCHED_DEBUG
1079 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1080 rf->clock_update_flags = RQCF_UPDATED;
1081#endif
1082
d8ac8971
MF
1083 lockdep_unpin_lock(&rq->lock, rf->cookie);
1084}
1085
1086static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1087{
1088 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1089
1090#ifdef CONFIG_SCHED_DEBUG
1091 /*
1092 * Restore the value we stashed in @rf for this pin context.
1093 */
1094 rq->clock_update_flags |= rf->clock_update_flags;
1095#endif
d8ac8971
MF
1096}
1097
1f351d7f
JW
1098struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1099 __acquires(rq->lock);
1100
1101struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1102 __acquires(p->pi_lock)
1103 __acquires(rq->lock);
1104
1105static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1106 __releases(rq->lock)
1107{
1108 rq_unpin_lock(rq, rf);
1109 raw_spin_unlock(&rq->lock);
1110}
1111
1112static inline void
1113task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1114 __releases(rq->lock)
1115 __releases(p->pi_lock)
1116{
1117 rq_unpin_lock(rq, rf);
1118 raw_spin_unlock(&rq->lock);
1119 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1120}
1121
1122static inline void
1123rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1124 __acquires(rq->lock)
1125{
1126 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1127 rq_pin_lock(rq, rf);
1128}
1129
1130static inline void
1131rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1132 __acquires(rq->lock)
1133{
1134 raw_spin_lock_irq(&rq->lock);
1135 rq_pin_lock(rq, rf);
1136}
1137
1138static inline void
1139rq_lock(struct rq *rq, struct rq_flags *rf)
1140 __acquires(rq->lock)
1141{
1142 raw_spin_lock(&rq->lock);
1143 rq_pin_lock(rq, rf);
1144}
1145
1146static inline void
1147rq_relock(struct rq *rq, struct rq_flags *rf)
1148 __acquires(rq->lock)
1149{
1150 raw_spin_lock(&rq->lock);
1151 rq_repin_lock(rq, rf);
1152}
1153
1154static inline void
1155rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1156 __releases(rq->lock)
1157{
1158 rq_unpin_lock(rq, rf);
1159 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1160}
1161
1162static inline void
1163rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1164 __releases(rq->lock)
1165{
1166 rq_unpin_lock(rq, rf);
1167 raw_spin_unlock_irq(&rq->lock);
1168}
1169
1170static inline void
1171rq_unlock(struct rq *rq, struct rq_flags *rf)
1172 __releases(rq->lock)
1173{
1174 rq_unpin_lock(rq, rf);
1175 raw_spin_unlock(&rq->lock);
1176}
1177
246b3b33
JW
1178static inline struct rq *
1179this_rq_lock_irq(struct rq_flags *rf)
1180 __acquires(rq->lock)
1181{
1182 struct rq *rq;
1183
1184 local_irq_disable();
1185 rq = this_rq();
1186 rq_lock(rq, rf);
1187 return rq;
1188}
1189
9942f79b 1190#ifdef CONFIG_NUMA
e3fe70b1
RR
1191enum numa_topology_type {
1192 NUMA_DIRECT,
1193 NUMA_GLUELESS_MESH,
1194 NUMA_BACKPLANE,
1195};
1196extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1197extern int sched_max_numa_distance;
1198extern bool find_numa_distance(int distance);
1199#endif
1200
f2cb1360
IM
1201#ifdef CONFIG_NUMA
1202extern void sched_init_numa(void);
1203extern void sched_domains_numa_masks_set(unsigned int cpu);
1204extern void sched_domains_numa_masks_clear(unsigned int cpu);
1205#else
1206static inline void sched_init_numa(void) { }
1207static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1208static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1209#endif
1210
f809ca9a 1211#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1212/* The regions in numa_faults array from task_struct */
1213enum numa_faults_stats {
1214 NUMA_MEM = 0,
1215 NUMA_CPU,
1216 NUMA_MEMBUF,
1217 NUMA_CPUBUF
1218};
0ec8aa00 1219extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1220extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1221extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1222 int cpu, int scpu);
13784475
MG
1223extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1224#else
1225static inline void
1226init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1227{
1228}
f809ca9a
MG
1229#endif /* CONFIG_NUMA_BALANCING */
1230
518cd623
PZ
1231#ifdef CONFIG_SMP
1232
e3fca9e7
PZ
1233static inline void
1234queue_balance_callback(struct rq *rq,
1235 struct callback_head *head,
1236 void (*func)(struct rq *rq))
1237{
1238 lockdep_assert_held(&rq->lock);
1239
1240 if (unlikely(head->next))
1241 return;
1242
1243 head->func = (void (*)(struct callback_head *))func;
1244 head->next = rq->balance_callback;
1245 rq->balance_callback = head;
1246}
1247
e3baac47
PZ
1248extern void sched_ttwu_pending(void);
1249
029632fb
PZ
1250#define rcu_dereference_check_sched_domain(p) \
1251 rcu_dereference_check((p), \
1252 lockdep_is_held(&sched_domains_mutex))
1253
1254/*
1255 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1256 * See detach_destroy_domains: synchronize_sched for details.
1257 *
1258 * The domain tree of any CPU may only be accessed from within
1259 * preempt-disabled sections.
1260 */
1261#define for_each_domain(cpu, __sd) \
518cd623
PZ
1262 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1263 __sd; __sd = __sd->parent)
029632fb 1264
77e81365
SS
1265#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1266
518cd623
PZ
1267/**
1268 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1269 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1270 * be returned.
1271 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1272 * for the given CPU.
518cd623 1273 *
97fb7a0a 1274 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1275 */
1276static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1277{
1278 struct sched_domain *sd, *hsd = NULL;
1279
1280 for_each_domain(cpu, sd) {
1281 if (!(sd->flags & flag))
1282 break;
1283 hsd = sd;
1284 }
1285
1286 return hsd;
1287}
1288
fb13c7ee
MG
1289static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1290{
1291 struct sched_domain *sd;
1292
1293 for_each_domain(cpu, sd) {
1294 if (sd->flags & flag)
1295 break;
1296 }
1297
1298 return sd;
1299}
1300
518cd623 1301DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1302DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1303DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1304DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1305DECLARE_PER_CPU(struct sched_domain *, sd_numa);
011b27bb
QP
1306DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
1307DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
df054e84 1308extern struct static_key_false sched_asym_cpucapacity;
518cd623 1309
63b2ca30 1310struct sched_group_capacity {
97fb7a0a 1311 atomic_t ref;
5e6521ea 1312 /*
172895e6 1313 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1314 * for a single CPU.
5e6521ea 1315 */
97fb7a0a
IM
1316 unsigned long capacity;
1317 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1318 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1319 unsigned long next_update;
1320 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1321
005f874d 1322#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1323 int id;
005f874d
PZ
1324#endif
1325
97fb7a0a 1326 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1327};
1328
1329struct sched_group {
97fb7a0a
IM
1330 struct sched_group *next; /* Must be a circular list */
1331 atomic_t ref;
5e6521ea 1332
97fb7a0a 1333 unsigned int group_weight;
63b2ca30 1334 struct sched_group_capacity *sgc;
97fb7a0a 1335 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1336
1337 /*
1338 * The CPUs this group covers.
1339 *
1340 * NOTE: this field is variable length. (Allocated dynamically
1341 * by attaching extra space to the end of the structure,
1342 * depending on how many CPUs the kernel has booted up with)
1343 */
97fb7a0a 1344 unsigned long cpumask[0];
5e6521ea
LZ
1345};
1346
ae4df9d6 1347static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1348{
1349 return to_cpumask(sg->cpumask);
1350}
1351
1352/*
e5c14b1f 1353 * See build_balance_mask().
5e6521ea 1354 */
e5c14b1f 1355static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1356{
63b2ca30 1357 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1358}
1359
1360/**
97fb7a0a
IM
1361 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1362 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1363 */
1364static inline unsigned int group_first_cpu(struct sched_group *group)
1365{
ae4df9d6 1366 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1367}
1368
c1174876
PZ
1369extern int group_balance_cpu(struct sched_group *sg);
1370
3866e845
SRRH
1371#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1372void register_sched_domain_sysctl(void);
bbdacdfe 1373void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1374void unregister_sched_domain_sysctl(void);
1375#else
1376static inline void register_sched_domain_sysctl(void)
1377{
1378}
bbdacdfe
PZ
1379static inline void dirty_sched_domain_sysctl(int cpu)
1380{
1381}
3866e845
SRRH
1382static inline void unregister_sched_domain_sysctl(void)
1383{
1384}
1385#endif
1386
e3baac47
PZ
1387#else
1388
1389static inline void sched_ttwu_pending(void) { }
1390
518cd623 1391#endif /* CONFIG_SMP */
029632fb 1392
391e43da 1393#include "stats.h"
1051408f 1394#include "autogroup.h"
029632fb
PZ
1395
1396#ifdef CONFIG_CGROUP_SCHED
1397
1398/*
1399 * Return the group to which this tasks belongs.
1400 *
8af01f56
TH
1401 * We cannot use task_css() and friends because the cgroup subsystem
1402 * changes that value before the cgroup_subsys::attach() method is called,
1403 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1404 *
1405 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1406 * core changes this before calling sched_move_task().
1407 *
1408 * Instead we use a 'copy' which is updated from sched_move_task() while
1409 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1410 */
1411static inline struct task_group *task_group(struct task_struct *p)
1412{
8323f26c 1413 return p->sched_task_group;
029632fb
PZ
1414}
1415
1416/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1417static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1418{
1419#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1420 struct task_group *tg = task_group(p);
1421#endif
1422
1423#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1424 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1425 p->se.cfs_rq = tg->cfs_rq[cpu];
1426 p->se.parent = tg->se[cpu];
1427#endif
1428
1429#ifdef CONFIG_RT_GROUP_SCHED
1430 p->rt.rt_rq = tg->rt_rq[cpu];
1431 p->rt.parent = tg->rt_se[cpu];
1432#endif
1433}
1434
1435#else /* CONFIG_CGROUP_SCHED */
1436
1437static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1438static inline struct task_group *task_group(struct task_struct *p)
1439{
1440 return NULL;
1441}
1442
1443#endif /* CONFIG_CGROUP_SCHED */
1444
1445static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1446{
1447 set_task_rq(p, cpu);
1448#ifdef CONFIG_SMP
1449 /*
1450 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
dfcb245e 1451 * successfully executed on another CPU. We must ensure that updates of
029632fb
PZ
1452 * per-task data have been completed by this moment.
1453 */
1454 smp_wmb();
c65eacbe
AL
1455#ifdef CONFIG_THREAD_INFO_IN_TASK
1456 p->cpu = cpu;
1457#else
029632fb 1458 task_thread_info(p)->cpu = cpu;
c65eacbe 1459#endif
ac66f547 1460 p->wake_cpu = cpu;
029632fb
PZ
1461#endif
1462}
1463
1464/*
1465 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1466 */
1467#ifdef CONFIG_SCHED_DEBUG
c5905afb 1468# include <linux/static_key.h>
029632fb
PZ
1469# define const_debug __read_mostly
1470#else
1471# define const_debug const
1472#endif
1473
029632fb
PZ
1474#define SCHED_FEAT(name, enabled) \
1475 __SCHED_FEAT_##name ,
1476
1477enum {
391e43da 1478#include "features.h"
f8b6d1cc 1479 __SCHED_FEAT_NR,
029632fb
PZ
1480};
1481
1482#undef SCHED_FEAT
1483
f8b6d1cc 1484#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1485
1486/*
1487 * To support run-time toggling of sched features, all the translation units
1488 * (but core.c) reference the sysctl_sched_features defined in core.c.
1489 */
1490extern const_debug unsigned int sysctl_sched_features;
1491
f8b6d1cc 1492#define SCHED_FEAT(name, enabled) \
c5905afb 1493static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1494{ \
6e76ea8a 1495 return static_key_##enabled(key); \
f8b6d1cc
PZ
1496}
1497
1498#include "features.h"
f8b6d1cc
PZ
1499#undef SCHED_FEAT
1500
c5905afb 1501extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1502#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1503
f8b6d1cc 1504#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1505
1506/*
1507 * Each translation unit has its own copy of sysctl_sched_features to allow
1508 * constants propagation at compile time and compiler optimization based on
1509 * features default.
1510 */
1511#define SCHED_FEAT(name, enabled) \
1512 (1UL << __SCHED_FEAT_##name) * enabled |
1513static const_debug __maybe_unused unsigned int sysctl_sched_features =
1514#include "features.h"
1515 0;
1516#undef SCHED_FEAT
1517
7e6f4c5d 1518#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1519
f8b6d1cc 1520#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1521
2a595721 1522extern struct static_key_false sched_numa_balancing;
cb251765 1523extern struct static_key_false sched_schedstats;
cbee9f88 1524
029632fb
PZ
1525static inline u64 global_rt_period(void)
1526{
1527 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1528}
1529
1530static inline u64 global_rt_runtime(void)
1531{
1532 if (sysctl_sched_rt_runtime < 0)
1533 return RUNTIME_INF;
1534
1535 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1536}
1537
029632fb
PZ
1538static inline int task_current(struct rq *rq, struct task_struct *p)
1539{
1540 return rq->curr == p;
1541}
1542
1543static inline int task_running(struct rq *rq, struct task_struct *p)
1544{
1545#ifdef CONFIG_SMP
1546 return p->on_cpu;
1547#else
1548 return task_current(rq, p);
1549#endif
1550}
1551
da0c1e65
KT
1552static inline int task_on_rq_queued(struct task_struct *p)
1553{
1554 return p->on_rq == TASK_ON_RQ_QUEUED;
1555}
029632fb 1556
cca26e80
KT
1557static inline int task_on_rq_migrating(struct task_struct *p)
1558{
1559 return p->on_rq == TASK_ON_RQ_MIGRATING;
1560}
1561
b13095f0
LZ
1562/*
1563 * wake flags
1564 */
97fb7a0a
IM
1565#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1566#define WF_FORK 0x02 /* Child wakeup after fork */
1567#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1568
029632fb
PZ
1569/*
1570 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1571 * of tasks with abnormal "nice" values across CPUs the contribution that
1572 * each task makes to its run queue's load is weighted according to its
1573 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1574 * scaled version of the new time slice allocation that they receive on time
1575 * slice expiry etc.
1576 */
1577
97fb7a0a
IM
1578#define WEIGHT_IDLEPRIO 3
1579#define WMULT_IDLEPRIO 1431655765
029632fb 1580
97fb7a0a
IM
1581extern const int sched_prio_to_weight[40];
1582extern const u32 sched_prio_to_wmult[40];
029632fb 1583
ff77e468
PZ
1584/*
1585 * {de,en}queue flags:
1586 *
1587 * DEQUEUE_SLEEP - task is no longer runnable
1588 * ENQUEUE_WAKEUP - task just became runnable
1589 *
1590 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1591 * are in a known state which allows modification. Such pairs
1592 * should preserve as much state as possible.
1593 *
1594 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1595 * in the runqueue.
1596 *
1597 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1598 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1599 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1600 *
1601 */
1602
1603#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1604#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1605#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1606#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1607
1de64443 1608#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1609#define ENQUEUE_RESTORE 0x02
1610#define ENQUEUE_MOVE 0x04
0a67d1ee 1611#define ENQUEUE_NOCLOCK 0x08
ff77e468 1612
0a67d1ee
PZ
1613#define ENQUEUE_HEAD 0x10
1614#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1615#ifdef CONFIG_SMP
0a67d1ee 1616#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1617#else
59efa0ba 1618#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1619#endif
c82ba9fa 1620
37e117c0
PZ
1621#define RETRY_TASK ((void *)-1UL)
1622
c82ba9fa
LZ
1623struct sched_class {
1624 const struct sched_class *next;
1625
1626 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1627 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1628 void (*yield_task) (struct rq *rq);
1629 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1630
97fb7a0a 1631 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1632
606dba2e
PZ
1633 /*
1634 * It is the responsibility of the pick_next_task() method that will
1635 * return the next task to call put_prev_task() on the @prev task or
1636 * something equivalent.
37e117c0
PZ
1637 *
1638 * May return RETRY_TASK when it finds a higher prio class has runnable
1639 * tasks.
606dba2e 1640 */
97fb7a0a
IM
1641 struct task_struct * (*pick_next_task)(struct rq *rq,
1642 struct task_struct *prev,
1643 struct rq_flags *rf);
1644 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1645
1646#ifdef CONFIG_SMP
ac66f547 1647 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1648 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1649
97fb7a0a 1650 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1651
1652 void (*set_cpus_allowed)(struct task_struct *p,
1653 const struct cpumask *newmask);
1654
1655 void (*rq_online)(struct rq *rq);
1656 void (*rq_offline)(struct rq *rq);
1657#endif
1658
97fb7a0a
IM
1659 void (*set_curr_task)(struct rq *rq);
1660 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1661 void (*task_fork)(struct task_struct *p);
1662 void (*task_dead)(struct task_struct *p);
c82ba9fa 1663
67dfa1b7
KT
1664 /*
1665 * The switched_from() call is allowed to drop rq->lock, therefore we
1666 * cannot assume the switched_from/switched_to pair is serliazed by
1667 * rq->lock. They are however serialized by p->pi_lock.
1668 */
97fb7a0a
IM
1669 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1670 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1671 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1672 int oldprio);
c82ba9fa 1673
97fb7a0a
IM
1674 unsigned int (*get_rr_interval)(struct rq *rq,
1675 struct task_struct *task);
c82ba9fa 1676
97fb7a0a 1677 void (*update_curr)(struct rq *rq);
6e998916 1678
97fb7a0a
IM
1679#define TASK_SET_GROUP 0
1680#define TASK_MOVE_GROUP 1
ea86cb4b 1681
c82ba9fa 1682#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1683 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1684#endif
1685};
029632fb 1686
3f1d2a31
PZ
1687static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1688{
1689 prev->sched_class->put_prev_task(rq, prev);
1690}
1691
b2bf6c31
PZ
1692static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1693{
1694 curr->sched_class->set_curr_task(rq);
1695}
1696
f5832c19 1697#ifdef CONFIG_SMP
029632fb 1698#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1699#else
1700#define sched_class_highest (&dl_sched_class)
1701#endif
029632fb
PZ
1702#define for_each_class(class) \
1703 for (class = sched_class_highest; class; class = class->next)
1704
1705extern const struct sched_class stop_sched_class;
aab03e05 1706extern const struct sched_class dl_sched_class;
029632fb
PZ
1707extern const struct sched_class rt_sched_class;
1708extern const struct sched_class fair_sched_class;
1709extern const struct sched_class idle_sched_class;
1710
1711
1712#ifdef CONFIG_SMP
1713
63b2ca30 1714extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1715
7caff66f 1716extern void trigger_load_balance(struct rq *rq);
029632fb 1717
c5b28038
PZ
1718extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1719
029632fb
PZ
1720#endif
1721
442bf3aa
DL
1722#ifdef CONFIG_CPU_IDLE
1723static inline void idle_set_state(struct rq *rq,
1724 struct cpuidle_state *idle_state)
1725{
1726 rq->idle_state = idle_state;
1727}
1728
1729static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1730{
9148a3a1 1731 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1732
442bf3aa
DL
1733 return rq->idle_state;
1734}
1735#else
1736static inline void idle_set_state(struct rq *rq,
1737 struct cpuidle_state *idle_state)
1738{
1739}
1740
1741static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1742{
1743 return NULL;
1744}
1745#endif
1746
8663effb
SRV
1747extern void schedule_idle(void);
1748
029632fb
PZ
1749extern void sysrq_sched_debug_show(void);
1750extern void sched_init_granularity(void);
1751extern void update_max_interval(void);
1baca4ce
JL
1752
1753extern void init_sched_dl_class(void);
029632fb
PZ
1754extern void init_sched_rt_class(void);
1755extern void init_sched_fair_class(void);
1756
9059393e
VG
1757extern void reweight_task(struct task_struct *p, int prio);
1758
8875125e 1759extern void resched_curr(struct rq *rq);
029632fb
PZ
1760extern void resched_cpu(int cpu);
1761
1762extern struct rt_bandwidth def_rt_bandwidth;
1763extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1764
332ac17e
DF
1765extern struct dl_bandwidth def_dl_bandwidth;
1766extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1767extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1768extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1769extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1770
97fb7a0a
IM
1771#define BW_SHIFT 20
1772#define BW_UNIT (1 << BW_SHIFT)
1773#define RATIO_SHIFT 8
332ac17e
DF
1774unsigned long to_ratio(u64 period, u64 runtime);
1775
540247fb 1776extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1777extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1778
76d92ac3
FW
1779#ifdef CONFIG_NO_HZ_FULL
1780extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1781extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1782
1783/*
1784 * Tick may be needed by tasks in the runqueue depending on their policy and
1785 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1786 * nohz mode if necessary.
1787 */
1788static inline void sched_update_tick_dependency(struct rq *rq)
1789{
1790 int cpu;
1791
1792 if (!tick_nohz_full_enabled())
1793 return;
1794
1795 cpu = cpu_of(rq);
1796
1797 if (!tick_nohz_full_cpu(cpu))
1798 return;
1799
1800 if (sched_can_stop_tick(rq))
1801 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1802 else
1803 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1804}
1805#else
d84b3131 1806static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1807static inline void sched_update_tick_dependency(struct rq *rq) { }
1808#endif
1809
72465447 1810static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1811{
72465447
KT
1812 unsigned prev_nr = rq->nr_running;
1813
1814 rq->nr_running = prev_nr + count;
9f3660c2 1815
4486edd1 1816#ifdef CONFIG_SMP
3e184501 1817 if (prev_nr < 2 && rq->nr_running >= 2) {
e90c8fe1
VS
1818 if (!READ_ONCE(rq->rd->overload))
1819 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1820 }
3e184501 1821#endif
76d92ac3
FW
1822
1823 sched_update_tick_dependency(rq);
029632fb
PZ
1824}
1825
72465447 1826static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1827{
72465447 1828 rq->nr_running -= count;
76d92ac3
FW
1829 /* Check if we still need preemption */
1830 sched_update_tick_dependency(rq);
029632fb
PZ
1831}
1832
029632fb
PZ
1833extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1834extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1835
1836extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1837
029632fb
PZ
1838extern const_debug unsigned int sysctl_sched_nr_migrate;
1839extern const_debug unsigned int sysctl_sched_migration_cost;
1840
029632fb
PZ
1841#ifdef CONFIG_SCHED_HRTICK
1842
1843/*
1844 * Use hrtick when:
1845 * - enabled by features
1846 * - hrtimer is actually high res
1847 */
1848static inline int hrtick_enabled(struct rq *rq)
1849{
1850 if (!sched_feat(HRTICK))
1851 return 0;
1852 if (!cpu_active(cpu_of(rq)))
1853 return 0;
1854 return hrtimer_is_hres_active(&rq->hrtick_timer);
1855}
1856
1857void hrtick_start(struct rq *rq, u64 delay);
1858
b39e66ea
MG
1859#else
1860
1861static inline int hrtick_enabled(struct rq *rq)
1862{
1863 return 0;
1864}
1865
029632fb
PZ
1866#endif /* CONFIG_SCHED_HRTICK */
1867
dfbca41f
PZ
1868#ifndef arch_scale_freq_capacity
1869static __always_inline
7673c8a4 1870unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1871{
1872 return SCHED_CAPACITY_SCALE;
1873}
1874#endif
b5b4860d 1875
029632fb
PZ
1876#ifdef CONFIG_SMP
1877#ifdef CONFIG_PREEMPT
1878
1879static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1880
1881/*
1882 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1883 * way at the expense of forcing extra atomic operations in all
1884 * invocations. This assures that the double_lock is acquired using the
1885 * same underlying policy as the spinlock_t on this architecture, which
1886 * reduces latency compared to the unfair variant below. However, it
1887 * also adds more overhead and therefore may reduce throughput.
1888 */
1889static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1890 __releases(this_rq->lock)
1891 __acquires(busiest->lock)
1892 __acquires(this_rq->lock)
1893{
1894 raw_spin_unlock(&this_rq->lock);
1895 double_rq_lock(this_rq, busiest);
1896
1897 return 1;
1898}
1899
1900#else
1901/*
1902 * Unfair double_lock_balance: Optimizes throughput at the expense of
1903 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1904 * already in proper order on entry. This favors lower CPU-ids and will
1905 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1906 * regardless of entry order into the function.
1907 */
1908static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1909 __releases(this_rq->lock)
1910 __acquires(busiest->lock)
1911 __acquires(this_rq->lock)
1912{
1913 int ret = 0;
1914
1915 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1916 if (busiest < this_rq) {
1917 raw_spin_unlock(&this_rq->lock);
1918 raw_spin_lock(&busiest->lock);
1919 raw_spin_lock_nested(&this_rq->lock,
1920 SINGLE_DEPTH_NESTING);
1921 ret = 1;
1922 } else
1923 raw_spin_lock_nested(&busiest->lock,
1924 SINGLE_DEPTH_NESTING);
1925 }
1926 return ret;
1927}
1928
1929#endif /* CONFIG_PREEMPT */
1930
1931/*
1932 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1933 */
1934static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1935{
1936 if (unlikely(!irqs_disabled())) {
97fb7a0a 1937 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1938 raw_spin_unlock(&this_rq->lock);
1939 BUG_ON(1);
1940 }
1941
1942 return _double_lock_balance(this_rq, busiest);
1943}
1944
1945static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1946 __releases(busiest->lock)
1947{
1948 raw_spin_unlock(&busiest->lock);
1949 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1950}
1951
74602315
PZ
1952static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1953{
1954 if (l1 > l2)
1955 swap(l1, l2);
1956
1957 spin_lock(l1);
1958 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1959}
1960
60e69eed
MG
1961static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1962{
1963 if (l1 > l2)
1964 swap(l1, l2);
1965
1966 spin_lock_irq(l1);
1967 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1968}
1969
74602315
PZ
1970static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1971{
1972 if (l1 > l2)
1973 swap(l1, l2);
1974
1975 raw_spin_lock(l1);
1976 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1977}
1978
029632fb
PZ
1979/*
1980 * double_rq_lock - safely lock two runqueues
1981 *
1982 * Note this does not disable interrupts like task_rq_lock,
1983 * you need to do so manually before calling.
1984 */
1985static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1986 __acquires(rq1->lock)
1987 __acquires(rq2->lock)
1988{
1989 BUG_ON(!irqs_disabled());
1990 if (rq1 == rq2) {
1991 raw_spin_lock(&rq1->lock);
1992 __acquire(rq2->lock); /* Fake it out ;) */
1993 } else {
1994 if (rq1 < rq2) {
1995 raw_spin_lock(&rq1->lock);
1996 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1997 } else {
1998 raw_spin_lock(&rq2->lock);
1999 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2000 }
2001 }
2002}
2003
2004/*
2005 * double_rq_unlock - safely unlock two runqueues
2006 *
2007 * Note this does not restore interrupts like task_rq_unlock,
2008 * you need to do so manually after calling.
2009 */
2010static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2011 __releases(rq1->lock)
2012 __releases(rq2->lock)
2013{
2014 raw_spin_unlock(&rq1->lock);
2015 if (rq1 != rq2)
2016 raw_spin_unlock(&rq2->lock);
2017 else
2018 __release(rq2->lock);
2019}
2020
f2cb1360
IM
2021extern void set_rq_online (struct rq *rq);
2022extern void set_rq_offline(struct rq *rq);
2023extern bool sched_smp_initialized;
2024
029632fb
PZ
2025#else /* CONFIG_SMP */
2026
2027/*
2028 * double_rq_lock - safely lock two runqueues
2029 *
2030 * Note this does not disable interrupts like task_rq_lock,
2031 * you need to do so manually before calling.
2032 */
2033static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2034 __acquires(rq1->lock)
2035 __acquires(rq2->lock)
2036{
2037 BUG_ON(!irqs_disabled());
2038 BUG_ON(rq1 != rq2);
2039 raw_spin_lock(&rq1->lock);
2040 __acquire(rq2->lock); /* Fake it out ;) */
2041}
2042
2043/*
2044 * double_rq_unlock - safely unlock two runqueues
2045 *
2046 * Note this does not restore interrupts like task_rq_unlock,
2047 * you need to do so manually after calling.
2048 */
2049static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2050 __releases(rq1->lock)
2051 __releases(rq2->lock)
2052{
2053 BUG_ON(rq1 != rq2);
2054 raw_spin_unlock(&rq1->lock);
2055 __release(rq2->lock);
2056}
2057
2058#endif
2059
2060extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2061extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2062
2063#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2064extern bool sched_debug_enabled;
2065
029632fb
PZ
2066extern void print_cfs_stats(struct seq_file *m, int cpu);
2067extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2068extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2069extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2070extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2071extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2072#ifdef CONFIG_NUMA_BALANCING
2073extern void
2074show_numa_stats(struct task_struct *p, struct seq_file *m);
2075extern void
2076print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2077 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2078#endif /* CONFIG_NUMA_BALANCING */
2079#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2080
2081extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2082extern void init_rt_rq(struct rt_rq *rt_rq);
2083extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2084
1ee14e6c
BS
2085extern void cfs_bandwidth_usage_inc(void);
2086extern void cfs_bandwidth_usage_dec(void);
1c792db7 2087
3451d024 2088#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2089#define NOHZ_BALANCE_KICK_BIT 0
2090#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2091
a22e47a4 2092#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2093#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2094
2095#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2096
2097#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2098
00357f5e 2099extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2100#else
00357f5e 2101static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2102#endif
73fbec60 2103
daec5798
LA
2104
2105#ifdef CONFIG_SMP
2106static inline
2107void __dl_update(struct dl_bw *dl_b, s64 bw)
2108{
2109 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2110 int i;
2111
2112 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2113 "sched RCU must be held");
2114 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2115 struct rq *rq = cpu_rq(i);
2116
2117 rq->dl.extra_bw += bw;
2118 }
2119}
2120#else
2121static inline
2122void __dl_update(struct dl_bw *dl_b, s64 bw)
2123{
2124 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2125
2126 dl->extra_bw += bw;
2127}
2128#endif
2129
2130
73fbec60 2131#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2132struct irqtime {
25e2d8c1 2133 u64 total;
a499a5a1 2134 u64 tick_delta;
19d23dbf
FW
2135 u64 irq_start_time;
2136 struct u64_stats_sync sync;
2137};
73fbec60 2138
19d23dbf 2139DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2140
25e2d8c1
FW
2141/*
2142 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2143 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2144 * and never move forward.
2145 */
73fbec60
FW
2146static inline u64 irq_time_read(int cpu)
2147{
19d23dbf
FW
2148 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2149 unsigned int seq;
2150 u64 total;
73fbec60
FW
2151
2152 do {
19d23dbf 2153 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2154 total = irqtime->total;
19d23dbf 2155 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2156
19d23dbf 2157 return total;
73fbec60 2158}
73fbec60 2159#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2160
2161#ifdef CONFIG_CPU_FREQ
2162DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2163
2164/**
2165 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2166 * @rq: Runqueue to carry out the update for.
58919e83 2167 * @flags: Update reason flags.
adaf9fcd 2168 *
58919e83
RW
2169 * This function is called by the scheduler on the CPU whose utilization is
2170 * being updated.
adaf9fcd
RW
2171 *
2172 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2173 *
2174 * The way cpufreq is currently arranged requires it to evaluate the CPU
2175 * performance state (frequency/voltage) on a regular basis to prevent it from
2176 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2177 * That is not guaranteed to happen if the updates are only triggered from CFS
2178 * and DL, though, because they may not be coming in if only RT tasks are
2179 * active all the time (or there are RT tasks only).
adaf9fcd 2180 *
e0367b12
JL
2181 * As a workaround for that issue, this function is called periodically by the
2182 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2183 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2184 * solutions targeted more specifically at RT tasks.
adaf9fcd 2185 */
12bde33d 2186static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2187{
58919e83
RW
2188 struct update_util_data *data;
2189
674e7541
VK
2190 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2191 cpu_of(rq)));
58919e83 2192 if (data)
12bde33d
RW
2193 data->func(data, rq_clock(rq), flags);
2194}
adaf9fcd 2195#else
12bde33d 2196static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2197#endif /* CONFIG_CPU_FREQ */
be53f58f 2198
9bdcb44e 2199#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2200# ifndef arch_scale_freq_invariant
2201# define arch_scale_freq_invariant() true
2202# endif
2203#else
2204# define arch_scale_freq_invariant() false
9bdcb44e 2205#endif
d4edd662 2206
794a56eb 2207#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
938e5e4b
QP
2208/**
2209 * enum schedutil_type - CPU utilization type
2210 * @FREQUENCY_UTIL: Utilization used to select frequency
2211 * @ENERGY_UTIL: Utilization used during energy calculation
2212 *
2213 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2214 * need to be aggregated differently depending on the usage made of them. This
2215 * enum is used within schedutil_freq_util() to differentiate the types of
2216 * utilization expected by the callers, and adjust the aggregation accordingly.
2217 */
2218enum schedutil_type {
2219 FREQUENCY_UTIL,
2220 ENERGY_UTIL,
2221};
2222
2223unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
2224 unsigned long max, enum schedutil_type type);
2225
2226static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2227{
2228 unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
2229
2230 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
2231}
2232
8cc90515 2233static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2234{
2235 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2236}
2237
8cc90515
VG
2238static inline unsigned long cpu_util_dl(struct rq *rq)
2239{
2240 return READ_ONCE(rq->avg_dl.util_avg);
2241}
2242
d4edd662
JL
2243static inline unsigned long cpu_util_cfs(struct rq *rq)
2244{
a07630b8
PB
2245 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2246
2247 if (sched_feat(UTIL_EST)) {
2248 util = max_t(unsigned long, util,
2249 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2250 }
2251
2252 return util;
d4edd662 2253}
371bf427
VG
2254
2255static inline unsigned long cpu_util_rt(struct rq *rq)
2256{
dfa444dc 2257 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2258}
938e5e4b
QP
2259#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2260static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2261{
2262 return cfs;
2263}
2e62c474 2264#endif
9033ea11 2265
11d4afd4 2266#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2267static inline unsigned long cpu_util_irq(struct rq *rq)
2268{
2269 return rq->avg_irq.util_avg;
2270}
2e62c474
VG
2271
2272static inline
2273unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2274{
2275 util *= (max - irq);
2276 util /= max;
2277
2278 return util;
2279
2280}
9033ea11
VG
2281#else
2282static inline unsigned long cpu_util_irq(struct rq *rq)
2283{
2284 return 0;
2285}
2286
2e62c474
VG
2287static inline
2288unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2289{
2290 return util;
2291}
794a56eb 2292#endif
6aa140fa
QP
2293
2294#ifdef CONFIG_SMP
2295#ifdef CONFIG_ENERGY_MODEL
2296#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2297#else
2298#define perf_domain_span(pd) NULL
2299#endif
2300#endif