sched/fair: Add lsub_positive() and use it consistently
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/stat.h>
27#include <linux/sched/sysctl.h>
29930025 28#include <linux/sched/task.h>
68db0cf1 29#include <linux/sched/task_stack.h>
325ea10c
IM
30#include <linux/sched/topology.h>
31#include <linux/sched/user.h>
32#include <linux/sched/wake_q.h>
33#include <linux/sched/xacct.h>
34
35#include <uapi/linux/sched/types.h>
ef8bd77f 36
3866e845 37#include <linux/binfmts.h>
325ea10c
IM
38#include <linux/blkdev.h>
39#include <linux/compat.h>
40#include <linux/context_tracking.h>
41#include <linux/cpufreq.h>
42#include <linux/cpuidle.h>
43#include <linux/cpuset.h>
44#include <linux/ctype.h>
45#include <linux/debugfs.h>
46#include <linux/delayacct.h>
47#include <linux/init_task.h>
48#include <linux/kprobes.h>
49#include <linux/kthread.h>
50#include <linux/membarrier.h>
51#include <linux/migrate.h>
52#include <linux/mmu_context.h>
53#include <linux/nmi.h>
54#include <linux/proc_fs.h>
55#include <linux/prefetch.h>
56#include <linux/profile.h>
eb414681 57#include <linux/psi.h>
325ea10c
IM
58#include <linux/rcupdate_wait.h>
59#include <linux/security.h>
029632fb 60#include <linux/stop_machine.h>
325ea10c
IM
61#include <linux/suspend.h>
62#include <linux/swait.h>
63#include <linux/syscalls.h>
64#include <linux/task_work.h>
65#include <linux/tsacct_kern.h>
66
67#include <asm/tlb.h>
029632fb 68
7fce777c 69#ifdef CONFIG_PARAVIRT
325ea10c 70# include <asm/paravirt.h>
7fce777c
IM
71#endif
72
391e43da 73#include "cpupri.h"
6bfd6d72 74#include "cpudeadline.h"
029632fb 75
9148a3a1 76#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 77# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 78#else
6d3aed3d 79# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
80#endif
81
45ceebf7 82struct rq;
442bf3aa 83struct cpuidle_state;
45ceebf7 84
da0c1e65
KT
85/* task_struct::on_rq states: */
86#define TASK_ON_RQ_QUEUED 1
cca26e80 87#define TASK_ON_RQ_MIGRATING 2
da0c1e65 88
029632fb
PZ
89extern __read_mostly int scheduler_running;
90
45ceebf7
PG
91extern unsigned long calc_load_update;
92extern atomic_long_t calc_load_tasks;
93
3289bdb4 94extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 95extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
96
97#ifdef CONFIG_SMP
cee1afce 98extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 99#else
cee1afce 100static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 101#endif
45ceebf7 102
029632fb
PZ
103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
cc1f4b1f
LZ
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
2159197d 118 *
97fb7a0a
IM
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 121 */
2159197d 122#ifdef CONFIG_64BIT
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 126#else
172895e6 127# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
128# define scale_load(w) (w)
129# define scale_load_down(w) (w)
130#endif
131
6ecdd749 132/*
172895e6
YD
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
137 *
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139 *
6ecdd749 140 */
172895e6 141#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 142
332ac17e
DF
143/*
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
147 */
97fb7a0a 148#define DL_SCALE 10
029632fb
PZ
149
150/*
97fb7a0a 151 * Single value that denotes runtime == period, ie unlimited time.
029632fb 152 */
97fb7a0a 153#define RUNTIME_INF ((u64)~0ULL)
029632fb 154
20f9cd2a
HA
155static inline int idle_policy(int policy)
156{
157 return policy == SCHED_IDLE;
158}
d50dde5a
DF
159static inline int fair_policy(int policy)
160{
161 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162}
163
029632fb
PZ
164static inline int rt_policy(int policy)
165{
d50dde5a 166 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
167}
168
aab03e05
DF
169static inline int dl_policy(int policy)
170{
171 return policy == SCHED_DEADLINE;
172}
20f9cd2a
HA
173static inline bool valid_policy(int policy)
174{
175 return idle_policy(policy) || fair_policy(policy) ||
176 rt_policy(policy) || dl_policy(policy);
177}
aab03e05 178
029632fb
PZ
179static inline int task_has_rt_policy(struct task_struct *p)
180{
181 return rt_policy(p->policy);
182}
183
aab03e05
DF
184static inline int task_has_dl_policy(struct task_struct *p)
185{
186 return dl_policy(p->policy);
187}
188
07881166
JL
189#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190
794a56eb
JL
191/*
192 * !! For sched_setattr_nocheck() (kernel) only !!
193 *
194 * This is actually gross. :(
195 *
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
200 *
201 * SUGOV stands for SchedUtil GOVernor.
202 */
203#define SCHED_FLAG_SUGOV 0x10000000
204
205static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206{
207#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209#else
210 return false;
211#endif
212}
213
2d3d891d
DF
214/*
215 * Tells if entity @a should preempt entity @b.
216 */
332ac17e
DF
217static inline bool
218dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 219{
794a56eb
JL
220 return dl_entity_is_special(a) ||
221 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
222}
223
029632fb
PZ
224/*
225 * This is the priority-queue data structure of the RT scheduling class:
226 */
227struct rt_prio_array {
228 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 struct list_head queue[MAX_RT_PRIO];
230};
231
232struct rt_bandwidth {
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock;
235 ktime_t rt_period;
236 u64 rt_runtime;
237 struct hrtimer rt_period_timer;
4cfafd30 238 unsigned int rt_period_active;
029632fb 239};
a5e7be3b
JL
240
241void __dl_clear_params(struct task_struct *p);
242
332ac17e
DF
243/*
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
248 *
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
254 *
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
256 * meaning that:
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
265 * control.
266 */
267struct dl_bandwidth {
97fb7a0a
IM
268 raw_spinlock_t dl_runtime_lock;
269 u64 dl_runtime;
270 u64 dl_period;
332ac17e
DF
271};
272
273static inline int dl_bandwidth_enabled(void)
274{
1724813d 275 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
276}
277
332ac17e 278struct dl_bw {
97fb7a0a
IM
279 raw_spinlock_t lock;
280 u64 bw;
281 u64 total_bw;
332ac17e
DF
282};
283
daec5798
LA
284static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285
7f51412a 286static inline
8c0944ce 287void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
288{
289 dl_b->total_bw -= tsk_bw;
daec5798 290 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
291}
292
293static inline
daec5798 294void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
295{
296 dl_b->total_bw += tsk_bw;
daec5798 297 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
298}
299
300static inline
301bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302{
303 return dl_b->bw != -1 &&
304 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305}
306
97fb7a0a 307extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 308extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 309extern int sched_dl_global_validate(void);
06a76fe0 310extern void sched_dl_do_global(void);
97fb7a0a 311extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
312extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 315extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
316extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 318extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
319
320#ifdef CONFIG_CGROUP_SCHED
321
322#include <linux/cgroup.h>
eb414681 323#include <linux/psi.h>
029632fb
PZ
324
325struct cfs_rq;
326struct rt_rq;
327
35cf4e50 328extern struct list_head task_groups;
029632fb
PZ
329
330struct cfs_bandwidth {
331#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
332 raw_spinlock_t lock;
333 ktime_t period;
334 u64 quota;
335 u64 runtime;
336 s64 hierarchical_quota;
337 u64 runtime_expires;
512ac999 338 int expires_seq;
97fb7a0a 339
512ac999
XP
340 short idle;
341 short period_active;
97fb7a0a
IM
342 struct hrtimer period_timer;
343 struct hrtimer slack_timer;
344 struct list_head throttled_cfs_rq;
345
346 /* Statistics: */
347 int nr_periods;
348 int nr_throttled;
349 u64 throttled_time;
baa9be4f
PA
350
351 bool distribute_running;
029632fb
PZ
352#endif
353};
354
97fb7a0a 355/* Task group related information */
029632fb
PZ
356struct task_group {
357 struct cgroup_subsys_state css;
358
359#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
360 /* schedulable entities of this group on each CPU */
361 struct sched_entity **se;
362 /* runqueue "owned" by this group on each CPU */
363 struct cfs_rq **cfs_rq;
364 unsigned long shares;
029632fb 365
fa6bddeb 366#ifdef CONFIG_SMP
b0367629
WL
367 /*
368 * load_avg can be heavily contended at clock tick time, so put
369 * it in its own cacheline separated from the fields above which
370 * will also be accessed at each tick.
371 */
97fb7a0a 372 atomic_long_t load_avg ____cacheline_aligned;
029632fb 373#endif
fa6bddeb 374#endif
029632fb
PZ
375
376#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
377 struct sched_rt_entity **rt_se;
378 struct rt_rq **rt_rq;
029632fb 379
97fb7a0a 380 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
381#endif
382
97fb7a0a
IM
383 struct rcu_head rcu;
384 struct list_head list;
029632fb 385
97fb7a0a
IM
386 struct task_group *parent;
387 struct list_head siblings;
388 struct list_head children;
029632fb
PZ
389
390#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 391 struct autogroup *autogroup;
029632fb
PZ
392#endif
393
97fb7a0a 394 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
395};
396
397#ifdef CONFIG_FAIR_GROUP_SCHED
398#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
399
400/*
401 * A weight of 0 or 1 can cause arithmetics problems.
402 * A weight of a cfs_rq is the sum of weights of which entities
403 * are queued on this cfs_rq, so a weight of a entity should not be
404 * too large, so as the shares value of a task group.
405 * (The default weight is 1024 - so there's no practical
406 * limitation from this.)
407 */
97fb7a0a
IM
408#define MIN_SHARES (1UL << 1)
409#define MAX_SHARES (1UL << 18)
029632fb
PZ
410#endif
411
029632fb
PZ
412typedef int (*tg_visitor)(struct task_group *, void *);
413
414extern int walk_tg_tree_from(struct task_group *from,
415 tg_visitor down, tg_visitor up, void *data);
416
417/*
418 * Iterate the full tree, calling @down when first entering a node and @up when
419 * leaving it for the final time.
420 *
421 * Caller must hold rcu_lock or sufficient equivalent.
422 */
423static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
424{
425 return walk_tg_tree_from(&root_task_group, down, up, data);
426}
427
428extern int tg_nop(struct task_group *tg, void *data);
429
430extern void free_fair_sched_group(struct task_group *tg);
431extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 432extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 433extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
434extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
435 struct sched_entity *se, int cpu,
436 struct sched_entity *parent);
437extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
438
439extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 440extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
441extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
442
443extern void free_rt_sched_group(struct task_group *tg);
444extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
445extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
446 struct sched_rt_entity *rt_se, int cpu,
447 struct sched_rt_entity *parent);
8887cd99
NP
448extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
449extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
450extern long sched_group_rt_runtime(struct task_group *tg);
451extern long sched_group_rt_period(struct task_group *tg);
452extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 453
25cc7da7
LZ
454extern struct task_group *sched_create_group(struct task_group *parent);
455extern void sched_online_group(struct task_group *tg,
456 struct task_group *parent);
457extern void sched_destroy_group(struct task_group *tg);
458extern void sched_offline_group(struct task_group *tg);
459
460extern void sched_move_task(struct task_struct *tsk);
461
462#ifdef CONFIG_FAIR_GROUP_SCHED
463extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
464
465#ifdef CONFIG_SMP
466extern void set_task_rq_fair(struct sched_entity *se,
467 struct cfs_rq *prev, struct cfs_rq *next);
468#else /* !CONFIG_SMP */
469static inline void set_task_rq_fair(struct sched_entity *se,
470 struct cfs_rq *prev, struct cfs_rq *next) { }
471#endif /* CONFIG_SMP */
472#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 473
029632fb
PZ
474#else /* CONFIG_CGROUP_SCHED */
475
476struct cfs_bandwidth { };
477
478#endif /* CONFIG_CGROUP_SCHED */
479
480/* CFS-related fields in a runqueue */
481struct cfs_rq {
97fb7a0a
IM
482 struct load_weight load;
483 unsigned long runnable_weight;
484 unsigned int nr_running;
485 unsigned int h_nr_running;
029632fb 486
97fb7a0a
IM
487 u64 exec_clock;
488 u64 min_vruntime;
029632fb 489#ifndef CONFIG_64BIT
97fb7a0a 490 u64 min_vruntime_copy;
029632fb
PZ
491#endif
492
97fb7a0a 493 struct rb_root_cached tasks_timeline;
029632fb 494
029632fb
PZ
495 /*
496 * 'curr' points to currently running entity on this cfs_rq.
497 * It is set to NULL otherwise (i.e when none are currently running).
498 */
97fb7a0a
IM
499 struct sched_entity *curr;
500 struct sched_entity *next;
501 struct sched_entity *last;
502 struct sched_entity *skip;
029632fb
PZ
503
504#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 505 unsigned int nr_spread_over;
029632fb
PZ
506#endif
507
2dac754e
PT
508#ifdef CONFIG_SMP
509 /*
9d89c257 510 * CFS load tracking
2dac754e 511 */
97fb7a0a 512 struct sched_avg avg;
2a2f5d4e 513#ifndef CONFIG_64BIT
97fb7a0a 514 u64 load_last_update_time_copy;
9d89c257 515#endif
2a2f5d4e
PZ
516 struct {
517 raw_spinlock_t lock ____cacheline_aligned;
518 int nr;
519 unsigned long load_avg;
520 unsigned long util_avg;
0e2d2aaa 521 unsigned long runnable_sum;
2a2f5d4e 522 } removed;
82958366 523
9d89c257 524#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
525 unsigned long tg_load_avg_contrib;
526 long propagate;
527 long prop_runnable_sum;
0e2d2aaa 528
82958366
PT
529 /*
530 * h_load = weight * f(tg)
531 *
532 * Where f(tg) is the recursive weight fraction assigned to
533 * this group.
534 */
97fb7a0a
IM
535 unsigned long h_load;
536 u64 last_h_load_update;
537 struct sched_entity *h_load_next;
68520796 538#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
539#endif /* CONFIG_SMP */
540
029632fb 541#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 542 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
543
544 /*
545 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
546 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
547 * (like users, containers etc.)
548 *
97fb7a0a
IM
549 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
550 * This list is used during load balance.
029632fb 551 */
97fb7a0a
IM
552 int on_list;
553 struct list_head leaf_cfs_rq_list;
554 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 555
029632fb 556#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 557 int runtime_enabled;
512ac999 558 int expires_seq;
97fb7a0a
IM
559 u64 runtime_expires;
560 s64 runtime_remaining;
561
562 u64 throttled_clock;
563 u64 throttled_clock_task;
564 u64 throttled_clock_task_time;
565 int throttled;
566 int throttle_count;
567 struct list_head throttled_list;
029632fb
PZ
568#endif /* CONFIG_CFS_BANDWIDTH */
569#endif /* CONFIG_FAIR_GROUP_SCHED */
570};
571
572static inline int rt_bandwidth_enabled(void)
573{
574 return sysctl_sched_rt_runtime >= 0;
575}
576
b6366f04 577/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 578#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
579# define HAVE_RT_PUSH_IPI
580#endif
581
029632fb
PZ
582/* Real-Time classes' related field in a runqueue: */
583struct rt_rq {
97fb7a0a
IM
584 struct rt_prio_array active;
585 unsigned int rt_nr_running;
586 unsigned int rr_nr_running;
029632fb
PZ
587#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
588 struct {
97fb7a0a 589 int curr; /* highest queued rt task prio */
029632fb 590#ifdef CONFIG_SMP
97fb7a0a 591 int next; /* next highest */
029632fb
PZ
592#endif
593 } highest_prio;
594#endif
595#ifdef CONFIG_SMP
97fb7a0a
IM
596 unsigned long rt_nr_migratory;
597 unsigned long rt_nr_total;
598 int overloaded;
599 struct plist_head pushable_tasks;
371bf427 600
b6366f04 601#endif /* CONFIG_SMP */
97fb7a0a 602 int rt_queued;
f4ebcbc0 603
97fb7a0a
IM
604 int rt_throttled;
605 u64 rt_time;
606 u64 rt_runtime;
029632fb 607 /* Nests inside the rq lock: */
97fb7a0a 608 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
609
610#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 611 unsigned long rt_nr_boosted;
029632fb 612
97fb7a0a
IM
613 struct rq *rq;
614 struct task_group *tg;
029632fb
PZ
615#endif
616};
617
296b2ffe
VG
618static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
619{
620 return rt_rq->rt_queued && rt_rq->rt_nr_running;
621}
622
aab03e05
DF
623/* Deadline class' related fields in a runqueue */
624struct dl_rq {
625 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 626 struct rb_root_cached root;
aab03e05 627
97fb7a0a 628 unsigned long dl_nr_running;
1baca4ce
JL
629
630#ifdef CONFIG_SMP
631 /*
632 * Deadline values of the currently executing and the
633 * earliest ready task on this rq. Caching these facilitates
634 * the decision wether or not a ready but not running task
635 * should migrate somewhere else.
636 */
637 struct {
97fb7a0a
IM
638 u64 curr;
639 u64 next;
1baca4ce
JL
640 } earliest_dl;
641
97fb7a0a
IM
642 unsigned long dl_nr_migratory;
643 int overloaded;
1baca4ce
JL
644
645 /*
646 * Tasks on this rq that can be pushed away. They are kept in
647 * an rb-tree, ordered by tasks' deadlines, with caching
648 * of the leftmost (earliest deadline) element.
649 */
97fb7a0a 650 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 651#else
97fb7a0a 652 struct dl_bw dl_bw;
1baca4ce 653#endif
e36d8677
LA
654 /*
655 * "Active utilization" for this runqueue: increased when a
656 * task wakes up (becomes TASK_RUNNING) and decreased when a
657 * task blocks
658 */
97fb7a0a 659 u64 running_bw;
4da3abce 660
8fd27231
LA
661 /*
662 * Utilization of the tasks "assigned" to this runqueue (including
663 * the tasks that are in runqueue and the tasks that executed on this
664 * CPU and blocked). Increased when a task moves to this runqueue, and
665 * decreased when the task moves away (migrates, changes scheduling
666 * policy, or terminates).
667 * This is needed to compute the "inactive utilization" for the
668 * runqueue (inactive utilization = this_bw - running_bw).
669 */
97fb7a0a
IM
670 u64 this_bw;
671 u64 extra_bw;
8fd27231 672
4da3abce
LA
673 /*
674 * Inverse of the fraction of CPU utilization that can be reclaimed
675 * by the GRUB algorithm.
676 */
97fb7a0a 677 u64 bw_ratio;
aab03e05
DF
678};
679
c0796298
VG
680#ifdef CONFIG_FAIR_GROUP_SCHED
681/* An entity is a task if it doesn't "own" a runqueue */
682#define entity_is_task(se) (!se->my_q)
683#else
684#define entity_is_task(se) 1
685#endif
686
029632fb 687#ifdef CONFIG_SMP
c0796298
VG
688/*
689 * XXX we want to get rid of these helpers and use the full load resolution.
690 */
691static inline long se_weight(struct sched_entity *se)
692{
693 return scale_load_down(se->load.weight);
694}
695
696static inline long se_runnable(struct sched_entity *se)
697{
698 return scale_load_down(se->runnable_weight);
699}
029632fb 700
afe06efd
TC
701static inline bool sched_asym_prefer(int a, int b)
702{
703 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
704}
705
029632fb
PZ
706/*
707 * We add the notion of a root-domain which will be used to define per-domain
708 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 709 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
710 * exclusive cpuset is created, we also create and attach a new root-domain
711 * object.
712 *
713 */
714struct root_domain {
97fb7a0a
IM
715 atomic_t refcount;
716 atomic_t rto_count;
717 struct rcu_head rcu;
718 cpumask_var_t span;
719 cpumask_var_t online;
029632fb 720
757ffdd7
VS
721 /*
722 * Indicate pullable load on at least one CPU, e.g:
723 * - More than one runnable task
724 * - Running task is misfit
725 */
575638d1 726 int overload;
4486edd1 727
1baca4ce
JL
728 /*
729 * The bit corresponding to a CPU gets set here if such CPU has more
730 * than one runnable -deadline task (as it is below for RT tasks).
731 */
97fb7a0a
IM
732 cpumask_var_t dlo_mask;
733 atomic_t dlo_count;
734 struct dl_bw dl_bw;
735 struct cpudl cpudl;
1baca4ce 736
4bdced5c
SRRH
737#ifdef HAVE_RT_PUSH_IPI
738 /*
739 * For IPI pull requests, loop across the rto_mask.
740 */
97fb7a0a
IM
741 struct irq_work rto_push_work;
742 raw_spinlock_t rto_lock;
4bdced5c 743 /* These are only updated and read within rto_lock */
97fb7a0a
IM
744 int rto_loop;
745 int rto_cpu;
4bdced5c 746 /* These atomics are updated outside of a lock */
97fb7a0a
IM
747 atomic_t rto_loop_next;
748 atomic_t rto_loop_start;
4bdced5c 749#endif
029632fb
PZ
750 /*
751 * The "RT overload" flag: it gets set if a CPU has more than
752 * one runnable RT task.
753 */
97fb7a0a
IM
754 cpumask_var_t rto_mask;
755 struct cpupri cpupri;
cd92bfd3 756
97fb7a0a 757 unsigned long max_cpu_capacity;
029632fb
PZ
758};
759
760extern struct root_domain def_root_domain;
f2cb1360 761extern struct mutex sched_domains_mutex;
f2cb1360
IM
762
763extern void init_defrootdomain(void);
8d5dc512 764extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 765extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
766extern void sched_get_rd(struct root_domain *rd);
767extern void sched_put_rd(struct root_domain *rd);
029632fb 768
4bdced5c
SRRH
769#ifdef HAVE_RT_PUSH_IPI
770extern void rto_push_irq_work_func(struct irq_work *work);
771#endif
029632fb
PZ
772#endif /* CONFIG_SMP */
773
774/*
775 * This is the main, per-CPU runqueue data structure.
776 *
777 * Locking rule: those places that want to lock multiple runqueues
778 * (such as the load balancing or the thread migration code), lock
779 * acquire operations must be ordered by ascending &runqueue.
780 */
781struct rq {
782 /* runqueue lock: */
97fb7a0a 783 raw_spinlock_t lock;
029632fb
PZ
784
785 /*
786 * nr_running and cpu_load should be in the same cacheline because
787 * remote CPUs use both these fields when doing load calculation.
788 */
97fb7a0a 789 unsigned int nr_running;
0ec8aa00 790#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
791 unsigned int nr_numa_running;
792 unsigned int nr_preferred_running;
a4739eca 793 unsigned int numa_migrate_on;
0ec8aa00 794#endif
029632fb 795 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 796 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 797#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 798#ifdef CONFIG_SMP
97fb7a0a 799 unsigned long last_load_update_tick;
e022e0d3 800 unsigned long last_blocked_load_update_tick;
f643ea22 801 unsigned int has_blocked_load;
9fd81dd5 802#endif /* CONFIG_SMP */
00357f5e 803 unsigned int nohz_tick_stopped;
a22e47a4 804 atomic_t nohz_flags;
9fd81dd5 805#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 806
97fb7a0a
IM
807 /* capture load from *all* tasks on this CPU: */
808 struct load_weight load;
809 unsigned long nr_load_updates;
810 u64 nr_switches;
029632fb 811
97fb7a0a
IM
812 struct cfs_rq cfs;
813 struct rt_rq rt;
814 struct dl_rq dl;
029632fb
PZ
815
816#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
817 /* list of leaf cfs_rq on this CPU: */
818 struct list_head leaf_cfs_rq_list;
819 struct list_head *tmp_alone_branch;
a35b6466
PZ
820#endif /* CONFIG_FAIR_GROUP_SCHED */
821
029632fb
PZ
822 /*
823 * This is part of a global counter where only the total sum
824 * over all CPUs matters. A task can increase this counter on
825 * one CPU and if it got migrated afterwards it may decrease
826 * it on another CPU. Always updated under the runqueue lock:
827 */
97fb7a0a 828 unsigned long nr_uninterruptible;
029632fb 829
97fb7a0a
IM
830 struct task_struct *curr;
831 struct task_struct *idle;
832 struct task_struct *stop;
833 unsigned long next_balance;
834 struct mm_struct *prev_mm;
029632fb 835
97fb7a0a
IM
836 unsigned int clock_update_flags;
837 u64 clock;
838 u64 clock_task;
029632fb 839
97fb7a0a 840 atomic_t nr_iowait;
029632fb
PZ
841
842#ifdef CONFIG_SMP
97fb7a0a
IM
843 struct root_domain *rd;
844 struct sched_domain *sd;
845
846 unsigned long cpu_capacity;
847 unsigned long cpu_capacity_orig;
029632fb 848
97fb7a0a 849 struct callback_head *balance_callback;
029632fb 850
97fb7a0a 851 unsigned char idle_balance;
e3fca9e7 852
3b1baa64
MR
853 unsigned long misfit_task_load;
854
029632fb 855 /* For active balancing */
97fb7a0a
IM
856 int active_balance;
857 int push_cpu;
858 struct cpu_stop_work active_balance_work;
859
860 /* CPU of this runqueue: */
861 int cpu;
862 int online;
029632fb 863
367456c7
PZ
864 struct list_head cfs_tasks;
865
371bf427 866 struct sched_avg avg_rt;
3727e0e1 867 struct sched_avg avg_dl;
11d4afd4 868#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
869 struct sched_avg avg_irq;
870#endif
97fb7a0a
IM
871 u64 idle_stamp;
872 u64 avg_idle;
9bd721c5
JL
873
874 /* This is used to determine avg_idle's max value */
97fb7a0a 875 u64 max_idle_balance_cost;
029632fb
PZ
876#endif
877
878#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 879 u64 prev_irq_time;
029632fb
PZ
880#endif
881#ifdef CONFIG_PARAVIRT
97fb7a0a 882 u64 prev_steal_time;
029632fb
PZ
883#endif
884#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 885 u64 prev_steal_time_rq;
029632fb
PZ
886#endif
887
888 /* calc_load related fields */
97fb7a0a
IM
889 unsigned long calc_load_update;
890 long calc_load_active;
029632fb
PZ
891
892#ifdef CONFIG_SCHED_HRTICK
893#ifdef CONFIG_SMP
97fb7a0a
IM
894 int hrtick_csd_pending;
895 call_single_data_t hrtick_csd;
029632fb 896#endif
97fb7a0a 897 struct hrtimer hrtick_timer;
029632fb
PZ
898#endif
899
900#ifdef CONFIG_SCHEDSTATS
901 /* latency stats */
97fb7a0a
IM
902 struct sched_info rq_sched_info;
903 unsigned long long rq_cpu_time;
029632fb
PZ
904 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
905
906 /* sys_sched_yield() stats */
97fb7a0a 907 unsigned int yld_count;
029632fb
PZ
908
909 /* schedule() stats */
97fb7a0a
IM
910 unsigned int sched_count;
911 unsigned int sched_goidle;
029632fb
PZ
912
913 /* try_to_wake_up() stats */
97fb7a0a
IM
914 unsigned int ttwu_count;
915 unsigned int ttwu_local;
029632fb
PZ
916#endif
917
918#ifdef CONFIG_SMP
97fb7a0a 919 struct llist_head wake_list;
029632fb 920#endif
442bf3aa
DL
921
922#ifdef CONFIG_CPU_IDLE
923 /* Must be inspected within a rcu lock section */
97fb7a0a 924 struct cpuidle_state *idle_state;
442bf3aa 925#endif
029632fb
PZ
926};
927
928static inline int cpu_of(struct rq *rq)
929{
930#ifdef CONFIG_SMP
931 return rq->cpu;
932#else
933 return 0;
934#endif
935}
936
1b568f0a
PZ
937
938#ifdef CONFIG_SCHED_SMT
939
940extern struct static_key_false sched_smt_present;
941
942extern void __update_idle_core(struct rq *rq);
943
944static inline void update_idle_core(struct rq *rq)
945{
946 if (static_branch_unlikely(&sched_smt_present))
947 __update_idle_core(rq);
948}
949
950#else
951static inline void update_idle_core(struct rq *rq) { }
952#endif
953
8b06c55b 954DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 955
518cd623 956#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 957#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
958#define task_rq(p) cpu_rq(task_cpu(p))
959#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 960#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 961
1f351d7f
JW
962extern void update_rq_clock(struct rq *rq);
963
cebde6d6
PZ
964static inline u64 __rq_clock_broken(struct rq *rq)
965{
316c1608 966 return READ_ONCE(rq->clock);
cebde6d6
PZ
967}
968
cb42c9a3
MF
969/*
970 * rq::clock_update_flags bits
971 *
972 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
973 * call to __schedule(). This is an optimisation to avoid
974 * neighbouring rq clock updates.
975 *
976 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
977 * in effect and calls to update_rq_clock() are being ignored.
978 *
979 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
980 * made to update_rq_clock() since the last time rq::lock was pinned.
981 *
982 * If inside of __schedule(), clock_update_flags will have been
983 * shifted left (a left shift is a cheap operation for the fast path
984 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
985 *
986 * if (rq-clock_update_flags >= RQCF_UPDATED)
987 *
988 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
989 * one position though, because the next rq_unpin_lock() will shift it
990 * back.
991 */
97fb7a0a
IM
992#define RQCF_REQ_SKIP 0x01
993#define RQCF_ACT_SKIP 0x02
994#define RQCF_UPDATED 0x04
cb42c9a3
MF
995
996static inline void assert_clock_updated(struct rq *rq)
997{
998 /*
999 * The only reason for not seeing a clock update since the
1000 * last rq_pin_lock() is if we're currently skipping updates.
1001 */
1002 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1003}
1004
78becc27
FW
1005static inline u64 rq_clock(struct rq *rq)
1006{
cebde6d6 1007 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1008 assert_clock_updated(rq);
1009
78becc27
FW
1010 return rq->clock;
1011}
1012
1013static inline u64 rq_clock_task(struct rq *rq)
1014{
cebde6d6 1015 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1016 assert_clock_updated(rq);
1017
78becc27
FW
1018 return rq->clock_task;
1019}
1020
adcc8da8 1021static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1022{
1023 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1024 rq->clock_update_flags |= RQCF_REQ_SKIP;
1025}
1026
1027/*
595058b6 1028 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1029 * request is cancelled.
1030 */
1031static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1032{
1033 lockdep_assert_held(&rq->lock);
1034 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1035}
1036
d8ac8971
MF
1037struct rq_flags {
1038 unsigned long flags;
1039 struct pin_cookie cookie;
cb42c9a3
MF
1040#ifdef CONFIG_SCHED_DEBUG
1041 /*
1042 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1043 * current pin context is stashed here in case it needs to be
1044 * restored in rq_repin_lock().
1045 */
1046 unsigned int clock_update_flags;
1047#endif
d8ac8971
MF
1048};
1049
1050static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1051{
1052 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1053
1054#ifdef CONFIG_SCHED_DEBUG
1055 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1056 rf->clock_update_flags = 0;
1057#endif
d8ac8971
MF
1058}
1059
1060static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1061{
cb42c9a3
MF
1062#ifdef CONFIG_SCHED_DEBUG
1063 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1064 rf->clock_update_flags = RQCF_UPDATED;
1065#endif
1066
d8ac8971
MF
1067 lockdep_unpin_lock(&rq->lock, rf->cookie);
1068}
1069
1070static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1071{
1072 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1073
1074#ifdef CONFIG_SCHED_DEBUG
1075 /*
1076 * Restore the value we stashed in @rf for this pin context.
1077 */
1078 rq->clock_update_flags |= rf->clock_update_flags;
1079#endif
d8ac8971
MF
1080}
1081
1f351d7f
JW
1082struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1083 __acquires(rq->lock);
1084
1085struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1086 __acquires(p->pi_lock)
1087 __acquires(rq->lock);
1088
1089static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1090 __releases(rq->lock)
1091{
1092 rq_unpin_lock(rq, rf);
1093 raw_spin_unlock(&rq->lock);
1094}
1095
1096static inline void
1097task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1098 __releases(rq->lock)
1099 __releases(p->pi_lock)
1100{
1101 rq_unpin_lock(rq, rf);
1102 raw_spin_unlock(&rq->lock);
1103 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1104}
1105
1106static inline void
1107rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1108 __acquires(rq->lock)
1109{
1110 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1111 rq_pin_lock(rq, rf);
1112}
1113
1114static inline void
1115rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1116 __acquires(rq->lock)
1117{
1118 raw_spin_lock_irq(&rq->lock);
1119 rq_pin_lock(rq, rf);
1120}
1121
1122static inline void
1123rq_lock(struct rq *rq, struct rq_flags *rf)
1124 __acquires(rq->lock)
1125{
1126 raw_spin_lock(&rq->lock);
1127 rq_pin_lock(rq, rf);
1128}
1129
1130static inline void
1131rq_relock(struct rq *rq, struct rq_flags *rf)
1132 __acquires(rq->lock)
1133{
1134 raw_spin_lock(&rq->lock);
1135 rq_repin_lock(rq, rf);
1136}
1137
1138static inline void
1139rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1140 __releases(rq->lock)
1141{
1142 rq_unpin_lock(rq, rf);
1143 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1144}
1145
1146static inline void
1147rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1148 __releases(rq->lock)
1149{
1150 rq_unpin_lock(rq, rf);
1151 raw_spin_unlock_irq(&rq->lock);
1152}
1153
1154static inline void
1155rq_unlock(struct rq *rq, struct rq_flags *rf)
1156 __releases(rq->lock)
1157{
1158 rq_unpin_lock(rq, rf);
1159 raw_spin_unlock(&rq->lock);
1160}
1161
246b3b33
JW
1162static inline struct rq *
1163this_rq_lock_irq(struct rq_flags *rf)
1164 __acquires(rq->lock)
1165{
1166 struct rq *rq;
1167
1168 local_irq_disable();
1169 rq = this_rq();
1170 rq_lock(rq, rf);
1171 return rq;
1172}
1173
9942f79b 1174#ifdef CONFIG_NUMA
e3fe70b1
RR
1175enum numa_topology_type {
1176 NUMA_DIRECT,
1177 NUMA_GLUELESS_MESH,
1178 NUMA_BACKPLANE,
1179};
1180extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1181extern int sched_max_numa_distance;
1182extern bool find_numa_distance(int distance);
1183#endif
1184
f2cb1360
IM
1185#ifdef CONFIG_NUMA
1186extern void sched_init_numa(void);
1187extern void sched_domains_numa_masks_set(unsigned int cpu);
1188extern void sched_domains_numa_masks_clear(unsigned int cpu);
1189#else
1190static inline void sched_init_numa(void) { }
1191static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1192static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1193#endif
1194
f809ca9a 1195#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1196/* The regions in numa_faults array from task_struct */
1197enum numa_faults_stats {
1198 NUMA_MEM = 0,
1199 NUMA_CPU,
1200 NUMA_MEMBUF,
1201 NUMA_CPUBUF
1202};
0ec8aa00 1203extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1204extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1205extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1206 int cpu, int scpu);
13784475
MG
1207extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1208#else
1209static inline void
1210init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1211{
1212}
f809ca9a
MG
1213#endif /* CONFIG_NUMA_BALANCING */
1214
518cd623
PZ
1215#ifdef CONFIG_SMP
1216
e3fca9e7
PZ
1217static inline void
1218queue_balance_callback(struct rq *rq,
1219 struct callback_head *head,
1220 void (*func)(struct rq *rq))
1221{
1222 lockdep_assert_held(&rq->lock);
1223
1224 if (unlikely(head->next))
1225 return;
1226
1227 head->func = (void (*)(struct callback_head *))func;
1228 head->next = rq->balance_callback;
1229 rq->balance_callback = head;
1230}
1231
e3baac47
PZ
1232extern void sched_ttwu_pending(void);
1233
029632fb
PZ
1234#define rcu_dereference_check_sched_domain(p) \
1235 rcu_dereference_check((p), \
1236 lockdep_is_held(&sched_domains_mutex))
1237
1238/*
1239 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1240 * See detach_destroy_domains: synchronize_sched for details.
1241 *
1242 * The domain tree of any CPU may only be accessed from within
1243 * preempt-disabled sections.
1244 */
1245#define for_each_domain(cpu, __sd) \
518cd623
PZ
1246 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1247 __sd; __sd = __sd->parent)
029632fb 1248
77e81365
SS
1249#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1250
518cd623
PZ
1251/**
1252 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1253 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1254 * be returned.
1255 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1256 * for the given CPU.
518cd623 1257 *
97fb7a0a 1258 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1259 */
1260static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1261{
1262 struct sched_domain *sd, *hsd = NULL;
1263
1264 for_each_domain(cpu, sd) {
1265 if (!(sd->flags & flag))
1266 break;
1267 hsd = sd;
1268 }
1269
1270 return hsd;
1271}
1272
fb13c7ee
MG
1273static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1274{
1275 struct sched_domain *sd;
1276
1277 for_each_domain(cpu, sd) {
1278 if (sd->flags & flag)
1279 break;
1280 }
1281
1282 return sd;
1283}
1284
518cd623 1285DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1286DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1287DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1288DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1289DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1290DECLARE_PER_CPU(struct sched_domain *, sd_asym);
df054e84 1291extern struct static_key_false sched_asym_cpucapacity;
518cd623 1292
63b2ca30 1293struct sched_group_capacity {
97fb7a0a 1294 atomic_t ref;
5e6521ea 1295 /*
172895e6 1296 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1297 * for a single CPU.
5e6521ea 1298 */
97fb7a0a
IM
1299 unsigned long capacity;
1300 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1301 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1302 unsigned long next_update;
1303 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1304
005f874d 1305#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1306 int id;
005f874d
PZ
1307#endif
1308
97fb7a0a 1309 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1310};
1311
1312struct sched_group {
97fb7a0a
IM
1313 struct sched_group *next; /* Must be a circular list */
1314 atomic_t ref;
5e6521ea 1315
97fb7a0a 1316 unsigned int group_weight;
63b2ca30 1317 struct sched_group_capacity *sgc;
97fb7a0a 1318 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1319
1320 /*
1321 * The CPUs this group covers.
1322 *
1323 * NOTE: this field is variable length. (Allocated dynamically
1324 * by attaching extra space to the end of the structure,
1325 * depending on how many CPUs the kernel has booted up with)
1326 */
97fb7a0a 1327 unsigned long cpumask[0];
5e6521ea
LZ
1328};
1329
ae4df9d6 1330static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1331{
1332 return to_cpumask(sg->cpumask);
1333}
1334
1335/*
e5c14b1f 1336 * See build_balance_mask().
5e6521ea 1337 */
e5c14b1f 1338static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1339{
63b2ca30 1340 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1341}
1342
1343/**
97fb7a0a
IM
1344 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1345 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1346 */
1347static inline unsigned int group_first_cpu(struct sched_group *group)
1348{
ae4df9d6 1349 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1350}
1351
c1174876
PZ
1352extern int group_balance_cpu(struct sched_group *sg);
1353
3866e845
SRRH
1354#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1355void register_sched_domain_sysctl(void);
bbdacdfe 1356void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1357void unregister_sched_domain_sysctl(void);
1358#else
1359static inline void register_sched_domain_sysctl(void)
1360{
1361}
bbdacdfe
PZ
1362static inline void dirty_sched_domain_sysctl(int cpu)
1363{
1364}
3866e845
SRRH
1365static inline void unregister_sched_domain_sysctl(void)
1366{
1367}
1368#endif
1369
e3baac47
PZ
1370#else
1371
1372static inline void sched_ttwu_pending(void) { }
1373
518cd623 1374#endif /* CONFIG_SMP */
029632fb 1375
391e43da 1376#include "stats.h"
1051408f 1377#include "autogroup.h"
029632fb
PZ
1378
1379#ifdef CONFIG_CGROUP_SCHED
1380
1381/*
1382 * Return the group to which this tasks belongs.
1383 *
8af01f56
TH
1384 * We cannot use task_css() and friends because the cgroup subsystem
1385 * changes that value before the cgroup_subsys::attach() method is called,
1386 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1387 *
1388 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1389 * core changes this before calling sched_move_task().
1390 *
1391 * Instead we use a 'copy' which is updated from sched_move_task() while
1392 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1393 */
1394static inline struct task_group *task_group(struct task_struct *p)
1395{
8323f26c 1396 return p->sched_task_group;
029632fb
PZ
1397}
1398
1399/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1400static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1401{
1402#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1403 struct task_group *tg = task_group(p);
1404#endif
1405
1406#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1407 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1408 p->se.cfs_rq = tg->cfs_rq[cpu];
1409 p->se.parent = tg->se[cpu];
1410#endif
1411
1412#ifdef CONFIG_RT_GROUP_SCHED
1413 p->rt.rt_rq = tg->rt_rq[cpu];
1414 p->rt.parent = tg->rt_se[cpu];
1415#endif
1416}
1417
1418#else /* CONFIG_CGROUP_SCHED */
1419
1420static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1421static inline struct task_group *task_group(struct task_struct *p)
1422{
1423 return NULL;
1424}
1425
1426#endif /* CONFIG_CGROUP_SCHED */
1427
1428static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1429{
1430 set_task_rq(p, cpu);
1431#ifdef CONFIG_SMP
1432 /*
1433 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1434 * successfuly executed on another CPU. We must ensure that updates of
1435 * per-task data have been completed by this moment.
1436 */
1437 smp_wmb();
c65eacbe
AL
1438#ifdef CONFIG_THREAD_INFO_IN_TASK
1439 p->cpu = cpu;
1440#else
029632fb 1441 task_thread_info(p)->cpu = cpu;
c65eacbe 1442#endif
ac66f547 1443 p->wake_cpu = cpu;
029632fb
PZ
1444#endif
1445}
1446
1447/*
1448 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1449 */
1450#ifdef CONFIG_SCHED_DEBUG
c5905afb 1451# include <linux/static_key.h>
029632fb
PZ
1452# define const_debug __read_mostly
1453#else
1454# define const_debug const
1455#endif
1456
029632fb
PZ
1457#define SCHED_FEAT(name, enabled) \
1458 __SCHED_FEAT_##name ,
1459
1460enum {
391e43da 1461#include "features.h"
f8b6d1cc 1462 __SCHED_FEAT_NR,
029632fb
PZ
1463};
1464
1465#undef SCHED_FEAT
1466
f8b6d1cc 1467#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1468
1469/*
1470 * To support run-time toggling of sched features, all the translation units
1471 * (but core.c) reference the sysctl_sched_features defined in core.c.
1472 */
1473extern const_debug unsigned int sysctl_sched_features;
1474
f8b6d1cc 1475#define SCHED_FEAT(name, enabled) \
c5905afb 1476static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1477{ \
6e76ea8a 1478 return static_key_##enabled(key); \
f8b6d1cc
PZ
1479}
1480
1481#include "features.h"
f8b6d1cc
PZ
1482#undef SCHED_FEAT
1483
c5905afb 1484extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1485#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1486
f8b6d1cc 1487#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1488
1489/*
1490 * Each translation unit has its own copy of sysctl_sched_features to allow
1491 * constants propagation at compile time and compiler optimization based on
1492 * features default.
1493 */
1494#define SCHED_FEAT(name, enabled) \
1495 (1UL << __SCHED_FEAT_##name) * enabled |
1496static const_debug __maybe_unused unsigned int sysctl_sched_features =
1497#include "features.h"
1498 0;
1499#undef SCHED_FEAT
1500
7e6f4c5d 1501#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1502
f8b6d1cc 1503#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1504
2a595721 1505extern struct static_key_false sched_numa_balancing;
cb251765 1506extern struct static_key_false sched_schedstats;
cbee9f88 1507
029632fb
PZ
1508static inline u64 global_rt_period(void)
1509{
1510 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1511}
1512
1513static inline u64 global_rt_runtime(void)
1514{
1515 if (sysctl_sched_rt_runtime < 0)
1516 return RUNTIME_INF;
1517
1518 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1519}
1520
029632fb
PZ
1521static inline int task_current(struct rq *rq, struct task_struct *p)
1522{
1523 return rq->curr == p;
1524}
1525
1526static inline int task_running(struct rq *rq, struct task_struct *p)
1527{
1528#ifdef CONFIG_SMP
1529 return p->on_cpu;
1530#else
1531 return task_current(rq, p);
1532#endif
1533}
1534
da0c1e65
KT
1535static inline int task_on_rq_queued(struct task_struct *p)
1536{
1537 return p->on_rq == TASK_ON_RQ_QUEUED;
1538}
029632fb 1539
cca26e80
KT
1540static inline int task_on_rq_migrating(struct task_struct *p)
1541{
1542 return p->on_rq == TASK_ON_RQ_MIGRATING;
1543}
1544
b13095f0
LZ
1545/*
1546 * wake flags
1547 */
97fb7a0a
IM
1548#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1549#define WF_FORK 0x02 /* Child wakeup after fork */
1550#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1551
029632fb
PZ
1552/*
1553 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1554 * of tasks with abnormal "nice" values across CPUs the contribution that
1555 * each task makes to its run queue's load is weighted according to its
1556 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1557 * scaled version of the new time slice allocation that they receive on time
1558 * slice expiry etc.
1559 */
1560
97fb7a0a
IM
1561#define WEIGHT_IDLEPRIO 3
1562#define WMULT_IDLEPRIO 1431655765
029632fb 1563
97fb7a0a
IM
1564extern const int sched_prio_to_weight[40];
1565extern const u32 sched_prio_to_wmult[40];
029632fb 1566
ff77e468
PZ
1567/*
1568 * {de,en}queue flags:
1569 *
1570 * DEQUEUE_SLEEP - task is no longer runnable
1571 * ENQUEUE_WAKEUP - task just became runnable
1572 *
1573 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1574 * are in a known state which allows modification. Such pairs
1575 * should preserve as much state as possible.
1576 *
1577 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1578 * in the runqueue.
1579 *
1580 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1581 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1582 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1583 *
1584 */
1585
1586#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1587#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1588#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1589#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1590
1de64443 1591#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1592#define ENQUEUE_RESTORE 0x02
1593#define ENQUEUE_MOVE 0x04
0a67d1ee 1594#define ENQUEUE_NOCLOCK 0x08
ff77e468 1595
0a67d1ee
PZ
1596#define ENQUEUE_HEAD 0x10
1597#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1598#ifdef CONFIG_SMP
0a67d1ee 1599#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1600#else
59efa0ba 1601#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1602#endif
c82ba9fa 1603
37e117c0
PZ
1604#define RETRY_TASK ((void *)-1UL)
1605
c82ba9fa
LZ
1606struct sched_class {
1607 const struct sched_class *next;
1608
1609 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1610 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1611 void (*yield_task) (struct rq *rq);
1612 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1613
97fb7a0a 1614 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1615
606dba2e
PZ
1616 /*
1617 * It is the responsibility of the pick_next_task() method that will
1618 * return the next task to call put_prev_task() on the @prev task or
1619 * something equivalent.
37e117c0
PZ
1620 *
1621 * May return RETRY_TASK when it finds a higher prio class has runnable
1622 * tasks.
606dba2e 1623 */
97fb7a0a
IM
1624 struct task_struct * (*pick_next_task)(struct rq *rq,
1625 struct task_struct *prev,
1626 struct rq_flags *rf);
1627 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1628
1629#ifdef CONFIG_SMP
ac66f547 1630 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1631 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1632
97fb7a0a 1633 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1634
1635 void (*set_cpus_allowed)(struct task_struct *p,
1636 const struct cpumask *newmask);
1637
1638 void (*rq_online)(struct rq *rq);
1639 void (*rq_offline)(struct rq *rq);
1640#endif
1641
97fb7a0a
IM
1642 void (*set_curr_task)(struct rq *rq);
1643 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1644 void (*task_fork)(struct task_struct *p);
1645 void (*task_dead)(struct task_struct *p);
c82ba9fa 1646
67dfa1b7
KT
1647 /*
1648 * The switched_from() call is allowed to drop rq->lock, therefore we
1649 * cannot assume the switched_from/switched_to pair is serliazed by
1650 * rq->lock. They are however serialized by p->pi_lock.
1651 */
97fb7a0a
IM
1652 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1653 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1654 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1655 int oldprio);
c82ba9fa 1656
97fb7a0a
IM
1657 unsigned int (*get_rr_interval)(struct rq *rq,
1658 struct task_struct *task);
c82ba9fa 1659
97fb7a0a 1660 void (*update_curr)(struct rq *rq);
6e998916 1661
97fb7a0a
IM
1662#define TASK_SET_GROUP 0
1663#define TASK_MOVE_GROUP 1
ea86cb4b 1664
c82ba9fa 1665#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1666 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1667#endif
1668};
029632fb 1669
3f1d2a31
PZ
1670static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1671{
1672 prev->sched_class->put_prev_task(rq, prev);
1673}
1674
b2bf6c31
PZ
1675static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1676{
1677 curr->sched_class->set_curr_task(rq);
1678}
1679
f5832c19 1680#ifdef CONFIG_SMP
029632fb 1681#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1682#else
1683#define sched_class_highest (&dl_sched_class)
1684#endif
029632fb
PZ
1685#define for_each_class(class) \
1686 for (class = sched_class_highest; class; class = class->next)
1687
1688extern const struct sched_class stop_sched_class;
aab03e05 1689extern const struct sched_class dl_sched_class;
029632fb
PZ
1690extern const struct sched_class rt_sched_class;
1691extern const struct sched_class fair_sched_class;
1692extern const struct sched_class idle_sched_class;
1693
1694
1695#ifdef CONFIG_SMP
1696
63b2ca30 1697extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1698
7caff66f 1699extern void trigger_load_balance(struct rq *rq);
029632fb 1700
c5b28038
PZ
1701extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1702
029632fb
PZ
1703#endif
1704
442bf3aa
DL
1705#ifdef CONFIG_CPU_IDLE
1706static inline void idle_set_state(struct rq *rq,
1707 struct cpuidle_state *idle_state)
1708{
1709 rq->idle_state = idle_state;
1710}
1711
1712static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1713{
9148a3a1 1714 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1715
442bf3aa
DL
1716 return rq->idle_state;
1717}
1718#else
1719static inline void idle_set_state(struct rq *rq,
1720 struct cpuidle_state *idle_state)
1721{
1722}
1723
1724static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1725{
1726 return NULL;
1727}
1728#endif
1729
8663effb
SRV
1730extern void schedule_idle(void);
1731
029632fb
PZ
1732extern void sysrq_sched_debug_show(void);
1733extern void sched_init_granularity(void);
1734extern void update_max_interval(void);
1baca4ce
JL
1735
1736extern void init_sched_dl_class(void);
029632fb
PZ
1737extern void init_sched_rt_class(void);
1738extern void init_sched_fair_class(void);
1739
9059393e
VG
1740extern void reweight_task(struct task_struct *p, int prio);
1741
8875125e 1742extern void resched_curr(struct rq *rq);
029632fb
PZ
1743extern void resched_cpu(int cpu);
1744
1745extern struct rt_bandwidth def_rt_bandwidth;
1746extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1747
332ac17e
DF
1748extern struct dl_bandwidth def_dl_bandwidth;
1749extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1750extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1751extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1752extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1753
97fb7a0a
IM
1754#define BW_SHIFT 20
1755#define BW_UNIT (1 << BW_SHIFT)
1756#define RATIO_SHIFT 8
332ac17e
DF
1757unsigned long to_ratio(u64 period, u64 runtime);
1758
540247fb 1759extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1760extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1761
76d92ac3
FW
1762#ifdef CONFIG_NO_HZ_FULL
1763extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1764extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1765
1766/*
1767 * Tick may be needed by tasks in the runqueue depending on their policy and
1768 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1769 * nohz mode if necessary.
1770 */
1771static inline void sched_update_tick_dependency(struct rq *rq)
1772{
1773 int cpu;
1774
1775 if (!tick_nohz_full_enabled())
1776 return;
1777
1778 cpu = cpu_of(rq);
1779
1780 if (!tick_nohz_full_cpu(cpu))
1781 return;
1782
1783 if (sched_can_stop_tick(rq))
1784 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1785 else
1786 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1787}
1788#else
d84b3131 1789static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1790static inline void sched_update_tick_dependency(struct rq *rq) { }
1791#endif
1792
72465447 1793static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1794{
72465447
KT
1795 unsigned prev_nr = rq->nr_running;
1796
1797 rq->nr_running = prev_nr + count;
9f3660c2 1798
72465447 1799 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1 1800#ifdef CONFIG_SMP
e90c8fe1
VS
1801 if (!READ_ONCE(rq->rd->overload))
1802 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1803#endif
4486edd1 1804 }
76d92ac3
FW
1805
1806 sched_update_tick_dependency(rq);
029632fb
PZ
1807}
1808
72465447 1809static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1810{
72465447 1811 rq->nr_running -= count;
76d92ac3
FW
1812 /* Check if we still need preemption */
1813 sched_update_tick_dependency(rq);
029632fb
PZ
1814}
1815
029632fb
PZ
1816extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1817extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1818
1819extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1820
029632fb
PZ
1821extern const_debug unsigned int sysctl_sched_nr_migrate;
1822extern const_debug unsigned int sysctl_sched_migration_cost;
1823
029632fb
PZ
1824#ifdef CONFIG_SCHED_HRTICK
1825
1826/*
1827 * Use hrtick when:
1828 * - enabled by features
1829 * - hrtimer is actually high res
1830 */
1831static inline int hrtick_enabled(struct rq *rq)
1832{
1833 if (!sched_feat(HRTICK))
1834 return 0;
1835 if (!cpu_active(cpu_of(rq)))
1836 return 0;
1837 return hrtimer_is_hres_active(&rq->hrtick_timer);
1838}
1839
1840void hrtick_start(struct rq *rq, u64 delay);
1841
b39e66ea
MG
1842#else
1843
1844static inline int hrtick_enabled(struct rq *rq)
1845{
1846 return 0;
1847}
1848
029632fb
PZ
1849#endif /* CONFIG_SCHED_HRTICK */
1850
dfbca41f
PZ
1851#ifndef arch_scale_freq_capacity
1852static __always_inline
7673c8a4 1853unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1854{
1855 return SCHED_CAPACITY_SCALE;
1856}
1857#endif
b5b4860d 1858
7e1a9208 1859#ifdef CONFIG_SMP
8cd5601c
MR
1860#ifndef arch_scale_cpu_capacity
1861static __always_inline
1862unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1863{
e3279a2e 1864 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1865 return sd->smt_gain / sd->span_weight;
1866
1867 return SCHED_CAPACITY_SCALE;
1868}
1869#endif
029632fb 1870#else
7e1a9208
JL
1871#ifndef arch_scale_cpu_capacity
1872static __always_inline
1873unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1874{
1875 return SCHED_CAPACITY_SCALE;
1876}
1877#endif
029632fb
PZ
1878#endif
1879
029632fb
PZ
1880#ifdef CONFIG_SMP
1881#ifdef CONFIG_PREEMPT
1882
1883static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1884
1885/*
1886 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1887 * way at the expense of forcing extra atomic operations in all
1888 * invocations. This assures that the double_lock is acquired using the
1889 * same underlying policy as the spinlock_t on this architecture, which
1890 * reduces latency compared to the unfair variant below. However, it
1891 * also adds more overhead and therefore may reduce throughput.
1892 */
1893static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1894 __releases(this_rq->lock)
1895 __acquires(busiest->lock)
1896 __acquires(this_rq->lock)
1897{
1898 raw_spin_unlock(&this_rq->lock);
1899 double_rq_lock(this_rq, busiest);
1900
1901 return 1;
1902}
1903
1904#else
1905/*
1906 * Unfair double_lock_balance: Optimizes throughput at the expense of
1907 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1908 * already in proper order on entry. This favors lower CPU-ids and will
1909 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1910 * regardless of entry order into the function.
1911 */
1912static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1913 __releases(this_rq->lock)
1914 __acquires(busiest->lock)
1915 __acquires(this_rq->lock)
1916{
1917 int ret = 0;
1918
1919 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1920 if (busiest < this_rq) {
1921 raw_spin_unlock(&this_rq->lock);
1922 raw_spin_lock(&busiest->lock);
1923 raw_spin_lock_nested(&this_rq->lock,
1924 SINGLE_DEPTH_NESTING);
1925 ret = 1;
1926 } else
1927 raw_spin_lock_nested(&busiest->lock,
1928 SINGLE_DEPTH_NESTING);
1929 }
1930 return ret;
1931}
1932
1933#endif /* CONFIG_PREEMPT */
1934
1935/*
1936 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1937 */
1938static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1939{
1940 if (unlikely(!irqs_disabled())) {
97fb7a0a 1941 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1942 raw_spin_unlock(&this_rq->lock);
1943 BUG_ON(1);
1944 }
1945
1946 return _double_lock_balance(this_rq, busiest);
1947}
1948
1949static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1950 __releases(busiest->lock)
1951{
1952 raw_spin_unlock(&busiest->lock);
1953 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1954}
1955
74602315
PZ
1956static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1957{
1958 if (l1 > l2)
1959 swap(l1, l2);
1960
1961 spin_lock(l1);
1962 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1963}
1964
60e69eed
MG
1965static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1966{
1967 if (l1 > l2)
1968 swap(l1, l2);
1969
1970 spin_lock_irq(l1);
1971 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1972}
1973
74602315
PZ
1974static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1975{
1976 if (l1 > l2)
1977 swap(l1, l2);
1978
1979 raw_spin_lock(l1);
1980 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1981}
1982
029632fb
PZ
1983/*
1984 * double_rq_lock - safely lock two runqueues
1985 *
1986 * Note this does not disable interrupts like task_rq_lock,
1987 * you need to do so manually before calling.
1988 */
1989static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1990 __acquires(rq1->lock)
1991 __acquires(rq2->lock)
1992{
1993 BUG_ON(!irqs_disabled());
1994 if (rq1 == rq2) {
1995 raw_spin_lock(&rq1->lock);
1996 __acquire(rq2->lock); /* Fake it out ;) */
1997 } else {
1998 if (rq1 < rq2) {
1999 raw_spin_lock(&rq1->lock);
2000 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2001 } else {
2002 raw_spin_lock(&rq2->lock);
2003 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2004 }
2005 }
2006}
2007
2008/*
2009 * double_rq_unlock - safely unlock two runqueues
2010 *
2011 * Note this does not restore interrupts like task_rq_unlock,
2012 * you need to do so manually after calling.
2013 */
2014static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2015 __releases(rq1->lock)
2016 __releases(rq2->lock)
2017{
2018 raw_spin_unlock(&rq1->lock);
2019 if (rq1 != rq2)
2020 raw_spin_unlock(&rq2->lock);
2021 else
2022 __release(rq2->lock);
2023}
2024
f2cb1360
IM
2025extern void set_rq_online (struct rq *rq);
2026extern void set_rq_offline(struct rq *rq);
2027extern bool sched_smp_initialized;
2028
029632fb
PZ
2029#else /* CONFIG_SMP */
2030
2031/*
2032 * double_rq_lock - safely lock two runqueues
2033 *
2034 * Note this does not disable interrupts like task_rq_lock,
2035 * you need to do so manually before calling.
2036 */
2037static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2038 __acquires(rq1->lock)
2039 __acquires(rq2->lock)
2040{
2041 BUG_ON(!irqs_disabled());
2042 BUG_ON(rq1 != rq2);
2043 raw_spin_lock(&rq1->lock);
2044 __acquire(rq2->lock); /* Fake it out ;) */
2045}
2046
2047/*
2048 * double_rq_unlock - safely unlock two runqueues
2049 *
2050 * Note this does not restore interrupts like task_rq_unlock,
2051 * you need to do so manually after calling.
2052 */
2053static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2054 __releases(rq1->lock)
2055 __releases(rq2->lock)
2056{
2057 BUG_ON(rq1 != rq2);
2058 raw_spin_unlock(&rq1->lock);
2059 __release(rq2->lock);
2060}
2061
2062#endif
2063
2064extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2065extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2066
2067#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2068extern bool sched_debug_enabled;
2069
029632fb
PZ
2070extern void print_cfs_stats(struct seq_file *m, int cpu);
2071extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2072extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2073extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2074extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2075extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2076#ifdef CONFIG_NUMA_BALANCING
2077extern void
2078show_numa_stats(struct task_struct *p, struct seq_file *m);
2079extern void
2080print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2081 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2082#endif /* CONFIG_NUMA_BALANCING */
2083#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2084
2085extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2086extern void init_rt_rq(struct rt_rq *rt_rq);
2087extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2088
1ee14e6c
BS
2089extern void cfs_bandwidth_usage_inc(void);
2090extern void cfs_bandwidth_usage_dec(void);
1c792db7 2091
3451d024 2092#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2093#define NOHZ_BALANCE_KICK_BIT 0
2094#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2095
a22e47a4 2096#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2097#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2098
2099#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2100
2101#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2102
00357f5e 2103extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2104#else
00357f5e 2105static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2106#endif
73fbec60 2107
daec5798
LA
2108
2109#ifdef CONFIG_SMP
2110static inline
2111void __dl_update(struct dl_bw *dl_b, s64 bw)
2112{
2113 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2114 int i;
2115
2116 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2117 "sched RCU must be held");
2118 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2119 struct rq *rq = cpu_rq(i);
2120
2121 rq->dl.extra_bw += bw;
2122 }
2123}
2124#else
2125static inline
2126void __dl_update(struct dl_bw *dl_b, s64 bw)
2127{
2128 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2129
2130 dl->extra_bw += bw;
2131}
2132#endif
2133
2134
73fbec60 2135#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2136struct irqtime {
25e2d8c1 2137 u64 total;
a499a5a1 2138 u64 tick_delta;
19d23dbf
FW
2139 u64 irq_start_time;
2140 struct u64_stats_sync sync;
2141};
73fbec60 2142
19d23dbf 2143DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2144
25e2d8c1
FW
2145/*
2146 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2147 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2148 * and never move forward.
2149 */
73fbec60
FW
2150static inline u64 irq_time_read(int cpu)
2151{
19d23dbf
FW
2152 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2153 unsigned int seq;
2154 u64 total;
73fbec60
FW
2155
2156 do {
19d23dbf 2157 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2158 total = irqtime->total;
19d23dbf 2159 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2160
19d23dbf 2161 return total;
73fbec60 2162}
73fbec60 2163#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2164
2165#ifdef CONFIG_CPU_FREQ
2166DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2167
2168/**
2169 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2170 * @rq: Runqueue to carry out the update for.
58919e83 2171 * @flags: Update reason flags.
adaf9fcd 2172 *
58919e83
RW
2173 * This function is called by the scheduler on the CPU whose utilization is
2174 * being updated.
adaf9fcd
RW
2175 *
2176 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2177 *
2178 * The way cpufreq is currently arranged requires it to evaluate the CPU
2179 * performance state (frequency/voltage) on a regular basis to prevent it from
2180 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2181 * That is not guaranteed to happen if the updates are only triggered from CFS
2182 * and DL, though, because they may not be coming in if only RT tasks are
2183 * active all the time (or there are RT tasks only).
adaf9fcd 2184 *
e0367b12
JL
2185 * As a workaround for that issue, this function is called periodically by the
2186 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2187 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2188 * solutions targeted more specifically at RT tasks.
adaf9fcd 2189 */
12bde33d 2190static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2191{
58919e83
RW
2192 struct update_util_data *data;
2193
674e7541
VK
2194 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2195 cpu_of(rq)));
58919e83 2196 if (data)
12bde33d
RW
2197 data->func(data, rq_clock(rq), flags);
2198}
adaf9fcd 2199#else
12bde33d 2200static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2201#endif /* CONFIG_CPU_FREQ */
be53f58f 2202
9bdcb44e 2203#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2204# ifndef arch_scale_freq_invariant
2205# define arch_scale_freq_invariant() true
2206# endif
2207#else
2208# define arch_scale_freq_invariant() false
9bdcb44e 2209#endif
d4edd662 2210
794a56eb 2211#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
8cc90515 2212static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2213{
2214 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2215}
2216
8cc90515
VG
2217static inline unsigned long cpu_util_dl(struct rq *rq)
2218{
2219 return READ_ONCE(rq->avg_dl.util_avg);
2220}
2221
d4edd662
JL
2222static inline unsigned long cpu_util_cfs(struct rq *rq)
2223{
a07630b8
PB
2224 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2225
2226 if (sched_feat(UTIL_EST)) {
2227 util = max_t(unsigned long, util,
2228 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2229 }
2230
2231 return util;
d4edd662 2232}
371bf427
VG
2233
2234static inline unsigned long cpu_util_rt(struct rq *rq)
2235{
dfa444dc 2236 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2237}
2e62c474 2238#endif
9033ea11 2239
11d4afd4 2240#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2241static inline unsigned long cpu_util_irq(struct rq *rq)
2242{
2243 return rq->avg_irq.util_avg;
2244}
2e62c474
VG
2245
2246static inline
2247unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2248{
2249 util *= (max - irq);
2250 util /= max;
2251
2252 return util;
2253
2254}
9033ea11
VG
2255#else
2256static inline unsigned long cpu_util_irq(struct rq *rq)
2257{
2258 return 0;
2259}
2260
2e62c474
VG
2261static inline
2262unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2263{
2264 return util;
2265}
794a56eb 2266#endif