sched: Remove extra put_online_cpus() inside sched_setaffinity()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
f809ca9a 9#include <linux/slab.h>
029632fb 10
391e43da 11#include "cpupri.h"
60fed789 12#include "cpuacct.h"
029632fb 13
45ceebf7
PG
14struct rq;
15
029632fb
PZ
16extern __read_mostly int scheduler_running;
17
45ceebf7
PG
18extern unsigned long calc_load_update;
19extern atomic_long_t calc_load_tasks;
20
21extern long calc_load_fold_active(struct rq *this_rq);
22extern void update_cpu_load_active(struct rq *this_rq);
23
029632fb
PZ
24/*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33/*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42/*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
cc1f4b1f
LZ
47/*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60# define SCHED_LOAD_RESOLUTION 10
61# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63#else
64# define SCHED_LOAD_RESOLUTION 0
65# define scale_load(w) (w)
66# define scale_load_down(w) (w)
67#endif
68
69#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
029632fb
PZ
72#define NICE_0_LOAD SCHED_LOAD_SCALE
73#define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
029632fb 77 */
029632fb
PZ
78
79/*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82#define RUNTIME_INF ((u64)~0ULL)
83
84static inline int rt_policy(int policy)
85{
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89}
90
91static inline int task_has_rt_policy(struct task_struct *p)
92{
93 return rt_policy(p->policy);
94}
95
96/*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102};
103
104struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110};
111
112extern struct mutex sched_domains_mutex;
113
114#ifdef CONFIG_CGROUP_SCHED
115
116#include <linux/cgroup.h>
117
118struct cfs_rq;
119struct rt_rq;
120
35cf4e50 121extern struct list_head task_groups;
029632fb
PZ
122
123struct cfs_bandwidth {
124#ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138#endif
139};
140
141/* task group related information */
142struct task_group {
143 struct cgroup_subsys_state css;
144
145#ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
fa6bddeb 152#ifdef CONFIG_SMP
bf5b986e 153 atomic_long_t load_avg;
bb17f655 154 atomic_t runnable_avg;
029632fb 155#endif
fa6bddeb 156#endif
029632fb
PZ
157
158#ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163#endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172#ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174#endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177};
178
179#ifdef CONFIG_FAIR_GROUP_SCHED
180#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182/*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190#define MIN_SHARES (1UL << 1)
191#define MAX_SHARES (1UL << 18)
192#endif
193
029632fb
PZ
194typedef int (*tg_visitor)(struct task_group *, void *);
195
196extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199/*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206{
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208}
209
210extern int tg_nop(struct task_group *tg, void *data);
211
212extern void free_fair_sched_group(struct task_group *tg);
213extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225extern void free_rt_sched_group(struct task_group *tg);
226extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
25cc7da7
LZ
231extern struct task_group *sched_create_group(struct task_group *parent);
232extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234extern void sched_destroy_group(struct task_group *tg);
235extern void sched_offline_group(struct task_group *tg);
236
237extern void sched_move_task(struct task_struct *tsk);
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241#endif
242
029632fb
PZ
243#else /* CONFIG_CGROUP_SCHED */
244
245struct cfs_bandwidth { };
246
247#endif /* CONFIG_CGROUP_SCHED */
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
c82513e5 252 unsigned int nr_running, h_nr_running;
029632fb
PZ
253
254 u64 exec_clock;
255 u64 min_vruntime;
256#ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258#endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
029632fb
PZ
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269#ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271#endif
272
2dac754e
PT
273#ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
72a4cf20 280 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 281 atomic64_t decay_counter;
9ee474f5 282 u64 last_decay;
2509940f 283 atomic_long_t removed_load;
141965c7 284
c566e8e9 285#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 286 /* Required to track per-cpu representation of a task_group */
bb17f655 287 u32 tg_runnable_contrib;
bf5b986e 288 unsigned long tg_load_contrib;
82958366
PT
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
68520796
VD
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
300#endif /* CONFIG_SMP */
301
029632fb
PZ
302#ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
029632fb
PZ
317#ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
f1b17280
PT
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
029632fb
PZ
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326#endif /* CONFIG_CFS_BANDWIDTH */
327#endif /* CONFIG_FAIR_GROUP_SCHED */
328};
329
330static inline int rt_bandwidth_enabled(void)
331{
332 return sysctl_sched_rt_runtime >= 0;
333}
334
335/* Real-Time classes' related field in a runqueue: */
336struct rt_rq {
337 struct rt_prio_array active;
c82513e5 338 unsigned int rt_nr_running;
029632fb
PZ
339#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342#ifdef CONFIG_SMP
343 int next; /* next highest */
344#endif
345 } highest_prio;
346#endif
347#ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352#endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359#ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
029632fb
PZ
363 struct task_group *tg;
364#endif
365};
366
367#ifdef CONFIG_SMP
368
369/*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390};
391
392extern struct root_domain def_root_domain;
393
394#endif /* CONFIG_SMP */
395
396/*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
c82513e5 411 unsigned int nr_running;
0ec8aa00
PZ
412#ifdef CONFIG_NUMA_BALANCING
413 unsigned int nr_numa_running;
414 unsigned int nr_preferred_running;
415#endif
029632fb
PZ
416 #define CPU_LOAD_IDX_MAX 5
417 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
418 unsigned long last_load_update_tick;
3451d024 419#ifdef CONFIG_NO_HZ_COMMON
029632fb 420 u64 nohz_stamp;
1c792db7 421 unsigned long nohz_flags;
265f22a9
FW
422#endif
423#ifdef CONFIG_NO_HZ_FULL
424 unsigned long last_sched_tick;
029632fb
PZ
425#endif
426 int skip_clock_update;
427
428 /* capture load from *all* tasks on this cpu: */
429 struct load_weight load;
430 unsigned long nr_load_updates;
431 u64 nr_switches;
432
433 struct cfs_rq cfs;
434 struct rt_rq rt;
435
436#ifdef CONFIG_FAIR_GROUP_SCHED
437 /* list of leaf cfs_rq on this cpu: */
438 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
439#endif /* CONFIG_FAIR_GROUP_SCHED */
440
029632fb
PZ
441#ifdef CONFIG_RT_GROUP_SCHED
442 struct list_head leaf_rt_rq_list;
443#endif
444
445 /*
446 * This is part of a global counter where only the total sum
447 * over all CPUs matters. A task can increase this counter on
448 * one CPU and if it got migrated afterwards it may decrease
449 * it on another CPU. Always updated under the runqueue lock:
450 */
451 unsigned long nr_uninterruptible;
452
453 struct task_struct *curr, *idle, *stop;
454 unsigned long next_balance;
455 struct mm_struct *prev_mm;
456
457 u64 clock;
458 u64 clock_task;
459
460 atomic_t nr_iowait;
461
462#ifdef CONFIG_SMP
463 struct root_domain *rd;
464 struct sched_domain *sd;
465
466 unsigned long cpu_power;
467
468 unsigned char idle_balance;
469 /* For active balancing */
470 int post_schedule;
471 int active_balance;
472 int push_cpu;
473 struct cpu_stop_work active_balance_work;
474 /* cpu of this runqueue: */
475 int cpu;
476 int online;
477
367456c7
PZ
478 struct list_head cfs_tasks;
479
029632fb
PZ
480 u64 rt_avg;
481 u64 age_stamp;
482 u64 idle_stamp;
483 u64 avg_idle;
9bd721c5
JL
484
485 /* This is used to determine avg_idle's max value */
486 u64 max_idle_balance_cost;
029632fb
PZ
487#endif
488
489#ifdef CONFIG_IRQ_TIME_ACCOUNTING
490 u64 prev_irq_time;
491#endif
492#ifdef CONFIG_PARAVIRT
493 u64 prev_steal_time;
494#endif
495#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
496 u64 prev_steal_time_rq;
497#endif
498
499 /* calc_load related fields */
500 unsigned long calc_load_update;
501 long calc_load_active;
502
503#ifdef CONFIG_SCHED_HRTICK
504#ifdef CONFIG_SMP
505 int hrtick_csd_pending;
506 struct call_single_data hrtick_csd;
507#endif
508 struct hrtimer hrtick_timer;
509#endif
510
511#ifdef CONFIG_SCHEDSTATS
512 /* latency stats */
513 struct sched_info rq_sched_info;
514 unsigned long long rq_cpu_time;
515 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
516
517 /* sys_sched_yield() stats */
518 unsigned int yld_count;
519
520 /* schedule() stats */
029632fb
PZ
521 unsigned int sched_count;
522 unsigned int sched_goidle;
523
524 /* try_to_wake_up() stats */
525 unsigned int ttwu_count;
526 unsigned int ttwu_local;
527#endif
528
529#ifdef CONFIG_SMP
530 struct llist_head wake_list;
531#endif
18bf2805
BS
532
533 struct sched_avg avg;
029632fb
PZ
534};
535
536static inline int cpu_of(struct rq *rq)
537{
538#ifdef CONFIG_SMP
539 return rq->cpu;
540#else
541 return 0;
542#endif
543}
544
545DECLARE_PER_CPU(struct rq, runqueues);
546
518cd623
PZ
547#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
548#define this_rq() (&__get_cpu_var(runqueues))
549#define task_rq(p) cpu_rq(task_cpu(p))
550#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
551#define raw_rq() (&__raw_get_cpu_var(runqueues))
552
78becc27
FW
553static inline u64 rq_clock(struct rq *rq)
554{
555 return rq->clock;
556}
557
558static inline u64 rq_clock_task(struct rq *rq)
559{
560 return rq->clock_task;
561}
562
f809ca9a 563#ifdef CONFIG_NUMA_BALANCING
0ec8aa00 564extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 565extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 566extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
567#endif /* CONFIG_NUMA_BALANCING */
568
518cd623
PZ
569#ifdef CONFIG_SMP
570
029632fb
PZ
571#define rcu_dereference_check_sched_domain(p) \
572 rcu_dereference_check((p), \
573 lockdep_is_held(&sched_domains_mutex))
574
575/*
576 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
577 * See detach_destroy_domains: synchronize_sched for details.
578 *
579 * The domain tree of any CPU may only be accessed from within
580 * preempt-disabled sections.
581 */
582#define for_each_domain(cpu, __sd) \
518cd623
PZ
583 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
584 __sd; __sd = __sd->parent)
029632fb 585
77e81365
SS
586#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
587
518cd623
PZ
588/**
589 * highest_flag_domain - Return highest sched_domain containing flag.
590 * @cpu: The cpu whose highest level of sched domain is to
591 * be returned.
592 * @flag: The flag to check for the highest sched_domain
593 * for the given cpu.
594 *
595 * Returns the highest sched_domain of a cpu which contains the given flag.
596 */
597static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
598{
599 struct sched_domain *sd, *hsd = NULL;
600
601 for_each_domain(cpu, sd) {
602 if (!(sd->flags & flag))
603 break;
604 hsd = sd;
605 }
606
607 return hsd;
608}
609
fb13c7ee
MG
610static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
611{
612 struct sched_domain *sd;
613
614 for_each_domain(cpu, sd) {
615 if (sd->flags & flag)
616 break;
617 }
618
619 return sd;
620}
621
518cd623 622DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 623DECLARE_PER_CPU(int, sd_llc_size);
518cd623 624DECLARE_PER_CPU(int, sd_llc_id);
fb13c7ee 625DECLARE_PER_CPU(struct sched_domain *, sd_numa);
518cd623 626
5e6521ea
LZ
627struct sched_group_power {
628 atomic_t ref;
629 /*
630 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
631 * single CPU.
632 */
633 unsigned int power, power_orig;
634 unsigned long next_update;
6263322c 635 int imbalance; /* XXX unrelated to power but shared group state */
5e6521ea
LZ
636 /*
637 * Number of busy cpus in this group.
638 */
639 atomic_t nr_busy_cpus;
640
641 unsigned long cpumask[0]; /* iteration mask */
642};
643
644struct sched_group {
645 struct sched_group *next; /* Must be a circular list */
646 atomic_t ref;
647
648 unsigned int group_weight;
649 struct sched_group_power *sgp;
650
651 /*
652 * The CPUs this group covers.
653 *
654 * NOTE: this field is variable length. (Allocated dynamically
655 * by attaching extra space to the end of the structure,
656 * depending on how many CPUs the kernel has booted up with)
657 */
658 unsigned long cpumask[0];
659};
660
661static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
662{
663 return to_cpumask(sg->cpumask);
664}
665
666/*
667 * cpumask masking which cpus in the group are allowed to iterate up the domain
668 * tree.
669 */
670static inline struct cpumask *sched_group_mask(struct sched_group *sg)
671{
672 return to_cpumask(sg->sgp->cpumask);
673}
674
675/**
676 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
677 * @group: The group whose first cpu is to be returned.
678 */
679static inline unsigned int group_first_cpu(struct sched_group *group)
680{
681 return cpumask_first(sched_group_cpus(group));
682}
683
c1174876
PZ
684extern int group_balance_cpu(struct sched_group *sg);
685
518cd623 686#endif /* CONFIG_SMP */
029632fb 687
391e43da
PZ
688#include "stats.h"
689#include "auto_group.h"
029632fb
PZ
690
691#ifdef CONFIG_CGROUP_SCHED
692
693/*
694 * Return the group to which this tasks belongs.
695 *
8af01f56
TH
696 * We cannot use task_css() and friends because the cgroup subsystem
697 * changes that value before the cgroup_subsys::attach() method is called,
698 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
699 *
700 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
701 * core changes this before calling sched_move_task().
702 *
703 * Instead we use a 'copy' which is updated from sched_move_task() while
704 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
705 */
706static inline struct task_group *task_group(struct task_struct *p)
707{
8323f26c 708 return p->sched_task_group;
029632fb
PZ
709}
710
711/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
712static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
713{
714#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
715 struct task_group *tg = task_group(p);
716#endif
717
718#ifdef CONFIG_FAIR_GROUP_SCHED
719 p->se.cfs_rq = tg->cfs_rq[cpu];
720 p->se.parent = tg->se[cpu];
721#endif
722
723#ifdef CONFIG_RT_GROUP_SCHED
724 p->rt.rt_rq = tg->rt_rq[cpu];
725 p->rt.parent = tg->rt_se[cpu];
726#endif
727}
728
729#else /* CONFIG_CGROUP_SCHED */
730
731static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
732static inline struct task_group *task_group(struct task_struct *p)
733{
734 return NULL;
735}
736
737#endif /* CONFIG_CGROUP_SCHED */
738
739static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
740{
741 set_task_rq(p, cpu);
742#ifdef CONFIG_SMP
743 /*
744 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
745 * successfuly executed on another CPU. We must ensure that updates of
746 * per-task data have been completed by this moment.
747 */
748 smp_wmb();
749 task_thread_info(p)->cpu = cpu;
ac66f547 750 p->wake_cpu = cpu;
029632fb
PZ
751#endif
752}
753
754/*
755 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
756 */
757#ifdef CONFIG_SCHED_DEBUG
c5905afb 758# include <linux/static_key.h>
029632fb
PZ
759# define const_debug __read_mostly
760#else
761# define const_debug const
762#endif
763
764extern const_debug unsigned int sysctl_sched_features;
765
766#define SCHED_FEAT(name, enabled) \
767 __SCHED_FEAT_##name ,
768
769enum {
391e43da 770#include "features.h"
f8b6d1cc 771 __SCHED_FEAT_NR,
029632fb
PZ
772};
773
774#undef SCHED_FEAT
775
f8b6d1cc 776#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 777static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 778{
c5905afb 779 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
780}
781
c5905afb 782static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 783{
c5905afb 784 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
785}
786
787#define SCHED_FEAT(name, enabled) \
c5905afb 788static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
789{ \
790 return static_branch__##enabled(key); \
791}
792
793#include "features.h"
794
795#undef SCHED_FEAT
796
c5905afb 797extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
798#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
799#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 800#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 801#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 802
cbee9f88
PZ
803#ifdef CONFIG_NUMA_BALANCING
804#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
805#ifdef CONFIG_SCHED_DEBUG
806#define numabalancing_enabled sched_feat_numa(NUMA)
807#else
808extern bool numabalancing_enabled;
809#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
810#else
811#define sched_feat_numa(x) (0)
3105b86a
MG
812#define numabalancing_enabled (0)
813#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 814
029632fb
PZ
815static inline u64 global_rt_period(void)
816{
817 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
818}
819
820static inline u64 global_rt_runtime(void)
821{
822 if (sysctl_sched_rt_runtime < 0)
823 return RUNTIME_INF;
824
825 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
826}
827
828
829
830static inline int task_current(struct rq *rq, struct task_struct *p)
831{
832 return rq->curr == p;
833}
834
835static inline int task_running(struct rq *rq, struct task_struct *p)
836{
837#ifdef CONFIG_SMP
838 return p->on_cpu;
839#else
840 return task_current(rq, p);
841#endif
842}
843
844
845#ifndef prepare_arch_switch
846# define prepare_arch_switch(next) do { } while (0)
847#endif
848#ifndef finish_arch_switch
849# define finish_arch_switch(prev) do { } while (0)
850#endif
01f23e16
CM
851#ifndef finish_arch_post_lock_switch
852# define finish_arch_post_lock_switch() do { } while (0)
853#endif
029632fb
PZ
854
855#ifndef __ARCH_WANT_UNLOCKED_CTXSW
856static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
857{
858#ifdef CONFIG_SMP
859 /*
860 * We can optimise this out completely for !SMP, because the
861 * SMP rebalancing from interrupt is the only thing that cares
862 * here.
863 */
864 next->on_cpu = 1;
865#endif
866}
867
868static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
869{
870#ifdef CONFIG_SMP
871 /*
872 * After ->on_cpu is cleared, the task can be moved to a different CPU.
873 * We must ensure this doesn't happen until the switch is completely
874 * finished.
875 */
876 smp_wmb();
877 prev->on_cpu = 0;
878#endif
879#ifdef CONFIG_DEBUG_SPINLOCK
880 /* this is a valid case when another task releases the spinlock */
881 rq->lock.owner = current;
882#endif
883 /*
884 * If we are tracking spinlock dependencies then we have to
885 * fix up the runqueue lock - which gets 'carried over' from
886 * prev into current:
887 */
888 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
889
890 raw_spin_unlock_irq(&rq->lock);
891}
892
893#else /* __ARCH_WANT_UNLOCKED_CTXSW */
894static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
895{
896#ifdef CONFIG_SMP
897 /*
898 * We can optimise this out completely for !SMP, because the
899 * SMP rebalancing from interrupt is the only thing that cares
900 * here.
901 */
902 next->on_cpu = 1;
903#endif
029632fb 904 raw_spin_unlock(&rq->lock);
029632fb
PZ
905}
906
907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->on_cpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->on_cpu = 0;
917#endif
029632fb 918 local_irq_enable();
029632fb
PZ
919}
920#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
921
b13095f0
LZ
922/*
923 * wake flags
924 */
925#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
926#define WF_FORK 0x02 /* child wakeup after fork */
927#define WF_MIGRATED 0x4 /* internal use, task got migrated */
928
029632fb
PZ
929/*
930 * To aid in avoiding the subversion of "niceness" due to uneven distribution
931 * of tasks with abnormal "nice" values across CPUs the contribution that
932 * each task makes to its run queue's load is weighted according to its
933 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
934 * scaled version of the new time slice allocation that they receive on time
935 * slice expiry etc.
936 */
937
938#define WEIGHT_IDLEPRIO 3
939#define WMULT_IDLEPRIO 1431655765
940
941/*
942 * Nice levels are multiplicative, with a gentle 10% change for every
943 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
944 * nice 1, it will get ~10% less CPU time than another CPU-bound task
945 * that remained on nice 0.
946 *
947 * The "10% effect" is relative and cumulative: from _any_ nice level,
948 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
949 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
950 * If a task goes up by ~10% and another task goes down by ~10% then
951 * the relative distance between them is ~25%.)
952 */
953static const int prio_to_weight[40] = {
954 /* -20 */ 88761, 71755, 56483, 46273, 36291,
955 /* -15 */ 29154, 23254, 18705, 14949, 11916,
956 /* -10 */ 9548, 7620, 6100, 4904, 3906,
957 /* -5 */ 3121, 2501, 1991, 1586, 1277,
958 /* 0 */ 1024, 820, 655, 526, 423,
959 /* 5 */ 335, 272, 215, 172, 137,
960 /* 10 */ 110, 87, 70, 56, 45,
961 /* 15 */ 36, 29, 23, 18, 15,
962};
963
964/*
965 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
966 *
967 * In cases where the weight does not change often, we can use the
968 * precalculated inverse to speed up arithmetics by turning divisions
969 * into multiplications:
970 */
971static const u32 prio_to_wmult[40] = {
972 /* -20 */ 48388, 59856, 76040, 92818, 118348,
973 /* -15 */ 147320, 184698, 229616, 287308, 360437,
974 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
975 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
976 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
977 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
978 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
979 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
980};
981
c82ba9fa
LZ
982#define ENQUEUE_WAKEUP 1
983#define ENQUEUE_HEAD 2
984#ifdef CONFIG_SMP
985#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
986#else
987#define ENQUEUE_WAKING 0
988#endif
989
990#define DEQUEUE_SLEEP 1
991
992struct sched_class {
993 const struct sched_class *next;
994
995 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
996 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
997 void (*yield_task) (struct rq *rq);
998 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
999
1000 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1001
1002 struct task_struct * (*pick_next_task) (struct rq *rq);
1003 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1004
1005#ifdef CONFIG_SMP
ac66f547 1006 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
1007 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1008
1009 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1010 void (*post_schedule) (struct rq *this_rq);
1011 void (*task_waking) (struct task_struct *task);
1012 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1013
1014 void (*set_cpus_allowed)(struct task_struct *p,
1015 const struct cpumask *newmask);
1016
1017 void (*rq_online)(struct rq *rq);
1018 void (*rq_offline)(struct rq *rq);
1019#endif
1020
1021 void (*set_curr_task) (struct rq *rq);
1022 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1023 void (*task_fork) (struct task_struct *p);
1024
1025 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1026 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1027 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1028 int oldprio);
1029
1030 unsigned int (*get_rr_interval) (struct rq *rq,
1031 struct task_struct *task);
1032
1033#ifdef CONFIG_FAIR_GROUP_SCHED
1034 void (*task_move_group) (struct task_struct *p, int on_rq);
1035#endif
1036};
029632fb
PZ
1037
1038#define sched_class_highest (&stop_sched_class)
1039#define for_each_class(class) \
1040 for (class = sched_class_highest; class; class = class->next)
1041
1042extern const struct sched_class stop_sched_class;
1043extern const struct sched_class rt_sched_class;
1044extern const struct sched_class fair_sched_class;
1045extern const struct sched_class idle_sched_class;
1046
1047
1048#ifdef CONFIG_SMP
1049
b719203b
LZ
1050extern void update_group_power(struct sched_domain *sd, int cpu);
1051
029632fb
PZ
1052extern void trigger_load_balance(struct rq *rq, int cpu);
1053extern void idle_balance(int this_cpu, struct rq *this_rq);
1054
642dbc39
VG
1055extern void idle_enter_fair(struct rq *this_rq);
1056extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1057
029632fb
PZ
1058#else /* CONFIG_SMP */
1059
1060static inline void idle_balance(int cpu, struct rq *rq)
1061{
1062}
1063
1064#endif
1065
1066extern void sysrq_sched_debug_show(void);
1067extern void sched_init_granularity(void);
1068extern void update_max_interval(void);
029632fb
PZ
1069extern void init_sched_rt_class(void);
1070extern void init_sched_fair_class(void);
1071
1072extern void resched_task(struct task_struct *p);
1073extern void resched_cpu(int cpu);
1074
1075extern struct rt_bandwidth def_rt_bandwidth;
1076extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1077
556061b0 1078extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1079
a75cdaa9
AS
1080extern void init_task_runnable_average(struct task_struct *p);
1081
73fbec60
FW
1082#ifdef CONFIG_PARAVIRT
1083static inline u64 steal_ticks(u64 steal)
1084{
1085 if (unlikely(steal > NSEC_PER_SEC))
1086 return div_u64(steal, TICK_NSEC);
1087
1088 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1089}
1090#endif
1091
029632fb
PZ
1092static inline void inc_nr_running(struct rq *rq)
1093{
1094 rq->nr_running++;
9f3660c2
FW
1095
1096#ifdef CONFIG_NO_HZ_FULL
1097 if (rq->nr_running == 2) {
1098 if (tick_nohz_full_cpu(rq->cpu)) {
1099 /* Order rq->nr_running write against the IPI */
1100 smp_wmb();
1101 smp_send_reschedule(rq->cpu);
1102 }
1103 }
1104#endif
029632fb
PZ
1105}
1106
1107static inline void dec_nr_running(struct rq *rq)
1108{
1109 rq->nr_running--;
1110}
1111
265f22a9
FW
1112static inline void rq_last_tick_reset(struct rq *rq)
1113{
1114#ifdef CONFIG_NO_HZ_FULL
1115 rq->last_sched_tick = jiffies;
1116#endif
1117}
1118
029632fb
PZ
1119extern void update_rq_clock(struct rq *rq);
1120
1121extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1122extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1123
1124extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1125
1126extern const_debug unsigned int sysctl_sched_time_avg;
1127extern const_debug unsigned int sysctl_sched_nr_migrate;
1128extern const_debug unsigned int sysctl_sched_migration_cost;
1129
1130static inline u64 sched_avg_period(void)
1131{
1132 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1133}
1134
029632fb
PZ
1135#ifdef CONFIG_SCHED_HRTICK
1136
1137/*
1138 * Use hrtick when:
1139 * - enabled by features
1140 * - hrtimer is actually high res
1141 */
1142static inline int hrtick_enabled(struct rq *rq)
1143{
1144 if (!sched_feat(HRTICK))
1145 return 0;
1146 if (!cpu_active(cpu_of(rq)))
1147 return 0;
1148 return hrtimer_is_hres_active(&rq->hrtick_timer);
1149}
1150
1151void hrtick_start(struct rq *rq, u64 delay);
1152
b39e66ea
MG
1153#else
1154
1155static inline int hrtick_enabled(struct rq *rq)
1156{
1157 return 0;
1158}
1159
029632fb
PZ
1160#endif /* CONFIG_SCHED_HRTICK */
1161
1162#ifdef CONFIG_SMP
1163extern void sched_avg_update(struct rq *rq);
1164static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1165{
1166 rq->rt_avg += rt_delta;
1167 sched_avg_update(rq);
1168}
1169#else
1170static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1171static inline void sched_avg_update(struct rq *rq) { }
1172#endif
1173
1174extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1175
1176#ifdef CONFIG_SMP
1177#ifdef CONFIG_PREEMPT
1178
1179static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1180
1181/*
1182 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1183 * way at the expense of forcing extra atomic operations in all
1184 * invocations. This assures that the double_lock is acquired using the
1185 * same underlying policy as the spinlock_t on this architecture, which
1186 * reduces latency compared to the unfair variant below. However, it
1187 * also adds more overhead and therefore may reduce throughput.
1188 */
1189static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1190 __releases(this_rq->lock)
1191 __acquires(busiest->lock)
1192 __acquires(this_rq->lock)
1193{
1194 raw_spin_unlock(&this_rq->lock);
1195 double_rq_lock(this_rq, busiest);
1196
1197 return 1;
1198}
1199
1200#else
1201/*
1202 * Unfair double_lock_balance: Optimizes throughput at the expense of
1203 * latency by eliminating extra atomic operations when the locks are
1204 * already in proper order on entry. This favors lower cpu-ids and will
1205 * grant the double lock to lower cpus over higher ids under contention,
1206 * regardless of entry order into the function.
1207 */
1208static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1209 __releases(this_rq->lock)
1210 __acquires(busiest->lock)
1211 __acquires(this_rq->lock)
1212{
1213 int ret = 0;
1214
1215 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1216 if (busiest < this_rq) {
1217 raw_spin_unlock(&this_rq->lock);
1218 raw_spin_lock(&busiest->lock);
1219 raw_spin_lock_nested(&this_rq->lock,
1220 SINGLE_DEPTH_NESTING);
1221 ret = 1;
1222 } else
1223 raw_spin_lock_nested(&busiest->lock,
1224 SINGLE_DEPTH_NESTING);
1225 }
1226 return ret;
1227}
1228
1229#endif /* CONFIG_PREEMPT */
1230
1231/*
1232 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1233 */
1234static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1235{
1236 if (unlikely(!irqs_disabled())) {
1237 /* printk() doesn't work good under rq->lock */
1238 raw_spin_unlock(&this_rq->lock);
1239 BUG_ON(1);
1240 }
1241
1242 return _double_lock_balance(this_rq, busiest);
1243}
1244
1245static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1246 __releases(busiest->lock)
1247{
1248 raw_spin_unlock(&busiest->lock);
1249 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1250}
1251
74602315
PZ
1252static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1253{
1254 if (l1 > l2)
1255 swap(l1, l2);
1256
1257 spin_lock(l1);
1258 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1259}
1260
1261static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1262{
1263 if (l1 > l2)
1264 swap(l1, l2);
1265
1266 raw_spin_lock(l1);
1267 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1268}
1269
029632fb
PZ
1270/*
1271 * double_rq_lock - safely lock two runqueues
1272 *
1273 * Note this does not disable interrupts like task_rq_lock,
1274 * you need to do so manually before calling.
1275 */
1276static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1277 __acquires(rq1->lock)
1278 __acquires(rq2->lock)
1279{
1280 BUG_ON(!irqs_disabled());
1281 if (rq1 == rq2) {
1282 raw_spin_lock(&rq1->lock);
1283 __acquire(rq2->lock); /* Fake it out ;) */
1284 } else {
1285 if (rq1 < rq2) {
1286 raw_spin_lock(&rq1->lock);
1287 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1288 } else {
1289 raw_spin_lock(&rq2->lock);
1290 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1291 }
1292 }
1293}
1294
1295/*
1296 * double_rq_unlock - safely unlock two runqueues
1297 *
1298 * Note this does not restore interrupts like task_rq_unlock,
1299 * you need to do so manually after calling.
1300 */
1301static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1302 __releases(rq1->lock)
1303 __releases(rq2->lock)
1304{
1305 raw_spin_unlock(&rq1->lock);
1306 if (rq1 != rq2)
1307 raw_spin_unlock(&rq2->lock);
1308 else
1309 __release(rq2->lock);
1310}
1311
1312#else /* CONFIG_SMP */
1313
1314/*
1315 * double_rq_lock - safely lock two runqueues
1316 *
1317 * Note this does not disable interrupts like task_rq_lock,
1318 * you need to do so manually before calling.
1319 */
1320static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1321 __acquires(rq1->lock)
1322 __acquires(rq2->lock)
1323{
1324 BUG_ON(!irqs_disabled());
1325 BUG_ON(rq1 != rq2);
1326 raw_spin_lock(&rq1->lock);
1327 __acquire(rq2->lock); /* Fake it out ;) */
1328}
1329
1330/*
1331 * double_rq_unlock - safely unlock two runqueues
1332 *
1333 * Note this does not restore interrupts like task_rq_unlock,
1334 * you need to do so manually after calling.
1335 */
1336static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1337 __releases(rq1->lock)
1338 __releases(rq2->lock)
1339{
1340 BUG_ON(rq1 != rq2);
1341 raw_spin_unlock(&rq1->lock);
1342 __release(rq2->lock);
1343}
1344
1345#endif
1346
1347extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1348extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1349extern void print_cfs_stats(struct seq_file *m, int cpu);
1350extern void print_rt_stats(struct seq_file *m, int cpu);
1351
1352extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1353extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1354
1355extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1356
3451d024 1357#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1358enum rq_nohz_flag_bits {
1359 NOHZ_TICK_STOPPED,
1360 NOHZ_BALANCE_KICK,
1361};
1362
1363#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1364#endif
73fbec60
FW
1365
1366#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1367
1368DECLARE_PER_CPU(u64, cpu_hardirq_time);
1369DECLARE_PER_CPU(u64, cpu_softirq_time);
1370
1371#ifndef CONFIG_64BIT
1372DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1373
1374static inline void irq_time_write_begin(void)
1375{
1376 __this_cpu_inc(irq_time_seq.sequence);
1377 smp_wmb();
1378}
1379
1380static inline void irq_time_write_end(void)
1381{
1382 smp_wmb();
1383 __this_cpu_inc(irq_time_seq.sequence);
1384}
1385
1386static inline u64 irq_time_read(int cpu)
1387{
1388 u64 irq_time;
1389 unsigned seq;
1390
1391 do {
1392 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1393 irq_time = per_cpu(cpu_softirq_time, cpu) +
1394 per_cpu(cpu_hardirq_time, cpu);
1395 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1396
1397 return irq_time;
1398}
1399#else /* CONFIG_64BIT */
1400static inline void irq_time_write_begin(void)
1401{
1402}
1403
1404static inline void irq_time_write_end(void)
1405{
1406}
1407
1408static inline u64 irq_time_read(int cpu)
1409{
1410 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1411}
1412#endif /* CONFIG_64BIT */
1413#endif /* CONFIG_IRQ_TIME_ACCOUNTING */