sched/numa: Introduce migrate_swap()
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
8bd75c77 4#include <linux/sched/rt.h>
029632fb
PZ
5#include <linux/mutex.h>
6#include <linux/spinlock.h>
7#include <linux/stop_machine.h>
9f3660c2 8#include <linux/tick.h>
f809ca9a 9#include <linux/slab.h>
029632fb 10
391e43da 11#include "cpupri.h"
60fed789 12#include "cpuacct.h"
029632fb 13
45ceebf7
PG
14struct rq;
15
029632fb
PZ
16extern __read_mostly int scheduler_running;
17
45ceebf7
PG
18extern unsigned long calc_load_update;
19extern atomic_long_t calc_load_tasks;
20
21extern long calc_load_fold_active(struct rq *this_rq);
22extern void update_cpu_load_active(struct rq *this_rq);
23
029632fb
PZ
24/*
25 * Convert user-nice values [ -20 ... 0 ... 19 ]
26 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
27 * and back.
28 */
29#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
30#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
31#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
32
33/*
34 * 'User priority' is the nice value converted to something we
35 * can work with better when scaling various scheduler parameters,
36 * it's a [ 0 ... 39 ] range.
37 */
38#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
39#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
40#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
41
42/*
43 * Helpers for converting nanosecond timing to jiffy resolution
44 */
45#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
46
cc1f4b1f
LZ
47/*
48 * Increase resolution of nice-level calculations for 64-bit architectures.
49 * The extra resolution improves shares distribution and load balancing of
50 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
51 * hierarchies, especially on larger systems. This is not a user-visible change
52 * and does not change the user-interface for setting shares/weights.
53 *
54 * We increase resolution only if we have enough bits to allow this increased
55 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
56 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
57 * increased costs.
58 */
59#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
60# define SCHED_LOAD_RESOLUTION 10
61# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
62# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
63#else
64# define SCHED_LOAD_RESOLUTION 0
65# define scale_load(w) (w)
66# define scale_load_down(w) (w)
67#endif
68
69#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
70#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
71
029632fb
PZ
72#define NICE_0_LOAD SCHED_LOAD_SCALE
73#define NICE_0_SHIFT SCHED_LOAD_SHIFT
74
75/*
76 * These are the 'tuning knobs' of the scheduler:
029632fb 77 */
029632fb
PZ
78
79/*
80 * single value that denotes runtime == period, ie unlimited time.
81 */
82#define RUNTIME_INF ((u64)~0ULL)
83
84static inline int rt_policy(int policy)
85{
86 if (policy == SCHED_FIFO || policy == SCHED_RR)
87 return 1;
88 return 0;
89}
90
91static inline int task_has_rt_policy(struct task_struct *p)
92{
93 return rt_policy(p->policy);
94}
95
96/*
97 * This is the priority-queue data structure of the RT scheduling class:
98 */
99struct rt_prio_array {
100 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
101 struct list_head queue[MAX_RT_PRIO];
102};
103
104struct rt_bandwidth {
105 /* nests inside the rq lock: */
106 raw_spinlock_t rt_runtime_lock;
107 ktime_t rt_period;
108 u64 rt_runtime;
109 struct hrtimer rt_period_timer;
110};
111
112extern struct mutex sched_domains_mutex;
113
114#ifdef CONFIG_CGROUP_SCHED
115
116#include <linux/cgroup.h>
117
118struct cfs_rq;
119struct rt_rq;
120
35cf4e50 121extern struct list_head task_groups;
029632fb
PZ
122
123struct cfs_bandwidth {
124#ifdef CONFIG_CFS_BANDWIDTH
125 raw_spinlock_t lock;
126 ktime_t period;
127 u64 quota, runtime;
128 s64 hierarchal_quota;
129 u64 runtime_expires;
130
131 int idle, timer_active;
132 struct hrtimer period_timer, slack_timer;
133 struct list_head throttled_cfs_rq;
134
135 /* statistics */
136 int nr_periods, nr_throttled;
137 u64 throttled_time;
138#endif
139};
140
141/* task group related information */
142struct task_group {
143 struct cgroup_subsys_state css;
144
145#ifdef CONFIG_FAIR_GROUP_SCHED
146 /* schedulable entities of this group on each cpu */
147 struct sched_entity **se;
148 /* runqueue "owned" by this group on each cpu */
149 struct cfs_rq **cfs_rq;
150 unsigned long shares;
151
fa6bddeb 152#ifdef CONFIG_SMP
bf5b986e 153 atomic_long_t load_avg;
bb17f655 154 atomic_t runnable_avg;
029632fb 155#endif
fa6bddeb 156#endif
029632fb
PZ
157
158#ifdef CONFIG_RT_GROUP_SCHED
159 struct sched_rt_entity **rt_se;
160 struct rt_rq **rt_rq;
161
162 struct rt_bandwidth rt_bandwidth;
163#endif
164
165 struct rcu_head rcu;
166 struct list_head list;
167
168 struct task_group *parent;
169 struct list_head siblings;
170 struct list_head children;
171
172#ifdef CONFIG_SCHED_AUTOGROUP
173 struct autogroup *autogroup;
174#endif
175
176 struct cfs_bandwidth cfs_bandwidth;
177};
178
179#ifdef CONFIG_FAIR_GROUP_SCHED
180#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
181
182/*
183 * A weight of 0 or 1 can cause arithmetics problems.
184 * A weight of a cfs_rq is the sum of weights of which entities
185 * are queued on this cfs_rq, so a weight of a entity should not be
186 * too large, so as the shares value of a task group.
187 * (The default weight is 1024 - so there's no practical
188 * limitation from this.)
189 */
190#define MIN_SHARES (1UL << 1)
191#define MAX_SHARES (1UL << 18)
192#endif
193
029632fb
PZ
194typedef int (*tg_visitor)(struct task_group *, void *);
195
196extern int walk_tg_tree_from(struct task_group *from,
197 tg_visitor down, tg_visitor up, void *data);
198
199/*
200 * Iterate the full tree, calling @down when first entering a node and @up when
201 * leaving it for the final time.
202 *
203 * Caller must hold rcu_lock or sufficient equivalent.
204 */
205static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
206{
207 return walk_tg_tree_from(&root_task_group, down, up, data);
208}
209
210extern int tg_nop(struct task_group *tg, void *data);
211
212extern void free_fair_sched_group(struct task_group *tg);
213extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
214extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
215extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
216 struct sched_entity *se, int cpu,
217 struct sched_entity *parent);
218extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
219extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
220
221extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
222extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
223extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
224
225extern void free_rt_sched_group(struct task_group *tg);
226extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
227extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
228 struct sched_rt_entity *rt_se, int cpu,
229 struct sched_rt_entity *parent);
230
25cc7da7
LZ
231extern struct task_group *sched_create_group(struct task_group *parent);
232extern void sched_online_group(struct task_group *tg,
233 struct task_group *parent);
234extern void sched_destroy_group(struct task_group *tg);
235extern void sched_offline_group(struct task_group *tg);
236
237extern void sched_move_task(struct task_struct *tsk);
238
239#ifdef CONFIG_FAIR_GROUP_SCHED
240extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
241#endif
242
029632fb
PZ
243#else /* CONFIG_CGROUP_SCHED */
244
245struct cfs_bandwidth { };
246
247#endif /* CONFIG_CGROUP_SCHED */
248
249/* CFS-related fields in a runqueue */
250struct cfs_rq {
251 struct load_weight load;
c82513e5 252 unsigned int nr_running, h_nr_running;
029632fb
PZ
253
254 u64 exec_clock;
255 u64 min_vruntime;
256#ifndef CONFIG_64BIT
257 u64 min_vruntime_copy;
258#endif
259
260 struct rb_root tasks_timeline;
261 struct rb_node *rb_leftmost;
262
029632fb
PZ
263 /*
264 * 'curr' points to currently running entity on this cfs_rq.
265 * It is set to NULL otherwise (i.e when none are currently running).
266 */
267 struct sched_entity *curr, *next, *last, *skip;
268
269#ifdef CONFIG_SCHED_DEBUG
270 unsigned int nr_spread_over;
271#endif
272
2dac754e
PT
273#ifdef CONFIG_SMP
274 /*
275 * CFS Load tracking
276 * Under CFS, load is tracked on a per-entity basis and aggregated up.
277 * This allows for the description of both thread and group usage (in
278 * the FAIR_GROUP_SCHED case).
279 */
72a4cf20 280 unsigned long runnable_load_avg, blocked_load_avg;
2509940f 281 atomic64_t decay_counter;
9ee474f5 282 u64 last_decay;
2509940f 283 atomic_long_t removed_load;
141965c7 284
c566e8e9 285#ifdef CONFIG_FAIR_GROUP_SCHED
141965c7 286 /* Required to track per-cpu representation of a task_group */
bb17f655 287 u32 tg_runnable_contrib;
bf5b986e 288 unsigned long tg_load_contrib;
82958366
PT
289
290 /*
291 * h_load = weight * f(tg)
292 *
293 * Where f(tg) is the recursive weight fraction assigned to
294 * this group.
295 */
296 unsigned long h_load;
68520796
VD
297 u64 last_h_load_update;
298 struct sched_entity *h_load_next;
299#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
300#endif /* CONFIG_SMP */
301
029632fb
PZ
302#ifdef CONFIG_FAIR_GROUP_SCHED
303 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
304
305 /*
306 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
307 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
308 * (like users, containers etc.)
309 *
310 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
311 * list is used during load balance.
312 */
313 int on_list;
314 struct list_head leaf_cfs_rq_list;
315 struct task_group *tg; /* group that "owns" this runqueue */
316
029632fb
PZ
317#ifdef CONFIG_CFS_BANDWIDTH
318 int runtime_enabled;
319 u64 runtime_expires;
320 s64 runtime_remaining;
321
f1b17280
PT
322 u64 throttled_clock, throttled_clock_task;
323 u64 throttled_clock_task_time;
029632fb
PZ
324 int throttled, throttle_count;
325 struct list_head throttled_list;
326#endif /* CONFIG_CFS_BANDWIDTH */
327#endif /* CONFIG_FAIR_GROUP_SCHED */
328};
329
330static inline int rt_bandwidth_enabled(void)
331{
332 return sysctl_sched_rt_runtime >= 0;
333}
334
335/* Real-Time classes' related field in a runqueue: */
336struct rt_rq {
337 struct rt_prio_array active;
c82513e5 338 unsigned int rt_nr_running;
029632fb
PZ
339#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
340 struct {
341 int curr; /* highest queued rt task prio */
342#ifdef CONFIG_SMP
343 int next; /* next highest */
344#endif
345 } highest_prio;
346#endif
347#ifdef CONFIG_SMP
348 unsigned long rt_nr_migratory;
349 unsigned long rt_nr_total;
350 int overloaded;
351 struct plist_head pushable_tasks;
352#endif
353 int rt_throttled;
354 u64 rt_time;
355 u64 rt_runtime;
356 /* Nests inside the rq lock: */
357 raw_spinlock_t rt_runtime_lock;
358
359#ifdef CONFIG_RT_GROUP_SCHED
360 unsigned long rt_nr_boosted;
361
362 struct rq *rq;
029632fb
PZ
363 struct task_group *tg;
364#endif
365};
366
367#ifdef CONFIG_SMP
368
369/*
370 * We add the notion of a root-domain which will be used to define per-domain
371 * variables. Each exclusive cpuset essentially defines an island domain by
372 * fully partitioning the member cpus from any other cpuset. Whenever a new
373 * exclusive cpuset is created, we also create and attach a new root-domain
374 * object.
375 *
376 */
377struct root_domain {
378 atomic_t refcount;
379 atomic_t rto_count;
380 struct rcu_head rcu;
381 cpumask_var_t span;
382 cpumask_var_t online;
383
384 /*
385 * The "RT overload" flag: it gets set if a CPU has more than
386 * one runnable RT task.
387 */
388 cpumask_var_t rto_mask;
389 struct cpupri cpupri;
390};
391
392extern struct root_domain def_root_domain;
393
394#endif /* CONFIG_SMP */
395
396/*
397 * This is the main, per-CPU runqueue data structure.
398 *
399 * Locking rule: those places that want to lock multiple runqueues
400 * (such as the load balancing or the thread migration code), lock
401 * acquire operations must be ordered by ascending &runqueue.
402 */
403struct rq {
404 /* runqueue lock: */
405 raw_spinlock_t lock;
406
407 /*
408 * nr_running and cpu_load should be in the same cacheline because
409 * remote CPUs use both these fields when doing load calculation.
410 */
c82513e5 411 unsigned int nr_running;
029632fb
PZ
412 #define CPU_LOAD_IDX_MAX 5
413 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
414 unsigned long last_load_update_tick;
3451d024 415#ifdef CONFIG_NO_HZ_COMMON
029632fb 416 u64 nohz_stamp;
1c792db7 417 unsigned long nohz_flags;
265f22a9
FW
418#endif
419#ifdef CONFIG_NO_HZ_FULL
420 unsigned long last_sched_tick;
029632fb
PZ
421#endif
422 int skip_clock_update;
423
424 /* capture load from *all* tasks on this cpu: */
425 struct load_weight load;
426 unsigned long nr_load_updates;
427 u64 nr_switches;
428
429 struct cfs_rq cfs;
430 struct rt_rq rt;
431
432#ifdef CONFIG_FAIR_GROUP_SCHED
433 /* list of leaf cfs_rq on this cpu: */
434 struct list_head leaf_cfs_rq_list;
a35b6466
PZ
435#endif /* CONFIG_FAIR_GROUP_SCHED */
436
029632fb
PZ
437#ifdef CONFIG_RT_GROUP_SCHED
438 struct list_head leaf_rt_rq_list;
439#endif
440
441 /*
442 * This is part of a global counter where only the total sum
443 * over all CPUs matters. A task can increase this counter on
444 * one CPU and if it got migrated afterwards it may decrease
445 * it on another CPU. Always updated under the runqueue lock:
446 */
447 unsigned long nr_uninterruptible;
448
449 struct task_struct *curr, *idle, *stop;
450 unsigned long next_balance;
451 struct mm_struct *prev_mm;
452
453 u64 clock;
454 u64 clock_task;
455
456 atomic_t nr_iowait;
457
458#ifdef CONFIG_SMP
459 struct root_domain *rd;
460 struct sched_domain *sd;
461
462 unsigned long cpu_power;
463
464 unsigned char idle_balance;
465 /* For active balancing */
466 int post_schedule;
467 int active_balance;
468 int push_cpu;
469 struct cpu_stop_work active_balance_work;
470 /* cpu of this runqueue: */
471 int cpu;
472 int online;
473
367456c7
PZ
474 struct list_head cfs_tasks;
475
029632fb
PZ
476 u64 rt_avg;
477 u64 age_stamp;
478 u64 idle_stamp;
479 u64 avg_idle;
9bd721c5
JL
480
481 /* This is used to determine avg_idle's max value */
482 u64 max_idle_balance_cost;
029632fb
PZ
483#endif
484
485#ifdef CONFIG_IRQ_TIME_ACCOUNTING
486 u64 prev_irq_time;
487#endif
488#ifdef CONFIG_PARAVIRT
489 u64 prev_steal_time;
490#endif
491#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
492 u64 prev_steal_time_rq;
493#endif
494
495 /* calc_load related fields */
496 unsigned long calc_load_update;
497 long calc_load_active;
498
499#ifdef CONFIG_SCHED_HRTICK
500#ifdef CONFIG_SMP
501 int hrtick_csd_pending;
502 struct call_single_data hrtick_csd;
503#endif
504 struct hrtimer hrtick_timer;
505#endif
506
507#ifdef CONFIG_SCHEDSTATS
508 /* latency stats */
509 struct sched_info rq_sched_info;
510 unsigned long long rq_cpu_time;
511 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
512
513 /* sys_sched_yield() stats */
514 unsigned int yld_count;
515
516 /* schedule() stats */
029632fb
PZ
517 unsigned int sched_count;
518 unsigned int sched_goidle;
519
520 /* try_to_wake_up() stats */
521 unsigned int ttwu_count;
522 unsigned int ttwu_local;
523#endif
524
525#ifdef CONFIG_SMP
526 struct llist_head wake_list;
527#endif
18bf2805
BS
528
529 struct sched_avg avg;
029632fb
PZ
530};
531
532static inline int cpu_of(struct rq *rq)
533{
534#ifdef CONFIG_SMP
535 return rq->cpu;
536#else
537 return 0;
538#endif
539}
540
541DECLARE_PER_CPU(struct rq, runqueues);
542
518cd623
PZ
543#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
544#define this_rq() (&__get_cpu_var(runqueues))
545#define task_rq(p) cpu_rq(task_cpu(p))
546#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
547#define raw_rq() (&__raw_get_cpu_var(runqueues))
548
78becc27
FW
549static inline u64 rq_clock(struct rq *rq)
550{
551 return rq->clock;
552}
553
554static inline u64 rq_clock_task(struct rq *rq)
555{
556 return rq->clock_task;
557}
558
f809ca9a 559#ifdef CONFIG_NUMA_BALANCING
e6628d5b 560extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 561extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
562static inline void task_numa_free(struct task_struct *p)
563{
564 kfree(p->numa_faults);
565}
566#else /* CONFIG_NUMA_BALANCING */
567static inline void task_numa_free(struct task_struct *p)
568{
569}
570#endif /* CONFIG_NUMA_BALANCING */
571
518cd623
PZ
572#ifdef CONFIG_SMP
573
029632fb
PZ
574#define rcu_dereference_check_sched_domain(p) \
575 rcu_dereference_check((p), \
576 lockdep_is_held(&sched_domains_mutex))
577
578/*
579 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
580 * See detach_destroy_domains: synchronize_sched for details.
581 *
582 * The domain tree of any CPU may only be accessed from within
583 * preempt-disabled sections.
584 */
585#define for_each_domain(cpu, __sd) \
518cd623
PZ
586 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
587 __sd; __sd = __sd->parent)
029632fb 588
77e81365
SS
589#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
590
518cd623
PZ
591/**
592 * highest_flag_domain - Return highest sched_domain containing flag.
593 * @cpu: The cpu whose highest level of sched domain is to
594 * be returned.
595 * @flag: The flag to check for the highest sched_domain
596 * for the given cpu.
597 *
598 * Returns the highest sched_domain of a cpu which contains the given flag.
599 */
600static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
601{
602 struct sched_domain *sd, *hsd = NULL;
603
604 for_each_domain(cpu, sd) {
605 if (!(sd->flags & flag))
606 break;
607 hsd = sd;
608 }
609
610 return hsd;
611}
612
613DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 614DECLARE_PER_CPU(int, sd_llc_size);
518cd623
PZ
615DECLARE_PER_CPU(int, sd_llc_id);
616
5e6521ea
LZ
617struct sched_group_power {
618 atomic_t ref;
619 /*
620 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
621 * single CPU.
622 */
623 unsigned int power, power_orig;
624 unsigned long next_update;
6263322c 625 int imbalance; /* XXX unrelated to power but shared group state */
5e6521ea
LZ
626 /*
627 * Number of busy cpus in this group.
628 */
629 atomic_t nr_busy_cpus;
630
631 unsigned long cpumask[0]; /* iteration mask */
632};
633
634struct sched_group {
635 struct sched_group *next; /* Must be a circular list */
636 atomic_t ref;
637
638 unsigned int group_weight;
639 struct sched_group_power *sgp;
640
641 /*
642 * The CPUs this group covers.
643 *
644 * NOTE: this field is variable length. (Allocated dynamically
645 * by attaching extra space to the end of the structure,
646 * depending on how many CPUs the kernel has booted up with)
647 */
648 unsigned long cpumask[0];
649};
650
651static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
652{
653 return to_cpumask(sg->cpumask);
654}
655
656/*
657 * cpumask masking which cpus in the group are allowed to iterate up the domain
658 * tree.
659 */
660static inline struct cpumask *sched_group_mask(struct sched_group *sg)
661{
662 return to_cpumask(sg->sgp->cpumask);
663}
664
665/**
666 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
667 * @group: The group whose first cpu is to be returned.
668 */
669static inline unsigned int group_first_cpu(struct sched_group *group)
670{
671 return cpumask_first(sched_group_cpus(group));
672}
673
c1174876
PZ
674extern int group_balance_cpu(struct sched_group *sg);
675
518cd623 676#endif /* CONFIG_SMP */
029632fb 677
391e43da
PZ
678#include "stats.h"
679#include "auto_group.h"
029632fb
PZ
680
681#ifdef CONFIG_CGROUP_SCHED
682
683/*
684 * Return the group to which this tasks belongs.
685 *
8af01f56
TH
686 * We cannot use task_css() and friends because the cgroup subsystem
687 * changes that value before the cgroup_subsys::attach() method is called,
688 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
689 *
690 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
691 * core changes this before calling sched_move_task().
692 *
693 * Instead we use a 'copy' which is updated from sched_move_task() while
694 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
695 */
696static inline struct task_group *task_group(struct task_struct *p)
697{
8323f26c 698 return p->sched_task_group;
029632fb
PZ
699}
700
701/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
702static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
703{
704#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
705 struct task_group *tg = task_group(p);
706#endif
707
708#ifdef CONFIG_FAIR_GROUP_SCHED
709 p->se.cfs_rq = tg->cfs_rq[cpu];
710 p->se.parent = tg->se[cpu];
711#endif
712
713#ifdef CONFIG_RT_GROUP_SCHED
714 p->rt.rt_rq = tg->rt_rq[cpu];
715 p->rt.parent = tg->rt_se[cpu];
716#endif
717}
718
719#else /* CONFIG_CGROUP_SCHED */
720
721static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
722static inline struct task_group *task_group(struct task_struct *p)
723{
724 return NULL;
725}
726
727#endif /* CONFIG_CGROUP_SCHED */
728
729static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
730{
731 set_task_rq(p, cpu);
732#ifdef CONFIG_SMP
733 /*
734 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
735 * successfuly executed on another CPU. We must ensure that updates of
736 * per-task data have been completed by this moment.
737 */
738 smp_wmb();
739 task_thread_info(p)->cpu = cpu;
ac66f547 740 p->wake_cpu = cpu;
029632fb
PZ
741#endif
742}
743
744/*
745 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
746 */
747#ifdef CONFIG_SCHED_DEBUG
c5905afb 748# include <linux/static_key.h>
029632fb
PZ
749# define const_debug __read_mostly
750#else
751# define const_debug const
752#endif
753
754extern const_debug unsigned int sysctl_sched_features;
755
756#define SCHED_FEAT(name, enabled) \
757 __SCHED_FEAT_##name ,
758
759enum {
391e43da 760#include "features.h"
f8b6d1cc 761 __SCHED_FEAT_NR,
029632fb
PZ
762};
763
764#undef SCHED_FEAT
765
f8b6d1cc 766#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
c5905afb 767static __always_inline bool static_branch__true(struct static_key *key)
f8b6d1cc 768{
c5905afb 769 return static_key_true(key); /* Not out of line branch. */
f8b6d1cc
PZ
770}
771
c5905afb 772static __always_inline bool static_branch__false(struct static_key *key)
f8b6d1cc 773{
c5905afb 774 return static_key_false(key); /* Out of line branch. */
f8b6d1cc
PZ
775}
776
777#define SCHED_FEAT(name, enabled) \
c5905afb 778static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc
PZ
779{ \
780 return static_branch__##enabled(key); \
781}
782
783#include "features.h"
784
785#undef SCHED_FEAT
786
c5905afb 787extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
788#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
789#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 790#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 791#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 792
cbee9f88
PZ
793#ifdef CONFIG_NUMA_BALANCING
794#define sched_feat_numa(x) sched_feat(x)
3105b86a
MG
795#ifdef CONFIG_SCHED_DEBUG
796#define numabalancing_enabled sched_feat_numa(NUMA)
797#else
798extern bool numabalancing_enabled;
799#endif /* CONFIG_SCHED_DEBUG */
cbee9f88
PZ
800#else
801#define sched_feat_numa(x) (0)
3105b86a
MG
802#define numabalancing_enabled (0)
803#endif /* CONFIG_NUMA_BALANCING */
cbee9f88 804
029632fb
PZ
805static inline u64 global_rt_period(void)
806{
807 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
808}
809
810static inline u64 global_rt_runtime(void)
811{
812 if (sysctl_sched_rt_runtime < 0)
813 return RUNTIME_INF;
814
815 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
816}
817
818
819
820static inline int task_current(struct rq *rq, struct task_struct *p)
821{
822 return rq->curr == p;
823}
824
825static inline int task_running(struct rq *rq, struct task_struct *p)
826{
827#ifdef CONFIG_SMP
828 return p->on_cpu;
829#else
830 return task_current(rq, p);
831#endif
832}
833
834
835#ifndef prepare_arch_switch
836# define prepare_arch_switch(next) do { } while (0)
837#endif
838#ifndef finish_arch_switch
839# define finish_arch_switch(prev) do { } while (0)
840#endif
01f23e16
CM
841#ifndef finish_arch_post_lock_switch
842# define finish_arch_post_lock_switch() do { } while (0)
843#endif
029632fb
PZ
844
845#ifndef __ARCH_WANT_UNLOCKED_CTXSW
846static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
847{
848#ifdef CONFIG_SMP
849 /*
850 * We can optimise this out completely for !SMP, because the
851 * SMP rebalancing from interrupt is the only thing that cares
852 * here.
853 */
854 next->on_cpu = 1;
855#endif
856}
857
858static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
859{
860#ifdef CONFIG_SMP
861 /*
862 * After ->on_cpu is cleared, the task can be moved to a different CPU.
863 * We must ensure this doesn't happen until the switch is completely
864 * finished.
865 */
866 smp_wmb();
867 prev->on_cpu = 0;
868#endif
869#ifdef CONFIG_DEBUG_SPINLOCK
870 /* this is a valid case when another task releases the spinlock */
871 rq->lock.owner = current;
872#endif
873 /*
874 * If we are tracking spinlock dependencies then we have to
875 * fix up the runqueue lock - which gets 'carried over' from
876 * prev into current:
877 */
878 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
879
880 raw_spin_unlock_irq(&rq->lock);
881}
882
883#else /* __ARCH_WANT_UNLOCKED_CTXSW */
884static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
885{
886#ifdef CONFIG_SMP
887 /*
888 * We can optimise this out completely for !SMP, because the
889 * SMP rebalancing from interrupt is the only thing that cares
890 * here.
891 */
892 next->on_cpu = 1;
893#endif
029632fb 894 raw_spin_unlock(&rq->lock);
029632fb
PZ
895}
896
897static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
898{
899#ifdef CONFIG_SMP
900 /*
901 * After ->on_cpu is cleared, the task can be moved to a different CPU.
902 * We must ensure this doesn't happen until the switch is completely
903 * finished.
904 */
905 smp_wmb();
906 prev->on_cpu = 0;
907#endif
029632fb 908 local_irq_enable();
029632fb
PZ
909}
910#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
911
b13095f0
LZ
912/*
913 * wake flags
914 */
915#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
916#define WF_FORK 0x02 /* child wakeup after fork */
917#define WF_MIGRATED 0x4 /* internal use, task got migrated */
918
029632fb
PZ
919/*
920 * To aid in avoiding the subversion of "niceness" due to uneven distribution
921 * of tasks with abnormal "nice" values across CPUs the contribution that
922 * each task makes to its run queue's load is weighted according to its
923 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
924 * scaled version of the new time slice allocation that they receive on time
925 * slice expiry etc.
926 */
927
928#define WEIGHT_IDLEPRIO 3
929#define WMULT_IDLEPRIO 1431655765
930
931/*
932 * Nice levels are multiplicative, with a gentle 10% change for every
933 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
934 * nice 1, it will get ~10% less CPU time than another CPU-bound task
935 * that remained on nice 0.
936 *
937 * The "10% effect" is relative and cumulative: from _any_ nice level,
938 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
939 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
940 * If a task goes up by ~10% and another task goes down by ~10% then
941 * the relative distance between them is ~25%.)
942 */
943static const int prio_to_weight[40] = {
944 /* -20 */ 88761, 71755, 56483, 46273, 36291,
945 /* -15 */ 29154, 23254, 18705, 14949, 11916,
946 /* -10 */ 9548, 7620, 6100, 4904, 3906,
947 /* -5 */ 3121, 2501, 1991, 1586, 1277,
948 /* 0 */ 1024, 820, 655, 526, 423,
949 /* 5 */ 335, 272, 215, 172, 137,
950 /* 10 */ 110, 87, 70, 56, 45,
951 /* 15 */ 36, 29, 23, 18, 15,
952};
953
954/*
955 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
956 *
957 * In cases where the weight does not change often, we can use the
958 * precalculated inverse to speed up arithmetics by turning divisions
959 * into multiplications:
960 */
961static const u32 prio_to_wmult[40] = {
962 /* -20 */ 48388, 59856, 76040, 92818, 118348,
963 /* -15 */ 147320, 184698, 229616, 287308, 360437,
964 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
965 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
966 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
967 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
968 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
969 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
970};
971
c82ba9fa
LZ
972#define ENQUEUE_WAKEUP 1
973#define ENQUEUE_HEAD 2
974#ifdef CONFIG_SMP
975#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
976#else
977#define ENQUEUE_WAKING 0
978#endif
979
980#define DEQUEUE_SLEEP 1
981
982struct sched_class {
983 const struct sched_class *next;
984
985 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
986 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
987 void (*yield_task) (struct rq *rq);
988 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
989
990 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
991
992 struct task_struct * (*pick_next_task) (struct rq *rq);
993 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
994
995#ifdef CONFIG_SMP
ac66f547 996 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
c82ba9fa
LZ
997 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
998
999 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1000 void (*post_schedule) (struct rq *this_rq);
1001 void (*task_waking) (struct task_struct *task);
1002 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1003
1004 void (*set_cpus_allowed)(struct task_struct *p,
1005 const struct cpumask *newmask);
1006
1007 void (*rq_online)(struct rq *rq);
1008 void (*rq_offline)(struct rq *rq);
1009#endif
1010
1011 void (*set_curr_task) (struct rq *rq);
1012 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1013 void (*task_fork) (struct task_struct *p);
1014
1015 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1016 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1017 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1018 int oldprio);
1019
1020 unsigned int (*get_rr_interval) (struct rq *rq,
1021 struct task_struct *task);
1022
1023#ifdef CONFIG_FAIR_GROUP_SCHED
1024 void (*task_move_group) (struct task_struct *p, int on_rq);
1025#endif
1026};
029632fb
PZ
1027
1028#define sched_class_highest (&stop_sched_class)
1029#define for_each_class(class) \
1030 for (class = sched_class_highest; class; class = class->next)
1031
1032extern const struct sched_class stop_sched_class;
1033extern const struct sched_class rt_sched_class;
1034extern const struct sched_class fair_sched_class;
1035extern const struct sched_class idle_sched_class;
1036
1037
1038#ifdef CONFIG_SMP
1039
b719203b
LZ
1040extern void update_group_power(struct sched_domain *sd, int cpu);
1041
029632fb
PZ
1042extern void trigger_load_balance(struct rq *rq, int cpu);
1043extern void idle_balance(int this_cpu, struct rq *this_rq);
1044
642dbc39
VG
1045extern void idle_enter_fair(struct rq *this_rq);
1046extern void idle_exit_fair(struct rq *this_rq);
642dbc39 1047
029632fb
PZ
1048#else /* CONFIG_SMP */
1049
1050static inline void idle_balance(int cpu, struct rq *rq)
1051{
1052}
1053
1054#endif
1055
1056extern void sysrq_sched_debug_show(void);
1057extern void sched_init_granularity(void);
1058extern void update_max_interval(void);
029632fb
PZ
1059extern void init_sched_rt_class(void);
1060extern void init_sched_fair_class(void);
1061
1062extern void resched_task(struct task_struct *p);
1063extern void resched_cpu(int cpu);
1064
1065extern struct rt_bandwidth def_rt_bandwidth;
1066extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1067
556061b0 1068extern void update_idle_cpu_load(struct rq *this_rq);
029632fb 1069
a75cdaa9
AS
1070extern void init_task_runnable_average(struct task_struct *p);
1071
73fbec60
FW
1072#ifdef CONFIG_PARAVIRT
1073static inline u64 steal_ticks(u64 steal)
1074{
1075 if (unlikely(steal > NSEC_PER_SEC))
1076 return div_u64(steal, TICK_NSEC);
1077
1078 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
1079}
1080#endif
1081
029632fb
PZ
1082static inline void inc_nr_running(struct rq *rq)
1083{
1084 rq->nr_running++;
9f3660c2
FW
1085
1086#ifdef CONFIG_NO_HZ_FULL
1087 if (rq->nr_running == 2) {
1088 if (tick_nohz_full_cpu(rq->cpu)) {
1089 /* Order rq->nr_running write against the IPI */
1090 smp_wmb();
1091 smp_send_reschedule(rq->cpu);
1092 }
1093 }
1094#endif
029632fb
PZ
1095}
1096
1097static inline void dec_nr_running(struct rq *rq)
1098{
1099 rq->nr_running--;
1100}
1101
265f22a9
FW
1102static inline void rq_last_tick_reset(struct rq *rq)
1103{
1104#ifdef CONFIG_NO_HZ_FULL
1105 rq->last_sched_tick = jiffies;
1106#endif
1107}
1108
029632fb
PZ
1109extern void update_rq_clock(struct rq *rq);
1110
1111extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1112extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1113
1114extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1115
1116extern const_debug unsigned int sysctl_sched_time_avg;
1117extern const_debug unsigned int sysctl_sched_nr_migrate;
1118extern const_debug unsigned int sysctl_sched_migration_cost;
1119
1120static inline u64 sched_avg_period(void)
1121{
1122 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1123}
1124
029632fb
PZ
1125#ifdef CONFIG_SCHED_HRTICK
1126
1127/*
1128 * Use hrtick when:
1129 * - enabled by features
1130 * - hrtimer is actually high res
1131 */
1132static inline int hrtick_enabled(struct rq *rq)
1133{
1134 if (!sched_feat(HRTICK))
1135 return 0;
1136 if (!cpu_active(cpu_of(rq)))
1137 return 0;
1138 return hrtimer_is_hres_active(&rq->hrtick_timer);
1139}
1140
1141void hrtick_start(struct rq *rq, u64 delay);
1142
b39e66ea
MG
1143#else
1144
1145static inline int hrtick_enabled(struct rq *rq)
1146{
1147 return 0;
1148}
1149
029632fb
PZ
1150#endif /* CONFIG_SCHED_HRTICK */
1151
1152#ifdef CONFIG_SMP
1153extern void sched_avg_update(struct rq *rq);
1154static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1155{
1156 rq->rt_avg += rt_delta;
1157 sched_avg_update(rq);
1158}
1159#else
1160static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1161static inline void sched_avg_update(struct rq *rq) { }
1162#endif
1163
1164extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1165
1166#ifdef CONFIG_SMP
1167#ifdef CONFIG_PREEMPT
1168
1169static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1170
1171/*
1172 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1173 * way at the expense of forcing extra atomic operations in all
1174 * invocations. This assures that the double_lock is acquired using the
1175 * same underlying policy as the spinlock_t on this architecture, which
1176 * reduces latency compared to the unfair variant below. However, it
1177 * also adds more overhead and therefore may reduce throughput.
1178 */
1179static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1180 __releases(this_rq->lock)
1181 __acquires(busiest->lock)
1182 __acquires(this_rq->lock)
1183{
1184 raw_spin_unlock(&this_rq->lock);
1185 double_rq_lock(this_rq, busiest);
1186
1187 return 1;
1188}
1189
1190#else
1191/*
1192 * Unfair double_lock_balance: Optimizes throughput at the expense of
1193 * latency by eliminating extra atomic operations when the locks are
1194 * already in proper order on entry. This favors lower cpu-ids and will
1195 * grant the double lock to lower cpus over higher ids under contention,
1196 * regardless of entry order into the function.
1197 */
1198static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1199 __releases(this_rq->lock)
1200 __acquires(busiest->lock)
1201 __acquires(this_rq->lock)
1202{
1203 int ret = 0;
1204
1205 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1206 if (busiest < this_rq) {
1207 raw_spin_unlock(&this_rq->lock);
1208 raw_spin_lock(&busiest->lock);
1209 raw_spin_lock_nested(&this_rq->lock,
1210 SINGLE_DEPTH_NESTING);
1211 ret = 1;
1212 } else
1213 raw_spin_lock_nested(&busiest->lock,
1214 SINGLE_DEPTH_NESTING);
1215 }
1216 return ret;
1217}
1218
1219#endif /* CONFIG_PREEMPT */
1220
1221/*
1222 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1223 */
1224static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1225{
1226 if (unlikely(!irqs_disabled())) {
1227 /* printk() doesn't work good under rq->lock */
1228 raw_spin_unlock(&this_rq->lock);
1229 BUG_ON(1);
1230 }
1231
1232 return _double_lock_balance(this_rq, busiest);
1233}
1234
1235static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1236 __releases(busiest->lock)
1237{
1238 raw_spin_unlock(&busiest->lock);
1239 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1240}
1241
1242/*
1243 * double_rq_lock - safely lock two runqueues
1244 *
1245 * Note this does not disable interrupts like task_rq_lock,
1246 * you need to do so manually before calling.
1247 */
1248static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1249 __acquires(rq1->lock)
1250 __acquires(rq2->lock)
1251{
1252 BUG_ON(!irqs_disabled());
1253 if (rq1 == rq2) {
1254 raw_spin_lock(&rq1->lock);
1255 __acquire(rq2->lock); /* Fake it out ;) */
1256 } else {
1257 if (rq1 < rq2) {
1258 raw_spin_lock(&rq1->lock);
1259 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1260 } else {
1261 raw_spin_lock(&rq2->lock);
1262 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1263 }
1264 }
1265}
1266
1267/*
1268 * double_rq_unlock - safely unlock two runqueues
1269 *
1270 * Note this does not restore interrupts like task_rq_unlock,
1271 * you need to do so manually after calling.
1272 */
1273static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1274 __releases(rq1->lock)
1275 __releases(rq2->lock)
1276{
1277 raw_spin_unlock(&rq1->lock);
1278 if (rq1 != rq2)
1279 raw_spin_unlock(&rq2->lock);
1280 else
1281 __release(rq2->lock);
1282}
1283
1284#else /* CONFIG_SMP */
1285
1286/*
1287 * double_rq_lock - safely lock two runqueues
1288 *
1289 * Note this does not disable interrupts like task_rq_lock,
1290 * you need to do so manually before calling.
1291 */
1292static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1293 __acquires(rq1->lock)
1294 __acquires(rq2->lock)
1295{
1296 BUG_ON(!irqs_disabled());
1297 BUG_ON(rq1 != rq2);
1298 raw_spin_lock(&rq1->lock);
1299 __acquire(rq2->lock); /* Fake it out ;) */
1300}
1301
1302/*
1303 * double_rq_unlock - safely unlock two runqueues
1304 *
1305 * Note this does not restore interrupts like task_rq_unlock,
1306 * you need to do so manually after calling.
1307 */
1308static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1309 __releases(rq1->lock)
1310 __releases(rq2->lock)
1311{
1312 BUG_ON(rq1 != rq2);
1313 raw_spin_unlock(&rq1->lock);
1314 __release(rq2->lock);
1315}
1316
1317#endif
1318
1319extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1320extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1321extern void print_cfs_stats(struct seq_file *m, int cpu);
1322extern void print_rt_stats(struct seq_file *m, int cpu);
1323
1324extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1325extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
029632fb
PZ
1326
1327extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1c792db7 1328
3451d024 1329#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1330enum rq_nohz_flag_bits {
1331 NOHZ_TICK_STOPPED,
1332 NOHZ_BALANCE_KICK,
1333};
1334
1335#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1336#endif
73fbec60
FW
1337
1338#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1339
1340DECLARE_PER_CPU(u64, cpu_hardirq_time);
1341DECLARE_PER_CPU(u64, cpu_softirq_time);
1342
1343#ifndef CONFIG_64BIT
1344DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1345
1346static inline void irq_time_write_begin(void)
1347{
1348 __this_cpu_inc(irq_time_seq.sequence);
1349 smp_wmb();
1350}
1351
1352static inline void irq_time_write_end(void)
1353{
1354 smp_wmb();
1355 __this_cpu_inc(irq_time_seq.sequence);
1356}
1357
1358static inline u64 irq_time_read(int cpu)
1359{
1360 u64 irq_time;
1361 unsigned seq;
1362
1363 do {
1364 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1365 irq_time = per_cpu(cpu_softirq_time, cpu) +
1366 per_cpu(cpu_hardirq_time, cpu);
1367 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1368
1369 return irq_time;
1370}
1371#else /* CONFIG_64BIT */
1372static inline void irq_time_write_begin(void)
1373{
1374}
1375
1376static inline void irq_time_write_end(void)
1377{
1378}
1379
1380static inline u64 irq_time_read(int cpu)
1381{
1382 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1383}
1384#endif /* CONFIG_64BIT */
1385#endif /* CONFIG_IRQ_TIME_ACCOUNTING */