sched/numa: Stop multiple tasks from moving to the CPU at the same time
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/stat.h>
27#include <linux/sched/sysctl.h>
29930025 28#include <linux/sched/task.h>
68db0cf1 29#include <linux/sched/task_stack.h>
325ea10c
IM
30#include <linux/sched/topology.h>
31#include <linux/sched/user.h>
32#include <linux/sched/wake_q.h>
33#include <linux/sched/xacct.h>
34
35#include <uapi/linux/sched/types.h>
ef8bd77f 36
3866e845 37#include <linux/binfmts.h>
325ea10c
IM
38#include <linux/blkdev.h>
39#include <linux/compat.h>
40#include <linux/context_tracking.h>
41#include <linux/cpufreq.h>
42#include <linux/cpuidle.h>
43#include <linux/cpuset.h>
44#include <linux/ctype.h>
45#include <linux/debugfs.h>
46#include <linux/delayacct.h>
47#include <linux/init_task.h>
48#include <linux/kprobes.h>
49#include <linux/kthread.h>
50#include <linux/membarrier.h>
51#include <linux/migrate.h>
52#include <linux/mmu_context.h>
53#include <linux/nmi.h>
54#include <linux/proc_fs.h>
55#include <linux/prefetch.h>
56#include <linux/profile.h>
57#include <linux/rcupdate_wait.h>
58#include <linux/security.h>
59#include <linux/stackprotector.h>
029632fb 60#include <linux/stop_machine.h>
325ea10c
IM
61#include <linux/suspend.h>
62#include <linux/swait.h>
63#include <linux/syscalls.h>
64#include <linux/task_work.h>
65#include <linux/tsacct_kern.h>
66
67#include <asm/tlb.h>
029632fb 68
7fce777c 69#ifdef CONFIG_PARAVIRT
325ea10c 70# include <asm/paravirt.h>
7fce777c
IM
71#endif
72
391e43da 73#include "cpupri.h"
6bfd6d72 74#include "cpudeadline.h"
029632fb 75
9148a3a1 76#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 77# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 78#else
6d3aed3d 79# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
80#endif
81
45ceebf7 82struct rq;
442bf3aa 83struct cpuidle_state;
45ceebf7 84
da0c1e65
KT
85/* task_struct::on_rq states: */
86#define TASK_ON_RQ_QUEUED 1
cca26e80 87#define TASK_ON_RQ_MIGRATING 2
da0c1e65 88
029632fb
PZ
89extern __read_mostly int scheduler_running;
90
45ceebf7
PG
91extern unsigned long calc_load_update;
92extern atomic_long_t calc_load_tasks;
93
3289bdb4 94extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 95extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
96
97#ifdef CONFIG_SMP
cee1afce 98extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 99#else
cee1afce 100static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 101#endif
45ceebf7 102
029632fb
PZ
103/*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
cc1f4b1f
LZ
108/*
109 * Increase resolution of nice-level calculations for 64-bit architectures.
110 * The extra resolution improves shares distribution and load balancing of
111 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
112 * hierarchies, especially on larger systems. This is not a user-visible change
113 * and does not change the user-interface for setting shares/weights.
114 *
115 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
116 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
117 * are pretty high and the returns do not justify the increased costs.
2159197d 118 *
97fb7a0a
IM
119 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
120 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 121 */
2159197d 122#ifdef CONFIG_64BIT
172895e6 123# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
124# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
125# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 126#else
172895e6 127# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
128# define scale_load(w) (w)
129# define scale_load_down(w) (w)
130#endif
131
6ecdd749 132/*
172895e6
YD
133 * Task weight (visible to users) and its load (invisible to users) have
134 * independent resolution, but they should be well calibrated. We use
135 * scale_load() and scale_load_down(w) to convert between them. The
136 * following must be true:
137 *
138 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
139 *
6ecdd749 140 */
172895e6 141#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 142
332ac17e
DF
143/*
144 * Single value that decides SCHED_DEADLINE internal math precision.
145 * 10 -> just above 1us
146 * 9 -> just above 0.5us
147 */
97fb7a0a 148#define DL_SCALE 10
029632fb
PZ
149
150/*
97fb7a0a 151 * Single value that denotes runtime == period, ie unlimited time.
029632fb 152 */
97fb7a0a 153#define RUNTIME_INF ((u64)~0ULL)
029632fb 154
20f9cd2a
HA
155static inline int idle_policy(int policy)
156{
157 return policy == SCHED_IDLE;
158}
d50dde5a
DF
159static inline int fair_policy(int policy)
160{
161 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
162}
163
029632fb
PZ
164static inline int rt_policy(int policy)
165{
d50dde5a 166 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
167}
168
aab03e05
DF
169static inline int dl_policy(int policy)
170{
171 return policy == SCHED_DEADLINE;
172}
20f9cd2a
HA
173static inline bool valid_policy(int policy)
174{
175 return idle_policy(policy) || fair_policy(policy) ||
176 rt_policy(policy) || dl_policy(policy);
177}
aab03e05 178
029632fb
PZ
179static inline int task_has_rt_policy(struct task_struct *p)
180{
181 return rt_policy(p->policy);
182}
183
aab03e05
DF
184static inline int task_has_dl_policy(struct task_struct *p)
185{
186 return dl_policy(p->policy);
187}
188
07881166
JL
189#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
190
794a56eb
JL
191/*
192 * !! For sched_setattr_nocheck() (kernel) only !!
193 *
194 * This is actually gross. :(
195 *
196 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
197 * tasks, but still be able to sleep. We need this on platforms that cannot
198 * atomically change clock frequency. Remove once fast switching will be
199 * available on such platforms.
200 *
201 * SUGOV stands for SchedUtil GOVernor.
202 */
203#define SCHED_FLAG_SUGOV 0x10000000
204
205static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
206{
207#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
208 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
209#else
210 return false;
211#endif
212}
213
2d3d891d
DF
214/*
215 * Tells if entity @a should preempt entity @b.
216 */
332ac17e
DF
217static inline bool
218dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 219{
794a56eb
JL
220 return dl_entity_is_special(a) ||
221 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
222}
223
029632fb
PZ
224/*
225 * This is the priority-queue data structure of the RT scheduling class:
226 */
227struct rt_prio_array {
228 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
229 struct list_head queue[MAX_RT_PRIO];
230};
231
232struct rt_bandwidth {
233 /* nests inside the rq lock: */
234 raw_spinlock_t rt_runtime_lock;
235 ktime_t rt_period;
236 u64 rt_runtime;
237 struct hrtimer rt_period_timer;
4cfafd30 238 unsigned int rt_period_active;
029632fb 239};
a5e7be3b
JL
240
241void __dl_clear_params(struct task_struct *p);
242
332ac17e
DF
243/*
244 * To keep the bandwidth of -deadline tasks and groups under control
245 * we need some place where:
246 * - store the maximum -deadline bandwidth of the system (the group);
247 * - cache the fraction of that bandwidth that is currently allocated.
248 *
249 * This is all done in the data structure below. It is similar to the
250 * one used for RT-throttling (rt_bandwidth), with the main difference
251 * that, since here we are only interested in admission control, we
252 * do not decrease any runtime while the group "executes", neither we
253 * need a timer to replenish it.
254 *
255 * With respect to SMP, the bandwidth is given on a per-CPU basis,
256 * meaning that:
257 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
258 * - dl_total_bw array contains, in the i-eth element, the currently
259 * allocated bandwidth on the i-eth CPU.
260 * Moreover, groups consume bandwidth on each CPU, while tasks only
261 * consume bandwidth on the CPU they're running on.
262 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
263 * that will be shown the next time the proc or cgroup controls will
264 * be red. It on its turn can be changed by writing on its own
265 * control.
266 */
267struct dl_bandwidth {
97fb7a0a
IM
268 raw_spinlock_t dl_runtime_lock;
269 u64 dl_runtime;
270 u64 dl_period;
332ac17e
DF
271};
272
273static inline int dl_bandwidth_enabled(void)
274{
1724813d 275 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
276}
277
332ac17e 278struct dl_bw {
97fb7a0a
IM
279 raw_spinlock_t lock;
280 u64 bw;
281 u64 total_bw;
332ac17e
DF
282};
283
daec5798
LA
284static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
285
7f51412a 286static inline
8c0944ce 287void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
288{
289 dl_b->total_bw -= tsk_bw;
daec5798 290 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
291}
292
293static inline
daec5798 294void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
295{
296 dl_b->total_bw += tsk_bw;
daec5798 297 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
298}
299
300static inline
301bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
302{
303 return dl_b->bw != -1 &&
304 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
305}
306
97fb7a0a 307extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 308extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 309extern int sched_dl_global_validate(void);
06a76fe0 310extern void sched_dl_do_global(void);
97fb7a0a 311extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
312extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
313extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
314extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 315extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
316extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
317extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 318extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
319
320#ifdef CONFIG_CGROUP_SCHED
321
322#include <linux/cgroup.h>
323
324struct cfs_rq;
325struct rt_rq;
326
35cf4e50 327extern struct list_head task_groups;
029632fb
PZ
328
329struct cfs_bandwidth {
330#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
331 raw_spinlock_t lock;
332 ktime_t period;
333 u64 quota;
334 u64 runtime;
335 s64 hierarchical_quota;
336 u64 runtime_expires;
512ac999 337 int expires_seq;
97fb7a0a 338
512ac999
XP
339 short idle;
340 short period_active;
97fb7a0a
IM
341 struct hrtimer period_timer;
342 struct hrtimer slack_timer;
343 struct list_head throttled_cfs_rq;
344
345 /* Statistics: */
346 int nr_periods;
347 int nr_throttled;
348 u64 throttled_time;
029632fb
PZ
349#endif
350};
351
97fb7a0a 352/* Task group related information */
029632fb
PZ
353struct task_group {
354 struct cgroup_subsys_state css;
355
356#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
357 /* schedulable entities of this group on each CPU */
358 struct sched_entity **se;
359 /* runqueue "owned" by this group on each CPU */
360 struct cfs_rq **cfs_rq;
361 unsigned long shares;
029632fb 362
fa6bddeb 363#ifdef CONFIG_SMP
b0367629
WL
364 /*
365 * load_avg can be heavily contended at clock tick time, so put
366 * it in its own cacheline separated from the fields above which
367 * will also be accessed at each tick.
368 */
97fb7a0a 369 atomic_long_t load_avg ____cacheline_aligned;
029632fb 370#endif
fa6bddeb 371#endif
029632fb
PZ
372
373#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
374 struct sched_rt_entity **rt_se;
375 struct rt_rq **rt_rq;
029632fb 376
97fb7a0a 377 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
378#endif
379
97fb7a0a
IM
380 struct rcu_head rcu;
381 struct list_head list;
029632fb 382
97fb7a0a
IM
383 struct task_group *parent;
384 struct list_head siblings;
385 struct list_head children;
029632fb
PZ
386
387#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 388 struct autogroup *autogroup;
029632fb
PZ
389#endif
390
97fb7a0a 391 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
392};
393
394#ifdef CONFIG_FAIR_GROUP_SCHED
395#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
396
397/*
398 * A weight of 0 or 1 can cause arithmetics problems.
399 * A weight of a cfs_rq is the sum of weights of which entities
400 * are queued on this cfs_rq, so a weight of a entity should not be
401 * too large, so as the shares value of a task group.
402 * (The default weight is 1024 - so there's no practical
403 * limitation from this.)
404 */
97fb7a0a
IM
405#define MIN_SHARES (1UL << 1)
406#define MAX_SHARES (1UL << 18)
029632fb
PZ
407#endif
408
029632fb
PZ
409typedef int (*tg_visitor)(struct task_group *, void *);
410
411extern int walk_tg_tree_from(struct task_group *from,
412 tg_visitor down, tg_visitor up, void *data);
413
414/*
415 * Iterate the full tree, calling @down when first entering a node and @up when
416 * leaving it for the final time.
417 *
418 * Caller must hold rcu_lock or sufficient equivalent.
419 */
420static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
421{
422 return walk_tg_tree_from(&root_task_group, down, up, data);
423}
424
425extern int tg_nop(struct task_group *tg, void *data);
426
427extern void free_fair_sched_group(struct task_group *tg);
428extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 429extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 430extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
431extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
432 struct sched_entity *se, int cpu,
433 struct sched_entity *parent);
434extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
435
436extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 437extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
438extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
439
440extern void free_rt_sched_group(struct task_group *tg);
441extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
442extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
443 struct sched_rt_entity *rt_se, int cpu,
444 struct sched_rt_entity *parent);
8887cd99
NP
445extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
446extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
447extern long sched_group_rt_runtime(struct task_group *tg);
448extern long sched_group_rt_period(struct task_group *tg);
449extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 450
25cc7da7
LZ
451extern struct task_group *sched_create_group(struct task_group *parent);
452extern void sched_online_group(struct task_group *tg,
453 struct task_group *parent);
454extern void sched_destroy_group(struct task_group *tg);
455extern void sched_offline_group(struct task_group *tg);
456
457extern void sched_move_task(struct task_struct *tsk);
458
459#ifdef CONFIG_FAIR_GROUP_SCHED
460extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
461
462#ifdef CONFIG_SMP
463extern void set_task_rq_fair(struct sched_entity *se,
464 struct cfs_rq *prev, struct cfs_rq *next);
465#else /* !CONFIG_SMP */
466static inline void set_task_rq_fair(struct sched_entity *se,
467 struct cfs_rq *prev, struct cfs_rq *next) { }
468#endif /* CONFIG_SMP */
469#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 470
029632fb
PZ
471#else /* CONFIG_CGROUP_SCHED */
472
473struct cfs_bandwidth { };
474
475#endif /* CONFIG_CGROUP_SCHED */
476
477/* CFS-related fields in a runqueue */
478struct cfs_rq {
97fb7a0a
IM
479 struct load_weight load;
480 unsigned long runnable_weight;
481 unsigned int nr_running;
482 unsigned int h_nr_running;
029632fb 483
97fb7a0a
IM
484 u64 exec_clock;
485 u64 min_vruntime;
029632fb 486#ifndef CONFIG_64BIT
97fb7a0a 487 u64 min_vruntime_copy;
029632fb
PZ
488#endif
489
97fb7a0a 490 struct rb_root_cached tasks_timeline;
029632fb 491
029632fb
PZ
492 /*
493 * 'curr' points to currently running entity on this cfs_rq.
494 * It is set to NULL otherwise (i.e when none are currently running).
495 */
97fb7a0a
IM
496 struct sched_entity *curr;
497 struct sched_entity *next;
498 struct sched_entity *last;
499 struct sched_entity *skip;
029632fb
PZ
500
501#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 502 unsigned int nr_spread_over;
029632fb
PZ
503#endif
504
2dac754e
PT
505#ifdef CONFIG_SMP
506 /*
9d89c257 507 * CFS load tracking
2dac754e 508 */
97fb7a0a 509 struct sched_avg avg;
2a2f5d4e 510#ifndef CONFIG_64BIT
97fb7a0a 511 u64 load_last_update_time_copy;
9d89c257 512#endif
2a2f5d4e
PZ
513 struct {
514 raw_spinlock_t lock ____cacheline_aligned;
515 int nr;
516 unsigned long load_avg;
517 unsigned long util_avg;
0e2d2aaa 518 unsigned long runnable_sum;
2a2f5d4e 519 } removed;
82958366 520
9d89c257 521#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
522 unsigned long tg_load_avg_contrib;
523 long propagate;
524 long prop_runnable_sum;
0e2d2aaa 525
82958366
PT
526 /*
527 * h_load = weight * f(tg)
528 *
529 * Where f(tg) is the recursive weight fraction assigned to
530 * this group.
531 */
97fb7a0a
IM
532 unsigned long h_load;
533 u64 last_h_load_update;
534 struct sched_entity *h_load_next;
68520796 535#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
536#endif /* CONFIG_SMP */
537
029632fb 538#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 539 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
540
541 /*
542 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
543 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
544 * (like users, containers etc.)
545 *
97fb7a0a
IM
546 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
547 * This list is used during load balance.
029632fb 548 */
97fb7a0a
IM
549 int on_list;
550 struct list_head leaf_cfs_rq_list;
551 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 552
029632fb 553#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 554 int runtime_enabled;
512ac999 555 int expires_seq;
97fb7a0a
IM
556 u64 runtime_expires;
557 s64 runtime_remaining;
558
559 u64 throttled_clock;
560 u64 throttled_clock_task;
561 u64 throttled_clock_task_time;
562 int throttled;
563 int throttle_count;
564 struct list_head throttled_list;
029632fb
PZ
565#endif /* CONFIG_CFS_BANDWIDTH */
566#endif /* CONFIG_FAIR_GROUP_SCHED */
567};
568
569static inline int rt_bandwidth_enabled(void)
570{
571 return sysctl_sched_rt_runtime >= 0;
572}
573
b6366f04 574/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 575#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
576# define HAVE_RT_PUSH_IPI
577#endif
578
029632fb
PZ
579/* Real-Time classes' related field in a runqueue: */
580struct rt_rq {
97fb7a0a
IM
581 struct rt_prio_array active;
582 unsigned int rt_nr_running;
583 unsigned int rr_nr_running;
029632fb
PZ
584#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
585 struct {
97fb7a0a 586 int curr; /* highest queued rt task prio */
029632fb 587#ifdef CONFIG_SMP
97fb7a0a 588 int next; /* next highest */
029632fb
PZ
589#endif
590 } highest_prio;
591#endif
592#ifdef CONFIG_SMP
97fb7a0a
IM
593 unsigned long rt_nr_migratory;
594 unsigned long rt_nr_total;
595 int overloaded;
596 struct plist_head pushable_tasks;
371bf427 597
b6366f04 598#endif /* CONFIG_SMP */
97fb7a0a 599 int rt_queued;
f4ebcbc0 600
97fb7a0a
IM
601 int rt_throttled;
602 u64 rt_time;
603 u64 rt_runtime;
029632fb 604 /* Nests inside the rq lock: */
97fb7a0a 605 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
606
607#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 608 unsigned long rt_nr_boosted;
029632fb 609
97fb7a0a
IM
610 struct rq *rq;
611 struct task_group *tg;
029632fb
PZ
612#endif
613};
614
296b2ffe
VG
615static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
616{
617 return rt_rq->rt_queued && rt_rq->rt_nr_running;
618}
619
aab03e05
DF
620/* Deadline class' related fields in a runqueue */
621struct dl_rq {
622 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 623 struct rb_root_cached root;
aab03e05 624
97fb7a0a 625 unsigned long dl_nr_running;
1baca4ce
JL
626
627#ifdef CONFIG_SMP
628 /*
629 * Deadline values of the currently executing and the
630 * earliest ready task on this rq. Caching these facilitates
631 * the decision wether or not a ready but not running task
632 * should migrate somewhere else.
633 */
634 struct {
97fb7a0a
IM
635 u64 curr;
636 u64 next;
1baca4ce
JL
637 } earliest_dl;
638
97fb7a0a
IM
639 unsigned long dl_nr_migratory;
640 int overloaded;
1baca4ce
JL
641
642 /*
643 * Tasks on this rq that can be pushed away. They are kept in
644 * an rb-tree, ordered by tasks' deadlines, with caching
645 * of the leftmost (earliest deadline) element.
646 */
97fb7a0a 647 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 648#else
97fb7a0a 649 struct dl_bw dl_bw;
1baca4ce 650#endif
e36d8677
LA
651 /*
652 * "Active utilization" for this runqueue: increased when a
653 * task wakes up (becomes TASK_RUNNING) and decreased when a
654 * task blocks
655 */
97fb7a0a 656 u64 running_bw;
4da3abce 657
8fd27231
LA
658 /*
659 * Utilization of the tasks "assigned" to this runqueue (including
660 * the tasks that are in runqueue and the tasks that executed on this
661 * CPU and blocked). Increased when a task moves to this runqueue, and
662 * decreased when the task moves away (migrates, changes scheduling
663 * policy, or terminates).
664 * This is needed to compute the "inactive utilization" for the
665 * runqueue (inactive utilization = this_bw - running_bw).
666 */
97fb7a0a
IM
667 u64 this_bw;
668 u64 extra_bw;
8fd27231 669
4da3abce
LA
670 /*
671 * Inverse of the fraction of CPU utilization that can be reclaimed
672 * by the GRUB algorithm.
673 */
97fb7a0a 674 u64 bw_ratio;
aab03e05
DF
675};
676
c0796298
VG
677#ifdef CONFIG_FAIR_GROUP_SCHED
678/* An entity is a task if it doesn't "own" a runqueue */
679#define entity_is_task(se) (!se->my_q)
680#else
681#define entity_is_task(se) 1
682#endif
683
029632fb 684#ifdef CONFIG_SMP
c0796298
VG
685/*
686 * XXX we want to get rid of these helpers and use the full load resolution.
687 */
688static inline long se_weight(struct sched_entity *se)
689{
690 return scale_load_down(se->load.weight);
691}
692
693static inline long se_runnable(struct sched_entity *se)
694{
695 return scale_load_down(se->runnable_weight);
696}
029632fb 697
afe06efd
TC
698static inline bool sched_asym_prefer(int a, int b)
699{
700 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
701}
702
029632fb
PZ
703/*
704 * We add the notion of a root-domain which will be used to define per-domain
705 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 706 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
707 * exclusive cpuset is created, we also create and attach a new root-domain
708 * object.
709 *
710 */
711struct root_domain {
97fb7a0a
IM
712 atomic_t refcount;
713 atomic_t rto_count;
714 struct rcu_head rcu;
715 cpumask_var_t span;
716 cpumask_var_t online;
029632fb 717
4486edd1 718 /* Indicate more than one runnable task for any CPU */
97fb7a0a 719 bool overload;
4486edd1 720
1baca4ce
JL
721 /*
722 * The bit corresponding to a CPU gets set here if such CPU has more
723 * than one runnable -deadline task (as it is below for RT tasks).
724 */
97fb7a0a
IM
725 cpumask_var_t dlo_mask;
726 atomic_t dlo_count;
727 struct dl_bw dl_bw;
728 struct cpudl cpudl;
1baca4ce 729
4bdced5c
SRRH
730#ifdef HAVE_RT_PUSH_IPI
731 /*
732 * For IPI pull requests, loop across the rto_mask.
733 */
97fb7a0a
IM
734 struct irq_work rto_push_work;
735 raw_spinlock_t rto_lock;
4bdced5c 736 /* These are only updated and read within rto_lock */
97fb7a0a
IM
737 int rto_loop;
738 int rto_cpu;
4bdced5c 739 /* These atomics are updated outside of a lock */
97fb7a0a
IM
740 atomic_t rto_loop_next;
741 atomic_t rto_loop_start;
4bdced5c 742#endif
029632fb
PZ
743 /*
744 * The "RT overload" flag: it gets set if a CPU has more than
745 * one runnable RT task.
746 */
97fb7a0a
IM
747 cpumask_var_t rto_mask;
748 struct cpupri cpupri;
cd92bfd3 749
97fb7a0a 750 unsigned long max_cpu_capacity;
029632fb
PZ
751};
752
753extern struct root_domain def_root_domain;
f2cb1360 754extern struct mutex sched_domains_mutex;
f2cb1360
IM
755
756extern void init_defrootdomain(void);
8d5dc512 757extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 758extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
759extern void sched_get_rd(struct root_domain *rd);
760extern void sched_put_rd(struct root_domain *rd);
029632fb 761
4bdced5c
SRRH
762#ifdef HAVE_RT_PUSH_IPI
763extern void rto_push_irq_work_func(struct irq_work *work);
764#endif
029632fb
PZ
765#endif /* CONFIG_SMP */
766
767/*
768 * This is the main, per-CPU runqueue data structure.
769 *
770 * Locking rule: those places that want to lock multiple runqueues
771 * (such as the load balancing or the thread migration code), lock
772 * acquire operations must be ordered by ascending &runqueue.
773 */
774struct rq {
775 /* runqueue lock: */
97fb7a0a 776 raw_spinlock_t lock;
029632fb
PZ
777
778 /*
779 * nr_running and cpu_load should be in the same cacheline because
780 * remote CPUs use both these fields when doing load calculation.
781 */
97fb7a0a 782 unsigned int nr_running;
0ec8aa00 783#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
784 unsigned int nr_numa_running;
785 unsigned int nr_preferred_running;
a4739eca 786 unsigned int numa_migrate_on;
0ec8aa00 787#endif
029632fb 788 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 789 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 790#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 791#ifdef CONFIG_SMP
97fb7a0a 792 unsigned long last_load_update_tick;
e022e0d3 793 unsigned long last_blocked_load_update_tick;
f643ea22 794 unsigned int has_blocked_load;
9fd81dd5 795#endif /* CONFIG_SMP */
00357f5e 796 unsigned int nohz_tick_stopped;
a22e47a4 797 atomic_t nohz_flags;
9fd81dd5 798#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 799
97fb7a0a
IM
800 /* capture load from *all* tasks on this CPU: */
801 struct load_weight load;
802 unsigned long nr_load_updates;
803 u64 nr_switches;
029632fb 804
97fb7a0a
IM
805 struct cfs_rq cfs;
806 struct rt_rq rt;
807 struct dl_rq dl;
029632fb
PZ
808
809#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
810 /* list of leaf cfs_rq on this CPU: */
811 struct list_head leaf_cfs_rq_list;
812 struct list_head *tmp_alone_branch;
a35b6466
PZ
813#endif /* CONFIG_FAIR_GROUP_SCHED */
814
029632fb
PZ
815 /*
816 * This is part of a global counter where only the total sum
817 * over all CPUs matters. A task can increase this counter on
818 * one CPU and if it got migrated afterwards it may decrease
819 * it on another CPU. Always updated under the runqueue lock:
820 */
97fb7a0a 821 unsigned long nr_uninterruptible;
029632fb 822
97fb7a0a
IM
823 struct task_struct *curr;
824 struct task_struct *idle;
825 struct task_struct *stop;
826 unsigned long next_balance;
827 struct mm_struct *prev_mm;
029632fb 828
97fb7a0a
IM
829 unsigned int clock_update_flags;
830 u64 clock;
831 u64 clock_task;
029632fb 832
97fb7a0a 833 atomic_t nr_iowait;
029632fb
PZ
834
835#ifdef CONFIG_SMP
97fb7a0a
IM
836 struct root_domain *rd;
837 struct sched_domain *sd;
838
839 unsigned long cpu_capacity;
840 unsigned long cpu_capacity_orig;
029632fb 841
97fb7a0a 842 struct callback_head *balance_callback;
029632fb 843
97fb7a0a 844 unsigned char idle_balance;
e3fca9e7 845
029632fb 846 /* For active balancing */
97fb7a0a
IM
847 int active_balance;
848 int push_cpu;
849 struct cpu_stop_work active_balance_work;
850
851 /* CPU of this runqueue: */
852 int cpu;
853 int online;
029632fb 854
367456c7
PZ
855 struct list_head cfs_tasks;
856
371bf427 857 struct sched_avg avg_rt;
3727e0e1 858 struct sched_avg avg_dl;
91c27493 859#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2e62c474 860#define HAVE_SCHED_AVG_IRQ
91c27493
VG
861 struct sched_avg avg_irq;
862#endif
97fb7a0a
IM
863 u64 idle_stamp;
864 u64 avg_idle;
9bd721c5
JL
865
866 /* This is used to determine avg_idle's max value */
97fb7a0a 867 u64 max_idle_balance_cost;
029632fb
PZ
868#endif
869
870#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 871 u64 prev_irq_time;
029632fb
PZ
872#endif
873#ifdef CONFIG_PARAVIRT
97fb7a0a 874 u64 prev_steal_time;
029632fb
PZ
875#endif
876#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 877 u64 prev_steal_time_rq;
029632fb
PZ
878#endif
879
880 /* calc_load related fields */
97fb7a0a
IM
881 unsigned long calc_load_update;
882 long calc_load_active;
029632fb
PZ
883
884#ifdef CONFIG_SCHED_HRTICK
885#ifdef CONFIG_SMP
97fb7a0a
IM
886 int hrtick_csd_pending;
887 call_single_data_t hrtick_csd;
029632fb 888#endif
97fb7a0a 889 struct hrtimer hrtick_timer;
029632fb
PZ
890#endif
891
892#ifdef CONFIG_SCHEDSTATS
893 /* latency stats */
97fb7a0a
IM
894 struct sched_info rq_sched_info;
895 unsigned long long rq_cpu_time;
029632fb
PZ
896 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
897
898 /* sys_sched_yield() stats */
97fb7a0a 899 unsigned int yld_count;
029632fb
PZ
900
901 /* schedule() stats */
97fb7a0a
IM
902 unsigned int sched_count;
903 unsigned int sched_goidle;
029632fb
PZ
904
905 /* try_to_wake_up() stats */
97fb7a0a
IM
906 unsigned int ttwu_count;
907 unsigned int ttwu_local;
029632fb
PZ
908#endif
909
910#ifdef CONFIG_SMP
97fb7a0a 911 struct llist_head wake_list;
029632fb 912#endif
442bf3aa
DL
913
914#ifdef CONFIG_CPU_IDLE
915 /* Must be inspected within a rcu lock section */
97fb7a0a 916 struct cpuidle_state *idle_state;
442bf3aa 917#endif
029632fb
PZ
918};
919
920static inline int cpu_of(struct rq *rq)
921{
922#ifdef CONFIG_SMP
923 return rq->cpu;
924#else
925 return 0;
926#endif
927}
928
1b568f0a
PZ
929
930#ifdef CONFIG_SCHED_SMT
931
932extern struct static_key_false sched_smt_present;
933
934extern void __update_idle_core(struct rq *rq);
935
936static inline void update_idle_core(struct rq *rq)
937{
938 if (static_branch_unlikely(&sched_smt_present))
939 __update_idle_core(rq);
940}
941
942#else
943static inline void update_idle_core(struct rq *rq) { }
944#endif
945
8b06c55b 946DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 947
518cd623 948#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 949#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
950#define task_rq(p) cpu_rq(task_cpu(p))
951#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 952#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 953
cebde6d6
PZ
954static inline u64 __rq_clock_broken(struct rq *rq)
955{
316c1608 956 return READ_ONCE(rq->clock);
cebde6d6
PZ
957}
958
cb42c9a3
MF
959/*
960 * rq::clock_update_flags bits
961 *
962 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
963 * call to __schedule(). This is an optimisation to avoid
964 * neighbouring rq clock updates.
965 *
966 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
967 * in effect and calls to update_rq_clock() are being ignored.
968 *
969 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
970 * made to update_rq_clock() since the last time rq::lock was pinned.
971 *
972 * If inside of __schedule(), clock_update_flags will have been
973 * shifted left (a left shift is a cheap operation for the fast path
974 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
975 *
976 * if (rq-clock_update_flags >= RQCF_UPDATED)
977 *
978 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
979 * one position though, because the next rq_unpin_lock() will shift it
980 * back.
981 */
97fb7a0a
IM
982#define RQCF_REQ_SKIP 0x01
983#define RQCF_ACT_SKIP 0x02
984#define RQCF_UPDATED 0x04
cb42c9a3
MF
985
986static inline void assert_clock_updated(struct rq *rq)
987{
988 /*
989 * The only reason for not seeing a clock update since the
990 * last rq_pin_lock() is if we're currently skipping updates.
991 */
992 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
993}
994
78becc27
FW
995static inline u64 rq_clock(struct rq *rq)
996{
cebde6d6 997 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
998 assert_clock_updated(rq);
999
78becc27
FW
1000 return rq->clock;
1001}
1002
1003static inline u64 rq_clock_task(struct rq *rq)
1004{
cebde6d6 1005 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1006 assert_clock_updated(rq);
1007
78becc27
FW
1008 return rq->clock_task;
1009}
1010
adcc8da8 1011static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1012{
1013 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1014 rq->clock_update_flags |= RQCF_REQ_SKIP;
1015}
1016
1017/*
595058b6 1018 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1019 * request is cancelled.
1020 */
1021static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1022{
1023 lockdep_assert_held(&rq->lock);
1024 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1025}
1026
d8ac8971
MF
1027struct rq_flags {
1028 unsigned long flags;
1029 struct pin_cookie cookie;
cb42c9a3
MF
1030#ifdef CONFIG_SCHED_DEBUG
1031 /*
1032 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1033 * current pin context is stashed here in case it needs to be
1034 * restored in rq_repin_lock().
1035 */
1036 unsigned int clock_update_flags;
1037#endif
d8ac8971
MF
1038};
1039
1040static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1041{
1042 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1043
1044#ifdef CONFIG_SCHED_DEBUG
1045 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1046 rf->clock_update_flags = 0;
1047#endif
d8ac8971
MF
1048}
1049
1050static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1051{
cb42c9a3
MF
1052#ifdef CONFIG_SCHED_DEBUG
1053 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1054 rf->clock_update_flags = RQCF_UPDATED;
1055#endif
1056
d8ac8971
MF
1057 lockdep_unpin_lock(&rq->lock, rf->cookie);
1058}
1059
1060static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1061{
1062 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1063
1064#ifdef CONFIG_SCHED_DEBUG
1065 /*
1066 * Restore the value we stashed in @rf for this pin context.
1067 */
1068 rq->clock_update_flags |= rf->clock_update_flags;
1069#endif
d8ac8971
MF
1070}
1071
9942f79b 1072#ifdef CONFIG_NUMA
e3fe70b1
RR
1073enum numa_topology_type {
1074 NUMA_DIRECT,
1075 NUMA_GLUELESS_MESH,
1076 NUMA_BACKPLANE,
1077};
1078extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1079extern int sched_max_numa_distance;
1080extern bool find_numa_distance(int distance);
1081#endif
1082
f2cb1360
IM
1083#ifdef CONFIG_NUMA
1084extern void sched_init_numa(void);
1085extern void sched_domains_numa_masks_set(unsigned int cpu);
1086extern void sched_domains_numa_masks_clear(unsigned int cpu);
1087#else
1088static inline void sched_init_numa(void) { }
1089static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1090static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1091#endif
1092
f809ca9a 1093#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1094/* The regions in numa_faults array from task_struct */
1095enum numa_faults_stats {
1096 NUMA_MEM = 0,
1097 NUMA_CPU,
1098 NUMA_MEMBUF,
1099 NUMA_CPUBUF
1100};
0ec8aa00 1101extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1102extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1103extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1104 int cpu, int scpu);
13784475
MG
1105extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1106#else
1107static inline void
1108init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1109{
1110}
f809ca9a
MG
1111#endif /* CONFIG_NUMA_BALANCING */
1112
518cd623
PZ
1113#ifdef CONFIG_SMP
1114
e3fca9e7
PZ
1115static inline void
1116queue_balance_callback(struct rq *rq,
1117 struct callback_head *head,
1118 void (*func)(struct rq *rq))
1119{
1120 lockdep_assert_held(&rq->lock);
1121
1122 if (unlikely(head->next))
1123 return;
1124
1125 head->func = (void (*)(struct callback_head *))func;
1126 head->next = rq->balance_callback;
1127 rq->balance_callback = head;
1128}
1129
e3baac47
PZ
1130extern void sched_ttwu_pending(void);
1131
029632fb
PZ
1132#define rcu_dereference_check_sched_domain(p) \
1133 rcu_dereference_check((p), \
1134 lockdep_is_held(&sched_domains_mutex))
1135
1136/*
1137 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1138 * See detach_destroy_domains: synchronize_sched for details.
1139 *
1140 * The domain tree of any CPU may only be accessed from within
1141 * preempt-disabled sections.
1142 */
1143#define for_each_domain(cpu, __sd) \
518cd623
PZ
1144 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1145 __sd; __sd = __sd->parent)
029632fb 1146
77e81365
SS
1147#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1148
518cd623
PZ
1149/**
1150 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1151 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1152 * be returned.
1153 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1154 * for the given CPU.
518cd623 1155 *
97fb7a0a 1156 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1157 */
1158static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1159{
1160 struct sched_domain *sd, *hsd = NULL;
1161
1162 for_each_domain(cpu, sd) {
1163 if (!(sd->flags & flag))
1164 break;
1165 hsd = sd;
1166 }
1167
1168 return hsd;
1169}
1170
fb13c7ee
MG
1171static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1172{
1173 struct sched_domain *sd;
1174
1175 for_each_domain(cpu, sd) {
1176 if (sd->flags & flag)
1177 break;
1178 }
1179
1180 return sd;
1181}
1182
518cd623 1183DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1184DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1185DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1186DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1187DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1188DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 1189
63b2ca30 1190struct sched_group_capacity {
97fb7a0a 1191 atomic_t ref;
5e6521ea 1192 /*
172895e6 1193 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1194 * for a single CPU.
5e6521ea 1195 */
97fb7a0a
IM
1196 unsigned long capacity;
1197 unsigned long min_capacity; /* Min per-CPU capacity in group */
1198 unsigned long next_update;
1199 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1200
005f874d 1201#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1202 int id;
005f874d
PZ
1203#endif
1204
97fb7a0a 1205 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1206};
1207
1208struct sched_group {
97fb7a0a
IM
1209 struct sched_group *next; /* Must be a circular list */
1210 atomic_t ref;
5e6521ea 1211
97fb7a0a 1212 unsigned int group_weight;
63b2ca30 1213 struct sched_group_capacity *sgc;
97fb7a0a 1214 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1215
1216 /*
1217 * The CPUs this group covers.
1218 *
1219 * NOTE: this field is variable length. (Allocated dynamically
1220 * by attaching extra space to the end of the structure,
1221 * depending on how many CPUs the kernel has booted up with)
1222 */
97fb7a0a 1223 unsigned long cpumask[0];
5e6521ea
LZ
1224};
1225
ae4df9d6 1226static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1227{
1228 return to_cpumask(sg->cpumask);
1229}
1230
1231/*
e5c14b1f 1232 * See build_balance_mask().
5e6521ea 1233 */
e5c14b1f 1234static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1235{
63b2ca30 1236 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1237}
1238
1239/**
97fb7a0a
IM
1240 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1241 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1242 */
1243static inline unsigned int group_first_cpu(struct sched_group *group)
1244{
ae4df9d6 1245 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1246}
1247
c1174876
PZ
1248extern int group_balance_cpu(struct sched_group *sg);
1249
3866e845
SRRH
1250#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1251void register_sched_domain_sysctl(void);
bbdacdfe 1252void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1253void unregister_sched_domain_sysctl(void);
1254#else
1255static inline void register_sched_domain_sysctl(void)
1256{
1257}
bbdacdfe
PZ
1258static inline void dirty_sched_domain_sysctl(int cpu)
1259{
1260}
3866e845
SRRH
1261static inline void unregister_sched_domain_sysctl(void)
1262{
1263}
1264#endif
1265
e3baac47
PZ
1266#else
1267
1268static inline void sched_ttwu_pending(void) { }
1269
518cd623 1270#endif /* CONFIG_SMP */
029632fb 1271
391e43da 1272#include "stats.h"
1051408f 1273#include "autogroup.h"
029632fb
PZ
1274
1275#ifdef CONFIG_CGROUP_SCHED
1276
1277/*
1278 * Return the group to which this tasks belongs.
1279 *
8af01f56
TH
1280 * We cannot use task_css() and friends because the cgroup subsystem
1281 * changes that value before the cgroup_subsys::attach() method is called,
1282 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1283 *
1284 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1285 * core changes this before calling sched_move_task().
1286 *
1287 * Instead we use a 'copy' which is updated from sched_move_task() while
1288 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1289 */
1290static inline struct task_group *task_group(struct task_struct *p)
1291{
8323f26c 1292 return p->sched_task_group;
029632fb
PZ
1293}
1294
1295/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1296static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1297{
1298#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1299 struct task_group *tg = task_group(p);
1300#endif
1301
1302#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1303 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1304 p->se.cfs_rq = tg->cfs_rq[cpu];
1305 p->se.parent = tg->se[cpu];
1306#endif
1307
1308#ifdef CONFIG_RT_GROUP_SCHED
1309 p->rt.rt_rq = tg->rt_rq[cpu];
1310 p->rt.parent = tg->rt_se[cpu];
1311#endif
1312}
1313
1314#else /* CONFIG_CGROUP_SCHED */
1315
1316static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1317static inline struct task_group *task_group(struct task_struct *p)
1318{
1319 return NULL;
1320}
1321
1322#endif /* CONFIG_CGROUP_SCHED */
1323
1324static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1325{
1326 set_task_rq(p, cpu);
1327#ifdef CONFIG_SMP
1328 /*
1329 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1330 * successfuly executed on another CPU. We must ensure that updates of
1331 * per-task data have been completed by this moment.
1332 */
1333 smp_wmb();
c65eacbe
AL
1334#ifdef CONFIG_THREAD_INFO_IN_TASK
1335 p->cpu = cpu;
1336#else
029632fb 1337 task_thread_info(p)->cpu = cpu;
c65eacbe 1338#endif
ac66f547 1339 p->wake_cpu = cpu;
029632fb
PZ
1340#endif
1341}
1342
1343/*
1344 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1345 */
1346#ifdef CONFIG_SCHED_DEBUG
c5905afb 1347# include <linux/static_key.h>
029632fb
PZ
1348# define const_debug __read_mostly
1349#else
1350# define const_debug const
1351#endif
1352
029632fb
PZ
1353#define SCHED_FEAT(name, enabled) \
1354 __SCHED_FEAT_##name ,
1355
1356enum {
391e43da 1357#include "features.h"
f8b6d1cc 1358 __SCHED_FEAT_NR,
029632fb
PZ
1359};
1360
1361#undef SCHED_FEAT
1362
f8b6d1cc 1363#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1364
1365/*
1366 * To support run-time toggling of sched features, all the translation units
1367 * (but core.c) reference the sysctl_sched_features defined in core.c.
1368 */
1369extern const_debug unsigned int sysctl_sched_features;
1370
f8b6d1cc 1371#define SCHED_FEAT(name, enabled) \
c5905afb 1372static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1373{ \
6e76ea8a 1374 return static_key_##enabled(key); \
f8b6d1cc
PZ
1375}
1376
1377#include "features.h"
f8b6d1cc
PZ
1378#undef SCHED_FEAT
1379
c5905afb 1380extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1381#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1382
f8b6d1cc 1383#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1384
1385/*
1386 * Each translation unit has its own copy of sysctl_sched_features to allow
1387 * constants propagation at compile time and compiler optimization based on
1388 * features default.
1389 */
1390#define SCHED_FEAT(name, enabled) \
1391 (1UL << __SCHED_FEAT_##name) * enabled |
1392static const_debug __maybe_unused unsigned int sysctl_sched_features =
1393#include "features.h"
1394 0;
1395#undef SCHED_FEAT
1396
029632fb 1397#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1398
f8b6d1cc 1399#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1400
2a595721 1401extern struct static_key_false sched_numa_balancing;
cb251765 1402extern struct static_key_false sched_schedstats;
cbee9f88 1403
029632fb
PZ
1404static inline u64 global_rt_period(void)
1405{
1406 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1407}
1408
1409static inline u64 global_rt_runtime(void)
1410{
1411 if (sysctl_sched_rt_runtime < 0)
1412 return RUNTIME_INF;
1413
1414 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1415}
1416
029632fb
PZ
1417static inline int task_current(struct rq *rq, struct task_struct *p)
1418{
1419 return rq->curr == p;
1420}
1421
1422static inline int task_running(struct rq *rq, struct task_struct *p)
1423{
1424#ifdef CONFIG_SMP
1425 return p->on_cpu;
1426#else
1427 return task_current(rq, p);
1428#endif
1429}
1430
da0c1e65
KT
1431static inline int task_on_rq_queued(struct task_struct *p)
1432{
1433 return p->on_rq == TASK_ON_RQ_QUEUED;
1434}
029632fb 1435
cca26e80
KT
1436static inline int task_on_rq_migrating(struct task_struct *p)
1437{
1438 return p->on_rq == TASK_ON_RQ_MIGRATING;
1439}
1440
b13095f0
LZ
1441/*
1442 * wake flags
1443 */
97fb7a0a
IM
1444#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1445#define WF_FORK 0x02 /* Child wakeup after fork */
1446#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1447
029632fb
PZ
1448/*
1449 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1450 * of tasks with abnormal "nice" values across CPUs the contribution that
1451 * each task makes to its run queue's load is weighted according to its
1452 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1453 * scaled version of the new time slice allocation that they receive on time
1454 * slice expiry etc.
1455 */
1456
97fb7a0a
IM
1457#define WEIGHT_IDLEPRIO 3
1458#define WMULT_IDLEPRIO 1431655765
029632fb 1459
97fb7a0a
IM
1460extern const int sched_prio_to_weight[40];
1461extern const u32 sched_prio_to_wmult[40];
029632fb 1462
ff77e468
PZ
1463/*
1464 * {de,en}queue flags:
1465 *
1466 * DEQUEUE_SLEEP - task is no longer runnable
1467 * ENQUEUE_WAKEUP - task just became runnable
1468 *
1469 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1470 * are in a known state which allows modification. Such pairs
1471 * should preserve as much state as possible.
1472 *
1473 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1474 * in the runqueue.
1475 *
1476 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1477 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1478 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1479 *
1480 */
1481
1482#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1483#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1484#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1485#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1486
1de64443 1487#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1488#define ENQUEUE_RESTORE 0x02
1489#define ENQUEUE_MOVE 0x04
0a67d1ee 1490#define ENQUEUE_NOCLOCK 0x08
ff77e468 1491
0a67d1ee
PZ
1492#define ENQUEUE_HEAD 0x10
1493#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1494#ifdef CONFIG_SMP
0a67d1ee 1495#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1496#else
59efa0ba 1497#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1498#endif
c82ba9fa 1499
37e117c0
PZ
1500#define RETRY_TASK ((void *)-1UL)
1501
c82ba9fa
LZ
1502struct sched_class {
1503 const struct sched_class *next;
1504
1505 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1506 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1507 void (*yield_task) (struct rq *rq);
1508 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1509
97fb7a0a 1510 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1511
606dba2e
PZ
1512 /*
1513 * It is the responsibility of the pick_next_task() method that will
1514 * return the next task to call put_prev_task() on the @prev task or
1515 * something equivalent.
37e117c0
PZ
1516 *
1517 * May return RETRY_TASK when it finds a higher prio class has runnable
1518 * tasks.
606dba2e 1519 */
97fb7a0a
IM
1520 struct task_struct * (*pick_next_task)(struct rq *rq,
1521 struct task_struct *prev,
1522 struct rq_flags *rf);
1523 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1524
1525#ifdef CONFIG_SMP
ac66f547 1526 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1527 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1528
97fb7a0a 1529 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1530
1531 void (*set_cpus_allowed)(struct task_struct *p,
1532 const struct cpumask *newmask);
1533
1534 void (*rq_online)(struct rq *rq);
1535 void (*rq_offline)(struct rq *rq);
1536#endif
1537
97fb7a0a
IM
1538 void (*set_curr_task)(struct rq *rq);
1539 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1540 void (*task_fork)(struct task_struct *p);
1541 void (*task_dead)(struct task_struct *p);
c82ba9fa 1542
67dfa1b7
KT
1543 /*
1544 * The switched_from() call is allowed to drop rq->lock, therefore we
1545 * cannot assume the switched_from/switched_to pair is serliazed by
1546 * rq->lock. They are however serialized by p->pi_lock.
1547 */
97fb7a0a
IM
1548 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1549 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1550 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1551 int oldprio);
c82ba9fa 1552
97fb7a0a
IM
1553 unsigned int (*get_rr_interval)(struct rq *rq,
1554 struct task_struct *task);
c82ba9fa 1555
97fb7a0a 1556 void (*update_curr)(struct rq *rq);
6e998916 1557
97fb7a0a
IM
1558#define TASK_SET_GROUP 0
1559#define TASK_MOVE_GROUP 1
ea86cb4b 1560
c82ba9fa 1561#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1562 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1563#endif
1564};
029632fb 1565
3f1d2a31
PZ
1566static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1567{
1568 prev->sched_class->put_prev_task(rq, prev);
1569}
1570
b2bf6c31
PZ
1571static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1572{
1573 curr->sched_class->set_curr_task(rq);
1574}
1575
f5832c19 1576#ifdef CONFIG_SMP
029632fb 1577#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1578#else
1579#define sched_class_highest (&dl_sched_class)
1580#endif
029632fb
PZ
1581#define for_each_class(class) \
1582 for (class = sched_class_highest; class; class = class->next)
1583
1584extern const struct sched_class stop_sched_class;
aab03e05 1585extern const struct sched_class dl_sched_class;
029632fb
PZ
1586extern const struct sched_class rt_sched_class;
1587extern const struct sched_class fair_sched_class;
1588extern const struct sched_class idle_sched_class;
1589
1590
1591#ifdef CONFIG_SMP
1592
63b2ca30 1593extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1594
7caff66f 1595extern void trigger_load_balance(struct rq *rq);
029632fb 1596
c5b28038
PZ
1597extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1598
029632fb
PZ
1599#endif
1600
442bf3aa
DL
1601#ifdef CONFIG_CPU_IDLE
1602static inline void idle_set_state(struct rq *rq,
1603 struct cpuidle_state *idle_state)
1604{
1605 rq->idle_state = idle_state;
1606}
1607
1608static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1609{
9148a3a1 1610 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1611
442bf3aa
DL
1612 return rq->idle_state;
1613}
1614#else
1615static inline void idle_set_state(struct rq *rq,
1616 struct cpuidle_state *idle_state)
1617{
1618}
1619
1620static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1621{
1622 return NULL;
1623}
1624#endif
1625
8663effb
SRV
1626extern void schedule_idle(void);
1627
029632fb
PZ
1628extern void sysrq_sched_debug_show(void);
1629extern void sched_init_granularity(void);
1630extern void update_max_interval(void);
1baca4ce
JL
1631
1632extern void init_sched_dl_class(void);
029632fb
PZ
1633extern void init_sched_rt_class(void);
1634extern void init_sched_fair_class(void);
1635
9059393e
VG
1636extern void reweight_task(struct task_struct *p, int prio);
1637
8875125e 1638extern void resched_curr(struct rq *rq);
029632fb
PZ
1639extern void resched_cpu(int cpu);
1640
1641extern struct rt_bandwidth def_rt_bandwidth;
1642extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1643
332ac17e
DF
1644extern struct dl_bandwidth def_dl_bandwidth;
1645extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1646extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1647extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1648extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1649
97fb7a0a
IM
1650#define BW_SHIFT 20
1651#define BW_UNIT (1 << BW_SHIFT)
1652#define RATIO_SHIFT 8
332ac17e
DF
1653unsigned long to_ratio(u64 period, u64 runtime);
1654
540247fb 1655extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1656extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1657
76d92ac3
FW
1658#ifdef CONFIG_NO_HZ_FULL
1659extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1660extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1661
1662/*
1663 * Tick may be needed by tasks in the runqueue depending on their policy and
1664 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1665 * nohz mode if necessary.
1666 */
1667static inline void sched_update_tick_dependency(struct rq *rq)
1668{
1669 int cpu;
1670
1671 if (!tick_nohz_full_enabled())
1672 return;
1673
1674 cpu = cpu_of(rq);
1675
1676 if (!tick_nohz_full_cpu(cpu))
1677 return;
1678
1679 if (sched_can_stop_tick(rq))
1680 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1681 else
1682 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1683}
1684#else
d84b3131 1685static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1686static inline void sched_update_tick_dependency(struct rq *rq) { }
1687#endif
1688
72465447 1689static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1690{
72465447
KT
1691 unsigned prev_nr = rq->nr_running;
1692
1693 rq->nr_running = prev_nr + count;
9f3660c2 1694
72465447 1695 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1696#ifdef CONFIG_SMP
1697 if (!rq->rd->overload)
1698 rq->rd->overload = true;
1699#endif
4486edd1 1700 }
76d92ac3
FW
1701
1702 sched_update_tick_dependency(rq);
029632fb
PZ
1703}
1704
72465447 1705static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1706{
72465447 1707 rq->nr_running -= count;
76d92ac3
FW
1708 /* Check if we still need preemption */
1709 sched_update_tick_dependency(rq);
029632fb
PZ
1710}
1711
1712extern void update_rq_clock(struct rq *rq);
1713
1714extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1715extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1716
1717extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1718
029632fb
PZ
1719extern const_debug unsigned int sysctl_sched_nr_migrate;
1720extern const_debug unsigned int sysctl_sched_migration_cost;
1721
029632fb
PZ
1722#ifdef CONFIG_SCHED_HRTICK
1723
1724/*
1725 * Use hrtick when:
1726 * - enabled by features
1727 * - hrtimer is actually high res
1728 */
1729static inline int hrtick_enabled(struct rq *rq)
1730{
1731 if (!sched_feat(HRTICK))
1732 return 0;
1733 if (!cpu_active(cpu_of(rq)))
1734 return 0;
1735 return hrtimer_is_hres_active(&rq->hrtick_timer);
1736}
1737
1738void hrtick_start(struct rq *rq, u64 delay);
1739
b39e66ea
MG
1740#else
1741
1742static inline int hrtick_enabled(struct rq *rq)
1743{
1744 return 0;
1745}
1746
029632fb
PZ
1747#endif /* CONFIG_SCHED_HRTICK */
1748
dfbca41f
PZ
1749#ifndef arch_scale_freq_capacity
1750static __always_inline
7673c8a4 1751unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1752{
1753 return SCHED_CAPACITY_SCALE;
1754}
1755#endif
b5b4860d 1756
7e1a9208 1757#ifdef CONFIG_SMP
8cd5601c
MR
1758#ifndef arch_scale_cpu_capacity
1759static __always_inline
1760unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1761{
e3279a2e 1762 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1763 return sd->smt_gain / sd->span_weight;
1764
1765 return SCHED_CAPACITY_SCALE;
1766}
1767#endif
029632fb 1768#else
7e1a9208
JL
1769#ifndef arch_scale_cpu_capacity
1770static __always_inline
1771unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1772{
1773 return SCHED_CAPACITY_SCALE;
1774}
1775#endif
029632fb
PZ
1776#endif
1777
eb580751 1778struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1779 __acquires(rq->lock);
8a8c69c3 1780
eb580751 1781struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1782 __acquires(p->pi_lock)
3e71a462 1783 __acquires(rq->lock);
3960c8c0 1784
eb580751 1785static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1786 __releases(rq->lock)
1787{
d8ac8971 1788 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1789 raw_spin_unlock(&rq->lock);
1790}
1791
1792static inline void
eb580751 1793task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1794 __releases(rq->lock)
1795 __releases(p->pi_lock)
1796{
d8ac8971 1797 rq_unpin_lock(rq, rf);
3960c8c0 1798 raw_spin_unlock(&rq->lock);
eb580751 1799 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1800}
1801
8a8c69c3
PZ
1802static inline void
1803rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1804 __acquires(rq->lock)
1805{
1806 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1807 rq_pin_lock(rq, rf);
1808}
1809
1810static inline void
1811rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1812 __acquires(rq->lock)
1813{
1814 raw_spin_lock_irq(&rq->lock);
1815 rq_pin_lock(rq, rf);
1816}
1817
1818static inline void
1819rq_lock(struct rq *rq, struct rq_flags *rf)
1820 __acquires(rq->lock)
1821{
1822 raw_spin_lock(&rq->lock);
1823 rq_pin_lock(rq, rf);
1824}
1825
1826static inline void
1827rq_relock(struct rq *rq, struct rq_flags *rf)
1828 __acquires(rq->lock)
1829{
1830 raw_spin_lock(&rq->lock);
1831 rq_repin_lock(rq, rf);
1832}
1833
1834static inline void
1835rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1836 __releases(rq->lock)
1837{
1838 rq_unpin_lock(rq, rf);
1839 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1840}
1841
1842static inline void
1843rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1844 __releases(rq->lock)
1845{
1846 rq_unpin_lock(rq, rf);
1847 raw_spin_unlock_irq(&rq->lock);
1848}
1849
1850static inline void
1851rq_unlock(struct rq *rq, struct rq_flags *rf)
1852 __releases(rq->lock)
1853{
1854 rq_unpin_lock(rq, rf);
1855 raw_spin_unlock(&rq->lock);
1856}
1857
029632fb
PZ
1858#ifdef CONFIG_SMP
1859#ifdef CONFIG_PREEMPT
1860
1861static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1862
1863/*
1864 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1865 * way at the expense of forcing extra atomic operations in all
1866 * invocations. This assures that the double_lock is acquired using the
1867 * same underlying policy as the spinlock_t on this architecture, which
1868 * reduces latency compared to the unfair variant below. However, it
1869 * also adds more overhead and therefore may reduce throughput.
1870 */
1871static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1872 __releases(this_rq->lock)
1873 __acquires(busiest->lock)
1874 __acquires(this_rq->lock)
1875{
1876 raw_spin_unlock(&this_rq->lock);
1877 double_rq_lock(this_rq, busiest);
1878
1879 return 1;
1880}
1881
1882#else
1883/*
1884 * Unfair double_lock_balance: Optimizes throughput at the expense of
1885 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1886 * already in proper order on entry. This favors lower CPU-ids and will
1887 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1888 * regardless of entry order into the function.
1889 */
1890static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1891 __releases(this_rq->lock)
1892 __acquires(busiest->lock)
1893 __acquires(this_rq->lock)
1894{
1895 int ret = 0;
1896
1897 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1898 if (busiest < this_rq) {
1899 raw_spin_unlock(&this_rq->lock);
1900 raw_spin_lock(&busiest->lock);
1901 raw_spin_lock_nested(&this_rq->lock,
1902 SINGLE_DEPTH_NESTING);
1903 ret = 1;
1904 } else
1905 raw_spin_lock_nested(&busiest->lock,
1906 SINGLE_DEPTH_NESTING);
1907 }
1908 return ret;
1909}
1910
1911#endif /* CONFIG_PREEMPT */
1912
1913/*
1914 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1915 */
1916static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1917{
1918 if (unlikely(!irqs_disabled())) {
97fb7a0a 1919 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1920 raw_spin_unlock(&this_rq->lock);
1921 BUG_ON(1);
1922 }
1923
1924 return _double_lock_balance(this_rq, busiest);
1925}
1926
1927static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1928 __releases(busiest->lock)
1929{
1930 raw_spin_unlock(&busiest->lock);
1931 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1932}
1933
74602315
PZ
1934static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1935{
1936 if (l1 > l2)
1937 swap(l1, l2);
1938
1939 spin_lock(l1);
1940 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1941}
1942
60e69eed
MG
1943static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1944{
1945 if (l1 > l2)
1946 swap(l1, l2);
1947
1948 spin_lock_irq(l1);
1949 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1950}
1951
74602315
PZ
1952static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1953{
1954 if (l1 > l2)
1955 swap(l1, l2);
1956
1957 raw_spin_lock(l1);
1958 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1959}
1960
029632fb
PZ
1961/*
1962 * double_rq_lock - safely lock two runqueues
1963 *
1964 * Note this does not disable interrupts like task_rq_lock,
1965 * you need to do so manually before calling.
1966 */
1967static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1968 __acquires(rq1->lock)
1969 __acquires(rq2->lock)
1970{
1971 BUG_ON(!irqs_disabled());
1972 if (rq1 == rq2) {
1973 raw_spin_lock(&rq1->lock);
1974 __acquire(rq2->lock); /* Fake it out ;) */
1975 } else {
1976 if (rq1 < rq2) {
1977 raw_spin_lock(&rq1->lock);
1978 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1979 } else {
1980 raw_spin_lock(&rq2->lock);
1981 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1982 }
1983 }
1984}
1985
1986/*
1987 * double_rq_unlock - safely unlock two runqueues
1988 *
1989 * Note this does not restore interrupts like task_rq_unlock,
1990 * you need to do so manually after calling.
1991 */
1992static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1993 __releases(rq1->lock)
1994 __releases(rq2->lock)
1995{
1996 raw_spin_unlock(&rq1->lock);
1997 if (rq1 != rq2)
1998 raw_spin_unlock(&rq2->lock);
1999 else
2000 __release(rq2->lock);
2001}
2002
f2cb1360
IM
2003extern void set_rq_online (struct rq *rq);
2004extern void set_rq_offline(struct rq *rq);
2005extern bool sched_smp_initialized;
2006
029632fb
PZ
2007#else /* CONFIG_SMP */
2008
2009/*
2010 * double_rq_lock - safely lock two runqueues
2011 *
2012 * Note this does not disable interrupts like task_rq_lock,
2013 * you need to do so manually before calling.
2014 */
2015static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2016 __acquires(rq1->lock)
2017 __acquires(rq2->lock)
2018{
2019 BUG_ON(!irqs_disabled());
2020 BUG_ON(rq1 != rq2);
2021 raw_spin_lock(&rq1->lock);
2022 __acquire(rq2->lock); /* Fake it out ;) */
2023}
2024
2025/*
2026 * double_rq_unlock - safely unlock two runqueues
2027 *
2028 * Note this does not restore interrupts like task_rq_unlock,
2029 * you need to do so manually after calling.
2030 */
2031static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2032 __releases(rq1->lock)
2033 __releases(rq2->lock)
2034{
2035 BUG_ON(rq1 != rq2);
2036 raw_spin_unlock(&rq1->lock);
2037 __release(rq2->lock);
2038}
2039
2040#endif
2041
2042extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2043extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2044
2045#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2046extern bool sched_debug_enabled;
2047
029632fb
PZ
2048extern void print_cfs_stats(struct seq_file *m, int cpu);
2049extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2050extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2051extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2052extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2053extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2054#ifdef CONFIG_NUMA_BALANCING
2055extern void
2056show_numa_stats(struct task_struct *p, struct seq_file *m);
2057extern void
2058print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2059 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2060#endif /* CONFIG_NUMA_BALANCING */
2061#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2062
2063extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2064extern void init_rt_rq(struct rt_rq *rt_rq);
2065extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2066
1ee14e6c
BS
2067extern void cfs_bandwidth_usage_inc(void);
2068extern void cfs_bandwidth_usage_dec(void);
1c792db7 2069
3451d024 2070#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2071#define NOHZ_BALANCE_KICK_BIT 0
2072#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2073
a22e47a4 2074#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2075#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2076
2077#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2078
2079#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2080
00357f5e 2081extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2082#else
00357f5e 2083static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2084#endif
73fbec60 2085
daec5798
LA
2086
2087#ifdef CONFIG_SMP
2088static inline
2089void __dl_update(struct dl_bw *dl_b, s64 bw)
2090{
2091 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2092 int i;
2093
2094 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2095 "sched RCU must be held");
2096 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2097 struct rq *rq = cpu_rq(i);
2098
2099 rq->dl.extra_bw += bw;
2100 }
2101}
2102#else
2103static inline
2104void __dl_update(struct dl_bw *dl_b, s64 bw)
2105{
2106 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2107
2108 dl->extra_bw += bw;
2109}
2110#endif
2111
2112
73fbec60 2113#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2114struct irqtime {
25e2d8c1 2115 u64 total;
a499a5a1 2116 u64 tick_delta;
19d23dbf
FW
2117 u64 irq_start_time;
2118 struct u64_stats_sync sync;
2119};
73fbec60 2120
19d23dbf 2121DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2122
25e2d8c1
FW
2123/*
2124 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2125 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2126 * and never move forward.
2127 */
73fbec60
FW
2128static inline u64 irq_time_read(int cpu)
2129{
19d23dbf
FW
2130 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2131 unsigned int seq;
2132 u64 total;
73fbec60
FW
2133
2134 do {
19d23dbf 2135 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2136 total = irqtime->total;
19d23dbf 2137 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2138
19d23dbf 2139 return total;
73fbec60 2140}
73fbec60 2141#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2142
2143#ifdef CONFIG_CPU_FREQ
2144DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2145
2146/**
2147 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2148 * @rq: Runqueue to carry out the update for.
58919e83 2149 * @flags: Update reason flags.
adaf9fcd 2150 *
58919e83
RW
2151 * This function is called by the scheduler on the CPU whose utilization is
2152 * being updated.
adaf9fcd
RW
2153 *
2154 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2155 *
2156 * The way cpufreq is currently arranged requires it to evaluate the CPU
2157 * performance state (frequency/voltage) on a regular basis to prevent it from
2158 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2159 * That is not guaranteed to happen if the updates are only triggered from CFS
2160 * and DL, though, because they may not be coming in if only RT tasks are
2161 * active all the time (or there are RT tasks only).
adaf9fcd 2162 *
e0367b12
JL
2163 * As a workaround for that issue, this function is called periodically by the
2164 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2165 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2166 * solutions targeted more specifically at RT tasks.
adaf9fcd 2167 */
12bde33d 2168static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2169{
58919e83
RW
2170 struct update_util_data *data;
2171
674e7541
VK
2172 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2173 cpu_of(rq)));
58919e83 2174 if (data)
12bde33d
RW
2175 data->func(data, rq_clock(rq), flags);
2176}
adaf9fcd 2177#else
12bde33d 2178static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2179#endif /* CONFIG_CPU_FREQ */
be53f58f 2180
9bdcb44e 2181#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2182# ifndef arch_scale_freq_invariant
2183# define arch_scale_freq_invariant() true
2184# endif
2185#else
2186# define arch_scale_freq_invariant() false
9bdcb44e 2187#endif
d4edd662 2188
794a56eb 2189#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
8cc90515 2190static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2191{
2192 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2193}
2194
8cc90515
VG
2195static inline unsigned long cpu_util_dl(struct rq *rq)
2196{
2197 return READ_ONCE(rq->avg_dl.util_avg);
2198}
2199
d4edd662
JL
2200static inline unsigned long cpu_util_cfs(struct rq *rq)
2201{
a07630b8
PB
2202 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2203
2204 if (sched_feat(UTIL_EST)) {
2205 util = max_t(unsigned long, util,
2206 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2207 }
2208
2209 return util;
d4edd662 2210}
371bf427
VG
2211
2212static inline unsigned long cpu_util_rt(struct rq *rq)
2213{
dfa444dc 2214 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2215}
2e62c474 2216#endif
9033ea11 2217
2e62c474 2218#ifdef HAVE_SCHED_AVG_IRQ
9033ea11
VG
2219static inline unsigned long cpu_util_irq(struct rq *rq)
2220{
2221 return rq->avg_irq.util_avg;
2222}
2e62c474
VG
2223
2224static inline
2225unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2226{
2227 util *= (max - irq);
2228 util /= max;
2229
2230 return util;
2231
2232}
9033ea11
VG
2233#else
2234static inline unsigned long cpu_util_irq(struct rq *rq)
2235{
2236 return 0;
2237}
2238
2e62c474
VG
2239static inline
2240unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2241{
2242 return util;
2243}
794a56eb 2244#endif