sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[linux-2.6-block.git] / kernel / sched / sched.h
CommitLineData
029632fb
PZ
1
2#include <linux/sched.h>
cf4aebc2 3#include <linux/sched/sysctl.h>
105ab3d8 4#include <linux/sched/topology.h>
8bd75c77 5#include <linux/sched/rt.h>
84f001e1 6#include <linux/sched/wake_q.h>
19d23dbf 7#include <linux/u64_stats_sync.h>
aab03e05 8#include <linux/sched/deadline.h>
a499a5a1 9#include <linux/kernel_stat.h>
3866e845 10#include <linux/binfmts.h>
029632fb
PZ
11#include <linux/mutex.h>
12#include <linux/spinlock.h>
13#include <linux/stop_machine.h>
b6366f04 14#include <linux/irq_work.h>
9f3660c2 15#include <linux/tick.h>
f809ca9a 16#include <linux/slab.h>
029632fb 17
391e43da 18#include "cpupri.h"
6bfd6d72 19#include "cpudeadline.h"
60fed789 20#include "cpuacct.h"
029632fb 21
9148a3a1
PZ
22#ifdef CONFIG_SCHED_DEBUG
23#define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
24#else
25#define SCHED_WARN_ON(x) ((void)(x))
26#endif
27
45ceebf7 28struct rq;
442bf3aa 29struct cpuidle_state;
45ceebf7 30
da0c1e65
KT
31/* task_struct::on_rq states: */
32#define TASK_ON_RQ_QUEUED 1
cca26e80 33#define TASK_ON_RQ_MIGRATING 2
da0c1e65 34
029632fb
PZ
35extern __read_mostly int scheduler_running;
36
45ceebf7
PG
37extern unsigned long calc_load_update;
38extern atomic_long_t calc_load_tasks;
39
3289bdb4 40extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 41extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
42
43#ifdef CONFIG_SMP
cee1afce 44extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 45#else
cee1afce 46static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 47#endif
45ceebf7 48
029632fb
PZ
49/*
50 * Helpers for converting nanosecond timing to jiffy resolution
51 */
52#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
53
cc1f4b1f
LZ
54/*
55 * Increase resolution of nice-level calculations for 64-bit architectures.
56 * The extra resolution improves shares distribution and load balancing of
57 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
58 * hierarchies, especially on larger systems. This is not a user-visible change
59 * and does not change the user-interface for setting shares/weights.
60 *
61 * We increase resolution only if we have enough bits to allow this increased
2159197d
PZ
62 * resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
63 * pretty high and the returns do not justify the increased costs.
64 *
65 * Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
66 * increase coverage and consistency always enable it on 64bit platforms.
cc1f4b1f 67 */
2159197d 68#ifdef CONFIG_64BIT
172895e6 69# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
70# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
71# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 72#else
172895e6 73# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
74# define scale_load(w) (w)
75# define scale_load_down(w) (w)
76#endif
77
6ecdd749 78/*
172895e6
YD
79 * Task weight (visible to users) and its load (invisible to users) have
80 * independent resolution, but they should be well calibrated. We use
81 * scale_load() and scale_load_down(w) to convert between them. The
82 * following must be true:
83 *
84 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
85 *
6ecdd749 86 */
172895e6 87#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 88
332ac17e
DF
89/*
90 * Single value that decides SCHED_DEADLINE internal math precision.
91 * 10 -> just above 1us
92 * 9 -> just above 0.5us
93 */
94#define DL_SCALE (10)
95
029632fb
PZ
96/*
97 * These are the 'tuning knobs' of the scheduler:
029632fb 98 */
029632fb
PZ
99
100/*
101 * single value that denotes runtime == period, ie unlimited time.
102 */
103#define RUNTIME_INF ((u64)~0ULL)
104
20f9cd2a
HA
105static inline int idle_policy(int policy)
106{
107 return policy == SCHED_IDLE;
108}
d50dde5a
DF
109static inline int fair_policy(int policy)
110{
111 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
112}
113
029632fb
PZ
114static inline int rt_policy(int policy)
115{
d50dde5a 116 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
117}
118
aab03e05
DF
119static inline int dl_policy(int policy)
120{
121 return policy == SCHED_DEADLINE;
122}
20f9cd2a
HA
123static inline bool valid_policy(int policy)
124{
125 return idle_policy(policy) || fair_policy(policy) ||
126 rt_policy(policy) || dl_policy(policy);
127}
aab03e05 128
029632fb
PZ
129static inline int task_has_rt_policy(struct task_struct *p)
130{
131 return rt_policy(p->policy);
132}
133
aab03e05
DF
134static inline int task_has_dl_policy(struct task_struct *p)
135{
136 return dl_policy(p->policy);
137}
138
2d3d891d
DF
139/*
140 * Tells if entity @a should preempt entity @b.
141 */
332ac17e
DF
142static inline bool
143dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d
DF
144{
145 return dl_time_before(a->deadline, b->deadline);
146}
147
029632fb
PZ
148/*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
156struct rt_bandwidth {
157 /* nests inside the rq lock: */
158 raw_spinlock_t rt_runtime_lock;
159 ktime_t rt_period;
160 u64 rt_runtime;
161 struct hrtimer rt_period_timer;
4cfafd30 162 unsigned int rt_period_active;
029632fb 163};
a5e7be3b
JL
164
165void __dl_clear_params(struct task_struct *p);
166
332ac17e
DF
167/*
168 * To keep the bandwidth of -deadline tasks and groups under control
169 * we need some place where:
170 * - store the maximum -deadline bandwidth of the system (the group);
171 * - cache the fraction of that bandwidth that is currently allocated.
172 *
173 * This is all done in the data structure below. It is similar to the
174 * one used for RT-throttling (rt_bandwidth), with the main difference
175 * that, since here we are only interested in admission control, we
176 * do not decrease any runtime while the group "executes", neither we
177 * need a timer to replenish it.
178 *
179 * With respect to SMP, the bandwidth is given on a per-CPU basis,
180 * meaning that:
181 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
182 * - dl_total_bw array contains, in the i-eth element, the currently
183 * allocated bandwidth on the i-eth CPU.
184 * Moreover, groups consume bandwidth on each CPU, while tasks only
185 * consume bandwidth on the CPU they're running on.
186 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
187 * that will be shown the next time the proc or cgroup controls will
188 * be red. It on its turn can be changed by writing on its own
189 * control.
190 */
191struct dl_bandwidth {
192 raw_spinlock_t dl_runtime_lock;
193 u64 dl_runtime;
194 u64 dl_period;
195};
196
197static inline int dl_bandwidth_enabled(void)
198{
1724813d 199 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
200}
201
202extern struct dl_bw *dl_bw_of(int i);
203
204struct dl_bw {
205 raw_spinlock_t lock;
206 u64 bw, total_bw;
207};
208
7f51412a
JL
209static inline
210void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
211{
212 dl_b->total_bw -= tsk_bw;
213}
214
215static inline
216void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
217{
218 dl_b->total_bw += tsk_bw;
219}
220
221static inline
222bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
223{
224 return dl_b->bw != -1 &&
225 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
226}
227
f2cb1360 228extern void init_dl_bw(struct dl_bw *dl_b);
029632fb
PZ
229
230#ifdef CONFIG_CGROUP_SCHED
231
232#include <linux/cgroup.h>
233
234struct cfs_rq;
235struct rt_rq;
236
35cf4e50 237extern struct list_head task_groups;
029632fb
PZ
238
239struct cfs_bandwidth {
240#ifdef CONFIG_CFS_BANDWIDTH
241 raw_spinlock_t lock;
242 ktime_t period;
243 u64 quota, runtime;
9c58c79a 244 s64 hierarchical_quota;
029632fb
PZ
245 u64 runtime_expires;
246
4cfafd30 247 int idle, period_active;
029632fb
PZ
248 struct hrtimer period_timer, slack_timer;
249 struct list_head throttled_cfs_rq;
250
251 /* statistics */
252 int nr_periods, nr_throttled;
253 u64 throttled_time;
254#endif
255};
256
257/* task group related information */
258struct task_group {
259 struct cgroup_subsys_state css;
260
261#ifdef CONFIG_FAIR_GROUP_SCHED
262 /* schedulable entities of this group on each cpu */
263 struct sched_entity **se;
264 /* runqueue "owned" by this group on each cpu */
265 struct cfs_rq **cfs_rq;
266 unsigned long shares;
267
fa6bddeb 268#ifdef CONFIG_SMP
b0367629
WL
269 /*
270 * load_avg can be heavily contended at clock tick time, so put
271 * it in its own cacheline separated from the fields above which
272 * will also be accessed at each tick.
273 */
274 atomic_long_t load_avg ____cacheline_aligned;
029632fb 275#endif
fa6bddeb 276#endif
029632fb
PZ
277
278#ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
282 struct rt_bandwidth rt_bandwidth;
283#endif
284
285 struct rcu_head rcu;
286 struct list_head list;
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
291
292#ifdef CONFIG_SCHED_AUTOGROUP
293 struct autogroup *autogroup;
294#endif
295
296 struct cfs_bandwidth cfs_bandwidth;
297};
298
299#ifdef CONFIG_FAIR_GROUP_SCHED
300#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
301
302/*
303 * A weight of 0 or 1 can cause arithmetics problems.
304 * A weight of a cfs_rq is the sum of weights of which entities
305 * are queued on this cfs_rq, so a weight of a entity should not be
306 * too large, so as the shares value of a task group.
307 * (The default weight is 1024 - so there's no practical
308 * limitation from this.)
309 */
310#define MIN_SHARES (1UL << 1)
311#define MAX_SHARES (1UL << 18)
312#endif
313
029632fb
PZ
314typedef int (*tg_visitor)(struct task_group *, void *);
315
316extern int walk_tg_tree_from(struct task_group *from,
317 tg_visitor down, tg_visitor up, void *data);
318
319/*
320 * Iterate the full tree, calling @down when first entering a node and @up when
321 * leaving it for the final time.
322 *
323 * Caller must hold rcu_lock or sufficient equivalent.
324 */
325static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
326{
327 return walk_tg_tree_from(&root_task_group, down, up, data);
328}
329
330extern int tg_nop(struct task_group *tg, void *data);
331
332extern void free_fair_sched_group(struct task_group *tg);
333extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 334extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 335extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
336extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
337 struct sched_entity *se, int cpu,
338 struct sched_entity *parent);
339extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
340
341extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 342extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
343extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
344
345extern void free_rt_sched_group(struct task_group *tg);
346extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
347extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
348 struct sched_rt_entity *rt_se, int cpu,
349 struct sched_rt_entity *parent);
350
25cc7da7
LZ
351extern struct task_group *sched_create_group(struct task_group *parent);
352extern void sched_online_group(struct task_group *tg,
353 struct task_group *parent);
354extern void sched_destroy_group(struct task_group *tg);
355extern void sched_offline_group(struct task_group *tg);
356
357extern void sched_move_task(struct task_struct *tsk);
358
359#ifdef CONFIG_FAIR_GROUP_SCHED
360extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
361
362#ifdef CONFIG_SMP
363extern void set_task_rq_fair(struct sched_entity *se,
364 struct cfs_rq *prev, struct cfs_rq *next);
365#else /* !CONFIG_SMP */
366static inline void set_task_rq_fair(struct sched_entity *se,
367 struct cfs_rq *prev, struct cfs_rq *next) { }
368#endif /* CONFIG_SMP */
369#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 370
029632fb
PZ
371#else /* CONFIG_CGROUP_SCHED */
372
373struct cfs_bandwidth { };
374
375#endif /* CONFIG_CGROUP_SCHED */
376
377/* CFS-related fields in a runqueue */
378struct cfs_rq {
379 struct load_weight load;
c82513e5 380 unsigned int nr_running, h_nr_running;
029632fb
PZ
381
382 u64 exec_clock;
383 u64 min_vruntime;
384#ifndef CONFIG_64BIT
385 u64 min_vruntime_copy;
386#endif
387
388 struct rb_root tasks_timeline;
389 struct rb_node *rb_leftmost;
390
029632fb
PZ
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
395 struct sched_entity *curr, *next, *last, *skip;
396
397#ifdef CONFIG_SCHED_DEBUG
398 unsigned int nr_spread_over;
399#endif
400
2dac754e
PT
401#ifdef CONFIG_SMP
402 /*
9d89c257 403 * CFS load tracking
2dac754e 404 */
9d89c257 405 struct sched_avg avg;
13962234
YD
406 u64 runnable_load_sum;
407 unsigned long runnable_load_avg;
c566e8e9 408#ifdef CONFIG_FAIR_GROUP_SCHED
9d89c257 409 unsigned long tg_load_avg_contrib;
09a43ace 410 unsigned long propagate_avg;
9d89c257
YD
411#endif
412 atomic_long_t removed_load_avg, removed_util_avg;
413#ifndef CONFIG_64BIT
414 u64 load_last_update_time_copy;
415#endif
82958366 416
9d89c257 417#ifdef CONFIG_FAIR_GROUP_SCHED
82958366
PT
418 /*
419 * h_load = weight * f(tg)
420 *
421 * Where f(tg) is the recursive weight fraction assigned to
422 * this group.
423 */
424 unsigned long h_load;
68520796
VD
425 u64 last_h_load_update;
426 struct sched_entity *h_load_next;
427#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
428#endif /* CONFIG_SMP */
429
029632fb
PZ
430#ifdef CONFIG_FAIR_GROUP_SCHED
431 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
432
433 /*
434 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
435 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
436 * (like users, containers etc.)
437 *
438 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
439 * list is used during load balance.
440 */
441 int on_list;
442 struct list_head leaf_cfs_rq_list;
443 struct task_group *tg; /* group that "owns" this runqueue */
444
029632fb
PZ
445#ifdef CONFIG_CFS_BANDWIDTH
446 int runtime_enabled;
447 u64 runtime_expires;
448 s64 runtime_remaining;
449
f1b17280
PT
450 u64 throttled_clock, throttled_clock_task;
451 u64 throttled_clock_task_time;
55e16d30 452 int throttled, throttle_count;
029632fb
PZ
453 struct list_head throttled_list;
454#endif /* CONFIG_CFS_BANDWIDTH */
455#endif /* CONFIG_FAIR_GROUP_SCHED */
456};
457
458static inline int rt_bandwidth_enabled(void)
459{
460 return sysctl_sched_rt_runtime >= 0;
461}
462
b6366f04
SR
463/* RT IPI pull logic requires IRQ_WORK */
464#ifdef CONFIG_IRQ_WORK
465# define HAVE_RT_PUSH_IPI
466#endif
467
029632fb
PZ
468/* Real-Time classes' related field in a runqueue: */
469struct rt_rq {
470 struct rt_prio_array active;
c82513e5 471 unsigned int rt_nr_running;
01d36d0a 472 unsigned int rr_nr_running;
029632fb
PZ
473#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
474 struct {
475 int curr; /* highest queued rt task prio */
476#ifdef CONFIG_SMP
477 int next; /* next highest */
478#endif
479 } highest_prio;
480#endif
481#ifdef CONFIG_SMP
482 unsigned long rt_nr_migratory;
483 unsigned long rt_nr_total;
484 int overloaded;
485 struct plist_head pushable_tasks;
b6366f04
SR
486#ifdef HAVE_RT_PUSH_IPI
487 int push_flags;
488 int push_cpu;
489 struct irq_work push_work;
490 raw_spinlock_t push_lock;
029632fb 491#endif
b6366f04 492#endif /* CONFIG_SMP */
f4ebcbc0
KT
493 int rt_queued;
494
029632fb
PZ
495 int rt_throttled;
496 u64 rt_time;
497 u64 rt_runtime;
498 /* Nests inside the rq lock: */
499 raw_spinlock_t rt_runtime_lock;
500
501#ifdef CONFIG_RT_GROUP_SCHED
502 unsigned long rt_nr_boosted;
503
504 struct rq *rq;
029632fb
PZ
505 struct task_group *tg;
506#endif
507};
508
aab03e05
DF
509/* Deadline class' related fields in a runqueue */
510struct dl_rq {
511 /* runqueue is an rbtree, ordered by deadline */
512 struct rb_root rb_root;
513 struct rb_node *rb_leftmost;
514
515 unsigned long dl_nr_running;
1baca4ce
JL
516
517#ifdef CONFIG_SMP
518 /*
519 * Deadline values of the currently executing and the
520 * earliest ready task on this rq. Caching these facilitates
521 * the decision wether or not a ready but not running task
522 * should migrate somewhere else.
523 */
524 struct {
525 u64 curr;
526 u64 next;
527 } earliest_dl;
528
529 unsigned long dl_nr_migratory;
1baca4ce
JL
530 int overloaded;
531
532 /*
533 * Tasks on this rq that can be pushed away. They are kept in
534 * an rb-tree, ordered by tasks' deadlines, with caching
535 * of the leftmost (earliest deadline) element.
536 */
537 struct rb_root pushable_dl_tasks_root;
538 struct rb_node *pushable_dl_tasks_leftmost;
332ac17e
DF
539#else
540 struct dl_bw dl_bw;
1baca4ce 541#endif
aab03e05
DF
542};
543
029632fb
PZ
544#ifdef CONFIG_SMP
545
afe06efd
TC
546static inline bool sched_asym_prefer(int a, int b)
547{
548 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
549}
550
029632fb
PZ
551/*
552 * We add the notion of a root-domain which will be used to define per-domain
553 * variables. Each exclusive cpuset essentially defines an island domain by
554 * fully partitioning the member cpus from any other cpuset. Whenever a new
555 * exclusive cpuset is created, we also create and attach a new root-domain
556 * object.
557 *
558 */
559struct root_domain {
560 atomic_t refcount;
561 atomic_t rto_count;
562 struct rcu_head rcu;
563 cpumask_var_t span;
564 cpumask_var_t online;
565
4486edd1
TC
566 /* Indicate more than one runnable task for any CPU */
567 bool overload;
568
1baca4ce
JL
569 /*
570 * The bit corresponding to a CPU gets set here if such CPU has more
571 * than one runnable -deadline task (as it is below for RT tasks).
572 */
573 cpumask_var_t dlo_mask;
574 atomic_t dlo_count;
332ac17e 575 struct dl_bw dl_bw;
6bfd6d72 576 struct cpudl cpudl;
1baca4ce 577
029632fb
PZ
578 /*
579 * The "RT overload" flag: it gets set if a CPU has more than
580 * one runnable RT task.
581 */
582 cpumask_var_t rto_mask;
583 struct cpupri cpupri;
cd92bfd3
DE
584
585 unsigned long max_cpu_capacity;
029632fb
PZ
586};
587
588extern struct root_domain def_root_domain;
f2cb1360
IM
589extern struct mutex sched_domains_mutex;
590extern cpumask_var_t fallback_doms;
591extern cpumask_var_t sched_domains_tmpmask;
592
593extern void init_defrootdomain(void);
594extern int init_sched_domains(const struct cpumask *cpu_map);
595extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
029632fb
PZ
596
597#endif /* CONFIG_SMP */
598
599/*
600 * This is the main, per-CPU runqueue data structure.
601 *
602 * Locking rule: those places that want to lock multiple runqueues
603 * (such as the load balancing or the thread migration code), lock
604 * acquire operations must be ordered by ascending &runqueue.
605 */
606struct rq {
607 /* runqueue lock: */
608 raw_spinlock_t lock;
609
610 /*
611 * nr_running and cpu_load should be in the same cacheline because
612 * remote CPUs use both these fields when doing load calculation.
613 */
c82513e5 614 unsigned int nr_running;
0ec8aa00
PZ
615#ifdef CONFIG_NUMA_BALANCING
616 unsigned int nr_numa_running;
617 unsigned int nr_preferred_running;
618#endif
029632fb
PZ
619 #define CPU_LOAD_IDX_MAX 5
620 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 621#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5
FW
622#ifdef CONFIG_SMP
623 unsigned long last_load_update_tick;
624#endif /* CONFIG_SMP */
1c792db7 625 unsigned long nohz_flags;
9fd81dd5 626#endif /* CONFIG_NO_HZ_COMMON */
265f22a9
FW
627#ifdef CONFIG_NO_HZ_FULL
628 unsigned long last_sched_tick;
029632fb 629#endif
029632fb
PZ
630 /* capture load from *all* tasks on this cpu: */
631 struct load_weight load;
632 unsigned long nr_load_updates;
633 u64 nr_switches;
634
635 struct cfs_rq cfs;
636 struct rt_rq rt;
aab03e05 637 struct dl_rq dl;
029632fb
PZ
638
639#ifdef CONFIG_FAIR_GROUP_SCHED
640 /* list of leaf cfs_rq on this cpu: */
641 struct list_head leaf_cfs_rq_list;
9c2791f9 642 struct list_head *tmp_alone_branch;
a35b6466
PZ
643#endif /* CONFIG_FAIR_GROUP_SCHED */
644
029632fb
PZ
645 /*
646 * This is part of a global counter where only the total sum
647 * over all CPUs matters. A task can increase this counter on
648 * one CPU and if it got migrated afterwards it may decrease
649 * it on another CPU. Always updated under the runqueue lock:
650 */
651 unsigned long nr_uninterruptible;
652
653 struct task_struct *curr, *idle, *stop;
654 unsigned long next_balance;
655 struct mm_struct *prev_mm;
656
cb42c9a3 657 unsigned int clock_update_flags;
029632fb
PZ
658 u64 clock;
659 u64 clock_task;
660
661 atomic_t nr_iowait;
662
663#ifdef CONFIG_SMP
664 struct root_domain *rd;
665 struct sched_domain *sd;
666
ced549fa 667 unsigned long cpu_capacity;
ca6d75e6 668 unsigned long cpu_capacity_orig;
029632fb 669
e3fca9e7
PZ
670 struct callback_head *balance_callback;
671
029632fb
PZ
672 unsigned char idle_balance;
673 /* For active balancing */
029632fb
PZ
674 int active_balance;
675 int push_cpu;
676 struct cpu_stop_work active_balance_work;
677 /* cpu of this runqueue: */
678 int cpu;
679 int online;
680
367456c7
PZ
681 struct list_head cfs_tasks;
682
029632fb
PZ
683 u64 rt_avg;
684 u64 age_stamp;
685 u64 idle_stamp;
686 u64 avg_idle;
9bd721c5
JL
687
688 /* This is used to determine avg_idle's max value */
689 u64 max_idle_balance_cost;
029632fb
PZ
690#endif
691
692#ifdef CONFIG_IRQ_TIME_ACCOUNTING
693 u64 prev_irq_time;
694#endif
695#ifdef CONFIG_PARAVIRT
696 u64 prev_steal_time;
697#endif
698#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
699 u64 prev_steal_time_rq;
700#endif
701
702 /* calc_load related fields */
703 unsigned long calc_load_update;
704 long calc_load_active;
705
706#ifdef CONFIG_SCHED_HRTICK
707#ifdef CONFIG_SMP
708 int hrtick_csd_pending;
709 struct call_single_data hrtick_csd;
710#endif
711 struct hrtimer hrtick_timer;
712#endif
713
714#ifdef CONFIG_SCHEDSTATS
715 /* latency stats */
716 struct sched_info rq_sched_info;
717 unsigned long long rq_cpu_time;
718 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
719
720 /* sys_sched_yield() stats */
721 unsigned int yld_count;
722
723 /* schedule() stats */
029632fb
PZ
724 unsigned int sched_count;
725 unsigned int sched_goidle;
726
727 /* try_to_wake_up() stats */
728 unsigned int ttwu_count;
729 unsigned int ttwu_local;
730#endif
731
732#ifdef CONFIG_SMP
733 struct llist_head wake_list;
734#endif
442bf3aa
DL
735
736#ifdef CONFIG_CPU_IDLE
737 /* Must be inspected within a rcu lock section */
738 struct cpuidle_state *idle_state;
739#endif
029632fb
PZ
740};
741
742static inline int cpu_of(struct rq *rq)
743{
744#ifdef CONFIG_SMP
745 return rq->cpu;
746#else
747 return 0;
748#endif
749}
750
1b568f0a
PZ
751
752#ifdef CONFIG_SCHED_SMT
753
754extern struct static_key_false sched_smt_present;
755
756extern void __update_idle_core(struct rq *rq);
757
758static inline void update_idle_core(struct rq *rq)
759{
760 if (static_branch_unlikely(&sched_smt_present))
761 __update_idle_core(rq);
762}
763
764#else
765static inline void update_idle_core(struct rq *rq) { }
766#endif
767
8b06c55b 768DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 769
518cd623 770#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 771#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
772#define task_rq(p) cpu_rq(task_cpu(p))
773#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 774#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 775
cebde6d6
PZ
776static inline u64 __rq_clock_broken(struct rq *rq)
777{
316c1608 778 return READ_ONCE(rq->clock);
cebde6d6
PZ
779}
780
cb42c9a3
MF
781/*
782 * rq::clock_update_flags bits
783 *
784 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
785 * call to __schedule(). This is an optimisation to avoid
786 * neighbouring rq clock updates.
787 *
788 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
789 * in effect and calls to update_rq_clock() are being ignored.
790 *
791 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
792 * made to update_rq_clock() since the last time rq::lock was pinned.
793 *
794 * If inside of __schedule(), clock_update_flags will have been
795 * shifted left (a left shift is a cheap operation for the fast path
796 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
797 *
798 * if (rq-clock_update_flags >= RQCF_UPDATED)
799 *
800 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
801 * one position though, because the next rq_unpin_lock() will shift it
802 * back.
803 */
804#define RQCF_REQ_SKIP 0x01
805#define RQCF_ACT_SKIP 0x02
806#define RQCF_UPDATED 0x04
807
808static inline void assert_clock_updated(struct rq *rq)
809{
810 /*
811 * The only reason for not seeing a clock update since the
812 * last rq_pin_lock() is if we're currently skipping updates.
813 */
814 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
815}
816
78becc27
FW
817static inline u64 rq_clock(struct rq *rq)
818{
cebde6d6 819 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
820 assert_clock_updated(rq);
821
78becc27
FW
822 return rq->clock;
823}
824
825static inline u64 rq_clock_task(struct rq *rq)
826{
cebde6d6 827 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
828 assert_clock_updated(rq);
829
78becc27
FW
830 return rq->clock_task;
831}
832
9edfbfed
PZ
833static inline void rq_clock_skip_update(struct rq *rq, bool skip)
834{
835 lockdep_assert_held(&rq->lock);
836 if (skip)
cb42c9a3 837 rq->clock_update_flags |= RQCF_REQ_SKIP;
9edfbfed 838 else
cb42c9a3 839 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
840}
841
d8ac8971
MF
842struct rq_flags {
843 unsigned long flags;
844 struct pin_cookie cookie;
cb42c9a3
MF
845#ifdef CONFIG_SCHED_DEBUG
846 /*
847 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
848 * current pin context is stashed here in case it needs to be
849 * restored in rq_repin_lock().
850 */
851 unsigned int clock_update_flags;
852#endif
d8ac8971
MF
853};
854
855static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
856{
857 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
858
859#ifdef CONFIG_SCHED_DEBUG
860 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
861 rf->clock_update_flags = 0;
862#endif
d8ac8971
MF
863}
864
865static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
866{
cb42c9a3
MF
867#ifdef CONFIG_SCHED_DEBUG
868 if (rq->clock_update_flags > RQCF_ACT_SKIP)
869 rf->clock_update_flags = RQCF_UPDATED;
870#endif
871
d8ac8971
MF
872 lockdep_unpin_lock(&rq->lock, rf->cookie);
873}
874
875static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
876{
877 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
878
879#ifdef CONFIG_SCHED_DEBUG
880 /*
881 * Restore the value we stashed in @rf for this pin context.
882 */
883 rq->clock_update_flags |= rf->clock_update_flags;
884#endif
d8ac8971
MF
885}
886
9942f79b 887#ifdef CONFIG_NUMA
e3fe70b1
RR
888enum numa_topology_type {
889 NUMA_DIRECT,
890 NUMA_GLUELESS_MESH,
891 NUMA_BACKPLANE,
892};
893extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
894extern int sched_max_numa_distance;
895extern bool find_numa_distance(int distance);
896#endif
897
f2cb1360
IM
898#ifdef CONFIG_NUMA
899extern void sched_init_numa(void);
900extern void sched_domains_numa_masks_set(unsigned int cpu);
901extern void sched_domains_numa_masks_clear(unsigned int cpu);
902#else
903static inline void sched_init_numa(void) { }
904static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
905static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
906#endif
907
f809ca9a 908#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
909/* The regions in numa_faults array from task_struct */
910enum numa_faults_stats {
911 NUMA_MEM = 0,
912 NUMA_CPU,
913 NUMA_MEMBUF,
914 NUMA_CPUBUF
915};
0ec8aa00 916extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 917extern int migrate_task_to(struct task_struct *p, int cpu);
ac66f547 918extern int migrate_swap(struct task_struct *, struct task_struct *);
f809ca9a
MG
919#endif /* CONFIG_NUMA_BALANCING */
920
518cd623
PZ
921#ifdef CONFIG_SMP
922
e3fca9e7
PZ
923static inline void
924queue_balance_callback(struct rq *rq,
925 struct callback_head *head,
926 void (*func)(struct rq *rq))
927{
928 lockdep_assert_held(&rq->lock);
929
930 if (unlikely(head->next))
931 return;
932
933 head->func = (void (*)(struct callback_head *))func;
934 head->next = rq->balance_callback;
935 rq->balance_callback = head;
936}
937
e3baac47
PZ
938extern void sched_ttwu_pending(void);
939
029632fb
PZ
940#define rcu_dereference_check_sched_domain(p) \
941 rcu_dereference_check((p), \
942 lockdep_is_held(&sched_domains_mutex))
943
944/*
945 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
946 * See detach_destroy_domains: synchronize_sched for details.
947 *
948 * The domain tree of any CPU may only be accessed from within
949 * preempt-disabled sections.
950 */
951#define for_each_domain(cpu, __sd) \
518cd623
PZ
952 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
953 __sd; __sd = __sd->parent)
029632fb 954
77e81365
SS
955#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
956
518cd623
PZ
957/**
958 * highest_flag_domain - Return highest sched_domain containing flag.
959 * @cpu: The cpu whose highest level of sched domain is to
960 * be returned.
961 * @flag: The flag to check for the highest sched_domain
962 * for the given cpu.
963 *
964 * Returns the highest sched_domain of a cpu which contains the given flag.
965 */
966static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
967{
968 struct sched_domain *sd, *hsd = NULL;
969
970 for_each_domain(cpu, sd) {
971 if (!(sd->flags & flag))
972 break;
973 hsd = sd;
974 }
975
976 return hsd;
977}
978
fb13c7ee
MG
979static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
980{
981 struct sched_domain *sd;
982
983 for_each_domain(cpu, sd) {
984 if (sd->flags & flag)
985 break;
986 }
987
988 return sd;
989}
990
518cd623 991DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 992DECLARE_PER_CPU(int, sd_llc_size);
518cd623 993DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 994DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 995DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 996DECLARE_PER_CPU(struct sched_domain *, sd_asym);
518cd623 997
63b2ca30 998struct sched_group_capacity {
5e6521ea
LZ
999 atomic_t ref;
1000 /*
172895e6 1001 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1002 * for a single CPU.
5e6521ea 1003 */
bf475ce0
MR
1004 unsigned long capacity;
1005 unsigned long min_capacity; /* Min per-CPU capacity in group */
5e6521ea 1006 unsigned long next_update;
63b2ca30 1007 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea
LZ
1008
1009 unsigned long cpumask[0]; /* iteration mask */
1010};
1011
1012struct sched_group {
1013 struct sched_group *next; /* Must be a circular list */
1014 atomic_t ref;
1015
1016 unsigned int group_weight;
63b2ca30 1017 struct sched_group_capacity *sgc;
afe06efd 1018 int asym_prefer_cpu; /* cpu of highest priority in group */
5e6521ea
LZ
1019
1020 /*
1021 * The CPUs this group covers.
1022 *
1023 * NOTE: this field is variable length. (Allocated dynamically
1024 * by attaching extra space to the end of the structure,
1025 * depending on how many CPUs the kernel has booted up with)
1026 */
1027 unsigned long cpumask[0];
1028};
1029
1030static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
1031{
1032 return to_cpumask(sg->cpumask);
1033}
1034
1035/*
1036 * cpumask masking which cpus in the group are allowed to iterate up the domain
1037 * tree.
1038 */
1039static inline struct cpumask *sched_group_mask(struct sched_group *sg)
1040{
63b2ca30 1041 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1042}
1043
1044/**
1045 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
1046 * @group: The group whose first cpu is to be returned.
1047 */
1048static inline unsigned int group_first_cpu(struct sched_group *group)
1049{
1050 return cpumask_first(sched_group_cpus(group));
1051}
1052
c1174876
PZ
1053extern int group_balance_cpu(struct sched_group *sg);
1054
3866e845
SRRH
1055#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1056void register_sched_domain_sysctl(void);
1057void unregister_sched_domain_sysctl(void);
1058#else
1059static inline void register_sched_domain_sysctl(void)
1060{
1061}
1062static inline void unregister_sched_domain_sysctl(void)
1063{
1064}
1065#endif
1066
e3baac47
PZ
1067#else
1068
1069static inline void sched_ttwu_pending(void) { }
1070
518cd623 1071#endif /* CONFIG_SMP */
029632fb 1072
391e43da 1073#include "stats.h"
1051408f 1074#include "autogroup.h"
029632fb
PZ
1075
1076#ifdef CONFIG_CGROUP_SCHED
1077
1078/*
1079 * Return the group to which this tasks belongs.
1080 *
8af01f56
TH
1081 * We cannot use task_css() and friends because the cgroup subsystem
1082 * changes that value before the cgroup_subsys::attach() method is called,
1083 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1084 *
1085 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1086 * core changes this before calling sched_move_task().
1087 *
1088 * Instead we use a 'copy' which is updated from sched_move_task() while
1089 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1090 */
1091static inline struct task_group *task_group(struct task_struct *p)
1092{
8323f26c 1093 return p->sched_task_group;
029632fb
PZ
1094}
1095
1096/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1097static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1098{
1099#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1100 struct task_group *tg = task_group(p);
1101#endif
1102
1103#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1104 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1105 p->se.cfs_rq = tg->cfs_rq[cpu];
1106 p->se.parent = tg->se[cpu];
1107#endif
1108
1109#ifdef CONFIG_RT_GROUP_SCHED
1110 p->rt.rt_rq = tg->rt_rq[cpu];
1111 p->rt.parent = tg->rt_se[cpu];
1112#endif
1113}
1114
1115#else /* CONFIG_CGROUP_SCHED */
1116
1117static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1118static inline struct task_group *task_group(struct task_struct *p)
1119{
1120 return NULL;
1121}
1122
1123#endif /* CONFIG_CGROUP_SCHED */
1124
1125static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1126{
1127 set_task_rq(p, cpu);
1128#ifdef CONFIG_SMP
1129 /*
1130 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1131 * successfuly executed on another CPU. We must ensure that updates of
1132 * per-task data have been completed by this moment.
1133 */
1134 smp_wmb();
c65eacbe
AL
1135#ifdef CONFIG_THREAD_INFO_IN_TASK
1136 p->cpu = cpu;
1137#else
029632fb 1138 task_thread_info(p)->cpu = cpu;
c65eacbe 1139#endif
ac66f547 1140 p->wake_cpu = cpu;
029632fb
PZ
1141#endif
1142}
1143
1144/*
1145 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1146 */
1147#ifdef CONFIG_SCHED_DEBUG
c5905afb 1148# include <linux/static_key.h>
029632fb
PZ
1149# define const_debug __read_mostly
1150#else
1151# define const_debug const
1152#endif
1153
1154extern const_debug unsigned int sysctl_sched_features;
1155
1156#define SCHED_FEAT(name, enabled) \
1157 __SCHED_FEAT_##name ,
1158
1159enum {
391e43da 1160#include "features.h"
f8b6d1cc 1161 __SCHED_FEAT_NR,
029632fb
PZ
1162};
1163
1164#undef SCHED_FEAT
1165
f8b6d1cc 1166#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
f8b6d1cc 1167#define SCHED_FEAT(name, enabled) \
c5905afb 1168static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1169{ \
6e76ea8a 1170 return static_key_##enabled(key); \
f8b6d1cc
PZ
1171}
1172
1173#include "features.h"
1174
1175#undef SCHED_FEAT
1176
c5905afb 1177extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc
PZ
1178#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1179#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
029632fb 1180#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
f8b6d1cc 1181#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1182
2a595721 1183extern struct static_key_false sched_numa_balancing;
cb251765 1184extern struct static_key_false sched_schedstats;
cbee9f88 1185
029632fb
PZ
1186static inline u64 global_rt_period(void)
1187{
1188 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1189}
1190
1191static inline u64 global_rt_runtime(void)
1192{
1193 if (sysctl_sched_rt_runtime < 0)
1194 return RUNTIME_INF;
1195
1196 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1197}
1198
029632fb
PZ
1199static inline int task_current(struct rq *rq, struct task_struct *p)
1200{
1201 return rq->curr == p;
1202}
1203
1204static inline int task_running(struct rq *rq, struct task_struct *p)
1205{
1206#ifdef CONFIG_SMP
1207 return p->on_cpu;
1208#else
1209 return task_current(rq, p);
1210#endif
1211}
1212
da0c1e65
KT
1213static inline int task_on_rq_queued(struct task_struct *p)
1214{
1215 return p->on_rq == TASK_ON_RQ_QUEUED;
1216}
029632fb 1217
cca26e80
KT
1218static inline int task_on_rq_migrating(struct task_struct *p)
1219{
1220 return p->on_rq == TASK_ON_RQ_MIGRATING;
1221}
1222
029632fb
PZ
1223#ifndef prepare_arch_switch
1224# define prepare_arch_switch(next) do { } while (0)
1225#endif
01f23e16
CM
1226#ifndef finish_arch_post_lock_switch
1227# define finish_arch_post_lock_switch() do { } while (0)
1228#endif
029632fb 1229
029632fb
PZ
1230static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1231{
1232#ifdef CONFIG_SMP
1233 /*
1234 * We can optimise this out completely for !SMP, because the
1235 * SMP rebalancing from interrupt is the only thing that cares
1236 * here.
1237 */
1238 next->on_cpu = 1;
1239#endif
1240}
1241
1242static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1243{
1244#ifdef CONFIG_SMP
1245 /*
1246 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1247 * We must ensure this doesn't happen until the switch is completely
1248 * finished.
95913d97 1249 *
b75a2253
PZ
1250 * In particular, the load of prev->state in finish_task_switch() must
1251 * happen before this.
1252 *
1f03e8d2 1253 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
029632fb 1254 */
95913d97 1255 smp_store_release(&prev->on_cpu, 0);
029632fb
PZ
1256#endif
1257#ifdef CONFIG_DEBUG_SPINLOCK
1258 /* this is a valid case when another task releases the spinlock */
1259 rq->lock.owner = current;
1260#endif
1261 /*
1262 * If we are tracking spinlock dependencies then we have to
1263 * fix up the runqueue lock - which gets 'carried over' from
1264 * prev into current:
1265 */
1266 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1267
1268 raw_spin_unlock_irq(&rq->lock);
1269}
1270
b13095f0
LZ
1271/*
1272 * wake flags
1273 */
1274#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1275#define WF_FORK 0x02 /* child wakeup after fork */
1276#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1277
029632fb
PZ
1278/*
1279 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1280 * of tasks with abnormal "nice" values across CPUs the contribution that
1281 * each task makes to its run queue's load is weighted according to its
1282 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1283 * scaled version of the new time slice allocation that they receive on time
1284 * slice expiry etc.
1285 */
1286
1287#define WEIGHT_IDLEPRIO 3
1288#define WMULT_IDLEPRIO 1431655765
1289
ed82b8a1
AK
1290extern const int sched_prio_to_weight[40];
1291extern const u32 sched_prio_to_wmult[40];
029632fb 1292
ff77e468
PZ
1293/*
1294 * {de,en}queue flags:
1295 *
1296 * DEQUEUE_SLEEP - task is no longer runnable
1297 * ENQUEUE_WAKEUP - task just became runnable
1298 *
1299 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1300 * are in a known state which allows modification. Such pairs
1301 * should preserve as much state as possible.
1302 *
1303 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1304 * in the runqueue.
1305 *
1306 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1307 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1308 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1309 *
1310 */
1311
1312#define DEQUEUE_SLEEP 0x01
1313#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
1314#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
1315
1de64443 1316#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1317#define ENQUEUE_RESTORE 0x02
1318#define ENQUEUE_MOVE 0x04
1319
1320#define ENQUEUE_HEAD 0x08
1321#define ENQUEUE_REPLENISH 0x10
c82ba9fa 1322#ifdef CONFIG_SMP
59efa0ba 1323#define ENQUEUE_MIGRATED 0x20
c82ba9fa 1324#else
59efa0ba 1325#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1326#endif
c82ba9fa 1327
37e117c0
PZ
1328#define RETRY_TASK ((void *)-1UL)
1329
c82ba9fa
LZ
1330struct sched_class {
1331 const struct sched_class *next;
1332
1333 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1334 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1335 void (*yield_task) (struct rq *rq);
1336 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1337
1338 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1339
606dba2e
PZ
1340 /*
1341 * It is the responsibility of the pick_next_task() method that will
1342 * return the next task to call put_prev_task() on the @prev task or
1343 * something equivalent.
37e117c0
PZ
1344 *
1345 * May return RETRY_TASK when it finds a higher prio class has runnable
1346 * tasks.
606dba2e
PZ
1347 */
1348 struct task_struct * (*pick_next_task) (struct rq *rq,
e7904a28 1349 struct task_struct *prev,
d8ac8971 1350 struct rq_flags *rf);
c82ba9fa
LZ
1351 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1352
1353#ifdef CONFIG_SMP
ac66f547 1354 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
5a4fd036 1355 void (*migrate_task_rq)(struct task_struct *p);
c82ba9fa 1356
c82ba9fa
LZ
1357 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1358
1359 void (*set_cpus_allowed)(struct task_struct *p,
1360 const struct cpumask *newmask);
1361
1362 void (*rq_online)(struct rq *rq);
1363 void (*rq_offline)(struct rq *rq);
1364#endif
1365
1366 void (*set_curr_task) (struct rq *rq);
1367 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1368 void (*task_fork) (struct task_struct *p);
e6c390f2 1369 void (*task_dead) (struct task_struct *p);
c82ba9fa 1370
67dfa1b7
KT
1371 /*
1372 * The switched_from() call is allowed to drop rq->lock, therefore we
1373 * cannot assume the switched_from/switched_to pair is serliazed by
1374 * rq->lock. They are however serialized by p->pi_lock.
1375 */
c82ba9fa
LZ
1376 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1377 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1378 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1379 int oldprio);
1380
1381 unsigned int (*get_rr_interval) (struct rq *rq,
1382 struct task_struct *task);
1383
6e998916
SG
1384 void (*update_curr) (struct rq *rq);
1385
ea86cb4b
VG
1386#define TASK_SET_GROUP 0
1387#define TASK_MOVE_GROUP 1
1388
c82ba9fa 1389#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 1390 void (*task_change_group) (struct task_struct *p, int type);
c82ba9fa
LZ
1391#endif
1392};
029632fb 1393
3f1d2a31
PZ
1394static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1395{
1396 prev->sched_class->put_prev_task(rq, prev);
1397}
1398
b2bf6c31
PZ
1399static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1400{
1401 curr->sched_class->set_curr_task(rq);
1402}
1403
029632fb
PZ
1404#define sched_class_highest (&stop_sched_class)
1405#define for_each_class(class) \
1406 for (class = sched_class_highest; class; class = class->next)
1407
1408extern const struct sched_class stop_sched_class;
aab03e05 1409extern const struct sched_class dl_sched_class;
029632fb
PZ
1410extern const struct sched_class rt_sched_class;
1411extern const struct sched_class fair_sched_class;
1412extern const struct sched_class idle_sched_class;
1413
1414
1415#ifdef CONFIG_SMP
1416
63b2ca30 1417extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1418
7caff66f 1419extern void trigger_load_balance(struct rq *rq);
029632fb 1420
c5b28038
PZ
1421extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1422
029632fb
PZ
1423#endif
1424
442bf3aa
DL
1425#ifdef CONFIG_CPU_IDLE
1426static inline void idle_set_state(struct rq *rq,
1427 struct cpuidle_state *idle_state)
1428{
1429 rq->idle_state = idle_state;
1430}
1431
1432static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1433{
9148a3a1 1434 SCHED_WARN_ON(!rcu_read_lock_held());
442bf3aa
DL
1435 return rq->idle_state;
1436}
1437#else
1438static inline void idle_set_state(struct rq *rq,
1439 struct cpuidle_state *idle_state)
1440{
1441}
1442
1443static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1444{
1445 return NULL;
1446}
1447#endif
1448
029632fb
PZ
1449extern void sysrq_sched_debug_show(void);
1450extern void sched_init_granularity(void);
1451extern void update_max_interval(void);
1baca4ce
JL
1452
1453extern void init_sched_dl_class(void);
029632fb
PZ
1454extern void init_sched_rt_class(void);
1455extern void init_sched_fair_class(void);
1456
8875125e 1457extern void resched_curr(struct rq *rq);
029632fb
PZ
1458extern void resched_cpu(int cpu);
1459
1460extern struct rt_bandwidth def_rt_bandwidth;
1461extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1462
332ac17e
DF
1463extern struct dl_bandwidth def_dl_bandwidth;
1464extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05
DF
1465extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1466
332ac17e
DF
1467unsigned long to_ratio(u64 period, u64 runtime);
1468
540247fb 1469extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1470extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1471
76d92ac3
FW
1472#ifdef CONFIG_NO_HZ_FULL
1473extern bool sched_can_stop_tick(struct rq *rq);
1474
1475/*
1476 * Tick may be needed by tasks in the runqueue depending on their policy and
1477 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1478 * nohz mode if necessary.
1479 */
1480static inline void sched_update_tick_dependency(struct rq *rq)
1481{
1482 int cpu;
1483
1484 if (!tick_nohz_full_enabled())
1485 return;
1486
1487 cpu = cpu_of(rq);
1488
1489 if (!tick_nohz_full_cpu(cpu))
1490 return;
1491
1492 if (sched_can_stop_tick(rq))
1493 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1494 else
1495 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1496}
1497#else
1498static inline void sched_update_tick_dependency(struct rq *rq) { }
1499#endif
1500
72465447 1501static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1502{
72465447
KT
1503 unsigned prev_nr = rq->nr_running;
1504
1505 rq->nr_running = prev_nr + count;
9f3660c2 1506
72465447 1507 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1
TC
1508#ifdef CONFIG_SMP
1509 if (!rq->rd->overload)
1510 rq->rd->overload = true;
1511#endif
4486edd1 1512 }
76d92ac3
FW
1513
1514 sched_update_tick_dependency(rq);
029632fb
PZ
1515}
1516
72465447 1517static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1518{
72465447 1519 rq->nr_running -= count;
76d92ac3
FW
1520 /* Check if we still need preemption */
1521 sched_update_tick_dependency(rq);
029632fb
PZ
1522}
1523
265f22a9
FW
1524static inline void rq_last_tick_reset(struct rq *rq)
1525{
1526#ifdef CONFIG_NO_HZ_FULL
1527 rq->last_sched_tick = jiffies;
1528#endif
1529}
1530
029632fb
PZ
1531extern void update_rq_clock(struct rq *rq);
1532
1533extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1534extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1535
1536extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1537
1538extern const_debug unsigned int sysctl_sched_time_avg;
1539extern const_debug unsigned int sysctl_sched_nr_migrate;
1540extern const_debug unsigned int sysctl_sched_migration_cost;
1541
1542static inline u64 sched_avg_period(void)
1543{
1544 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1545}
1546
029632fb
PZ
1547#ifdef CONFIG_SCHED_HRTICK
1548
1549/*
1550 * Use hrtick when:
1551 * - enabled by features
1552 * - hrtimer is actually high res
1553 */
1554static inline int hrtick_enabled(struct rq *rq)
1555{
1556 if (!sched_feat(HRTICK))
1557 return 0;
1558 if (!cpu_active(cpu_of(rq)))
1559 return 0;
1560 return hrtimer_is_hres_active(&rq->hrtick_timer);
1561}
1562
1563void hrtick_start(struct rq *rq, u64 delay);
1564
b39e66ea
MG
1565#else
1566
1567static inline int hrtick_enabled(struct rq *rq)
1568{
1569 return 0;
1570}
1571
029632fb
PZ
1572#endif /* CONFIG_SCHED_HRTICK */
1573
1574#ifdef CONFIG_SMP
1575extern void sched_avg_update(struct rq *rq);
dfbca41f
PZ
1576
1577#ifndef arch_scale_freq_capacity
1578static __always_inline
1579unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1580{
1581 return SCHED_CAPACITY_SCALE;
1582}
1583#endif
b5b4860d 1584
8cd5601c
MR
1585#ifndef arch_scale_cpu_capacity
1586static __always_inline
1587unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1588{
e3279a2e 1589 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1590 return sd->smt_gain / sd->span_weight;
1591
1592 return SCHED_CAPACITY_SCALE;
1593}
1594#endif
1595
029632fb
PZ
1596static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1597{
b5b4860d 1598 rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
029632fb
PZ
1599 sched_avg_update(rq);
1600}
1601#else
1602static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1603static inline void sched_avg_update(struct rq *rq) { }
1604#endif
1605
eb580751 1606struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462 1607 __acquires(rq->lock);
eb580751 1608struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3960c8c0 1609 __acquires(p->pi_lock)
3e71a462 1610 __acquires(rq->lock);
3960c8c0 1611
eb580751 1612static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
3960c8c0
PZ
1613 __releases(rq->lock)
1614{
d8ac8971 1615 rq_unpin_lock(rq, rf);
3960c8c0
PZ
1616 raw_spin_unlock(&rq->lock);
1617}
1618
1619static inline void
eb580751 1620task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
3960c8c0
PZ
1621 __releases(rq->lock)
1622 __releases(p->pi_lock)
1623{
d8ac8971 1624 rq_unpin_lock(rq, rf);
3960c8c0 1625 raw_spin_unlock(&rq->lock);
eb580751 1626 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3960c8c0
PZ
1627}
1628
029632fb
PZ
1629#ifdef CONFIG_SMP
1630#ifdef CONFIG_PREEMPT
1631
1632static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1633
1634/*
1635 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1636 * way at the expense of forcing extra atomic operations in all
1637 * invocations. This assures that the double_lock is acquired using the
1638 * same underlying policy as the spinlock_t on this architecture, which
1639 * reduces latency compared to the unfair variant below. However, it
1640 * also adds more overhead and therefore may reduce throughput.
1641 */
1642static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1643 __releases(this_rq->lock)
1644 __acquires(busiest->lock)
1645 __acquires(this_rq->lock)
1646{
1647 raw_spin_unlock(&this_rq->lock);
1648 double_rq_lock(this_rq, busiest);
1649
1650 return 1;
1651}
1652
1653#else
1654/*
1655 * Unfair double_lock_balance: Optimizes throughput at the expense of
1656 * latency by eliminating extra atomic operations when the locks are
1657 * already in proper order on entry. This favors lower cpu-ids and will
1658 * grant the double lock to lower cpus over higher ids under contention,
1659 * regardless of entry order into the function.
1660 */
1661static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665{
1666 int ret = 0;
1667
1668 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1669 if (busiest < this_rq) {
1670 raw_spin_unlock(&this_rq->lock);
1671 raw_spin_lock(&busiest->lock);
1672 raw_spin_lock_nested(&this_rq->lock,
1673 SINGLE_DEPTH_NESTING);
1674 ret = 1;
1675 } else
1676 raw_spin_lock_nested(&busiest->lock,
1677 SINGLE_DEPTH_NESTING);
1678 }
1679 return ret;
1680}
1681
1682#endif /* CONFIG_PREEMPT */
1683
1684/*
1685 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1686 */
1687static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688{
1689 if (unlikely(!irqs_disabled())) {
1690 /* printk() doesn't work good under rq->lock */
1691 raw_spin_unlock(&this_rq->lock);
1692 BUG_ON(1);
1693 }
1694
1695 return _double_lock_balance(this_rq, busiest);
1696}
1697
1698static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1699 __releases(busiest->lock)
1700{
1701 raw_spin_unlock(&busiest->lock);
1702 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1703}
1704
74602315
PZ
1705static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1706{
1707 if (l1 > l2)
1708 swap(l1, l2);
1709
1710 spin_lock(l1);
1711 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1712}
1713
60e69eed
MG
1714static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1715{
1716 if (l1 > l2)
1717 swap(l1, l2);
1718
1719 spin_lock_irq(l1);
1720 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1721}
1722
74602315
PZ
1723static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1724{
1725 if (l1 > l2)
1726 swap(l1, l2);
1727
1728 raw_spin_lock(l1);
1729 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1730}
1731
029632fb
PZ
1732/*
1733 * double_rq_lock - safely lock two runqueues
1734 *
1735 * Note this does not disable interrupts like task_rq_lock,
1736 * you need to do so manually before calling.
1737 */
1738static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1739 __acquires(rq1->lock)
1740 __acquires(rq2->lock)
1741{
1742 BUG_ON(!irqs_disabled());
1743 if (rq1 == rq2) {
1744 raw_spin_lock(&rq1->lock);
1745 __acquire(rq2->lock); /* Fake it out ;) */
1746 } else {
1747 if (rq1 < rq2) {
1748 raw_spin_lock(&rq1->lock);
1749 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1750 } else {
1751 raw_spin_lock(&rq2->lock);
1752 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1753 }
1754 }
1755}
1756
1757/*
1758 * double_rq_unlock - safely unlock two runqueues
1759 *
1760 * Note this does not restore interrupts like task_rq_unlock,
1761 * you need to do so manually after calling.
1762 */
1763static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1764 __releases(rq1->lock)
1765 __releases(rq2->lock)
1766{
1767 raw_spin_unlock(&rq1->lock);
1768 if (rq1 != rq2)
1769 raw_spin_unlock(&rq2->lock);
1770 else
1771 __release(rq2->lock);
1772}
1773
f2cb1360
IM
1774extern void set_rq_online (struct rq *rq);
1775extern void set_rq_offline(struct rq *rq);
1776extern bool sched_smp_initialized;
1777
029632fb
PZ
1778#else /* CONFIG_SMP */
1779
1780/*
1781 * double_rq_lock - safely lock two runqueues
1782 *
1783 * Note this does not disable interrupts like task_rq_lock,
1784 * you need to do so manually before calling.
1785 */
1786static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1787 __acquires(rq1->lock)
1788 __acquires(rq2->lock)
1789{
1790 BUG_ON(!irqs_disabled());
1791 BUG_ON(rq1 != rq2);
1792 raw_spin_lock(&rq1->lock);
1793 __acquire(rq2->lock); /* Fake it out ;) */
1794}
1795
1796/*
1797 * double_rq_unlock - safely unlock two runqueues
1798 *
1799 * Note this does not restore interrupts like task_rq_unlock,
1800 * you need to do so manually after calling.
1801 */
1802static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1803 __releases(rq1->lock)
1804 __releases(rq2->lock)
1805{
1806 BUG_ON(rq1 != rq2);
1807 raw_spin_unlock(&rq1->lock);
1808 __release(rq2->lock);
1809}
1810
1811#endif
1812
1813extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1814extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
1815
1816#ifdef CONFIG_SCHED_DEBUG
029632fb
PZ
1817extern void print_cfs_stats(struct seq_file *m, int cpu);
1818extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 1819extern void print_dl_stats(struct seq_file *m, int cpu);
6b55c965
SD
1820extern void
1821print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
397f2378
SD
1822
1823#ifdef CONFIG_NUMA_BALANCING
1824extern void
1825show_numa_stats(struct task_struct *p, struct seq_file *m);
1826extern void
1827print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1828 unsigned long tpf, unsigned long gsf, unsigned long gpf);
1829#endif /* CONFIG_NUMA_BALANCING */
1830#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
1831
1832extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
1833extern void init_rt_rq(struct rt_rq *rt_rq);
1834extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 1835
1ee14e6c
BS
1836extern void cfs_bandwidth_usage_inc(void);
1837extern void cfs_bandwidth_usage_dec(void);
1c792db7 1838
3451d024 1839#ifdef CONFIG_NO_HZ_COMMON
1c792db7
SS
1840enum rq_nohz_flag_bits {
1841 NOHZ_TICK_STOPPED,
1842 NOHZ_BALANCE_KICK,
1843};
1844
1845#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc
TG
1846
1847extern void nohz_balance_exit_idle(unsigned int cpu);
1848#else
1849static inline void nohz_balance_exit_idle(unsigned int cpu) { }
1c792db7 1850#endif
73fbec60
FW
1851
1852#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 1853struct irqtime {
a499a5a1 1854 u64 tick_delta;
19d23dbf
FW
1855 u64 irq_start_time;
1856 struct u64_stats_sync sync;
1857};
73fbec60 1858
19d23dbf 1859DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60
FW
1860
1861static inline u64 irq_time_read(int cpu)
1862{
19d23dbf 1863 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
a499a5a1 1864 u64 *cpustat = kcpustat_cpu(cpu).cpustat;
19d23dbf
FW
1865 unsigned int seq;
1866 u64 total;
73fbec60
FW
1867
1868 do {
19d23dbf 1869 seq = __u64_stats_fetch_begin(&irqtime->sync);
a499a5a1 1870 total = cpustat[CPUTIME_SOFTIRQ] + cpustat[CPUTIME_IRQ];
19d23dbf 1871 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 1872
19d23dbf 1873 return total;
73fbec60 1874}
73fbec60 1875#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
1876
1877#ifdef CONFIG_CPU_FREQ
1878DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1879
1880/**
1881 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 1882 * @rq: Runqueue to carry out the update for.
58919e83 1883 * @flags: Update reason flags.
adaf9fcd 1884 *
58919e83
RW
1885 * This function is called by the scheduler on the CPU whose utilization is
1886 * being updated.
adaf9fcd
RW
1887 *
1888 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
1889 *
1890 * The way cpufreq is currently arranged requires it to evaluate the CPU
1891 * performance state (frequency/voltage) on a regular basis to prevent it from
1892 * being stuck in a completely inadequate performance level for too long.
1893 * That is not guaranteed to happen if the updates are only triggered from CFS,
1894 * though, because they may not be coming in if RT or deadline tasks are active
1895 * all the time (or there are RT and DL tasks only).
1896 *
1897 * As a workaround for that issue, this function is called by the RT and DL
1898 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1899 * but that really is a band-aid. Going forward it should be replaced with
1900 * solutions targeted more specifically at RT and DL tasks.
1901 */
12bde33d 1902static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 1903{
58919e83
RW
1904 struct update_util_data *data;
1905
1906 data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1907 if (data)
12bde33d
RW
1908 data->func(data, rq_clock(rq), flags);
1909}
1910
1911static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags)
1912{
1913 if (cpu_of(rq) == smp_processor_id())
1914 cpufreq_update_util(rq, flags);
adaf9fcd
RW
1915}
1916#else
12bde33d
RW
1917static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
1918static inline void cpufreq_update_this_cpu(struct rq *rq, unsigned int flags) {}
adaf9fcd 1919#endif /* CONFIG_CPU_FREQ */
be53f58f 1920
9bdcb44e
RW
1921#ifdef arch_scale_freq_capacity
1922#ifndef arch_scale_freq_invariant
1923#define arch_scale_freq_invariant() (true)
1924#endif
1925#else /* arch_scale_freq_capacity */
1926#define arch_scale_freq_invariant() (false)
1927#endif